A Vortex Filament Tracking Method for the
Gross—Pitaevskii Model of a Superfluid

Alberto Villois', Giorgio Krstulovic?, Davide Proment!, Hayder Salman!

1: School of Mathematics, University of East Anglia, Norwich Research Park, Norwich, NR4
7TJ, United Kingdom

2: Université de la Cote d’ Azur, OCA, CNRS, Lagrange, France. B.P. 4229, 06304 Nice
Cedex 4, France

E-mail: A.Villois@uea.ac.uk

Abstract. We present an accurate and robust numerical method to track quantized vortex
lines in a superfluid described by the Gross—Pitaevskii equation. By utilizing the pseudo-
vorticity field of the associated complex scalar order parameter of the superfluid, we are
able to track the topological defects of the superfluid and reconstruct the vortex lines which
correspond to zeros of the field. Throughout, we assume our field is periodic to allow us to
make extensive use of the Fourier representation of the field and its derivatives in order to retain
spectral accuracy. We present several case studies to test the precision of the method which
include the evaluation of the curvature and torsion of a torus vortex knot, and the measurement
of the Kelvin wave spectrum of a vortex line and a vortex ring. The method we present makes
no a-priori assumptions on the geometry of the vortices and is therefore applicable to a wide
range of systems such as a superfluid in a turbulent state that is characterised by many vortex
rings coexisting with sound waves. This allows us to track the positions of the vortex filaments
in a dense turbulent vortex tangle and extract statistical information about the distribution of
the size of the vortex rings and the inter-vortex separations. In principle, the method can be
extended to track similar topological defects arising in other physical systems.
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1. Introduction

Superfluids have been the subject of investigation since 1937 when it was first discovered
that when liquid Helium “He is cooled below the lambda phase transition temperature of
T, = 2.7K, it undergoes a phase transition to a superfluid state!. In 1995, a dilute, weakly
interacting and ultracold atomic gas of bosons was cooled below a critical temperature giving
rise to a new state of matter, the Bose—Einstein condensate (BEC). This BEC arises as a
consequence of atoms undergoing a macroscopic occupation of the lowest energy state of
the system. Atoms in the lowest energy state have the unique property that they can behave
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collectively and undergo collective oscillations allowing them to display quantum mechanical
effects on a macroscopic scale. Soon after the realization of the first BECs, the phenomena
of superfluidity was also confirmed to arise in such systems®. Among the many fascinating
properties exhibited by superfluids, such as the ability of the fluid to flow without dissipation,
and the phenomena of second sound in “He, particular interest has been raised by the discrete
and quantized nature of vortices in these systems>. In superfluids, the circulation around
each vortex is quantized in units of Planck’s constant. These quantized vortices correspond
to topological defects of the order parameter of the system where the vorticity is represented
by a distribution of Dirac’s §-functions but where the density of the superfluid vanishes along
the centreline of the vortex. In this regard, superfluids provide a naturally occurring system
in which a vortex filament representation of the vorticity provides an excellent model rather
than being an artificial mathematical idealization as in the case of a classical vortex.

Given these observations, several models have been developed to describe the motion
of vortices in superfluids. These include the vortex filament model based on the Biot-
Savart law and one of its approximations commonly referred to as the local induction
approximation®>. In this work, we will focus on a microscopic description of a superfluid
provided in the form of the Gross Pitaevskii (GP) equation which can be formally derived
for a weakly interacting Bose gas in the limit of zero temperature. However, it has also
served as a useful hydrodynamic model of a superfluid since it can qualitatively reproduce
the dynamics of vortices in liquid superfluid “He®. The Gross—Pitaevskii model provides
a natural framework in which to address many open questions regarding the dynamics of
vortices in these systems. This includes physical processes that are involved during vortex
reconnections %Y, the nonlinear interaction and the decay of helical excitations of vortex
10.1 1’12, the interaction of sound with vortices 13, and helicity
considerations associated with the dynamics of superfluid vortices 4116 All of these aspects

lines in the form of Kelvin waves

of the vortex dynamics are encountered during a vortex scattering process!’ and within a
turbulent vortex tangle !81%29. It follows that in order to understand aspects of turbulence
and the constituent elementary processes involved during the relaxation of a superfluid vortex
tangle, it is essential to be able to extract the location of the vortex filaments from high fidelity
numerical simulations. An accurate and reliable numerical method is, therefore, needed for
this purpose.

Tracking vortex lines of a complex wave-function in three spatial dimensions is in
general a challenging problem. Among the range of different methods present in the
superfluid literature we recall: zero-crossing?!, standard interpolation techniques®??, low-
density averages®>!!
to the Cartesian mesh !°, plaquette metho and contour plots of the pseudo-vorticity
field?’. Many of these methods turn out to be either geometry dependent or not accurate

, two-dimensional Newton-Raphson method on planes corresponding
424.25.26

enough to evaluate non-trivial geometrical quantities such as curvature, torsion and small-
scale Kelvin waves on any vortex configuration.

