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The linear stability of finite amplitude capillary waves on inviscid sheets of fluid is in-
vestigated. A method similar to that recently used by Tiron & Choi (2012) to determine
the stability of Crapper waves on fluid of infinite depth is developed by extending the
conformal mapping technique of Dyachenko et al. (1996a) to a form capable of capturing
general periodic waves on both the upper and the lower surface of the sheet, including the
symmetric and antisymmetric waves studied by Kinnersley (1976). The primary, surpris-
ing result is that both symmetric and antisymmetric Kinnersley waves are unstable to
small superharmonic disturbances. The waves are also unstable to subharmonic pertur-
bations. Growth rates are computed for a range of steady waves in the Kinnersley family,
and also waves found along the bifurcation branches identified by Blyth & Vanden-Broeck
(2004). The instability results are corroborated by time integration of the fully nonlin-
ear unsteady equations. Evidence is presented for superharmonic instability of nonlinear
waves via a collision of eigenvalues on the imaginary axis which appear to have the same
Krein signature.

1. Introduction

In this paper we demonstrate that capillary waves on fluid sheets are linearly unsta-
ble to both superharmonic and subharmonic disturbances. Superharmonic perturbations
have the same (or smaller wavelength) as the base wave, and subharmonic perturbations
have a longer wavelength than the base wave. The study of capillary waves on liquid
sheets began with the theoretical and experimental work of Squire (1953) and Taylor
(1959) (see also the work of Rayleigh 1896). The small amplitude states are classified as
either symmetric or antisymmetric. Symmetric waves have a crest on one surface above
a trough on the other surface; alternatively such waves may be interpreted as occurring
on a fluid of finite depth over a flat bottom. Antisymmetric waves have a crest on one
surface above a crest on the other surface. In the case of fluid of infinite depth, a remark-
able exact solution was given by Crapper (1957). Twenty years later Kinnersley (1976)
supplied exact solutions using elliptic functions for both symmetric and antisymmetric
waves on fluid sheets of finite thickness. Kinnersley’s symmetric wave solution was later
given in a simplified form by Crowdy (1999). Kinnersley waves have been shown to be
relevant in other problems, for example in flow driven by surface tension in a slender
wedge (Billingham 2006). Waves on a liquid thread recoiling after pinch-off are found,
for example, in water from a dripping tap (Peregrine et al. 1990) and may be viewed as
the axisymmetric analogue of Kinnersley waves.
Our finding that Kinnersely waves are unstable to superharmonic disturbances is some-

what surprising. Tiron & Choi (2012) showed that capillary waves on fluid of infinite
depth are stable to superharmonic disturbances. This work followed an earlier contention
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by Hogan (1988) that superharmonic instability in infinite depth may occur via the col-
lision of linear modes of opposite Krein signature for sufficiently steep (i.e. nonlinear)
waves. The concept of Krein signature was formulated by Williamson (1936) and Krein
(1950). According to the theory of MacKay & Saffman (1986), in a Hamiltonian system
instability can only occur through the collision of eigenvalues (of the linearised system) of
opposite Krein signature, or else through a collision of eigenvalues at zero. Tiron & Choi
(2012) also demonstrated that Crapper waves are unstable to subharmonic disturbances
and found agreement with the weakly-nonlinear theory of Chen & Saffman (1980).
The fact that capillary waves on fluid of finite depth turn out to be superharmonically

unstable even for relatively small amplitude waves is interesting as it contrasts with the
stability characteristics of classical gravity waves. It is well-known that gravity waves in
infinite depth are long-wave unstable and suffer a side-band instability first identified
both theoretically and experimentally by Benjamin & Feir (1967); the extension to finite
depth fluid was provided by Benney & Roskes (1969). Superharmonic perturbations were
investigated by Longuet-Higgins (1978), who found that the waves are stable if their
amplitude does not exceed a critical value. Later work by Saffman (1985) found that
superharmonic perturbations become unstable for larger amplitude waves. Reviews of
the stability properties of periodic water waves can be found in Hammack & Henderson
(1993) and Dias & Kharif (1999). More recent results on the stability of gravity waves
have been obtained by Deconinck & Oliveras (2011) and Akers & Nicholls (2014) for
finite depth and Akers & Nicholls (2012) for infinite depth. The stability of gravity-
capillary waves in infinite and finite depth was investigated by Djordjevic & Redekopp
(1977) and Hogan (1985). More recent results have been presented by Akers & Nicholls
(2013) and Deconinck & Trichtchenko (2014).
In all of the studies discussed above the flow is inviscid and irrotational and, as such,

is determined as a solution to the Laplace equation. To study the stability of the steady
waves on fluid sheets in the presence of surface tension but with no gravity (i.e. Kinnersley
waves), it is convenient to first reformulate the problem in terms of only the surface
variables, namely the elevation on each surface and the velocity potential evaluated on
each surface. This can be done by introducing a Dirichlet-to-Neumann operator (see for
example Wilkening & Vasan (2015) for the particular case of the classical water wave
problem) and then calculating the operator using a conformal mapping technique. This
procedure yields a set of non-local partial differential equations describing the location
of the two upper and lower surfaces of the sheet, and the velocity potential on each.
Following the earlier work of Dyachenko et al. (1996a) and Dyachenko et al. (1996b) for
infinite depth, this derivation has been carried out by Choi & Camassa (1999) for finite
depth fluid for the particular case of waves over a flat bottom - such a formulation is
capable of capturing the symmetric but not the antisymmetric Kinnersley case. (We note
that Viotti et al. (2014) have recently extended the formulation to the case of a prescribed
bottom topography.) In the present work, we further generalise the formulation to allow
for two a priori unknown capillary surfaces which is then suitable for studying both
symmetric and antisymmetric Kinnersley waves, and also the bifurcated wave branches
identified by Blyth & Vanden-Broeck (2004) Since the new formulation requires only
fairly straightforward modifications of the Choi & Camassa (1999) work, we give only
brief details (these are supplied in Appendix A).
Finally we note that our focus is on the temporal stability of spatially periodic nonlinear

waves. We note that the stability of small amplitude symmetric and antisymmetric waves
to a localised disturbance has been investigated by Barlow et al. (2011) and others (see
references therein).
The layout of the paper is as follows. In section 2 we present the formulation of the
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general problem in terms of surface variables. In section 3 we discuss the steady travelling
waves whose stability we wish to study. In section 4 we present the calculation method
for determining linear stability by solving an eigenvalue problem and in section 5 we
present our results. Finally in section 6 we summarise and discuss our findings.

2. Problem formulation

We examine the stability of spatially-periodic travelling waves of period λ propagating
on a fluid sheet of density ρ and surface tension γ on the upper and on the lower surfaces
of the sheet. We write the governing equations in a frame of reference moving with the
unperturbed wave. We describe the upper surface using the parametrisation (x, y), where
x = x(ξ, t) and y = y(ξ, t) are periodic functions of a real parameter ξ and t is time.
We write φ(ξ, t) and ψ(ξ, t) for the upper surface velocity potential and streamfunction
respectively. A derivation of the governing equations is given in Appendix A. On the
upper surface we have

yt = yξ

[

T (ψξ/J)− S(ψ̂ξ/Ĵ)
]

− xξψξ/J, (2.1)

φt+
[

S(ψ̂ξ/Ĵ)− T (ψξ/J)
]

φξ +
1

2J

(

φ2ξ − ψ2
ξ

)

+ (γ/ρ)κ = B(t), (2.2)

where B(t) is the Bernoulli constant. On the lower surface (x̂, ŷ), where x̂ = x̂(ξ, t) and
ŷ = ŷ(ξ, t), the governing equations are,

ŷt = ŷξ

[

S(ψξ/J)− T (ψ̂ξ/Ĵ)
]

− x̂ξψ̂ξ/Ĵ, (2.3)

φ̂t+
[

T (ψ̂ξ/Ĵ)− S(ψξ/J)
]

φ̂ξ +
1

2Ĵ

(

φ̂2ξ − ψ̂2
ξ

)

− (γ/ρ)κ̂ = B(t), (2.4)

where φ̂(ξ, t) and ψ̂(ξ, t) are the lower surface velocity potential and streamfunction
respectively. Generally, a caret indicates a quantity on the lower surface. The Jacobians
are defined to be

J = x2ξ + y2ξ , Ĵ = x̂2ξ + ŷ2ξ , (2.5)

and the surface curvatures are

κ =
yξxξξ − xξyξξ

J3/2
, κ̂ =

ŷξx̂ξξ − x̂ξ ŷξξ

Ĵ3/2
. (2.6)

The non-local operators T and S are defined so that

T (f(ξ)) =
1

2H
−
∫ ∞

−∞

f(ξ′) coth
[ π

2H
(ξ′ − ξ)

