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Abstract

Fluid-structure interaction is a well-known and complicated prob-

lem. Its formulation requires simplifications in modelling, and usu-

ally the presence of gravity is one aspect which is neglected, espe-

cially in violent impact. In this thesis we account for the influence

of gravity on two physically different but mathematically similar

two-dimensional flows. First (in Chapters 2–4), sloshing impact of

a standing wave on the lid of a rigid tank, and second (in Chapter

5), impact of a rigid blunt body entering water which is initially at

rest.

Chapter 1 presents the motivation, literature, aim and struc-

ture of the thesis. In Chapter 2, gravity is neglected and model

equations are solved analytically, in particular the linearised hy-

drodynamic problem with and without the lid using the Wagner

approximation, time and coordinate stretching, and displacement

potential. Chapter 3, introduces gravity into the formulation and

the model is solved semi-analytically to determine its influence on

the width of the wetted region and on the pressure distribution on

the lid during impact. We numerically find the effect of gravity

on the moving contact points, hydrodynamic pressure, and surface

elevation in Chapter 4. Chapter 5 studies the influence of gravity

on the impact of a blunt body entering vertically with a constant

speed into an initially flat water. All problems are formulated and

solved within the Wagner model.

In both problems we found visible effects of gravity on the po-

sitions of moving contact points after the early stage of impact.

Gravity shortens the size of the wetted region. Consequently, the

velocities of the contact points are decreased by gravity. The ef-

fect of gravity on the surface elevation is shown for both problems.

Negative hydrodynamic pressures and forces are found during the
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sloshing impact stage when gravity is neglected. Numerically, it was

found that gravity decreases the hydrodynamic pressure on the lid

of the tank. Similarly the hydrodynamic pressure is found to be

decreased by gravity in the water-entry problem. Also in the water-

entry problem it is shown that gravity increases both the thickness

and the mass flux into the spray jets. Also the total energy (poten-

tial and kinetic) of the system, and the work done by the body on

the fluid are decreased by gravity.
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Chapter 1

Introduction

1.1 Physical motivation

“Worse things still happen at sea” is the title of an article in The Guardian

newspaper from Saturday, 10th of January 2015, see (George 2015). The au-

thor provided information about the recent losses of ships and fatalities; tragic

numbers of accidents and losses are reported. The majority of the accidents

have been caused in severe sea weather conditions experienced by the ship struc-

tures. Liquefied Natural Gas (LNG) carriers are also a part of these incidents.

On 26th of January 2016, LNG Journal Newsletter, published an article (LNG-

Journal 2016) stating that ExxonMobil, one of the largest liquefied natural gas

trader seller, expects that demand for natural gas and LNG will increase by 50

percent by 2040. Transporting natural gas via pipeline is the safest way. Pipelines

are more economical for short distances where feasible, but due to geopolitical

reasons and conflicts this option is not always available. However, for long dis-

tance routes, ocean-going LNG carriers are more competitive, since overall costs

are less affected by distance. Therefore, there has been a significant rise in LNG

transportation. For the history of the gas transportation see (Graczyk 2008) and

(Woodward & Pitbaldo 2010).

Today, we have two main containment systems which are most widely oper-

ating for transporting LNG. The Moss type, (Woodward & Pitbaldo 2010), with

a containment system of spherical design, and the Membrane type with contain-

ment system of rectangular design. The size of the LNG carriers has increased

significantly compared to the classical LNG carriers (from 138 000 m3 to 240 000

m3) during the past several decades. These tanks nowadays are very complex

structures with insulation to keep the natural gas below its liquefaction tem-

perature of approximately -163◦C. LNG is pressurized by a factor of 600 of its

gaseous state by cooling. For more details about the structure and operating of
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LNG carriers see (Godderidge 2009), (Woodward & Pitbaldo 2010) and references

therein.

Because of the LNG boils-off of approximately 0.1% to 0.2% per day on laden

journeys, the LNG tanks are never completely filled. Therefore, one of the con-

cerns with LNG carriers is the sloshing of LNG inside the tank. Sloshing is the

dynamic movement of a liquid with a free surface inside a tank which can conse-

quently apply loads on the tank structure. Violent liquid sloshing is of concern

for cargo tank designers due to the problems of safety in extreme loadings which

could destabilize the ship motion or cause structural damage to the tank, see

(Abramson, Bass, Faltinsen & Olsen 1976). For the sloshing incidents in LNG

carriers and its risks see (Vanem, Antão, Østvik & de Comas 2008), (Hine 2008)

and (Woodward & Pitbaldo 2010).

Due to various demands on natural gas supply, LNG carriers should operate at

any filling level. Different filling levels lead to different kinds of sloshing impacts

inside the LNG tank. For partial or low filling levels (10–60%), there could be

surface waves moving from one side of the tank to the other and reflecting at

boundaries. As the height of the filling level increases the sloshing motion of

liquid becomes that of standing-wave type, which is considered in this study,

with LNG moving up and down impacting the top of the tank, or rising along the

tank’s walls and impacting the top corners where the wall and the ceiling meet.

In two papers, (Longuet-Higgins 2001) and (Longuet-Higgins & Dommermuth

2001), it was shown that for steep standing waves, even in deep water, the collapse

of a cavity in the wave trough can build up very high local vertical accelerations

of the fluid, initiating a strong vertical jet. In one example they found that

the acceleration exceeds 100g. Also (Bredmose, Brocchini, Peregrine & Thais

2003), both experimentally and numerically, studied the motion of standing waves

generated by vertically accelerating a tank containing water with an external

force. They observed impacts of both sharp and flat-topped wave crests with the

lid.

It is shown both by numerical and experimental studies that sloshing pressure

magnitude is larger for low filling levels than for high filling levels, see (Abramson

et al. 1976) and (Kim, Shin, Bai et al. 2002). In all previously mentioned kinds of

impacts, there is a possibility of gas (or mixture of vapour and gas) to be trapped

by the liquid free surface at the instant of impact. Consequently the liquid may

become mixed with gas, which in these cases, influences gas compressibility sig-

nificantly affecting the impact loads on the tank’s surfaces, see (Rognebakke &

Faltinsen 2005) and (Malenica, Korobkin, Scolan, Gueret, Delafosse, Gazzola,

Mravak, Chen & Zalar 2006).

There is confidence in the Moss type design, because they are less susceptible
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Figure 1.1: Dimensions for an LNG tank in membrane carrier, (Woodward &
Pitbaldo 2010). The height of the tank HT = 30.58m, the width WT = 30m and
the cut edge (chamfer) Cl = 6.60m.

to sloshing and there is no restriction on the filling level compared to membrane

type design. Nevertheless, nowadays the membrane type design is more popu-

lar. The membrane type is preferred because of the relatively larger weight, less

efficient use of space within the ship, and higher construction cost for the Moss

type design. Almost 60% of the working LNG carriers in the world are mem-

brane type design, and 80% of the world’s LNG carriers under construction are

of membrane type design. Therefore we will focus our attention on a rectangular

tank configuration, because our concern is with the impact occurring at the lid’s

centre where the solid boundary is plane. We neglect the cut on the corners of

the real membrane tank. The cut corners are there, see Figure 1.1, to reduce the

sloshing load on the tank’s corners which are assumed to be the most vulnerable

parts of the tank to sloshing impact.

1.2 Aim of this thesis

Sloshing is one of the most important phenomena of LNG flow inside a tank dur-

ing transportation, as it may lead to violent impact on the tank’s surface, and it

may affect the stability of the motion of the whole ship. From a mathematical

point of view, problems of sloshing impacts are formulated similar to the problem
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of water entry. The water-entry problems describe the flows caused by a body

impacting on a free surface of liquid which is initially at rest. In both problems,

high hydrodynamic loads are detected. The loads acting over the wetted region

of a structure are of main concern in design. The aim of this thesis is to model

and investigate the influence of gravity on these impact loads. We investigate

this influence for both sloshing of liquid inside LNG tanks with high filling level,

and water-entry impact of a rigid body with constant speed. It is well-known

that during the early stage of liquid impact, when the liquid acceleration is much

greater than gravitational acceleration, gravity is negligible. The acceleration of

the liquid by impacts can be estimated as u0

T0
, where u0 is the impact velocity

(usually of order of few meters per seconds) and T0 is a duration of the impact

loads (usually few milliseconds). Then u0

T0
= O(100g), where g is gravitational

acceleration, and gravity can be safely neglected during the impact stage. In this

work, we consider impacts with either small impact velocity u0 due to restricted

free-surface motion or relatively large T0, when the liquid acceleration is compa-

rable with the acceleration due to gravity. During sloshing in LNG tanks, at high

filling, the liquid surface may approach the tank ceiling at a certain speed u0,

then the wetted area of the ceiling increases with relatively high hydrodynamic

pressure acting on it. This is the impact stage. The gravity is neglected at the

beginning of this stage but becomes important later on when the rate of the wet-

ted (contact) area expansion decreases due to the gravity-driven flow in the main

part of the tank. Finally the wetted area stops expanding and starts shrinking

(exit stage).

This exit stage is dominated by gravity with downward acting hydrodynamic

force on the lid. The same scenario happens when a totally submerged body is

made to exit from water, as described by (Greenhow & Moyo 1997). This stage

is even more complicated than the impact stage, due to the complexity of the

liquid’s free-surface behaviour during this stage, such us the speed of contraction

of the wetted region. Therefore, it is of crucial importance to understand the

influence of gravity even before this stage is reached.

Due to the complex nature of the LNG sloshing it is impossible to include all

physical and chemical parameters in an analytical, numerical or even experimen-

tal investigation. Therefore some simplifications, depending on the structure of

the flow, have to be considered for modelling such a phenomenon. This is done by

ignoring some parameters which give minor contribution to the flow. For example

with Froude scaling law, (Lee, Kim, Kwon, Kim, Lee et al. 2005), using compu-

tational fluid dynamics (CFD) studied the influences of LNG viscosity, LNG-gas

density ratio, and ullage pressure on the sloshing pressure during impact. They

found these influences insignificant.
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In this thesis, we employ some simplifications to model sloshing of LNG and

its impacts on the tank ceiling. Based on the following non-dimensional numbers,

the Reynolds number Re = ρ0u0H0

µ0
(the ratio of inertia and viscous forces), the

Weber number We =
ρ0u2

0H0

γ0
(the ratio of inertia flow to surface tension forces)

and the Mach number Ma = u0

c0
(the ratio of the velocity to the speed of sound in

the fluid) indicate the importance of viscosity, surface tension and compressibility

effects compared with the LNG inertia. Here ρ0 is the density, µ0 is the viscosity

of LNG, u0 is the characteristic velocity of the flow, H0 is the characteristic

length, γ0 is the surface tension of LNG and c0 is the sound of speed in LNG.

The measurement of the above-mentioned properties depend on the temperature

of LNG and the pressure applied on it. At the temperature of -163◦C, when LNG

has pressurized by a factor of (1:600), it has ρ0 ≈ 4.7×102 kgm−3, µ0 ≈ 1.14×10−4

kgm−1s−1, γ0 ≈ 1.4× 10−2Nm−1, and C0 ≈ 1.32× 103 ms−1, (Godderidge 2009).

In this study we are interested in the influence of gravity on impact loads

during sloshing inside LNG tanks. For example in a membrane LNG tank with

height H0 ≈ 30 m, wave length λ0 ≈ 30 m , wave amplitude a0 ≈ 1 m and g ≈ 9.8

ms−2, the sloshing impact velocity of LNG will be u0 ≈ 3 ms−1. Therefore,

the non-dimensional numbers are Re ≈ 108 � 1, We ≈ 107 � 1 and Ma ≈
10−3 � 1. Depending on these numbers the effects of viscosity, surface tension

and compressibility are neglected in impact loads during sloshing inside LNG

tank.

It is worth mentioning that the speed of sound in LNG is approximated by

the speed of sound in methane liquid (LNG consists of 87-90% of methane). The

presence of other components, 8-9% ethane and 0.5-1% nitrogen, and 0.5% of the

other component gases include propane, butane and isobutane, may significantly

decrease the speed of sound in LNG. However even with a speed of sound ten

times smaller than the speed of sound in methane liquid and an the flow speed

of 40 ms−1, the Mach number is still less than 1
3

and compressibility effects still

can be neglected. In addition, LNG boiling and possibility of mixing LNG with

vapour also may significantly reduce the sound speed in LNG. LNG modelled as

an incompressible fluid in this study.

In the water-entry problem, the above-mentioned simplifications can be ap-

plied as well. Water has density ρw ≈ 103 kgm−3, viscosity µw ≈ 10−3 kgm−1s−1,

with γw ≈ 7.5 × 10−4Nm−1 as the water-air interface surface tension, and the

sound of speed in water is cw ≈ 1.4 × 103 ms−1. With a body entering water

with width Hw = 10 m and constant velocity uw = 1 ms−1, the following non-

dimensional numbers are approximately, Re ≈ 107 � 1, We ≈ 107 � 1 and

Ma ≈ 10−3 � 1. Therefore, in such water-entry problems, the effects of viscosity,

surface tension, and compressibility are also negligible.
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1.3 Literature Review

Many theoretical and experimental results on fluid-structure interaction have

been discussed and published. This is due to its complicated nature and its

many applications in real-life problems, starting from very small droplet impact,

(Howison, Ockendon, Oliver, Purvis & Smith 2005) up to large breaking sea-

wave impact onto a permeable barrier, (Cooker 2001) and (Cooker 2013). The

most important pioneering work was done by (von Karman 1929) and (Wagner

1932), on the water-entry of solid bodies. First, (von Karman 1929) developed an

asymptotic theory for water-entry problems with linearised boundary conditions

on the free surface and body. Later, (Wagner 1932) calculated the rise of the

displaced water along the sides of the body, (called splash-up), during the impact

motion, for a wedge with a small deadrise angle (the angle between the tangent to

the profile and the equilibrium free surface). Modelling water-entry and sloshing

problems achieved more attention and improvement because of the simplicity

provided by Wagner’s model to solve such problems.

Several research programmes that investigated sloshing in LNG carriers are

reviewed in (Abramson et al. 1976), with liquid response for different tank geome-

tries and fill levels. Also in their work they discussed the scaling of model data

to full data by using the Buckingham Pi theorem with choosing impact pressure

as the dependent variable. (Korobkin 1982) introduced the so-called displace-

ment potential to convert the time variable into a parameter by removing the

time derivative in the kinematic boundary condition on the liquid’s free surface.

For more general two-dimensional body shapes, (Cointe & Armand 1987) and

(Howison, Ockendon & Wilson 1991), developed some asymptotic results for blunt

bodies. These authors used the method of matched asymptotic expansion by in-

troducing the idea of decomposing the wetted region into three regions, namely,

outer flow region, inner flow region (or jet root region) and jet region, which will

be discussed in detail through this study. (Howison et al. 1991), extended some

mathematical results when the tangent to the boundary of the impacting body

makes a small angle to the undisturbed water surface.

Further work on wave impact has been done by (Korobkin 1998). He in-

troduced the displacement potential and reduced the impact problem to a sys-

tem of ordinary differential equations. Also (Korobkin & Khabakhpasheva 2006),

(Scolan & Korobkin 2001), (Korobkin & Scolan 2006), (Iafrati & Korobkin 2004),

(Cooker & Peregrine 1995), (Cooker 1996) and (Oliver 2002) contributed to

understanding and modelling of wave impact. (Cooker & Peregrine 1990) and

(Cooker & Peregrine 1995) developed a model of the pressure impulse (the time-

integral of the pressure) caused by a wave impacting on a vertical wall.
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The elasticity of the body’s surface in the sloshing and water-entry problem

is not taken into account in this study. Solid bodies are assumed to be rigid.

The danger of extremely high pressure impacts depends on the structural re-

sponse. Therefore the sloshing impact loads have to be coupled with the local

elastic response of the structure for better understanding of this phenomena.

For recent progress in hydro-elastic models of liquid impact see (Rognebakke &

Faltinsen 2005), (Korobkin & Khabakhpasheva 2006), (Malenica et al. 2006),

(Ten, Malenica & Korobkin 2011), (Reinhard, Korobkin & Cooker 2013) and

references therein.

This thesis studies the sloshing impacts inside an LNG tank and water-entry

problem in two-dimensional (2D) formulation with a symmetric impact for both

problems. In these kind of impact, the size of the wetted region is unknown in

advance and is bounded by two time-dependent points (moving contact points).

Due to the symmetry of the flow considered in this study we are required to find

the position of only one moving contact point. In 2D impact problems, research

has been done also for asymmetric impacts, were the wetted region is defined

by two non-symmetric moving contact points, for example see (Reinhard 2013).

In three-dimensional (3D) problems, the wetted region is bounded by a time-

dependent 2D curve (moving contact line) which is unknown in advance. So

far there is no general method to solve 3D impact problems. In special cases

of elliptic and almost axisymmetric contact regions, (Korobkin & Scolan 2006)

studied the impact of a blunt body onto a liquid in 3D within the Wagner model.

They found the moving contact line by the method of asymptotic analysis.

Due to sudden change in the liquid’s flow, the problem of sloshing is very

complicated even after neglecting the effects of viscosity, surface tension, com-

pressibility and gravity. So far to the author’s knowledge no analytical study has

been done on the exit stage for sloshing impact of liquid inside a tank. A configu-

ration similar to that during the exit stage, when the contact region is shrinking,

can be found in (Benjamin 1968), who studied a gravity current from a box filled

with liquid with initially closed ends and one vertical end opened later. Then

the liquid starts to flow out from the box under the action of gravity. Ignoring

the effects of surface tension and viscosity, Benjamin found that the velocity of

the point on the lid, where the liquid separates from the lid, is the same as the

velocity of the liquid at the open end of the box, in case when the depth of the

downstream is the half of the height of the box.

Experimentally, (Scolan, Remy & Thibault 2006) studied impact of a 3D

standing waves on a horizontal plate elevated above the water surface. A plate

with width 0.8 m, thickness 0.02 m and 1.5 m long, is fixed rigidly at a distance

0.05-0.11 m from the equilibrium free surface of water with depth 1m. They made
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a comparison between the wave profiles with and without the horizontal plate and

showed that the presence of the plate significantly disturbs the wave kinematics.

Also they found that the duration of the impact stage is slightly shorter than

the duration of the exit stage. The force during both stages was studied. It was

found that the force peaks are of almost the same magnitude, but with opposite

signs of course.

1.4 Structure of thesis

The structure of the thesis is as follows:

Chapter 1 includes the introduction of this thesis which starts by giving the

physical motivation of this study and a review of the technical literature, the

aim of the thesis, an overview to the literature of fluid-structure interaction, and

ending by presenting the structure of this thesis.

The following three chapters are related to the 2D sloshing impacts of liquid

inside an LNG tank.

Chapter 2 describes the sloshing impact problem and gives its formulation for

a highly filled rectangular LNG tank. We study the impact of the liquid on the lid

of the tank as follows. First, we remove the lid and solve analytically the linearised

hydrodynamic problem. Then we introduce the lid to the problem and find semi-

analytically the correction to the solution which accounts for the lid. This is done

by formulating the linearised problem in terms of the velocity potential using the

Wagner condition, (Wagner 1932). We identify a small parameter at high filling

level. Then, by using stretched variables, we reformulate the problem in terms of

the displacement potential, (Korobkin 1982). However, when we introduce the lid

to the problem, we do not include gravity into the linearised formulation in this

chapter. At the leading order, the size of the wetted region, the hydrodynamic

force and the pressure distribution along the wetted region, in non-dimensional

variables, are obtained. At the end of Chapter, the energy distribution of the

system is investigated.

Chapter 3 studies the influence of gravity on the size of the wetted region.

This influence is determined semi-analytically by two different methods, and the

results are compared one with another. Also in Chapter 3, we determine the

correction to the surface elevation and compare the surface elevations with and

without the lid. The last section of this Chapter studies the correction due to

gravity on the pressure distribution on the lid of the container during the impact.

Chapter 4 presents the numerical part of this thesis. Keeping gravity in the

formulation, we remove the lid of the tank and apply a distribution of pressure

along the wetted region with the condition that this pressure should keep the
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wetted region at the top boundary of the tank and does not allow the liquid to

exceed this elevation. The problem is formulated in terms of the coefficients for

the pressure distribution and surface elevation, after we discretise both in space

and time. We arrive at a system of algebraic equations at each time step. It

is shown that the system is ill-conditioned. Therefore a regularization of the

system is performed to stabilize the numerical solution. The surface elevation

and pressure distribution, including gravity, are investigated.

Chapter 5 deals with a topic different from LNG sloshing impact, but related

to it: the 2D water-entry problem. We consider the normal impact of a symmetric

rigid body with constant velocity onto the lower half-plane of liquid with initially

flat free surface. We give a description to this problem and write its formulation.

We find the correction due to gravity to the size of the wetted region. Then

we find the surface elevation, the hydrodynamic pressure distribution and the

hydrodynamic force, with corrections due to gravity in each of them. We make a

comparison for each to show the difference between gravity-free and with-gravity

flows for all the mentioned physical properties. Also in Chapter 5 in the presence

of gravity, we evaluate the total energy (kinetic and potential) distribution, taking

into account the jets. It is well-known that the energy is not conserved in the

Wagner model. The thickness of the spray jets, given by (Wilson 1989) and

(Howison et al. 1991), is used to calculate the mass and energy fluxes into the

jets when gravity is taken into account.

Finally, in Chapter 6 we draw conclusions together and make suggestion for

future work following on from that presented in Chapters 2-5.
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Chapter 2

Linearised sloshing-slamming

problem

In this chapter, we formulate and study the sloshing-slamming problem in a rect-

angular container with rigid walls. The container is stationary. The liquid flow

in the container and subsequent impact by the liquid onto the lid of the container

are caused by initial deflection of the liquid’s free-surface from its equilibrium

level. The gap between the container’s lid and the equilibrium level of the liquid

is small compared with the dimensions of the container. The sloshing is con-

sidered in high-filling condition. The liquid flow before impact is governed by

gravity. If the duration of the impact stage, when the wetted area of the lid is

increasing starting from a single point, is small compared with the gravity time

scale, the gravity can be approximately neglected in calculations of the size of the

wetted area and the impact pressure distribution along the lid. This gravity-free

approximation of liquid impact is studied in the present chapter.

In section 2.1, we give a description of the problem and discuss some possible

evolutions of the surface elevation. In section 2.2, we carry out the formula-

tion, non-dimensionalisation and linearization of the problem. We consider the

problem with and without the rigid plate (lid) and we use asymptotic analysis

to formulate the Mixed boundary-value Problem (MBVP) when the rigid lid is

present. Next we semi-analytically find results for the sloshing impact in section

2.3, in the leading order. Finally, in section 2.4 we investigate the evolutions of

the kinetic and potential energies of the liquid in the tank during the impact,

under the assumption of the total energy conservation.
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2.1 Description of the Problem

In this study we consider a highly-filled rectangular tank containing an inviscid,

incompressible fluid in two-dimensional motion. The rectangular cross-section of

the tank has height H and length 2L and lies in the upper half plane (y ≥ 0)

centered at the origin. Also y = 0 is the bottom and y = H is the rigid lid of the

tank, y = H−h is the still water level, and x = ±L are the rigid side walls of the

tank. (Woodward & Pitbaldo 2010) presented with illustrations and diagrams all

the details of the LNG tanks and storages’ structure and design.

The fluid is initially at rest, t = 0 is the instant when the fluid starts to move

due to gravity. The initial shape of the free-surface is sketched in Figure 2.1 and

is described by the equation y = f(x), where x is the horizontal coordinate and y

is the vertical coordinate. In non-dimensional variables (designated with tilde˜)

the initial free-surface shape is given by the equation ỹ = f̃(x̃), where

f̃(x̃) = 1− ε+ ε

∞∑
n=1

f̄n cos(knx̃), (2.1)

where the constants f̄n and kn will be introduced later in section 2.2.3 and˜stands

for non-dimensional coefficients. The coefficient ε is small, as we are concerned

with high fill levels.

Initially there is no contact between the rigid lid and the liquid and the free-

surface is the upper boundary of the liquid domain. The fluid starts to flow,

from rest, at t = 0. Gravity forces the fluid to fill in the depression shown in

the middle of Figure 2.1. After a short period of time the fluid hits the rigid lid

from below, as shown in Figure 2.2, impact occurs at time t = tn, n = 3, 4, 5, 6,

where tn represents the different time of several events for each n = 1, 2, . . . , 8,

and if n > m, then tn > tm. At t = t3 the free-surface hits the plate from below

and creates an interval of wetted contact with the plate. The wetted interval

lengthens until t = t6 and later shrinks. The fluid then separates from the plate

at t = t7. During this work the period of impact with expanding wetted interval

will be called the impact stage and the period of shrinking until it separates will

be called the exit stage. The former stage is of our interest in this study.

As shown Figures 2.1 and 2.2, both the shape and the flow are symmetric

in such a way that no air cushion is assumed to exist between the rigid lid and

the fluid during the time of contact. The air cavity in highly filled tanks is

discussed experimentally and numerically in (Rognebakke & Faltinsen 2005) and

(Ten et al. 2011).
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y = f(x)

Rigid fixed plate

y = 0

y = H

x = −L x = Lx = 0

Figure 2.1: Vertical cross-section of the tank. Sketch of the initial shape of the
free-surface.
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Figure 2.2: Evolution of the free-surface during approach to first impact at the
centre of the tank, and the subsequent wetting and drying of the rigid lid plate.
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Figure 2.3: Evolution of the free-surface during approach to impact at the top
corners of the tank, and the subsequent wetting and drying of the rigid lid plate.

Two other different impacts, which are assumed to follow the first one but

in different situations, are shown in Figures 2.3–2.4, where the evolution of the

second contact and the third contact, respectively, which occur one after another

with the initial free-surface given by equation (2.1) is demonstrated. The two

later contacts are different from the earlier one in that they hit the rigid lid in

two different points simultaneously. The middle sloshing is when the fluid comes

to hit the rigid lid along the walls of the tank and in the last sloshing, the fluid

hits the rigid lid from the centre in two contact points with air trapped between

them.

2.2 Mathematical formulation

In this section the problem is formulated and non-dimensionalized, first, without

a rigid lid, then the rigid lid is introduced. For the former case the problem is

linearised and solved analytically. As to the latter case, the problem is asymp-

totically analysed by using a stretched variable to help reduce the problem to a

MBVP, in terms of a complex velocity potential and a displacement potential.

The problem is solved semi-analytically (semi-numerically).
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Figure 2.4: Free-surface evolution before, during and after the third impact be-
tween the fluid and the rigid lid.

2.2.1 Governing Equations

The fluid is initially at rest and considered to be inviscid and incompressible. If

the fluid starts from rest, then by Kelvin’s theorem the fluid flow is subsequently

irrotational, and therefore the fluid velocity, u, can be described by the velocity

potential φ(x, y, t), that is

u =
∂φ

∂x
i +

∂φ

∂y
k,

where i and k are unit vectors pointing in the directions x-increasing and y-

increasing. The incompressibility of the fluid implies that the velocity potential,

φ(x, y, t), satisfies Laplace’s equation in the flow domain:

∂2φ

∂x2
+
∂2φ

∂y2
= 0.

The boundary conditions are imposed on the walls of the tank |x| = L, y = 0, y =

H and on the free-surfaces. After wetting from the centre, there will be two free-

surfaces, between the walls and the contact region, see Figure 2.6. The presence

of the rigid fixed plate which does not allow the fluid to go above y = H in the

interval −L < x < L is modelled by an external air pressure p(x, t) acting on the

fluid boundary in the contact region, where the plate is wetted. The free-surface
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elevation is described by

y = H − h+ η(x, t), (2.2)

where y = H is the position of the lid and h is the distance between the static

liquid surface, in its equilibrium state, and the rigid lid, as shown in Figure 2.5.

Throughout this work we choose h = 0.05H, so the fluid level in the tank is

95% of the tank’s height which is highly filled. The surface elevation (relative to

its horizontal equilibrium level) is denoted by η(x, t). The initial position of the

free-surface is given by

f(x) = H − h+ h

∞∑
n=1

f̄n cos

(
kn
H
x

)
, (2.3)

where f̄n and kn are defined in equations (2.41) and (2.43), respectively. As

presented in the following formulation in terms of the velocity potential that

governs the liquid flow inside the tank

∂2φ

∂x2
+
∂2φ

∂x2
= 0 |x| < L, 0 < y < H − h+ η, (2.4)

∂φ

∂x
= 0 x = ±L, 0 < y < H − h+ η, (2.5)

∂φ

∂y
= 0 |x| < L, y = 0, (2.6)

∂φ

∂y
= 0 |x| ≤ xc, y = H, (2.7)

∂φ

∂y
− ∂φ

∂x

∂η

∂x
=
∂η

∂t
xc < |x| < L, y = H − h+ η, (2.8)

∂φ

∂t
+

1

2

[(
∂φ

∂x

)2

+

(
∂φ

∂y

)2
]

+ gy + C =
−1

ρ
p |x| < L, 0 < y < H − h+ η,

(2.9)

with initial data

φ(x, y, 0) = 0, (2.10)

η(x, 0) = f(x). (2.11)

Where ρ and g are the constant fluid density and the gravitational acceleration,

respectively, and f(x) is given by equation (2.3). We consider the initial condition

(2.10) from a mathematical point of view which is formal to start with it, however

physically this situation is difficult to be considered. On y = H, the points

x = ∓xc are the end points of the wetted interval, up to the turnover points.
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O x =Lx =-L

y = H

y = 0

h = 0.05H Free surface’s level state

rigid lid

Figure 2.5: Container description with the free-surface at its equilibrium static
level state.

We neglect the very thin jets beyond the turnover points shown in Figure 2.6.

The length of the wetted interval is 2xc(t) as shown in Figure 2.6. The function

xc(t) is unknown and should be determined as part of the solution. p is the

pressure on the upper boundary of the liquid domain, which is a combination of

the atmospheric pressure patm on the free-surface and unknown pressure p̂ in the

wetted interval of the rigid lid. Also in equation (2.9) C is a constant and its

value is defined to be

C = g(h−H)− ρ−1patm. (2.12)

This value of C ensures that p = patm on the static liquid surface when the liquid

is at rest. The atmospheric pressure (ullage pressure) patm is constant throughout

the fluid motion because the fluid’s total area and tank’s total area are constants.

Therefore, having this and the symmetric impact which starts from a point (the

centre of the rigid lid) the liquid does not compress the gas between the free-

surface and the fixed rigid lid during the interaction.

On the free-surface, y = H − h+ η, Bernoulli′s equation (2.9) can be written

as the following boundary relation, (as we do not know p̂ on plate or φ or η on

the free-surface)

−1

ρ
p̂ =

∂φ

∂t
+

1

2

[(
∂φ

∂x

)2

+

(
∂φ

∂y

)2
]

+ gη. (2.13)

Before the impact on the free-surface p̂ = 0 and also after interaction on the

two free-surfaces between the walls and the contact region. On the other hand

p̂ > 0 and η = h along the wetted part of the rigid lid which is created after the

interaction starts.
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−xc(t) xc(t)p > 0 η = h

p = patm
p = patm

y

x

Figure 2.6: Fluid in contact with the rigid lid. The liquid domain shaded in gray
and the gas occupies the white zones.

2.2.2 Non-dimensional variables

First we consider the tank to be without a rigid lid, so that the pressure on

the free-surface is only the atmospheric pressure patm and p̂ = 0 in equation

(2.13). We replace both the velocity potential φ(x, y, t) and the surface elevation

η(x, t) by φn(x, y, t) and ηn(x, t) as new velocity potential and surface elevation

to be used in this stage, respectively. The velocity potential φn(x, y, t) satisfies

Laplace’s equation in the flow domain. For the conditions on the boundaries we

still have the same conditions as before with the exception of the one on the rigid

lid y = H. Since there is no rigid lid so there will be no boundary condition on

y = H as we have in equation (2.7) and the surface position y = H − h + ηn is

considered to be free for all t. The mathematical formulation of the problem in

two-dimensional fluid flow with respect to the velocity potential φn(x, y, t) and

the surface elevation ηn(x, t) in the symmetric fluid flow region takes the form

∂2φn
∂x2

+
∂2φn
∂y2

= 0 |x| < L, 0 < y < H − h+ ηn, (2.14)

∂φn
∂x

= 0 x = ±L, 0 < y < H − h+ ηn, (2.15)

∂φn
∂y

= 0 |x| < L, y = 0, (2.16)

∂φn
∂y
− ∂φn

∂x

∂ηn
∂x

=
∂ηn
∂t

|x| < L, y = H − h+ ηn, (2.17)

∂φn
∂t

+
1

2

[(
∂φn
∂x

)2

+

(
∂φn
∂y

)2
]

= −gηn |x| < L, y = H − h+ ηn, (2.18)

with initial data

φn(x, y, 0) = 0, (2.19)

ηn(x, 0) = f(x). (2.20)
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We start to non-dimensionalize the problem (2.14)–(2.20) by introducing the non-

dimensional variables

x = Hx̃, y = Hỹ, t = Tsct̃,

φn = φscφ̃n, ηn = hη̃n. (2.21)

In non-dimensional variables (2.21), the kinematic boundary condition (2.17)

requires

Tsc =
h H

φsc
, (2.22)

and the dynamic boundary condition (2.17) in non-dimensional variables (2.21)

together with equation (2.22), give the two scales, velocity potential scale, φsc,

and time scale, Tsc, respectively, to be

φsc = h
√
Hg, Tsc =

√
H

g
. (2.23)

The above scales (2.21)–(2.23) introduce two non-dimensional parameters

ε =
h

H
, λ =

L

H
. (2.24)

The ratio of gas depth to the liquid depth is the parameter ε and it is very small.

