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Abstract: There is currently little information on changes in vitamin D status during pregnancy and
its predictors. The aim was to study the determinants of change in vitamin D status during pregnancy
and of vitamin D deficiency (<30 nmol/L) in early pregnancy. Blood was drawn in the first (T1)
and third trimester (T3). Serum 25-hydroxyvitamin D (25(OH)D) (N = 1985) was analysed by liquid
chromatography tandem-mass spectrometry. Season-corrected 25(OH)D was calculated by fitting
cosine functions to the data. Mean (standard deviation) 25(OH)D was 64.5(24.5) nmol/L at T1 and
74.6(34.4) at T3. Mean age was 31.3(4.9) years, mean body mass index (BMI) was 24.5(4.2) kg/m2

and 74% of the women were born in Sweden. Vitamin D deficiency was common among women
born in Africa (51%) and Asia (46%) and prevalent in 10% of the whole cohort. Determinants of
vitamin D deficiency at T1 were of non-North European origin, and had less sun exposure, lower
vitamin D intake and lower age. Season-corrected 25(OH)D increased by 11(23) nmol/L from T1 to
T3. The determinants of season-corrected change in 25(OH)D were origin, sun-seeking behaviour,
clothing style, dietary vitamin D intake, vitamin D supplementation and recent travel <35◦ N.
In conclusion, season-corrected 25(OH)D concentration increased during pregnancy and depended
partly on lifestyle factors. The overall prevalence of vitamin D deficiency was low but common among
women born in Africa and Asia. Among them, the determinants of both vitamin D deficiency and
change in season-corrected vitamin D status were fewer, indicating a smaller effect of sun exposure.
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1. Introduction

During the past decade, vitamin D has received increasing attention and has been associated with
health benefits in addition to its recognized effects on bone health. One of these areas of interest is
vitamin D status during pregnancy. The pregnant woman’s vitamin D status determines the vitamin D
status of her newborn infant [1]. Poor maternal vitamin D status during pregnancy is associated with
lower bone mineral density and muscle strength in the infant [2]. Poor maternal vitamin D status has

Nutrients 2016, 8, 655; doi:10.3390/nu8100655 www.mdpi.com/journal/nutrients

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of East Anglia digital repository

https://core.ac.uk/display/77028345?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/nutrients
http://www.mdpi.com
http://www.mdpi.com/journal/nutrients


Nutrients 2016, 8, 655 2 of 11

also been associated with pregnancy complications such as preeclampsia [3], premature birth [4] and
infants born small for gestational age [5]. In Sweden, approximately 3% of pregnancies are complicated
by preeclampsia [6] and just below 5% of singletons are born prematurely [7]. We have previously
shown that 25-hydroxyvitamin D (25(OH)D) concentrations in the third trimester and changes in
25(OH)D during pregnancy are associated with lower odds of preeclampsia [8].

Studies show conflicting results concerning whether 25(OH)D changes during pregnancy [9–11].
Since data on gestational vitamin D status in populations living at latitudes without seasonality in
cutaneous vitamin D synthesis are scarce, a season-corrected analysis is a way of investigating changes
in 25(OH)D during pregnancy per se. Such analyses of 25(OH)D concentrations during pregnancy
show that vitamin D status between early and late pregnancy tracks moderately and that change
depends on supplement use, gestational weight gain and physical activity [12].

No population-representative data on 25(OH)D concentrations during pregnancy in Sweden exist.
In a previous study, we showed that 17% have <30 nmol/L in the third trimester of pregnancy [13].
Data from other studies show that immigrant women in Sweden are at higher risk of vitamin D
deficiency than women of Swedish origin [14,15]. These studies were of small sample size and not
representative of the general pregnant population. Danish studies have found average concentrations
between 57 and 76 nmol/L and that between 3% and 10% of pregnant women have 25(OH)D levels
<25 nmol/L [16–18]. Findings from England indicate a mean 25(OH)D of 62 nmol/L [19], while Scottish
data indicate a lower mean, 40 nmol/L [20]. National data from Belgium report a mean 25(OH)D
of 57 nmol/L and that 12% of pregnant women have 25(OH)D concentrations <25 nmol/L [21].
Population-representative data on vitamin D status during pregnancy is needed to evaluate the
potential need for new public-health policies and to provide reliable data on potential risk groups for
vitamin D deficiency.

