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Estimation of individual spectral cone fundamentals from color matching functions is a classical and long-
standing problem in color science. In this paper we propose a novel method to carry out this estimation
based on a linear optimization technique, employing an assumption of a priori knowledge of the retinal
absorptance functions. The result is an estimation of the combined lenticular and macular filtration for
an individual, along with the nine coefficients in the linear combination that relates their color match-
ing functions to their estimated spectral cone fundamentals. We test the method on the individual Stiles
and Burch color matching functions and derive cone fundamental estimations for different viewing fields
and matching experiment repetition. We obtain cone fundamental estimations that are remarkably simi-
lar to those available in literature. This suggests that the method yields results that are close to the true
fundamentals. © 2016 Optical Society of America
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1. INTRODUCTION

The color matching functions (CMFs) form the basis of colorime-
try and color specification. These functions describe the inten-
sities of each of three primary lights that are required to match
a test stimulus as a function of wavelength and they vary for
different observers and different sets of primaries. The Com-
mission Internationale d’Eclairage (CIE) has collected measured
CMFs for a number of observers and averaged these across ob-
servers to derive a standardized set of CMFs [1]. These functions
are used to specify the photopic color response of the standard
observer to any color stimulus. The most common standard
observer adopted by the CIE, the XYZ color matching functions,
uses imaginary primaries to ensure that the resulting tristimu-
lus values are always positive and the Y value is equal to the
photopic luminous efficiency function. These are defined for
stimuli subtending 2 degrees and 10 degrees at the retina [2] (the
so-called 2-degree and 10-degree observers).

An alternative to XYZ tristimulus values for representing
the spectral response of human vision is given by the quantal
catches of the cones. Cone quantal catches provide better inputs
for color vision models since they represent the actual amount
of light absorbed in the eye and thus the true signal captured at
the retina, whereas XYZ values are never represented explicitly
within the human visual system [3]. The wavelength sensitivity

of a cone sensor is commonly equivalently expressed in terms of
a spectral sensitivity function called a fundamental. In normal
trichromatic vision there are three such fundamentals known as
the LMS-functions. They are three different, linearly indepen-
dent spectral functions, the longwave l(λ), middlewave m(λ)
and shortwave s(λ) functions. As their names indicate, each
function has a maximum and predominant sensitivity in the
long-, middle- or shortwave part of the visible spectrum. The
cone fundamentals are also within a 3× 3 linear transformation
of the CMFs and as such are a set of CMFs themselves.

Unfortunately, the cone fundamentals do not correspond to
a physically realisable or known set of primary lights. Accord-
ingly, estimates of these fundamentals must be derived indirectly
by firstly measuring a set of CMFs and then determining the
parameters of the 3× 3 transformation matrix. To estimate these
parameters requires the incorporation of additional measure-
ments and assumptions. This can involve measuring CMFs from
additional color normal and color deficient observers, evaluat-
ing the genetic predisposition of observers, direct measurements
in vitro or in situ of the cones [4, 5] and assumptions relating to
the usage of measurements across different observers [2]. The
most recent set of standard LMS functions that are in common
use were derived by Stockman and Sharpe in [6].

While these standardized functions can be derived for an av-
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erage observer, it is well known that individual differences, and
thus deviations from the standard, exist. There can be many rea-
sons for individual variation, including genetic polymorphism
in spectral positioning of cone pigments for trichromats [7, 8],
anomalous trichromacy (where there is large overlap between
cone sensitivities), dichromacy (where cone types are missing),
and optical density variations in the ocular media, macular pig-
ment and retinal pigmentation [9]. The result of the above is that
although CMFs can be estimated for individuals through a color
matching experiment, the standard transformations to compute
cone fundamentals are no longer valid since the assumptions
employed do not hold for individuals.

Here, we present a novel method for estimating cone fun-
damentals from CMFs for individuals [12]. We assume that
the main source of variation between individuals stems from
differences in the absorption in the ocular media and the mac-
ular pigmentation (supported by the findings in [13]) which
implies that the photo-pigment absorptances are known [14],
and are constant across observers. This assumption leads us to
an iterative method which simultaneously estimates ocular and
macular absorption, which we combine into a single pre-filter,
and which is used to relate the known absorptances to estimated
cone fundamentals. We show that the method produces reliable
and stable estimates of cone fundamentals across a range of
individual observers.

2. BACKGROUND

Given a color with spectral power distribution S(λ), the tris-
timulus values for that color can be computed using the color
formation equations:

R = k
∫

ω r(λ)S(λ)dλ

G = k
∫

ω g(λ)S(λ)dλ

B = k
∫

ω b(λ)S(λ)dλ

(1)

where R, G, and B denote the tristimulus values, ω denotes the
range of visible wavelengths λ, k is a constant, and r(λ), g(λ),
and b(λ) denote a set of color matching functions (CMFs).