]

dξ′, (2.7)

and

S(f(ξ)) =
1

2H
−
∫ ∞

−∞

f(ξ′) tanh
[ π

2H
(ξ′ − ξ)

]

dξ′, (2.8)

where

H = m(y)−m(ŷ), m(f) ≡ 1

λ

∫ λ

0

f(ξ) dξ, (2.9)

that is the difference in the mean value on the upper surface to the lower surface in the
transformed plane. Furthermore, we note that

xξ = 1− T (yξ) + S (ŷξ) , x̂ξ = 1− S(yξ) + T (ŷξ), (2.10)
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and

φξ =
ψ0 − ψ̂0

H
− T (ψξ) + S(ψ̂ξ), φ̂ξ =

ψ0 − ψ̂0

H
− S(ψξ) + T (ψ̂ξ), (2.11)

where ψ0 = m(ψ) and ψ̂0 = m(ψ̂).
In the limit H → ∞, the S operator vanishes, and the T operator becomes the Hilbert

transform, given by formula (2.3) of Tiron & Choi (2012). Simultaneously (2.1) and (2.2)
reduce to (2.1) and (2.2) of Tiron & Choi (2012) describing waves on fluid of infinite
depth. We note that the physical thickness of the deformed sheet is given by

H̄ =
1

λ

∫ λ

0

(yxξ − ŷx̂ξ) dξ. (2.12)

Here H̄ is defined as the thickness of the equivalent flat sheet with the same fluid volume
in one period. In the case of a flat sheet, H̄ = H . Consequently the limit H → ∞
corresponds to considering waves on fluid of infinite depth.

3. Travelling-wave solutions

In this section we discuss the computation of steadily propagating waves using the
formulation presented above. The stability of these waves, which is the main focus of the
paper, will be discussed in the next section. We begin by stating the problem within the
framework of section 2, and by describing our computational method. We then discuss
Kinnersley (1976)’s exact solutions, and how these may be recovered by the present
method.

3.1. Computational method

Henceforth, and following the conventions of Chen & Saffman (1985) and Tiron & Choi
(2012), we take γ = ρ = 1 and we set the period of the waves to be λ = 2π. This
corresponds to non-dimensionalising using the unit length and time scales

λ

2π
,

√

ρ

γ

(

λ

2π

)3

(3.1)

respectively. We introduce the measure of the wave speed c,

c =
1

λ

∫

F

u · dx, (3.2)

where u is the fluid velocity, and F denotes one period of the upper surface (in fact,
since the flow is irrotational, c takes the same value on any streamline). This implies
that the velocity potential φ varies by an amount cλ over one wavelength. It is important
to emphasise that in finite depth c is not the same as the crest speed of the waves (note
that (3.2) makes no allusion to a second frame of reference), and indeed it will become
clear below that in general they take different values. However, in the special case of fluid
of infinite depth considered by Crapper (1957), the crest speed ck and the wave speed c
defined through (3.2) are coincident (see Tiron & Choi 2012).
We have a two parameter family of steady travelling wave solutions parametrised by

H and c. To compute the waves we first write x = X(ξ), y = Y (ξ), x̂ = X̂(ξ), ŷ = Ŷ (ξ),
where X(ξ + 2π) = X(ξ), and so on. In the frame travelling with the wave, the velocity
potential and streamfunctions on the upper and lower surfaces are given by

φ = φ̂ = cξ, ψξ = ψ̂ξ = 0. (3.3)
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We note that the former adheres to the stipulation above that the velocity potential
varies by an amount cλ = 2πc over one wavelength. Using (3.3), equations (2.1) and
(2.3) simply state that yt = 0 and ŷt = 0, and it follows from (2.2) and (2.4) that

c2

2J0
+ κ0 = B, c2

2Ĵ0
− κ̂0 = B, (3.4)

where B is now independent of time, J0 = X ′2 + Y ′2 and Ĵ0 = X̂ ′2 + Ŷ ′2, and the
base-wave curvatures are given by

κ0 =
Y ′X ′′ −X ′Y ′′

J
3/2
0

, κ̂0 =
Ŷ ′X̂ ′′ − X̂ ′Ŷ ′′

Ĵ
3/2
0

. (3.5)

We note in passing that we have an unknown Bernoulli constant, B, on the right hand
sides of (3.4) and (3.5). This is slightly different to the formulation laid out by Kinnersley
Kinnersley (1976). The difference is discussed and explained in detail in Appendix B.
We express the flow variables as Fourier expansions, writing

Y (ξ) =
∞
∑

n=−∞

αne
inξ, Ŷ (ξ) =

∞
∑

n=−∞

βne
inξ. (3.6)

The functions X(ξ) and X̂(ξ) follow from (2.10) to within an arbitrary constant corre-
sponding to the choice of origin. To calculate the non-local operator terms we make use
of the identities valid for n 6= 0,

T
(

einξ
)

= i coth(nH) einξ, S
(

einξ
)

= i cosech(nH) einξ. (3.7)

Next we introduce 2N + 1 equally-spaced collocation points in ξ with

ξj =
2π(j − 1)

2N + 1
, j = 1, . . . , 2N + 1. (3.8)

We truncate the Fourier series at |n| = N and substitute into (3.4). These equations are
evaluated at 2N+1 of the collocation points on the upper wave and 2N of the collocation
points on the lower wave. This produces a set of 4N + 1 nonlinear algebraic equations.
Two further equations follow to satisfy the relation (2.9): we fix β0 = 0 and α0 = H . This
yields a total of 4N +3 nonlinear equations for the 4N +3 unknowns comprising 4N +2
Fourier coefficients in (3.6) and the Bernoulli constant B. The numerical calculations are
carried out in MATLAB where the spatial derivatives are computed spectrally using the
fast Fourier transform. The nonlinear system is solved by Newton iterations using finite
differences to compute the derivatives in the Jacobian. The iterations are deemed to have
converged when LN < δ, with

LN =

{

4N+4
∑

i=1

|Fi|2
}1/2

, (3.9)

where Fi, i = 1, 4N + 3 is the ith equation in the nonlinear system, and F4N+4 is the
equation corresponding to (3.4) evaluated at the (2N + 1)th collocation point on the
lower wave. Typically we took δ in the range 10−9 to 10−12.
In the case of symmetric and antisymmetric waves, exact solutions were derived by

Kinnersley (1976) in terms of elliptic functions using a different formulation of the prob-
lem. The transformation between the present formulation and that used by Kinnersley
(1976) is non-trivial and for this reason in the interest of simplicity we use the numerical
method described above to compute the base waves for the stability calculations in the
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following sections. In Appendix C we discuss the transformation between the current
formulation and that used by Kinnersley. There are no known exact solutions for the
bifurcation branches discovered by Blyth & Vanden-Broeck (2004), and they must be
computed numerically.

Since exact solutions are available for symmetric and antisymmetric waves, they can
be used to check the accuracy of the numerical method. We have calculated the L2 norm
of the difference in the Fourier coefficients,

L =

(

M
∑

n=1

|a(e)n − a(c)n |2
)1/2

, (3.10)

where a
(e)
n , a

(c)
n are the coefficients for the exact and numerically computed waves respec-

tively, and M < N is a chosen level of truncation (we note that in typical calculations,
the level of machine precision is reached when N ≈ 40 at which point the Fourier co-
efficients are typically of size 10−16). By way of example, for a symmetric Kinnersley
wave with H = 3.0 and c = 0.751 we obtain L = 6.7 × 10−13 with M = N = 32, and
L = 1.14× 10−14 with M = 40, N = 128.

In the results to be presented below, we fix H and vary c from its value for a small
amplitude wave. In doing this, we trace a branch of travelling wave solutions, eventually
arriving at a limiting profile with a trapped bubble as c approaches a critical value. That
this must happen is demonstrated in Appendix C.

