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Abstract: Most of China’s CO2 emissions are related to energy consumption in its cities. Thus, 

cities are critical for implementing China’s carbon emissions mitigation policies. In this study, we 

employ an input-output model to calculate consumption-based CO2 emissions for thirteen Chinese 

cities and find substantial differences between production- and consumption-based accounting in 

terms of both overall and per capita carbon emissions. Urban consumption not only leads to carbon 

emissions within a city’s own boundaries but also induces emissions in other regions via 

interregional trade. In megacities such as Shanghai, Beijing and Tianjin, approximately 70% of 

consumption-based emissions are imported from other regions. Annual per capita consumption-

based emissions in the three megacities are 14, 12 and 10 tonnes of CO2 per person, respectively. 

Some medium-sized cities, such as Shenyang, Dalian and Ningbo, exhibit per capita emissions that 

resemble those in Tianjin. From the perspective of final use, capital formation is the largest 

contributor to consumption-based emissions at 32–65%. All thirteen cities are categorized by their 

trading patterns: five are production-based cities in which production-based emissions exceed 

consumption-based emissions, whereas eight are consumption-based cities, with the opposite 

emissions pattern. Moreover, production-based cities tend to become consumption-based as they 

undergo socioeconomic development. 

Keywords: Consumption-based accounting; Production-based emissions; Embodied emissions; 

Input-output analysis; Carbon footprint; City 

1. Introduction 

China has been the world’s largest producer of CO2 emissions since 2007. In 2013, its CO2 emissions 

from fuel combustion totalled 8.5 billion tonnes, which accounted for a quarter of global CO2 
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emissions [1, 2]. China has prioritized climate change mitigation in the past decade, announcing in 

the 2014 “U.S.–China Joint Announcement on Climate Change” that its CO2 emissions will peak 

by 2030. In addition, in its 2015 Intended Nationally Determined Contributions, China promised to 

decrease its CO2 emissions per unit of GDP by 60-65% (based on 2005 levels) by 2030 [3]. 

Accompanying its rapid economic growth, China’s urban population has increased dramatically 

during recent decades. The urban population grew to 750 million in 2014, increasing from 

approximately 300 million in 1990. Today, more than half of China’s population lives in cities [4]. 

This rapid urbanization and industrialization have led to increased demands for energy and materials, 

which result in substantial emissions of greenhouse gases (GHG), including CO2 [5, 6]. 

Approximately 85% of China’s CO2 emissions are related to urban energy consumption, a rate that 

is much higher than that experienced in Europe (69%) or in the U.S. (80%) [7, 8]. Therefore, cities 

are critical for implementing China’s carbon emissions mitigation policies. There is an urgent need 

to understand China’s urban CO2 emissions, as such understanding is fundamental to proposing 

mitigation actions.  

There are two approaches to measuring GHG emissions: production-based and consumption-based 

accounting [9-11]. Production-based CO2 emissions are emissions caused by domestic production, 

including exports [12]. This approach accounts for CO2 emissions at the point of production, without 

consideration of where goods are used or who ultimately uses them [13, 14]. This approach is widely 

used in global climate change agreements, including the United Nations Framework Convention on 

Climate Change (UNFCCC) and the Kyoto Protocol. Conversely, under consumption-based 

accounting, all emissions occurring along the chains of production and distribution are allocated to 

the final consumers of products [15]. Pursuant to this approach, areas that import products are 

allocated the emissions related to their production. Therefore, consumption-based emissions include 

imports and emissions embodied in trade but exclude exports, whereas production-based emissions 

include exports and exclude imports [12]. Recent studies have compared the two approaches and 

demonstrated the advantages of consumption-based accounting [16-19]. For example, Steininger et 

al. [13] argued that a consumption-based climate policy approach can improve both cost-

effectiveness and justice, while Guan et al. [20] indicated that consumption-based accounting helps 

mitigate global air pollution. Moreover, Larsen and Hertwich [21] argued that consumption-based 

accounting provides a more useful and less misleading indicator for assessing the performance of 

local climate actions. Finally, Peters and Hertwich [22] have noted that consumption-based 

accounting has many advantages over production-based accounting, such as addressing carbon 

leakage, promoting environmental comparative advantages, increasing options for mitigation, and 

encouraging technology diffusion. 

There are numerous studies on consumption-based carbon emissions at the global and national 

levels [23]. Peters and Hertwich [22] calculated CO2 emissions embodied in international trade 

among 87 countries. They found that 53 billion tonnes of CO2 emissions in 2001 were embodied in 

international trade and that developed countries were net importers of emissions. Hertwich and 

Peters [24] quantified consumption-based greenhouse gas emissions for 73 nations and 14 

aggregated world regions. At the global level in 2001, 72% of greenhouse gas emissions were 

related to household consumption, 18% to investment and 10% to government consumption. Davis 

and Caldeira [25] used a fully coupled multi-region input-output (MRIO) model to construct a 

consumption-based CO2 emissions inventory of 113 countries and regions. The results showed that 
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62 billion tonnes of CO2 were traded internationally, which accounted for 23% of global emissions. 

These CO2 emissions were mainly exported from China and other emerging markets to developed 

countries. Peters et al. [26] developed a global database for consumption-based CO2 emissions for 

113 countries. In most developed countries, consumption-based emissions increased faster than 

territorial production-based emissions. Under consumption-based accounting, net CO2 emissions 

transferred from developing countries to developed countries grew from 4 billion tonnes in 1990 to 

16 billion tonnes in 2008. 

At the national level, Wood and Dey [27] applied a consumption-based approach to calculating 

Australia’s carbon footprint and found that emissions embodied in exports were much higher than 

those embodied in imports and that Australia’s total carbon footprint was 522 million tonnes (Mt) 

in 2005. Nansai et al. [28] applied a global link input-output model to analyse Japan’s carbon 

footprint. Wiedmann et al. [29] and Barrett et al. [30] both calculated the UK’s consumption-based 

greenhouse gas emissions and found that consumption-based carbon emissions were rapidly 

increasing and that there was a widening gap between production- and consumption-based 

emissions. Feng et al. [31] tracked carbon emissions embodied in products in the Chinese provinces; 

these authors found that 57% of total emissions were related to goods and services that were used 

outside of the province in which they were produced. For example, 80% of the emissions embodied 

in goods used in the highly developed coastal provinces were imported from less developed areas. 

