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10
11 The aim of this review was to determine the impact of the fatty acid desaturase (FADS)
12 genotype on plasma and tissue concentrations of the long-chain n-3 PUFA (LC n-3
13 PUFA), including EPA and DHA, which are associated with the risk of several diet-related
14 chronic diseases, including CVD. In addition to dietary intakes, which are low for many
15 individuals, tissue EPA and DHA are also influenced by the rate of bioconversion from
16 α-linolenic acid (αLNA). Delta 5- and delta-6 desaturase enzymes, encoded for by FADS1
17 and FADS2 genes, are key desaturation enzymes involved in the bioconversion of essential
18 fatty acids (αLNA and linoleic acid (LA)) to longer chained PUFA. In general, carriers of
19 FADS minor alleles tend to have higher habitual plasma and tissue levels of LA and αLNA,
20 and lower levels of arachidonic acid, EPA and also to a lesser extent DHA. In conclusion,
21 available research findings suggest that FADS minor alleles are also associated with reduced
22 inflammation and CVD risk, and that dietary total fat and fatty acid intake have the poten-
23 tial to modify relationships between FADS gene variants and circulating fatty acid levels.
24 However to date, neither the ‘size-effects’ of FADS variants on fatty acid status, nor the
25 functional SNP in FADS1 and 2 have been identified. Such information could contribute
26 to the refinement and targeting of EPA and DHA recommendations, whereby additional
27 LC n-3 PUFA intakes could be recommended for those carrying FADS minor alleles.

28 Eicosapentaenoic acid: EPA: Docosahexaenoic acid: DHA: Arachidonic acid: Long-chain
29 PUFA: Genotype: FADS: Cardiovascular: CVD

30 Plasma and tissue long-chain PUFA (LC-PUFA) concen-
31 trations are associated with the risk of several diet-related
32 chronic diseases, including CVD(1–5). Therefore it is im-
33 portant that the determinants of LC-PUFA metabolism,
34 and concentrations in the circulation and in target tissues
35 are fully understood. n-3 fatty acids are PUFA,which con-
36 tain the first double bond at the third carbon atom from the
37 methyl end of the fatty acid. There are three major long-
38 chain n-3 PUFA (LC n-3 PUFA) in the human diet and
39 mammalian tissues, namely α-linolenic acid (αLNA),
40 EPA and DHA. Although the most effective means to in-
41 crease EPA and DHA status is through increased

42consumption of fish, bioconversion from the essential
43fatty acid, αLNA, represents a significant source and in
44particular in non-fish/EPA+DHA supplement consu-
45mers who have 57–80 % lower intakes than fish eaters,
46with EPA and DHA derived from the sequential desatur-
47ation and elongation from αLNA(6).
48The potential health benefits associated with consump-
49tion of EPA and DHA are numerous, with the most stud-
50ied and accepted being a reduction in CVD risk. As
51summarised in several systematic reviews and meta-
52analysis of prospective epidemiological studies and
53RCT Q4, the ability of LC n-3 PUFA to reduce all-cause
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54 mortality and cardiovascular mortality has been widely
55 described(1,2,4,7,8). However, it should be noted that this
56 is not a fully consistent finding, with the heterogeneity
57 in responsiveness as yet not fully understood(9,10).
58 Consumption of EPA and DHA has also been shown
59 to be associated with many other diseases, for example,
60 autoimmune diseases such as rheumatoid arthritis,
61 cancer, diabetes, respiratory diseases, gastrointestinal
62 diseases, Alzheimer’s disease, depression, as well as
63 psychotic disorders, for example schizophrenia(11–14).
64 The current recommended intakes for EPA plus DHA
65 in the UK are ⩾450 mg/d(15). This recommendation is
66 based largely on the cardiovascular benefits of these
67 fatty acids and can be achieved by consuming two por-
68 tions of fish per week, one of which should be oily(15).
69 However, the estimated EPA and DHA consumption
70 in adults in the UK is approximately 270 mg/d for men
71 and 220 mg/d for women, which is far below the recom-
72 mended minimal intake(6). Furthermore, mean popula-
73 tion intakes are known to be highly skewed, with a
74 large proportion of the population who do not consume
75 fish or an EPA/DHA-containing supplement having a
76 typical EPA plus DHA intake of <50 mg/d(6,16).
77 n-6 PUFA, including linoleic acid (LA) and arachi-
78 donic acid (AA), contain the first double bond at the
79 sixth carbon atom from the methyl end of the fatty
80 acid. LA is an essential fatty acid that is found in vege-
81 table oils and is the most abundant PUFA in the modern
82 Western diet(17). LA can be metabolised to AA, which in
83 turn, is a precursor of eicosanoids, such as PG, throm-
84 boxanes and leukotrienes. These eicoisanoids tend to be
85 pro-inflammatory and therefore may negatively impact
86 on the development of CVD(18).
87 There is now a large published literature reporting on
88 the impact of individual gene variants on LC-PUFA me-
89 tabolism and CVD incidence and biomarker profiles.
90 This review will focus on the fatty acid desaturase
91 (FADS) genotypes, which are emerging as the most sign-
92 ificant common genetic determinants identified to date.
93 Accumulating evidence suggests that the locus may, in
94 the future, be useful in stratification and targeting of
95 LC-PUFA recommendations towards individuals likely
96 to be deficient and responsive.