Although altering the primary lights used to derive the CMFs
necessarily changes them, these functions are always, through
the Grassmann Laws ([2], p. 118) linearly related to one another
by a 3 × 3 matrix multiplication. So, given two sets of color
matching functions CMFi(λ) = [ri(λ) gi(λ) bi(λ)], i ∈ [1, 2],
derived from two sets of primaries, we have:

CMF1(λ) = CMF2(λ)M (2)

where M denotes a 3× 3 matrix.
An observer’s spectral cone sensitivities LMS(λ) are a special

set of color matching functions and are therefore linearly related
to other sets of CMFs in the same way:

LMS(λ) = CMF(λ)M (3)

where:

LMS(λ) = [l(λ) m(λ) s(λ)] (4)

and the matrix M takes the form:

M =


l(e1) m(e1) s(e1)

l(e2) m(e2) s(e2)

l(e3) m(e3) s(e3)

 (5)

In these equations e1, e2, e3 are the wavelengths of primaries
corresponding to the color matching functions in CMF(λ) [2].
Equation 5 follows because the ith CMF for a given primary
ei has the property that CMF(ei) = 1, whereas the other two
CMFs are exactly zero at ei.

It is clear from the definition above that the coefficients of M
are given by the response of the l(λ), m(λ), and s(λ) functions
to the three primaries used to derive the CMFs. However, when
the goal is to estimate the fundamentals these quantities are
clearly unknown, and certain assumptions need to be employed
to estimate them. It is worth noticing that M equivalently could
be expressed as an inverse of a matrix whose elements are the
color matching functions r(λ), g(λ), and b(λ) responses to the
primaries of the fundamentals. But since they are unknown that
will not immediately bring the solution closer.

The most common approach to solving for M is to use the
König assumption [2], which states that dichromatic (protanope,
deuteranope or tritanope) vision is a reduced form of normal
trichromatic vision defined by the lack of one of the three trichro-
matic cone sensors. Thus combining the CMFs of trichromatic
vision with dichromat metamerism measured for the three types
of dichromats, yields three confusion points in chromaticity
space that uniquely define the linear transformation between
the color matching functions and the cone fundamentals [6, 15–
17].

The König assumption, and related constraints, can be ap-
plied to CMFs that have been derived by averaging CMFs across
observers, but since CMFs measured for individuals can differ
significantly from the standard this approach is not feasible for
the estimation of individual fundamentals. A detailed investi-
gation of the specific causes of variation in [13] found that the
inter-observer variations in the Stiles-Burch 10 degree CMFs are
sufficiently explained by differences in the lens- and the macular-
pigment optical densities, in the degree of rod intrusion in the
matches and in the optical peak densities and peak wavelengths
of the individual photo pigments. There it is suggested that the
variations in lens and the macula are sizeable contributors to the
overall individual variations. Polymorphism and variations in
photo-pigment optical density are also important, although the
variations in peak-wavelengths seem to be smaller, or about the
size of the sampling frequency of the color matching data (i.e.
circa 5 nm).

As a conseqence of these variations, although CMFs can be
measured for individuals through a color matching experiment,
the standard methods to derive cone fundamentals fail, since
the assumptions employed cannot be applied for individuals.
To estimate individual LMS functions from individual CMFs,
different constraints must be imposed on the solution.

For any individual set of color matching functions, the prob-
lem we are addressing here is to find the 9 coefficients mi,j in M
that transform the color matching functions into the correspond-
ing spectral cone fundamentals. The classic approach, devised
by Bongard and Smirnov, works by the assumption that the
fundamental functions, throughout the visible spectrum, only
partly overlap each other, leaving wavelengths to be found in
which one or two of the three functions are zero. They use this
to define three particular sets of three primaries, for which each
of the corresponding sets of color matching functions, within a
scaling factor, must contain either one of the L, M or S functions.

Say e∗1 , e∗2 and e∗3 are the primaries of color matching functions
CMF∗(λ) = [r∗(λ) g∗(λ) b∗(λ)]. Then for example, for the
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longwave fundamental l(λ) in Equation 3:

l(λ) = l(e∗1)r
∗(λ) + l(e∗2)g∗(λ) + l(e∗3)b

∗(λ) (6)

when using Equation 4 and Equation 5 wherein primaries e∗1 , e∗2
and e∗3 are inserted. Exploring the reduced overlap assumption,
then the primaries e∗2 and e∗3 can be chosen in the short wave-
length interval making sure that l(e∗2) = l(e∗3) = 0 and e∗3 can be
chosen in the long wavelength interval so that l(e∗1) 6= 0. From
Equation 6 it clearly follows that l(λ) = l(e∗1)r

∗(λ) whereby
the longwave fundamental, within an unknown scaling factor
l(e∗1), is found as the long wave color matching function r∗(λ).
A second and a third set of primaries can likewise be defined to
calculate the middlewave and shortwave fundamentals.

This approach has since been used by Speranskaya and
Lobanova in order to study anomaly [18, 19] and revisited by
Logvinenko [20] with the purpose of estimating individual cone
sensitivities from color matching functions.

The Bongard and Smirnov method, however, has some re-
ported shortcomings. The assumption that cone functions have
zero response in certain wavelengths, e.g. that L and M cones
have zero response at short wavelengths is only approximately
true. This is particularly pronounced in the long-wave cone
fundamental and it is related to a small rhodopsin based short-
wavelength sensitivity known as the "cis"-peak [21–23]. Fur-
thermore, had the pairwise overlap in the wavelength interval
extremities been strictly true, then the spectrum locus would
have consisted of two straight lines there. This is contrary to
fact [1]. This, coupled with noise in the measurement of the
CMFs, makes the method unstable, results in small negative
lobes around the chosen primaries of the estimated cone func-
tions and therefore gives rise to inaccurate estimates.