Studies of emission inventories for cities are limited, and most are focused on production-based 

accounting. Dhakal [8] compiled energy usage and emissions inventories for 35 provincial capital 

cities in China. The results showed that these 35 cities accounted for 40% of China’s energy 

consumption and CO2 emissions and that the carbon intensity for these cities decreased throughout 

the 1990s. Hoornweg et al. [32] analysed per capita GHG emissions for several large cities and 

reviewed emissions for 100 cities. They showed that annual per capita emissions for cities varied 

from more than 15 tonnes of CO2 equivalent to less than half a tonne. Sugar et al. [33] provided 

detailed GHG emission inventories for Beijing, Shanghai and Tianjin and found that Chinese cities 

are among the world’s highest per capita emitters when compared with ten other global cities. Liu 

et al. [34] analysed features, trajectories and driving forces of GHG emissions in four Chinese 

megacities (Beijing, Tianjin, Shanghai and Chongqing) from 1995 to 2009. The emission 

inventories compiled in this paper include both direct emissions and emissions from imported 

electricity. Creutzig [35] used data from 274 cities to explore the potential for urban mitigation of 

global climate change. The results showed that urban energy use will grow threefold between 2005 

and 2050, if current trends in urban expansion continue.  

Few studies have researched consumption-based emissions for cities [36, 37]. Hasegawa et al. [38] 

constructed a multi-region input-output table among 47 prefectures in Japan and estimated their 

consumption-based carbon emissions. They found that production-based emissions differed great 

from consumption-based emissions. Moreover, the ratio of carbon leakage to carbon footprint was 

more than 50% on average at the regional level. Almost all previous studies of consumption-based 

emissions in Chinese cities focus on the same four megacities, i.e., Beijing, Shanghai, Tianjin and 

Chongqing. Dhakal [39] used a consumption-based approach to analyse the carbon footprints of 

four Asian megacities, including Beijing and Shanghai. Feng et al. [40] also analysed consumption-

based carbon emissions in the four Chinese megacities and found that urban consumption imposed 

high emissions on surrounding regions via interregional trade. In this study, we use an input-output 
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model to construct consumption-based CO2 emissions for thirteen Chinese cities.  

2. Method and data 

2.1 Input-output model for consumption-based accounting of carbon emissions 

The input-output model is one of the most widely used methods of analysing consumption-based 

carbon emissions [41]. The method is divided into single-region input-output and multi-region 

input-output (MRIO). In this study, we use the single-region input-output model. Some studies have 

summarized the input-output model and its applications [42, 43]. Dietzenbacher et al. [44] compiled 

eight experts’ views on the future of input-output. As mentioned above, the method has been widely 

used in environmental research [45] on energy consumption [46-48], greenhouse gas emissions [49-

52], air pollution [53, 54], water use [55-58], land use [59, 60], biodiversity loss [61, 62] and 

materials use [63, 64]. In this study, the input-output model is used to calculate the production-based 

carbon emissions from production based emission inventories for Chinese cities. The relationship 

between production- and consumption-based emissions is ‘consumption-based emissions = 

production-based emissions – emissions embodied in exports + emissions embodied in imports’. 

The analytical framework of the input-output model was developed by Wassily Leontief in the late 

1930s [65]. The basic linear equation of the input-output model is 

 1( )X I A Y    (1) 

where X is the total output vector whose element xi is the output of sector i, Y is the final demand 

vector whose element yi is the final demand of sector i, I is the identity matrix, and 1( )I A   is the 

Leontief inverse matrix.  

To calculate consumption-based CO2 emissions, we require the carbon intensity (i.e., CO2 emissions 

per unit of economic output) for all economic sectors. Suppose 
ik  is the carbon intensity of sector 

i, then the consumption-based CO2 emissions can be calculated as follows:  

 1( ) dC K I A Y    (2) 

where C is a vector of total CO2 emissions embodied in goods and services used for final demand, 

1 2[   ... ]nK k k k  is a vector of carbon intensity for all economic sectors, and ( )dY diag Y  

means that the vector of Y  is diagonalized [12, 66].  

Eq. (2) calculates the total emissions associated with the final demand, but it may not able to 

distinguish CO2 emissions from local production and imports. It is difficult to obtain details related 

to imports, so we use national data to calculate the emissions embodied in imports: 

 1( )
d

C K I A Y    (3) 

where C  is the total embodied emissions in the import, K  is the vector of national carbon 

intensity, A  is the direct requirement matrix for the import, Y  is the import, and 

( )
d

Y diag Y  means that the vector of Y  is diagonalized.  
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Notably, emissions from residential energy consumption are not included in our calculations.  

2.2 Data sources 

In this study, we use the input-output model to calculate consumption-based CO2 emissions for 

thirteen cities in China. The input-output tables for the cities are derived from regional statistics 

bureaus. Population data are obtained from the database of the National Bureau of Statistics of China 

[4]. China does not officially release carbon emissions data, and data quality is relatively poor at the 

city level—with the exception of a few megacities. Therefore, we developed a method for 

constructing a production-based CO2 emissions inventory for Chinese cities using the definition 

provided by the IPCC territorial emission accounting approach [67-69]. Each inventory covers 47 

socioeconomic sectors, 20 energy types and 9 primary industry products. 

3. Results 

3.1 Consumption-based carbon emissions for thirteen cities in China 

Table 1 shows the socio-economic information of the thirteen cities in 2007. It can be seen that 

Shanghai has the highest GDP per capita and the highest population density. On the contrary, 

Hengshui has the lowest GDP per capita with only 12724 Chinese Yuan (CNY) per capita. Capital 

formation occupies the highest percentage in the final demand. For example, Xian’s capital 

formation occupies more than 70% in the total final demand. 
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Table 1 Socio-economic information of the thirteen cities in 2007. 

Note: ¥ means Chinese Yuan (CNY).  

