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The structure variety and functionalization flexibility of polymers extend the portfolio of catalysts 

for biomass transformation to chemicals and biofuels. In this work, we have successfully produced 

a series of polyphosphazene nano- frameworks based on hexachlorocyclotriphosphazene which 

exhibited high activity as non-acidic heterogeneous catalysts for dehydration of fructose to 5-

hydroxymethylfurfural under mild conditions. These polymeric frameworks possess tunable 

electron-withdrawing capability with high chemical and thermal stability as well as good 

recyclability by introducing co-monomers with different structures. It is revealed that the unique 

cyclotriphosphazene unit and electron-withdrawing nature of polymer backbone are essential for 

the catalytic performance. This strategy has provided a new pathway to designing highly active 

and environmentally friendly heterogeneous catalysts and innovative technologies for biomass 

conversion. 

Platform molecules from renewable biomass resources are a promising alternative to those from 

petrochemical refining  processes, which can be upgraded to a broad range of energy and chemical 

materials.1-7 In particular, 5-hydroxymethylfurfural (HMF), as one of the top building-blocks, can be 

converted to not only high valued 2,5-disubstituted furan derivatives used for production of fuels, 

fine chemicals and polymers, but also other  platform molecules such as levulinic acid (LA) and 2,5-

diformylfuran (DFF).8-10 It has been identified that the production of HMF can undergo a catalytic 

dehydration of carbohydrates based on C6 units in  acidic  mediums,11-13  however  the  HMF  yield  

is  limited by the formation of soluble polymers and insoluble humins, and by water induced HMF 

rehydration. Although it is afterwards improved by introducing organic solvents (i.e. dimethyl 

sulfoxide) to the process,14-16 the corrosivity, together with the complex and high energy 

consumption isolation procedures, is the most significant barrier to their industrial applications. 

Later, the applications of ionic liquids (ILs) have drawn much attention in the production of bio-

derived platform molecules, because efficient conversion with high selectivity can be achieved 

where ILs act as the catalysts and/or the solvents to avoid the use of acids.17 For instance, sugars 

can be selectively dehydrated into HMF by the metal chlorides, such as CrCl3 and VCl3, in ILs with or 

without   using   acids.18-20    But   the   use   of   these   metals caused extremely serious 

environmental issues. Although much work have been devoted to replacing them with less or none 

toxic catalysts,21-24 the high cost and the low recyclability of the catalysts in the ILs involved 

processes are unavoidable challenges in their applications. 

From the view of environmentally friendly and cost-effective biomass utilization, heterogeneous 

catalysts should be more desired due to their flexible acidity, inexpensive production and facile 

recovery. Accordingly, H-form zeolites,25,26 as well as other solid acidic catalysts including acidic 

ion-exchange resin,27-31 acid- functionalized silica, TiO2  and ZrO2,32-34 supported 

heteropolyacid35 and solid metal phosphate,36  have been extensively investigated and shown 

some competitive activities and reusability in conversion of sugars into HMF and other chemicals. On 

the other hand, the recently developed continuous reaction processes have greatly improved the 

application of heterogeneous catalysts.7,37 However,  the efficiency is relatively low even under a 

high temperature. Therefore, to realize a  feasible  chemical  engineering  process for biomass 

conversion, a high activity and environmentally friendly catalyst system with low cost and 

convenient applicability is under tremendous demand at present.  
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More recently, functionalized polymer materials have been successfully applied in platform 

molecules production from biomass, whose catalytic performance are not only effected by the active 

sites but the character of the structure as well.30,38 In our previous work, triazaheterocyclic  

compounds,  like hexachlorocyclotriphosphazene (HCCP) and cyanuric chloride (CNC), are found as 

efficient homogeneous catalysts for dehydration of fructose to HMF under mild conditions, whose 

activity might be effected by the electronic effect of the substituents.39 Herein, based on the nature 

of HCCP in synthesizing stable and degradable polymers,40,41 we have successfully designed and 

synthesized a series of novel polyphosphazene nanoparticles (PZS-NPs), with different co- monomers 

including 4,4’-sulfonyldiphenol (BPS), 4,4’-(hexafluoro- isopropylidene) diphenol (BPAF) and 4,4’-

diamino-diphenyl ether (ODA), as heterogeneous catalysts for the dehydration reaction, which are 

reliable for recycling and allow the conversion of sugar under  mild  conditions.  To  be  emphasized,  

PZS-NPs  can activate fructose for its highly efficient dehydration, and exhibit a performance 

superior to HCCP, which can be contributed to the improvement by the electron-withdrawing nature 

of the polymeric framework.  