To avoid having to select certain wavelengths as primaries
and thus get negative lobes around them and to stabilize the
estimations, in [11] the authors devised a simple rank based
method, which relies on the fact that the dimensionality of a set
of functions (i.e. CMFs) is invariant to any full rank transfor-
mation. By applying singular value decomposition to the color
matching functions in the full visual spectrum ω, five successive
wavelength subintervals, δk where k = 1, 2, ..., 5 are found that
delimit the number of linearly independent overlapping funda-
mentals in the interval. The number of overlapping functions
(or dimensions) in each of these intervals are, as a function of
progressing wavelengths, 1 dimension in δ1, 2 in δ2, 3 in δ3, 2 in
δ4 and 1 in δ5.

To estimate the fundamentals a bounded and positivity con-
strained linear optimization is employed. Each ith fundamental
is found in subintervals ωi for i = 1, 2, 3 in which it is thus
known to have a non-zero response.

ω1 = δ3 ∪ δ4 ∪ δ5 (7)

ω2 = δ2 ∪ δ3 ∪ δ4 (8)

ω3 = δ1 ∪ δ2 ∪ δ3 (9)

The areas Ai under the estimated cone fundamentals are maxi-
mized

Ai = max
mi,j

∫
ωi

CMF(λ)[mi,1 mi,2 mi,3]
T (10)

where the color matching functions are normalized to unit area
in the full spectrum:∫

ω
CMF(λ)dλ = [1 1 1]T (11)

and the matrix coefficients mi,j in M from Equation 5 are
bounded by:

3

∑
i=1

mi,j = 1 (12)

and constrained by positivity:

l(λ), m(λ), s(λ) ≥ 0 (13)

Although this method improves on the robustness of Bongard
and Smirnov’s approach, problems with the long-wave cone
fundamental still remain.

3. METHOD

A. Physical parameters
In order to understand better the mechanisms behind individ-
ual variations we extend the basic Equations to include more
physical parameters in the definition of the cone fundamentals.
Specifically, the cone fundamentals are related to the retinal
photo-pigment spectral absorptance PDT(λ) by the lens- and
macular optical density functions combined in one pre-filter
function F(λ) [25]:

LMS(λ) = F(λ)PDT(λ) (14)

where:
PDT(λ) = [p(λ) d(λ) t(λ)] (15)

and p(λ) is the long wave, d(λ) is the middle wave and t(λ)
short wave photo-pigment spectral absorptance. The functions
are shown in Figure 1.
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Fig. 1. Plot of the Stockman and Sharpe cone fundamentals (3
dashed gray curves) and the corresponding photo-pigment
absorptances (3 full gray curves) and the combined ocular
and macular pre-filter (monotonic dashed curve) as a function
of wavelength. The functions are all normalized to unit peak
value.

By definition [26], spectral absorptance α
δp

λp
(λ) pertaining

to a specified peak wavelength λp and peak optical density δp
expressed in terms of energy units is:

α
δp

λp
(λ) = (1− 10−δp Aλp (λ))λ (16)

where Aλp (λ) is the spectral absorbance (also known as optical
density) pertaining to a nominal peak optical density Aλp (λp) =
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1. The spectral absorbance can be either tabulated [6, 27] (which
we are using here) or formulated in templates of polynomial
or exponential functions of wavelength [6, 28, 29]. Assuming a
known absorbance function in Equation 16 can model a specific
set of absorptance functions. This is used in [30] to develop an
individual colorimetric observer.

The peak optical density varies over the surface of the retina
as the thickness of the pigment layer varies. Toward the center
of the retina (foveola) the pigment layer thickens as the concen-
tration of cones increases and thus the optical density becomes
larger. This means that there is an important difference between
the absorptance spectra of foveal and parafoveal vision. This
difference is one of the reasons for the partition of standard
observers into small field 2 degree and large field 10 degree
observers. The absorptance spectra broadens and the peak stays
largely the same as δp increases. (The peak geometrically stays
the same if the absorptance functions are measured in quantal
units by omitting the multiplication with λ).

A complete mathematical relationship between CMFs and
spectral absorptance comes from inserting Equation 14 into
Equation 3, and dividing by F(λ) for convenience, which yields:

F(λ)−1CMF(λ)M = PDT(λ) (17)

The objective of our method, set forth in the remainder of this
Section, is to simultaneously estimate the individual pre-filter
F(λ) and the individual matrix M, based on the assumption
that the photo-pigment absorptances PDT(λ) are known and in
common for each of the individual color matching functions.

B. Discretizing the problem
In practice the color matching functions and absorptance func-
tions are not represented explicitly as continuous functions as in
Equation 17, but rather are represented as measurements made
at discrete wavelengths, thus forming vectors of observations.
As a result all optimisations presented here are formulated as dis-
crete, matrix-vector, equations. Equation 17 therefore becomes:

DWcm f M = Wpdt (18)

where D is an N × N diagonal matrix with the inverse pre-filter
function F(λ)−1, sampled at N equally spaced discrete wave-
lengths across the visible spectrum, along the leading diagonal.
Similarly, Wcm f is an N × 3 matrix of discretely sampled color
matching functions and M is still a 3× 3 matrix.

