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2 
 

 

 

23 ABSTRACT 

 

24 
 
 

25 
 
 

26 Growth of farmed, wild and F1 hybrid Atlantic salmon parr, Salmo salar, was investigated 
 

27 under three contrasting feeding regimes in order to understand how varying levels of food 
 

28 availability affects relative growth. Treatments consisted of standard hatchery feeding (ad 
 

29 libitum), access to feed for 4h every day, and access to feed for 24h on three alternate days 
 

30 weekly. Mortality was low in all treatments, and food availability had no effect on survival of 
 

31 all groups. The offspring of farmed S. salar significantly outgrew the wild S. salar, while 
 

32 hybrids displayed intermediate growth. Furthermore, the relative growth differences between 
 

33 the farmed and wild S. salar did not change across feeding treatments, indicating a similar 
 

34 plasticity in response to feed availability. Although undertaken in a hatchery setting, these 
 

35 results suggest that food availability may not be the sole driver behind the observed reduced 
 

36 growth differences found between farmed and wild fishes under natural conditions. 
 

 

37 Key words: Escapees, Farmed, Food availability, Genetic interaction, Hybridisation, 
 

38 Reaction norms 
 

 

39 INTRODUCTION 

 

40 
 
 

41 
 
 

42 Aquaculture is undergoing rapid expansion on a global scale. However, there is increasing 
 

43 evidence of a diverse array of negative consequences on both the natural environment and 
 

44 wild fish stocks (Naylor et al., 2000; McGinnity et al., 2003; Heuch et al., 2005). To ensure 
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45 the sustainability of aquaculture, especially at a time when many natural populations continue 
 

46 to decline, greater understanding of the threats to wild populations and potential mitigation 
 

47 strategies is required. Specifically for Atlantic salmon Salmo salar (Linnaeus 1758) 
 

48 aquaculture, one of the world´s most socio-economically important farmed fishes, several 
 

49 challenges to sustainability have been identified, including, parasitic sea lice Lepeophtheirus 
 

50 salmonis (Krøyer 1837) and farm escapees (Taranger et al., 2014). 

 

51 
 
 

52 
 
 

53 Each year, numerous farmed S. salar escape into the wild. While most escapees fail to recruit 
 

54 (Skilbrei et al., 2014), some enter rivers and attempt to spawn with wild S. salar (Lura and 
 

55 Saegrov, 1991; Webb et al., 1993; Saegrov et al., 1997). Following successful spawning, 
 

56 genetic changes in native salmonid populations have been demonstrated in Ireland (Crozier, 
 

57 1993; Clifford et al., 1997), Canada (Bourret et al., 2011)  and Norway (Skaala et al., 2006; 
 

58 Glover et al., 2012; 2013). Wild salmonid populations may be locally adapted to their native 
 

59 rivers (Taylor, 1991; Garcia de Leaniz et al., 2007; Fraser et al., 2011), and experimental 
 

60 studies have demonstrated that offspring of farmed S. salar display significantly reduced 
 

61 survival in the wild compared to wild S. salar offspring (McGinnity et al., 1997; Fleming et 
 

62 al., 2000; McGinnity et al., 2003; Skaala et al., 2012). Such findings indicate that 
 

63 interbreeding of farmed escapees with wild fishes is likely to inflict a negative fitness effect 
 

64 upon the native population. 

 

65 
 
 

66 
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67 In addition to domestication selection (Glover et al., 2004), aquaculture species typically 
 

68 undergo directional selection for a variety of commercially important traits, for example 
 

69 increased growth and late maturation (Gjedrem, 2000; 2010; Thodesen and Gjedrem, 2006). 
 

70 The hatchery environment is typically characterised by high densities, a lack of predation, and 
 

71 continuous feed availability. Farmed Salmo salar have exhibited changes in behavioural traits 
 

72 such as increased aggression, higher stress resistance and decreased predator awareness that 
 

73 are attributed to inadvertent selection resulting from the artificial hatchery environment 
 

74 (Einum and Fleming, 1997; Fleming and Einum, 1997; Houde et al., 2010a; b; Solberg et al., 
 

75 2013a; Debes and Hutchings, 2014). Thus, direct and indirect selection has resulted in 
 

76 domesticated fishes that are adapted to their captive environment and that typically display 
 

77 traits which may be maladaptive in the wild relative to their wild counterparts. 