 



 

In this work, poly(cyclotriphosphazene-co-4,4’-sulfonyldiphenol) nanoparticles, was synthesized by a 

precipitation polymerization of BPS and HCCP (BPS : HCCP = 3.5 : 1) in the presence of triethyl- 

amine (TEA) in acetonitrile at room temperature (Scheme 1). By taking the electronic effect of 

substituents into account, two different co-monomers, BPZF and ODA, were adopted instead of BPS, 

and thus poly(cyclotriphosphazene-co-(4,4’-(hexafluoroisopropylidene) diphenol)) nanoparticles and 

poly(cyclotriphosphazene-co-(4,4’- diaminodiphenyl ether)) nanoparticles were successfully 

produced with the same route. We denoted these three frameworks as PZS-3.5, PZAF-3.5 and 

PZODA-3.5, respectively. From Field Emission Scanning Electron Microscope (FE-SEM) images (Fig. 

1a-c), three polymeric frameworks showed a uniform spherical morphology, and have a narrow size 

distribution of approximately 700 nm, 1700 nm and 350 nm for PZS, PZAF and PZODA, respectively. 

Energy dispersive X-ray spectroscopy (EDX) and FTIR spectra revealed the abundant P, Cl, S (or F, N) 

elements and the characteristic  absorption bands of polyphosphazene, confirming the compositions 

derived from the used monomers (Fig. S1 and S2). In addition, thermo-gravimetric analysis (TGA) 

verified the thermal stability of PZS-NPs with a high decomposition temperature in nitrogen over 400 

oC, in a sharp contrast to the monomer of HCCP and co- monomers (Fig. 1d & Fig. S3). Also, by 

tuning the feeding ratios  of BPS and HCCP, we successfully synthesized a series of PZS nanoparticles 

with different compositions, which denoted as PZS-X (X indicates the molar ratio of BPS to HCCP). As 

one can observe, all the samples showed a well-dispersed particle size, which however gradually 

increased as the increasing concentration of BPS (Fig. S4). 



 

Dehydration reactions were firstly carried out over PZS-3.5 in a 3 wt% fructose-DMSO solution at 90 

oC for 0.5 h. Evidently, PZS-3.5 exhibited outstanding catalytic performance in conversion of  

fructose to HMF, with a 95.4 % yield of HMF (Table 1, entry 1). Moreover, this catalyst could possess 

high efficiency under lower temperature, and a 92.3 % of HMF yield was achieved by PZS-3.5 even at 

50 oC after 10 h (Fig. S5). Moreover, when the feeding molar ratios were varied from 2:1 to 7:1, the 

catalytic activity of PZS-NPs was reduced correspondingly (entry 1-4). And an even better HMF yield 

of 97.2 % was obtained for PZS-2.0 under the same reaction conditions, in which HCCP took over the 

highest content in all the PZS frameworks. It is naturally speculated that the dangling P-Cl groups  on  

the  periphery  of  PZS-NPs  are  varied  in  number with addition of nonstoichiometric BPS in 

synthesis, and the un- terminated HCCP moiety should take effect in catalytic reaction, which was in 

accordance with our previous work39. Furthermore, it  is worth noting that the superiority of PZS-

NPs was revealed by showing a better performance than HCCP and HCl (Table 1, entry 5 & 6, Fig. S6) 

after we compared the catalytic activity of the polymers with that of HCCP based on the same 

chlorine content of PZS-2.0 (Table S1), while a sharp decrease of the yield of HMF was appeared 

when using BPS as catalyst (entry 7). To further elucidate their variation, we utilized the catalysts of 

PZS-2.0, HCCP and HCl to undergo the dehydration reaction at a lower reaction temperature of 60 

oC (Fig. S6). It is evident that though parts of active catalytic sites have been buried inside the PZS-

NPs, the catalytic performance of PZS-2.0 is more distinct than those of the homogeneous catalysts 

HCCP and HCl under different reaction times and temperatures. In conclusion, this result implied 

that HCCP not only endow PZS-NPs with the prominent catalytic activity, but its activity meanwhile 

might be enhanced by the structure of polymer after the polymerization. 



