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spherical harmonics
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In this work, we derive the well-established expression for the quantum amplitude associated with the
resonance energy transfer (RET) process between a pair of molecules that are beyond wavefunction
overlap. The novelty of this work is that the field of the mediating photon is described in terms of a
spherical wave rather than a plane wave. The angular components of the field are constructed in terms
of vector spherical harmonics while Hankel functions are used to define the radial component. This
approach alleviates the problem of having to select physically correct solution from non-physical
solutions, which seems to be inherent in plane wave derivations. The spherical coordinate system
allows one to easily decompose the photon’s fields into longitudinal and transverse components
and offers a natural way to analyse near-, intermediate-, and far-zone RET within the context of
the relative orientation of the transition dipole moments for the two molecules. Published by AIP

Publishing. [http://dx.doi.org/10.1063/1.4960732]

. INTRODUCTION

Resonance energy transfer (RET) is the quantum
mechanical process that involves an electronic excitation being
exchanged between chromophores'™ and is a well known
process in photosynthesis.* The key feature of RET is that the
chromophores, which may be atoms, ions, molecules, or even
engineered devices such as quantum wells,>° are separated by
distances that exceed any significant wavefunction overlap.
Consequently, the process of RET is a specific case of the
more general umbrella term “electronic energy transfer”
(EET), which implicitly includes other forms of electronic
energy migration, such as Dexter energy transfer, occurring
through chemical bonds via a super-exchange mechanism,’-8
and inelastic collisional processes that can involve changes of
electronic states.’

Resonance energy transfer was discovered in 1923, by the
spectroscopic observation of an excitation being transferred
from mercury to thallium atoms in the gas phase.'” Shortly
after, early pioneers of the theory were able to describe the
RET process adequately over a limited range of distances, both
classically'' and semi-classically.'>'3 However, a complete
quantum mechanical description is necessary to describe the
process. This is because the transfer of electronic energy
between species occurs through the exchange of a photon, its
properties being virtual at short distances and becoming real
as the chromophore separation increases. Fundamentally, the
RET process involves two field-matter interactions; emission
of the photon at the exciton donor and absorption at the
exciton acceptor and vice versa (as described by the two
allowed Feynman diagrams).'* Consequently the minimum
level of theory required to describe the process is the second
order perturbation theory. The theory includes the effect of
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retardation, which is typically neglected in a semi-classical
description. The mediating photon is real if the chromophore
separation exceeds its reduced wavelength (i.e., R > A/2m,
where R is the distance of separation). If R is significantly less
than the reduced wavelength, the photon is said to be virtual,
emphasising the fact that it does not have well defined physical
characteristics, limits of which are fundamentally imposed by
the quantum uncertainty. The two limiting cases of RET
are therefore sometimes referred to as radiative and non-
radiative, respectively. In the case of the former (called long-
range or far-zone energy transfer), there is a characteristic
(Coulombic) R~2 dependence on the rate. On the other hand,
near-zone RET has an R™% dependence, originally identified
with the Forster theory.!> There is also a critical distance,
called the intermediate-zone, where the distance separating
the chromophores is of the order of the reduced wavelength
of the mediating photon. The intermediate-zone has an R™*
dependence on the rate of RET.> Note that the rate of RET
depends quadratically on the electronic coupling.

The most rigorous theory for describing light-matter
interactions is quantum electrodynamics (QED). Because
RET involves slowly moving electrons bound within valence
states of the molecules, the Coulomb gauge is typically
employed whenever the electromagnetic fields associated with
the photon are considered explicitly. This variant of QED (as
opposed to relativistic or Lorentz gauge QED) is sometimes
referred to as molecular QED.'%!> Central to all previous
studies, which consider RET from a QED perspective, is that
the description of fields associated with the mediating photon
is cast in terms of a mode expansion based on

I DN (0 W )
e’k =Zl: ] =1+l(k-r)— - ; + .-

~

(1.1)
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The focus of the current work is to derive quantum
amplitudes by considering the photon mode considered as a
spherical wave centred on the emitter,

etk = DLl @1+ 1) jy (kr) Pi (cos ).
l

(1.2)

This is done using vector spherical harmonics and Hankel
functions. Hankel functions are complex functions that are
formed by the linear combinations of Bessel functions. As
will be shown in this paper, describing the fields in this
way enables us to avoid difficult contour integrations thereby
alleviating the problem of having to choose the physically
correct solutions from the non-physical solutions that arise
in established plane wave approaches. The spherical wave
approach leads to interesting physical insights regarding the
nature of the photon, where it is inherently described as an
outgoing wave when it is emitted from the donor and incoming
as it approaches the exciton acceptor. The distinction emerges
very clearly in the spherical wave approach but is less obvious
in existing plane wave descriptions.

