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Abstract

The most common failure mode for polyolefin pipes is slow crack

growth. A crack is preceded by a craze, a voided wedge of ma-

terial bridged by highly deformed fibrils. Upon failure of the

fibrils, the crack propagates. Both the tendency of the material

to form voids and the strength of the fibril at the craze - crack in-

terface are governed by the effective entanglement network. The

effective entanglement network comprises all the intermolecular

junctions in the material that can effectively transfer load at

the time scale of the experiment. In this work, the effective en-

tanglement network of bimodal polyethylene is probed through

tensile and creep measurements. Bimodal polyethylene is the in-

dustrial standard material for polyethylene pressure pipes, and

consists of a high molecular mass, branched fraction and a low

molecular mass, linear fraction. The former is responsible for

the resistance to slow crack growth, the latter for enabling pro-

cessing. In the first part of the work, the influence of molecular

mass and branch content of the high molecular mass fraction

on the effective molecular network is studied. It is found that

only a combination of high molecular mass and high branch con-

tent increases the resistance of the network. In the second part

of the work, the high molecular mass fraction of the bimodal

polyethylenes is isolated. Again, a combination of high molec-

ular mass with high branch content results in a higher effective

entanglement network, and overall the resistance to deformation

is higher in these materials than in the bimodal materials. It

is concluded that the resilience of the network depends on the

available network density and the friction caused by side chain

branches. Independently of the morphological origin of this fric-

tion in the solid material, it can be expected to vary with the

monomeric friction in the melt.
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Abbreviations
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Chapter 1

Context: the role of the

molecular entanglement

network in the slow crack

growth of polyethylene

This chapter explains the motivation for this work and introduces the con-

cepts that need to be understood to interpret its results. It finishes with

defining the scope of the work.

1.1 Motivation for the work: polymer pipes

and slow crack growth

This work was sponsored by SABIC Petrochemicals, and was carried out

with support of their Materials Development for Pipe Technology team. To

evaluate and certify the life span of polyolefin pressure pipes used for water

and gas distribution, manufacturers like SABIC perform internal pressure

tests. The pipe is subjected to a specific pressure resulting in a circumfer-

ential stress, at room temperature or a specific elevated temperatures until

failure. This circumferential stress, also called hoop stress, is the force ex-

erted on the material in the cylinder wall that is perpendicular to the pipe

axis and the pipe radius, divided by the surface on which it acts, the axial

cross section of the pipe. Elevated temperatures are used to accelerate the
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1.1 Motivation for the work: polymer pipes and slow crack growth

tests. The time to failure and the failure mode are observed. Depending on

the applied (hoop) stress, four failure modes can be identified. Rapid crack

growth can occur immediately after the application of the stress, even at

stresses of only half the yield stress. This failure mode occurs very rarely

but has dramatic consequences [1]. The next three failure modes are drawn

schematically in figure 1.1. In stage 1, the applied stress is a large fraction

of the yield stress of the material which results in plastic instability and

ductile failure [2]. This can take from hours up to a 100 years for the ma-

terials currently used by industry. In stage 2, the pipe fails by the growth

of small cracks up until a critical point, at which rapid crack growth sets

in. The applied stresses are relatively low fractions of the yield stress. The

cracks typically develop over 50 years or more, based on predictions from

accelerated methods [2]. Stage 3 occurs when chemical degradation of the

material sets in due to depletion of the stabilisers in the polymer. It is

almost independent of applied stress. One strategy to enlarge the ensured

lifetime area under the curve in figure 1.1 is to design materials for which

stage 2 failure occurs as late as possible at as high a stress as possible, with

the chemical lifetime as the ultimate limit [2–4].

Time to failure

H
o
op

st
re

ss

3

2

1

Figure 1.1: The different stages of pipe failure during an internal pressure
test. stage 1: ductile failure, stage 2: slow crack growth, stage 3: chemical

degradation

Brown and co-workers identified slow crack growth as the dominant

mechanism for stage 2 failure and were the first to describe the mecha-

nism behind it [5–9]. The different stages in slow crack growth are craze

3
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ENTANGLEMENT NETWORK IN THE SLOW CRACK

GROWTH OF POLYETHYLENE
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Stretched fibril

Plastic
deformation

Hoop stress

Figure 1.2: Craze mechanism represented schematically. The growth goes
from left to right, reproduced from [11]

initiation, followed by craze propagation, followed by termination with a

craze - crack transition. A craze is a wedge of material preceding a crack,

bridged by fibrils. The three stages of slow crack growth are represented

on figure 1.2. In the plastic deformation zone, the craze is initiated. It

propagates, forming fibrils bridging and temporarily stabilising the craze.

Where the fibrils fail, a crack is formed. Figure 1.3 shows a scanning elec-

tron micrograph (SEM) of a craze in medium density polyethylene (PE)

[10].

Figure 1.3: Scanning electron micrograph of a craze near a crack tip in
medium density polyethylene [10]
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1.2 Structure and morphology of polyethylene

1.2 Structure and morphology of polyethy-

lene

To be able to interpret previous research on the slow crack growth of PE, it

is important to understand the molecular and crystalline structure of this

material and how it changes under the influence of stress. Chemically, PE

is a very simple polymer, built up of ethylene monomers, as shown in figure

1.4. The molecular architecture of PE, however, can vary widely, resulting

in materials with very different macroscopic properties.

n

H H

H H

C C

Figure 1.4: Chemical structure of polyethylene

The first commercial PE, low density PE (LDPE), was discovered in 1933

by Imperial Chemical Industries during high pressure tests on ethylene and

benzaldehyde mixtures [12]. LDPE is synthesised through addition poly-

merization in a high pressure process, without catalyst (though an initiator

is added, for example peroxide) [13]. It contains randomly dispersed short

and long chain branches, about 60 branch points per 1000 carbon atoms.

A branch point occurs when a a carbon atom bonds three carbon atoms

and one hydrogen atom, rather than two carbon atoms and two hydrogen

atoms. A new chain can then form starting from this third carbon atom.

The number of long chain branches is significantly lower than the number of

short chain branches. In 1953 Karl Ziegler discovered organometallic mixed

catalysts which made it possible to synthesise high density PE (HDPE).

This work was continued by Giulio Natta, and both chemists received the

Nobel Prize in Chemistry for their work in 1963 [12, 14]. HDPE has fewer

than 7 branches per 1000 carbon atoms and a relatively high molecular mass

[13]. Ultra high molecular weight PE (UHMWPE) is HDPE with extremely

long backbone chains. Linear low density PE (LLDPE) was developed to

replace LDPE, and bridges the density gap between HDPE and LDPE.

It contains short chain branches but no long chain branches. LLDPE is

produced by introducing α-olefins during the polymerisation. α-olefins are

5
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ENTANGLEMENT NETWORK IN THE SLOW CRACK

GROWTH OF POLYETHYLENE

alkenes containing one double bond, at one end of the chain. In the context

of polymer production, these are referred to as comonomers. When they

are incorporated into the main chain, side branches are formed. The nature

and ratio of the α-olefin added controls the number and length of the short

chain branches [13].

All these variations influence the macroscopic properties of PE. This

makes the mechanical behaviour of PE complex to describe, but when un-

derstood, these variations also make it possible to tailor the properties of

PE very precisely. The links between the molecular architecture and the

macroscopic properties are described in the next section.

1.2.1 From microscopic to macroscopic properties

The molecular architecture of PE impacts its macroscopic properties in

various ways. It determines the properties of the material in the melt state.

The properties in the melt as well as the desired design of the final product

decide which manufacturing process is possible and suitable. Then, the

molecular architecture together with the processing conditions, both in the

melt and in the solid state, determine the properties of the final product.

This section therefore explains the influence of the molecular architecture

on the melt and the solid state separately.

Properties in the melt

To obtain a viable finished product made out of any PE, the properties in

the melt must be suitable for the desired form of processing, for example,

injection moulding. Chain length and chain length distribution are impor-

tant parameters influencing the properties in the melt. This is due to the

existence of a critical molecular mass, around 4000 for PE, above which

chains intertwine with each other. The mobility of the chains is reduced by

the need for coordinated flow through the entanglements [15, 16]. The chain

length of a polymer and its distribution can be expressed by the moments of

the molecular mass distribution. This can be a number average molecular
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1.2 Structure and morphology of polyethylene

mass (Mn), expressing the average chain length:

Mn =
ΣMiNi

ΣNi

, (1.1)

with Mi the molecular mass of chain i and Ni the number of chains of

mass Mi, or the weight average molecular mass (Mw):

Mw =
ΣM2

i Ni

ΣMiNi

. (1.2)

The ratio between these two parameters is a measure for the width of the

molecular mass distribution. Long chain lengths result in highly entangled

melts, with a high viscosity (melt strength) at low shear rates. At high

shear rates, the chains disentangle. Short chain lengths result in a melt

with a low viscosity at high shear rates. The dependence of the viscosity on

the shear rate is therefore influenced by the molecular mass distribution. A

polymer with a broad molecular mass distribution will have a high viscosity

at low shear rates, due to the long chains, and a low viscosity at high

shear rates, due to the short chains. The long chains disentangle at high

shear rates. A polymer with a narrow molecular mass distribution will have

a more constant viscosity with shear rate [17]. Chain irregularities and

bulky or long chain branches also increase the viscosity by increasing the

number of chain entanglements at a given time scale [18]. Extensional flow

(flow in one direction) in particular is influenced by long chain branches.

This shows the advantage of LLDPE over LDPE. In LDPE, which has both

short and long chain branches, the long chain branches are entangled, which

causes the stress to increase during melt extension (this effect is called strain

hardening). The strain hardening is dependent on the strain rate, with

higher strain hardening with increasing strain rate, as the chains have less

time to slip. In LLDPE, which only has short chain branches, the chains

can slide past each other, avoiding strain hardening [19]. The monomeric

friction, representing the energy needed for one monomer in a chain to make

one step in a dynamic process, however, is higher in a polymer with short

branches than in a linear polymer and goes up with the branch content [20].
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Solid state properties

Upon solidifying, PE crystallises partially; it is a semi-crystalline polymer.

Due to the regularity of a linear PE chain, it achieves its lowest free en-

ergy by ordering itself into a crystal structure. It will fold up to form a

lamella, multiple lamellae will pack together to form a crystal. Chain irreg-

ularities, bulky chain branches and chain entanglements will significantly

influence both the ability to crystallise and the speed of crystallisation as

they cannot be fully incorporated in the crystal [21–25]. Very long chains

also inhibit crystallisation as they have more chance of being entangled,

and have slower crystallisation kinetics [26–28]. The region in between the

crystals is referred to as the amorphous phase. The main industrially rele-

vant properties for a polymer are stiffness, failure stress, failure strain and

toughness. Figure 1.5 represents the result of a uniaxial tensile test on a

polymer test bar. During this test, a constant deformation rate is applied

to the sample and the resulting load is recorded. The load is then divided

by the sample cross section perpendicular to the application direction of

the deformation to obtain stress. Using stress rather than load has the ad-

vantage that different samples can be compared without knowledge of their

dimensions. The industrially relevant properties can be defined using this

figure. Stiffness is expressed by the Young’s modulus, the slope of the initial

linear part of the stress - deformation curve (denoted with a in figure 1.5).

A higher slope indicates that the material is more resistant to deformation,

or stiffer. The failure stress and strain are denoted in figure 1.5 as b and

c respectively. The toughness of a material is the energy absorbed by a

material during deformation, before failure. This can be calculated using

the stress - deformation curve, by calculating the area under the curve. It

is denoted as d in figure 1.5. The stiffness of a semi-crystalline polymer

is proportional to its degree of crystallinity (Xc), while the failure stress

is governed by how well the crystals are connected to each other, which in

turn is governed by the length of the chains and their orientation [13, 29].

A long chain has more chance of passing through more than one crystal.

Such a chain is referred to as a tie molecule. Crystals are neatly ordered

and hence use space more efficiently than does amorphous phase. This re-

sults in a difference in density between the two phases. The density (ρ) of a

perfect PE crystal is always the same. Hence the density of a polymer is a

8



1.2 Structure and morphology of polyethylene

measure of its crystallinity [23]. Chain irregularities, bulky chain branches

and chain entanglements, while reducing the crystallinity, also enhance the

connection between crystals. The dynamics of the intercrystalline molecular

connections are of major importance in understanding the mechanical prop-

erties of the finished product. At certain temperatures (below the melting

temperature) and strain rates, chains connecting different crystals can dif-

fuse through those crystals, altering the intercrystalline connectivity. Chain

branches influence the ability of the links to move by pinning them. They

also influence the dynamics through their effect on crystallisation, causing

less and/or smaller crystals for the links to move through.
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Figure 1.5: Stress - deformation curve resulting from a uniaxial tensile test
on polyethylene, with (a) stiffness, (b) failure stress, (c) failure strain and

(d) toughness

After or even during crystallisation, other processing steps can be ap-

plied to obtain the desired material characteristics. Chain orientation in-

fluences both stiffness and strength. Different processing techniques make

use of drawing (extending the polymer uni-axially, either in the melt or of

the solid material) to line up the molecular chains (both in the crystalline
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and the amorphous phase) so polymer fibres with exceptional mechanical

properties in the drawing direction are obtained. The optimal speed and

temperature of the drawing and the maximum achievable draw ratio depend

on the molecular weight and possible side chain branching of the polymer

[27, 30, 31].

Properties of common types of polyethylene

Now the four common types of PE as mentioned above (LDPE, HDPE,

UHMWPE and LLDPE) can be discussed in terms of their properties.

Their typical density, molecular mass and crystallinity are given in table

1.1. LDPE has a low crystallinity and hence a low density, due to the pres-

ence of short and long chain branches. This results in a material with low

indentation hardness but high toughness [32, 33]. HDPE has fewer than

7 branches per 1000 carbon atoms and a relatively high molecular mass

[13]. This results in high crystallinity and hence high stiffness and a high

failure stress, but a low failure strain [33]. Ultra high molecular weight PE

(UHMWPE) has a very high molecular mass, resulting in a material with

low friction, high resistance to wear and high toughness [33]. Linear low

density PE (LLDPE) contains short side chains but no long side chains.

This results in a material which has a higher failure stress, but also more

expensive to produce than LDPE. It is used in packaging where the higher

production cost is balanced by material savings [33].

ρ [kg/m3] Mw [kg/mol] Xc [%]

LDPE 910-925 25000-160000 50-60
HDPE 940-970 100000-500000 >90
UHMWPE Similar to HDPE 3000000-6000000 Similar to HDPE
LLDPE 920-940 25000-160000 Between LDPE and

HDPE

Table 1.1: Properties of common types of polyethylene. ρ is density, Mw is
weight average molecular mass and Xc is crystallinity [12, 13, 33]

1.2.2 From isotropic to oriented polyethylene

The semi-crystalline structure of isotropic HDPE can be studied using op-

tical microscopy. An example is given in figure 1.6. It can be seen that
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1.2 Structure and morphology of polyethylene

the PE chains are arranged in spherical features, reffered to as spherulites,

with a diameter up to 100 µm [34]. Small angle X-ray scattering (SAXS)

experiments, among others, reveal that the spherulites consist of lamel-

lae embedded in an amorphous matrix. The lamellae grow out of a com-

mon central nucleus and can be twisted about the radial direction of the

spherulite [35, 36]. Electron diffraction experiments on single crystals reveal

that the molecular chains are nearly perpendicular to the flat surface of the

lamellae. Because the molecular chains are much longer than the lamel-

lar thickness, this implies chain folding, for which evidence was first shown

by Keller in 1957, and/or the presence of one chain in different adjacent

lamellae [35, 37–39]. The latter is the definition of a tie molecule, a specific

type of intercrystalline molecular connection. A schematic overview of the

structure of a PE spherulite is given in figure 1.7. Possibilities for inter-

crystalline molecular connections can be the aforementioned tie molecules

or entangled chain segments partly incorporated in different crystals. These

are sketched in figure 1.8, for a HDPE (1.8a) without chain branches and

for a LLDPE with chain branches (1.8b). Both chains have the same back-

bone chain length, and a similar radius of gyration (Rg) in the melt. Upon

crystallisation, LLDPE forms thinner crystal lamellae because the chain

branches cannot be incorporated in the crystal. Both of the chains are tie

molecules, as they traverse more than one crystal lamella, but the LLDPE

forms a larger number of intercrystalline bridges. Entanglements are also

shown in the figure, with two entanglements for each chain. It has to be

noted that this visualisation of entanglements is qualitative, and the nature

of entanglements is not well understood [40, 41]. Experimental indications

of the existence of intercrystalline molecular connections can be found in

references [5, 10, 42–49].

Applying a tensile stress to spherulitic PE leads to a variety of defor-

mation modes in different regions of the crystals [51, 52]. Three regions

are present in a spherulite when subjected to a uniaxial load: the polar,

the equatorial and the diagonal domain, given in figure 1.9 as a, b and c

respectively. The equatorial domain contains lamellar stacks oriented per-

pendicularly to the principal tensile axis. SAXS experiments reveal lamellar

separation due to deformation of the soft amorphous ligaments in this re-
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Figure 1.6: Optical micrograph of polycrystalline PE, bar line represents
30 µm [34]

Figure 1.7: Schematic representation of the built-up of a spherulite. Left:
spherulitic crystal, every line represent a lamella, right: idealised

schematic of two crystal lamellae showing chain folding
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1.2 Structure and morphology of polyethylene

Figure 1.8: Sketch of the different possibilities for the formation of
intercrystalline molecular connections: tie molecules and entanglements,

for two chains of the same molecules and radius of gyration, but one
HDPE (no branches, left) and one LLDPE (branched, right). Reproduced

from [50]

13



1. CONTEXT: THE ROLE OF THE MOLECULAR
ENTANGLEMENT NETWORK IN THE SLOW CRACK

GROWTH OF POLYETHYLENE

gion. This separation is reversible at very small strains, but, above a certain

strain, interlamellar voids of several nanometers may be formed [53]. SAXS

of HDPE drawn to low strain levels indeed shows the presence of nano-voids

in the material [54, 55]. They are oriented perpendicular to the tensile axis

[56]. The nano-void volume fraction varies through the different domains.

The polar domain contains lamellar stacks oriented along the principal ten-

sile axis which leads to a strong deformation resistance. The diagonal do-

main contains lamellar stacks that are tilted with respect to the principal

tensile axis. These lamellae are subjected to both separation and shear de-

formation. Interlamellar shearing is the dominant deformation mechanism

above the glass transition temperature, but also intralamellar shear will ap-

pear locally [57]. The specific critical resolved shear stress can be calculated

for a specific crystallographic slip system (a slip system consists of a slip

plane and a direction along which the slip occurs). This stress is seen to be

much higher in theoretical, perfect crystals than in experiments [35]. This

is explained by the presence of dislocations in the crystals. A dislocation

is a defect in the crystal lattice. Most commonly observed in PE are screw

dislocations. A schematic of a screw dislocation, with its associated Burg-

ers vector (b), is shown in figure 1.10 [58]. A dislocation occurs when part

of a crystal plane is missing. Deformation by slip is thus governed by the

resistance to dislocation generation and motion on the slip planes. The

discussion about the most important factor of these two, generation and

motion, is ongoing [59–61]. Two different types of slip are distinguished by

the direction of the Burgers vector of the moving dislocation. When the

Burgers vector is parallel to the molecular chain axis, this is called chain

slip. When the Burgers vector is perpendicular to the molecular chain axis,

this is called transverse slip. Both of these can result in fine slip or (less

commonly) coarse slip, as depicted in figure 1.11 [60, 62, 63].

As the material deforms further, the crystallographic slip process trans-

fers from a local phenomenon to a collective activity, with intralamellar slip

(for example block slip within lamellae) becoming more important than in-

terlamellar slip [57, 64]. Wide angle X-ray ray scattering (WAXS) performed

on PE by Hiss et al. shows the formation of fibrils a few hundred nanometers

thick, caused by crystallite fragmentation, and this finding was confirmed
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Figure 1.9: Regions in a spherulite during deformation: (a) polar domain,
(b) equatorial domain and (c) diagonal domain. Local deformation modes

occurring in the different regions: (1) elongation, (2) transverse
compression, (3) interlamellar slip, (4) interlamellar separation, (5)

rotation. The large arrows indicate the imposed load. Reproduced from
[52]

2d l

b

Figure 1.10: Model of a screw dislocation in a crystal lamella, reproduced
from [58]. 2d is the lamella thickness, l is the distance from the dislocation
to the edge of the crystal and b is the Burgers vector. The arrows indicate

the direction of an applied shear stress
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Figure 1.11: Schematic illustration of (a) fine slip and (b) coarser slip,
reproduced from [63]

by SAXS, electron microscopy and atomic force microscopy (AFM) studies

[56, 65–68]. These fibrils are actually bundles of microfibrils, connected by

the former interlamellar links from the spherulitic structure. A microfibril,

with a thickness of 0.1 to 30 nm, consists of folded chain blocks (broken off

of the lamellae in the spherulitic structure) connected by unfolded chains;

the intrafibrillar links. A schematic representation can be seen in figure

1.12. The chains present in the chain blocks are oriented parallel to the

drawing direction. Between different chain blocks, amorphous material is

present that, due to orientation, is also partly ordered in a pseudo-hexagonal

structure [69]. Longitudinal voids can be present between the fibrils [66].

Peterlin states that plastic deformation of this fibrillar structure can only

occur by longitudinal sliding of first the fibrils and then the microfibrils past

each other [51, 66, 70, 71]. The fibrils start sliding first because they are

less tightly interconnected than the microfibrils. This process is hindered

by the interfibrillar tie molecules. These molecules undergo stretching and

cause unfolding of the chains in the crystal blocks where they are anchored.

The interfibrillar tie molecules consequently become more elongated and

aligned with the drawing direction. Chain segments of these molecules will

therefore be included in the crystal lattice of adjacent crystal blocks. This
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leads to a higher density and a higher crystallinity, but, more importantly,

to a higher resistance against further drawing. This increase in resistance

results in an ever increasing stress. This region in the drawing process is

therefore denoted as the strain hardening region. The strain hardening pro-

ceeds up to failure [66]. Amornsakchai et al. describe this similarly as a

fibre composite model [72]. This model is partially confirmed by Tang et al.,

using SAXS experiments [68]. Tang et al. observe additional deformation

of the amorphous layers in between the crystalline lamellae at low strains.

This happens through the gliding of chain segments along their axes and

the slip of planes, comparable to respectively crystallographic chain slip and

crystallographic transverse slip [69]. They further alter Peterlin’s model by

suggesting that the first process to occur at moderate strains is slippage of

the microfibrils, and not slippage of the fibrils. The last processes to occur

before failure are slippage of the fibrils and chain disentanglement [64].

1 2

Figure 1.12: Microfibrillar model of the crystal fibril structure: (1)
intrafibrillar tie molecule and (2) interfibrillar tie molecule, reproduced

from [66]

The transformation of a spherulitic crystal structure into a fibre com-

posite model, followed by failure, results in a stress - deformation curve as

shown before in figure 1.13. This is the same curve as figure 1.5, repeated

here with the different stages of deformation indicated. Initially, the speci-

men deforms elastically resulting in a linear relationship between stress and

deformation, indicated on figure 1.13 by a. At the yield point, indicated

by b, plastic deformation sets in and the spherulitic structure starts trans-

forming as explained above. This leads to a localisation of the deformation,

visible in a tensile specimen as the formation of a neck. Further deformation
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involves a transition to the fibrillar structure, which involves strain harden-

ing. The yield and strain hardening compete with each other, and the neck

propagates through the specimen. This necking region is indicated by c on

figure 1.13. The point in the stress - deformation curve where fibrillation

becomes the dominant deformation mechanism is called the natural draw

ratio (λn), indicated by d. Above the natural draw ratio, the fibrils are

further untangled and stretched, resulting in strain hardening (indicated

by e). Eventually, slippage, chain disentanglement and, dependent on the

strain rate, chain fracture, cause the specimen to fail [73–75].
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Figure 1.13: Stress - deformation curve resulting from a uniaxial tensile
test on polyethylene, with (a) linear elastic region, (b) yield point, (c)
necking region, (d) natural draw ratio and (e) strain hardening region

1.3 The mechanisms behind slow crack growth

The concepts introduced in section 1.2 will now be used to explain the mech-

anisms behind slow crack growth and the influence of molecular architecture

on these mechanisms.
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1.3.1 Initiation, propagation and termination of a craze

As mentioned in section 1.1, a craze is a wedge of material bridged by

fibrils, preceding the crack. Crazing is not the only deformation mode of PE;

shear yielding is preferred when the formation of internal surface is inhibited

[11, 76]. Shear yielding is plastic deformation without change of volume [11].

From an application point of view, crazing is not the preferred deformation

mode as it dissipates less energy than shear deformation [11]. However,

as explained in section 1.1, it is the prevalent deformation mechanism in

pipe applications at long time scales. At shorter time scales, shear yielding

is dominant. Hence the knee point between stage 1 and stage 2 in figure

1.1 represents a transition between these two competing mechanisms, from

yield failure at short times and high stresses to brittle failure at long times

and low stresses. This explanation largely follows the work of Deblieck et

al. published in 2011 [11].

Craze initiation

A craze initiates when a void opens up due to a stress concentration. This

stress concentration can for example be caused by a defect in the molecular

network or catalyst residue [11, 77–81]. As the equatorial region is most

sensitive to the axial tensile stress, crazes are more likely to start in this

region. Another example of a region more prone to crazing is the amorphous

region between neighbouring lamellar stacks having different orientations

[80]. Argon and later Kramer studied the craze initiation in amorphous

polymers and suggested that it depends on the energy needed to create new

surface, Γ [11, 73, 74, 82, 83]:

Γ = γ +
1

4
veUd, (1.3)

where γ is the surface energy (the van der Waals cohesive energy between

molecules), ve is the effective entanglement density (effective entanglements

are entanglements that can transfer load at the relevant time scale), U is the

energy needed for the fracture of a covalent chain and d is the end-to-end

distance between effective entanglements. So the second term represents

the contribution to the energy by the effective covalent bonds crossing the

surface. The 1
4

is needed as there are two surfaces, and one entanglement
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consists of two covalent chains.

Craze propagation

A craze propagates when the macroscopic stress applied reaches a critical

value, the craze stress σcr. The voided regions grow and join to form a

fibrillar structure, a craze [29, 84]. The craze propagates perpendicularly to

the direction of the applied stress. Kramer and Berger describe the prop-

agation process using a variant of the Taylor meniscus instability process,

as originally suggested by Argon [61, 74, 83, 85]. The unstable plastically

deformed polymer at the tip of the craze breaks up and transforms into

fibrils, as depicted in figure 1.14. The fibrils are highly drawn and have a

fibrillar structure as described in section 1.2.2 [86, 87]. A schematic of this

process is shown in figure 1.14. The craze-bulk interface can be represented

as in figure 1.15. Mathematical treatment of the materials’ behaviour leads

to

σcr ∝
√
σyΓ, (1.4)

with σy the yield stress. The fibril diameter D, indicated in figure 1.15,

is also related to the surface energy, as

D ∝ Γ

σcr
. (1.5)

Therefore the fibril diameter varies with the molecular structure of the

material and specifically the number of relevant intercrystalline connec-

tions at the experimental time scale. For glassy polymers, this was shown

through low-angle electron diffraction of a series of polymers with varying

molecular entanglement density by Berger [88]. AFM images on polybutene

spherulites confirm that semi-crystalline polymers exhibit similar behaviour

[80].