C. Unconstrained method
Solving for D and M is carried out by firstly rearranging Equa-
tion 18 to define a linear least squares minimization problem:

min
D,M
‖ DWcm f M−Wpdt ‖2 (19)

In order to solve this, we employ an iterative scheme with two
sets of coupled equations. Firstly, at iteration level k, we define
N equations as a linear least squares minimization and solve for
Dk+1:

min
Dk+1
‖Dk+1Wcm f Mk −Wpdt‖2 (20)

Secondly, we define a set of 3 equations as a linear least squares
minimization and solve for Mk+1:

min
Mk+1

‖ Dk+1Wcm f Mk+1)−Wpdt ‖2 (21)

Dk+1 and Mk+1 are solved for using closed form linear least
squares [32]. As formulated, the estimate of D and M is found

iteratively solving for D then M. This alternating least-squares
procedure converges. We simply stop the iteration when the
estimates found at step k + 1 are the same as those found in step
k (practically, the estimates change less than a criterion amount
epsilon). The final solution for the estimated cone fundamentals
LMSest are calculated by either:

Wlms
est = Wcm f Mk (22)

or
Wlms

est = (Dk)−1Wpdt (23)

The uniqueness of this solution is demonstrated in Section E.
In Figure 2 we show the recovered cone fundamentals and

pre-filters found using the unconstrained method. While the
recovered cones appear plausible the pre-filtering has ’jitter’
(high frequency terms) whereas we would expect a very smooth
(probably monotonic) functions.
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Fig. 2. Sensor estimation based on individual Stiles-Burch 10
deg. (1959) color matching functions. The unconstrained iter-
ative method is used. Estimated fundamentals (light gray full
curves), Estimated pre-filters (dark gray full curves), Stockman
and Sharpe cone fundamentals (black broken curves) and pre-
filter (black broken curves). Inset, S-cone estimates negative
lobes.

D. Constrained method

In order to combat jitter we impose the constraint that the pre-
filtering function is monotonically increasing. Specifically, we
incorporate a constraint of non-negative first derivative of the
estimated pre-filter function F(λ):

F(λi+1)− F(λi) ≥ 0 (24)

To solve for the pre-filter D - a least squares quadratic ob-
jective function - subject to this new linear constraint we use
quadratic programming. Quadratic programming is a general
framework for finding the unique global minimum for quadratic
objectives subject to linear constraints.

While the recovered cone fundametals look reasonable we
see in Figure 2 in the inset, that there are small negative sen-
sitivities. This is obviously impossible and we need to add a
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second, positivity, constraint to mitigate this problem. We add
the following constraint:

(DkWcm f )M
k ≥ 0 (25)

Again subject to this constraint we can find Mk using quadratic
programming.

E. Uniqueness of solution
In [37] the uniqueness of the linear relation between an indi-
vidual set of color matching functions and a corresponding set
of cone fundamentals is questioned. Analyzing the observer
metamerism between individuals from the Stiles and Burch
dataset, using spectral stimuli from the object color solid (i.e.
reflecting surfaces), the authors found that the metamerism is
minimal between observers whose cone fundamentals differ by
symmetrically shifted peak wavelengths (either away from or
toward each other) of the middle and long-wavelength cone
fundamentals. This observation brings doubt to the viability
of estimating the cone fundamentals from an individual set of
color matching functions since minimal observer metamerism
between two observers means that their color matching func-
tions are linearly related. It follows from this that two different
sets of cone fundamentals would yield the same color matching
functions.

In our method, however, we incorporate the assumption
that the absorptions are fixed. This results in a unique relation
between fundamentals and color matching functions, which we
show below.

We demonstrate the uniqueness of our argument by contra-
diction. Suppose two different solutions to equation 18 exist for
the matrix M1 and M2 and the pre-filter D1 and D2 along with
two different absorptances Wpdt,1 and Wpdt,2 that are linearly
related by:

Wpdt,1N = Wpdt,2 (26)

where N is a 3× 3 matrix, then:

D1Wcm f M1 = Wpdt,1 (27)

and

D2Wcm f M2 = Wpdt,2 (28)

Combining Equations 27 and 28 using Equztion 26 gives:

D1Wcm f M1N = D2Wcm f M2 (29)

which leads to:

Wcm f M1NM2
−1 = D1

−1D2Wcm f (30)

If we for clarity redefine A = M1NM2
−1, Λ = D1

−1D2 and
X = Wcm f then Equation 30 becomes:

XA = ΛX (31)

in which case Λ must contain eigenvalues and X must contain
the corresponding eigenvectors of the transformation in the
square matrix A. However, A is a 3 × 3 matrix so at most 3
eigenvector and eigenvalue pairs exist for A, whereas Equation
31 implies that N independent pairs of eigenvectors and eigen-
values exist. Since that can not be the case, it follows that only
one unique solution exists to Equation 18.

4. RESULTS

We apply our method to two sets of classical individual color
matching function data sets provided by the work of Stiles and
Burch [34, 35]: the 2 degree Color Matching Functions (1955) [36]
and the 10 degree Color Matching Functions (1959). Measured
CMFs are plotted in Figures 3 and 4.

Fig. 3. Plot of the Stiles-Burch 2 degree 1959 color matching
functions as a function of wavelength. The functions are all
normalized to unity at the locations of the primaries.