The goal of the present work is to present a novel method for extracting vortex lines
of the complex wave-function based on the Newton-Raphson method for finding the zeros
of a given function?® for a three-dimensional periodic domain. In order to demonstrate the
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method’s accuracy and robustness, we will present a detailed validation using different test
cases. Our aim is to demonstrate the potential broad applicability of the algorithm through
consideration of different physical scenarios that are important in superfluids. Application of
the method to address specific physical questions is deferred to future work. The paper is
organised as follows. In Section 1, we present the GP model, its hydrodynamic interpretation,
and recall the key properties of quantized vortex solutions of this equation. In Section 2, we
describe how to implement the Newton-Raphson method to track vortices in two-dimensional
complex wave-functions and the role played by the pseudo-vorticity field. In Section 3, we
generalize the ideas presented for the 2D case to allow us to develop a novel algorithm to track
vortex lines of a three-dimensional wave-function by making use of the Newton-Raphson
method in combination with the pseudo-vorticity field. In Section 4, we demonstrate our
algorithm on a number of case studies consisting of different vortex configurations to test the
accuracy and the robustness of the method. This includes a detailed evaluation of the curvature
and torsion of a perfectly circular vortex ring and a torus knot, two quantities that are very
useful to characterise the intrinsic properties of a vortex filaments. As a further test, we also
evaluate the Kelvin wave spectra of a perturbed vortex line and vortex ring to illustrate how
the algorithm can accurately extract information of a filament across a broad range of scales.
Finally we demonstrate that the method is capable of tracking several vortex rings and even a
dense vortex tangle. In Section 5, we draw our conclusions on the tracking method and explain
how its implementation will complement our present knowledge of superfluid dynamics in the
Gross—Pitaevskii model.

2. The Gross Pitaevskii model

It is known that a three-dimensional system of identical bosons cooled below a critical
temperature undergoes a phase transition, called Bose Einstein condensation, where the
ground state becomes macroscopically occupied. In the limit of zero temperature and
assuming a dilute weakly interacting Bose gas, a classical partial differential equation
modelling the dynamics of the system can be formally derived within the Hartree—Fock
approximation. Specifically, the system can be described in terms of a complex wave-function
y representing the order parameter of the condensate within a mean-field approximation. The
time evolution is governed by a nonlinear Schrédinger equation, more commonly known in
this context as the Gross—Pitaevskii (GP) equation? given by

2
ihd,y(x,1) = (—h—vz +glw(x,0)|? —I—V(X,t)) v(x,1). (1)

2m

Here g = 4mh’a /m is the coupling constant that arises from the assumed contact interaction
potential and is expressed in terms of the s-wave scattering length, a, 7 is the reduced Planck’s
constant, and m is the mass of the boson. V (x,7) typically corresponds to an external confining
potential which we will assume to be zero throughout this work. Equation (1) conserves the
total mass of the system defined as

M= m/ ly|2d’x, (2)
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and the total energy

E= [ (o wwP e S ) s ®

In addition, for the case of an unbounded or a periodic domain, the total linear momentum

h * *
P= Z/[‘” Vy —yVy'ldix, 4
is also conserved. By introducing the Madelung transformation given by

y(x1) = @e"’?"’“‘”, )

the GP equation can be transformed into a coupled set of hydrodynamic like equations such
that

%—p+V-(pv>=0, (6)
ov vVi./p
5 T Vv—i— VP 2m { P ]—O 7

These equations describe the motion of a compressible, irrotational and barotropic fluid with a
density corresponding to p(x,t) = m|y(x,t)|? and a velocity field equal to v(x,7) = Vo (x,?).

We remark that, even though the velocity is derived from a velocity potential, the
equations can nevertheless admit vortex solutions. These solutions correspond to singular
distributions of vorticity (i.e. point vortices in 2D or vortex filaments in 3D). To ensure the
flow field maintains finite momentum and energy, vortex solutions are characterised by a
depletion of the superfluid density in the vicinity of the vortex such that the density vanishes
along the axis of the vortices. In order to support such vortex solutions, the velocity must be a
non single-valued function of position. However, as seen from equation (5), ¢ is related to the
phase of the wavefunction. Therefore, in order to ensure that the wave function (5) remains
single-valued, the circulation can only take discrete values equal to

F:j{v-dl:%w)-dl:sﬁ. (8)
¢ 4 m

Here, s € Z is the winding number and the circulation is, therefore, quantized in units of 4/m.
Such quantized vortices correspond to topological defects of the order parameter and have a
characteristic core size set by the region where the density field drops to zero. This core size
is set by the healing length & = i/\/2gpe., Where p.. is the condensate density in the far-field
away from the vortex core. The healing length provides an intrinsic length scale of the fluid
that is set by balancing the kinetic energy (linear term) and the interaction energy (nonlinear
term) in the GP equation. Given that vortices correspond to the set of zeros of the complex
field y (i.e. where the density vanishes), we require

o (31

with ¥, = Rey and y; = Smy. Therefore, vortices generically correspond to points in two
dimensions and filaments in three dimensions. The problem of tracking quantized vortices
thus reduces to finding the nodal lines of the wavefunction.
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3. Tracking vortices in two-dimensional complex fields

To numerically track quantized vortices in a two-dimensional complex field, we can make use
of the root-finding routine based on the Newton-Raphson (NR) method. This approach has
already been used to accurately track quantized vortices in GP simulations !>*°. In order to
present our method, we will begin by recalling the key elements of the NR method for the
vector function ¥ : R? — R? defined as in equation (9). We will assume that we are able
to find a good initial guess x& for the true position of the vortex, denoted by x", such that
[P (x2)|? < €|Wo|?, where |Wo| = \/po/m and € is assumed to be sufficiently small. We
can then express ¥(x") = 0 in terms of a Taylor-expansion of the function ¥ about the initial

guess to obtain
Y(x") =P +Jx")(x'—x5)+ 0 [(XV — Xg)z] =0, (10)

where

X) — oV (X) Oy Y(x)
= (amx) aywi(x>>’ v

is a Jacobian 2 x 2 matrix. Assuming that the Jacobian is invertible when evaluated at x8,
equation (11) can be used to obtain a better approximation for the vortex position, X" given by