We will find that it represents the non-linearity of the problem. The parameter

λ is of order unity and represents the tank’s height and width ratio. The new

formulation of the problem (2.14)–(2.20) in non-dimensional variables (with the

tilde’s dropped) takes the form

∂2φn
∂x2

+
∂2φn
∂y2

= 0 |x| < λ, 0 < y < 1− ε+ εηn, (2.25)

∂φn
∂x

= 0 x = ±λ, 0 < y < 1− ε+ εηn, (2.26)

∂φn
∂y

= 0 |x| < λ, y = 0, (2.27)

ε
∂φn
∂x

∂ηn
∂x

+
∂ηn
∂t

=
∂φn
∂y

|x| < λ, y = 1− ε+ εηn, (2.28)

∂φn
∂t

+
ε

2

[(
∂φn
∂x

)2

+

(
∂φn
∂y

)2
]

= −ηn |x| < λ, y = 1− ε+ εηn, (2.29)

with the initial data

φn(x, y, 0) = 0, (2.30)

ηn(x, 0) = f(x), (2.31)

18



where we must choose f(x) < 1.

After linearization the presence of ε in the kinematic boundary condition

(2.28) and dynamic boundary condition (2.29), suggest that we express φn(x, y, t)

and ηn(x, t) in terms of regular series expansions with respect to ε:

φn = φn0 + εφn1 +O(ε2),

ηn = ηn0 + εηn1 +O(ε2).

The non-dimensional problem (2.25)–(2.31) at the leading order takes the form

∂2φn0

∂x2
+
∂2φn0

∂y2
= 0 |x| < λ, 0 < y < 1, (2.32)

∂φn0

∂x
= 0 x = ±λ, 0 < y < 1, (2.33)

∂φn0

∂y
= 0 |x| < λ, y = 0, (2.34)

∂φn0

∂y
=
∂ηn0

∂t
|x| < λ, y = 1, (2.35)

∂φn0

∂t
= −ηn0 |x| < λ, y = 1, (2.36)

with initial data

φn0(x, y, 0) = 0, (2.37)

ηn0(x, 0) = f(x). (2.38)

2.2.3 The leading-order solution without a rigid lid

The boundary-value problem (2.32)–(2.38) can be solved by using separation of

variables and Fourier series techniques for φn0(x, y, t) and ηn0(x, t), these give

φn0(x, y, t) =
∞∑
n=1

fn cosh(kny) cos(knx) sin(wnt), (2.39)

and

ηn0(x, t) =
∞∑
n=1

f̄n cos(knx) cos(wnt), (2.40)

for n = 1, 2,. . . , where fn and f̄n are constants such that,

f̄n = −2

λ
fnωn cosh(kn), (2.41)
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and the frequency dispersion relation

ωn =
√
kn tanh(kn), (2.42)

with the wave number

kn =
nπ

λ
. (2.43)

The initial shape of the free-surface is given by equation (2.3). We can design the

shape with the aim to reproduce particular impact situations by choosing f̄n = 0

for n = 3, 4, ... and some non-zero values for f̄1 and f̄2 which are enough to obtain

required initial shapes, as shown in Figure 2.7. Each of the shapes in Figure 2.7

as we see gives a different initial shape depending on the values of f̄1 and f̄2.

It is noticed that the values of f̄1 near −0.5891 and f̄2 near −0.3724 result in

shapes almost similar to those shown in Figure 2.1, which are our desired initial

free-surface shape.
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Figure 2.7: Examples of initial free-surface elevations, the values of f̄1 and f̄2 are
shown above each plot.

A contour plot of the non-dimensional free-surface ηn0(x, t) in the leading order
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for t varying from t = 0 to t = 2.5, is shown in Figure 2.8. Only the free-surface

elevation is plotted and the plot is vertically exaggerated between y = 0.85 and

y = 1.05. The red contour line is when the elevation of the free-surface is at its

peak and this occurs at the centre. The blue contour line is when the free-surface

has its minimum height.
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Figure 2.8: The leading-order free-surface elevation ηn0(x, t).
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2.2.4 The flow in the presence of a rigid lid

Let the non-dimensional time t∗ be the instant when the fluid free-surface hits

the centre of the rigid lid. After the start of the interaction between the fluid

flow and the rigid lid, i.e. for t ≥ t∗ , the unknown function xc(t) is introduced

into our problem which gives the half-length of the wetted part of the rigid lid at

time t. The function xc(t) represents the right moving point (turnover point) of

the free-surface where it turns over and very thin jets are formed at the periphery

of the wetted interval. After wetting starts, p̂ > 0 in |x| ≤ xc, y = 1. We return

to the velocity potential φ(x, y, t), which governs the fluid flow in our problem

and we write the formulation of the problem (2.4)–(2.11) in non-dimensional

variables. We use the same non-dimensional variables, scales and parameters

as in the problem (2.14)–(2.20), noting that the pressure p̂(x, t) and xc(t) now

appear in this formulation. We use

p̂ = ρghp̃, xc(t) = Hx̃c(t), (2.44)

to non-dimensionalise the pressure p̂(x, t) and xc(t). The problem (2.4)–(2.11) in

non-dimensional variables (without tilde) is

∂2φ

∂x2
+
∂2φ

∂y2
= 0 |x| < λ, 0 < y < 1− ε+ εη, (2.45)

∂φ

∂x
= 0 x = ±λ, 0 < y < 1− ε+ εη, (2.46)

∂φ

∂y
= 0 |x| < λ, y = 0, (2.47)

∂φ

∂y
= 0 |x| ≤ xc, y = 1, (2.48)

ε
∂φ

∂x

∂η

∂x
+
∂η

∂t
=
∂φ

∂y
xc < |x| < λ, y = 1− ε+ εη, (2.49)

∂φ

∂t
+
ε

2

[(
∂φ

∂x

)2

+

(
∂φ

∂y

)2
]

+ η = −p |x| ≤ xc, y = 1, (2.50)

∂φ

∂t
+
ε

2

[(
∂φ

∂x

)2

+

(
∂φ

∂y

)2
]

+ η = 0 xc < |x| < λ, y = 1− ε+ εη,

(2.51)

where y = 1 refers to the wetted zone on the lid where η = 1. The Wagner

condition (Wagner 1932) suggests that by neglecting the jets due to their tiny

width (Howison et al. 1991), the surface elevation at its turnover points x = ±xc
is at the position of the lid, this provides

η(±xc, t) = 1. (2.52)
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The above formulation is supplemented with initial data

φ(x, y, 0) = 0, (2.53)

η(x, 0) = f(x). (2.54)

The parameter ε is small, ε� 1, in this formulation, so we linearise the kinematic

boundary condition (2.49) and the dynamic boundary conditions (2.50)–(2.51).

Linearisation also involves posing the free-surface boundary conditions on y = 1.

The length of the wetted interval −xc(t) < x < xc(t), is 2xc(t), which is of order

O(1) as ε −→ 0, and so we write it in terms of an asymptotic expansion, as

follows

xc(t) = xc0(t) + εxc1(t) +O(ε2), (2.55)

with the asymptotic expansions of the velocity potential, surface elevation and

pressure in the wetted interval, respectively,

φ(x, y, t) = φ0(x, y, t) + εφ1(x, y, t) +O(ε2), (2.56)

η(x, t) = η0(x, t) + εη1(x, t) +O(ε2), (2.57)

p(x, t) = p0(x, t) + εp1(x, t) +O(ε2). (2.58)

In the leading order, the velocity potential φ0(x, y, t) satisfies the following equa-

tions

∂2φ0

∂x2
+
∂2φ0

∂y2
= 0 |x| < λ, 0 < y < 1, (2.59)

∂φ0

∂x
= 0 x = ±λ, 0 < y < 1, (2.60)

∂φ0

∂y
= 0 |x| < λ, y = 0, (2.61)

∂φ0

∂y
= 0 |x| ≤ xc0, y = 1, (2.62)

∂φ0

∂y
=
∂η0

∂t
xc0 < |x| < λ, y = 1, (2.63)

∂φ0

∂t
+ η0 = −p0 |x| ≤ xc0, y = 1, (2.64)

∂φ0

∂t
+ η0 = 0 xc0 < |x| < λ, y = 1, (2.65)

η0 = 1 at x = ±xc, (2.66)

with initial data
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φ0(x, y, 0) = 0, (2.67)

η0(x, 0) = f(x). (2.68)

For t < t∗ the velocity potential φ0(x, y, t) and the surface elevation η0(x, t) of

the flow are given by φn0(x, y, t) and ηn0(x, t), respectively, which were evaluated

in the previous section. For t > t∗, the velocity potential φ0(x, y, t) can be

decomposed as φn0(x, y, t) which is the velocity potential of the flow without the

rigid lid and a correction term φc0(x, y, t). The same could be done with the

surface elevation η0(x, t) decomposed into ηn0(x, t) which is the surface elevation

of the flow without a rigid lid and the correction term ηc0(x, t). Hence

φ0 = φn0 + φc0, (2.69)

η0 = ηn0 + ηc0. (2.70)

The formulation of the problem at leading order with respect to the correction

functions φc0(x, y, t) and ηc0(x, t) and the pressure p0(x, t) in the wetted region

reads

∂2φc0
∂x2

+
∂2φc0
∂y2

= 0 |x| < λ, 0 < y < 1, (2.71)

∂φc0
∂x

= 0 |x| = λ, 0 < y < 1, (2.72)

∂φc0
∂y

= 0 |x| < λ, y = 0, (2.73)

∂φc0
∂y

= −∂ηn0

∂t
|x| ≤ xc0, y = 1, (2.74)

∂φc0
∂t

+ ηc0 = −p0 |x| ≤ xc0, y = 1, (2.75)

∂2φc0
∂t2

+
∂φc0
∂y

= 0 xc0 < |x| < λ, y = 1, (2.76)

ηc0 + ηn0 = 1 at x = ±xc, (2.77)

with initial data

φc0(x, y, t∗) = 0, (2.78)

ηc0(x, t∗) = 0. (2.79)

In this formulation the velocity potential φn0(x, y, t) and the surface elevation

ηn0(x, t) are known functions while the velocity potential φc0(x, y, t), the surface

elevation ηc0(x, t), the pressure po(x, t) and the function xc0(t) are to be deter-

mined. The MBVB (2.71)–(2.79) can be solved if xc0(t) is known. An equation

or a condition should be added to the formulation (2.71)–(2.79), to determine the

size of the wetted region (−xc0, xc0).
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At t = t∗ the flow hits the rigid lid in a single point, which gives the initial

condition

xc0(t∗) = 0, (2.80)

which will be crucial as an initial condition in finding the unknown function

xc0(t) later. However, the problem (2.71)–(2.80) is still difficult to be solved and

we approach the solution asymptotically in the next section.

2.2.5 Asymptotic analyses of the flow during the early

stage

We consider the asymptotics of the flow when t is close to t∗ for the boundary-

value problem (2.71)–(2.80) in a small time interval by introducing stretched

variables. Locally close to the contact point, the shape of the free-surface eleva-

tion, without the rigid lid, at t = t∗ is y = 1 − ε + εηn(x, t∗). Since the flow is

symmetric and the free-surface has its maximum elevation at x = 0, we write its

Taylor series expansion about x = 0 as

ηn(x, t∗) = 1 + x
∂ηn
∂x

(0, t∗) +
x2

2

∂2ηn
∂x2

(0, t∗) + ..., (2.81)

but from symmetry we have

∂ηn
∂x

(0, t∗) = 0,

and close to the contact point we have

∂2ηn
∂x2

(0, t∗) = O(1).

Therefore from equation (2.81) the free-surface elevation shape close to the

contact point at the time instant of impact is approximately a parabola, which

moves up against the rigid lid, and which has the form

y ' 1− 1

2R
x2 + h(t), (2.82)

where h(t) = V0(t − t∗), V0 is assumed to be the constant impact velocity and

R > 0 is the parabola’s radius of curvature at x = 0. Actually the shape of

the free-surface elevation ηn(x, t∗) may be more complicated, but during the very

short initial stage before impact the shape of the free-surface elevation ηn(x, t∗)

can be approximated by a parabola.

Following the pioneering work of (von Karman 1929), from equation (2.82),

can be approximated to give
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xk '
√

2RV0(t− t∗), (2.83)

where x = xk is assumed to be the approximated moving contact point for t > t∗.

The small speed of the approximated parabola comparing to the speed of the jets

gives us this motivation to introduce the following parameter δ. In this stage

when t is close to t∗, we introduce the parameter δ, where δ � 1, to describe

a suitable time variable when time is close to t∗. The flow is driven by gravity,

and this small parameter indicates the small duration of impact. Depending on

equations (2.82)–(2.83) we introduce the following stretched variables

t = t∗ + δ τ,

x = δ1/2 ξ, (2.84)

y = 1 + δ1/2 ζ.

The time is stretched by the formal parameter δ close to the instant of impact

at t = t∗. The horizontal x variable is stretched by δ1/2, using the approximated

Karman’s assumption (2.83). To retain the balance in Laplace’s equation the

vertical y variable is stretched by δ1/2. In this problem the leading-order velocity

potential correction φc0(x, y, t) is O(1). This gives the leading-order variable for

the velocity potential correction φc0(x, y, t), the surface elevation ηn0(x, t) and

the surface elevation correction ηc0(x, t) in terms of the new stretched variables,

using equation (2.74) , respectively, as

φc0(x, y, t) = δ1/2 Φ(ξ, ζ, τ, δ),

ηn0(x, t) = 1 + δ η̃n(ξ, τ, δ), (2.85)

ηc0(x, t) = δ η̃c(ξ, τ, δ).

Now, we reformulate the problem (2.71)–(2.80) in terms of new dependent and

independent variables (with dropping tildes). In this short period of time, δ � 1,

to analyse the motion of the fluid we scale the two dimensions of the shape,

vertically and horizontally. It is shown from relations given in (2.84) that the

variables x and y are replaced by the equally stretched variables, ξ and ζ, re-

spectively. Here ζ = 0 represents the rigid lid y = H in dimensional variable.

Laplace’s equation (2.71) in new variables is

∂2Φ

∂ξ2
+
∂2Φ

∂ζ2
= 0 −∞ < ξ <∞,−∞ < ζ < 0. (2.86)

We do not consider equations (2.72)–(2.73), (2.75) and (2.79) during this short

period. The contact points x = ±xc0 in the leading order have been replaced by

ξ = ±ξc(τ). The kinematic boundary condition (2.74) on the contact region gives
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∂Φ

∂ζ
= −∂ηn

∂τ
|ξ| ≤ ξc, ζ = 0. (2.87)

The Wagner condition (2.77) reads

ηc + ηn = 0 at ξ = ±ξc. (2.88)

At time t∗ we have τ = 0, therefore the initial conditions (2.78) and (2.80) are

rewritten

Φ(ξ, ζ, 0) = 0, (2.89)

ξc(0) = 0. (2.90)

The combined dynamic and kinematic free-surface boundary condition (2.76) in

terms of τ and ζ on the two regions between the contact region and the far field

takes the form
1

δ
3
2

∂2Φ

∂τ 2
+
∂Φ

∂ζ
= 0 |ξ| > ξc, ζ = 0,

multiplying both sides by δ
3
2 we have

∂2Φ

∂τ 2
+ δ

3
2
∂Φ

∂ζ
= 0 |ξ| > ξc, ζ = 0. (2.91)

This means that ∂2Φ
∂τ2 is of order O(δ

3
2 ), hence the second term on the right-hand

side can be neglected in the limit as δ −→ 0:

∂2Φ

∂τ 2
= O(δ

3
2 ) |ξ| > ξc, ζ = 0,

then we integrate twice with respect to τ and apply the initial condition (2.89)

to obtain

Φ(ξ, 0, τ) = 0 |ξ| > ξc, ζ = 0. (2.92)

The condition (2.92) refers to the fact that the influence of gravity, g, is negligible

in this short period of impact when the fluid flow is highly accelerated. Keeping

δ in equation (2.91) represents the effects of gravity on the impact, and this will

be studied in details in Chapter 3.

To control the flow in this short period we need to introduce the so-called

far-field condition for this stage

Φ(ξ, ζ, τ) −→ 0 as ξ2 + ζ2 −→∞. (2.93)
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2.2.6 Mixed boundary-value problem in terms of complex

velocity potential

The kinematic boundary condition (2.87) is the Neumann boundary condition

on the wetted part, and the dynamic boundary condition (2.92) is the Dirichlet

boundary condition on the free-surface.

Φ = 0Φ = 0
ζ = 0

∂Φ
∂ζ

= −∂ηno
∂τ

∂2Φ
∂ξ2

+ ∂2Φ
∂ζ2

= 0

Φ −→ 0 as ξ2 + ζ2 −→∞

• •
ξ = −ξc(τ) ξ = ξc(τ)

Figure 2.9: The MBVP at the leading order. Bold line in the middle is the wetted
region surrounded by two thinner lines that represent the free-surface.

Therefore the resulting problem (2.86)–(2.93) is a MBVP which is summarized

in Figure 2.9. The problem does not contain any derivative with respect to

time for the unknown functions, and the time variable τ can be considered as a

parameter in this problem.

We start by formulating the problem (2.86)–(2.93) in terms of the complex

velocity potential, see (Carrier, Krook & Pearson 2005)

w(z, τ) = Φ(ξ, ζ, τ) + iΨ(ξ, ζ, τ),

with the complex variable z = ξ + iζ, where the imaginary part Ψ(ξ, ζ, τ) is the

stream function. The analytic function w(z, τ) tends to zero as ξ2 + ζ2 −→ ∞.

The real and imaginary parts of the analytic function w(z, τ) satisfy the Cauchy-

Riemann equations

∂Φ

∂ξ
=
∂Ψ

∂ζ
,

∂Φ

∂ζ
= −∂Ψ

∂ξ
. (2.94)

By using (2.94) boundary condition (2.87) can be written in terms of the stream

function

∂Ψ

∂ξ
(ξ, ζ, τ) =

∂ηn
∂τ

(ξ, τ) |ξ| < ξc, ζ = 0. (2.95)

We integrate both sides of equation (2.95) with respect to ξ from 0 to ξ to obtain

Ψ(ξ, 0, τ) =

∫ ξ

0

∂ηn
∂τ

(ξ∗, τ)dξ∗ + c1, (2.96)
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where c1 is a constant of integration. The fluid flow is symmetric inside the tank,

hence

∂Φ

∂ξ
(0, ζ, τ) = 0 ζ < 0, (2.97)

and, by using the Cauchy-Riemann conditions (2.94), we obtain

∂Ψ

∂ζ
(0, ζ, τ) = 0 ζ < 0.

Integrating the latter equation with respect to ζ yields

Ψ(0, ζ, τ) = c2 ζ < 0,

where c2 is a constant. It can be concluded that c2 = 0, since the imaginary part

Ψ(ξ, ζ, τ) of the analytic function w(z, τ) is defined in such a way that it vanishes

as ξ2 + ζ2 −→∞. Therefore

Ψ(0, ζ, τ) = 0 ζ < 0,

consequently,

Ψ(0, 0, τ) = 0,

and in equation (2.96) we conclude that

c1 = 0.

The rewritten kinematic boundary condition (2.96) reads

Ψ(ξ, 0, τ) =

∫ ξ

0

∂ηn
∂τ

(ξ∗, τ)dξ∗. (2.98)

Now, we seek an analytic function w(z, τ) such that

Re [w(ξ − i0, τ)] = 0 |ξ| > ξc, (2.99)

Im[w(ξ − i0, τ)] =

∫ ξ

0

∂ηn
∂τ

(ξ∗, τ)dξ∗ |ξ| < ξc, (2.100)

w(z, τ) −→ 0 as |z| −→ ∞. (2.101)

The problem (2.99)–(2.101) is a MBVP. It can be reduced to the Dirichlet boundary-

value problem. We introduce a new function W (z, τ) as a product of the charac-
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teristic function
√
z2 − ξ2

c and the analytic function w(z, τ),

W (z, τ) =
√
z2 − ξ2

c w(z, τ).

The function W(z, τ) is the product of two functions that are analytic in the lower

half-plane except at z = ±ξc, so it is also analytic. The boundary conditions

(2.99)–(2.100) provide

Re [W(ξ, 0, τ)] =
√
ξ2 − ξ2

cΦ(ξ, 0, τ) = 0 ξ > ξc, (2.102)

Re [W(ξ, 0, τ)] = −
√
ξ2 − ξ2

cΦ(ξ, 0, τ) = 0 ξ < −ξc, (2.103)

Re [W(ξ, 0, τ)] =
√
ξ2
c − ξ2 Ψ(ξ, 0, τ)

=
√
ξ2
c − ξ2

∫ ξ

0

∂ηn
∂τ

(ξ∗, τ)dξ∗ |ξ| < ξc. (2.104)

The analytic function W (z, τ) which satisfies the boundary conditions (2.102)–

(2.104) is given by (see (Gakhov & Sneddon 1966) and (Carrier et al. 2005))

W (z, τ) =
i

π

∫ ξc

−ξc

√
ξ2
c − ξ∗2
ξ∗ − z

v(ξ∗, τ)dξ∗ + ic0 + ic1z + ...,

where cn for n = 0, 1, 2, ... are real constants and

v(ξ∗, τ) =

∫ ξ∗

0

∂ηn
∂τ

(ξ̂, τ)dξ̂.

Now, the analytic function w(z, τ) can be written as

w(z, τ) = i
1

π
√
z2 − ξ2

c

∫ ξc

−ξc

√
ξ2
c − ξ∗2
ξ∗ − z

v(ξ∗, τ)dξ∗ + i
c0√
z2 − ξ2

c

+ i
c1z√
z2 − ξ2

c

+ ...,

from the far-field condition (2.101) we deduce that cn = 0 for n = 1, 2, ... while

c0 could be non-zero. As ζ −→− 0 and |ξ| < ξc(τ), the Plemelj formula gives

Φ + iΨ = iv(ξ, τ)− 1

π
√
ξ2
c − ξ2

−
∫ ξc

−ξc

√
ξ2
c − ξ∗2
ξ∗ − ξ

v(ξ∗, τ)dξ∗ − c0√
ξ2
c − ξ2

.

The stream function Ψ(ξ, 0, τ) takes the form

Ψ(ξ, 0, τ) = v(ξ, τ),

and the potential Φ(ξ, 0, τ) along the rigid lid is given in terms of a Cauchy

principal-value integral
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Φ(ξ, 0, τ) =
−1

π
√
ξ2
c − ξ2

[
−
∫ ξc

−ξc

√
ξ2
c − ξ∗2
ξ∗ − ξ

v(ξ∗, τ)dξ∗ + πc0

]
. (2.105)

The velocity potential is zero for |ξ| > ξc, ζ = 0, (2.92) and has square root

behaviour, φ ∼
√
ξc − ξ for |ξ| < ξc, ζ = 0. Therefore from continuity of the

velocity potential we assume

Φ(ξc, 0, τ) = 0. (2.106)

Applying the condition (2.106) on equation (2.105) at ξ = ξc, with some manip-

ulation we find

c0 =
−1

π

∫ ξc

−ξc

√
ξc + ξ∗

ξc − ξ∗
v(ξ∗, τ)dξ∗. (2.107)

Having the constant c0, (2.107) the potential (2.105) can be rewritten as follow

Φ(ξ, 0, τ) =
√
ξ2
c − ξ2

∞∑
n=1

f̄n sin(ωnτ)−
∫ ξc

−ξc

sin(knξ
∗)

(ξ∗ − ξ)
√
ξ2
c − ξ∗2

dξ∗, (2.108)

by change of variables, using ξ∗ = ξcξ∗, equation (2.108) then reads

Φ(ξ, 0, τ) =
√
ξ2
c − ξ2

∞∑
n=1

f̄n sin(ωnτ)−
∫ 1

−1

sin(knξcξ∗)

(ξcξ∗ − ξ)
√

1− ξ2
∗

dξ∗.

(2.109)

The resulting equation (2.109) contains a Cauchy principal-value integral, and

it seems very complicated to give an analytic solution without determining the

unknown function ξc. To make it more convenient to solve, we do not continue

with equation (2.109) until later. Instead in the next section, we use the displace-

ment potential technique introduced by (Korobkin 1982) to find the function ξc.

Using displacement potential will convert the time-dependent problem to a time-

independent problem. Much work has been done using this technique, noticeably

by (Howison et al. 1991), (Oliver 2002) and (Reinhard et al. 2013). We will

later return to equation (2.109) to find the velocity potential, the hydrodynamic

pressure and the hydrodynamic force acting on the wetted region of the rigid

lid during impact. In a boundary problem with unknown moving limits on the

boundaries, it is crucial to determine these limits. In the next section we aim to

find these boundaries by introducing the velocity potential into the problem.
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2.2.7 Mixed boundary-value problem in terms of a dis-

placement potential

We formulate the problem (2.86)–(2.93) in terms of a displacement potential,

Φ∗(ξ, ζ, τ), as suggested by (Korobkin 1982). This is defined as the integral of

the velocity potential Φ(ξ, ζ, τ) with respect to time, as follows

Φ∗(ξ, ζ, τ) =

∫ τ

0

Φ(ξ, ζ, τ̃)dτ̃ . (2.110)

The function ∂Φ∗

∂ζ
describes the vertical displacement of a fluid particle while ∂Φ∗

∂ξ

describes the horizontal displacement of a fluid particle. The purpose behind this

is to remove the time derivative from the formulation and deal with time as a

parameter instead of variable. Doing this will enable us to find a formula for

the unknown function ξc(t) which gives the length of the moving boundary. It is

straightforward to apply the displacement potential (2.110) in equations (2.86)

and (2.92), which, after transformation, become

∂2Φ∗

∂ξ2
+
∂2Φ∗

∂ζ2
= 0 −∞ < ξ <∞,−∞ < ζ < 0, (2.111)

Φ∗ = 0 |ξ| > ξc, ζ = 0. (2.112)

We introduce the function ω∗(ξ), when τ = ω∗(ξ) is the time where ξc(τ) = ξ.

At the time τ = ω∗(ξ) the Wagner condition (2.88) requires that the surface

elevation is at the position of the rigid lid, mathematically we obtain

ηn(ξ, ω∗(ξ)) + ηc(ξ, ω
∗(ξ)) = 0. (2.113)

Also the kinematic boundary condition (2.63), on the free-surface, |ξ| > ξc, ζ = 0,

∂Φ∗

∂ζ
(ξ, 0, τ) =

∫ τ

0

∂Φ

∂ζ
dτ̃

= ηc(ξ, τ). (2.114)

To derive the body boundary condition in the wetted area in terms of the dis-

placement potential, we integrate the derivative ∂Φ
∂ζ

(ξ, 0, τ) with respect to time

from 0 to τ , where |ξ| < ξc,

∂Φ∗

∂ζ
(ξ, 0, τ) =

∫ ω∗(ξ)

0

∂Φ

∂ζ
dτ̃ +

∫ τ

ω∗(ξ)

∂Φ

∂ζ
dτ̃ , (2.115)

and use the boundary condition (2.87), the Wagner condition (2.113), the kine-

matic boundary condition (2.114) for 0 < ω∗(ξ) < τ , and the initial condition

(2.79), from (2.115), we arrive at
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∂Φ∗

∂ζ
(ξ, 0, τ) = ηc(ξ, ω

∗(ξ))− ηc(ξ, 0)− ηn(ξ, τ) + ηn(ξ, ω∗(ξ))

= −ηn(ξ, τ) |ξ| < ξc, (2.116)

The far-field condition (2.93) is straightforward

Φ∗ −→ 0 as ξ2 + ζ2 −→∞. (2.117)

The new formulation (2.111)–(2.117) together with the initial conditions

Φ∗(ξ, ζ, 0) = 0, (2.118)

ξc(0) = 0, (2.119)

are rewritten in terms of the complex displacement potential w∗(z, τ) as follows.

The complex displacement

dw∗

dz
(z, τ) =

∂Φ∗

∂ξ
− i∂Φ∗

∂ζ
z = ξ + iζ, (2.120)

is analytic in ζ < 0, decays at infinity, and satisfies the boundary conditions, on

the boundary ζ = 0−:

Re

[
dw∗

dz
(x− i0, τ)

]
=
∂Φ∗

∂ξ
(ξ, 0, τ)

= 0 |ξ| > ξc, (2.121)

Im

[
dw∗

dz
(x− i0)

]
= −∂Φ∗

∂ζ
(ξ, 0)

= ηn(ξ, τ) |ξ| < ξc. (2.122)

Now we introduce the characteristic function
√
z2 − ξ2

c and reformulate the bound-

ary problem (2.121)–(2.122) in terms of a new analytic function W ∗(z, τ) defined

by

W ∗(z, τ) =
√
z2 − ξ2

c

dw∗

dz
, (2.123)

to obtain

Re [W ∗(x− i0)] = 0 |ξ| > ξc, (2.124)

Re [W ∗(x− i0)] = ηn
√
ξ2
c − ξ2 |ξ| < ξc. (2.125)

The solution of the problem (2.124)–(2.125) is given by the (see (Gakhov &

Sneddon 1966) and (Carrier et al. 2005))

W ∗(z, τ) =
i

π

∫ ξc

−ξc

ηn
√
ξ2
c − ξ∗2

ξ∗ − z
dξ∗ + ic0 + ic1z + ..., (2.126)
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where cn for n = 0, 1, ... are real constants. For all τ > 0

W ∗(z, τ) −→ 0 as z −→∞,

which implies c0, c1, etc. are zero. From equation (2.123) we find

dw∗

dz
=

i

π
√
z2 − ξ2

c

∫ ξc

−ξc

ηn(ξ∗, τ)
√
ξ2
c − ξ∗2

ξ∗ − z
dξ∗. (2.127)

On the wetted part of the boundary, where ζ −→ 0− on |ξ| < ξc, equations (2.120)

and (2.127), and the Plemelj formula for the boundary value of the Cauchy-

type integral in (2.127), provide the real and imaginary parts of the complex

displacement:

∂Φ∗

∂ξ
=

1

π
√
ξ2
c − ξ2

−
∫ ξc

−ξc

ηn(ξ∗, τ)
√
ξ2
c − ξ∗2

ξ∗ − ξ
dξ∗, (2.128)

∂Φ∗

∂ζ
= −ηn(ξ, τ). (2.129)

Equation (2.128) contains a Cauchy principal-value integral preceded by a factor

with a square root singularity at the contact points ξ = ±ξc. The Wagner con-

dition implies that the displacements are finite. Then ∂Φ∗

∂ξ
in (2.128) should be

finite at ξ = ±ξc which is possible only if the integral in (2.128) is zero. This

gives ∫ ξc

−ξc

(ξc + ξ∗)ηn√
ξ2
c − ξ∗2

dξ∗ = 0. (2.130)

The function ηn(ξ∗, τ) in the integrand of (2.128) is an even function of ξ∗. Then

(2.130) reads ∫ ξc

−ξc

ηn(ξ∗, τ)√
ξ2
c − ξ∗2

dξ∗ = 0. (2.131)

Substituting ηn(ξ∗, τ) from equation (2.40) in this equation, we find

∞∑
n=1

f̄n cos(ωnτ)

∫ ξc

−ξc

cos(knξ
∗)√

ξ2
c − ξ∗2

dξ∗ = 0. (2.132)

For the integrals in (2.132) we use a change of variables ξ∗ = ξc cos(θ). Hence

equation (2.132) provides

∞∑
n=1

f̄n cos(ωnτ)

∫ π

0

cos (kn cos(ξcθ)) dθ = 0. (2.133)

34



As mentioned in section (2.2.2), the values of f̄n for n ≥ 3 are assumed

to be zero, however f̄1 and f̄2 are given and non-zero. From (Abramowitz &

Stegun 1972), page 360, equation (9.1.18) or (9.1.20), equation (2.133) takes the

form

f̄1 cos(ω1τ)J0(k1ξc(τ)) + f̄2 cos(ω2τ)J0 (k2ξc(τ)) = 0, (2.134)

where the functions J0(knξc) are the zeroth order Bessel functions of the first

kind. Equation (2.134) should be solved with respect to ξc(τ) for τ > 0. We use

numerical techniques to find the function ξc(τ) in the next section.

2.3 Problem solution in absence of gravity

The two well-known pioneering approaches to impact given by (von Karman 1929)

and (Wagner 1932) to find estimates for the size of the wetted region. According

to the von Karman approach the moving contact point is the intersection of the

free-surface elevation compared with out the lid and the lid, Figure 2.10. The

Wagner approach, Figure 2.11, provides more accurate position of the moving

point as shown in the Figure 2.12, where the moving point appointed by Wagner

(asterisk) is found to be more close to the real moving point than by von Karman

(bullet). Wagner assumed the turn over point (the root of the jet) to be the

moving point due to the small vertical distance it has with the lid (narrow width

of the jet) which is negligible at the leading order.

In free-boundary problem finding the moving contact or turnover points is

essential to enable us to go further and discuss the loads on the lid. In the next

section we will determine the wetted interval 2ξc semi-analytically.

ζ = 0 •••••

τ > 0

τ > 0

τ = 0

Figure 2.10: Each bullet is a moving contact point, ξ = ξc, by Karman’s assump-
tion.
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τ > 0

∗ ∗

Figure 2.11: Asterisk is a moving turnover point, ξ = ξc, by Wagner’s assumption.
The thickness of the jets has been exaggerated, they are very thin compared with
the radius of curvature of the surface elevation R.
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Figure 2.12: Difference in determining the position of the moving point ξ = ξc,
following the assumptions given by Karamn (bullets) and Wagner (asterisk). The
position of the turnover point is expected to lie between the approximated location
from the models. The real moving contact point is allocated by a multiplication
symbol.