Few studies have investigated vitamin D status longitudinally in a large cohort of pregnant
women, and knowledge of change in vitamin D status during pregnancy and its determinants are
lacking. Therefore, the aim of this study was to assess 25(OH)D concentrations in the first and third
trimester of pregnancy in a population-representative Swedish cohort. Determinants of vitamin D
deficiency in the first trimester of pregnancy and of changes in vitamin D status during pregnancy
were identified. Subgroup analyses were performed in groups identified to be at higher risk of
vitamin D deficiency.

2. Materials and Methods

The GraviD study was designed to investigate the association of vitamin D status during
pregnancy with preeclampsia and pregnancy-induced hypertension. Women attending antenatal
care in Gothenburg, Södra Älvsborg and Södra Bohuslän in south-western Sweden were eligible for
inclusion. The only exclusion criterion was gestational age exceeding 16 weeks at inclusion. Pregnant
women of all ages were eligible for inclusion. Recruitment took place during two time periods, the fall
of 2013 (2 September–8 November) and the spring of 2014 (24 February–13 June). Study information
and consent forms for the participants were provided in eight languages and interpreters were present
when required, in line with standard practice of care. In total, 2122 women were included in the study
but women who miscarried or terminated the pregnancy, and women who were lost to follow up
(i.e., women who moved) were excluded and 1985 women are included in these analyses. This study
was conducted according to the Declaration of Helsinki and all procedures were approved by the
Regional Ethics Committee in Gothenburg (Dnr 897-11, approved 20 December 2011). Written and
informed consent was provided by all participants.

2.1. Data Collection

Two blood samples were collected from each participant: the first before gestational week 17
(first trimester; T1) and a second one after gestational week 31 (third trimester; T3). At both time-points,
participants answered a questionnaire regarding sun exposure (sun-seeking behaviour and clothing



Nutrients 2016, 8, 655 3 of 11

style); recent travel <35◦ N, intake of foods rich in vitamin D (milk and oily fish at T1 with the addition
of margarine, yoghurt and sour milk in T3) [22]; supplement use; and background characteristics not
included in the medical charts (education level and country of birth). In Sweden, at the time of data
collection, margarine and milk with reduced fat content were fortified with vitamin D3 [23]. Medical
charts from antenatal care and obstetric units were retrieved after delivery. Data on employment status
at T1, tobacco use at T1 and body mass index (BMI) were collected from the medical charts.

2.2. Laboratory Analysis

Venous blood samples were centrifuged for 10 min within two hours of sampling and sent to the
central laboratory at Sahlgrenska University Hospital. The blood samples were kept from sunlight
in cardboard boxes, and kept refrigerated until and after transport. Serum was extracted, aliquoted
and frozen (56% of the samples were processed within 12 h, 59% within 24 h, 95% within 36 h and
98% within 48 h). There were no differences in serum levels of 25(OH)D depending on time until
freezing, consistent with previous findings showing stability of 25(OH)D [24]. Serum was stored at
−70 ◦C until analysis of 25(OH)D. A laboratory analysis of 25(OH)D was performed using liquid
chromatography tandem-mass spectrometry (LC-MS/MS; Mass spectrometer API 4000, AB Sciex,
Framingham, MA, USA) by the central laboratory in Malmö, Sweden, certified by the Vitamin D
External Quality Assessment Scheme (DEQAS). The LC-MS/MS method has a measurement range
of 6–450 nmol/L for 25(OH)D3 and of 6–225 nmol/L for 25(OH)D2. Values are given as the sum
of 25(OH)D3 and 25(OH)D2. The inter-assay coefficient of variation is 6% at 40 nmol/L for both
25(OH)D3 and 25(OH)D2 [25]. Both samples from each woman were analysed at the same time point.