97 PUFA bioconversion and the fatty acid desaturase
98 genotype

99 In addition to dietary intake, tissue EPA and DHA is
100 influenced by the rate of bioconversion from αLNA,
101 which involves multiple desaturation and elongation
102 steps (Fig. 1). The delta-5 and delta-6 desaturase enzymes
103 are the key rate-limiting enzymes in this pathway(19). The
104 human desaturase complementary DNAwere first cloned
105 in 1999 by Cho et al.(20,21) and were later identified as
106 FADS1 and FADS2 in the human genome(22), located in
107 a cluster on chromosome 11 (11q12–13.1). Delta-5 desa-
108 turase anddelta-6 desaturase are found inmanyhuman tis-
109 sues, but the liver is the site at which they are most highly
110 expressed(20,21). LA and αLNA are metabolised by the
111 same series of enzymes. EPA and DHA are produced at

112limited conversion rates of 0·2–6 % for EPA and <0·1 %
113for DHA in human males and post-menopausal females,
114with higher rates evident in pre-menopausal females(23).
115The more efficient EPA and DHA synthesis in pre-
116menopausal women is thought to be an evolutionary adap-
117tation, so that younger females have sufficient LC-PUFA
118tomeet the demands of pregnancy and the developing foe-
119tus. As will be described, variation across the FADS gene
120region appears to be important in modulating LC-PUFA
121status. The functional SNP in FADS1 and 2 have not yet
122been identified.

123Impact of fatty acid desaturase genotype on PUFA
124status

125Using both a candidate gene (Table 1) and a genome wide
126association study (Table 2) approach, numerous studies
127have reported associations between variations in the
128FADS locus and desaturase activity and fatty acid status
129in human subjects. Desaturase activity can be approxi-
130mated by calculating the product-to-precursor ratio of
131fatty acids. In 2006, Schaeffer et al.(24) analysed eighteen
132SNP and reconstructed haplotypes in the FADS1–2 cluster
133in 727 adults. A five-locus FADS haplotype accounted for
13427·7, 5·2 and 1·4 % of the variation in AA, EPA and DHA
135in serum phospholipids, respectively. The minor alleles
136were associated with higher αLNA and LA and lower
137gamma-linolenic acid, AA, EPA and n-3 docosapentae-
138noic acid concentrations, with no significant impact on
139DHA(24). More recently, Ameur et al. performed genome
140wide genotyping in 5652 individuals, and targeted rese-
141quencing (n 960) of the FADS region, across five
142European population cohorts and reported that present-
143day human subjects have two common FADS haplotypes,
144which are defined by twenty-eight closely linked SNP, one
145of which was considered to be more efficient in relation to
146the biosynthesis of LC-PUFA(25). This FADS haplotype
147was associated with lower levels of LA (borderline signifi-
148cant) and αLNA and higher levels of EPA, gamma-
149linolenic acid, DHA and AA. Over the last decade, a
150number of other candidate gene approach studies, as
151well as genome wide association study, have been con-
152ducted and the association between FADS SNP/haplo-
153types and PUFA status, as well as desaturase activities,
154in plasma have been confirmed and extended to tissue
155fatty acid composition (Tables 1 and 2). However, infor-
156mation on how factors, including n-3 PUFA intakes,
157health status and ethnicity, may influence the penetrance
158of the FADS genotype, and in turn the effect size, is rela-
159tively unknown. Further research, expanding on the recent
160research by Wang et al.(26), is also required to determine
161the functional SNP, as well the molecular mechanism(s)
162responsible for the effect of the FADS genotype on EPA
163and DHA status. Wang et al. examined the association be-
164tween six FADS SNP and the lipidomic profile and
165FADS1–3 expression in liver samples (n 154) and reported
166all six alleles to be associated with FADS1 (but not
167FADS2 and 3) gene expression and protein levels, suggest-
168ing that the causal variant(s) may be located at FADS1(26).
169In addition, twenty out of forty-two highly linked SNP
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170 were located in the transcription factor-binding sites of the
171 locus. Although it is unclear exactly which SNP is causal
172 and exactly how the SNP influences transcription factor
173 binding and activation of FADS1, the findings add consid-
174 erable credibility to the observations that FADS genotypes
175 influence EPA and DHA status.

