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Abstract

The focus of the research is to investigate and develop enhanced version of swarm intelli-
gence firefly algorithm and ecology-based invasive weed algorithm to solve global optimisa-
tion problems and apply to practical engineering problems. The work presents two adaptive
variants of firefly algorithm by introducing spread factor mechanism that exploits the fitness
intensity during the search process. The spread factor mechanism is proposed to enhance the
adaptive parameter terms of the firefly algorithm. The adaptive algorithms are formulated to
avoid premature convergence and better optimum solution value. Two new adaptive variants
of invasive weed algorithm are also developed seed spread factor mechanism introduced in the
dispersal process of the algorithm. The working principles and structure of the adaptive fire-
fly and invasive weed algorithms are described and discussed. Hybrid invasive weed-firefly
algorithm and hybrid invasive weed-firefly algorithm with spread factor mechanism are also
proposed. The new hybridization algorithms are developed by retaining their individual ad-
vantages to help overcome the shortcomings of the original algorithms. The performances
of the proposed algorithms are investigated and assessed in single-objective, constrained and
multi-objective optimisation problems. Well known benchmark functions as well as current
CEC 2006 and CEC 2014 test functions are used in this research. A selection of performance
measurement tools is also used to evaluate performances of the algorithms. The algorithms
are further tested with practical engineering design problems and in modelling and control
of dynamic systems. The systems considered comprise a twin rotor system, a single-link
flexible manipulator system and assistive exoskeletons for upper and lower extremities. The
performance results are evaluated in comparison to the original firefly and invasive weed
algorithms. It is demonstrated that the proposed approaches are superior over the individ-
ual algorithms in terms of efficiency, convergence speed and quality of the optimal solution
achieved.
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Chapter 1

Introduction

1.1 Introduction

Optimisation saturates what we do and drives almost every aspect of engineering.

- Dennis Bernstein (Bernstein, 2006)

According to the quote above, everything we do involves optimisation. From a simple appli-
cation such as our individual personal schedule to more complex applications such as health
care, biological, engineering and economic systems; needs to be optimised. Optimisation
shows a universal applicability hence making it a very interesting topic to study. The pos-
sibility of using biologically-based and evolutionary-based algorithms for optimisation has
widely been researched and applied in the past few decades (Simon, 2013). This thesis aims
to develop new variants of biologically inspired optimisation algorithm and discusses ap-
proaches for solving global optimisation problems.

In this chapter, a brief overview of biologically inspired (bio-inspired) optimisation is
introduced. It is followed by brief introduction of the bio-inspired algorithms used, research
objectives and methodology. This chapter also presents the research contribution and ends
with the organization of the thesis.

1.2 Bio-inspired Optimisation Algorithm

Technologies such as machine learning, high performance computing and other innovative
approaches have helped us extensively in solving complex problems in science and engineer-
ing. However, the extent of the complexity and diversity of the problems have also urged
researchers to look at various ways in solving those problems especially to ensure flexibility,
robustness and reliability as well as low computational cost. As a result, researchers tend to
go back to look upon the nature or biological point of view on how this biological inspired
mechanism could help them solve various complex problems.

In order to tackle this issue, computing inspired by nature, very often referred to biolog-
ically inspired computing is developed and explored based on behaviours of living species

1
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encountered or by exploiting natural processes observed. By looking at all the creatures,
nature has given them biological intelligence of life (Frohlich, 2009). If observed carefully,
there are unlimited ways for problem solving provided by nature. Nunes de Castro (2012)
mentioned that natural computing is a research field that is aimed at developing new com-
putational techniques, methods and algorithms and tools for solving problems inspired by
nature.

One of the important aspects of current bio-inspired computing is optimisation, since peo-
ple are interested in achieving optimality in solving those problems (Yang, 2010a). Regard-
less of the complexity and higher dimensional problems as well as computational drawback
of existing numerical methods, capability of solving those numerical optimisation problems
is still a challenge. Recent biologically-inspired algorithms have been shown to be capable of
solving these problems more efficiently. In recent years, the biologically inspired algorithms
have been adopted to solve hard optimisation problems and they have shown great potential
in solving complex engineering optimisation problems (Yang and He, 2013). Bio-inspired
optimisation technique is developed to solve optimisation problems by iteratively improving
the problem solution. It is one type of metaheuristics methods and is related to the field of
artificial intelligence. This evolution began when John Holland proposed genetic algorithm
(GA) in 1975 based on the Charles Darwin’s principle, survival of the fittest, from the process
of natural evolution. GA has been widely applied in economics, physics, engineering, and
various other fields.

In a simple terms, according to the definition of Cambridge Dictionaries, optimisation is
the process of making something as effective as possible. Thus, optimisation can be illus-
trated as an effort of obtaining the optimal solution of a problem under particular circum-
stances (Yang and Deb, 2014). Most of the systems that seek optimisation have an objective
function and a number of decision variables that affect the functions over a certain search
space. The optimisation method is a process of getting optimal solution that satisfies the
given function as mentioned above. A generic mathematical optimisation (Yang, 2010a) can
be formulated as;

Minimize
x∈<

fi(
−→x ),−→x = [x1, x2, · · · , xn] (1.1)

subject to

gi(x) ≤ 0, fori = 1, · · · , q

hj(x) = 0, forj = 1, · · · ,m

where fi(x), φj(x)andψk(x) are functions of the design vector

x = (x1, x2, ..., xn)T
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where x constitutes components of decision variables or design variables. The variables are
either continuous, discrete or a mixture of continues and discrete. The fi(x) are called the ob-
jective functions. The φj(x) are called the equalities and and ψk(x) the problem inequalities,
for constrained optimisation problems. The <n is called the search space, where the space is
spanned by the decision variables, xi. In order to classify the optimisation problem in terms
of objective function, ifM = 1, the problem is called single objective optimisation. Whereas,
if M > 1, it is called multi-objective optimisation. Multi-objective optimisation is also re-
ferred to as multi-criteria in the literatures. In real engineering applications, multi-objective
optimisation problems are mostly dealt with.

Generally, optimisation algorithms can be categories into two; stochastic and determin-
istic algorithms. Classical optimisation methods such as Newton method, gradient method,
golden mean, modified Newton method, as well as methods for constrained optimisation
such as Lagrange methods, including Linear and Quadratic Programming are all in the class
of deterministic methods. They are largely dependent on gradient information and ideal for
unimodal functions that have one global optimum. However, deterministic algorithms face
difficulty in solving problems with multimodal functions or problems where the gradient is
very small such as flat regions (Tang and Wu, 2009). Therefore, the introduction of stochas-
tic algorithms is preferred as they can escape from local minima and produced better perfor-
mance (Yang, 2010a).

Metaheuristic algorithms could be regarded as a subset of stochastic algorithms. Some
studies in the literature tend to refer to stochastic algorithms as metaheuristics (Blum and
Roli, 2003; Yang and He, 2013). Heuristic means ‘to discover solution by trial and er-
ror’ (Yang, 2010d). Meta-heuristic is defined as ‘higher-level’ heuristic, where the process
of search is influenced by certain trade-off between randomisation and local search (Yang,
2010d). Furthermore, the search process in a meta-heuristic algorithm and in the research in
this thesis, with focus on bio-inspired algorithm, depends on balancing between exploration
and exploitation or diversification and intensification.

In recent years, biologically inspired algorithms have been adopted to solve hard optimi-
sation problems and they have shown great potential in solving complex engineering optimi-
sation problems (Yang and He, 2013). The success of these methods depends on their ability
to maintain proper balance between exploration and exploitation by using a set of candidate
solutions and improving them from one generation to another generation. According to Si-
mon (2013), the exploitation refers to the ability of the algorithm to apply the knowledge of
previously discovered good solutions to better guide the search towards the global optimum.
The exploration refers to the ability to investigate the unknown and less promising regions in
the search space to avoid getting trapped in local optima (Simon, 2013).

Numerous biologically inspired algorithms have been developed by researchers. Most of
the algorithms are nurtured and inspired by the evolution of genetic, the swarm behaviour of
animal and also inspired from common ecological phenomena. Between the 1950s and late
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1970s, these algorithms such as evolutionary algorithms (EA) (Fraser, 1957), evolutionary
programming (EP) (Fogel, 1966), evolutionary strategy (EP) (Rechenberg, 1973) and genetic
algorithm (GA) (Holland, 1975) have been developed. They are mostly inspired by the pro-
cess of genetic evolution. They are also population-based stochastic algorithms that perform
based on best-to-survive criteria (Tang and Wu, 2009). These algorithms are introduced as
alternatives to deterministic method (Binitha and Sathya, 2012) and are becoming powerful
in modern numerical optimisation (Yang, 2009).

There are a number of algorithms that inspired by animal swarm behaviours or swarm-
based algorithms have been developed. These swarm-intelligence based algorithms full un-
der bio-inspired optimisation algorithms where the intelligence is attributed to the social be-
haviour of animals and insects in nature. In the past two decades, these algorithms have
drawn attention of research communities as they appear differently from the classical EAs.
They operate without using evolutionary operators, hence, the stochastic search tracking of
the algorithms are more direct (Tang and Wu, 2009). Among these, Kennedy and Eber-
hart (1995) proposed particle swarm optimisation (PSO) based on social behaviour of bird
swarms. Inspired on foraging of ants, Dorigo et al. (1996) proposed ant colony optimisa-
tion (ACO). Other examples include, bacteria foraging algorithm (BFA) which inherit the
characteristics of bacterial foraging patterns (Passino, 2002) and artificial bee colony (ABC),
which simulates the foraging behaviour of a swarm of bees (Karaboga, 2005). Inspired by
the flashing pattern of a swarm of fireflies, Yang (2010d) proposed a new swarm intelligence
based algorithm called firefly algorithm (FA).

Another class of population-based optimisation models is inspired from natural ecology
phenomena. Examples of bio-inspired algorithm based on ecological mechanism are invasive
weed optimisation (Mehrabian and Lucas, 2006), gravitational search algorithm (Rashedi et
al, 2009), spiral optimisation (Tamura and Yasuda, 2011), galaxy-based search algorithm
(Shah-Hosseini, 2011) and flower algorithm (Yang et al, 2013). Invasive weed optimisation
(IWO) algorithm is one of the promising recent developments in this field. The IWO algo-
rithm is inspired by the natural ecological phenomenon and mimics the behaviour of weeds
occupying suitable place to grow, reproduce and colonize the area. It has the robustness,
adaptation, and randomness features and is simple but effective with accurate global search
ability. This section will concentrate on the FA and IWO and their potential in building novel
bio-inspired optimisation algorithms for solving problems in engineering and sciences.

1.2.1 Firefly Algorithm

Firefly algorithm is one of the population-based optimisation algorithms and in the family
of swarm intelligence algorithms introduced by (Yang, 2009). It is inspired by the social
behaviour of a group of fireflies that interact and communicate via the phenomenon of biolu-
minescence produced in the insect’s body.

This metaheuristic algorithm is much simpler in concept and implementation than other
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swarm algorithms because it has the advantage of finding optimal solution with its exploita-
tion capability. In general, FA is based on random search movement of fireflies, and so it is
easy to achieve the global best values. Yang (2009) proves that FA is very efficient in dealing
with multimodal problems as well as performs better than other bio-inspired optimisation
algorithms. As such, it has attracted much attention to solve various optimisation problems
(Apostolopoulos and Vlachos, 2010; Coelho and Mariani, 2012; Maricelvam et al., 2014;
Olamaei et al., 2013). Appendix A.1 shows the basic flow-chart of the firefly algorithm.

1.2.2 Invasive Weed Optimisation

Another promising recent development in the area of bio-inspired optimisation algorithm is
the IWO algorithm, which was proposed by Mehrabian and Lucas (2006). This population-
based optimisation model is inspired from common ecological phenomena of survival of
weeds. The algorithm is inspired by the natural ecological phenomenon and mimics the
behaviour of weeds occupying suitable place to grow, reproduce and colonize the area. It has
the robustness, adaptation, and randomness features and is simple but effective with accurate
global search ability. It has also been applied to many engineering and non-engineering
fields (Ahmadi and Mojallali, 2012; Ghasemi et al., 2014; Nikoofard et al., 2012; Zaharis
et al., 2013). Appendix A.2 shows the basic flow-chart of the invasive weed optimisation
algorithm.

1.3 Problem Statement

The discussion above of reported literature has highlighted the capability of bio-inspired op-
timisation especially FA and IWO in solving complex problems in science and engineering.
Later chapters will highlight performances of variants of FA and IWO algorithms enhanced
or hybridization with other bio-inspired algorithm as reported by other researchers.

Therefore, there is a need to develop enhanced algorithms mimicking the exact working
mechanism of firefly and weed population. This potential could lead to self-evolving, truly
intelligent, more powerful and more biologically-based algorithms. The natural swarm of
fireflies and weeds survival provides rich source of mechanism that could improve the algo-
rithms.

A great potential can also be explored through hybridization with other algorithms. To
date, there has been no research effort at hybridizing FA and IWO algorithms. As both
algorithms have their own strong features in solving single and multiple objective problems,
hybridizing them could utilize both potentials to produce novel algorithms that perform better
and more efficiently. Furthermore, a study of using swarm-based algorithm and nature-based
algorithm is also a potential domain of the research.
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1.4 Aim of The Research

The aim of the research is to improve the performance of FA, IWO and develop hybridiza-
tion versions of both algorithms. The developed optimisation problems are aimed to have
improvement in terms of convergence speed and accuracy especially in comparison to their
respective predecessors in solving single objective, constrained and multiple objective opti-
misation problems.

There are opportunities for improvement of FA and IWO in terms of convergence accu-
racy and speed. Local information during the optimisation process is one of the areas that
could be explored more and used to improve the search process. Some researchers such as Yu
et al. (2014) and Wang et al. (2016) have initiated improvements by using local information.
However, there are still further strategic approaches and the use of information that could
lead to improved performance of the algorithm. On the other hand, at present, there is no lit-
erature referring to hybridization between firefly and invasive weed optimisation algorithms
for improved performance.

Hence, the adaptive versions of FA and IWO are developed in this research by utilising
the information available during the search and iteration process. The algorithms are aimed
to reflect the given information and the movement of the group to respond. The innovative
movement mechanism of fireflies and weeds to improve their diversification and intensifica-
tion process in finding the optimum solution. The adaptation will help the algorithm to get
better solution, fast convergence and maintain good accuracy to the global optimum solution
of the problem in hand.

Through benchmark and practical applications, the proposed variants will be examined
in solving various optimisation problems. The algorithms will be subjected to tests with
single and multi-objective well-known benchmark functions including benchmark functions
provided by Congress on Evolutionary Computation (CEC). For single optimisation prob-
lems, 12 test functions of CEC 2014 are used for benchmark function and for constrained
optimisation problem, 10 functions of CEC 2006 are used in this thesis.

The proposed optimisation algorithms are further subjected to tests with engineering
problems particularly in dynamic system modelling and controller design. These include
modelling and control of flexible systems and wearable exoskeletons. The flexible systems
considered comprise a twin rotor system (TRS) and a single-link flexible manipulator system
(FMS). The wearable exoskeletons considered include models of upper and lower limb ex-
oskeletons. The performances of the developed algorithms are assessed in comparison to the
original FA and IWO.

1.4.1 Research Objectives

The main objectives of the research are as follows:

1. Investigate and develop adaptive FA and IWO algorithms that are better than their pre-
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decessors in solving single unconstrained and constrained single objective optimisation
problems.

2. Research and develop hybrid versions of FA and IWO that are better in convergence
and fitness accuracy in solving single optimisation problems and constrained objective
optimisation problems.

3. Investigate and test the developed algorithms to solve multiple objective optimisation
problems.

4. Assess the performance of the developed adaptive FA, IWO and hybrid versions by
employing the algorithms in dynamic modelling and control of a twin rotor system, a
flexible manipulator and wearable upper and lower extremity exoskeletons.

1.5 Research Methodology

This section describes the adopted methodology and techniques used in this research. A
flow of the research methodology is presented in Figure 1.1 and the various steps are briefly
described below.

1. Formulating research problem.

A thorough search of the given topic in the potential area in biologically inspired opti-
misation is carried out to provide the idea of formulating the research problem. Thus,
expected improvements of firefly algorithm and invasive weed optimisation and asso-
ciated validation of the algorithms are highlighted.

2. Literature survey.

An extensive literature survey of the problem domain is carried out. This will allow
identify current trends of the techniques and methodologies and associated problems
encountered. Potential improvements and open problems are noted, and the findings are
categorised into developments in firefly algorithm and its applications, invasive weed
and its applications.

3. Finding research gap.

The literature review will provide a clear picture of the research gap. The variants and
improvements to the algorithms with recent applications will be reviewed to identify
the shortcomings and potential areas for further improvement.

4. Based on the identified research gap, proposed approaches will be formulated.

• Formulation of proposed approaches with focus at modification of the algorithms
(FA and IWO) and whether they could achieve improved performance in compar-
ison to the original algorithms.
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Figure 1.1: The proposed flow-chart for the research

• Problem formulation I and II focus at development of proposed algorithms in
context of specific optimisation problems (i.e., constrained optimisation problems
and multi-objective problems). Comparative assessments with the original algo-
rithms are also carried out.

• Problem formulation III is concerned with the development of modelling and con-
trol techniques using the proposed algorithms and the original FA and IWO algo-
rithms. The main objectives are to arrive at optimal parameter set in a dynamic
modelling and controller design contexts.

5. Determining the optimisation problem.

In this research, the proposed algorithms are tested, evaluated and verified with two
sets of optimisation problems; benchmark functions and engineering applications.

• Benchmark functions.
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A set of benchmark test functions are used in the research. The target is to assess
the performances of the proposed algorithms.

• Single objective optimisation problem.

Well-known benchmark functions and CEC 2014’s benchmark problems are used
to test the proposed algorithms. Certain performance metrics are used to evaluate
the proposed algorithms.

• Constrained optimisation problem.

A basic benchmark problems and selected CEC 2006’s benchmark problems for
constrained problems are used. Four well known practical engineering problems
that are concerned with constrained optimisation problems are also being used.

• Multi-objective optimisation problem.

Well-known benchmark problems are selected and used. Performance metrics are
also used in this section to evaluate the performance of the proposed algorithms
in comparison to their predecessors.

• Practical engineering optimisation problems.

There are four engineering applications used in this research; twin rotor system
(TRS), single-link flexible manipulator system (FMS), human arm model and
lower limb exoskeleton model. The proposed algorithms are tested in modelling
and control exercises in these applications.

6. Collect and analysed data.

The algorithm’s performance is measured on each optimisation problem independently.
The results obtained for each problem are aggregated to form a more general picture.
For a comparative assessment of the algorithms, the number of iteration (itmax) and the
number of function evaluations (NFE) are used as standard approach in the computa-
tion process. Most of the convergence graphs will be shown over a fixed number of
iterations.

Most of the performance measurements of the algorithms shown in this thesis are
mainly done by determining the fixed target approach (Hansen et al., 2010). In this
approach, final optimisation value is measured by an accurate time target or in this case
fixed number of iterations. The number of population is also fixed for all the algorithms
used, hence, the NFE are calculated the same for each problem.

A good algorithm will gives better convergence and fitness accuracy. As most of the op-
timisation problems focus on minimisation problems, the optimum fitness value, fbest
is calculated at the end of the fixed iteration period. Another concept called, optimisa-
tion error shows the difference between fbest−foptimum, where foptimum is the optimum
value of the objective problem. Over a fixed iteration, the ‘best’ algorithms can be said
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to solve the problem accurately (effectively) and fast (efficiently) after running the op-
timiser over a certain period of time (Opara and Arabas, 2011). In evaluation using
benchmark functions, the number of runs are number of runs is set the same. This is
because, it could be more precise on relative terms.

7. Comparing results, evaluation and interpretation.

The analysed data shows the performance and achievement of the proposed algo-
rithms. The results are evaluated and these interpretation these interpretations may
lead for to further algorithm enhancement and future research. For single optimisation,
constrained and multi-objective optimisation problems, the quality of final solution
achieved by the algorithms will be compared and evaluated. In single optimisation
problems, the algorithms also are evaluated in context of robustness. In this study, each
function is evaluated by a set of selected pre-defined threshold value. The stopping
criterion is fixed and it is smaller than pre-defined threshold. The robustness of each
algorithm is measured by the success rate (SR) (Roy et al.,2013), which evaluates the
algorithm based on consistency and successful converge to the threshold value. For
handling multi-objective problems, a set of performance metrics is defined to measure
the properties of the non-dominated solution obtained by the algorithms. The hyper-
volume (HV), spacing (SP) and maximum spread (MS) will show a measure of the
convergence, uniform distribution and extensiveness (Jariyatantiwait and Yen, 2014)
of the population during the search process in obtaining the non-dominated solutions
of each multi-objective problem.

1.6 Contributions and Publications of The Research

The main contributions of this research can be highlighted as follows:

1. An adaptive parameter mechanism of firefly’s movement in the firefly algorithm. The
randomization and attractiveness parameter are adapted with a range between the low-
est and highest fitness value during the iteration process. The mechanism is enhanced
by decrementing nonlinear and exponential changes of the parameters. The corre-
sponding improved versions of FA include the following:

• Firefly algorithm with nonlinear spread factor, FA-NSF.

• Firefly algorithm with exponential spread factor, FA-eSF.

2. An adaptive parameter mechanism of seeds distribution in the invasive weed optimi-
sation algorithm. An exponential decrement mechanism is proposed to the value of
standard deviation, SD of seeds distribution. The mechanism is also enhanced by the
range of lowest and highest fitness values of plants in each generation during the itera-
tion process. The resulting improved versions of IWO include the following:
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• Invasive weed optimisation with exponential seeds spread factor, IWO-eSSF.

• Modified invasive weed optimisation with exponential seeds

spread factor, MIWO-eSSF.

3. A novel algorithm by hybridizing the firefly algorithm and invasive weed optimisation.
The algorithm is also enhanced by adaptive parameter mechanism as implemented in
item 1 and 2. The hybridization algorithms are:

• Hybrid invasive weed firefly optimisation, HIWFO.

• Hybrid invasive weed firefly optimisation with spread factor, HIWFO-SF.

4. The proposed algorithms are evaluated in numerical benchmark problems such as 10
well known benchmark problems and CEC 2014 for single objective optimisation prob-
lems, CEC 2006 for constrained optimisation problems and practical engineering con-
strained problems. The algorithms are also evaluated with multi-objective benchmark
problems.

The findings in this research have produced new contributions to knowledge of bio-
inspired optimisation algorithm that will benefit the optimisation communities. The algo-
rithms may also outperform other bio-inspired optimisation methods in certain types of prob-
lems.

Publications from this research either accepted or in print as follows. There are also
further publications that are being prepared for submission.

• Hyreil A.K., Yahya N. M., Tokhi, M.O. (2015). Hybridizing firefly algorithm with
invasive weed optimisation for engineering design problems. In Evolving and Adaptive
Intelligent Systems (EAIS), 2015 IEEE Conference on (pp. 41-46). IEEE.

• Hyreil A.K., Assemgul M., Tokhi, M.O. (2015). Fuzzy logic based controller for a
single-link flexible manipulator using modified invasive weed optimisation. In Evolv-
ing and Adaptive Intelligent Systems (EAIS), 2015 IEEE Conference on (pp. 117-122).
IEEE.

• Hashim R., Hyreil A.K., Tokhi, M.O. (2015). Control of a single link flexible manipu-
lator system using simple modified artificial bee colony optimisation algorithm. Poster
session presented at the ACSE PGR Symposium 2015. Department of Automatic Con-
trol and Systems Engineering, The University of Sheffield, United Kingdom.

• Hyreil A.K., Yahya, N.M., Tokhi, M.O. (Submission 2016). Hybridizing invasive
weed optimisation with firefly algorithm for unconstrained and constrained optimisa-
tion problem. Journal of Theoretical and Applied Information Technology (submitted
on 30th September 2016, under review).
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• Hyreil A.K., Yahya, N.M., Tokhi, M.O. (Submission 2016). Improved invasive weed
algorithm with seed-spread factor for solving numerical constrained optimisation prob-
lems. Applied Soft Computing (submitted on 15th January 2016, under review).

1.7 Organisation of The Thesis

This section presents a brief description of the contents and organisation of the thesis.

Chapter 1 This chapter presents brief description of bio-inspired optimisation algorithm,
the research background, aims and objectives. The chapter also explains the research
methodology, contributions of the research and organization of the thesis.

Chapter 2 This chapter contains brief overview of FA and IWO and associated develop-
ments and applications.

Chapter 3 This chapter describes the development and modification made to improve the
FA and IWO algorithms and introduces the new hybrid optimisation algorithms by
combining firefly and invasive weed optimisation algorithms.

Chapter 4 This chapter presents the testing method to verify the performance of the pro-
posed algorithms by using various benchmark test functions. In this chapter, single
objective and constrained optimisation benchmark functions are used. The proposed
algorithms are validated with performance metrics and statistical analysis.

Chapter 5 This chapter presents a brief summary of multi-objective test functions. The
proposed algorithms are compared and evaluated with the multi-objective optimisation
problems. The performance of the proposed algorithms on the benchmark functions
are shown and further evaluated with a specific performance metric.

Chapter 6 This chapter investigates the application of the proposed algorithms on practical
engineering applications. The proposed algorithms are applied to parametric mod-
elling of twin rotor system and brief explanations of the modelling strategy that utilise
the proposed algorithms are given. A Proportional-Derivative (PD)-like fuzzy logic
control (FLC) is optimised by the proposed algorithm for position tracking control of
a single-link flexible manipulator system. The proposed algorithms are further used to
optimise the control parameters of position tracking control of human arm and lower
limb exoskeleton model.

Chapter 7 This chapter summarises the research work that has been presented throughout
the thesis. Further improvement of the current research findings are suggested for fu-
ture works.



Chapter 2

Firefly and Invasive Weed Optimisation
Algorithms: An Overview

2.1 Introduction

In recent years, bio-inspired optimisation techniques have been widely used in solving vari-
ous engineering optimisation problems. They have also been developed and implemented to
solve various problems in economics and other applications. The most pre-dominant classes
of metaheuristics algorithms are evolutionary algorithms (EAs) and swarm-intelligence based
algorithms that are based on natural evolution and collective behaviour living species. There
also exist other metaheuristics algorithms that are based on natural ecosystems. This chapter
provides an exploration of FA which is one of the swarm-intelligence algorithms and IWO,
a powerful natural ecosystems algorithms. Brief concepts, recent modifications and applica-
tions of firefly and invasive weed optimisation are explored and over-viewed. The target of
this chapter is to investigate the characteristics of the original FA and IWO for further im-
provement. The concept of parameters modifications of the attractiveness and randomness in
FA and seeds distribution in IWO are the areas of focus. Recent implementation of the FA and
IWO variants for constrained and multi-objective optimisation problems are also highlighted.

2.2 The Firefly Algorithm

Firefly algorithm is a metaheuristic algorithm inspired by the social behaviour of a group of
fireflies. It was introduced by Yang (2010d). During the optimisation process, the algorithm
attempts to move the particles or fireflies as inspired by the interaction of real fireflies. As
each firefly produces light based on the phenomenon of bio-luminescence, certain suggestions
are made in the algorithm. In principle, each firefly will be exploring and searching for other
fireflies and preys randomly. Yang (2010a) suggests that each firefly will produce its own
light intensity based on its body-flashing pattern, which also determines the brightness of the
firefly. The firefly has the tendency to be always attracted to brighter ones. The brightness of
each firefly is determined by the landscape of the objective function. Therefore, the variation

13
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of light intensity produced by each firefly in the search region is associated with the encoded
objective function. Hence, the development of the original algorithm introduced by Yang
(2010d) is based on the following assumptions:

• All the fireflies are assumed to be unisex. Therefore, each firefly will be attracted to
another regardless of its sex.

• The attraction between fireflies is determined by the brightness of each firefly and in
a proportional manner. Therefore, if one firefly is brighter than others, it will attract
others to it. Otherwise, if found none, the firefly will move randomly in the search
space.

• The brightness of a firefly is assumed based on the landscape of the objective function.

For most practical implementations, Yang (2010a) has suggested that each firefly will
produce its own light intensity that determines the brightness of the firefly. The variation of
light intensity produced is associated with the encoded objective function. Hence, in finding
solution in an optimisation problem, the light intensity at location x can simply be propor-
tional to the objective function f(x) and can be chosen as I(x) ∝ f(x). For any distance r,
the light intensity I(r) varies exponentially as:

I = I0e
−γr (2.1)

where I0 is the original light intensity coefficient at r = 0 and γ is predetermined parameter of
light absorption coefficient. The value implies that the strength of the light intensity produced
will attract other firefly members. As the attractiveness of firefly is proportional to the light
intensity produced by each firefly, the distance, r could be defined as the distance between
any two fireflies, and the variation of attractiveness, β as:

β = β0e
−γr (2.2)

where β0 is the parameter value of attractiveness coefficient at r = 0. For a firefly to move to
another brighter firefly, assuming that a firefly j is more attractive than firefly i, Yang suggests
that the movement of firefly i, towards firefly j is determined by

xi+1 = xi + β0 exp−γr
2

(xj − xi) + αεi (2.3)

where the third term is the randomization term which consists of randomization coefficient,
α with the vector of random variable, εi from Gaussian distribution. For most practical im-
plementations, the following has been suggested (Yang, 2010a):

• The distance between any two fireflies i and j at x(i) and x(j) is in the Cartesian
distance r2

ij = (xi − xj)2.
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• The randomization coefficient α is replaced by αSk where α ∈ [0, 1] and the scaling
parameter Sk(k = 1, . . . , d) is in the d dimensions of the actual search space of the
optimisation problem.

• The light absorption coefficient γ will determine the variation of attractiveness β and
γ ∈ [0,∞]. However, in practice, it is suggested to assume γ = 1 and β0 = 1.

• The population size of the fireflies n is proposed to be from 15 to 100, although for
practical purpose, the best range is n = 15 to 40.

For the FA, the randomization parameter is used for exploration. The right tuning of
the randomization factor could help the algorithm control the performance by balancing the
search of local and global optima. On the other hand, the attractiveness parameter critically
acts as exploitation of local knowledge in the search-space concentrating the local region
especially if the optimality is very close. However, this optimal may or may not be the global
optimal. Hence, Yang and He (2013) stresses out that a strong local knowledge, the movement
shape of the algorithm and the capability of storing history / memory of local information in
the search space will be helpful to the exploitation components.

Since the algorithm introduced in 2009, many complex problems have been solved us-
ing FA. Yang and He (2013) explained that this algorithm shows better potential together
with other bio-inspired algorithms such as PSO, bat algorithm (BA) and cuckoo search (CS)
in solving complex engineering problems. Therefore, based on the literature, some of the
FA applications in the domain of engineering, computer science and solving other complex
optimisation problems are shown in Table 2.1:

2.2.1 The Variants of Firefly Algorithm

Although Yang (2010c) mentioned that the FA has shown to be superior over many other bio-
inspired optimisation algorithms, the need for improvement of the algorithm does not stop
there. One of the ways to enhance the search capability and improve the convergence of the
FA is by modifying its parameters. As mentioned by Yang (2009), the control of convergence
is based on the attractiveness factor such as attractive coefficient, β and light absorption
coefficient, γ and also its randomization factor, α. Łukasik and Żak (2009) improved this
section by putting a synergy local search by customizing the attractiveness factor based on
the “characteristic length” of the optimised area and variation of attractiveness with increasing
distance of communicated firefly. Numerical benchmark functions showed that the proposed
algorithm is comparable with PSO. Farahani et al. (2011) presented an improved FA variant
by using the concept of normal Gaussian distribution of the randomization factor and adaptive
step length of the firefly movement called Gaussian distribution firefly algorithm (GD-FF).

Lui et al. (2012) introduced adaptation for both absorption and random parameter, re-
sulting in an adaptive firefly algorithm (AFFA). These changes improve the global search



16 2. Firefly and invasive weed: An overview

Table 2.1: A selection of FA applications

Problem Reference

Engineering Steel structure Gholizadeh (2015)

Control system Debbarma et al. (2014)

Mathematical modelling Klausen et al. (2014)

Control system Reddy et al. (2016)

Power electronics Sundari et al. (2016)

Sundaram et al. (2016)

Wind turbine Wagan et al. (2015)

Younes et al. (2014)

Smart grid Chandrasekaran et al. (2014)

Electrical engineering Chandrasekaran et al. (2012)

Gokhale and Kale (2016).

Setiadi and Jones (2016).

Naidu et al. (2014)

Farhoodnea et al. (2014)

Shareef et al. (2014)

Mohammadi et al. (2013)

Economic power dispatch Liang et al. (2015)

Apostolopoulos and Vlachos (2010).

Abedinia et al. (2012)

Niknam et al. (2012)

Yang et al. (2012)

Forecasting Ch et al. (2014)

Xiong et al. (2014)

Image processing Horng and Liou (2011)

Vishwakarma and Yerpude (2014)

Chen et al. (2016)

Kanimozhi and Latha (2015).

Mishraet et al. (2014)

Fingerprint Al-Ta’i and Al-Hameed (2013).

Manufacturing Sayadi et al. (2013)

Singh and Shukla (2016).

Li and Ye (2012)

Geo-magnetic information Ma et al. (2015)

Chemical Fateen et al. (2012)

Roeva and Slavov (2012).

Computer science Machine learning Krawczyk (2015).

Networking Kim and Kim (2016).

Rubio-Largoet et al. (2014)

Bojic et al. (2012)

Database system Wozniak et al. (2016)

Molecular computing Chaves-González and Vega-Rodrı́guez (2014)

Data mining Banati and Bajaj (2011)

Multimedia processing Kanimozhi and Latha (2015)

Optimisation problem Dynamic optimisation problems Ozsoydan and Baykasoglu (2015)

Flow-shop scheduling problems Marichelvam et al. (2014)

Sayadi et al. (2010)

Khadwilard et al. (2011)
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and local search capability by changing the parameter linearly during the iterations period.
Coelho et al. (2011) proposed a modified firefly algorithm (MFA) by linearly changing the
parameter values of α and γ, either in decrement or increment. They introduced chaotic fire-
fly algorithm (CFA) that combined the chaotic sequence into the original algorithm. Coelho
et al (2011) used Logistic map to solve the reliability-redundancy allocation problem. Later,
they introduced Tinkerbell map (Coelho et al, 2012) to enhance the algorithm and applied to
tune and optimise control variables of Wood and Berry column model and industrial-scale
polymerization reactor model.