 

Population 

(Million) 

Area 

(km2) 

GDP per capita 

(¥ per person) 

Household consumption 

(Million ¥) 

Government consumption 

(Million ¥) 

Fixed capital formation 

(Million ¥) 

Inventory increase 

(Million ¥) 

Export 

(Million ¥) 

Import 

(Million ¥) 

Beijing 12.2 16411 78762 284654 221379 408256 47571 1179544 1183462 

Shanghai 13.8 6340 88398 445552 156079 504140 52709 2165237 2104832 

Tianjin 9.6 11920 52382 130924 75515 268135 24111 851749 845395 

Chongqing 32.4 82400 12918 181557 59575 221678 9046 245238 299169 

Dalian 5.8 13237 54146 76832 39215 170614 16101 385848 375542 

Harbin 9.9 53840 24680 69486 41707 105799 19634 111420 104367 

Hengshui 4.3 8815 12724 18367 5798 20927 7686 561432 559760 

Ningbo 5.6 9816 60844 66565 40943 166523 27301 710087 667917 

Qingdao 7.6 11282 49955 100176 41389 172300 19382 571674 526269 

Shenyang 7.1 12948 45383 79783 50200 181827 2287 169577 161559 

Shijiazhuang 9.6 15848 24841 67565 26044 128040 113 527903 512420 

Tangshan 7.2 13472 38355 71417 25075 69382 33204 337393 258530 

Xian 7.6 10108 23065 70717 27502 126904 16928 102712 168490 
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Fig. 1. Imported and domestic emissions in the total consumption-based CO2 emissions. The 

percentages of imported emissions are shown above the bars. 

 

Consumption-based emissions include imported emissions (emissions embodied in imports) and 

domestic emissions (from the consumption of domestic products). Fig. 1 shows that imported 

emissions were much higher than domestic emissions in 2007 in most cities. In megacities such as 

Shanghai, Beijing and Tianjin, approximately 70% of consumption-based emissions are imported 

from other regions. Hengshui has the highest percentage of imported emissions in its total 

consumption-based emissions because its imports are approximately 11 times greater than its final 

consumption. Overall, this reveals that urban consumers rely largely on goods and services produced 

elsewhere in China. This result is consistent with studies on cities in other countries. For example, 

Hasegawa et al. [38] found that imported CO2 emissions accounted for about 40-80% in total 

emissions for Japanese prefectures. 

In several cities, including Chongqing, Shenyang and Harbin, more than half of the consumption-

based CO2 emissions occur within city boundaries. Approximately 29% of Harbin’s emissions are 

imported from other regions for two reasons. First, Harbin has lower imports than other cities. For 

example, Shijiazhuang’s imports are 4 times those of Harbin, although the two cities have similar 

GDPs. Second, the carbon intensity of Harbin’s exports is much higher than that of its imports. 

Specifically, the carbon intensity of its exports is 215 g CO2 per CNY, which is 37% higher than 

that of its imports.  
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Fig. 2. Embodied CO2 emissions in major final demand categories. The percentages of emissions 

induced by capital formation are shown above the bars. 

 

From the perspective of final consumption, CO2 emissions are produced by four final demand 

categories, including household consumption, government, changes in inventories, and capital 

formation. Fig. 2 shows that capital formation is the largest contributor to consumption-based 

emissions, which corroborates previous research on CO2 emissions in China [70-72]. The high 

contribution of capital investments to consumption-based emissions is driven by rapid urbanization, 

large-scale economic growth, and government policies [40, 73]. Capital formation contributes more 

than 60% of emissions in four cities, including Shijiazhuang (65%), Ningbo (63%), Xian (61%) and 

Shenyang (61%). Shijiazhuang has the highest percentage of emissions derived from capital 

formation, which is determined by its consumption structure. Its capital formation accounted for 58% 

in its total final demands in 2007. After capital formation, household consumption is the second 

largest driver of emissions. The percentages of emissions produced by household consumption 

range between 19% (Ningbo) and 38% (Harbin). Harbin exhibits the highest percentage of 

emissions attributed to household consumption. In this city, capital formation and household 

consumption make similar contributions to final, with each contributing 38% of total CO2 emissions.  
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Fig. 3. CO2 emissions embodied in imports and exports for thirteen cities.  

 

Carbon emissions embodied in imports and exports vary greatly in the thirteen Chinese cities 

included in this study (see Fig. 3). Emissions embodied in imports for the four megacities are much 

larger than in other medium-sized cities. For example, emissions embodied in imports in Shanghai 

are 140 Mt CO2, which is 13 times greater than in Hengshui. The sector of metal products is the 

largest contributor to the embodied emissions of imports. In the city of Dalian, the imports of metal 

products produce 10 Mt CO2, which account for 26% of the total emissions embodied in imports. 

In addition, the sector of construction also cause substantial carbon emissions in Chinese cities. For 

example, Qingdao’s imports in Construction generate 11 Mt CO2 or approximately 28% of total 

emissions embodied in imports.  

For most cities, the emissions embodied in their imports are greater than the emissions embodied in 

their exports. For instance, the embodied emissions of Xian’s imports are 34 Gt CO2, whereas the 

embodied emissions of its exports are only 6 Gt CO2. In fact, Xian’s imports were approximately 

1.6 times greater than its exports in 2007. In addition, the carbon intensity of Xian’s production is 

lower than that of its exports. The carbon intensity of Xian’s imports was 201 g CO2 per CNY in 

2007, which was much higher than that of its exports (61 g CO2 per CNY). Therefore, one unit of 

import embodies more CO2 emissions than an equivalent unit of export. However, the embodied 

emissions in imports are smaller than the embodied emissions in exports for five cities, including 

Tangshan, Shijiazhuang, Harbin, Ningbo and Shenyang. Therefore, the producer responsibility is 

greater than the consumer responsibility in these regions. For example, emissions embodied in 

Tangshan’s imports equal 22 Gt CO2, which is less than half the emissions embodied in its exports 

(55 Gt CO2) mainly because the carbon intensity of its imports is much lower than that of its exports. 

The carbon intensities of Tangshan’s imports and exports were 85 and 164 g CO2 per CNY in 2007, 

respectively.  