176 Impact of fatty acid desaturase genotype on
177 cardiovascular health

178 The majority of studies to date suggest that FADS minor
179 alleles (associated with decreased desaturase activity) are
180 associated with reduced inflammation, total cholesterol,
181 LDL-cholesterol and coronary artery disease risk
182 (Tables 1 and 2)(18,27–31). In the Verona Heart Study
183 (2008), a coronary artery disease incidence of 84 v. 66 %
184 was evident in individuals with six to seven v. two to
185 three risk alleles and a higher AA/LA ratio was an inde-
186 pendent risk factor for coronary artery disease (18). A po-
187 tential reason for these findings could involve the high
188 LA intakes in theWestern diet, resulting in reduced synthe-
189 sis of LC n-3 PUFA from αLNA(32). The higher n-6

190conversion also leads to increased levels of AA, which is
191a direct precursor of many pro-inflammatory eicosa-
192noids(33,34). Hester et al.(33) recently showed that subjects
193with the major allele for FADS SNP rs174537 had signifi-
194cantly higher levels of pro-inflammatory eicosanoids,
195LTB4 and 5-HETE, compared with minor allele car-
196riers(33). However, a few studies have reported contradic-
197tory results(35–37) which could be due to the ethnicity of
198the participants or differences in the n-6 to n-3 PUFA con-
199tent of the habitual diet. For example, two studies carried
200out in aChinese-Han population reported the frequencyof
201the rs174556minor allele to be significantly higher in cases
202of both coronary artery disease and acute coronary syn-
203drome compared with control groups(35,37).

204Impact of diet composition on the relationship between
205the fatty acid desaturase genotype and PUFA and
206cardiovascular health status

207There have been a number of studies that show that diet
208composition can influence the relationship between
209FADS genotype and plasma fatty acid and lipid status
210(Table 3). In 2012, Hellstrand et al. reported that the
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Fig. 1. Synthesis of long-chain PUFA from linoleic (LA) acid and alpha-linolenic acid (αLNA). Both LA (n-6) and αLNA
(n-3) are elongated, desaturated and β-oxidised using the same enzyme system. AA, arachidonic acid Q13.

Q3 Impact of FADS genotype on fatty acid status and cardiovascular health in adults 3
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Table 1. Candidate gene studies: associations between fatty acid desaturase SNP and fatty acid status and cardiovascular healthQ12

Study Subjects
Age (mean
(SD or range)) Sex SNP Outcomes Results

Schaeffer
et al.(24)

n 727 41·6 (12·3
years, 20–64
years)

Both rs99780, rs174544, rs174545, rs174546,
rs174553, rs174556, rs174561,
rs174568, rs174570, rs174583,
rs174589, rs174602, rs174620,
rs2072114, rs3834458, rs482548,
rs526126, rs968567

Fatty acids in serum
phospholipids

SNP showed strongest associations with AA
(P < 1·0 × 10−13), also with LA, αLNA, EPA
(P < 0·001)

Baylin
et al.(49)

n 1694 MI cases,
n 1694 controls

58 (11 years) Both rs3834458 PUFA in plasma and adipose
tissue. Risk of MI

EPA, LA and AAwere significantly decreased
in adipose tissue and plasma with
increasing copy number of variant alleles
(P < 0·05 for all). No association with MI

Malerba
et al.(50)

n 658 59·7 (11·1
years)

Both rs174545, rs174556, rs174561, rs174570,
rs174583, rs174589, rs174611,
rs174627, rs498793, rs1000778,
rs2524299, rs3834458, rs17831757

Fatty acids in serum
phospholipids and erythrocytes
in CVD patients

SNP strongly associated with AA (P < 1·0 ×
10−4) in both serum and erythrocytes.
Significant associations were also
observed for LA and αLNA (P < 0·05)

Martinelli
et al.(18)

n 266 CAD cases,
n 610 controls

59 (10 years) Both rs174545, rs174556, rs174561, rs174570,
rs174583, rs174589, rs174611,
rs174627, rs498793, rs1000778,
rs2524299, rs3834458, rs17831757