2.3.1 Moving point ξc(τ) with no gravity

The aim of this section is to calculate the function ξc(τ) from (2.134). Differen-

tiating equation (2.134) with respect to time implies

ξ̇c(τ) =
G1 (τ, ξc(τ))

G2(τ, ξc(τ))
, (2.135)

where in this work an over dot notation always stand for the time derivative. We

have

G1(τ, ξc(τ)) = −
[
ω1f̄1 sin(ω1τ)J0(k1ξc(τ)) + ω2f̄2 sin(ω2τ)J0(k2ξc(τ))

]
,

and

G2(τ, ξc(τ)) = k1f̄1 cos(ω1τ)J1(k1ξc(τ)) + k2f̄2 cos(ω2τ)J1(k2ξc(τ)),
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where the functions J1(knξc(τ)) are the Bessel functions of the first kind and are

obtained from the relation

J1(x) = − d

dx
J0(x). (2.136)

Equation (2.135) and the initial condition (2.119) define an initial-value problem.

We use the fourth-order Runge-Kutta method to solve this problem numerically

in Matlab.

We expect that ξ̇c ≥ 0 for 0 < τ ≤ t∗, where τ = 0 is the time when the fluid

starts to hit the rigid lid. After this time we have the impact stage when the

wetted interval grows. However, at τ = t∗, at the end time of the impact stage,

ξ̇c(t
∗) = 0, or the beginning of the exit stage when the wetted interval starts to

shrink, and later leaves the rigid lid.

If we substitute the initial condition (2.119) into equation (2.135), and use

the fact that the Bessel functions J1(knξc) for n = 1, 2 are zero there, we then

obtain a singular value at τ = 0. To avoid the singularity we use condition (2.119)

asymptotically:

ξc(τ) −→ 0 as τ −→ 0. (2.137)

Since we expect that the wetted interval will widen rapidly at the beginning,

starting from ξc = 0.

We display the numerical results in Figure 2.13 in non-dimensional variables.

It is shown that at the same time the function ξc(τ) in the case of the condition of

(Wagner 1932) is significantly larger than that predicted by (von Karman 1929)

approach. We did the calculation for the problem (2.135) and (2.119) by setting

f̄1 = −0.5891, f̄2 = −0.3724, k1 = π, k2 = 2π, ω1 = 1.7691 and ω2 = 2.5066.

The calculation started at time of t∗ = 1.0561, the first contact between the

fluid and the rigid lid, and contact stopped at t∗ = 1.5312 (the end-time of the

impact stage). We cannot determine the function ξc(τ) for τ > t∗ (exit stage)

using Wagner’s condition. However, for the von Karman assumption, the wetted

interval for both stages is shown in Figure 2.14. In this figure the maximum value

of its extension, ξc(τ) = 0.2119, occurs at τ = 0.6008 which is only a 0.687% of

the length pictured due to Wagner’s assumption. The impact period in Wagner’s

model is shorter than what we have in the von Karman’s assumption extension

period only by a small percentage difference of 0.04%. We have no information

about the exit period when the wetted region starts to shrink and eventually

leaves the lid.
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Figure 2.13: Extent of the wetted interval, dashed curve [inner curve] is due to
von Karman, and the solid curve [outer curve] is due to Wagner.
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Figure 2.14: Time evolution of the wetted interval, ξc(τ) showing rapid widening
towards maximum width, following by shrinking back to separation of the liquid
from the lid.
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2.3.2 leading-order force

In this section the leading-order force f(τ) of the liquid acting on the plate will

be calculated semi-numerically. We first calculate the force on the wetted part

of the rigid lid by integrating the pressure distribution over the wetted interval

(−ξc, ξc). Applying the stretched variables (2.84) on the equation (2.75) and using

the fact that, on −ξc < ξ < ξc, the sum of the surface elevation with no lid and

its correction when the lid is introduced to the problem is a constant:

ηc(ξ, τ) + ηn(ξ, τ) = 0 (2.138)

we find

p(ξ, τ) = δ3/2 ηn(ξ, τ)− ∂Φ

∂τ
(ξ, 0, τ). (2.139)

We integrate the first term of (2.139) over ξ : −ξc < ξ < ξc, to obtain the

hydrostatic force FS(τ), and integrate the last term to obtain the hydrodynamic

force FD(τ). The hydrostatic force in equation (2.139) plays a small role, while

the major contribution comes from the hydrodynamic force. Calculating the

hydrostatic force is straightforward. To calculate the hydrodynamic force, we

integrate the last term of equation (2.139) over the wetted part of the rigid lid,

and we find that

FD(τ) = −
∫ ξc(τ)

−ξc(τ)

∂Φ

∂τ
(ξ, 0, τ)dξ. (2.140)

By using Leibniz’s rule of integration, the differentiation sign under the integral

in equation (2.140) can be converted as follows

FD(τ) = − d

dτ

∫ ξc

−ξc
Φ(ξ, 0, τ)dξ − d(ξc)

dτ
Φ(ξc, 0, τ) +

d(−ξc)
dτ

Φ(−ξc, 0, τ), (2.141)

from equation (2.92) and the continuity of the velocity potential, the last two

terms in equation (2.141) vanish at the contact points, ξ = ±ξc(τ). Substituting

the expression (2.109) into equation (2.141) implies

FD(τ) = − d

dτ

∞∑
n=1

f̄n sin(ωnτ)

∫ ξc

−ξc

√
ξ2
c − ξ2

∫ 1

−1

sin(knξcξ∗)

(ξcξ∗ − ξ)
√

1− ξ2
∗

dξ∗dξ.

(2.142)

Some analytic manipulations on equation (2.142) lead to

FD(τ) = −π d

dτ

∞∑
n=1

f̄nξc(τ) sin(ωnτ)

∫ π

0

sin(knξc cos(ξ)) cos(ξ)dξ, (2.143)
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Figure 2.15: The non-dimensional leading-order hydrodynamic force on the plate
during the impact stage. A positive force means that the liquid is pushing upward
on the lid.

and the integral in equation (2.143) can be represented in terms of Bessel function

of the first kind πJ1(knξc) for n = 1, 2, (Gradshteyn & Ryzhik 2014) p. 421.

Now we differentiate with respect to time (2.143). We take into account only

the values in the summation for n = 1, 2 as we mentioned in the previous section.

We use the following relation

d

dx
Jn(x) =

1

2
[Jn−1(x)− Jn+1(x)], (2.144)

to differentiate the Bessel functions of the first kind. Now the hydrodynamic

force in equation (2.143) takes the form

FD(τ) = −π2ξcξ̇c

[
f̄1ω

2
1

k1ξ̇c
cos(ω1τ)J1(k1ξc) +

f̄2ω
2
2

k2ξ̇c
cos(ω2τ)J1(k2ξc)

+
1

2
f̄1ω1 sin(ω1τ){J0(k1ξc)− J2(k1ξc)}

+
1

2
f̄2ω2 sin(ω2τ){J0(k2ξc)− J2(k2ξc)}

+
f̄1ω1

ξck1

sin(ω1τ)J1(k1ξc) +
f̄2ω2

ξck2

sin(ω2τ)J1(k2ξc)

]
,(2.145)

where ξ̇c(τ) is given by equation (2.135). The numerical results of the leading-

order hydrodynamic force on the contact interval of the rigid lid during the impact
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stage are shown in Figure 2.15. The time τ = 0 corresponds to the instant of

impact t = t∗. The maximum force occurs at the very beginning of the impact

stage, then it decreases quickly and at τ = 0.4101, a negative force begins acting

on the rigid lid. A negative hydrodynamic force on the plate means that the

plate is pulled down by the fluid, and this occurs while the fluid is still moving

along the plate and expanding during the impact stage. Figure 2.15 shows the

hydrodynamic force during the impact stage. Figure shows that 27% of the

impact stage time, force is negative. Consequently we will have negative pressure

which will be discussed later on.

The hydrostatic pressure is straightforward to calculate from the first term

on the right-hand side of equation (2.139). To calculate the hydrodynamic pres-

sure at this stage in the outer region on the wetted part from equation (2.139),

one needs the time-derivative of the velocity potential given by equation (2.109),

which would be very complicated to determine. Therefore we start to find the hy-

drodynamic pressure on the wetted part directly by introducing the acceleration

potential ∂Φ
∂τ

(ξ, ζ, τ).

2.3.3 Mixed boundary-value problem in terms of acceler-

ation potential

To obtain the pressure distribution p(ξ, τ) on the plate, we formulate the problem

(2.86)–(2.93) in terms of an acceleration potential ∂Φ
∂τ

(ξ, ζ, τ), which is the time-

derivative of the velocity potential Φ(ξ, ζ, τ). Differentiating equations (2.86)–

(2.93) with respect to time leads to a new MBVP as follows:

∂2Φτ

∂ξ2
+
∂2Φτ

∂ζ2
= 0 −∞ < ξ <∞,−∞ < ζ <∞, (2.146)

∂Φ

∂τ
= 0 |ξ| > ξc, ζ = 0, (2.147)

∂2Φ

∂ζ∂τ
= −∂

2ηn
∂τ 2

|ξ| < ξc, ζ = 0, (2.148)

∂Φ

∂τ
−→ 0 as ξ2 + ζ2 −→∞. (2.149)

As we did in sections 2.2.6 and 2.2.7, we write the complex acceleration poten-

tial in terms of the acceleration potential ∂Φ
∂τ

(ξ, ζ, τ) and an acceleration stream

function ∂Ψ
∂τ

(ξ, ζ, τ), as follows:

w(z, τ) =
∂Φ

∂τ
+ i

∂Ψ

∂τ
, (2.150)

where z = ξ + iζ is the complex variable and

∂Ψ

∂τ
−→ 0 as ξ2 + ζ2 −→∞. (2.151)
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Differentiating equation (2.150) gives

dw(z, τ)

dz
=

∂2Φ

∂ξ∂τ
+ i

∂2Ψ

∂ξ∂τ

=
1

i

∂2Φ

∂ζ∂τ
+

∂2Ψ

∂ζ∂τ
. (2.152)

Equation (2.152) leads to the Cauchy-Riemann equations

∂2Φ

∂ξ∂τ
=

∂2Ψ

∂ζ∂τ

∂2Φ

∂ζ∂τ
= − ∂2Ψ

∂ξ∂τ
. (2.153)

Now from (2.153) the body condition (2.148) can be written as

∂2Ψ

∂ξ∂τ
=
∂2ηn
∂τ 2

|ξ| < ξc, ζ = 0. (2.154)

Integrating equation (2.154) with respect to ξ reads

∂Ψ

∂τ
=

∫ ξ

0

∂2ηn
∂τ 2

dξ∗ + c1 |ξ| < ξc, ζ = 0, (2.155)

where c1 is a constant of integration which can be determined by the symmetric

condition (2.97) at ξ = 0, that is

∂Φ

∂ξ
(0, ζ, τ) = 0 ζ < 0.

The second Cauchy-Riemann relation (2.153) gives

∂2Ψ

∂ζ∂τ
(0, ζ, τ) = 0 ζ < 0,

and integrating with respect to ζ yields

∂Ψ

∂τ
(0, ζ, τ) = c2 ζ < 0,

from condition (2.151) we see that c2 = 0 and therefore

∂Ψ

∂τ
(0, ζ, τ) = 0 ζ < 0,

and hence we conclude that c1 = 0 in (2.155) which now reads

∂Ψ

∂τ
=

∫ ξ

0

∂2ηn
∂τ 2

dξ∗ |ξ| < ξc, ζ = 0. (2.156)

The MBVP (2.146)–(2.149) in terms of complex potential reduces to the fol-

lowing Dirichlet boundary-value problem
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Re[w(ξ − i0)] = 0 |ξ| > ξc, ζ = 0, (2.157)

Im[w(ξ − i0)] =

∫ ξ

0

∂2ηn
∂τ 2

dξ∗ |ξ| < ξc, ζ = 0, (2.158)

w −→ 0 as ξ2 + ζ2 −→∞. (2.159)

For the problem (2.157)–(2.159) we find a general solution by introducing a

function W (z, τ) as the product of the characteristic function
√
z2 − ξ2

c and the

analytic function w(z, τ) as follows

W (z, τ) =
√
z2 − ξ2

cw(z, τ).

Now, the problem (2.157)–(2.159) on ζ = 0 can be rewritten as

Re
[
±
√
ξ2 − ξ2

c

(
∂Φ

∂τ
− i∂Ψ

∂τ

)]
= ±

√
z2 − ξ2

c

∂Φ

∂τ
= 0 |ξ| > ξc, (2.160)

Re
[
− i
√
ξ2
c − ξ2

(
∂Φ

∂τ
− i∂Ψ

∂τ

)]
=
√
ξ2
c − ξ2

∂Ψ

∂τ

=
√
ξ2
c − ξ2

∫ ξ

0

∂2ηn
∂τ 2

dξ∗, |ξ| < ξc. (2.161)

This has the general solution (see (Gakhov & Sneddon 1966) and (Carrier et al.

2005))

W (z, τ) =
i

π

∫ ξc

−ξc

√
ξ2
c − ξ∗2
ξ∗ − z

∫ ξ∗

0

∂2ηn
∂τ 2

dξ∗dξ
∗ + ico + ic1z + ...,

where cn for n = 0, 1, ... are constants. The analytic function w(z, τ) takes the

form

w(z, τ) =
i

π
√
z2 − ξ2

c

∫ ξc

−ξc

√
ξ2
c − ξ∗2
ξ∗ − z

∫ ξ∗

0

∂2ηn
∂τ 2

dξ∗dξ
∗

+
ic0√
z2 − ξ2

c

+
ic1z√
z2 − ξ2

c

+ ...,

where ci, i = 1, 2, . . . , should be zero due to condition (2.159), except c0. By the

Plemelj formula, as ζ → 0 and |ξ| < ξc, we obtain

∂Φ

∂τ
+ i

∂Ψ

∂τ
=
−1

i

∫ ξ

0

∂2ηn
∂τ 2

dξ∗

− 1√
ξ2
c − ξ2

[
1

π

∫ ξc

−ξc

√
ξ2
c − ξ∗2
ξ∗ − ξ

∫ ξ∗

0

∂2ηn
∂τ 2

dξ∗dξ
∗ + c0

]
,

therefore the acceleration potential in the wetted part of the lid is given by
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∂Φ

∂τ
= − 1√

ξ2
c − ξ2

[
1

π

∫ ξc

−ξc

√
ξ2
c − ξ∗2
ξ∗ − ξ

∫ ξ∗

0

∂2ηn
∂τ 2

dξ∗dξ
∗ + c0

]
. (2.162)

The solution to the problem (2.146)–(2.149) is not unique in contrast to the

problem (2.86)–(2.93), since Φ(ξ, ζ, τ) is continuous, whereas the acceleration

potential ∂Φ
∂τ

(ξ, ζ, τ) is not continuous and has a square root singularity at the

contact points ξ = ±ξc(τ). That is as ξ → ξc − 0 the acceleration potential

behaves like
∂Φ

∂τ
= O

(
1√
ξc − ξ

)
.

In addition to the solution given by equation (2.109), we have solutions which

are eigensolutions, which correspond to the homogeneous problem where ∂2Φ
∂ζ∂τ

= 0

in the contact region where |ξ| < ξc. Therefore the constant c0 represents an

eigenvalue for an eigensolution in equation (2.162). The pressure on the wetted

interval can be calculated with the help of eigenvalues in equation (2.162). Since

the wetted interval is moving and expanding on both sides, we should calculate

the pressure and plot it at different instants.

To calculate the constant c0 in equation (2.162), we start from the velocity

potential given in equation (2.109) which is the solution of the problem (2.86)–

(2.93). We denote the integral part of equation (2.109) by

I(ξ, ξc) =

∫ 1

−1

sin(knξcξ∗)

(ξcξ∗ − ξ)
√

1− ξ2
∗

dξ∗, (2.163)

at the boundaries where ζ = 0 as ξ → ξc, by using some analysis the integral

(2.163) can be converted to

I(ξ, ξc)|ξ→ξc =
2

ξc

∫ π/2

0

sin
(
knξc sin2(ξ∗)

)
cos (knξc cos2(ξ∗))

sin2(ξ∗)
dξ∗, (2.164)

and now, as ξ → ξc on ζ = 0, the velocity potential given in equation (2.109) can

be rewritten as

Φ(ξ, 0, τ)|ξ→ξc =
2
√

2
√
ξc − ξ√
ξc

∞∑
n=1

f̄nωn
kn

sin(ωnτ)I(ξ, ξc)|ξ→ξc . (2.165)

Equation (2.162) can be rewritten as

∂Φ

∂τ
=

−1√
ξ2
c − ξ2

[
−1

π

∞∑
n=1

f̄nω
2
n

kn
cos(ωnτ)I1(ξ, ξc) + c0

]
, (2.166)

having done with the inner integral in the right-hand side of equation (2.162),

I1(ξ, ξc) refers to

44



I1(ξ, ξc) = −
∫ ξc

−ξc

√
ξ2
c − ξ∗2
ξ∗ − ξ

sin(knξ
∗)dξ∗.

The above integral is too complicated to give an analytic solution for |ξ| < ξc,

but as ξ → ξc on ζ = 0 we obtain

I1(ξ, ξc)|ξ→ξc = −
∫ ξc

−ξc

ξ∗ sin(knξ
∗)√

ξ2
c − ξ∗2

dξ∗,

the substitution ξ∗ = ξc cos(β) leads us to the integral

I1(ξ, ξc)|ξ→ξc = −ξc
∫ π

0

cos(β) sin(knξc cos(β))dβ.

From (Gradshteyn & Ryzhik 2014), page 421, equation 13, the above can be

evaluated in closed form

I1(ξ, ξc)|ξ→ξc = −πξcJ1(knξc), (2.167)

where J1 is the Bessel function of the first kind. Therefore as ξ → ξc on ζ = 0

equation (2.166) takes the form

∂Φ

∂τ
=

−1√
2ξc
√
ξc − ξ

[
ξc

∞∑
n=1

f̄nω
2
n

kn
cos(ωnτ)J1(knξc) + c0

]
. (2.168)

Equation (2.168) is the time-derivative of the velocity potential. Differentiat-

ing the velocity potential in equation (2.165) with respect to time, we can equate

it with equation (2.168) which enables us to calculate c0. Neglecting the non-

dominant terms and keeping the dominant term as ξ → ξc of the time derivative

of equation (2.165) leads to

∂Φ

∂τ
=

√
2 ξ̇c√

ξc
√
ξc − ξ

∞∑
n=1

f̄nωn
kn

sin(ωnτ)I(ξ, ξc)|ξ→ξc , (2.169)

where ξ̇c is given in equation (2.135). Equating equations (2.168) and (2.169)

gives the constant c0

c0 = −
∞∑
n=1

f̄nωn
kn

[√
2ξ̇c sin(ωnτ)I(ξ, ξc)|ξ→ξc + ξc ωn cos(ωnτ)J1(knξc)

]
.(2.170)

Our aim is to calculate the pressure distribution on the outer region. Therefore

we cannot use the results given by equation (2.167) as we used in equation (2.168)

to find the constant c0. because those results are only relevant to the case when

ξ → ξc on the contact region.

Once the constant c0 has been found numerically from equation (2.170), we

return to the acceleration potential in equation (2.166). With change of variables
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and after some algebra, the following results for I1(ξ, ξc) have been found in the

contact region for |ξ| < ξc

I1(ξ, ξc) = −πξcJ1(knξc) + (ξ2
c − ξ2)∫ π

0

sin
[
kn

(
ξc cos(ξ∗)−ξ

2

)]
cos
[
kn

(
ξc cos(ξ∗)+ξ

2

)]
ξc cos(ξ∗)−ξ

2

dξ∗. (2.171)

2.3.4 leading-order hydrodynamic pressure

At this stage everything has become ready to calculate numerically the distribu-

tion of pressure in the main part of the wetted region during the impact stage

on different lengths of contact region, which correspond to the different times as

the wetted region expands, starting from the beginning of impact at t = t∗. This

is now practical by using equation (2.166) where c0 and I1(ξ, ξc) are defined by

equations (2.170) and (2.171), respectively.

The values for ξc(τ) and ξ̇c(τ) are obtained by solving the initial-value problem

(2.135) and (2.119), the constant c0 is calculated as ξ → ξc from equation (2.170)

by numerically calculating the integral in equation (2.164). Also the integral

I1 in equation (2.171) is evaluated numerically, by using Matlab programming.

The impact stage starts at non-dimensional time t = t∗ = 1.0561 and ends at

t = t∗ = 1.6362. We compute with a time increment ∆t=0.01.
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Figure 2.16: The leading-order hydrodynamic pressure distribution on the lid
during the impact stage. The left-most curve is for the earliest time depicted;
later times are in order, to the right. Note the spread of the wetted zone to the
right. The dotted rectangular is zoomed in the next figure.

Figure 2.16 shows the hydrodynamic pressure distribution, at different time

instants of sloshing impact. The area of detail enclosed by the dotted rectangle

is shown expanded in Figure 2.17. In this figure it is shown that although the

wetted region is expanding, negative pressure can be seen for about 36% of the

impact stage time. This behaviour of the pressure distribution, even though it

is in a small region, motivate us to investigate the influence of gravity when it

comes to this stage.
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Figure 2.17: The negative hydrodynamic pressure distribution on the lid during
the impact stage. For about 36% of the impact stage time negative pressure
appears.

2.4 The energy balance in the tank

In this section we are concerned about the energy distribution in the tank. The

tank is rigid so no work is done on the walls, bottom and lid of the tank.

For the neglected elastic potential energy and acoustic effects contributions,

see (Korobkin 1995), (Cooker 2002), (Korobkin & Khabakhpasheva 2006) and

(Reinhard et al. 2013) . Also the viscosity and surface tension effects on the total

energy are neglected. (Faltinsen & Timokha 2009) discussed these effects, and

they related the time rate of dissipation of energy along with the potential and

kinetic energies in the tank. (Keulegan 1959) discussed the viscosity and surface

tension contributions to the dissipation of energy in standing waves in a rectan-

gular basin. As the tank is assumed to be fixed, there is no external energy flux

into or out of the tank. Therefore, in this closed system the only contribution to

the energy distributions comes from the kinetic and potential energy of the fluid.

In 2-dimensions the total energy ET(t) of the fluid in the main part of the tank,
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in dimensional variables, is given by

ET(t) =

∫∫
Ω(t)

(
1

2
ρ ~U · ~U + ρgy

)
dA, (2.172)

where Ω(t) is the main fluid domain as shown in Figure 2.18-a (dotted line region)

where the jets are excluded, dA is the infinitesimal area of the fluid domain of in-

tegration, ~U = ~U(x, y, t) the fluid velocity, ρ the density and g is the gravitational

acceleration. The first term of the integrand represents the kinetic energy and

the second gives the potential energy in the fluid domain. It is shown in Figure

2.5 that the equilibrium state of the free-surface in the tank is at y = H − h,

where H is the position of the lid and h is the distance from the equilibrium

free-surface, η(x, t) = 0 for all −L ≤ x ≤ L, up to the lid. The non-dimensional

free-surface elevation is given by equation (2.40). Having these, from equation

(2.172) and by using the initial condition (2.53) the total energy of the liquid in

the tank at t = 0 reads

ET (0) = ρg

∫ L

−L

∫ f(x)

0

y dydx, (2.173)

where x = ±L are the positions of the tank’s two walls, and we recall the initial

free-surface at rest, t = 0

f(x) = H − h+ h
∞∑
n=1

f̄n cos

(
kn
H
x

)
, (2.174)

where f̄n and kn are defined in equations (2.41) and (2.43), respectively. The

total initial energy in the tank then reads

ET (0) = ρgLH(H − 2h) +O(h2). (2.175)

The potential energy is defined up to an additive constant. We can take the first

term in (2.175) as a reference and disregard it in the following calculations. Next

we will find the rate of energy transfer out of the fluid main domain Ω(t), the

energy flux. Applying the Reylond’s transport theorem to equation (2.172), the

energy flux through the fluid in the tank can be written as

d

dt
(ET(t)) = ρ

∫
Ω(t)

∂

∂t

(
1

2
~U · ~U

)
dV + ρ

∫
∂Ω(t)

(
1

2
~U · ~U + gy

)
(~v − ~vb) .~n dS,

(2.176)

where ∂Ω(t) is the boundary of the fluid domain Ω(t), dS is the element of arc-

length along the boundary, ~v fluid velocity vector, ~vb boundary surface velocity
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vector and ~n is the normal vector pointed outward from the surface of the fluid.

The normal velocity of the fluid is zero on the rigid boundaries, see conditions

(2.60)–(2.62). The normal component of velocity of the fluid particles on the

free-surface equals the normal velocity of the free-surface itself, i.e.

~v.~n = ~vb.~n x > |xc0|. (2.177)

However in the root of the jet (2.177) does not hold. Therefore the limits of the

second integral in equation (2.176) are reduced to only the intervals ηj ≤ y ≤ H

at x = ±xc0(t), where ηj = H −h+ η(xc0(t), t) is the free-surface elevation of the

jet at the moving contact point which is defined implicitly in equation (2.134).

Here H − ηj is of O(ε) which can be regarded as the thickness of the jet. Finding

the thickness of the jet requires the inner solution be matched with the outer

solution which is not considered in this study. The reader can find the details of

the inner and outer region solution in (Cointe & Armand 1987), (Wilson 1989),

(Korobkin 1997), (Oliver 2002) and references therein. That is

ρ

∫
∂Ω(t)

(
1

2
~U · ~U + gy

)
(~v − ~vb) .~n dS = 2ρ

H∫
ηj

(
1

2

(
~U · ~U

) ∣∣
x=xc0

+ gy

)
(VJ − VS) dy. (2.178)

For the sake of brevity the integral is only taken at the right contact point as the

impact is symmetric and hence the factor 2. Here VJ and VS are, respectively, the

normal component of fluid velocity in the jet and the spray root area velocity, see

Figure 2.18. It should be noted that the line integration in equation (2.178) is not

accounted for in the Wagner theory. This indicates the fact that the conservation

of total energy is not preserved in Wagner theory and there is a loss of energy,

from the main fluid domain to the jets.

A moving reference frame OXY is chosen to move with the turnover position

which has velocity ẋc0(t). The velocity of the fluid in the jet is ẋc0(t) in the

relative reference frame. Therefore, the velocity of the fluid across the spray root

and in the jet is 2ẋc0(t) in the Earth-fixed coordinate system Oxy, where ẋc0(t)

is given in non-dimensional terms in equation (2.135). For the derivation of the

velocity of the fluid in the jet see (Faltinsen & Timokha 2009).

Depending on the above description, we conclude that despite the exclusion

of the jets from Ω(t), they are still represented by the vertical cut lines at x =

±xc0(t) in terms of energy flux. Therefore, ρgẋc0(H2−h2
j) is the potential energy

flux and 4ρẋ3
c0(H − hj) is the kinetic energy flux across x = ±xc0(t) in which

both are derived from equation (2.178). As to the first integral in equation

50



−xc0(t) xc0(t)
(a)

y

x

Stagnation point for this
frame of reference

Turnover point

Free surface

Air

Water

(b)

VS

VS

VS

VJ = 2ẋc0

The geometrical turnover point’s
location moves to the right with
velocity VS = ẋc0 in the Earth
frame of reference.

(c)

Figure 2.18: a- Sloshing at some instant t > t∗, the interval (−xc0,xc0) is the
leading-order wetted part and the dotted region refers to Ω(t). b- Spray root
region, the spray root length is of O(ε). c- Jet region, the jet length is of O(1).
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(2.176), we convert the double integral to a line integral as follows. (Faltinsen &

Timokha 2009) show that the term ∂
∂t

(
1
2
~U · ~U

)
for incompressible and inviscid

liquid can be expressed as .

ρ
∂

∂t

(
1

2
~U · ~U

)
= −∇.

(
ρ ~U

(
1

2
~U · ~U + ρ−1p+ gy

))
. (2.179)

Therefore using identity (2.179) and generalised Gauss theorem (divergence the-

orem) the first integral in equation (2.176) presents

ρ

∫
Ω(t)

∂

∂t

(
1

2
~U · ~U

)
dV = −ρ

H∫
ηj

(
1

2

(
~U · ~U

) ∣∣
x=xc0

+ ρ−1p+ gy

)
VJdy. (2.180)

where the normal conditions (2.60)–(2.62) have applied. The kinetic energy

flux and potential energy flux produce by equation (2.180) are, respectively,

−8ρẋ3
c0(t)(H − hj) and −2ρgẋc0(t)(H2 − h2

j). Summing up the previous kinetic

and potential energy fluxes, the total energy flux from the domain Ω(t) into the

jets is identified by equation (2.176) is

d

dt
(ET(t)) = −ρẋc0(t)(H − hj)

(
4ẋ2

c0(t) + g(H + hj)
)
. (2.181)

Equation (2.181) confirms that the total energy in the part Ω(t) of the fluid

domain, decreases due to its loss from the main part of the fluid domain to the

jets.
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Chapter 3

Influence of gravity on the

moving contact point

It has always been a difficult task for scientists to determine the interaction region

in moving boundary problems even in 2D. So far no one has published a method

for finding the moving boundary, in 2D and 3D, analytically for non-symmetric

impact. For 2D in previous Chapter this challenge addressed and solved for our

particular sloshing impact in the tank. In the current Chapter we are interested

in going one step further, by updating the wetted region boundary with gravity’s

influence. This Chapter analyses evolution of the moving point x = xc(t) in the

presence of gravity. We assume that the influence of gravity on the moving point

will be proportional to the effect on other quantities. In other words, in this

Chapter we will gain a better understanding about the correction due to gravity

on force, pressure and surface elevation through the correction we will find for

the moving contact point. (Vanden-Broeck & Keller 1982), (Wilson 1989) and

(Howison et al. 1991) did some work with inclusion of gravity and its effect on

the jets. Also this Chapter shows the correction due to gravity to the pressure

distribution applied on the lid during the impact.

3.1 Problem formulation with gravity

In this section we introduce gravity into the problem solved in the previous

Chapter. In particular, in section 2.2.5, the problem was formulated in terms

of stretched variables by using the small parameter δ � 1, close to the contact

point and the fluid domain treated as an infinite flow region. Also we formulate

the problem in terms of a complex velocity potential, a complex displacement

potential and a complex acceleration potential to analyse and then solve our

problem described in section 2.1. In section 2.2.5, gravity was disregarded by
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dropping out the term ∂Φ
∂ζ

in equation (2.91), which was of order O(δ3/2), see

(2.91). We used the stretched variables to deal with the flow as in an infinite

region. This makes the problem of the flow in the tank and its impact on the

lid, to be similar to the case of a flat plate above the fluid in infinite flow region.

That is,

• The fluid flow in both problems are governed by Laplace’s equation (2.71).

• The boundary conditions, kinematic and dynamic boundary conditions

(2.74)–(2.75) on the lid and on the flat plate (on the impact region) are

the same.

• The combined kinematic and dynamic boundary conditions (2.76) on the

free-surfaces in the tank and on the free-surfaces around or below the flat

plate are also the same.

However they are different in the boundary conditions on the bottom and on the

walls of the tank in the case of flow in a tank while in infinite fluid domain we

use the far-field condition (2.93) in the infinite flow region case. Also they are

different in the pressure on the free-surface, for free-surface in tank we have ullage

pressure while in infinite fluid region, the pressure on free-surface is atmospheric

pressure.

3.1.1 Problem description

In this section we intend to bring into account gravity in the problem. We recall

the mixed boundary-value problem (with replacing ξ, ζ, τ and ξc by x, y, t and xc)

found in terms of stretched variables in section 2.2.5 at the leading order to be

∂2Φ

∂x2
+
∂2Φ

∂y2
= 0 −∞ < x <∞, y < 0, (3.1)

∂Φ

∂y
+
∂ηn
∂t

= 0 |x| < xc, y = 0, (3.2)

∂Φ

∂t
+ δ3/2ηc = 0 |x| > xc, y = 0, (3.3)

∂Φ

∂y
− ∂ηc

∂t
= 0 |x| > xc, y = 0, (3.4)

where Φ = Φ(ξ, ζ, τ), ηn = ηn(ξ, τ) and ηc = ηc(ξ, τ) are defined in (2.85).

Note that at leading order gravity in non-dimensional variables is represented in

the dynamic boundary condition on the free-surface (3.3) and in the dynamic
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boundary condition on the impact region (3.5) for the pressure:

∂Φ

∂t
+ δ3/2ηc = −p |x| < xc, y = 0, (3.5)

Otherwise the problem is unchanged at the leading order in δ. The boundary

problem is supplemented by the leading order initial conditions

Φ(x, y, 0) = 0, (3.6)

ηc(x, 0) = 0, (3.7)

xc(0) = 0, (3.8)

and the far field condition

Φ(x, y, t) −→ 0 as x2 + y2 −→∞. (3.9)

We mention for the reader that y = 0 represents the position of the free-surface

and the wetted region at the leading order. To construct the problem in terms

of a displacement potential, first we must introduce the Wagner condition (see

(Wagner 1932)).

3.1.2 The Wagner condition

The condition of (Wagner 1932) is imposed on the surface elevation at the moving

contact points x = ±xc where the vertical distance between the tank lid and the

point of the free-surface, where the tangent to the free surface is vertical (turnover

point), is tiny due to narrow width of any jets. Therefore at the leading order

this distance can be ignored to give

ηn(xc(t), t) + ηc(xc(t), t) = 0. (3.10)

where only the right hand moving point is considered, as the impact is symmetric.