Tilahun and Ong (2012) presented a modified firefly algorithm by random movement
according to the attractiveness. The algorithm helped to magnify the brighter firefly and im-
prove the algorithm. Shafaati and Mojallali (2012) proposed a modified firefly algorithm
(MFA) that gradually reduced the randomness and introduced global best term in the fire-
fly movement to converge more quickly. They applied the algorithm to development of the
learning rule for identification of three IIR benchmark and nonlinear plants. Tian et al. (2012)
introduced an inertia weight on the updating of firefly giving rise to so called inertia weight
firefly optimisation (IWFA). The inertia weight decreases linearly during the iteration pro-
cess.

Later, Gandomi et al. (2013) proposed use of chaotic method with a list of chaotic vari-
ables called chaotic optimisation algorithm (COA) where each chaotic variable tuned both
parameters and a comparison of performance was made. Yan et al. (2012) employed three
adaptive mechanisms and proposed an algorithm referred to as new adaptive firefly (AFA).
The simulation results with different dimensions showed that AFA was comparable with DE
and superior to PSO and FA.

Yu et al. (2014) proposed a new adaptation strategy on the randomisation parameter
called wise step strategy for FA (WSSFA). In WSSFA, the wise step of the randomisation is
considered by taking the absolute distance between the firefly’s global best position and best
positions during the iteration process. Wang et al. (2016) proposed FA with random attraction
(RaFA), which employs a randomly attracted model. In RaFA, each firefly is attracted to
another randomly selected firefly. In order to enhance the global search ability of FA, a
concept of Cauchy jump is utilised.

Recently, Wang et al. (2016) presented a new adaptation mechanism for FAs’ parameter
called adaptive control parameters (ApFA). Comparative assessment in simulations of ApFA
with standard FA and other variants of FA on benchmark functions have shown that ApFA
outperformed those algorithms. In addition, Wang et al. (2016) also proposed NSRaFA in
which three neighborhood search and a new randomization model are employed to improve
the exploration and exploitation abilities. The algorithm proposed is also capable of adjusting
the control parameters automatically during the search process.
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2.2.2 Hybridization of Firefly Algorithm

Method of hybridization are also used to improve the optimisation method. Yang (2010b)
formulated a new hybrid algorithm by combining firefly with Lévy flights. The Levy flights
is used to enhance the search strategy of the algorithm and showed superior results compared
to the firefly algorithm. Hassanzadeh and Meybodi (2012b) proposed a hybrid approach
that combined firefly algorithm with K-means called K-FA. This new approach is used to
solve data clustering problems. Hassanzadeh and Meybodi (2012a) presented a new hybrid
model CLA-FA, which combined cellular learning automata (CLA) and FA. CLA is used to
adapt the FA parameter and improve the algorithm in terms of global search and local search
processes. Farahani et al. (2011) employed learning automata to adjust the firefly behaviour
and GA to enhance global search.

Abdullah et al. (2012) proposed a new hybrid optimisation method called Hybrid Evolu-
tionary Firefly Algorithm (HEFA). The method combines the standard FA with evolutionary
operations of differential evolution (DE) method to improve the searching accuracy and infor-
mation sharing among the fireflies. The HEFA method is used to estimate the parameters in a
complex and nonlinear biological model to address its effectiveness in high dimensional and
nonlinear problems. Fister et al. (2012) combined memetic algorithm and firefly algorithm
and proposed memetic firefly algorithm (MFFA). The firefly algorithm hybridized with local
search heuristic, memetic algorithm to solve combinatorial optimisation problems. El-Sawy
et al. (2012) presented a new hybrid mechanism by incorporating concepts from ant colony
optimisation (ACO) and FA. It is named ant colony-firefly algorithm. The methodology of
the proposed algorithm used parallel mechanism of ACO and FA for updating the solutions.

Guo et al. (2013) proposed a hybrid metaheuristic approach by hybridizing harmony
search (HS) and FA, namely, HS/FA. HS/FA is used to solve function optimisation. HS/FA
combines exploration of HS with exploitation of FA. Riz-Allah et al. (2013) presented hy-
bridization between ant colony and firefly algorithm, named ACO-FA. The FA worked as a
local search and the randomization parameter in FA is decreased gradually during the itera-
tion process. A novel hybrid FA with Pattern Search algorithm, called h-FAPS technique has
been proposed by Mahapatra et al. (2014). The algorithm has been applied to design of a
Static Synchronous Series Compensator (SSSC)-based power oscillation damping controller.
The proposed h-FAPS technique is employed to search for optimal controller parameters.

Later, Rahmani and MirHassani (2014) presented a hybridization with GA to solve dis-
crete optimisation problem. The algorithm is applied to capacitate facility location prob-
lem (CFLP) which is a well-known combinatorial optimisation problem. Tuba and Bacanin
(2014b) employed an improved seeker optimisation algorithm (SOA) with firefly algorithm to
build new hybrid FA algorithm. The approach uses either SOA or FA to enhance the exploita-
tion search of the algorithm. Tuba and Bacanin (2014a) proposed a new hybridization with
ABC for application to the cardinality constrained mean-variance (CCMV) problem, in the
field of portfolio optimisation model. The ABC algorithm improved as the FA is incorporated
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to enhance the process of exploitation.

Rajan and Malakar (2015) presented a new hybrid algorithm combining Nelder–Mead
(NM) simplex and Firefly Algorithm (FA). The NM simplex method is used to improve the
exploitation section of FA and avoid premature convergence of FA. This algorithm is applied
and demonstrated in solving power system ORPD problems. Sahu et al. (2015) combined
Pattern Search (PS) and built a new hybrid method called hybrid Firefly Algorithm and Pat-
tern Search (hFA-PS). The global exploration is done by FA and PS algorithm is used to
enhance the local search. hFA-PS algorithm is used to optimise the scaling factors and PID
controller gains for fuzzy PID controller of Load Frequency Control (LFC) of multi area
power systems. The results outperform DE and a PSO variant. George and Parthiban (2015)
proposed a new hybridized optimisation technique which employed firefly algorithm with
Group Search Optimiser (GSO). The FA algorithm is used to update the worst fitness value
from GSO to improve the performance. The algorithm solved multi-objective problem of
clustering application.

Recently, Gupta and Arora (2016) presented a new hybrid algorithm formulated by com-
bining FA and social spider algorithm (SSA). The proposed algorithm is tested on various
standard benchmark problems and then compared with FA and SSA. Nekouie and Yaghoobi
(2016) proposed a new method to enhance firefly algorithm to solve multimodal optimisation
problems. The technique evolves in sub-population and utilises a simulated annealing local
optimisation algorithm to increase search power, accuracy and speed of the algorithm. Ta-
ble 2.2 shows a list of hybridization approaches of FA with other search and metaheuristic
algorithms.

2.3 The Invasive Weed Optimisation

Another algorithm used in this research is the IWO algorithm. The algorithm was proposed
by Mehrabian and Lucas in 2006. ‘Survival of the fittest’ is the phase that could easily ex-
plain the concept of IWO. The IWO algorithm is inspired by natural ecological phenomena
and mimics the behaviour and survival of weeds occupying suitable place to grow, reproduce
and colonize the area. In nature, weeds are unwanted plants. Invasive weeds are robust and
vigorous able to adapt and change in the environment to survive, hence, they may pose as
threat to agriculture. By imitating these natural phenomena of the invasive weeds, the IWO
algorithm imitates these elements so that it has the robustness, adaptation, and randomness
features. The algorithm is simple but effective and has a good exploration capability (Mehra-
bian and Lucas, 2006; Yılmaz and Küçüksille, 2015).

Based on the overall process of weed’s behaviour, a general IWO can be represented in
four steps, namely initialization of population, spacial dispersal, reproduction and compet-
itive exclusion. It begins with initializing the initial plant in the search area. This is the
initialization stage. The plant is spread randomly in the search place. Each plant is able to
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Table 2.2: A selection of hybridization approaches of FA

Algorithm Reference

Levy flight Yang (2010b).

Differential evolution (DE) Abdullah et al. (2012)

Ant colony optimisation (ACO) El-Sawy et al. (2012).

Rizk-Allah, et al. (2013).

Genetic algorithm (GA) Farahani, Abshouri, Nasiri, and Meybodi (2012).

Rahmani and MirHassani (2014).

Memetic algorithm (MA) Fister Jr et al. (2012).

Group search optimisation (GSO) George and Parthiban (2015).

Harmony search (HS) Guo et al. (2013).

Social spider algorithm Gupta and Arora (2016).

Cellular learning automata Hassanzadeh and Meybodi (2012a).

K-means Hassanzadeh and Meybodi (2012b).

Pattern search (PS) Mahapatra et al. (2014).

Simulated annealing Nekouie and Yaghoobi (2016).

Sahu et al. (2015).

Nelder-Mead simplex Rajan and Malakar (2015).

Artificial bee colony (ABC) Tuba and Bacanin (2014a).

Seeker optimisation Tuba and Bacanin (2014b).

produce seeds. In this reproduction stage, however, production of seeds depends on their rel-
ative fitness in the population. The worst member produces minimum number of seeds (smin)
and the best produces maximum number of seeds (smax) where the weeds production of each
member is linearly increased. The next stage is called spatial dispersal where the seeds are
randomly scattered over the search space near to their parent plant. The scattering process
uses normally distributed random number with standard deviation (SD) as;

σiter =

[
itermax − iter

itermax

]n
(σmax − σmin) + σmin (2.4)

where itermax is the maximum iterations, iter is current iteration, n is the nonlinear modu-
lation index, σmax is usually initial SD and σmin is the final SD in the optimisation process.
The seeds with their respective parent plants are considered as potential solutions for subse-
quent generations. This step provides nonlinearly decreasing and dropping of weeds to local
minima position. In order to maintain the size of population in the search area, the algorithm
conducts a competitive exclusion, where an elimination mechanism is employed; if the pop-
ulation exceeds its maximum size only the plants with better fitness can survive. Those with
better fitness produce more seeds and with high possibility of survival and become reproduc-
tive. The process continues until the maximum number of iterations is reached and the plant



2.3. The Invasive Weed Optimisation 21

with best fitness is closest to the optimal solution.
There are certain properties of IWO that can be considered as sophisticated tools for solv-

ing complex optimisation problems. IWO algorithm allows all the plants to be involved in the
reproduction process as each plant is capable of producing seeds. The fitter plants produce
more seeds, impacting on the convergence capability of the algorithm. Although the less fit
plants show lower fitness level, they also produce seeds that may carry valuable information
around its area. Thus, if at later generation / iteration they have good fitness, they can sur-
vive (Mehrabian and Lucas, 2006) and this is one of the properties that prevents pre-mature
convergence. Another property of IWO algorithm is that the plants produce seeds indepen-
dently without a mating process. This feature could add a new attribute to the algorithm that
each weed / plant may have a different number of variable during the optimisation process
(Yilmaz and Kucuksille, 2015). These variables can be chosen as one of the IWO optimisa-
tion parameters (Yilmaz and Kucuksille, 2015). The IWO algorithm shows continuous and
normal distribution of the seed dispersal over the search space. As the variance parameter is
centred on each parent plant, the algorithm has better chance to avoid local minima points
as compared to GA and PSO (Rad and Lucas, 2007). Since introduced in 2006, IWO has
been used in solving a lot of complex problems. Table 2.3 shows a selection of applica-
tions of IWO in the domain of engineering, computer science, mathematics and solving other
complex optimisation problems:

2.3.1 The Variants of Invasive Weed Algorithm

Since Mehrabian and Lucas introduced IWO in 2006, a lot of IWO variants have been pro-
posed by researchers to enhance and improve the algorithm. The variants use properties of
IWO as sophisticated tools in efforts to enhance the algorithm. Suresh et al. (2009) pro-
posed a new adaptive IWO, namely IWO with increased deviation and stochastic selection
(IWO-ID-SS). The variant increased the standard deviation value linearly and equipped the
improved algorithm with better exploration power. Simulation results on noisy functions have
shown competitive results as compared to state-of-the-art algorithms.

Roy et al. (2011) presented a modified IWO by improving the standard deviation of seed
distribution and applied it to the design of antenna arrays. Simulation results compared with
state-of-the-art algorithm, showed competitive results. Ghosh et al. (2011) studied stan-
dard deviation during seed distribution process and tried to improve IWO by reducing the
standard deviation per iteration. The variant has been used for solving optimal control prob-
lems by using Bezier control parameterization (BCP). Ahmadi and Mojallali (2012) proposed
chaotic invasive weed optimisation (CIWO) that incorporates capability of chaotic search
methods. The newly generated seeds are chaotically distribution in the search space to im-
prove the search process. Zaharis et al. (2013) presented a modified adaptive dispersion IWO
(MADIWO) to optimise data sets of neural network training for an antenna design problem.
The mechanism of adaptive seed dispersions is implemented to explore better position during
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Table 2.3: A selection of IWO applications

Problem Reference

Engineering Neural network training Giri, et al. (2010b)

Mathematical modelling Abu-Al-Nadi et al (2013)

Control system Roy et al. (2010)

Chen et al. (2011)

Robot trajectory Sengupta et al. (2011)

Engineering Image processing Pourjafari and Mojallali (2012)

combustion at a coal-fired utility boiler Zhao et al. (2009)

Electrical engineering Saravanan et al. (2014)

Ghasemi et al. (2014)

Power electronics Wang et al. (2015)

Economic power dispatch Ghasemi et al. (2014)

Nayak et al. (2011)

Jayabarathi et al. (2012)

Electromagnetics Karimkashi and Kishk (2010).

Communication Hung et al. (2010)

Antenna design Roy et al. (2011)

Roshanaei et al. (2009)

Flexible structure Mehrabian and Yousefi-Koma (2007).

UAV Ghalenoei et al. (2009)

Computer science DNA computing Zhang et al. (2009)

Networking Rakshit et al. (2012)

Recommender system Rad and Lucas (2007).

Web selection Su et al. (2014)

Binary encoding Veenhuis (2010).

Mathematic Chaotic system Ahmadi and Mojallali (2012).

Optimisation problem Clustering Pal et al. (2010a)

Flow-shop scheduling Chen et al. (2013)

Zhou et al. (2014)

Traveling salesman Zhou et al. (2014)

Path problem Pahlavani et al. (2012)

the search process.

Recently, Peng et al. (2015) employed an adaptive invasive weed optimisation (AIWO)
algorithm. They improved the global search by adding adaptive step size of the parameter
in the algorithm. Li et al. (2015) proposed a modified hybrid invasive weed optimisation
(MHIWO) and applied it to antenna design. MHIWO exhibits piecewise standard deviation
and implements t-distribution function in the spatial distribution to enhance the exploration
ability. Ouyang et al (2016) presented an improved IWO (IIWO) algorithm to solve large
global optimisation (LGO) problems (CEC’2010 high-dimensional benchmark functions).
This variant also applied in GPU platform improving the algorithm by adaptive and concrete
adjustment of newborn seeds setting during the iteration process.
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2.3.2 Hybridization of Invasive Weed Algorithm

Many researchers tend to hybridise two or more algorithms to complement one another. In
this manner, IWO has been hybridized with other search and metaheuristic algorithms to
improve its performance capability. Zhang et al. (2008) proposed a new hybrid algorithm
referred to as cultural IWO. The IWO algorithm is embedded into cultural framework as a
population space of a Cultural Algorithm (CA). Zhao et al. (2009) presented a hybrid parti-
cle swarm optimisation with invasive weed (IW-PSO). It was proposed to optimise the con-
strained objective functions of combustion at a coal-fired utility boiler. The hybridization is
done through parallel search process between PSO and IWO. Roy et al. (2010) employed a
hybrid algorithm related with IWO algorithm, where the principle of optimal foraging theory
(OFT) is incorporated in IWO to improve the search mechanism.

Das et al. (2011) proposed a hybrid algorithm by combing differential evolution and
IWO. The algorithm is used to solve economic dispatch problem (EDP). The IWO and DE
algorithms are applied simultaneously on two sub-populations and population exchange is in-
corporated to refine the quality of the population after every generation. Haider et al. (2011)
introduced a hybrid approach with self-adaptive cluster based and weed inspired differen-
tial evolution algorithm (SACWIDE). The hybrid algorithm divides the total population into
several clusters based on the positions of individuals and the cluster number is dynamically
changed by a suitable learning strategy during the evolution. The IWO is used as a local
search technique of the algorithm. Bhattacharya et al. (2011) presented a hybrid algorithm
by improved IWO algorithm with roulette wheel based reproduction. The proposed roulette
wheel IWO (RWIWO) algorithm used roulette wheel to decide on the number of seeds gen-
erated by each plant.

Yin et al. (2012) employed hybrid genetic to build a new hybrid algorithm to improve
IWO, referred as HGIWO. The algorithm aimed to reduce the likelihood on getting into local
optima. The hybridization is done by letting the weeds multiply by the selection and hy-
bridization of genetic arithmetic. Sengupta et al. (2012) proposed a new hybrid algorithm
by improving IWO with memetic approach, named Intelligent Invasive Weed Optimisation
(IIWO). The hybrid approach is done by employing temporal difference Q-learning as con-
striction factor in the seed dispersal stage. Rakshit et al. (2012) presented a hybrid algorithm
by combining ABC and IWO referred as IWO-ABC search algorithm. The hybrid IWO-ANC
was applied to the Gene Regulatory Network (GRN) identification problem.

Roy et al. (2013) proposed a hybrid algorithm combining IWO and a modified group
search optimiser (GSO). The hybrid algorithm is enhancing the IWO by using GSO for
intensifying the candidate solution to solve multimodal optimisation problem. Zhou et al.
(2013) combined differential evolution (DE) algorithm and presented a hybrid method of dif-
ferential evolution invasive weed optimisation (DEIWO) algorithm. In the algorithm, global
exploration ability of invasive weed optimisation algorithm is used to provide effective search
area for differential evolution and the heuristic search ability of differential evolution algo-
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rithm provides a reliable guide for IWO. Basak et al. (2013) employed an efficient hybrid
algorithm by embedding difference vector based mutation scheme of Differential Evolution
(DE) into IWO referred as Differential Invasive Weed Optimisation (DIWO). Ghasemi et al.
(2014) proposed a new hybrid algorithm based on modified imperialist competitive algorithm
(MICA) and IWO for solving the optimal reactive power dispatch problem.

Barisal and Prusty (2015) presented a new hybrid method by hybridizing the oppositional
based learning (OBL) and implemented in IWO algorithm, namely oppositional invasive
weed optimisation (OIWO). OIWO was applied to minimize the total generation cost by sat-
isfying several constraints in the economic dispatch problems. Yılmaz and Küçüksille (2015)
tried to improve and modify bat algorithm, and the algorithm was referred to as enhanced
bat algorithm (EBA). The enhanced algorithm used IWO algorithm and other two methods to
improve local and global search capabilities of the algorithm. Simulation results showed that
the algorithm was better than the original algorithm in solving well known benchmark func-
tion and engineering design problems. Naidu and Ojha (2015a) proposed a hybrid version of
IWO with quadratic programming (QA) operator, referred to as QAIWO. The hybrid method
used QA operator in guiding the parent seeds during the distribution process. Simulations
were shown on a real-life optimisation problems and well-known benchmark problem. Shi
et al. (2015) presented an effective hybrid IWO algorithm with simulated annealing (SA)
to solve quadratic assignment problem (QAP). Ojha and Naidu (2015) combined cat swarm
optimisation (CSO) with IWO algorithm and proposed a hybrid algorithm. In the hybrid al-
gorithm, IWO is used to enhance the intensification capability of the CSO to obtain better
solution.

Recently, Chifu et al. (2016) proposed a hybrid invasive weed optimisation method for
generating healthy meals starting from a given user profile, a diet recommendation, and a set
of food offering. The method proposed is based on a hybrid model which consists of a core
component and two hybridization components. The core component is based on the invasive
weed optimisation algorithm, and the hybridization components rely on PSO-based path re-
linking as well as on tabu search and reinforcement learning. Mahto and Choubey (2016)
presented a hybridization method by combining IWO and wind driven optimisation (WDO).
The hybrid algorithm is verified with six standard benchmark functions and the nulling pat-
tern synthesis of a uniform linear array (ULA) and non-linear circular array (NUCA) antenna
having a minimum side lobe level (SLL), and beam width to minimize the interference effect
by optimising the parameters of array elements. Table 2.4 shows a selected list of hybridiza-
tion strategies involving IWO with other search and metaheuristic algorithms in the literature.
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Table 2.4: A selection of hybridization strategies of IWO

Algorithm Reference

Oppositional based learning (OBL) Barisal and Prusty (2015)

Bat algorithm Yılmaz and Küçüksille (2015)

Imperialist competitive algorithm (ICA) Ghasemi et al. (2014)

Differential evolution (DE) Basak et al. (2013)

Das et al. (2011)

Haider et al. (2011)

Zhou, Luo, and Chen (2013)

Group search optimiser (GSO) S. Roy et al. (2013)

Genetic algorithm Yin et al. (2012)

Memetic algorithm Sengupta et al. (2012)

Artificial bee colony (ABC) Rakshit et al. (2012)

Roulette wheel Bhattacharya et al. (2011)

Optimal foraging theory (OFT) Roy et al. (2010)

Particle swarm optimisation (PSO) Zhao et al. (2009)

Chifu et al. (2016)

Cultural algorithm (CA). X. Zhang et al. (2008)

Wind driven optimisation (WDO) Mahto and Choubey (2016)

Simulated annealing (SA) Shi et al. (2015)

Cat swarm optimisation (CSO) Ojha and Naidu (2015)

Quadratic approximation (QA) Naidu and Ojha (2015a)
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2.4 Solving Constrained Optimisation Problem

In solving real-world optimisation problems, constraint conditions should also be prioritized.
Therefore, in the process of getting the optimal solution, huge consideration should be fo-
cused on how to satisfy the constraints involved. The optimisation has to be formularised to
deal with this aspect in constrained optimisation problems. Constrained optimisation prob-
lems arise in numerous applications especially in practical engineering design, structural de-
sign, economics and location optimisation problems. There has been favourable attention
given to development of algorithms for solving constrained optimisation problems over the
past several years.

Mezura-Montes et al. (2003; 2010) used an evolutionary algorithm to solve constrained
problems. Artificial bee colony (ABC) has been used by several researchers to solve numeri-
cal constrained problems (Akay and Karaboga, 2012; Karaboga and Akay, 2011; Li and Yin,
2014). He and Wang (2007) used a particle swarm optimisation approach named CPSO and
Huang et al. (2007) used differential evolution based on co-evolutionary mechanism to solve
constrained problems. Various bio-inspired methods have also been attempted by researchers
to solve such problems, and these include differential search (Liu et al., 2015), firefly algo-
rithm (Gandomi et al., 2011), cuckoo search (Gandomi et al., 2013; Bulatovic, 2014), har-
mony search (Mahdavi et al., 2007, Mun and Cho, 2012), artificial immune system (Zhang
et al., 2014), ant colony optimisation (Kaveh and Talahari, 2010) and bacterial-inspired algo-
rithm (Niu et al., 2015).

Hybrid algorithms by combining two or more metaheuristic algorithms have further been
attempted by researchers for solving numerical constrained optimisation problems. These
include PSO-ACO (Kaveh and Talahari, 2009), charge system search and PSO (Kaveh and
Talahari, 2011) and glowworm swarm optimisation (Zhou et al., 2013). In the literature, a
number of formulae based on FA and IWO have also been proposed.

2.4.1 Constrained Problem Approaches with Firefly Algorithm

Gandomi et al. (2011) proposed to apply the firefly algorithm to solve constrained optimi-
sation problems that deal with mixed continuous / discrete structural optimisation problems.
Yang et al. (2012) applied FA to determine feasible optimal solution of constrained economic
dispatch (ED) problems. Penalty function is used to handle the constraints. El-Sawy et al.
(2012) presented a hybrid concept by incorporating the concepts from ACO and FA. The al-
gorithm was named ant colony-firefly algorithm (ACO-FFA) algorithm. The methodology of
the proposed algorithm is used in a parallel mechanism of ACO and FA for updating the solu-
tions. ACO-FFA was applied to well-known benchmark constrained optimisation problems.

Talahari et al., (2014) proposed an adaptive FA that utilizes the feasible-based method
to handle constrained large-scale structure problems. Kazemzadeh-Parsi (2014) developed
a modified firefly algorithm to solve classical engineering design optimisation problems and
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truss structures. The algorithm is modified by adding memory, mutation and proposing a new
updating formula. Penalty function is used to handle the constraints of the system. Tuba and
Bacanin (2014b) presented a hybrid algorithm that improved seeker optimisation algorithm
(SOA) with FA. The approach was called SOA with firefly search (SOA-FS) as it used either
SOA or FA to enhance the exploitation search of the algorithm. SOA-FS was applied to
well-known benchmark constrained optimisation problems.

2.4.2 Constrained Problem Approaches with Invasive Weed Algorithm

Pal et al. (2009) implemented IWO for solving constrained real parameter optimisation prob-
lems by using penalty function. The simulation results showed that the algorithm was better
than state-of-the-art PSO variant. Hu et al. (2014) proposed a hybrid algorithm by using
memetic algorithm and used IWO algorithm as the local refinement procedure of the hy-
brid algorithm, referred as DE-IWO. The hybrid algorithm was used to solve constrained
optimisation problems by using multi-objective method. Naidu and Ojha (2014) presented a
modified IWO in solving constrained optimisation problems. The modified algorithm used
simulated annealing to improve the penalty function approach. Naidu and Ojha (2015b) ap-
plied IWO to solve constrained optimisation problem by using multi-stage penalty approach.
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2.5 Solving Multi-objective Optimisation Problems

In real engineering applications, design problems often involve many design variables and
multiple objectives. A significant different method should be formulated in order to find so-
lutions to the problems. In the literature, a number of metaheuristics have been proposed
to deal with such optimisation problems (Abbass and Sarker, 2002; Deb and Goel, 1999;
Rangaiah, 2009). Firefly and invasive weed algorithm have also been formulated to deal
with multi-objective problems. In solving these problems which may have conflicting ob-
jective functions, several proposed methods have been proposed by researchers. The related
literature involving FA and IWO is discussed and the approaches for solving multi-objective
problems are reviewed.

2.5.1 Multi-objective Approaches with Firefly Algorithm

Apostolopoulos and Vlachos (2010) applied FA by extending the algorithm to solve multi-
objective optimisation problems relating to economic emissions load dispatch problem. Kumar
and Phani (2011) applied multi-objective firefly algorithm (MOFA) to solve combined eco-
nomic and emission dispatch (CEED) problem in thermal power station. The aggregate ap-
proach is used to solve the multi-objective problem by formulating the Pareto optimal front
of three different load demands.

Abedinia et al. (2012) proposed a MOFA to solve environmental / economic power dis-
patch (EED) problems. The MOFA was used to obtain a more accurate solution in solving a
nonlinear constrained optimisation problem with competing objectives of fuel cost, emission
and system loss which are conflicting with one another. MOFA has also been used to solve
practical dynamic economic emission dispatch problems (Niknam et al., 2012). Enhanced
FA with chaotic mechanism and novel self-adaptive probabilistic mutation strategy was used
to improve the performance and achieve a set of non-dominated solutions of the problem.

Yang (2013) extended the firefly optimisation technique to solve multi-objective prob-
lems especially in continuous problem cases and formulated a MOFA. Well-known bench-
mark functions and practical engineering applications were used to test the MOFA. El-Sawy
et al. (2013) presented a hybrid ant colony and firefly algorithm to solve numerical multi-
objective optimisation problems. The algorithm used vector evaluated ant colony optimisa-
tion (VEACO) and firefly algorithm in solving the benchmark problems. Chandrasekaran
and Simon (2013) implemented FA in solving a multi-objective unit commitment problem
(MOUCP). They developed a novel methodology to employ optimal deviation based firefly
algorithm tuned fuzzy member function. Marichelvam et al. (2014) applied MOFA by ex-
tending discrete firefly algorithm to solve hybrid flow-shop scheduling problems with two
objectives by minimizing the sum of make span and mean flow time of the system.
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2.5.2 Multi-objective Approaches with Invasive Weed Algorithm

Kundu et al. (2011) proposed IWO to solve multi-objective optimisation problem by using
fuzzy dominance sorting to get the non-dominated Pareto optimal solution. The improved
IWO to handle the multi-objective problems was referred to as IWO-MO, which modified
the schedule to decrease the number of the seed population using the concept of fuzzy domi-
nance for choosing the best maximum number of population members to survive in the next
generation. The simulation results on some well-known benchmark functions showed com-
petitive result as compared with state-of-the-art metaheuristic algorithms.

Hu and Cai (2012) presented an improved IWO to solve multi-objective optimisation
problems. The intra and inter-communities of weeds method is used to exchange the infor-
mation in the IWO algorithm to solve the multi-objective problems. Nikoofard et al. (2012)
proposed an integrated approach of fast non-dominated sorting in NSGA-II and IWO, namely
NSIWO to solve well known benchmark problems and complex electricity markets problems.
Lui et al. (2012) employed and utilized IWO to optimise two fuzzy clustering objective
functions simultaneously in solving clustering problems. For this approach, non-dominated
sorting of NSGA-II is used to solve the multi-objective problems.

Recently, Pouya et al. (2016) applied IWO to solve a multi-objective portfolio optimisa-
tion problem. In the algorithm, penalty function is used to handle the constraints in solving
the problem. Maghsoudlou et al. (2016) implemented IWO to solve multi-objective multi-
mode resource constrained project scheduling problem. In the problem, fuzzy dominance
based sorting is used to determine the non-dominated Pareto solutions.

2.6 Summary

A review the literature related to FA and IWO algorithm has been presented. The origin
and the way each algorithm works, the overview of variants of FA and IWO as well as their
applications have been highlighted. The variants of FA and IWO in solving more complex
optimisation problems such as constrained and multi-objective problems have been briefly
reviewed.

In solving unconstrained, constrained and multi-objective problems, a lot of improve-
ments in convergence accuracy and speed have been reported in the literature using FA and
IWO. Various adaptation mechanisms have been used to vary parameters of the algorithms.
However, an adaptation strategy using local information during the optimisation process is
one of the areas that could be explored further and used to improve the search process. Fur-
thermore, it is worth exploring approaches that hybridise these algorithms as at present such
approaches have not been explored with firefly and invasive weed optimisation algorithms.

In the next chapter, new approaches to enhance FA and IWO will be proposed and elab-
orated. The proposed algorithms will create new variants involving FA and IWO for appli-
cations to single, constrained and multi-objective optimisation problems. Numerical tests on
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the optimisation conditions and parameters of the proposed algorithm will also be explored.



Chapter 3

Adaptive Firefly and Invasive Weed
Optimisation Algorithms

3.1 Introduction

This chapter presents new optimisation algorithms developed based on FA and IWO. The
proposed new algorithms are established from modification of firefly and invasive weed op-
timisation algorithms. New hybridization algorithms combining FA and IWO algorithm are
also described. Some modifications to the original FA and IWO algorithms are proposed in
order to improve their optimisation capability such as convergence, optimum value, compu-
tation time and optimum solution accuracy. The potential to use local knowledge could be
utilized in improving the original algorithm. The parameters of each of the algorithm are
adaptively changed with the use of local knowledge during the optimisation process. Investi-
gations on the size of population and iteration parameters are carried out to determine the best
competitive condition of the proposed algorithms to be evaluated in optimisation problems.
In this research, the problems are set to be continuous optimisation problems.

3.2 Adaptive Mechanism for Firefly Algorithm

It is worth mentioning that FA could solve complex non-linear optimisation problems better
than evolutionary algorithms as it is easier to implement and has higher stability mechanism
as well as less execution time (Nikman et al., 2012). Although the original FA algorithm is
proved to perform better than other metaheuristic algorithms, it also has its limitations and
weaknesses. The algorithm parameters are set fixed (Coelho and Mariani, 2012; Yang, 2009)
where they do not change in time or iterations. Yan et al. (2012) have highlighted that FA
with predetermined parameters works well on the functions with low dimension and narrow
variable range. If the problems are more complex, the variable range and / or dimension may
increases, these parameters might not be suitable and performance may be dropped (Coelho
and Mariani, 2012). Therefore, modifications are needed to improve the diversification area
and the speed of the algorithm to avoid premature convergence of the algorithm. FA also

31
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does not have any memorization mechanism to remember historical information, that may
be useful. Coelho and Mariani (2012) have stressed that in early simulation; as the optimum
value is approaching, the solutions are still changing due to fixed randomness value. Hence,
the need to improve this aspect is an active research potential.

The proposed method here is based on the countermeasure of these weaknesses of the
basic FA. One way to enhance the algorithm performance is to improve the exploration and
intensification of the search by affecting the fixed parameter values. In the original FA, most
of the parameter values in the equation of renewal movement are fixed and predetermined.
In the proposed algorithms, the attractiveness and randomization parameters are pre-set at
the initialization and adaptively changed during the optimisation process. The potential to
use local knowledge during the iteration process is a further aspect that could be utilized in
improving the original algorithm. So far, FA is memory-less and the tendency to jump out of
the extreme in early iteration could be an issue as the algorithm still has big randomization
factor, which means that it is always in moving mode. The objectives with the changes made
are to enhance the search and local exploration, avoid unnecessary pace at any local extreme
point and at the end of the search process and to enable the algorithm to move fast to the
global best optimum point.

The proposed FA algorithms focus on improvement in the area of firefly movement. The
mathematical expression for improved movement of the firefly in the proposed algorithms is
given as:

xi+1 = ω(t)xi + β(t)(xj − xi) + α(t)εi (3.1)

where ω(t) is the inertia weight, β(t) is the attractiveness coefficient, α(t) is the randomness
coefficient at time t and εi is a random number.

In this movement equation, the randomization and attractiveness coefficients are proposed
to adaptively change in nonlinear and exponential forms. In both terms, the attractiveness
parameter is adaptively increased and randomization is adaptively decreased over time in the
search process.

During optimisation and search process, at the early stage, the diversification phase could
be increased by letting the randomization at high value and attractiveness in low value. This
action would let all the fireflies to randomly move around at the early stage to fine tune
the global searching process. By letting the parameter adaptively change over time, it will
help extend the balance and capability of strong global search and local search of the firefly
movement so that it would not let the algorithm get trapped into local extreme point at the
early stage.