Serum lipids and other CAD risk
factors, including hs-CRP

Increases in hs-CRP concentrations and
CAD risk were associated with FADS
haplotypes (P < 0·04)

Rzehak
et al.(51)

n 163 (plasma) +
n 535
(erythrocytes)

13–80 years Both rs174556, rs174561, rs3834458 Fatty acids in serum
phospholipids and erythrocyte
membranes

SNP strongly associated with EDA (P = 7·9 ×
10−10 for rs3834458) and AA (P = 1·1 × 10−3

for rs174561) in erythrocytes
Mathias
et al.(52)

n 224 46·7 (21·2
years)

Both rs99780, rs174537, rs174545, rs174546,
rs174553, rs174556, rs174561,
rs174568, rs174570, rs174575,
rs174583, rs174611, rs174627,
rs498793, rs1000778, rs2524299

Serum n-6 fatty acids Cluster of SNP in LD (rs174537, rs174545,
rs174546, rs174553, rs174556, rs174561,
rs174568, and rs99780) associated with AA
(P = 5·8 × 10−7

–1·7 × 10−8) among other
PUFA. FADS1 activity ratio associated with
the −6 series (P = 2·11 × 10−13

–1·8 × 10−20)
Zietemann
et al.(53)

n 2066 35–65 years in
women, 40–
65 years in
men

Both rs174546 n-6 PUFA composition in
erythrocyte membranes

rs174546 related to estimated D6D activity
(r2 0·052) and D5D activity (r2 0·231).
Genetic effect on D5D activity and DGLA
modified by the dietary n-6 : n-3-ratio
(P-values for interaction: 0·008 and 0·002)

Merino
et al.(54)

Caucasian: n 78,
Asian: n 69

20–29 years Both rs174547, rs174570, rs174576, rs174579,
rs174593, rs174602, rs174611,
rs174627, rs412334, rs482548,
rs498793, rs526126, rs695867,
rs968567, rs17831757, rs2072114,
rs2845573

Plasma fatty acids rs174547 associated with AA:LA in both
Caucasians (P = 4·0 × 10−8) and Asians
(P = 5·0 × 10−5). Although the minor allele
for this SNP differed between Caucasians
(T) and Asians (C), carriers of the C allele
had a lower desaturase activity than
carriers of the T allele in both groups

Qin et al.(35) n 199 CAD cases,
n 192 controls

62·5 (20·4
years)

Both rs174556, rs174617 Distribution of FADS genotype in
CAD cases and controls

The frequency of rs174556 minor allele was
significantly higher in the case than control
group (P = 0·030)
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Lu et al.(36) n 1860 47·5 (7·9
years, 45–85
years)

Both rs17454 Distribution of FADS genotype
and PUFA in incident CHD
cases and controls at follow-up

rs174547 major allele was associated with
increased plasma levels of AA, EPA and
DHA and increased desaturase activity, but
not with CHD risk. High baseline
desaturase activity was associated with
reduced CHD risk (P for trend = 0·02),
especially among those carrying the major
allele (HR (95 % CI) = 0·35 (0·15, 0·81) for
comparing the extreme quintiles)

Freemantle
et al.(55)

n 61 18–58 years Male rs174546, rs174548, rs174549, rs174555 Fatty acid composition in cortical
brain tissue

Association of the minor haplotype with
estimated fatty acid desaturase activity
(P = 0·04). No significant association of the
impact of variants on expression and
alternative transcripts of FADS1 and
FADS2. Significant interaction between
haplotype and age on LA and AA

Song et al.(37) n 249 ACS cases,
n 240 controls

62·5 (20·4
years)

Both rs174556, rs174617 Distribution of FADS genotype in
ACS cases and controls

The frequency of rs174556 minor allele was
higher in the case group than the control
group (P = 0·036)

Li et al.(28) n 505 CAD cases,
n 510 controls

33–85 years Both rs174460, rs174537, rs174550, rs174611,
rs174616

Plasma fatty acids D6D activity (AA/LA), was higher in CAD
patients (P < 0·001). rs174537 minor allele
associated with lower risk of CAD (OR
0·743, 95 % CI (0·624, 0·884), P = 0·001).
Carriers of the rs174460 minor allele were
associated with a higher risk of CAD (OR
1·357, 95 % CI (1·106, 1·665), P = 0·003)

Hong et al.(56) n 122 35–59 years Male rs1000778, rs174537, rs174575,
rs2727270

Serum phospholipid PUFA,
oxidative stress markers over 3
years

rs174537 showed strongest association;
minor allele did not show the
age-associated increases in AA (P = 0·022)
and D5D activity (P = 0·007) seen with the
rs174537 major genotype