4. Linear stability

To study the linear stability of the travelling wave solutions discussed in section 3, we
introduce perturbations, writing

x = X(ξ) + x̃(ξ, t), y = Y (ξ) + ỹ(ξ, t), φ = cξ + φ̃(ξ, t), ψ = ψ̃(ξ, t), (4.1)

and

x̂ = X̂(ξ) + χ̃(ξ, t), ŷ = Ŷ (ξ) + b̃(ξ, t), φ̂ = cξ + Φ̃(ξ, t) ψ̂ = Ψ̃(ξ, t), (4.2)

where variables with a tilde are small. Note that it is not necessary to perturb the
Bernoulli constant since any such perturbation can be absorbed into the perturbation
for the velocity potential. We emphasise that the base waves are periodic with period
2π. Substituting (4.1) and (4.2) into the governing system (2.1)-(2.11) and linearising by
neglecting products of the small perturbations, we obtain on the upper surface,

ỹt = Yξ

[

T (ψ̃ξ/J0)− S(Ψ̃ξ/Ĵ0)
]

−Xξψ̃ξ/J0, (4.3)

φ̃t + c
[

S(Ψ̃ξ/Ĵ0)−T (ψ̃ξ/J0)
]

+ cφ̃ξ/J0 + F x̃ξ +Gỹξ +QYξx̃ξξ −QXξỹξξ = 0, (4.4)

x̃ξ = S(b̃ξ)− T (ỹξ) , φ̃ξ = S(Ψ̃ξ)− T (ψ̃ξ). (4.5)

where F = −PXξ −QYξξ, G = −PYξ +QXξξ and

P = (6BJ0 − c2)/(2J2
0 ), Q = 1/J

3/2
0 . (4.6)
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On the lower surface we find

b̃t = Ŷξ

[

S(ψ̃ξ/J0)− T (Ψ̃ξ/Ĵ0)
]

− X̂ξΨ̃ξ/Ĵ0, (4.7)

Φ̃t + c
[

T (Ψ̃ξ/Ĵ0)− S(ψ̃ξ/J0)
]

+ cΦ̃ξ/Ĵ0 + F̂ χ̃ξ + Ĝb̃ξ + Q̂Ŷξχ̃ξξ − Q̂X̂ξ b̃ξξ = 0, (4.8)

χ̃ξ = T (b̃ξ)− S(ỹξ), Φ̃ξ = T (Ψ̃ξ)− S(ψ̃ξ), (4.9)

where F̂ = −P̂ X̂ξ − Q̂Ŷξξ, Ĝ = −P̂ Ŷξ + Q̂X̂ξξ, and

P̂ = (6BĴ0 − c2)/(2Ĵ2
0 ), Q̂ = −1/Ĵ

3/2
0 . (4.10)

Invoking Floquet theory (see, for example, Sandstede 2002), we express the perturba-
tions in the form









x̃
ỹ

φ̃

ψ̃









= eσteipξ
∞
∑

n=−∞

ane
inξ,









χ̃

b̃

Φ̃

Ψ̃









= eσteipξ
∞
∑

n=−∞

âne
inξ, (4.11)

where the constant Fourier coefficients an = (an, bn, cn, dn)
T and ân = (ân, b̂n, ĉn, d̂n)

T

and the generally complex growth rate σ = σR+iσI are to be found. If σR > 0 the flow is
spectrally unstable and hence linearly unstable. The real parameter p is prescribed. When
p = 0, or any integer, the perturbation has the same wavelength as the steady base wave
and the mode is termed superharmonic. For p not an integer, the perturbation is termed
subharmonic and contains modes of wavelength longer than the steady wave. If p is irra-
tional the perturbation is subharmonic but quasiperiodic and as such cannot be captured
by the present formulation which assumes periodicity. Following Chen & Saffman (1985),
we may restrict p to the range [0, 1) without loss of generality.
We substitute (4.11) into (4.5) and (4.9) and derive the following relations valid when

n+ p 6= 0,

an = ib̂ncosech([n+ p]H)− ibn coth([n+ p]H), (4.12)

dn = icn coth([n+ p]H)− iĉncosech([n+ p]H), (4.13)

ân = ib̂n coth([n+ p]H)− ibncosech([n+ p]H), (4.14)

d̂n = icncosech([n+ p]H)− iĉn coth([n+ p]H), (4.15)

which we may use to eliminate aj , dj , âj , d̂j . To prepare the system for numerical
computation, we truncate the infinite series in (4.11) at the Nth harmonic by setting
an = ân = 0 for |n| > N . Substituting the truncated forms of (4.11) into the remaining
equations in (4.3)-(4.10) evaluated at the collocation points (3.8), we compile the matrix
system

σLx = Rx, (4.16)

where x = (b−N , . . . , bN , c−N , . . . , cN , b̂−N , . . . , b̂N , ĉ−N , . . . , ĉN )T , and L and R are
(8N + 4)× (8N + 4) matrices given by

L =









E 0 0 0

0 E 0 0

0 0 E 0

0 0 0 E









, R =









0 A 0 Â

B cG B̂ cĜ

0 Ω 0 Ω̂

∆ cM ∆̂ cM̂









, (4.17)

and where all of the submatrices are of size (2N + 1)× (2N + 1). Here Ek,l = exp{i(l′ +



8 M. G. Blyth and E. I. Părău

p)ξk}, and

Ak,l = (l′ + p)
[Xξ

J0
q1Ek,l + Yξ(q2µ̂k,l − q1νk,l)

]

,

Bk,l = −(l′ + p)
[

q1

(

F + i(l′ + p)QYξ

)

+Gi +QXξ(l
′ + p)

]

Ek,l,

Gk,l = −(l′ + p)
[ i

J0
Ek,l + (q1νk,l − q2µ̂k,l)

]

,

Ωk,l = (l′ + p)
[X̂ξ

Ĵ0
q2Ek,l + Ŷξ(q2ν̂k,l − q1µk,l)

]

, (4.18)

∆k,l = −(l′ + p)q2

[

F̂ + i(l′ + p)Q̂Ŷξ

]

Ek,l,

Mk,l = (l′ + p)(q2ν̂k,l − q1µk,l)

and

Âk,l = (l′ + p)
[

− Xξ

J0
q2Ek,l + Yξ(q2νk,l − q1µ̂k,l)

]

,

B̂k,l = (l′ + p)q2

[

F + i(l′ + p)QYξ

]

Ek,l,

Ĝk,l = (l′ + p)(q2νk,l − q1µ̂k,l),

Ω̂k,l = (l′ + p)
[

− X̂ξ

Ĵ0
q1Ek,l + Ŷξ(q2µk,l − q1ν̂k,l)

]

, (4.19)

∆̂k,l = (l′ + p)
[

q1

(

F̂ + i(l′ + p)Q̂Ŷξ

)

− Ĝi− Q̂X̂ξ(l
′ + p)

]

Ek,l,

M̂k,l = −(l′ + p)
[ i

Ĵ0
Ek,l + (q1ν̂k,l − q2µk,l)

]

,

where l′ = l − (N + 1), and q1 = coth([l′ + p]H) and q2 = cosech([l′ + p]H). All of the
terms in the matrix elements are evaluated at the collocation points ξ = ξk. Also,

µk,l = i

N
∑

j=−N

ujcosech([j + l′ + p]H)ei(j+l′+p)ξk , (4.20)

νk,l = i

N
∑

j=−N

ujcoth([j + l′ + p]H)ei(j+l′+p)ξk , (4.21)

µ̂k,l = i

N
∑

j=−N

ûjcosech([j + l′ + p]H)ei(j+l′+p)ξk , (4.22)

ν̂k,l = i
N
∑

j=−N

ûjcosech([j + l′ + p]H)ei(j+l′+p)ξk , (4.23)

where uj and ûj are the coefficients in the Fourier expansion of 1/J0 and 1/Ĵ0 respectively.
The expressions (4.20)-(4.23) originate in the non-local terms in (4.3), (4.4), (4.7) and
(4.8). To obtain these we have used the facts that for n 6= 0

T
(

einξ
)

= i coth(nH) einξ, S
(

einξ
)

= i cosech(nH) einξ. (4.24)

We note that when (l′ + p) = 0 in (4.18)-(4.19), we set (l′ + p) coth([l′ + p]H) = 0 and
(l′+p)cosech([l′+p]H) = 0. For the sums in (4.20)-(4.23), when j+ l′+p = 0 we set the
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corresponding term in each sum to zero in accordance with the principal value definition
of the operators (2.7) and (2.8).

The eigenspectrum has the property that if (i) {σ, p, bj , cj, b̂j , ĉj} is an eigenset then
so are

(ii) {σ∗,−p, b∗−j, c
∗
−j , b̂

∗
−j,ĉ

∗
−j}, (iii) {−σ,−p, b−j,−c−j , b̂−j,−ĉ−j},
(iv) {−σ∗, p, b∗j ,−c∗j , b̂∗j ,−ĉ∗j}. (4.25)

These can be shown using arguments similar to those presented by Tiron & Choi (2012)
for the case of infinite depth. Given the aforementioned symmetry properties, we may fur-
ther restrict the range of p for the stability problem to p ∈ [0, 1/2] (see also Tiron & Choi
2012).

When both the upper and the lower surface is flat, Taylor (1959) showed that two
types of small amplitude perturbation are possible: symmetric waves with troughs on
the upper wave facing crests on the lower wave, and antisymmetric waves with troughs
on the upper wave opposing troughs on the lower waves (see also Squire 1953). Taylor
showed that the symmetric waves of period 2π travel at speed cs =

√

tanh(H/2) and the

antisymmetric waves travel at speed ca =
√

coth(H/2). As noted above, we are presently
working in a frame of reference travelling with the speed of the basic periodic wave whose
stability we wish to study. We find that for perturbations about the flat state, σ = σν

s,m

or σν
a,m, where

σν
s,m = iν

[

p′3 tanh(p′H/2)
]1/2

− ip′cf , (4.26)

σν
a,m = iν

[

p′3 coth(p′H/2)
]1/2

− ip′cf , (4.27)

where ν = ±1, and p′ = p +m for any integer m, and cf = cs or ca. Since p ∈ [0, 1/2]
and we have the symmetries in (4.25), it follows that p′ covers the whole real line.
Hence formulae (4.26), (4.27) cover all possible symmetric and antisymmetric waves with
wavenumber p′ written relative to the speed of a symmetric or antisymmetric wave of
unit wavenumber. It should be noted that both of the growth rates in (4.26), (4.27) are
purely imaginary, corresponding to neutral travelling waves.