Fig. 4. Plot showing the Stiles-Burch 10 degree 1959 color
matching functions as a function of wavelength from which 51
have been chosen. The functions are all normalized to unity at
the locations of the primaries.

As an approximation to the photo-pigment absorptances
p(λ), d(λ), t(λ) used in the present investigation we use the
Stockman-Sharpe absorbance function template [6], their peak
optical wavelengths of 420.7, 530.3 and 558.9 nm for the short,
medium and long wavelength pigment respectively and their
peak optical densities [33] (see Table 1) regarding their 2 and 10
degree cone fundamental estimations.

The spectral absorbances A558.3(λ), A530.3(λ) and A420.7(λ)
for each of the three photo-pigments are tabulated in [27] (in
normalized logarithmic quantal units on a wavelength basis)
and shown in Figure 5.
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Inserting these spectral absorbance functions and the appro-
priate optical densities in Equation 16 yields spectral absorp-
tance functions for each of the three cones pertaining to peak
wavelengths of 420.7, 530.3 and 558.9 nm for the short, medium
and long wavelength pigment respectively. For the 2 degree
viewing field:

p2(λ) = α0.50
558.9(λ), d2(λ) = α0.50

530.3(λ), t2(λ) = α0.40
420.7(λ) (32)

and for the 10 degree viewing field:

p10(λ) = α0.38
558.9(λ), d10(λ) = α0.38

530.3(λ), t10(λ) = α0.30
420.7(λ) (33)

The 10 degree fundamentals are shown in Figure 1. Note
that between 615 and 830 nm the short-wavelength absorptance
function t(λ) is taken to be zero (i.e. the left full gray curve in
the figure).

Fig. 5. Plot of the Stockman Sharpe low density spectral ab-
sorbances A558.9(λ), A530.3(λ) and A420.7(λ) for each of the
three photo-pigments.

Table 1. Stockman and Sharpe, Peak Photo-pigment Optical
Densities for the 2 and 10 degree Cone Fundamentals [33]

Observer Dp Dd Dt

2 deg. 0.50 0.50 0.40

10 deg. 0.38 0.38 0.30

We have applied our method to the Stiles-Burch 10 degree
1959 slit width corrected color matching function data. Of the
53 data sets of color matching functions we have used 51, since
two sets do not contain complete data. The data is given on a
wavenumber basis (in intervals of 500 cm−1 from 25500 to 1400
cm−1) and thus needs re-interpolation on a wavelength basis.
We have done this using a standard third order polynomial
piece-wise spline function, and the fact that the relation between
λ (wavelength in nm) and wavenumber wn is given by:

λ = 107/wn (34)

The wavelength interval chosen, between 395 and 710 nm, is
5 nm which is approximately the interval which polymorphic

variation (variation in absorptances peak wavelength value) cov-
ers and at the same time is marginally smaller than the smallest
interval in wavenumber (approximately 8 nm).

A. Consistency check
Firstly, to check the consistency of the method, we applied the
constrained iterative method to the Stockman and Sharpe 10 de-
gree Color Matching Functions using the corresponding Stock-
man and Sharpe 10 degree absorptance functions as constraints.
In this test we are guaranteed that there is no error in Equation
18 and hence our method should produce the exact 10 degree
fundamentals. The result is shown in Figure 6 with the Stockman
and Sharpe cone fundamentals (black broken curves) and pre-
filter (black broken curve) plotted alongside the estimated cone
fundamentals (light gray unbroken curve) and pre-filter (dark
gray unbroken curve). As expected, the real and the estimated
functions coincide perfectly.

Fig. 6. Method consistency check: The tabulated (CVRL
database) 10 degree cone fundamentals of Stockman and
Sharpe Sensor (black broken curves) and pre-filter (black bro-
ken curve) plotted with the estimated cone fundamentals in
light gray full curves and pre-filter dark gray full curve. Re-
sults based on the constrained iterative method.

B. Application of the method to 10 deg. Stiles and Burch Data
Secondly, we applied the method to CIE1964 10 degree Standard
Observer Color Matching Functions, which are predominantly
(thus not entirely) derived from the Stiles and Burch 10 degree
color matching functions. The result is shown in Figure 7, where
the Stockman and Sharpe 10 degree cone fundamentals (black
broken curves) and the corresponding pre-filter (black broken
curve) are plotted with the estimated cone fundamentals (light
gray full curves) and their corresponding estimated pre-filters
(dark gray full curve). The results again show a very close match
in the cone fundamental estimation, with a small error in the
pre-filter estimation.

C. Stiles and Burch Color Matching Functions
To demonstrate the necessity for the constrained version of the
method, in Figure 2 we have applied the unconstrained method
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Fig. 7. The tabulated 10 degree cone fundamentals of the
Stockman and Sharpe Sensor (black broken curves) and pre-
filter (black broken curve) plotted with the estimated cone
fundamentals in light gray full curves and the corresponding
pre-filter in dark gray full curve. Results based on the con-
strained iterative method applied to the CIE1964 10 degree
Standard Observer Color Matching Functions.