As was done earlier, in section 2.2.4, the surface-elevation is decomposed into two

parts.
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3.1.3 Mixed boundary-value problem in terms of displace-

ment potential

Next we formulate the problem (3.1)–(3.9) in terms of a displacement potential,

as introduced by (Korobkin 1982),

φ̂(x, y, t) =

∫ t

0

Φ(x, y, τ)dτ. (3.11)

The Laplace equation (3.1), in the flow region takes the form

∂2φ̂

∂x2
+
∂2φ̂

∂y2
= 0. (3.12)

The kinematic boundary condition in the impact region, |x| < xc(t), y = 0, gives

∂φ̂

∂y
=

∫ tc(x)

0

∂Φ

∂y
dτ +

∫ t

tc(x)

∂Φ

∂y
dτ, (3.13)

where tc(x) is the inverse function of xc(t), i.e. xc(tc(x)) = x. Using the boundary

conditions (3.2) and (3.4), equation (3.13) reads

∂φ̂

∂y
=

∫ tc(x)

0

∂ηc
∂t

dτ −
∫ t

tc(x)

∂ηn
∂t

dτ,

= ηc(x, tc(x))− ηc(x, 0)− ηn(x, t) + ηn(x, tc(x)), (3.14)

with the Wagner condition (3.10) and initial condition (3.7), equation (3.13) reads

∂φ̂

∂y
= −ηn(x, t), (3.15)

The time-integral of the dynamic boundary condition (3.3) on the free-surface,

|x| > xc, y = 0, with respect to time from 0 to t, allows us to rewrite in terms of

the displacement potential (3.11):

φ̂(x, 0, t) = −
∫ t

0

Φ(x, 0, τ)dτ,

= −δ3/2

∫ t

0

∫ τ

0

ηc(x, τ̃)dτ̃dτ, (3.16)

where (3.16) can be written as

φ̂(x, 0, t) = −δ3/2

∫ t

0

(t− τ)ηc(x, τ)dτ. (3.17)
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Also the kinematic boundary condition (3.4), on the free-surface, |x| > xc, y = 0,

provides

∂φ̂

∂y
=

∫ t

0

∂Φ

∂y
dτ ,

= ηc(x, t). (3.18)

The initial condition (3.6) and the far field condition (3.9) in terms of displace-

ment potential take the form, respectively

φ̂(x, y, 0) = 0, (3.19)

φ̂(x, y, t) −→ 0 as x2 + y2 −→∞. (3.20)

3.1.4 Mixed boundary-value problem in terms of complex

displacement

In this section we define the complex displacement ŵ(z, t) by the relation

dŵ

dz
(z, t) =

∂φ̂

∂x
(x, y, t)− i∂φ̂

∂y
(x, y, t) z = x+ iy,

where ∂φ̂
∂x

(x, y, t) and ∂φ̂
∂y

(x, y, t) are horizontal and vertical displacements of the

liquid particles respectively. To reformulate the problem (3.12)–(3.20) in terms

of complex displacement, we calculate

Re

[
dŵ

dz
(x− i0, t)

]
= g1(x, t) |x| > xc, (3.21)

Im

[
dŵ

dz
(x− i0, t)

]
= g2(x, t) |x| < xc, (3.22)

where from equation (3.17)

g1(x, t) = −δ3/2

∫ t

0

(t− τ)
∂ηc
∂x

(x, τ)dτ, (3.23)

and

g2(x, t) = ηn(x, t). (3.24)

From equation (3.20) we find that

dŵ

dz
(z, t) −→ 0 as |z| −→ ∞. (3.25)
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We introduce a new unknown function Ŵ(z, t) using the characteristic function,√
z2 − x2

c , and the complex displacement potential ŵ(z, t) as

Ŵ(z, t) =
√
z2 − x2

c

dŵ

dz
(z). (3.26)

The function Ŵ(z, t) is the product of two functions that are analytic in the lower

half-plane, so it is also analytic, and

Ŵ(z, t) −→ 0 as |z| −→ ∞, (3.27)

as O(z−1). The real part of Ŵ(x− i0, t) takes the form

Re
[
Ŵ(x− i0, t)

]
=



Re
[√

x2 − x2
c(
∂φ̂
∂x
− i∂φ̂

∂y
)
]

= g1

√
x2 − x2

c x > xc,

Re
[
−
√
x2 − x2

c(
∂φ̂
∂x
− i∂φ̂

∂y
)
]

= −g1

√
x2 − x2

c x < −xc,

Re
[
−i
√
x2
c − x2(∂φ̂

∂x
− i∂φ̂

∂y
)
]

= −g2

√
x2
c − x2 |x| < xc.

(3.28)

(Gakhov & Sneddon 1966) solve the problem (3.27)–(3.28):

Ŵ(z, t) =
i

π

∫ ∞
−∞

Re
[
Ŵ(σ − i0)

]
σ − z

dσ.

Decomposing the interval of integration with respect to the impact region and

free-surfaces, we find

Ŵ(z, t) =
i

π

[
−
∫ −xc
−∞

g1

√
σ2 − x2

c

σ − z
dσ +

∫ ∞
xc

g1

√
σ2 − x2

c

σ − z
dσ

−−
∫ xc

−xc

g2

√
x2
c − σ2

σ − z
dσ

]
. (3.29)

Therefore, the solution to the problem (3.21)–(3.23) can be written

dŵ

dz
(z, t) =

i

π
√
z2 − x2

c

[
−
∫ −xc
−∞

g1

√
σ2 − x2

c

σ − z
dσ +

∫ ∞
xc

g1

√
σ2 − x2

c

σ − z
dσ

− −
∫ xc

−xc

g2

√
x2
c − σ2

σ − z
dσ

]
. (3.30)
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Note that the last integral on the right-hand side of equation (3.29) is the Cauchy-

type integral. Using the Plemelj formula, (Gakhov & Sneddon 1966), as y −→ 0−

in the impact region, |x| < xc, we find

dŵ

dz
(x− i0, t) =

−1

π
√
x2
c − x2

[
−
∫ −xc
−∞

g1

√
σ2 − x2

c

σ − x
dσ +

∫ ∞
xc

g1

√
σ2 − x2

cdσ

σ − x

+ iπg2

√
x2
c − x2 −−

∫ xc

−xc

g2

√
x2
c − σ2

σ − x
dσ

]
. (3.31)

The real and imaginary parts of (3.31) give the vertical displacement potential

∂φ̂

∂y
(x, 0, t) = g2(x, t), (3.32)

and the horizontal displacement

∂φ̂

∂x
(x, 0, t) =

−1

π
√
x2
c − x2

[
−
∫ −xc
−∞

g1

√
σ2 − x2

c

σ − x
dσ +

∫ ∞
xc

g1

√
σ2 − x2

c

σ − x
dσ

− −
∫ xc

−xc

g2

√
x2
c − σ2

σ − x
dσ

]
. (3.33)

As x −→ xc(t) − 0, horizontal displacement (3.33) is finite if the expression in

the brackets is zero∫ −xc
−∞

−(σ + xc)g1√
σ2 − x2

c

dσ +

∫ ∞
xc

(σ + xc)g1√
σ2 − x2

c

dσ +−
∫ xc

−xc

(xc + σ)g2√
x2
c − σ2

dσ = 0. (3.34)

The functions g1(x, t) and g2(x, t) are odd and even respectively, therefore equa-

tion (3.34) reads

2

∫ ∞
xc

g1(σ, t)√
σ2 − x2

c

dσ +−
∫ xc

−xc

g2(σ, t)√
x2
c − σ2

dσ = 0. (3.35)

The integral in (3.35) were calculated in section 2.3.1, where gravity was ne-

glected. This means that the first integral on the left hand side of (3.35) was zero

and the wetted part calculated without the influence of gravity. However, the

calculations in equation (3.35) to be done are more complicated, and the exis-

tence of the unknown function, the free-surface elevation, ηc(x, t), in the function

g1(x, t) is the matter of concern.

The influence of gravity in our problem is negligible in the short period at

the very beginning of impact. This can be concluded from the fact that at

the very beginning of impact due to high velocity of the fluid, we have a high

Froude number U√
Hg
� 1, which shows that the inertia is dominant compared
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with gravitational forces. We are interested to quantify this behaviour in this

study. This means that in this short period, the vertical velocity is uninfluenced

by gravity without any significant reduction in its velocity. Also in this study we

are interested to investigate sloshing with low Froude number U√
Hg
� 1, in which

the gravitational forces start to become dominant compared with inertial forces.

The gravitational acceleration term g which is hidden in non-dimensional

variables should be brought back again into the model. The presence of gravity in

our problem will take us one step closer to a more realistic description of impact.

We try to determine the contribution of gravity in the problem by representing

it in terms of γ, such that, γ = δ3/2. At the beginning of impact, γ � 1, but

as time grows, γ becomes more and more important, and eventually it ends the

impact. Hence equation (3.3) can be modified to

∂Φ

∂t
+ γ ηc = 0 |x| > xc, y = 0. (3.36)

3.1.5 Expansion of the moving point in terms of γ

Equation (3.35) provides the position of the moving point x = xc(t), the half size

of the wetted region. The equation to be calculated needs an expansion in terms

of the new small parameter, γ. It should be noted that the previous expansions

of unknown functions were made in terms of the small parameter ε = h
H

, where

H is the height of the tank and h is the distance between the static free-surface

and the lid, see Figure 2.5. However, as to the leading order terms, there will be

no difference for both expansions. We start by introducing new variables

x̃ = qx, ỹ = qy, (3.37)

where

q(t, γ) =
xc0(t)

xc(t, γ)
. (3.38)

Such that

q(t, γ) = 1 + o(1) as γ −→ 0.

Here at leading order, the moving point x = xc0, represents the half-length of the

contact region in the absence of gravity, while the function xc(t, γ), represents

the half length of the contact region in the presence of gravity. Here γ = 0 means

gravity is neglected and xc(t, γ = 0) = xc0(t) at the leading order.

The purpose of the following analysis is to define a consistent expansion for

the moving contact point xc(t, γ) in terms of γ. We introduce new variables, x̃
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and ỹ, into the kinematic boundary conditions (3.2)

q
∂φ̃

∂ỹ
= −∂η̃n

∂t
− x̃qt

q

∂η̃n
∂x̃

|x̃| < xc0, ỹ = 0, (3.39)

where φ̃ = φ̃(x̃, ỹ, t) and η̃n = η̃n(x̃, t), into the dynamic boundary condition (3.3)

x̃
qt
q

∂φ̃

∂x̃
+
∂φ̃

∂t
+ γη̃c = 0 |x̃| > xc0, ỹ = 0, (3.40)

where η̃c = η̃c(x̃, t), and into the kinematic boundary condition (3.4)

q
∂φ̃

∂ỹ
=
∂η̃c
∂t

+ x̃
qt
q

∂η̃c
∂x̃

|x̃| > xc0, ỹ = 0. (3.41)

To find the expansions of the unknown functions with respect to parameter γ, at

this stage, we expand our functions as follows: the velocity potential

φ̃(x̃, ỹ, t, γ) = φ̃0(x̃, ỹ, t) + Φ̃(x̃, ỹ, t, γ), Φ̃ −→ 0 as γ −→ 0, (3.42)

the correction to the surface elevation after introducing the lid to the problem

η̃c(x̃, t, γ) = η̃c0(x̃, t) + Π(x̃, t, γ), Π −→ 0 as γ −→ 0, (3.43)

the coordinate of the contact point accounting for gravity

xc(t, γ) = xc0(t) +X(t, γ), X −→ 0 as γ −→ 0, (3.44)

and the stretched coefficient

q(t, γ) = 1 + q̃(t, γ), q̃ −→ 0 as γ −→ 0, (3.45)

where

q̃(t, γ) =
−X

xc0 +X
. (3.46)

Hence

dq̃

dt
(t, γ) =

ẋc0X − xc0Ẋ
x2
c0

, (3.47)

where q̃ ∼ dq̃
dt
∼ O(X) as γ −→ 0. Substituting the expansions (3.42)–(3.45) into
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(3.39)–(3.41), at the first order, the terms of o(1), on ỹ = 0, respectively, we find

q̃
∂φ̃0

∂ỹ
+
∂Φ̃

∂ỹ
(1 + q̃) = −x̃dq̃

dt

∂η̃n
∂x̃

|x̃| < xc0, ỹ = 0, (3.48)

x̃
dq̃

dt

(
∂φ̃0

∂x̃
+
∂Φ̃

∂x̃

)
+
∂Φ̃

∂t
+ γη̃c0 + γΠ = 0 |x̃| > xc0, ỹ = 0, (3.49)

q̃
∂φ̃0

∂ỹ
+
∂Φ̃

∂ỹ
(1 + q̃) =

∂Π

∂t
+ x̃

dq̃

dt

(
∂η̃c0
∂t

+
∂Π

∂x̃

)
|x̃| > xc0, ỹ = 0. (3.50)

Expanding the terms Φ̃ and Π one step further

Φ̃(x̃, ỹ, t, γ) = γφ̃1(x̃, ỹ, t) + Φ̃1(x̃, ỹ, t, γ),
Φ̃1

γ
−→ 0 as γ −→ 0, (3.51)

Π(x̃, t, γ) = γη̃c1(x̃, t) + Π1(x̃, t, γ),
Π1

γ
−→ 0 as γ −→ 0. (3.52)

Substitution of (3.51)–(3.52) into (3.48)–(3.50), on ỹ = 0, and equating the terms

of order O(γ) imply

1

γ
q̃
∂φ̃0

∂ỹ
+
∂φ̃1

∂ỹ
= −1

γ
x̃
dq̃

dt

∂η̃n
∂x̃

|x̃| < xc0, (3.53)

x̃

γ

dq̃

dt

∂φ̃0

∂x̃
+
∂φ̃1

∂t
+ η̃c0 = 0 |x̃| > xc0, (3.54)

1

γ
q̃
∂φ̃0

∂ỹ
+
∂φ̃1

∂ỹ
=

1

γ
x̃
dq̃

dt

∂η̃c0
∂x̃

+
∂η̃c1
∂t

|x̃| > xc0. (3.55)

Now equations (3.53)–(3.55) all force xc(t, γ) to be expanded as

xc(t, γ) = xc0(t) + γxc1(t) + o(γ), (3.56)

and consequently

q̃(t, γ) = 1 + γχ(t) + o(γ), (3.57)

where χ(t) = −xc1(t)
xc0(t)

. The asymptotic expansion is now clear and we can use it

to continue with equation (3.34).

3.1.6 Equation for the moving point

We found the form of the expansion of the functions in power of γ. In this section

we start from equation (3.34). Using a change of integration variable, σ = xc(t)β,

we find
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2

∫ ∞
1

g1(xc(t)β, t)√
β2 − 1

dβ +−
∫ 1

−1

g2(xc(t)β, t)√
1− β2

dβ = 0. (3.58)

At this stage the function xc(t) in g1(xc(t)β, t) and g2(xc(t)β, t) are to be

expanded, using (3.56). The Taylor expansion for g2(xc(t)β, t) at x = xc0(t)

imply

g2(xc(t)β, t) =
∞∑
n=1

f̄n cos(knβ[xc0(t) + γxc1(t) + o(γ)]) cos(wnt)

=
∞∑
n=1

f̄n cos(knxc0(t)β) cos(wnt)

− γ

[
∞∑
n=1

f̄nxc1(t)knβ sin(knxc0(t)β) cos(wnt)

]
+ o(γ). (3.59)

Note that the summation is taken to be finite in our problem. Similarly for

g1(xc(t)β, t) we find

g1(xc(t)β, t) = −γ
∫ t

0

(t− τ)
∂ηc
∂σ

(xc0(t)β + γxc1(t)β + o(γ), τ)dτ

= −γ
∫ t

0

(t− τ)

[
∂ηc0
∂σ

(xc0(t)β, τ) + γ
∂ηc1
∂σ

(xc0(t)β, τ) +

γxc1(t)β
∂2ηc0
∂σ2

(xc0(t)β, τ) + o(γ2)

]
dτ.

Hence

g1(xc(t)β, t) = −γ
∫ t

0

(t− τ)
∂ηc0
∂σ

(xc0(t)β, τ)dτ + o(γ). (3.60)

Now we substitute the expansion of g1(xc(t)β, t) and g2(xc(t)β, t) into equation

(3.58) and at the leading order, we find

∞∑
n=1

f̄n cos(wnt)−
∫ 1

−1

cos(knxc0(t)β)dβ√
1− β2

= 0, (3.61)

which was solved for xc0(t) as shown in Chapter 2, and at the first order we have

2

∫ ∞
1

∫ t

0

(t− τ)
∂ηc0
∂σ

(xc0(t)β, τ)√
β2 − 1

dτdβ =−
∞∑
n=1

f̄nxc1(t)kn cos(wnt)

−
∫ 1

−1

β sin(knxc0(t)β)√
1− β2

dβ. (3.62)
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Writing equation (3.62) for xc1(t) in the form

xc1(t)G1(t) = G2(t), (3.63)

where

G1(t) = −
∞∑
n=1

f̄nkn cos(wnt)−
∫ 1

−1

β sin(knxc0(t)β)√
1− β2

dβ, (3.64)

and

G2(t) = 2

∫ ∞
1

∫ t

0

(t− τ)
∂ηc0
∂σ

(xc0(t)β, τ)√
β2 − 1

dτdβ. (3.65)

show both functions of time. Using the change of variable, β = cos(β̄), and the

special integral given in (Gradshteyn & Ryzhik 2014) p. 421, the function G1(t)

can be rewritten as

G1(t) = −π
∞∑
n=1

f̄nkn cos(wnt)J1(knxc0(t)), (3.66)

where J1 is the Bessel function of the first kind. Substituting (3.67)

∂ηc0
∂t

(xc0(t)β, τ) = βẋc0(t)
∂ηc0
∂σ

(xc0(t)β, τ), (3.67)

into equation (3.65), where ẋc0(t) = dxc0
dt

(t), gives

G2(t) =
1

ẋc0(t)

∫ ∞
1

1

β
√
β2 − 1

∫ t

0

(t− τ)
∂ηc0
∂t

(xc0(t)β, τ)dτdβ. (3.68)

The evolution of the contact region is plotted at the leading order, i.e. without

gravity, in Figure 2.13. Equation (3.63) includes information about the influence

of gravity on the moving contact point x = xc(t, γ) in the first order approx-

imation. Calculations for G1(t) are straightforward. However, for G2(t) from

equation (3.68), the surface elevation velocity ∂ηc0
∂t

is unknown and must be de-

termined, as considered in the next subsection.

3.1.7 The leading-order correction of the surface elevation

In this section we will determine the leading-order surface elevation ηc0(x, t) with-

out gravity. This problem in the leading order was formulated in Section 2.2.5,

by neglecting the term which contains gravity which has order O(γ) = O(δ
3
2 ),

δ � 1. In section 2.2.7 the problem was formulated in terms of the displacement

potential (2.110), and we again use φ̂ in this section. We formulate the problem
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(2.111)–(2.119) in terms of complex displacement as follows. We define the com-

plex displacement Φcd(z, t), z = x + iy, through the displacement potential, see

(Carrier et al. 2005)

dΦcd

dz
(z, t) =

∂φ̂

∂x
(x, y, t)− i∂φ̂

∂y
(x, y, t). (3.69)

From the conditions (2.112)–(2.116), the real and imaginary part of (3.69) read

Re

[
dΦcd

dz
(x− i0, t)

]
=
∂φ̂

∂x
(x, 0, t) = 0, |x| > xc0, (3.70)

Im

[
dΦcd

dz
(x− i0, t)

]
= −∂φ̂

∂y
(x, 0, t) = ηn0, |x| < xc0, (3.71)

and the far field condition

dΦcd

dz
−→ 0 as |z| −→ ∞, (3.72)

which converges to zero likeO(z−2). Introducing a new unknown function Φch(z, t)

dΦch

dz
=

dΦcd

dz

√
z2 − x2

c0 (3.73)

=

(
∂φ̂

∂x
− i∂φ̂

∂y

)√
z2 − x2

c0, (3.74)

we calculate its real part as y −→ 0−, using conditions (3.70) and (3.71)

Re

[
dΦch

dz
(x− i0, t)

]
=



Re
[√

x2 − x2
c0

(
∂φ̂
∂x
− i∂φ̂

∂y

)]
= 0 x > xc0,

Re
[
−
√
x2 − x2

c0(t)
(
∂φ̂
∂x
− i∂φ̂

∂y

)]
= 0 x < −xc0,

Re
[
−i
√
x2
c0 − x2

(
∂φ̂
∂x
− i∂φ̂

∂y

)]
= ηn0(x, t)

√
x2
c0 − x2 |x| < xc0,

(3.75)

and from the far-field condition (3.72), the far-field behaviour of the characteristic

function is

dΦch

dz
(z, t) −→ 0 as |z| −→ ∞. (3.76)

The analytic solution to the problem (3.75) and (3.76) can be written as

dΦch

dz
(z, t) =

i

π

∫ ∞
−∞

Re
[

dΦcd
dz

(σ − i0, t)
]

σ − z
dσ + ic0 + ic1z + ... , (3.77)
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where the constants cj for j = 0, 1, ... , have been forced to be zero by the far

field condition (3.76). From boundary conditions (3.75), and equations (3.77)

and (3.74) we find

∂φ̂

∂x
− i∂φ̂

∂y
=

i

π
√
z2 − x2

c0

∫ xc0

−xc0

ηn0

√
x2
c0 − σ2

σ − z
dσ.

On the free-surface, x > xc0, as y −→ 0−, by (Carrier et al. 2005) we find

∂φ̂

∂x
− i∂φ̂

∂y
=

i

π
√
x2 − x2

c0

∫ xc0

−xc0

ηn0

√
x2
c0 − σ2

σ − x
dσ.

From the imaginary part and equation (2.114), the surface elevation ηc0(x, t) for

x > xc0, reads

ηc0(x, t) =
−1

π
√
x2 − x2

c0(t)

∫ xc0(t)

−xc0(t)

ηn0(σ, t)
√
x2
c0(t)− σ2

σ − x
dσ. (3.78)

The correction to the surface elevation ηc0(x, t) at t = 0.1997 in Figure 3.1 and

at t = 0.3997 in Figure 3.3, are shown. These two figures show that the cor-

rection on the surface elevation is found to be very small in the region far from

the wetted region comparing to its correction close to the wetted region. This

confirm the fact that due to highly localized pressure in space and time (this

behaviour is observed in both experiments and numerical computations as well,

see (Malenica, Mravak, Besse, Kaminski & Bogaert 2009), (Ten et al. 2011) and

references therein) during the impact stage, the real shape of the free surface at

a distance from the wetted region can be disregarded. A comparison between

the free surface elevation without the lid versus the surface elevation with the lid

(due to Wagner) is shown in Figures 3.2 and 3.4 at the previous times mentioned.
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Figure 3.1: The correction to the surface elevation after lid is introduced, ηc0(x, t),
at time t = 0.1997.

Figure 3.2: The free surface elevation without lid, 1− ε + εηn0(x, t), (solid line),
surface elevation with its correction with lid is introduced, 1 − ε + ε(ηn0(x, t) +
ηc0(x, t)), (dotted-dashed line), at time t = 0.1997.
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Figure 3.3: The correction to the surface elevation after lid is introduced, ηc0(x, t),
at time t = 0.3997.

Figure 3.4: The free surface elevation without lid 1 − ε + εηn0(x, t), (solid line),
surface elevation with its correction with lid is introduced, 1 − ε + ε(ηn0(x, t) +
ηc0(x, t)), (dotted-dashed line), at time t = 0.3997.
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Having the surface elevation with no lid ηn0(σ, t) given by equation (2.40),

substituting x = xc0(t)β and change of variable σ = xc0(τ) cos(θ) we arrive at

ηc0(xc0(t)β, τ) =
−x2

c0(τ)

π
√
x2
c0(t)β2 − x2

c0(τ)

[
∞∑
n=1

f̄n cos(wnτ)

∫ π

0

cos(knxc0(τ) cos(θ)) sin2(θ)

xc0(τ) cos(θ)− xc0(t)β
dθ

]
. (3.79)

Equation (3.79) contains the correction to the surface elevation at x = xc0(t)β.

Having this we can continue from the previous section 3.1.6 to calculate the

correction to the moving contact point due to gravity.

3.1.8 Gravity’s effect on the moving contact point

In this section we calculate the correction to the moving contact point semi-

analytically. The function G2(t) in equation (3.68) contains the time derivative

of the correction to the surface elevation at the leading order. We use the Leibnitz

integral rule as follows

d

dt

∫ t

0

(t− τ)

∫ ∞
1

ηc0(xc0(t)β, τ)

β2
√
β2 − 1

dβdτ =

∫ t

0

∫ ∞
1

ηc0(xc0(t)β, τ)

β2
√
β2 − 1

dβdτ

+

∫ t

0

(t− τ)

∫ ∞
1

ẋc0(t)β ∂ηc0
∂t

(xc0(t)β, τ)

β2
√
β2 − 1

dβdτ. (3.80)

Now by substituting (3.80) into equation (3.68) we arrive at the final analytical

form for the function G2(t)

G2(t) =
1

ẋ2
c0(t)

d

dt

∫ t

0

(t− τ)

∫ ∞
1

ηc0(xc0(t)β, τ)

β2
√
β2 − 1

dβdτ

(3.81)

−
∫ t

0

∫ ∞
1

ηc0(xc0(t)β, τ)

β2
√
β2 − 1

dβdτ. (3.82)

Therefore the functions G1(t), see Figure 3.5, and G2(t), see Figure 3.6, are

now determined by equations (3.82) and (3.80), respectively. Hence the correction

to the moving contact point, xc1(t), due to gravity can be found from equation

(3.63). Figures 3.5 and 3.6 make it clear that the ratio of the two functions G1(t)

and G2(t) is negative. This indicates that the present of gravity decreases the

length of the wetted region, see Figure 3.7. It is also shown in Figure 3.8 that the
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period of the extension of the wetted region shortens by the influence of gravity.

That is, due to gravity the wetted region starts to shrinks earlier than when it is

absent.

t

0.1 0.2 0.3 0.4 0.5 0.6

G
1
(t
)

0

2

4

6

8

10

12

Figure 3.5: The function G1(t) during the impact stage.
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Figure 3.6: The function G2(t) during the impact stage.
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xc0(t) + γ.xc1(t)

Figure 3.7: The leading-order moving point x = xc0(t), (solid line), and the
moving point with correction of gravity x = xc0(t) +γ xc1(t) (dashed line) during
the impact stage with δ = 0.05. At the very beginning of impact gravity has no
influence and no difference is seen between the curves.
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Figure 3.8: Details of the Figure 3.7. The leading-order moving point x = xc0(t),
(solid line), and the moving point with correction of gravity x = xc0(t) + γ xc1(t)
(dashed line) show that gravity starts to influence the moving point more and
more until the wetted zone starts to contract.
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3.2 Moving contact point correction due to grav-

ity

In this section we develop a second method to determine the correction caused by

gravity, to the moving point. The importance of the accuracy of the position of

the moving point is considered. We carry out this work to validate our previous

results.

We recall the leading-order boundary-value problem in terms of displacement

potential derived in section 3.1.3 by using the stretched variables (2.84) (variables

are replaced to their original).

∂2φ0

∂x2
+
∂2φ0

∂y2
= 0 −∞ < x <∞, y < 0 (3.83)

∂φ0

∂y
= −ηn |x| < xc0, y = 0, (3.84)

φ0 = 0 |x| > xc0, y = 0, (3.85)

ηn + ηc0 = 0 x = xc0, (3.86)

φ0 −→ 0 as x2 + y2 −→ 0. (3.87)

It is worth mentioning here that the leading-order problem, with respect to the

parameter ε = h
H

was constructed in section 2.2.5, where H was the position of

the lid and h was the small distance from the level surface elevation to the lid.

Then the above formulation is derived in terms of displacement potential by using

the expansion with respect to γ = δ3/2 analysed in section 3.1.5. The expansions

are rewritten here (hats are dropped) as follows: the velocity potential

φ(x, y, t, γ) = φ0(x, y, t) + γφ1(x, y, t) +O(γ2), (3.88)

the correction to the surface elevation when the lid is introduced to the problem

ηc(x, t, γ) = ηc0(x, t) + γηc1(x, t) +O(γ2), (3.89)

the moving point

xc(t, γ) = xc0(t) + γxc1(t) +O(γ2), (3.90)

together with the Taylor expansion of the free-surface elevation about the point

x = xc(t,γ)
xc0(t)

x̃, (tilde dropped) with no lid:

ηn(x, t, γ) = ηn(x, t) + γx
xc1(t)

xc0(t)

∂ηn
∂x

(x, t) +O(γ2). (3.91)

72



Therefore in this section any order specified is in terms of γ = δ3/2. The

correction to the impact due to gravity is to be analysed through the next order.

Therefore the first-order boundary-value problem in terms of displacement po-

tential is derived as follows. Using the stretched variables (3.37), the governing

equation (3.12) at the first order is retained

∂2φ1

∂x2
+
∂2φ1

∂y2
= 0 −∞ < x <∞, y < 0. (3.92)

The above expansions and equation (3.15) provide the kinematic condition on

the wetted region, at first order,

∂φ1

∂y
= −xxc1

xc0

∂ηn
∂x

|x| < xc0, y = 0. (3.93)

The second time derivative of the dynamic boundary condition (3.17), combined

with the kinematic boundary condition (3.18) all in terms of displacement poten-

tial with the above expansion at the first order gives

∂2φ1

∂t2
= −∂φ0

∂y
|x| > xc0, y = 0. (3.94)

Also we readily find the initial condition

φ1 = 0 at t = 0, (3.95)

and the far field condition

φ1 −→ 0 as x2 + y2 −→ 0. (3.96)

Suppose that the solution to the problem (3.87)–(3.96) is given by

φ1(x, y, t) = −
∫ t

0

(t− τ)
∂φ0

∂y
(x, y, τ)dτ + φ11(x, y, t), (3.97)

where φ11(x, y, t) is a correction to the solution on the free surface and φ11(x, 0, t) =

0 for |x| > xc0. Then we construct the problem in terms of φ11 as follows

∂2φ11

∂x2
+
∂2φ11

∂y2
= 0 −∞ < x <∞, y < 0, (3.98)

∂φ11

∂y
= −xxc1(t)

xc0(t)

∂ηn
∂x

(x, t)−
∫ t

t(x)

(t− τ)
∂2φ0

∂x2
dτ |x| < xc0, y = 0, (3.99)

73



where τ = t(x) is the inverse function of x = xc0(τ), and

∂φ11

∂x
= 0 |x| > xc0, y = 0. (3.100)

To solve the above formulation we define an analytic function W (z, t)

W (z, t) =
(∂φ11

∂x
− i∂φ11

∂y

)√
z2 − x2

c0 z = x+ iy. (3.101)

As y −→ 0− the real and imaginary parts of the new unknown function W (z, t)

are

Re
[
W (x− i0)

]
=



∂φ11

∂x

√
x2 − x2

c0(t) = 0 x > xc0,

−∂φ11

∂y

√
x2
c0(t)− x2 |x| < xc0,

−∂φ11

∂x

√
x2 − x2

c0 = 0 x < −xc0,

Im
[
W (x− i0)

]
=



−∂φ11

∂y

√
x2 − x2

c0 x > xc0,

−∂φ11

∂x

√
x2
c0 − x2 |x| < xc0,

∂φ11

∂y

√
x2 − x2

c0 x < −xc0.

In the impact region, |x| < xc0, the Hilbert formula gives

∂φ11

∂x

√
x2
c0 − x2 =

1

π

∫ xc0

−xc0

√
x2
c0 − σ2

σ − x

[
σ
xc1
xc0

∂ηn
∂σ

+

∫ t

t(σ)

(t− τ)
∂2φ0

∂σ2
dτ

]
dσ. (3.102)

The term ∂2φ0

∂σ2 , in the inner integral has a square-root singularity as σ = xc0(t), but

we assume that the double time integral will overcome this singularity. However,

we will try to write it in a more convenient way, to be dealt with inside the

integral. The problem (3.83)–(3.87) is reasonably a good place to construct a

different form for ∂2φ0

∂σ2 . We construct the following by taking the x-derivative of

the whole problem, to arrive at the leading-order problem in terms of horizontal
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displacement ∂φ0,x

∂x

∂2φ0,x

∂x2
+
∂2φ0,x

∂y2
= 0 ∞ < x <∞, y < 0, (3.103)

∂2φ0

∂x∂y
= −∂ηn

∂x
|x| < xc0, y = 0, (3.104)

∂2φ0

∂x2
= 0 |x| > xc0, y = 0, (3.105)

∂φ0

∂x
−→ 0 as x2 + y2 −→ 0. (3.106)

We define the characteristic function W̄ (z, t) as

dW̄

dz
=

(
∂2φ0

∂x2
− i ∂

2φ0

∂x∂y

)√
z2 − x2

c0 z = x+ iy. (3.107)

As y −→ 0−, the real and imaginary parts of the new unknown function dΦcd
dz

(x, y, t)

are

Re

(
dW̄

dz
(x− i0, t)

)
=



∂2φ0

∂x2

√
x2 − x2

c0 = 0 x > xc0,

− ∂2φ0

∂x∂y

√
x2
c0 − x2 |x| < xc0,

−∂2φ0

∂x2

√
x2 − x2

c0 = 0 x < −xc0,

and

Im

(
dW̄

dz
(x− i0, t)

)
=



− ∂2φ0

∂x∂y

√
x2 − x2

c0 x > xc0,

−∂2φ0

∂x2

√
x2
c0 − x2 |x| < xc0,

∂2φ0

∂x∂y

√
x2 − x2

c0 x < −xc0.

In the wetted region, |x| < xc0, y = 0, the Hilbert formula relates the imaginary

and real parts of dW̄
dz

(x, 0, t) as follows

∂2φ0

∂σ2
(σ, 0, τ) =

1

π
√
x2
c0(τ)− σ2

∫ xc0(τ)

−xc0(τ)

√
xc0(τ)2 − µ2

µ− σ
∂ηn
∂µ

(µ, τ)dµ. (3.108)

Equation (3.108) seems to be convenient for ∂2φ0

∂x2 to be substituted in equation
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(3.102). Doing this, at x = xc0(t) we find

−πxc1(t)

xc0(t)

∫ xc0(t)

−xc0(t)

xc0(t) + σ√
x2
c0(t)− σ2

σ
∂ηn
∂σ

(σ, t)dσ =∫ xc0(t)

−xc0(t)

xc0(t) + σ√
x2
c0(t)− σ2

∫ t

0

(t− τ)√
xc0(τ)2 − σ2∫ xc0(τ)

−xc0(τ)

√
xc0(τ)2 − µ2

µ− σ
∂ηn
∂µ

(µ, τ)dµdτdσ.