At the end stage of optimisation, the attractiveness is set at high value to increase the light
intensity so that the firefly with extreme point produces more light to trigger other fireflies to
move towards it. The randomization is set in low value so that the fireflies are forced to move
gradually to the nearer local or global optimum point, relatively increase the intensity of the
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fireflies. These movements are targeted so that the algorithm is able to get better accuracy to
of the optimum value. The adaptively nonlinear equation used in the proposed algorithm is
given as

σiter =

[
itermax − iteri

itermax

]n
(σini − σf ) + σf (3.2)

On the other hand, the equation below shows the adaptively exponential equation used

σiter =

(
exp

[
τ

[
iteri
itermax

]m])
(σini − σf ) + σf (3.3)

where σiter is the coefficient value at the iteration during search process with σini as its ini-
tialized value and σf is the final coefficient value. Hence, in search process, σiter is in the
range [σini, σf ]. itermax is the maximum iteration value and iteri is the present value of the
iteration. The coefficient is shown in increment shape when putting small value of σini and
high value σf during initialization process of the algorithm. If the σf value is set low and
σini is set high, the decrement shape is shown. For equation (3.3), the values of τ and m
are predetermined. For both equation (3.2) and (3.3), the coefficient is shown in increment
shape when putting small value of σini and high value σf during initialization process of the
algorithm. If the σf value is set low and σini is set high, the decrement shape is shown.

Another strategy used in the proposed algorithm is using local knowledge to improve
the firefly movement. The synergy of using local knowledge is done by exploiting the light
intensity of the neighbourhood condition during the search process. The process uses local
neighbourhood knowledge at each iteration through the fitness value of the highest light in-
tensity of firefly and the lowest value to generate a normalized factor, referred to as spread
factor (SF). This factor is used in the FA coefficients to re-adjust the value and improve the
movement of all the fireflies during the search process. The SF is evaluated in the proposed
algorithm as:

SFiter =

(
|fi| − fworst
fbest − fworst

)
(q′i − q′f ) + q′f (3.4)

where SFiter is the new coefficient value at the iteration during the search process with q′i as
the lowest factor value and q′f as the highest factor value set at the initialization stage. fi is the
fitness value of present firefly and fmax is the highest fitness value or the firefly that produced
light with lowest intensity value. fmin is the brightest firefly in the current iteration.

During iteration process, the SF mechanism helps the algorithm to re-adjust the parameter
value. Based on Figure 3.1, if the position of the lowest intensity firefly and highest intensity
is near, L2 the factor is in the high value and not affected by the current value. Otherwise,
if it is in the opposite case, L2′ value is low and the SF factor will have some effect on the
parameter. This mechanism is applied on firefly movement during updating the firefly after
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(a) Adaptive A (b) Adaptive B

Figure 3.1: The spread factor mechanism during iteration process.

each iteration. Thus, a full description of the proposed firefly algorithms is given below.

3.2.1 Firefly Algorithm with Nonlinear Spread Factor

Firefly algorithm with nonlinear spread factor, FA-NSF is proposed by using equation (3.2)
as the randomization and attraction coefficient. It will also combine with equation (3.4) of the
SF to enhance adaptive mechanism of the coefficient. The adaptively nonlinear coefficient
with normalized spread factor used in the proposed algorithm is thus given as

σiterNSF = SFiter

[
itermax − iteri

itermax

]n
(σini − σf ) + σf (3.5)

where σiterNSF is the coefficient value of both γ and α during the movement process in the
proposed FA. The new mathematical expression of the improved movement of the firefly in
the FA-NSF algorithm is as follows:

xi+1 = ω(t)xi + βNSF (t)(xj − xi) + αNSF (t)εi (3.6)

where ω(t) is the inertia weight, βNSF (t) is the nonlinearly adaptive attractiveness coefficient
and αNSF (t) is the randomness coefficient with nonlinearly adaptive mechanism at time t.

3.2.2 Firefly Algorithm with Exponential Spread Factor

Firefly algorithm with exponential spread factor, FA-eSF, uses exponential form of random-
ization and attraction parameters as illustrated in equation (3.3). The proposed algorithm is
also combined with Equation (3.4) to enhance the adaptive aspect of the parameters. Thus,
the new randomization (α) and attractiveness (γ) coefficient with exponentially adaptive SF
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used in the algorithm is given as

σitereSF = SFiter

(
exp

[
τ

[
iteri
itermax

]m])
(σini − σf ) + σf (3.7)

where σitereSF is the new coefficient value of both γ and α during the movement process
in the proposed FA algorithm. The new mathematical expression of improved movement of
firefly in the FA-eSF algorithm is as follows:

xi+1 = ω(t)xi + βeSF (t)(xj − xi) + αeSF (t)εi (3.8)

where βeSF (t) is the exponentially adaptive attractiveness coefficient and αeSF (t) is the ran-
domness coefficient with exponentially adaptive mechanism at time t.

With these nonlinear and exponential adjustments, the modified firefly algorithm will
have better balance between global and local search capabilities, and thus will avoid getting
trapped in local optimum, and this will increase the speed of convergence to better optimum
solution.

To illustrate the changes made based on the mechanism above, a simple example of com-
parison is made on these proposed algorithms with the original algorithm by running them
on two dimensional Griewank function in the range [-30, 30]. Griewank function is a well-
known single optimum multi-modal function. Thus, the function has many local optima and
one global optimum at the origin in (x1, x2) coordinate system as shown in Figure 3.2a.

Using the same predetermined parameter and iteration of 100, Figure 3.2 shows the end
result of movements of fireflies during the optimisation process of the three algorithms. In
Figure 3.2b, the fireflies based on the original algorithm got trapped at the local optima.
Meanwhile, the FA-NSF and FA-eSF managed to jump out of those local optima and pro-
duced better value as shown in 3.2c and 3.2d, respectively. Figure 3.3 shows the rate of
change of the parameters for both proposed algorithms, FA-NSF and FA-eSF.

The adaptive step measurements are intended to make the algorithm balanced between
exploration and exploitation and improve the algorithm whenever the search condition is in
high dimension, very complex and large space. By taking all the considerations and the
proposed changes, the original FA is improved and can be presented in the following pseudo-
code of Algorithm 1;
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(a) Griewank in 2-D view (b) FA

(c) FA-NSF (d) FA-eSF

Figure 3.2: The fireflies movement toward global optimum [0, 0]

(a) FA-NSF (b) FA-eSF

Figure 3.3: The rate of change of parameters per iteration.
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Algorithm 1 Pseudo code of the FA-NSF and FA-eSF algorithm

Input: Objective function of f(xd), Pre-determined parameter; β0, γ, α, variable boundary
and population size N .
Output: Global minimum, elapsed time.
Generate initial population xi, (i = 1, · · · , n) randomly, determine the light intensity,
I(xd) based on individual fitness, f(xi).
while t, current iteration t ≤ maximum iteration do

Determine the value of adaptive parameter (γSF , αSF );
FA-NSF, referred as (γNSF , αNSF );
FA-eSF, referred as (γeSF , αeSF );
for all i to n do

for all j to n do
Evaluate the distance, r between two units (xi, xj)
Evaluate the attractiveness, e−γr2

if Ij > Ii), move i towards j then
Update value of γSF , αSF ;
Evaluate new solution xi+1;

end if
end for

end for
if xi+1 exceeds boundary then

Set to its boundary
end if
Update light intensity, I(xd) based on the update location;
Rank the fireflies and find the current best;
Export global minimum and elapsed time;

end while
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3.3 Adaptive Mechanism for Invasive Weed Algorithm

Based on the introduction of IWO in the previous section, the modification of the metaheuris-
tic algorithm is described in this section. The modification to the IWO algorithm is aimed
at achieving a more robust optimisation technique, especially to compensate for deficiencies
in the original algorithm. In the original IWO, each weed updates its position through the
process of reproduction, elimination and spatial dispersion which are the key steps in IWO.
The modified algorithm is expected to provide better balance between global and local search
as well as achieve in more accurate result during the iteration process.

In the original IWO, the spatial dispersion uses nonlinear decrement equation of its stan-
dard deviation, SD of seeds spreading. Hence, the proposed algorithms use an exponential
decrement equation that is aimed at improving the algorithm. The variation in the SD is made
exponential in the spatial dispersion process. The new SD is given as

σiterSD =

(
exp

[
τ

[
iteri
itermax

]m])
(σini − σf ) + σf (3.9)

where the values of σini, σf , itermax are as described in the initial SD and maximum iteration
parameters setting of the algorithm. The values of τ and δ are pre-set to determine the shape
of the exponential slope changes of the SD during the iteration process. It is assumed that τ
= 2 and m = 4, which are found as competitive values for the proposed IWO algorithm.

In the original algorithm, it does not use any local knowledge or memory to help seeds to
spread over the search space. As a result, many researchers have found that the search accu-
racy is low and the weed gets stuck in local optima if converged too early (Yin et al., 2012,
Gandomi et al., 2013). Yin et al. (2012) stressed that the drawbacks of IWO are specifically
low solution precision, getting stuck in local optima and premature convergence. Hence,
in order to overcome the shortcomings of IWO, local search knowledge is integrated in the
proposed IWO algorithm. This strategy could enable the algorithm to escape from local op-
tima; therefore, the improved version of IWO algorithm has a lesser chance of pre-mature
convergence compared to IWO.

A normalized factor to adjust the standard deviation of the seed spreading is proposed
to improve its convergence without any major changes in its original structure or additional
requirements in the number of evaluations. Two novel variants of the original IWO are pro-
posed, namely IWO-eSSF which employs a seeds spread factor (SSF) on its original standard
deviation and MIWO-eSSF with exponential SSF variation in the spatial dispersion process.

3.3.1 IWO with Exponential Seeds-spread Factor

In this new variant of IWO, a simple factor is implemented as the number of iterations in-
crease. This simple factor is called the rate of seeds-spreading evolution factor (SSF). It
involves the use of local knowledge in previous iterations to improve the SD property. The
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mathematical representation of the SSF factor is given as follows:

k =

[
|fi| − fworst
fbest − fworst

]
(k′i − k′f ) + k′f (3.10)

where k is the normalized spread factor of SSF; fi is the fitness value of selected current
weed; fworst and fbest are the least and best fitnesses in the current iteration, respectively; k′i
and k′f are the initial and final values of the seeds-spread factor for the process. The rate of
seeds-spreading evolution factor changes according to the values obtained during the iteration
process. It will quickly respond to the reaction speed of the seeds during the evolution period
to search for better value. Under the assumption and definition above, it can be shown that
0 < k < 1. This parameter takes the run history of value of each weed into account, and
reflects the capability of speed of spreading evolution of each seed, that is, the smaller the
value of k, the faster the speed. The normalized SSF mechanism could also be explained as
illustrated in Figure 3.1 by using the weed and its fitness value instead of using firefly and its
fitness value.

Therefore, the new variants of IWO are proposed by using a factor that benefits from
local knowledge after each iteration. In the IWO-eSSF algorithm, the SD in equation (3.9) is
improved by incorporating an SSF factor, in equation (3.10) into the SD as

σitereSSF = k

(
exp

[
τ

[
iteri
itermax

]m])
(σini − σf ) + σf (3.11)

where σitereSSF is the new formulated SD of IWO-eSSF and k is the SSF value. This factor
could justify whether the decrement of exponential SD could be adjusted. As the iteration
process proceeds, the SD is decreased in an exponential manner. By adding the factor, if the
current best and best value fitness show large difference, the factor could be high and help the
selection of SD to become large and vice versa. The addition factor could help diversification
and intensification of the algorithm. It also helps the algorithm to achieve robust and accurate
values.

3.3.2 Modified IWO with Exponential Seeds-spread Factor

In this proposed algorithm, an exponential distribution factor is adopted. The factor k of SSF
mechanism in equation 3.10 is modified in order to control changes of SD;

knew =

 1

exp
(
|fi|−fworst

fbest−fworst

)
 (k′i − k′f ) + k′f (3.12)

where knew is the modified SSF; fi is the fitness value of selected current weed; fworst and
fbest are the least and best fitness in the current iteration, respectively; k′i and k′f are the initial
and final values of the seeds-spread factor for the process. Using equation (3.12), the SD will
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vary in the range [k′f , k
′
i] at each iteration. In the MIWO-eSSF algorithm, the SD in equation

(3.9) is improved by incorporating an improved factor into the SD as

σiterMIWO = knew

(
exp

[
τ

[
iteri
itermax

]m])
(σini − σf ) + σf (3.13)

where σiterMIWO is the enhanced SD of MIWO-eSSF and knew is the improved SSF value.
In this manner, the exploration ability of weeds located closer to the best weed increases and
allows searching around the optimum solution.

Figure 3.4 illustrates how the weeds search for optimum value in the iteration process of
IWO and proposed IWO algorithms. Figure 3.4a shows the original movement based on IWO
algorithm. The round shape decreases nonlinearly during the search process and the radius
of the round shape, w represent the original SD. However, for the improve IWO-eSSF and
MIWO-eSSF, as shown in 3.4b the SD will vary as either wA(i) or wB(i) and also as either
wA(i + 1) or wB(i + 1). The value of SD depends on the value of factor k for IWO-eSSF
and knew for MIWO-eSSF.

(a) Nonlinear variation in the original algo-
rithm (b) Adaptive changes of the weeds

Figure 3.4: The movement of weeds during iteration process.

As a further example, a simple comparison is made based on the proposed algorithms and
the original algorithm by running them on two dimensional Griewank function in the range
[-30, 30]. This well-known function is an example of single optimisation problem with many
local optima as shown in Figure 3.5a.

By using the same predetermined parameters and 100 iterations, Figure 3.5 shows the
end result of the three algorithms showing the movement of weeds during the optimisation
process. In Figure 3.5b, the weeds based on the original algorithm got stuck at a local opti-
mum value and the weeds spread around it. Meanwhile, as shown in Figures 3.5c and 3.5e,
the IWO-eSSF and MIWO-eSSF managed to jump out of local optima and concentrated on
the global optimum area to produce better value. Figure 3.6 shows the rate of change of the
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parameters for both proposed algorithms, IWO-eSSF and MIWO-eSSF.

(a) Griewank in 2-D view (b) IWO

(c) IWO-eSSF (d) IWO-eSSF (viewed after 70 iterations)

(e) MIWO-eSSF (f) MIWO-eSSF (viewed after 70 iterations)

Figure 3.5: The weeds movement toward global optimum [0, 0]

IWO-eSSF and MIWO-eSSF algorithms utilized a new strategy in the spatial dispersion
of IWO to exploit the weed population and therefore, it can overcome the lack of exploration
and improve the solution precision of the IWO. The strategy helps the spatial dispersion pro-
cess in the algorithm to improve the population diversity to avoid premature convergence and
make the algorithm more robust. The strategy could improve the capability of optimisation
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(a) IWO-eSSF (b) MIWO-eSSF

Figure 3.6: The rate of change of the SD parameters per iteration.

procedure by updating the solution to accelerate the convergence speed for more accurate
fitness values with less computational time. Algorithm 2 shows the pseudo-code of the pro-
posed IWO variants:

Algorithm 2 Pseudo code of IWO-eSSF and MIWO-eSSF algorithms

Input: Objective function of f(xd), Pre-determined parameter; smin, smax, σmin, σmax,
variable boundary and population size n.
Output: Global minimum, elapsed time.
Generate initial population xi, (i = 1, · · · , n) randomly,
Determine the initial population by random search, f(xd),
Rank the initial weeds and calculate the number of seeds for each plant,
while t current iteration t ≤ maximum iteration do

Determine the value of normalized factor, k,
Update the value of SDSSF ,
Spatial dispersion
Distribute seeds based on SDSSF and generate seeds over the search space,
Competitive exclusion
if the number of weeds and seeds > maximum population then

Eliminate the plant;
end if
if xi+1 exceeds boundary then

Set to its boundary
end if
Find the current best individual and its fitness, f(xi);
Rank the weeds based on their fitnesses, f(x) and determine the number of seeds pro-
duced by each weed;
Export global minimum and elapsed time;

end while
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3.4 Hybrid Strategies of Firefly and Invasive Weed Optimi-
sation

Instead of improving the algorithm, combining two or more algorithms is another alternative
to compliment one another for a better optimisation algorithm. The combination strategy
is simply called hybridization method, which refers to the process of combining the best
features of two or more algorithms to form a new optimisation algorithm. The resulting
hybridization algorithm is expected to outperform its predecessor algorithms over general
problems or application specific problems. Therefore, in this section, new hybridization al-
gorithms by using FA are developed to achieve improved performance in terms of search
capabilities and better accuracy.

Based on the introduction of IWO and FA in the previous section, the combination of the
two approaches is described in this section. The FA is effective in local search, but can easily
get trapped in local optima. The IWO algorithm, on the other hand, is effective in accurate
global search. Therefore, the idea of hybridization between IWO and FA is to achieve a more
robust optimisation technique, especially to compensate for the deficiencies of the individual
algorithms. The biggest advantage of IWO algorithm is its capability of global exploration
and diverse search. In the proposed algorithm, the firefly method is embedded into IWO to
enhance the local search capability of IWO algorithm that already has very good exploration
capability.

The strategy utilizes the spatial dispersion of IWO and firefly movement to explore new
areas in the search space and exploit the population, respectively. Therefore, it can overcome
the lack of exploration of the original FA and improve the low solution precision of the IWO.
In other words, hybridization not only improves the performance, it also improves the accu-
racy of the constituent algorithms. This combination improves the capability of optimisation
procedure by updating the solution to accelerate the convergence for more accurate fitness
values with less computational time.

3.4.1 Hybrid Invasive Weed-Firefly Optimisation

In this work, a hybrid algorithm is proposed by inducing FA into IWO referred to as hybrid
invasive weed firefly optimisation (HIWFO) algorithm. In HIWFO algorithm, the initializa-
tion of both FA and IWO is done by pre-determining the initial parameters. Table 3.1 shows
description of the parameters used in the HIWFO algorithm.

During the initialization process, diversification strategy of IWO algorithm is used. Here,
a random dispersion of the initial population takes place. In this section, an objective func-
tion is set up and determined. Each population produces new seed(s) according to their fitness
level. Another stage of diversification of IWO is carried out, by dispersal of the seeds ran-
domly based on the number of seeds given to each population. The range of distribution or
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Table 3.1: Parameters used in HIWFO algorithm

Parameters used Symbol

Initial population size nini

Maximum population size n

Minimum number of seeds smin

Maximum number of seeds smax

Initial value of standard deviation, SD σini

Final value of SD σf

Attractiveness coefficient γ

Randomization coefficient α

Attractiveness coefficient β

the standard deviation of dispersal is based on the SD value. Early stage of iteration has a
large SD value as it decreases nonlinearly. This spatial dispersion process in the algorithm
strives to improve the population diversity to avoid premature convergence and makes the
algorithm more robust.

After spatial dispersion, the process of competitive exclusion process is performed. The
process continues using the FA movement. At this stage, the cooperation of FA is done
by trying to improve the position so that the current population can move towards the best
individual in the current iteration. Hence, the enhanced algorithm not only ensure individual
diversity by IWO, but also improves the optimisation accuracy and the speed of convergence
of the algorithm.

The boundary re-adjustment scheme is placed after the movement process at the end
of the iteration to ensure the population is within the search space. The action also helps
each member of the population to stay within the boundary and ready for the next iteration.
Therefore, the steps of the proposed HIWFO algorithm are best described as follows:

(Step 1) Initialization

[Sub-step a] Initialize the parameters of invasive weed and firefly algorithm, the dimen-
sion and boundary limits of the search space.

[Sub-step b] Initialize the population of the hybrid algorithm. A population of initial
seeds of plant is dispersed over a search space randomly. By using the designated
objective function, each seed’s fitness value could be calculated based on its initial
position.

(Step 2) Update the following parameters:

[Sub-step a] The production and distribution of weed(s) by plant. Each plant produces
seeds and this increases linearly from minimum to its maximum possible seeds produc-
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tion.

weedxi =

[
fxi − fmin
fmax − fmin

]
(smax − smin) + smin (3.14)

where fxi is the weed’s fitness at current population, fmax is the maximum fitness of
the current population, fmin is the minimum fitness of the same population, smax and
smin respectively represent the maximum and the minimum values of a seed.

[Sub-step b] The parameter of light absorption coefficient, γ, attraction coefficient, β
and randomization coefficient, α remain constant as suggested by Yang (2009).

(Step 3) Reproduction loop: Iteration = iteration + 1

Each seed grows into plant in the population capable of reproducing seeds but accord-
ing to its fitness, where the fitter plants produce more seeds.

(Step 4) Spatial dispersion

The seeds generation is randomly distributed in the search area according to normal
distribution with zero mean and SD. The normalized SD per iteration, σiterSD is given
as

σiterSD =

[
itermax − iter

itermax

]n
(σini − σf ) + σf (3.15)

where σiterSD is the coefficient value at the iteration during the search process with σini
as its initialized value and σf as the final coefficient value. itermax is the maximum
iteration value and iteri is the present value of the iteration.

(Step 5) Competitive exclusion

The population of plants is controlled by the fitness of the plants. If the population
has reached its maximum size, the elimination process runs on the poor fitness plants
where only plants with better fitness are allowed to survive. This elimination process
or competitive exclusion is employed from generation to generation until it reaches
its maximum number of generations / iterations of the algorithm. At the end of the
algorithm, the seeds and their respective parents are ranked together and have chance
to grow in the search area and reproduce seeds as mentioned in Step (2). Those with
better fitness produce more seeds and have high possibility of survival and become re-
productive. The processes continue until the maximum number of iterations is reached
and the plant with best fitness is expectedly closest to the optimum solution.

(Step 6) Improve the local search by firefly localization

[Sub-step a] The fitness value of each plant is equal to the light intensity of the firefly
algorithm. Therefore, the firefly algorithm’s mechanism is started.



46 3. Adaptive firefly and invasive weed algortihms

[Sub-step b] The position of the plant, x(i+1)is updated using equation (3.1) in a highly
random manner. The plant with lower fitness value essentially has low light intensity,
and will approach and move towards higher light intensity.

(Step 7) Boundary checking mechanism

With the random movement in Step 6 members of the population will have tendency to
move beyond the boundary. The boundary checking mechanism is used to avoid any
member of the population jump out of the boundary of the problem.

(Step 8) The result of the algorithm for the iteration is updated and if the maximum number
of iterations has not been reached, the next generation of the plant starts in the loop.

Figure 3.7: The flow-chart of HIWFO algorithm.

Figure 3.7 shows the flow chart of HIWFO algorithm. Each and every step of the al-
gorithm is illustrated in the figure and as explained in the step stage above. The proposed
HIWFO approach can be summarized in pseudo code as in Algorithm 3.
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Algorithm 3 Pseudo code of HIWFO algorithm

Input: Objective function of f(xd), Pre-determined parameters of IWO and FA.
Output: Global minimum, elapsed time.
Random initial population xi, (i = 1, · · · , n), evaluate fitness f(xi), rank based on its
fitness and number of seeds produced.
while t current iteration t ≤ maximum iteration do

Competitive exclusion
Distribute seeds based on SDnew and generate seeds over the search space,
if the number of weeds and seeds > maximum population then

Eliminate the plant
end if
Improve the locations by using firefly localization
for all i to n do

for all j to n do
Evaluate r between two units (xi, xj) and their attractiveness via e−γr2

if Ij > Ii), move i towards j then
Evaluate new solution xi+1;

end if
end for

end for
if xi+1 exceeds boundary then

Set to its boundary
end if
Update light intensity, I(xd) based on the updated location;
Export global minimum and elapsed time;

end while
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3.4.2 Hybrid Invasive Weed-Firefly Optimisation with Spread Factor

Another hybridization algorithm based on FA and IWO proposed is named hybrid invasive
weed firefly optimisation with spread factor (HIWFO-SF) algorithm. In HIWFO-SF algo-
rithm, the same framework of HIWFO is used. However, some modifications are made on
the parameters of the algorithm. Table 3.2 shows the parameters used in the HIWFO-SF
algorithm.

Table 3.2: Parameters used in HIWFO-SF algorithm

Parameters used Symbol

Initial population size nini

Maximum population size n

Minimum number of seeds smin

Maximum number of seeds smax

Initial value of standard deviation, SD σini

Final value of SD σf

Attractiveness coefficient γ

Randomization coefficient α

Randomization coefficient α

Attractiveness coefficient β

The modification is made at the spatial dispersion section of HIWFO-SF. At this stage,
as stated in equation (3.10), normalized factor of the rate of seeds-spreading evolution factor
(SSF) is introduced. It involves the use of local knowledge in previous iterations to improve
the SD property. The SD is changed nonlinearly, hence the mathematical representation of a
new equation of SD with SSF, referred to as SF1 is given as

SF1 = kSF

[
itermax − iter

itermax

]n
(σini − σf ) + σf (3.16)

where SF1 is the new coefficient value of SD at the present iteration during the search process
with σini as its initialized SD value and σf as the final SD value. k is the normalized SF factor
stated in equation 3.10, itermax is the maximum iteration value and iteri is the present value
of the iteration. The SF1 value is nonlinearly decreased and aimed to further improve the
diversification process of the algorithm.

In the firefly section, randomization parameter is adaptively changed in the search pro-
cess. In this work, randomization coefficient (α) is decreased exponentially with normalized
factor of SF introduced, called αSF . This new coefficient is given as

αSF = kSF

(
exp

[
τ

[
iteri
itermax

]m])
(σini − σf ) + σf (3.17)

where αSF is the randomization value at the iteration during the search process with αini as
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its initialized value and αf as the final coefficient value. itermax is the maximum iteration
value and iteri is the present value of the iteration.

Figure 3.8: The flow-chart of HIWFO-SF algorithm.

The adaptive coefficient factor, αSF could justify whether the exponential decrement of
randomization value could be adjusted. As the iteration process proceeds, the coefficient
decreases in an exponential manner. By adding the factor, if the current best and best value
fitness show large difference, the factor could be high and help the random value to become
large and vice versa. The additional factor could help diversification and intensification of
the algorithm. It also helps the algorithm to achieve more robust and accurate values.

Figure 3.8 shows the flow chart of HIWFO-SF algorithm. The main steps of the proposed
HIWFO-SF approach can be summarized in pseudo code as in Algorithm 4.
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Algorithm 4 Pseudo code of HIWFO-SF algorithm

Input: Objective function of f(xd), Pre-determined parameters of IWO and FA.
Output: Global minimum, elapsed time.
Random initial population xi, (i = 1, · · · , n), evaluate fitness f(xi), rank based on its
fitness and number of seeds produced.
while t current iteration t ≤ maximum iteration do

Determine the value of normalized factor, k,
Determine the value of adaptive parameter, αSF ;
Update the value of SDSSF ,
Competitive exclusion
Distribute seeds based on SDSSF and generate seeds over the search space,
if the number of weeds and seeds > maximum population then

Eliminate the plant
end if
Improve the locations by using firefly localization
for all i to n do

for all j to n do
Evaluate r between two units (xi, xj) and their attractiveness via e−γr2

if Ij > Ii), move i towards j then
Update value of αSF ;
Evaluate new solution xi+1;

end if
end for

end for
if xi+1 exceeds boundary then

Set to its boundary
end if
Update light intensity, I(xd) based on the update location;
Export global minimum and elapsed time;

end while
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3.5 Parameters and Their Impact on Accuracy and Con-
vergence

In this section, the effect of tuning and selecting the population and iteration parameters of
the algorithms used are studied. The impact on the accuracy of the optimal solution and
convergence characteristics is observed and investigated. This is because, in solving any
optimisation problem, these computational parameters of bio-inspired algorithms have to be
determined and chosen properly in order to get the optimum results. The simulation in this
section compares between all the proposed algorithms and their predecessors. The study is
concerned with the impact of the size of population and number of iterations in different
problem dimensions.

The benchmark functions used in this study consist of two unconstrained single optimi-
sation problems. The functions constitute two type of optimisation problems, a single global
optimum as well as local optima, comprising unimodal and multimodal types as shown in
Figure 3.9.

(a) Schwefel’s Problem 2.22 (b) Levy function

Figure 3.9: Benchmark functions used in the study

The experimental testing platform is implemented on a personal computer (PC) with pro-
cessor CPU Intel (R) Core (TM) i5-2400 with Windows 7 Professional operating system,
frequency of 3.10 GHz and memory installed of 4.00 GB RAM. The program is coded in
MATLAB R2013a. For fair comparison of all the algorithms used, most of the parameters
are set identical. Both benchmark function have a global optimum. Table 3.3 shows the
parameter set of all the algorithms during initialization.

The performances of the algorithms are assessed with well-known benchmark functions
as shown in Table 3.4. The Schwefel’s Problem 2.22 represents unimodal function and Levy
function is used to test the algorithms with multimodal function. Both benchmark functions
have the same global optimum which is F (x∗i ) = 0 at x∗i = (0, . . . , 0) where i = 1, . . . , D

and D is the problem dimension.
In solving most optimisation problem with FA, Yang (2010a) advised that the number of
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Table 3.3: Initial parameters of the algorithms used in the study

Parameters FA FA-NSF FA-eSF IWO IWO-eSSF MIWO-eSSF HIWFO HIWFO-SF

smin - - - 0 0 0 0 0

smax - - - 5 5 5 5 5

σini - - - 5 5 5 5 5

σf - - - 0.01 0.01 0.01 0.01 0.01

β0 1 1 1 - - - 1 1

αini 0.2 1 1 - - - 0.2 1

αf - 0.001 0.001 - - - - 0.001

γini 1 0.001 0.001 - - - 1 1

γf - 1 1 - - - - -

Table 3.4: Benchmark functions used in the study

Function Formulation Range

Schwefel’s Problem 2.22 fa(x) =
D∑
i=1

|xi|+
D∏
i=1

|xi| [−10, 10]D

Levy function fb(x) = sin2(πω1) +

D−1∑
i=1

(ωi − 1)
2
[1 + 10 sin2(πωi + 1)] [−10, 10]D

+(ωD − 1)
2
[1 + sin2(2πωD)];

where ωi = 1 +
xi − 1

4
, for all i = 1, ..., D

fireflies, n, is sufficient if the value is within between 15 to 50. For more complex problems,
unless there is no other alternative, large n could be considered (Yang, 2010a). However,
with excessively large n, extensive computational burden should be expected. The parameters
chosen for the study are tabulated in Table 3.5:

Table 3.5: The parameters to be studied for all the algorithm

No. Parameter Symbol Value

1 Size of population n 6, 30 and 100

2 Number of iteration itmax 50 and 500

3 Number of problem dimension Dim 2 and 30

As the size of population and number of iterations are fixed at certain value, the number
of function evaluations (NFE) can be defined as;

NFE = n× itmax (3.18)

where n is the size of population and itmax is the maximum iteration during optimisation
process. The performance results are specified by the best solution value obtained and the
time taken after allowable itmax was reached. In each simulation, the value itmax signifies
the stopping criterion.
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3.5.1 Unimodal Function

In this section, studies are conducted for understanding the effects of tuning parameters of
improved FA, IWO and the proposed hybrid algorithms on convergence and solution accuracy
for unimodal functions. The simulations with Schwefel’s Problem 2.22, fa(x) are carried
out using the proposed algorithms, FA-NSF, FA-eSF, IWO-eSSF, MIWO-eSSF, HIWFO and
HIWFO-SF. The results are compared and conclusions drawn on the best parameter condition
for the algorithm.

Table 3.6: Results of FA variants for Schwefel’s Problem 2.22 test

FA FA-NSF FA-eSF

n Dim itmax f(x) t, (sec) f(x) t, (sec) f(x) t, (sec)

6 2 50 1.85E+00 0.034 1.35E-04 0.012 4.03E-05 0.011

500 3.86E-01 0.065 1.72E-07 0.064 1.52E-08 0.085

30 50 8.83E+11 0.063 1.15E-02 0.011 9.68E-03 0.014

500 3.06E+09 0.061 9.97E-06 0.092 5.82E-06 0.099

30 2 50 4.36E-01 0.17 2.03E-05 0.189 5.80E-05 0.225

500 7.31E-02 1.182 2.33E-08 1.829 1.44E-08 1.963

30 50 2.54E+09 0.216 7.62E-03 0.234 3.86E-03 0.3

500 1.68E+07 1.437 1.22E-05 1.993 5.40E-06 1.558

100 2 50 2.77E-01 1.541 5.25E-05 1.827 4.92E-05 1.598

500 5.48E-02 12.983 7.84E-09 19.835 1.01E-08 13.719

30 50 1.05E+09 1.253 9.64E-03 3.077 2.44E-03 1.65

500 1.21E+07 19.876 1.20E-05 17.167 6.29E-06 21.319

Table 3.6 shows the numerical simulation results for original FA and two proposed FA
variants, FA-NSF and FA-eSF for unimodal problem. Classified by the size of population
as 5, 30 and 100, the FA-eSF showed better solution accuracy. The results showed that
the use of population size of 100, only slightly improvement as compared with population
size of 30. However, the computational burden is clearly shown using high population size
especially when extending the iteration to 500 and increasing the problem dimension to 30.
For all algorithms, using low size in population, did not helped the algorithm in getting better
optimal solution.

The numerical simulation results for original IWO and the two proposed IWO variants,
IWO-eSSF and MIWO-eSSF for Schwefel’s Problem 2.22 are shown in Table 3.7. The sim-
ulated results are tabulated based on the size of population, different dimensions and iter-
ations. Most of the results showed that the proposed IWO variants showed better solution
accuracy. The results also showed that while the higher size of population has a significant
improvement to the solution quality, but it increased the time taken to solve the problem. This
computational burden became heavy especially when using a larger number of iterations and
larger dimension. The use of small population in this problem, already showed a good result,
however, not as competitive as population sizes 30 and 100.