X' =x8 —J H(x$)P(x8) + O [(x' —x8)?]. (12)

This procedure can in principle be iterated as many times as necessary (using the most recent
evaluation of x” as the new initial guess for each iteration) in order to converge to the exact
location of the vortex. In practice, we will assume a reasonably converged solution when
the condition |W(x8)| < A|W.| is satisfied, where A is an arbitrarily small parameter which
we typically set to be of the order of machine precision. The advantage of this method is
the fast quadratic convergence provided by the NR method but does have the drawback that
convergence is not ensured if the initial guess, x&, is far from the true solution, x". A further
important requirement to ensure a reliable and accurate numerical method is the accurate
evaluation of x8 and the Jacobian J(x#) at points that do not necessarily coincide with the grid
where the field data is stored. We address these issues by setting a sufficiently small value of
€ and by using a Fourier series expansion of our wavefunction to maintain full consistency
with the spectrally accurate representation of our complex scalar field that is recovered from
our pseudo-spectral numerical simulations.

We note that simply finding a root of y is not enough to detect a quantized vortex
since certain solitons or solitary wave excitations can also result in a zero density field. We,
therefore, also check that the circulation is non-zero. For a classical fluid, the circulation can
be evaluated from knowledge of the vorticity field @ = V x v. However, in the GP model,
the vorticity is identically zero everywhere except at the vortex points where it corresponds
to a Dirac d-function. A related quantity in quantum fluids can be recovered from the density
current

. ho . .
j=pv=2(V'Vy—yVy). (13)
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This allows us to define a pseudo-vorticity field as

1

Wps = EV X j, (14)

and has the advantage that it remains regular even at the axis of the vortices. Now writing
v, = (y+y*)/2 and y; = (v — y*)/(2i), it is possible to define equation (14) in terms of
the gradients of the real and the imaginary parts of y:

h
¥ Vy* x Vy —Vy x Vy'|

i
— RV V+v <V ll/—‘llf
2 2i

— WV ,(%) % Vii(x). (15)

The pseudo-vorticity encodes important information about a vortex. For example, in two
dimensions, the wavefunction of a vortex of winding number s = +1 located at the origin can
be simply expressed in polar coordinates (r,0) as w(r,0) = \/p(r)/me’?. Substituting this
into the expression for Y in equation (15), we obtain

hldpx
Wps =5———=—Kk 16
S ar (16)
where k is a unit vector perpendicular to the plane containing the point vortex. For a
GP vortex, with winding number s = =£1, it is possible to show that the density vanishes

quadratically at the vortex core but relaxes to a constant far from the vortex (at length scales

wps —

exceeding the healing length £)3°. Tt follows that the pseudo-vorticity is finite at the vortex
core and vanishes outside. Furthermore, its sign determines the charge of the vortex.

To provide an example of the ability of the NR algorithm in tracking vortices in a complex
field in two spatial dimensions, we simulated a turbulent superfluid state characterised by
several vortices and density fluctuations (sound waves) obtained using a two-dimensional
GP model. The computational domain considered was periodic and was discretised using
a uniform grid with 256> points and a resolution of Ax = Ay = 0.5. The initial condition
was generated by imprinting 120 vortices onto the condensate. 30 of these vortices were
distributed randomly within a quarter of the domain within the interval ((x,y) € [0,128] x
[0,128]). Half of the 30 vortices had a winding number s = 1 whilst the remainder had a
winding number s = —1. The vortices in the remaining three quarteres were then obtained
by reflecting the vortex positions along the lines x = 128 and y = 128 to obtain the desired
initial condition that contained a fourfold mirror symmetry. The imprinting of the vortices
was accomplished by taking a product of the single-vortex wave-function defined using a
Padé approximation as described in3!. Staring with this initial condition, we allowed the
system to evolve and interact for a sufficiently long time in order to lose the initial symmetry
and to reach a more chaotic state containing 50 vortices coexisting with sound waves. The
GP equation was integrated in time using a standard pseudo-spectral algorithm with a split-
step method. In figures 1(a) and 1(b) we plot the squared modulus and the argument of v,
respectively, at an intermediate time when a turbulent state has emerged. The vortices are
clearly discernible in these plots and correspond to localised density depletions within a field
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(a) (b) (©) (d)

Figure 1. (Color online) Latest stage of the dynamics of 50 vortices in a two-dimensional GP
model: (a) plot of the squared modulus of y where dark colors represent depletions in |y]|?
and light colors high values of |y/|?; (b) plot of phase field varying continuously from —7h/m,
blue color, to wh/m, yellow color; (c) plot of the pseudo vorticity field, where yellow and
blue points are respectively maxima and minima, while the field vanishes in the red area; (d)
tracked vortex positions, where red circles are vortices with negative circulations, while green
crosses are vortices with positive circulations.

that is otherwise dominated by density fluctuations extending over space. However, in regions
where the vortices are tightly clustered together (see for instance the bottom right region), it is
not immediately obvious what are the corresponding number of vortices in these regions. In
figure 1(c) we present the computed pseudo-vorticity field. As can be seen, this field clarifies
not only the number of vortices present in tight clusters but also their charge. In figure 1(d)
we plot the extracted vortex positions as computed using the NR technique, distinguishing
between vortices characterized by positive (red circle) and negative (green cross) values of
circulation. We remark that the tracking parameters chosen here were A = 1073 and € = 0.3.
The average number of NR iterations were around 4-5 per vortex while the computational
time involved was of the order of a few seconds on a standard desktop machine.