This work may have particular application in the
development of materials that can facilitate energy transfer
up to distances over several nanometers.'®!” The approach
has the potential to lead to new physical insights related to
the role of relative orientation of chromophores in the energy
transfer process, and may also be applicable to the field of
near-field quantum optics where emerging technologies such
as nanoantennas are currently of interest.'$->?

Il. BACKGROUND THEORY
A. Resonance energy transfer derived from QED

The fundamental theory behind the quantum mechanical
description of RET is the Power-Zienau-Woolley formalism
of molecular QED, which utilizes the Coulomb gauge,
V-A =0, where fields of the mediating photons can be
naturally deconstructed into longitudinal and transverse
components.>*2> The longitudinal components, with respect
to the displacement vector R, are associated with the
scalar potential and have a particular affinity for coupling
molecular transition moments in the near-zone. In regions
far from sources (i.e., away from the donor chromophore),
the wavevector K and R become co-linear and the scalar
potential becomes zero. In this case only the transverse parts
of the field couple transition dipole moments of individual
electronic species.?®?” This has important implications for the
spatial and temporal dynamics of excitons within molecular
aggregates.”>?

Although the theory of RET can be linked to very early
quantum mechanical studies (for example, see Ref. 30),
it was in the 1960s that theoretical ideas became firmly
established through the work of researchers such as Simpson,>!
McLone and Power,*> and Avery.* Since then there have
been numerous studies on the fundamental aspects of
RET by a number of authors including Power, Craig,
Thirunamachandran, Andrews and Salam, among others.3**2

A key result concerning the derivation described in this
paper is that of Daniels er al., published in 2003. They
calculated the quantum amplitude by solving a Green’s
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function using judicious substitutions within the integrals.*!
The quantum amplitude for RET between a donor and acceptor
molecule, in the gas phase is given by

Vi (k.R) = oy (k.R) + iti; (k. R) 2.1)
Tij (k,]_é)
= droR {(coskR + kRsinkR)[6;; — 3R:R;]
—k*R*cos kR [8;; — RiR;|}, (2.1a)
75 (k,ﬁ)
= 47-[30R3 {i (sm kR — kR cos kR) [6ij - 3R,RJ]
iszzsin kR [61J—R,R]]} (21b)

What is especially notable here is the fact that there is a
choice of sign for the imaginary term. They suggested that
the ambiguity of sign for this term signifies that Vi (k,l?)
describes both incoming and outgoing waves, accommodating
thereby both time-ordered diagrams, as a correct quantum
description should. However, the authors stress that it is
unimportant which sign to ascribe to a particular process
(photon absorption or emission), as only quantum amplitudes
are physically relevant, and hence both terms contribute
equally to the calculation.

B. Vector spherical harmonics and Hankel functions

In the subsequent derivation of the electronic coupling
via a spherical wave description of the mediating photons,
we make explicit use of both vector spherical harmonics
and Hankel functions. The scalar spherical harmonics (SSHs)
Yy (3,0) (M = —J ...+ J) are well-known functions utilised
in numerous applications in the physical sciences. The
arguments ¢ and ¢ represent latitude and longitude angles,
respectively. The notation Y, (9,¢) is common, but the
Dirac’s bra-ket formalism, |J, M) = Yy, (¢, ¢), is more conve-
nient for our present purposes and we shall use it throughout
this paper. SSHs form a complete orthonormal set and are
eigenfunctions of the total orbital angular momentum operator,
J and of its z-component. Each group of 2J + 1 functions
having the same value of J and the different values of M form
a basis for a (2J + 1)-dimensional irreducible representation
of the symmetry point group of all rotations, SOs.