Figure 3.8 shows the simulation results of HIWFO and HIWFO-SF for unimodal op-
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Table 3.7: Results for IWO variants for Schwefel’s Problem 2.22 test

IWO IWO-eSSF MIWO-eSSF

n Dim itmax f(x) t, (sec) f(x) t, (sec) f(x) t, (sec)

6 2 50 5.93E-03 0.021 8.66E-04 0.017 3.36E-03 0.029

500 1.45E-03 0.206 1.05E-03 0.204 1.10E-03 0.123

30 50 2.60E+06 0.022 5.82E+01 0.021 4.78E+01 0.033

500 8.70E+05 0.158 2.38E+00 0.234 3.72E+00 0.2

30 2 50 2.93E-03 0.084 7.88E-04 0.059 1.15E-03 0.099

500 6.13E-04 0.602 2.88E-04 0.657 4.41E-04 0.827

30 50 1.25E+02 0.125 4.30E+01 0.09 3.76E+01 0.229

500 5.21E+01 0.734 2.44E-01 0.719 6.38E-01 1.2

100 2 50 8.21E-04 0.28 2.53E-04 0.323 7.59E-04 0.185

500 2.77E-04 1.498 7.59E-05 2.097 2.24E-04 2.547

30 50 9.16E+01 0.382 3.25E+01 0.352 2.41E+01 0.283

500 2.02E+01 2.299 1.90E-01 2.649 4.91E-01 4.198

Table 3.8: Results of HIWFO and HIWFO-SF for Schwefel’s Problem 2.22 test

HIWFO HIWFO-SF

n Dim itmax f(x) t, (sec) f(x) t, (sec)

6 2 50 4.62E-03 0.045 5.74E-04 0.104

500 2.13E-03 0.177 6.94E-08 0.197

30 50 1.14E+00 0.084 1.17E-01 0.036

500 7.05E-01 0.421 9.72E-03 0.252

30 2 50 2.39E-03 0.121 6.21E-04 0.278

500 5.49E-04 0.943 2.75E-08 0.895

30 50 1.27E+00 0.107 9.85E-01 0.154

500 5.87E-01 1.365 3.13E-01 0.847

100 2 50 1.76E-03 0.487 5.02E-04 0.718

500 6.50E-04 5.849 7.36E-09 6.416

30 50 1.19E+00 0.7 8.95E-01 0.889

500 3.58E-01 7.027 2.93E-01 9.849
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timisation problem. These newly proposed hybrid algorithms have shown their competitive
characteristics with better solution quality as compared to FA (referred to Table 3.6) and IWO
(referred to Table 3.7). In most of the cases, HIWFO-SF showed better solution compared to
HIWFO. For both algorithms, high population size resulted better solution compared to lower
ones. The increment of iteration also helped the algorithm to gain better result. For both algo-
rithms, simulation procedure that used 100 maximum population size showed slightly better
than using population size 30, but with higher computational time.

3.5.2 Multimodal Function

The simulations with Levy function, fb(x) as an example of multimodal function are per-
formed to study the effect of parameters on the convergence and solution accuracy of the
proposed algorithms, FA-NSF, FA-eSF, IWO-eSSF, MIWO-eSSF, HIWFO and HIWFO-SF.
The results are compared and conclusions drawn on best parameter condition for the algo-
rithms.

Modification of attractiveness and randomization of both FA-NSF and FA-eSF are tested
using multimodal function, Levy function. To illustrate the adaptive change of both coeffi-
cient, Figure 3.10 shows the change of attraction and randomization parameters in FA-eSF.
The attractive coefficient is increased exponentially whereas the randomization is decreased
in exponential shape. Figures 3.10c and 3.10d show the effect of SF on both coefficient
during the iteration process.

On the other hand, Figure 3.11 shows an example of the effect of the adaptive mechanism
of both improved IWO algorithm, IWO-eSSF and MIWO-eSSF. Both Figures 3.10 and 3.11
are based on simulation of the proposed algorithms on Levy function.

Table 3.9: Results of FA variants for Levy function test

FA FA-NSF FA-eSF

n Dim itmax f(x) t, (sec) f(x) t, (sec) f(x) t, (sec)

5 2 50 2.45E-01 0.01 4.09E-02 0.011 3.76E-03 0.01

500 2.76E-02 0.063 2.41E-02 0.079 3.39E-03 0.112

30 50 2.32E+02 0.016 2.99E+00 0.022 2.77E+00 0.035

500 2.15E+02 0.152 2.64E+00 0.104 2.31E+00 0.15

30 2 50 3.64E-02 0.133 1.23E-03 0.169 2.50E-03 0.167

500 7.68E-04 1.35 8.05E-04 1.659 2.33E-04 1.974

30 50 2.06E+02 0.137 2.65E+00 0.287 2.59E+00 0.231

500 1.56E+02 1.54 2.55E+00 2 2.25E+00 2.131

100 2 50 4.73E-03 1.354 4.79E-04 2.117 7.80E-04 1.896

500 8.84E-04 10.828 2.50E-04 19.248 3.31E-05 14.805

30 50 2.22E+02 1.745 2.58E+00 2.369 2.66E+00 2.088

500 1.33E+02 12.867 2.34E+00 20.599 2.46E+00 18.585

Based on the multimodal problem of Levy functions, the numerical simulation results
for original FA and two proposed FA variants, FA-NSF and FA-eSF are shown in Table 3.9.
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(a) Exponential changes of gamma value (b) Exponential changes of alpha value

(c) Changes of gamma with SD mechanism (d) Changes of alpha with SD mechanism

Figure 3.10: Variation of parameters for FA-eSF during iteration process

(a) IWO-eSSF (b) MIWO-eSSF

Figure 3.11: The rate of change of SD for adaptive mechanism of IWO variants

Classified by three different population sizes; 5, 30 and 100, the FA-eSF showed slightly
better solution accuracy than FA-NSF, but both proposed algorithms produced better results
than FA. The results show that with higher population size, only slight improvement was
observed especially between population sizes 30 and 100. In addition, the computational
time clearly increased with population size. For all algorithms, low population size did not
help the algorithm to achieve better optimal solution.
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Table 3.10: Results of IWO variants for Levy function test

IWO IWO-eSSF MIWO-eSSF

n Dim itmax f(x) t, (sec) f(x) t, (sec) f(x) t, (sec)

5 2 50 7.33E-06 0.021 9.74E-07 0.032 3.32E-07 0.026

500 1.25E-06 0.136 3.76E-08 0.11 8.19E-07 0.132

30 50 1.57E+02 0.024 4.88E+01 0.158 4.38E+01 0.019

500 8.34E+01 0.292 1.34E+01 0.185 7.27E+00 0.161

30 2 50 9.30E-07 0.049 6.95E-08 0.114 1.94E-07 0.101

500 1.46E-07 0.848 4.88E-09 0.691 3.61E-09 0.614

30 50 6.73E+01 0.132 2.48E+01 0.094 2.05E+01 0.178

500 7.72E+00 1.012 1.91E+00 0.849 1.60E+00 0.987

100 2 50 1.38E-07 0.331 2.08E-08 0.287 2.13E-08 0.207

500 5.42E-08 2.199 4.85E-11 2.061 9.50E-09 1.892

30 50 4.07E+01 0.62 1.72E+01 0.484 1.41E+01 0.283

500 4.56E-01 3.672 1.33E-03 3.113 1.86E-01 3.287

Table 3.10 shows the simulation results of original IWO and the proposed algorithms,
IWO-eSSF and MIWO-eSSF for multimodal optimisation problem. The proposed algorithms
have shown competitive results with better solution quality as compared to their original
predecessor algorithm. There are some mixed performance among both proposed algorithms,
but MIWO-eSSF showed a slightly better solution compared to IWO-eSSF for multimodal
problem. For all algorithms, higher population size resulted better solution as compared with
lower ones. The increment of iterations also helped the algorithm to gain better result. For
both algorithms, simulations with maximum population size of 100 showed slightly better
result than population size 30. The high computational time and NFE with higher population
size is also evident.

Table 3.11: Result of HIWFO and HIWFO-SF for Levy function test

HIWFO HIWFO-SF

n Dim itmax f(x) t, (sec) f(x) t, (sec)

5 2 50 5.58E-06 0.511 9.53E-07 0.02

500 8.37E-08 0.244 2.92E-07 0.185

30 50 2.05E+00 0.028 1.88E+00 0.11

500 5.89E-01 0.259 6.81E-01 0.308

30 2 50 2.35E-07 0.222 2.55E-08 0.226

500 2.35E-08 2.113 2.35E-16 0.736

30 50 1.22E+00 0.264 1.54E+00 0.133

500 1.85E-01 2.512 1.12E-01 1.259

100 2 50 3.59E-08 1.853 3.37E-08 0.595

500 4.19E-09 15.937 3.49E-17 4.717

30 50 1.36E+00 2.307 1.36E+00 0.617

500 9.57E-02 21.126 9.67E-02 7.06

The numerical simulation results for HIWFO and HIWFO-SF algorithms are shown in
Table 3.11. Most of the results show that the proposed HIWFO-SF produced better solution
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accuracy. Both algorithms also gave better solution as compared to their predecessors, IWO
and FA. The results also show that higher population size had a significant improved solution
quality, but it also increased the time taken to solve the problem. This showed the heavy com-
putational burden especially when using a larger number of iteration and larger dimension.
The use of low population size in this problem, already showed a good result, however, not
as competitive as with sizes of 30 and 100.

In terms of convergence quality, from the results of using multimodal function, an ex-
ample of convergence graph is shown in Figure 3.12. Figure 3.12a shows the convergence
results of all the algorithms for dimension 2 and Figure 3.12b is for dimension 30. Based on
Figure 3.12, all the proposed algorithms have improved the solution quality as compared to
FA and IWO especially in the case of higher dimension.

(a) Results in 2 dimensions (b) Results in 30 dimensions

Figure 3.12: The convergence plot in solving Levy Function

In Figure 3.12a, IWO-eSSF, MIWO-eSSF and HIWFO-SF showed competitive results
among the algorithms. These algorithms showed further promise as they are converging and
the potential to obtain better solution quality if the iteration is extended. On the other hand, as
shown in Figure 3.12b, by increasing the problem dimension to 30, HIWFO-SF and HIWFO
showed the potential of hybridization quality as their convergence and accuracy were better
quality as compared with the rest of the algorithms.

The results obtained in this section concluded the study on understanding the effects of
tuning parameters of adaptive FA, IWO and the proposed hybrid algorithms on their con-
vergence and solution accuracy. The simulations were performed with unimodal Schwefel’s
Problem 2.22 and multimodal Levy function problems. It was shown that larger number
of iterations produce better quality solution. A need for large iteration is essential to com-
pare the algorithms analysed. This is because all the proposed algorithms have shown great
potential to get better global optimum value by extending the iteration. Increasing size of
population may also increase the solution quality, but it will also increase the computational
time and higher NFE. Hence, in comparing all the proposed algorithms, a competitive size of
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population is used in order to be fair and also able to get the optimal result.

3.6 Summary

In this chapter, investigations of new proposed optimisation based on FA and IWO have been
elaborated. The studies present new variants of FA and IWO algorithm. New hybridization
strategy referred as hybrid invasive weed firefly optimisation (HIWFO) and hybrid invasive
weed optimisation with spread factor (HIWFO-SF) algorithms have also been proposed to
solve global optimisation problems. The hybridization of the algorithms has been achieved
by embedding the FA method into IWO algorithm structure to enhance the local search ca-
pability of IWO that already has very good exploration capability. Moreover, incorporating
suitable adaptive parameters of the algorithm could further improve the diversity mecha-
nism in the HIWFO algorithm to further balance the exploration and exploitation abilities to
achieve better performance. Based on the results obtained,

• In the unimodal study, as the population size and dimension of the problem increases,
FA-NSF, FA-eSF and HIWFO-SF show better solution accuracy. However, IWO-eSSF,
MIWO-eSSF and HIWFO have shown slightly better results as compared with FA
and IWO. All the proposed algorithms have achieved significant improvement with
increased iteration.

• In the multimodal study, only HIWFO-SF achieved significant improvement in solu-
tion accuracy with increase in population size and dimension. The other proposed
algorithms have achieved slight improvements compared to FA and IWO algorithms.

The algorithms will be further tested with single unconstrained and constrained optimisa-
tion problems with continuous design variables. The multi-objective optimisation problems
and selected engineering optimisation problem are also used. Simulation and comparative
assessments of performance of the proposed algorithms with the original FA and IWO are
also carried out on the mentioned optimisation problems to illustrate their effectiveness and
robustness.
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Chapter 4

Single-objective Adaptive Firefly and
Invasive Weed Algorithms

4.1 Introduction

This chapter presents performance analyses of the proposed adaptive firefly and invasive
weed algorithms with single-objective optimisation problems. Two types of problems are
considered, namely unconstrained and constrained optimisation to test and evaluate the al-
gorithms. For solving single-objective unconstrained optimisation problems, standard well-
known benchmark functions and CEC 2014 test functions are used. The functions used have
different landscapes, dimensions and complexities with either no or several local optima.
Performance measurements are set to measure and compare the performances of the algo-
rithms. On the other hand, well-known benchmark and CEC 2006 test functions are used
to evaluate the algorithms to solve constrained optimisation problems. Further tests are con-
ducted with practical engineering design problems which deal with continuous variables in
constrained optimisation environment. In each case, graphical and numerical results are pre-
sented to carry out out comparative performance assessment of the proposed algorithms with
their predecessor, FA and IWO algorithms.

The experimental testing hardware platform comprises a personal computer (PC) with
processor CPU Intel (R) Core (TM) i5-2400 Window 7 Professional operating system, 3.10
GHz frequency and 4.00 GB RAM. The program is coded in MATLAB R2013a. Each prob-
lem is tested with 30 independent runs with a minimum number of function evaluations of
30,000 per run.

4.2 Unconstrained Optimisation Problems

In general, if the problem is to minimize f(x) over all x. A general unconstrained optimisa-
tion problem can be represented as (Simon, 2013)

x∗ = arg min
x
f(x) (4.1)
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where x∗ is used to represent the optimising value of x, and f(x∗) is the minimum value
of f(x). Details of unconstrained optimisation problems can be found in (Ali et al., 2005;
Simon, 2013; Yang, 2010a). In order to analyse the proposed algorithms, benchmark func-
tions or also called test functions are used to obtain comparative results among metaheuristic
algorithms (Simon, 2013).

The benchmark function that has single optimum is called unimodal whereas if it has more
than one optimum, it is called multimodal. Multimodal functions are used to test the ability of
the algorithm to escape from local optima and locate a good near-global optimum. Therefore,
for the case of multimodal functions especially in high dimensions, the final results are more
important than the convergence rate. The experiment also looks at how effectively could
the algorithm be extended for higher dimension problems, although this also will involve
increased computational complexity.

4.2.1 Experiments on Unconstrained Optimisation Problems

This section examines the algorithms in solving unconstrained optimisation problems. The
experiments are aimed to investigate the performance of FA-NSF, FA-eSF, IWO-eSSF, MIWO-
eSSF, HIWFO and HIWFO-SF algorithms. Ten standard benchmark functions and 16 CEC
2014 test functions are used in the experiments. All functions used are minimization prob-
lems and the dimensions of search space (Dim) are 2, 10, 30 and 50. The performances of
the proposed algorithms are also compared with those of FA and IWO algorithm.

Standard Benchmark Functions

The benchmark functions used in this study are adopted from Jamil and Yang (2013), Sur-
janovic and Bingham (2013) and these are described well by Simon (2013). The functions
are also used in the literature to analyse the performance of bio-inspired algorithms on the
unconstrained problems. (Wang et al., 2016; Yilmaz and Kucuksille, 2015).

Ten benchmark functions featured with unimodal and multimodal properties are used to
evaluate the algorithms. Table 4.1 shows the benchmark functions used for the analysis of the
performance tests. Table 4.2 shows a brief summary of the benchmark functions properties
and conditions used in this section.

Note: D represents the number of dimensions for i = 1, . . . , D.

CEC 2014 Test Functions

Sixteen different global optimisation problems (f11−f26) are additionally used and collected
from CEC 2014 single objective real-parameter numerical optimisation (Liang et al., 2013).
The mathematical formulations of the CEC 2014 test functions are listed in Appendix B. All
functions are minimization problems and have global optimum value. The functions f11−f13
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Table 4.1: Benchmark functions used

Function Formulation Range

Sphere f1(x) =
D∑
i=1

xi
2 [−10, 10]D

Rosenbrock f2(x) =
D−1∑
i=1

[100(xi+1 − xi2)
2

+ (xi − 1)2] [−5, 10]D

Dixon & Price f3(x) = (x1 − 1)2 +
D∑
i=1

i(2xi
2 − xi−1)

2
[−10, 10]D

Schwefel’s Problem 1.2 f4(x) =
D∑
i=1

 i∑
j=1

xj
2

 [−10, 10]D

Schwefel’s Problem 2.22 f5(x) =
D∑
i=1

|xi|+
D∏
i=1

|xi| [−10, 10]D

Zakharov f6(x) =
D∑
i=1

xi
2 +

(
D∑
i=1

0.5ixi

)2

+

(
D∑
i=1

0.5ixi

)4

[−5, 10]D

Rastrigin f7(x) = 10D +

D∑
i=1

[xi
2 − 10 cos(2πxi)] [−5.12, 5.12]D

Ackley f8(x) = −20 exp

−0.2

√√√√ 1

D

D∑
i=i

xi2

 [−32, 32]D

−exp
(

1

D

D∑
i=1

cos 2πxi

)
+ 20 + e

Griewank f9(x) =
1

4000

D∑
i=1

xi
2 −

D∏
i=1

xi√
i

+ 1 [−600, 600]D

Levy f10(x) = sin2(πω1) +

D−1∑
i=1

(ωi − 1)2[1 + 10 sin2(πωi + 1)] [−10, 10]D

+(ωD − 1)2[1 + sin2(2πωD)];

where ωi = 1 +
xi − 1

4
, for all i = 1, ..., D

Table 4.2: Brief summary of properties of the benchmark functions

Functions Properties

f1(x) Unimodal Continuous, convex and no local minimum except the global one

f2(x) Unimodal The global minimum lies in a narrow, banana-shaped valley

f3(x) Unimodal Continuous, differentiable, non-Separable, Scalable

f4(x) Unimodal Continuous, differentiable, non-separable, scalable,

f5(x) Unimodal Continuous and non-differentiable

f6(x) Unimodal Continuous, differentiable, non-separable, scalable

f7(x) Multimodal Many local minima locations and regularly distributed

f8(x) Multimodal Continuous, differentiable, non-separable, scalable, many local minima

f9(x) Multimodal Many local minima locations and regularly distributed

f10(x) Multimodal Several local minima



64 4. Single-objective adaptive firefly and invasive weed algorithms

are unimodal functions and the rest of the functions are multimodal functions. A summary of
their properties and common condition used in this analysis is shown in Table 4.3.

Table 4.3: Summary of the CEC 2014 test functions

No Functions Properties f∗ = f(x∗i )

f11(x) Rotated High Conditioned Elliptic Func-
tion

Unimodal Unimodal, non-separable, quadratic ill-
conditioned

100

f12(x) Rotated Bent Cigar Function Unimodal Unimodal, non-separable, smooth but
narrow ridge

200

f13(x) Rotated Discus Function Unimodal Unimodal, non-separable, with one sensi-
tive direction

300

f14(x) Shifted and Rotated Rosenbrock’s Func-
tion

Multimodal Multimodal, non-separable, having a very
narrow valley from local optimum to
global optimum

400

f15(x) Shifted and Rotated Ackley’s Function Multimodal Multimodal, non-separable 500

f16(x) Shifted and Rotated Weierstrass Function Multimodal Multimodal, non-separable, continuous
but differentiable only on a set of points

600

f17(x) Shifted and Rotated Griewank’s Function Multimodal Multimodal, non-separable, rotated 700

f18(x) Shifted Rastrigin’s Function Multimodal Multimodal, separable, local optima’s
number is huge

800

f19(x) Shifted and Rotated Rastrigin’s Function Multimodal Multimodal, non-separable, local op-
tima’s number is huge

900

f20(x) Shifted Schwefel’s Function Multimodal Multimodal, separable, local optima’s
number is huge and second better local
optimum is far from the global optimum

1000

f21(x) Shifted and Rotated Schwefel’s Function Multimodal Multimodal, non-separable, Local op-
tima’s number is huge and second better
local optimum is far from the global opti-
mum

1100

f22(x) Shifted and Rotated Katsuura Function Multimodal Multimodal, non-separable, Continuous
everywhere yet differentiable nowhere

1200

f23(x) Shifted and Rotated HappyCat Function Multimodal Multimodal, non-separable 1300

f24(x) Shifted and Rotated HGBat Function Multimodal Multimodal, non-separable 1400

f25(x) Shifted and Rotated Expanded
Griewank’s plus Rosenbrock’s Func-
tion

Multimodal Multimodal, non-separable 1500

f26(x) Shifted and Rotated Expanded Scaffer’s
F6 Function

Multimodal Multimodal, non-separable 1600

Note: n represents the number of dimensions and for all functions f ∗ = f(x∗i ) where
xi ∈ [−100, 100] for i = 1, . . . , n.

4.2.2 Performance Measurement

Numerical results from the benchmark functions and CEC 2014 function tests are used to
evaluate performances of the proposed algorithms (FA-NSF, FA-eSF, IWO-eSSF, MIWO-
eSSF, HIWFO and HIWFO-SF) in solving unconstrained optimisation problems.

Performance measurement tools are described in this section to compare, evaluate and
analyse the results of all the algorithms. In all the unconstrained problem tests, the same
population size, n and the maximum number of iterations are used for a fair comparative
evaluation of the algorithms. This basic criteria used in this research are as follows:
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• Maximum size of population, nmax = 30.

• Maximum number of iterations, itmax = 1, 000 (NFE = 30, 000).

• The problems are tested in 2, 10 and 30 and 50 dimensions.

The number of function evaluations (NFE) is also used in the experiments as measure of
computational time instead of number of generations. The algorithms are terminated when
the criterion NFE = 30,000 is met.

Table 4.4: The initial parameters used in the study

Parameters FA FA-NSF FA-eSF IWO IWO-eSSF MIWO-eSSF HIWFO HIWFO-SF

smin - - - 0 0 0 0 0

smax - - - 5 5 5 5 5

σini - - - 5 5 5 5 5

σf - - - 0.01 0.01 0.01 0.01 0.01

β0 1 1 1 - - - 1 1

αini 0.2 1 1 - - - 0.2 1

αf - 0.001 0.001 - - - - 0.001

γini 1 0.001 0.001 - - - 1 1

γf - 1 1 - - - - -

Table 4.4 shows the parameter sets used in the tests where σini and σf , represent the ini-
tial and final values of SD respectively, smax and smin, represent the maximum and minimum
values of a seed respectively, γ, light absorption coefficient, β0, attraction coefficient, and
αini, randomization coefficient used in the algorithms. For implementing the adaptive mech-
anism of the proposed algorithms (FA-NSF, FA-eSF and HIWFO-SF), γini and γf represent
the initial and final values of light absorption coefficient, and αini and αf , are the initial and
final values of randomization coefficient used in the algorithms.

The performance evaluation measurement used for the comparison study includes the
quality of final solution, the convergence speed towards optimum solution, the success rate
(reliability of hitting the optimum threshold) and statistical significance test.

Performance of Global Optimum Solution

During the initialization, the initial population is randomly scattered in the search space. In
the tests, 30 independent runs of the algorithms are carried out on each function. The best
solution, the average of final solutions of each run, and their respective standard deviations
are noted.

Comparison of the results on basis of quality of optimum solution for the algorithms in
different dimension ranges are presented in tabulated form. Samples of convergence graphs
are also provided to show the performances on the basis of convergence quality and speed
towards optimum solution.
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Reliability Performance Test

The reliability of an optimisation algorithm is very important to solve a given problem. For
this purpose, reliability test is carried out using the data obtained from the experiments. The
performance criterion is set on how reliably the algorithm reaches the average fitness thresh-
old (success criterion) after a predefined NFE. For the experiments, the success criterion or
accuracy threshold is set to be 10−4 as proposed by Gandomi et al. (2013) and Akbari and
Ziarati (2011) for each function in different dimensions. The percentage rate of successful
runs is determined by calculating the success rate, SR in the experiment, where:

SR =
NSR

NR
× 100% (4.2)

where NSR is the number of successful runs and NR is the number of runs. The SR is
evaluated if the minimum value across the threshold, the value of NFE and time (t) taken
for the algorithm to converge to the specific threshold are specified. The SR value shows
the robustness of the algorithm in solving optimisation problems. After reaching maximum
NFE if the minimum value achieved by the algorithm has not reached the threshold, the run
is considered to be unsuccessful and notation ‘–‘ is indicated to signify that the algorithm run
did not converge to the accuracy threshold. The average SR for an algorithm can be computed
using

AvgSR =
Σ
fi(x)
k=1 SR

f(x)
(4.3)

where f(x) is number of functions used to evaluate the algorithm and SR is the success rate
value of the algorithm. The total time (t) taken as the algorithm converged to the threshold
and the respective NFE is also noted.

Statistical Significant Test

In this research, the significant performance tests of the algorithm are also carried out. Kruskal-
Wallis non-parametric statistical test is chosen. This is because, although the results of para-
metric and nonparametric analyses are nearly similar, conditions of parametric tests used
in the metaheuristics algorithm analysis are not usually fulfilled, as studied by Garcia et
al. (2009). Therefore, the use of non-parametric tests is encouraged and preferred by re-
searchers noted by Garcı́a et al. (2009). Some suggestions of non-parametric tests for analysis
of optimisation algorithms include Kruskal-Wallis, Wilcoxon, Friedman, Iman-Davenport,
Bonferroni-Dunn, and Holm.

Kruskal-Wallis test is a non-parametric statistical test to evaluate more than two groups. It
is a non-parametric of one-way ANOVA test and an extension of Wilcoxon rank sum test. The
test assumes that all samples come from populations having the same continuous distribution,
and all observations are mutually independent. The data captured is ranked in the Kruskal-
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Wallis test by ordering the data from smallest to largest across all groups. In this case, it takes
numeric index of this ordering. In this research, all 30 solutions of each algorithm are ranked
and p− value is used to measure significance of chi-square statistic of Kruskal-Wallis test.

In adopting Kruskal-Wallis one-way variance test, the hypothesis is set by assuming that
all algorithms performed equally and showed the same median. The result of the test will
show the p-value and mean rank for each comparison group / algorithm. If this hypothesis is
rejected at 95%(p− value < 0.05) confidence interval, the Kruskal-Wallis test suggests that
at least one algorithm involved in the comparison is different from others. In short, at least
one of the algorithm’s median appear to be different from those of the other algorithms. As
most of the problems are minimisation type, the lowest mean rank show that the algorithms
have more tendency and accuracy in reaching the minimum global optimum value.

4.2.3 Experimental Results and Performance Analyses

In this section, the results of all the algorithms used in the experiments are analysed and
evaluated. Different analyses based on defined performance measurements listed in the pre-
vious section are presented. The comparative study will show the ability of the proposed
algorithms in solving unconstrained optimisation problems. Following the experiments on
the benchmark functions as well as with CEC 2014 test functions, the overall performance of
the proposed algorithms are compared together with FA and IWO.

Standard Benchmark Functions

The performance and analysis of the proposed algorithms are shown in this section for the
standard benchmark function tests. The numerical results comparing the mean, standard
deviation and the best optimum value after 30 runs with dimensions 2, 10, 30 and 50 are
presented in Tables 4.5, 4.6, 4.7 and 4.8, respectively. The mean value is defined as the mean
best fitness value by averaging of 30 simulation runs. The functions f1–f6, are unimodal
whereas functions f7–f10 are multimodal problems. The measurements are based on the
optimum value for reaching the predefined maximum iterations for each function.

Table 4.5 represents comparison results of eight algorithms for ten standard benchmark
functions in 2 dimension problem. The numerical results show the solution quality of each
algorithm in solving these problems. The highlighted bold font signifies the best obtained
values. The results mostly show that the algorithms successfully optimised the functions
as they obtained near to zero value of global optimum. In Table 4.5, the statistical results
of FA-NSF, FA-eSF and HIWFO-SF demonstrate a far better solution quality than other al-
gorithms. Furthermore, HIWFO-SF showed more precise optimum value and significantly
outperformed other algorithms.

Table 4.6 tabulates the experimental results in 10 dimensions. As the dimension increased,
the complexity of the functions also increased. As noted FA-eSF, FA-NSF and HIWFO-
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Table 4.5: Results for benchmark functions in 2 dimensions

FA FA-NSF FA-eSF IWO IWO-eSSF MIWO-eSSF HIWFO HIWFO-SF

f1 Mean 2.28E-06 5.37E-15 1.05E-15 1.05E-07 4.57E-08 2.70E-07 1.26E-06 5.47E-16

Std Dev 2.59E-06 5.58E-15 1.19E-15 8.72E-08 3.97E-08 2.05E-07 1.51E-06 6.78E-16

Best 5.22E-08 9.54E-17 1.28E-18 5.04E-09 1.85E-10 2.49E-08 4.70E-08 2.26E-18

f2 Mean 1.88E-05 2.32E-03 1.68E-03 9.22E-07 3.36E-07 3.61E-06 2.53E-05 5.61E-07

Std Dev 1.57E-05 2.87E-03 1.47E-03 6.51E-07 3.14E-07 2.96E-06 2.64E-05 1.52E-06

Best 5.28E-07 6.28E-05 3.88E-05 9.94E-08 1.19E-09 3.27E-07 2.28E-08 1.45E-14

f3 Mean 7.39E-06 4.73E-04 7.10E-04 3.15E-07 2.49E-07 1.72E-06 5.38E-06 4.75E-15

Std Dev 8.33E-06 4.21E-04 5.28E-04 2.89E-07 2.02E-07 1.51E-06 5.35E-06 3.79E-15

Best 6.88E-08 3.46E-05 4.10E-07 8.54E-09 2.51E-09 3.91E-08 7.55E-08 3.94E-16

f4 Mean 1.77E-06 6.33E-15 1.45E-15 1.01E-07 4.62E-08 3.61E-07 1.50E-06 1.24E-15

Std Dev 1.37E-06 5.83E-15 1.09E-15 1.18E-07 4.10E-08 3.03E-07 1.28E-06 1.36E-15

Best 1.45E-07 9.74E-17 8.26E-17 8.31E-11 5.00E-09 1.28E-08 9.57E-08 1.39E-17

f5 Mean 3.38E-03 7.87E-08 3.70E-08 3.99E-04 2.35E-04 5.41E-04 1.02E-03 3.27E-08

Std Dev 8.10E-04 6.56E-08 1.95E-08 1.99E-04 1.27E-04 2.26E-04 5.19E-04 1.34E-08

Best 3.05E-03 1.43E-08 3.84E-09 6.58E-05 1.41E-05 8.16E-05 2.27E-04 1.27E-08

f6 Mean 2.89E-06 9.84E-15 1.53E-15 1.40E-07 6.27E-08 4.93E-07 1.89E-06 2.71E-15

Std Dev 2.95E-06 1.35E-14 1.34E-15 1.22E-07 6.33E-08 5.11E-07 2.86E-06 2.64E-15

Best 1.35E-07 2.20E-16 1.23E-17 2.18E-08 5.94E-10 5.96E-09 5.31E-08 4.02E-17

f7 Mean 1.87E+00 1.12E-12 2.75E-13 2.08E-05 1.09E-05 6.31E-05 1.32E-04 2.00E-13

Std Dev 1.68E+00 1.22E-12 2.15E-13 1.98E-05 7.40E-06 7.05E-05 1.89E-04 5.28E-13

Best 1.14E-04 1.78E-14 7.11E-15 1.13E-07 5.21E-07 2.10E-06 2.43E-06 3.55E-15

f8 Mean 2.19E+00 5.21E-09 1.22E-09 9.18E-06 8.05E-06 1.26E-05 1.73E-04 1.23E-08

Std Dev 2.42E+00 4.28E-09 1.04E-09 1.07E-05 9.05E-06 1.44E-05 1.53E-04 2.08E-08

Best 1.13E-05 6.17E-11 9.39E-12 8.23E-07 7.39E-08 5.85E-08 3.24E-06 5.34E-10

f9 Mean 4.16E+00 2.25E-15 3.85E-16 2.47E-04 4.93E-04 1.48E-03 6.99E-03 4.07E-16

Std Dev 3.44E+00 2.10E-15 3.74E-16 1.35E-03 1.88E-03 3.01E-03 9.18E-03 3.62E-16

Best 7.88E-01 1.11E-16 1.11E-16 8.49E-10 6.60E-10 2.38E-08 9.37E-09 1.11E-16

f10 Mean 2.33E-01 3.69E-03 9.75E-04 2.41E-08 1.18E-08 1.02E-07 3.70E-07 2.18E-16

Std Dev 4.12E-01 4.37E-03 9.44E-04 2.24E-08 1.04E-08 8.33E-08 3.39E-07 1.62E-16

Best 5.54E-08 2.75E-05 4.85E-05 1.22E-10 2.74E-10 4.59E-09 2.50E-10 5.17E-19

SF algorithms outperformed other algorithms and the proposed FA variants achieved more
precise solutions. The statistical results of IWO-eSSF show competitive result and better than
IWO.

Table 4.7 shows the comparison results among the eight algorithms for 30 dimensional
standard benchmark problems and Table 4.8 shows the results in 50 dimension problems.
The pattern of results is consistent with Table 4.6. The FA-eSF, FA-NSF, IWO-eSSF and
HIWFO-SF showed far better average convergence value than other algorithms. The SF
mechanism adopted was enable to help the proposed algorithms to jump out of the local
optima in the higher dimensional problems. Hence, this adaptive mechanism implemented
in those algorithms can effectively prevent premature convergence and enhance the solution
quality of the algorithms.