4. Tracking vortex filaments in three-dimensional complex fields

In contrast to the two-dimensional case where vortices appear in the form of point-like defects,
in three spatial dimensions, quantized vortices correspond to filaments which can either form
closed loops or end at domain boundaries. The configuration of the filaments can be arbitrarily
complicated usually exhibiting non-trivial functional dependence on the local curvature and

32,33

torsion Aside from the complex vortex geometries that can arise, quantized vortices

can also have a non-trivial topology by organizing themselves into knotted and/or linked
structures 14:34.35.36,37

Given the much more diverse range of scenarios that can arise in 3D, tracking vortex
filaments has remained a significant challenge in simulations of the Gross—Pitaevskii equation.
In order to generalize our method to vortex filaments, we will firstly note that the NR method
cannot be directly applied to the function ¥ : R®> — R? since the Jacobian (11) would no
longer be a square matrix. Alternatively, one might try to apply the method to y defined

on planes orthogonal to the Cartesian coordinates. This approach would present difficulties
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Figure 2. Sketch of the plane IT where we develop the tracking.

in the case when the vortex filament is (almost) tangent to the plane since the determinant
of equation (11) becomes almost singular thereby severely degrading the convergence and
stability of the method. Another separate problem that arises in 3D is associated with how to
recognise that different points in space correspond to zeros of the wavefunction belonging to
the same vortex. This information concerning the connectivity of vortex filaments within a
tracking algorithm presents a major issue when either a high density of vortex filaments are
present in the computational domain or when two vortex filaments are extremely close to one
another.

To circumvent these potential difficulties, we will make use of the pseudo-vorticity field
defined by equation (15). Considering that a vortex filament is a curve where both v, and
y; have to vanish, it follows that projections of both Vy,. and Vy; onto the curve must also
vanish. These considerations reveal that the pseudo-vorticity field (15) is always tangent to
the vortex filament. Such a vector field evaluated in the vicinity of a filament not only allows
us to identify a plane that is essentially orthogonal to the filament, but it also provides the
connectivity information that allows us to determine which points belong to the same vortex.

The tracking algorithm we propose can now be summarised into the following steps (see
also figure 2 for an illustration):

1. we begin with an arbitrary initial guess for a zero of ¥ which we denote by x& such that
W (x)? < €] Pl
2. for € sufficiently small, x8 will be sufficiently close to the vortex filament. We can then

evaluate the pseudo-vorticity field ,s(x#) and assume that it points in a direction that is
almost parallel to the vortex.

3. we define IT as the plane that passes through the point x¢ and orthogonal to the direction
of @p(x#). This allows us to identify an orthogonal basis ({i;, @iz) for such a plane up to
some arbitrary rotation.

4. we apply the NR method on the plane IT obtaining
X =x8 —J (x)P(x8) + O [(x" —x5)?] (17)
where the 2 x 2 Jacobian matrix projected on the plane IT is given by

[ Vye(x)-dp, Ve (x) i
Jn(x) = ( Vui(x) -1, V() -y ) (18)



A Vortex Filament Tracking Method for the Gross—Pitaevskii Model of a Superfluid 9

We note that by construction x” will always lie on the plane I1. As for the application of
the NR method in the two-dimensional case, we now keep iterating over these steps until
the condition |¥(x")| < A|W.| is satisfied;

()
1
The integer, i, is set to one at the beginning of the tracking for each vortex filament and

. we now interpret the point X" to belong to the j’th vortex filament and store it as x;”’ = x".
is incremented for each consecutive point extracted along a given filament. In order to
identify the next point, XZ(QI ,
vorticity field is tangent to the curve. We, therefore, set our next guess to correspond
to

along the filament, we make use of the fact that the pseudo-

x¢ = x4 Ll p(xi), (19)

where { is an arbitrary small parameter and ®,(x;) is the pseudo-vorticity vector
normalised to unity;

. we return to step (2.) in our algorithm unless i > 1 and one of the following closing
conditions for the j’th vortex filament is satisfied:
a) the Euclidean distance d%) = |x§j )

typically set a’gi) < £/3). Indeed, for values of { that are small relative to the

local radius of curvature of the filament, we can assume that the arclength between
two consecutive points is approximately equal to {. Hence, when the distance d&)

X](cj )| is much less than the parameter { (we

becomes much smaller than {, we an assume that the j’th vortex filament to be
closed and identify it with a vortex loop;
b) the point xl(j ) = (xl(j ) , yl(j ),Zl(j)) on the j’th vortex filament is identified with a vortex
line if it satisfies the conditions Xl(j) o~ (xgj) iLx,y(lj),Zgj)) or Xl(j) ~ (x(lj),ygj) +
Ly,zgj )) or xl(j )~ (xgj ),ygj ),zgj ) +L;) where Ly, L, and L, denote the dimensions of
the periodic domain along the three coordinate directions, respectively. We note that
due to the assumed periodicity of the field, points such as (xgj ) +L,, y(lj ) , zgj )) do not

need to lie within the computational domain;

. the j’th vortex loop or line is then stored and we return to step (1.) to search for the next
vortex filament. In order to avoid re-tracking the same filament multiple times, we make
use of a Boolean matrix, initially having all values set to zero, with same size of the grid
on which v is discretized. After tracking the j’th vortex filament, we set the Boolean
matrix equal to unity on all the grid points close to it. The initial guess for the (j+ 1)’th
vortex filament is then explored within the remaining volume grid points that correspond
to zero entries of the Boolean matrix.