In the present context, where the quantized fields of the
mediating photon are described by spherical waves, the set
of spherical harmonics formed by the three functions, |J, M)
with J =1 and M = 0, +1, are important. These are the unit
spherical vectors often denoted by €5, and written explicitly
as €] _1, €; g and €] +1. These are related to the unit Cartesian
vectors by the following transformations:

|l,x)=—%{|l,+l)—|l,—])}, (2.2a)
1, y) = %{u, +1)+ 1, =1)}, (2.2b)
11, z) =1, 0). (2.2¢)
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SSHs may be added according to the well-known rules for
the coupling of quantum-mechanical angular momenta, and
by coupling |1, n) with any other |J, M) we obtain functions
called vector spherical harmonics (VSHs), |J, [, M). Methods
for constructing these functions are described in many
texts.*>** For convenience, the most direct method is concisely
sketched here.

The VSH can be compactly written as

|J, I, My = Z Z (Ilmn|JM)-|I, m)|1, n), (2.3)
where ({1mn |J M) are Clebsch-Gordan coefficients or Wigner
3j symbols. In accordance with the laws of addition of angular
momenta in quantum mechanics, for / # 0, J can take only
three values [+ 1, [ and / — 1. Consequently, for any SSH
|J, M), three VSHs are obtained: |l + 1, I, M), |l, [, M) and
|l -1, I, M). An alternative and more common practice is to
denote these three functions by |J, J — 1, M), |J, J, M) and
|J, J + 1, M). When [ = 0 we have only |1, 0, M) and when
J =0just |0, 1, 0).
The |J, I, M) are also eigenfunctions J and fz,

I, 1, My =[J(J + D]"?n|J, 1, M), (2.4)
J |, 1, MYy =MHR|J, I, M). (2.5)
They also form a complete orthonormal set,
(L L M, UMy =65, 561100 . s (2.6)
with
1L, M| =|J, 1, MY = (=) ™MH 1001 —My. .7

When employing VSHs to describe electromagnetic radiation,

the functions |J, /, M) may be divided into two classes:**

1. |J, J, M) with parity (—1)’ describe the magnetic field
of electric multipole radiation and the electric field of
magnetic multipole radiation.

2. |J, J £ 1, M) with parity (—1)’*! describe the electric field
of electric multipole radiation and the magnetic field of
magnetic multipole radiation.

The VSHs, like the SSHs, provide a value of the function
at particular values of 3 and ¢, but in addition they also provide
a direction; they are thus ideally suited to the description of
vector fields. In the case of RET, the emitter of the photon
makes a natural origin of the coordinate. In the application to
electromagnetic radiation the unit vectors, |1, —1), |1, 0) and
|1, 1) carry the polarization information.

The VSHs depend upon only two (¥ and ¢) of the three
spatial dimensions. Thus, for a complete description of the
electromagnetic wave we must combine them with a radial
function. Bessel functions are conveniently used for radial
functions. Bessel functions of the first kind and of half-
integer order, j,, are called spherical Bessel functions and
are solutions to the Helmholtz equation solved in spherical
coordinates. They can be combined with Bessel functions of
the second kind (i.e., Neumann functions) and of half-integral
order, n,, to produce Bessel functions of third kind (Hankel
functions), hnl) and hi,z). Hankel functions are solutions of the
Maxwell’s equations outside the source of the wave. Since
they are solutions of Maxwell’s equations they give the fully
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retarded fields automatically. A penetrating account on the
application of VSHs and Bessel functions, to electromagnetic
radiation, has been given by Rose.*

Bessel functions, j,, describe standing waves but the
Hankel functions,

hg) = j, +in, and hﬁf) = jp—ing, (2.8)

describe running waves. hfll) is called a Hankel function
of the first kind, while hflz) is of the second kind. For
a time dependence of the form exp (—iwt), hﬁll) describes
an outgoing wave and hﬁ,z) an incoming wave. For a time
dependence of the form exp (+iwt) this is reversed. It is
therefore Hankel functions that are used, in combination with
VSHs to describe the electromagnetic fields of the mediating
photon in the RET process, in this work. The extension
of the VSH-Hankel function description of electromagnetic
radiation into the region of the source has been described
by Blatt and Weisskopf.*® It is interesting to note that Avery
employed spherical Hankel functions of the first kind in his
1966 paper.> They were not employed again, within the
context of RET studies, until Scholes and Andrews used them
within a multipolar framework.*’ It appears that they were
used, in both studies, primarily for mathematical convenience
and the authors did not allude to their physical significance.
The derivation reported here allows one to interpret the RET
process physically in terms of outgoing and incoming waves,
within the context of Hankel functions.

lll. DERIVATION OF THE QUANTUM AMPLITUDE

A. The specific case: The emitter dipole aligned
along the z-axis

We now re-derive Equation (2.1) starting from the point-
of-view of the photon being described by a spherical wave,
employing VSHs and Hankel functions. The analysis starts by
considering interacting point-dipoles, and then extending the
description to include retardation effects.