3.2 Comparisons between production- and consumption-based emissions 
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Fig. 4. Production- and consumption-based CO2 emissions at the city level. The black circles 

represent production-based emissions, whereas the other circles represent consumption-based 

emissions, with the four colours representing emissions produced by household consumption, 

government, capital formation and changes in inventory, respectively. Total production- and 

consumption-based CO2 emissions are shown in the pie charts (in Mt CO2).  

 

Fig. 4 compares production- and consumption-based carbon emissions in a selection of Chinese 

cities. It can be seen that there are great differences between production- and consumption-based 

emissions for all cities. It is mainly caused by two factors: trade deficit and different carbon intensity 

[74, 75]. All thirteen cities are categorized by their trading patterns. Fig. 4 shows that five are 

production-based cities in which production-based emissions are higher than consumption-based 

emissions. Shijiazhuang is a typical production-based city with production- and consumption-based 

CO2 emissions at 87 and 47 Mt, respectively. Its annual per capita production-based emissions total 

9 tonnes, which is 83% higher than its annual per capita consumption-based emissions (5 tonnes). 

Notably, Shijiazhuang’s imports and exports are almost equal, although there is a substantial 

difference between the CO2 emissions embodied in its imports and exports, which is mainly due to 

its high-carbon-intensity domestic production. The average carbon intensity of its exports is 136 g 

CO2 per CNY, which is much higher than that of its imports (63 g CO2 per CNY). Therefore, 

improving technology and reducing carbon intensity are critical for these cities to control 

production-based emissions. Because of the large gap between the two approaches to emission 

accounting, the production-based cities prefer that consumption-based accounting be used to 

allocate responsibilities for climate change mitigation.  

Consumption-based emissions are larger than production-based emissions in eight cities. For 

example, Xian’s consumption-based CO2 emissions are 52 Mt, which is more than twice its 

production-based emissions (24 Mt). In fact, Xian’s imports are approximately 1.6 times more than 

its exports. In addition, the carbon intensity of Xian’s domestic production is lower than other cities. 
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The carbon intensity of its exports is 61 g CO2 per CNY, which is similar to Tianjin. However, the 

carbon intensity of Xian’s imports is 201 g CO2 per CNY—much higher than its exports. 

Production-based accounting benefits these consumption-based cities in allocating responsibilities. 

Clearly, the most developed cities in China, such as Beijing, Shanghai and Tianjin, tend to be 

consumption-based cities On the contrary, most medium-sized cities are production-based cities. 

Production-based cities tend to become consumption-based cities as they undergo further 

socioeconomic development. 

 

Fig. 5 Thirteen cities’ consumption-based emissions (row 1), production-based emissions (row 2), 

emissions embodied in imports (row 3), and emissions embodied in exports (row 4). This figure 

shows regional emissions totals (left column), emissions intensity (centre column), and per capita 

emissions (right column). The colour of the bars corresponds to the city’s GDP per capita, from 

the most affluent cities in red to the least developed cities in green (see scale). 
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Fig. 5, row 1, Left, shows the consumption-based emissions for thirteen cities in China. Overall 

consumption-based emissions are greatest in the four megacities, i.e., Shanghai (199 Mt CO2), 

Beijing (142 Mt CO2), Chongqing (97 Mt CO2) and Tianjin (93 Mt CO2). Consumption-based 

emissions in Shanghai are approximately 18 times those of Hengshui (11 Mt CO2). Annual per 

capita consumption-based emissions in Shanghai, Beijing and Tianjin are 14, 12 and 10 tonnes of 

CO2 per person, respectively (Fig. 5, row 1, Right). Some medium-sized cities, such as Shenyang, 

Dalian and Ningbo, have per capita emissions that are similar to Tianjin’s. In Chongqing, per capita 

consumption-based emissions are very low (3 tonnes CO2 per person), although this city’s total 

consumption-based emissions are high.  

With regard to production-based emissions, Shanghai is the largest emitter with 146 Mt CO2 (Fig. 

5, row 2, Left). Shijiazhuang has rather high production-based emissions (87 Mt CO2), which are 

even higher than Beijing (81 Mt CO2) and Tianjin (80 Mt CO2). Domestic production-based 

emissions per unit of GDP reflect the technological level of a city’s production (Fig. 5, row 2, 

Centre). Shijiazhuang has the highest carbon intensity of the thirteen Chinese cities, with 366 g CO2 

per CNY, which is one of the main reasons for its high production-based emissions. By contrast, 

Beijing and Shanghai have the highest levels of technology, and their carbon intensities are 85 and 

120 g CO2 per CNY, respectively. The highest annual per capita production-based emissions are 

found in Ningbo, Shenyang, Shanghai and Tangshan (10-12 tonnes CO2 per person; Fig. 5, row 2, 

Right). In Chongqing, per capita production-based emissions are low, as are its per capita 

consumption-based emissions. We find a substantial difference between production- and 

consumption-based accounting in terms of overall carbon emissions as well as per capita levels. As 

a result, the choice of an emission accounting approach has a major impact on allocating 

responsibilities for climate change mitigation. Thus, the two different accounting approaches must 

be considered comprehensively in identifying fair mitigation policies.  

Overall emissions embodied in imports are shown in Fig. 5, row 3, Left. We find that more developed 

cities tend to import more CO2 emissions. As the two most developed cities in China, Shanghai and 

Beijing have the largest amounts of emissions embodied in imports. By contrast, Harbin and 

Hengshui, two less developed cities, have the lowest amounts of emissions embodied in imports, 

which further confirms that production-based cities tend to become consumption-based cities as 

they undergo further socioeconomic development. In the case of exports (Fig. 5, row 4, Left), 
emissions embodied in exports are greatest in Shanghai (88 Mt CO2) and Shijiazhuang (72 Mt CO2), 

which is a primary reason for Shijiazhuang’s high production-based CO2 emissions.  