5. Case studies

In order to demonstrate the accuracy and robustness of the tracking method described above,

we will present several test cases corresponding to different vortex configurations.
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5.1. Vortex ring and torus vortex knot

We will initially focus on systems containing a single vortex filament in the form of a vortex
loop. We will begin with the simplest possible geometry, a perfectly circular vortex ring
before proceeding to track a topologically non-trivial vortex such as a torus vortex knot. To
test the accuracy of the method, we compute geometrical quantities such as the coordinates,
curvature and torsion of the filaments and compare these against their respective theoretical
values. Both cases are evaluated in a computational domain consisting of a grid of 128> points
and a resolution Ax = Ay = Az = 0.5€.

We begin by considering a ring with a radius R = 4£ moving along the z-coordinate
direction. To set the initial condition, we use the analytical expressions obtained using a Padé
approximant by Berloff3! for a two-dimensional vortex on the x-y plane centred at (0,R) and
then rotating such a plane around the z-axis. This produces a vortex ring that is located along
the curve given by

s(o) = (Rcoso,Rsino,0), (20)

where the parameter ¢ € [0,27). After tracking the filament, we computed the geometrical
distance between the tracked vortex points and the exact vortex filament to evaluate the error.
This gave a maximum value of the order of ~ 10~/ thus verifying the precision to which we
are able to track the vortices. To further check the accuracy of the method, we calculated the
curvature k and torsion 7, that require the evaluation of high order derivatives of the positions
of the filament with respect to the parametrisation of the curve. These can be obtained using
the expressions

/X 2 />< AW U4
:|s s\’ T:(s s")-s 7 Q1)
|S/|3 |S/ % SII‘Z

where s',s" and "’

represent the derivatives with respect to the parameter o. From the tracked
points, we estimated the constant curvature of the ring to be k = (0.254+0.2 x 107)¢ and the
torsion to be T = (04 107#)&. These values are in excellent agreement with the theoretical
values for the curvature and torsion given by &, = 1/4& (inverse of the ring radius) and
T, = 0, respectively. We remark that accurate evaluation of these quantities is necessary in
several problems involving the dynamics of vortices. For example, establishing a connection
between the GP model and the vortex filament model of a superfluid allows us to attribute

energy and momentum to each vortex excitation3%3%,

This makes it possible to identify
the energy spectrum on each vortex filament*?. Moreover, curvature and torsion provide an
intrinsic description of the geometry of a vortex filament that could be used to identify soliton-
like excitations*!. On the other hand, accurate evaluation of the torsion is relevant to the study
of helicity for vortex filaments*>*3. Therefore, the ability to extract these quantities will be
invaluable in understanding fundamental aspects of the dynamics of superfluid vortices.
Having demonstrated the algorithm on a simple vortex ring, we will now consider
a vortex with a non-trivial topology: a torus vortex knot. The study of vortex knots in
superfluids has attracted much interest in recent years as it provides an ideal paradigm

to address questions related to helicity conservation in superfluids'®314. A torus knot
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Figure 3. (Color online) (a) Iso-surface plot corresponding to |y|> = 0.1 |¥..|? for a knot as
described in Appendix Appendix A; (b) Plot of the tracked vortex filament where the vortex
line has been rendered as a vortex tube to clearly demonstrate the non-trivial topology; (c) Plot
of the curvature and (d) Plot of torsion versus arc-length. The numerical data (blue circled
line) has been superimposed on the theoretical predictions (red line).

T4 is a closed curve built on the surface of a torus having toroidal and poloidal radii
Rp and R; respectively that has been twisted p-times around the toroidal axis and g-times
around the poloidal axis, where p and ¢ are co-prime integers. Its parametrisation s(c) =

(s1(0),s2(0),s3(0)) is given by
s1(0) = [Rop+ R cos(po)|cos(go), (22)
s2(0) = [Rop+ R; cos(po)|sin(qo), (23)
s3(0) = Rysin(po), (24)

where ¢ € [0,27). The wave-function containing a vortex knot T?¢ is obtained following
the approach developed in?>. In order to enforce the periodicity of the field, we perform a
coordinate transformation that is an approximation of the identity in the periodic domain. In
Appendix A we provide the explicit formulae used for the knot in the periodic domain. As
an example, we consider the torus knot T2 built on a torus with a toroidal radius Ry = 8&
and a poloidal radius Ry = £ /2. In figure 3(a) we plot the iso-surfaces of the density field
of the wave-function corresponding to |y|> = 0.1|¥.|?>. For a knot with such a small
poloidal radius (smaller than &), an iso-surfaces of the density does not allow us to clearly
distinguish its geometry from a vortex ring. However, after tracking the filament, its topology
becomes apparent, as shown in figure 3(b). In figures 3(c) and 3(d) we present a comparison
between the numerically computed and analytical expressions for the curvature and torsion,
respectively. The numerical results (shown as a blue circled line) coincide with the theoretical
predictions with only a small amount of noise observed in the torsion that is caused by the
way the initial condition for the wavefunction is generated.
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5.2. Kelvin waves spectra