Roke et al.(57) n 878 20–29 years Both Nineteen SNP were genotyped in all
subjects and six (rs174579, rs174593,
rs174626, rs526126, rs968567 and
rs17831757) were further analysed

Plasma fatty acids and hs-CRP All six SNP that were further analysed
significantly associated with AA levels and
desaturase indices. Inverse association
between FADS1 desaturase index and
hs-CRP (P = 4·41 × 10−6)

Hester
et al.(33)

n 30 21–65 years Female rs174537 Serum fatty acids. Eicosanoids:
leukotriene, HETE, PG and
thromboxane biosynthesis in
stimulated whole blood

Associations between rs174537 and
desaturase activity (P = 0·035), leukotriene
B4 (P = 0·001), and 5-HETE (P = 0·048)

Wang
et al.(26)

n 154 No data Both rs1535, rs102275, rs174537, rs174546,
rs174556, rs174576

Hepatic lipid composition Minor alleles associated with the
accumulation of VLCFAs, increased ratios
between the more saturated and relatively
less saturated forms of VLCFA and
increased total hepatic fat content (P <
0·05)

Horiguchi
et al.(58)

n 124 ⩾65 years Both rs17454 Erythrocyte membrane and
plasma phospholipid LCPUFA

rs174547 minor allele associated with lower
AA and higher LA levels in erythrocyte
membrane and plasma phospholipid (P <
0·0001)
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Table 1. (Cont.)

Study Subjects
Age (mean
(SD or range)) Sex SNP Outcomes Results

Vaittinen
et al.(59)

n 89 at baseline
and n 64 at
follow-up

46·3 (8·8
years)

Both rs174547, rs174616 Surgery-induced weight loss,
Adipose tissue fatty acids and
inflammation (IL-1 and NFKB)

SNP associated with estimated desaturase
activity at baseline and follow-up (P <
0·006) and adipose tissue inflammation at
follow-up (P < 0·03)

Li et al.(45) n 872 59·3 (10·8
years)

Both rs174450, rs174460, rs174537, rs174616 Plasma fatty acid and lipid
composition T2D, CAD, both
T2D and CAD, compared with
healthy controls

T2D patients with rs174537 major allele were
at risk of developing T2D and CAD (OR
1·763; 95 % CI 1·143, 2·718; P = 0·010),
with elevated plasma LDL-C, AA and
desaturase activity

Schuchardt
et al.(60)

n 111 69 (7·6. 50–80
years)

Both rs1535, rs174546, rs174548, rs174449,
rs174455, rs174574, rs174575,
rs174576, rs174578, rs174579,
rs526126, rs3834458

Erythrocyte membrane LC-PUFA
in patients with mild cognitive
impairment

Minor allele carriers of several SNP had
higher LA and αLNA, lower AA levels in
erythrocyte membranes compared with the
major allele carriers (P < 0·001)

AA, arachidonic acid; LA, linoleic acid; αLNA, alpha-linolenic acid, MI, myocardial infarction, CAD, coronary artery disease; hs-CRP, high sensitivity C-reactive protein; EDA, eicosadienoic acid; LD, linkage
disequilibrium; D6D, delta-6-desaturase; D5D, delta-5-desaturase; DGLA, dihomo-gamma-linolenic acid; HR, hazard ratio; ACS, acute coronary syndrome; VLCFA, very long-chained fatty acids; T2D, type 2
diabetes.

Table 2. Genome wide association studies: associations between fatty acid desaturase SNP and fatty acid status and cardiovascular health

Study Subjects
Age (mean
(SD or range)) Sex Outcomes Results

Gieger et al.(61) n 284 35–79 years Male 363 metabolites in
serum

Association between rs174548 and PC C36:4 (P = 4·52 × 10−8) and
D5D product–substrate ratio (P = 2·4 × 10−22)

Tanaka et al.(62) n 1210 + 1076 (replication) 12–102
years

Both Fatty acids in plasma
and blood lipids

Associations between rs174537 and AA (P = 5·95 × 10−46), TC (P =
2·7 × 10−2), LDL-C (P = 1·1 × 10−2)

Aulchenko
et al.(29)

n 17 797–22 562 18–104 Both Blood lipid
parameters

Associations between rs174570 and TC (P = 1·5 × 10−10) and LDL-C
(P = 4·4 × 10−13)

Sabatti et al.(31) n 4763 31 years Both Metabolic traits (TAG,
cholesterol, etc.)