The generalised eigenvalue problem (4.16) was solved numerically using the inbuilt
MATLAB function eig. The level of truncation N was varied according to the base wave
under scrutiny to ensure accuracy of the computation. An accuracy check is carried out in
section 5. We note that we have verified our numerical results by successfully comparing
against independent calculations performed by Dr Z. Wang (2015).

4.1. Time-dependent numerical method

In addition to solving the eigenvalue problem for the growth rates discussed in section 4,
we have also solved the unsteady equations (2.1)-(2.4) numerically using a pseudospectral
scheme. The unknown variables are represented as Fourier expansions and the spatial
derivatives are computed spectrally in Fourier space. The nonlinear terms are computed
in real space and the solution is marched forward in time using the fourth order Runge-
Kutta method. To handle the nonlocal operators, we use the fact that if

f̂(k) = F [f(ξ)] =

∫ ∞

−∞

f(ξ)e−ikξ dξ (4.28)
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Figure 1. Steady symmetric waves (two periods are shown): (a)H = 1 and c−cs = −0.35 [upper
panel] and c− cs = −0.5785 [lower panel]. The insets show close-ups near to the high curvature
regions. Note that in the lower panel inset the upper/lower waves are very close together but
are not actually in contact; (b) H = 4 and c− cs = −0.1 [upper panel] and c− cs = −0.22 [lower
panel]. The waves have been translated upwards for display purposes.

then

T (fξ(ξ)) = −F−1
(

k coth(kH)f̂
)

, S(fξ(ξ)) = −F−1
(

k cosech(kH)f̂
)

(k 6= 0),

T (fξ(ξ)) = S(fξ(ξ)) = −(1/H)f (k = 0). (4.29)

5. Results

The solution space for steady waves is parametrised by H and c. In what follows, we
always fix H and vary c to delineate the branch of steady wave profiles and determine
their stability. We have checked that for a large value of H we recover the results of the
stability calculations of Tiron & Choi (2012) for the infinite depth case. For a fixed finite
value of H , symmetric waves bifurcate from c = cs and antisymmetric waves bifurcate
from c = ca. In each case, there is a finite range of c values over which physically
meaningful, that is not self-intersecting, steady wave profiles are possible (see Appendix
C). At the limit of this range the nonlinear wave profiles always exhibit a trapped air
bubble.

5.1. Superharmonic perturbations, p = 0

We begin with a discussion of superharmonic perturbations to symmetric waves. Some
steady wave profiles are shown in figure 1 for H = 1 and H = 4 for sample values
of the wave speed c − cs. These waves were computed numerically using the method
described in section 3. In both cases the limiting profiles, obtained as the deviation from
the linear wave speed |c−cs| increases, have trapped bubbles. The results of the stability
calculations for the caseH = 1 are shown in figure 2. At c ≈ cs the amplitude of the waves
is small and the eigenvalues are all purely imaginary, so that the real part of the growth
rate σR is zero for the whole spectrum. The imaginary part of the eigenvalue spectrum,
σI , is plotted against c − cs in figure 2(a) up to c − cs = −0.55. As c − cs → 0, the
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eigenvalues connect to the theoretical predictions of linear theory (4.26) and (4.27). The
real part of the spectrum is shown in figure 2(b). Bubbles of instability appear following
the coalescence of pairs of imaginary eigenvalues. Specifically each bubble emerges as
two pairs of imaginary eigenvalues collide (in the upper half plane and their reflection
in the lower half plane) and move out into the complex plane to form a quartet of
complex eigenvalues containing two conjugate pairs fulfilling the symmetries (4.25), two
eigenvalues of which are unstable. Two instability bubbles are found over the range
shown and these are labelled A and B in the figures. In both panels (a) and (b), we have
restricted the range of the imaginary part to 0 < σI < 15, but further computations
reveal that more collisions occur beyond this range. The eigenspectrum at c−cs = −0.35
is shown in figure 3. We note that a large number of Fourier modes are required to
accurately capture the spectrum over the range shown. The figure indicates that for this
value of c− cs, the most unstable mode has growth rate σ = 0.357 + 26.9i. Of course it
may be the case that an eigenvalue with imaginary part off the scale shown in the figure
has a larger real part than this value. We note that the cluster of 16 eigenvalues toward
the bottom of the figure lie on an ellipse (a best-fit ellipse is superimposed in the figure).
The calculations presented in figure 2 were carried out with N = 128. In table 2 we

demonstrate the numerical convergence of the eigenvalue on bubble A in figure 2 at
c − cs = −0.35 as N is increased. Evidently the unstable eigenvalue is computed to a
high degree of accuracy. To further validate the result, we compare the growth rate of a
sample eigenmode from the spectrum found at c− cs = −0.35 with the results of a time-
dependent simulation. We select the mode with complex growth rate σ = 0.1758+13.45i
and solve the unsteady equations (2.1)-(2.4) as described in section 4.1. We track the
time-evolution of a small perturbation from the base wave with the initial condition

y(ξ, 0) = Y (ξ) + ỹ(ξ, 0), ỹ(ξ, 0) = ǫ

[

N
∑

n=−N

ỹ1n einξ +

N
∑

n=−N

ỹ2n einξ

]

(5.1)

where the coefficients ỹ1n and ỹ2n correspond to the eigenfunctions associated with σ
and σ∗ respectively, and we choose ǫ = 10−4 to facilitate comparison with linear theory.
The symmetry properties of the eigensets (4.25) for p = 0 guarantee that y(ξ, 0) in (5.1)

is real. Analogous initial conditions are imposed for b, φ and φ̂. Consistent with the
eigenvalue calculation, we fix the Bernoulli constant B(t) during the time-integration at
the value corresponding to the steady wave solution. The perturbation ỹ is shown in
figure 4(a) at time t = 2.0 (note that in this case b̃ = −ỹ) and is seen to closely resemble
the prediction of linear theory. Figure 4(b) shows the time evolution of the logarithm of
the perturbation wave height, L = log(max(ỹ)−min(ỹ)). This oscillates while growing at
an exponential rate which convincingly matches the prediction of linear theory (shown
with a broken line in the figure).
As H is increased, the bubbles of instability with complex eigenvalues identified in

figure 2 shift to larger values of |c−cs| and eventually beyond the point where the steady
profiles self-intersect and become non-physical. Stability graphs for H = 4 are presented
in figure 5. Recall that at c = cs the spectrum is purely imaginary. At c− cs ≈ −0.02 the
imaginary eigenvalue which is smallest in modulus collides with its conjugate counterpart
at zero and forms a pair of real eigenvalues of opposite sign producing instability. Again
we confirm the instability by performing a time-dependent simulation. We select the
mode with σ = 0.06083 at c− cs = −0.1 and apply the initial condition

y(ξ, 0) = Y (ξ) + ỹ(ξ, 0), ỹ(ξ, 0) = ǫ

[

eiξ
N
∑

n=−N

ỹ1n einξ + e−iξ
N
∑

n=−N

ỹ2n einξ

]

, (5.2)
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Figure 2. Eigenvalues for symmetric waves with H = 1: (a) Imaginary part, σI and (b) real
part σR versus relative wave speed c − cs for superharmonic disturbances, p = 0. Bubbles of
instability are labelled A and B.
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Figure 3. The eigenvalue spectrum for superharmonic disturbances (p = 0) for symmetric waves
with H = 1 at c− cs = −0.35. The solid lines are best-fit ellipses. The spectrum was computed
using N = 512. The label A indicates the eigenvalue laying on loop A in figure 2. Eigenvalues
in the lower half are the reflection of those in the upper half plane.

where the coefficients ỹ1n correspond to the eigenmode for σ when p = 1 and ỹ2n to the
eigenmode for σ when p = −1. As before we set ǫ = 10−4 to capture the linear regime.
The results are shown in figure 6(a) and confirm excellent agreement between the linear
theory and the unsteady calculation.
As H is increased further, the point of collision at which the real mode emerges in

figure 5(b) moves to the right toward c − cs = 0. At the same time the size of σR at
a fixed c − cs decreases in magnitude. This is clear from the plot in figure 6(b) which
illustrates the decay of the real eigenvalue with increasing H at a rate proportional to
exp(−H/2).