At this point it is appropriate to introduce an extra complexity to the

craze microstructure. As early as the 1970’s, experiments showed that short

fibrils connect the fibrils bridging a craze to each other [74]. These fibrils

are referred to as cross tie fibrils. They can be observed in transmission

electron micrography (TEM), an example of which is shown in figure 1.16,
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Figure 1.14: Taylor meniscus instability at the tip of the craze,
transforming material in fibrils. From [11]
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Figure 1.15: Craze-bulk interface, where the fibrils are drawn in from the
bulk polymer. D is the fibril diameter, reproduced from [11]

indicated by (a). Fine cross tie fibrils are visible between the coarse fibrils

close to the craze-bulk interface. As cross tie fibrils only make up about

15% of the volume of the main fibrils, equation 1.3 remains valid [74].

Craze-crack transition

The fibrils in the craze eventually fail, forming a crack. Brown shows that

the cross-tie fibrils have a major effect on the failure of a craze, as they

transfer the stress between the primary fibrils, amplifying the stress at the

crack tip [90]. He considers the geometry of a crack tip craze as depicted

in figure 1.17 and relates the fracture toughness Gc to the strength of the

fibril closest to the crack tip. Kramer et al. calculated the same relation,

though using a slightly different model, but they both conclude that the

fracture toughness is proportional to the square of the number of effective

load bearing chains per unit volume Σe multiplied by the force needed to

break one covalent chain fs in the deformed fibril [90, 91]:

Gc ∝ (Σefs)
2. (1.6)
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σ

100 nm

a

Figure 1.16: Transmission electron micrograph of a section through the
fracture surface of a polyethylene-butene copolymer. The direction of the

applied stress σ is indicated, and (a) indicates a cross tie fibril. Image
reproduced from [89]
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Figure 1.17: The geometry of a crack tip, with ∆ the length of the craze, v
the width of the craze and S the stress at the craze-bulk interface.

Reproduced from [90]
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1.3.2 The effective molecular network

In conclusion, the craze stress depends on ve, the effective entanglement

density, and the fracture toughness on Σe, the number of effective load

bearing chains per unit volume (also referred to as the network density in

literature). The network of intercrystalline molecular connections is thus

vital in the understanding of slow crack growth and the improvement of the

resistance against slow crack growth of materials. The molecular network

is made up of different types of intercrystalline molecular connections: tie

molecules, molecular chains that are part of more than one crystal, and

entanglements, intertwined chains. In literature, the distinction is not al-

ways made [50]. It is, however, important to remember that both of these

types of connections are transient. There is a time scale at which the chains

can disentangle, and a time scale at which the chains can move through

the crystals; both entanglements and crystals through friction cause a spe-

cific time and temperature dependent resistance against deformation that

can be visualised and quantized as a network of effective nodes or effective

entanglements. The notion of an ‘effective’ molecular network is therefore

crucial. This network comprises of the connections that can bear load on

the time scale of the experiment. The experimental determination of the

effective molecular network is not straightforward. The entanglement den-

sity in the melt can be measured by rheology measurements, but it is not

clear how this correlates with the effective molecular network as present in

an oriented fibre at the tip of a crack, and it does not take tie molecules

into account. Van Melick however altered the entanglement density to suc-

cessfully increase the craze-nucleation stress in polystyrene, an amorphous

polymer [92]. Raman spectroscopy has been used to assess the number of

load bearing chains in drawn fibres. An induced strain will cause peak split-

ting, and from the intensity of the new peaks the ratio of load bearing chains

can be calculated. However, this method does not distinguish between tie

molecules and chain entanglements [87, 93–95].

Measurement of the number of effective intercrystalline connections in

a solid material is challenging. In the highly drawn fibrils in a craze, a

theoretical estimate of the number of tie molecules can be made, based on

a model devised by Huang and Brown [96, 97]. The model assumes that if
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the end-to-end distance of a molecule in the melt, r, is larger than a critical

length, L, the molecule will be a tie molecule. For L they choose

L = 2Lc + La, (1.7)

where Lc is the crystal thickness and La is the thickness of the amor-

phous layer. So the probability of forming a tie molecule depends on the

probability of the end-to-end distance to be larger than L. The probability

of an end-to-end distance equal to r is:

p(r) = ar2 exp(−b2r2) (1.8)

with a a constant and

b2 = (
3

2
r̄2), (1.9)

where r̄ is the root mean square of the end-to-end distance in the melt.

The probability of forming a tie molecule is then:

P =

∫∞
L
r2 exp(−b2r2)dr

3
∫∞
0
r2 exp(−b2r2)dr

. (1.10)

However, studies reveal that the effect on slow crack growth by changing

molecular architecture, in particular branch content, is larger than predicted

by this model [79, 97–102]. The extra resistance against slow crack growth

can originate in a contribution of a different kind of intercrystalline con-

nection, such as entanglements, or an increase in the effectiveness of the tie

molecules. It can be imagined that chain branches, not incorporated in the

crystals, prevent tie molecules from diffusing through crystal lamellae and

so increase the number of effective intercrystalline connections [50]. In the

melt, the shear modulus is a measure of the entanglement density, but the

question remains if this is representative of the entanglement density in the

solid semi-crystalline material. Lamellar folding causes entanglement loss,

and the entanglement density in the solid polymer depends strongly on the

crystallisation temperature as tie molecules are formed during crystallisa-

tion [48]. However, using the shear modulus to calculate the energy needed

to create new surface (equation 1.3) results in an acceptable value [11]. Fur-

thermore, the molecular mass between entanglements, Me, measured from
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rheology, correlates well to resistance to slow crack growth [100–102]. Fi-

nally, Litvinov et al. studied the molecular network in ethylene-propylene

rubbers using solid state NMR [103–105]. The interaction strength between

nuclear spins is increased by chain entanglements because they increase the

anisotropy of chain motions [106]. However, the relationship between the

network density as measured from this technique and the effective molecular

network density is at present unclear.

1.3.3 The influence of molecular architecture on the

effective molecular network and slow crack growth

Much work has been done on the influence of the molecular architecture

on the slow crack growth of PE. Slow crack growth failure times are based

on tests on notched specimens under tensile load, as originally devised by

Brown and co-workers [107]. Because slow crack growth is a slow process,

accelerated tests are often used instead. A commonly used accelerated test

is environmental stress cracking (ESC). In this test, a notched specimen is

pre-soaked in an accelerating agent before being submitted to a tensile load.

The accelerating agent enhances the rate of brittle failure without large scale

plasticisation, which would cause blunting of the notch [108]. Other com-

mon tests are the Pennsylvania notch test (PENT) and the full notch creep

test (FNCT). This section summarises the studies correlating aspects of the

molecular architecture of PE with slow crack growth resistance, directly or

through accelerated tests.

Influence of chain branching

When comparing a HDPE with a copolymer containing butyl branches,

Brown and co-workers observed that the slow crack growth rate was 102

to 103 times lower for the copolymer [7]. Later work confirmed that with

increasing branch content, the time to failure in a PENT test increases,

but there is a maximum branch density above which no further improve-

ment of the resistance to crack growth is observed [25, 97, 109, 110]. The

branches have a twofold effect on the microstructure of PE, as explained in

section 1.2.1: they increase monomeric friction and thus decrease the rate of
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disentanglement, and they can only be partly incorporated in the crystals,

meaning they cause a reduction in crystallinity and reduce the lamellar

thickness. The latter also implies that they reduce the yield stress, as it

correlates with crystallinity [111]. But due to the structure of the craze,

as described in section 1.3.1, this has no influence on slow crack growth.

This was confirmed in Brown’s work, as the yield stress does not correlate

with slow crack growth [7]. So it is the disentanglement rate, influencing ve

and d in equation 1.3, that is lowered by the branches, because a branched

molecule is more difficult to disentangle than an unbranched molecule. With

ve and d increasing, the energy needed to create new surface increases. This

is reflected in the observation that a higher branch density leads to coarser

fibrils in the craze [96]. The maximum branch density can be explained by

the influence of the branches on the crystallinity. When the branch density

increases, fewer and thinner crystals will be formed. At a certain minimum

thickness, the crystals can no longer act as pinning points for the chains and

the disentanglement rate (and consequently the slow crack growth rate) in-

creases [96, 109].

Increasing the length of the branches (at low branch contents) has a

similar effect to increasing the branch content. For the same number of

branches, butyl and hexyl branches suppress crystallinity more effectively

and increase monomeric friction more than methyl branches [7, 24, 112]. An

increase in branch length from ethyl to butyl and hexyl branching increases

the time to failure in environmental stress cracking, by almost 60% and

more than 1200% respectively [113].

Influence of molecular mass

The importance of tie molecules has been explained above. As the tie

molecule content is expected to increase with increasing molecular mass,

when all other parameters are kept constant, increasing the molecular mass

should increase the resistance to slow crack growth. This was indeed found

by Brown and co-workers, who measured the crack opening displacement

rate of PE with different molecular masses, and confirmed in studies on the

slow crack resistance of different kinds of PE [110, 114, 115]. An extremely

low molecular mass, below 18000, yields PE that does not show crazing,
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but fractures suddenly [114]. Below this critical molecular mass, no in-

tercrystalline links can be observed in electron microscopy [42, 116]. Very

high molecular mass can also influence crystallinity as increased reptation

times slow down the crystallisation and hence very long chains can lead to

thinner crystal lamellae [28]. These increase the number of tie molecules as

the chance of a chain traversing multiple lamellae (a tie molecule) is higher

when the lamellae are thinner [96, 117]. Multiple traversing leads to a higher

resistance to slip at longer time scales. Depending on the tractability of the

crystals, chains can or cannot slip by crystals at a given time scale [1]. This

time scale increases when chains have to pass through multiple lamellae.

However, an increasing molecular mass yields an increasing melt viscosity,

which limits the processing options for these materials [96, 117].

Influence of molecular mass distribution

As mentioned in the two previous sections, high branch content and high

molecular mass impede slow crack growth but also limit processing capabil-

ities. To make industrially relevant materials with high resistance to slow

crack growth, blends of PE with different molecular architectures were stud-

ied. Blending can be achieved by simply mixing pellets or powder. Huang

and co-workers used this method to blend UHMWPE with HDPE, which

resulted in UHMWPE particles in a matrix of HDPE. A craze would form

in the HDPE and be bridged by the more resistant UHMWPE particle.

The counterforce exerted by the particles was proportional to their volume

fraction [118]. Another way of blending different polymers is co-extrusion,

where pellets of different polymers are heated to above their melting temper-

ature and pushed through a die together.Blends prepared by co-extrusion

are generally more homogeneous than powder or pellet blends. Zhou and

co-workers co-extrusion blended HDPE with LLDPE in increasing mass

fractions of LLDPE. They observed that the composition of the blend is the

dominant factor in terms of slow crack growth resistance, over the crystal

thickness and the crystal thickness distribution. At 50% or more LLDPE,

the slow crack growth resistance increases rapidly. They explain this phe-

nomenon in terms of a molecular network. This is illustrated in figure 1.18.

The LLDPE is responsible for the introduction of tie molecules between
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the crystals, as the branching inhibits inclusion in the crystals. In this

study, the LLDPE also has a higher molecular mass than the HDPE. Long

chains have more chance of passing through different crystals and forming

a tie molecule. At the point where all the crystals are connected to each

other by tie molecules, so that the network becomes continuous, the net-

work strength increases considerably [25, 97].

30 nm

0%

30 nm

50%

30 nm

100%

Figure 1.18: Schematic illustration of the crystal-tie molecule network, at
0%, 50% and 100% linear low density ethylene hexene copolymer. Parallel
lines represent crystal regions, white space represents amorphous regions,

reproduced from [97]

Other studies confirmed that PEs where the branches are predominantly

present in the high end of the molecular mass distribution perform better in

terms of slow crack growth. Soares and co-workers split different PEs into

fractions according to the temperature at which they are soluble in 1,2,4-

trichlorobenzene at a certain temperature. A higher temperature implies a

higher crystallinity. Tie molecules can be found at intermediate tempera-

tures, as they are partly crystalline and partly amorphous [115]. They found

that the material with the best environmental stress crack resistance was

that with the highest number of high molecular mass chains in this interme-

diate fraction [115]. More generally, the fraction of crystals needing larger

undercooling to crystallise correlates with the environmental stress crack

resistance [119]. These are imperfect crystals, containing more defects, tie

molecules and random chain folding. This leads to an entanglement network

in the solid state that is closer to that as present in the melt. Krishnaswamy

and co-workers studied the influence of the short chain distribution on the

slow crack growth of HDPE. It is known that branched PE with a broad
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molecular mass distribution as produced with Ziegler-Natta catalysts tends

to have the greatest short chain branch content on the shortest chains [28].

When metallocene is used as a catalyst, the short chains are more uniformly

distributed over the molecular mass distribution. They found that placing

the short chain branches on the longest chains yields a PE with superior

resistance to slow crack growth. They ascribed this property to an increase

in effective interlamellar connections. This increase in interlamellar connec-

tions is partly due to the crystallisation kinetics within the high molecular

weight fraction, where the branches slow down the addition of new seg-

ments of the chain to an existing crystal front and hence the probability

of a different part of the chain being incorporated in a different lamellae

or forming an entanglement increases. In the case of a blend with an un-

branched fraction of low molecular mass, this easily crystallisable fraction

can incorporate parts of the long chains without side branches [28].

To fully exploit the good properties of a PE with short chain branches

on the highest molecular mass chains and combine this with good process-

ability, a cascade reactor process was developed and is now commonly used

in industry [17]. It is shown schematically in figure 1.19. In the first re-

actor, low molecular weight HDPE is produced. This is then transferred

to a second reactor, where comonomer is added to produce high molecu-

lar mass LLDPE, without adding catalyst. The type of comonomer added

determines the length of the branches, the amount determines the branch

density [11, 17]. A polymer thus produced is said to have a ‘bimodal’

molecular mass distribution. Lagaron and co-workers compared a bimodal

polymer containing butyl branches to a range of homopolymers and copoly-

mers. The bimodal polymer has an outstanding environmental stress crack

resistance [87]. UHMWPE also has a superior environmental stress crack

resistance, but does not have the benefit of easy processing. From the me-

chanical properties, Hubert and co-workers derived that bimodal PE has

an increased number of chain entanglements and an increased tie molecule

density compared to unimodal PE, but its crystallinity has not been re-

duced because of the contribution of the short, unbranched chains to the

crystallinity [120, 121].
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Reactor 1 Reactor 2

Catalyst

Comonomer: butene

Processing

Ethylene

Hydrogen

Ethylene

Hydrogen

Figure 1.19: Schematic illustration of the bimodal process

The parameters of the reactor process and the catalyst used in it deter-

mine the molecular architecture of the polymer, and thus the properties in

the melt and the solid state. Continuous efforts are made to improve both

the catalyst and the process, in terms of quality of the final product and

cost effectiveness of the production process.

1.4 Probing the effective molecular network

The discussion in section 1.3.3 shows that the physical origins of the effec-

tive molecular network are still the subject of debate. The contributions

of different kinds of intercrystalline connections such as tie molecules and

entanglements are not clear, as is the role of the crystal lamellae. Further-

more, the transient nature of the network poses a challenge in morphological

studies. It would however be advantageous to devise short term tests on

lab scale amounts of material that probe the effective molecular network

in a similar way to slow crack growth, so materials can be ranked in terms

of their resistance to slow crack growth. This section provides an overview

of mechanical properties suggested in literature to correlate to slow crack
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growth. Some of these tests are currently used in industry to test new

materials on their resistance to slow crack growth.

1.4.1 Strain hardening modulus

Kurelec et al. (2005) predicted the resistance to slow crack growth from the

average slope of the strain hardening of a material at 80◦C, as shown in fig-

ure 1.20. This was confirmed in more recent papers. The strain hardening

modulus (Gp) is the slope of the stress-draw ratio curve above the natu-

ral draw ratio [29, 101, 102, 122, 123]. The connection between the strain

hardening response and the slow crack growth is can be understood when

considering the structure of a craze. Section 1.3.1 discusses how the craze-

crack transition depends on the effective molecular network in the stretched

fibril at the tip of the craze. It can be assumed that the response of the

bulk material drawn over its natural draw ratio depends on that same net-

work. This was confirmed by Lagaron et al., who used optical microscopy

and micro-Raman spectroscopy to show that the molecular orientation of

fibrils in a craze is comparable to that of cold-drawn samples. From this

they conclude that PE drawn over its natural draw ratio is a good model

for a fibril in a craze [124].
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Figure 1.20: Strain hardening modulus as a function of environmental
stress crack resistance for different monomodal and bimodal polyethylenes.

The reproducibility data points show that the experimental variation in
GK is smaller than in ESCR, data from [122]
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If the strain hardening modulus reflects the effective entanglement den-

sity of a purely entropic network, it could be described as

Gp = veRuT, (1.11)

with Ru the universal gas constant and T temperature [11]. It would

then follow from equation 1.6 that

Gc ∝ (Gp(ε̇,Mw, T ))2, (1.12)

where ε̇ is the strain rate. However, the effective entanglement density

as calculated from equation 1.11, using the strain hardening response at

room temperature, is far greater than the entanglement density in the melt

[11, 92]. Even if the number of effective entanglements increases due to

for example tie molecules between crystals, the two entanglement densities

should still have the same order of magnitude, and have the same trend

as a function of temperature. Kramer pointed out that there is a differ-

ence of two orders of magnitude, and that the strain hardening modulus

decreases with increasing temperature [125]. If strain hardening is caused

by a purely entropic network, the strain hardening modulus should increase

with increasing temperature. The network can thus not be purely entropic.

Furthermore, the density of the network is time dependent and for a semi-

crystalline polymer at room temperature, the strain hardening modulus also

includes the time dependent contributions from the crystals, which makes it

difficult to interpret the long term differences between materials. Therefore,

the industry standard test for measuring the strain hardening modulus is

a tensile test at 80◦C. This temperature is chosen because it is above the

α-relaxation temperature of PE. If polyethylene is cooled from the melt-

ing temperature until liquid nitrogen temperature (-196◦C), three endo- or

exothermic processes are observed. The first process (around 60◦) is called

the α-relaxation [126]. The α-relaxation is caused by chain motions in the

interphase between amorphous and crystalline regions, and requires chain

mobility in the crystal [127, 128]. Therefore, it requires pre-melting of im-

perfect crystals. When the crystal thickness decreases, the α-relaxation

moves to lower temperatures [129, 130]. This process is not to be con-

fused with the α-relaxation in glassy polymers, which is also known as the
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glass transition and involves an increase in mobility of the chains in the

amorphous phase. It has to be emphasized that from molecular dynamics

simulations, it is seen that the motion of a chain through a crystal requires

the same amount of energy, whether this chain is linear or branched and

independently of the crystal thickness. The energy required for chain pull-

out is 27 kcal/mol [131]. At the long time scales of slow crack growth, the

transient network contributions of the crystals are heavily reduced. Test-

ing the material above its α-relaxation temperature aims to reduce these

transient contributions, to make it possible for manufacturers to rank PE

in terms of its slow crack resistance at long time scales. However, it is not

clear whether all the contributions of the crystalline fraction to the strain

hardening modulus are eliminated at 80◦C [11]. A possible way of probing

this would be to use the transient stress dip test, originally described by

Fotheringham and Cherry [132]. Describing the viscoelastic behaviour as a

spring and a dashpot in parallel (the Kelvin-Voigt model), the spring rep-

resents the elastic and the dashpot the viscous contribution. To determine

the stress on the separate arms, a stress dip test is performed. A specimen

is extended until a certain total stress (σT ). At this stress, the cross head is

reversed and driven back until a lower stress. The stress is monitored. Three

types of behaviour are possible: the stress decays immediately, the stress

increases at first to decay afterwards or the stress stays constant at first to

decay afterwards. Figure 1.21 shows these possibilities schematically. If the

stress decays immediately, there is still stress in the dashpot and it decays

over time. If the stress increases at first, the dashpot in under compression

and as the dashpot flows, the stress increases. If the stress stays constant,

the strain rate is the dashpot is initially zero. This means the stress just

after the dip corresponds to the stress σR in the spring, or the molecular

network. The difference between the total stress and the stress in the spring

is the stress in the dashpot before the dip, σv [133].

Calculating the strain hardening modulus

As stated above, the strain hardening modulus is calculated from the stress-

draw ratio curve above the natural draw ratio. Kurelec et al. calculate it
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Figure 1.21: Schematic representation of the stress behaviour after the
’dip’ during a transient stress dip test: (1) σT > σR, (2) σT = σR and (3)

σT < σR, after [133]

as

< GK >=
1

N

N∑
i=1

σi+1 − σi
λi+1 − λi

, (1.13)

the average slope of the stress - draw ratio curve, starting above the

natural draw ratio until a maximum draw ratio [122]. In this work, when

the strain hardening modulus is calculated in this way, it is referred to as

< GK > (from ‘Kurelec’). N is the number of difference quotients taken, λ

is the draw ratio,

λ =
extensioni

gauge length
, (1.14)

and σi is the stress,

σi =
loadi
Ai

, (1.15)

where Ai is the cross section at time i,

Ai =
Ainitial

λi
. (1.16)

To be able to compare materials using this simple definition, the average

slope should be taken over the same draw ratio range for every material. To

overcome this drawback, McCarthy et al. apply a Neo-Hookean constitutive
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model instead [123]:

σ = C +GNHSM(λ2 − 1

λ
), (1.17)

where C describes the yield stress, extrapolated to draw ratio 0. This

model is based on the Haward-Thackray model for rubber elastic networks

and has been successfully applied to both amorphous and semi-crystalline

polymers [134–136]. The model was developed for rubber networks with

fixed junctions, assuming that the chain segments between the junctions

obey Gaussian statistics and that the deformation is affine - the vector

length of the chain changes with the same ratio as the corresponding length

in the bulk material [29]. The strain hardening modulus calculated in this

way will be referred to as GNHSM . The model suggests that the stress

at large deformations can be split into a frictional contribution from the

yield, and a network contribution. The frictional force can be interpreted

as the yield stress and remains constant. The network force is caused by

the deformation of the molecular network, described as a rubber elastic

network. It has to be noted that for this model to work at high draw

ratios (λ > 3), the studied polymer cannot act as a rubber. A rubber

network does not obey equation 1.17 at high draw ratios. So the network

involved in strain hardening of semi-crystalline materials must continuously

thin during drawing. Equation 1.17 assumes that the individual chains

behave in a Gaussian way [136], which is not the case. A correction for this

non-Gaussian behaviour is suggested by Haward based on the derivations

of Treloar and Cohen [136–138]:

σ = σy +
1

3
GHTλ(λ

3− λ2

N

1− λ2

N

− 1

λ2
3− 1

λN

1− 1
λN

), (1.18)

where N is the number of flexible units (‘Kuhn segments’) between en-

tanglements. Equation 1.18 has also been applied successfully to the stress-

strain behaviour of semi-crystalline materials, and will be referred to as the

Haward-Thackray model [136]. The strain hardening modulus as calculated

using this equation will be referred to as GHT .
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1.4.2 Creep of oriented fibrils

A different mechanical test shown to correlate well with resistance to slow

crack growth is creep. During a creep test, a material is held at constant

stress and its deformation is monitored. Cawood et al. (1993) were able

to predict the performance of different types of PE in terms of slow crack

growth from their resistance to creep beyond the natural draw ratio [139].

Rose et al. expanded this work to include a wide range of PE homopoly-

mers and copolymers. They also introduced the concept of the creep rate

deceleration factor (CRDF), as the absolute value of the gradient of the

linear part of the log(strain rate) - draw ratio curves resulting from creep

tests:

CRDF =
d[ln(ε̇)]

dλ
. (1.19)

Figure 1.22 gives an example of a log(strain rate) - draw ratio curve for

polyethylene. The linear part of the curve is indicated. This is the part

over which the CRDF is calculated. It has to be noted that the definition

of the CRDF makes use of the natural logarithm, while the visualisation

makes use of the common logarithm. In this work, the visualisation is used

to determine from which point the curve becomes linear, but the CRDF

is always calculated using equation 1.19. The concept of this visualisation

was first introduced by Sherby and Dorn in 1958 [140]. An example of

those curves for different kinds of PE is given in figure 1.23 [86]. O’Connell

et al. (1995) combined data from creep curves and found a reproducible

and unique stress-strain-strain rate surface for each material. They also

found that there was a limiting draw ratio at which the samples failed.

When the surface is known, the time for a sample subjected to a given

initial stress and strain to reach this limiting draw ratio can be calculated

[84, 141–143]. They noticed that as the draw ratio of a material increases,

the strain rate decreases; the material becomes more resistant against creep

with increasing draw ratio. Strain hardening lengthens the time for the

material to reach its limiting draw ratio. Similarly to the introduction of

the CRDF, they introduced a different parameter, d[ln(ε̇)]
d(σ)

, where σ is true

stress, to rank the materials in terms of creep resistance and consequently

slow crack growth resistance. Caution has to be taken when using either of
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these parameters. Creep seems to be the dominating factor in slow crack

growth, but other material parameters such as yielding, natural draw ratio

and failure draw ratio also have an influence. The excellent correlations from

both Cawood’s work and O’Connell’s work however suggest that these other

material parameters might somehow be reflected in the creep behaviour

[84, 139].
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Figure 1.22: Example of a log(strain rate) - draw ratio curve for
polyethylene, with the calculation of the creep rate deceleration factor

indicated

1.4.3 Natural draw ratio

The natural draw ratio is the draw ratio at which the spherulitic struc-

ture of isotropic PE is completely transformed and fibrillation becomes the

dominant deformation mechanism [75]. This is reflected by an upswing in

the stress-draw ratio curve during tensile drawing. The molecular factors

determining the natural draw ratio are widely agreed to be chain entan-

glements and intercrystalline tie molecules, forming a macromolecular net-

work [66, 75, 144, 145]. As the macromolecular network is also assumed

to dominate the slow crack growth behaviour and measurement of the nat-

ural draw ratio is fairly straightforward, researchers have tried to use the

natural draw ratio to predict the slow crack growth behaviour of materials

[28, 119, 146, 147]. Cazenave and co-workers found a good inverse corre-

lation between the natural draw ratio and the environmental stress crack

resistance of monomodal and bimodal polymers produced with different cat-

alysts. As can be seen in figure 1.24, materials with a lower natural draw
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Figure 1.23: Strain rate as a function of draw ratio for selected samples:
(1), (2), (3), (5), (6) polyethylene homopolymers with densities between

932 and 960 kg/m3 and (4) polyethylene copolymer with 1.3/1000C ethyl
branches, data from [86]

ratio have a higher environmental stress crack resistance [119, 146]. The

density and the ratio of chains that need more undercooling to crystallise

do not correlate unequivocally with environmental stress crack resistance.

Decreasing natural draw ratio and decreasing density increase the ESC re-

sistance. Ward and Sweeney remark that although the molecular factors

determining the natural draw ratio may indeed by similar to those deter-

mining the chain disentanglement during slow crack growth, it seems safer

to relate slow crack growth to the true stress-true strain-true strain rate

surface (as explained in section 1.4.2), because this relates to the material

after deformation [29]. Furthermore, time dependent processes that might

play a role in the creep of the fibrils at the tip of the crack are not reflected

in the natural draw ratio.

1.5 Scope of this work

This work aims to understand the physical phenomena behind creep failure

in bimodal PE, as this presents the mechanism behind slow crack growth.