(3.109)

Taking the equation for the surface elevation with no lid (2.40), the left hand side

of equation (3.109), excluding the moving point correction xc1(t), can be written

as

G1(t) = −π2xc0(t)
∑
n=1,2

fnkn cos(wnt)J1 (knxc0(t)) . (3.110)

The function G1(t) is plotted in Figure 3.9.

Figure 3.9: The function G1(t) during the impact stage. Variables are non-
dimensional.
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As to the right-hand side of equation (3.109) it follows that

G2(t) = xc0(t)

∫ t

0

(t− τ)

∫ xc0(τ)

−xc0(τ)

√
xc0(τ)2 − µ2

∂ηn
∂µ∫ xc0(τ)

−xc0(τ)

dσ√
x2
c0(t)− σ2

√
xc0(τ)2 − σ2(µ− σ)

dµdτ. (3.111)

Here we use bold G1(t) and G2(t) to avoid confusing with G1(t) and G2(t) in

previous section. Having the following identity∫ xc0(τ)

−xc0(τ)

dσ√
xc0(τ)2 − σ2(µ− σ)

= 0, (3.112)

and using some manipulations we can rewrite equation (3.111) in a way convenient

to estimate it by a numerical method

G2(t) = 4xc0(t)

∫ t

0

(t− τ)x3
c0(τ)∫ π/2

0

∫ π/2

0

sin(θ1) cos2(θ1) sin(knxc0(τ) sin(θ1))√
x2
c0(t)− (xc0(τ) sin(θ))2

√
x2
c0(t)− (xc0(τ) sin(θ1))2

1(√
x2
c0(t)− (xc0(τ) sin(θ))2 +

√
x2
c0(t)− (xc0(τ) sin(θ1))2

)dθdθ1dτ, (3.113)

where G2(t) is negative and decreasing as time goes in, see Figure 3.10.

Figure 3.10: The function G2(t) during the impact stage. Variables are non-
dimensional.
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Figure 3.11: The moving contact point xc0(t) and the correction due to gravity
xc1(t) = γG2

G1
during the impact stage. The correction is exaggerated by a factor

of −5 and variables are non-dimensional.

The correction to the moving contact point, xc1(t), is found to be

xc1(t) =
G2(t)

G1(t)
, (3.114)

where G1(t), given by (3.110) and G2(t), given by (3.113), have opposite signs.

Therefore the correction due to gravity on the moving point x = xc0(t) reduces it.

In Figure 3.11 this effect is magnified by a factor of −5 to show the behaviour of

the correction. It shows that gravity has clearly negligible effect at the beginning.

However this neglecting has to be restricted to a very short period as at later times

gravity has a noticeable effect and slows the spread of the impact.

In Figure 3.12 the two lines coincide initially during the impact, and start to

separate as time increase. The inner line includes the influence of gravity, and

shows that, compared with the outer line, the wetted zone is shortened especially

during late period of impact stage.

To validate our results, regarding the influence of gravity on the moving con-

tact point, we make a comparison between this result and the results showed

in the previous section. At the beginning, in both solutions, gravity seems to
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be negligible, as seen in Figures (3.7) and (3.12). However, these figures also

show a remarkable point that gravity pulls on the moving contact point causing a

shorter wetted region during the later period of impact stage, Figure 3.13 shows

a comparison between two solutions for a notable period. The effects of G2

G1
on the

leading-order moving contact point, x = xc0(t), starts at the very late period of

the impact stage but it rapidly grows, however, as to G2

G1
, its effects starts earlier

with with gradually decreasing the size of x = xc0(t).

In the next section we show the influence of gravity on the pressure distribution

of the fluid along the wetted lid.

Figure 3.12: The leading-order moving point x = xc0(t), (solid line), and the
moving point with correction of gravity x = xc0(t) + γ xc1(t) where xc1(t) = G2

G1
,

(dashed-line), during the impact stage. At the very beginning of impact gravity
has no significance. Variables are non-dimensional and γ = 0.05.

79



Figure 3.13: The leading-order moving point x = xc0(t), (dashed line), and the
moving point with correction due to gravity, x = xc0(t) + γG2

G1
, (dotted-line), and

x = xc0(t) + γG2

G1
, (solid-line) when gravity starts to affect the moving contact

point significantly. Variables are non-dimensional and γ = 0.05.

3.3 Correction due to gravity to the pressure

In this section we find how pressure distribution of the fluid on the wetted region

is affected by gravity. Pressure expansion with respect to the δ is

p(x, y, t, γ) = p0(x, y, t) + γp1(x, y, t) +O(γ2), (3.115)

where p0 is the leading order pressure distribution when gravity is neglected

and p1 is correction due to gravity on the pressure distribution which is to be

determined. Substitute the above expansion (3.115) and expansions (3.88) and

(3.89) into equation (3.5), at the leading order we arrive at

p1 =
∂2φ1

∂t2
+ ηc0 |x| < xc, y = 0. (3.116)

The correction due to lid to the surface elevation ηc0 is given by equation (3.78).

Therefore, we need only to find the double time-derivative of (3.97), since it is in

terms of displacement potential, which follows
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∂2φ1

∂t2
= −∂φ0

∂y
+
∂2φ11

∂t2
, in fluid. (3.117)

The first term in (3.117) is the free-surface elevation of the fluid without the lid,

(3.84). However, for calculating the second term the following steps are needed.

The integral of both sides of equation (3.102) with respect to x from −xc0(t) to

x, as y −→− 0, leads to

φ11(x, 0, t) =
1

π

∫ xc0

−xc0

√
x2
c0 − σ2

[
xc1σ

∂ηn
∂σ

+

∫ t

t(σ)

(t− τ)
∂2φ0

∂σ2
dτ

]

∫ x

−xc0

1

(σ − x̄)
√
x2
c0 − x̄2

dx̄dσ, (3.118)

where φ11|x=−xc0(t) = 0 which comes from the continuity of the displacement po-

tential. Substitution of σ = xc0(t) cos(θ) in equation (3.118) and µ = xc0(τ) cos(θ1)

in equation (3.108), imply

φ11(x, 0, t) =
−xc1(t)

π

∞∑
n=1

fnkn

∫ π

0

sin2(θ)

[
xc0(t) cos(θ) sin(knxc0(t) cos(θ))+

∫ t

t(σ)

(t− τ)x2
c0(τ)√

xc0(τ)2 − xc0(t)2 cos2(θ)

∫ π

0

sin2(θ1) sin(knxc0(τ) cos(θ1))

xc0(τ) cos(θ1)− xc0(t) cos(θ)
dθ1

]
B(x, θ, t)dθ, (3.119)

where

B(x, θ, t) =
1

sin(θ)

ln

∣∣∣∣∣∣
cos(θ)

(√
xc0(t)2−x2−xc0(t)

)
x

+ sin(θ) + 1

cos(θ)
(√

xc0(t)2−x2−xc0(t)
)

x
− sin(θ) + 1

× cos(θ)− sin(θ) + 1

cos(θ) + sin(θ) + 1

∣∣∣∣∣∣ .
(3.120)

Figure 3.14 shows the correction due to gravity on the pressure distribution

p1(x, t) on the wetted region, equation (3.116). This correction is applied on the

leading-order pressure distribution, see Figure 3.15, at the instant t = 1.102. It

is found that the correction due to gravity is decreasing the pressure distribution

on the wetted region.
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Figure 3.14: Correction due to gravity on the pressure distribution at the instant
t = 1.102 with γ = 0.05.

Figure 3.15: Pressure distribution without gravity (solid line) and with gravity
(dashed line) at the instant t = 1.102 with γ = 0.05.
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Chapter 4

Numerically analysis of impact

with gravity included

In this chapter we numerically study the problem with the inclusion of gravity.

Recently some remarkable numerical and semi-numerical work has been done for

sloshing inside a tank (Rognebakke & Faltinsen 2005) and (Ten et al. 2011).

We start from the leading-order problem with gravity formulated in section 2.1.

First, in section 4.1, we give a description to the problem. In section 4.2, we

relate the surface elevation and pressure distribution by representing both in

terms of Fourier series. In section 4.3, we discretise the problem and derive a

system to be solved numerically. In section 4.4 , we specify how to approximate

some coefficients, and discuss absolute and relative errors. Then we regularise

the ill-conditioned problem in section 4.5 and some results are shown in the final

section, 4.6.

4.1 Problem description

In this section we refer to the boundary-value problem (2.59)–(2.68) derived in

Chapter 2. This problem is the linearised form of the full equations (2.45)–(2.54)

based on the relatively small available space for the free surface to elevate. The

formally linearised problem is obtained by setting the aspect ratio ε given in (2.24)

to zero. Therefore all quantities dealt with in this chapter are at the leading order,

but for simplicity we do not write the leading-order index. To remind the reader

we give a brief description of the problem below. As shown in Figure 4.1, H − h
is the still water depth, h is the small (relative to the height of the tank H)

distance between the equilibrium water surface and the lid at y = H, and 2L is

the width of the tank, with its walls positioned at x = ±L. In our model, zero

viscosity and zero surface tension are assumed, ρ is the water density and g is the
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x

y

h

x = −L x = L

y = H

y = 0
O

Equilibrium state of the free surface

Figure 4.1: Tank’s configuration and coordinates in dimensional variables.

gravity acceleration. The flow is two dimensional and irrotational and the liquid

is assumed to be incompressible.

The equation y = H − h + η(x, t) describes the upper boundary of the flow

region. When y = H − h, the liquid is at its equilibrium state (η ≡ 0) as shown

in Figure 4.1. If η(x, t) < h, then free surface of the liquid is the only upper

boundary. If η(x, t) = h, this part of the upper boundary corresponds to the

region of contact between the liquid and the solid lid. Note that η(x, t) ≤ h, for

all x and t is a constraint on the problem under consideration.

From now on, we work with non-dimensional variables (with tilde dropped), as

discussed in section 2.2.2. The boundary conditions on the lid, now at y = 1, are

given by equations (2.62) and (2.64). The constancy of volume of incompressible

liquid ensure that we can safely assume that the constant ullage pressure is zero,

p(x, t) = 0, the pressure of the gas between the liquid surface and the lid of

the tank. Hence p(x, t) = 0 for all x such that η(x, t) < 1 and p(x, t) is to be

determined for all x such that η(x, t) = 1. As we investigated in section 2.2,

there is no air trapped during the impact. For details of this effect see (Malenica

et al. 2006).

As shown in Figure 2.2, the flow is symmetric, and hence, f(x) = f(−x), (see

equation 2.1), η(x, t) = η(−x, t), φ(x, y, t) = φ(−x, y, t) and the wetted part of

the lid corresponds to an interval of the x-axis (−xc(t), xc(t)), where the function

xc(t), the half length of the wetted region, is unknown in advance and is to be

determined.

To solve the problem, we suppose that p(x, t), where |x| ≤ xc(t), is known

and we can compute the corresponding elevation of the free surface η(x, t), where
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xc(t) ≤ |x| ≤ λ. Note that

η(x, t) < 1 |x| < λ, 0 < t < t1, (4.1)

before the impact. During this stage there is no contact between the fluid and

the lid and the calculations are performed with

p(x, t) = 0 |x| < λ, 0 < t < t1. (4.2)

At the instant t = t1, the first contact of the surface with the lid occurs at x = 0.

So η(0, t1) = 1 and the fluid is ascending just before impact: ∂η
∂t

(0, t1) > 0.

4.2 Numerical approach

Combining the surface elevation and the boundary pressure in a single formulation

is considered in this section. To do this, the symmetric function η(x, t) on the

finite interval, −1 < x < 1, is represented by the Fourier cosine series of the form

η(x, t) =
∞∑
n=1

η̄n(t) cos(nπx), (4.3)

in which the Fourier coefficients η̄n(t) are time-dependent. For simplicity we use

the non-dimensional parameter λ = L
H

to be one in our numerical analysis, hence

the interval [−1, 1]. Note that η̄0(t) is missing from the series, because of the

conservation of fluid volume, ∫ 1

−1

η(x, t)dx = 0, (4.4)

which arises from the incompressiblity of the liquid and η = 0 being the equilib-

rium position of the free surface. The initial shape of the free surface, f(x), given

in equation (2.1) also satisfies condition (4.4). The function η(x, t) satisfies the

conditions ∂η
∂x

(±1, t) = 0 at the walls of the tank. These conditions follow from

matching the dynamic condition on the free surface,

∂φ

∂t
+ η = 0, where η(x, t) < 1, (4.5)

and the boundary condition at the walls of the tank, ∂φ
∂x

= 0. Differentiating the

dynamic condition (4.5) in x,

∂2φ

∂x∂t
+
∂η

∂x
= 0, where η(x, t) < 1, (4.6)
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and applying (4.6) at x = ±1, where ∂φ
∂x

= 0, we find,

∂η

∂x
(±1, t) = 0. (4.7)

The velocity potential φ(x, y, t) and the pressure p(x, t) along the upper boundary

of the flow region can also be represented by Fourier series, in the forms:

φ(x, y, t) =
∞∑
n=1

φn(y, t) cos(nπx), (4.8)

p(x, t) =
∞∑
n=1

pn(t) cos(nπx). (4.9)

Applying the Fourier representations (4.3) and (4.8)–(4.9) to the boundary con-

ditions (2.63)–(2.64) on y = 1 give the following pair of equations:

∂φn
∂t

(1, t) + η̄n(t) = −pn(t), (4.10)

∂η̄n
∂t

(t) =
∂φn
∂y

(1, t). (4.11)

Combining these two conditions on y = 1 we can eliminate η̄n and write equations

(2.59)–(2.68) in terms of φn(y, t) as follows

∂2φn
∂y2

− (nπ)2φn = 0 0 < y < 1, (4.12)

∂φn
∂y

= 0 y = 0, (4.13)

∂2φn
∂t2

+
∂φn
∂y

= −dpn
dt

y = 1. (4.14)

If pn(t) are known, then dpn
dt

on the right-hand side is a forcing term for the

problem. We also have initial data at t = 0:

φn = 0, (4.15)

∂φn
∂t

= −f̄n, (4.16)

where f̄n are the Fourier coefficients of f(x),

f(x) = 1− ε+ ε

∞∑
n=1

f̄n cos(nπx), (4.17)
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as defined in (2.41). The problem (4.12)–(4.17) is solved below. A function,

which satisfies equations (4.12) and (4.13), has the form

φn(y, t) = φn(1, t)
cosh(nπy)

cosh(nπ)
. (4.18)

Substituting (4.18) in the boundary condition (4.14) gives a forced ordinary dif-

ferential equation for φn(1, t):

∂2φn
∂t2

(1, t) + φn(1, t)nπ tanh(nπ) = −dpn
dt

(t). (4.19)

We introduce ω2
n = nπ tanh(nπ) and write down the solution of (4.19) with the

initial conditions (4.15)–(4.16):

φn(1, t) = − f̄n
ωn

sin(ωnt)−
1

ωn

∫ t

0

dpn
dτ

(τ) sin(ωn(t− τ))dτ. (4.20)

Then from the dynamic boundary condition (4.10) and the solution (4.20) we

arrive at an expression for the coefficients for the free-surface shape:

ηn(t) = f̄n cos(ωnt)− ωn
∫ t

0

pn(τ) sin(ωn(t− τ))dτ. (4.21)

Before the free surface touches the lid, 0 < t < t1, we have pn(τ) = 0, (see

condition (4.2)). Substituting (4.21) in (4.3) we obtain

η(x, t) = η0(x, t)−
∞∑
n=1

ωn

(∫ t

0

pn(τ) sin(ωn(t− τ))dτ

)
cos(nπx), (4.22)

where η0(x, t) is the free-surface elevation in the absence of lid:

η0(x, t) =
∞∑
n=1

f̄n cos(ωnt) cos(nπx). (4.23)

The integrand in equation (4.22) is zero for all t in the time interval (0, t1), because

p(x, t) = 0 when 0 < t < t1. The equation (4.22) is useful if the pressure p(x, t) is

given, but in the problem we want to solve, p(x, t) is one of the unknowns. The

above formulation is supplemented by the Wagner condition, (Wagner 1932)

η(x, t) = 1 at x = xc(t). (4.24)

We will use this condition later in section 4.6 to find the moving contact point

position, x = xc(t).
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. . . . . .

1

xj−1 xj xj+1x2x1 = 0 xN−1 xN = 1

Ψ1(x) ΨN (x)Ψj(x)

Figure 4.2: Discretization on the lid of the tank from the centre x = 0 to the wall
x = 1.

4.3 Discretization

We use the collocation method by discretisizing the interval x ∈ [0, 1] into N − 1

regular intervals. Since the flow is symmetric, the solution has a mirror image on

the other half, −1 ≤ x ≤ 0, of the fluid domain, here we chose the right half. For

negative x we have η(−x, t) = η(x, t), η0(−x, t) = η0(x, t) and p(−x, t) = p(x, t).

The functions
{

Ψj(x)
}N
j=1

are a set of basis functions (each one is a, so called,

hat function, see Figure 4.2, defined by

Ψj(x) =
1

4


x− xj−1 xj−1 ≤ x ≤ xj,

xj+1 − x xj ≤ x ≤ xj+1,

0 otherwise,

(4.25)

where4 = 1
N−1

and the nodes have positions x = xj = (j−1)4 for 2 ≤ j ≤ N−1.

For j = 1 and j = N we have

Ψ1(x) =
1

4

x2 − x x1 ≤ x ≤ x2,

0 otherwise,
(4.26)

ΨN(x) =
1

4

x− 1 +4 xN−1 ≤ x ≤ xN ,

0 otherwise.
(4.27)

The discretization and basis functions on the x-axis are shown in Figure 4.2. As

shown, the discretisation starts from the centre, x = 0, where the index j = 1

and increases towards the wall, x = 1, (j = N). Note that Ψj(xj) = 1, where

1 ≤ j ≤ N .

We shall approximate the functions η(x, t), η0(x, t) and p(x, t) piece-wise linear

functions in both x and t by using the basis functions Ψj(x) and Ψm(t). In
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particular,

η(x, t) =
N∑
j=1

ηj(t)Ψj(x), (4.28)

η0(x, t) =
N∑
j=1

η0j(t)Ψj(x), (4.29)

where Ψj(x) are defined by (4.25), the unknown elevation with lid ηj(t) = η(xj, t)

and the known elevation without lid η0j(t) = η0(xj, t). Substituting discretized

elevations (4.28)–(4.29) in equation (4.22), multiplied by Ψq(x), 1 ≤ q ≤ N and

integrated in x from x = −1 to x = 1, we obtain

N∑
j=1

ηj(t)ej,q =
N∑
j=1

η0j(t)ej,q −
∞∑
n=1

ωnCn,q

∫ t

0

pn(τ) sin(ωn(t− τ))dτ, (4.30)

where the product coefficients ej,q, 1 ≤ j, q ≤ N are defined by

ej,q =

∫ 1

−1

Ψj(x)Ψq(x)dx. (4.31)

Using definitions (4.25)–(4.27), we find for 1 ≤ j, q ≤ N − 1

ej,q =


24
3

; j = q,

4
6

; |j − q| = 1,

0 ; otherwise.

(4.32)

For the last node, xN = 1, we have eN,N = 4
3

. The coefficients, Cn,q, are defined

for 2 ≤ q ≤ N − 1, and n = 1, 2, . . . by

Cn,q =

∫ 1

−1

cos(nπx)Ψq(x)dx

=
1

(nπ)24
[2 cos(nπxq)− cos(nπxq−1)− cos(nπxq+1)]

Cn,q =
4

4(nπ)2
sin2(nπ

4
2

) cos(nπxq). (4.33)

For the special cases j = 1 and j = N , for all n = 1, 2, . . . , we have

Cn,1 =
1

(nπ)24
[1− cos(nπ4)] , (4.34)

and

Cn,N = (−1)nCn,1. (4.35)
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Multiplying both sides of (4.9) by cos(πlx), l ∈ {1, 2, . . . } and integrating with

respect to x over the lid, we find that the Fourier coefficients of the lid pressure

distribution can be written as

pl(τ) =

∫ 1

−1

p(x, t) cos(lπx)dx

= 2

∫ 1

0

p(x, t) cos(lπx)dx, (4.36)

The square-root singularity of the pressure distribution at the moving contact

points, x = ±xc(t) is a well-known behaviour of the impact pressure, see (Wagner

1932). Therefore we try to approximate the pressure in terms of a smooth function

Q(x, t) multiplied by a square-root singular function 1/
√
x2
c(τ)− x2 for |x| ≤

xc(τ), as shown in equation (4.37). This approach is carried out only along the

wetted region, −xc(τ) ≤ x ≤ xc(τ). Having in mind that the pressure on the free

surface is zero. The pressure distribution overall can be presented as follow

p(x, τ) =


Q(x,τ)√
x2
c(τ)−x2

|x| ≤ xc(τ),

0 xc(τ) < |x| < 1,
(4.37)

where Q(x, τ) is assumed to have no singularity in space and time. Equation

(4.36), using (4.37), now becomes

pl(τ) = 2

∫ xc

0

Q(x, τ)√
x2
c(τ)− x2

cos(lπx)dx. (4.38)

For the space discretization of the function Q(x, t) we write

Q(x, τ) =
Nc∑
i=1

Qi(τ)Ψi(x), (4.39)

where the basis function Ψi(x) for i = 1, 2, . . . , Nc, are defined in (4.25)–(4.26) and

Nc is an integer between 1 and N such that xNc ≤ xc(τ) ≤ xNc+1 . Substituting

(4.39) in equation (4.38) we arrive at

pl(τ) = 2
Nc∑
i=1

Qi(τ)C̃l,i(xc(τ)), (4.40)

where the coefficients C̃l,i(xc(τ)), for 1 ≤ i ≤ Nc, and l = 1, 2, . . . , are defined by

C̃l,i(xc(τ)) =

∫ xc(τ)

0

Ψi(x)√
x2
c(τ)− x2

cos(lπx)dx. (4.41)

Note that the coefficients C̃l,i(xc(τ)) depend on l, i and xc(τ). The integral in

(4.41) has square-root singularity at x = xc(τ) and there is no closed form avail-
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able for this integral. The rest of this section aims at evaluating C̃l,i(xc(τ)) in a

numerically efficient way so that it can be used in our computation. The integer

Nc = Nc(τ) in equation (4.39) means we do not need Qi for i > Nc outside the

contact region,

Qi(τ) =

unknown ; i ≤ Nc,

0 ;Nc < i,
(4.42)

for i = 1, 2, . . . , N .

By definition (4.25), equation (4.41) reads

C̃l,i(xc(τ)) =

(∫ xi

xi−1

+

∫ xi+1

xi

)
Ψi(x)√
x2
c(τ)− x2

cos(lπx)dx. (4.43)

From the definition of the hat function, Ψi(x), i = 1, 2, . . . , N , in (4.25) we write

equation (4.43) as

4C̃l,i(xc(τ)) =

∫ xc(τ)

xi−1

x− xi−1√
x2
c(τ)− x2

cos(lπx)dx+ 2xi

∫ xc(τ)

xi

cos(lπx)√
x2
c(τ)− x2

dx

− 2

∫ xc(τ)

xi

x cos(lπx)√
x2
c(τ)− x2

dx−
∫ xc(τ)

xi+1

xi+1 − x√
x2
c(τ)− x2

cos(lπx)dx,

(4.44)

where x = xc(τ) is the moving contact point on the right which gives the half

length of the wetted region. Using a change of variable xc(τ)u = x in equation

(4.44) we arrive at

4C̃l,i(xc(τ)) =

∫ 1

0

xc(τ)u− xi−1√
1− u2

cos(lπxc(τ)u)du+ 2xi

∫ 1

0

cos(lπxc(τ)u)√
1− u2

du

− 2xc(τ)

∫ 1

0

u cos(lπxc(τ)u)√
1− u2

du−
∫ 1

0

xi+1 − xc(τ)u√
1− u2

cos(lπxc(τ)u)du

+ C̃c
l,i(xc(τ)), (4.45)

where

C̃c
l,i(xc(τ)) = −

∫ xi−1
xc(τ)

0

xc(τ)u− xi−1√
1− u2

cos(lπxc(τ)u)du

− 2xi

∫ xi
xc(τ)

0

cos(lπxc(τ)u)√
1− u2

du+ 2xc(τ)

∫ xi
xc(τ)

0

u cos(lπxc(τ)u)√
1− u2

du

+

∫ xi+1
xc(τ)

0

xi+1 − xc(τ)u√
1− u2

cos(lπxc(τ)u)du. (4.46)

All integrals in the right-hand side of equation (4.45) with the lower and upper

limits 0, 1, respectively, contain the term un, n = 0, 1. For those with n = 0

91



the results are given in terms of the Bessel function of the first kind and with

n = 1 the integrals are given in terms of the Struve function, see (Gradshteyn &

Ryzhik 2014). To evaluate the latter, for example in Matlab, one needs to produce

a code because it is not implemented in Matlab. An accurate approximation for

the Struve function, was suggested by (Aarts & Janssen 2003). They used only a

limited number of elementary functions and the Bessel function of the first kind

to find this approximation which is quite accurate for small and large values of

the argument of the cosine function (here this is lπxc(τ)).

However, the right-hand sides of equations (4.45) and (4.46) can be simplified

more and we skip over all the integrals in equation (4.45) excluding the term

C̃c
l,i(τ) as they cancel each other, except for the two special cases i = Nc and

i = Nc+1, which will be discussed later in this section. We simplify further the

remaining terms in equations (4.46), to arrive at

4C̃l,i(xc(τ)) =

(
−xi−1

∫ xi
xc(τ)

xi−1
xc(τ)

+xi+1

∫ xi+1
xc(τ)

xi
xc(τ)

)
cos(lπxc(τ)u)√

1− u2
du

+ xc(τ)

(∫ xi
xc(τ)

xi−1
xc(τ)

−
∫ xi+1

xc(τ)

xi
xc(τ)

)
u cos(lπxc(τ)u)√

1− u2
du, (4.47)

and again the change of variable u = sin θ transforms equation (4.47) to a non-

singular integral of the form

4C̃l,i(xc(τ)) =

(
−xi−1

∫ θi(τ)

θi−1(τ)

+xi+1

∫ θi+1(τ)

θi(τ)

)
cos(lπxc(τ) sin θ)dθ

+ xc(τ)

(∫ θi(τ)

θi−1(τ)

−
∫ θi+1(τ)

θi(τ)

)
sin θ cos(lπxc(τ) sin θ)dθ, (4.48)

where for 1 ≤ i ≤ Nc :

θi(τ) = sin−1

(
xi

xc(τ)

)
. (4.49)

Equation (4.48) holds for i ∈ {2, . . . , N − 1}. For i = 1, using the definition

(4.26) and applying it on equation (4.43), then by the substitutions x = xc(τ)u

and u = sin(θ) respectively we arrive at

4C̃l,1(τ) =

∫ θ2(τ)

0

(4− xc(τ) sin θ) cos(lπxc(τ) sin θ)dθ, (4.50)

where

θ2(τ) = sin−1

(
4

xc(τ)

)
. (4.51)
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xi−1 xi xi+1xc

Ψi(x)

Figure 4.3: Ψi(x) when xi < xc(τ) < xi+1. Grey area is where Ψi(x) is active,
and white area is where it is deactivated.

It is unlikely that the last node, xN , will be covered by the wetted region, therefore

QN(τ) = 0 by definition (4.42). The integrals in the right-hand side of equation

(4.48) can not be expressed in closed form, and must be calculated numerically.

It is to be noticed here that the singularity is removed from the integrand. This

singularity exists only when xNc = xc(τ) or xNc is the node such that xNc <

xc(τ) < xNc+1 at some time during the impact which is to be considered carefully.

For such cases we have to replace the upper limit and shorten it to x = xc(τ)

in order to avoid complex numbers in (4.49) and to respect the fact that the

function Q(x, τ) is zero outside of the wetted region, x > xc(τ). Therefore by

definition (4.25), for the particular case, for i = Nc, i.e. xNc < xc(τ) < xNc+1, the

hat function ΨNc(x), takes the form

ΨNc(x) =
1

4


x− xNc−1 ;xNc−1 ≤ x ≤ xNc ,

xNc+1 − x ;xNc ≤ x ≤ xc(τ),

0 ; otherwise,

(4.52)

as shown in Figure 4.3. In this figure the interval of integration has been cut at

the point x = xc(τ). Note that the increment 4 is to remain unchanged. We do

not account for the hat function ΨNc+1(x), Figure 4.4, as the function Qi(τ) is

considered zero for all i > Nc + 1.

xi xi+1 xi+2xc

Ψi+1(x)

Figure 4.4: Ψi+1(x) when xi < xc(τ) < xi+1. Grey area is where Ψi+1(x) is active,
and white area is where it is deactivated.

93



Therefore, in a similar way, by definition (4.52) and the approximation for the

Struve function given by (Aarts & Janssen 2003), we find

4C̃l,Nc(τ) = 2

∫ θNc (τ)

0

(xc(τ) sin θ − xNc) cos(lπxc(τ) sin θ)dθ

−
∫ θNc−1(τ)

0

(xc(τ) sin θ − xNc−1) cos(lπxc(τ) sin θ)dθ

+ (xNc+1 −
π

2
xc(τ))J0(nπxc(τ)) + (8− 5

2
π)

sin(nπxc(τ))

nπ

+ (6π − 18)
1− cos(nπxc(τ))

xc(τ)(nπ)2
, (4.53)

where

θNc−1(τ) = sin−1

(
xNc−1

xc(τ)

)
, θNc(τ) = sin−1

(
xNc
xc(τ)

)
. (4.54)

Now equation (4.30) can be rewritten to become

N∑
j=1

ηj(t)ej,q =
N∑
j=1

η0j(t)ej,q −
Nc∑
i=1

∫ t

0

Qi(τ)Ki,q(t, τ)dτ, (4.55)

where we define

Ki,q(t, τ) =
∞∑
n=1

ωnCn,qC̃n,i(τ) sin(ωn(t− τ)), (4.56)

which are the sloshing impact coefficients. Here τ is the variable of integration,

0 ≤ τ ≤ t. Before we proceed to further analysis, because of the importance

of the coefficients (4.56) as kernels of the integrals in (4.55), we will discuss the

convergence and behaviour of these impact coefficients. The behaviour of the

function Ki,q(t, τ) for some 1 ≤ q, i ≤ N are shown in Figures 4.5–4.9, where the

index q refers to coefficient Cn,q given in equations (4.34)–(4.35) and the index

i is for C̃n,i(τ) which is given in equations (4.48) and (4.50). For these plots we

fix the time variable t (t = 1) and let 0 ≤ τ ≤ t. We worked on the interval

for x ∈ [0, 1] with uniform space mesh applied with 200 nodes. Also the moving

contact point xc(τ) =
√
τ is assumed. Also to show the number of terms needed

for the summations to bring about adequate convergence for the partial sum Sn̄,

of the first n̄ terms of the infinite series in equation (4.56). It is found that

the convergence is guaranteed with minimum of 2 significant digits reliable for

n̄ > 400, see Figures 4.5–4.14. While partial sum for n̄ < 400 fluctuates from

O(10−2) up to O(10−4), as shown for n̄ = 100 and n̄ = 200, for example see

Figures 4.5 and 4.9.
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Figure 4.5: Sloshing impact coefficient K1,1(1, τ). Dotted line with n̄ = 100,
dashed-dotted line with partial sum of n̄ terms n̄ = 200, stars with n̄ = 400 and
dashed line with n̄ = 500.

Figure 4.6: Sloshing impact coefficient K20,1(1, τ). Dotted line with partial sum
of n̄ terms n̄ = 100, dashed-dotted line with n̄ = 200, stars with n̄ = 400 and
dashed line with n̄ = 500. The last 3 sets of results are indistinguishable on this
plot.
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Figure 4.7: Sloshing impact coefficient K2,15(1, τ). Dotted line with partial sum
of n̄ terms n̄ = 100, dashed-dotted line with n̄ = 200, stars with n̄ = 400 and
dashed line with n̄ = 500.

Figure 4.8: Sloshing impact coefficient K10,5(1, τ). Dotted line with partial sum
of n̄ terms n̄ = 100, dashed-dotted line with n̄ = 200, stars with n̄ = 400 and
dashed line with n̄ = 500.
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Figure 4.9: Sloshing impact coefficient K10,10(1, τ). Dotted line with partial sum
of n̄ terms n̄ = 100, dashed-dotted line with n̄ = 200, stars with n̄ = 400 and
dashed line with n̄ = 500.

To verify and analyse the rate of convergence for the partial sums we plot their

difference. In Figures 4.10–4.14, we show the differences for the partial sums S500

and S400 for every node. It is shown that the maximum error is of O(10−4) or

higher negative order. Therefore we can proceed accurately with the numerical

computations with summing up the first 400 terms in (4.56).

Figure 4.10: The difference in partial sums S400 and S500 for the sloshing impact
coefficient K1,1(1, τ).

97



Figure 4.11: The difference in partial sums S400 and S500 for the sloshing impact
coefficient K20,1(1, τ).

Figure 4.12: The difference in partial sums S400 and S500 for the sloshing impact
coefficient K2,15(1, τ).
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Figure 4.13: The difference in partial sums S400 and S500 for the sloshing impact
coefficient K5,10(1, τ).