 

78 
 
 

79 Since S. salar farming began in the late 1960s, domestication selection has been primarily 
 

80 directed at growth, with gains of up to 15% per generation seen in farmed S. salar (Gjedrem 
 

81 et al., 1991; Thodesen and Gjedrem, 2006). Increased growth has been linked to an increased 
 

82 appetite and food conversion efficiency in farmed S. salar (Thodesen et al., 1999; Gjedrem, 
 

83 2000). Growth is mediated by the growth hormone (GH) in most vertebrates, including fish 
 

84 (Björnsson, 1997). Studies have documented higher levels of GH (Fleming et al., 2002) and 
 

85 IGF-I (insulin-like growth factor I) (Solberg et al., 2012; although no changes were detected 
 

86 in Bicskei et al., 2014) in farmed S. salar compared to wild conspecifics, suggesting that 
 

87 selection for growth in farmed fishes stimulates shifts in endocrine control. Growth hormone 
 

88 influences appetite, feed conversion efficiency, foraging behaviour (through increased 
 

89 movement and risk taking), and may influence aggression (Neregård et al., 2008a; b). Farmed 
 

90 S. salar exhibit differences relative to wild S. salar in all of the above behavioural traits 
 

91 (Fleming and Einum, 1997; Thodesen et al., 1999; Houde et al., 2010a), supporting the 
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92 endocrine findings of Fleming et al. (2002)  and Solberg et al. (2012). Increased GH levels 
 

93 are also linked to a higher metabolism (Björnsson, 1997). It has been suggested that higher 
 

94 levels of growth may incur a metabolic cost when resources are low or predation levels are 
 

95 high, such as in the wild (Sundt-Hansen et al., 2009). For example Sundt-Hansen et al. (2012) 
 

96 found that while GH-treated S. salar grew optimally under standard hatchery conditions (ad 
 

97 libitum feeding) their growth was negatively affected by the GH treatment under natural 
 

98 stream conditions. 

 

99 
 
 

100 
 
 

101 When studied under hatchery conditions, growth differences of up to 2-3 fold exist between 
 

102 offspring of farmed and wild S. salar (Fleming and Einum, 1997; Glover et al., 2009; Solberg 
 

103 et al., 2013a; b). In contrast, studies in the wild have shown that growth differences between 
 

104 farmed and wild S. salar are lower than in hatchery-reared S. salar (Fleming et al., 2000; 
 

105 Skaala et al., 2012). Thus, the question arises: what causes such differences in the relative 
 

106 growth rates of wild and farmed S. salar? Several potential explanations exist, including 
 

107 behavioural changes associated with higher growth in farmed S. salar, such as less efficient 
 

108 foraging behaviour, increased aggression and higher risk behaviour. Such behaviours will 
 

109 incur a higher metabolic cost, thus, while faster growth is often linked to higher fitness, such 
 

110 behavioural-mediated trade-offs may limit growth and survival of individuals with higher 
 

111 growth rates in the wild through reduced starvation tolerance and increased predation risk 
 

112 (Martin-Smith et al., 2004; Biro et al., 2006). An especially pertinent factor influencing 
 

113 growth differences between farmed and wild fishes is variation in resource availability, 
 

114 specifically levels of food availability between the hatchery and the wild. Under standard 
 

115 hatchery conditions feed is readily available, and thus not limiting growth, while the 
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116 frequency and nature of food in the wild is often more heterogeneous in time and space 
 

117 (Jonsson and Jonsson, 2011).  It is possible that generations of direct and inadvertent 
 

118 domestication selection in farmed fishes will have resulted in a decreased ability to cope with 
 

119 the typically variable feed availability in the wild environment. Elucidating the factors 
 

120 influencing the ability of escaped farmed fishes in the wild to forage effectively crucially 
 

121 represents a key component of risk assessment. 

 

122  
 
 

123  
 
 

124 In order to elucidate the potential mechanisms underlying the observed larger growth rate of 
 

125 farmed vs. wild fishes in the hatchery, contrary to trends detected in the wild, here the 
 

126 influence of varying levels of food availability on relative growth performance was examined. 
 

127 Growth of farmed, wild and F1 hybrid S. salar under three feeding regimes differing in 
 

128 availability and frequency of feed were examined under hatchery conditions. A gradient of 
 

129 feed availability were selected, ranging from the farmed environment (ad libitum) towards the 
 

130 wild environment (patchy and restricted). 

 

131  
 
 

132  
 
 

133 MATERIALS & METHODS 

 

134  
 
 

135  
 
 

136 FAMILY PRODUCTION 
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137 The farmed, hybrid and wild S. salar families used in this study were produced in November 
 

138 2013 (week 46) at Matre Research station, Institute of Marine Research (IMR), Norway. 
 

139 Salmo salar originating from the commercial farmed Mowi strain, and wild S. salar caught in 
 

140 the River Etne (59°40’N, 5°56’E), were used to produce seven pure farmed, seven pure wild, 
 

141 and seven F1 hybrid families (SI Table I). Mowi represents one of the oldest Norwegian 
 

142 domestic S. salar strains (Gjedrem et al., 1991) and has been selected for, among other traits, 
 

143 increased growth rate, and is known to display significantly higher growth rates under 
 

144 standard hatchery conditions in comparison with the offspring of wild S. salar (Glover et al., 
 

145 2009; Solberg et al., 2013a; b). However, in the wild, this farmed strain only displays slightly 
 

146 higher growth rates than the offspring of wild S. salar (Skaala et al., 2012).  The three strains 
 

147 are from here on referred to as farmed, wild and hybrid groups. 