2.3. Statistical Analysis

Risk factors for vitamin D deficiency (25(OH)D <30 nmol/L) [26] were analysed using a
multivariable logistic regression analysis. Cosine functions (for T1 and T3, respectively) were fitted to
the data, using mean 25(OH)D concentration of each calendar month. The 25(OH)D concentration was
adjusted to the predicted yearly mean 25(OH)D of the function, in order to account for seasonality
in vitamin D status. This allows for an analysis of gestational changes in 25(OH)D concentration
irrespective of season. Cosine functions were also fitted for the subgroup of women born in Africa
and Asia. The determinants of season-corrected change in 25(OH)D during pregnancy (T3–T1) were
analysed using a multivariable linear regression analysis.

Variables included in multivariate analyses were selected on the basis of biological plausibility;
the potential determinants of vitamin D deficiency at T1 were season, clothing style, recent travel
to <35◦ N, sun-seeking behaviour, vitamin D supplement use (including multivitamin supplements
containing vitamin D), vitamin D intake (from oily fish and milk), origin, BMI at T1, tobacco use
at T1 and age. Potential determinants for season-corrected change in 25(OH)D from T1 to T3 were
the same as above except season and tobacco use (unavailable at T3). Data collected at T3 were
used as appropriate (season, recent travel to <35◦ N, dietary intake of vitamin D and vitamin D
supplement use). Dietary intake of vitamin D at T3 also included margarine, yoghurt and sour
milk at T3 (not included in the questionnaire at T1). Also, gestational weight gain was included as
a potential determinant. Subgroup analyses of the variables relating to vitamin D deficiency and
season-corrected 25(OH)D change were performed for women born in Africa and Asia, using the same
models. Confounders in all analyses were parity, educational level at T1 and employment at T1. Also,
25(OH)D at T1 and tobacco use at T1 were considered as confounders in the regression analysis of
season-corrected change in 25(OH)D.

Continuous variables were BMI (kg/m2), gestational weight gain, dietary vitamin D intake
and age. Categorical variables were season (December–February, March–May, June–August,
September–November), vitamin D supplement use (any dose and frequency: no/yes), origin (defined
as country of birth, categorized as North Europe, America, Continental Europe, Africa and Asia),
recent travel to a southern latitude (<35◦ N within six months of blood sampling: no/yes), sun-seeking
behaviour (preference for sun, both sun and shade or shade in sunny weather), clothing style when



Nutrients 2016, 8, 655 4 of 11

sunny (often, seldom or never exposes more skin than face and hands to the sun in warm weather),
parity (0, 1, 2, ≥3 children), education level (primary, secondary, university), employment (unemployed,
fulltime, part time, parental leave) and tobacco use (any: no/yes). Data on eye colour was available,
but could not be included in the multivariable analysis due to collinearity with origin.

Difference in means between T1 and T3 was tested using an unpaired Student’s t-test for data
stratified by season. Agreement between T1 and T3 25(OH)D was assessed using correlation. Computer
software IBM SPSS Statistics for Windows version 22.0 (IBM Corp., Armonk, NY, USA) was used for
all statistical analyses.

3. Results

3.1. Participant Characteristics

In total, 2122 women were included in the GraviD-study. Of these, 118 miscarried or terminated
the pregnancy, 13 moved and their medical charts could not be retrieved and six T1 samples were unfit
for analysis due to diversions from the study protocol. Hence, a 25(OH)D analysis was performed on
1985 samples at T1. At T3, 1836 blood samples were analysed for 25(OH)D and values were available
at both time-points for 1829 women.