The motivation to study slow crack growth is twofold. Firstly, understand-

ing the physical mechanisms behind slow crack growth enables manufac-
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Figure 1.24: Environmental stress crack resistance as a function of natural
draw ratio for LBEH: ethylene-hexene with a narrow molecular weight

distribution and low comonomer content, HBEH: ethylene-hexene with a
broader molecular weight distribution and high comonomer content, biEH:
ethylene-hexene with a bimodal molecular weight distribution whereby the

side chains are located on the long chains, data from [146]

turers to evaluate, rank and tailor the resistance of materials against it.

Secondly, understanding which parameter or combination of parameters are

important for slow crack growth is useful in the design of short-term tests

to predict failure due to slow crack growth.

In this chapter, it has been shown that the slow crack growth resistance

of PE correlates with the strain hardening modulus at 80◦C. This corre-

lation can be expected from the interpretation of both slow crack growth

and strain hardening as a response of the effective molecular network. The

creep behaviour and the natural draw ratio have also been shown to cor-

relate with slow crack growth. PE drawn over its natural draw ratio is a

good model for the fibrils as present at the tip of the crack [124]. Remaining

questions include the magnitude and the nature of possible friction contri-

butions (e.g. from crystals) to the strain hardening modulus and the effect

of the interplay between molecular mass, branch content, entanglements,

tie molecules and crystals on the structure property relations of PE. The

creep behaviour and the strain hardening behaviour of a set of materials

is studied. Do both tests result in the same ranking, as they should both
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correlate with the resistance against slow crack growth? And if not, what

are the physical mechanisms dominating each deformation mode?

Also as discussed in this chapter, longer chains, increased branch content

and branching on the high end of the molecular mass distribution increase

the resistance to slow crack growth. The development of new polymers

incorporating these features challenges the protocols currently used in in-

dustry to rank materials in terms of their slow crack growth resistance. To

study how these features interplay with each other to influence the slow

crack growth in PE, materials with varying molecular architectures are pro-

duced for this work and their creep and strain hardening behaviour is stud-

ied. These materials are based on the commercial bimodal PEs currently

used by industry in pipe applications. Eight materials are studied in total.

A schematic of the materials is given in table 1.2. A detailed description

of the materials can be found in the next chapter. Four bimodal PEs are

studied, each consisting of a low molecular mass, unbranched fraction and a

high molecular mass, branched fraction. The high molecular mass, branched

fractions of these four bimodals were also produced and studied separately,

to determine the influence of the dilution of the molecular network by the

addition of the low molecular mass fraction. The nature of this dilution is

studied: are the differences in behaviour the result of a straight mixture or

does blending influence the structure of the materials? The high molecular

mass, branched fractions are varied in terms of molecular architecture. Two

levels of molecular mass (low and high) and two levels of branch content (low

and high) are chosen and materials are produced with every combination of

these two features:

• low molecular mass and low branch content,

• low molecular mass and high branch content,

• high molecular mass and low branch content and

• high molecular mass and high branch content.
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Table 1.2: Schematic overview of the materials studied in this work
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Chapter 2

Experimental methods

This chapter describes the methods used for structural and mechanical char-

acterisation of the materials. The methods for structural characterisation

are described in section 2.1. The methods for mechanical characterisation

are described in section 2.2. Drawing of the materials and all the mechan-

ical tests are performed at 80 ± 1 ◦C, the reason for this is explained in

section 1.4.1. Molecular characterisation (section 2.1.1) is performed by the

sponsor of this work. Transmission electron microscopy (section 2.1.2) is

performed in collaboration with the sponsor of this work. The other tests

described in this chapter are performed at the University of Leeds.

2.1 Structural methods

This section describes the methods used to study the structure and mor-

phology of the materials used in this work.

2.1.1 Molecular mass distribution and branch content

with liquid state proton nuclear magnetic reso-

nance

The molecular structure of the materials is characterised by SABIC (Geleen,

Netherlands). To determine end groups and branch content, liquid state

proton nuclear magnetic resonance spectroscopy (1H NMR) is performed.

Samples are dissolved at 130◦C in trichloroethylene stabilised by di-tertbutyl-

paracresol. 1H spectra are recorded at 120◦C on a 600 MHz spectrometer.
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To determine the molecular mass distribution, high temperature size ex-

clusion chromatography (HT-SEC) is applied. Samples are dissolved in

trichlorobenzene. A Polymer Laboratories column (13 µm PLgel Olexis, 300

x 7.5 mm) is used for the separation, and detection is done with a Polymer

Char IR5 detector. The calibration is performed with linear polyethylene

(PE) standards, based on [148].

2.1.2 Morphology with transmission electron microscopy

Transmission electron microscopy (TEM) is done on the compression moulded

samples to study their homogeneity and observe potential differences in

lamellar thickness between the samples. The samples are prepared by em-

bedding in resin and exposing their internal surface by trimming at -120◦C

in a Leica Ultracut UCT with a Reichert FC S unit. Then, the samples are

stained for 24 hours in a 2% RuO4 solution. Ultra-thin sections of 70 nm

are cut with the Leica Ultracut UCT, using a DiATOME cryo 45◦ knife.

The sections are collected on copper 50 or 100 mesh grids with Formvar

film. The samples are then examined in a Philips CM200 transmission elec-

tron microscope (using a LaB6 cathode) at an acceleration voltage of 120

kV. To enhance the contrast between crystalline and amorphous regions,

high angle annular dark field scanning TEM (HAADF-STEM) is applied.

This allows the detector to detect electrons scattered over very wide angles.

When working with heavy atoms, this leads to a higher contrast between

light and heavy atoms in the resulting image. As the samples in this work

are stained using RuO4 and this is more absorbed by one of the phases,

HAADF-STEM yields an increases contrast between the two phases. The

lamellar thickness is calculated using image analysis software ImageJ.

2.1.3 Thermal properties with differential scanning

calorimetry

Differential scanning calorimetry (DSC) is performed on a TA DSC Q2000

with DSC Q series software to observe the melting temperature (Tm) and

the heat of fusion (∆Hf ), which are used to calculate the lamellar thickness

(Lc) and the crystallinity (Xc,h) respectively. The equipment is calibrated

once a month. Firstly, the heat flow is corrected for the thermal capacitance
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and thermal resistance of the equipment parts. This is done by first running

the DSC without a sample or pans, and then running it with sapphire disks

on the sample and reference platforms. Then, the heating curve of indium

between 100◦C and 180◦C is used to calibrate the temperature and the heat

flow. However, the temperature behaviour of the calorimeter can become

non-linear at low temperatures. Therefore, calibration with adamantane

is also performed. Tzero aluminium hermetic pans are used in a nitrogen

atmosphere. The measurements are performed following the ASTM stan-

dard D7426, under a nitrogen atmosphere. First, the samples are cooled

to -10◦C and held isothermal for 5 min. Then they are heated to 200◦C

at a heating rate of 10◦C/min and held isotherm for 5 min. Subsequently,

the samples are cooled to -10◦C at the same rate and held isothermal for

5 min, after which they are heated again to 200◦C at the same rate. The

peak crystallization temperature is calculated from the cooling curve, the

melting enthalpy from the heating curve. Depending on the purpose of the

analysis, the first or second cycle are used. The first cycle reflects the state

of the material including the thermal history, the second cycle should be

the same for a material regardless of its thermal history, as that has been

erased during the first cycle. The lamellar thickness is calculated using the

Gibbs-Thomson equation:

Tm = T 0
m(1− 2σe

∆H0
fLc

), (2.1)

where T 0
m is the equilibrium melting temperature of a lamella of infinite

thickness (145.5◦C), σe is the interfacial free energy over the basal surface of

the lamellae (associated with the energy of chain folding during crystallisa-

tion, 90 mJ/m2) and ∆H0
f is the enthalpy of fusion of the crystalline phase

(290 J/cm3) [149, 150]. The crystallinity can be calculated from DSC by

dividing the measured heat of fusion ∆Hf by ∆H0
f [151].

2.1.4 Crystallinity with density gradient column

The crystallinity of isotropic and drawn samples is also measured using a

density gradient column. The column is built in house and consists of a 1.7

l tube with 2 mm markers inside a water jacket. The water jacket is held

at 23.0 ± 0.2◦C. The tube is filled with gradient mixtures of degassed iso-
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propyl alcohol and degassed distilled H2O, using a H& D Density Gradient

Column Filler. The bottom density and top density of the column are set

according to the desired range and precision of the experiment. The column

is calibrated with at minimum 10 calibrated density gradient column floats,

spread evenly over the density range. The samples are cut into symmetrical

specimens, with the largest dimension smaller than 6 mm. The specimens

are thoroughly wetted with isopropyl alcohol before being introduced to

the column. To make sure air bubbles are not influencing the measurement,

multiple specimens are measured for each sample and visual inspection is

carried out. The specimens are left to settle for at least 6 hours before their

density is measured. The crystallinity (Xc,d) is then calculated using

Xc,d =

1
ρ
− 1

ρa
1
ρc
− 1

ρa

, (2.2)

where ρa is the density of purely amorphous PE (853 kg/m3) and ρc

is the density of purely crystalline PE (1004 kg/m3) [152]. The precision

of this method depends on the difference between the top and the bottom

density of the column but is never lower than 0.1 kg/m3 for an individual

measurement. Three measurements are done to calculate the standard error.

2.1.5 Orientation with polarised light microscopy

The short range orientation of isotropic samples is measured using a Zeiss

Jena polarised light microscope and the Michel-Levy chart. The thickness

(± 0.001 mm) is measured using a micrometer. Polarised white light is sent

through the sample, and the resulting colour is compared with the colours

on the Michel-Levy chart at the relevant thickness. The chart then indicates

the birefringence of the sample.

For drawn samples, a compensator is used. The specimen is kept under

strain after drawing by fitting it in a harness (as seen on figure 2.1), before

taking it out of the Instron and mounting it on the microscope stage. A

Zeiss Jena compensator with an Ehringhaus composite calcite plate and a

function table at 589.3 nm, based on [153], is used to calculate the retar-

dation. The thickness (± 0.001 mm) of the specimen at the location of the

measurement is measured using a micrometer and hence the birefringence
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∆n (± 0.001) is calculated. Using the pseudo-affine deformation model, the

corresponding draw ratio can be calculated [154, 155]. The pseudo-affine

deformation model treats the polymer as an assembly of uni-axial, rod-like

units embedded in an elastic matrix, building on the notion that the bire-

fringence is largely due to the geometrical orientation of the crystallites

[156]. When a strain is applied to the polymer, the rod-like crystallites

rotate towards the drawing direction. It can be calculate that if Θ is the

original angle between the symmetry axis of the rod-like unit and the draw-

ing direction, and Θ’ is the angle between these two axes after drawing,

that

tan(Θ′) =
tan(Θ)

λ−3/2
. (2.3)

The relationship between birefringence and draw ratio can then be cal-

culated as

∆n =
∆nmax

2
[

3

1−K2
− 3Kcos−1K

(1−K2)3/2
− 1], (2.4)

with

K = λ−3/2, (2.5)

and ∆nmax the birefringence of a perfectly oriented crystal [29]. For

PE, this is 0.058 [157]. The birefringence was measured in samples just

after drawing (standard error ± 0.001 from multiple measurements on one

sample) and after a set time at room temperature. After 24 hours, the

birefringence does not change. After eight days, the birefringence increases

by 0.006. Therefore, all birefringence measurements were done within 24

hours after drawing.

2.1.6 Orientation with polarised Raman spectroscopy

The bond orientation of isotropic and drawn samples is measured using po-

larised Raman spectroscopy. A Renishaw RM1000 Raman spectrometer,

controlled by GRAMS suite software, is used. A 515.32 nm solid state laser

(Spectra-Physics) with a maximum output power of 50 mW is focused on

the specimen to a diameter of 5µm, using an Olympus ultra-long working
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Figure 2.1: Harness used to keep specimens under strain after taking out
of the Instron

distance 50x objective lens on a Leica optical polarising microscope. The

laser photons interact with molecular vibrations in the specimen, and are

excited from the ground state to a virtual energy state. Different interac-

tions are possible, outlined in figure 2.2: Rayleigh scattering, Stokes and

anti-Stokes scattering. Stokes and anti-Stokes scattering are inelastic, and

the energy difference between the incident and scattered photons is specific

for the chemical groups present in the material. Stokes scattering is more

intense than anti-Stokes scattering and hence this is the response used for

analysis. Furthermore, the polarisation direction of the scattered light de-

pends on the molecular orientation in the material.

Rayleigh Stokes Anti-Stokes

Vibrational energy
states

Virtual energy
states

v = 0
v = 1

Figure 2.2: Model for the elastic (Rayleigh) and inelastic (Stokes and
anti-Stokes) scattering of laser photons by the molecular groups. v is the

vibrational quantum number [158]

The scattered photons are detected by the objective in terms of inten-
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sity as a function of the Raman wavenumber. The Raman wavenumber is

related to the difference between the incident and the scattered frequency

[158]. A 1800 lines/mm grating is used in the Raman system to provide a

measurement range of the frequency shift from 600 cm−1 to 1600 cm−1 with

a resolution of 0.5 cm−1. The polariser and analyser are arranged so that

spectra are collected both in parallel and perpendicular direction, as shown

in figure 2.3. The samples are mounted on a rotating stage and spectra are

taken every 10 degrees between 0◦ and 180◦. At every angle, the intensity

measured with the analyser perpendicular to the incident light (figure 2.3

b) is divided by the intensity measured with the analyser parallel to the

incoming light (figure 2.3 a). This is called the depolarisation ratio R. If R

is constant as a function of angle, the sample is isotropic.

a b

Incident
beam

Analyser

Sample Sample

Scattered
beam

Figure 2.3: Set-up for the measurement of the depolarisation ratio: (a)
analyser is parallel to incident light and (b) analyser is perpendicular to

incident light

In a cylindrically symmetric system, the degree of orientation of a molec-

ular bond can be described using β, the angle between the bond and a

specific axis, for example the drawing axis. To describe the degree of orien-

tation of a system involving many bonds, mean field theory can be applied

to find an orientation distribution function [159]. For a uniaxial system with

rod-like molecular bonds, Humphries, James and Luckhurst calculated that

the pseudo-potential field can be defined as

U =
n∑
L

< uLL:n > PL(cosβ) < PL(cosβ) >, (2.6)
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with < uLL:n > the statistical average of the expansion coefficient,

PL(cosβ) the Lth Legendre polynomial and < PL(cosβ) > the statistical

average of the Legendre polynomials [159]. These last terms are also called

the order parameters. Using this definition of the pseudo-potential field,

they define the orientation distribution function as

f(β) =
e−

U
kT∫

e−
U
kt
sin(β)dβ

, (2.7)

with k the Boltzmann constant. After expansion of this equation to the

second rank and simplification,

f(β) = (
1

8π2
)(1 +

5

2
< P200 > (3cos2β − 1), (2.8)

with

< P200 >=< P2(cosβ) > (2.9)

as mentioned above. Furthermore, for a cylindrically symmetric system

Jones et al. calculate the depolarisation ratio R as

R =
I⊥
I‖

(2.10)

with

I⊥ =
1

15
(−1 + r2)+ < P200 > [

1

21
(−1 + r2)] (2.11)

and

I‖ =
1

5
+

4

15
r +

8

15
r2+ < P200 > [

1

21
(3 + r − 4r2)(1 + 3cos(2θ))] (2.12)

with r the differential polarisability ratio. Using equation 2.10 to fit the

depolarisation ratio as a function of angle θ, < P200 > can be found. The

degree of orientation of the sample increases with increasing < P200 > value.

Background subtraction and fluorescence correction are done using soft-

ware developed by Wayne State University [160, 161]. The method used

is the ‘adaptive minmax method’, where a polynomial fit is applied to the
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background radiation. An example of a Raman spectrum is given on figure

2.4. The assignments of the Raman bands are given in table 2.1, accord-

ing to references [162–166]. To find the positions of the Raman bands, the

spectra are fitted using software developed at the University of Maryland

at College Park. Bands a, b, c, d, e and f are fitted with a Gaussian, while

bands g, h, i and j are fitted using Lorentzian fits (these two functions result

in the lowest least square errors for the respective peaks). An example of

the fitting of the Raman bands is given in figure 2.5. Band b, d and f can-

not be fitted at every angle due to their low intensity and/or proximity to a

different band with stronger intensity. It is difficult to determine the error

introduced by the background subtraction and fluorescence correction, but

the standard deviation of the order parameters is ± 7% after repeated mea-

surements. This will be taken as the minimum error on the order parameter.
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Figure 2.4: Example of a Raman spectrum for polyethylene. The letters
indicate the Raman bands corresponding to table 2.1

The band intensities are used to calculate the orientation of the amor-

phous phase and the crystalline phase in the samples. From table 2.1, it can

be seen that the 1080 cm−1 (b) Raman band is caused by C-C stretching

in the amorphous chains, the 1130 cm−1 (c) band is caused by symmetric

C-C stretching in the trans chains (both amorphous and crystalline) and

the 1420 cm−1 (h) band is caused by CH bending in the orthorhombic crys-

talline chains. The order parameter of these phases can be calculated by

fitting the depolarisation ratio as a function of angle. In the case of the
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Figure 2.5: Example of the fitting of the Raman bands for bi-HMHB. Blue
dots - data, red line - overall fit and green line - peak fits
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Frequency [cm−1] Phase Mode

a 1060 Trans chain Asymmetric C-C
stretching

b 1080 Amorphous C-C stretching
c 1130 Trans chain Symmetric C-C

stretching
d 1170 Crystalline (with

amorphous
contributions)

CH2 rocking

e 1296 Crystalline CH2 twisting
f 1310 Amorphous CH2 twisting
g 1370 Crystalline CH2 wagging
h 1420 Crystalline

(orthorhombic)
CH2 bending

CH2 wagging
i 1440 Amorphous trans CH2 bending
j 1460 Amorphous melt-like CH2 bending

Table 2.1: Assignment of Raman bands for polyethylene, based on
[162–166]

bonds in the sample being oriented preferably in the 0◦ direction, the per-

pendicular and parallel intensities, and the resulting depolarisation ratio,

are shown in figure 2.6. Only fits that result in R-square values over 0.90

are accepted. The fitting error on < P200 > is given for all values. The

low intensity of band b means that the fitting process cannot be applied

to this peak. Therefore, a qualitative parameter reflecting the orientation

is given for this peak. This qualitative parameter is 1-Iyy/Izz. Iyy/Izz is

the depolarisation ratio at 0◦ (or 180◦). Errors are introduced because of

tilting of the sample, so this parameter is not precise and can only be used

to find large differences between materials or draw ratio. A high orientation

results in 1-Iyy/Izz close to 1. Both the c and the h Raman band are high

in intensity and thus return good fitting results. Because the h band gives

an indication of crystalline orientation and the c band is a combination of

crystalline and amorphous orientation, the combination of these two order

parameters gives an indication of the orientation trends in the amorphous

phase.

The stability of the Raman orientation at room temperature was checked
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Figure 2.6: Example of the parallel and perpendicular Raman intensity
and the depolarisation ratio as a function of rotation angle of the sample
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by measuring the Raman orientation parameters just after drawing and af-

ter eight days at room temperature. For band b, < P200 > is originally 0.17

± 0.02, and after eight days 0.23 ± 0.04. For band c, it is originally 0.57 ±
0.01 and after eight days 0.60 ± 0.02. For band h, it is originally 0.71 ± 0.04

and after eight days 0.76 ± 0.04. It can be concluded that the orientation

parameters do not change significantly. All Raman measurements are done

within five days after drawing.

2.2 Mechanical methods

Extension [mm]

L
oa

d
[N

]

1

2

3

Figure 2.7: Overview of the load - extension conditions applied during the
mechanical tests: 1) strain hardening at constant true strain rate, 2) creep

at constant load, 3) stress relaxation at constant extension

Mechanical tests are used to probe the constitutive behaviour of the mate-

rials studied in this work under different deformation modes. The materials

are drawn beyond their natural draw ratio as explained in section 3.3.1 to

resemble the fibrils as present at the crack tip. The relationship between

stress and draw ratio is tested under different conditions. In figure 2.7 a

schematic overview of these conditions is given. When the instantaneous

draw ratio increase per time is held constant and the stress is monitored, the

resulting path is path 1 (strain hardening). Keeping the draw ratio increase

per time constant implies that the cross head speed accelerates during the

test. When from a certain stress or draw ratio, the stress is held constant

and the draw ratio is monitored, the resulting path is path 2 (tensile creep).

When from a certain stress or draw ratio, the draw ratio is held constant

and the stress is monitored, the resulting path is path 3 (stress relaxation).
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Some of the tests described in this section are combinations of the different

paths. All the mechanical tests are performed on pre-drawn samples. The

samples are pre-drawn at a temperature of 80◦C, a constant true strain rate

(see definition in section 2.2.1) of 3 10−2/s, until an extension of 135 mm.

A detailed explanation of why these parameters are chosen for pre-drawing

can be found in section 3.3.1.

2.2.1 Strain hardening tests

mm135

Time

Extension
Load

Figure 2.8: Extension and load as a function of time during a strain
hardening test. A pre-drawn sample is drawn at constant true strain rate
until failure or maximum extension in the equipment. The knee seen at

the start of the test occurs at the maximum load reached during
pre-drawing. Between pre-drawing and the actual test, some load

relaxation takes place. The knee point marks the point in the test were
the material reaches the point as before relaxation again

Strain hardening tests are performed on the materials after initial drawing,

on an Instron model 5564 using Bluehill software to program the test and

output the data. The specimen is pre-drawn as described in section 3.3.1.

After measuring the dimensions, the temperature is stabilised at 80◦C again

and the sample is drawn at a set constant true strain rate until failure or

until the maximum possible extension in the Instron (375 mm) is reached

(a schematic of this test can be found in figure 2.8). The true strain rate is

calculated as

ε̇ =
ln(

extensionti
extensionti−1

)

ti − ti−1
. (2.13)
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Because extensionti−1
increases over time, to keep the strain rate con-

stant, the cross head speed of the Instron will increase. Time (± 0.01s),

extension (± 0.1 mm) and load (± 0.04 N) are recorded. From these pa-

rameters, draw ratio (± 0.1), true strain rate (± 0.05%) and true stress

(± 2 %) are calculated. The draw ratio is calculated using equation 1.14,

where the extension is corrected for the compliance of the equipment (mea-

sured at the relevant loads using a stiff steel rod) and λafter pre-drawing is the

draw ratio measured at the end of pre-drawing. The true stress is calcu-

lated using equations 1.15 and 1.16. GK is calculated by averaging the

slope between draw ratio and 7 and draw ratio 11, for every 0.1 draw ra-

tio. GNHSM and GHT are calculated by fitting the stress-strain curves to

the equations described in section 1.4.1, using the Levenberg-Marquardt

algorithm in Matlab. The strain hardening protocol is tested to check the

sensitivity of the strain hardening modulus to changes in the experimental

set-up. The results of these tests are described in section 4.2.1.

2.2.2 Tensile creep tests

mm135

Time

Extension
Load

Figure 2.9: Extension and load as a function of time during a tensile creep
test. A pre-drawn sample is drawn to a pre-set load. Then the load is held

constant for a minimum of 12 hours unless failure occurs earlier

Tensile creep tests are performed on an Instron model 5564 using Bluehill

software to program the test and output the data. The specimen is pre-

drawn as described in section 3.3.1. After measuring the dimensions, the

temperature is stabilised at 80◦C again and the sample is drawn at a true

strain rate of 1.667 ± 0.001 10−3/s until a set load. Then, the load is held
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constant for 12 hours, unless failure or the maximum possible extension in

the Instron (375 mm) are reached earlier (a schematic of this test can be

found in figure 2.9). Time, extension and load are recorded. From these

parameters, draw ratio, true strain rate and true stress are calculated as

described in section 2.2.1.

The creep rate deceleration factor (CRDF) (± 3%) is calculated by plot-

ting the logarithm of the true strain rate as a function of draw ratio, as

explained in section 1.4.2. If a linear region is reached during the creep

test, this is isolated and the slope of this region is calculated using fitting

tools in Matlab. For each test, an average true stress and draw ratio are

calculated over the linear region.

2.2.3 Stress relaxation tests

mm135

Time Time

Extension
Load

(a) (b)
Figure 2.10: Extension and load as a function of time during a stress

relaxation test, (a) after strain hardening, (b) after tensile creep. In (a), a
pre-drawn sample is drawn at a constant true strain rate until a pre-set

load. Then the extension is held constant and the load monitored. In (b),
a pre-drawn sample is drawn at a constant true strain rate until a pre-set
load. Then the load is held constant for a pre-set time. After this time,

the extension is held constant and the load monitored

Stress relaxation tests are performed on an Instron model 5564 using Blue-

hill software to program the test and output the data. The specimen is

pre-drawn as described in section 3.3.1. Stress relaxation is done at dif-

ferent points during the strain hardening. After measuring the dimensions,

the temperature is stabilised at 80◦C again and the sample is drawn at a set

constant true strain rate until a set extension. Then, the extension is held

constant for a set time (a schematic of this test can be found in figure 2.10
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(a)). Stress relaxation is also done at different points during the creep. For

this, after measuring the dimensions, the temperature is stabilised at 80◦C

again and the sample is drawn at a set constant true strain rate until a set

load. The load is held constant for a set time. Then, the extension is held

constant for a set time (a schematic of this test can be found in figure 2.10

(b)). For both tests, time, extension and load are recorded. From these

parameters, draw ratio, true strain rate and true stress are calculated as

explained in section 2.2.1. The fitting of the stress relaxation curves is done

using fitting tools in Matlab.

2.2.4 Transient stress dip tests

mm135

Time

Extension
Load

Figure 2.11: Extension and load as a function of time during a transient
stress dip test. A pre-drawn sample is drawn until a pre-set load. Then,

the extension is decreased until a pre-set extension. Then the extension is
held constant and the stress is monitored

Transient stress dip tests are performed on an Instron model 5564 using

Bluehill software to program the test and output the data. The specimen is

pre-drawn as described in section 3.3.1. A schematic of the test is given in

figure 2.11. After measuring the dimensions, the temperature is stabilised

at 80◦C and the sample is drawn at a true strain rate of 1.667 ± 0.001

10−3/s until a set extension (this is the first part in figure 2.11, until the

maximum for both extension and load). Then, the Instron cross head is

driven back at a true strain rate of 5.49 10−3/s until a set extension. This

is the maximum true strain rate that can be used to avoid overshooting

in terms of extension in the Instron. This part can be seen as the vertical

‘dip’ in figure 2.11. This extension is held constant for a set time or until it
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is clear what behaviour the material is exhibiting (the last part, with con-

stant extension and decreasing load, in figure 2.11). Time, extension and

load are recorded. From these parameters, draw ratio, true strain rate and

true stress are calculated as explained in section 2.2.1.

As explained in section 1.4.1, to interpret the transient stress dip test,

the viscoelastic behaviour of the sample is described by a spring and a dash-

pot in parallel. If after the dip, a stress plateau is observed (as described in

figure 1.21), it can be assumed that the stress in the dashpot is zero, and

hence the stress on the plateau equals the stress in the spring. A problem

with the application of the transient stress dip tests on the bimodal materi-

als studied in this work however can be seen in figure 2.12. This figure gives

an example of the behaviour after the ‘dip’ for bi-HMLB, after transient

stress dip tests at a strain rate of around 10−3/s. The dips are given in

draw ratio. A clear difference in behaviour can be seen between the 0.03

dip and the 0.40 dip. An initial stress plateau, however, cannot be detected.