The well-known expression for the interaction of a
transition dipole moment with an electric field is

W=—jiE. (3.1)

The transition dipole moment, i, is an operator in both the
semi-classical and QED pictures. On the other hand, the elec-
tric field is a vector quantity within the semi-classical picture
and is a quantum mechanical operator within the QED frame-
work. In a classical sense, the expression can be thought of as
one of the dipoles being dressed by the time-independent field
produced by the other. The scalar product embodies all angular
factors that arise as a consequence of the relative orientations
of the dipole and the field. The dependence of the energy upon
these factors is not changed when we move from the classical
to the QED formulation. However, the QED description must
account for the fact that the interactions must be fully retarded.
That is, there is a finite speed of propagation for the mediating
photon, and therefore a time lag in the interaction.

In the case of an electric 2’/ -multipole, two values of /,
namely, / =J -1 and [ = J + 1, are combined to give the
overall electric field in terms of VSH,
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E = Afe™? {anlh(le] (kr) [®J, FRIPYICER YV R SR, M}é]

+ aJ+1h(1131 (kr) [91, J+1, O+ Dy, 1, u® + Ry, j41, Mié]} )

where the coefficients Af, ay_; and ay,; determine the field
amplitude and the exponent is the phase factor common to
all VSH coefficients. The coefficients, ®;, j.1, pm, Py, j21, M
and Ry, ji1, pm of the individual VSH basis functions, o, d
and R are determined by the angular momentum quantum
numbers, which themselves depend on the nature of the
electronic transitions involved in the RET process. Table I of
Ref. 48 lists all coefficients up to J = 3, as well as formulas
to calculate them for higher values of J.

One may envisage a transition dipole, /i, at the common
origin of a Cartesian and a polar co-ordinate system. Since it
is the relative orientation of two dipoles that is important we
can, without loss of generality, choose a particular orientation
for . It is chosen to be co-linear with the z-axis of the
Cartesian system, corresponding to © = 0 in the polar system.
This restriction will be removed later. But this special case
provides a good illustration of our method and clarifies the
subsequent generalisation to all orientations of fi. The second
dipole, i, at distance R from ji interacts with the electric
field, E, of [. The energy of interaction is given by the
negative scalar product —i - E. In order to form the scalar
product we need to derive the fully retarded components
of E at i in terms of the local basis functions e, &
and R.

For the chosen orientation of fi, the fully retarded field
may be expressed as follows: ¥4

’

HRrH

(3.2)

E = ERR + Eo®, (3.3)

where the longitudinal, Eg, and transverse, Eg, components
of the field of [ are

2ik3 , [ i 1 ]
ErR=E|= exp (ikR) |- + —— | cos I,
R I 4dreg P (kR)2 (kR)3
(3.4a)
k3 ) 1 i .
Eeg=FE, = kR) [-— — 3.

c} L Areq exp (ikR) [ R (kR)2 + (kR)3] sin

(3.4b)

The identities, E = Er and E, = Eg follow immediately
because the four vectors fi, R, E 1 and E) all lie in the same
plane. There is no ® component. Equations (3.4a)—(3.14b)
reflect the fact that only transverse field components contribute
to the far-zone (i.e., far from the source, kR > 1), whereas
both transverse and longitudinal components contribute close
to the source. We note that the only difference between the
classical and QED formulation of the field lies in the changed
dependence upon R, a result of retardation.

We now place a second transition dipole, ', at distance
R from i and orientated such that its components in the local
axis system are fg, fig, and jij. The mutual energy, W, of
the two dipoles splits naturally into longitudinal, W), and
transverse, W, components,

W =- [2(coskR + kRsinkR) + 2i (sin kR — kR cos kR)] cos ¥, (3.5a)
4reoR3?
W, = —% [(cos kR + kRsin kR — k*R*cos kR) + i (sin kR — kR cos kR — k*R*sin kR)]| sin 9. (3.5b)
TEN

In order to more easily compare these with the previous
results, we convert them to Cartesian co-ordinates and tensor
notation, and consider the fields associated with outgoing and
incoming photons, in turn. The outgoing wave represents
the field created by the transition dipole of the photon
donor.