Characteristics of the cohort are shown in Table 1. Of the whole cohort, 74% were born in Sweden
and 75% in North Europe, 7% in Continental Europe, 6% in Africa (3% in Somalia), 10% in Asia
(7% in West Asia) and 2% were born in North or South America. Mean standard deviation (SD)
age at inclusion varied only slightly between women born in Africa (29.9(5.7)), North (31.4(4.7)) and
Continental Europe (30.9(4.5)), Asia (31.5(5.5)) and North or South America (33.1(3.9)). Mean age of
the cohort was 31 years at inclusion with a range of 17.9–47.3.

Table 1. Characteristics of the study participants.

Mean SD

Age (years) 31.3 4.9
Height (cm) 166.8 6.3
Weight T1 (kg) 68.1 12.6
BMI T1 (kg/m2) 24.5 4.2
Gestational age T1 (weeks) 10.8 2.0
Gestational age T3 (weeks) 33.4 1.9
25(OH)D T1 (nmol/L) 64.5 24.5
25(OH)D T3(nmol/L) 74.7 34.4
Season-corrected 25(OH)D T1 (nmol/L) 63.6 23.9
Season-corrected 25(OH)D T3 (nmol/L) 74.7 31.3
Vitamin D dietary intake T1 2 (µg/day) 2.4 1.6
Vitamin D dietary intake T3 3 (µg/day) 3.3 1.7
Gestational weight gain 4 (kg) 13.5 5.1

N(%)
25(OH)D <30 nmol/L, T1 201 (10)
25(OH)D <50 nmol/L, T1 498 (25)
Born in Sweden 1479 (74)
Overweight (BMI 25–29.9) T1 (kg/m2) 489 (25)
Obese (BMI ≥ 30) T1 (kg/m2) 203 (10)
Vitamin D supplement use T1 (any) 868 (43)
Vitamin D supplement use T3 (any) 842 (42)
Recently travelled <35◦ N T1 1 516 (26)
Recently travelled <35◦ N T3 1 347 (17)
Tobacco use at T1 (any) 89 (4)
University education level T1 (any) 1190 (60)
Employment T1 (any) 1501 (75)
Nulliparity T1 836 (42)

SD, standard deviation; BMI, body mass index; T1, first trimester; T3, third trimester; 25(OH)D,
25-hydroxyvitamin D; 1 Travelled to <35◦ N within six months of the study visit; 2 From oily fish and milk at T1;
3 From oily fish, milk, margarine, yoghurt and sour milk at T3; 4 From gestational week <12 until gestational
week ≥35.
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3.2. Vitamin D Deficiency

Overall, 10% of the women had 25(OH)D levels <30 nmol/L (Table 1). Concentrations <30 nmol/L
and <50 nmol/L, respectively, were found in 51% and 82% of women born in Africa, 46% and 69% of
women born in Asia. Among women born in North Europe, 2% had concentrations <30 nmol/L and
13% <50 nmol/L.

In a multivariable logistic regression analysis, determinants relating to odds of 25(OH)D
concentrations <30 nmol/L at T1 were of non-North European origin, sampling in spring, never
exposing skin when sunny, no vitamin D supplementation, lower dietary vitamin D intake and lower
age (Table 2). Among the subgroup (N = 316) of women born in Africa and Asia, determinants of
25(OH)D concentrations <30 nmol/L were not taking vitamin D supplements, never exposing skin
when sunny and lower age (Table 2).

Table 2. Multivariable logistic regression analysis of the determinants of vitamin D deficiency
(<30 nmol/L) in the first trimester (T1) of pregnancy. Data is shown for the whole cohort and for the
subgroup born in Africa and Asia.