In order to illustrate the applicability of the algorithm to a problem containing multiple length
scales, we now demonstrate how it can be reliably used to detect small oscillations on a
vortex filament. These excitations, called Kelvin waves (KWs), correspond to helical waves
propagating along vortex filaments**. KWs and their energy spectra have been the object
of investigation for some time since their nonlinear interactions is believed to provide a key
mechanism in quantum turbulence to transfer energy down to length scales of the order of the
vortex core where it can be dissipated through phonon emission. An accurate measurement
of the KWs and their spectra on an almost straight vortex line using the two-dimensional
NR method has already been performed by Krstulovic'®. However, the tracking technique
described in that work relied on a-priori knowledge of the vortex line configuration, namely
that the vortex line was almost orthogonal to planes where the NR method is applied. Since
our method is completely independent of the filament’s configuration as well as orientation
relative to the computational grid, we are able to measure not only the KW spectrum of a
vortex line but also the KW spectrum of a vortex ring. To create a wave-function characterised
by KWs on a straight vortex line that is aligned along the z-axis, we first consider the wave-
function of the straight vortex line and then shift the x — y planes accordingly (for more details
refer to!?). KWs on a ring lying on the x — y plane are imposed in a similar way by using
the Padé approximation with a perturbed radius together with a small z-component. To test
the ability of the algorithm to capture small amplitude KWs, we impose steep KW spectra
corresponding to n(k) ~ k=6 and n(k) ~ k=3 on the vortex line and the ring, respectively. To
smooth out any possible strong gradients in the field arising from the shifts used to construct
the initial condition, we integrate our initial conditions over a short duration within the GP
equation. The insets of figures 4(a) and 4(b) illustrate the vortex line and the ring, respectively,
with their corresponding KW excitations. The KW spectra are evaluated using the Fourier
transform of the waves propagating along the straight line or ring. Details for obtaining the
spectra are described in Appendix B. In figures 4(a) and 4(b) we present the numerically
computed KW spectra (blue circled line) together with the imposed scalings on the KWs that
are shown as a red dashed line. The results clearly show that the spectra are reproduced by
the algorithm down to the vortex core size. Note that whereas for the KWs on a straight line
the spectrum is uniquely defined, on a ring KWs are defined as the perturbation of a smooth
ring. To obtain the smooth ring, a convolution with some kernel is needed. The large scales
of its spectra are thus kernel dependent, but small scales are independent (see Appendix B for
further details).

5.3. Several rings

Having demonstrated the accuracy of the method, we now aim to test the robustness of the
algorithm on more complex scenarios. More specifically, we will show that the method is able
to track complex vortex configurations characterized by several vortex loops. As an example,
we consider 20 vortex rings all having the same radii of R = 8& but randomly placed and
oriented in the computational domain. To prepare the initial condition, we multiply 20 wave-
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Figure 4. (Color online) (a) Log-log plot of the KW spectrum induced on a vortex line and
(b) on a vortex ring, where a power law (red line) has been introduced for comparison with
the numerical data (blue circled line). The insets show both the perturbed vortex line and the
vortex ring.

(a)

Figure 5. a) iso-surface plot corresponding to |y|?> = 0.1 |¥..|? for a wave-function containing
several rings, blue colours renders the sound waves; b) Plot of the vortex rings obtained by
tracking zeros of the wave function y.

functions (randomly translated and rotated) of a single vortex ring discretized on a grid with
2563 points and with a resolution A, = Ay = A, = &. We then evolve this initial condition for a
short time before extracting the vortex positions to obtain a more realistic vortex configuration
where also sound waves are present. In figures 5(a) and 5(b) we plot the iso-surfaces corre-
sponding to |y|> = 0.1|¥..|? and the tracked vortex loops, respectively. Visually inspecting
the two sub-plots provides qualitative confirmation that the method correctly detects all the
vortex rings present in the system. We remark that the computational time needed to track
this configuration is less then one hour on a standard desktop machine.

5.4. Vortex tangle

For our final case study, we test the tracking method on a GP simulation containing a dense
tangle of quantized vortices. Such a configuration corresponds to a particularly important
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(c) (d)

Figure 6. (Color online) Iso-surface plot corresponding to |y|?> = 0.1 |¥..|? for the TG flow
(a) at the initial condition and (c) after evolving the system for a time ¢t = 1074, where
t.q corresponds to the largest eddy turnover time of the TG flow; tracked vortex filaments
corresponding to (b) # = 0t.q and (d) # = 107.q.

scenario in the study of quantum fluids since it represents an example of isotropic and
homogeneous quantum turbulence. Due to the high density of vortices and the broad range
of length scales involved in the dynamics, a vortex tangle also represents one of the most
challenging vortex configurations to track. Following the work of Nore et al. '8, we created
a tangle of vortices by evolving an initial configuration characterised by a so-called Taylor-
Green (TG) flow. The iso-surfaces of the low-density field and the tracked vortex filaments
corresponding to the initial condition are shown respectively in figures 6(a) and 6(b). We
remark that the tracking has been carried out by setting { = & in equation (19) and required
a computational time of less than 1 hour on 64 cores running in parallel using MPI. Upon
integrating this initial condition forward in time with the GP equation, the interaction between
the large scale vortex rings drives the system toward a vortex configuration characterised
by a dense tangle where the superfluid motion occurs on a range of time and length scales
within the system. This produces a quantum turbulent state as illustrated in the low density
iso-surface plots shown in figure 6(c) that were obtained after a time ¢ ~ 1074, where fqq
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Figure 7. (Color online) (a) PDF plot of the sizes of the vortex rings; PDF plot of the minimal
inter-vortex distance between each pair of vortex rings: (b) in linear scale and (c) in log-log
scale; (d) Iso-surface plot (light blue) at |y|?> = 0.1|W.|? for two vortices extracted from the
tangle undergoing a reconnection. The tracked vortex positions are rendered with a red tube.

corresponds to the largest eddy turnover time of the TG flow. In contrast to the initial
condition, the tracking of such a complicated tangle requires us to set { = 0.25 in order
to explore all the small scales associated with the vortex dynamics. Figure 6(d) shows the
tracked vortex filaments; the tracking process took a computational time of approximately 6
hours on a cluster with 64 cores working in parallel using MPI. Since we have no a-priori
knowledge of the number of vortex rings composing the tangle displayed at t = 1074, no
direct validation of the tracking is possible.