For the creation of the photon at the donor, we need
the form of an outgoing wave, which can be written as
follows:

A

R = sin¥ cos X + sind sinp§j + cos V2 (3.6a)

and

A

® =cos¥cos pX +cossinpyy —sin?Z.  (3.6b)

Motivated by Equations (3.6), we can write the relations,

HRCOs Y = i, costsinid cos ¢ + u, cossind sin g

+ p1,c08>9, (3.7a)

pHesind = u, sin cos ¥ cos ¢ + u, sin cos ¥ sin ¢

— 1,sin’d, (3.7b)
to give
2ugcos? + pesind = 3u, cos @ sin ¥ cos ¢
+3u, cosdsintsing
+ pz (3cos™® —1). (3.8)

Transforming from polar to Cartesian co-ordinates,

. Xz . .
cos ¥ sin cos ¢ = R—i and cos#sin¥sing = %,
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where
2 2
z . Z
cos’® = — and sin®® = 1 — ==,
R? R?
we obtain
2
.o Xz Yz b4
Hesin = Hxpoq * Hy "y * Ha {ﬁ - 1}

= R R, + pyRyR, + . (R.R, - 1). (3.9)

Introducing the tensor notation of summing over repeated

suffixes, we may write,
uesin® = y; (RiR, - 6,;), (3.10)

which is the orientational factor in the far-zone, as seen in
Eq. (2.1).
Similarly the orientational factor associated with the near-

J. Chem. Phys. 145, 074107 (2016)

In order to help comparison with Eq. (2.1) we write W as real
and imaginary parts,

Re (W) = R3 [2u (cos kR + kR sin kR) cos

+ Ug (cos kR + kR sin kR — k*R* cos kR) sin 9]
(3.12a)

=-F [(cos kR + kR sin kR)(2u cos & + g sin )
R’

4reoR3

— K*R%pigy cos kR sin 9] . (3.12b)

The final form of the real part of the interaction energy is,
therefore,

and intermediate-zones can be found from T A
) . o Re (W) = — [(cos kR + kR sin kR)(6;; — 3R;R;)
2ugrcos? + pesint = 3uRyR; + 3, R R, dreoR
+p; (3R,R, - 1) — k*R* cos kR (6;, — RiR,)]. (3.12¢)
=pu; (31@,-1@ - 8iz)- (3.11) Similarly for the imaginary part,
Im (W) = —4“—R3 [244 (sin kR — kR cos kR) cos  + pfy (sin kR — kR cos kR — k*R?sin kR) sin 0] (3.13a)
M : ’ o ’ . :
= e [(sin kR — kR cos kR)2 i cos  + g sin ) — upk* R sin kR sin 9] , (3.13b)
to give the final form,
MU . A . A 4
m (W) = -— [(sin kR — kR cos kRYS;, — 3R:R;) — k*R*sin kR (6, — RiR,)]. (3.13¢)
The quantum amplitudes for the RET process are, therefore,
Re(V)= —— [(cos kR + kRsin kR)(6;; — 3R;R;) —k*R*cos kR (6;; — RiR;)], (3.14a)
Im (V) = ;[(‘ kR — kR cos kR)(6;; — 3R;R;) —k*R*sin kR (6;; — R;R;)] . (3.14b)
m(V) = ;—— [(sin cos T ¢ sin .

These are analogous with the real and imaginary expressions
of Daniels e al., reproduced in Section II, Eq. (2.1). Of note
is that the arbitrary choice of sign, which can be seen in
Eq. (2.1), does not appear in Eq. (3.14a)—(3.14b). In this
derivation, the sign takes a definite value for 7.

In making this comparison, it must be remembered that
the dipole of the energy donor, y, is placed along the z-axis,
so that its only non-zero component is (.. This explains the
absence of many of the terms in R, and Iéy which might
otherwise have been expected. The relationships between the
Cartesian and polar unit vectors for the calculation of E,
above, were those associated for outgoing waves, ©® x ® = R,
and time dependence factor of exp( lwt) The relationships
appropriate for incoming waves ® x & = —R and exp (—iwt)
give the upper sign seen in Eq. (2.1b).