 

148  
 
 

149  
 
 

150 The S. salar stock in the River Etne is the largest in Hordaland, Norway. Wild adult 
 

151 broodstock were collected in this river in the autumn of 2013 by angling, and transferred to 
 

152 the local hatchery and held until stripping of gametes. Fish scales were read on individuals to 
 

153 validate that they were indeed born in the wild and were not farmed escapees (Lund and 
 

154 Hansen, 1991). The F1 hybrid S. salar were produced by crossing farmed females and wild 
 

155 males (Mowi ♀ x Etne ♂). Five of the seven hybrid families were maternal and paternal half- 
 

156 siblings with the farmed and wild families, respectively. One hybrid family was paternal half- 
 

157 siblings to one wild family and one hybrid family was maternal half-siblings to one farmed 
 

158 family. 

 

159  
 
 

160  



8 
 

 
 

161 Eyed eggs from families were sorted into hatchery trays representing the single-strain 
 

162 replicate treatments in week 5 of 2014. Each replicate treatment consisted of 20 eggs per 
 

163 family of each group, yielding 140 eggs in each of 18 tanks. Each replicate was start-fed and 
 

164 thereafter reared in 1.5 m3  tanks at ambient water temperature (varying from 12.5 to 13°C 
 

165 during the experimental period). The treatments began when start feeding commenced in 
 

166 week 18, with fish fed on Skretting Nutra pellets (www.Skretting.com), which were size 
 

167 adjusted according to manufacturer’s tables. The S. salar were kept on a 24 h photoperiod 
 

168 from transfer to tanks until experiment termination as per standard hatchery conditions, also 
 

169 known to reduce the development of precocious males (Good et al., 2015). 

 

170  
 
 

171  
 
 

172 EXPERIMENTAL DESIGN 
 

 

173 Salmo salar were reared in single-strain treatment tanks (two replicates/ treatment) with three 
 

174 contrasting feeding regimes (Table I). The first treatment was regarded as the standard 
 

175 hatchery control, and involved feeding S. salar continually with automatic feeders 24 h a day, 
 

176 every day, with an excess ration. The second treatment consisted of providing S. salar with an 
 

177 excess ration for 4 h every day (thus 20 h without any feeding each day), referred to as the 
 

178 daily restricted treatment. The third treatment involved feeding an excess ration for 24 h on 
 

179 three alternative days in a week (Monday, Wednesday, and Friday), referred to as the 
 

180 triweekly treatment. The selected gradient of feed availability, ranging from the farmed 
 

181 environment (ad libitum) towards the wild environment [patchy and restricted (Jonsson and 
 

182 Jonsson, 2011)] was designed in order to elucidate how growth differences between strains 
 

183 change with variable levels of food availability. Thus, treatments were chosen to represent a 
 

184 gradient in feeding opportunity from standard excess hatchery ration (treatment 1) to a more 



9 
 

 

 

185 limited feed supply (treatment 3). Treatments are referred to as the control, daily restricted 
 

186 and triweekly treatments respectively. 
 

 

187 The experiment was continued for 20 weeks, and terminated in week 37, 2014 i.e. S. salar 
 

188 were reared from egg to the parr stage. Upon termination, all S. salar in each tank replicate 
 

189 were euthanised with an overdose of Finquel® Vet anaesthetic (http://www.aqui-s.com, 
 

190 Årnes, Norway), and recordings of individual wet mass and fork length (LF) were measured. 
 

191 A total of 2329 individuals were sampled. 

 

192  
 
 

193  
 
 

194 STATISTICAL ANALYSIS 
 

 

195 Statistical analysis was carried out using R version 3.2.2, and all critical P-values were set to 
 

196 0.05 unless otherwise stated (R Core Team, 2014). 