Associations between rs174546, rs102275, rs174537, rs174556,
rs1535 and LDL-C (P = 1·3–3·7 × 10−7)

Kathiresan
et al.(63)

n 19 840 + 22 562 (replication) All ages Both Blood lipid
parameters

Associations between rs174547 and TAG (P = 2·0 × 10−14) and HDL-C
(P = 2·0 × 10−12)

Ameur et al.(25) Genome-wide genotyping (n 5652) and
targeted resequencing (n 960) five
European population cohorts

All ages Both Fatty acid in blood
phospholipid

FADS haplotype associated with lower levels of LA (P = 0·052) and
αLNA (P = 0·024) and higher levels of EPA (P = 1·1 × 10−12), GLA
(P = 1·3 × 10−18), DHA (P = 8·3 × 10−5) and AA (P = 5·2 × 10−18)

Guan et al.(64) n 8631 60·3 years Both Plasma n-6 PUFA
composition

FADS cluster associated with LA, AA, GLA, DGLA and adrenic acid

Mozaffarian
et al.(65)

n 8013 45·8 (3·4)–
75·0 (5·1
years)

Both Phospholipid
trans-fatty acids

Thirty-one FADS SNP associated with cis/trans-LA. No significant
association was identified for other TFA

PC, phosphatidylcholine; D5D, delta-5-desaturase; AA, arachidonic acid; TC, total cholesterol; LA, linoleic acid; αLNA, alpha-linolenic acid; GLA, gamma-linolenic acid; DGLA, dihomo-gamma-linolenic acid;
TFA, trans-fatty acid.

C
.
M
.
O
’N

eill
and

A
.-M

.
M
inihane

6

Proceedings of the Nutrition Society



Table 3. Diet–gene interactions: impact of dietary intakes/interventions on associations between fatty acid desaturase genotype and fatty acid status and cardiovascular health

Study Subjects
Age (mean
(SD or range)) Sex SNP Intakes/intervention Outcomes Results

Lu et al.(66) n 3575 46·7 (9·8 years) Both rs174546, rs174570, rs482548 Dietary intakes of n-3 and
n-6 PUFA

Plasma TC, HDL-C, and
non-HDL-C

rs174546 major allele associated with high
TC and non-HDL-C in high n-3 PUFA
group (⩾0·51 % of total energy; P = 0·006
and 0·047, respectively) and with high
HDL-C in the group with a high intake of
n-6 PUFA (⩾5·26 % of total energy, P =
0·004)

Hellstrand
et al.(38)

n 4635 45–68 years Both rs174547 PUFA intakes Blood lipids concentrations rs174547 minor allele associated with
lower LDL-C (P = 0·03) and with lower
LDL-C in the lowest tertile of LC n-3
PUFA intakes (P < 0·001). An interaction
was observed between rs174547 and the
ratio of αLNA and LA intakes on HDL-C
(P = 0·03)

Cormier
et al.(67)

n 208 18–50 years Both rs174448, rs174456, rs174546,
rs174570, rs174579, rs174602,
rs174611, rs174616, rs174627,
rs482548, rs498793, rs968567,
rs2072114, rs2845573,
rs7394871, rs7935946,
rs7942717, rs12807005,
rs74823126

3 g/d supplement of n-3
PUFA for 6 weeks

Blood lipid concentrations SNP rs174546 was associated (P = 0·02)
with TAG, pre- and
post-supplementation; no significant
genotype by supplementation interaction
was observed

Gillingham
et al.(40)

n 36 18–65 years Both rs174537, rs174545, rs174561,
rs174583, rs953413

Three isoenergetic diets
with either 20·6, 2·4 or 1·3
g αLNA/d for 4 weeks

Plasma fatty acids and
13C-labelled αLNA (at 0,
24 and 48 h) in
hyper-lipidaemic subjects

20·6 g αLNA/d increased (P < 0·001)
plasma αLNA, EPA and DPA. At 24 and
48 h, 13C-labelled αLNA recovered as
plasma 13C-EPA and 13C-DPAwere lower
(P < 0·001) after the 20·6 g αLNA/d diet.
Minor allele homozygotes of rs174545,
rs174583, rs174561 and rs174537 had
lower (P < 0·05) plasma EPA, AA and
desaturase ratio compositions, and lower
(P < 0·05) plasma 13C-EPA enrichment at
24 and 48 h in comparison with carriers of
the major allele after all diets

Al-Hilal
et al.(68)

n 310 45–70 years Both rs174537, rs174561, rs3834458 Supplementation with EPA
and DHA at three doses
(0·45, 0·9 and 1·8 g/d)

LC-PUFA and desaturase
activities estimated in
plasma and RBC

Minor alleles associated with decreased
desaturase activities of (5·84 × 10−19⩽ P
⩽ 4·2 × 10−7). Interaction of rs174537
genotype with treatment was a
determinant of desaturase activity
estimated in plasma (P = 0·05)
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Table 3. (Cont.)