This might be obscured by a small ‘bump’ in the stress just after the dip,

probably caused by the Instron adjusting the extension after the dip. The

detection of the dip where the total stress after the dip σT and the recovery

stress σR are equal is therefore not reliable, and these tests are not further

pursued.
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Figure 2.12: The behaviour after a stress dip test for bi-HMLB
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Chapter 3

Production and characteristics

of the materials

The aim of this work is to understand the deformation behaviour of a

polyethylene (PE) fibril at the tip of the crack. As discussed in chapter

1, this material is drawn beyond its natural draw ratio. To mimic this,

isotropic samples are also drawn beyond their natural draw ratio before

testing. The characteristics of the material up until reaching the natural

draw ratio are described in this chapter. It is important to know these so

the relevance of the different characteristics for the behaviour of the oriented

material can be studied. This chapter is divided into three sections. These

correspond to the three stages in the material production. In section 3.1,

the production and characteristics of the PE as produced by the reactor

are described. In section 3.2, the production and characteristics of the PE

after compression moulding are described. In section 3.3, the production

and characteristics of the pre-drawn materials are described.

3.1 Production and characteristics of the pow-

der and pellet materials

This section describes the synthesis of the PE materials and their charac-

teristics. Table 1.2 gives a schematic overview of the materials produced

for this work. The molecular mass (M) and branch content (β) are varied,

and for each combination, a bimodal material is produced as well as its high
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molecular mass fraction separately.

3.1.1 Production of the powder and pellet materials

Materials for this work are produced by SABIC (Geleen, Netherlands). Sec-

tion 1.5 explains how the desired characteristics for the materials were de-

termined. Four types of bimodal PE and five types of monomodal PE are

synthesised and in all cases a Ziegler-Natta catalyst is used. For bimodal

PE, a two step batch reactor process is used, to replicate the cascade reactor

process as shown before in figure 1.19. Instead of two reactors, one reactor

is used, but the processing conditions are changed in the same manner as

for the cascade process. The settings for the first step are the same for all

the bimodals. This means that the low molecular mass fraction in these

materials is the same. In the second step, the settings are varied to ob-

tain differences in molecular mass and branch content. To obtain a higher

molecular mass, the hydrogen over ethylene pressure ratio is decreased. To

obtain a higher branch content, the butene over ethylene pressure ratio is

increased. The names used to discuss the properties of the materials is

based on their different molecular architectures. The prefix ‘bi-’ indicates

the material is bimodal. In the following code, H stands for high, L for

low, M for molecular mass and B for branch content. So bi-HMHB is a

bimodal PE, with a high molecular mass and a high branch content in its

high molecular mass fraction. This is relative to the other materials pro-

duced for this work. The proportion of low molecular mass fraction is 51 %

for all materials. For monomodal branched PE, a single reactor process was

used. The same settings were used as for the second part of the process. So

the monomodal materials are a model for the high molecular mass fraction

as present in the bimodal material. The label ‘R2-’ precedes the names of

these materials. For completeness, also the low molecular mass fraction of

the bimodal materials is produced separately. This is the same for all the

bimodal materials and is named ‘R1’. The materials and their production

parameters can be found in table 3.1. mcatalyst is the amount of catalyst

added to the reactor en PC2H4 the ethylene pressure applied. H2/C2H4 and

C4H8/C2H4 are the ratios of the hydrogen pressure to the ethylene pressure

and the butene pressure to the ethylene pressure respectively. For some

materials, more than one batch is produced to have an adequate amount of
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material. These batches are mixed in powder form before further process-

ing. All materials are stabilised with Irganox 1010, Irgafos 168 and calcium

stearate. The bimodal materials are extruded to form pellets. This is not

possible for the R2 materials, as their very high molecular mass inhibits the

extrusion process.

3.1.2 Characteristics of powder and pellet material

Table 3.3 shows the results of the molecular characterisation, with the meth-

ods described in section 2.1.1. Figures 3.1 and 3.2 show the molecular mass

distributions. It can be seen from figure 3.2 that the molecular mass of

the R1 material indeed corresponds to the low molecular mass fraction in

the bimodal materials. The same applies to the R2 materials. There is a

distinct difference between the high molecular mass and low molecular mass

materials. The results for the bimodal materials in table 3.3 are averages

of the low and high molecular mass fractions present in these materials.

An indication of the branch content of the high molecular mass fractions

present in the bimodal materials can be found by applying a simple rule of

mixtures. If the branch content of the high molecular mass fractions present

in a bimodal material would be the same as that of the corresponding R2

material, the average branch content can be calculated:

βbimodal = 0.51βR1 + 0.49βR2. (3.1)

The results of this simple calculation can be found in table 3.2. The

calculated branch content lies close to the measured branch content, and

there is a distinct difference between the HB and LB materials. The branch

content for R1 and the bimodal materials is plotted as a function of molec-

ular mass in figure 3.3. For R1, the branch content is so low that it is

indistinguishable from random noise. This is expected as no comonomer

was added, although a very small amount of branching can be formed due

to the catalyst. For R2, branching is present over the whole width of the

molecular mass distribution. It is significantly higher for the HB materials

than for the LB material. The bimodals have an increasing branch content

with molecular mass. This is expected as they are a combination of the

unbranched R1 material and the branched R2 material.
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Table 3.1: Production parameters of the materials used in this study.
mcatalyst is the amount of catalyst added to the reactor en PC2H4 the

ethylene pressure applied. H2/C2H4 and C4H8/C2H4 are the ratios of the
hydrogen pressure to the ethylene pressure and the butene pressure to the

ethylene pressure respectively
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β, ethyl [/1000C]
Calculated Measured by 1H NMR

Bi-HMHB 5.7 6.4
Bi-HMLB 2.6 2.4
Bi-LMHB 7.1 8.3
Bi-LMLB 3.9 3.9

Table 3.2: Comparison of the calculated and measured ethyl branch
content of the bimodal materials. The calculated branch content was

calculated using equation 3.1, with βR1 and βR2 the measured values as in
table 3.3 for the R1 and the R2 materials respectively

The presence of long chain branching in the materials is investigated.

The formation of long chain branches can be an undesired side effect of

PE synthesis, and influences the flow behaviour of the material. As the

mechanical tests will be done on the bimodal and R2 materials, only these

materials were investigated. The intrinsic viscosity (η) was plotted as a

function of molecular mass and compared to the reference plot for a linear

PE, for which the parameters of the work of Scholte et al. are used [148].

This is shown on figure 3.4. The plots deviate only slightly from the linear

PE reference plot.

The thermal properties for the initial materials are measured from the

second melting endotherm of the DSC curves. The results are given in ta-

ble 3.4. The crystallinity of the bimodal materials is higher than for the

R2 materials. This is due to the addition of the easily crystallisable R1

fraction. Calculating the crystallinity of bi-HMHB following a simple rule

of mixture using the data for R1 and R2-HMHB, a crystallinity of 62.6 %

would be expected. This is close to what is found from DSC, and also holds

for the other materials. This implies that the trends within the two families

of materials, R2 and bimodal, are the same. The crystallinity is higher for

the low branched than for the highly branched materials, in each family.

There is a small difference between R2-HMLB and R2-LMLB, which can

be ascribed to R2-LMLB having a slightly higher branch content. The dif-

ference in branch content between R2-HMHB (11.5/1000C) and R2-LMHB

(14.3/1000C) does not result in a difference in crystallinity.
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Table 3.3: Characteristics of the bimodal and monomodal materials in
powder and pellet form. The reproducibilities for Mn, Mw and Mz are

10-20%, 10% and 10-20% respectively
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∆Hf [J/g] Tm [◦C] Xc,h [%] Lc [m]

R1 250 ± 2 130 ± 1 87 ± 1 1.77 ± 0.02 10−8

R2-HMHB 108 ± 2 121 ± 1 37.2 ± 0.7 1.07 ± 0.02 10−8

R2-HMLB 143 ± 3 127 ± 1 49 ± 1 1.40 ± 0.02 10−8

R2-LMHB 108 ± 2 120 ± 1 37.3 ± 0.7 1.07 ± 0.02 10−8

R2-LMLB 130 ± 3 124 ± 1 44.8 ± 0.9 1.22 ± 0.02 10−8

Bi-HMHB 176 ± 4 129 ± 1 61 ± 1 1.57 ± 0.02 10−8

Bi-HMLB 210 ± 4 130 ± 1 73 ± 1 1.72 ± 0.02 10−8

Bi-LMHB 178 ± 4 128 ± 1 61 ± 1 1.52 ± 0.02 10−8

Bi-LMLB 189 ± 4 129 ± 1 65 ± 1 1.64 ± 0.02 10−8

Table 3.4: Results of thermal analysis at 10◦C/min for the powder and
pellet materials

In table 3.5, the crystallinity for the powder and pellet materials as

measured from the density (see section 2.1.4) is shown. The same trends

as for the crystallinity calculated from the heat of fusion are present, but

the absolute values are different, and diverge more from the heat of fusion

crystallinities with increasing branch content. The crystallinity as measured

from density does not make a distinction between the HMLB and LMLB

materials within one family, whereas the crystallinities as measured from

heat of fusion are still ranked as expected from their branch contents (the

branch content of R2-HMLB is 5, while the branch content of R2-LMLB is

7.7). A comparison of the two crystallinities is shown on figure 3.5. In liter-

ature, this difference has been attributed to the contribution from the less

mobile amorphous layers between crystal lamellae [167]. Between crystal

lamellae, there is a fraction of the amorphous phase in which the mobility

is higher than for a crystal, but still low because of the constraint of being

surrounded by less mobile crystals. This fraction is called the interphase.

In materials with a higher branch content (and hence thinner lamellae), this

fraction has been found to be higher [168, 169]. The effect of the interphase

on DSC crystallinity is small because it only takes into account the crys-

talline heat of fusion. For the crystallinity as measured from the density

column, however, the larger density of the interphase compared to the den-

sity of the amorphous phase leads to an overestimate of the crystallinity.

To quantify this effect, the thickness and volume fraction of the interphase
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would need to be measured. This has been done in the past using Raman

(using the longitudinal acoustic modes and the internal modes) and solid

state NMR [170, 171]. This does however not fall within the scope of this

work. However, the discrepancy between DSC and density results has to be

kept in mind when discussing crystallinity in the following chapters.

Xc,d [%]

R2-HMHB 46.5 ± 0.5
R2-HMLB 52.2 ± 0.5
R2-LMHB 46.6 ± 0.5
R2-LMLB 51.8 ± 0.5
Bi-HMHB 63.3 ± 0.6
Bi-HMLB 68.2 ± 0.7
Bi-LMHB 62.9 ± 0.6
Bi-LMLB 67.6 ± 0.7

Table 3.5: Crystallinities based on densities as given in table 3.3 for
powder and pellet materials
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based on heat of fusion. Solid line is where the two crystallinities are the

same
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3.2 Production and characteristics of the com-

pression moulded sheets

This section describes the compression moulding of the R1, R2 and bi-

modal materials and the characteristics of the resulting sheets. Compres-

sion moulding of the R1 material results in very brittle sheets due to the low

molecular mass of this material. Therefore characterisation of this sheet is

not possible.

3.2.1 Compression moulding

The pellets and powders are compression moulded into sheets at Intertek

Chemicals and Pharmaceuticals (Geleen, the Netherlands) on a Fontijne

Grotnes hot press. Table 3.6 summarises the details of the moulding proce-

dure. The powders or pellets are spread out evenly over the mould to avoid

flow and thickness variations. Melinex flexible film is placed between the

material and the press to avoid transcrystallisation - where the spherulites

nucleate on the mould sufrace, causing an inhomogeneous surface layer in

the sheet - and to facilitate the release of the sheet after moulding. All

sheets are pressed at a thickness of 250 µm, however the resulting thickness

can vary and is checked for each sample individually prior to pre-drawing.

Time [s] Temperature [◦C] Pressure [103 Pa]

300 180 390
180 180 4710
900 180 80

Cooling at 1.7◦C/s
Press opens when temperature is below 25◦C

Table 3.6: Summary of ISO1872 moulding procedure as used by Intertek

3.2.2 Characteristics of compression moulded sheets

This section describes the morphology and thermal properties of the com-

pression moulded sheets of bimodal and R2 material.
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Morphology

Examples of transmission electron micrographs (TEM, prepared with the

methods described in section 2.1.2) are given in figures 3.6, 3.7, 3.8, 3.9,

3.10, 3.11, 3.12 and 3.13 for R2-HMHB, R2-HMLB, R2-LMHB, R2-LMLB,

bi-HMHB, bi-HMLB, bi-LMHB and bi-LMLB respectively. Contrast for

the R2 micrographs was not optimal in TEM. This is probably caused by

the large amount of amorphous material and free volume. To increase the

contrast, high angle annular dark field scanning transmission electron mi-

croscopy (HAADF-STEM) is applied. Figures 3.6(top) and 3.10(top) show

R2-HMHB and bi-HMHB at a fairly low magnification. It can be seen that

in the bimodal material, spherulites - recognisable as fan-like structures -

are clearly visible, while for the R2 material, there is no visible structure

in the material. This is a general difference between the bimodal materials

and the R2 materials, and can also be seen on the figures with a slightly

larger magnification: figures 3.6 (bottom left), 3.7 (left), 3.8 (left) and 3.9

(left) for the R2 materials, and figures 3.10 (bottom left), 3.11 (left), 3.12

(left) and 3.13 (left) for the bimodal materials. In all cases, the spherulites

are more developed in the bimodal material than in its R2 counterpart.

Micrographs were taken over a range of sheets and at different places in

the sheets for all materials, and no significant inhomogeneities found. It is

thus concluded that the compression moulded sheets are homogeneous. In

figures 3.6 (bottom right), 3.7 (right), 3.8 (right), 3.9 (right) for the R2 ma-

terials, and 3.10 (bottom right), 3.11 (right), 3.12 (right) and 3.13 (right),

at large magnification, worm-like structures can be observed. These are

the individual crystal lamellae, seen from the side. They can be seen in

all materials. The lamellae thickness, calculated with image analysis using

ImageJ, is 10 ± 2 nm for R2-HMLB and 12 ± 2 nm for bi-HMHB. Caution

has to be taken with this result as it is a local measurement.

Thermal properties

Thermal analysis is done according to the procedure explained in section

2.1.3. The results can be found in table 3.7. The enthalpy of fusion and

the melting temperature are lower for the R2 materials than for the bi-

modal materials. The addition of a low molecular mass fraction increases

the crystallinity and the crystal thickness in the bimodal materials. Within
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Figure 3.6: High angle annular dark field scanning transmission electron
micrograph on R2-HMHB after 24 hours of RuO4 staining

Figure 3.7: High angle annular dark field scanning transmission electron
micrograph on R2-HMLB after 24 hours of RuO4 staining
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Figure 3.8: High angle annular dark field scanning transmission electron
micrograph on R2-LMHB after 24 hours of RuO4 staining

Figure 3.9: High angle annular dark field scanning transmission electron
micrograph on R2-LMLB after 24 hours of RuO4 staining

77



3. PRODUCTION AND CHARACTERISTICS OF THE
MATERIALS

Figure 3.10: Transmission electron micrographs on bi-HMHB after 24
hours of RuO4 staining

Figure 3.11: Transmission electron micrographs on bi-HMLB after 24
hours of RuO4 staining
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Figure 3.12: Transmission electron micrographs on bi-LMHB after 24
hours of RuO4 staining

Figure 3.13: Transmission electron micrographs on bi-LMLB after 24
hours of RuO4 staining
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one family of materials (R2 or bimodal), the same trends are present. The

highly branched materials have a lower enthalpy of fusion and a lower melt-

ing temperature than the low branched materials, again reflecting the in-

fluence of the fraction of branches on the crystallisation. As can be seen

in table 3.3, the branch content of for example R2-HMHB and R2-LMHB

is not exactly the same. Plotting the enthalpy of fusion and the melting

temperature as a function of branch content (figures 3.14 and 3.15) shows

that these parameters are sensitive to branch content, but more so for the

low branched materials than for the highly branched materials. In general,

the sensitivity to branch content is lower in the bimodal materials than in

the R2 materials. This can be expected as the bimodal materials all contain

a large fraction of R1. A quantitative relation between the ∆Hf and the

structure of polyethylene has not been proposed in literature. ∆Hf depends

on the crystallinity and in the case of small crystals, on the surface energy

of the crystals. This makes it difficult to quantify a relationship [172, 173].

Empirical models do exist to predict Tm, based on contributions to the

melting temperature from the individual monomers in the main chain and

the side chains. However, these models are accurate within around 20◦C,

so cannot be used to distinguish between the materials used in this work

[173]. The α-relaxation temperature also depends on the branch content; it

moves to lower temperatures with increasing branch content as it is easier

for the chains to move through thin crystal lamellae. The lamellar thickness

corresponds to that found from TEM images (see section 3.2.2).

∆Hf [J/g] Tm [◦C] Tα [◦C] Xc,h [%] Lc [10−8 m]

R2-HMHB 104 ± 2 121 66 36.1 ± 0.7 1.11 ± 0.02
R2-HMLB 137 ± 6 126 73 48 ± 2 1.36 ± 0.02
R2-LMHB 102 ± 2 121 65 35.3 ± 0.7 1.08 ± 0.03
R2-LMLB 129 ± 3 123 71 45 ± 1 1.21 ± 0.04
Bi-HMHB 169 ± 4 128 72 58 ± 1 1.55 ± 0.03
Bi-HMLB 205 ± 8 130 81 71 ± 3 1.76 ± 0.08
Bi-LMHB 172 ± 3 128 71 59 ± 1 1.54 ± 0.05
Bi-LMLB 178 ± 5 129 78 63 ± 2 1.62 ± 0.09

Table 3.7: Results of thermal analysis at 10◦C/min for compression
moulded sheets. Precision on temperatures is ± 1 ◦C
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Crystallinity

The crystallinity as measured from DSC is the crystallinity of the material

close to the melting point. The crystallinity at room temperature can be

measured using a density gradient column as explained in section 2.1.4. The

results are summarised in table 3.8. The trends are the same as for the crys-

tallinity as measured from DSC: the R2 materials have a lower crystallinity,

and within one family the crystallinity is lower at high branch contents. At

low crystallinities, the density column yields a higher crystallinity than the

DSC. At high crystallinities, the density column yields a lower crystallinity

than the DSC. These are the materials with the lowest crystallinities over-

all (and the highest branch contents). The crystallinity is equal or lower

than the crystallinity of the powder and pellet materials, due to the melt-

ing and recrystallisation of the material during the compression moulding.

The crystallinity stays similar for the high branched materials, except for

bi-HMHB. As before, it is sensitive to large changes in branch content, but

not to small changes (R2-LMHB has a slightly higher crystallinity than

R2-HMHB, despite having a higher branch content).

Xc,d [%]

R2-HMHB 46.4 ± 0.5
R2-HMLB 50.8 ± 0.5
R2-LMHB 46.7 ± 0.5
R2-LMLB 51.0 ± 0.5
Bi-HMHB 62.6 ± 0.6
Bi-HMLB 67.4 ± 0.7
Bi-LMHB 62.9 ± 0.6
Bi-LMLB 66.3 ± 0.7

Table 3.8: Crystallinities of the compression moulded sheets, calculated
from their density

Orientation

When inspected through cross polarisers, the sheets made from R2 mate-

rial show cross shaped birefringence, an indication of preferred orientation

in the material (see figure 3.16). Modifications of the moulding procedure

and additional heat treatments do not visibly change the appearance of the
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samples. The birefringence ∆n of the sheet was measured using a Zeiss

optical microscope and the Michel-Levy chart, and found to be 0.00069.

Using the pseudo-affine deformation model (explained in section 2.1.5), the

corresponding draw ratio λ can be calculated as 1.02. It will be assumed

that this small degree of orientation has no influence on the strain hardening

properties on the samples. In the case of nylon fibres, it has been shown

that the initial draw ratio does not influence the strain hardening [174]. The

sheets produced from bimodal material do not show birefringence.

Figure 3.16: Photograph of R2-HMLB compression moulded sheet
between cross polarisers

Birefringence gives an average orientation in the specimen (though it is

dominated by the crystals), but from polarised Raman spectroscopy (2.1.6),

the orientation in the crystalline and amorphous phase can be calculated

separately. As explained in table 2.1, the 1080 cm−1 Raman band is caused

by C-C stretching in the amorphous chains, the 1130 cm−1 band is caused

by symmetric C-C stretching in the trans chains (both amorphous and crys-

talline) and the 1420 cm−1 band is caused by CH bending in the orthorhom-

bic crystalline chains. Therefore the orientation parameters based on the

1080 cm−1 indicate the orientation in the amorphous phase, while the ori-

entation parameters for the 1420 cm−1 indicate the orientation in the crys-

talline phase. The orientation parameters for the 1130 cm−1 are used as

control, they should lay between the two others. For the isotropic com-
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pression moulded materials, the orientation is so low that the < P200 >

parameter cannot be calculated. A qualitative idea of the orientation can

be given by 1-Iyy/Izz. This is shown in table 3.9. A high orientation results

in 1-Iyy/Izz close to 1. As can be seen from the table, the values for 1-Iyy/Izz

are around 0.2 - 0.3 for all materials, except for bi-LMLB where it is 0.5.

This implies that bi-LMLB is slightly oriented even in the isotropic state.

1-Iyy/Izz
1080 cm−1 1130 cm−1 1420 cm−1

R2-HMHB 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1
R2-HMLB 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1
R2-LMHB 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.1
R2-LMLB 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1
Bi-HMHB 0.2 ± 0.1 0.3 ± 0.1 0.3 ± 0.1
Bi-HMLB 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1
Bi-LMHB 0.2 ± 0.1 0.3 ± 0.1 0.4 ± 0.1
Bi-LMLB 0.5 ± 0.1 0.5 ± 0.1 0.5 ± 0.1

Table 3.9: Qualitative order parameters for the compression moulded
sheets

3.3 Production and characteristics of pre-drawn

materials

This section describes the pre-drawing of the R2 and bimodal materials and

the characteristics of the resulting fibres.
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3.3.1 Cutting and drawing

0

135

Time

mm

Extension
Load

mm

Figure 3.17: Extension and load as a function of time during initial
drawing of the materials

After compression moulding, dumbbell shaped samples are cut for the me-

chanical tests. To make sure all the samples are drawn above their natural

draw ratio, the natural draw ratio of the samples at the appropriate tem-

perature and strain rate is measured. Trials reveal that at a strain rate of

3 10−2/s, all materials can be drawn into their strain hardening region. At

strain rates above or below this strain rate, some of the materials will fail

during necking. The natural draw ratio of the materials is then established

at 3 10−2/s and 80◦C. For this, ink dots are placed on the dumbbell sample,

2 mm apart from each other. An oven, mounted on an Instron 5564, is

heated to 80◦C. The dumbbell is placed in the oven for 5 min before being

clamped. The gauge length is 27 mm. The sample is then drawn at a con-

stant true strain rate of 3 10−2/s, using Bluehill software to control the test.

One or multiple necks develop in the sample. When the neck occupies the

full specimen length, the sample is photographed and the draw ratio (± 0.1)

is calculated from the distance between the dots using image processing in

Matlab. This is done thrice for each of the materials. It is established that

all materials are fully necked at an extension of 135 mm. Therefore, all ma-

terials are pre-drawn at a temperature of 80◦C, a strain rate of 3 10−2/s to

an extension of 135 mm, using the equipment and protocol described above

(a schematic of this test can be found in figure 3.17). At this extension, the

thickness (± 0.001 mm), width (± 0.01 mm) and draw ratio (± 0.2) of the

specimen are measured, before starting the tests as described in chapter 2.
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The yield of the materials at 3 10−2/s is shown in figure 3.18. A double

yield point can be observed for all the materials. As explained in section

1.2.2, crystal slip processes are supposed to be the dominant phenomenon

for the onset of plastic deformation in semi-crystalline polymers [62]. Ward

et al. and other researchers ascribe the first yield point to the start of in-

terlamellar shear (sliding of crystal blocks), and the second to intralamellar

shear (shearing of crystal blocks) [175, 176]. The existence of the second

yield point is contested by Hiss et al., who claim it arises only from the way

the draw ratio - stress data is plotted, rather than a physical phenomenon

[64]. They however do not provide an explanation for experimental findings

from X-ray diffraction and thermal analysis that suggest two competing

processes [177–179]. The yield stress and draw ratio for a strain rate of 3

10−2/s are given for the first and second yield point in table 3.10. These

are determined by the two intersecting lines method [13]. It can be seen

that for the first yield point, the yield draw ratio (λy,1) is the same for all

the materials. The yield stress (σy,1) of the bimodal materials is signifi-

cantly higher for the bimodal materials than for the R2 materials. In one

family of materials, the yield stress is lower for the highly branched ma-

terials than for the low branched materials. These results are in line with

literature, where it is shown that while the yield draw ratio is independent

of crystallinity (and strain rate), the yield stress depends on the lamellar

thickness [180, 181]. When comparing the stress at the first yield point with

the lamellar thickness as calculated from DSC (table 3.7), it can be seen

that also in these materials, thicker lamellae lead to a higher stress. For the

second yield point, the draw ratio (λy,2) is again similar for all the mate-

rials. For all the materials, the stress (σy,2) scales with lamellar thickness

like the stress at the first yield point, but there is no difference between

the R2 and bimodal materials. The ratio σy,1/σy,2 is around 0.3 for the R2

materials and around 0.7 for the bimodal materials. The bimodal materi-

als are expected to have more regular chain folded crystals, which makes

sliding at the crystal boundaries easier. The chain folding of the R2 mate-

rials is perturbed by the branches, as shown in figure 3.19. This promotes

homogeneous deformation of the crystal lamellae, as this topology causes

the stress to be redistributed over the entire thickness of the lamella [178].
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From figure 3.18), it can indeed be seen that the first yield point is less

pronounced for the R2 materials than for the bimodal materials, and less

for the highly branched materials than the low branched materials.
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Figure 3.18: True stress as a function of draw ratio during yield at 3
10−2/s

The natural draw ratios of the materials are given in table 3.11. The

measurement of the natural draw ratio via the Considère construction (λn,t),

where the natural draw ratio is defined as the draw ratio at which a line

through draw ratio 0 is the lowest tangent to the stress-draw ratio curve of

a sample that shows necking. This is illustrated in figure 3.20. However, the

87



3. PRODUCTION AND CHARACTERISTICS OF THE
MATERIALS

λy,1
† σy,1 [MPa] λy,2 σy,2 [MPa]

R2-HMHB 1.1 ± 0.2 3.3 ± 0.2 1.8 ± 0.2 10.8 ± 0.4
R2-HMLB 1.1 ± 0.2 4.9 ± 0.2 1.8 ± 0.2 13.2 ± 0.3
R2-LMHB 1.1 ± 0.2 3.1 ± 0.2 1.9 ± 0.2 10.0 ± 0.2
R2-LMLB 1.1 ± 0.2 4.5 ± 0.2 1.9 ± 0.2 12.7 ± 0.2
Bi-HMHB 1.1 ± 0.2 8.3 ± 0.7 1.5 ± 0.2 11.9 ± 0.6
Bi-HMLB 1.1 ± 0.2 10.2 ± 0.3 1.7 ± 0.2 13.8 ± 0.4
Bi-LMHB 1.1 ± 0.2 7.7 ± 0.5 1.5 ± 0.2 10.4 ± 0.5
Bi-LMLB 1.1 ± 0.2 10.1 ± 0.2 1.5 ± 0.2 11.9 ± 0.8

Table 3.10: Draw ratio (λy,x) and stress (σy,x) at the first (x=1) and
second (x=2) yield point, at 3 10−2/s, from the two intersecting lines
method. † note that draw ratio values of less than 1 are unphysical
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Figure 3.19: Schematic for the influence of branch content on the chain
folding topology, as shown in [178]

88



3.3 Production and characteristics of pre-drawn materials

application of this method does not seem appropriate for the materials used

in this study. Especially for the R2 materials, due to the quick propagation

of the neck through the sample, the natural draw ratio as measured from

the Considère construction occurs later than the end of the propagation of

the sample through the neck, essentially in the strain hardening region. A

more reliable method seems to be to look at the sample during the test and

record the draw ratio at which the neck has fully propagated through the

sample and starts deforming homogeneously, λn,o (o for optical) (it has to

be noted that Seguélá in his review of the natural draw ratio describes the

measurement as ’straightforward’, which is clearly not the case with these

materials) [75]. Both draw ratios are given in table 3.11. The natural draw

ratio is sometimes interpreted as a measure of the density of the entangled

network, as Tarin et al. have shown that slowly crystallised HDPE, as-

sumed to have a lower tie molecule content than fast crystallised material,

has an increased natural draw ratio [75, 144]. The inverse correlation found

by Cazenave et al. between the natural draw ratio and the resistance to

environmental stress cracking (ESC, see section 1.3.3) seems to confirm this

[119]. From the natural draw ratio from the optical measurement, it would

therefore be expected that the high molecular mass R2 materials perform

better than their low molecular mass counterparts, and that bi-HMHB per-

forms better than the other bimodals, in fact, bi-HMHB should perform as

good as R2-HMHB. These results will be compared in the next two chapters

to the mechanical properties of the materials.