Figure 4.14: The difference in partial sums S400 and S500 for the sloshing impact
coefficient K10,10(1, τ).
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4.4 Approximating integrals in (4.48), (4.50) and

(4.53)

The integrals in (4.48), (4.50) and (4.53) have no closed form and must be calcu-

lated with numerical integral computation. This makes the process of numerical

computations last for a much longer period, as in Matlab calcualting integrals is

very time-consuming. For the sake of reducing the computation time, especially

for equations (4.48), (4.50) and (4.53), where integrals are to be calculated nu-

merically, we use an approximation method for the integrands and integrate them

analytically. To do this we make a partition on the space interval 0 ≤ θ ≤ π
2
. Then

for each subinterval [θi, θi+1], such that 0 = θ1 < θ2 < · · · < θNc−1 < θNc = π
2

and

1 ≤ i ≤ N1, we use the linear approximation for the function sin θ. That is

sin θ ' ciθ + di, (4.57)

where ci and di are the coefficients which give the best fit for our linear ap-

proximation on the subinterval [θi, θi+1], 1 ≤ i ≤ Nc. In order to show how

accurate this approximation works, we apply it to the well-known Bessel function

of the first kind, J0(nπxc(τ)), with its integral representation (see (Gradshteyn

& Ryzhik 2014))

J0(nπxc(τ)) =
2

π

∫ π/2

0

cos(nπxc(τ) sin θ)dθ. (4.58)

We choose this Bessel function representation to test the approximation because

the integral in 4C̃l,i(xc(τ)), 1 ≤ i ≤ Nc term contains integrals similar to (4.58),

except at the limits. In Figures 4.15–4.16 the comparison is shown for n = 1, 10

respectively, with its linear approximation

J0(nπxc(τ)) ' 2

π

M∑
i=1

∫ θi+1

θi

cos(nπxc(τ)(ciθ + di))dθ, (4.59)

each term of which is integrable analytically. We choose the function xc(τ) to vary

between its minimum and possible maximum values. Both figures show that the

approximation is close to the exact function. To see how well the approximations

behave we show the relative errors as well (see Figures 4.17–4.18), which are

of O(10−3) or less. While the absolute error approximation (see Figures 4.19–

4.20) are of O(10−7). Spikes in relative error occur because the function being

approximated vanishes at certain values of xc(τ).
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Figure 4.15: The comparison of (4.58), dotted line, with its linear approximation
(4.59), dashed line, with n = 1. On this plot the two curves are indistinguishable.

Figure 4.16: The comparison of (4.58), dotted line, with its linear approximation
(4.59), dashed line, with n = 10. On this plot the two curves are indistinguishable.
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Figure 4.17: Relative error between (4.58) and its linear approximation (4.59)
with n = 1.

Figure 4.18: Relative error between (4.58) and its linear approximation (4.59)
with n = 10.
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Figure 4.19: Absolute error between (4.58) and its linear approximation (4.59)
with n = 1.

Figure 4.20: Absolute error between (4.58) and its linear approximation (4.59)
with n = 10.

Also as shown in Figures 4.21–4.22, the integral
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Figure 4.21: The comparison of (4.60), dotted line, with its linear approximation
(4.61), dashed line, with n = 1. On this plot the two curves are indistinguishable.

∫ π/2

0

sin θ cos(nπxc(τ) sin θ)dθ (4.60)

is approximated by using the same previous approximation method to be rewrit-

ten as

M∑
i=1

∫ θi+1

θi

(ciθ + di) cos(nπxc(τ)(ciθ + di))dθ. (4.61)

Again the figures show how close the approximation lies to the exact result,

and the relative error plotted in Figures 4.23–4.24 shows the order of difference

relative to its actual value is of O(10−3). The absolute error, shown in Figures

4.25–4.26 is of O(10−7).

Having only these small differences we can safely apply the linear approxi-

mation (4.57) for each of the equations (4.49), (4.51) and (4.53). By calculating

the integral in these equations, the approximate and final form of the coeffi-

cients 4C̃n,i(τ), i = 1, 2, . . . , Nc + 1 are given as follows. Equation (4.49) is for

i = 2, . . . , Nc − 1 and it becomes

104



Figure 4.22: The comparison of (4.60), dotted line, with its linear approximation
(4.61), dashed line, with n = 10. On this plot the two curves are indistinguishable.

Figure 4.23: Relative error between (4.60) and its linear approximation (4.61)
with n = 1.
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Figure 4.24: Relative error between (4.60) and its linear approximation (4.61)
with n = 10.

Figure 4.25: Absolute error between (4.60) and its linear approximation (4.61)
with n = 1.
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Figure 4.26: Absolute error between (4.60) and its linear approximation (4.61)
with n = 10.

4C̃n,i(τ) = 2

xi
xc(τ)
− ciθi(τ)− di
ci(nπ)

sin(nπxc(τ)(ciθi(τ) + di))

+
ciθi−1(τ) + di − xi−1

xc(τ)

ci(nπ)
sin(nπxc(τ)(ciθi−1(τ) + di))

+
ciθi+1(τ) + di − xi+1

xc(τ)

ci(nπ)
sin(nπxc(τ)(ciθi+1(τ) + di))

− 1

cixc(τ)(nπ)2

[
2 cos(nπxc(τ)(ciθi(τ) + di))

− cos(nπxc(τ)(ciθi−1(τ) + di))− cos(nπxc(τ)(ciθi+1(τ) + di))
]
, (4.62)

where θi(τ) is defined in equation (4.49) and we recall that ci and di are coefficients

which give the best fit to the linear approximation on the subinterval [θi, θi+1].

Equation (4.51) which accounts for the case i = 1 takes the form

4C̃n,1(τ) =

4
xc(τ)
− c1θ2(τ)− d1

c1(nπ)
sin(nπxc(τ)(c1θ2(τ) + d1))

+
d1 − 4

xc(τ)

c1(nπ)
sin(nπxc(τ)d1)

− 1

c1xc(τ)(nπ)2
[cos(nπxc(τ)(c1θ2(τ) + d1))− cos(nπxc(τ)d1)] , (4.63)

where θ2(τ) is defined in equation (4.51) and c1 and d1 are coefficients of the

linear approximation on the subinterval [θ1, θ2]. Also for i = Nc we have equation
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(4.53) and it can be rewritten as

4C̃n,Nc(τ) =

xNc−1

xc(τ)
− cNcθNc−1(τ)− dNc

cNc(nπ)
sin(nπxc(τ)(cNcθNc−1(τ) + dNc))

+
(xc(τ)− 2)dNc + 2

xNc
xc(τ)
− xNc−1

cNc(nπ)
sin(nπxc(τ)dNc)

+
1

cNcxc(τ)(nπ)2
[2 cos(nπxc(τ)(cNcθNc(τ) + dNc))

− cos(nπxc(τ)(cNcθNc−1(τ) + dNc))− cos(nπxc(τ)dNc)]

+
π

2
(xNc+1 − xc(τ))J0(nπxc(τ)) + (8− 5

2
π)

sin(nπxc(τ))

nπ

+ (6π − 18)
1− cos(nπxc(τ))

xc(τ)(nπ)2
, (4.64)

where θNc−1(τ) is defined in equation (4.54) and cNc and dNc are coefficients of

the linear approximation on the subinterval [θNc , θNc+1].

We are now ready to describe a numerical procedure to solve equation (4.55).

The equation (4.55) is solved in a time interval t1 < t < tM say, and the current

time step in the computation procedure is at instant, t = tK say, see the time

discretization in Figure 4.27. We introduce the N × 1 vectors ~ηK and ~ηK0 , where

the upper index K refers to the time instant t = tK . These vectors have entries

ηj(tK) and η0,j(tK), j = 1, 2, . . . , N , respectively. The matrix form of equation

(4.55) take the form

A~ηK = A~ηKo −
∫ tK

0

K(tK , τ) ~Q(τ)dτ, (4.65)

where the matrix A is a tri-diagonal symmetric matrix, with positive definite

entries, ei,q are defined in equation (4.32). The vector ~Q(τ), which will be time-

discretized later on, has entries Qj(τ), j = 1, 2, . . . , N . The elements of the matrix

K(tK , τ) are Kj,q(tK , τ) as defined in (4.56). We assume that the inverse matrix

A−1 exists. By introducing

K̂(tK , τ) = A−1K(tK , τ), (4.66)

the system (4.65) multiplied on the left by A−1 can be rewritten as

~ηK = ~ηK0 −
∫ tK

0

K̂(tK , τ) ~Q(τ)dτ. (4.67)

Recall that here ~ηK is the vector which represents the surface elevation with a lid

and ~ηK0 represents the surface elevation without a lid at t = tK on the discretized

domain shown in Figure 4.2.
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. . . . . . . . .

1

tm−1 tm tm+1t2t1 > 0

instant of first
liquid-lid impact

Ψ1(t) Ψm(t) ΨK(t)

tK−1 t = tK

current time

tM−1 t = tM

end time

Figure 4.27: Time discretization from t1 > 0 to t = t1 + (M − 1)δ = tM , where δ
is a constant time-increment.

Before the impact, for t < t1, both surface elevations, with and without lid are

below y = 1, i.e. ηj(t < t1) < 1 and η0,j(t < t1) < 1, for all 1 ≤ j ≤ N , here y = 1

refers to the non-dimensional position of the lid. Then after some time steps, it

is detected that for all j ≤ Nc, ~η
1
0,j > 1 and ~η1

j = 1, since the lid is rigid. We

mention for the reader that Nc is the number of nodes inside the wetted region

at some particular time instant. As to the pressure along the wetted region on

the lid there will be non-zero fluid pressure and zero pressure on the free surface.

Therefore after time-discretization we can identify non-zero and zero elements of

the vector ~Q(τ) using the relation (4.37). Starting from t = t1, the instant of

impact, the system (4.67) reads

~ηK = ~ηKo −
∫ tK

t1

K̂(tK , τ) ~Q(τ)dτ, for tK ≥ t1. (4.68)

One should notice that ηj(t < t1) = η0,j(t < t1) for all j: 1 ≤ j ≤ N . Time

discretization will give us the chance to simplify and then calculate analytically

the integral in the system (4.68). Figure 4.27 shows the uniform discretization

of the interval of time-integration into M − 1 small time intervals. Each time

step is defined as tm = t1 + (m − 1)δ for 1 ≤ m ≤ M , where δ = tM−t1
M−1

is the

time-increment. The smaller the value of δ, the more detail is captured of the

overall sloshing behaviour. However, the choice of δ depends on the nature of

the particular problem. During our investigations with small time increments

we found the system unstable. This complication was then treated well by the

Tikhonov regularization method, see (Tikhonov & Arsenin 1977), which will be

discussed in more detail in next section.

During time discretization one seeks to approximate the vector ~Q(τ) along
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the lid by projection given by

Qi(τ) =
K∑
m=1

Qm
i Ψm(τ), (4.69)

where i ∈ {1, . . . , N} for every node x = xi, and the linear hat function Ψm(τ) is

defined by

Ψm(τ) =
1

δ


τ − tm−1 tm−1 ≤ τ ≤ tm,

tm+1 − τ tm ≤ τ ≤ tm+1 ,

0 otherwise,

(4.70)

for 2 ≤ m ≤ K − 1. Also for the two cases m = 1 and m = K separately are,

respectively, defined as

Ψ1(τ) =
1

δ

t2 − τ t1 ≤ τ ≤ t2,

0 otherwise,
(4.71)

ΨK(τ) =
1

δ

τ − tK + δ tK−1 ≤ τ ≤ tK ,

0 otherwise.
(4.72)

Using equation (4.69) the integral in the right-hand side of the system (4.68)

takes the form∫ tK

t1

K̂(tK , τ) ~Q(τ)dτ = A−1

N∑
i=1

K∑
m=1

Qm
i

∫ tK

t1

Ki,q(tK , τ)Ψm(τ)dτ. (4.73)

The pressure and surface elevation are unknown at each instant t = tK of the time

stepping, and must be determined by using the previous time steps information.

In other words, for all t = tm such that 1 ≤ m ≤ K − 1, the coefficients Qm
i and

ηj(tm) are known for all 1 ≤ i, j ≤ N . Therefore right-hand side of (4.73) can be

written

A−1

N∑
i=1

K∑
m=1

Qm
i

∫ tK

t1

Ki,q(tK , τ)Ψm(τ)dτ

= A−1

N∑
i=1

K−1∑
m=1

Qm
i

∫ tK

t1

Ki,q(tK , τ)Ψm(τ)dτ

+ A−1

N∑
i=1

QK
i

∫ tK

tK−1

Ki,q(tK , τ)ΨK(τ)dτ. (4.74)

We discuss the two integrals on the right-hand side of (4.74) separately. The

second integral on the right-hand side of equation (4.74), denoted by κK
i,q, is
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related to the time step t = tK . By applying the change of variable tK − τ = µ

and using equation (4.72) we find

κK
i,q =

∫ δ

0

(1− µ

δ
)Ki,q(tK , µ)dµ

= 2
∞∑
n=1

ωnCn,q

∫ δ

0

C̃n,i(tK , µ)(1− µ

δ
) sin(ωnµ)dµ. (4.75)

At this stage it is convenient to approximate the time-dependent coefficient

C̃n,i(tK , µ) in (4.75) by

C̃n,i(tK , µ) ' C̃n,i(tK , δ̂), (4.76)

where δ̂ = δ
2

is the midpoint of the interval of integration. We can do this because

the integrand is continuous and the interval of integration in (4.75) is very small.

From equations (4.75) and using the approximation (4.76), we arrive at

κK
i,q = 2

∞∑
n=1

Cn,q C̃n,i(tK , δ̂)

(
1− sin(ωnδ)

ωnδ

)
. (4.77)

Equation (4.77) is to be evaluated at t = tK for 1 ≤ i, q ≤ N which C̃n,i(tK , δ̂) is

the only time-dependent coefficient.

The first integral on the right-hand side of equation (4.74), denoted by Λm,K
i,q ,

accounts for the previous time steps. This coefficient depends on both tm and

tK . Again we apply the approximation (4.76) to the coefficient C̃n,i(τ) with the

difference that the midpoint of the integral interval is t = tm due to a change in

this integral’s lower and upper limits t = tm−1 and t = tm+1, respectively. That

is

C̃n,i(τ) ' C̃n,i(tm), for tm−1 ≤ t ≤ tm+1. (4.78)

Hence with approximation (4.78) the coefficient Λm,K
i,q now reads

Λm,K
i,q =

∫ tK

t1

Ψm(τ)Ki,q(tK , τ)dτ

=

∫ tm+1

tm−1

Ψm(τ)Ki,q(tK , τ)dτ

= 2
∞∑
n=1

ωnC̃n,i(tm)Cn,q

∫ tm+1

tm−1

Ψm(τ) sin(ωn(tK − τ))dτ, (4.79)

for 2 ≤ m ≤ K − 1, where
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∫ tm+1

tm−1

Ψm(τ) sin(ωn(tK − τ))dτ

=
1

δω2
n

[2 sin(ωn(tK − tm))− sin(ωn(tK − tm−1))− sin (ωn(tK − tm+1))] ,

=
−4

δω2
n

sin2

(
ωn
δ

2

)
sin(ωn(tK − tm)). (4.80)

Finally the system (4.68) can be rearranged as follows

~ηK = ~ηK0 − A−1BK ~QK − A−1

K−1∑
m=1

Gm,K ~Qm, (4.81)

where BK is an N × N matrix with entries κK
i,q defined in equation (4.77), the

vector ~QK contains unknown coefficients of the function Q(x, t) at the instant

t = tK . Also N×N matrix Gm,K contains the coefficients Λm,K
j,q given in equation

(4.79) and the vector ~Qm contains the known coefficients of function Q(x, t) found

from the previous time steps. To make it straightforward we move all unknowns

in the system (4.81) to the left left-hand side, to arrive at

~ηK + A−1BK ~QK = ~FK , (4.82)

where

~FK = ~ηK0 − A−1

K−1∑
m=1

Gm,K ~Qm. (4.83)

To give a short description of how the system (4.82) works we assume that the

nodes x = x1 = 0 up to x = xNc , for some 1 < Nc < N , are in the contact region

at some instant t = tK . This leaves us with the remaining nodes, x = xNc+1 up

to x = xN = 1 which represent the free surface, where

QK
i = 0 for all i = Nc + 1, Nc + 2 . . . , N. (4.84)

This means only the first Ncth elements of the vector ~QK are unknown and, the

remaining elements are zero. On the other hand, the first Ncth elements of the

surface elevation vector ~ηK are known by the fact that the lid has known position

and that fluid can not pass above it. That is in the wetted zone:

ηj(tK) = 1 for all j = 1, 2, . . . , Nc, (4.85)

and the other (N − Nc)th elements, ηj(tK) for j = Nc + 1, Nc + 2 . . . , N , are to

be determined which represent the free-surface elevation at t = tK . The elements

of the vector ~ηK0 are to be updated at each time step using equation (2.40) which
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stands for the solution of the problem without a lid, provided in section 2.2.3. In

this way the system (4.82) has N linear equations with N unknowns at every time

step of evolution. From the above description, at the nodes where the elements of

the elevation are known, the corresponding elements of the pressure are unknown.

On the other hand, the elements of the pressure on the free surface are known

while the corresponding elements of the elevation are unknown. Hence after some

rearrangement system (4.82) can be presented in a matrix form as follows

A ~X = ~b, (4.86)

where A is a combined coefficients matrix of the corresponding unknown pressure

and surface elevation elements. In the same manner ~X is the unknown vector at

the instant t = tK . The vector ~b is the right-hand side of the system (4.82) along

with the coefficients of the known surface elevation moved from the left-hand side.

In the next section we will discuss the behaviour of the system (4.86), whether

it is well-conditioned or ill-conditioned. Only after analysing the system (4.86) we

can confirm the reliability of its solution. In the next section we investigate why

our system is ill-conditioned and what is needed to convert it to a well-conditioned

problem.

4.5 Regularization

To understand the properties of the system (4.86), the singular value decomposi-

tion (SVD) is needed, see (Press 2007). The singular value decomposition on A

takes the form

A = UΣV T, (4.87)

where the subscript T stands for the matrix transpose, and U and V are N ×
N matrices with column entries ui and vi for i = 1, 2, . . . , N . Also Σ is an

N ×N diagonal matrix with non-negative diagonal entries σi placed in order of

decreasing size. The elements σi are called singular values and have the defining

properties:

Avi = σiui, ATui = σivi. (4.88)

According to (Hansen 1994) and (Aster, Borchers & Thurber 2011), discrete ill-

conditioned problems have the following properties:

1. monotone decrease of the singular values towards zero as i increases to N ;
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2. the condition number (the ratio of the largest to the smallest singular value)

is very large.

The first property is illustrated in Figure 4.28 where it is shown that the singular

values of the matrix A of the system (4.86) decay to zero. The rapid decrease

in the singular values refer to the fact that the matrix A is a combination of the

coefficients of the two unknowns, pressure and surface elevation elements. When

the two sets of unknowns combine and one has singularity, the problem becomes

even more complicated.

Figure 4.28: Singular values σi for 1 ≤ i ≤ N of the matrix A. The maximum
singular values is 0.00503 and the minimum is 1.0891 × 10−8 with their ratio
leads to a large condition number 4.6137× 105 at t = 0.0397 with N = 200. The
sudden decline of the curve is a result of the structure of the matrix A, which is a
combined coefficients matrix of the corresponding unknown pressure and surface
elevation elements

Also as to the second property, the condition number for the matrix A, which

is the ratio between the largest and the smallest nonzero singular values of the

matrix A, is of O(105) at t = 0.0397. This means that the condition number

is so much greater than unity, that the solution will be very sensitive to errors,

perturbations and finite rounding arithmetic. To reduce the condition number

we will use a regularization method introduced by (Tikhonov & Arsenin 1977).

The aim of the Tikhonov regularization is to filter out the noise caused by small

singular values as shown in the following solution of (4.86)
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~X =
N∑
i=1

uTi
~b

σi
vi, (4.89)

where the SVD of A (4.87) and the definition of the singular values (4.88) are

used to derive this solution. There are some other regularization methods like

Truncated Singular Value Decomposition (TSVD), and some iterative methods

that are widely in use in inverse problems for dealing with ill-conditioned prob-

lems in order to obtain an approximate noise-free solutions, see (Neumaier 1998),

(Aster et al. 2011) and the references therein. We apply Tikhonov regularization

to our problem (4.86), which requires us to compute the solution ~Xᾱ such that

~Xᾱ = ~X : min
~X

{∥∥∥A ~X −~b
∥∥∥2

2
+ ᾱ2

∥∥∥L( ~X − ~X0

)∥∥∥2

2

}
, (4.90)

(where ‖ · ‖2 is the Euclidean norm) which is equivalent to solving

~Xᾱ =
(
ATA + ᾱ2LTL

)−1
(
AT~b+ ᾱ2LTL ~X0

)
, (4.91)

where ᾱ is the regularization parameter, ~Xᾱ is the solution corresponding to the

regularization parameter ᾱ and L is a matrix which has to be chosen depending

on the particular problem. We choose L = I, the identity matrix, which is the

standard form, or the zeroth-order Tikhonov regularization. For higher order

regularization and choosing the matrix L, see (Neumaier 1998) and (Hansen

1994). Also ~X0 is a priori estimate of the solution. By ‖ · ‖2 in (4.91) we mean

the Euclidean norm (2-norm), which can be evaluated in MATLAB by using the

built-in command: norm(A,2) or norm(A).

By choosing L = I and ~X0 = 0, the solution (4.91) in its SVD form takes the

form:

~X =
N∑
i=1

Fi
uTi
~b

σi
vi, (4.92)

where F1, . . . ,FN are so-called Tikhonov regularization filters which are defined

as

Fi =
σ2
i

σ2
i + ᾱ2

. (4.93)

The Tikhonov filter Fi is of O(1) for σi � ᾱ and is of O(
σ2
i

ᾱ2 ) for σi � ᾱ. The

regularization parameter ᾱ is sensitive and is an important parameter. Determin-

ing this parameter is a typical process of the regularization methods. We used

the so-called L-curve and the l-corner methods given in the MATLAB package

(regularization tools) by (Hansen 1994) to choose the optimal parameter ᾱ. The
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L-curve method (see (Hansen & O’Leary 1993)) is a strategy for choosing the reg-

ularization parameter. This piecewise linear curve consists of a log-log plot of the

residual norm
∥∥∥A ~Xᾱ −~b

∥∥∥
2

(vertical axis) and solution norm
∥∥∥L( ~Xᾱ − ~X0

)∥∥∥
2

(horizontal axis). See Figure 4.29.

If the solution norm is very large this means that too much regularization is

imposed on the solution and it does not fit the data ~b. On the other hand, adding

too little regularization to the solution leads to a dominant contribution from the

data error and consequently a large growth in the solution norm to unreason-

able values. This trade-off is controlled by the so-called optimal regularization

parameter ᾱ.

Figure 4.29: The L-curve for the Tikhonov regularization (4.91). Horizontal axes

is the residual norm
∥∥∥A ~Xᾱ −~b

∥∥∥
2

versus the vertical axes which is the correspond-

ing solution norm
∥∥∥L( ~Xᾱ − ~X0

)∥∥∥
2
, with N = 200. The stars correspond to the

different values of regularization parameters ᾱ, only few of 200 evaluated regu-
larization parameters are shown. At t = 0.0397 the optimal value is found on the
corner to be ᾱ = 1.8879× 10−5.

In Figure 4.29 the L-curve of the problem (4.91) is drawn. From this we see a

corner of the curve occurs at time t = 0.0397. The l-corner in the regularization
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tools of (Hansen 1994) returns the optimal value for the regularization parameter

ᾱ for the problem. The curve is the norm of the regularized solution versus the

norm of the corresponding residual as a function of the parameter ᾱ. Since the

entries of A and b̄ are time dependent, the procedure of optimizing the regular-

ization parameter is implemented simultaneously for every time step, as shown

in Figures 4.29 and 4.30.

Figure 4.30 shows the singular values of the stabilized problem (4.91). Al-

though the maximum singular value is still small, the gradual decay to zero has

disappeared. In other words, the condition number drops close to one after regu-

larization. In the next section we will discuss the algorithm of the computation on

the regularized problem (4.91). For the sudden decline of the curve read caption

in Figure 4.28.

Figure 4.30: Singular values σi for 1 ≤ i ≤ N of the matrix
(
ATA + ᾱ2LTL

)
after Tikhonov regularization has been applied. The maximum singular values
is 0.006425 and the minimum 0.006400 so that their ratio is close to the unity:
condition number 1.0708 at t = 0.0397 with N = 200. Note the small range of
values on the vertical axis.

4.6 Numerical algorithm and results

In this section we compute the surface elevation and pressure distribution, along

with the moving contact point, x = xc(t). The computations rely on the semi-

analytical results from previous Chapters as an initial estimate. For instance we
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use the moving contact point with gravity as the first estimate for xc, but the

adjustment to xc is carried forward in time as explained below.

The important and challenging part of this procedure is to determine the mov-

ing contact point position, x = xc(t) at every time step. Only after determining

its position can we distinguish between the free surface and the wetted region.

We know that many things are happening near this point. For example x = xc(t)

separates the free surface from the wetted region, and the pressure is singular at

this point. An inaccurate position of the moving contact point would lead us to

an irregular free-surface elevation, or an irregular pressure distribution, or both.

Therefore this point must be updated correctly very carefully at each time step.

The decision for fixing its position must be consistent with the free-surface ele-

vation’s profile lying below the lid and the pressure distribution being reasonable

on the wetted region.

For determining the moving contact point position, x = xc(t), it is reasonable

to use the semi-analytical solution for this point found in previous chapter, moving

contact point with correction due to gravity. After we determined the surface

elevation, we use the discretized surface elevation (4.28) at x = xc(t) for any

required adjustment on the position of the moving contact point x = xc(t). This

equation at x = xc(t) can be rewritten as

η(xc(t), t) =
xNc+1 − xc(t)

4
ηNc(t) +

xc(t)− xNc
4

ηNc+1(t). (4.94)

By required adjustment we mean that the surface elevation must be in contact

with the lid at x = xc(t), the Wagner condition. That is

xNc+1 − xc(t)
4

ηNc(t) +
xc(t)− xNc
4

ηNc+1(t) = 1. (4.95)

Otherwise, if it is above the lid at the moving contact point, x = xc(t) then

xNc+1 − xc(t)
4

ηNc(t) +
xc(t)− xNc
4

ηNc+1(t) > 1, (4.96)

then we replace the moving contact point, x = xc(t) by
xNc+1

+xc(t)

2
, else if

xNc+1 − xc(t)
4

ηNc(t) +
xc(t)− xNc
4

ηNc+1(t) < 1, (4.97)

then we replace the moving contact point, x = xc(t) by x =
xNc+xc(t)

2
. This process

is continue until condition (4.95) is satisfied or the difference |η(xc(t), t)−1| < ε1,

for some small value of ε1.

Thanks to the Tikhonov regularization method of (Tikhonov & Arsenin 1977),

we stabilised the ill-conditioned problem (4.86) to become a well-conditioned
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problem (4.91). This is accomplished with the selected optimal regularization

parameter ᾱ, see (Hansen 1999), Figures 4.29 and 4.34. The computation code is

written in Matlab. It is carried out with regular discretisasion on the right half

of the lid [0, 1], with N = 200 nodes. The truncation to a partial sum Sn̄ for

the infinite series in equations (4.77) and (4.79) is taken with n̄ = 500, which we

showed earlier is sufficiently accurate.

Figures 4.31–4.32 show the smooth function Q(x, t) along the wetted region

at two different chosen instants. A very small difference between the behaviour

of Q(x, t) with and without gravity is detected in Figure 4.31 when the impact

is at its most rapid stage. Hence a negligible influence of gravity in this stage

is obvious. However, as time goes on, the difference becomes more visible as

depicted in Figure 4.32. Also note the difference in the extension of the wetted

region in both of these figures. The pressure distribution corresponding to the

smooth function Q(x, t) at time t = 0.4397 is shown in Figure 4.33. Again it

is found that the extension of the wetted region is shortened by the influence of

gravity at this stage of the impact. Also a significant negative pressure is depicted.

It is worth taking very carefully this negative pressure into consideration. It could

be a sign of a potentially damaging negative force on the tank’s lid as the fluid

enters the exit stage. It is not yet clear how an elastic lid would response to this

negative pressure caused by an impact. For the hydroelastic impacts in an LNG

carrier’s containment system, see (Ten et al. 2011) and (Malenica et al. 2006).

At the same previously mentioned instant, the shape of the surface elevation

is plotted in Figures 4.35–4.36. In these figures a comparison is made between

the surface elevation in three different problems, the surface elevation in the

problem with no lid and with gravity (analytically evaluated); that with lid and

no gravity (semi-analytically evaluated); that with lid and gravity (numerically

evaluated). The same effect due to the influence of gravity as discussed for the

smooth function Q(x, t) is applied to the surface elevation.
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Chapter 5

Water-entry problem with

gravity included

The two-dimensional water-entry problem considered in this chapter is the nor-

mal impact of a smooth body with low constant velocity onto a horizontal free

surface of a fluid. The impacting body is nearly flat, see Figure 5.1, and the

fluid is inviscid. The water-entry problem has been investigated since the work of

(Wagner 1932). The vertical impact by two-dimensional bodies of different shape

with constant velocity has been studied by, for example, (Howison et al. 1991),

(Zhao & Faltinsen 1993), (Oliver 2002) and (Howison, Ockendon & Oliver 2004).

For three-dimensional water-entry problem see (Scolan & Korobkin 2001) and

(Korobkin & Khabakhpasheva 2006). Also the problem of water-entry with high

horizontal velocity was studied with account for elasticity of the body surface by

(Reinhard et al. 2013). In the present study, the body is rigid and the impact is

started from a single point, therefore no air entrainment occurs during the body

penetration into the fluid.

The aim of this chapter is to investigate the influence of gravity on the vertical

water-entry problem. We analyse the gravity effect on some physical properties

including: size of the wetted body, force acting on the body, pressure distribution

along the wetted body and the energy distribution.

5.1 Problem description and formulation

In this Chapter the initial stage of water impact with constant low speed V

is considered. The duration of this stage, T , is formal. The problem is two-

dimensional. The flow is potential and symmetric, see Figure 5.1. The position
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x
xc0(t)−xc0(t)

y Vg

O

Figure 5.1: Water entry at small time after the body started to penetrate the fluid
with constant downward velocity V .

of the body is described by the equation

y =
x2

2R
− V t, (5.1)

with respect to the coordinates such that y = 0 is the undisturbed water surface

before impact, and where R is the radius of curvature of the body at its lowest

point. Non-dimensional variables denoted by hat are introduced by

x = Xscx̂, y = Xscŷ, t = T t̂, (5.2)

whereXsc is a length scale to be determined. Equation (5.1) in the non-dimensional

variables reads

Xscŷ =
X2
sc

2R
x̂2 − V T t̂. (5.3)

Setting X2
sc

R
= V T , V T

Xsc
= ε, where ε is a small parameter of the problem in the

following analysis, we obtain

Xsc =
√
RV T , (5.4)

ε =

√
V T

R
. (5.5)

Equation (5.4) for the length scale Xsc and equation (5.5) for the parameter ε

imply that the vertical displacement of the body V.T is much smaller than R

during the initial stage 0 < t < T under consideration, and length scale Xsc = Rε

is much smaller than R. Then equation (5.1) in the non-dimensional variables

provides an equation for the body boundary:

ŷ = ε
( x̂2

2
− t̂
)
. (5.6)
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The velocity potential ϕ̂ defined by

ϕ(x, y, t) = XscV ϕ̂(x̂, ŷ, t̂) (5.7)

satisfies the kinematic body boundary condition on ŷ = ε( x̂
2

2
− t̂), says we have

zero normal flow through the body,

∂ϕ̂

∂ŷ
= −1 + εx̂

∂ϕ̂

∂x̂
. (5.8)

The kinematic boundary condition on the free surface, ŷ = εη̂(x̂, t̂), which says

a fluid particle of the free surface cannot leave the free surface, reads in non-

dimensional variables

∂ϕ̂

∂ŷ
= ε

∂η̂

∂x̂

∂ϕ̂

∂x̂
+
∂η̂

∂t̂
. (5.9)

The hydrodynamic pressure is given by the Bernoulli equation

p = −ρV 2ε−1

[
∂ϕ̂

∂t̂
+

1

2
ε|∇̂ϕ̂|2 +

gR

V 2
ε2ŷ

]
+ patm. (5.10)

The non-dimensional pressure p̂ is defined by

p = patm +
ρV 2

ε
p̂. (5.11)

Then

−p̂ =
∂ϕ̂

∂t̂
+

1

2
ε|∇̂ϕ̂|2 +

gR

V 2
ε2ŷ. (5.12)

The dynamic boundary condition on the free surface ŷ = εη̂(x̂, t̂) is

p = patm − σ
∂2η
∂x2(

1 +
(
∂η
∂x

)2
)3/2

, (5.13)

where σ is the coefficient of surface tension. Equation (5.13) in non-dimensional

variables reads

∂ϕ̂

∂t̂
+

1

2
ε|∇̂ϕ̂|2 +

gR

V 2
ε3η̂ =

σε

RρV 2

∂2η̂
∂x̂2(

1 + ε2
(
∂η̂
∂x̂

)2
)3/2

. (5.14)
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The potential ϕ̂ satisfies the Laplace equation,

∂2ϕ̂

∂x̂2
+
∂2ϕ̂

∂ŷ2
= 0, (5.15)

in the flow region. In the leading order, for small values of ε, the non-linear terms

in equations (5.8)–(5.14) can be neglected. Three non-dimensional parameters

appear in the above formulated problem (5.6) and (5.8)–(5.15). The first param-

eter ε is responsible for non-linear effects, the second parameter, δ = gR
V 2 ε

3, is

responsible for the gravity effects and the third one, µ = σ
ρV 2R

ε, is responsible for

the surface tension effects.

We are concerned with the conditions of the impact when µ = O(ε) and
ε
δ

= o(1). That is, when gravity is more important than the non-linearity, and

surface tension effects are of the same or higher order than the non-linear effects.