All Women 1 Women Born in Africa and Asia 1

95% CI 95% CI

OR Lower Upper OR Lower Upper

Origin (continent of birth)
North Europe (ref)
America 5.13 * 1.01 26.15
Continental Europe 4.55 *** 2.16 9.57
Asia 22.09 *** 11.51 42.42
Africa 9.74 *** 4.09 23.18

Season T1
September–November (ref)
March–May 2.17 ** 1.35 3.49 1.22 0.62 2.41
December–February 1.91 0.29 12.38 10.01 0.63 160.02
June–August 0.59 0.13 2.63 0.22 0.03 1.72

Vitamin D dietary intake T1 0.82 ** 0.71 0.95 0.84 0.70 1.01

Sun-seeking behaviour
Prefer sun (ref)
Prefer both sun and shade 0.91 0.48 1.74 0.78 0.33 1.89
Prefer shade 0.64 0.23 1.82 0.47 0.14 1.64

Clothing when sunny
Often expose skin (ref)
Seldom expose skin 1.68 0.88 3.21 1.44 0.56 3.72
Never expose skin 6.04 *** 2.80 13.02 6.52 *** 2.56 16.60

Vitamin D supplement T1
No (ref)
Yes 0.09 *** 0.05 0.17 0.04 *** 0.02 0.12

Travel <35◦ N before T1
No (ref)
Yes 0.70 0.40 1.22 0.97 0.47 1.98

BMI T1 1.02 0.97 1.07 1.01 0.93 1.09

Age 0.88 *** 0.83 0.93 0.89 ** 0.82 0.96

Tobacco use T1
No (ref)
Yes 2.18 0.88 5.39 4.71 0.42 52.74

CI, confidence interval; OR, odds ratio; 25(OH)D, 25-hydroxyvitamin D; T1, first trimester; BMI, body mass
index; * p < 0.05; ** p < 0.01; *** p < 0.001; 1 Adjusted for parity, employment, education level (all at T1).
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3.3. Change in Vitamin D Status during Pregnancy

The mean (SD) 25(OH)D concentration was 65 (25) nmol/L at T1 and 75 (34) at T3 and
the mean change was an increase of 10 (30) nmol/L. The correlation coefficient between T1 and
T3 25(OH)D was r = 0.51 (p < 0.001). The season-corrected mean 25(OH)D concentration was
64 (24) nmol/L at T1 and 75 (31) nmol/L at T3. The mean season-corrected change during pregnancy
was 11 (23) nmol/L. The correlation coefficient between season-corrected 25(OH)D at T1 and T3 was
r = 0.68 (p < 0.001). Season at T3 explained 35% of the variation in uncorrected 25(OH)D change, and
0% of the season-corrected change (adjusted R2 = 0.35 and 0, respectively). A more asymmetric cosine
function for T3 25(OH)D was indicated with a higher amplitude and phase shift than that of the cosine
function for T1 (Figure 1).
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A season-corrected analysis of change in 25(OH)D showed that the determinants of change in
25(OH)D during pregnancy were origin, sun-seeking behaviour, clothing style, dietary vitamin D
intake at T3, vitamin D supplementation at T3 and having travelled to <35◦ N in the past six months
(adjusted R2 = 0.186) (Table 3). Gestational weight gain, BMI and age were not significantly associated
with change in 25(OH)D. In the subgroup of women born in Africa and Asia, only vitamin D
supplementation at T3 was a determinant of season-corrected change in vitamin D status during
pregnancy (adjusted R2 = 0.115) (Table 3).

When performing a cross-sectional analysis based on season, mean 25(OH)D concentrations at T3
were significantly higher than at T1 for all seasons except winter, with the largest difference between
T1 and T3 seen during summer (Table 4).
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Table 3. Determinants of season corrected change in 25(OH)D during pregnancy (T3–T1), for the whole
cohort and the subgroup of women born in Africa and Asia.