Stability of capillary waves on fluid sheets 13

N σ(A)

32 0.1715586 + 13.4004857i

64 0.1757873 + 13.4481326i

128 0.1757873 + 13.4481326i

256 0.1757873 + 13.4481326i

Table 1. Accuracy check for the unstable eigenvalue on loop A, here labelled σ(A), at
c− cs = −0.35 in figure 2. The tolerance for the Newton iterations for the base wave calculation
(see section 3) is δ = 10−11.
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Figure 4. Symmetric case for H = 1, c−cs = −0.35. Time evolution of a superharmonic normal
mode with σ = 0.1758+13.45i, shown with a solid line, using initial condition (5.1) with ǫ = 10−4.

Panel (a) shows the perturbation ỹ (note that b̃ = −ỹ) at t = 2 compared with the eigenfunctions
from the linear theory of section 4, shown with circles. Panel (b) shows L = log(max(ỹ)−min(ỹ))
versus time. The broken line with slope 0.1758 is shown for comparative purposes.

We now turn to superharmonic perturbations for antisymmetric waves. Sample wave
profiles at H = 1 are shown in figure 7. For this value of H , physically meaningful wave
profiles exist over the range 0 ≤ c−ca ≤ 0.73. The limiting profiles have trapped bubbles,
as shown in figure 7(b). Over this range, we identify two bubbles of instability provoked
by the collision of purely imaginary eigenvalues. The bubbles of instability are shown in
the upper and lower panels of figure 8(b) and the collisions are shown in 8(a). As for
the symmetric case we provide corroborating evidence for the instability by performing
a time-dependent simulation using the eigenfunction associated with the most unstable
mode as initial condition via (5.1). We select the value c− ca = 0.27 for which the most
unstable mode has eigenvalue σ = 0.00765 + 0.99486i. The result of the simulation is
shown in figure 9(a). As can be seen from the upper panel, at t = 20 the numerical
solution coincides with the linear eigenfunction, shown with circles. The lower panel
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Figure 5. Eigenvalues for symmetric waves with H = 4: (a) Imaginary part, σI and (b) real
part, σR, versus relative wave speed c− cs for superharmonic disturbances, p = 0.
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Figure 6. (a) Symmetric case for H = 4, c − cs = −0.1. Time evolution of a superharmonic
normal mode with σ = 0.06083 using initial condition (5.1) with ǫ = 0.0001. The upper panel

shows the perturbation ỹ (note that b̃ = ỹ) at t = 2 compared with the eigenfunctions from the
linear theory of section 4, shown with circles. The lower panel shows L = log(max(ỹ)−min(ỹ))
versus time. The broken line with slope 0.06083 is shown for comparative purposes. (b) Variation
of log σR, where σR is the positive real eigenvalue, with H for the fixed value c− cs = −0.1. The
broken line has slope −1/2 and is included for illustration.

shows that the amplitude of the perturbation wave is growing at a rate in line with
prediction of the linear theory, indicated by the broken line.
In general for the antisymmetric case non-intersecting steady waves exist for c ≥ ca

when H is smaller than about 2.29, and for c ≤ ca when H is larger than about 2.34. In a
small window between these two extremes we find that non-intersecting steady waves are
present for both c < ca and c > ca. Figure 9(b) shows an example inside this window at
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Figure 7. Steady antisymmetric waves at H = 1 (two periods are shown): (a) c− ca = 0.26
and (b) c− ca = 0.73. The waves have been translated upwards for display purposes.
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Figure 8. Antisymmetric waves with H = 1: (a) Imaginary part, σI and (b) real part σR versus
relative wave speed c − ca for superharmonic disturbances, p = 0. Bubbles of instability are
marked ‘A’ and ‘B’.

H = 2.3215. Note that this branch was computed numerically using the present method;
we have confirmed that it coincides with that obtained using Kinnersley’s exact formulae
given in Appendix D. The diamond in the figure indicates the presence of a small bubble
of instability.

5.2. Subharmonic perturbations, p 6= 0

Stability results for subharmonic perturbations with p = 1/3 on the main symmetric
branch for the case H = 1.885 are shown in figure 10. At c− cs = 0 the eigenvalues are
all purely imaginary and are given by (4.26) and (4.27). Two purely imaginary eigenvalues
coalesce at c− cs ≈ −0.03, and another pair at c− cs ≈ −0.05 to create pairs of complex
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Figure 9. (a) Time evolution of a superharmonic normal mode for H = 1 with σ = 0.06083
using initial condition (5.1) with ǫ = 0.0001. The upper panel shows the perturbation ỹ (solid

line) and b̃ (broken line) at t = 20 compared with the eigenfunctions from the linear theory of
section 4, shown with circles. The lower panel shows L = log(max(ỹ) − min(ỹ)) versus time.
The broken line with slope 0.00765 is shown for comparative purposes. (b) Antisymmetric wave

branch for H = 2.3215 showing wave height max(Y )−min(Ŷ ) versus c−ca. The diamond marks
a small region of instability.

eigenvalues. Two more such eigenvalue collisions occur in the figure at c − cs ≈ −0.29
and c− cs ≈ −0.31.
Figure 11 shows the eigenvalue spectrum for the antisymmetric branch when H = 2.0

for subharmonic perturbations with p = 1/3. At c− ca = 0 the eigenvalues are all purely
imaginary. Two of these collide at c − ca ≈ 0.01 to form a complex pair with non-zero
real part, corresponding to instability. Two more purely imaginary eigenvalues coalesce
at c − ca ≈ 0.03 to form a complex pair which splits into two purely imaginary values
again at c − ca ≈ 0.043. One of these merges with another purely imaginary eigenvalue
at c− ca ≈ 0.044 to form a further complex pair. The eigenvalue spectrum for this case
at c − ca = 0.04 is shown in figure 12. The structure of the spectrum is notable as it
features a figure-of-eight type shape together with a pair of elliptical bubbles (a close-up
of the latter in the upper half plane is shown in figure 12b). The cruciform structure of
the spectrum around the origin is a result of the quadrifold symmetry of the problem
(see 4.25). Similar features have been reported by Deconinck & Oliveras (2011) in their
work on gravity waves on water of finite depth.
The domains of subharmonic instability are shown in figure 13 for symmetric and

antisymmetric waves when H = 2. In both cases for each p 6= 0 there is a critical value
of the wave speed c which separates the stable and unstable regions. When c is close to
the long wave limit the curves dividing the regions of stability and instability are very
well approximated by quadratic curves, with some exceptions (see figure 13(b) inset).

5.3. Bifurcated base wave

Blyth & Vanden-Broeck (2004) found new solutions for capillary waves on a fluid sheet
by identifying bifurcations from the symmetric solution branch. They found that there
are up to three such bifurcations, depending on the flux through the sheet. They also
reported that there are no bifurcations from the antisymmetric branch. According to
Choi & Camassa (1999), the flux Q∗ in the sheet is related to the conformal modulus H
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Figure 10. Subharmonic perturbations, p = 1/3, for the main symmetric solution branch with
H = 1.885. (a) Imaginary part σI and (b) real part σR. The branch terminates at c−cs = −0.417
where the profiles exhibit trapped bubbles.
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Figure 11. Subharmonic perturbations, p = 1/3, for the antisymmetric solution branch with
H = 2. (a) Imaginary part σI and (b) real part σR. The branch terminates at c − ca = 0.08
where the profiles feature trapped bubbles.

by Q∗ = cH . It will also be helpful to relate this to the nondimensional flux parameter
utilised by Blyth & Vanden-Broeck (2004), namely Q = Q∗/(cλ). In fact we have the
relation

H = λQ = 2πQ, (5.3)

where we recall that we have set the period of the waves to be λ = 2π. Assuming that Q
is such that there are three bifurcation branches, we label these branches 1, 2 and 3 to
follow the convention of Blyth & Vanden-Broeck (2004).
To detect the bifurcation to branches 1 and 2, Blyth & Vanden-Broeck (2004) found

that it is necessary to include three wave profiles in the computational domain on the
main branch. To obtain this branch, we therefore work on a computational domain of
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that the eigenvalues are dense around the curves shown in (a) and (b) but only a finite number
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Figure 13. Phase diagrams showing regions of subharmonically stability (S) and instability (U)
for (a) symmetric waves and (b) antisymmetric waves, both for H = 2.0. The broken lines are
fitted quadratic curves. In (b) is shown a blow-up of the irregular behaviour around p = 0.1.