These conditions imply

σ

ρV 2R
= O(1),

V 2

gR
= o(ε2). (5.16)

Let V =
√
gRυ, where υ is a small parameter. Then the asymptotic formulae

(5.16) imply

(a/R
υ

)2

= O(1), υ = o(ε), (5.17)

where a =
√

σ
ρg

is the capillary length. For the air-water interface at 25oC,

a ≈ 2.7× 10−3 m. Formulae (5.17) provide

Cσ
a

R
< υ � 1, ε = υk, 0 < k < 1, (5.18)

where Cσ is a positive constant of order O(1). The parameter δ is computed now

as

δ =
ε3

υ2
= υ3k−2. (5.19)

The gravity term in equation (5.14) is of order O(1) or smaller, but still of lower

order than O(ε), if 2
3
≤ k < 1. When k = 2

3
, we have δ = 1, and δ � 1 for the

earlier stages with k > 2
3
. The first inequality in (5.18) shows that the surface

tension term in (5.14) can be neglected when R� a and the impact speed is not

too small.

In the most interesting case, k = 2
3
, we have δ = 1 and υ2/3 = ε, which gives√

V T

R
=
( V√

gR

)2/3
, (5.20)
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and consequently

T =
(RV
g2

)1/3
, ε =

(V 2

gR

)1/3
. (5.21)

Letting υ −→ 0, we obtain the formulation of the problem with low entry velocity

in the leading order in δ during the early stage (ˆis dropped below and all variables

are non-dimensional):

∂2ϕ

∂x2
+
∂2ϕ

∂y2
= 0 y < 0, (5.22)

∂ϕ

∂t
+ δη = 0 y = 0, |x| > xc(t), (5.23)

∂ϕ

∂y
=
∂η

∂t
y = 0, |x| > xc(t), (5.24)

∂ϕ

∂y
= −1 y = 0, |x| < xc(t), (5.25)

∂ϕ

∂t
+ δ(

x2

2
− t) = −p y = 0, |x| < xc(t), (5.26)

ϕ −→ 0 as x2 + y2 −→∞. (5.27)

The above problem is supplemented by the Wagner condition:

η(xc(t), t) =
1

2
x2
c(t)− t, (5.28)

which is needed to determine the unknown position of the moving points, x =

±xc(t), separating the free surface from the contact region between the liquid

and the entering body contour. The elevation of the free surface, y = η(x, t), in

the linearised formulation (5.22)–(5.28) is given by the kinematic condition (5.24)

which follows from (5.9).

5.2 Problem in terms of displacement potential

and stretched variables

In this section we formulate and solve the problem in terms of displacement

potential in new stretched variables. The linearised boundary value problem

(5.22)–(5.28) can be written with respect to the displacement potential, defined

as follows

φ(x, y, t) =

∫ t

0

ϕ(x, y, τ)dτ, (5.29)
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for which the boundary value problem is

∂2φ

∂x2
+
∂2φ

∂y2
= 0 y < 0, (5.30)

∂2φ

∂t2
+ δη = 0 y = 0, |x| > xc(t), (5.31)

∂φ

∂y
= η y = 0, |x| > xc(t), (5.32)

∂φ

∂y
=

1

2
x2 − t y = 0, |x| < xc(t), (5.33)

∂2φ

∂t2
+ δ(

x2

2
− t) = −p y = 0, |x| < xc(t), (5.34)

φ −→ 0 as x2 + y2 −→∞, (5.35)

φ ∈C2(y < 0)
⋃

C1(y ≤ 0). (5.36)

The condition (5.36) includes the Wagner condition (5.28). If in equation (5.31),

δ = 0, then we arrive at the classical Wagner problem, which is formulated

without account for gravity. Note that one can set δ = 1 in equations (5.31) and

(5.34) if T and ε are given by equation (5.21) and ε� 1.

We keep δ in formulation (5.30)–(5.36) and assume δ � 1, which implies

that we are concerned with the early stage of the entry, during which the gravity

effects are still small. Note that xc = xc(t, δ) and xc(t, 0) = xc0(t).

We write the asymptotic expansion for the moving contact point in terms of

δ as follows

xc(t, δ) = xc(t, 0)
[
1 + δxc1(t) +O

(
δ2
) ]
, (5.37)

where δ −→ 0. We introduce new stretched variables

x̃ = x
xc0(t)

xc(t, δ)
, ỹ = y

xc0(t)

xc(t, δ)
, (5.38)

and a new unknown potential φ̃ by

φ(x, y, t) = φ̃(x̃, ỹ, t, δ) = φ̃0(x̃, ỹ, t) + δφ̃1(x̃, ỹ, t) +O
(
δ2
)
. (5.39)

The potential φ̃(x̃, ỹ, t, δ) satisfies the Laplace equation in the new stretched vari-

ables in the flow region ỹ < 0. Note that x̃ = x[1−δxc1(t)+O(δ2)]. The boundary

condition in the contact region, |x̃| < xc0(t), reads in the new variables

xc0(t)

xc(t, δ)

∂φ̃

∂ỹ
=

1

2

x2
c(t, δ)

x2
c0(t)

x̃2 − t. (5.40)
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Multiplying equation (5.40) by xc(t,δ)
xc0(t)

and using expansion (5.37), we find

∂φ̃

∂ỹ
=

1

2
x̃2 − t− δxc1(t)

(3

2
x̃2 − t) +O

(
δ2
)
. (5.41)

Equation (5.41) gives in the leading order and the first order respectively

∂φ̃0

∂ỹ
=

1

2
x̃2 − t |x̃| < xc0(t), (5.42)

∂φ̃1

∂ỹ
= xc1(t)

(3

2
x̃2 − t) |x̃| < xc0(t). (5.43)

On the free surface, |x̃| > xc0(t), the two boundary conditions (5.31) and (5.32)

yield

∂2φ̃0

∂t2
+ δ
(∂φ̃0

∂ỹ
+
∂2φ̃1

∂t2
− 2xẋc1(t)

∂2φ̃0

∂t∂x̃
− xẍc1(t)

∂φ̃0

∂x̃

)
+O

(
δ2
)

= 0, (5.44)

which gives

∂2φ̃0

∂t2
= 0 |x̃| > xc0(t), ỹ = 0, (5.45)

∂2φ̃1

∂t2
= 2xẋc1(t)

∂2φ̃0

∂t∂x̃
+ xẍc1(t)

∂φ̃0

∂x̃
− ∂φ̃0

∂ỹ
|x̃| > xc0(t), ỹ = 0. (5.46)

The leading-order free-surface condition (5.45) can be integrated twice with

respect to time, subject to the initial conditions (suitable for a fluid starting from

rest):

φ̃(x̃, ỹ, 0) = 0, (5.47)

∂φ̃

∂t
(x̃, ỹ, 0) = 0, (5.48)

which gives us a new dynamic boundary condition on the free surface at the

leading order,

φ̃0(x̃, 0, t) = 0 |x̃| > xc0(t). (5.49)

Equation (5.49) shows that the first and second terms on the right-hand side

of equation (5.46) are zero. Then

∂2φ̃1

∂t2
= −∂φ̃0

∂ỹ
|x̃| > xc0(t), ỹ = 0. (5.50)

The unknown potentials φ̃0(x̃, ỹ, t) and φ̃1(x̃, ỹ, t) satisfy Laplace’s equation in
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ỹ < 0, decay at infinity and belong to the set (5.36). In the leading order, the

solution provides ((Wagner 1932))

xc0(t) = 2
√
t, (5.51)

∂φ̃0

∂t
(x̃, 0, t) = −

√
4t− x̃2 |x̃| < 2

√
t, (5.52)

∂φ̃0

∂ỹ
(x̃, 0, t) =

x̃2

2
− x̃

2

√
x̃2 − 4t− t |x̃| > 2

√
t. (5.53)

Note that the solution given in equations (5.51)–(5.53) is in terms of displace-

ment potential introduced by (5.29) and stretched variables introduced by (5.38).

Substitution of equation (5.53) in equation (5.50) gives

∂2φ̃1

∂t2
= t− x̃2

2
+
x̃

2

√
x̃2 − 4t x̃ > 2

√
t, ỹ = 0. (5.54)

Using the initial conditions (5.47)–(5.48) and integrating (5.54) twice in time, we

find

φ̃1 =
t3

6
− x̃2

4
t2 +

x̃4

12
t− x̃6

120
+

x̃

120

(
x̃2 − 4t

)5/2
x̃ > 2

√
t, ỹ = 0. (5.55)

The horizontal displacement on the free surface reads

∂φ̃1

∂x̃
= − x̃

2
t2 +

x̃3

3
t− x̃5

20
+

1

120

(
x̃2 − 4t

)3/2(
6x̃2 − 4t

)
x̃ > 2

√
t, ỹ = 0. (5.56)

Equation (5.56) show that the first-order potential φ̃1(x̃, ỹ, t) can be presented in

the form

φ̃1 = 2t3Φ(ξ, ζ), (5.57)

where

x̃ = 2
√
tξ, ỹ = 2

√
tζ, (5.58)

and Φ(ξ, ζ) is the new unknown function. Equations (5.43), (5.57) and (5.58)

provide that the unknown correction to the position of the contact point, xc1(t),

has the form

xc1(t) = µt3/2, (5.59)

where the constant µ is to be determined. Equations (5.56) and (5.43) written

in the new variables introduced in (5.57)–(5.59) provide the following boundary
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conditions for the potential Φ(ξ, ζ):

∂Φ

∂ξ
= −ξ +

8

3
ξ3 − 8

5
ξ5 +

4

15
(ξ2 − 1)3/2(6ξ2 − 1) ξ > 1, ζ = 0, (5.60)

∂Φ

∂ζ
= µ(6ξ2 − 1) |ξ| < 1, ζ = 0. (5.61)

In order to find the constant µ and the potential Φ(ξ, 0) in the contact region,

|ξ| < 1, which is needed to determine the correction to the pressure distribution

due to the gravity effect, we solve this problem by considering an analytic function

W (ς) in ζ < 0

W (ς) =
(∂Φ

∂ξ
− i∂Φ

∂ζ

)√
ς2 − 1, (5.62)

where the complex variable ς = ξ + iζ and

W (ς) =−→ 0 as ς −→∞, (5.63)

and W (±1) = 0. On the boundary, ζ = 0−, real and imaginary parts of this

function,

Real
[
W (ξ − i0)

]
=


∂Φ
∂ξ

(ξ, 0)
√
ξ2 − 1 ξ > 1,

−∂Φ
∂ζ

(ξ, 0)
√

1− ξ2 |ξ| < 1,

−∂Φ
∂ξ

(ξ, 0)
√
ξ2 − 1 ξ < −1,

(5.64)

Im
[
W (ξ − i0)

]
=


−∂Φ

∂ζ
(ξ, 0)

√
ξ2 − 1 ξ > 1,

−∂Φ
∂ξ

(ξ, 0)
√

1− ξ2 |ξ| < 1,

∂Φ
∂ζ

(ξ, 0)
√
ξ2 − 1 ξ < −1,

(5.65)

are related by the Hilbert formula

Im
[
W (ξ − i0)

]
=

1

π
−
∫ ∞
−∞

Real
[
W (ξ − i0)

] dξ0

ξ0 − ξ
, (5.66)

where the integral is understood as a Cauchy principal-value integral. In the

contact region, |ξ| < 1, the Hilbert formula provides

−∂Φ

∂ξ
(ξ, 0)

√
1− ξ2 =− µ

π
−
∫ 1

−1

(6ξ2
0 − 1)(1− ξ2

0)√
1− ξ2

0(ξ0 − ξ)
dξ0

+
2ξ

π

∫ ∞
1

∂Φ

∂ξ
(ξ0, 0)

√
ξ2

0 − 1

ξ2
0 − ξ2

dξ0, (5.67)
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where ∂Φ
∂ξ

(ξ0, 0) in the second integral is given by equation (5.60). The first

integral is evaluated analytically. We obtain

∂Φ

∂ξ
(ξ, 0)

√
1− ξ2 =2µξ(2− 3ξ2)− 2ξ

π

∫ ∞
1

∂Φ

∂ξ
(ξ0, 0)

√
ξ2

0 − 1

ξ2
0 − ξ2

dξ0 |ξ| < 1.

(5.68)

Note that the left hand side in equation (5.68) is zero at ξ = ±1. This gives the

following equations with respect to µ,

−2µ =
2

π

∫ ∞
1

∂Φ

∂ξ
(ξ0, 0)

dξ0√
ξ2

0 − 1
. (5.69)

The integral in equation (5.69) is equal to 8
225

. Then

µ = − 8

225π
≈ −5.63× 10−3, (5.70)

and therefore the moving contact point with correction due to gravity can be

written as

xc(t, δ) = 2
√
t
(
1− δ|µ|t3/2 +O

(
δ2
) )
. (5.71)

In this expansion the moving contact point advances a shorter distance with

gravity than without gravity. We also see from Figure (5.2) that xc(t, δ) < xc0(t)

but the correction due to gravity is very small even for moderate values of δ.

In Figure (5.2), the moving contact point correction due to gravity is calculated

with δ = 0.5. The following work prepares us for the calculation of pressure in

the next section.

Now from equation (5.68) we substitute (5.70) and evaluate the integral to get

∂Φ

∂ξ
(ξ, 0) =

24

225π
ξ
√

1− ξ2(23− 30ξ2) +
4

15π
(1− ξ2)3/2(1− 6ξ2) ln

∣∣∣1 + ξ

1− ξ

∣∣∣
− 1

15
ξ(24ξ4 − 40ξ2 + 15) |ξ| < 1. (5.72)

We need also Φ(ξ, 0) and ∂2Φ
∂ξ2 (ξ, 0) to calculate the pressure correction. The later

is calculated in equation (5.73) by differentiating the equation (5.72) with respect

to ξ,

∂2Φ

∂ξ2
(ξ, 0) =

3600ξ4 − 4104ξ2 + 672

225π
√

1− ξ2
+ 8ξ2(1− ξ2)− 1

− 4

π
ξ(1− 2ξ2)

√
1− ξ2 ln

∣∣∣1 + ξ

1− ξ

∣∣∣ |ξ| < 1. (5.73)
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Figure 5.2: In non-dimensional variables, the contact point position without and
with correction due to gravity. The leading-order contact point, x̃ = 2

√
t, is the

solid line, and the contact point with correction due to gravity, x̃ = 2
√
t
(
1 +

δµt3/2), is the dashed line. Note that δ = 0.5, µ = − 8
225π

and t = 0 is the instant
of impact.
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Figure 5.3: Correction to the moving contact point position due to gravity,
µxc0(t)xc1(t) = 2µt2 in non-dimensional variables, here t = 0 is the instant of
impact, and µ = − 8

225π
.
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Also Φ(ξ, 0) is calculated by integrating equation (5.72) with respect to ξ,

Φ(ξ, 0) = −ξ2
( 4

15
ξ4 − 2

3
ξ2 +

1

2

)
− 8

225π
(1− ξ2)3/2

(
11− 18ξ2

)
+

4

15π

∞∑
n=0

(
1

n+ 1
− 6ξ2

n+ 2

)
ξ2n+2

n∑
i=0

(
3/2
i

) (−1)i

2n− 2i+ 1
+ c, |ξ| < 1,

(5.74)

where c is the constant of integration to be determined and the bracket in the

second summation are the binomial coefficients. We integrate the equation (5.60)

for ξ > 1 to get∫ ∞
1

Φξ(ξ, 0)dξ =
[ ξ2

15

(
− 15

2
+ 10ξ2 − 4ξ4

)
+

4

15
ξ
(
ξ2 − 1

)5/2
]ξ=∞
ξ=1

, (5.75)

Using the far-field condition (5.27), equation (5.75) gives∫ ∞
1

Φξ(ξ, 0)dξ = Φ(∞, 0)− Φ(1, 0) = 0.1, (5.76)

and from the continuity of the stretched displacement potential Φ(ξ, ζ), the con-

stant c can be determined by equating the two expressions (5.76) and (5.74) at

the contact point ξ = 1 which gives c = 0.234. Now we are in the position

to rearrange our formulae for calculating the pressure distribution in the next

section.

5.3 Pressure distribution

In this section the pressure distribution on the wetted body during the impact

is calculated. The pressure distribution in terms of the displacement potential

on |x| < xc(t), y = 0 is given by equation (5.34). We introduce the stretched

variables (5.38) into equation (5.34),

−p̃ =
∂2φ̃

∂t2
+ δ

(
x̃2

2

x2
c(t, δ)

x2
c0(t)

− t
)

|x̃| < xc0(t), ỹ = 0,

=
∂2φ̃

∂t2
+ δ

(
x̃2

2
− t
)

+O
(
δ2
)
, (5.77)

where here φ̃ = φ̃(x̃, 0, t, δ) is the unknown potential defined in equation (5.39)

and

p̃(x̃, 0, t, δ) = p̃0(x̃, 0, t) + δp̃1(x̃, 0, t) +O
(
δ2
)
. (5.78)

138



The first time-derivative of φ̃(x̃, 0, t, δ) is given by

∂φ̃

∂t
(x̃, 0, t, δ) =

∂φ̃

∂t
+
∂φ̃

∂x̃

∂x̃

∂t

=
∂φ̃0

∂t
+
∂φ̃0

∂x̃

∂x̃

∂t
+ δ

(
∂φ̃1

∂t
+
∂φ̃1

∂x̃

∂x̃

∂t

)
+O

(
δ2
)
. (5.79)

The time-derivative of the variable x̃ is

∂x̃

∂t
= x

∂

∂t

(
xc0(t)

xc(t, δ)

)
= x

∂

∂t

(
1

1 + δxc1(t) +O (δ2)

)
= −δxẋc1(t) +O

(
δ2
)
, (5.80)

and in a similar way for ỹ we have

∂ỹ

∂t
= −δỹẋc1(t) +O

(
δ2
)
. (5.81)

Hence from the equation (5.59) the time-derivative of the correction to the moving

contact point xc1(t) is given by

ẋc1(t) =
3µ

2

√
t. (5.82)

Equations (5.80)–(5.82) give, respectively,

∂x̃

∂t
= O (δ) , (5.83)

∂ỹ

∂t
= O(εδ). (5.84)

Using equations (5.80) and (5.83), from equation (5.79) we arrive at

∂φ̃

∂t
+
∂φ̃

∂x̃

∂x̃

∂t
=
∂φ̃0

∂t
+ δ

(
−x̃ẋc1(t)

∂φ̃0

∂x̃
+
∂φ̃1

∂t

)
+O

(
δ2
)
. (5.85)

The time-derivative of equation (5.85) gives us

∂2φ̃

∂t2
(x̃, 0, t, δ) =

∂

∂t

(
∂φ̃

∂t
+
∂φ̃

∂x̃

∂x̃

∂t

)

=
∂2φ̃0

∂t2
+
∂2φ̃0

∂t∂x̃

∂x̃

∂t
+ δ

(
− ∂x̃

∂t
ẋc1(t)

∂φ̃0

∂x̃
− x̃ẍc1(t)

∂φ̃0

∂x̃

− x̃ẋc1(t)

(
∂2φ̃0

∂x̃∂t
+
∂2φ̃0

∂x̃2

∂x̃

∂t

)
+
∂2φ̃1

∂t2
+
∂2φ̃1

∂t∂x̃

∂x̃

∂t

)
+O

(
δ2
)
.

(5.86)
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Using equations (5.80) and (5.83), equation (5.86) can be written

∂

∂t

(∂φ̃
∂t

+
∂φ̃

∂x̃

∂x̃

∂t

)
=

∂2φ̃0

∂t2
+ δ
[
− x̃ẍc1(t)

∂φ̃0

∂x̃
− 2x̃ẋc1(t)

∂2φ̃0

∂x̃∂t
+
∂2φ̃1

∂t2
]

+O
(
δ2
)
. (5.87)

From equation (5.59), the second time-derivative of the correction to the moving

contact point xc1(t) is given by

ẍc1(t) =
3µ

4
√
t
. (5.88)

Therefore from equations (5.77) and (5.87) the leading-order pressure distribution

is given as

p̃0 = −∂
2φ̃0

∂t2
|x̃| < 2

√
t, ỹ = 0. (5.89)

As we mentioned earlier, the non-linearity and surface tension effects are ne-

glected in this study while we keep the gravity influence in the formulation,

saying that the latter is more important than both non-linearity and surface ten-

sion. However, as shown in equation (5.89), at the leading order, gravity gives no

contribution to the pressure distribution.

From the leading-order solution (5.52) in terms of displacement potential we get

p̃0(x̃, 0, t) =
2√

4t− x̃2
|x̃| < 2

√
t, ỹ = 0. (5.90)

This says that the pressure distribution during the impact is to be positive along

the wetted body and it has a singularity at the contact point, x̃ = 2
√
t.

In Figure (5.4) the hydrodynamic pressure distribution, at leading order is

shown at the given time instants. In the next section we calculate the pressure

distribution at the next order.

5.4 Correction to the pressure distribution

In this section the correction to the pressure distribution due to gravity is deter-

mined. From equations (5.77) and (5.87) the pressure correction due to gravity

on ỹ = 0 for |x̃| < 2
√
t, is given by

p̃1 = −∂
2φ̃1

∂t2
+ x̃ẍc1(t)

∂φ̃0

∂x̃
+ 2x̃ẋc1(t)

∂2φ̃0

∂x̃∂t
− x̃2

2
+ t. (5.91)
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Figure 5.4: Non-dimensional leading-order hydrodynamic pressure distribution
along the wetted body at instants shown. Note the extension of the wetted body
as time goes on.

In the second term on the right hand side of equation (5.91), the horizontal

displacement ∂φ̃0

∂x̃
can be calculated by integrating both sides of equation (5.52)

with respect to time from 0 to t. However, as shown in Figure (5.5), integration

from t = 0 to t = x̃2

4
represents the free surface where it gives zero contribution

and the only contribution comes from the wetted region for t > t∗, where the

horizontal line t = t∗ corresponds to the liquid boundary at the instant t∗, see

Figure (5.5).

φ̃0(x̃, 0, t) = −
(
4t− x̃2

)3/2

6
|x̃| < 2

√
t, ỹ = 0, (5.92)
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t∗

x̃ = 2
√
t∗x̃ = −2

√
t∗

O

••

Wetted region Free surfaceFree surface

φ̃0 = 0

x̃

x̃ = 2
√
tx̃ = −2

√
t

t

Figure 5.5: The x̃, t plane of events for the liquid boundary. Horizontal line
corresponds to the liquid boundary at the instant t = t∗.

and the derivative of the equation (5.92) with respect to x̃ gives

∂φ̃0

∂x̃
=
x̃

2

√
4t− x̃2 |x̃| < 2

√
t, ỹ = 0. (5.93)

The time-derivative of the horizontal displacement potential, ∂2φ̃0

∂x̃∂t
, can be ob-

tained directly from the time derivative of equation (5.52) or from the x̃ derivative

of equation (5.93), we get

∂2φ̃0

∂x̃∂t
=

x̃√
4t− x̃2

|x̃| < 2
√
t, ỹ = 0. (5.94)

From equation (5.91), to calculate the correction to the pressure, we still have

to find the acceleration potential, ∂2φ̃1

∂t2
. To do that, we start by taking the time-

derivative of equation (5.57) and we arrive at

∂φ̃1

∂t
(x̃, 0, t) = 6t2Φ + 2t3

∂Φ

∂ξ

∂ξ

∂t
, (5.95)

where

∂ξ

∂t
=
−ξ
2t
. (5.96)

Having equation (5.96), the dominant terms of the time-derivative of equation

(5.95) follows

∂2φ̃1

∂t2
(x̃, 0, t) =

t

2

[
24 Φ− 9 ξ

∂Φ

∂ξ
+ ξ2∂

2Φ

∂ξ2

]
|x̃| < 2

√
t, ỹ = 0. (5.97)
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Where ∂2Φ
∂ξ2 , ∂Φ

∂ξ
and Φ are given, respectively, by equations (5.72)–(5.74). On the

boundary ζ = 0, we denote

S(ξ) = −12 Φ +
9

2
ξ
∂Φ

∂ξ
− 1

2
ξ2∂

2Φ

∂ξ2
|ξ| < 1. (5.98)

The function S(ξ) in (5.98) has a square-root singularity at ξ = 1. We need

to remove the square-root singularity in the pressure correction p̃1, in order to

understand its behaviour as ξ tends to one. Therefore we remove the singularity

by multiplying both sides of equation (5.98) by
√

1− ξ2 and define

S̃(ξ) = S(ξ)
√

1− ξ2 |ξ| < 1. (5.99)

Also we introduce E(ξ) to represent the remaining terms of p̃1 which are

uncovered by S(ξ)

E(ξ) = 3µ
ξ2√

1− ξ2

(
3− ξ2

)
− 2ξ2 + 1 |ξ| < 1, (5.100)

where E(ξ) is the contribution that φ0 gives to the pressure distribution at the

higher order of O(1) while S(ξ) is the contribution of φ1, due to gravity. Again

we multiply both sides of equation (5.100) by
√

1− ξ2 and we denote Ẽ(ξ) to be

Ẽ(ξ) = E(ξ)
√

1− ξ2 |ξ| < 1. (5.101)

Therefore from equations (5.99)–(5.101), equation (5.91) gives

p̃1(ξ, 0, t) =
t√

1− ξ2
p̂1(ξ) |ξ| < 1, (5.102)

where

p̂1(ξ) = Ẽ(ξ) + S̃(ξ) |ξ| < 1, (5.103)

is the correction to the pressure distribution as a function of ξ only along |ξ| < 1

derived from p̃1(ξ, 0, t) in (5.102). The behaviour of the functions S̃(ξ), Ẽ(ξ)

and p̂1(ξ) on the boundary 0 ≤ ξ ≤ 1, are shown, respectively, in Figures 5.6–

5.8. The two Figures 5.6–5.7 demonstrate the contribution of S̃(ξ) and Ẽ(ξ) to

the pressure correction due to gravity. It is shown that the first-order (due to

gravity) displacement potential φ̃1 is substantial comparing to the leading-order

displacement potential φ̃0. Therefore from the equation (5.103) gravity will exert

a negative influence on the pressure distribution all over wetted body boundary.
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Figure 5.6: The function S̃(ξ) on 0 ≤ ξ ≤ 1, S̃(1) = −0.1188, S̃(0) = −1.321.

Figure 5.7: The function Ẽ(ξ) on 0 ≤ ξ ≤ 1, Ẽ(1) = −0.0679, Ẽ(0) = 1.
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Figure 5.8: The function p̂1(ξ) on 0 ≤ ξ ≤ 1, p̂1(1) = −0.1867 is the absolute
maximum. The local maximum, at ξ = 0 is where p̂1(0) = −0.3141; the local
minimum, at ξ = 0.7940 is where p̂1(0.7940) = −0.9719

Combining equations (5.89) and (5.91), the pressure distribution along the wetted

body boundary takes the form

p̃(ξ, 0, t) =
t−1/2√
1− ξ2

(
1 + δt3/2p̂1(ξ)

)
+O

(
δ2
)

|ξ| < 1. (5.104)

Equation (5.104) makes it clear that the correction due to gravity does not in-

crease the singularity of the pressure compared to that we had in the leading

order. Figure (5.8) shows that gravity decreases the pressure along the wetted

body boundary, and has its maximum decrease at a short interval just before the

contact point. This is clearly shown in Figures 5.9–5.10 where the decline in the

pressure distribution due to gravity is always small at the centre and the peak,

at ξ = 1, while at the region just to the left of the contact point the difference is

more compared with the other regions.
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Figure 5.9: In non-dimensional variables, the leading-order pressure distribution
p0, (dashed line), and the pressure distribution with correction due to gravity
p̃0 + δp̃1, (solid line), with δ = 0.2.
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Figure 5.10: In non-dimensional variables, the leading-order pressure distribution
p0, (dashed line), and the pressure distribution with correction due to gravity
p̃0 + δp̃1, (solid line), with δ = 0.5.

147



5.5 Hydrodynamic force

In this section we will estimate the hydrodynamic force acting on the body during

the impact. For a rigid body entering a liquid, the hydrodynamic force is ob-

tained either by integration of the pressure over the body surface, see (Faltinsen

1993),(Oliver 2002) and (Korobkin 2007) or by using the energy argument, see

(Miloh 1981) and (Wu 1998). Identical results, by both approaches were found by

(Wu 1998). In this work we use the former method to calculate the hydrodynamic

force on the body and the energy distribution will be discussed in the section 5.6.

The vector formula of the force exerted by the fluid against the wetted part of

the submerged body is given by

~F (t) =

∫
w.b.

p.~n dS, (5.105)

where w.b. refers to the wetted part of the body surface, S is the arc length along

the body, ~n is the outer normal unit vector. The horizontal force acting on the

symmetric body is zero. The vertical force F (t) is given by

F (t) =

∫ xc

−xc
p

(
x,
x2

2R
− V t, t

)
dx |x| < xc(t). (5.106)

In the non-dimensional variables introduced in section 5.1 and in particular the

equation (5.11), the force is non-dimensionalized as

F (t) = ρ V 2R F̂ (t̂), (5.107)

where a hat stands for non-dimensional variables. Hence equation (5.106) takes

its non-dimensional form as

F̂ (t̂) = 2

∫ xc

0

p̂

(
x̂, ε

(
x̂2

2
− t̂
)
, t̂

)
dx̂. (5.108)

Dropping the hats and introducing the stretched variables (5.38) into equation

(5.108), on ỹ = 0, we arrive at

F̃ (t) = 2

∫ xc0

0

p̃(x̃, 0, t)
xc(t, δ)

xc0(t)
dx̃

= 2

∫ 2
√
t

0

(
p̃0 + δp̃1

)(
1 + δxc1(t)

)
dx̃+O

(
δ2
)

= 2

∫ 2
√
t

0

(
p̃0 + δ(xc1p̃0 + p̃1)

)
dx̃+O

(
δ2
)
. (5.109)
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Substituting p̃0 given by (5.90) and p̃1 given by (5.102) and introducing new

variables of integration ξ = x̃
2
√
t
, we find

F̃ (t) = 2

∫ 1

0

(
2

2
√
t
√

1− ξ2
+ δ
( 2µt3/2

2
√
t
√

1− ξ2

+ t
(
E(ξ) + S(ξ)

)))
2
√
t dξ +O

(
δ2
)
,

F̃ (t) = 4

∫ 1

0

(
1√

1− ξ2
+ δt3/2

(
µ√

1− ξ2
+ E(ξ) + S(ξ)

))
dξ +O

(
δ2
)
,

(5.110)

where E(ξ) is given by (5.100) and where

S(ξ) = −12c+ 2ξ2 +
2ξ

5π

√
1− ξ2 ln

(
1 + ξ

1− ξ

)(
8ξ4 − 16ξ2 + 3

)
− 12

225π

√
1− ξ2

(
126ξ4 + 25ξ2 − 88

)
−
ξ2
(
3600ξ4 − 4104ξ2 + 672

)
450π

√
1− ξ2

− 16

5π

∞∑
n=0

(
1

n+ 1
− 6ξ2

n+ 2

)
ξ2n+2

n∑
i=0

(
3/2
i

) (−1)i

2n− 2i+ 1
. (5.111)

The asymptotic expansion of the hydrodynamic force with respect to δ is

F̃ (t) = F̃0(t) + δF̃1(t) +O
(
δ2
)
. (5.112)

At the leading order the hydrodynamic force is constant,

F̃0(t) = 2π |x̃| < 2
√
t. (5.113)

The correction to the hydrodynamic force due to gravity is of order O (δ) and is

defined by

F̃1(t) = 4t3/2
∫ 1

0

[ µ√
1− ξ2

+ E(ξ) + S(ξ)
]
dξ. (5.114)

This force is time dependent, in contrast to the leading-order hydrodynamic force,

equation (5.113), which is constant.

Integration of the first and the second terms of the right hand side of equation

(5.114) give −|µ|π
2

and 1
3

+ 27
16
|µ|π. Using equation (5.98) and integrating by parts

for the last term, we find∫ 1

0

S(ξ)dξ = −12Φ(1, 0)− 1

2

∂Φ

∂ξ
(1, 0) +

35

2

∫ 1

0

ξ
∂Φ

∂ξ
dξ, (5.115)
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Figure 5.11: The non-dimensional correction to the hydrodynamic force, F̃1(t)
given by (5.114), due to gravity as a function of non-dimensional time.

where Φ(1, 0) and ∂Φ
∂ξ

(1, 0) can be found from equations (5.74) and (5.72) respec-

tively. The integral on the right hand side of equation (5.115) is straightforward

to evaluate, except the term with natural logarithm in equation (5.72), which is

numerically integrated. The result is

F̃1(t) = −2.09 t3/2. (5.116)

The non-dimensional correction to the hydrodynamic force is shown in Figure

5.11 which reveals that gravity decreases the hydrodynamic force even during the

early stage. the correction is significant for moderate values of δ, in particular

when 1
2
< k ≤ 1, see equation (5.19).
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5.6 Correction to the free surface

In this section the influence of gravity on the free surface will be discussed. This

information is needed for the next section to calculate the effects of gravity on

the energy distribution. It is also in our interest to know how significant is the

contribution of gravity on the free surface. To find this displacement of the free

surface, we write its expansion in powers of δ

η(x, t) = η0(x, t) + δη1(x, t) +O
(
δ2
)
. (5.117)

Where the leading free surface, η0(x, t), is calculated from equation (5.53). For

the correction, η1(x, t), the vertical displacement, ∂φ1

∂y
(t, y, t)

∣∣
y=0

should be deter-

mined, see equation (5.39) to find the change of variables provided. The charac-

teristic function, W (ξ, ζ)
∣∣
ζ=0

, in terms of the vertical and horizontal displacement

is defined in equation (5.62). In terms of new variables, ξ = 1 is the moving con-

tact point on the right. Starting from the Hilbert formula given in (5.66), where

the real and imaginary parts of the characteristic function W (ξ, 0) are defined in

equations (5.64) and (5.65). On the free surface, ξ > 1, the Hilbert formula reads

∂Φ

∂ζ
(ξ, 0)

√
ξ2 − 1 =

1

π

∫ 1

−1

∂Φ

∂ζ
(ξ0, 0)

√
1− ξ2

0

ξ0 − ξ
dξ0

− 2ξ

π
−
∫ ∞

1

∂Φ

∂ξ
(ξ0, 0)

√
ξ2

0 − 1

ξ2
0 − ξ2

dξ0. (5.118)

Where ∂Φ
∂ζ

for |ξ| < 1 and ∂Φ
∂ξ

for ξ > 1 are given, respectively, in equations (5.61)

and (5.60). The integrals on the right-hand side of equation (5.118) are calculated

as we did for equation (5.67). However one should consider ξ > 1 for the second

integral. Therefore, the equation (5.118) follows

∂Φ

∂ζ
(ξ, 0) =

24ξ

225π

√
ξ2 − 1(30ξ2 − 23)

+
4

15π
(ξ2 − 1)3/2(1− 6ξ2) ln

∣∣∣1 + ξ

1− ξ

∣∣∣, ξ > 1, ζ = 0. (5.119)

Therefore, equations (5.32), (5.117) and (5.119) yield

η1(x, t) =
3x
√
t

225π

√
x2 − 4t(15x2 − 46t)

+
1

60π
(x2 − 4t)3/2(2t− 3x2) ln

∣∣∣2√t+ x

2
√
t− x

∣∣∣, x > 2
√
t, y = 0 (5.120)

where change of variables are used by using relations in (5.58). In Figure 5.12

the correction to the free surface due to gravity is shown. The change of sign

indicates that the correction will be different in different parts of the domain.
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However, from the figure one can note that these changes will be tiny and go to

zero as we approach the far-field.