Rosenbrock function, f2 is one of the problems which is hard to optimise especially if
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Table 4.6: Results for benchmark functions in 10 dimensions

FA FA-NSF FA-eSF IWO IWO-eSSF MIWO-eSSF HIWFO HIWFO-SF

f1 Mean 1.22E+02 1.05E-12 3.38E-13 1.66E-04 1.30E-04 6.86E-04 4.42E-04 2.34E-09

Std Dev 2.05E+01 7.47E-13 1.80E-13 4.16E-05 3.20E-05 3.84E-04 1.59E-04 5.49E-09

Best 7.97E+01 2.46E-13 1.66E-13 8.03E-05 5.40E-05 5.18E-06 2.65E-04 1.81E-15

f2 Mean 7.85E+04 8.77E+00 8.82E+00 1.88E+01 4.33E+00 6.23E+00 1.43E+01 7.73E+00

Std Dev 2.94E+04 1.42E-01 1.01E-01 7.14E+01 7.30E-01 5.94E-01 2.15E+01 4.90E-01

Best 1.94E+04 8.15E+00 8.56E+00 3.87E+00 3.22E+00 5.18E+00 8.17E-01 6.90E+00

f3 Mean 5.17E+04 7.21E-01 7.40E-01 6.67E-01 6.67E-01 6.70E-01 6.70E-01 6.67E-01

Std Dev 2.06E+04 2.21E-02 2.36E-02 3.10E-04 1.23E-04 1.02E-03 1.83E-01 2.59E-04

Best 1.28E+04 6.89E-01 6.88E-01 6.67E-01 6.67E-01 6.68E-01 1.66E-02 6.67E-01

f4 Mean 1.12E+02 2.94E-12 5.82E-13 2.75E-04 1.97E-04 1.30E-03 2.15E-03 1.70E-04

Std Dev 2.24E+01 4.21E-12 2.23E-13 8.78E-05 5.42E-05 4.52E-04 1.47E-03 1.70E-04

Best 6.80E+01 1.45E-13 1.54E-13 1.35E-04 1.02E-04 1.76E-05 7.42E-04 1.97E-06

f5 Mean 2.83E+01 2.63E-06 1.46E-06 3.51E-02 2.75E-02 6.84E-02 5.85E-02 3.65E-03

Std Dev 2.90E+00 1.00E-06 3.08E-07 3.39E-03 4.16E-03 1.64E-02 1.79E-02 8.37E-03

Best 2.22E+01 1.29E-06 9.52E-07 2.91E-02 1.79E-02 5.70E-03 3.11E-02 7.08E-06

f6 Mean 1.61E+02 3.63E-12 8.13E-13 3.55E-04 2.34E-04 1.64E-03 1.46E-03 3.59E-05

Std Dev 3.17E+02 3.86E-12 4.19E-13 1.19E-04 4.81E-05 6.16E-04 7.22E-04 4.62E-05

Best 2.72E+01 6.56E-13 2.94E-13 1.48E-04 1.16E-04 3.21E-05 4.86E-04 5.64E-07

f7 Mean 5.98E+01 1.99E-10 5.94E-11 1.04E+01 8.53E-01 1.11E-01 1.30E+01 1.07E-06

Std Dev 7.28E+00 1.15E-10 1.68E-11 5.76E+00 1.89E+00 7.72E-02 7.41E+00 2.69E-06

Best 4.01E+01 3.45E-11 2.89E-11 3.01E+00 1.04E-02 1.93E-04 4.08E+00 1.15E-11

f8 Mean 1.95E+00 5.09E-09 2.60E-09 1.75E-05 7.79E-06 1.78E-05 1.11E-04 8.84E-07

Std Dev 2.47E+00 5.29E-09 2.86E-09 1.84E-05 8.03E-06 2.31E-05 8.62E-05 4.72E-06

Best 1.79E-05 5.60E-11 1.01E-11 9.72E-07 1.72E-07 8.81E-07 1.08E-05 9.16E-11

f9 Mean 1.39E+02 1.95E-13 4.53E-14 9.00E-02 8.23E-02 9.03E-02 1.90E-01 3.94E-09

Std Dev 2.36E+01 1.82E-13 2.25E-14 3.76E-02 4.06E-02 5.60E-02 1.73E-01 8.01E-09

Best 7.02E+01 2.89E-14 1.08E-14 3.20E-02 1.73E-02 9.98E-03 4.19E-02 5.37E-13

f10 Mean 1.85E+01 7.09E-01 5.71E-01 8.70E-05 5.93E-05 4.36E-04 1.52E-02 2.73E-02

Std Dev 3.10E+00 9.27E-02 9.67E-02 2.26E-05 1.64E-05 1.02E-04 4.13E-02 6.28E-02

Best 1.23E+01 5.22E-01 3.52E-01 4.84E-05 2.92E-05 2.54E-04 8.99E-05 1.62E-04
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Table 4.7: Results for benchmark functions in 30 dimensions

FA FA-NSF FA-eSF IWO IWO-eSSF MIWO-eSSF HIWFO HIWFO-SF

f1 Mean 6.20E+02 4.13E-12 1.79E-12 3.28E-03 2.09E-03 1.54E-02 1.05E-02 1.94E-04

Std Dev 5.36E+01 4.34E-12 3.96E-13 4.19E-04 2.71E-04 1.98E-03 2.74E-03 2.85E-04

Best 4.57E+02 1.54E-12 1.09E-12 2.57E-03 1.59E-03 1.03E-02 6.35E-03 2.20E-05

f2 Mean 1.24E+06 2.89E+01 2.89E+01 1.70E+02 4.02E+01 2.95E+01 1.56E+02 2.85E+01

Std Dev 2.07E+05 2.83E-02 3.14E-02 3.34E+02 3.22E+01 1.20E+00 1.90E+02 2.14E-01

Best 7.13E+05 2.88E+01 2.88E+01 2.12E+01 2.31E+01 2.66E+01 2.45E+01 2.80E+01

f3 Mean 1.40E+06 9.49E-01 9.57E-01 7.14E+01 8.09E-01 1.06E+00 1.97E+01 7.35E-01

Std Dev 1.62E+05 1.74E-02 1.80E-02 1.52E+02 2.53E-01 3.17E-01 1.55E+01 5.93E-02

Best 1.03E+06 9.01E-01 9.04E-01 7.18E-01 6.85E-01 8.21E-01 8.24E-01 6.68E-01

f4 Mean 8.72E+02 4.63E-11 5.42E-12 8.69E-01 1.69E+00 3.22E-01 2.33E+01 2.22E-02

Std Dev 1.99E+02 1.06E-10 1.98E-12 3.77E-01 1.46E+00 1.97E-01 8.24E+00 6.52E-03

Best 5.78E+02 5.45E-12 2.13E-12 2.89E-01 6.12E-02 1.11E-01 8.53E+00 9.52E-03

f5 Mean 5.29E+06 1.14E-05 5.89E-06 7.92E+00 1.95E-01 8.54E-01 7.02E+00 2.86E-01

Std Dev 1.03E+07 7.57E-06 6.38E-07 1.28E+01 1.45E-02 6.29E-01 1.52E+01 8.20E-02

Best 1.71E+02 4.78E-06 4.61E-06 2.13E-01 1.63E-01 4.67E-01 6.03E-01 1.68E-01

f6 Mean 5.71E+08 3.44E-11 8.65E-12 6.04E+01 6.75E-01 1.22E-01 3.90E+01 2.05E-02

Std Dev 8.11E+08 2.31E-11 3.92E-12 6.26E+01 6.66E-01 5.69E-02 1.86E+01 7.13E-03

Best 7.72E+02 3.82E-12 2.20E-12 1.51E+00 4.62E-02 5.47E-02 9.02E+00 7.11E-03

f7 Mean 3.32E+02 1.75E-09 3.88E-10 8.03E+01 2.98E+01 5.61E+00 7.06E+01 2.52E-02

Std Dev 1.11E+01 2.99E-09 1.33E-10 1.69E+01 1.47E+01 4.22E+00 1.88E+01 2.50E-02

Best 3.11E+02 2.93E-10 1.88E-10 4.55E+01 3.46E+00 1.69E-02 3.64E+01 9.57E-04

f8 Mean 2.15E+00 6.71E-09 1.30E-09 1.26E-05 5.94E-06 2.16E-05 1.66E-04 7.66E-09

Std Dev 3.20E+00 6.33E-09 1.24E-09 1.78E-05 6.07E-06 2.76E-05 1.78E-04 9.56E-09

Best 7.24E-05 1.73E-10 3.30E-12 3.86E-07 2.49E-07 3.24E-07 6.10E-06 1.78E-10

f9 Mean 6.06E+02 2.70E-13 9.74E-14 6.91E-03 7.43E-03 4.20E-03 1.30E-02 3.45E-05

Std Dev 7.37E+01 2.02E-13 2.82E-14 7.21E-03 6.64E-03 6.26E-03 1.15E-02 3.61E-05

Best 3.94E+02 7.09E-14 5.17E-14 1.34E-04 8.68E-05 6.86E-04 5.36E-04 1.52E-06

f10 Mean 1.49E+02 1.03E-01 2.48E+00 4.29E+00 2.64E+00 1.23E+00 1.23E+01 4.50E-01

Std Dev 1.19E+01 2.46E+00 1.21E-01 4.31E+00 2.16E+00 1.16E+00 5.25E+00 5.49E-01

Best 1.28E+02 2.70E+00 2.22E+00 1.58E-03 9.05E-02 9.69E-03 2.51E+00 2.91E-02

the dimension is increased. As shown in Tables 4.6, 4.7 and 4.8, all the algorithms struggled
to obtain global optimum value especially as the problem dimension increased from 10 to
50 dimensions. However, for these functions, IWO-eSFF and HIWFO-SF showed some
potential as they significantly outperformed other algorithms in the Rosenbrock functions
across different dimensions. The multimodal Levy function, f10 is also another benchmark
function that is hard to optimise. For dimension increased to 30 and 50, all the proposed
FA and IWO as well as HIWFO-SF outperformed other algorithms in tackling this problem.
The adaptive SF mechanism helps the proposed algorithm to improve the diversification and
intensification of the algorithms during the evolutionary process.

From dimension 10 and above, FA found it hard to converge for Rosenbrock and Levy
function. For other multimodal functions, f7–f10, FA method was easily trapped in local
optima. The performance of FA also showed the same result for the other functions in higher
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Table 4.8: Results for benchmark functions in 50 dimensions

FA FA-NSF FA-eSF IWO IWO-eSSF MIWO-eSSF HIWFO HIWFO-SF

f1 Mean 1.19E+03 2.18E-11 3.25E-12 1.20E-02 7.07E-03 5.16E-02 9.68E-02 7.85E-04

Std Dev 5.06E+01 5.74E-11 8.18E-13 1.32E-03 7.34E-04 5.99E-03 2.84E-02 1.14E-03

Best 1.08E+03 2.56E-12 1.89E-12 9.83E-03 5.74E-03 4.18E-02 5.74E-02 5.00E-05

f2 Mean 2.84E+06 4.89E+01 4.89E+01 2.81E+02 8.26E+01 7.37E+01 3.38E+02 4.88E+01

Std Dev 3.86E+05 2.99E-02 3.03E-02 5.68E+02 5.25E+01 4.09E+01 2.40E+02 2.03E-01

Best 1.14E+06 4.88E+01 4.88E+01 4.61E+01 4.59E+01 5.03E+01 1.09E+02 4.84E+01

f3 Mean 5.09E+06 9.86E-01 9.87E-01 1.86E+02 6.31E+00 6.37E+00 4.32E+01 9.43E-01

Std Dev 3.33E+05 4.74E-03 4.85E-03 3.25E+02 7.76E+00 6.30E+00 3.90E+01 4.49E-02

Best 4.40E+06 9.75E-01 9.74E-01 1.28E+00 8.75E-01 2.11E+00 9.90E+00 8.47E-01

f4 Mean 2.41E+03 7.27E-11 1.47E-11 1.22E+02 5.42E+01 1.89E+01 2.14E+02 3.58E-02

Std Dev 4.00E+02 1.24E-10 6.28E-12 3.75E+01 1.31E+01 8.29E+00 4.96E+01 1.14E-02

Best 1.31E+03 6.55E-12 3.33E-12 2.40E+01 3.49E+01 7.94E+00 8.97E+01 6.83E-03

f5 Mean 4.94E+15 1.51E-05 1.04E-05 1.24E+02 2.08E+00 5.93E+00 7.83E+02 5.43E-01

Std Dev 1.71E+16 5.23E-06 1.52E-06 6.10E+01 1.44E+00 3.46E+00 2.66E+03 8.79E-02

Best 5.61E+12 9.10E-06 7.54E-06 2.76E+01 4.63E-01 1.24E+00 2.34E+01 3.68E-01

f6 Mean 2.23E+11 1.57E-10 2.15E-11 5.61E+03 8.13E+01 3.08E+01 4.48E+02 4.09E-02

Std Dev 2.00E+11 1.93E-10 1.09E-11 2.36E+03 2.60E+01 2.62E+01 8.28E+01 9.83E-03

Best 5.66E+09 1.84E-11 5.33E-12 2.12E+03 4.44E+01 6.32E+00 2.35E+02 2.06E-02

f7 Mean 6.43E+02 1.98E-09 7.33E-10 1.88E+02 7.41E+01 2.15E+01 1.50E+02 2.87E-01

Std Dev 1.29E+01 1.50E-09 2.38E-10 3.09E+01 2.11E+01 1.29E+01 3.16E+01 5.82E-01

Best 6.19E+02 4.36E-10 3.87E-10 1.40E+02 2.55E+01 3.08E+00 1.01E+02 3.33E-03

f8 Mean 2.10E+00 4.73E-09 1.33E-09 1.93E-05 7.58E-06 1.60E-05 1.23E-04 1.15E-08

Std Dev 2.54E+00 5.00E-09 1.03E-09 1.89E-05 1.11E-05 1.79E-05 9.60E-05 1.60E-08

Best 2.69E-04 1.23E-10 2.69E-11 1.34E-07 8.39E-09 2.23E-07 1.95E-06 2.26E-10

f9 Mean 1.14E+03 3.75E-13 1.34E-13 8.74E-03 5.16E-03 6.03E-03 2.99E-02 4.38E-05

Std Dev 6.38E+01 3.14E-13 3.76E-14 9.13E-03 6.37E-03 6.84E-03 1.36E-02 8.36E-05

Best 9.97E+02 6.00E-14 7.90E-14 4.91E-04 2.29E-04 1.65E-03 5.27E-03 2.04E-07

f10 Mean 3.22E+02 4.60E+00 4.36E+00 3.58E+01 1.61E+01 7.44E+00 4.37E+01 1.86E+00

Std Dev 1.59E+01 8.37E-02 1.54E-01 2.07E+01 5.06E+00 3.42E+00 1.22E+01 9.54E-01

Best 2.81E+02 4.30E+00 3.91E+00 4.66E+00 7.64E+00 4.84E-01 2.20E+01 8.03E-01

dimension problems. However, adoption of the adaptive mechanism in FA-NSF and FA-eSF,
has improved and enhanced the evolutionary search of the algorithm.

Benchmark functions f7–f10 represent multimodal problems. As noted in Tables 4.6, 4.7
and 4.8, multimodal functions with many local optima were successfully optimised by FA-
NSF, FA-eSF, IWO-eSF and HIWFO-SF algorithms. The adaptive mechanism also helped
the algorithms to significantly enhance the convergence accuracy during the iteration process.

Figures 4.1 and 4.2 show the convergence quality of the algorithms for some samples
from benchmark problems. This illustrates the convergence plot of unimodal functions, f1,
f2 and f5 as well as samples from multimodal functions, f7, f8 and f9. The convergence lines
show the evolution behaviour of the algorithms throughout the iteration process. Each value
on the graph represents the best mean fitness value of the algorithm during the optimisation
process. It implied whether the algorithm may or may not provide better performance as
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(a) f1 (b) f2

(c) f5 (d) f7

(e) f8 (f) f9

Figure 4.1: Convergence plots of 10-dimensional basic benchmark problems

the number of iterations is extended. It also shows the speed of the convergence during the
optimisation process. Hence, the solution accuracy and fast convergence can be determined
based on the obtained graph.

Figure 4.1 shows six convergence plots of all the algorithms simulated on 10-dimensional
of six selected standard benchmark functions. On the other hand, Figure 4.2 shows the same
functions used, however, on 50-dimensional problems. Each graph shows the best mean
fitness value of each algorithm based on 30 simulation runs in log-10 scale over 1000 itera-
tions. Function f1, f2 and f5 represent unimodal problems and other functions, f7, f8 and f9
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represent multimodal problems. The maximum NFE is set to 30,000.
From Figure 4.1, it can be seen that each algorithm kept converging as the iterations

increased. Hence, their optimal solutions achieve better quality as the iterations are extended.
Based on the observation, FA-eSF, FA-NSF, MIWO-eSSF and HIWFO-SF converged faster
than other algorithms in less than 100 iterations. Not only giving the best optimal value,
both FA-NSF and FA eSF methods also converged rapidly to the optimum criteria in most of
the benchmark problems. IWO-eSSF and HIWFO-SF also converged fast. As the iteration
passed 500, HIWFO struggled to converge and the results were not improved as compared to
FA and IWO variants.

Based on the observation in Figures 4.1a − 4.1d, FA-NSF, FA-eSF and HIWFO-SF
showed faster convergence as compared with other algorithms at less than 100 iterations.
These proposed algorithms still kept converging as the iterations is extended to 1000. MIWO-
eSSF also performed fast convergence for the unimodal functions. Although HIWFO per-
formed better at the final optimum value compared to IWO and FA, but HIWFO showed
slower convergence as compared to IWO. It was also slower in convergence than MIWO-
eSSF. However, as the iteration increased, it started to improve and slowly converged and
showed competitive solution quality compared to HIWFO-SF. As noted FA showed the worst
convergence as it got stuck at the local optimum point and seemed hard to improve as the
iterations increased.

Figure 4.2 shows algorithm convergence for more complex problems as the dimensions
are increased to 50. The same pattern is seen in solving this high dimension of standard
benchmark problems. Based on the observation from Figure 4.2, HIWFO-SF, FA-NSF and
FA-eSF showed faster convergence on all the functions. As the iterations increased beyond
100 iteration, they also continued to converge more for better solution quality. MIWO-eSSF
and IWO-eSF were also able to convergence fast at the early stage of iterations, however,
after more than 100 iterations, the convergence became slower. On the other hand, IWO
converged steadily and slightly gave better solution quality than HIWFO. FA also showed the
same pattern as seen as in Figure 4.1, where it failed to converge in all the functions.

The analysis of convergence shows that the proposed FA variants, FA-NSF and FA-eSF
outperformed the FA. IWO-eSSF and MIWO-eSSF algorithms also outperformed their pre-
decessor algorithm, IWO. Furthermore, HIWFO-SF algorithm showed faster convergence
and competitive solution accuracy compared to all the algorithms used in the experiment.
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(a) f1 (b) f2

(c) f5 (d) f7

(e) f8 (f) f9

Figure 4.2: Convergence plots of 50-dimensional basic benchmark problems
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Reliability Performance Test Results

In this section, the results to measure reliability of each algorithm are presented. Tables 4.9,
4.10 and 4.11 show the success rate (SR) results in 2 and 30 dimensions for FA variants,
IWO variants and hybrid algorithms, respectively. Table 4.12 summarises the SR values for
the functions in different dimensions.

Table 4.9 shows a comparison based on NFE and SR shown by FA, FA-NSF and FA-eSF.
The results show that optima of f1, f4, and f6 were easily achieved by all the FA algorithms in
2 dimensional problems with original FA showing shorter time and NFE values. However, as
the problem dimension increased to 30, the proposed FA variants improved the condition and
managed to achieved optima of f1 and f4–f9 with 100% success rate shown (Noted as 1.0 in
the table). It is also noted that FA-eSF was efficient and reliable over FA-NSF as it achieved
shorter time and lower NFE values especially dealing with problems in higher dimension.

Table 4.9: Results of success rate for FA variants

FA FA-NSF FA-eSF

f(x) Dim SR t, (sec) NFE SR t, (sec) NFE SR t, (sec) NFE

f1 2 1.0 0.27 3000 1.0 0.461 4140 1.0 0.763 6870

30 0 - - 1.0 2.998 24060 1.0 2.718 22350

f2 2 1.0 1.103 12300 0 - - 0 - -

30 0 - - 0 - - 0 - -

f3 2 1.0 0.513 5790 0.2 - - 0.1 - -

30 0 - - 0 - - 0 - -

f4 2 1.0 0.345 3690 1.0 0.515 4530 1.0 0.793 7140

30 0 - - 1.0 3.286 24990 1.0 2.952 23040

f5 2 0 - - 1.0 2.834 25560 1.0 2.607 23430

30 0 - - 1.0 3.696 29460 1.0 3.357 27510

f6 2 1.0 0.227 2460 1.0 0.542 4680 1.0 0.922 8250

30 0 - - 1.0 3.173 25350 1.0 2.864 23280

f7 2 0 - - 1.0 2.325 20040 1.0 2.311 20790

30 0 - - 1.0 3.413 27750 1.0 3.074 24990

f8 2 0 - - 1.0 1.068 8970 1.0 1.671 14670

30 0 - - 1.0 1.127 9060 1.0 1.733 13950

f9 2 0 - - 1.0 0.28 2160 1.0 0.746 6510

30 0 - - 1.0 2.591 19770 1.0 2.586 20310

f10 2 0 - - 0.1 - - 0.1 - -

30 0 - - 0 - - 0 - -

Table 4.10 shows performance comparison of IWO and the proposed IWO variants, IWO-
eSSF and MIWO-eSSF. In addition, Table 4.11 compares performances of proposed hybrid
algorithms, HIWFO and HIWFO-SF with the original FA and IWO algorithm.

In Table 4.10, it is recorded that all IWO algorithms managed to converge to the given
threshold for all the functions in 2 dimension. As seen in Table 4.11, HIWFO-SF algorithm
also managed to converge for the same case. However, for this case, IWO-eSSF recorded
faster convergence and lower NFE value compared to other IWO variants and HIWFO-SF
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algorithms. IWO algorithms managed to achieve global optima of multimodal functions f8

and f9 and failed to converge for other functions in higher dimension.

Table 4.10: Results of success rate for IWO variants

IWO IWO-eSSF MIWO-eSSF

f(x) Dim SR t, (sec) NFE SR t, (sec) NFE SR t, (sec) NFE

f1 2 1.0 0.711 20820 1.0 0.69 19410 1.0 0.714 20550

30 0 - - 0 - - 0 - -

f2 2 1.0 0.849 24750 1.0 0.797 21270 1.0 0.865 23040

30 0 - - 0 - - 0 - -

f3 2 1.0 0.814 23880 1.0 0.762 20580 1.0 0.815 22110

30 0 - - 0 - - 0 - -

f4 2 1.0 0.698 20790 1.0 0.713 19320 1.0 0.734 20100

30 0 - - 0 - - 0 - -

f5 2 1.0 0.895 27390 1.0 0.833 23370 1.0 0.919 26250

30 0 - - 0 - - 0 - -

f6 2 1.0 0.732 21390 1.0 0.729 19140 1.0 0.794 20880

30 0 - - 0 - - 0 - -

f7 2 1.0 0.879 27810 1.0 0.808 23910 1.0 0.916 27570

30 0 - - 0 - - 0 - -

f8 2 1.0 0.893 25470 1.0 0.836 22710 1.0 0.837 23940

30 1.0 1.062 25770 1.0 0.905 21630 1.0 0.775 19980

f9 2 1.0 0.524 14640 1.0 0.625 16860 1.0 0.479 12840

30 1.0 1.133 26160 1.0 0.985 22410 1.0 1.062 23430

f10 2 1.0 0.927 19200 1.0 0.791 17640 1.0 0.872 19590

30 0 - - 0 - - 0 - -

As noted in Table 4.10, HIWFO-SF managed to optimum values for f1, f4, and functions,
f6–f9 with 100% success rate. In addition, HIWFO-SF was more efficient than FA-eSF and
FA-NSF as it achieved shorter time and lower NFE values.

Table 4.12 summarises the values of SR for all the algorithms for the standard benchmark
function test. The listed values are the average SR value of each function after 4 different
dimension tests and AvgSR value shows the average SR value of all the test functions for the
algorithm.

All algorithms successfullyachieved global optima of functions f1, f4 and f6 as they
showed SR of 1.0 in lower dimension. FA-eSF, FA-NSF and HIWFO-SF showed better result
for all the functions with different dimensions as it achieved higher SR. However, HIWFO-
SF was more efficient than FA-eSF and FA-NSF as it achieved shorter time and lower NFE
values.

Statistical Significant Test

In this section, Kruskal-Wallis non-parametric test is used for comparative statistical analysis
of the algorithms. The Kruskal-Wallis test is conducted based on 95% confidence interval
and 30 simulation runs for each algorithm. The results show the mean rank, rank number
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Table 4.11: Result of success rate for the proposed hybrid algorithms

FA IWO HIWFO HIWFO-SF

f(x) Dim SR t, (sec) NFE SR t, (sec) NFE SR t, (sec) NFE SR t, (sec) NFE

f1 2 1.0 0.27 3000 1.0 0.711 20820 1.0 1.219 25440 1.0 0.301 5880

30 0 - - 0 - - 0 - - 1.0 1.237 23160

f2 2 1.0 1.103 12300 1.0 0.849 24750 1.0 1.408 28680 1.0 1.113 20040

30 0 - - 0 - - 0 - - 0 - -

f3 2 1 0.513 5790 1.0 0.814 23880 1.0 1.327 27180 1.0 0.911 16470

30 0 - - 0 - - 0 - - 0 - -

f4 2 1.0 0.345 3690 1.0 0.698 20790 1.0 1.082 25650 1.0 0.305 5850

30 0 - - 0 - - 0 - - 1.0 1.113 17070

f5 2 0 - - 1.0 0.895 27390 0 - - 1.0 1.167 23250

30 0 - - 0 - - 0 - - 0 - -

f6 2 1.0 0.227 2460 1.0 0.732 21390 1.0 1.122 25170 1.0 0.468 8850

30 0 - - 0 - - 0 - - 1.0 0.942 16530

f7 2 0 - - 1.0 0.879 27810 1.0 1.044 25290 1.0 1.028 20670

30 0 - - 0 - - 0 - - 1.0 1.334 25230

f8 2 0 - - 1.0 0.893 25470 1.0 0.696 17850 1.0 1.097 21210

30 0 - - 1.0 1.062 25770 1.0 0.962 21510 1.0 1.097 19410

f9 2 0 - - 1.0 0.524 14640 0 - - 1.0 0.138 2670

30 0 - - 1.0 1.133 26160 0 - - 1.0 1.252 23670

f10 2 0 - - 1.0 0.927 19200 1.0 1.082 20400 1.0 0.164 2910

30 0 - - 0 - - 0 - - 0 - -

Table 4.12: Overall result of the success rate

f(x) FA FA-NSF FA-eSF IWO IWO-eSSF MIWO-eSSF HIWFO HIWFO-SF

f1 30% 100% 100% 30% 30% 30% 50% 100%

f2 30% 0 0 30% 30% 30% 30% 30%

f3 30% 0 0 30% 30% 30% 30% 30%

f4 30% 100% 100% 30% 30% 30% 30% 80%

f5 0 100% 100% 30% 30% 30% 0 30%

f6 30% 100% 100% 30% 30% 30% 30% 100%

f7 0 100% 100% 30% 30% 30% 30% 80%

f8 0 100% 100% 100% 100% 100% 80% 100%

f9 0 100% 100% 0.8 100% 80% 0 100%

f10 0 0 0 50% 50% 50% 30% 30%

AvgSR 13% 71% 71% 40% 43% 40% 28% 65%
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(bracket) and two-tailed p-value. The significant difference is considered if the probability
value is less than 0.05(p− value < 0.05).

Table 4.13 shows the results of the Kruskal-Wallis non-parametric test of all the algo-
rithms for 10 standard benchmark functions in dimensions 2, 10, 30 and 50, respectively.
From Table 4.13, it can be seen that all results show the two-tailed p-value score less than
0.05, which implies that there are significant median difference among all the outputs given.
The test ranked all the results in ascending order which is from minimum to maximum value.
Hence, it can be easily concluded that the lowest mean rank shows significantly better result
than others. Based on the observation from Table 4.13, HIWFO-SF has shown the smallest
value of average mean rank (58.24) and rank (2.25). On the other hand, FA-eSF had slightly
lower value of the average mean rank (59.08) and rank (2.40). It can be summarized that
both FA-eSF and HIWFO-SF algorithms statistically dominated the performance as com-
pared with other algorithms. In addition, other proposed algorithms also had lower mean
rank than FA and IWO algorithm.
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Comparative results with other metaheuristics algorithms

The algorithms are also compared with six state-of-the-art metaheuristic algorithms to verify
the reliability and validity of the algorithm. Yan et al. (2012) conducted a comparative study
on performance of adaptive firefly algorithm (AFA), FA, PSO and DE on 10 benchmark func-
tions with three different dimensions. The results obtained from 5 functions are compared
with the proposed algorithms as shown in Table 4.14. Moreover, Yilmaz and Kucukseille
(2015) compared an enhanced bat algorithm (EBA) with BA and GA. The results from 7
functions on 30 and 50 dimensions are also tabulated to compare with the best mean values
obtained in this study. The best solution in each case has been marked in bold font.

From Table 4.14, it can be seen that FA-NSF and FA-eSF achieved better results in both
30 and 50 dimensions for all the benchmark functions in terms of mean search precision.
MIWO-eSSF and HIWFO-SF algorithms also showed better performance compared to the
mentioned state-of-the-art algorithms.
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CEC 2014 Test Functions

In this section, the CEC 2014 test functions are used to analysis the performance of the pro-
posed algorithms. As noted in the previous section, the test functions are run with dimension
2, 10, 30 and 50. The numerical results comparing the mean error and standard deviation
are presented in Tables 4.15 and 4.16, respectively. The mean error is the error between the
best average fitness value, fi with the optimal value of each function, f ∗i where fi represents
the CEC 2014 test functions as shown in Table 4.3. Unimodal problems are represented by
functions f11 − f13 whereas functions f14 − f26 represent multimodal problems.

Table 4.15 presents the comparative results in 2 and 10 dimensions. On the other hand,
Table 4.16 shows the results in 30 and 50 dimensions. The best result obtained is highlighted
in bold font. It is noted in Table 4.15, that HIWFO-SF has outperformed other algorithms
for CEC 2014 unimodal problems. The mean error and standard deviation of the algorithm
was the lowest among them. HIWFO-SF also performed better in 2 dimensional problem
for functions, f14, f18, f22, and f23. In comparison, MIWO-eSSF showed the best value for
functions, f15–f21 especially in 10 dimensional problems. IWO-eSSF demonstrated better
performance in dimension 2 for functions, f24 and f25 as well as in dimension 10 for f25.
IWO algorithm also showed competitive results compared to the original FA algorithm.

In Table 4.16, results of higher dimensions 30 and 50 are shown. It is noted that, IWO-
eSSF performed better in functions f11 and f25 for both dimensions and f20, f21, f23, and
f24 in dimension 30. Meanwhile, MIWO-eSSF scored better in functions f18, f19 and f26

for both dimensions. MIWO-eSSF also performed better in dimension 30 for function f16,
and in dimension 50 for functions, f13, f20, f21 and f24. It is noted that HIWFO-SF achieved
competitive results in functions, f12, f15 and f17 for dimensions 30 and 50 compared to the
other algorithms. The results also show that the proposed variants of FA outperformed their
predecessor, FA algorithm.

Overall, the results show that IWO-eSSF, MIWO-eSSF and HIWFO-SF achieved a slightly
better solution quality than other algorithms. IWO-eSSF achieved more precise optimum
value and can be concluded that the algorithm outperformed other algorithms in the CEC
2014 function test.

Figure 4.3 shows the convergence plot of all the algorithms on 2-dimensional CEC 2014
test functions. Functions f12 and f13 represent unimodal problems and f15, f18, f19 and f24

are selected plots to study multimodal problems. In addition, by using the same functions,
Figure 4.4 shows those function plots in 30-dimensional problems. Each graph shows the
best mean fitness value of each algorithm based on 30 simulation runs in log-10 scale. The
maximum iteration and NFE are set to 1,000 and 30,000, respectively.