Fig. 8. Sensor estimation based on individual Stiles-Burch 10
deg. (1959) color matching functions. The constrained iterative
method. Estimated fundamentals alternatively calculated by
pre-filtered absorptances (light gray full curves), Estimated
pre-filters (dark gray full curves), Stockman and Sharpe cone
fundamentals (black broken curves) and pre-filter (black bro-
ken curves)

to the Stiles and Burch 10 degree color matching functions and
plotted the estimated cone functions. Slight negative lobes of the
S cone estimations are present along with some ringing (depar-
tures from monotonicity) especially in the long wavelength part
of the pre-filter estimations. To contain these phenomena we
implement the constrained approach. The results of applying
the constrained method to the 51 individual Stiles and Burch 10
degree color matching functions are shown in Figure 8.

In Figure 9 the results corresponding to the application of
the method to the Stiles and Burch 2 degree color matching
functions are also shown. The darker gray full curves are the
estimations of each pre-filter pertaining to each set of cone fun-
damental estimations shown in light gray full curves. The black
broken curves are the Stockman and Sharpe pre-filters and the
corresponding cone fundamentals for each set of color matching
functions. In both cases the cone fundamental estimations are
seen to be positive and the pre-filter estimations are monotoni-
cally non-decreasing.

Fig. 9. Sensor estimation based on individual Stiles-Burch 2
deg. (1955) color matching functions. The constrained iterative
method. Estimated fundamentals, (light gray full curves),
Estimated pre-filters (dark gray full curves), Stockman and
Sharpe cone fundamentals (black broken curves) and pre-filter
(black broken curves)

In Figure 10 we have plotted the estimations of the cone
fundamentals and the pre-filters for the repeated experiment of
R. N. Wilson with color matching functions shown in Figure 11.

Noting that, in the repeated experiments the absorptance
functions underlying the color matching functions must be the
same, it can be seen that the differences between the repeated
color matching functions are mainly absorbed in the pre-filter
estimations, thus leaving a rather stable cone fundamental es-
timation. This indicates that intra-individual differences may
affect the cone fundamental estimation relatively little. Ideally
the cone fundamental estimation would be unaffected by the
intra-individual differences in the color matching functions, lead-
ing to the same set of functions. However, in the absence of any
mechanism for removing noise from individual CMFs, these
differences are necessarily propagated to either or both of the
pre-filter estimation or the matrix coefficients. The experimental
observation that in our approach the noise is largely absorbed
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Fig. 10. Estimated cone fundamentals based on the con-
strained method, used on the repeated color matching func-
tion of R. N. Wilson (1959).

by the pre-filter is an interesting and non-intuitive property and
warrants further discussion.

D. Related Predictions
To get a qualitative insight into how error represented by the
difference between the assumed absorptance functions and the
unknown real absorptance function for a specific individual
may be propagating to the estimation of the matrix M and the
prefilter D we can insert error varables into Equation 18:

[D + εD][Wcm f ][M + εM] = [Wpdt + εpdt] + ε (35)

where εD is a N × N diagonal matrix containing error propa-
gated to the prefilter D, εM is a 3× 3 matrix containing the error
propagated to the conversion matrix M, εpdt is a N × 3 matrix
containing error originating from the incorrectly assumed ab-
sorptance functions Wpdt and ε is an N × 3 matrix allowing for
optimization error, due to noise in the color matching functions,
when Equation 19 is minimized. Setting εM u 0 in Equation 35
then:

[D + εD]Wcm f M = Wpdt + εpdt + ε (36)

using Equation 18 in Equation 36:

εDWcm f M = εpdt + ε (37)

and again in Equation 37 so that:

εDD−1Wpdt = εpdt + ε (38)

Assuming that ε is uncorrelated with εpdt and that ε << εpdt

Equation 38 says that a modified prefilter εDD−1 times the ab-
sorptance functions Wpdt should be equal to the absorptance er-
ror functions. On a per function basis, this is feasible in the short
wavelengths where the short wavelength absorptance function
t(λ) is active and the middle- and longwave absorptance func-
tions are close to zero. Beyond the short wavelengths where the
middle- and longwave absorptance functions are dominant and
the shortwave absorptance is waning towards zero, the modified

prefilter will still be able to make the equation hold in bands
of wavelengths where either of the corresponding absorptance
error functions are approximately zero or locally equal.

If εD u 0 then Equation 35 becomes:

DWcm f M + DWcm f εM = [Wpdt + εpdt] + ε (39)

again using Equation 18:

DWcm f εM = εpdt + ε (40)

and again in Equation 40 so that:

WpdtM
−1εM = εpdt + ε (41)

Equation 41 says that the absorptance functions should be lin-
early related to the absorptance error functions εpdt by a modi-
fied conversion matrix M−1εM. This can clearly not be the case
since that linear relation would imply the existence of more than
one solution to Equation 18 which is disproved by Equations 27
to 31.

Bearing in mind that there is only one unique solution to
Equation 18 then it is quite feasible that most of the error in the
absorptance functions is compensated in the estimated prefilter
function. This means, discounting the noise in the color match-
ing functions, that the conversion matrix is quite close to the
matrix that indeed would relate the individual color matching
functions to their real individual fundamentals.

Fig. 11. Plot of two color-matching-functions sets measured
for a single observer, R.N.Wilson. Results are derived from
two identical experiments, and differences correspond to noise
in the measurement process.

5. CONCLUSION

We have presented a novel method to estimate individual cone
fundamentals based on the corresponding color matching func-
tions. The method simultaneously estimates a pre-filter that
constitutes the combined macular and ocular pre-filtration. The
method is iterative and based on linear optimization and it relies
on the assumption that the photo-pigment spectral absorptances
pertaining to the individual color matching functions are known
a priori.