Apart from the exceptional catalytic ability of P-Cl groups in PZS- NPs, synergistic role of polymer 

backbones within PZS-NPs might exist in catalysis procedure, in particular when taking into account 

the difference in catalytic performance of HCCP and PZS-NPs.42 Accordingly, based on HCCP 

monomer, PZAF-3.5 and PZODA-3.5, two   kinds   of  derivatives   of  PZS-NPs   with   different 

electronic properties were synthesized to investigate the cooperative impact of polymers. As a 

result, PZAF-3.5 showed a superior catalytic performance on dehydration of fructose with a HMF 

yield of 96.4 % after a reaction time of 0.5 h compared with that of PZS-3.5, while PZODA-3.5 

possessed a inhibited activity under the same conditions (Table 1, entry 8 & 9). Astoundingly, PZAF-

3.5 had enabled the dehydration with a very high rate, leading to a HMF yield of 83.1 % after a short 

reaction time of only 5 min, which was much better than that of PZS-3.5 under the same conditions 

(Fig. 2). In contrast, the HMF yield for PZODA-3.5 was only 9.9% after 5 min and only reached 82.2% 

after 0.5 h, whose catalytic activity was slightly inferior to that of HCCP. This difference could be 

ascribed to the enhancement from -CF3 groups of 4,4’-(hexafluoroisopropylidene) diphenol in the 

framework of PZAF-3.5 conferring a stronger electron-withdrawing capability as compared with  the  

sulfone groups of 4,4’-sulfonyldiphenol in PZS-3.5, which resulted in an more electron-positive 

phosphor centre and stronger interactions (i.e. hydrogen bonds) between PZAF and 

fructose/intermediates. On the other hand, the ether unit 4,4’-diaminodiphenyl ether as well as the 

tertiary amine groups in the framework of PZODA-3.5 showed a weak electron-donating capacity, 

which is negative in activating the P-Cl sites against the efficient generation of HMF. Thus the 

catalytic sites stemming from P-Cl groups are accordingly activated by virtue of the electro-migration 

capability of polymer backbone, which makes PZAF and PZS nanoparticles a potential alternative to 

homogeneous acid catalysts for the industrial applications. 

 



As we know, the concentration of fructose in reaction system is of paramount significance in the 

practical application. Herein, dehydration of fructose at high concentration was conducted (Table 1, 

entry 11-15). When dehydration of 30 wt% fructose was catalysed by PZS-2.0, the HMF yield reached 

85.9%, unequivocally higher than the reported best yield (approximately 76%)3,5. With decreases in 

feeding ratios of HCCP and BPS, the catalytic activity of resulting PZS-NPs was reduced as well, which 

same as the tendency was found at a low fructose concentration. 

With these all in mind, a possible catalytic mechanism of PZS-NPs catalysed dehydration of fructose 

illustrated in Scheme 2 was proposed based on our previously reported results.39 The O-triazine 

intermediate (A) was firstly formed on the surface of PZS-NPs, followed by the protonation step to 

form intermediate B and then the formation of 2-hydroxymethyl-5-hydroxylmethylene-tetrahydro- 

furan-3,4-diol. HMF was finally generated after the loss of the two water molecules. During the 

process, the interactions between PZS- ZPs and fructose as well as intermediate products should 

provide an enhancement in each dehydration step. 

 

Finally, reusability and recyclability of PZS-NPs were evaluated as well on PZS-2.0, and the 

experimental results were compiled  in Table 2. As expected, the selectivity of HMF was well kept 

after 5 cycles, and the catalytic activity of PZS-2.0 was decreased merely from 93.6% to 86.2%. 

However, the reduced active P-Cl groups due to site covering or substituted Cl should be responsible 

for the lost activity.  

 



In summary, a heterogeneous catalyst of polyphosphazene nanoparticles has been developed for 

highly efficient conversion of fructose to HMF. Under relatively mild conditions, HMF was produced 

with 97.2% yield in 3 wt% fructose solution and 85.9% yield in 30 wt% fructose solution at 90 oC for 

0.5 h, which is the first example concerning polymeric nanoparticle catalysts used for fructose 

conversion. Moreover, it has been substantially verified that the as-prepared polyphosphazene 

nanoparticle catalyst possesses the following outstanding properties: (1) unique electron-

withdrawing polymer backbone activating the P-Cl catalytic sites for a much higher catalytic activity; 

(2) high selectivity, recyclability and stability; (3) being environmentally friendly without the utilizing 

strong proton acid and any metal. Therefore, the concept of structure-enhanced catalytic 

performance opens a new pathway for developing highly active, green and degradable 

heterogeneous catalysts, and efficient chemical technologies for dehydration of fructose to HMF and 

other biomass conversion as well. 
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Materials: 

 