size 6π which includes three fundamental waves of period 2π. This permits us to move
from the main symmetric branch onto either branch 1 or branch 2. Moving along either
branch 1 or branch 2 from the bifurcation point, the wave profiles immediately deform
such that they have period 6π. Typical profiles along branches 1 and 2 can be seen in
figures 5 and 6 of Blyth & Vanden-Broeck (2004), which are reported for Q = 0.1. It is
important to note that because the base wavelength jumps by a factor of three as we
move from the main solution branch to branch 1 or 2, the value of Q also changes by a
factor of 3.
The bifurcation to branch 3 coincides with the collision of a pair of imaginary eigen-

values at the origin of the complex σ plane to form a pair of real eigenvalues of the same
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Figure 14. The locus of the bifurcation to branch 3 as H varies. The inset shows a close-up
near the minimum.

magnitude and opposite sign. In figure 14(a) we plot the locus of the bifurcation point,
computed as the point at which the real eigenvalue pair emerges, traced out as H varies.
As H increases the bifurcation point gets closer and closer to the zero amplitude (flat
free surface) steady solution. As H decreases, the bifurcation to branch 3 occurs further
and further along the main branch, corresponding to increasingly steep, nonlinear waves.
However, the bifurcation always occurs before the steepest wave with a trapped bubble
is reached. The curve in figure 14 reaches a minimum and then begins to turn upwards.
This is seen more clearly in the inset, which shows a magnified portion of the curve
around the turning point. Significant numerical problems are faced when trying to trace
the curve to smaller H than shown.
We now focus on the case H = 1.885 (Q = 0.3). In the upper panel of figure 15(a) we

show the eigenvalue spectrum on the main symmetric branch of solutions at two values
of c − cs beyond the bifurcation point. Therefore the collision of the imaginary pair at
the origin of the complex σ plane has already occurred, and a ± real pair of eigenvalues
is visible in the spectrum for each c− cs. The collision occurs at c− cs = −0.274 marking
the bifurcation to branch 3. On this bifurcation branch the wave profiles have the same
wavelength as those on the main branch, namely λ = 2π. We note that the most unstable
mode is either given by a complex eigenvalue (as for c − cs = −0.276 - see the circular
symbols) or by the purely real eigenvalues (as for c−cs = −0.417 - see the cross symbols).
The lower panel of figure 15(a) shows the locus of the real eigenvalues after the collision
as c− cs varies. In figure 15(b) we show instability bubbles on the bifurcation branch 3.
This branch terminates at c− cs = −0.294 where the waves enclose trapped bubbles (for
sample profiles see Blyth & Vanden-Broeck (2004)). Only eigenvalues with |σI | < 550 are
plotted. Accurate computation of eigenvalues with larger imaginary part (in modulus)
requires a prohibitively large value of N . While much of the branch is evidently unstable,
we observe several windows of stability (assuming that there are no unstable eigenvalues
in these windows with imaginary part larger than 550).
Figure 16(a) shows the eigenvalues σ for superhamonic perturbations, p = 0, computed

along branch 1 with Q = 0.1. We emphasise the point made above that as we move off
the main branch where Q = 0.3 onto the bifurcation branch, the value of Q changes
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Figure 15. Superharmonic perturbations, p = 0, for H = 1.885 (Q = 0.3). (a) Upper panel:
Eigenspectrum at c− cs = −0.276 (o) and c− cs = −0.417 (x). Lower panel: σR for the unstable
eigenvalues which emerge from a collision at the origin in complex σ plane and then move out
along the real axis as c − cs decreases. The collision occurs at c − cs = −0.274. (b) σR along
branch 3. The bifurcation point is at c−cs = −0.274. In (b) only the eigenvalues with |σI | < 550
are plotted. The calculation for (b) was done with N = 512.
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Figure 16. Real and imaginary parts of σ for superharmonic perturbations, p = 0, along (a)
branch 1 and (b) branch 2, both for Q = 0.1.

by a factor of three. The bifurcation from the main branch occurs at the left-hand-side
of the figure, where c = 1.0716, and the steepest waves featuring trapped bubbles are
encountered at the right hand side, where c = 1.1375. In order to relate the eigenvalues
computed at the bifurcation point, c = 1.0716 to those computed on the main branch, it is
necessary to make the transformation σ → 3

√
3σ. This transformation follows according

to the timescale used in (3.1) and the shift in wavelength by a factor of three. We have
confirmed that on making this transformation, all the of eigenvalues at the bifurcation
point in the computation on branch 1 with λ = 2π and p = 0 coincide with those obtained
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from the union of the eigensets for p = 0 and p = ±1/3 in the main branch computation
with λ = 2π/3.
Figure 16(b) shows the eigenvalues σ for superhamonic perturbations, p = 0, computed

along branch 2 with Q = 0.1. In order to see clearly the important features, we have split
the diagram into four panels. The bifurcation point from the main branch occurs at c =
1.031 and the branch terminates with profiles in self-contact and with trapped bubbles
at c = 1.017. The two left panels shows the merging of a pair of complex eigenvalues to
form a real pair at c = 1.0281. The right panels show the collision of a pair of purely
imaginary eigenvalues, which emerge from the bifurcation point at c = 1.031, to form a
complex pair at c = 1.0217.

6. Concluding remarks

We have conducted a linear stability analysis of steadily travelling waves on fluid
sheets of finite thickness. We have examined the stability of the solutions presented by
Kinnersley (1976) and the additional solutions which appear as bifurcations from the
symmetric Kinnersley branch identified by Blyth & Vanden-Broeck (2004). Our main re-
sult is that both symmetric and antisymmetric Kinnersley waves are in general unstable
to superharmonic perturbations. The waves are also unstable to subharmonic pertur-
bations. Where we have found instability by computing eigenvalues, we have confirmed
its presence by numerical integration of the full time-dependent equations from a suit-
able initial condition. For small amplitude waves the growth rates in the linear stability
problem are purely imaginary. The instability arises either as a collision of two purely
imaginary eigenvalues at zero or away from zero. The former case is clearly permitted by
the theory of MacKay & Saffman (1986).
The latter case is less clear as MacKay & Saffman stipulate that when two non-zero

eigenvalues collide a necessary condition for instability is that they have different Krein
signatures. Furthermore, MacKay (1987) showed that an eigenvalue cannot change its
signature under the continuous change of a parameter; in our work we have continuously
varied the wave speed c for a fixed H (see for example figure 2). We have calculated the
Krein signature of the purely imaginary eigenvalues for perturbations about the flat state;
details are provided in Appendix D. Referring to the particular case studied in figure 8
for antisymmetric base waves, we have computed the signature for all eigenvalues shown
in the figure at the flat state c − ca = 0 (see table 2 in Appendix D). We find that the
two eigenvalues which eventually collide at c− ca = 0.54 have the same signature at the
flat state. If signature is preserved under the continuous change of a parameter (here
c − ca), this would appear to suggest that the instability bubble labelled B in figure 8
arises through a collision of eigenvalues of the same signature in direct contradiction of
the Mackay & Saffman theory.
We may try to explain this apparent contradiction as follows. First, we note that in

figure 8, the lower of the two eigenvalues which ultimately takes part in the collision,
namely σν

s,m = 0.474, crosses another (σν
s,m = 0.530) at c− ca ≈ 0.1, and that these two

eigenvalues involved in the crossing have opposite signature (see table 2). It may be the
case that signature is exchanged during an eigenvalue crossing, so that the signature of
the lower eigenvalue switches from positive to negative prior at the crossing at c−ca ≈ 0.1
without producing instability. This possibility appears to be consistent with the theory
of MacKay (1987). Alternatively, it is possible that in our case signature is not preserved
under a continuous parameter change. According to MacKay (1987) signature is preserved
under a continuous parameter change for a non-degenerate Hamiltonian system. We recall
that for such a system there exists a non-degenerate symplectic form which induces a
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Hamiltonian flow,

JZt = ∇ZH, (6.1)

where H is the Hamiltonian and J is a non-singular matrix. Following Benjamin & Olver
(1982) and Bridges & Donaldson (2011), we assume that we may write our system (in
a frame of reference moving with the base wave) in the Hamiltonian form (6.1) with

Z(ξ, t) = (x, y, x̂, ŷ, φ, φ̂)T and where J is a 6× 6 matrix whose elements are derivatives
of the components of Zξ. Importantly, in this case (6.1) is degenerate since J is singular;
in particular the kernel of J contains the vector Zξ (Bridges & Donaldson 2011). Ac-
cordingly the associated symplectic form is degenerate and the conditions of the theory
of MacKay (1987) are not satisfied.