 

197  
 
 

198  
 
 

199 Mortality from week 5 (sorting into hatchery trays) to week 18 (commencement of 
 

200 experimental treatments) was low overall (<0.02%). Mortality for each tank was recorded 
 

201 during the experimental period. To investigate whether different feeding regimes or group 
 

202 origin had any effect on survival, a generalized linear mixed effect model (GLMM) was fitted 
 

203 using the glmer function in the lme4 package (Bates et al., 2014). The full model included the 
 

204 fixed covariates of group (G = representing the three groups; farmed, hybrid, and wild), 
 

205 treatment (T = representing the three feed treatments; control, daily restricted, and triweekly), 

http://www.aqui-s.com/
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206 and their interaction term (TG). Tank was included in the model as a random intercept 
 

207 covariate (bt): 
 

 

208 logit(Y) = β0  + β1T + β2G + β3TG + bt + ε (1) 
 

 

209 where β0 is the model intercept and ε is a random error term. The response variable, survival, 
 

210 was binary, and thus a binomial distribution was used, with the default logit link function. The 
 

211 random effect structure was investigated by plotting the 95% prediction intervals of the 
 

212 random effect using the dotplot function of the lattice package. If any of the tanks did not 
 

213 overlap zero, the effect was retained in the model. The mixed function from the afex package 
 

214 was used to investigate the significance of the fixed covariates (Singmann and Bolker, 2014). 
 

215 The function calculates type 3-like P-values for each fixed covariate based on parametric 
 

216 bootstrapping (Singmann and Bolker, 2014). 

 

217  
 
 

218  
 
 

219 A linear mixed model (LME) was used to investigate the effect of group origin and feeding 
 

220 regime treatment on mass at termination. The response variable was logged mass at 
 

221 termination. The full model covariates were identical to the mortality model described above: 
 

 

222 Y = β0  + β1T + β2G + β3TG + bt + ε where ε ~ N (0, σ2) (2) 
 

 

223 where β0 is the model intercept and ε is the normally distributed error term. The LME model 
 

224 was fitted using lmer from the lme4 package in R (Bates et al., 2014). The random effects 
 

225 structure was investigated as described above; similarly the P–values for the fixed effects 
 

226 were calculated as above while using the Kenward-Roger approximation for degrees of 
 

227 freedom. 
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228  
 
 

229  
 
 

230 Post-hoc multiple comparisons were carried out using the function pairs in the lsmeans 
 

231 package with a Tukey adjustment for multiple comparisons, which calculates the differences 
 

232 of least squares means for the factor covariates of the fixed part of the final model (Lenth, 
 

233 2015). The test computes all pair-wise comparisons of the interaction terms (Group x 
 

234 Treatment), and reports P-values and 95% confidence intervals for all comparisons (Lenth, 
 

235 2015). 

 

236 
 
 

237 
 
 

238 ETHICAL STATEMENT 

 

239 
 
 

240 
 
 

241 The experimental protocol (permit number 6447) was approved 23 March 2014, by the 
 

242 Norwegian Animal Research Authority (NARA). All welfare and use of experimental animals 
 

243 was performed in strict accordance with the Norwegian Animal Welfare Act. In addition all 
 

244 personnel involved in this experiment had undergone training approved by the Norwegian 
 

245 Food Safety Authority, which is mandatory for all personnel running experiments involving 
 

246 animals included in the Animal Welfare Act. 

 

247  
 
 

248  
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249 RESULTS 

 

250  
 
 

251  
 
 

252 SAMPLING & DATA 
 

 

253 The experiment was terminated in week 37 of 2014, when 2329 S. salar were sampled from 
 

254 the 18 tanks. Five individuals were identified as outliers due to extreme condition factors 
 

255 caused by recording errors and removed from the dataset prior to statistical analysis, thus the 
 

256 final dataset consisted of 2324 S. salar. 

 

257  
 
 

258  
 
 

259 MORTALITY 
 

260 Overall, mortality within each treatment was low, ranging from 3.2 to 10.4 % (Table I), 
 

261 typically within the range observed from start-feeding to first autumn stage. None of the fixed 
 

262 effects were found to be significant (Table II), thus mortality did not differ between 
 

263 treatments or between strains. The random effect of tank replicate was found to be significant 
 

264 and thus controlled for by being retained in the final model. 

 

265  
 
 

266  
 
 

267 GROWTH 
 

268 All Salmo salar (i.e., farmed, hybrid and wild) grew better in the control treatment than in the 
 

269 two more restricted  treatments, and growth within all groups was observed to be lowest in the 
 

270 daily restricted treatment (Table III; Fig. 1). Farmed S. salar were larger than both hybrid and 
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271 wild S. salar at each treatment, and the hybrids displayed intermediate growth (Fig. 1). There 
 

272 was a marginally significant treatment-by-group interaction effect detected (P=0.05); however 
 

273 the relative growth differences between the groups across treatments were very similar (SI 
 

274 Table II, Fig. 2). The relative growth differences between the wild and farmed S. salar were 
 

275 almost identical across treatments (1:1.5-1.6), as were the relative growth differences between 
 

276 hybrid and farmed S. salar (1:1.2-1.3) (SI Table II, Fig. 2). Relative growth differences 
 

277 between the wild and hybrid S. salar increase incrementally from the daily restricted 
 

278 treatment (1:1.2) through the control treatment (1:1.3) to the triweekly treatment (1:1.4) (Fig 
 

279 2), which is probably driving the marginally significant interaction of group and treatment in 
 

280 the LME model (P=0.05). Possible variation between tank replicates was taken into account 
 

281 in the initial model by including replicate as a random effect which was retained in the final 
 

282 model despite the model output suggesting it be dropped due to lack of effect. 