λn,o λn,t σn,o [MPa] σn,t [MPa]

R2-HMHB 3.6 ± 0.2 4.7 ± 0.2 36 ± 6 38.4 ± 0.8
R2-HMLB 3.5 ± 0.2 4.2 ± 0.2 42 ± 2 37 ± 1
R2-LMHB 4.1 ± 0.2 36 ± 3
R2-LMLB 3.9 ± 0.2 4.6 ± 0.4 39 ± 7 37 ± 6
Bi-HMHB 3.5 ± 0.2 5.6 ± 0.4 19 ± 3 51 ± 9
Bi-HMLB 4.7 ± 0.2 5.5 ± 0.2 32.4 ± 0.6 48 ± 4
Bi-LMHB 4.4 ± 0.3 5.7 ± 0.2 21 ± 3 43 ± 6
Bi-LMLB 5.0 ± 0.2 5.4 ± 0.2 31 ± 3 42.9 ± 0.9

Table 3.11: Natural draw ratio and stress at natural draw ratio from
optical measurement (λn,o, σn,o) and the Considère tangent construction

(λt,o, σt,o) from tensile measurements at 3 10−2/s, 80◦C
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Figure 3.20: Considère tangent construction to find the natural draw ratio

3.3.2 Characteristics of pre-drawn materials

In the following chapters, the structural changes in the materials such as

crystallinity and orientation during strain hardening and creep will be dis-

cussed. To make a comparison possible of the trends in the different mate-

rials, the structure of the pre-drawn materials is studied. Firstly, the draw

ratio and stress after pre-drawing are measured and given in table 3.12. At

135 mm extension, one would expect a draw ratio of 6. However, the actual

draw ratio, as measured from ink dots placed on the samples, is lower. For

the R2 materials, it is around 4.5. For the bimodal materials, it is higher,

and it reaches the expected value of 6 for bi-LMLB. This is interesting as

the R2 materials are expected to have a higher effective network density,

and bi-LMLB is the material that is expected to have the lowest effective

network density. The stress after pre-drawing is generally higher for the low

branched materials.

Thermal analysis on the pre-drawn samples shows that the crystallinity

according to DSC stays very similar in most cases (see table 3.13). The

trends seen for the crystallinity of the powder and sheet materials are the

same for the pre-drawn materials (a higher branch content means a lower

crystallinity). The same can be seen for the lamellar thickness.

The crystallinity was also checked using the density gradient column (ta-

ble 3.14). It has decreased slightly compared to the compression moulded
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λ σ [MPa]

R2-HMHB 4.5 ± 0.2 49 ± 2
R2-HMLB 4.7 ± 0.2 58 ± 1
R2-LMHB 4.6 ± 0.2 40 ± 3
R2-LMLB 4.6 ± 0.2 46.5 ± 0.9
bi-HMHB 5.0 ± 0.2 44.5 ± 0.9
bi-HMLB 5.3 ± 0.2 51 ± 1
bi-LMHB 5.4 ± 0.2 41.0 ± 0.8
bi-LMLB 6.0 ± 0.2 52 ± 1

Table 3.12: Draw ratio and stress of the materials after pre-drawing

∆Hf [J/g] Tm [◦C] Tα [◦C] Xc,h [%] Lc [10−8 m]

R2-HMHB 111 ± 2 120 65 38.4 ± 0.8 1.05 ± 0.02
R2-HMLB 135 ± 3 126 71 47 ± 1 1.34 ± 0.02
R2-LMHB 111 ± 2 121 64 38.4 ± 0.8 1.07 ± 0.02
R2-LMLB 138 ± 3 124 71 48 ± 1 1.23 ± 0.02
bi-HMHB 169 ± 3 128 71 58 ± 1 1.48 ± 0.02
bi-HMLB 195 ± 4 131 80 67 ± 1 1.85 ± 0.02
bi-LMHB 171 ± 3 127 70 59 ± 1 1.48 ± 0.02
bi-LMLB 185 ± 4 130 76 64 ± 1 1.76 ± 0.02

Table 3.13: Results of thermal analysis at 10◦C/min for pre-drawn
materials. Precision on the temperatures in ± 1 ◦C
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materials and the powder materials. This decrease is stronger for the low

branched bimodal materials. Table 3.12 also shows the birefringence after

pre-drawing for the materials. The birefringence is higher in low branched

materials, and similar for corresponding bimodal and R2 materials. The

overall orientation appears to be dependent on the branch content of the

high molecular mass, branched fraction, independently of whether a low

molecular mass, linear fraction is present.

Xc,d [%] ∆ n

R2-HMHB 0.041 ± 0.001
R2-HMLB 0.024 ± 0.001
R2-LMHB 0.039 ± 0.001
R2-LMLB 0.043 ± 0.001
bi-HMHB 60.4 ± 0.1 0.043 ± 0.001
bi-HMLB 64.0 ± 0.1 0.046 ± 0.001
bi-LMHB 61.3 ± 0.1 0.042 ± 0.001
bi-LMLB 63.5 ± 0.1 0.044 ± 0.001

Table 3.14: Crystallinity from density and birefringence of the materials
after pre-drawing

After pre-drawing, the Raman orientation is measured again. The results

are given in table 3.15 and table 3.16. Table 3.15 summarises the qualitative

Raman parameters to allow for comparison with the compression moulded

sheets, table 3.9. 1-Iyy/Izz has increased in the amorphous phase after pre-

drawing compared to the compression moulded sheets, except for bi-LMLB,

where it has stayed constant. In the crystalline phase, it has increased for

all the bimodal materials to the same amount, very close to 1. The < P200 >

order parameters cannot be calculated for the amorphous phase, because

the intensity of the 1080 cm−1 peak is too low. < P200 > is the same

for all the bimodal materials, both for 1130 cm−1 and 1420 cm−1. This

implies that the orientation in the amorphous phase is also similar in all

bimodal materials, even though the draw ratio after pre-drawing is lower

for bi-HMHB and higher for bi-LMLB.
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1-Iyy/Izz
1080 cm−1 1130 cm−1 1420 cm−1

bi-HMHB 0.60 ± 0.04 0.86 ± 0.06 0.93 ± 0.06
bi-HMLB 0.6 ± 0.1 0.85 ± 0.06 0.93 ± 0.07
bi-LMHB 0.6 ± 0.1 0.85 ± 0.06 0.92 ± 0.06
bi-LMLB 0.5 ± 0.1 0.84 ± 0.06 0.92 ± 0.06

Table 3.15: Qualitative orientation parameters from Raman for the
pre-drawn bimodal materials

< P200 >
1130 cm−1 1420 cm−1

bi-HMHB 0.47 ± 0.07 0.66 ± 0.05
bi-HMLB 0.51 ± 0.04 0.69 ± 0.05
bi-LMHB 0.55 ± 0.04 0.71 ± 0.05
bi-LMLB 0.46 ± 0.05 0.66 ± 0.07

Table 3.16: Order parameters of the bimodal materials after pre-drawing

3.4 Molecular mass between entanglements

The molecular mass between entanglements in the melt can be predicted

from the characteristics of the polymers, based on the work of Larson et

al. and Fetters et al. [182–184]. Their model is optimised for branched

polymers, so it will only be applied to the R2 materials. The input pa-

rameters for the model are the molar mass of the comonomer Mw,mono (for

butene this is 56.11 g/mol), the molar mass of ethylene Mw,e (28 g/mol),

the universal gas constant Ru (8.314 J/(mol K)), the temperature T in K

(taken as 423 K), the length of the comonomer in number of carbons lcm (4

in the case of butene) and finally the mass fraction of butene in the polymer

wc and the density in the melt. Knowing these parameters, the molecular

mass between entanglements Me can be calculated as

Me =
4

5

ρRuT

G0
N

, (3.2)

with

G0
N = 24820m−3.49b , (3.3)

formb, the molecular mass per backbone bond, between 14 and 28 g/mol.
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Equation 3.3 is an empirical correlation based on experimental results listed

in literature [184]. Equation 3.2 is based on the tube model. In this model,

the molecules surrounding a chain in a highly entangled melt confine the

chain so it can only move in a tube-like region [185]. mb can be calculated

using

mb =
ncMw,mono +Mw,e(1− nc)

2
, (3.4)

with nc the comonomer content in molar fraction, calculated from the

mass fraction of butene:

nc =
−2wc

wc(l − 2)− lcm
. (3.5)

The results for nc and mb are given in table 3.17. Assuming a melt

density for polyethylene melts is around 780 kg/m3 at 150◦C [186], the

molecular mass between entanglements can be calculated to be 9 ± 2 102

g/mol for all the R2 materials. The reference value for HDPE is 1250

g/mol [106]. The model used, however, does not take into account the

chain stiffness, as this only contributes to a lesser extent to the entanglement

density [11]. With increased branch content, the average thickness of the

chain also increases. The contour length density L
V

, the chain contour length

per unit volume, can be calculated as

L

V
=

M2
wl0

Naρm0

, (3.6)

where l0 is the bond length and Na Avogadro’s number [187]. This is

expected to be highest for the HMHB materials, and lowest for the LMLB

materials.

wc % nc % mb g/mol

R2-HMHB 4.60 2.30 14.33
R2-HMLB 2.00 1.00 14.14
R2-LMHB 5.70 2.86 14.41
R2-LMLB 3.10 1.54 14.22

Table 3.17: Mass fraction of butene, comonomer content and molecular
mass per backbone bond, calculated from the polymer characteristics
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To find an experimental value for the molecular mass between entan-

glements, Litvinov et al. use melt state proton NMR, and specifically the

T2 relaxation signal [106]. In NMR, the T2 relaxation is the transverse

magnetisation relaxation. If the magnetic field applied is oriented in the z

direction, the T2 relaxation is the relaxation of the component of the re-

sulting nuclear spin magnetisation in the xy plane. This relaxation is more

efficient when the strength of the nuclear spin interactions is higher. An

increase in the interaction strength can be caused by anisotropic chain mo-

tions, due to the topological constraints imposed on a molecular chain by

an entanglement [188]. Hence the efficiency of the T2 relaxation is a mea-

sure of the number of entanglements. In the case of infinitely long chains,

the molecular mass between entanglements is found to be 1760 ± 80 g/mol

using this technique [106]. PEs with different molecular masses were tested

and Me was extrapolated to infinitely long chains because only for that situ-

ation one can assume that all the network junctions will persist throughout

the duration of the experiment.

In the framework of this PhD, a similar technique was applied to find Me.

This work was done by Victor Litvinov at SABIC (Geleen, Netherlands).

In this case solid state NMR was used. In the solid state, the topologi-

cal constraints determining the T2 relaxation include crystals. When the

temperature approaches the melting temperature, this crystal contribution

decreases. Therefore, to find the network junctions originating purely from

entanglements, the T2 relaxation is studied as a function of crystallinity,

and Me in the amorphous phase is calculated from the extrapolation to

zero crystallinity. The results for the R2 and bimodal materials studied in

this work are given in table 3.18. 1/Tam
2 , the inverse of the T2 relaxation

time for the amorphous phase as a whole, is higher for the R2 materials than

for the bimodal materials. So T2 is shorter for the R2 materials. A low T2

implies a high Me; the molecular mass between entanglements is lower for

the R2 materials. The mass fraction of network chains in the amorphous

phase is higher for the R2 materials than for the bimodal materials. Within

the network chains, Me is nearly 50 % smaller than in the amorphous phase

as a whole for the bimodal materials, taking it closer to the values for R2.

By taking into account the crystallinity of the materials, 1/2M total
e , the to-
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tal network density, can be calculated. This makes the difference between

the bimodal materials and the R2 materials larger. The available network

density is 3 to 4 times higher in the R2 materials than in the bimodal ma-

terials. This illustrates clearly how the low molecular mass fraction in the

bimodal materials acts to thin the entanglement network.

Amorphous phase Network chains in amorphous phase
1/Tam

2 Frac-
tion

1/Tnet
2 Me 1/2Mam

e 1/2M total
e

[ms−1] [wt%] [ms−1] [g/mol] [mmol/kg] [mmol/kg]

R2-HMHB 0.68 89 ± 3 0.70 2060 237 127 ± 5
R2-HMLB 0.68 90 ± 3 0.70 2060 237 117 ± 5
R2-LMHB 0.59 82 ± 3 0.70 2060 205 109 ± 5
R2-LMLB 0.65 83 ± 3 0.73 1970 226 111 ± 5
bi-HMHB 0.29 54 ± 3 0.52 2760 101 38 ± 2
bi-HMLB 0.31 55 ± 3 0.53 2710 108 35 ± 2
bi-LMHB 0.24 50 ± 3 0.45 3190 84 31 ± 2
bi-LMLB 0.26 51 ± 3 0.48 2990 91 31 ± 2

Table 3.18: T2 relaxation parameters for the amorphous phase (am) and
the network chains (net), with an error of approximately 10%, mass

fraction of the network chains in the amorphous phase, molecular mass
between entanglements Me (with an error of approximately 5%) and

average density of chain entanglements, supposing a functionality of chain
entanglements of four 1/2Me, for the amorphous phase and, taking into
account the crystallinity as measured from the density of the sheets, in

total. Data from unpublished work by Litvinov et al.

It has to be stressed that these results only describe the available net-

work density, and caution has to be taken when drawing conclusions about

the effective network density from this. To translate the available network

density to effective network density, the stability of the entanglements over

time needs to be studied. This stability is governed by the friction between

chains. The melt friction has been found to increase with branch content

[20]. Hence in the solid state amorphous phase, the highly branched ma-

terials are expected to have a higher friction between chains than the low

branched materials. This also indicates that the friction between tie chains

and crystals in the solidified, crystallised material will be higher for a high

branched material than for a low branched material. Hence a high branch
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content and a high number of tie chains make the available network more

stable over time, and hence increase the effective network density. It is

thus expected that within one family of materials, the HMHB materials

will have the highest effective network density. Because the difference in

available network density is so high between the R2 materials and the bi-

modal materials, it is also expected that the effective network density is

higher in the R2 materials than in the bimodal materials.

3.5 Summary

In summary, the materials behave as expected from the literature and the

mechanisms explained in chapter 1. The crystallinity and lamellar thick-

ness rank with branch content and are higher in the bimodals, which contain

51% low branched fraction. Higher crystallinity leads to a higher stress at

the first yield point. The natural draw ratio is challenging to measure for

these materials. In the bimodal materials, it is lower for the highly branched

materials. The stress at the natural draw ratio is higher for the bimodal ma-

terials, and decreases with increasing strain rate. The materials are highly

oriented after drawing, which can be seen both from the birefringence and

the Raman response. The orientation in the different phases as measured

by Raman is similar for all bimodals. The available entanglement density

is nearly three times higher for the reactor 2 materials than for the bi-

modal materials, but friction needs to be taken into account when making

conclusions about the effective entanglement density.
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Chapter 4

Results I: Bimodal

polyethylene

Bimodal polyethylenes are the current industry standard for pipe appli-

cations. A bimodal polyethylene is a reactor blend of a low molecular

mass, linear polyethylene and a high molecular mass, short chain branched

polyethylene. The low molecular mass fraction reduces the melt viscosity,

which enhances processing capabilities. The high molecular mass fraction

increases the resistance to creep and hence slow crack growth. For indus-

trial purposes, the goal is to optimise fractions of these two components,

along with the moelcular architecture of the high molecular mass fraction.

In this chapter, the influence of varying the branch content and the molec-

ular mass in the high molecular mass fraction of the bimodal polyethylenes

on their deformation behaviour is studied. Firstly, their creep behaviour

is described and discussed. Secondly, their strain hardening behaviour is

described and discussed. Finally, a comparison is made between the two

types of deformation modes.

4.1 Creep behaviour

A material held at a fixed stress undergoes creep deformation. One can

imagine this to be similar to the situation of a fibril at the tip of the crack

in a pipe segment. The pipe is under constant internal pressure, creating

a hoop stress in the pipe walls that causes the fibril to deform. The rate

of deformation is stress and material dependent. Rose et al. suggested to
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4.1 Creep behaviour

use the creep rate deceleration factor (CRDF) as a measure for slow crack

growth, as discussed in section 1.4.2 [86]. The creep rate deceleration factor

is a measure of how fast the deformation rate decreases with increasing draw

ratio. The more the deformation rate decreases (so the more negative the

creep rate deceleration factor), the more resistant to slow crack growth a

material is. To enable comparison with the strain hardening tests and to

be above the α-relaxation temperature, the tests are done at 80◦C.

4.1.1 The influence of stress on the shape of the creep

curves

Figure 4.1 gives the load as a function of time during a creep test for bi-

HMHB. The first part of the test is always the same, as the material is

extended until the starting creep stress (given in the legend). From the

point this stress is reached, the Instron keeps the load constant. Figure 4.2

shows the extension as a function of time. After the starting creep stress is

reached, the material extends more for higher starting creep stresses.
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Figure 4.1: Load as a function of time during creep tests starting at a
given stress for bi-HMHB

Normalising the results to take into account sample dimensions results

in figures 4.3 and 4.4. The draw ratio displays the same trends as the ex-

tension. The stress increases during the test as it depends on the load (held

constant) and the cross section (decreasing due to increasing draw ratio).
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4. RESULTS I: BIMODAL POLYETHYLENE

The stress chosen to characterise the creep test is the stress at the start of

the creep. Figure 4.5 shows the strain rate decay as a function of time.
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Figure 4.2: Extension as a function of time during creep tests starting at a
given stress for bi-HMHB
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Figure 4.3: Draw ratio as a function of time during creep tests starting at
a given stress for bi-HMHB

To compare different materials using one parameter - the creep rate de-

celeration factor - the strain rate is plotted as a function of draw ratio. This

is called a Sherby-Dorn curve. The strain rate decay over time is similar

for the materials, but the draw ratio depends on the starting creep stress.
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Figure 4.4: Stress as a function of time during creep tests starting at a
given stress for bi-HMHB
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Figure 4.5: Strain rate as a function of time during creep tests starting at
a given stress for bi-HMHB
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4. RESULTS I: BIMODAL POLYETHYLENE

The Sherby-Dorn curves at different starting creep stresses are given in fig-

ures 4.6, 4.7, 4.8 and 4.9 for bi-HMHB, bi-HMLB, bi-LMHB and bi-LMLB

respectively. At low stresses, after the initial strain hardening at 10−3/s,

there is an almost instantaneous drop in strain rate with draw ratio (e.g.,

creep at 29 MPa for bi-LMHB and creep at 53 and 54 MPa for bi-LMLB).

Then, the strain rate decreases with draw ratio linearly (the noise at the

low strain rate end of the curves signals the region where the experimental

equipment is not longer able to distinguish between extension data points).

For higher stresses, the strain rate decreases with draw ratio more or less

linearly from the start of the creep test. The creep rate deceleration factor

is calculated from the high stress, linear part of the curves. To find the

linear part, a linear least square fitting is applied to the data from the start

of constant load. Then, the first data points are taken away and the rest

of the data is fitted again until the fit visually matches the data. Due to

the equipment used, data points taken at strain rates under 10−7/s are less

reliable so small variations from linearity can be visible in some of this data,

and hence this data is ignored when doing the linear fitting. The CRDF is

then calculated using equation 1.19 over this range of data.
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Figure 4.6: Strain rate as a function of draw ratio for bi-HMHB
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Figure 4.7: Strain rate as a function of draw ratio for bi-HMLB

4 6 8 10 12 14

10
-6

10
-4

10
-2

λ

ε̇
[/

s]

29 MPa
70 MPa
89 MPa
106 MPa
110 MPa
113 MPa
177 MPa
184 MPa

Figure 4.8: Strain rate as a function of draw ratio for bi-LMHB

103



4. RESULTS I: BIMODAL POLYETHYLENE

4 6 8 10 12 14

10
-6

10
-4

10
-2

λ

ε̇
[/

s]

53 MPa
54 MPa
81 MPa
111 MPa
144 MPa
172 MPa

Figure 4.9: Strain rate as a function of draw ratio for bi-LMLB

4.1.2 The influence of starting strain rate on the creep

behaviour

The sensitivity of the Sherby-Dorn curves to the starting strain rate of the

creep test is studied. To achieve the starting creep stress, the specimen is

extended at a constant strain rate of 10−3/s. This strain rate is chosen be-

cause it is in the middle of the strain rate range accessible for these materials

(as explained in section 4.2). The influence of this choice on the resulting

creep rate deceleration factor is studied. Lowering the initial strain rate

to 10−4/s leads to a negligible change in creep rate deceleration factor for

bi-HMLB. Figure 4.10 shows the Sherby-Dorn curves for three bi-HMLB

specimens at similar starting creep stress. The red and the green curve

start at a lower strain rate than the blue curve. The curves are shifted

compared to each other in terms of draw ratio. At a lower strain rate, a

higher draw ratio is needed to reach the same stress. However, between

10−3/s and 10−4/s, it seems that this effect is not distinguishable due to the

variation in draw ratio after pre-drawing between the samples at one strain

rate. The Sherby-Dorn curves are shifted but have the same slope.

This is confirmed for bi-HMLB at a stress of around 170 MPa (see figure

4.11) and for bi-LMHB at a stress of around 60 MPa (see figure 4.12) and

115 MPa (see figure 4.13). In figure 4.13 a strain rate of 10−3/s is compared

to a starting strain rate of 10−5/s, and the same conclusions are reached. It
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Figure 4.10: Sherby-Dorn plots for bi-HMLB at similar stresses, starting
at different strain rates

can be concluded that a variation in starting strain rate, which also influ-

ences the time at elevated temperature, does not influence the shape of the

Sherby-Dorn curves significantly.
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Figure 4.11: Sherby-Dorn plots for bi-HMLB at similar stresses, starting
at different strain rates

4.1.3 Influence of stress history on the creep behaviour

Creep tests are performed from different starting stresses. Before the test

can start, the material is drawn at a constant strain rate until the starting

stress is reached. This implies that for creep tests with different starting

stresses, the starting draw ratio is also different. The starting orientation

of the material is different, depending on the starting draw ratio and thus
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Figure 4.12: Sherby-Dorn plots for bi-LMHB at similar stresses, starting
at different strain rates
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Figure 4.13: Sherby-Dorn plots for bi-LMHB at similar stresses, starting
at different strain rates
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4.1 Creep behaviour

the starting stress of the creep test. At high stresses, the material is highly

drawn before the creep test starts. The influence of the structure evolu-

tion during strain hardening on the CRDF is studied by doing creep tests,

at the same starting draw ratio but a different starting stress. A way to

reach the same stress for different draw ratios is stress relaxation. Bi-HMLB

samples are drawn until a certain draw ratio, then stress relaxed, and fi-

nally subjected to creep at a stress between the maximum stress previously

reached and the stress after stress relaxation. The creep stress at which the

pre-stressed sample can be tested depends on the maximum stress reached

during strain hardening, time constraints and the speed of stress relaxation.

Ideally, one would draw a sample until the maximum draw ratio and then

test it at lower and lower creep stresses. However, stress relaxation until

a very low stress from the high stress developed after pre-stressing is not

practically possible. Therefore, samples are stretched to different draw ra-

tios and tested at stresses equal to or higher than the stress reached after

around 70 103s.

A schematic of such a test is shown on figure 4.14. For this test, the

draw ratio changes by 0.04 over a creep test with a duration of 105s. The

resulting CRDF is too low to calculate reliably. In figure 4.15, a repeat of

this test is shown, with a similar result (a draw ratio change of 0.02 over

103s, CRDF again too low to calculate reliably). Comparing this to creep

tests done on samples that were not pre-stressed shows that the creep be-

haviour is different (see figure 4.16). The CRDF of these samples is -5.0 ±
0.1 for 50 MPa and -2.03 ± 0.06 for 84 MPa. The draw ratio reached in the

84 MPa test is similar to the draw ratio of the pre-stressed samples.

Figure 4.17 describes another creep test on pre-stressed material, at a

stress of 118 MPa. The draw ratio changes by 0.03 over 105s and the CRDF

is again too small to calculate reliably. Comparing this result to creep on

samples that are not pre-stressed, shown in figure 4.18, leads to the same

conclusions. The CRDF for these tests is -0.92 ± 0.03 for creep at 113 MPa

and -0.89 ± 0.03 for creep at 118 MPa. The creep rate of the pre-stressed

sample is again lower. The draw ratio in the pre-stressed creep test is sim-

ilar to the draw ratio reached in these tests.
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σ = 155 MPa
λ = 9.2

σ = 76 MPa
λ = 9.2

σ = 77 MPa

λ = 9.2

0 56 173
x 103Time [s]

σ
[M

P
a]

Figure 4.14: Schematic of creep of a high draw ratio specimen (λ = 9.2) at
low stress (σ = 69 MPa)
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Figure 4.15: Schematic of creep of a high draw ratio specimen (λ = 9.1) at
low stress (σ = 77 MPa)
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Figure 4.16: Comparison of creep for samples at low (solid) and high
(dashed line) draw ratio, for stresses around 70 MPa
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Figure 4.17: Schematic of creep of a high draw ratio specimen (λ = 11.8)
at low stress (σ = 117 MPa)
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Figure 4.18: Comparison of creep for samples at low (solid) and high
(dashed line) draw ratio, for stresses around 120 MPa

Finally, a pre-stressed creep test was performed at a draw ratio close to

the maximum draw ratio that can be reached in the experimental set up for

bi-HMLB. The description of the test is given in figure 4.19. The draw ratio

changes by 0.4 over 5 104s. The CRDF is -2.35 ± 0.07. From a comparison

with classic creep tests at similar stresses (see figure 4.20) it can be seen

that the draw ratio is similar to the draw ratios reached in the classic tests.