From the equation (5.120) it is clear that the gravity has no influence on

the free surface close to the body. This can be seen in Figure 5.13 for the non-

dimensional time series t = 0.5, 0.7, 0.9, 1.1 and 1.3. In this figure it is shown that

the gravity is increasing the height of the free surface as time goes.

Figure 5.12: The correction due to gravity to the non-dimensional vertical dis-
placement potential ∂Φ

∂ζ
(ξ, 0) which is the correction to the free-surface elevation

η1(ξ), for ξ > 1.
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5.7 The energy distribution

When the body is entering the fluid, the body does work on the fluid, increasing its

total energy. In this section we calculate the total energy distribution between the

jets and the leading-order flow. So far we have not accounted for the jets during

the calculation of the pressure and force. However when we make an account

of the energy, these jets contribute significantly to the total energy of the flow.

Discussions of energy can be found in (Cooker 2002), (Cointe, Fontaine, Molin

& Scolan 2004) and (Reinhard et al. 2013). The entering body is rigid so no

body vibration is accounted for in this work. For the elastic potential energy and

acoustic effects contribution see (Korobkin 1995) and (Reinhard et al. 2013).

The total energy in this fluid system is expressed as the potential energy (in

the presence of gravity) and kinetic energy. In this section we will find the kinetic

energy in the system excluding the jets. While the kinetic energy in the jets will

be discussed in the next section after the thickness of the jets and velocity of

the fluid in the jets have been identified. Also for the potential energy we need

information about the jets and this to be considered in later sections.

From (Lamb 1932), for irrotational and incompressible fluid, the total kinetic

energy Ekin is defined by

Ekin =
1

2
ρ

∫∫
Ω(t)

|∇ϕ|2dxdy, (5.121)

where Ω(t) is the whole fluid domain excluding the jets. In particular Ω(t) is a

semi-circle in lower-half plane of large radius R. We expect Ekin to be well defined

as R −→ ∞ The energy in the jets will be calculated separately later. The fact

that the fluid is incompressible, ∇2ϕ = 0, gives the identity

|∇ϕ|2 = ∇ϕ.∇ϕ = ∇.(∇ϕ), (5.122)

Using Green’s theorem in (Lamb 1932) and the identity (5.122) for incompress-

ible fluid, the double integral in equation (5.121) reduces to a boundary-integral,

hence

Ekin =
1

2
ρ

∫
∂Ω(t)

ϕ
∂ϕ

∂n̂
ds, (5.123)

where n̂ is the outward unit normal vector, ∂Ω(t) is the boundary of the domain

Ω(t) discribed anticlockwise and s is the arc-length coordinate along the boundary

∂Ω(t). The kinetic energy is non-dimensionalised by

Ekin = ρX2
scV

2Êkin, (5.124)
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to arrive at (hats are dropped)

Ekin =
1

2

∫
∂Ω(t)

ϕ
∂ϕ

∂n
ds. (5.125)

To calculate the kinetic energy over Ω(t) we separate the boundary ∂Ω(t) into

the interval [−R,R] of the x-axis and a semicircle in the lower half plane:

Ekin = −1

2

∫ R

-R

ϕ
∂ϕ

∂y

∣∣∣
y=0

dx+
1

2

∫ 0

−π
ϕ̄
∂ϕ̄

∂r
R dθ. (5.126)

Where R −→ ∞ and Ω̄ is a semi-circle in the region y < 0 of radius R−→ ∞.

Here ϕ̄ = ϕ̄(r, θ), 0 < r < R,−π < θ < 0. From the far-field condition (5.27)

the far-field boundary is assumed to contribute nothing. As to the first integral

in equation (5.126), which is the total kinetic energy, we calculate it separately.

The impact is symmetric and the kinetic energy on the left side is the same as

that on the right side from the centre of the body, hence

1

2

∫ R

-R

ϕ
∂ϕ

∂y
dx =

∫ R

0

ϕ
∂ϕ

∂y
dx

=
(∫ xc(t)

0

+

∫ R

xc(t)

)
ϕ
∂ϕ

∂y
dx. (5.127)

First to calculate the velocity potential ϕ and the vertical velocity ∂ϕ
∂y

as the solu-

tions are given in terms of displacement potential φ̃. Taking the time-derivative

of the solution will provide the solution in terms of the velocity potential. The

solution in terms of displacement potential on 0 < x < 2
√
t is given in equations

(5.42) and (5.52) but in terms of the velocity potential these two functions are

∂ϕ

∂y
= −1− 6δ|µ|t2(6ξ2 − 1) +O

(
δ2
)

|ξ| < 1, (5.128)

ϕ = −2
√
t
√

1− ξ2 + 6δt2

(
c− 4

15
ξ6 +

2

3
ξ4 − 1

2
ξ2 − 8

225π
(1− ξ2)3/2

(
11− 18ξ2

)
+

4

15π

∞∑
n=0

(
1

n+ 1
− 6ξ2

n+ 2

)
ξ2n+2

n∑
i=0

(
3/2
i

) (−1)i

2n− 2i+ 1

)
+O

(
δ2
)
,

|ξ| < 1, (5.129)

where for convenience we use the variables introduced in equation (5.58) on the

contact region |ξ| < 1 and ϕ = ϕ(ξ, 0, t). The bracketed term in the second

summation of equation (5.129) is the binomial coefficient. In the same way from

equations (5.53) and (5.55) the solution on the free surface in terms of the velocity

potential are
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∂ϕ

∂y
=

x√
x2 − 4t

− 1 +O (δ) |x| > 2
√
t, (5.130)

ϕ = δ

(
t2

2
− x2

2
t+

x4

12
− x

12

(
x2 − 4t

)3/2
)

+O
(
δ2
)

|x| > 2
√
t. (5.131)

Note that the first-order terms in the expression for the vertical velocity in equa-

tion (5.130) are not needed to calculate the kinetic energy, because this term will

be multiplied by the zero leading-order velocity potential on the free surface given

in equation (5.49). The kinetic energy on the contact region EFc
kin is

EFc
kin = πt+ δ

(
0.1067

√
t− 1.217

)
t5/2 +O

(
δ2
)
. (5.132)

The second term on the right-hand side of equation (5.132) demonstrates that

gravity reduces the kinetic energy in this region. On the free surface the con-

tribution to the kinetic energy EFs
kin is zero at the leading order as the velocity

potential is zero. However by including the gravity in calculations a non-zero

velocity potential will appear on the free surface. Therefore it will be of O (δ)

and contributes to

EFs
kin = −0.1556 δ t5/2 +O

(
δ2
)

|x| > 2
√
t. (5.133)

5.8 The jet root region

The thickness of the jet in the inner region without gravity, HJ(t), is found , see

for example (Wilson 1989), to be

HJ(t) =
πxc(t)

8ẋ2
c(t)

, (5.134)

where overdot denotes the time-derivative. To calculate the thickness of the jet

with regard to gravity the moving point is given by equation (5.39) then equation

(5.134) be rewritten as

Hg
J(t, δ) =

πxc(t, δ)

8ẋ2
c(t, δ)

. (5.135)

Using the results in Section 5.2, in particular the time-derivative of equation

(5.71) which gives the velocity of the non-dimensional moving contact point, we

find that

ẋc(t, δ) =
1√
t
− 4δ|µ|t+O

(
δ2
)
. (5.136)

So from equation (5.135) the thickness of the jet in the inner region, accounting

for gravity, Hg
J(t, δ), can be shown to be
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y = 0

I

II III

IV

Figure 5.14: A partition where the potential energy to be calculated. The horizantol
dashed line is the equiliburium state of the free surface, y = 0.

Hg
J(t, δ) =

π

4
t3/2

(
1 + 7δ|µ|t3/2

)
+O

(
δ2
)
. (5.137)

Equation (5.137) says that in the water-entry problem gravity significantly

increases the jet’s thickness in the jet root region, i.e.

Hg
J(t, δ) > HJ(t). (5.138)

However, in Figure 5.2 it is shown that gravity decreases the width of the

wetted region and the speed of the moving contact point x = xc(t) is lessened

by gravity. This reveals the fact that the effect of gravity on the moving contact

point’s position is dominant on the same effect on the square of the speed of the

moving contact point.

5.9 Potential energy

Before the impact the potential energy of the fluid is some value Ep(0) relative

to the Earth-fixed coordinate system Oxy. However, Ep changes in time, from

the instant of impact and later on. In this section we want to find how gravity

changes the potential energy of the system in each individual part of the fluid

as shown in Figure 5.14. The impact is symmetric, hence only the right side is

shown in the figure.

In non-dimensional variables the change in the potential energy for the system

is

Ep(t)− Ep(0) = 2

(∫∫
I

+

∫∫
II

+

∫∫
III

+

∫∫
IV

)
ydydx. (5.139)
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The potential energy is scaled by ρgX3
sc. The impact is symmetric so the

right-hand side of equation (5.139) is multiplied by a factor of 2. We will deal

with each region individually. The first integral in equation (5.139) gives the

potential energy between the contact points of the body with the equilibrium

line of the free surface, EI
p,

EI
p = 2

∫ √2t

0

∫ 0

x2

2
−t
ydydx = −8

√
2

15
t5/2. (5.140)

The second integral in equation (5.139) calculates the potential energy be-

tween the body and the moving contact point above the level free surface, EII
p ,

EII
p = 2

∫ 2
√
t−2δ|µ|t2

√
2t

∫ x2

2
−t

0

ydydx

=
14− 8

√
2

15
t5/2 − 2 δ |µ| t4 +O

(
δ2
)
. (5.141)

The potential energy in region II decreases when the correction due to gravity

on the moving contact point is included. From the Figure 5.14 the potential

energy in region III, EIII
p , in present of gravity, is

EIII
p = 2

∫ ∞
xc(t)

∫ η(x,t)

0

ydydx. (5.142)

The upper limit of the outer integral refers to the far-field domain. To calcu-

late this potential energy, EIII
p , we use the stretched variables in (5.39) and (5.58).

Then the integral on the right-hand side of equation (5.142) can be rewritten as

EIII
p = 2t5/2

∫ ∞
1

η2
0dξ + 2δt4

(∫ ∞
1

(
η0η1 − |µ|η2

0

))
dξ. (5.143)

Where from equations (5.32) and (5.53), η0 = η0(ξ) is found to be

η0(x̃, t) = tη0(ξ), (5.144)

where x̃ is the stretched variable defined in (5.38) and

η0(ξ) = −1 + 2ξ2 − 2ξ
√
ξ2 − 1 ξ > 1. (5.145)

Also η1 = η1(ξ) is derived from equation (5.32) and the relations given in (5.59)

η1(x̃, t) = t5/2η1(ξ), (5.146)

where η1(ξ) is given through equation (5.119). Therefore the potential energy in

region III reads
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EIII
p =

2

15
t5/2 + 2δt4

(
C − |µ|

15

)
, (5.147)

where

C =

∫ ∞
1

η0η1dξ. (5.148)

Again form Figure 5.14 the potential energy in region IV , the jet region, reads

EIV
p = 2

∫ ∞
2
√
t−2δ|µ|t2

∫ x2

2
−t

x2

2
−t−H̄J

ydydx, (5.149)

where H̄J = H̄J(x, t) is the non-dimensional jet’s thickness in the jet region. To

find H̄J we need to solve the formulation below of the thin jet, see (Wilson 1989).

We introduce bar to denote the variables in the jet region,

∂H̄J

∂t̄
+

∂

∂x̄
(H̄J

∂φ̄

∂x̄
) = 0, (5.150)

∂φ̄

∂t̄
+

1

2

(∂φ̄
∂x̄

)2
= 0. (5.151)

Equations (5.150) and (5.151) are known as the shallow water equations with

zero gravity, (Howison et al. 1991) and (Oliver 2002). The boundary conditions

for the jet problem are constructed from the jet root region. For the jet’s thickness

from equation (5.134) we have

H̄J(xc0(t), t) =
πxc0(t)

8ẋ2
c0(t)

=
π

4
t3/2, (5.152)

and for the velocity potential, the boundary condition can be given by the fact

that the fluid velocity in the jet root region is 2ẋc0(t), see next section. Therefore

the boundary condition for the horizontal fluid velocity in the jet region, ū(x, t)

is

ū(xc0(t), t) = 2ẋc0(t) =
2√
t
. (5.153)

By substitution of ∂φ̄
∂x̄

with the horizontal velocity ū(x, t) and differentiation of

equation (5.151) once with respect to x̄ we arrive at

∂H̄J

∂t̄
+

∂

∂x̄
(H̄J ū) = 0, (5.154)

∂ū

∂t̄
+ ū

∂ū

∂x̄
= 0. (5.155)

Using the method of characteristics for the quasi-linear equations (5.154) and

(5.155) with having the boundary conditions (5.152) and (5.153), the solution

reads
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ū(x, t) =
x

t
x ≥ xc0, (5.156)

H̄J(x, t) = 8π
t4

x5
x ≥ xc0. (5.157)

Having the jet’s thickness (5.157), from equation (5.149) we can calculate the

potential energy in the jet

EIV
p =

π

4

(
3− π

18

√
t
)
t3 + δ|µ|π

(
1− π

8

√
t
)
t9/2 +O

(
δ2
)
. (5.158)

The non-dimensional potential energy and its correction due to gravity in

each region are shown in Figures 5.15, 5.16, 5.18 and 5.19. For all figures we used

δ = 0.2. At the first glance on these figures, we conclude that gravity affects

the potential energy in region II more than any other region. In region I the

potential energy is not affected by gravity, see Figure 5.15. Also for the potential

energy in region IV, the jet region, the increase is small, see Figure 5.19. This

may be due to the fact that although the jets are very fast they are very thin and

therefore cannot escape from the influence of gravity. However, In Figure 5.16

it is shown that in region II gravity decreases the potential energy significantly

but this correction is less visible in region III as shown in Figure 5.18. This

small change is due to the tiny result which comes from the integrand η0(ξ)η1(ξ)

as shown in Figure 5.17. Therefore we have a negative effect due to gravity in

potential energy in regions II and III, while gravity increased the potential energy

in the jets’ region IV. The potential energy in regions II and III are similar and

together are similar in magnitude but of opposite sign to EI
p. Hence EI

p +EII
p +EIII

p

is found to be small compared with the much larger jet energy EIV
p .

Figure 5.15: The non-dimensional potential energy in region I.
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Figure 5.16: The non-dimensional potential energy in region II with (dashed line)
and without (solid line) correction due to influence of gravity on the bulk flow.

Figure 5.17: The non-dimensional integrand η0(ξ)η1(ξ) in equation (5.143).
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Figure 5.18: The non-dimensional potential energy in region III with (dashed
line) and without (solid line) correction due to influence of gravity on the bulk
flow.

Figure 5.19: The non-dimensional potential energy in region IV and its correction
(dashed line) due to influence of gravity on the bulk flow.
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5.10 The mass flux into the jet root region

It is in our interest to know the change which is happening due to gravity in the

mass flux into the jets during the impact. With no gravity the mass flux for water-

entry problem with vertical impact is studied by Howison91 and (Korobkin 1995).

The mass flux Mflux in the jet is defined by (Faltinsen & Timokha 2009)

Mflux(t) = ρHJ(VJ − VS). (5.159)

Where ρ is the fluid density, HJ = HJ(t) is the jet thickness and VJ is the fluid

velocity in the jet and VS the spray root area velocity. The spray root velocity

in the reference frame OXY is the same as the velocity of the moving contact

point ẋc(t). The moving contact point velocity with account for gravity ẋc(t, δ)

is defined in equation (5.136). However, the velocity of the fluid along the jet

is 2ẋc(t, δ) in the Earth-fixed coordinate system Oxy. For the derivation of the

velocity of the fluid in the jet see (Faltinsen & Timokha 2009). Therefore the

mass flux through the jet with account for gravity is defined to be

Mg
flux(t, δ) = HJ(t, δ)

(
2ẋc(t, δ)− ẋc(t, δ)

)
,

= HJ(t, δ)ẋc(t, δ), (5.160)

where Mg
flux is scaled by ρV R. Having the non-dimensional jet thickness given in

equation (5.137) and the non-dimensional velocity of the moving contact point in

equation (5.136) the non-dimensional flux of fluid volume moving into the jets is

Mg
flux(t, δ) =

π

4
t3/2
[ 1√

t
+ 3δ|µ|t

]
+O

(
δ2
)
, (5.161)

Equation (5.161) demonstrates that although gravity slows down the moving

contact point it increases the fluid volume flux into the jets. It also reveals that

the increase (caused by gravity) of the jet root region’s thickness overcomes the

decrease (caused at the same time by gravity) in the speed of the moving contact

point. Together, the effect of including gravity is to increase the fluid volume flux

into the jets. This result is also consistent with the increase in potential energy

in the jets’ regions. We can conclude that the increase in potential energy in jets’

region IV is due to the fact that the mass flux into this region is increased by

gravity.

5.11 The kinetic energy flux in the jet

According to (Cointe et al. 2004) [during water-entry], the work done by the body

on the fluid is expressed as the energy of the fluid. For circular cylinder studied
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by (Cointe et al. 2004), half of this energy is in and the other half transported

into the jets. However, this energy distribution is a consequence of maintaining

the constant entry velocity of the body. For the consequences for the total energy

distribution between the jets and the bulk, with non-constant velocity see (Scolan

& Korobkin 2003).

Now that we have calculated the jet thickness, the mass flux into the jet, the

velocity of the fluid in the jet and the velocity of the spray jet, we are in a position

to calculate the kinetic energy flux into the jet. (Faltinsen & Timokha 2009) show

that this is, for one jet:

dEJ
kin

dt
=

1

2
MfluxV

2
J , (5.162)

where Mflux = Mflux(t) is the mass flux given in equation (5.159) and VJ is the fluid

velocity in the jet (in the global frame of reference), 2ẋc(t, δ). Hence equation

(5.162) reads

dEJ
kin

dt
= 2Mg

fluxẋ
2
c , (5.163)

where ẋc = ẋc(t, δ) is given by equation (5.136) and Mg
flux = Mg

flux(t, δ) is given

by equation (5.161). Hence

dEJ
kin

dt
=
π

2
− 5

2
πδ|µ|t3/2 +O

(
δ2
)
. (5.164)

It should be noticed that for this symmetric flow, the total kinetic energy flux

through the two jets is 2
dEJkin

dt
. In the next section the total energy balance in the

system will be investigated.

5.12 The work done by the body on the fluid

Capillary and viscosity forces are not accounted in this study. The total ki-

netic energy of the fluid in non-dimensional variables is the sum of the equations

(5.132), (5.133) with the time integral of the equation (5.164), hence we have

ET
kin = 2EJ

kin + EFc
kin + EFs

kin

= 2πt+ δ
(
0.1067

√
t− 1.4437

)
t5/2 +O

(
δ2
)
. (5.165)

With the note that the time integral of equation (5.164) is multiplied by a factor

of 2 to account for both jets’ kinetic energy. Equation (5.165) shows that gravity

decreases the total kinetic energy of the system. To make a comparison between

the kinetic energy and the work, we write the non-dimensional work done by the

body force entering the water on the surface, see (Lamb 1932), as follows
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W =

∫ t

0

F̃ (t)dt. (5.166)

This is evaluated by considering the vertical velocity of the body given in equation

(5.25) and where F̃ (t) is defined up to first order in equations (5.113)–(5.114).

The instant of impact is at t = 0 and the work W = W(t) (which has the same

dimensions as energy) [Joules in S.I units] is scaled by ρX2
scV

2. From the non-

dimensional hydrodynamic force defined in equation (5.112), the non-dimensional

work is

W = 2πt+ δ
(1

3
+

19

16
|µ|π +

∫ 1

0

S(ξ)dξ
)
t5/2 +O

(
δ2
)
, (5.167)

where S(ξ) is given by equation (5.111). At leading order, from equations (5.165)

and (5.167) it is simply observed that the rate of the work done by the body on

the water during the period (0, t) is equal to the total kinetic energy flux which

is 2π, i.e.

dW

dt
=

dET
kin

dt

= 2π +O
(
δt3/2

)
(5.168)

It is not clear from equation (5.167) how the work is affected by gravity.

Therefore we plot W(t) in Figure 5.20. In this figure it is found that gravity

changes the linearity of the work into a non-linear function. Also gravity decreases

the work by O(δt5/2) which is the same order of decrease due to gravity on the

total kinetic energy.
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Figure 5.20: The non-dimensional work done on the water by the body with
gravity ( dashed line) and without gravity (solid line), with δ = 0.2.
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In Table 5.1 we present the influence of gravity upon each studied physical

property in this thesis. These results are related to the current chapter, the initial

impact of a smooth body entering water with low velocity. As to the pressure,

force and work, the part of equations of O(δ), which shows gravity’s effect on

each of them, the formula is too long to be shown in this table and we only refer

to the equations. Also regarding the potential energy in the system, in section

5.9, the results are shown for each partitioned region separately, see Figure 5.14.

The potential energy in all regions is affected by gravity except region I where it

remains unchanged.

It is found that gravity influences all physical properties. Most are influenced

with negative impact, as expected from gravity. The order of decrease due to

gravity is as follows. Of O(δt) for the moving contact point’s velocity and pressure

distribution on the impact region as well, of O(δt3/2) for the force on the impact

region and the kinetic energy flux into the jets, of O(δt2) for the moving contact

point’s position, of O(δt5/2) for the kinetic energy of the bulk and of O(δt4) for

the potential energy in regions II and III.

However, we have different behaviour for the region IV for: the thickness of

the jets and the mass flux into the jets. Even though the speed of the moving

contact point and its position are decreased, there is an increase in these three

properties: the order of increase caused by gravity is of O(δt3/2) for the thickness

of the jets, of O(δt5/2) for the mass flux into the jets, and of O(δt9/2) for the

potential energy in region IV.
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Physical property Expression Effect of gravity

Moving contact point’s position 2
√
t(1− δ|µ|t3/2) Decreasing

Velocity of the contact point 1√
t
(1− 4δ|µ|t3/2) Decreasing

Pressure on the impact region 2√
4t−x2 +see (5.103) Decreasing

Force on the impact region 2π+see (5.114) Decreasing

Kinetic energy of the bulk πt+
(
0.1067

√
t Decreasing

−1.4437
)
δt5/2

Potential energy in region I −8
√

2
15
t5/2 Unchanged

Potential energy in region II 14−8
√

2
15

t5/2 − 2δ|µ|t4 Decreasing

Potential energy in region III 2
15
t5/2 − 2δ

(
C − |µ|

15

)
t4 Decreasing

Potential energy in region IV π
4

(
3− π

18

√
t
)
t3 Increasing

+δ|µ|π
(
1− π

8

√
t
)
t9/2

Thickness of the jet π
4
t3/2(1 + 7δ|µ|

√
t) Increasing

Kinetic energy flux into the jets π(1− 5δ|µ|t3/2) Decreasing

Mass flux into the jet π
2
t(1 + 3δ|µ|t3/2) Increasing

Work 2πt+see (5.167) Decreasing

Table 5.1: Influence of gravity on physical properties in water-entry problem.
Where |µ| = 8

225π
.
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Chapter 6

Conclusions and future work

The results and conclusions obtained in this thesis are summarized in this chapter.

Some ideas and recommendations for future work are also discussed, in section

6.2.

6.1 Conclusions

Due to the complex nature of fluid-structure interaction problems, simplifications

are needed to model interaction processes, even in 2D. These simplifications can

be mathematical, physical, engineering or chemical. Usually gravity is one of

the physical effects that is neglected due to high acceleration of liquid during

violent interaction, such as liquid impact. However, this study is focused on the

influence of gravity on the liquid impact. In this thesis we have investigated the

influence of gravity on fluid-structure interactions. We have studied this influence

on sloshing impacts in LNG tanks and also on the impact of a rigid body moving

with constant low speed, onto a liquid surface which is initially flat. For sloshing

impacts in LNG tanks and water-entry problems, it is known that during the

very early stage of impact gravity is negligible. We explained in this thesis why it

is so even if the corresponding non-dimensional parameters are not small. After

the initial stage of impact we explained how gravity becomes important and how

significant it is, by plotting the rise of its influence on some physical characteristics

of the impact.

In Chapter 1 we started with the problem motivation and description of the

system of tanks on LNG carriers. We discussed the objective of this study, high-

lighting some of the most relevant results achieved so far in both, sloshing impacts

in LNG tanks and the water-entry problem.

Chapter 2 started with a description of the problem in 2D, in which the initial

shape of the free-surface elevation is given. Many different impact situations with

different filling levels are possible, and we only followed the one that impacts the
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centre of the lid with a 95% filling level, and no air entrapped between the liquid

surface and the lid. The problem is linearised based on the small distance h

between the lid (at y = H) and the equilibrium free surface (at y = H−h). This

distance is small compared with liquid depth, h, in that the ratio ε = h
H
� 1. We

introduced an approach for solving this problem. We first solved the simplified

problem at the leading order by removing the lid, when there was no impact and

the only unknowns were the free-surface elevation and velocity potential. Then

we introduced the lid and formulated the problem with respect to the corrections

to the solution without the lid, to include the presence of the lid. Due to highly

localized impact loads both in space and time we formulated the problem by

introducing a small non-dimensional parameter, δ � 1, which stretched the time

and made it possible to apply asymptotic analysis to the problem. A Wagner

problem of impact was then introduced and by setting δ = 0 we excluded gravity

from the current formulation. The components of the flow velocity were shown

to be singular at the moving contact points x = ±xc(t). Therefore we smoothed

the velocity potential by integrating it in time and formulating the problem with

respect to the displacement potential. By reformulating the Wagner problem

at the leading order in terms of a displacement potential, we found the size of

the wetted region, hydrodynamic force and the pressure distribution. Negative

pressures and forces were found during the impact stage. By keeping δ = 0,

the total energy budget of the system was derived by accounting for the spray

jets during the impact. It is well-known that the energy is not conserved in the

Wagner approximation model when the jets are neglected.

Chapter 3 is a continuation of Chapter 2, but with δ > 0 in the formulation,

which means gravity is now included. We established a new formulation of this

problem by transforming the dynamic boundary condition on the free surface.

The problem was reformulated in terms of the displacement potential by using the

Wagner condition. We asymptotically expanded our unknowns with respect to the

small parameter δ. Correction to the free-surface elevation, ηc0(x, t), due to the lid

was obtained. Also the correction due to gravity to the size of the wetted region,

γ xc1(t), where γ = δ3/2, was obtained. A new approach for finding the correction

to the size of the wetted region due to gravity was introduced. In this method we

assumed that the displacement potential in the dynamic boundary condition on

the free surface is a solution and we introduced an unknown function into that

solution as a correction to be determined. The results by these two methods are

compared. By both methods we found that the influence of gravity on the size

of the wetted region during early stage of impact is very small. However, this

influence becomes visible later on, and it becomes significant at later stages of

the impact. It was found that gravity decreases the size of the wetted region.
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At the end of Chapter 3, we found semi-analytically the influence of gravity on

the pressure distribution on the lid of the tank during impact. It was shown

that the correction due to gravity on the pressure distribution is negative. It was

found that gravity decreases the pressure distribution during impact stage and

the results was plotted for some instant to show the difference of the pressure

distribution with and without gravity.

In Chapter 4 we solved the sloshing problem numerically by using the Wagner

model. We used the same simplifications as in Chapter 2 keeping gravity in the

formulation of the impact problem. The problem was formulated in terms of

the Fourier coefficients and linear splines for the velocity potential, pressure and

surface elevation. We used the kinematic and dynamic boundary conditions to

relate the coefficients for the liquid surface elevation and pressure distribution.

The unknown pressure in the contact region was sought in terms of a smooth

function to be determined, multiplied by a known square-root singularity at the

moving contact points x = ±xc(t). We faced a new challenge: an ill-conditioned

system. The condition number of our system was very large. The solution was

not reliable. Tikhonov regularization was applied to the system with the help

of the regularization tool provided by (Hansen 1994). We finally managed to

stabilize the system and brought down the condition number of equation very

close to unity. Numerical results were compared with known semi-analytical

results. Again we found only tiny contribution of gravity to the surface elevation

and pressure during the early stage of impact. However as times goes on, gravity

both decreases the pressure and lowers the surface elevation.

In Chapter 5 we studied the influence of gravity on the water-entry problem

with constant velocity. First, we neglected the compressibility of the liquid, and

assumed that gravity has a greater contribution to the flow than surface tension

and non-linear effects. Then we introduced the displacement potential into our

formulation. We sought the asymptotic expansions of the unknown functions in

terms of the small parameter δ which is responsible for gravity in this problem.

Next we introduced new stretched variables which account for gravity. With

asymptotic analysis, at the leading order we arrived at classical Wagner problem.

The first-order solution represented the correction due to gravity. By using a

characteristic function we found the correction to the size of the wetted region,

pressure, force and surface elevation. The kinetic energy of the bulk of the liquid

was shown to be decreasing for some time, then it increased due to gravity, and

consequently the same was found for the work done by the body force entering

the water. The influence of gravity on the total potential energy was calculated

by evaluating it in each part of a partition made to the fluid domain. The effect

of gravity in each part was studied. On the other hand, despite the decrease due
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to gravity in the position and velocity of the moving contact point, we found an

increase in the total mass flux passing into the jets. Also it was found that the

kinetic energy flux into the jets decreases due to gravity.

6.2 Future work

There are many problems which remain open after this work related to the influ-

ence of gravity on fluid-structure interaction. We mention below some of these

problems that we are interested in working on in future:

• The results of this thesis on sloshing impact are related to the stage when the

wetted region is expanding. Some of the current approaches and methods

can be used also for the next stage, the exit stage. Initial positions of the

moving contact points x = ±xc(t) at the beginning of the exit stage are

those at the end of the entry stage.

• In sloshing, analytically we only found the influence of gravity on the mov-

ing contact points x = ±xc(t). It will be important to work analytically

on other characteristics, for example hydrodynamic pressure, under the in-

fluence of gravity and then compare the analytical results with available

numerical results.

• In both problems, sloshing and water-entry, the influence of gravity was

studied for the symmetric case.

The presence of the surrounding gas which can be entrapped or mixed

with the liquid during impact was not studied. The rigid structure was

assumed. In asymmetric impact, the speeds of the two moving contact

points are different, therefore we expect that gravity waves have significantly

different influence on both moving contact points and this consequence will

be interesting to know on the other properties during impact.

Allowing the lid to deflect turns the problem into a coupled fluid-structure

interaction problem. The lid deflection may increase or decrease the impact

loads relative to the rigid lid, case with gravity further complicating the

problem. These two factors can be combined to make a more realistic

model.

• Numerically the problem of sloshing impact is ill-conditioned and (as we

mentioned in section 6.1), Thikhonov regularization was imposed to sta-

bilize the system. Using other methods of regularization, like truncated

singular value method or any iterative method, could improve the stability
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of the system. Also we used a regular mesh in this study. Irregular mesh,

with finer resolution near the moving contact point, would be interesting to

investigate. Do we still arrive at ill-conditioned system for irregular mesh?

This could be done by dealing with the pressure directly or, as we did in

this thesis, by splitting the pressure into a product of a smooth function

and a known square-root singular function, at the moving contact points.

• In the case of sloshing in a tank with moderate filling, breaking waves

travelling from one wall to another and impacting the top corners are more

likely to happen and could be more violent due to the corners than standing

wave impacting the lid. Therefore, it is in our plan to work on how this

impact is affected by gravity. Figure 6.1 shows a 3D perspective view of an

impact at one edge of a rectangular tank.

Figure 6.1: A perspective sketch of a highly filled rectangular tank in 3D, in which
a standing wave impacts the lid of the tank along the wall. The dark shaded part
of the lid is the wetted region of impact (in Wagner model) and the light shaded
part of the tank is where the liquid is in contact with the tank’s walls. The arrows
indicate likely the direction of spreading of the wetted region.
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Impact
region

Figure 6.2: Plan view of the impact in Figure 6.1; wetted region shaded. Arrows
indicate the direction of the wetted region expansion.

• The wetted region in the 3D configuration shown in Figure 6.1 is similar to

what is shown in Figure 6.2 in a 2D configuration. All previously mentioned

future work consists of difficult tasks, even in 2D. Extending the work of this

thesis with above mentioned future work into 3D will be very interesting.

When 3D results become available, they will be compared with 2D results

obtained in this thesis such as the plane of right-hand wall shown in Figure

6.1, or the centre-plane of symmetry in 6.1.
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