As noted in Figure 4.3, HIWFO, HIWFO-SF, IWO-eSSF and MIWO-eSSF achieved
faster convergence at less than 100 iterations. After 100 iterations, HIWFO-SF, IWO-eSSF
and MIWO-eSSF improved the solution quality and kept converging. However, HIWFO was
slower and appears to have got stuck at local optimum for f15, f18 and f19. The performance
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Table 4.15: Results for CEC 2014 test problems in dimensions 2 and 10

fx Dim Stats FA FA-NSF FA-eSF IWO IWO-eSSF MIWO-eSSF HIWFO HIWFO-SF
f11 2 Mean 3.08E+06 2.89E+04 9.59E+04 5.33E+02 3.58E+02 7.75E+01 1.23E+03 5.28E+00

Std Dev 5.46E+06 5.65E+04 2.19E+05 1.53E+03 6.56E+02 3.11E+02 2.05E+03 1.96E+01
10 Mean 3.95E+08 3.54E+08 3.15E+08 3.32E+05 1.84E+05 1.40E+05 2.10E+05 2.71E+05

Std Dev 3.35E+08 3.40E+08 2.66E+08 2.93E+05 1.65E+05 1.20E+05 2.20E+05 2.25E+05
f12 2 Mean 4.35E+06 1.03E+05 2.22E+05 8.06E+01 2.23E+01 7.49E+00 2.67E+01 3.16E-01

Std Dev 7.88E+06 2.21E+05 8.35E+05 1.91E+02 6.51E+01 3.66E+01 7.36E+01 9.75E-01
10 Mean 9.66E+09 1.06E+10 1.19E+10 1.67E+04 1.18E+04 7.45E+04 1.15E+04 3.24E+03

Std Dev 3.53E+09 3.49E+09 3.66E+09 7.11E+03 3.30E+03 1.83E+04 3.60E+03 3.26E+03
f13 2 Mean 1.71E+06 6.23E+05 5.13E+04 2.61E+02 9.96E+01 1.97E+01 1.45E+02 4.26E+00

Std Dev 3.71E+06 3.32E+06 1.38E+05 5.17E+02 2.25E+02 7.03E+01 3.42E+02 1.53E+01
10 Mean 6.80E+05 6.50E+05 8.29E+05 1.19E+04 7.66E+03 5.26E+03 1.18E+04 3.43E+03

Std Dev 2.35E+06 1.21E+06 1.43E+06 6.94E+03 5.67E+03 2.72E+03 8.99E+03 3.60E+03
f14 2 Mean 2.32E+00 1.21E+00 4.79E-01 1.96E-08 7.56E-09 7.79E-08 3.84E-08 9.92E-10

Std Dev 6.84E+00 3.95E+00 1.19E+00 1.83E-08 1.08E-08 7.51E-08 4.59E-08 3.93E-09
10 Mean 2.80E+03 2.64E+03 3.17E+03 2.30E+00 2.27E+01 1.97E+01 3.05E+01 2.06E+01

Std Dev 1.88E+03 1.40E+03 2.05E+03 1.17E+00 1.66E+01 1.69E+01 1.40E+01 1.70E+01
f15 2 Mean 1.59E+01 1.37E+01 1.21E+01 9.33E+00 8.67E+00 3.34E+00 9.34E+00 4.00E+00

Std Dev 4.43E+00 5.06E+00 5.11E+00 1.01E+01 1.01E+01 7.57E+00 1.01E+01 8.13E+00
10 Mean 2.08E+01 2.07E+01 2.07E+01 2.01E+01 2.01E+01 1.97E+01 2.01E+01 2.00E+01

Std Dev 1.46E-01 1.62E-01 1.49E-01 2.34E-02 1.52E-02 3.53E+00 2.58E-02 2.08E-03
f16 2 Mean 1.27E+00 9.20E-01 9.18E-01 4.77E-03 4.63E-03 8.23E-03 3.68E-01 1.50E-01

Std Dev 4.94E-01 4.34E-01 4.05E-01 1.92E-03 1.78E-03 3.42E-03 6.69E-01 4.58E-01
10 Mean 1.29E+01 1.29E+01 1.26E+01 8.85E-01 1.10E+00 4.59E-01 6.00E+00 2.06E+00

Std Dev 1.57E+00 1.26E+00 1.42E+00 1.17E+00 1.09E+00 2.45E-01 2.18E+00 1.76E+00
f17 2 Mean 2.33E+00 2.66E+00 1.69E+00 3.20E-04 1.93E-03 8.70E-04 8.12E-04 8.30E-03

Std Dev 1.93E+00 3.81E+00 1.53E+00 1.34E-03 3.52E-03 2.22E-03 2.26E-03 2.65E-02
10 Mean 1.96E+02 2.40E+02 2.05E+02 2.17E+01 2.51E+00 4.35E-01 6.11E+01 8.36E+01

Std Dev 7.53E+01 6.56E+01 7.37E+01 5.64E+01 1.30E+01 7.66E-02 7.25E+01 4.75E+01
f18 2 Mean 5.24E+00 3.10E+00 3.27E+00 2.85E-06 1.71E-06 8.48E-06 2.42E+00 3.90E-11

Std Dev 3.11E+00 1.85E+00 2.24E+00 4.66E-06 1.63E-06 8.13E-06 3.80E+00 5.88E-11
10 Mean 1.01E+02 9.71E+01 1.05E+02 1.06E+02 9.99E+00 8.66E+00 4.87E+01 2.14E+01

Std Dev 1.39E+01 1.59E+01 1.63E+01 3.18E+01 4.74E+00 3.08E+00 1.73E+01 9.55E+00
f19 2 Mean 6.00E+00 2.99E+00 2.94E+00 3.32E-02 1.51E-06 1.15E-05 2.29E+00 7.08E-11

Std Dev 3.88E+00 2.31E+00 2.41E+00 1.82E-01 1.48E-06 1.46E-05 2.01E+00 1.40E-10
10 Mean 1.13E+02 1.11E+02 1.11E+02 1.65E+01 1.13E+01 9.74E+00 4.73E+01 1.77E+01

Std Dev 1.59E+01 1.08E+01 9.99E+00 7.67E+00 4.93E+00 3.50E+00 1.38E+01 8.75E+00
f20 2 Mean 1.67E+02 6.70E+01 7.74E+01 3.44E+01 4.23E+01 1.15E-01 1.08E+02 8.42E+01

Std Dev 1.03E+02 5.32E+01 5.53E+01 5.24E+01 5.12E+01 1.53E-01 1.04E+02 6.73E+01
10 Mean 2.45E+03 2.14E+03 2.16E+03 4.49E+02 2.88E+02 2.41E+02 1.14E+03 4.85E+02

Std Dev 2.92E+02 1.95E+02 2.31E+02 2.10E+02 1.42E+02 1.98E+02 3.41E+02 1.96E+02
f21 2 Mean 1.51E+02 2.92E+01 4.95E+01 2.30E+03 3.18E+01 1.19E+01 9.80E+01 6.67E+01

Std Dev 9.23E+01 3.30E+01 5.39E+01 6.01E+02 5.34E+01 3.61E+01 1.07E+02 7.39E+01
10 Mean 2.53E+03 2.34E+03 2.41E+03 4.81E+03 3.28E+02 3.13E+02 1.14E+03 5.38E+02

Std Dev 2.88E+02 3.44E+02 3.36E+02 7.96E+02 2.17E+02 1.99E+02 3.90E+02 2.67E+02
f22 2 Mean 2.88E+00 9.89E-01 1.26E+00 2.19E-02 1.70E-02 4.65E-02 2.78E-02 1.21E-04

Std Dev 1.92E+00 6.93E-01 6.64E-01 9.92E-03 8.64E-03 2.56E-02 1.49E-02 1.20E-04
10 Mean 4.30E+00 2.74E+00 2.29E+00 7.16E-02 6.34E-02 1.50E-01 1.33E-01 1.25E-01

Std Dev 1.08E+00 9.07E-01 6.84E-01 3.19E-02 3.27E-02 5.76E-02 9.71E-02 8.25E-02
f23 2 Mean 8.90E-01 5.44E-01 4.91E-01 4.24E-02 3.92E-02 4.74E-02 5.58E-02 1.83E-02

Std Dev 4.18E-01 1.23E-01 1.30E-01 1.41E-02 1.15E-02 1.43E-02 1.87E-02 1.42E-02
10 Mean 4.41E+00 4.96E+00 4.72E+00 1.31E-01 1.14E-01 1.45E-01 3.49E+00 3.11E-01

Std Dev 9.20E-01 1.21E+00 1.18E+00 5.33E-02 3.43E-02 3.35E-02 3.33E+00 7.83E-01
f24 2 Mean 7.25E-01 4.97E-01 6.15E-01 3.70E-03 2.99E-03 4.94E-03 5.56E-03 3.24E-03

Std Dev 3.97E-01 2.67E-01 6.97E-01 1.88E-03 1.61E-03 2.16E-03 8.21E-03 4.48E-03
10 Mean 4.07E+01 4.86E+01 5.17E+01 1.35E-01 1.42E-01 1.80E-01 3.50E-01 1.59E-01

Std Dev 1.14E+01 1.36E+01 1.35E+01 4.58E-02 4.87E-02 7.04E-02 1.16E-01 5.62E-02
f25 2 Mean 1.75E+00 5.82E-01 3.28E-01 1.00E-11 1.63E-12 2.89E-10 4.61E-03 6.58E-04

Std Dev 2.75E+00 4.70E-01 2.73E-01 1.34E-11 3.16E-12 5.54E-10 8.49E-03 3.60E-03
10 Mean 9.00E+04 5.57E+04 5.70E+04 9.16E-01 8.77E-01 1.15E+00 1.38E+00 1.02E+00

Std Dev 1.23E+05 3.49E+04 3.68E+04 2.71E-01 2.74E-01 3.08E-01 6.68E-01 4.23E-01
f26 2 Mean 5.04E-01 2.87E-01 2.48E-01 3.25E-03 4.54E-03 6.51E-03 3.25E-03 7.77E-03

Std Dev 2.35E-01 2.24E-01 2.05E-01 7.36E-03 8.36E-03 9.29E-03 7.36E-03 9.68E-03
10 Mean 4.43E+00 4.25E+00 4.21E+00 3.19E+00 2.90E+00 2.36E+00 3.64E+00 3.14E+00

Std Dev 1.63E-01 2.20E-01 1.93E-01 4.55E-01 5.73E-01 3.76E-01 3.42E-01 4.00E-01
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Table 4.16: Results for CEC 2014 test problems in dimensions 30 and 50

fx Dim Stats FA FA-NSF FA-eSF IWO IWO-eSSF MIWO-eSSF HIWFO HIWFO-SF
f11 30 Mean 3.59E+09 2.53E+09 2.62E+09 8.05E+06 6.68E+06 6.86E+06 7.44E+06 1.01E+07

Std Dev 1.20E+09 4.35E+08 2.22E+08 4.62E+06 3.72E+06 4.43E+06 3.09E+06 5.93E+06
50 Mean 1.12E+10 9.01E+09 9.45E+09 1.93E+07 1.06E+07 1.25E+07 1.23E+07 1.76E+07

Std Dev 2.98E+09 2.64E+09 2.10E+09 6.30E+06 4.01E+06 4.99E+06 5.40E+06 7.49E+06
f12 30 Mean 1.13E+11 9.57E+10 9.68E+10 3.89E+05 2.98E+05 2.18E+06 2.83E+05 9.20E+04

Std Dev 2.19E+10 5.72E+09 6.09E+09 5.11E+04 4.05E+04 2.64E+05 5.83E+04 2.34E+04
50 Mean 2.68E+11 1.91E+11 1.92E+11 1.34E+06 9.69E+05 7.27E+06 8.97E+05 6.16E+05

Std Dev 4.38E+10 9.32E+09 5.75E+09 1.72E+05 1.21E+05 8.46E+05 1.29E+05 1.36E+05
f13 30 Mean 2.30E+07 6.21E+06 6.08E+06 9.11E+04 6.07E+04 5.14E+04 8.93E+04 4.78E+04

Std Dev 4.48E+07 1.06E+07 1.13E+07 1.96E+04 1.89E+04 1.34E+04 3.58E+04 1.15E+04
50 Mean 1.52E+07 4.08E+05 5.85E+05 1.55E+05 1.10E+05 9.14E+04 1.51E+05 9.73E+04

Std Dev 2.63E+07 2.43E+05 1.07E+06 3.48E+04 2.18E+04 1.82E+04 4.35E+04 2.26E+04
f14 30 Mean 3.45E+04 2.27E+04 2.30E+04 3.84E+01 1.07E+02 1.11E+02 1.05E+02 1.19E+02

Std Dev 1.08E+04 2.21E+03 2.45E+03 2.47E+01 3.53E+01 3.80E+01 4.23E+01 2.94E+01
50 Mean 1.13E+05 6.69E+04 6.67E+04 6.27E+01 1.22E+02 1.19E+02 1.56E+02 1.37E+02

Std Dev 3.10E+04 4.55E+03 6.01E+03 3.14E+01 3.12E+01 2.63E+01 4.87E+01 5.42E+01
f15 30 Mean 2.12E+01 2.12E+01 2.12E+01 2.05E+01 2.04E+01 2.10E+01 2.04E+01 2.01E+01

Std Dev 8.11E-02 7.63E-02 8.79E-02 6.04E-02 4.27E-02 5.22E-02 5.53E-02 3.65E-02
50 Mean 2.14E+01 2.13E+01 2.13E+01 2.08E+01 2.07E+01 2.12E+01 2.07E+01 2.05E+01

Std Dev 5.10E-02 5.83E-02 6.13E-02 4.46E-02 4.49E-02 3.59E-02 5.77E-02 7.79E-02
f16 30 Mean 4.89E+01 4.60E+01 4.67E+01 7.22E+00 8.61E+00 7.05E+00 2.64E+01 1.22E+01

Std Dev 2.26E+00 2.75E+00 2.32E+00 2.28E+00 2.72E+00 2.06E+00 3.95E+00 3.39E+00
50 Mean 8.48E+01 8.22E+01 8.14E+01 2.10E+01 2.48E+01 2.44E+01 5.06E+01 3.28E+01

Std Dev 2.81E+00 2.67E+00 2.72E+00 3.36E+00 4.07E+00 3.81E+00 5.11E+00 3.92E+00
f17 30 Mean 1.05E+03 9.87E+02 9.78E+02 2.10E+02 7.19E+01 9.78E-01 6.89E+02 2.43E-01

Std Dev 1.79E+02 9.61E+01 7.93E+01 3.54E+02 2.18E+02 2.15E-02 3.69E+01 5.27E-02
50 Mean 2.51E+03 1.79E+03 1.81E+03 5.80E+01 7.48E-01 1.07E+00 1.20E+03 6.98E-01

Std Dev 4.49E+02 7.36E+01 4.35E+01 3.13E+02 5.18E-02 7.50E-03 6.77E+02 7.41E-02
f18 30 Mean 4.63E+02 4.30E+02 4.33E+02 1.03E+02 7.47E+01 5.73E+01 1.87E+02 9.27E+01

Std Dev 4.29E+01 4.32E+01 4.22E+01 2.82E+01 2.34E+01 1.39E+01 3.83E+01 2.87E+01
50 Mean 9.24E+02 7.96E+02 7.99E+02 2.56E+02 1.69E+02 1.40E+02 3.45E+02 2.12E+02

Std Dev 6.46E+01 5.42E+01 5.87E+01 4.83E+01 3.70E+01 2.39E+01 4.67E+01 4.57E+01
f19 30 Mean 5.32E+02 4.53E+02 4.54E+02 1.02E+02 7.83E+01 6.23E+01 2.52E+02 8.98E+01

Std Dev 5.53E+01 1.93E+01 2.33E+01 3.02E+01 2.48E+01 1.48E+01 5.40E+01 2.82E+01
50 Mean 1.16E+03 9.16E+02 9.17E+02 2.49E+02 1.63E+02 1.53E+02 4.93E+02 2.01E+02

Std Dev 1.09E+02 5.94E+01 5.26E+01 5.39E+01 2.90E+01 2.73E+01 8.04E+01 4.38E+01
f20 30 Mean 9.46E+03 8.63E+03 8.64E+03 2.40E+03 2.17E+03 2.28E+03 3.85E+03 2.85E+03

Std Dev 4.47E+02 5.31E+02 5.36E+02 6.01E+02 4.30E+02 4.80E+02 6.11E+02 7.18E+02
50 Mean 1.66E+04 1.56E+04 1.57E+04 4.91E+03 4.80E+03 4.66E+03 6.93E+03 5.37E+03

Std Dev 7.67E+02 6.98E+02 7.08E+02 7.96E+02 6.97E+02 8.74E+02 1.08E+03 7.25E+02
f21 30 Mean 9.63E+03 8.74E+03 8.78E+03 2.54E+03 2.31E+03 2.58E+03 3.83E+03 3.06E+03

Std Dev 4.49E+02 5.01E+02 4.96E+02 4.17E+02 5.85E+02 5.96E+02 6.94E+02 6.20E+02
50 Mean 1.69E+04 1.59E+04 1.57E+04 5.21E+03 5.24E+03 5.02E+03 7.17E+03 5.71E+03

Std Dev 6.86E+02 5.37E+02 7.86E+02 7.50E+02 7.58E+02 6.82E+02 6.69E+02 7.99E+02
f22 30 Mean 5.80E+00 4.93E+00 4.79E+00 1.49E-01 1.72E-01 3.69E-01 3.52E-01 3.22E-01

Std Dev 1.17E+00 9.49E-01 1.11E+00 5.78E-02 5.74E-02 1.02E-01 1.61E-01 1.71E-01
50 Mean 7.12E+00 5.36E+00 5.34E+00 3.25E-01 3.45E-01 6.31E-01 5.83E-01 5.51E-01

Std Dev 9.02E-01 8.35E-01 7.72E-01 9.17E-02 1.20E-01 1.25E-01 2.45E-01 1.70E-01
f23 30 Mean 9.44E+00 1.03E+01 9.88E+00 4.43E-01 4.01E-01 4.58E-01 3.82E+00 3.86E-01

Std Dev 1.22E+00 4.63E-01 8.29E-01 1.03E-01 9.34E-02 1.22E-01 3.71E+00 1.07E-01
50 Mean 1.18E+01 9.46E+00 9.48E+00 6.32E-01 6.14E-01 6.62E-01 5.11E+00 8.14E-01

Std Dev 1.41E+00 1.74E-01 1.93E-01 1.03E-01 8.65E-02 9.18E-02 2.85E+00 1.43E+00
f24 30 Mean 3.87E+02 3.75E+02 3.76E+02 4.43E-01 2.72E-01 3.51E-01 1.86E+00 3.05E-01

Std Dev 6.76E+01 3.64E+01 2.75E+01 2.57E-01 5.38E-02 1.88E-01 7.42E+00 1.29E-01
50 Mean 6.90E+02 4.56E+02 4.57E+02 6.03E-01 5.66E-01 4.59E-01 1.56E+01 5.07E-01

Std Dev 6.99E+01 1.74E+01 2.01E+01 3.74E-01 3.51E-01 2.86E-01 4.51E+01 3.37E-01
f25 30 Mean 1.38E+07 8.77E+05 8.97E+05 6.51E+00 6.22E+00 1.12E+01 3.96E+01 7.33E+00

Std Dev 1.10E+07 1.48E+05 1.29E+05 1.14E+00 1.55E+00 2.15E+00 8.00E+01 1.89E+00
50 Mean 1.03E+08 1.93E+07 2.01E+07 1.87E+01 1.86E+01 3.02E+01 8.37E+04 2.25E+01

Std Dev 5.03E+07 5.87E+06 5.69E+06 3.32E+00 3.46E+00 3.15E+00 3.27E+05 4.04E+00
f26 30 Mean 1.42E+01 1.38E+01 1.39E+01 1.23E+01 1.19E+01 1.17E+01 1.31E+01 1.22E+01

Std Dev 2.12E-01 2.72E-01 2.99E-01 6.24E-01 6.92E-01 5.45E-01 6.04E-01 6.60E-01
50 Mean 2.41E+01 2.35E+01 2.36E+01 2.15E+01 2.10E+01 2.08E+01 2.27E+01 2.20E+01

Std Dev 2.37E-01 2.77E-01 2.30E-01 5.81E-01 6.73E-01 7.41E-01 4.07E-01 7.33E-01
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of HIWFO was competitive for functions, f12, f13 and f24. All the FA algorithms achieved
decent results but seemed hard for it to converge. But, the proposed FA variants were able to
get better values than their predecessor.

(a) f12 (b) f13

(c) f15 (d) f18

(e) f19 (f) f24

Figure 4.3: Convergence plots of 2-dimensional CEC2014 benchmark problems

Based on observation in Figure 4.4, for less than 100 iterations, HIWFO, HIWFO-SF,
IWO-eSSF and MIWO-eSSF showed faster convergence as the problem dimension increased
to 30. After 100 iterations, the pattern continued as HIWFO-SF, IWO-eSSF and MIWO-eSSF
converged even more to achieve better solution quality. After 200 iterations, for functions,
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(a) f12 (b) f13

(c) f15 (d) f18

(e) f19 (f) f24

Figure 4.4: Convergence plots of 30-dimensional CEC2014 benchmark problems
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f18 and f19, HIWFO was unable to converge more and remained stuck at a local optimum.
Furthermore, in function, f24, HIWFO jumped toward higher local optimum. FA-NSF and
FA-eSF showed better convergence quality as compared to FA, but, they also remained at
local optimum and seemed hard for them to convergence.

It can be concluded that HIWFO-SF, IWO-eSSF and MIWO-eSSF outperformed other
algorithms in solving CEC 2014 test functions. Not only achieving better accuracy, these
algorithm have faster convergence in low and high dimensional optimisation problems.

Statistical Significant Test Result

In this section, Kruskal-Wallis non-parametric test is used for comparison study of CEC 2014
test results. The Kruskal-Wallis test is conducted based on 95% confidence interval and 30
simulation runs for each algorithm. The output results show the mean rank, rank number
(bracket) and two-tailed p-value. The significant difference is considered if the probability
value is less than 0.05(p− value < 0.05). Tables 4.17 and 4.18 show the results of Kruskal-
Wallis non-parametric test of the algorithms for the 16 CEC 2014 test functions.

As noted, for all the function with 4 different dimensions, the two-tailed p − value was
less than 0.05, which shows there were significant differences among the output results of all
the algorithms. The test ranked the results in ascending order from minimum to maximum
value. Hence, the lowest mean rank shows the significantly better result than others. Based
on the observations from Tables 4.17 and 4.18, HIWFO-SF has shown the smallest mean rank
and rank for functions f11, f12, f15, f17 and f23 and MIWFO-SF dominated the performance
for the function f11, f18, f19–f21. IWO-SF achieved better mean rank and rank for functions
f22 and f26. The overall performance can be evaluated by taking the average mean rank for
all the test problems. As shown in the last column in Table ??, HWIFO-SF scored at average
61.35, which is slightly better than IWO-eSSF (60.74) and MIWO-eSSF (78.62). Overall, it
can be concluded that HIWFO-SF, IWO-eSSF and MIWO-eSSF performed better than other
algorithms. Also, the proposed FA variants outperformed the original FA. In short, HIWFO-
SF was the best performing algorithm compared with other algorithms for the unconstrained
optimisation problems.
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4.3 Constrained Optimisation Problems

Generally, a constrained optimisation problem is best described as follows:

Minimizef(−→x ),−→x = [x1, x2, · · · , xn] (4.4)

subject to
gi(x) ≤ 0, for i = 1, · · · , q

hj(x) = 0, for j = 1, · · · ,m

However, for equality constraints handling, the equations are transformed into inequalities of
the form

|hj(x)| − ε = 0, for j = 1, · · · ,m (4.5)

where a solution of −→x is regarded as feasible solution if and only if gi(x) ≤ 0 and |hj(x)| −
ε = 0 with ε is a very small number. The presence of constraints in any optimisation problem
may have significant effect on the performance of the optimisation algorithm. In this work,
penalty function method is used to solve the constrained optimisation problem. This method
is easy to implement and is often chosen due to its simplicity (He and Wang, 2007). In this
method, the problem is solved much simpler by transforming the constrained optimization
problem to unconstrained problem.

4.3.1 Constraint-handling Mechanism

Generally, constraint-handling techniques can be divided into five major groups, namely;
penalty functions, special representations and operations, repair algorithms, separation of ob-
jectives and constraints and hybrid methods (Coello, 2002). Due to its simplicity, the penalty
function method has been considered as the most popular technique to handle problem-
specific constraints (Gandomi et al., 2011; Kaveh and Talatahari, 2010). In this work, penalty
function method is used as a constraint handling mechanism to solve the constrained opti-
misation problem. The penalty function method is a popular method used as compared to
most traditional algorithms that are usually based on the concept of gradient. This method
is easy to implement and is often chosen due to its simplicity (He and Wang, 2007). In the
transformation to unconstrained problem, a certain value is added to the objective function
based on the constraint violations. Actually, the constraint boundaries act as barriers during
the process of optimisation search (Rao and Rao, 2009).

The most adopted approach for handling constraints is the penalty function approach. Ac-
cording to Arora (2004), this method is simple, has the ability to handle nonlinear constraints
and also can be used with unconstrained methods. However, the method requires several pre-
liminary trials and is very sensitive to the choice of the associated penalty parameter (Arora,
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2004).
In general, the method can be characterized by internal and external types of penalty

function. For the external penalty method, the search process starts with an infeasible indi-
vidual. According to Jorhedi (2015), due to the penalty effects, these individuals are attracted
to feasible regions in the search space. Jorhedi (2015) states that for internal type, a penalty
function is defined whose values at points away from constraint boundaries are small and
tend to infinity when the constraint boundaries are approached. Thus, during the process, if
it starts with a feasible solution, the generated individuals are later all within the feasible so-
lution region. In this work, the exterior penalty approach is used (Fogel, 1995). The general
form of a penalized objective function is given as:

ϕ(x) = f(x) +
[
Σi=m
i=1 KiHi + Σi=m

i=1 CiGi

]
(4.6)

where ϕ(x) is an expanded objective function. Hi = |hi(x)|γ and Gj = max{0, gj(x)}β;
γ and β are commonly set as 1 or 2. Ki and Cj are called penalty factors. The right-hand
bracket is referred to as penalty function.

The value of penalty factor in the setting is a concern. If it has a low value, the search
effort will be heavier on the infeasible region and the feasible region is not explored accord-
ingly. However, if the penalty factor has a high value, the infeasible region is not explored
efficiently. Thus, a lot of valuable information may not get extracted.
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4.3.2 Experiments on Constrained Optimisation Problems

In order to assess the performance of the proposed algorithms on constrained optimisation
problems, two categories of problems are considered in this study; a set of well-known bench-
mark functions of constrained problems and practical engineering problems. The tests will
evaluate the efficiency, robustness and superiority on searching the global best value of the
constrained optimisation problems.

Constrained Benchmark Functions

In this section, a brief summary of the selected benchmark problems is given. The first cat-
egory includes ten well-known benchmark functions of constrained optimisation problems;
Problem 1, fg01 is a well-known constrained benchmark problem introduced by Bracken
and McCormick (1968). The objective function optimum solution of this constrained mini-
mization problem is noted at f(x∗) = 1.393454 located at x∗ = (0.82288, 0.91144). It has
previously been tested with well-known metaheuristic algorithms such as GA (Homaifar et
al.,1994), evolutionary programming (EP) (D. B. Fogel, 1995), HS (Lee and Geem, 2005)
and the mine blast algorithm (MBA) (Sadollah et al., 2013).

This research uses a selection of constrained benchmark functions of CEC 2006 test suite
(Liang et al., 2006). In this study, solutions to constrained problems are investigates with their
respective objective functions and various types and nature with various number of design
variables. These main characteristics include linear inequality (LI), non-linear inequality
(NL), linear equality (LE) and nonlinear equality (NE). It also includes the number of design
variables (d, dimensions) and the type of the problem. The objectives and constraints of the
selected functions have different characteristics such as linear, nonlinear, quadratic, cubic and
polynomial as shown in Table 4.19.

Table 4.19: The characteristics of the constrained benchmark problems

f∗(x) Dim Type LI NI LE NE

fg01 2 Quadratic 0 1 0 1

fg02 5 Quadratic 0 6 0 0

fg03 2 Cubic 0 2 0 0

fg04 10 Quadratic 3 5 0 0

fg05 2 Nonlinear 0 2 0 0

fg06 7 Polynomial 0 4 0 0

fg07 2 Quadratic 0 0 0 1

fg08 3 Quadratic 0 0 1 1

fg09 5 Nonlinear 4 34 0 0

fg10 9 Quadratic 0 13 0 0

Note that d (dimensions) – the number of design variables (d, dimensions), LI – linear
inequality, NL – non-linear inequality, LE – linear equality (LE) and NE – nonlinear equality.
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Further numerical simulations were carried out based on carefully selected benchmark
functions that are widely used in the literature (Liang et al., 2006). Nine benchmark func-
tions were chosen from the CEC 2006 test suite (Liang et al., 2006) and used for this study.
The mathematical formula and the respective constraints of each benchmark functions are
provided in Appendix B.

Practical Engineering Constrained Problems

The performance of the proposed algorithms were also accessed with complex real world
engineering problems, including five well-studied engineering design optimisation problems
adopted from the literature. The problems considered are a welded beam design problem
(Rao and Rao, 2009), a tension / compression string design problem (Belegundu, 1983), a
pressure vessel design problem (Kannan and Kramer, 1994), a speed reducer design problem
(Sandgren, 1990) and gear train design problem. The main characteristics of the problems
are shown in Table 4.20.

Table 4.20: The characteristics of the practical constrained problems

f∗(x) Dim Type LI NI LE NE

fe01 Welded beam design 4 Nonlinear 2 5 0 0

fe02 Pressure vessel design 4 Nonlinear 3 1 0 0

fe03 Tension / Compression spring 3 Nonlinear 1 3 0 0

fe04 Speed reducer design 7 Nonlinear 4 7 0 0

fe05 Gear train design 4 Nonlinear 0 0 0 0

Welded beam design problem Figure 4.5a shows the welded beam structure that is of-
ten used as benchmark problem for testing optimisation methods with constrained problems
where it was first described by Coello (2000). The problem is designed to find the minimum
cost f(x) of fabrication of the welded beam subject to constraints on bending stress in the
beam (θ), end deflection of the beam (δ), shear stress (τ ), buckling load on the bar (Pb) and
side constraint. As stated by Lui et al. (2010) and Zhou et al. (2013), four design variables,
namely thickness of the weld (h(x1)), the length of the welded joint (l(x2)), the width of the
beam (t(x3)) and the thickness of the beam (b(x4)) are to be considered.

Tension / compression spring design problem The tension / compression spring design
as shown in Figure 4.5b is also one of the practical engineering benchmark problems. The
problem is well described by Belegundu and Arora (1985) and Arora (2004), where the design
is to minimize the weight of a tension / compression spring subject to constraints on minimum
deflection, surge frequency and shear stress. The design variables of this problem are the
mean coil diameter, D(x1), the wire diameter, d(x2) and the number of active coils, N(x3).
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Pressure vessel design problem The pressure vessel problem (Figure 4.5c) is a practical
problem that is often used as benchmark problem for testing optimisation methods. The
objective of pressure vessel design problem is to find the minimum total cost of fabrica-
tion, including costs from a combination of welding, material and forming. Thickness of the
cylindrical skin, Ts(x1), thickness of the spherical head, Th(x2), the inner radius, R(x3), and
the length of the cylindrical segment of the vessel, L(x4) were included as the optimisation
design variables of the problem.

(a) Welded Beam

(b) Spring Design

(c) Pressure Vessel
(d) Schematic of the speed reducer design

(e) Schematic of the gear train design

Figure 4.5: Practical engineering design problems

Speed reducer design problem The speed reducer problem (Figure 4.5d) is part of the
gear box of mechanical system, and is used as one of the practical benchmark problems
because it involves seven design variables (Lin et al., 2013). In this problem, the objective is
to minimize the weight of speed reducer subject to its constraints. According to Sadollah et
al. (2013), the constraints of the design problems are bending stress of the gear teeth, surface
stress, transverse deflections of the shafts and stresses in the shafts. Detailed information



4.3. Constrained Optimisation Problems 95

have been further discussed in Mezura-Montes and Coello (2005) and (Sadollah et al., 2013).

Gear train design problem The gear train design problem (Figure 4.5e) is targeted to get
the minimum cost of the gear ratio of the gear train. For this problem, the constraints are
limits on design variables (side constraints). Design variables to be optimised are in discrete
form since each gear has to have an integer number of teeth. Constrained problems with
discrete variables may increase the complexity of the problem (Sadollah et al., 2013). The
value of x1, x2, x3, and x4, represent the design variables of nA, nB, nD and nF , respectively.
The integer design variables are bounded between 12 and 60.

The mathematical formulation of the cost function for all the practical engineering opti-
misation problems are shown in Appendix B with their respective constraint functions and
variable regions.

4.3.3 Parameter Set Up and Performance Measurement

The proposed algorithms are tested with the problems and the results are compared with
IWO and FA algorithms. For fair comparison of performance of all the algorithms used in
this section, the parameter setting for each algorithm is described as in Table 4.4.

In general, in order to evaluate the performance of the algorithms, the algorithm which
requires less NFE to get the same best solution can be considered as better as compared to
the other algorithms. The statistical simulation and comparison results with the mentioned
algorithms are shown in Tables 4.21 – 4.28. The results listed include the best fitness value,
the mean and worst value found, and the SD. Note that the statistical results are based on
feasible solutions only.

4.3.4 Experimental Results and Performance Analyses

Constrained Benchmark Functions

Optimisation results of constrained benchmark problems are presented in this section. The
algorithms are implemented to achieve the global optimum results, f(x∗) and to satisfy all
the constraint conditions. The algorithms use the same parameters such as population size of
30 and within 30,000 function evaluations (i.e 1000 iterations). It should be note that in these
experiments, all the inequalities in the problem became equalities as mentioned in Liang et
al. (2006). The best, standard deviation and the mean solution values are presented in Tables
4.21 and 4.22. The solutions achieved with the algorithms are compared with each other and
with FA and IWO algorithms.

Comparative results listed in Table 4.21 are those achieved with FA, IWO and the pro-
posed variants of FA and IWO. On the other hand, Table 4.22 shows comparison of results
achieved by the proposed hybrid algorithms with FA and IWO. As noted in Table 4.21, IWO-
eSSF and MIWO-eSSF outperformed the original IWO, FA and proposed FA variants for
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Table 4.21: Results of FA and IWO variants on the constrained benchmark functions

f(x) f(x∗) FA FA-NSF FA-eSF IWO IWO-eSSF MIWO-eSSF

g01 Best 1.393 1.396 1.393 1.393 1.394 1.393 1.393

Mean 1.424 1.393 1.393 1.397 1.394 1.394

Std Dev 2.37E-02 2.12E-09 2.65E-10 2.43E-03 4.03E-04 3.75E-04

g02 Best -30665.539 -30688.402 -30656.438 -30671.591 -30705.829 -30665.529 -30665.5

Mean -30850.685 -30603.828 -30639.651 -30705.828 -30665.435 -30665.398

Std Dev 3.46E+02 1.05E+02 7.81E+01 3.40E-04 6.20E-02 6.60E-02

g03 Best -6961.814 -7042.731 -6961.807 -6961.814 -6975.316 -6961.783 -6961.872

Mean -3877.144 -6007.39 -6938.197 -6975.177 -6960.89 -6960.821

Std Dev 2.61E+03 1.71E+03 1.20E+02 1.32E-01 6.11E-01 7.04E-01

g04 Best 24.306 329.354 25.043 24.164 24.438 24.305 24.304

Mean 583.104 28.662 23.441 24.657 24.337 24.376

Std Dev 1.48E+02 7.09E+00 1.02E+00 1.59E-01 5.58E-02 9.17E-02

g05 Best -0.096 -0.096 -0.096 -0.096 -0.096 -0.096 -0.096

Mean -0.096 -0.096 -0.096 -0.096 -0.096 -0.096

Std Dev 5.00E-06 1.42E-14 2.20E-15 5.64E-07 6.66E-08 7.53E-08

g06 Best 680.63 877.712 680.628 680.634 680.637 680.645 680.632

Mean 1908.994 680.808 680.836 680.611 680.582 680.591

Std Dev 6.34E+02 2.28E-01 2.13E-01 5.55E-02 3.10E-02 4.79E-02

g07 Best 0.75 0.75 0.75 0.75 0.75 0.75 0.75

Mean 0.75 0.75 0.75 0.75 0.75 0.75

Std Dev 7.54E-05 3.30E-09 5.34E-10 1.59E-04 4.29E-06 1.95E-06

g08 Best 961.715 961.718 961.711 961.716 961.716 961.715 961.716

Mean 961.857 966.418 961.825 961.915 961.811 961.821

Std Dev 3.15E-01 2.43E+01 4.97E-01 4.45E-01 3.96E-01 3.40E-01

g09 Best -1.905 -1.94 -1.907 -1.9 -1.911 -1.905 -1.905

Mean -1.661 -1.802 -1.904 -1.846 -1.879 -1.862

Std Dev 3.44E-01 2.50E-01 3.35E-01 9.49E-02 5.41E-02 4.55E-02

g10 Best -0.866 -2.672 -0.867 -0.868 -0.869 -0.866 -0.866

Mean -17.694 -0.824 -0.842 -0.871 -0.866 -0.866

Std Dev 9.63E+00 9.34E-02 7.16E-02 6.46E-04 4.91E-04 6.38E-04

most of the problems. However, FA-eSF achieved better performance for problem g06 as the
results were near to the optimal solution. Although all the algorithms achieved competitive
results for problems g08 and g11, FA-eSF showed better robustness as the standard deviation
was higher than those of other algorithms.

As shown in Table 4.22, the proposed hybrid algorithms (HIWFO and HIWFO-SF) per-
formed better than FA and IWO algorithms. The performance of HIWFO algorithm was
better than HIWFO-SF for g03, g04, g06 and g10. And, HIWFO-SF performed slightly bet-
ter than the rest of the algorithms for g01, g02 and g05.