All Women 1 Women Born in Africa And Asia 1

Adjusted R2 = 0.186 Adjusted R2 = 0.115

Unstandardized
Coefficients P

Unstandardized
Coefficients P

B Std. Error B Std. Error

Origin (continent of birth)
North Europe (ref)
America −4.61 3.81 0.227
Continental Europe −4.75 2.01 0.018
Africa −10.95 2.92 <0.001
Asia −16.99 2.10 <0.001

Sun-seeking behaviour
Prefer sun (ref)
Prefer both sun and shade −3.18 1.39 0.022 −2.56 3.29 0.437
Prefer shade −1.13 3.12 0.718 −4.60 4.89 0.348

Clothing when sunny
Often expose skin (ref)
Seldom expose skin −4.69 1.57 0.003 −5.85 3.39 0.085
Never expose skin −7.54 2.80 0.007 −5.37 3.30 0.105

Vitamin D dietary intake T3 (µg) 0.99 0.31 0.002 1.07 0.69 0.119

Vitamin D supplement T3
No (ref)
Yes 16.68 1.08 <0.001 13.67 2.82 <0.001

Travel <35◦ N before T3
No (ref)
Yes 3.57 1.31 0.006 −0.92 3.28 0.780

BMI T1 (kg/m2) −0.09 0.13 0.489 0.30 0.38 0.301

Age T1 (years) 0.22 0.12 0.082 0.27 0.90 0.271

Gestational weight gain (kg) −0.15 0.10 0.126 0.06 0.25 0.805

R2, coefficient of determination; B, beta; P, probability; 25(OH)D, 25-hydroxyvitamin D; T1, first trimester; T3,
third trimester; BMI, body mass index; 1 Adjusted for parity, education level T1 employment status, T1 tobacco
use and 25(OH)D at T1.

Table 4. Mean and SD 25(OH)D at T1 and T3, and according to season at sampling.

25(OH)D T1 25(OH)D T3

Season N Mean nmol/L SD N Mean nmol/L SD

December–February 43 64 27 344 62 28
March–May 825 58 * 25 633 63 * 28
June–August 77 70 * 21 280 99 * 37

September–November 1040 69 * 24 579 83 * 34
Overall 1985 65 25 1836 75 34

SD, standard deviation; 25(OH)D, 25-hydroxyvitamin D; T1, first trimester; T3, third trimester; * p < 0.05
independent samples t-test comparing mean 25(OH)D at T1 with mean 25(OH)D at T3, stratified by season.

4. Discussion

Overall, our findings show that the prevalence of vitamin D deficiency is low among pregnant
women in Sweden. Also, 25(OH)D concentration seems to increase during pregnancy and the impact
of season on 25(OH)D concentration seems greater in late pregnancy than in early. The change in
season-corrected 25(OH)D during pregnancy is, in part, due to lifestyle factors but most of the variation
is yet to be explained.



Nutrients 2016, 8, 655 8 of 11

Our findings show that the prevalence of vitamin D deficiency is 10% overall and 2% among
women born in North Europe. Our data contradict findings from our previous study reporting that 17%
of fair-skinned women had concentrations <30 nmol/L in late pregnancy [13]. Vitamin D deficiency
among women born in Africa was also less common (50%) than previously indicated (90% among
Swedish women born in Somalia) [15]. Risk factors for vitamin D deficiency (25(OH)D <30 nmol/L) in
early pregnancy were in line with previous findings [13,17,27]. The determinants in the subgroup born
in Africa and Asia were fewer, indicating less effect of season but could possibly also be explained by
lower power due to a smaller group size.