We have applied the method on two sets of individual Stiles
and Burch color matching functions, pertaining to the 2 and
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10 degree viewing fields. The results show that the proposed
method gives cone fundamentals that are remarkably similar to
the corresponding functions derived by Stockman and Sharpe
from the Stiles and Burch data, even though we use a more gen-
eral constraint, that does not take into account variation in peak
optical densities and peak wavelengths. Thus, we expect that
some variation between the true individual cone fundamentals
and the estimated is present in the results. Especially the over-
lap between the middle- and long- wavelength cones can cause
such variation. The method demonstrates robustness towards
intra-individual differences in color matching functions, which
would be expected from a method that indeed leads to the cor-
rect estimations. While we have no objective measure for the
quality of these estimates, the performance of the method on
the Stiles and Burch 2- and 10-degree color matching functions
suggests by visual inspection of the results and through the error
propagation analysis, that the estimations will be close to the
true fundamentals.

6. APPENDIX

A. Convergence optimisation
In our experiments we also employ a technique for enhancing
the speed of convergence. We do this by reducing the number
of linear least squares equations from N to one. Equation 19 is
reformulated with regard to D by projecting onto the orthogonal
complement [31] to the subspace of RN spanned by Wpdt. So
instead of finding a pre-filter D, that minimizes the distance
between DWcm f M and Wpdt by N optimizations, as expressed
by Equation 20, we minimize the projection of DWcm f M onto
the orthogonal complement of Wpdt in which case only one
optimization is necessary. In our Matlab implementation this
reduces the covergence time to about one 15th.

The N × N dimensional projection matrix P for the orthogo-
nal complement of a subspace of RN spanned by the 3 column
vectors of the N × 3 dimensional matrix Wpdt is given [32] by:

P = I−Wpdt(Wpdt
TWpdt)

−1Wpdt
T (42)

where I is an N × N dimensional identity matrix. Since Wlms =
Wcm f M (Equation 3) then, by applying P on both sides of Equa-
tion 18 and subsequently rearranging so D becomes an N × 1
vector d, Equation 20 can be replaced by:

min
d
‖P∗Wk

lms
∗
d− 0∗‖2 (43)

where P∗ is a 3N× 3N dimensional projection matrix, containing
zeros except three repetitions of matrix P along the diagonal,
Wlms

∗ is a 3N×N block diagonal matrix containing zeros except
in each of it’s three consecutive diagonals, being occupied by
each of the three columns from matrix Wlms, 0∗ is a 3N × 1
dimensional zero-vector and for vector d applies di = Dk+1

ii .
In order to avoid the obvious solution di = 0 for i = 1..N an
additional constraint on the pre-filter function is employed:

N

∑
i=1

di = 1 (44)

Equation 44 simply ensures that the pre-filter estimate is a func-
tion that integrates to a unit area. The linear scale of the pre-filter
function is countered by the scale of the coefficients in M and
will thus have no influence on the solution. In matrix terms
Equation 44 translates to:

Aeqd = 1 (45)

where Aeq is a 1× N dimensional vector containing ones. Equa-
tions 43, 24 and 45 together form a quadratic programming
problem to solve for d and thereby Dk+1.

7. ACKNOWLEDGEMENTS

The authors would like to thank Professor Ivar Farup, IMT,
NTNU in Gøvik, Norway for his valuable comments.

REFERENCES

1. Commission Internationale d’Eclairage, “Downloads,”
http://www.cie.co.at, Last Accessed July 2015.

2. G. Wyszecki, and W. S. Stiles, “Color Science,” Wiley, New York,(1982).
3. Mark D. Fairchild, Color Appearance Models, (3rd Ed. Wiley-IS&T, Chich-

ester, UK, 2013.)
4. H. J. A. Dartnall, J. K. Bowmaker and J. D. Mollon, “Human visual pig-

ments,microspectrophotometric results from the eyes of seven persons,”
Proceedings of the Royal Society of London 220, Vol. B, 115–130 (1983).

5. J. L. Scnapf, T. W. Kraft and D. A. Baylor, “Spectral sensitivity of human
cone photoreceptors,” Nature 325, 439–441 (1987).

6. A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle-
and long-wavelength-sensitive cones derived from measurements in
observers of known genotype,” Vision Research 40, Number 13, 1711–
1737 (2000).

7. J. Neitz, and G. H. Jacobs, “Polymorphism in normal human color vision
and its mechanism,” Vision Research 30, Number 4, 621–36 (1990)

8. S. L. Merbs and J. Nathans, “Absorption Spectra of Human Cone Pig-
ments,” Nature 356, 433–435 (1992).

9. J. Pokorny, VC Smith, G. Verriest and A. Pinckers, “Congenital and
Acquired Color Vision Defects,” New York: Grune and Stratton (1979).

10. M. M. Bongard and M. S. Smirnov, “Determination of the eye spectral
sensitivity curves from spectral mixture curves,” Dokl Akad Nauk SSSR
102, Number 6, 1111–1114 (1954).

11. C. F. Andersen, “Simplified cone fundamental estimation,” in New re-
sults in color characterization of humans and cameras, (Academic,
2010), 58–84.