In the case of outgoing waves, the R dependence can
be expressed in terms of Hankel functions of the first kind,

ie., hgl)(kR) = j; (kR) + in; (kR) while those for incoming
waves in terms of Hankel functions of the second kind,
ie., h;z)(kR) = ji(kR) —in; (kR). The ambiguous sign of
the imaginary part of the coupling tensor in Eq. (2.1) was
interpreted from the point of view that both incoming and
outgoing waves (i.e., photon absorption and emission) need
to be included to calculate the quantum amplitude of the
process. In our analysis the incoming and outgoing waves
emerge naturally and can be linked directly to one or other of
the signs in the imaginary part of Eq. (2.1), up to the phase
factor exp (xiwt).

B. The general case

The above results are completely general, insofar as
quantum amplitudes for any relative orientation of the
transition dipole moments can be calculated. We now extend
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TABLE I. Components of Yiom.
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M Om Diops Riom

+1 —(1/4+/7)exp(+ig)cosd —(i/4Vr)exp(+ig) +(1/2+/7)exp(+ig)sin
0 - (1/2V27)sin®} 0 - (1/v27)cost?

-1 +(1/4+/7)exp(~ig)cosd —(i /4Vr)exp(—ip) —(1/2+/7)exp(—ig)sin®

TABLE II. Classical field of the VSH, YIQM, M=x,y,z.

Onm DOy Riom
X —pcostcosy /4negR> +using /4negR3 +usindcosp /2meoR>
Y —pcosdsing /4neoR> —pcosg /4megR? +usindsing /27£0R>
Z +,usim9/471'80R3 0 +,ucosz9/27z'.90R3

the calculation for the case of the donor molecule taking
on any arbitrary orientation. This further generalization is
useful for practical application of the theory, for example,
in the cases of energy transfer within a group of randomly
oriented molecules. If pair-wise electronic couplings are to
be calculated, the equation of Section III A would require
reorientation of one of the pair for each interaction. The
following development alleviates this problem.

Defining the coupling to an arbitrary orientation is
achieved by transforming to a Cartesian coordinate system.
In the above derivation, we recall that the transition dipole
moment, f, is orientated along the z-axis. Consequently only
the z-component is present in the expressions (3.5).

From earlier work,*® the components of the VSH, ﬁzM,
M = +1, 0,—1, can be seen in Table 1.

Using wavefunction basis transformations, Eq. (2.2) and
comparison with earlier results for Ex and Eg with the
dipole aligned along the z-axis, classical electric fields can be
obtained by multiplying the components by u/V2reoR>. The
results can be found in Table II.

W) = —urER = — (/2meoR* )+, sin ¥ cos @ + 1, sin @ sin @ + p1, cos 9}

and

W, =—ugke — ugpEo =

These are the classical electric fields at a point having the
spherical polar coordinates ¥, ¢ and R. The retarded fields
will differ only in the function of R. Thus, a general dipole,
i, having components (i, f,, and p,, will contribute to the
field as follows:

Eg = (47r(90R3)_1
X {—,uxcosﬂcosgo — pycostsing + p, sinﬂ} ,

(3.15a)

Ep = (47T80R3)_1 {+pysing — p, cos ¢}, (3.15b)
Eg = (27T80R3)71 {+ . sincos ¢

+ pysindsin g + p, cos ¥} . (3.15¢)

As before, we now place a second dipole, ,L_[’, at distance R
from /i and orientated such that its components in the local
axis system ©, ® and R are fig, fij, and ji%. The mutual
interaction energy, W, of the two dipoles splits naturally into
longitudinal, W and transverse, W, parts,

(3.16a)

— (/47 e0R* )~ i cos © cos @ — p1,, cos ¥ sin ¢ + p, sind} — (g /4meoR®) { pix sin p — p, cos o} .

(3.16b)
Inserting the retarded dependence upon R we have
Hik® : o . i 1
W =- 2o, {+pysin? cos ¢ + p, sind sin @ + u, cos I} exp (ikR) [— KR + W] (3.17a)
and
W, =- K {1e [—Hxcos P cos @ — p, cos I sin g + p, sind| + pg [ px sing — p,, cos ¢|} exp (ikR) [—L L L] .
4ren kR (kR?  (kR)’

(3.17b)
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To express these results in separate real and imaginary parts
we first define the symbols,