Pre-stressed samples follow the same trend as ‘classic’ samples (increas-

ing CRDF with increasing stress), but their resistance to creep is higher than

the ‘classic’ samples. They are not on the same stress-strain-strain rate sur-

face as the ‘classic’ materials, as they do not reach the same strain rate at a

similar stress and draw ratio. The difference between a pre-stressed sample
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Figure 4.19: Schematic of creep of a high draw ratio specimen (λ = 12.2)
at low stress (σ = 171 MPa)
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Figure 4.20: Comparison of creep for samples at low (solid) and high
(dashed line) draw ratio, for stresses around 170 MPa
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4.1 Creep behaviour

before and after stress relaxation is studied to understand this behaviour.

The results are given in table 4.1. The birefringence and the crystallinity

are not significantly different before and after stress relaxation, but the

lamellar thickness increases. To study whether this is an effect of the stress

relaxation, creep tests are performed before and after stress relaxation, but

this time, after the stress relaxation, they are drawn to a higher draw ratio

than the previous maximum draw ratio reached before creep. Sherby-Dorn

curves for bi-HMHB subjected to creep at similar stress, with and without

stress relaxation, are shown in figures 4.21 and 4.22. The resulting Sherby-

Dorn curves are very similar. The stress relaxation has no influence on the

creep. This is also reflected in the creep rate deceleration factor. For creep

starting at 118 MPa, the CRDF is -1.87 ± 0.06 without stress relaxation

and -1.93 ± 0.06 with stress relaxation. For creep starting around 122 MPa,

the CRDF is -2.06 ± 0.06 without stress relaxation and -1.95 ± 0.06 with

stress relaxation.

∆n Xc,h [%] Lc [mm]

Before stress relaxation
0.050 ± 0.001 71 ± 1 2.17 ± 0.02 10−8

After stress relaxation
0.053 ± 0.001 73 ± 1 2.42 ± 0.02 10−8

Table 4.1: Birefringence, crystallinity and crystal thickness before and
after stress relaxation at a draw ratio of around 9. Before stress

relaxation: bi-HMLB drawn at 1.45 10−3/s until 241 ± 5 MPa and a draw
ratio of 9.2 ± 0.2. After stress relaxation: bi-HMLB drawn at 1.45 10−3/s
until 260 ± 5 MPa and a draw ratio of 8.0 ± 0.5, then stress relaxed for

61000s until 126 ± 3 MPa

Sherby-Dorn curves for bi-HMLB subjected to creep at similar stress,

with and without stress relaxation, are shown in figure 4.23. The same

conclusion follows as for bi-HMHB; the stress relaxation does not influence

the creep. Again, this is reflected in the CRDF. For creep starting between

97 MPa and 112 MPa, the CRDF is around -1.0 ± 0.1 without stress relax-

ation. After 5 hours of stress relaxation and creep at 103.9 MPa, the CRDF

is -0.93 ± 0.03. After 50 hours of stress relaxation and creep at 110 MPa,

the CRDF is -0.89 ± 0.03. No significant difference in CRDF can be found

111



4. RESULTS I: BIMODAL POLYETHYLENE

4 6 8 10 12 14
10

-8

10
-6

10
-4

10
-2

λ

ε̇
[/

s] 123 MPa
122 MPa

Figure 4.21: Sherby-Dorn curves for bi-HMHB, dashed line after stress
relaxation for 17 hours
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Figure 4.22: Sherby-Dorn curves for bi-HMHB, dashed line after stress
relaxation for 121 hours
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4.1 Creep behaviour

before and after stress relaxation.
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Figure 4.23: Sherby-Dorn curves for bi-HMLB, dashed line after stress
relaxation for 5 hours (103.9 MPa) and 50 hours (110.4 MPa)

From these results, it is clear that it is not the stress relaxation, but the

pre-stress that has a positive effect on the resistance to creep. A material

subjected to creep at a lower stress than the maximum stress it has been

drawn to is more resistant to creep than a material subjected to creep at a

higher stress than the maximum stress is has been drawn to. The structure

developed at high stress is more resistance to creep, and is stable during

stress relaxation. In section 4.2.6, it will be seen that after strain hardening

until a higher stress, the material retains a larger proportion of that stress.

In section 4.2.5, it will be seen that the birefringence increases with draw

ratio. Hence the better resistance to creep at a higher starting draw ratio can

be ascribed to the formation and development of chain extended crystals.

These are more able to retain the stress and hence provide a better resistance

to creep.

4.1.4 Influence of stress on the creep rate deceleration

factor

The creep rate deceleration factor, calculated from the linear part of the

Sherby-Dorn curves, as a function of stress is given for the four bimodal

materials in figure 4.24. Overall, the creep resistance decreases with in-

creasing starting creep stress. Bi-HMHB has a lower creep rate deceleration
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4. RESULTS I: BIMODAL POLYETHYLENE

factor (and hence a better resistance to creep) than the other three bimodal

materials, which have the same creep rate deceleration factor. It appears

that only a combination of high molecular mass and high branching in-

creases the resistance to creep. At stresses close to the final stress after

pre-drawing (see table 3.12), the creep rate deceleration factor drops dra-

matically, as can be seen for bi-LMHB and bi-LMLB.
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Figure 4.24: Creep rate deceleration factor as a function of stress for the
bimodal materials

Limits to the stress range for the calculation of the creep rate

deceleration factor

Figure 4.25 shows the draw ratio as a function of time for bi-HMHB at high

(starting) creep stresses. If failure occurs before the Sherby-Dorn curve

reaches the linear part, the creep rate deceleration factor cannot be calcu-

lated. For bi-HMHB, failure occurs after creep at an average strain rate of

1.9 ± 0.7 10−4, an average draw ratio of 12.1 ± 0.2 and an average stress

of 223 ± 10 MPa. The highest stress at which the creep rate deceleration

factor can be measured is thus when the material fails during the linear part

of the Sherby-Dorn curve. The lowest stress at which the creep rate decel-

eration factor can be measured is in theory the stress after pre-drawing,

if the accuracy of the testing equipment allows to determine the extension

difference over time.
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Figure 4.25: Draw ratio as a function of time for bi-HMHB, during creep
at high stress

4.1.5 Stress relaxation after creep

Stress relaxation is done after creep. Figure 4.26 gives a schematic of this

test. The results are given in table 4.2. The stress retention after 1000s is

similar for all the materials at all stresses. The same can be concluded for

the stress retention after 10000s. Section 4.2.6 will identify the determining

factor for stress relaxation.

Time

σ

σc σmax

Figure 4.26: Schematic of the creep followed by stress relaxation test

4.1.6 Influence of temperature on creep

The influence of temperature on creep behaviour is studied for bi-HMHB

and bi-HMLB. For bi-HMHB, creep behaviour is compared at 70◦C, 80◦C

and 90◦C. The creep behaviour at 70◦C and 80◦C at similar starting creep

stresses is compared in figure 4.27. The CRDF at 80◦C at 93 and 113 MPa

is -2.16 ± 0.06 and -2.26 ± 0.07 respectively. The CRDF at 70◦C, for a
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σc λc σmax λmax ε̇max
σ1000s
σmax

σ10000s
σmax

[MPa] [MPa] [/s]

bi-HMHB 51 5.6 72 7.6 2.63 10−7 0.99 0.96
114 8.5 147 10.7 2.99 10−7 0.99 0.95

bi-HMLB 58 5.9 85 8.3 5.51 10−7 0.98 0.93
132 9.3 186 12.8 5.96 10−7 0.98 0.91

bi-LMHB 59 6.8 86 9.5 4.26 10−7 0.99 0.94
bi-LMLB 46 5.4 72 8.1 4.25 10−7 0.99 0.94

59 6.5 86 9.3 4.35 10−7 0.99 0.94

Table 4.2: Parameters of stress relaxation after creep tests. The standard
error on the stresses is 2%, the standard error on the draw ratios 0.2 and

the error on the stress ratios is 0.03

stress in between - 107 MPa, is -2.24 ± 0.07. So the behaviour at 70◦C is

not significantly different for this material and stress level.
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Figure 4.27: Sherby-Dorn curves at 70◦C (dashed line) and 80◦C (solid
line) for bi-HMHB

For bi-HMHB at 90◦C, two stress levels are studied, the first one around

40 MPa (figure 4.28) and the second one around 130 MPa (figure 4.29). For

the low stress level, the CRDF is expected to be between -5.0 ± 0.1 and

-3.12 ± 0.09 based on the 80◦C tests. For 90◦C, the CRDF is -2.21 ± 0.07

at a stress of 46 MPa. For the high stress level, the CRDF is expected to be

between -2.06 ± 0.06 and -2.04 ± 0.06 based on the 80◦C tests. For 90◦C,

the CRDF is -1.52 ± 0.05 at a stress of 130 MPa. In both cases, the creep

resistance is significantly lower at this temperature and stress level.
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Figure 4.28: Sherby-Dorn curves at 80◦C (solid line) and 90◦C (dashed
line) for bi-HMHB
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Figure 4.29: Sherby-Dorn curves at 80◦C (solid line) and 90◦C (dashed
line) for bi-HMHB
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The creep behaviour of bi-HMLB is compared at 25◦C, 70◦C, 80◦C and

90◦C. A comparison of creep at 25◦C and 80◦C for different stresses is shown

in figures 4.30 and 4.31. Around 115 MPa, room temperature creep is lower

than creep at 80◦C creep, but does not result in a linear region where the

CRDF can be calculated (the same is observed for a stress of around 160

MPa). At a higher stress, the CRDF can be calculated, which results in a

CRDF of -1.06 ± 0.03 for creep starting at 226 MPa for 25◦C. For compar-

ison, at 80◦C, a stress of 187 MPa results in a CRDF of -0.65 ± 0.02. The

creep resistance at 25◦C is higher than at 80◦C.
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Figure 4.30: Sherby-Dorn curves at 25◦C (dashed line) and 80◦C (solid
line) for bi-HMLB
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Figure 4.31: Sherby-Dorn curves at 25◦C (dashed line) and 80◦C (solid
line) for bi-HMLB

The same trend can be seen for tests at 70◦C. Figure 4.32 shows a com-

118



4.1 Creep behaviour

parison of creep tests at 70◦C and 80◦C. No significant difference is seen

between the test at 70◦C and the tests at 80◦C.
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Figure 4.32: Sherby-Dorn curves at 70◦C (dashed line) and 80◦C (solid
line) for bi-HMLB

Finally, tests were done at 90◦C and compared to the creep behaviour at

80◦C. This is shown in figure 4.33. The lowest measurable CRDF at 80◦C

is -5.4 ± 0.2, for a stress of 38 MPa. At a stress of 30 MPa, the CRDF can

still be measured a creep test at 90◦C, with a result of -1.98 ± 0.06. In con-

clusion, for both bi-HMHB and bi-HMLB, there is no significant difference

between the creep behaviour at 70◦C and at 80◦C, but the resistance to

creep drops significantly above 90◦C. The mobility of the chains increases

with increasing temperature, which explains the lower resistance to creep

at 90◦C. However, why the creep resistance does not change between 70◦C

and 80◦C is not clear. As will be seen in section 4.2.7, the sensitivity to

temperature of the strain hardening modulus between 70◦C and 90◦C is

approximately linear.We suggest more measurements over a wider range of

temperature should be taken to explore the temperature sensitivity of both

modes of deformation.
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Figure 4.33: Sherby-Dorn curves at 80◦C (solid line) and 90◦C (dashed
line) for bi-HMLB

4.1.7 Discussion: influence of molecular mass and branch

content on the creep behaviour of bimodal polyethy-

lene

The resistance to creep decreases with increasing stress for all materials. At

stresses below and very close to the maximum stress reached during pre-

drawing, there is a dramatic decrease of resistance with stress. At higher

stresses, the slope of the CRDF versus stress curve is much shallower. In

this region, the slope is similar for all the bimodal materials, but bi-HMHB

has a lower CRDF than bi-HMLB, bi-LMHB and bi-LMLB. It appears

that only a combination of high branch content and high molecular mass

reduces the CRDF in this region. Bi-HMHB is expected to have the highest

number of tie molecules out of the four materials. It has a high molecular

mass, making it more likely for the chains to cross multiple lamellae, and

due to the high branch content is has a lower lamellar thickness. The

number of intercrystalline bridges is thus expected to be highest. On top of

that, the friction, whether originating from a branch being pulled over an

entanglement or into a crystal, can be expected to be high in this material

due to the branch content. As could be seen in table 3.18, the available

molecular network is similar for all the bimodals (there is a small increase

for bi-HMHB, but not enough to explain the difference in creep resistance),

but the high number of tie chains combined with high friction leads to a

higher effective network density for bi-HMHB.
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4.2 Strain hardening behaviour

4.2 Strain hardening behaviour

The significance of the strain hardening modulus and its relation to the

effective entanglement network are described in section 1.4.1. The strain

hardening modulus can be obtained using a simple tensile measurement at

constant strain rate and high temperature and has been shown to correlate

with slow crack growth in semi-crystalline polymers [122, 123]. In this

section, the strain hardening behaviour of the bimodal materials is described

and discussed.

4.2.1 Optimisation of the test protocol

Strain hardening measurements are performed by pre-drawing the samples

at a strain rate of 3 10−2/s as described in section 3.3.1, measuring sample

dimensions, setting the strain rate to the desired value and drawing until

failure or until the equipment extension limit. The variation in the resulting

strain hardening curve is discussed and it is checked whether the details of

the protocol have an influence on the resulting strain hardening behaviour.

Variability

The variation in strain hardening behaviour is studied for all the materials

at a strain rate of around 1.45 10−3/s. Repeated tests are shown on figures

4.34, 4.35, 4.36 and 4.37 for bi-HMHB, bi-HMLB, bi-LMHB and bi-LMLB

respectively. A variation of 10% in stress can be expected due to thickness

variations throughout the dumbbell samples, which are maximum 30 µm.

As can be seen on figure 4.34, the difference between samples can be larger

than the expected 10%, sometimes up to 30%, especially at higher strain

rates. To reduce the standard error, up to 7 repeated measurements were

performed.

Influence of opening the oven

To be able to check the specimen dimensions after pre-drawing, the oven

needs to be opened. The influence of this (short) temperature shock is stud-

ied. Figure 4.38 shows the comparison between bi-HMLB samples drawn

following the ‘classic’ protocol and samples pre-drawn at 3 10−2/s, then
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Figure 4.34: Variability of the strain hardening at a strain rate of
approximately 1.45 10−3/s for bi-HMHB
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Figure 4.35: Variability of the strain hardening at a strain rate of
approximately 1.45 10−3/s for bi-HMLB
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Figure 4.36: Variability of the strain hardening at a strain rate of
approximately 1.45 10−3/s for bi-LMHB
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Figure 4.37: Variability of the strain hardening at a strain rate of
approximately 1.45 10−3/s for bi-LMLB

drawn at approximately 1.45 10−3/s but without opening the oven to check

sample dimensions in between. The strain hardening behaviour agrees. It

is concluded that there is no significant influence of opening the oven.
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Figure 4.38: ‘Classic’ strain hardening protocol versus strain hardening
without opening the oven for bi-HMLB

Influence of stress relaxation during dimension check

To be able to check the specimen dimensions after pre-drawing, the oven

needs to be opened and the specimen stress relaxes for a couple of minutes

during which the dimensions are checked. The influence of this stress re-

laxation is studied. Figure 4.39 shows the comparison between bi-HMLB

samples drawn following the ‘classic’ protocol and samples pre-drawn at 3

10−2/s, drawn at approximately 1.45 10−3/s, without opening the oven to
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check sample dimensions in between, but with stress relaxation for 7 min-

utes. The strain hardening behaviour agrees. It is concluded that there is

no significant influence of the stress relaxation during the dimension check.
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Figure 4.39: ‘Classic’ strain hardening protocol versus strain hardening
without opening the oven, with stress relaxation, for bi-HMLB

Influence of pre-drawing strain rate

All materials can be drawn from isotropic into the strain hardening region

at a strain rate of around 3 10−2/s. For lower strain rates (and sometimes

higher strain rates, depending on the material), some of the materials fail

during the necking process. Therefore it is decided to pre-draw all materi-

als at a strain rate of 3 10−2/s. The effect of this pre-drawing is studied in

the bimodal materials, which can also all be drawn through the neck at a

strain rate of around 1 10−3/s. A comparison is made between the strain

hardening behaviour of the ‘classic’ tests (pre-drawing at 3 10−2/s, dimen-

sion check, drawing at 1 10−3/s) and drawing from isotropic (pre-drawing

and drawing at 1 10−3/s without dimension check in between). The results

are shown in figures 4.40, 4.41, 4.42 and 4.43 for bi-HMHB, bi-HMLB, bi-

LMHB and bi-LMLB respectively. It can be seen that the variation within

the isotropic protocol is slightly smaller except for bi-LMLB, but overall the

strain hardening behaviour is the same as for the classic protocol.
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Figure 4.40: ‘Classic’ strain hardening protocol versus strain hardening
from isotropic for bi-HMHB
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Figure 4.41: ‘Classic’ strain hardening protocol versus strain hardening
from isotropic for bi-HMLB
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Figure 4.42: ‘Classic’ strain hardening protocol versus strain hardening
from isotropic for bi-LMHB
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Figure 4.43: ‘Classic’ strain hardening protocol versus strain hardening
from isotropic for bi-LMLB

Influence of test duration

The time duration of the tests for bi-HMLB is given per material in table

4.3. For the other materials, the test durations are similar. For one strain

rate, there is no correlation between measuring time and resulting strain

hardening curve.

ε̇ [/s] Test duration [s]

1.50 10−7 ± 8 10−11 1.45 106

1.60 10−6 ± 8 10−10 7.58 104 ± 6 102

7.00 10−6 ± 1 10−7 9.43 104 ± 6 103

1.40 10−5 ± 4 10−7 5.14 104 ± 1 104

7.30 10−5 ± 2 10−6 8.10 103 ± 2 103

1.38 10−4 ± 2 10−6 6.21 103 ± 1 102

6.83 10−4 ± 7 10−6 1.27 103 ± 4 10−3

1.30 10−3 ± 9 10−20 6.38 102 ± 6 10−1

6.30 10−2 ± 2 10−4 1.26 102 ± 1 100

1.35 10−2 ± 3 10−4 6.24 101 ± 1 100

3.20 10−2 ± 2 10−5 2.35 101 ± 2 10−1

Table 4.3: Average test duration of the strain hardening test (excluding
pre-drawing time) per strain rate for bi-HMLB
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4.2.2 Influence of strain rate on the shape of the strain

hardening curves

The influence of strain rate on the strain hardening of the bimodal materi-

als is studied. Slow crack growth is a process that takes place over several

decades. Hence the strain rates involved are very low and the time scales

very long. The strain hardening tests are accelerated by performing them

at elevated temperature, but the precise time - temperature superposition

parameters are not known. Therefore it is important to understand what

happens to the strain hardening behaviour when the strain rate is lowered,

and whether the ranking of the materials using the strain hardening mod-

ulus changes with strain rate. Industrial tests are performed at constant

cross head speed rather than constant true strain rate, but the correspond-

ing true strain rate lies between 10−2/s at the start of the test and 10−3/s

at the end. In this work, the materials fail quickly after the start of the test

at high strain rates. The limiting upper strain rate at which the behaviour

of the materials can still be assessed is 1.5 10−1/s. At low strain rates, the

tests take over 48 hours, longer than practically possible. The lowest strain

rate used is 1.5 10−6/s, though the occasional test is done at 1.5 10−7/s.

Extension as a function of load for the bimodal materials for different

strain rates is given in figure 4.44. The shape of the curves is different at

different strain rates. At high strain rates, the curves curve upwards. For

low strain rates, load relaxation is observed at the start of the curves. For all

the materials, this relaxation can be observed until a strain rate of around

1.43 10−5/s. Normalising the results over sample dimension as described in

section 1.4.1 results in stress - draw ratio curves, given in figure 4.45. At

strain rates below 1.44 10−5/s, the low molecular mass materials display

a nearly linear stress increase with draw ratio. At higher strain rates, the

upswing in stress is clear and becomes stronger with increasing strain rate.

4.2.3 Calculating the strain hardening modulus

The three strategies described in section 1.4.1; the average slope, the Neo-

Hookean strain measure and the Haward-Thackray model, are used to calcu-
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Figure 4.44: Load as a function of extension for different strain rates for
the bimodals
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Figure 4.45: Stress as a function of draw ratio for different strain rates for
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late the strain hardening modulus Gp. It is shown that there is no significant

difference between the calculations, but the bimodal materials do not fit a

Neo-Hookean model over the entire strain rate range studied.

Average slope

Firstly, the average slope < GK > is calculated for the curves, between draw

ratio 7 and draw ratio 11. This excludes the curves at strain rates below 5

10−6/s, as tests at this strain rate cannot be performed over this draw ratio

range within a practical time scale, and for bi-HMHB, curves above 10−1/s,

as the failure draw ratio at this strain rate and higher is below draw ratio

11. The result is given in figure 4.46. The standard errors over different

tests are too small to be visible on the figure. To show the upswing of the

curves, the average error on individual tests is set out as a function of strain

rate in figure 4.47. For this, the standard error on the average slope of tests

at the same strain rate was averaged. This is essentially a measure of how

linear the stress - draw ratio curves are. It can be seen that the standard

error increases with increasing strain rate, reflecting the higher upswing at

higher strain rates seen in figure 4.45. For the highly branched materials,

the error as a function of strain rate increases approximately linearly. For

the low branched materials, the increase happens more rapidly, suggesting

the upswing in the stress - draw ratio curves with strain rate is more pro-

nounced for these materials.
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Figure 4.46: Average strain hardening modulus as a function of strain rate
for the bimodal materials
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Figure 4.47: Average standard error on average strain hardening modulus
as a function of strain rate

Neo-Hookean strain measure

To calculate the strain hardening modulus using the Neo-Hookean strain

measure (NHSM), the stress is plotted as a function of λ2−1/λ. The result

can be seen in figure 4.48. The linearity of the curves varies with strain

rate. An example is given in figures 4.49, 4.50 and 4.51, where the local

slope of the stress - NHSM curve is given for strain rates of around 5.5

10−6/s, 7 10−4/s and 1.5 10−1/s respectively. It can be seen that the slope

increases at a strain rate of around 1.5 10−1/s. This is reflected in the R2

squared values for the curves, shown in figure 4.52 as a function of strain

rate for the different materials. The R2 squared value drops from a strain

rate of around 10−2/s for all materials. It drops less for the highly branched

materials than for the low branched materials (this can easily be seen when

comparing the R2 squared value around 10−1/s), but the onset of the drop

is not distinguishably different for the materials. For this reason, the strain

hardening modulus based on the Neo-Hookean strain measure is only cal-

culated at strain rates below 10−2/s for the bimodal materials.

From the definitions of < GK > and GNHSM as given in equations 1.13

and 1.17 respectively, it can be derived that

< GK >= GNHSM(λmin + λmax), (4.1)

with λmin = 7 and λmax = 11, the limits used for the calculation of
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Figure 4.48: Comparison of strain hardening curves at similar strain rates
for the bimodal materials
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Figure 4.49: Local slope over the NHSM range for bi-HMLB at a low
strain rate

< GK > above. Figure 4.53 shows < GNHSM >, calculated using equation

4.1 and GNHSM , as a function of strain rate. Comparison with figure 4.46

shows that there is no significant difference; the trends are the same.

Haward-Thackray model

Finally, the strain hardening modulus was calculated using equation 1.18.

This takes into account the non-Gaussian character of the network chains

under deformation. The Haward-Thackray model fits the strain hardening

behaviour well at every strain rate. An example at low strain rate and

high strain rate is given for bi-HMLB in figures 4.54 and 4.55 respectively.

As expected, the number of Kuhn segments increases at lower strain rates,

where equation 1.18 essentially collapses to equation 1.17. This is the region

where the behaviour could be adequately described by the Neo-Hookean

strain measure (assuming the chains to be Gaussian). In order to compare

GHT as measured from the Haward-Thackray model with < GK >, the

average slope is calculated as
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Figure 4.50: Local slope over the NHSM range for bi-HMLB at an
intermediate strain rate. The arrow indicates from where the overall strain

hardening modulus is calculated
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Figure 4.51: Local slope over the NHSM range for bi-HMLB at a high
strain rate. The arrow indicates from where the overall strain hardening

modulus is calculated
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Figure 4.52: R squared value for the least-squares linear fit, calculated on
the data starting from NHSM = 50
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Figure 4.53: < GNHSM > calculated from GNHSM as a function of strain
rate for the bimodal materials
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with λmin and λmax 7 and 11 respectively, as before. This results in

figure 4.56. It can be seen that the results are very close to those for the

average slope and the Neo-Hookean strain measure.

The strain hardening behaviour at every strain rate and for every bi-

modal material can be approximated using the Haward-Thackray model.

This implies that the dynamics of the system are essentially the same over

the range of strain rates and materials studied.
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Figure 4.54: Strain hardening fitted using the Haward-Thackray model for
bi-HMLB of a strain rate of approximately 8 10−5/s
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Figure 4.55: Strain hardening fitted using the Haward-Thackray model for
bi-HMLB of a strain rate of approximately 7 10−2/s
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Figure 4.56: < GHT > calculated from GHT calculated using the
Haward-Thackray model as a function of strain rate for the bimodal

materials

4.2.4 Failure after strain hardening for bi-HMHB

For bi-HMLB, bi-LMHB and bi-LMLB, failure does not occur during the

strain hardening within the extension limits of the Instron (maximum draw

ratio of 15). For bi-HMHB, at higher strain rates, failure occurs consis-

tently. The failure draw ratio and failure stress are shown in figures 4.57

and 4.58 respectively. They both decrease with increasing strain rate. The

results are in line with the results for failure after creep (see section 4.1.4),

though the limited data for failure after creep would prevent detecting sub-

tle differences. Failure is dictated by the number of effective chains crossing

the surface and the force needed to fracture one covalent chain [29]. This is

hence lower for bi-HMHB than for the other materials. From equation 3.6,

it can be expected that the chain contour length is higher for this material,

and hence the effective crossing density is lower, as the chains cannot be

packed together as closely as in the other materials.

The other bimodal materials do not reach failure within the limits of

the experimental set-up, so the stress at a certain draw ratio was compared

instead. A good material in terms of slow crack growth has a high strain

hardening modulus, but also a high stress at natural draw ratio. After pre-

drawing, the low branched materials have the highest stress, but this is at a

specific strain rate of 3 10−2/s. Figures 4.59 and 4.60 compare the stress of
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Figure 4.57: Failure draw ratio as a function of strain rate for bi-HMHB
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Figure 4.58: Failure stress as a function of strain rate for bi-HMHB
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the bimodal materials at a draw ratio of 6 and 9 respectively. Similar trends

as for the strain hardening modulus can be seen, where the high branched

materials are outperformed by the low branched materials at high strain

rates. While the stress at draw ratio 9 for bi-HMLB continually increases

with increasing strain rate, the stress for bi-HMHB and bi-LMHB seem to

plateau. The behaviour for bi-LMLB is not clear.
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Figure 4.59: Stress at draw ratio 6 as a function of strain rate for the
bimodal materials
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Figure 4.60: Stress at draw ratio 9 as a function of strain rate for the
bimodal materials
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4.2.5 Structure changes during strain hardening

The crystallinity of the samples is measured after the strain hardening test.