The tracking process reveals that the tangle is composed of 576 rings with arc-lengths
that vary from Lij,e = 8.4& to Lying = 1108&. We point out that these smallest vortex rings
found have radii of the order of the numerical resolution. Such small rings tend to shrink due
to their interaction with sound waves that act as a thermal bath®’. Given that our smallest
rings are of the order of the healing length, smaller rings would not be expected to arise in
our simulations as they would become rarefaction pulses*® with no topological charge. A
more complete analysis of the rings making up the vortex tangle is given by the probability
distribution function (PDF) of the ring sizes displayed in figure7(a). We see that most of the
rings have relatively small size. Such insight into the statistical properties of small vortices
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can help in estimating the amount of energy transferred into sound waves that compose the
bath of thermal excitations through the process of vortex shrinking and annihilation. It is
also true that the same PDF exhibits quite large fluctuations which indicates the presence of
relatively large vortex rings. Such large vortices are good candidates for testing predictions of
KW spectra®’-4849-30 pecause they span a broad range of scales.

Our tracking algorithm also allows us to explore the spatial distribution of the vortex
tangle. For instance, we can evaluate the minimal inter-vortex distance between the i’th and
Jj’th vortex rings

) — min (]x(i) —x) |> ) (25)

nin

defined by choosing the minimum value of the distance between their vortex points. The
PDF of the minimal inter-vortex distances obtained by considering all the combinations of
vortex ring pairs is displayed in figure 7(b). The mean value of this distribution is given by
(Lmin) = 102.7&. Another important quantity to quantify in superfluid turbulence is the mean
inter-vortex distance which is estimated to be £, ~ 1/ V& where Z is the total vortex length
per unit volume'. Using our tracking algorithm, we are able to precisely determine the total
vortex line length which we find to be 80765.6&, providing an estimated mean inter-vortex
distance of £, = 14.4&. We can define the average inter-vortex distance between the i’th and
J’th vortex rings as

o) = ,/V,/V Z X —x\7), (26)

where .4; and .4} are the number of points contained in the i’th and j’th vortex rings,
respectively. The tracked mean inter-vortex distance can then be evaluated as

1y

= Ly i ()
<£>lrack - n, ,_Zl I%gl (gmean) s 27

where n, is the total number of vortices in the system. In this particular case we obtain
(0)track = 25.7E which is of the same order of /.

Finally, in figure 7(c) we plot the minimal inter-vortex distance in logarithmic scales
in order to uncover the trend of the distribution at distances close to zero. Remarkably, we
notice that the algorithm is able to track vortex filaments whose minimal inter-vortex distance
is smaller than the computational grid (Ax = Ay = Az = &). In figure 7(d), we zoom in on a
part of the tangle to reveal two vortices with a minimal inter-vortex separation of 0.6&. This
figure further illustrates the accuracy of the algorithm and demonstrates the possibilities it
provides in studying processes occurring on very small scales including vortex reconnection
events that have generated significant interest in recent years -2’

6. Conclusion and future perspectives

In this work we have presented a numerical method to detect vortices of the complex wave-
function y describing a quantum fluid governed by the Gross—Pitaevskii model. The tracking
is based on a Newton-Raphson root-finding algorithm to detect zeros of the complex field and
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employs the pseudo-vorticity field to track each vortex filament. We assumed the complex
field is periodic that allowed us to make extensive use of spectral techniques to compute the
field and its derivatives at any point in the computational domain. This assumption takes
advantage of the spectral representation of the discretised field that is commonly used to
integrate the GP equation resulting in an algorithm that is spectrally accurate. Moreover, the
method is formulated in a general way making no assumptions about the geometry or topology
of the vortex filaments. It is, therefore, applicable to any vortex configuration that might arise
in the dynamics of superfluid vortices.

We have presented several case studies to assess the accuracy and robustness our vortex
tracking algorithm which are relevant to our understanding of the role of quantized vortices
in superfluids. We demonstrated the accuracy of the method by showing that it can be used to
accurately calculate the curvature and torsion, two quantities that are important in quantifying
properties of superfluid vortices. We remark, that because of the spectral representation that
we adopt for the complex wave-function, our method allows us to compute any high order
directional derivatives along the vortex line by using the tangent vector along the filament
(that can be computed from the pseudo-vorticity field) rather than using a spline interpolation
scheme. Moreover, we showed that it is capable of extracting information over a broad range
of scales including small scale KW oscillations and to distinguish between filaments with an
inter-vortex separation that is smaller than the computational grid size. This opens up the
possibility to accurately study aspects of vortex reconnections in the GP model.