 

283  
 
 

284  
 
 

285 DISCUSSION 

 

286  
 
 

287  
 
 

288 The present study investigated the effect of feed variability on growth and survival of farmed, 
 

289 wild and F1 hybrid S. salar reared in single strain tanks. Understanding how farmed escapees 
 

290 interact with wild conspecifics is an important part of developing management and mitigation 
 

291 efforts for both conservationists and the aquaculture industry. In the hatchery, farmed S. salar 
 

292 typically outgrow wild S. salar markedly (Fleming and Einum, 1997; Glover et al., 2009; 
 

293 Solberg et al., 2013a; b), while in the wild, corresponding growth differences are much lower 
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294 (Fleming et al., 2002; Skaala et al., 2012). A striking difference between the farm and wild 
 

295 environments is the levels of food availability; constant versus varying in time and space 
 

296 (Jonsson and Jonsson, 2011). It is possible that plasticity in response to variable feed supply 
 

297 differs between farmed and wild fishes, which may potentially contribute to the contrast in 
 

298 growth differences observed between farmed and wild fishes in each environment. Here, 
 

299 although a marginally significant interaction was found between group and treatment, similar 
 

300 growth differences were observed between the farmed and wild S. salar across the feed 
 

301 availability gradient ranging from the farmed environment (ad libitum) to conditions more 
 

302 resembling the wild environment (patchy and restricted).  Thus S. salar of both origins 
 

303 responded in a comparable manner relative to the varying levels of food availability, 
 

304 indicating a similar plasticity in response to feed availability. Mortality was low both within 
 

305 and among the treatments, indicating no effect of treatment or group origin on survival. 
 

 

306 River environmental conditions, such as fluctuating natural food availability, can adversely 
 

307 affect the growth of fast growing fishes due to metabolic costs (Sundt-Hansen et al., 2012). In 
 

308 the present study growth of the farmed, hybrid and wild S. salar decreased along a food 
 

309 availability gradient ranging from the farmed environment to conditions more resembling the 
 

310 fluctuating levels in the wild. Lowest growth was observed in the daily restricted feeding 
 

311 regime -the most variable food availability. Growth was significantly different between the 
 

312 groups at all treatments, indicating an effect of feed availability on growth in all groups. 
 

313 Farmed S. salar were significantly larger than the wild S. salar in all treatments, and hybrid 
 

314 growth was intermediate between the farmed and wild S. salar. Despite differing growth 
 

315 rates, farmed and wild S. salar responded identically to the increasingly variable food supply, 
 

316 as shown by the similar relative growth differences and low mortality observed across the 
 

317 treatments. This indicates that more than 10 generations of directional selection with 
 

318 contentious access to feed has not resulted in farmed S. salar displaying reduced abilities to 
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319 cope with fluctuating and/or restricted levels of feed by not being able to maintain their 
 

320 elevated growth rate as compared to wild S. salar. Morris et al. (2011) found that the response 
 

321 to compensatory growth (CG) in farmed, wild and hybrid (including backcrossed) S. salar 
 

322 was similar between the groups, although the mean control and CG growth rates were highest 
 

323 in the farmed group. This indicates that although selection has acted on growth, farmed S. 
 

324 salar have not lost their plastic ability to respond to a lack of food through compensation by 
 

325 increasing their growth rates when food becomes available (Morris et al., 2011). 
 

 

326 The growth differences between farmed and wild S. salar observed in all treatments were, on 
 

327 average, less than previously documented in hatchery studies (Glover et al., 2009; Solberg et 
 

328 al., 2013a; b). It is still evident however that multiple generations of selection for growth in 
 

329 farmed S. salar have resulted in significant elevated growth relative to wild S. salar. Under 
 

330 typical hatchery conditions, where food supply is constant, generally uniform and plentiful, 
 

331 growth differences between farmed and wild S. salar, as much as 3- to 5-fold, have been 
 

332 observed  (Solberg et al., 2013a; b). Glover et al. (2009) investigated various trait differences 
 

333 between farmed, wild and F1 hybrid S. salar throughout the farming production cycle, 
 

334 including growth. For two experimental cohorts they found that at the freshwater stage the 
 

335 wild S. salar had mean weights of 1:1.6 and 1:2.4 relative to the farmed S. salar. However in 
 

336 nature, farmed and wild S. salar grow more similarly. For example, Skaala et al. (2012) found 
 

337 growth differences within three year classes of wild and farmed S. salar in the wild to be just 
 