12. C. F. Andersen and G. D. Finlayson, “Estimation of an individuals human
cone fundamentals from their color matching functions,” in Proceedings
Color in Graphics Imaging and Vision (CGIV) (2010).

13. D. A. Macleod and M. A. Webster, “Factors underlying individual dif-
ferences in the color matches of normal observers,” Journal of Optical
Society of America A 5, Number 10, (1988).

14. A. Knowles and H. J. A. Dartnall, “The photobiology of vision,” in The
Eye, Vol. 2B H. Davson, ed. (London/New York: Academic, 1997), p.77.
(1997).

15. J. J. Vos and P. L. Walraven, “On derivation of the foveal receptor
primaries,” Vision Research 11, Number 8, 799–818 (1971).

16. A. Stockman, L. T. Sharpe and C. C. Fach, “The spectral sensitivities
of the human short-wavelength cones,” Vision Research 39 2901–2927
(1999).

17. V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone
photo-pigments between 400 and 500 nm,” Vision Research 15, Number
2, 161–171 (1975).

18. N. I. Speranskaya and N. V. Lobanova, “Determination of the spectral
sensitivity curves of the optical receptors of anomalous trichromats,”
Biophysics 6, Number 5, 596–604 (1961).

19. N. I. Speranskaya and N. V. Lobanova, “Determination of the spec-
tral sensitivity curves of the optical receptors of normal trichromats,”
Biophysics 6, Number 4, 596–604 (1961).

20. A. D. Logvinenko, “On derivation of spectral sensitivities of the human
cones from trichromatic color matching functions,” Vision Research 38,
3207–3211 (1998).

21. J. D. Mollon, “Color Vision, Opsins and Options,”. Proceedings of the
National Academy of Sciences of the United States of America 96,
Number 9, 4743–4745 (1999).

22. T. D. Lamb, “Photoreceptor Spectral Sensitivities: Common Shape in
the Long-wavelength Region,” Vision Research 35, Number 35, 3083–
3091 (1995).



Research Article Journal of the Optical Society of America A 10

23. D. G. Stavenga, R. P. Smits and B. J. Hoenders, “Simple Exponential
Functions Describing the Absorbance Bands of Visual Pigment Spectra,”
Vision Research 33, Number 8, 1011–1007 (1993).

24. D. A. Macleod and Michael A. Webster, “Direct psychophysical es-
timates of the cone-pigment absorption spectra,” Journal of Optical
Society of America A 5, Number 10, (1988).

25. CIE, TC136, “Fundamental chromaticity diagram with physiological
axes,” CIE technical report, CIE 170-1 (2006).

26. J. M. Palmer, Handbook of Optics, Palmer, J. M. (1995). The measure-
ment of transmission, absorption, emission, and reflection,. In Handbook
of Optics II (ed. M. Bass, E. W. Van Strylan, D. R. Williams and W. L.
Wolfe), pp. 25.1-25.25. New York: McGraw-Hill Inc.

27. “Photopigments,” http://www.cvrl.org, Last accessed June 15, 2016
28. D. G. Stavenga, “On visual pigment templates and the spectral shape of

invertebrate rhodopsins and metarhodopsins,” in Journal of Comparative
physiology A, (Springer), 869–878 (2010).

29. V. I. Govardovskii, N. Fyhrquist, T. Reuter, D.G. Kuzmin and K. Donner,
“In search of the visual pigment template,” in Visual Neuroscience 17,
509–528 (2000).

30. Y. Asano, M. D. Fairchild, L. Blondé, “Development of a vision model for
individual colorimtric observers,” OSA fall vision meeting, Philadelphia,
PA, 2014.

31. G. Strang, Linear Algebra and its applications, (Harcourt Brace Jo-
vanovich College Publishers, 1986), p.138.

32. G. Strang, Linear Algebra and its applications, (Harcourt Brace Jo-
vanovich College Publishers, 1986), p.156.

33. A. Stockman and L. T. Sharpe, “Spectral sensitivities and color match-
ing,” in Color Vision from genes to perception, K. R. Gegenfurtner and
L. T. Sharpe, eds. (Cambridge University Press: Academic, 1999), p.65.
(1999).

34. W. S. Stiles and J. M. Burch, “Interim report to the Commission Inter-
nationale de l’Eclairage Zurich, on the National Physical Laboratory’s
investigation of color-matching (1955) with an appendix by W. S. Stiles
and J. M. Burch,”, Optica Acta 2 168–181 (1955).

35. W. S. Stiles and J. M. Burch, “NPL color-matching investigation: Final
report.,” Optica Acta 6 1–26 (1959).

36. P. W. Trezona, “Individual observer data for the 1955 Stiles-Burch 2
degree pilot investigation,” Journal of Optical Society of America A 4,
Number 4, 769–782 (1987).

37. A. D. Logvinenko, “On the colors dichromats see,” Color Res. Appl. 38,
Number 4, (2012).


	Introduction
	Background
	Method
	Physical parameters
	Discretizing the problem
	Unconstrained method
	Constrained method
	Uniqueness of solution

	Results
	Consistency check
	Application of the method to 10 deg. Stiles and Burch Data
	Stiles and Burch Color Matching Functions
	Related Predictions

	Conclusion
	Appendix
	Convergence optimisation

	Acknowledgements