Study Subjects
Age (mean
(SD or range)) Sex SNP Intakes/intervention Outcomes Results

Porenta
et al.(42)

n108 53·0 (11·6
years)

Both rs174537, rs174556, rs174561,
rs3834458

Mediterranean diet
intervention for 6 months

Fatty acids in serum and
colonic mucosa in those
at increased risk of colon
cancer

No diet by genotype effect of the
intervention on serum fatty acid status.
Significant diet by genotype interaction
for AA in the colon; subjects with all major
alleles for FADS SNP and were following
the Mediterranean diet had 16 % lower
AA compared with control subjects

Roke &
Mutch (69)

n 12 18–25 years Male rs174537, rs174576 12-week fish-oil
supplementation,
providing 1200 mg EPA
and 600 mg DHA/d

FA levels in serum and
RBC. TAG, TC,LDL-C,
HDL-C, glucose, insulin,
HbA1c and hs-CRP

Minor allele carriers for both SNP had
greater increases in RBC EPA following
supplementation (P < 0·05)

Hellstrand
et al.(39)

n 24 032 44–74 years Both rs174546 PUFA intakes CVD incidence αLNA:LA intake ratio inversely associated
with CVD risk minor allele (HR for quintile
5 v. quintile 1 = 0·72; 95 % CI 0·50, 1·04;
P-trend = 0·049). Interaction between
αLNA and rs174546 and ischaemic stroke
incidence (P = 0·03); αLNA was inversely
associated with ischaemic stroke only
among minor allele carriers (HR for
quintile 5 v. quintile 1 = 0·50; 95 % CI
0·27, 0·94; P-trend = 0·02)

Cormier
et al.(44)

n 208 18–50 years Both rs174448, rs174456, rs174546,
rs174570, rs174579, rs174602,
rs174611, rs174616, rs174627,
rs482548, rs498793, rs968567,
rs2072114, rs2845573,
rs7394871, rs7935946,
rs7942717, rs12807005,
rs74823126

3 g/d supplement of n-3
PUFA for 6 weeks

Estimated desaturase
activities

Desaturase indexes were significantly
different following the 6-week n-3
supplementation. The index of D5D
activity increased by 25·7 (28·8 %) (P <
0·0001), whereas the index of D6D activity
decreased by 17·7 (18·2 %) (P < 0·0001)
post supplementation

TC, total cholesterol; LC, long chained; αLNA, alpha-linolenic acid; LA, linoleic acid; DPA, docosapentaenoic acid; hs-CRP, high sensitivity C-reactive protein; RBC, red blood cells; HR, hazard ratio; D5D,
delta-5-desaturase; D6D, delta-6-desaturase; LDL-C, LDL-cholesterol.
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211 FADS rs174547 minor allele was associated with lower
212 LDL-cholesterol among individuals in the lowest
213 tertile of LC n-3 PUFA intakes(38). A significant inter-
214 action between rs174547 and the ratio of αLNA and
215 LA intakes on HDL-C was also observed(38). More re-
216 cently, a 14-year follow-up in 24 032 participants
217 reported that the αLNA-to-LA intake ratio was inversely
218 associated with CVD risk only among participants
219 homozygous for the rs174547 minor allele(39). αLNA
220 intakes were also inversely associated with ischaemic
221 stroke in this genotype group. In addition to observation-
222 al analysis, the impact of FADS variants on response to
223 LC-PUFA supplementation has also been examined.
224 Gillingham et al. carried out a randomised crossover
225 trial carried out in thirty-six hyperlipidemic subjects in
226 which three diets (enriched with flaxseed oil or high-oleic
227 acid canola oil compared with a typical Western diet)
228 were consumed for 4 weeks and five FADS SNP
229 were analysed(40). Subjects with minor allele variants
230 (rs174545, rs174583, rs174561, rs174537) had decreased
231 desaturase activity, but an increase in αLNA intakes
232 resulted in greater increases in plasma EPA than in
233 major allele homozygotes consuming αLNA intakes typ-
234 ical of a Western diet(40). Cormier et al. conducted a
235 study in 208 subjects examining the impact of fish-oil
236 supplementation (1·9–2·2 g/d EPA and 1·1 g/d DHA)
237 for 6 weeks and nineteen FADS SNP on plasma TAGQ5
238 and reported that rs174546 was associated with TAG,
239 but no significant genotype by supplementation inter-
240 action was observed(41). In terms of whole-diet interven-
241 tions, one study to date has examined the interaction of
242 FADS genotype and the Mediterranean diet on
243 serum and colonic fatty acid profiles(42). In a 6-month
244 intervention (n 108) and genotyping for four FADS
245 SNP, a significant diet by genotype interaction for AA
246 concentrations in the colon was observed; subjects with
247 FADS major alleles following the Mediterranean diet
248 had 18 % lower AA concentrations than subjects on the
249 control diet (healthy eating diet)(42). There were no
250 significant diets by genotype interactions for other
251 colonic or serum fatty acids. Overall, it is clear that fur-
252 ther research is necessary to determine the potential of
253 the diet, particularly dietary fatty acids, to modify the re-
254 lationship between the FADS genotype and fatty
255 acid status. An investigation of diet composition ×
256 FADS genotype × fatty acid status represents a second-
257 ary objective of the recently completed NU-AGE
258 intervention.