4. Conclusions 

Consumption-based CO2 emissions have been accepted by an increasing number of researchers and 

policy makers. In this study, we calculate consumption-based CO2 emissions for thirteen Chinese 

cities and find that consumption in these cities not only leads to carbon emissions within their own 

boundaries but also induces emissions in other regions via interregional trade. For instance, more 

than 70% of consumption-based emissions in Beijing and Shanghai are imported from other regions, 

which shows that urban consumers rely largely on goods and services imported from elsewhere in 

China. Therefore, cooperation between consuming and producing regions is critical to mitigate 

climate change. China currently has pilot carbon trading systems in seven cities and plans to 

establish a national emissions trading scheme by 2017, which will help improve regional 

cooperation on mitigation in China. In addition, a clean development mechanism (CDM) within 

China may encourage cooperation between cities and their neighbours. Under such a mechanism, 

cities may invest in their surrounding areas and obtain carbon emission permits.  

Capital formation is the largest contributor to consumption-based emissions in the thirteen cities. 

For example, more than 60% of consumption-based emissions were caused by capital formation in 

Shenyang and Ningbo in 2007. The high contribution of capital investment to consumption-based 

emissions is driven by rapid urbanization, large-scale economic growth, and government policies. 

Household consumption is the second largest driver of emissions, but the percentage of emissions 

induced by household consumption remains much smaller in China than in other countries. In the 
future, more residents will transition from rural to urban lifestyles as China continues its rapid 

urbanization, leading to increased CO2 emissions related to household consumption.  
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All thirteen cities are categorized in terms of their trading patterns. In five production-based cities, 

production-based emissions are higher than consumption-based emissions. Shijiazhuang is a typical 

production-based city, whose production- and consumption-based CO2 emissions are 87 and 47 Mt, 

respectively. Improving technology and reducing carbon intensity are critical if these cities are to 

control production-based emissions. Conversely, eight of the cities are consumption-based cities in 

which consumption-based emissions exceed production-based emissions. For example, Xian’s 

consumption-based CO2 emissions are 52 Mt, more than twice its production-based emissions (24 

Mt). Clearly, the most developed cities in China tend to be consumption-based cities, such as Beijing, 

Shanghai and Tianjin. Similarly, most medium-sized cities are production-based cities, and 

production-based cities tend to become consumption-based cities as they undergo further 

socioeconomic development. Based on this trend, more Chinese cities will transition from 

production-based to consumption-based cities as a result of rapid social development. Consequently, 

more production-based CO2 emissions will be transferred to rural areas or abroad. Therefore, rural 

and urban areas must cooperate to tackle the challenge of climate change within China. 

At present, few governments choose consumption-based accounting in determining their mitigation 

policies, and most global climate change agreements are based on production-based accounting, 

including the United Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto 

Protocol. Consumption-based accounting’s advantages have been shown in many studies; this 

approach elucidates the drivers of emissions growth, improves cost-effectiveness and justice, 

addresses carbon leakage, promotes environmental comparative advantages, and encourages 

technology diffusion [13, 22, 26, 40]. There are substantial differences between production- and 

consumption-based accounting in terms of calculating both overall and per capita carbon emissions 

levels. As a result, the selection of an emission accounting approach has a major influence on the 

allocation of responsibilities for climate change mitigation. The two different accounting 

approaches must thus be considered comprehensively to identify fair mitigation policies. At the city 

level, consumption-based accounting can help cities to reduce emissions both within city boundaries 

and along their entire supply chains at minimum cost. Interregional cooperation on climate change 

mitigation should employ consumption-based accounting to allocate mitigation responsibilities 

more fairly and efficiently. Therefore, consumption-based carbon emission accounting is a 

complementary tool for promoting climate action at the city level.  
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Support information 

In this study, the production-based CO2 emissions inventories are compiled according to 

Intergovernmental Panel on Climate Change (IPCC) guidance and include two parts: CO2 emissions 

from fossil fuel consumption and from industrial processes. Error! Reference source not found. 

presents the methodology framework of the inventory compilation. 
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Figure S1 Production-based CO2 emission inventory accounting approach 

1. Scopes definition 

In accordance with the guidelines from the IPCC regarding the allocation of GHG emissions, we 

defined the scope of city’s production-based CO2 emissions accounts in Error! Reference source 

not found.. The CO2 emissions include all that occurs within administered territories and offshore 

areas over which one region has jurisdiction, including emissions produced by socioeconomic 

sectors and residence activities directly within the region boundary. The CO2 emissions inventory 

compiled by this method consists of two parts (see Error! Reference source not found.). The first 

part is emissions from fossil fuel consumption, and the second part is emissions from industrial 

processes. 

 

Table S1 Scope definition for city’s production-based CO2 emissions accounts 

Spatial boundaries Components 

In-boundary fossil fuel 

related CO2 emissions 

Primary-industry fossil fuel combustion (farming, forestry, animal husbandry, fishery 

and water conservancy) 

Industrial fossil fuel combustion (40 sectors) 

Construction fossil fuel combustion 

Tertiary-industry fossil fuel combustion (2 sectors) 

Residential fossil fuel combustion (Urban and Rural) 

Other 

CO2 emissions from 

industrial process 
CO2 emissions from 9 industrial production process 

Note: Due to the city administrative boundary spans both urban and rural geographies in China, we divide the 

residential energy use into 2 parts: urban and rural. 

 

The fossil fuel related CO2 emissions are calculated for 20 energy types and 47 socioeconomic 

sectors. The 47 socioeconomic sectors are defined according to the Chinese National Administration 

for Quality Supervision and Inspection and Quarantine (NAQSIQ), which include all possible 

Production-based territorial CO2 emissions accounting approach 
(47 socioeconomic sectors + 20 energy types) 

Fossil fuel consumption Industrial processes 

 Data collection 
We calculate the CO2 emissions from fossil fuel 
consumption based on a city’s extended energy balance 
table (EBT), which is compiled using the basic EBT and 
sectoral energy consumption of industry. The necessary 
data can usually be collected from a city’s statistical 
yearbook. 

 Data process 
For certain cities, the necessary data are missing; 
therefore, we deduce these data. 

 Emission calculation 
We calculate CO2 emissions from fossil fuel 
consumption according to the IPCC guideline and 
previously research. 

 Data collection 
We calculate the CO2 emissions from 
industrial processes based on a city’s 
industrial product production, which can 
usually be collected from a city’s 
statistical yearbook. 