Precise knowledge of the location of vortex filaments is also useful in quantifying the
topological complexity of a tangle since it allows us to evaluate important measures including,
the linking, writhe, twist and helicity of the vortices. Complete knowledge of the positions
of vortex filaments also allows us to extract statistical information regarding their properties.
This can include the distribution of the sizes of vortex loops and the inter-vortex separations
which can provide physical insights into the study of the dynamics and decay of the turbulent
tangle. For instance, using this method, it is possible to study the evolution of the total
vortex line length! and to compute the velocity spectra associated with the vortex flow,
both quantities that can be measured in quantum turbulence experiments. It is also possible
to obtain information about the emergence of spatio-temporal ordering, namely if vortices
forming the tangle can organise themselves in oriented bundles or are composed of lines
randomly oriented in space with respect to one another.

The method we have presented provides a broad scope for exploring many aspects of
superfluid turbulence that have been hindered by the inability to obtain direct access to
the information associated with the vortex filaments. It also provides a means to bridge
the gap between vortex filament models and the GP model allowing us to test to what
extent the models agree with one another. As a final remark, we note that by suitably
extending the method presented in this work for the GP equation, it should be possible to
track topological defects in other systems including nematic liquid crystals, superconductors,
skyrmions, cosmic strings and optical vortices. Although some of these systems can exhibit
a more complex and diverse range of topological defects, the principle approach should be
generalizable to such systems. This would contribute to our understanding of the role of
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topological defects across a range of condensed matter systems.
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Appendix A. Wave-function of a torus vortex knot

For completeness, we present here the wave-function used for producing the knot displayed

in figure 3. It is based on the formula introduced in Proment et al. 3

2 ) 27
Vpq(%,),2) H‘PZD{ —Ro— R cos [a(x,y) +i7q] ,Z— Ry sin [Oc(x,y) —HTq] }

and given by

P 2 2

H { s(x,y) +Ro+ Rj cos { (x,y)+iﬂ} ,Z— Ry sin {a(x,y)—l—iﬂ} }

i=1 p p
(A.1)

where

tan2
s(x,y) = sgn(x) vx*+»?, and a(x,y):%w.

Here, W)p(s — 59,z — zo) describes the two-dimensional wave-function of a single vortex

(A.2)

centred at (so,z0)>!, sgn(-) is the sign function, and atan2(, ) is the four-quadrant arctangent.
Starred quantities, (-)*, denote the complex conjugate. In order to account for the periodic
boundary conditions assumed in this work, we modify equation (A.1) by setting

(per)

Ypq (xa)’7z) = Wp,q(xpaypazp); (A.3)
where x,,,y, and z,, is a periodic approximation of the identity at (L/2,L/2,L/4). Namely
L /4 L /4 L 2
Xp = —Ecos Zx, Yp = _ECOS Zy7 p= —%cos TZ' (A4)

Torsion and curvature displayed in figures 3(c) and 3(d) are then computed by accounting for
corrections due to the assumed periodicity of the field according to equation (A.4). The knot
is thus defined by the line

(x5 (5x(0)), 5, (5y(0)), 2, (5:(0)).

obtained from equation (24).
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Appendix B. Definition of Kelvin wave spectra

Kelvin waves are helical oscillations propagating along vortex lines. In this work, we have
studied KWs on straight lines and rings. One of the simplest two-point quantities of interest
is the KW spectrum, that gives the amplitude of KWs at a given scale. The definition of the
spectra slightly differs for lines and rings.

A straight line with small amplitude KWs, can be easily parametrised as

SKW(G) = (X(G)JY(G)JG)' (B.1)
Assuming that the line is periodic in the z direction, the KW spectrum is defined as
= [Skw (k) + [Skw (—K) . (B2)

where S/K;v(k) is the Fourier transform of Sxw (o) = (X(0),Y(0)). Note that lines obtained
from the tracking are not directly parametrised in terms of ¢. In order to numerically compute
the Fourier transform, the line is remeshed on a regular partition of the interval [0,L;] (where
L. is the size of the periodic domain along the z-coordinate direction) obtained by a high-order
interpolation. In Krstulovic !, KWs on a straight line were accurately tracked by a NR method
using planes perpendicular to the line. The algorithm used in '° provided a parametrization on
a regular mesh that directly allows for the evaluation of the Fourier transform. We have
checked that the interpolation does not affect the values of the spectrum at the scales of
interest.

In order to obtain the KW spectrum of waves on a ring we proceed as follows. Starting
from a ring with Kelvin waves Skw(s) expressed in its natural parametrisation, we obtain a
long-scale averaged ring Sgmoom(s) by convolving the line with a Gaussian kernel of width
oL, where o € (0,1) and L is the total length of the line. Once this smooth ring is computed,
we define the KWs as

SKW(S) = S(S) - Ssmooth(s)~ (B.3)
Figure B1 displays a test case with KWs (shown in blue) and the corresponding smooth ring
(shown in red). By construction, Sgw(s) is a periodic set of 3 signals (one for each spatial
dimension). The KW spectrum is then simply defined as in (B.2) using the Fourier transform
of SKW (S) .

Note that the tracking algorithm provides a parametrisation o that is close to the natural
one but not necessarily equal as after each step {, the location of the vortex is re-evaluated
in the new plane so the distance between the previous point and the new one can be slightly
different from {. As in the case of KWs on a straight vortex, the line obtained from the
algorithm is re-parametrised in a regular partition of [0, L] by using a high order interpolation.
In this work we used a value of @ = 0.1. Varying this coefficient only slightly modifies the
large-scale values of the spectrum as demonstrated in Fig. B2, but values at scales where
scaling is observed remain unchanged.
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