The results are given in table 4.4. This crystallinity was measured for the

samples after strain hardening, after the strain was released. This has to

be kept in mind when discussing these results. Comparing the materials

after strain hardening at 10−5/s, at a draw ratio of around 6, the influence

of the branch content can be seen: materials with a low branch content

have a high crystallinity. The crystallinity of the bimodal materials slightly

increases compared to the pre-drawn materials (and decreases compared to

the compression moulded material). For bi-HMLB, there is an exception

after strain hardening at 10−7/s. In this case, the crystallinity increases

until the level of the compression moulded material. These results suggest

that after the spherulitic breakdown during the fibrillation, strain induced

crystallisation causes an increase in crystallinity during strain hardening.

The test duration for the test at 10−7/s is 1.45 106s, or 400 hours, and this

long time at high temperature promotes crystal growth.

SH parameters Xc,d [%]

bi-HMHB 10−3/s, 7.4 62.0 ± 0.1
10−5/s, 5.8 61.6 ± 0.1

bi-HMLB 10−5/s, 6.1 66.48 ± 0.08
10−7/s, 6.7 67.7 ± 0.2

bi-LMHB 10−5/s, 6.1 62.41 ± 0.02
bi-LMLB 10−5/s, 6.2 65.80 ± 0.05

Table 4.4: Crystallinity evolution with strain hardening. The standard
error on the draw ratio after strain hardening varies between 0.06 and 0.3

The birefringence of the samples is measured after strain hardening, ac-

cording to the procedure explained in section 2.1.5. The results are given in

table 4.5 and on figure 4.61. The birefringence is measured on the sample

under strain. In general, the birefringence increases with increasing draw

ratio. For 10−3/s, the birefringence increases faster with draw ratio for the

low branched materials compared to the highly branched materials. The

highly branched materials reach a plateau birefringence around draw ratio

8. This suggests that the maximum attainable orientation has been reached
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4. RESULTS I: BIMODAL POLYETHYLENE

for these materials. The low branched materials almost reach perfect crys-

tallinity at high draw ratios.

SH parameters ∆n

bi-HMHB 10−3/s, 7.4 ± 0.2 0.045 ± 0.001
10−3/s, 8.3 ± 0.2 0.049 ± 0.002
10−3/s, 10.2 ± 0.2 0.050 ± 0.001

bi-HMLB 10−3/s, 8.9 ± 0.2 0.048 ± 0.001
10−3/s, 10.5 ± 0.2 0.057 ± 0.001

bi-LMHB 10−3/s, 8.8 ± 0.2 0.047 ± 0.001
10−3/s, 9.1 ± 0.2 0.047 ± 0.001
10−3/s, 9.7 ± 0.2 0.047 ± 0.001

bi-LMLB 10−3/s, 9.1 ± 0.2 0.048 ± 0.001
10−3/s, 11.1 ± 0.2 0.054 ± 0.001

Table 4.5: Birefringence evolution with strain hardening
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Figure 4.61: Birefringence as a function of draw ratio after strain
hardening at 10−3/s

Table 4.6 shows the orientation in the amorphous phase after strain hard-

ening, measured from Raman spectroscopy using the procedure explained

in section 2.1.6. When compared to table 3.9, the amorphous orientation

in the isotropic material, it can be seen that the orientation has increased

significantly, except for bi-LMLB. When comparing the bimodal results to

table 3.15, the amorphous orientation after pre-drawing, it can be seen that

the orientation does not change significantly. No significant difference can

be seen between the materials after strain hardening.
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4.2 Strain hardening behaviour

SH parameters 1-Iyy/Izz

bi-HMHB 10−3/s, 7.4 ± 0.1 0.7 ± 0.1
10−5/s, 5.8 ± 0.1 0.6 ± 0.1
10−5/s, 7.0 ± 0.2 0.7 ± 0.1

bi-HMLB 10−5/s, 6.1 ± 0.1 0.5 ± 0.1
10−7/s, 6.7 ± 0.2 0.6 ± 0.1

bi-LMHB 10−5/s, 6.1 ± 0.1 0.7 ± 0.1
bi-LMLB 10−5/s, 6.2 ± 0.1 0.6 ± 0.1

Table 4.6: Qualitative orientation parameters and order parameters at
1080 cm−1 from Raman after strain hardening

Table 4.7 shows the orientation in the crystalline phase after strain hard-

ening. The < P200 > order parameter increases in every material with draw

ratio, except for bi-HMLB, where it stays similar after strain hardening at

10−7/s until a draw ratio of 6.7 ± 0.2, until a lower value even than the

value after pre-drawing. For a draw ratio of around 6 after strain hardening

at 10−5/s, the orientation is higher in bi-LMLB compared to the rest of the

bimodals.

SH parameters < P200 >

bi-HMHB 10−3/s, 7.4 ± 0.1 0.68 ± 0.05
10−5/s, 5.8 ± 0.1 0.57 ± 0.04
10−5/s, 7.0 ± 0.2 0.61 ± 0.04

bi-HMLB 10−5/s, 6.1 ± 0.1 0.63 ± 0.05
10−7/s, 6.7 ± 0.2 0.58 ± 0.04

bi-LMHB 10−5/s, 6.1 ± 0.1 0.69 ± 0.05
bi-LMLB 10−5/s, 6.2 ± 0.1 0.86 ± 0.06

Table 4.7: Order parameters at 1420 cm−1 from Raman after strain
hardening

Table 4.8 shows the overall orientation after strain hardening. Compar-

ing the bimodal materials after strain hardening at 10−5/s until a draw ratio

of around 6, the overall orientation is similar. Comparing the values for the

bimodal materials with the values after pre-drawing, from table 3.15, it can

be seen that the values have not changed significantly with strain harden-

ing. Keeping in mind that the < P200 > value for 1420 cm−1 increases from

pre-drawing to strain hardening, this implies that orientation in crystalline

143



4. RESULTS I: BIMODAL POLYETHYLENE

phase is more sensitive to strain hardening than orientation in the amor-

phous phase, especially for bi-LMLB.

SH parameters < P200 >

bi-HMHB 10−3/s, 7.4 ± 0.1 0.43 ± 0.03
10−5/s, 5.8 ± 0.1 0.39 ± 0.06
10−5/s, 7.0 ± 0.2 0.50 ± 0.04

bi-HMLB 10−5/s, 6.1 ± 0.1 0.52 ± 0.05
10−7/s, 6.7 ± 0.2 0.48 ± 0.04

bi-LMHB 10−5/s, 6.1 ± 0.1 0.50 ± 0.04
bi-LMLB 10−5/s, 6.2 ± 0.1 0.47 ± 0.06

Table 4.8: Order parameters at 1130 cm−1 from Raman after strain
hardening

Both crystallinity and birefringence increase during strain hardening.

The birefringence reaches a plateau around draw ratio 8 for the highly

branched materials, suggesting that their maximum orientation has been

reached. From Raman orientation parameters it can be seen that the ori-

entation contribution of the crystals is larger than that of the amorphous

phase.

4.2.6 Stress relaxation after strain hardening

Stress relaxation tests were performed on the strain hardened materials.

After strain hardening at a strain rate of around 1.67 10−5/s until a stress

of around 40 MPa, followed by stress relaxation, the stress in the bimodal

materials is compared. From table 4.9, it can be seen that the stress drops

by a similar ratio for all the materials after 1000s and 10000s of stress re-

laxation (σ1000s/σmax and σ10000s/σmax are the same for all the materials).

Stress relaxation behaviour after strain hardening at different strain

rates is compared for bi-HMHB. The results are shown in table 4.10. The

strain rate of the strain hardening part of the test has a major influence on

the ratio of the stress after 1000s of stress relaxation to the stress before

relaxation. The correlation is shown in figure 4.62.
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4.2 Strain hardening behaviour

bi-HMHB bi-HMLB bi-LMHB bi-LMLB

σmax [MPa] 38.2 ± 0.8 44.6 ± 0.9 34.4 ± 0.7 38.5 ± 0.8
λmax 5.1 ± 0.2 5.6 ± 0.2 5.5 ± 0.2 5.8 ± 0.2
σ1000s [MPa] 35.0 ± 0.7 40.5 ± 0.8 32.5 ± 0.6 35.1 ± 0.7
σ10000s [MPa] 31.3 ± 0.6 35.4 ± 0.7 28.6 ± 0.6 30.7 ± 0.6
σ1000s/σmax 0.92 ± 0.03 0.91 ± 0.03 0.94 ± 0.03 0.91 ± 0.03
σ10000s/σmax 0.82 ± 0.02 0.79 ± 0.02 0.83 ± 0.03 0.80 ± 0.02

Table 4.9: Parameters of the stress relaxation tests for the bimodal
materials, at a strain rate of approximately 1.67 10−5/s

ε̇ [/s] σmax [MPa] λmax σ1000s [MPa] σ1000s
σmax

[%]

3.39 10−2 86 ± 2 7.1 ± 0.2 50 ± 1 58 ± 2
1.70 10−2 81 ± 2 7.2 ± 0.2 48 ± 1 59 ± 2
1.70 10−2 80 ± 2 6.9 ± 0.2 47.3 ± 0.9 60 ± 2
1.17 10−2 76 ± 2 7.1 ± 0.2 46.1 ± 0.9 61 ± 2
8.35 10−3 91 ± 2 7.9 ± 0.2 58 ± 1 63 ± 2
6.71 10−3 84 ± 2 7.9 ± 0.2 53 ± 1 63 ± 2
5.05 10−3 63 ± 1 7.9 ± 0.2 39.8 ± 0.8 64 ± 2
1.69 10−3 70 ± 1 7.2 ± 0.2 48 ± 1 69 ± 2
1.18 10−3 69 ± 1 7.5 ± 0.2 48 ± 1 69 ± 2
1.18 10−3 75 ± 1 8.0 ± 0.2 53 ± 1 71 ± 2

Table 4.10: Parameters of the stress relaxation tests for bi-HMHB, at
different strain rates
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Figure 4.62: Ratio of stress after 1000s over maximum stress reached
before relaxation as a function of strain rate for bi-HMHB
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4. RESULTS I: BIMODAL POLYETHYLENE

To compare the results to stress relaxation after creep, a linear curve

is fitted through the strain rate dependency of σ1000s/σmax for bi-HMHB

(figure 4.62). This gives

σ1000s
σmax

= −8.6log(ε̇) + 45. (4.3)

Applying this empirical relation to the strain rates before creep relax-

ation for bi-HMHB (2.63 10−7/s and 2.99 10−7/s, as described in table 4.2)

yields 101 ± 2 % in both cases. This corresponds to the 99 ± 3 % found

experimentally. This indicates that the stress relaxation depends mainly on

the strain rate, independently of whether it is reached by strain hardening

or creep.

The stress relaxation behaviour of bi-HMLB after strain hardening to

different stresses is studied. The results are shown in table 4.11. The stress

before stress relaxation shows a correlation with the stress retained after

1000 and 10000s, though especially at high stress differences. This correla-

tion is shown in figure 4.63. At higher draw ratios, bi-HMLB retains the

stress better than at lower draw ratios.

σmax [MPa] λmax σ1000s [MPa] σ10000s [MPa] σ1000s
σmax

[%] σ10000s
σmax

[%]

65 ± 1 6.7 44.9 ± 0.9 39.5 ± 0.9 69 ± 2 61 ± 2
81 ± 2 7.6 57 ± 1 50 ± 1 71 ± 2 61 ± 2
82 ± 2 6.9 56 ± 1 49 ± 1 68 ± 2 60 ± 2
91 ± 2 7.2 61 ± 1 54 ± 1 67 ± 2 60 ± 2
155 ± 3 9.6 101 ± 2 89 ± 2 65 ± 2 57 ± 2

Table 4.11: Parameters of the stress relaxation tests for bi-HMLB, at
different stresses after strain hardening at around 1.6 10−3/s. The error on

the draw ratio is 0.2

4.2.7 Influence of temperature on strain hardening

The strain hardening behaviour is studied at different temperatures for the

different bimodal materials, at a strain rate of 1.43 10−3/s. It was measured

around the testing temperature, and for bi-HMLB it was also measured

at room temperature (25◦C). The resulting strain hardening curves can be
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Figure 4.63: Ratio of stress after 1000s and 10000s over maximum stress
reached before relaxation as a function of stress for bi-HMLB

found in figures 4.64, 4.65, 4.66 and 4.67 for bi-HMHB, bi-HMLB, bi-LMHB

and bi-LMLB respectively.

5 10 15
0

100

200

300

400

λ

σ
[M

P
a]

70 ◦C

75 ◦C

80 ◦C

85 ◦C

90 ◦C

Figure 4.64: Stress as a function of draw ratio for bi-HMHB at different
temperatures

In general, increasing the temperature decreases the resistance to strain

hardening. For the high molecular mass materials, it is not possible to

calculate the average strain hardening modulus between draw ratios 7 and

11 at every temperature. Therefore, it is calculated between draw ratios

6 and 7. Plotting this average strain hardening modulus as a function of

temperature for these materials gives figure 4.68. It can be seen that the

temperature sensitivity of the strain hardening modulus is similar for bi-

HMHB and bi-HMLB.
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Figure 4.65: Stress as a function of draw ratio for bi-HMLB at different
temperatures
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Figure 4.66: Stress as a function of draw ratio for bi-LMHB at different
temperatures

5 10 15
0

100

200

300

400

λ

σ
[M

P
a] 75 ◦C

80 ◦C

85 ◦C

Figure 4.67: Stress as a function of draw ratio for bi-LMLB at different
temperatures
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Figure 4.68: Average strain hardening modulus as a function of
temperature for the highly branched bimodal materials

For the low molecular mass materials, the average strain hardening mod-

ulus, calculated between draw ratios 7 and 11, is given as a function of

temperature in figure 4.69. Again, the strain hardening modulus decreases

linearly with increasing temperature. So in the region studied, the tem-

perature dependence of the strain hardening modulus is similar for all the

bimodals.
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Figure 4.69: Average strain hardening modulus as a function of
temperature for the low branched bimodal materials

The influence of temperature at high strain rates is studied for the low

molecular mass bimodals. As can be seen on figure 4.70, the effect of branch-

ing on the strain hardening behaviour of the low molecular mass bimodals
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is the same as for strain hardening at 80◦C.
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Figure 4.70: Strain hardening of bi-LMHB and bi-LMLB at 90◦C, 1.6
10−1/s

4.2.8 Discussion: influence of branch content and molec-

ular mass on the strain hardening behaviour of

bimodal polyethylene

Figures 4.46, 4.53 and 4.56 all confirm the same trends. For all bimodal ma-

terials, the strain hardening modulus increases with increasing strain rate

and with decreasing temperature. If the strain hardening modulus would

be caused by the extension of an entropic network only, there would be no

strain rate sensitivity, and the strain hardening modulus would go up with

increasing temperature. At low strain rates, the resistance to strain hard-

ening ranks with molecular mass: a higher molecular mass yields a higher

resistance to strain hardening. Hence, bi-LMLB and bi-LMHB display simi-

lar behaviour. Depending on how Gp is calculated, bi-HMLB and bi-HMHB

display similar behaviour or bi-HMLB is slightly lower than bi-HMHB. At

high strain rates, bi-LMLB has a higher strain hardening modulus than

bi-LMHB. Again dependent on the calculation, bi-HMLB and bi-HMHB

display similar behaviour or bi-HMLB performs better than bi-HMHB. In

any case, the upswing in the stress - draw ratio curves at higher strain rates

is more pronounced in the low branched materials. This can be seen both
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4.2 Strain hardening behaviour

from the error on the average slope and the deviation from Gaussian be-

haviour when applying the Neo-Hookean strain measure. The strain harden-

ing modulus of the highly branched materials increases more or less linearly

with increasing strain rate, while the strain hardening modulus of the low

branched materials increases much more above a strain rate of 10−3/s. So at

low strain rates (between 10−6/s and 10−3/s), a high molecular mass yields

a high strain hardening modulus, while at high strain rates (between 10−2/s

and 10−1/s), a low branch content yields a high strain hardening modulus.

The branch content has several effects on the molecular network that could

cause this upswing. Firstly, it influences the α-relaxation temperature. Sec-

ondly, it influences the width of the molecular chain.

The first hypothesis, that the difference in α-relaxation temperature

leads to different behaviour at high strain rates for low branched and high

branched bimodals, is contradicted by the findings in section 4.2.7, where

the influence of temperature on the strain hardening is discussed. The

temperature sensitivity is similar in low branched and highly branched ma-

terials, and thus does not suggest that the α-relaxation affects those two sets

of materials in a different way. Van Erp et al. studied the yield behaviour

of polypropylene, and attributed the upswing of the yield stress above a

certain strain rate to the onset of the α-relaxation [189]. Figure 4.71 shows

the yield stress as a function of strain rate for the bimodal materials used in

this work. The onset strain rate for the α-relaxation lays between 10−3 and

10−2/s for all the materials. So the difference in behaviour between the low

branched and the highly branched bimodal materials cannot be explained

by a difference in the onset of strain rate evolution of the α-relaxation. How-

ever, the upswing in the yield stress reflects the upswing in strain hardening

with strain rate, as will be explained in section 4.3.

The second hypothesis is based around the width of the molecular chain.

The chain axis is on average more slender for materials with a lower branch

content, hence they can be packed more closely together when stretched,

which results in a higher resistance to stress. The failure behaviour after

strain hardening seems to support this idea. The failure stress (and draw

ratio) of bi-HMHB is lower than that of the rest of the materials. As ex-
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Figure 4.71: Yield stress as a function of strain rate at 80◦C for the
bimodal materials

plained in section 4.2.4, the failure stress is proportional to the chain axis

density. It is lower for bi-HMHB, and decreases with strain rate. It seems

to be more sensitive to strain rate at higher strain rates. No results for the

failure behaviour of the other bimodal materials are available, but recalling

equation 3.6 for the chain contour length per unit volume, for the same Mw,

a lower average molecular mass per bond m0 due to a lower branch content

decreases the chain contour length and hence increases the effective cross-

ing density, which could explain the difference in behaviour between low

branched and highly branched bimodal materials at high strain rates [187].

Raman spectroscopy can be applied to determine the molecular stress from

the band peak shift [164, 166], and a study of the influence of molecular

mass and branch content on the band peak shift at different strain rates is

suggested for future work.

4.3 Discussion: crystalline contribution to

strain hardening

From figures 4.24 and 4.46, it can be seen that the ranking of the materials

differs for creep and strain hardening: bi-HMHB is more resistant to creep,

while in terms of strain hardening, bi-HMHB and bi-HMLB are more resis-

152



4.3 Discussion: crystalline contribution to strain hardening

tant. A combination of high molecular mass and high branch content are

required for an increased resistance against creep, while for strain hardening

a high molecular mass is sufficient. This indicates that different processes

dominate during creep and strain hardening. Deblieck et al. suggested that

strain hardening includes a viscous contribution, originating from the crys-

tals [11]. This suggestion is based on the evolution of the strain hardening

modulus with strain rate and temperature, which is confirmed in this work

(as discussed in section 4.2.8).

The evolution of the yield stress with strain rate suggest that this crys-

talline contribution originates in the α-relaxation. In polypropylene, the

yield stress is used to estimate the crystalline contributions to the entan-

glement network [190]. The yield stress increases with strain rate (as seen

from figure 4.71) and decreases with temperature, following the same trends

as the strain hardening modulus [189]. Taking the yield stress as a measure

for the crystalline contribution assumes that the evolution of the crystalline

contribution with strain rate is the same in the strain hardening region as is

it in the isotropic material. It should be kept in mind that this is probably

not entirely correct. Dividing the (average) strain hardening modulus by

the strain rate dependent yield stress results in figure 4.72. At strain rates

below 10−3/s, the ranking is now similar to that for the creep rate deceler-

ation factor: the effective entanglement network of bi-HMHB has a higher

resistance to deformation than that of the other bimodals.

If dividing by the yield stress eliminates all the crystalline contributions

from the strain hardening, the curves on figure 4.72 would be expected to be

flat. Especially in the case of bi-HMHB, they are not. It seems that at high

strain rates, the crystalline contribution is overestimated by the yield stress.

It could be imagined that at high strain rates, the long range order in the

network is disrupted. For example, extended chain crystals can no longer

be formed and will hence not be able to pin tie molecules. The evolution of

stress recovery at constant draw ratio with strain rate (figure 4.62) supports

this. After deformation at high strain rates, the stress relaxes more than

after deformation at low strain rates. The stress is taken up by a less stable

network and hence released more quickly. As the initial crystal structure
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Figure 4.72: GK divided by strain rate dependent yield stress as a
function of strain rate

of the high branched materials is less perfect, the disrupting influence of

the strain rate on the development of the crystals during strain hardening

would be more severe.

4.4 Conclusions

This chapter discusses the deformation behaviour of bimodal polyethylenes.

It is found that only a combination of high molecular mass and high branch

content result in an increased resistance to creep. Varying these two fea-

tures separately has no effect. We suggest that this can be explained in

term of monomeric friction, which is higher in the melt for highly branched

materials. This results in a higher effective network at a similar time scale

for bi-HMHB than for the other bimodal materials. The materials rank dif-

ferently in terms of resistance to creep than in terms of resistance to strain

hardening. This can be attributed to a crystalline contribution to strain

hardening, which we suggest can be estimated by the yield stress. Scaling

the strain hardening modulus with yield stress results in a similar ranking

for creep and strain hardening modulus at low strain rates. At high strain

rates, the yield stress does not seem a good measure for the crystalline con-

tribution. We suggest this could be because of a loss of long range order at

high strain rates.
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Chapter 5

Results II: Monomodal

branched polyethylene

This chapter describes the deformation behaviour of the reactor 2 (R2)

materials. These monomodal, branched polyethylenes represent the high

molecular mass fraction of the bimodal materials. This fraction is respon-

sible for the resistance to slow crack growth. In the bimodal materials, a

low molecular mass (R1) fraction is added to decrease the melt viscosity

and hence enhance processing capabilities. Firstly, the creep behaviour of

the R2 materials is described. Secondly, their strain hardening behaviour is

described. The results are compared to the results of the bimodal materials

and the differences are discussed.

5.1 Creep behaviour

The R2 materials represent the fraction in the bimodal materials that is

predominantly responsible for the resistance to slow crack growth. In the

bimodal material, they are ‘diluted’ by a low molecular mass, linear frac-

tion, present to enhance processing capabilities. The resistance to creep of

the pure R2 materials is thus expected to be higher than for the bimodal

materials. If no synergistic effects are present and the low molecular mass

material simply ‘dilutes’ the properties of the R2 materials by the fraction

of high molecular mass material, then resistance to deformation is expected

to be double in the R2 materials compared to the bimodal materials.
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5.1 Creep behaviour

5.1.1 Influence of stress on the shape of the creep

curves

Figure 5.1 gives the load as a function of time during a creep test for R2-

HMHB. The first part of the test is always the same, as the material is

extended until the starting creep stress (given in the legend). When this

stress is reached, the load is held constant by the Instron. Figure 5.2 shows

the extension as a function of time. After the starting creep stress is reached,

the material extends more for higher stresses. Compared to figure 4.2, ex-

tension as a function of time for bi-HMHB, it can already be seen that

R2-HMHB extends less than its bimodal counterpart.
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Figure 5.1: Load as a function of time during a creep test for R2-HMHB

Normalising the results to take into account sample dimensions results

in figures 5.3 and 5.4. The draw ratio does not increase as much over time

as it does for bi-HMHB (see figure 4.3), hence also the stress changes less

over the course of a creep test (the stress depends on the applied load, which

is constant, and the changing cross section which is influenced by the draw

ratio). This indicates that the creep resistance is higher in R2-HMHB than

in bi-HMHB. Figure 5.5 shows the strain rate decay as a function of time.

The Sherby-Dorn curves at different starting creep stresses are given in

figures 5.6, 5.7, 5.8 and 5.9 for R2-HMHB, R2-HMLB, R2-LMHB and R2-

LMLB respectively. The general shapes of the curves are similar to those
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Figure 5.2: Extension as a function of time during a creep test for
R2-HMHB
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Figure 5.3: Draw ratio as a function of time during a creep test for
R2-HMHB
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Figure 5.4: Stress as a function of time during a creep test for R2-HMHB
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Figure 5.5: Strain rate as a function of time during a creep test for
R2-HMHB
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for the bimodal materials, but the starting draw ratios are lower, and the

slopes are steeper. This indicates that the R2 materials have a steeper strain

hardening (they reach the applied creep load at a lower draw ratio than their

bimodal counterpart), and most likely a higher resistance to creep.
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Figure 5.6: Strain rate as a function of draw ratio for R2-HMHB
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Figure 5.7: Strain rate as a function of draw ratio for R2-HMLB

5.1.2 Influence of stress on the creep rate deceleration

factor

Plotting the creep rate deceleration factor as a function of starting creep

stress results in figure 5.10. R2-HMHB has the lowest CRDF and hence
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Figure 5.9: Strain rate as a function of draw ratio for R2-LMLB
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the highest creep resistance over the range of stresses tested. R2-HMLB

has a similar CRDF than R2-HMHB at low stresses, but on the high end

of the stress range, it has a similar CRDF than R2-LMLB. R2-LMLB has

the highest CRDF, and hence the lowest resistance to creep, over the stress

range studied. There is some variation in the CRDF as a function of stress

for R2-LMHB, but it generally lays between R2-HMLB and R2-LMLB at

low stresses, and similar to those two materials at high stresses. The differ-

ence in slope between R2-HMLB and the other materials is significant: the

CRDF increases more with increasing stress for this material.
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Figure 5.10: CRDF as a function of stress for the R2 materials

Failure after creep at high stress

Failure after creep occurs for R2-HMHB at an average stress of 150 ± 5

MPa and an average draw ratio of 8.3 ± 0.2. This is lower than its bimodal

counterpart, bi-HMHB, where the failure stress is 223 ± 10 MPa and the

failure draw ratio is 12.1 ± 0.2. The extensibility limit for the network is

lower for R2-HMHB than for bi-HMHB. The available network density as

calculated from solid state NMR is higher in the R2 materials than in the

bimodal materials (see section 3.4), but the chain contour length is higher

in these materials as there is no contribution of the slender, linear R1 chains.
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5.1.3 Structure changes during creep

The structure of the R2 materials is measured after the creep tests. The

evolution of the orientation and crystallinity is different for different mate-

rials. The structure is compared to the approximate structure before the

creep test. For this, the materials are drawn at 10−3/s until the approxi-

mate starting stress of the creep, and their birefringence, Raman orientation

parameters and crystallinity are measured at that point. The parameters

of the tests are given in table 5.1.

Creep preparation
parameters

Creep starting
parameters

Creep final
parameters

R2-HMHB 88 MPa, 6.1 66 MPa, 5.4 85 MPa, 6.2
R2-HMLB 99 MPa, 5.9 66 MPa, 5.0 82 MPa, 6.5
R2-LMHB 124 MPa, 7.4 111 MPa, 8.1 144 MPa, 8.3
R2-LMLB 118 MPa, 7.1 107 MPa, 7.1 133 MPa, 7.9

Table 5.1: Specimen parameters, samples mimicking structure before
creep, actual starting creep parameters, and parameters at the end of the
creep test. The standard error on the stress is ± 3%, and the standard

error on the draw ratio is ± 0.02

Table 5.2 gives the birefringence before and after creep. This stays ap-

proximately constant for all the R2 materials, except for R2-LMLB, where it

decreases slightly (despite a higher draw ratio). The crystallinity increases

for this material, while it stays similar for the other R2 materials, as can be

seen in table 5.3.