338 1:1.07, 1:1.25 and 1:1.06 respectively. In an attempt to understand these growth differences, 
 

339 Solberg et al. (2013b) investigated the competitive balance between farmed, wild and hybrid 
 

340 S. salar by comparing growth in standard hatchery conditions, and restricted feed conditions 
 

341 in the hatchery and semi-natural environments. They found that the growth of farmed, hybrid 
 

342 and wild S. salar became more similar as their environmental conditions approached natural 
 

343 conditions. They hypothesised that the reduced growth differences observed in their study and 
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344 in the wild (Skaala et al., 2012) could be due to size-selective mortality. The wild 
 

345 environment favours the survival of faster growing individuals which can out-compete 
 

346 smaller individuals for resources (negative size-selective mortality), while also selecting 
 

347 against larger risky individuals through mortality by predation (positive size-selective 
 

348 mortality). Positive size-selective mortality was, however, not tested directly in their study 
 

349 (Solberg et al., 2013b). Biro et al. (2006) demonstrated under natural conditions that domestic 
 

350 rainbow trout, Oncorhynchus mykiss (Walbaum 1792),  were able to grow faster than their 
 

351 wild conspecifics due to increased foraging behaviour, and that these larger O. mykiss were 
 

352 more susceptible to predation due to higher risk behaviour linked to foraging (Biro et al., 
 

353 2006). Although studies indicate reduced predator awareness (Houde et al., 2010b) and 
 

354 potentially increased tolerance to predation stress (Fleming and Einum, 1997; Debes and 
 

355 Hutchings, 2014) in farmed relative to wild salmonids, no explicit evidence has been found 
 

356 for increased predator susceptibility in farmed S. salar (Skaala et al., 2014; Solberg et al., 
 

357 2015). In the wild, faster growing farmed S. salar may also incur a metabolic cost through 
 

358 behavioural changes such as increased appetite (Thodesen et al., 1999) and foraging (Biro et 
 

359 al., 2006) which result in their expending more energy searching for food under low food 
 

360 availability conditions, leading to lower growth (Sundt-Hansen et al., 2009). The 
 

361 juxtaposition of these potential positive and negative size-selective forces may partly explain 
 

362 why growth differences seen in the wild are not as pronounced as in the hatchery environment 
 

363 (Solberg et al., 2013b). 
 

 

364 Growth in the wild may also be influenced by other environmental factors, such as density 
 

365 and competition (Einum and Fleming, 1997; Bohlin et al., 2002), and even natural stream 
 

366 conditions like substrate composition and flow rate (Jonsson and Jonsson, 2011). In 
 

367 comparative studies inter-strain competition between farmed, wild and hybrid groups could 
 

368 potentially influence the levels of relative growth differences observed. Thus, as the groups 
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369 were reared in separate tanks, the lack of inter-strain competition in the present study may 
 

370 potentially explain the lower relative growth differences observed. A study examining the 
 

371 relative growth differences of the same groups of farmed, hybrid and wild S. salar in both 
 

372 single strain and common garden experiments however found no difference in the relative 
 

373 growth differences across experimental designs (Solberg et al., 2013b). Therefore, it is 
 

374 concluded that the present experimental design is unlikely to drive the lower relative growth 
 

375 differences, and any potential tank effects were controlled for in the statistical model. 
 

 

376 Based upon population genetic analyses, genetic changes in the population inhabiting the 
 

377 River Etne have been observed (Glover et al., 2012; 2013), and some level of admixture with 
 

378 farmed escapees has been demonstrated. It is therefore not possible to exclude the possibility 
 

379 that although the wild S. salar used in this study were indeed born in the wild (based upon 
 

380 scale reading), some individuals used as broodstock may represent some admixture with 
 

381 farmed escapees. This might explain why smaller growth differences were detected between 
 

382 the farmed and wild S. salar in this study, as compared to other studies of the same strains 
 

383 (Solberg et al., 2013a). 
 

 

384 In the present study the hybrids displayed intermediate growth relative to both their farmed 
 

385 and wild conspecifics. There were slight differences in the slopes between each treatment for 
 

386 the hybrids, versus the farmed and the wild S. salar, that likely resulted in the marginally 
 

387 significant (P= 0.05) group by treatment interaction. Intermediate hybrid growth relative to 
 

388 their parental strains has been observed in similar studies under hatchery (Glover et al., 2009; 
 

389 Morris et al., 2011; Solberg et al., 2013a), semi-natural (Solberg et al., 2013b), and wild 
 

390 conditions (McGinnity et al., 1997). There was no evidence for hybrid vigour or outbreeding 
 

391 depression, whereby hybrids either perform better relative to their parents or display reduced 
 

392 fitness due to under-dominance, respectively. The hybrids in the present study were maternal 
 

393 half siblings to the farmed S. salar; therefore it is possible that maternal effects were 
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394 influencing growth, although maternal effects are considered to be low at this life stage 
 

395 (Gilbey et al., 2005). Bicskei et al. (2014) examined gene transcription in farmed, F1 hybrid 
 

396 and wild S. salar at two early life stages, and found fewer significantly differentially 
 

397 expressed transcripts between farmed and hybrid individuals than between hybrid and wild 
 

398 individuals. Their hybrid crosses were generated from the farmed females, suggesting that 
 

399 maternal effects might account for this bias (Bicskei et al., 2014), highlighting the need for 
 

400 reciprocal hybrid crosses in comparative studies. 
 