 Data process 
For certain cities, the necessary data are 
missing; therefore, we deduce these 
data. 

 Emission calculation 
We calculate the CO2 emissions from 
industrial processes according to the 
IPCC calculation method. 

City administrative boundary territorial CO2 emission inventory (Production-based) 
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socioeconomic activities conducted in a Chinese city’s administrative boundary (see Error! 

Reference source not found.). 

Table S2 Sectors defined in city’s CO2 emission inventory 

No. (𝒊) Socioeconomic sectors Category 

1 
Farming, Forestry, Animal Husbandry, Fishery and Water 

Conservancy  
Primary industry 

2 Coal Mining and Dressing 

Mining 

3 Petroleum and Natural Gas Extraction 

4 Ferrous Metals Mining and Dressing  

5 Nonferrous Metals Mining and Dressing 

6 Non-metal Minerals Mining and Dressing 

7 Other Minerals Mining and Dressing  

8 Logging and Transport of Wood and Bamboo  

Manufacturing 

9 Food Processing 

10 Food Production 

11 Beverage Production 

12 Tobacco Processing 

13 Textile Industry 

14 Garments and Other Fibre Products 

15 Leather, Furs, Down and Related Products 

16 Timber Processing, Bamboo, Cane, Palm Fibre & Straw Products 

17 Furniture Manufacturing 

18 Papermaking and Paper Products 

19 Printing and Record Medium Reproduction 

20 Cultural, Educational and Sports Articles 

21 Petroleum Processing and Coking 

22 Raw Chemical Materials and Chemical Products  

23 Medical and Pharmaceutical Products 

24 Chemical Fibre 

25 Rubber Products 

26 Plastic Products 

27 Non-metal Mineral Products 

28 Smelting and Pressing of Ferrous Metals 

29 Smelting and Pressing of Nonferrous Metals  

30 Metal Products  

31 Ordinary Machinery  

32 Equipment for Special Purposes  

33 Transportation Equipment manufacturing  

34 Electric Equipment and Machinery  

35 Electronic and Telecommunications Equipment 

36 Instruments, Meters, Cultural and Office Machinery 

37 Other Manufacturing Industry 

38 Scrap and waste 

39 
Production and Supply of Electric Power, Steam and Hot Water 

(Electricity generation) Electric power, gas and water 

production and supply 40 Production and Supply of Gas  

41 Production and Supply of Tap Water 

42 Construction Construction 

43 
Transportation, Storage, Post and Telecommunication Services 

(Transportation services) Services sectors / Tertiary 

industry 
44 

Wholesale, Retail Trade and Catering Services (Wholesale 

services) 

45 Urban 
Residential usage 

46 Rural 

47 Other Other 

 

We include 20 energy types in this paper that are widely used in the Chinese energy system (see 

Error! Reference source not found.). We exclude emissions from imported electricity and heat 

consumption from outside the city boundary owing to the lack of data on the energy mix in the 

generation of imported electricity. 
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Table S3 Energy types involved in city’s CO2 emission inventory and emission factors 

No. (𝑗) Energy types 𝑁𝐶𝑉𝑗  (PJ / 104 𝑡, 108 𝑚3 , 

etc.) 

𝐸𝐹𝑗 (Mt CO2 / PJ) 𝑂𝑖𝑗 (%) 

1 Raw coal 0.20908 0.087464 88.535 

2 Cleaned coal 0.26344 0.087464 88.535 

3 Other washed coal 0.15393 0.087464 88.535 

4 Briquettes 0.17796 0.087464 88.535 

5 Coke 0.28435 0.104292 97.000 

6 Coke oven gas 1.63080 0.071414 99.000 

7 Other gas 0.84290 0.071414 99.000 

8 Other coking products 0.28435 0.091212 97.000 

9 Crude oil 0.41816 0.073284 98.000 

10 Gasoline 0.43124 0.069253 98.000 

11 Kerosene 0.43124 0.071818 98.000 

12 Diesel oil 0.42652 0.074017 98.000 

13 Fuel oil 0.41816 0.077314 98.000 

14 Liquefied petroleum gas (LPG) 0.50179 0.063024 99.000 

15 Refinery gas 0.46055 0.073284 99.000 

16 Other petroleum products 0.41816 0.074017 98.000 

17 Nature gas 3.89310 0.056062 99.000 

18 Non-fossil Heat 0.01000 0.000000 0.0000 

19 Non-fossil Electricity 0.36000 0.000000 0.0000 

20 Other energy 0.29308 0.000000 0.0000 

 

In the second part of the emissions inventory, we calculate CO2 emissions from 9 industrial 

production processes (see Error! Reference source not found.). The industrial process emissions 

are CO2 emitted as a result of chemical reactions in the production process, not as a result of the 

energy used by industry. Emissions from industrial processes are factored into the corresponding 

industrial sectors in the final emissions inventory. 

 

Table S4 Industrial products involved in city’s CO2 emission inventory and emission factors 

No.(𝑡) Industrial Products 𝐸𝐹𝑡 (t/t) No.(𝑡) Industrial Products 𝐸𝐹𝑡 (t/t) 

1 Ammonia 1.5000 6 Silicon metal 4.3000 

2 Soda Ash 0.4150 7 Ferro-unclassified 4.0000 

3 Cement 0.4985 8 Coke as reducing agent (Ferrous Metals) 3.1000 

4 Lime 0.6830 9 Coke as a reducing agent (Nonferrous Metals) 3.1000 

5 Ferrochromium 1.3000   

2. Calculation method 

We adopt the IPCC approach to calculate the CO2 emissions from fossil fuel combustion and 

industrial process, which are widely applied by scholars. 

𝐶𝐸𝑖𝑗 represents the fossil fuel related CO2 emissions by sectors and energy types; 𝐴𝐷𝑖𝑗 represents 

fossil fuel consumption; 𝑁𝐶𝑉𝑗  represents the net calorific value of different energy types; 𝐸𝐹𝑗 

refers to the emission factors; and 𝑂𝑖𝑗 refers to the oxygenation efficiency of different sectors and 

energy types. The subscript 𝑖 ∈ [2,41]  represents 40 industry sectors (see Error! Reference 

source not found.), 𝑗 ∈ [1,20] represents 20 energy types (see Error! Reference source not 

found.). 