Comparison graphs of convergence rates are is shown in Figure 4.6. The graphs show the
comparison between the algorithms for problems g02, g03, g08 and g10. Based on Figure
4.6, MIWO-eSSF algorithm took time to converge to the optimal solution. The fluctuation
outcome of HIWFO-SF in problem g02 justified the SF mechanism that helped the algorithm
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Table 4.22: Results of proposed hybrid algorithms on the constrained benchmark functions

f(x) f(x∗) FA IWO HIWFO HIWFO SF

g01 Best 1.393 1.396 1.394 1.394 1.394

Mean 1.424 1.397 1.397 1.395

Std Dev 2.37E-02 2.43E-03 2.11E-03 2.52E-03

g02 Best -30665.539 -30688.402 -30705.829 -30667.41 -30665.641

Mean -30850.685 -30705.828 -30668.998 -30647.069

Std Dev 3.46E+02 3.40E-04 7.52E-01 3.99E+01

g03 Best -6961.814 -7042.731 -6975.316 -6961.8 -6961.897

Mean -3877.144 -6975.177 -6961.265 -6959.903

Std Dev 2.61E+03 1.32E-01 1.27E+00 1.58E+00

g04 Best 24.306 329.354 24.438 24.322 24.329

Mean 583.104 24.657 24.343 24.697

Std Dev 1.48E+02 1.59E-01 2.05E-01 5.74E-01

g05 Best -0.096 -0.096 -0.096 -0.096 -0.096

Mean -0.096 -0.096 -0.096 -0.096

Std Dev 5.00E-06 5.64E-07 8.04E-07 5.95E-15

g06 Best 680.63 877.712 680.637 680.633 680.643

Mean 1908.994 680.611 680.712 680.915

Std Dev 6.34E+02 5.55E-02 9.17E-02 3.47E-01

g07 Best 0.75 0.75 0.75 0.75 0.75

Mean 0.75 0.75 0.75 0.75

Std Dev 7.54E-05 1.59E-04 3.06E-05 7.53E-06

g08 Best 961.715 961.718 961.716 961.716 961.71

Mean 961.857 961.915 961.724 962.506

Std Dev 3.15E-01 4.45E-01 5.27E-02 1.31E+00

g09 Best -1.905 -1.94 -1.911 -1.911 -1.884

Mean -1.661 -1.846 -1.84 -1.67

Std Dev 3.44E-01 9.49E-02 9.13E-02 1.28E-01

g10 Best -0.866 -2.672 -0.869 -0.866 -0.866

Mean -17.694 -0.871 -0.816 -0.798

Std Dev 9.63E+00 6.46E-04 1.06E-01 1.20E-01

to re-adjust the algorithm to fine tune the solution. The IWO-eSSF and MIWO-eSSF also
showed small fluctuation during the convergence.
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(a) fg02 (b) fg03

(c) fg08 (d) fg10

Figure 4.6: Convergence plots of constrained benchmark problems
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Comparative results with other metaheuristics algorithms

The proposed algorithms have already been assessed in comparison to well-known meta-
heuristics algorithm such as GA (Homaifar et al., 1994), HS (Lee and Geem, 2005) and the
mine blast algorithm (MBA) introduced by A. Sadollah and his colleagues (Sadollah et al.,
2013). The results shown in Table 4.23 were also compared with other algorithms; meta-
heuristic inspired with particle swarm optimization, COPSO (Aguirre et al., 2007) and CVI-
PSO (Mazhoud et al., 2013) and differential evolution, DECV (Mezura et al., 2010). The
statistical simulation values obtained show the best objective value found. f(x∗) shows the
optimal value of the problems and the results obtained near the optimal value are highlighted
in bold in the table.

Table 4.23: Comparative results with constrained benchmark functions

g01 g02 g03 g04 g05 g06 g07 g08 g09 g10
f(x*) 1.393 -30665.5 -6961.8 24.306 -0.096 680.63 0.75 961.715 -1.905 -0.866
FA 1.396 -30688.4 -7042.7 329.354 -0.096 877.712 0.75 961.718 -1.94 -2.672
IWO 1.394 -30705.8 -6975.3 24.438 -0.096 680.637 0.75 961.716 -1.911 -0.869
GA 1.434 NA NA NA NA NA NA NA NA NA
HS 1.377 NA NA NA NA NA NA NA NA NA
MBA 1.393 NA NA NA NA NA NA NA NA NA
COPSO NA -30665.5 -6961.8 24.3062 -0.0958 680.63 0.75 961.715 -1.905 -0.866
CVI-PSO NA -30665.8 -6961.8 24.4738 -0.1055 680.64 0.75 961.716 -1.905 -0.865
DECV NA -30665.5 -6961.8 24.306 -0.0958 680.63 0.75 961.715 -1.905 -0.866
FA-NSF 1.393 -30656.4 -6961.8 25.043 -0.096 680.63 0.75 961.711 -1.907 -0.867
FA-eSF 1.393 -30671.6 -6961.8 24.164 -0.096 680.63 0.75 961.716 -1.9 -0.868
IWO-eSSF 1.393 -30665.5 -6961.8 24.305 -0.096 680.65 0.75 961.715 -1.905 -0.866
MIWO-eSSF 1.393 -30665.5 -6961.9 24.304 -0.096 680.63 0.75 961.716 -1.905 -0.866
HIWFO 1.394 -30667.4 -6961.8 24.322 -0.096 680.63 0.75 961.716 -1.911 -0.866
HIWFO SF 1.394 -30665.6 -6961.9 24.329 -0.096 680.64 0.75 961.71 -1.884 -0.866

As noted in Table 4.23, IWO-eSSF achieved the best performance among the metaheuris-
tics algorithms and very near to the optimal solution. It also outperformed other established
state-of-the-art algorithms. MIWO-eSSF and HIWFO algorithms also showed better perfor-
mance as compared with the mentioned state-of-the-art algorithms. It is noted that the results
were close to the optimal values.
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Practical Engineering Design Problems

The proposed algorithms were also used to solve well known practical engineering design
problems such as pressure vessel design, spring design, welded beam, speed reducer and
gear design problems. In these experiments, the penalty function approach is used to handle
the constraints and to solve practical constrained engineering problems. All the problems
are minimization problems. A total of 30 runs per algorithms were performed and the mean,
standard deviation, minimum (best value) and maximum (worst value) of design problems
are shown in Figure 4.5. The respective design variables of each design problem are also
compared. As it can be seen in Tables 4.24 – 4.28, the approach was to find feasible solutions
for all the problems. The overall results suggest that the proposed algorithms were able
to provide competitive performance. As the experiments used the same set of parameters,
the proposed algorithms seemed to be more stable as they gave lower reading of standard
deviation. The lower reading of standard deviations also shows that the solution quality is
consistent throughout the experiments.

Table 4.24: Results on the pressure vessel design problem

FA FA-NSF FA-eSF IWO IWO-eSSF MIWO-eSSF HIWFO HIWFO SF

Best 17837.39 5896.4 5928.02 5963.69 5890.39 5891.63 5929.15 5948.1

x1 1.89 0.78 0.79 0.79 0.78 0.78 0.79 0.8

x2 1.11 0.39 0.39 0.39 0.38 0.39 0.39 0.4

x3 62.74 40.64 41.08 40.87 40.33 40.33 40.62 41.59

x4 65.79 195.65 190.41 194.27 199.97 199.97 196.12 183.96

t, (sec) 2.70 6.07 6.09 1.46 2.04 1.98 1.62 1.58

Mean 624843.6 6185.75 6262.21 6357.58 6137.64 6063.1 6598.59 6410.68

Std Dev 5.22E+05 2.54E+02 3.05E+02 3.65E+02 2.94E+02 1.62E+02 8.29E+02 3.54E+02

Min 17837.39 5896.4 5928.02 5963.69 5890.39 5891.63 5929.15 5948.1

Max 1862851.58 7006.15 7184.1 7198.79 6925.38 6458.05 9310.08 7130.31

Table 4.25: Result on the spring design problem

FA FA-NSF FA-eSF IWO IWO-eSSF MIWO-eSSF HIWFO HIWFO SF

Best 1.27E-02 1.27E-02 1.27E-02 1.27E-02 1.27E-02 1.27E-02 1.25E-02 1.17E-02

x1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

x2 0.32 0.36 0.35 0.32 0.32 0.32 0.36 0.34

x3 13.91 11.04 11.42 14.01 13.87 13.89 10.77 10.71

t, (sec) 2.70 5.74 5.57 1.36 1.27 1.18 1.41 1.50

Mean 1.31E-02 1.29E-02 1.32E-02 1.30E-02 1.27E-02 1.27E-02 1.25E-02 1.24E-02

Std Dev 3.86E-04 2.37E-04 9.83E-04 4.89E-04 1.42E-06 3.18E-07 8.81E-05 3.40E-04

Min 1.27E-02 1.27E-02 1.27E-02 1.27E-02 1.27E-02 1.27E-02 1.25E-02 1.17E-02

Max 1.39E-02 1.36E-02 1.70E-02 1.44E-02 1.27E-02 1.27E-02 1.30E-02 1.30E-02

Based on Table 4.24, IWO-eSSF algorithm provided the best performance in pressure
vessel design problem. MIWO-eSSF algorithm showed comparable results and achieved
more consistent results as compared with IWO-eSSF and other algorithms by showing the
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Table 4.26: Results on the welded beam design problem

FA FA-NSF FA-eSF IWO IWO-eSSF MIWO-eSSF HIWFO HIWFO SF

Best 1.74 1.67 1.67 1.72 1.72 1.7 1.68 1.68

x1 0.24 0.30 0.31 0.21 0.21 0.26 0.28 0.33

x2 2.90 2.18 2.13 3.29 3.4 2.63 2.39 1.93

x3 9.08 9.03 9.04 9.05 9.04 9.08 9.04 9.08

x4 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21

t, (sec) 2.69 5.94 5.92 1.36 1.29 1.32 1.56 1.51

Mean 1.87 1.78 1.72 1.91 1.86 1.81 1.76 1.94

Std Dev 1.24E-01 1.30E-01 6.84E-02 2.06E-01 1.89E-01 1.70E-01 1.30E-01 2.65E-01

Min 1.74 1.67 1.67 1.72 1.72 1.7 1.68 1.68

Max 2.31 2.13 1.95 2.23 2.18 2.11 2.16 2.79

Table 4.27: Result on the speed reducer design problem

FA FA-NSF FA-eSF IWO IWO-eSSF MIWO-eSSF HIWFO HIWFO SF

Best 2982.40 2859.65 2859.66 2978.25 2978.11 2978.16 2861.41 2859.75

x1 3.46 3.19 3.19 3.45 3.45 3.45 3.19 3.18

x2 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

x3 17 17 17 17 17 17 17 17

x4 7.44 7.3 7.3 7.3 7.3 7.3 7.37 7.3

x5 7.68 7.42 7.43 7.67 7.68 7.67 7.42 7.42

x6 3.34 3.32 3.32 3.35 3.35 3.35 3.32 3.32

x7 5.27 5.13 5.13 5.27 5.27 5.27 5.14 5.13

t, (sec) 2.86 5.92 6.30 1.48 1.99 2.00 1.58 1.58

Mean 2989.65 2862.03 2862.70 2982.79 2979.16 2979.43 2866.67 2864.06

Std Dev 5.07 2.66 3.12 3.89 1.64 2.13 4.21 4.89

Min 2982.4 2859.65 2859.66 2978.25 2983.38 2985.21 2861.41 2859.75

Max 3000.64 2868.36 2868.71 2993.47 2978.11 2978.16 2879.29 2880.08

Table 4.28: Results on the gear design problem

FA FA-NSF FA-eSF IWO IWO-eSSF MIWO-eSSF HIWFO HIWFO SF

Best 1.02E-11 4.41E-22 4.00E-27 2.19E-19 3.77E-21 2.18E-20 2.21E-16 1.97E-24

x1 24.91 49.91 45.22 46.77 59.21 55.73 57.38 56.65

x2 13.93 18.82 21.16 24.06 42.56 40.14 20.97 15.58

x3 14.53 15.59 14.84 15.67 12 12 19.97 29.07

x4 56.31 40.74 48.14 55.88 59.78 59.91 50.59 55.42

t, (sec) 2.53 5.58 5.44 1.20 1.72 1.54 1.37 1.29

Mean 4.89E-03 2.84E-19 6.34E-23 3.79E-15 2.83E-16 3.06E-16 1.92E-14 1.08E-21

Std Dev 8.19E-03 3.60E-19 1.98E-22 5.45E-15 8.48E-16 5.57E-16 2.63E-14 1.71E-21

Min 1.02E-11 4.41E-22 4.00E-27 2.19E-19 3.77E-21 2.18E-20 2.21E-16 1.97E-24

Max 2.85E-02 1.23E-18 1.09E-21 2.55E-14 4.65E-15 1.97E-15 1.07E-13 7.30E-21

lowest value in mean and standard deviation. In the pressure vessel design problem, the
proposed algorithms achieved better results compared to their predecessors.

From Table 4.25, both hybrid algorithms (HIWFO and HIWFO-SF) achieved better per-
formance in the spring design problem. The performance of the hybrid algorithms were also
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more robust as their mean, standard deviation were better compared to those of other algo-
rithms. The results of all the algorithms for the welded beam problem are presented in Table
4.26. As noted, the variants of FA (FA-NSF and FA-eSF) were competitively better than HI-
WFO and HIWFO-SF algorithms. The proposed FA variants also showed better quality on
the minimum and maximum value. However, both algorithms were the slowest in time taken
to converge.

Table 4.27 also shows the same pattern as in Table 4.25. The proposed hybrid algorithms
achieved better results compared to other algorithms in solving speed reducer design problem.
However, it costed computational time for HIWFO and HIWFO-SF to solve the problem.
Other proposed algorithms also achieved better results than FA and IWO algorithms.

Table 4.28 shows the experimental results for gear train design problem. The statistical
results show that HIWFO-SF outperformed other algorithms. The computational cost of the
enhanced hybrid algorithm was also competitive as compared with other algorithms. The
proposed FA and IWO variants showed good performance as compared to their respective
predecessor algorithms, IWO and FA. It can be concluded that the proposed algorithms were
able to explore the boundaries of feasible regions in each constrained problem to reach quality
solution and better results.

(a) Welded beam (b) Spring design

(c) Pressure vessel (d) Speed reducer

Figure 4.7: Convergence plots of practical engineering design problems
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Figure 4.7 shows the convergence plot of practical engineering constrained problems,
comparing the rate of convergence for the pressure vessel problem, welded beam, spring and
speed reducer design problems for eight algorithms used in this experiment. As noted in
Figure 4.7a, IWO-eSSF and MIWO-eSSF managed to converge faster than other algorithms
although after reaching maximum iterations, HIWFO gave better solution quality. In 4.7b,
all algorithms show fast convergence except HIWFO-SF algorithms. FA-eSF and HIWFO
show better convergence value as compared with other algorithms. Figure 4.7c shows that
HIWFO-SF had the slowest convergence, however, it managed to get better mean average
value at the stopping point. In 4.7d, FA-eSF, FA-NSF, HIWFO and HIWFO-SF show faster
convergence and better solution quality.
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Comparative results with other metaheuristics algorithms

The performance of the proposed algorithms were also compared with four known state-
of-the-art algorithms such as improved teaching-learning based optimization, ITLBO (Yu et
al., 2014), improved ant colony optimization, IACO (Kaveh and Talahari, 2010), artificial
bee colony, ABC (Akay and Karaboga, 2011), co-evolutionary particle swarm optimization,
CPSO (He and Wang, 2007) and cuckoo search algorithm, CS (Gandomi et al, 2013). The re-
sults are shown in Table 4.29. These include the best fitness value and the standard deviation.
Note that the statistical results are based on feasible solutions only.

Table 4.29: Comparative results of algorithms with practical engineering design problems

Pressure vessel Spring Welded Beam Speed
Best Std dev Best Std dev Best Std dev Best Std dev

TLBO 6059.7 1.85E-12 0.01267 2.12E-06 1.725 6.77E-16 2994.471 4.62E-13
IACO 6059.7 6.72E+01 0.01264 3.49E-05 1.725 9.20E-03 NA NA
ABC 6059.7 2.05E+02 0.01267 1.28E-02 1.725 3.12E-02 2997.058 0
CPSO 6061.1 8.65E+01 0.01267 5.20E-05 1.728 1.29E-02 NA NA
CS 6059.7 5.03E+02 NA NA NA NA 3000.981 4.96
FA-NSF 5896.4 2.54E+02 0.01270 2.37E-04 1.670 1.30E-01 2859.650 2.66
FA-eSF 5928.0 3.05E+02 0.01270 9.83E-04 1.670 6.84E-02 2859.660 3.12
IWO-eSSF 5890.4 2.94E+02 0.01270 1.42E-06 1.720 1.89E-01 2978.110 1.64
MIWO-eSSF 5891.6 1.62E+02 0.01270 3.18E-07 1.700 1.70E-01 2978.160 2.13
HIWFO 5929.2 8.29E+02 0.01250 8.81E-05 1.680 1.30E-01 2861.410 4.21
HIWFO SF 5948.1 3.54E+02 0.01170 3.40E-04 1.680 2.65E-01 2859.750 4.89

As noted in Table 4.29 the best feasible solutions found in the pressure vessel, spring
and speed design problems by the proposed algorithms were better than those of other ap-
proaches with relatively small standard deviation, although TLBO showed better consistency
with lower standard deviation.

It can also be seen that the best solution of the proposed hybrid algorithms were better than
those of other mentioned methods in the spring design problems. Both algorithms achieved
better best mean value compared to the other approaches.

Thus, it is clearly seen that the proposed IWO-NSSF and IWO-eSSF algorithms have
good potential to solve various constraint problems.

4.4 Summary

In this chapter, overall performance of the proposed algorithms on single-objective optimi-
sation problems are presented and compared. The proposed algorithms (FA-eSF, FA-NSF,
IWO-eSSF, MIWO-eSSF, HIWFO and HIWFO-SF) have also been compared with their pre-
decessor algorithms, IWO and FA. Ten standard benchmark functions and 16 CEC 2014 test
functions have been used to evaluate the algorithms on the unconstrained optimisation prob-
lems. The experimental results have been studied and the performance of the algorithms
evaluated by using numerical results, convergence plot, success rate of the algorithm and
statistical analysis by using Kruskal-Wallis tests.
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The proposed algorithms have also been tested with constrained optimisation problems.
The basic benchmark, nine CEC 2006 test functions and five practical engineering design
problems were chosen to test and analyse the algorithms in the constrained problem do-
mains. The practical engineering design problems include pressure vessel design, spring
design, welded beam design, speed reducer and gain design problems which also constitute
constrained optimisation problems.

From the analysis of unconstrained and constrained optimisation problems, the proposed
algorithms especially IWO-eSSF, MIWO-eSSF and HIWFO-SF have achieved better per-
formance than other algorithms investigated in the experiment. Although some algorithms
performed better in different test functions, HIWFO-SF algorithm was more efficient than
other proposed algorithms as well as FA and IWO. This is due to its capability to achieve bet-
ter solution accuracy and faster convergence rate when solving single-objective optimisation
problem. Based on the results obtained,

• For unconstrained benchmark problems, FA-NSF and FA-eSF have achieved far better
solution quality in the various dimension sets used in these investigations. Moreover,
IWO-eSSF and HIWFO-SF showed slight improvement as they outperformed FA and
IWO algorithms. FA-eSF converged faster than all the algorithms used in the research.
In terms of success rate and ranking based on the statistical test, FA-NSF, FA-eSF and
HIWFO-SF performed better among the algorithms.

• For CEC 2014 benchmark problems, IWO-eSSF, MIWO-eSSF and HIWFO-SF achieved
slightly better solution quality and faster convergence than other algorithms. Moreover,
these algorithms showed the smallest mean rank in the statistical test. However, HI-
WFO appeared to suffer due to high randomisation value of FA elements in the algo-
rithm during the search process.

• For constrained benchmark problems, IWO-eSSF, MIWO-eSSF and HIWFO performed
better than other algorithms. They also outperformed the state-of-the-art algorithms as
stated in Table 4.23.

• For practical engineering design problems, IWO-eSSF outperformed other algorithms
in the pressure vessel design problem. FA-eSF, on the other hand, achieved better
solutions in the welded beam and gear box design problems. FA-NSF achieved the
best solution quality in the speed reducer problem and HIWFO-SF performed better
than other algorithms in the spring design and showed competitive results in the welded
beam and the speed reducer problems.

• FA-eSF showed competitive results in unconstrained problems and several practical
problems. However, with more complex problems such as CEC 2014 and constrained
benchmark problems, IWO-eSSF and MIWO-eSSF showed good optimisation poten-
tial.
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.
The proposed algorithms are further tested and evaluation with multi-objective optimisa-

tion problems in subsequent chapters of the thesis.



Chapter 5

Multi-objective adaptive firefly and
invasive weed optimisation algorithms

5.1 Introduction

This chapter presents evaluation of the proposed algorithms in solving multi-objective (MO)
optimisation problems. Some modifications and parameters adjustment of the algorithm are
made to accommodate multi-objective problems. The proposed algorithms are evaluated
and comparative assessment is made with other algorithms. Initially, the parametric study
is carried out to determine the best condition to solve multi-objective problems. Two multi-
objective problems are used in the study focusing on the implication of using different num-
ber of Pareto (NPareto) and different number of iterations. Eight multi-objective benchmark
problems are then used to analyse the proposed algorithms and compare their performances
with those of original FA and IWO algorithms. The performances of the algorithms are
measured by the Pareto graph and three selected performance measurements. In these eval-
uations, the same experimental platform is used as mentioned in the previous chapter. In
solving multi-objective optimisation tests, each problem is tested in 30 independent runs.

5.2 Multi-objective Optimisation Problem

In real engineering and science problems, optimisation applications usually comprise more
than one objective. In such cases, the objectives usually conflicting with each another. There
is no unique solution for these kind of problems. Therefore, the best trade-offs between
objectives could be the best solution (Mirjalili and Lewis, 2015). Such problems are also
called multi-objective problems. It means that according to the requirement of these tasks,
there are a number of optimal non-dominated solutions to the problem. The set of solution is
called Pareto optimal solution set, which represents the best trade-offs between the objectives
(Mirjalili and Lewis, 2015). Hence, for any multi-objective optimisation problem, a possible

107
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of generic mathematical optimisation form (Yang, 2010a) can be represented as;

Minimize
x∈<

fi(x) = [f1(x), f2(x), · · · , fp(x)] (5.1)

subject to
φi(x) ≤ 0, for i = 1, · · · , q

ψj(x) = 0, for j = 1, · · · ,m

where x = (x1, x2, . . . , xn)T represent the decision variables. The above equation refers to
minimization problem. Hence, the goal in equation (5.1) is to minimize all p functions fi(x),
simultaneously. However, the definition of optimality of multi-objective must be defined.
Definition of Pareto optimality in the multi-objective is as follows:

• Non-domination and domination – A point x∗ is said to be dominated if the condition
where a vector function fi(x∗) ≤ fi(x) for all i ∈ [1, p] or at least one within i ∈ [1, p]

where x∗ value is better than x at least one objective function or all objective function
values. The value x∗ is non-dominated if there is no x that dominates it.

• Pareto optimal point – A Pareto optimal solution x∗(also called Pareto point) is one
value that is not dominated by any other x in the search space.

• Pareto optimal set – Also called Pareto set, Ps or set of Pareto optimal points is the set
of all non-dominated values, x∗.

• Pareto front – Also called non-dominated set, Pf is the set of all function vectors f(x∗)

corresponding to the non-dominated solution or Pareto set, where

Pf = {f(x∗) : x∗ ∈ Ps (5.2)

In single optimisation problem a single optimal solution is determined, whereas multi-objective
optimisation leads to a number of solutions, called Pareto optimal set / solutions, Ps and the
corresponding decision vectors are called non-dominated point or Pareto optimal point, x∗.

There are numerous approaches to solve multi-objective problems in the literature. There
are several ways in which these methods can be characterised whether the methods are non-
Pareto based or Pareto based evolutionary algorithms. Non pareto-based evolutionary al-
gorithms, do not explicitly use the concept of Pareto dominance (Simon, 2013). However,
the approaches still enable to find diverse Pareto-optimal set, for example, aggregation meth-
ods, goal attainment, vector evaluated genetic algorithm (VEGA), lexicographic ordering and
ε−constraint method. Another characterization is by Pareto-based evolutionary algorithms,
which directly use Pareto dominance such as simple evolutionary multi-objective optimiser
(SEMO), nondominated sorting genetic algorithm (NSGA) as well as NGSA − II , niched
Pareto genetic algorithm (NPGA) and others. These approaches are well discussed by Marler
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and Arora (2004), Chinchuluun and Pardalos (2007) and Simon (2013). In this research,
non-Pareto evolutionary algorithm of aggregation approach is used for all the algorithms.

5.3 Aggregation Approach for Solving Multi-objective Prob-
lems

In this research, aggregation approach is used to solve the multi-objective optimisation prob-
lems. Yang (2013) used aggregation approach by combining all objectives using the weighted
sum method. That is by converting those objective functions into a scalar objective function.
Chandrasekaran and Simon (2012) also used the same method to fine-tune optimal deviation
in solving the unit commitment problems in a power system. It is one of the non-Pareto
evolutionary algorithm which is also called weighted sum method (Zadeh, 1963). The basic
function of the method is

∪ = min
x

Σk
i=1ωifi(x) (5.3)

where Σk
i=1ωi and usually all the weights, ωi are positive values and the minimum of above is

the Pareto optimal solution (Zadeh, 1963). Thus, fi(x) is combination of all the objectives of
the problem or ‘aggregation’ into single objective. This method is computationally efficient,
simple and easy to use (Coello, 2001; Marler and Arora, 2004). It has been widely applied
in the literature and discussed by Chinchuluun and Pardalos (2007) and Marler and Arora
(2010). In this method, the choice of weight representation is essential in order to obtain pos-
sible Pareto optimal solution. A lot of work of weighted sum approach has been discussed and
reviewed by Marler and Arora (2010). Parsopoulos and Vrahatis (2002) has elaborated other
weighted aggregation approaches such as Bang-bang weighted aggregation (BWA), dynamic
weighted aggregation (DWA) and conventional weighted aggregation (CWA). Furthermore,
Yang (2011; 2013) proposed random weight approach from a uniform distribution to solve
multi-objective problems. By using this approach, the Pareto optimal front can be produced
directly (Yang and He, 2013).
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5.4 Multi-objective Benchmark Problems

In this analysis, eight well-known multi-objective benchmark problems are used to evalu-
ate the proposed algorithms and the results are also compared with those of IWO and FA
algorithms. The algorithms are tested on several multi-optimisation conditions such as in
unconstrained and constrained optimisation problems as well as practical engineering design
problems. Table 5.1 shows the multi-objective optimisation problems used in this experiment.
The mathematical equations and related constraints (if any) are listed in Appendix B.

Table 5.1: Brief summary of the multi-objective benchmark problems

No Functions Optimisation problem Variable bounds Reference
MO1 Schaffer function 1 (SCH 1) Unconstrained problem x ∈ [−10, 10]i Knowles and Corne (1999)

1 ≤ i ≤ 20

MO2 Zitzler-Deb-Thiele’s function (ZDT 1) Unconstrained problem x ∈ [−10, 10]i Zitzler et al. (2000)
1 ≤ i ≤ 20

MO3 Kursawe Unconstrained problem x ∈ [−10, 10]i Kursawe (1990)
1 ≤ i ≤ 20

MO4 CTP 1 Constrained problem x ∈ [−10, 10]i Deb (2001)
1 ≤ i ≤ 20

MO5 Constr-Ex Constrained problem x ∈ [−10, 10]i Deb (2001)
1 ≤ i ≤ 20

MO6 Bihn and Korn Constrained problem x ∈ [−10, 10]i Binh and Korn (1997)
1 ≤ i ≤ 20

MO7 Chankong and Haimes Constrained problem x ∈ [−10, 10]i Babu and Gujarathi (2007)
1 ≤ i ≤ 20

MO8 Four bar plane truss Engineering design problem x ∈ [−10, 10]i Coello (2001)
1 ≤ i ≤ 20

5.4.1 Formulation of Multi-objective Optimisation Problems

In this section, the aggregation approach is adopted in the algorithms used in this research to
solve multi-objective optimisation problems. The aggregation or weighted sum approach is
set the same for the algorithms to evaluate their performances. The algorithms produced in
Chapter 3 are extended to develop new multi-objective optimisation algorithms, as summa-
rized in Algorithm 5.

As noted in Algorithm 5, the algorithm starts with the definition of the objective functions.
If the problem is with constraints, constraint handling method is performed at this stage.
After that, the population is randomly distributed in the search space within the boundary
range. A number of Pareto fronts and iterations are pre-defined. The initial parameters of the
algorithms used are also pre-determined.

The initial value of gbest* or initial Pareto solution is defined by the location of initial
population. In the algorithm, a set of non-dominated solutions is kept aside for each set of
weighted value. Then, the value of weights for each objective is applied. This is an important
stage that has to update at each cycle after one complete iteration. The weights used in this
experiment are systematically divided accordingly and their values depend on the number of
non-dominated Pareto (NPareto).
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Algorithm 5 Pseudo code of proposed multi-objective algorithm

Input: Objective function of f(xd), Pre-determined parameter; β0, γ, α, variable boundary
and population size N .
Output: Global minimum, elapsed time.
Generate initial population xi, (i = 1, · · · , n) randomly, determine the light intensity,
I(xd) based on individual fitness, f(xi).
while t, current iteration t ≤ maximum iteration do

for all i to n do
for all j to n do

Evaluate the distance, r between two units (xi, xj) and their attractiveness via e−γr2

if Ij > Ii), move i towards j then
Evaluate new solution xi+1 via equation ??

end if
end for

end for
if xi+1 exceeds boundary then

Set to its boundary
end if
Update light intensity, I(xd) based on the update location;
Rank the fireflies and find the current best;
Export global minimum and elapsed time;

end while

After that, iterations start with updating the value of gbest*. If the algorithm used is with
SF mechanism, the adaptive parameters are updated. The algorithm is processes until the
maximum number of iterations is reached. For each of the weight set per iteration, the gbest*
value is noted and defined as direct Pareto front value. The overall results are processed and
illustrated.

For this multi-objective algorithm, if the number of non-dominated Pareto is set high, it
may cause increased computational cost. This is because, number of iterations and size of
population of the algorithm also play an important role on the computational cost.

For fair comparison, the FA and IWO algorithms are also modified into multi-objective
algorithms as described above. The set of weight are also set the same throughout the exper-
iments to evaluate the performances of the proposed algorithms.

5.4.2 Constraint Handling in Multi-objective Problems

Many works relating to multi-objective problems with constraints have been reported in the
literature. The research works dealing with equality and inequality constraints have been
discussed in Efren (2009), Hughes (2001) and Kundu et al. (2011). In this experiment, a
simple penalty technique is chosen for handling the constraints. In dealing with the solution
of multi-objective problems with constraints, the absolute value of constraint violation is
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simply added to the individual objectives to increase the values of objectives (Kundu et al.,
2011).

5.4.3 Performance Measurement

In this experiment, it is assumed that the Pareto front location is unknown. Based on this
assumption, the performances of the algorithms are evaluated by the performance metrics and
by graphical illustration of Pareto front. There is no best specific performance indicator in the
multi-objective field (Mirjalili and Lewis, 2015). A lot of works in this field try to evaluate
and compare qualitatively the obtained shapes of Pareto optimal fronts with performance
metrics. As these metrics measure and evaluate properties of non-dominated solutions such
as convergence and uniform distribution.

In this research, the selected performance metrics can be classified into two main criteria;
convergence and coverage. The convergence criterion measures the closeness of solutions
obtained to the true Pareto front (Rudolph, 1998; Mirjalili and Lewis, 2015). The cover-
age criterion defines how well the Pareto solution obtained covered the range of each of the
objectives (Farhang-Mehr and Azarm, 2002; Mirjalili and Lewis, 2015). The hypervolume
(HV) is selected here to evaluate the convergence criterion, and spacing (SP) and maximum
spread (MS) are chosen to evaluate the coverage criterion. These metrics also involve uniform
distribution and extensiveness (Jariyatantiwait and Yen, 2014) of the population during the
search process in obtaining the non-dominated solutions of each multi-objective problems.
The selected coverage and convergence performance metrics are explained below;

• Spacing, SP is a metric to measure whether the non-dominated solutions obtained are
evenly distributed. SP is aimed to converge to zero implying that all the solutions are
equally spaced. It was proposed by Schott (1995). The mathematical expression of SP
(Schott, 1995) is as follows

SP =

√
1

n− 1
Σn
i=1(d− di)

2
(5.4)

where d is the average of di for all 1, 2, . . . , n and n is the number of Pareto optimal
solutions obtained.

• Maximum spread, MS measures the diversity of the Pareto optimal solution. This
method was proposed by Zitzler (1999) and the mathematical equation (Zitzler, 1999)
is as follows;

MS =
√

Σn
i=1max(d(ai, bi)) (5.5)

where i is the number of objectives, and d(ai, bi) calculates the Euclidean distance, ai
is the maximum value in the i-th objective, and bi is the minimum value in the i-th
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objective. The value of MS will converge from zero to one as the obtained solution
completely covered the true Pareto front.

• Hyper-volume metric, HV measures both convergence and distribution of Pareto set
and has been discussed by Auger et al. (2009) and Jariyatantiwait and Yen (2014).
This metric is for quantifying the convergence behaviour of MOEAs (Zitzler, 1999).
The idea is to calculate the area/volume of the objective space that is dominated by the
non-dominated Pareto optimal solutions obtained. Note that this performance indicator
is also called size of space covered (SCC) in some references (Tan et al., 2002).

In all the multi-objective benchmark problem tests, the algorithms used the same popula-
tion size, n and maximum number of iterations is set for a fair comparative evaluation. These
were as follows:

• Maximum number of population, nmax = 30.

• Maximum number of iterations, itmax = 1, 000 (NFE = 30, 000).

NFE is used in the experiments as a measure of computational time instead of the number
of generations. The algorithms are terminated when NFE = 30,000 is reached. For a fair
comparison of the algorithms, most of the parameters are set identical. The parameter set in
Table 4.4 is used with the algorithms during initialization in all the tested problems.

5.5 Parameters and Their Impact on Accuracy and Con-
vergence

In this section, the effect of number of Pareto and selection number of iteration with pre-
determined parameters of the algorithms used are studied. The impact on the accuracy of the
Pareto optimal solution, convergence and coverage characteristics are observed and investi-
gated. The simulation in this section provides a comparative assessment of performance of
the proposed algorithms with those of their predecessors.