My = py[+pysing cos ¢ + u,, sin® sin ¢ + p, cos ¥,

(3.182)
M{ = pg | —tx cos ¥ cos ¢ — p, cos I sing + p, sin ],
(3.18b)
M}, = ph [+pxsing — py cos @] . (3.18¢)
Now,
w kBMex(kR)[ : ! ] (3.19)
=—-— i — .
T2 P «R? " (kR
so that
K in kR kR
Re (WH) = - 4 [Sln ) + cos 3 :| (3193)
2reg (kR) (kR)
and
k*  [-coskR sinkR
Im(WH)z—2 M [ o+ 3]. (3.19b)
TEQ (kR) (kR)
Similarly,
k3
W, = ~Ineg {M{+ M} (cos kR +isinkR)
1 i 1
X|l-—=-—+— (3.20)
[ kR (kR) (kR)3]
so that
k3
Re (WL) = —4—80 {M® + Mq)}
kR sinkR kR
N [_cos , sin i cos i ] (3.202)
kR (kR)>  (kR)
and
Im(W,) = - o+ Mp}
inkR kR sinkR
N [_sm _ cos R, sin 3] (3.200)
kR (kR (kR)
Summing parallel and transverse parts we have
sinkR coskR
Re (W) = — o [ —3]
(kR>  (kR)’
, coskR
4ﬂ80 " vy M) [ ] (.21a)
and
k3 coskR sinkR
Im (W) = ——— {2M}, + M}, + M}, [—— + —]
47T80{ R e} o} (kR?  (kR)’
k3 sin kR
— MG+ M, . 21b
" 4reg { o} kR ] (3:210)
Alternatively, we might write
in kR R
Re(W)z— {Ml,e}[smkz +cosk3]
(kR)”  (kR)
{M £ M) [cos kR sinkR coskR
¢ (kR?  (kRY
(3.22a)
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and
coskR sin kR
Im (W) =
m (W) 27T8{ R}|: (kR) (kR)3}
}[smkR coskR_sinkR]
" e ? (kR (kR ]
(3.22b)

These expressions reduce to Egs. (3.12c) and (3.13c)
when p = pu, =0and u, =

IV. DISCUSSION

In this work, we present a new formulation of the
resonance energy transfer process whereby instead of treating
the mediating (virtual) photon as a plane wave with vectors
being specified by Cartesian components, a spherical wave
approach is employed. This alternative representation for the
mediating photon offers new physical insight into the RET
process that complements the plane wave formulation. Further,
it offers a number of advantages over the plane wave approach
for a number of specific applications. In particular where
directionality (i.e., orientational factors) is centrally important
to the RET process, a description of the process in terms of
the polar spherical coordinate system has clear advantages.

The spherical wave approach describes the photon in
terms of latitude and longitude angles via vector spherical
harmonics. The radial function is defined in terms of Hankel
functions, where the Hankel function of the first kind describes
the outgoing wave when the time dependence has the form
exp (—iwt), and consequently Hankel functions of type two
describes the incoming wave. Within the context of energy
transfer, these processes correspond to the emission and
absorption processes. The polarization of the photon is linked
to the VSHs with M = =1 for transverse waves and M =0
for longitudinal waves.

It is well known that within the framework of QED all
intermediate states connecting the initial and final states must
be included, when calculating the quantum amplitude for a
particular process. In the case of RET, there are two Feynman
diagrams associated with two different resonance interactions.
The most intuitive one is the transfer of the mediating photon
from the initially excited donor to the ground state acceptor.
The less intuitive one involves a photon being transferred in
the reverse direction. It is interesting to note, that within the
VSH-Hankel function formulation of the RET process, that
both of these processes can be understood in terms of the time
dependent phase term exp (+iwt), where h?l) (kR) represents
an outgoing wave in the case of a negative exponent and an
incoming wave in the case of a positive exponent.

While the plane wave approach is natural for considering
a donor-acceptor pair separated in space along a well defined
vector of separation (i.e., the R vector), the spherical wave
approach is particularly well suited to situations where there
are numerous EET acceptors that are distributed isotropically.
For example, EET occurring in condensed phase solutions or
quantum plasmonics,™ a relatively new, technology based,
field that seeks to understand and manipulate quantum
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properties of light and its interaction with matter at the
nanoscale.

One key advantage of the spherical wave analysis is
that the interaction separates naturally into transverse and
longitudinal field components. This allows a natural way to
analyse near- and far-zone RET in terms of orientational
effects. Continuing work involves the development of this
theory in terms of computational tools that will be beneficial
in analysing energy transfer in condensed phase, isotropic and
anisotropic, environments.
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