𝐶𝐸𝑡 = 𝐴𝐷𝑡 × 𝐸𝐹𝑡, 𝑡 ∈ [1,9] Equation S2 

𝐶𝐸𝑡 represents the process related CO2 emissions, and 𝐸𝐹𝑡 represents the emission factors for each 

industrial product. CO2 emissions from different industrial process will be allocated into the relevant 

manufacturing sectors in the final emission inventory. 𝑡 ∈ [1,9] represents 9 main industry products 
(see Error! Reference source not found.) 

3. Data collection 

𝐶𝐸𝑖𝑗 = 𝐴𝐷𝑖𝑗 × 𝑁𝐶𝑉𝑗 × 𝐸𝐹𝑗 × 𝑂𝑖𝑗 , 𝑖 ∈ [1,47], 𝑗 ∈ [1,20] Equation S1 
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3.1 Activity data 

We need energy balance table, sectoral energy consumption for industry enterprises by energy types, 

and Industrial products’ production to calculate the city’s CO2 emission inventory. The data are 

collected from cities’ statistical yearbooks. However, due to the data limitation at city-level, some 

necessary data is missing (see Error! Reference source not found.). We deduce the missing data 

in the following ways. 

 

Table S5 Data availability of 13 case cities 

City 

Energy 

balance 

table 

Sectoral energy consumption for ADS 

industry enterprises by energy types 
Industry products’ production 

Shanghai Yes Yes For the whole industry enterprises 

Beijing Yes Yes For the whole industry enterprises 

Chongqing Yes Yes For the whole industry enterprises 

Tianjin Yes Yes For the whole industry enterprises 

Shenyang N/A Yes For the whole industry enterprises 

Dalian N/A Yes For the whole industry enterprises 

Ningbo N/A Yes For ADS industry enterprises 

Qingdao N/A Yes For ADS industry enterprises 

Harbin N/A Yes For the whole industry enterprises 

Xi’an N/A Yes For ADS industry enterprises 

Shijiazhuang N/A Yes For the whole industry enterprises 

Tangshan Yes Yes For ADS industry enterprises 

Hengshui N/A Yes For ADS industry enterprises 

Note: The abbreviation “ADS” is short for “above-designated-size” in this paper. 

 

1.1.1 Energy balance table 

For most city in China, there is no energy balance table in the city’s statistical yearbook, such as 

Shenyang, Dalian, Ningbo, Harbin, Xi’an, Shijiazhuang, and Hengshui in our case. We deduce the 

city’s basic energy balance table from the corresponding provincial energy balance table. We divide 

the provincial energy balance table by the corresponding percentage of one city takes in its province 

to get the city’s energy balance table. 

1.1.2 Energy consumption for industry sectors 

Almost every city statistics the sectoral energy consumption for ADS (above-designated-size) 

industry enterprises by energy types in the city’s statistical yearbook, such as all the 13 case cities 

in this paper. We expand the sectoral energy consumption for ADS enterprises by whole industry 

energy consumption to get the sectoral energy consumption for the whole industry. 

1.1.3 Industry products’ production 

The city’s statistical yearbook statistics industry products’ production as well. If the production is 

for ADS industry enterprises (such as Ningbo, Harbin, Xi’an, Tangshan, and Hengshui), we expand 

the production to the whole industry enterprises by the city’s whole industry output to ADS industry 

output ratio. 

3.2 Emission factors 

To calculate the CO2 emissions from energy consumption, we collect 𝑁𝐶𝑉𝑗, 𝐸𝐹𝑗, and 𝑂𝑖𝑗 from 

our latest research, which are measured based on 602 coal sample from the 100 largest coal-mining 

areas in China. The measured emission factors are assumed to be more accurate compare with IPCC 

and default value (see Error! Reference source not found.). The emissions factors for 9 industrial 

products are collected from IPCC  and National Development and Reform Commission (NDRC) 

in China, shown in Error! Reference source not found.. 

4. Production-based CO2 emission inventory 

Based on the methodology provided above, we get the production-based CO2 emission inventory 

for the thirteen cities in China (see Error! Reference source not found.). The carbon emissions 

from urban and rural residents’ energy consumption are shown in the table, although they are not 

included in this study.  
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Table S6 Production-based CO2 emission inventory for 13 cities 

 Beijin

g 

Shanghai Tianji

n 

Chon

gqing 

Dalia

n 

Harbi

n 

Ning

bo 

Qing

dao 

Sheny

ang 

Shijia

zhuan

g 

Tangs

han 

Xian Hengs

hui 

Farming, Forestry, Animal Husbandry, Fishery and 

Water Conservancy 

1.24 1.19 0.92 5.17 1.07 2.20 0.97 1.06 0.73 0.21 0.61 0.19 0.07 

Coal Mining and Dressing 0.02 0.00 0.00 7.56 0.00 0.08 0.00 0.00 13.15 0.11 11.09 0.00 0.00 

Petroleum and Natural Gas Extraction 0.31 0.00 0.84 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.49 0.00 0.00 

Ferrous Metals Mining and Dressing 0.04 0.00 0.00 0.11 0.00 0.00 0.00 0.01 0.00 0.04 0.30 0.00 0.00 

Nonferrous Metals Mining and Dressing 0.00 0.00 0.00 0.01 0.00 0.02 0.00 0.03 0.00 0.04 0.00 0.04 0.00 

Non-metal Minerals Mining and Dressing 0.04 0.00 0.11 0.30 0.08 0.00 0.00 0.15 0.06 2.90 0.06 0.00 0.00 

Other Minerals Mining and Dressing 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 

Logging and Transport of Wood and Bamboo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Food Processing 0.13 0.09 0.05 0.10 0.39 0.32 0.09 0.62 0.54 3.31 0.03 0.46 0.06 

Food Production 0.11 0.22 0.07 0.11 0.07 0.37 0.10 0.34 0.19 1.34 0.04 0.14 0.02 

Beverage Production 0.25 0.09 0.16 0.11 0.23 0.37 0.09 0.25 0.30 0.25 0.04 0.28 0.06 