Appendix A. Derivation of the governing equations

We follow closely the derivation given by Choi & Camassa (1999) for the case of a flat
bottom. We note that similar equations have been derived by Viotti et al. (2014) for a
prescribed, fixed bottom shape. Our derivation allows for both an upper and a lower
deformable surface.
Consider one period of the flow in a frame of reference moving at speed c in the

physical x∗y∗ plane within the region 0 ≤ x∗ ≤ λ and b∗(x∗, t) ≤ y∗ ≤ h∗(x∗, t). We
conformally map this region to the rectangular box in the complex ξη plane, 0 ≤ ξ ≤ λ,
−H ≤ η ≤ 0, where H is the conformal modulus which depends on time. We note that
we choose the length of the rectangular box to be the same as the period in the physical
plane. The mapping is given by x∗ + iy∗ = f(ξ, η) + ig(ξ, η), where the right hand side is
an analytic function in the mapped domain. The mapping is determined by solving the
Laplace problem,

gξξ + gηη = 0,

g = y(ξ, t) at η = 0, g = ŷ(ξ, t) at η = −H, (A 1)

where y(ξ, t) = h∗[x∗(ξ, 0, t), t] and ŷ(ξ, t) = b∗[x∗(ξ,−H, t), t]. It is convenient to express
the mapped surface locations as Fourier series by writing

y(ξ, t) =

∞
∑

n=−∞

an(t)e
inkξ, ŷ(ξ, t) =

∞
∑

n=−∞

bn(t)e
inkξ (A 2)

where k = 2π/λ. The solution to (A 1) is found readily using the method of separation
of variables, and is given by

g = a0 + (a0 − b0)η/H +

′
∑

[

an
sinh(nk[η +H ])

sinh(nkH)
− bn

sinh(nkη)

sinh(nkH)

]

einkξ, (A 3)

where the primed sum is over n = −∞ to n = ∞ excluding n = 0. Making use of the
Cauchy-Riemann equations, it follows that

xξ = 1− T (yξ) + S (ŷξ) , x̂ξ = 1− S (yξ) + T (ŷξ) , (A 4)

where x(ξ, t) = x∗(ξ, 0, t) and x̂(ξ, t) = x∗(ξ,−H, t). The nonlocal operators T and S are
defined in (2.7) and (2.8).
The fluid problem for the stream function Ψ(ξ, η) in the mapped plane is stated as

Ψξξ +Ψηη = 0,

Ψ = ψ(ξ, t) on η = 0, Ψ = ψ̂(ξ, t) on η = −H, (A 5)
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where

ψ(ξ, t) =

∞
∑

n=−∞

ψne
inkξ, ψ̂(ξ, t) =

∞
∑

n=−∞

ψ̂ne
inkξ, (A 6)

and the coefficients αn, βn are to be found. The solution is

Ψ = ψ0 + (ψ0 − ψ̂0)η/H +

′
∑

[

ψn
sinh(nk[η +H ])

sinh(nkH)
− ψ̂n

sinh(nkη)

sinh(nkH)

]

einkξ. (A 7)

Since Φ + iΨ, where Φ is the velocity potential, is analytic in the mapped domain, we
can extract from (A7) that

φξ =
ψ0 − ψ̂0

H
− T (ψξ) + S(ψ̂ξ), φ̂ξ =

ψ0 − ψ̂0

H
− S(ψξ) + T (ψ̂ξ), (A 8)

where φ(ξ, t) = Φ(ξ, 0, t) and φ̂(ξ, t) = Φ(ξ,−H, t).
The kinematic conditions at the upper and lower surfaces are written in the mapped

plane as

ytxξ − xtyξ = −ψξ, ŷtx̂ξ − x̂tŷξ = −ψ̂ξ. (A 9)

Following Choi & Camassa (1999), we note that zt/zξ is analytic inside the flow domain,
where z = x∗ + iy∗. From (A 9) it follows that

Im

(

zt
zξ

)

η=0

= −ψξ

J
, Im

(

zt
zξ

)

η=−H

= − ψ̂ξ

Ĵ
. (A 10)

The Jacobians J and Ĵ were defined in (2.5). Exploiting the analyticity of zt/zξ and
proceeding via separation of variables as above, we derive the relations

Re

(

zt
zξ

)

η=0

= q(t) + T (ψξ/J)− S(ψ̂ξ/Ĵ), (A 11)

Re

(

zt
zξ

)

η=−H

= q̂(t) + S (ψξ/J)− T (ψ̂ξ/Ĵ), (A 12)

for arbitrary functions q(t), q̂(t). In deriving (A 11) we have exploited the fact that

m(ψξ/J) = m(ψ̂ξ/Ĵ), which itself can be demonstrated by applying Cauchy’s theorem
to zt/zξ in the mapped domain. Recall that the averagem(·) was defined in (2.9). Noting
that Re(zt/zξ) = (xtxξ + ytyξ)/J , we solve the first of (A 10) and (A11) to obtain

xt = xξ

[

T (ψξ/J)− S(ψ̂ξ/Ĵ)
]

+ yξψξ/J, (A 13)

yt = yξ

[

T (ψξ/J)− S(ψ̂ξ/Ĵ)
]

− xξψξ/J. (A 14)

Similarly we solve the second of (A 10) and (A 12) to find

x̂t = x̂ξ

[

S(ψξ/J)− T (ψ̂ξ/Ĵ)
]

+ ŷξψ̂ξ/Ĵ, (A 15)

ŷt = ŷξ

[

S(ψξ/J)− T (ψ̂ξ/Ĵ)
]

− x̂ξψ̂ξ/Ĵ. (A 16)

Following Choi & Camassa (1999) and Tiron & Choi (2012) we derive the Bernoulli
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equations on the upper surface and lower surface respectively,

φt+
[

S(ψ̂ξ/Ĵ)− T (ψξ/J)
]

φξ +
1

2J

(

φ2ξ − ψ2
ξ

)

+ (γ/ρ)κ = B(t), (A 17)

φ̂t+
[

T (ψ̂ξ/Ĵ)− S(ψξ/J)
]

φ̂ξ +
1

2Ĵ

(

φ̂2ξ − ψ̂2
ξ

)

− (γ/ρ)κ̂ = B(t), (A 18)

where B(t) is the Bernoulli constant.
The importance of the time-dependence of the conformal modulus H has recently

been discussed by Turner & Bridges (2015). Indeed, these authors have demonstrated
that treating H as a constant in a time-dependent calculation leads to erroneous results.
However, for small amplitude wave calculations such as those presented in this paper, the
error is of next order and does not compromise the integrity of our conclusions, which
are based on calculations assuming a constant value of H .

Appendix B. Formulations for steady waves

It is instructive to compare our formulation of the problem for steadily propagating
waves with that adopted by Kinnersley (1976). In particular we attempt to obviate po-
tential confusion over the presence of a Bernoulli constant in our formulation, and that
of others (e.g. Blyth & Vanden-Broeck 2004; Constantin & Strauss 2010; Blyth et al.

2011) and the absence of an explicitly-mentioned Bernoulli constant in Kinnersley’s
problem. (The issue of the Bernoulli constant is also discussed in the recent paper by
Vasan & Deconinck 2013). Kinnersley’s approach begins in a fixed (x, y) frame of refer-
ence relative to the propagating wave moving in the x direction, for which Bernoulli’s
condition on the upper free surface reads

φ̃t +
1

2

(

φ̃2x + φ̃2y

)

+
γκ

ρ
= C(t), (B 1)

where φ̃ is the velocity potential and C(t) is the Bernoulli constant. The latter is removed

by the transformation φ∗ = φ̃ −
∫ t

0 C(t
′) dt. Changing to a frame of reference travelling

with the wave at the crest speed ck, we introduce the travelling-wave coordinate z = x−
ckt and the shifted potential φ = φ∗+ckz (compare Groves & Toland 1997). Substituting
into (B 1) we find

1

2

(

φ2z + φ2y
)

+
γκ

ρ
=

1

2
c2k, (B 2)

where we have set φ̂t = 0 on the assumption of steady flow in the travelling frame.
Kinnersley constructed exact solutions to the Laplace equation for φ̂ subject to the
dynamic boundary condition (B 2).
In our formulation, we solve the problem in the travelling wave frame with the dynamic

boundary condition,

1

2

(

φ2z + φ2y
)

+
γκ

ρ
= B. (B 3)

where B is the time-independent Bernoulli constant. This equation has been derived by
writing down the Euler momentum equation directly within the travelling wave-frame
and integrating once. Introducing the conformal mapping discussed in section 2 and in
Appendix A, we obtain the boundary conditions (3.4) on the upper (and lower) surfaces.
To rationalise the two approaches, we compare (B 2) with (B 3) and deduce that c2k =
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2B, so that our Bernoulli constant can be related to the speed of propagation of the
waves relative to some inertial frame of reference.