Few studies have previously investigated changes in vitamin D status during pregnancy and
results were conflicting. Our results support previous findings from a smaller Swedish study [11]
and a study on Gambian women [28] that both show that 25(OH)D concentrations increase during
pregnancy. However, Zhang et al. report a downward 25(OH)D trajectory during pregnancy [9].
The only previous study investigating the season-corrected analysis of gestational 25(OH)D change
showed decreasing 25(OH)D concentrations [12]. This may partly be explained by less vitamin D
supplement use in late pregnancy than in early pregnancy. In our study, the proportion of women using
vitamin D supplements was similar at T1 and T3, but it is possible that supplement use contributed
to the increase in 25(OH)D if supplementation was initiated shortly before T1. At T1, 43% used a
supplement containing vitamin D, including multivitamins and 77% reported taking some supplement
(not only vitamin D containing). At T3, 42% used vitamin D containing supplements and 61% in
total reported some supplement use. We found that the overall 25(OH)D concentration increased
by approximately 10 nmol/L from early pregnancy to the third trimester. This increase was also
apparent after 25(OH)D was season-corrected. Similarly, mean 25(OH)D concentrations were higher
in the third trimester than in early pregnancy during all seasons except winter, perhaps due to the
small group sampled in early pregnancy during winter. We have previously showed that use of
estrogen contraceptives is associated with higher 25(OH)D concentrations in non-pregnant women of
childbearing age [29]. Similar hormonal changes due to pregnancy cannot be ruled out as a cause of
the increasing 25(OH)D concentrations.

The cosine functions fitted to the data indicate an asymmetrical sinus wave for T3 samples, with a
higher seasonal variation in late pregnancy than for T1 samples. This pattern was also seen for the
subgroup born in Africa and Asia. Why season would have greater influence on serum concentrations
of 25(OH)D in late pregnancy is uncertain, but a similar pattern was also indicated by Moon et al. who
performed a similar season-correction of 25(OH)D concentrations [12].

We found that determinants of change in season-corrected vitamin D status were related to sun
exposure (sun-seeking behaviour, clothing style, and travel <35◦ N), vitamin D intake (dietary and
supplementary) and origin. This model explained about 20% of the variation in season-corrected
change in 25(OH)D during pregnancy. Moon et al showed that vitamin D supplementation is related
to changes in 25(OH)D between the first and the third trimester, which supports our findings [12].
However, we did not observe the effects of gestational weight gain on 25(OH)D change seen in that
study. If this is due to the more heterogeneous study population in terms of ethnicity is unclear.
We found that the only determinant of change in the subgroup born in Africa and Asia was vitamin D
supplement use. This could be due to less statistical power but could also indicate a smaller effect of
sun exposure on 25(OH)D concentrations in this risk group, due to a more concealing clothing style
and darker skin pigmentation.

A limitation of this study is that sampling was overrepresented during autumn and spring, when
vitamin D status is highest and lowest, respectively. Balanced sampling during all months of the
year might have provided a more precise measure of the seasonality of 25(OH)D concentrations.
However, this was, in part, overcome by the season-correction of change in vitamin D status. Another
limitation is that ethnicity was defined by country of birth and no information on parental ethnicity
was collected. Strengths of this study are the large sample size and the longitudinal study design,
alongside the LC-MS/MS method for the 25(OH)D analysis, included in the external quality assurance
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scheme DEQAS [30]. Almost all pregnant women in Sweden attend the antenatal care, which is free of
change. It is therefore an ideal platform for the recruitment of a cohort representative of the pregnant
population. The response rate in the study was approximately 33%. In 2012, 24% of women registering
for antenatal care were born outside of Sweden, 52% had a university level education, 25% were
overweight, 13% were obese, 44% were nulliparous and the mean age was 30 years [7]. The GraviD
cohort is thus similar to the population and we thus anticipate that results from this study are likely to
be representative of the pregnant population in Sweden.

5. Conclusions

In conclusion, the overall prevalence of 25(OH)D concentration <30 nmol/L was low in pregnant
women in Sweden but common among women born in Africa and Asia. Season-corrected 25(OH)D
concentration increased during pregnancy and depends partly on lifestyle factors. Among women
born in Africa and Asia, the determinants of both vitamin D deficiency and change in season-corrected
vitamin D status were fewer, indicating a smaller effect of sun exposure. These results suggest that
targeted public health intervention to treat and prevent vitamin D deficiency in these risk groups
is warranted.
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