 

401 In summary, the results of the present study have demonstrated that the three feeding regimes 
 

402 implemented here did not influence the relative growth rate of farmed, hybrid and wild S. 
 

403 salar in the hatchery. Thus, while restricted to the hatchery, the present study provides 
 

404 evidence that variable food availability may not be the primary source governing the similar 
 

405 growth between farmed and wild S. salar in natural environments. Similarly, no evidence was 
 

406 found to indicate that more than 10 generations of adaption to the farmed environment, with 
 

407 continuous access to feed, has resulted in farmed S. salar exhibiting a reduced tolerance to 
 

408 limited or fluctuating levels of feed. Additional observations are required however that better 
 

409 simulate natural variation in food supply, which is typically not only variable in composition, 
 

410 but also varies markedly in time and space (Jonsson and Jonsson, 2011). It therefore remains 
 

411 a priority to elucidate further the nature of hybridisation and farm-wild interactions. Further 
 

412 studies in particular, exploring the key environmental differences between hatchery and wild 
 

413 environments (e.g., predation, density) are evidently required, in conjunction with direct 
 

414 comparison of performance in respective conditions. 
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Tables with highlighted changes 
 
 
 
 

 

1 TABLES 
 

2 Table I: Experiment design. Each treatment consisted of two replicate tanks for each single 
 

3 group = 18 tanks in total. Twenty eggs from each family of Salmo salar within a group were 
 

4 sorted into each replicate tank = 2250 eggs in total. Average mass (M), standard deviations 
 

5 (S.D.) and mortality are presented for each group within each tank replicate and pooled 
 

6 treatment. The pooled mass and mortality were calculated as averages of the total mass and 
 

7 mortality in the replicates of each treatment. 
 

 
 

Treatment   Group   Tank  
Initial

 Sampled  Mean M 
S.D. (±) 

Pooled Mortality 
Pooled 

mortality 
n n (g) W n 

(%) 
 

Farm 
1 

20 eggs 125 24.5 4.9 15 
24.5 

 
9.3 

 
Daily 

Restricted 

2 

3 
Hybrid 

4 

per 

family 

- 140 

129 24.5 4.9 11 

117 19.4 5.7 23 
19.4 10.4 

134 19.3 5.4 6 
 

Wild 
5 fish per 

6 tank 

136 15.8 6.2 

135 16.5 5.4 

4 
16.1 

5 

 

3.2 

Farm 7 20 eggs 127 43.7 12.0 13 
43.1 9.6 

 

Control 

8 

9 
Hybrid 

10 

per 

family 

- 140 

126 42.5 10.6 14 

131 34.4 8.8 9 
36.4 8.6 

125 38.3 9.2 15 

Wild 
11 fish per 

12 tank 

125 28.7 9.3 

129 29.0 9.0 

15 
28.9 

11 
9.3 

Farm 13 20 eggs 127 36.4 8.7 13 
36.1 6.4 

 

Triweekly 

14 
15 

Hybrid 
16 

per 

family 

- 140 

135 35.8 7.9 5 
130 31.9 8.0 10 

30.9 7.1 
130 29.9 7.1 10 

Wild 

8 
 
 

9 

17 fish per 

18 tank 

134 22.4 8.5 

134 22.9 9.1 

6 
22.6 

6 
4.3 



 

10 Table II: P values of the fixed effects of the GLMM model investigating survival. The 

11 Statistic represents a Chi-square value calculated as two- times the difference in likelihood 

12 between full and restricted model as specified by the afex package. 

 

Effect Statistic P value 

Treatment 1.47 0.57 

Group 0.08 0.97 

  T x G 4.45 0.57  

13 
 
 

14 



 

15 Table III: P values of the fixed effects of the LME model investigating growth. The F denotes 
 

16 the F statistic, Num Df denotes the numerator degrees of freedom and Den Df denotes the 
 

17 denominator degrees of freedom. 
 