Fructose was purchased from Sigma-Aldrich. Hexachlorocyclotriphosphazene (HCCP), 4,4’-

sulfonyldiphenol (BPS), 4,4’- (hexafluoroisopropylidene) diphenol (BPAF), 4,4’-diaminodiphenyl ether 

(ODA), benzoyl chloride, and dihydroxyacetone were purchased from Aladdin Chemistry Co. Ltd 

(China). Acetonitrile (AN) (GC > 99.9%) was purchased from Shanghai Lingfeng Chemical Reagent 

Company and was used without further purification. Acetone, tetrahydrofuran (THF), triethylamine 

(TEA) and DMSO (analytical grade) were obtained from Shanghai Chemical Reagents Company and 

used without further purification. Dimethyl sulfoxide-D6 for NMR measurements was obtained from 

Cambridge Isotope Laboratories, Inc. 

 

Preparation of poly(cyclotri-phosphazene-co-4,4’-sulfonyldiphenol) nanoparticles (PZS-NPs): 

 

The typical preparation was carried out as follows: TEA (0.52 g, 5.14 mmol), HCCP (0.2 g, 0.575 

mmol), and BPS with different feed ratios were added in a glass flask and dissolved in acetonitrile (50 

ml) under ultrasonic irradiation, then the reaction was completed after 2 h at room temperature. 

The precipitated polymer nanoparticles were separated by filtration, and then washed with acetone, 



ethanol and deionized water, respectively. The final products were dried in vacuum at 40 oC to a 

constant weight. 

 

Preparation of poly(cyclotriphosphazene-co-(4,4’-(hexafluoroisopropylidene) diphenol)) 

nanoparticles (PZAF-NPs): 

 

The preparation of PZAF-3.5 was carried out as follows (as shown in Scheme S1): TEA (0.52 g, 5.14 

mmol), HCCP (0.1 g, 0.288 mmol), and BPAF (0.34 g, 1.008 mmol) were added in a glass flask and 

dispersed in acetonitrile (50 ml) under ultrasonic irradiation. The reaction was completed after 3 h at 

room temperature. The precipitated polymer nanoparticles were recovered by filtration, washed 

with acetone, ethanol and deionized water, and then dried in vacuum at 40 oC to a constant weight. 

 Preparation of poly(cyclotriphosphazene-co-(4,4’-diaminodiphenyl ether)) nanoparticles (PZODA-

NPs): 

 

The preparation of PZODA-3.5 was carried out as follows (as shown in Scheme S2): TEA (0.52 g, 5.14 

mmol), HCCP (0.1 g, 0.288 mmol), and ODA (0.202 g, 1.008 mmol) were added to a glass flask and 

dispersed in acetonitrile (50 ml) under ultrasonic irradiation. The reaction was completed after 8 h at 

60 oC. The precipitated polymer nanoparticles were recovered by filtration, washed with acetone, 

ethanol and deionized water, and then dried in vacuum at 40 oC to a constant weight. 

 

Catalyst recycling experiments: 

12.5 g of 10 wt% fructose/DMSO was mixed with 0.67 g PZS-2.0 in a 50 ml flash equipped with 

magnetic stirring, and the reaction was kept in oil bath at 90 oC for 0.5 h. After that, the nanoparticle 

catalyst was separated by centrifugation and purified for three times by repeating ultra-

centrifugation (12,000 rpm for 10 min) / re-dispersion cycles in acetonitrile with ultrasonic bathing 

and was dried in a vacuum at 45oC overnight. It was then used directly for the next run by adding 

the sugar. 

Typical separation procedure for HMF： 

After the dehydration reaction of fructose, the reaction mixture was centrifugation and then 

filtration to separate the polymer catalyst, then the liquid was transferred into a flask and was 

distilled under reduced pressure to remove the DMSO solvent. The remaining mixture was extracted 

with ethyl acetate (20 mL×5) after water (20 mL) was added, and then the organic phase was 

collected. After drying with anhydrous sodium sulfate, the organic layer was distilled under reduced 

pressure to obtain pure HMF as the main product. The purity was good from NMR analysis. 

Separated HMF: 1H NMR spectrum (400 MHz，[D6] DMSO, δ ppm): 4.481-4.496 (d, 2 H, J = 6.000), 

5.548–5.562 (t, 1 H, J = 5.600), 6.573–6.582 (d, 1 H, J = 3.600), 7.455–7.465 (d, 1 H, J = 4.000), 9.519 

(s, 1H); 13C NMR spectrum (100 MHz，[D6] DMSO, δ ppm): 56.6, 

110.3, 125.1, 152.4, 162.8, 178.6. 