Tobacco Processing 0.00 0.00 0.01 0.02 0.00 0.12 0.00 0.00 0.01 0.02 0.00 0.00 0.00 

Textile Industry 0.06 0.25 0.09 0.21 0.06 0.13 1.10 0.68 0.06 2.29 0.01 0.06 0.06 

Garments and Other Fibre Products 0.08 0.13 0.04 0.01 0.16 0.00 0.34 0.38 0.08 0.90 0.00 0.00 0.01 

Leather, Furs, Down and Related Products 0.00 0.01 0.01 0.01 0.01 0.00 0.02 0.32 0.15 2.36 0.00 0.00 0.02 

Timber Processing, Bamboo, Cane, Palm Fibre & 

Straw Products 

0.01 0.03 0.03 0.01 0.02 0.11 0.03 0.09 0.12 1.14 0.00 0.01 0.06 

Furniture Manufacturing 0.03 0.03 0.02 0.00 0.10 0.02 0.03 0.13 0.13 1.87 0.00 0.00 0.00 

Papermaking and Paper Products 0.09 0.24 0.07 0.34 0.13 0.17 2.04 0.57 0.10 2.28 0.48 0.93 0.02 

Printing and Record Medium Reproduction 0.06 0.06 0.01 0.01 0.01 0.05 0.07 0.07 0.04 0.09 0.01 0.01 0.00 

Cultural, Educational and Sports Articles 0.01 0.05 0.01 0.00 0.00 0.01 0.10 0.11 0.01 0.11 0.00 0.00 0.01 

Petroleum Processing and Coking 2.88 6.78 3.37 0.63 2.64 17.16 5.78 2.39 1.87 2.89 1.60 2.15 0.01 

Raw Chemical Materials and Chemical Products 4.74 2.67 1.82 5.78 2.15 0.14 0.69 4.07 2.45 9.13 2.18 1.22 1.15 

Medical and Pharmaceutical Products 0.08 0.11 0.09 0.21 0.10 1.21 0.03 0.09 1.20 0.17 0.01 0.09 0.04 

Chemical Fibre 0.00 0.03 0.00 0.00 0.00 0.18 0.56 0.00 0.00 0.04 0.00 0.00 0.00 

Rubber Products 0.02 0.12 0.12 0.05 0.06 0.00 0.08 0.96 0.23 0.17 0.02 0.01 0.06 

Plastic Products 0.04 0.19 0.06 0.03 0.06 0.02 0.31 0.18 0.16 2.02 0.04 0.02 0.01 

Non-metal Mineral Products 1.69 1.22 0.98 4.58 3.20 2.50 0.82 1.62 2.42 32.97 2.22 0.57 0.10 
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Smelting and Pressing of Ferrous Metals 1.68 5.25 4.51 1.76 1.83 0.13 0.59 1.29 0.37 6.41 6.75 0.13 0.12 

Smelting and Pressing of Nonferrous Metals 0.02 0.27 0.06 0.54 0.01 0.09 0.46 0.08 1.06 0.71 0.01 0.02 0.00 

Metal Products 0.08 0.31 0.19 0.08 0.08 0.16 0.46 0.31 0.50 3.65 0.14 0.02 0.11 

Ordinary Machinery 0.17 0.61 0.24 0.40 0.84 0.22 0.95 0.98 1.07 2.22 0.20 0.16 0.05 

Equipment for Special Purposes 0.18 0.15 0.07 0.10 0.12 0.10 0.21 0.31 0.56 0.49 0.04 0.25 0.02 

Transportation Equipment manufacturing 0.33 0.56 0.28 1.03 0.38 1.25 0.41 0.39 0.81 0.10 0.07 0.81 0.02 

Electric Equipment and Machinery 0.05 0.19 0.08 0.07 0.07 0.22 0.42 0.61 0.61 0.00 0.01 0.07 0.03 

Electronic and Telecommunications Equipment 0.05 0.12 0.08 0.01 0.08 0.00 0.12 0.11 0.04 0.15 0.00 0.10 0.00 

Instruments, Meters, Cultural and Office Machinery 0.02 0.02 0.01 0.03 0.01 0.07 0.07 0.03 0.02 0.01 0.00 0.03 0.00 

Other Manufacturing Industry 0.15 0.03 0.03 0.02 0.02 0.00 0.06 0.20 0.16 0.01 0.00 0.05 0.01 

Scrap and waste 0.01 0.02 0.01 0.01 0.00 0.00 0.02 0.00 0.00 2.25 0.00 0.00 0.00 

Production and Supply of Electric Power, Steam and 

Hot Water (Electricity generation) 

38.41 74.23 51.58 38.01 18.55 22.81 47.4

3 

17.81 38.87 0.02 43.04 9.79 6.40 

Production and Supply of Gas 0.04 1.57 0.01 0.01 0.10 3.91 0.00 0.52 0.00 0.00 0.00 0.01 0.00 

Production and Supply of Tap Water 0.01 0.00 0.00 0.00 0.02 0.03 0.01 0.00 0.04 0.00 0.00 0.01 0.00 

Construction 1.19 2.20 1.09 0.89 0.58 0.05 0.54 0.37 0.47 0.20 0.10 0.27 0.03 

Transportation, Storage, Post and Telecommunication 

Services 

13.99 37.36 6.69 8.71 14.09 5.12 3.83 11.58 7.05 2.72 3.19 3.75 0.54 

Wholesale, Retail Trade and Catering Services 4.18 4.37 4.59 1.04 0.32 3.04 0.37 0.86 0.47 0.27 0.62 2.52 0.05 

Others 8.82 5.56 1.63 0.23 0.78 0.61 0.30 1.00 1.01 0.86 0.80 0.26 0.18 

Urban 8.05 5.16 2.47 1.92 1.07 1.82 0.82 1.47 1.46 1.05 0.28 1.59 0.27 

Rural 3.58 1.98 0.94 2.33 0.37 0.32 0.48 0.29 0.39 1.40 2.71 0.30 0.83 

Total Consumption 92.95 153.47 83.44 82.68 49.85 65.13 70.7

8 

52.35 79.00 89.28 77.22 26.34 10.44 
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