259 NU-AGE: a focus on older adults

260 The NU-AGEQ6 study investigated the impact of a whole-
261 diet intervention on markers of chronic inflammation in
262 older adults (aged 65–79 years)(43). The NU-AGE
263 recommendations for the consumption of oily fish, as
264 well as the provision of an αLNA-rich spread, aimed
265 to increase total n-3 PUFA intakes and the dietary
266 n-6 : n-3 PUFA ratio of study participants. As previous-
267 ly discussed, although a small number of dietary inter-
268 ventions have been shown to modify the relationship

269between the FADS genotype and PUFA status(40,42,44);
270none have examined the impact of a 1-year whole-diet
271(including significant fatty acid manipulation) interven-
272tion in older adults, a group who are likely to be in a
273higher state of chronic inflammation and CVD risk rela-
274tive to healthy general adult population. Therefore, we
275aim to examine whether the NU-AGE diet could influ-
276ence the relationship between the FADS genotype
277and plasma PUFA status in our study population.
278Specifically, we wish to establish if the NU-AGE diet
279can overcome any identified negative impacts of
280FADS minor alleles on EPA and DHA status, as well
281as the potential negative effect that the major allele
282has on AA status. We will also examine the interactive
283impact of diet and FADS genotype on CVD risk bio-
284markers, including inflammatory and plasma lipid sta-
285tus and measures of vascular function and arterial
286stiffness(18,27,28).

287Summary and conclusion

288Current estimates indicate that for most countries, aver-
289age population intakes of EPA and DHA are 0·2 g/d,
290and < 0·05 g/d in non-fish consumers(16). In this latter
291large population subgroup, the efficacy of endogenous
292synthesis from αLNA determines the tissue EPA and
293DHA status. A comprehensive understanding of the
294determinants of the regulation of the desaturation and
295elongation pathway is lacking. Although common
296FADS variants have been consistently associated with
297LC-PUFA status, the exact size of the effect is relatively
298unquantified and the FADS functional gene variant(s)
299has not been identified. A recent study by Li et al.(28)

300(described in Table 1) reported a difference of 8·3 % in
301plasma EPA and DHA combined between those homo-
302zygous for the major allele and those homozygous for
303the minor allele of the rs174537 FADS genotype(45).
304This is clinically significant as previous research, which
305showed that EPA and DHA status was associated
306with sudden cardiac death in US males, reported 9·0
307% lower blood EPA and DHA concentrations in the
308sudden death group compared with controls(46).
309Modest dietary intakes of EPA and DHA could over-
310come this genotype effect; supplementation of 300 mg
311EPA and DHA or 90 g of salmon per week has been
312shown to increase combined plasma EPA plus DHA
313by about 30 %(47,48). The mechanistic basis of the rela-
314tionship between the FADS genotype and LC n-3
315PUFA interactions are also poorly understood. The im-
316pact of FADS genotype on PUFA status should be care-
317fully considered when using plasma and tissue EPA and
318DHA concentrations as biomarkers of dietary EPA and
319DHA exposure in RCT and epidemiological studies,
320with a greater contribution of endogenously synthesised
321EPA, and to a lesser extent DHA, to the total pool like-
322ly in FADS major allele carriers. Furthermore, FADS
323genotype could contribute to future stratification and
324targeting of dietary advice with additional EPA and
325DHA intakes recommended for those carrying the
326FADS minor allele.
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