 



Characterization: 

Field emission scanning electron microscopy (FE-SEM) was performed on a Hitachi S-4800 Scanning 

electron microscope at an accelerating voltage of 20 kV. The sample was prepared by drop-casting 

an ethanol suspension onto mica substrate and then coated with  gold. Transmission electron 

microscope (TEM) was by a JEOL 1230 transmission electron microscope at an accelerating voltage 

of 75 kV. Samples dispersed at an appropriate concentration were cast onto a carbon-coated copper 

grid. 

Energy dispersive X-ray spectroscopy (EDX) was taken on a JEM-2100F transmission electron 

microscope at an accelerating voltage of 200 kV. 1H NMR and 13C NMR spectra were obtained on a 

Mercury plus 400 MHz spectrometer with D6-DMSO as the solvent and tetramethylsilane (TMS) as 

the internal standard. Fourier transform infrared spectra (FT-IR) were recorded on a NEXUS-470 

Fourier transform infrared spectrophotometer. Thermal gravimetric analysis (TGA) was run on a 

Pyris 1 TGA instrument. The TGA curves were measured under N2 by heating the samples from 50 to 

800 °C at a rate of 20 °C min–1. All measurements were taken under a constant flow of nitrogen of 

40 mL/min. Gas chromatography-mass spectrometry (GC-MS) were conducted with a Finnigan 

Voyager GC-MS equipped with  a HP-5MS capillary column (30 m×0.25 mm×0.25 µm) and the 

corresponding GC/MS spectra. High performance liquid chromatography (HPLC) measurements are 

conducted using a Shimaszu Class-VP HPLC with RID-10A Refractive Index detector. A shodex SH1011 

sugar column (300 × 8 mm, 6 µm) is used to separate the products. General HPLC conditions for 

analysis of HMF yield: column temperature: 50oC; rate of fluid: 0.8 ml / min; injection amount: 5 µL. 

The elemental analysis was taken on a vario EL Ⅲ analyzer (Elementar Company in Germany) in 

Shanghai Institute of Crganic Chemistry (SIOC), Chinese Academy of Sciences.  

 



 

 



 

Figure S2. FTIR spectra of (a) PZS-3.5, (b) PZAF-3.5 and (c) PZODA-3.5 with the spectra of monomers. 

The characteristic peak of HCCP monomer (P-N) is located at 876 cm-1. For BPS monomer, the 

characteristic peaks of (C=C(Ph)) are located at 1586 cm-1  and 1499 cm-1, while the characteristic 

peaks of (O=S=O) are located at 1289 cm-1  and 1140 cm-1, respectively. For PZS-3.5,  the product 

show a new characteristic peaks of (P-O-(Ph)) are located at 945 cm-1, which verified the 

polymerization successfully. The retained the characteristic peaks of (P=N) at 1187 cm-1 and (P-N) at 

882 cm-1, and other characteristic peaks of BPS monomer, verify the PZS-3.5 has the fundamental 

structure of HCCP and BPS units. The slight shift vibration frequency of (P-N) in HCCP from 876 cm-1 

to 882 cm-1 should be ascribed to the inductive effect of substituted BPS co-monomer. 

For the sample of PZAF-3.5, the characteristic peaks originated from HCCP and BPAF can be found in 

a range of 500 ~ 1700 cm-1, which indicates the basic components in PZAF framework. Furthermore, 

the vibration frequency of (P-N) in HCCP moiety shifts to 885 cm-1 and  the vibration frequency of 

newly formed (P-O-(Ph)) in PZAF might be located at 954 cm-1. There might be a stronger inductive 

effect on the P-O bonding compared with that of PZS framework, which is caused by the –CF3 group 

containing co-monomer BPAF with a strong electron-withdrawing capability. 



For the sample PZODA-3.5, the characteristic peaks originated from HCCP and BPAF can also be 

found in a range of 500 ~ 1700 cm-1, indicating the basic components in PZODA framework. And the 

vibration peak located at 943 cm-1 should be attributed to the bond  formation (P-N-(Ph)) after the 

polymerization. However, the vibration peak at 874 cm-1, which can be regarded as the vibration of 

(P-N) in HCCP, slightly shifts to the lower frequency by comparing that of PZS and PZAF, and this 

might be due to the conjugated effect in ODA co- monomer with an electron-donating ability.  

 



 

 



 

 



 