 

Effect F Num Df Den Df P value 

Treatment 129.39 2 9.12 <0.0001 

Group 74.32 2 9.25 <0.0001 

  T x G 3.67 4 8.99 0.05  
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Figure Captions with highlighted changes 
 
 
 
 

 

1 FIGURE CAPTIONS 
 

 

2 Figure 1: Average (a) mass and (b) log L mass ± S. E of each group (farm, hybrid and wild 
 

3 Atlantic Salmo salar) across each feeding treatment (triweekly, daily restricted, control/ad 
 

4 libitum). Log mass was examined in the statistical analysis. 

 

5 
 
 

6 Figure 2: (a) Relative growth reaction norms for each group (farm, hybrid and wild Atlantic 
 

7 Salmo salar) and (b) their average log mass across the feeding treatments. In (a) the hybrid 
 

8 and farmed groups are compared to the wild group within each treatment (based upon their 
 

9 untransformed mass). The x-axis shows the feeding treatments (triweekly, daily restricted, 
 

10 control/ad libitum). 
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Figures CLEAN 
 
 
 
 

 

1 FIGURES 
 

 

2 Figure 1 

 

3  

4 
 
 

5 
 
 

6 
 
 

7 
 
 

8 
 
 

9 
 
 

10 
 
 

11 
 
 

12 
 
 

13 
 
 

14 



 

15 Figure 2 

 

16  

17 



 

Supplementary Tables CLEAN 
 
 
 
 

 

1 SUPPLEMENTARY TABLES 
 

 

2 Table SI:  Family crosses for the experiment. The commercial farmed strain Mowi and the 
 

3 wild strain Etne were used to make seven pure wild, seven pure farmed and seven hybrid F1 
 

4 groups. The hybrid families were made by crossing a female farmed S. salar with a wild 
 

5 male. Five of the seven hybrid families are half-siblings to five wild and five farmed families, 
 

6 and one family is maternal half siblings to one farmed family and one family is paternal half 
 

7 siblings to one wild family. 
 

 

 Family Dam Sire Group 

1 M1 M9 Farm 

2 M1 E11 Hybrid 

3 M2 M10 Farm 

4 M2 E12 Hybrid 

5 M3 M11 Farm 

6 M3 E13 Hybrid 

7 M4 M12 Farm 

8 M4 E14 Hybrid 

9 M5 M13 Farm 

11 M6 M14 Farm 

12 M6 E16 Hybrid 

14 M7 E17 Hybrid 

15 M8 M16 Farm 

16 M8 E18 Hybrid 

17 E1 E11 Wild 

18 E2 E12 Wild 

20 E4 E14 Wild 

21 E5 E15 Wild 

22 E6 E16 Wild 

23 E7 E17 Wild 

24 E8 E18 Wild 

8     

 

9 
    

 

10 
    

 

11 
    



 

12 



 

 

13 Table II: Relative growth differences between each group within each treatment and Tukey adjusted P-values for the multiple pair-wise 
 

14 comparisons of groups within each treatment. The P -values are shown in the bottom left diagonal, and the significance level was set to 0.05, 
 

15 with non-significant P-values indicated in bold. Each group within a treatment was significantly different to each other group within that 
 

16 treatment. The relative growth differences between each group within each treatment are shown in bold in the top right section. The average 
 

17 mass of each group was compared to the average mass of the other groups by dividing the larger mass by the smaller mass (i.e. farm to wild), 
 

18 creating a relative growth difference ratio. Relative growth differences were not compared across treatments. Daily R corresponds to the daily 
 

19 restricted treatment and triweek corresponds to the triweekly treatment. 
 

 
 

DAILY 
R 

Farm 

DAILY 
R 

Hybrid 

DAILY 
R 

Wild 

CONTROL 

Farm 

CONTROL 

Hybrid 

CONTROL 

Wild 

TRIWEEK 

Farm 

TRIWEEK 

Hybrid 

TRIWEEK 

Wild 

Mass (g) 24.51 19.345 16.125 43.09 36.355 28.845 36.09 30.91 22.64 

DAILY R Farm / 1: 1.3 1: 1.5     

DAILY R Hybrid 0.0005 / 1: 1.2    

DAILY R Wild <0.001 

CONTROL Farm <0.001 

0.0033 

<0.001 

/ 

<0.001 

 
/ 

 
1: 1.2 

 
1: 1.5 

CONTROL 

Hybrid 
<0.001 

<0.001 <0.001 0.0181 / 1: 1.3 

CONTROL Wild 0.0825 <0.001 <0.001 <0.001 0.0007 / 
TRIWEEK Farm <0.001 <0.001 <0.001 0.0189 1 0.0007 / 1: 1.2 1: 1.6 
TRIWEEK 

Hybrid
 0.0022 

<0.001 <0.001 <0.001 0.0203 0.2231 0.0199 / 1: 1.4 

TRIWEEK Wild 0.0366 0.0786 0.001 <0.001 <0.001 0.0006 <0.001 0.001 / 



 

4 
 
 

20 