Appendix C. Kinnersley’s exact solutions for travelling waves

Kinnersley (1976) presented exact solutions in terms of elliptic functions, working from
a slightly different statement of the problem, as is explained in Appendix B. Kinnersley’s
waves are classified as a two-parameter family according to the value of his parameter
B, which is related to the flux in the fluid sheet, and his parameter k ∈ (0, 1), which acts
as a kind of measure of the fluid depth. Our waves are parametrised by c and H . For
symmetric waves the transformation from Kinnersley’s parameter set to ours is effected
by taking

H =
πB

K(k)
, c =

(

2T

πρck

)

k′2K(k) sn(B, k′) cd(B, k′) (C 1)

where k′ =
√
1− k2, K(k) is the complete elliptic integral of the first kind, and sn and cd

are Jacobi elliptic functions with modulus k′ (see, for example, Byrd & Friedman 1971).
Here ck is the crest speed adopted by Kinnersely. It is related to our Bernoulli constant
through ck =

√
2B (see Appendix B). Using equations (35), (38) and (40) of Kinnersley

(1976), we obtain the formula for the symmetric wave crest speed,

ck =

(

4Tκs
ρλ

)1/2 (

1 +
κ2sa

2
s

λ2

)−1/4(

1 +
k2λ2

κ2sa
2
s

)−1/4

,
as
λ

=
k

κs
sc(B, k′), (C 2)

where κs = 2E(k) − k′2K(k), E(k) is the complete elliptic integral of the second kind,
as is the wave height defined as the vertical distance from trough to crest, and sc is a
Jacobi elliptic function (recall that we have set λ = 2π). For antisymmetric waves, the
transformation from Kinnersley’s parameter set to ours is given by

H =
πB

K(k)
, c =

(

2T

πρck

)

K(k) cs(B, k′) nd(B, k′), (C 3)

where cs and nd are Jacobi elliptic functions. Using Kinnersley’s expressions, we obtain
the formula for the antisymmetric crest speed,

ck =

(

4Tκa
ρλ

)1/2(

k′2 +
κ2aa

2
a

λ2

)−1/4(

1− k2λ2

κ2aa
2
a

)−1/4

,
aa
λ

=
k

κa
nc(B, k′), (C 4)

with κa = 2E(k)−K(k), where aa is the wave height, and nc is a Jacobi elliptic function.
For our calculations we will fix H and vary c. We now demonstrate that in doing this

we must always arrive at a limiting steady wave profile with a trapped bubble. If H
is fixed it is straightforward to show that B = HK(k)/π is monotonic increasing in k.
It can then be shown that as/λ is a monotonic increasing function of k and becomes
unbounded as k → k0, where k0 satisfies cn(HK(k0)/π, k

′
0) = 0 (recall that sc = sn/cn).

Consequently as/λ becomes arbitrarily large as k → k0, and certainly larger than the
threshold value stipulated by Kinnersley for self-intersecting waves (see his figure 3). We
note that c is a continuous function of k over [0, k0] and so varying c corresponds to
varying k and hence we must always arrive at a limiting wave profile with a trapped
bubble, and non-physical self-intersecting profiles beyond this. A similar argument holds
for antisymmetric waves which must also eventually enclose a trapped bubble and then
self-intersect.
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For completeness, we mention that Kinnersley showed that in the limit k → 1, sym-
metric waves approach a limiting profile described neatly by Billingham (2006) as the
‘string of beads’ solution in which a periodic sequence of bulbous fluid beads, confined
by upper and lower surfaces composed of parts of ellipses, are connected by asymptoti-
cally narrow neck regions providing a smooth transition from one bead to the next (see
figure 5 of Kinnersley 1976). The gap between the necks on the upper and lower surface
is asymptotically small, so that the waves are almost in contact. The wave profiles in
this limit do not self-intersect provided that B is in the range [0, π/4]. At B = π/4 the
beads are semicircular, and for B > π/4, the profiles self-intersect in the region of the
necks. Noting that K → ∞ as k → 1, the ‘string of beads’ solution may be obtained
numerically using the present framework by fixing B and then increasing k towards 1.
The corresponding values of H and c in this process come from the formulae in (C 1). We
have confirmed that this procedure yields elliptic string-of-bead type profiles, connected
by neck regions which nicely match Kinnersley’s asymptotic solution (72), although con-
siderable numerical difficulties are encountered in computing these profiles for values of
k very close to one.

Appendix D. Krein signature

Following MacKay & Saffman (1986) we compute the Krein signatures for linear per-
turbations by considering the sign of the total energy, E, in one wave period in a frame of
reference travelling at a nominated speed cf . The energy is defined as E = K+V − cfP ,
where K is the kinetic energy, V is the potential energy and P is the momentum transfer
in the x direction through the ends of the reference frame. Individually, these terms are
given as

K =

∫

A

1

2
ρ|∇φ|2 dA, V =

∫

SU

γ
[

(1 + η2x)
1/2 − 1

]

dl +

∫

SL

γ
[

(1 + ζ2x)
1/2 − 1

]

dl,

P =

∫

A

ρφx dA, (D 1)

where φ is the velocity potential, A is the area between the upper and the lower surface
contained in one wave period, and SU , SL are the upper and lower surfaces in a period,
and η is the corresponding displacement of each surface, and l is the arc length along each
surface. The Krein signature is positive if E > 0 and negative if E < 0. The signature is
particularly simple to calculate in the limit of small amplitude linear waves. In this case,
to leading order we find using the divergence theorem for the K and P integrals and the
symmetry or antisymmetry of the linear waves for the V integral,

K =
1

2
ρ

∫ λ

0

φφy |y=H

2

−φφy |y=−H

2

dx, V =
γ

2

∫ λ

0

η2x dx+
γ

2

∫ λ

0

ζ2x dx,

P = ρ

∫ λ

0

ζxφ|y=−H/2 − ηxφ|y=H/2 dx. (D 2)

According to linear stability theory (Taylor 1959), for waves with real wavenumber k̂
(which we allow to be positive or negative) and frequency ω̂, travelling on a sheet of
fluid otherwise at rest, we have the following results. For symmetric waves, we have the
dispersion relation ω̂2 = (γ/ρ)k̂3 tanh(k̂H/2), and

φ = φ0 cosh(k̂y) e
i(k̂x−ω̂t) + c.c., η = ik̂φ0ω̂

−1 sinh(k̂H/2) ei(k̂x−ω̂t) + c.c., (D 3)
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σν
s,m σν

a,m ν m sK

– 0.299 1 2 1

0.474 – -1 -2 -1

0.530 – 1 3 1

0.791 – -1 -1 -1

– 1.049 1 3 1

Table 2. Eigenvalues, σν
a,m and σν

s,m, and their Krein signatures, sK , according to (4.26) and
(4.27), and (D7) and (D8), applied for cf = ca = 1.471, for the flat sheet case c − ca = 0 in
figure 8 for H = 1.

with ζ = −η, where φ0 is an arbitrary complex constant, and c.c. denotes the complex
conjugate. For antisymmetric waves, the dispersion relation is ω̂2 = (γ/ρ)k̂3 coth(k̂H/2),
and we have

φ = φ0 sinh(k̂y) e
i(k̂x−ω̂t) + c.c., η = ik̂φ0ω̂

−1 cosh(k̂H/2) ei(k̂x−ω̂t) + c.c., (D 4)

with ζ = η. For both symmetric and antisymmetric linear waves, we find

K = V = 2πρ|φ0|2
k̂

|k̂|
sinh(k̂H), P = 4πρ

k̂2

ω̂|k̂|
sinh(k̂H)|φ0|2. (D 5)

The total energy as defined above is

E = K + V − cfP = 4πρ
k̂

ĉ|k̂|
sinh(k̂H)|φ0|2(ĉ− cf ), (D 6)

where ĉ = ω̂/k̂. Consistent with section 4, and recalling that we are working in this paper

with steady waves of period 2π, we decompose the wavenumber k̂ by writing k̂ = p+m,
where p is a real number in the range [0, 1) and m is an integer. This allows us to relate
the wave energy, and consequently the Krein signature, to the form of the perturbations
adopted in (4.11). Furthermore, we may meaningfully attribute a Krein signature for a
particular steady wave branch in the limit of zero amplitude by choosing cf = cs for
symmetric waves and cf = ca for antisymmetric waves. Following MacKay & Saffman
(1986), we calculate the Krein signature sK by scrutinising the sign of E. As in the main
body of the paper we set γ = ρ = 1. For symmetric perturbations we have

sK = sgn
[

νIm(σν
s,m)

]

= sgn

[

ĉ− cf
ĉ

]

= sgn
[

[k̂3 tanh(Hk̂/2)]1/2 − νk̂cf

]

, (D 7)

where ν = ±1 and k̂ = p +m and cf = cs or ca. For antisymmetric perturbations, we
have

sK = sgn
[

νIm(σν
a,m)

]

= sgn

[

ĉ− cf
ĉ

]

= sgn
[

[k̂3 coth(Hk̂/2)]1/2 − νk̂cf

]

, (D 8)

for cf = cs or ca.
To provide an example, we consider the stability calculation for antisymmetric base

waves with H = 1 shown in figure 8. Using the preceding formulae, we compute the



28 M. G. Blyth and E. I. Părău

Krein signatures for the eigenvalues shown in the figure at c − ca = 0. The results are
presented in table 2.
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