∆n, before creep ∆n, after creep

R2-HMHB 0.044 ± 0.001 0.045 ± 0.001
R2-HMLB 0.043 ± 0.001 0.045 ± 0.001
R2-LMHB 0.047 ± 0.001 0.045 ± 0.001
R2-LMLB 0.046 ± 0.001 0.041 ± 0.001

Table 5.2: Birefringence before and after creep measurements

This can be compared to the structure after creep for bi-HMHB. The

parameters for the tests are given in table 5.4. The birefringence and crys-
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Xc,d, before creep [%] Xc,d, after creep [%]

R2-HMHB 47.1 ± 0.1 47.5 ± 0.1
R2-HMLB 50.8 ± 0.1 51.3 ± 0.2
R2-LMHB 52.2 ± 0.1 51.0 ± 0.3
R2-LMLB 52.1 ± 0.2 55.3 ± 0.4

Table 5.3: Crystallinity before and after creep measurements

tallinity before and after creep on bi-HMHB are shown in table 5.5. For bi-

HMHB, the birefringence stays approximately constant. The crystallinity

increases slightly, but not as significantly as for R2-LMLB. These results

suggest that some recrystallisation can take place during the creep tests,

but overall the crystal structure remains stable. The reason for the de-

crease in birefringence in the R2-LMLB material is unclear. From Raman

measurements, no change in orientation is measured (see table 5.6).

σ [MPa] λ

Preparation 106 ± 2 7.4 ± 0.2
Start 82 ± 2 7.2 ± 0.2
Final 111 ± 2 8.3 ± 0.2

Table 5.4: Parameters at the end of the preparation test, the start of a
creep test and the end of a creep test for bi-HMHB

Preparation Final

∆ n 0.045 ± 0.001 0.048 ± 0.001
Xc,d [%] 62.0 ± 0.1 63.5 ± 0.2

Table 5.5: Structural parameters at the end of the preparation test and a
the end of the creep test for bi-HMHB

5.1.4 Discussion: influence of the molecular mass and

branch content on the creep behaviour of branched

polyethylene

From figure 5.10, it can be seen that over the stress range studied, R2-

HMHB has the highest creep resistance and R2-LMLB has the lowest creep
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5.1 Creep behaviour

< P200 >, before creep < P200 >, after creep

R2-HMHB 0.5 ± 0.1 0.59 ± 0.034
R2-HMLB 0.53 ± 0.04 0.60 ± 0.04
R2-LMHB 0.63 ± 0.04 0.57 ± 0.04
R2-LMLB 0.59 ± 0.04 0.54 ± 0.04

Table 5.6: Raman orientation parameters for the reactor 2 materials at
1130 cm−1 before and after creep measurements

resistance. The creep resistance of R2-LMHB lies in between those two

materials over the stress range studied. The stress sensitivity of the CRDF

of R2-HMHB, R2-LMHB and R2-LMLB is similar. The stress sensitivity

of R2-HMLB is higher, with the CRDF at low stresses being equal to that

of R2-HMHB, and at high stresses increasing to the level of R2-LMLB. At

low stress, the dominant contribution appears to be the molecular mass. At

high stress, the ranking of the R2 materials is the same as for the bimodal

materials. The creep tests take place at a strain rate of 10−3/s and lower.

In a tensile test, this is the strain rate at which α-relaxation sets in (as dis-

cussed in section 4.2.8). Below this strain rate, the crystals do not function

as pinning points for the tie molecules [189]. While the onset strain rate for

α-relaxation is not necessarily equal in a tensile test and a creep test due to

the difference in stress and deformation mode, there is no step in the stress

sensitivity of the CRDF to suggest that the critical strain rate is exceeded.

We therefore assume that there is mobility inside the crystals during the

creep tests, both at low and high stress. So the difference as a function of

stress must depend on the total friction that needs to be overcome when

pulling a chain into a crystal or over an entanglement. It is possible that

at low stress, these processes are therefore less frequent than at high stress,

and hence the branch content is of less importance. To make a difference

at high stresses, the network must be well established, hence the advantage

of the high molecular mass materials as they are expected to have a higher

number of tie molecules.
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5.2 Strain hardening behaviour

The strain hardening of the reactor 2 materials is studied to understand

the effect of the possible dilution of the network by the addition of a low

molecular mass, linear fraction in the bimodal materials.

5.2.1 Influence of strain rate on strain hardening be-

haviour of branched polyethylene

Figures 5.11 and 5.12 show the strain hardening for the R2 materials, as

a function of draw ratio and NHSM respectively, for a strain rate around

10−3/s. The strain hardening modulus as calculated using the Neo-Hookean

strain measure is given in table 5.7. At this strain rate, the strain harden-

ing modulus is similar for the high molecular mass R2 materials, R2-HMHB

and R2-HMLB. It is lower for the low molecular mass materials, R2-LMHB

and R2-LMLB. Of the low molecular mass materials, the low branched ma-

terial has a higher strain hardening modulus. The yield stress has only been

measured at a strain rate of 3 10−2/s for these materials, and as the strain

rate dependency of the yield stress depends on molecular architecture such

as branch content, it is not known how different the yield stress at 3 10−2/s

and the yield stress at 10−3/s are [189]. Therefore, the crystallinity was

taken as a measure of the enthalpic contribution of the crystals. At low

strain rates, the correction of the strain hardening using the crystallinity

is more correct than at high strain rates, because of the disruption of long

range crystal order at high strain rates.

ε̇ [/s] GNHSM [MPa]

R2-HMHB 1.58 ± 0.01 10−3 2.61 ± 0.03
R2-HMLB 1.60 ± 0.01 10−3 2.63 ± 0.07
R2-LMHB 1.56 ± 0.01 10−3 1.82 ± 0.05
R2-LMLB 1.58 ± 0.01 10−3 2.08 ± 0.06

Table 5.7: Strain hardening modulus (calculated using the Neo-Hookean
strain measure) calculated using the Neo-Hookean strain measure for the

reactor 2 materials at a strain rate of around 10−3/s

The results after dividing the strain hardening modulus by the crys-
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Figure 5.11: Stress as a function of draw ratio for R2 materials at an
approximate strain rate of 10−3/s
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Figure 5.12: Stress as a function of NHSM for R2 materials at an
approximate strain rate of 10−3/s
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tallinity are shown in table 5.8. When taking account of crystallinity, the

strain hardening behaviour is similar for the low molecular mass materials,

highest for R2-HMHB and in between for R2-HMLB. This will be further

discussed in section 5.2.3.

ε̇ [/s] GNHSM/Xc,d [MPa]

R2-HMHB 1.58 ± 0.01 10−3 5.61 ± 0.09
R2-HMLB 1.60 ± 0.01 10−3 5.0 ± 0.1
R2-LMHB 1.56 ± 0.01 10−3 3.9 ± 0.1
R2-LMLB 1.58 ± 0.01 10−3 4.0 ± 0.1

Table 5.8: Strain hardening modulus (calculated using the Neo-Hookean
strain measure) divided by crystallinity for the reactor 2 materials at a

strain rate of around 10−3/s

5.2.2 Structure changes during strain hardening

After strain hardening, the crystallinity of the R2 materials is, as usual,

lower than that of the bimodal materials (see table 5.9 compared to table

4.4). Comparing the materials after strain hardening at 10−5/s, when they

all have a draw ratio of around 5.5, the influence of the branch content can

be seen: materials with a low branch content have a high crystallinity, both

for the R2 and the bimodal materials. The R2 materials increase slightly

in crystallinity after strain hardening, compared to both the crystallinity of

the pellet material and the sheet material, except for R2-HMLB. R2-HMLB

stays at the same crystallinity as after compression moulding, lower than

the pellet material.

The birefringence of the samples was measured after strain hardening.

The results are given in table 5.10 and figure 5.13. The birefringence is

measured on the sample under strain. Only a small range of draw ratios

was measured, but in general, the birefringence goes up with draw ratio,

as expected. The birefringence of the R2 materials is similar to that of the

bimodal materials. R2-LMLB has a higher birefringence at draw ratio 7

than R2-LMHB, after strain hardening at 10−3/s.

Table 5.11 shows the orientation in the amorphous phase after strain
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SH parameters Xc,SH [%]

R2-HMHB 10−3/s, 6.1 47.1 ± 0.1
10−5/s, 5.5 47.2 ± 0.2

R2-HMLB 10−3/s, 5.9 50.8 ± 0.1
10−5/s, 5.6 50.5 ± 0.3

R2-LMHB 10−3/s, 7.4 52.2 ± 0.1
10−5/s, 5.9 48.8 ± 0.1

R2-LMLB 10−3/s, 7.1 52.1 ± 0.2
10−5/s, 5.5 52.3 ± 0.1

Table 5.9: Crystallinity evolution with strain hardening for R2 materials.
The standard error on the draw ratio after strain hardening varies between

0.2 and 0.3

SH parameters ∆nSH

R2-HMHB 10−3/s, 6.1 ± 0.2 0.044 ± 0.001
R2-HMLB 10−3/s, 5.9 ± 0.2 0.043 ± 0.001

10−3/s, 6.4 ± 0.3 0.044 ± 0.001
R2-LMHB 10−3/s, 7.0 ± 0.2 0.044 ± 0.001

10−3/s, 7.4 ± 0.2 0.046 ± 0.001
R2-LMLB 10−3/s, 7.1 ± 0.2 0.047 ± 0.001

Table 5.10: Birefringence evolution with strain hardening
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Figure 5.13: Birefringence as a function of draw ratio after strain
hardening at 10−3/s
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hardening. When compared to table 3.9, the amorphous orientation in the

isotropic material, it can be seen that the orientation has increased signif-

icantly. No significant difference can be seen between the materials after

strain hardening.

SH parameters 1-Iyy/Izz SH

R2-HMHB 10−3/s, 6.1 ± 0.1 0.5 ± 0.1
10−5/s, 5.5 ± 0.3 0.6 ± 0.1

R2-HMLB 10−3/s, 5.9 ± 0.2 0.6 ± 0.1
10−5/s, 5.6 ± 0.2 0.4 ± 0.1

R2-LMHB 10−3/s, 7.4 ± 0.2 0.6 ± 0.1
10−5/s, 5.9 ± 0.2 0.4 ± 0.1

R2-LMLB 10−3/s, 7.1 ± 0.2 0.6 ± 0.1
10−5/s, 5.5 ± 0.2 0.5 ± 0.1

Table 5.11: Qualitative orientation parameters at 1080 cm−1 from Raman
after strain hardening

Table 5.12 shows the orientation in the crystalline phase after strain

hardening. The < P200 > order parameter increases in every material with

draw ratio. The < P200 > order parameter is slightly higher in the R2 ma-

terials than in the bimodal materials. For a draw ratio of around 5.7 after

strain hardening at 10−5/s, the orientation is similar for the R2 materials.

SH parameters < P200 > SH

R2-HMHB 10−3/s, 6.1 ± 0.1 0.79 ± 0.06
10−5/s, 5.5 ± 0.3 0.71 ± 0.05

R2-HMLB 10−3/s, 5.9 ± 0.2 0.70 ± 0.06
10−5/s, 5.6 ± 0.2 0.60 ± 0.09

R2-LMHB 10−3/s, 7.4 ± 0.2 0.84 ± 0.06
10−5/s, 5.9 ± 0.2 0.74 ± 0.05

R2-LMLB 10−3/s, 7.1 ± 0.2 0.83 ± 0.06
10−5/s, 5.5 ± 0.2 0.69 ± 0.05

Table 5.12: Order parameters at 1420 cm−1 from Raman after strain
hardening

Table 5.13 shows the overall orientation after strain hardening. Com-

paring the R2 materials after strain hardening at 10−5/s until a draw ratio
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of around 5.7, the orientation is similar.

SH parameters < P200 > SH

R2-HMHB 10−3/s, 6.1 ± 0.1 0.5 ± 0.1
10−5/s, 5.5 ± 0.3 0.57 ± 0.04

R2-HMLB 10−3/s, 5.9 ± 0.2 0.53 ± 0.04
10−5/s, 5.6 ± 0.2 0.48 ± 0.03

R2-LMHB 10−3/s, 7.4 ± 0.2 0.60 ± 0.05
10−5/s, 5.9 ± 0.2 0.55 ± 0.04

R2-LMLB 10−3/s, 7.1 ± 0.2 0.59 ± 0.04
10−5/s, 5.5 ± 0.2 0.53 ± 0.04

Table 5.13: Order parameters at 1130 cm−1 from Raman after strain
hardening

5.2.3 Discussion: influence of the molecular mass and

branch content on the strain hardening behaviour

of branched polyethylene

The dominant factor in the strain hardening behaviour of R2 materials

is, like for the bimodal materials, the molecular mass: a higher molecular

mass yields a higher strain hardening modulus at a strain rate of around

10−3/s. For the low molecular mass materials, the strain hardening modu-

lus is slightly higher for the low branched material. In an effort to eliminate

the crystalline contribution, the strain hardening modulus is divided by

the crystallinity of the materials. This yields the same ranking as for the

bimodal materials. For the low molecular mass materials, there is no influ-

ence of branching. For the high molecular mass materials, a higher branch

content yields a higher strain hardening modulus. The yield stress of the

R2 materials is lower than that of the bimodal materials (see table 3.10).

So it can be expected that the friction contribution from crystals is smaller

compared with the bimodal materials.
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5.3 Discussion: comparison between the de-

formation behaviour of the bimodal and

the reactor 2 materials

The deformation behaviour of the reactor 2 materials and the bimodal ma-

terials is summarised in figures 5.14 and 5.15. It can be seen that both

in terms of creep and strain hardening, the resistance of the reactor 2 ma-

terials is higher than that of the bimodal materials. A comparison of the

strain hardening moduli at 10−3/s is given in table 5.14. The creep resis-

tance of the bimodal materials is less sensitive to stress than that of the

R2 materials, especially R2-HMLB. The failure stress and draw ratio after

strain hardening at 10−3/s are lower for the reactor 2 materials than for

the bimodal materials, but the stress at a fixed draw ratio is approximately

twice as high in the reactor 2 materials. The crystallinity is lower in the re-

actor 2 materials than in the bimodal materials, but follows the same trend

(low crystallinity for a high branch content). Dividing the strain hardening

modulus by the crystallinity results in the same ranking for the reactor 2

materials as for the bimodal materials, as can be seen in table 5.15. For

the low molecular mass materials, there is no influence of the branch con-

tent on the strain hardening of the network. For the high molecular mass

materials, a higher branch content leads to higher strain hardening of the

network. From solid state NMR, it was found that the network density is

almost three times higher in the reactor 2 materials than in the bimodal

materials.

R2 Bimodal
ε̇ GNHSM ε̇ GNHSM

[/s] [MPa] [/s] [MPa]

HMHB 1.58 ± 0.01 10−3 2.61 ± 0.03 1.46 ± 0.01 10−3 1.77 ± 0.06
HMLB 1.60 ± 0.01 10−3 2.63 ± 0.07 1.43 ± 0.01 10−3 1.69 ± 0.02
LMHB 1.56 ± 0.01 10−3 1.82 ± 0.05 1.00 ± 0.01 10−3 1.10 ± 0.06
LMLB 1.58 ± 0.01 10−3 2.08 ± 0.06 1.44 ± 0.01 10−3 1.17 ± 0.03

Table 5.14: Comparison of the strain hardening moduli (calculated using
the Neo-Hookean strain measure) for R2 and bimodal materials at a strain

rate of around 10−3/s

172



5.3 Discussion: comparison between the deformation behaviour of
the bimodal and the reactor 2 materials

R2 Bimodal
ε̇ GNHSM/Xc,d ε̇ GNHSM/Xc,d

[/s] [MPa] [/s] [MPa]

HMHB 1.58 ± 0.01
10−3

5.61 ± 0.09 1.46 ± 0.01
10−3

2.8 ± 0.1

HMLB 1.60 ± 0.01
10−3

5.0 ± 0.1 1.43 ± 0.01
10−3

2.48 ± 0.04

LMHB 1.56 ± 0.01
10−3

3.9 ± 0.1 1.00 ± 0.01
10−3

1.7 ± 0.1

LMLB 1.58 ± 0.01
10−3

4.0 ± 0.1 1.44 ± 0.01
10−3

1.73 ± 0.05

Table 5.15: Comparison of the strain hardening moduli (calculated using
the Neo-Hookean strain measure) corrected for the crystalline contribution

for R2 and bimodal materials at a strain rate of around 10−3/s
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Figure 5.14: CRDF as a function of stress, comparison of all materials
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Figure 5.15: Comparison of strain hardening of R2 and bimodal materials
at an approximate strain rate of 10−3/s

We will now use these experimental observations to hypothesise the

physical mechanisms acting during the deformation of the reactor 2 and

the bimodal materials. The high available network density in the reactor

2 materials compared to the bimodal materials is a clear indication that

the low molecular mass, linear fraction has a negligible contribution to the

network. This implies that when a certain stress is applied to the network,

this stress is divided over more chains in the reactor 2 materials than in the

bimodal materials. In other words, the effective force per chain is lower in

the reactor 2 materials. This explains why the reactor 2 materials have a

higher resistance to deformation both during creep and during strain hard-

ening. From the strain rate sensitivity of the strain hardening modulus of

the bimodal materials, it was concluded that the α-relaxation causes an

upswing in the strain hardening of these materials (especially those with

a high crystallinity) from a strain rate of 10−3/s. The strain rate sensitiv-

ity of the strain hardening (and the yield stress) of the reactor 2 materials

was not studied, but it would be expected that this effect is smaller for

these materials due to their lower crystallinity. When taking into account
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crystallinity, the ranking of the reactor 2 materials is the same as for the

bimodal materials in terms of strain hardening (though the strain harden-

ing is higher for the reactor 2 materials). This indicates that correcting for

the crystallinity indeed eliminates crystalline friction contributions. This

ranking also agrees with the results from solid state NMR, but further work

needs to be done to see whether the differences in network density from

NMR within one family of materials are significant, and how the available

network density translates to the effective network density as a function of

time. From figure 5.14, it can be seen that at all stresses measured, the

creep rate deceleration factor is lower for the reactor 2 materials than for

the bimodal materials. However, the difference decreases with increasing

stress, especially for the HMLB materials. Due to the lower force per tie

chain in the reactor 2 materials, a higher applied stress is needed to pull

a branch into a crystal or over an entanglement. The friction contribu-

tion is therefore lower at low stresses than at high stresses for the reactor

2 materials, while it could be that for the bimodal materials, this friction

process is already fully active at lower stresses, hence the low sensitivity to

stress. This effect can be expected to be larger in the R2-HMLB material.

Its high molecular mass in combination with a high crystallinity results in

stable crystals, well connected by tie chains at low stress. At high stress,

the crystals have a much lower effect because it is easier to pull branches

into crystals, and now the low branch content results in a lower resistance

to creep compared to R2-HMHB.

In terms of stress during strain hardening, it can be seen from figure 5.15

that at the same draw ratio, the reactor 2 material can roughly take double

the stress at the bimodal material. From table 5.15, it can be calculated

that GNHSM/Xc,d is 2.00 ± 0.04 for the high molecular mass materials, and

2.30 ± 0.03 for the low molecular mass materials. The low molecular mass,

linear fraction in the bimodal material is 49%. Hence no major synergistic

effect is seen. The doubling in stress is combined with a significant reduction

in failure stress and draw ratio. So while the reactor 2 materials would be

ideal materials to resist creep up until 150 MPa, they will break at a higher

applied stress. Furthermore, the R2 materials are difficult to process. Hence

of the eight materials studied in this work, bi-HMHB performs best overall
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in terms of resistance to creep and strain hardening, failure stress and draw

ratio and processability.

5.4 Conclusions

In conclusion, the monomodal, branched polyethylenes have a higher resis-

tance to creep and strain hardening than the bimodal polyethylenes. This

indicates the importance of the available network density. A higher number

of effective network chains reduces the effective force per chain. The creep

resistance of the reactor 2 materials is more sensitive to starting creep stress

than in the bimodal materials, especially for R2-HMLB. We suggest that

this is caused by the friction needed to be overcome to pull a chain branch

into a crystal or over an entanglement. If the effective force per chain is

higher, like in the bimodal materials, this process will be activated at lower

stresses. Overall, materials with a combination of high molecular mass and

high branch content perform the best out of the eight materials studied in

this work. The combination of a high number of tie chains with a high

monomeric friction increases the friction to be overcome by the material to

deform, whether it originates from pulling a branch over an entanglement

or into a crystal.
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Chapter 6

Conclusions

The conclusions of this work are summarised in this chapter and suggestions

for future work are given.

6.1 Overall conclusions

The most common failure mode for polyolefin pressure pipes is brittle failure

caused by slow crack growth. A crack is preceded by a craze, a voided wedge

of material bridged by highly deformed fibrils. Upon failure of the fibrils,

the crack propagates. Both the tendency of the material to form voids and

the strength of the fibril at the craze - crack interface are governed by the

effective entanglement network. The effective entanglement network com-

prises all the intermolecular junctions in the material that can effectively

transfer load at the time scale of the experiment, whether originating from

entanglements in the amorphous phase or intercrystalline tie molecules. In

this work, the effective entanglement network of bimodal polyethylene is

probed through tensile and creep measurements. Bimodal polyethylene is

the industrial standard material for polyethylene pressure pipes, and con-

sists of a high molecular mass, branched fraction and a low molecular mass,

linear fraction. The former is responsible for the resistance to slow crack

growth, the latter for enabling processing.

For the first part of the work, four materials are produced. They are all

bimodal polyethylenes, of which the high molecular mass fraction is varied

in terms of molecular architecture:
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• low molecular mass and low branch content,

• low molecular mass and high branch content,

• high molecular mass and low branch content and

• high molecular mass and high branch content.

The creep and strain hardening behaviour of these four materials is stud-

ied. It is found that only a combination of high molecular mass and high

branch content increases the resistance to creep, independent of the starting

creep stress. The resistance to strain hardening increases with strain rate,

but the strain rate sensitivity is different for the different bimodal mate-

rials. Over the strain rate range studied, molecular mass is the dominant

factor, with a higher strain hardening for the high molecular mass materi-

als. At low strain rates, branch content has no effect on strain hardening.

At high strain rates, a low branch content results in an improved strain

hardening compared to high branch content. The strain rate sensitivity of

the strain hardening is ascribed to a crystalline contribution caused by the

α-relaxation. Assuming that the crystalline contribution is dominant and

the long range order parameters are similar in the isotropic material and

the strain hardening region, the strain rate dependent yield stress can be

taken as a measure for the friction contribution during strain hardening.

When scaling the strain hardening modulus by the yield stress, the ranking

of the materials at low strain rates now agrees with the ranking in creep. At

high strain rates, however, the resistance to strain hardening now decreases

with strain rate, suggesting that scaling by the yield stress overestimates

the crystalline contribution at high strain rates. This is ascribed to a loss

of long range order during strain hardening at these strain rates.

For the second part of this work, four other materials are produced.

They are all monomodal polyethylenes, representing the high molecular

mass fraction of the bimodal polyethylenes described above. The purpose

for studying these materials is to establish whether the same mechanisms

for increasing the resistance of a polyethylene against strain hardening and

creep are present in the bimodal materials and the monomodal materials. In

other words, does optimising the branched fraction of a bimodal polyethy-

lene result in an optimisation of the bimodal polyethylene as a whole? The
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monomodal, branched polyethylenes have a higher resistance to creep and

strain hardening than the bimodal polyethylenes. This indicates the im-

portance of the available network density. A higher number of effective

network chains reduces the effective force per chain. The creep resistance of

the reactor 2 materials is more sensitive to starting creep stress than in the

bimodal materials, especially for R2-HMLB. We suggest that this is caused

by the friction needed to be overcome to pull a chain branch into a crystal

or over an entanglement. If the effective force per chain is higher, like in the

bimodal materials, this process will be activated at lower stresses. Overall,

materials with a combination of high molecular mass and high branch con-

tent performs the best out of the eight materials studied in this work. The

combination of a high number of tie chains with a high monomeric friction

increases the friction to be overcome by the material to deform, whether it

originates from pulling a branch over an entanglement or into a crystal.

Of the eight materials studied in this work, bi-HMHB performs best

overall in terms of resistance to creep and strain hardening, failure stress

and draw ratio and processability.

6.2 Future work

This work studied the mechanical behaviour of bimodal and monomodal

branched polyethylene and used the results to hypothesise on the physical

mechanisms behind the differences in behaviour. Further work is needed

to substantiate these hypotheses further. In this work, it is suggested that

the mechanical behaviour can be interpreted as a combination of available

network density and monomeric friction, irrespective of the nature of the

morphological components causing this friction. To substantiate this claim,

the melt friction of these materials should be measured and compared to

their mechanical behaviour. The time dependency of the available network

density measured in solid state NMR should be assessed. A first step for

doing is would be dynamical mechanical analysis, comparing the plateau

modulus at different frequencies with the NMR results. To assess the chain

axis density of the different materials at different strain rates, a detailed
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study of the fracture stress as a function of strain rate should be performed.

It would be interesting to do Raman measurements at different stages during

the strain hardening at different strain rates, to see if peak splitting can

be observed. Peak splitting indicates chains of the same morphology being

stressed in different amounts, and can be used to calculated molecular stress.

However, the feasibility of such a study at high strain rates is low. The strain

hardening and yield behaviour at different strain rates for the R2 materials

should be explored, to see if our conclusions hold. To assess if the idea

of a general friction contribution is adequate, material with a set branch

content can be annealed to obtain different crystallinities. In this way, the

other aspects of the morphology of the material are less critically altered

than for the materials used in this work. A study similar to the one in

this work could then be performed. This type of mechanical studies on well

characterised materials is crucial in the understanding of creep and strain

hardening and their relation to slow crack growth, as morphological and

structural studies at high strain rates and high deformation can be very

challenging.
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[99] R. A. Garćıa, A. Carrero, M. Aroca, O. Prieto, and C. Dominguez,

“Slow crack growth resistance in resin blends of chromium and met-

allocene catalyzed ethylene-hexene copolymers for pipe applications,”

Polymer Engineering & Science, vol. 48, no. 5, pp. 925–933, 2008.

[100] J. J. Cheng, M. A. Polak, and A. Penlidis, “Polymer network mobility

and environmental stress cracking resistance of high density polyethy-

lene,” Polymer-Plastics Technology and Engineering, vol. 48, no. 12,

pp. 1252–1261, 2009. 25

[101] J. J. Cheng, M. A. Polak, and A. Penlidis, “Influence of micromolecu-

lar structure on environmental stress cracking resistance of high den-

sity polyethylene,” Tunnelling and Underground Space Technology,

vol. 26, no. 4, pp. 582–593, 2011. 31

[102] A. Adib, C. Domı́nguez, J. Rodŕıguez, C. Mart́ın, and R. A. Garćıa,
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[179] V. Gaucher-Miri and R. Séguéla, “Tensile yield of polyethylene and

related copolymers: mechanical and structural evidences of two ther-

mally activated processes,” Macromolecules, vol. 30, no. 4, pp. 1158–

1167, 1997. 86

[180] N. Brooks, R. Duckett, and I. Ward, “Temperature and strain-rate

dependence of yield stress of polyethylene,” Journal of Polymer Sci-

ence Part B: Polymer Physics, vol. 36, no. 12, pp. 2177–2189, 1998.

86

200



REFERENCES

[181] S. Hobeika, Y. Men, and G. Strobl, “Temperature and strain rate

independence of critical strains in polyethylene and poly (ethylene-co-

vinyl acetate),” Macromolecules, vol. 33, no. 5, pp. 1827–1833, 2000.

86

[182] L. J. Fetters, D. J. Lohse, C. A. Garćıa-Franco, P. Brant, and
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