The multi-objective optimisation problems considered used in this study comprise an
unconstrained optimisation (Kursawe problem) and a constrained optimisation (Constr-Ex
problem). The properties of these problems are stated in Table 5.1 and their mathematical
formulae in Appendix B.

Both problems are of minimization type. The performances of the algorithms are assessed
by observation of the of Pareto front based on the Pareto set, Ps. The parameters chosen for
the study are shown in Table 5.2

The performances of the algorithms with parameter changes are monitored and evaluated.
The simulations with multi-objective optimisation using Kursawe and Constr-Ex problems
were carried out and the impact of NPareto and itmax is discussed based on the results of
Pareto front. The stopping criterion for the simulations was based on itmax value.
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Table 5.2: Parameters to be studied

No. Parameter Symbol Kursawe problem Constr-Ex problem
1 Number of Pareto front NPareto 20, 100 and 200 20, 100, 200
2 Number of iteration itmax 20, 100 and 200 10 and 50

5.5.1 Kursawe Problem

In this experiment, Kursawe function is used to study the effect of NPareto and different
ranges of iteration on the Pareto front of the algorithms used. The Kursawe function is a
discrete convex unconstrained multi-objective problem. Figures 5.1, 5.2 and 5.3 show the
results for FA, IWO variants and hybrid algorithms, respectively. For all the figure in this
section, in sub-figure (a) and (b), the NPareto is fixed at 100. The iteration is set to 10 and
50 for sub-figures (a) and (b), respectively. On the other hand, for sub-figures (c) and (d),
iteration is set to 50. The NPareto is set to 20 and 200 for sub-figures (c) and (d) respectively.

Figures 5.1a and 5.1b show that the distribution of trade-off points for FA is fairly uniform
and scattered across the search space. The points are far from Pareto front. However, both
proposed FA variants show good search space coverage and distribution of the Pareto front.
This is because the Pareto optimal points of FA-NSF and FA-eSF are nearer to the Pareto
front. By using different NPareto, Figures 5.1c and 5.1d show that the Pareto optimal sets of
the proposed FA variants managed to get closer to the Pareto front and uniformly distributed.
Again, in this case, FA shows the largest distribution range and scattered far from the Pareto
front.

In Figure 5.2, the Pareto front of IWO variants are shown. Figure 5.2a shows that the
MIWO-eSSF has achieved good distribution and very close to the Pareto front as compared
to IWO-eSSF and IWO algorithms. When the iteration increased as in Figure 5.2b, all of
the IWO variants achieved low distribution. However, there were a few of IWO and IWO-
eSSF solution points scattered further away. Figure 5.2c shows the same pattern as in Figure
5.2b where they all converged to some point with low distribution on the Pareto front. When
NPareto increased to 200 as in Figure 5.2d, the distribution of MIWO-eSSF improved show-
ing better result.

Figure 5.3 shows performance results of the proposed hybrid algorithms. As noted in Fig-
ure 5.3a HIWFO and HIWFO-SF showed good distribution and very close to the Pareto front.
However, as the iteration increased to 200 as in Figure 5.3b, their Pareto set concentrated on
the objective points on Pareto front and had low distribution in the Pareto front. In lower
NPareto and 100 iteration, as shown in Figure 5.3c, HIWFO achieved better distribution at
the Pareto front and as NPareto increased to 200 as in Figure 5.3d, HIWFO-SF managed to
improve the Pareto optimal solutions and performed better than HIWFO in term of Pareto
front coverage.
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(a) Itmax = 20 (b) Itmax = 200

(c) NP = 20 (d) NP = 200

Figure 5.1: Analysis of MOFA for Kursave Problem

5.5.2 Constr-Ex Problem

In the objective space, the Constr-Ex problem is convex and uniformly distributed Pareto front
is expected. This is an example of constrained multi-objective problem. In this experiment
the use of different NPareto and iterations and their effect on performances of the algorithms.
The results show the Pareto front of modified FA and IWO variants and modified proposed
hybrid algorithm as in Figures 5.4, 5.5 and 5.6 respectively.

In sub-figures (a) and (b) of Figures 5.4, 5.5 and 5.6, the NPareto is fixed at 100, and the
iteration is set to 10 and 50 for sub-figures (a) and (b), respectively. On the other hand, for
sub-figures (c) and (d), iteration is set to 50, and the NPareto is set to 20 in sub-figure (c) and
increased to 200 in sub-figure (d).

As noted in Figure 5.4a, the FA-NSF managed to achieve better trade-off distribution and
nearer to the Pareto front than other FA variants. FA variants showed better results when
the iteration increased to 100 as in Figure 5.4b, although a few Pareto optimal points of FA
scattered far from Pareto front and not uniformly distributed. By fixing the iteration to 50
with lower NPareto and higher NPareto used as in Figures 5.4c and 5.4d, respectively, the
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(a) Itmax = 20 (b) Itmax = 200

(c) NP = 20 (d) NP = 200

Figure 5.2: Analysis of MOIWO for Kursave Problem

same pattern of Figure 5.4b was shown by the FA variants.

Figure 5.5 shows the performance results of IWO variants in solving Constr-Ex prob-
lem. As noted, both multi-objective IWO variants showed good distribution and their Pareto
optimal sets were nearer to the Pareto front. Meanwhile, MIWFO-eSSF showed better dis-
tribution of trade-offs especially in low iterations as shown in Figure 5.5a. However, in low
iteration (Figure 5.5a) and low NPareto shown in Figure 5.5c, IWO failed to achieve good dis-
tribution and performance as most of the points were scattered across the search area and far
from the true Pareto front. As noted in Figure 5.5d, the IWO algorithm managed to improve
the solution as the iteration and NPareto increased.

In Figure 5.6, performance results of both hybrid algorithms are shown. As noted, both
HIWFO and HIWFO-SF algorithms achieved good and uniform distribution of solutions
along the Pareto front. However, for low iterations, as noted in Figure 5.6a, few solutions
of HIWFO-SF scattered far from the Pareto front. Other than that, they produced smooth
Pareto sets which were near to Pareto front for all the cases as shown in Figures 5.6b, 5.6c
and 5.6d.
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(a) Itmax = 20 (b) Itmax = 200

(c) NP = 20 (d) NP = 200

Figure 5.3: Analysis of MO-HIWFO algorithms for Kursave Problem

Based on the study, it can be concluded that the modified algorithms of both proposed FA
variants, HIWFO-SF, HIWFO and MIWO-eSSF for multi-objective problems show better
performance than other algorithms. However, this study also indicated that large NPareto and
suitable iteration value are needed for evaluation of performances of the algorithms. Thus, in
evaluations presented in later sections, the NPareto and iteration will be set to more than 50
for a fair solution standard and quality.
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(a) Itmax = 10 (b) Itmax = 50

(c) NP = 20 (d) NP = 200

Figure 5.4: Analysis of MOFA for Constr-Ex Problem
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(a) Itmax = 10 (b) Itmax = 50

(c) NP = 20 (d) NP = 200

Figure 5.5: Analysis of MOIWO for Constr-Ex Problem
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(a) Itmax = 10 (b) Itmax = 50

(c) NP = 20 (d) NP = 200

Figure 5.6: Analysis of MO-HIWFO algorithms for Constr-Ex Problem
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5.6 Experiments for Multi-objective Optimisation Problems

This section presented performance results of the algorithms in solving multi-objective op-
timisation problems. The parameter setting and algorithms used in the experiments are de-
scribed in the previous sections. The computational time and NFEs achieved by each algo-
rithm are given in Table 5.3. The results assessed by performance metrics are shown in Tables
5.4, 5.5 and 5.6. The Pareto fronts of each algorithms for each problem are illustrated in Fig-
ures 5.7 − 5.14. The performances of the algorithms are evaluated based on the convergence
and diversity of the Pareto optimality by assuming that the Pareto front of each problem is
unknown. The convergence means that the result obtained is near to the true Pareto front. The
diversity refers to the distribution of Pareto optimal solutions found within the range of solu-
tion search. The highlighted column in Table 5.3 designates competitive results in relation to
other results.

Table 5.3: Computational time for multi-objective benchmark problems

Algorithm Problem MO1 MO2 MO3 MO4 MO5 MO6 MO7 MO8
FA NFE 6000 1500 3000 1500 3000 1500 3000 3000

t, (sec) 26.606 4.878 24.841 5.801 9.854 5.416 10.367 22.121
FA-NSF NFE 1500 1500 1500 1500 1500 1500 1500 1500

t, (sec) 6.082 5.953 12.995 5.517 5.322 5.77 5.713 11.198
FA-eSF NFE 3000 1500 1500 1500 1500 1500 3000 1500

t, (sec) 12.384 5.83 13.366 5.445 5.416 5.862 5.609 11.047
IWO NFE 6000 3000 3000 3000 3000 1500 3000 3000

t, (sec) 5.424 4.175 13.952 4.336 4.335 2.533 4.943 8.195
IWO-eSSF NFE 1500 900 3000 1500 3000 1500 3000 3000

t, (sec) 6.428 2.333 14.224 3.649 6.631 3.545 6.898 9.87
MIWO-eSSF NFE 1500 1500 3000 1500 1500 3000 3000 3000

t, (sec) 3.42 3.203 7.258 3.033 2.931 5.677 2.855 10.612
HIWFO NFE 4500 1500 3000 1500 3000 1500 1500 3000

t, (sec) 10.632 3.383 15.918 3.494 6.689 3.447 3.459 12.149
HIWFO-SF NFE 3000 1500 3000 900 1500 1500 3000 3000

t, (sec) 6.979 3.859 7.193 2.027 3.095 3.162 3.079 12.842

Based on Table 5.5, the reading is captured after the Pareto optimal solutions have con-
verged to the Pareto front. MIWO-eSSF and HIWFO-SF achieved lower NFE and time value
as compared with other algorithms. As noted in Table 5.6 and Figures 5.9 − 5.13, HIWFO-
SF achieved smooth Pareto front with fewer NFE and time in problems MO3 – MO7. In
addition, MIWO-eSSF achieved competitively lower NFE and time with smooth Pareto front
in problem MO1 (Figure 5.7), MO3 (Figure 5.7), MO5 (Figure 5.11), and MO7 (Figure 5.13).

With respect to SP metrics shown in Tables 5.4, 5.5 and 5.6, HIWFO-SF achieved com-
petitive results compared with other algorithms. HIWFO-SF achieved competitive results in 4
of the problems (MO1, MO2, MO5 and MO6). FA-eSF, IWO-eSF, MIWFO-SF and HIWFO
also achieved 4 competitive SP results as highlighted in the respective tables. The results
indicate that both algorithms achieved competitive diversification with accuracy in obtaining
solutions near Pareto front.

Based on the MS metric results of the algorithms, FA-eSF achieved significant scores on 5
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problems as highlighted in Table 5.4. HIWFO, HIWFO-SF and both proposed IWO variants
also scored competitively on 4 of the problems as highlighted in their respective tables. The
metric of HV designates that the solution obtained measure the spread-out along the Pareto
front and nearer to the Pareto front. Based on the simulation results of HV metric, FA-
eSF, IWO-eSSF and MIWO-eSSF achieved competitive results in 3 problems. FA-eSF and
MIWO-eSSF on the other hand, achieved better performances on convergence and coverage
of the Pareto sets than the other algorithms.

Table 5.4: Statistical results of the MO-FA variants

FA FA-NSF FA-eSF
SP MS HV SP MS HV SP MS HV

MO1 Ave 0.01 0.13 48.54 0.01 0.13 48.58 4E-02 0.13 48.71
Std Dev 2.24E-03 1.11E-03 2.86E-01 2.07E-03 4.66E-04 2.12E-01 1.16E-03 0.00E+00 5.01E-01

MO2 Ave 0.03 1.00 52.10 0.03 1.00 52.06 0.03 1.00 52.04
Std Dev 1.74E-03 0.00E+00 2.50E-01 2.45E-04 2.24E-05 1.32E-02 1.65E-04 0.00E+00 2.58E-02

MO3 Ave 0.10 0.78 30.24 0.12 0.81 21.48 0.21 0.83 24.23
Std Dev 7.12E-02 1.14E-01 7.55E+00 1.22E-01 1.07E-01 4.63E+00 2.37E-01 1.26E-01 8.30E+00

MO4 Ave 0.04 0.82 48.18 0.04 0.84 49.96 0.04 0.84 49.96
Std Dev 3.01E-03 1.93E-02 3.01E+00 1.04E-04 4.56E-16 2.19E-14 1.84E-04 3.08E-05 2.19E-14

MO5 Ave 0.06 0.59 79.79 0.05 0.59 80.58 0.05 0.59 80.88
Std Dev 1.63E-02 1.02E-03 3.37E+00 8.08E-03 3.17E-04 1.05E+00 1.57E-04 2.28E-16 7.90E-04

MO6 Ave 0.02 0.05 26.02 0.02 0.05 25.46 0.02 0.05 25.46
Std Dev 1.33E-03 1.98E-03 5.17E-01 4.11E-03 2.86E-03 1.54E-01 3.09E-03 1.90E-03 1.10E-01

MO7 Ave 0.12 0.03 125.77 0.15 0.02 129.90 0.21 0.03 129.06
Std Dev 4.17E-02 3.09E-03 6.44E+00 3.44E-02 1.84E-03 4.52E+00 3.48E-02 1.75E-03 4.28E+00

MO8 Ave 7E-03 0.68 18.27 7E-03 0.68 18.05 6E-03 0.68 18.01
Std Dev 1.26E-03 1.02E-02 2.65E-01 1.22E-03 1.05E-02 2.72E-01 1.56E-03 1.15E-02 1.77E-01

Table 5.5: Statistical results of the MO-IWO variants

IWO IWO-eSSF MIWO-eSSF
SP MS HV SP MS HV SP MS HV

MO1 Ave 0.01 0.13 48.58 0.01 0.13 48.64 3E-03 0.13 48.67
Std Dev 2.87E-03 1.43E-03 1.28E+00 3.16E-03 2.08E-03 5.79E-01 4.81E-04 9.73E-05 2.74E-02

MO2 Ave 0.06 0.93 59.88 0.03 1.00 52.08 0.03 1.00 52.08
Std Dev 1.14E-02 3.21E-02 4.12E+00 1.25E-04 0.00E+00 3.78E-03 1.20E-04 0.00E+00 1.26E-02

MO3 Ave 0.85 0.86 27.72 0.32 0.88 25.92 0.37 0.86 28.37
Std Dev 1.98E+00 1.42E-01 1.06E+01 2.74E-01 1.31E-01 6.53E+00 3.61E-01 1.41E-01 8.92E+00

MO4 Ave 0.03 0.70 38.20 0.04 0.84 49.96 0.04 0.84 49.96
Std Dev 3.48E-03 4.22E-02 3.85E+00 0.00E+00 4.56E-16 2.19E-14 4.89E-05 4.56E-16 2.19E-14

MO5 Ave 0.06 0.36 84.69 0.05 0.59 80.88 0.05 0.59 80.89
Std Dev 1.51E-02 2.33E-02 2.90E+00 3.08E-05 6.71E-04 2.24E-05 1.31E-04 2.28E-16 2.45E-02

MO6 Ave 0.03 0.07 37.20 0.02 0.05 25.45 0.03 0.01 26.34
Std Dev 1.21E-02 1.67E-02 2.28E+00 2.40E-04 2.05E-04 6.93E-03 7.61E-05 2.24E-05 6.17E-02

MO7 Ave 0.13 0.02 120.74 0.23 0.03 139.36 0.17 0.03 123.52
Std Dev 3.60E-02 2.62E-03 8.69E+00 2.04E-02 5.03E-04 3.08E+00 3.36E-02 1.59E-03 7.91E+00

MO8 Ave 0.02 0.65 24.37 0.01 0.66 18.43 0.01 0.66 18.39
Std Dev 2.31E-03 2.19E-02 1.27E+00 3.10E-03 1.86E-02 1.16E-01 3.12E-03 1.89E-02 1.42E-01

Figures 5.7 − 5.14 illustrates of the Pareto fronts based on the best Pareto optimal so-
lutions achieved by the algorithms. As noted in Figures 5.7, 5.8, 5.10, 5.11 and 5.12, most
of the algorithms achieved good distribution of solutions and successfully converged to the
Pareto front. However, MIWO-eSSF produced extended distribution as noted in Figure 5.11.
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Table 5.6: Statistical results of the MO-HIWFO and MO-HIWFO-SF

HIWFO HIWFO-SF
SP MS HV SP MS HV

MO1 Ave 0.01 0.13 48.48 3E-03 0.13 48.67
Std Dev 3.50E-03 1.67E-03 8.66E-01 2.24E-05 0.00E+00 2.53E-03

MO2 Ave 0.03 1.00 52.10 0.03 1.00 52.24
Std Dev 1.49E-03 0.00E+00 2.05E-01 1.45E-03 0.00E+00 6.75E-01

MO3 Ave 0.77 0.91 25.77 0.26 0.88 24.21
Std Dev 1.86E+00 1.29E-01 9.76E+00 4.16E-01 1.28E-01 5.99E+00

MO4 Ave 0.04 0.84 49.95 0.04 0.84 49.96
Std Dev 1.57E-03 4.59E-04 5.01E-02 1.82E-04 4.10E-05 2.19E-14

MO5 Ave 0.05 0.59 77.28 0.05 0.59 80.88
Std Dev 3.69E-04 2.28E-16 1.61E+01 1.40E-04 2.28E-16 4.21E-04

MO6 Ave 0.02 0.05 25.50 0.02 0.05 25.45
Std Dev 1.57E-03 1.88E-03 2.44E-01 1.08E-03 5.46E-04 1.23E-02

MO7 Ave 0.11 0.03 108.11 0.14 0.03 112.24
Std Dev 2.97E-02 2.33E-03 6.12E+00 3.90E-02 2.27E-03 6.35E+00

MO8 Ave 0.01 0.66 18.57 0.01 0.66 18.61
Std Dev 2.70E-03 1.94E-02 1.84E-01 4.78E-03 1.78E-02 3.19E-01

MIWO-SF also had good coverage and convergence, as noted in Figures 5.9, 5.12 and 5.13
by maximising the range covered by its Pareto optimum solutions. In all the distributions,
IWO clearly exhibited significant scatter points, as seen in Figures 5.10, 5.11, 5.12 and 5.14.
However, as noted in Figures 5.7 and 5.13, the IWO algorithm achieved good distribution
and solutions near to Pareto front. HIWFO and HIWFO-SF also produced good distribution,
although a few solutions were scattered far from Pareto front, as seen in Figure 5.9 and 5.12.
The solutions with FA-eSF and FA-NSF, on the other hand, were hard to trace into a proper
Pareto front.

Figure 5.7: Solution set of algorithms for SCH 1

From the outcome results of the Pareto front in Figure 5.14 as well as the SP, MS and
HV metrics after 30,000 NFE as shown in Tables 5.4, 5.5 and 5.6, it can be summarized that
the modified multi-objective algorithm with FA-eSF showed superior performance compared
to the other algorithms used. HIWFO-SF and MIWO-eSF also showed competitive results
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Figure 5.8: Solution set of algorithms for ZDT 1

Figure 5.9: Solution set of algorithms for Kursawe

in converging to solutions to the Pareto front. The adaptive SF mechanism helped these
algorithms to improve the solution to converge to the non-dominated solution set during the
optimisation process. It also helped the algorithms to diversify the solution by maximizing
the range covered by the solution and improve the distribution along the Pareto front.
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Figure 5.10: Solution set of algorithms for CTP

Figure 5.11: Solution set of algorithms for Constr

Figure 5.12: Solution set of algorithms for Bihn and Korn
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Figure 5.13: Solution set of algorithms for Chankong and Haimes

Figure 5.14: Solution set of algorithms for four bar place truss
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5.7 Summary

The algorithms were successfully extended to solve multi-objective problems. The focus
of this research was to study and compare the proposed algorithms with their predecessors
in terms of effectiveness in handling multi-objective problems. The algorithms were fur-
ther modified with constraint-handling techniques to deal with constrained problems MO4 –
MO8. Based on the results obtained,

• MIWO-eSSF and HIWFO-SF showed lower value of NFE and time in solving multi-
objective benchmark problems. They also produced good Pareto distribution. How-
ever, based on the performance metrics used, FA-eSF outperformed other algorithms
in converging to the optimal solution on the Pareto front.

• Thus, FA-eSF is potentially a good optimiser for solving multi-objective problems.

The proposed FA and IWO variants enhanced with adaptive SF mechanism have shown
potential in solving multi-objective problems. The above results suggest that the proposed
multi-objective algorithms MIWO-eSSF and HIWFO-SF showed superior performance over
other algorithms. Based on the evaluations carried out, these algorithms could find better
Pareto-optimal solutions as well as managed to improve the coverage and convergence of
the Pareto sets to the Pareto front. This observation was based on comparison with other
algorithms used in the experiments.

These proposed algorithms have shown potential in solving single and multi-objective
optimisation problems. The handling of constraints and various conditions have been tested
and evaluated. The next chapter will discuss the application of the proposed algorithms to
solving four engineering problems. The chapter focuses on system modelling of twin rotor
system (TRS) and controller design of flexible manipulator system (FMS), human arm model
and also lower extremities mechanism.
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Chapter 6

Application to engineering problems

6.1 Introduction

In this chapter, the proposed bio-inspired algorithms are applied to four engineering applica-
tions, namely system modelling of a twin rotor system (TRS), tracking control of a flexible
manipulator system (FMS) and controller design for two exoskeleton applications. The char-
acteristics of the systems used are briefly described. The modelling of TRS and control design
for position tracking control of FMS as well as for exoskeleton have received considerable
attention from many researcher. However, the use of FA and IWO-based algorithms have not
been reported in modelling of TRS and optimisation of control mechanism for application to
FMS and exoskeleton.

For system modelling, linear parametric modelling of the TRS is implemented using the
proposed bio-inspired algorithms. This chapter also presents the application of the algorithms
for optimisation of parameters of proportional-derivation fuzzy logic controller (PD-FLC) for
hub-angle position tracking controller of the FMS and proportional-derivation-integral (PID)
controller for set-point tracking control of human movement for both upper and lower extrem-
ity exoskeleton applications. Comparative assessments of the results among the algorithms
are presented.

The experimental testing hardware platform comprises a personal computer (PC) with
processor CPU Intel (R) Core (TM) i5-2400 with operating systems Window 7 Professional,
frequency of 3.10 GHz and memory installed of 4.00 GB RAM. The program is coded in
MATLAB R2013a. Each problem is tested with the same basic initial parameters for a fair
comparative evaluation as shown in Table 4.4.

6.2 Application to Modelling of Twin Rotor System

In this section, the proposed algorithms are used in modelling a TRS. Developed by Feed-
back Instrument Ltd (Feedback Ltd, 1996), the TRS is a laboratory-scaled platform of a
flexible manoeuvring structure that resembles essential characteristics of an air vehicle. It is
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a simplified version of practical helicopter and has attracted many researchers as ‘test rig’ for
aerodynamic experiments (Alam and Tokhi, 2007; Toha and Tokhi, 2010).

In order for TRS to be controlled and manoeuvred, development of system modelling of
TRS is still a challenge especially in obtaining the highly nonlinear dynamic model of the
system. Aldebrez et al. (2004) have investigated and analysed the potential of modelling
approach of the TRS using non-parametric neural networks (NN) and parametric linear mod-
elling using conventional recursive least squares (RLS) technique. Aldebrez et al. (2004)
have also investigated parametric dynamic modelling of TRS using genetic algorithm (GA)
in comparison with conventional RLS. Alam and Tokhi (2007) have investigated TRS using
particle swarm optimisation (PSO) for both 1 and 2 degrees of freedom (DOF) of the sys-
tem. PSO has also been used in adaptive neuro-fuzzy interface system (ANFIS) modelling
of TRS (Toha and Tokhi, 2009). Moreover, the PSO, RLS and GA have been assessed on a
comparative basis in parametric modelling of the TRS (Toha and Tokhi, 2010). Toha et al.,
(2012) proposed the use of ACO technique for modelling the TRS. Nasir and Tokhi (2014,
2015) combined bacteria foraging algorithm (BFA) and spiral dynamic algorithm and applied
the algorithm to dynamic modelling of TRS. Furthermore, adaptive spiral algorithm has been
employed by Nasir et al. (2016) to modelling of TRS.

6.2.1 System Modelling

The schematic diagram of the TRS is as shown in Figure 6.1 (Toha et al., 2012). The experi-
mental rig of the system have been described in the literature (Ahmad et al., 2001; Nasir and
Tokhi, 2014; Toha and Tokhi, 2010). The investigation here focuses on dynamic modelling
of the system in vertical movement.

Figure 6.1: Schematic diagram of TRS
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The TRS consists of two motors; the main rotor and tail rotor motors placed at both ends
of a beam pivoted on a base of the system allowing it to rotate freely in vertical and horizontal
planes. The rotational speed of each rotor can be controlled by changing the input voltage
to the motor. The articulated joint will allow the beam to move and rotate accordingly. The
system is equipped with a countermeasure device as seen in Figure 6.1, which is used for
balancing the angular momentum. It based on a pendulum counterweight hanging from the
beam. In TRS, the vertical movement of the system is driven by the main rotor, whereas the
tail rotor drives the horizontal movement.

In this experiment, the identification of a dynamic model in linear parametric form is
implemented by using the proposed bio-inspired algorithms. Linear system identification is
implemented to acquire model of the TRS based on input-output data collected from the ac-
tual system. Linear parametric modelling is one of the techniques in system identification to
estimate a linear model of a system (Ljung, 1987). In this experiment, a set of unknown pa-
rameters in a predefined structure are identified using the proposed optimisation algorithms.

In the preliminary task, a random signal with a sampling time, Ts of 0.1 s or sampling
frequency, fs of 10 Hz was used as input in the vertical channel of the system. A total of 3000
actual input–output data was recorded to estimate the vertical channel model of the TRS. The
first 2000 or two-thirds of the data were used in the modelling phase and the remaining 1000
data was used in the validation phase of the estimated model.

The ARX model structure is used as it is a simple structure that offers good performance
with relatively low computational cost in flexible systems (Nasir and Tokhi, 2014; Toha et al.,
2012). The general mathematical expression of the selected model structure can be written
as (Ljung, 1987)

ŷ(t) = −ΣN
i=1aiy(t− i) + ΣM

i=1bju(t− j) + η(t) (6.1)

where ŷ(t) is the predicted output, y(t) represents the measured system output, u(t) is the
measured system input, η(t) is the system noise and ai and bj are the output and input coeffi-
cients, N and M are the number of coefficients for the output and input samples. Assuming
that the actual model of the system is very good, then the measured output is highly depen-
dent on the excited input and previous measured output and thus the noise term in the ARX
expression can be neglected (Toha et al., 2012). From equation (6.1) the simplified equation
predicting output can be written in discrete form as

ŷ(k) = −a1y(k − 1)− · · · − aiy(k −N) + b1u(k − 1) + · · ·+ bju(k −M) (6.2)

Hence, based on equation (6.2), the transfer function used in the experiments is viewed
using the backshift operator, z−1 as

H(z) =
Y (z)

U(z)
=
b0z

M + b1z
M−1 + · · ·+ bM−1z

1 + bM
zN + a1zN−1 + · · ·+ aN−1z1 + aN

(6.3)
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From the discrete transfer function in equation (6.3), the poles can be determined from the
denominator. The stability and accuracy of the predicted model of the system can be eval-
uated by the unknown coefficient of the denominator and numerator. A fourth order model
is employed in this experiment as it also gives better representation of the system dynamics
than a second or sixth order model (Ahmad et al., 2001; Toha et al., 2012). The error, e can
be determine between the actual output, y(t) and the predicted output, ŷ(t) as follows:

e(t) = y(t)− ŷ(t) (6.4)

The error and accuracy have an inverse relationship where if the error value is reduced then
the accuracy of the predicted model is improved. The optimisation algorithms are used to
determine the lowest error reading and the resultant parameters will be the optimised model
parameters. In this process, mean-squared error (MSE) is used as the objective function.

MSE =

√
1

N
ΣN
i=1e

2 (6.5)

where e2 represents the square of error captured between the actual output and predicted
output of the TRS. Figure 6.2 shows the block diagram of the parameters estimation exercise
to determine the parametric model of the system. Optimisation algorithms are used in this

Figure 6.2: Block diagram for parametric modelling with bio-inspired algorithms

research to search for parameter values of the system model such that the objective function
represented by MSE value converges to zero. Hence, the predicted model is formed based on
a fourth-order discrete transfer function, H(z) of the form in equation (6.3). After that, the
obtained predicted model is tested so that it can adequately describe the data set in any model
or algorithm identification (Billings and Zhu, 1994). For this reason, the validation process is
carried out as shown in Figure 6.3. In the validation of the model, correlation tests are carried
out. The auto-correlation test of the residuals and cross-correlation test between the residuals
and the input are performed in the validation test.

The validation process is done to ensure the identified model gives information on the
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Figure 6.3: Block diagram of validation process

quality of the model structure being investigated and also could indicate bias to noise. If the
model is found to be adequate, the residuals or prediction errors e(t) should be unpredictable
from all linear and nonlinear combinations of past inputs and outputs. Based on convergence
and validation tests, the performance of the algorithms used in this research are compared in
modelling of the TRS.

6.2.2 Experiments

This section describes dynamic modelling of vertical channel of the TRS. The basic criteria
used are as follows:

• Maximum number of population, nmax = 30.

• Stopping criterion based on when the cost function, f(x)min < 10−4.

The cost function, f(x) values which represent the MSE values, the number of iterations
and computational time are as shown in Table 6.1. The min and max values represent the min-
imum and maximum error values from the actual signal and predicted output signal produced
in the validation phase.

Table 6.1: The numerical results for the modelling of TRS

Algorithm MSE, f(x) Iteration NFE t(sec) Min Max

FA 8.85E-05 20000 600000 3196.426 -0.0323 0.0166

FA-NSF 9.42E-05 5000 150000 359.8766 -0.0319 0.0143

FA-eSF 8.99E-05 5000 150000 371.4814 -0.0312 0.0145

IWO 4.00E-05 5000 150000 355.6572 -0.0225 0.011

IWO-eSSF 2.37E-05 1000 30000 39.30204 -0.0157 0.0165

MIWO-eSSF 3.73E-05 2000 60000 129.2702 -0.0167 0.0221

HIWFO 1.61E-05 5000 150000 422.7999 -0.0147 0.0099

HIWFO-SF 2.10E-05 5000 150000 583.0652 -0.0161 0.0100

Based on Table 6.1, IWO-eSSF produced lower MSE and NFE values compared with
other algorithms. Furthermore, Figure 6.4 shows the convergence plots of the algorithms for
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up to 5000 iterations. The graphs show that FA, IWO, HIWFO and HIWFO-SF converged fast
in the early stage. However, the FA appeared stuck at a local optimum. However, IWO-eSSF
and MIWO-eSSF showed steady convergence and were able to reach the stopping criterion
faster than other algorithms. They also needed lower number of iterations and NFE as well
as time to converge. The HIWFO and HIWFO-SF algorithms also managed to converge
and produce better fitness values than MIWO-eSSF. However, their computational time was
higher than the other proposed algorithms. FA-NSF and FA-eSF were able to outperform their
predecessor algorithm, however, they took more iterations and NFE to reach the stopping
criterion.

Figure 6.4: Convergence graph for twin rotor system
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6.2.3 Validation Tests

Based on the parameters obtained from the optimisation process, the forth-order discrete
transfer function for the predicted vertical channel model can be derived. The derived ARX
models thus obtained with the algorithms used can be presented as

H(z)FA =
−0.01645z4 + 0.00602z3 − 0.00371z2 + 0.00449

z4 − 1.00000z3 − 0.59903z2 + 0.44862z1 + 0.24220
(6.6)

H(z)FA−NSF =
−0.01251z4 − 0.00156z3 − 0.00413z2 + 0.004690

z4 − 1.00000z3 − 0.501049z2 + 0.26926z1 + 0.32466
(6.7)

H(z)FA−eSF =
−0.01325z4 + 0.00176z3 − 0.00455z2 + 0.04784

z4 − 0.99999z3 − 0.55613z2 + 0.37766z1 + 0.26924
(6.8)

H(z)IWO =
−0.00874z4 + 0.00078z3 + 0.00095z2 + 0.02699

z4 − 1.70101z3 + 0.65977z2 − 0.03937z1 + 0.13707
(6.9)

H(z)IWO−eSSF =
0.00475z4 − 0.00072z3 + 0.00099z2 − 0.00545

z4 − 2.58219z3 + 1.68939z2 + 0.42686z1 − 0.53998
(6.10)

H(z)MIWO−eSSF =
0.00327z4 + 0.00817z3 − 0.002381z2 − 0.01696

z4 − 2.69469z3 + 1.53923z2 + 1.02261z1 − 0.89435
(6.11)

H(z)HIWFO =
0.00157z4 − 0.83555z3 + 0.00241z2 + 0.00196

z4 − 2.15974z3 + 0.83555z2 + 0.90498z1 − 0.57123
(6.12)

H(z)HIWFO−SF =
−0.00189z4 − 0.00212z3 + 0.00287z2 + 0.01374

z4 − 1.88913z3 + 0.65861z2 + 0.49052z1 − 0.22617
(6.13)

The graphical results for the validation tests are shown in Figures 6.5, 6.6 and 6.7. Figure
6.5 shows the plots of actual and predicted outputs based on the models obtained. The corre-
sponding output-error plots are also shown in Figure 6.6. Figure 6.5b show the zoom-in plot
of Figure 6.5a.The ranges of errors for the algorithms are listed in Table 6.1. Based on the
observation in Figure 6.5, it can be stated that all the derived models based on all algorithms
managed to replicate and predict the pitch movement very well. In Figure 6.5b, it is clearly
shown that IWO-eSSF, MIWO-eSSF, HIWFO and HIWFO-SF were able to predict the move-
ment more accurately than the other algorithms. HIWFO and HIWFO-SF also produced low
error range as seen in Table 6.1. The average error accuracy between the actual and predicted
output was around 99.9% for all the algorithms.

The power spectral density plots are shown in Figure 6.7. In the actual system output,
the main resonance mode is found at 0.34 Hz which can be attributed to the main body
dynamics. It is noted in Figure 6.7b, that all the algorithms managed to capture the dynamic
characteristics of the vertical channel. It is observed that the derived model successfully
replicated the actual system dynamics in the low frequency region and had some reading
differences at higher frequency, which are not significant in the operation of the TRS.

The stability of the derived system model produced is analysed by pole-zero diagram as
illustrated in Figure 6.8. It can clearly be observed that all the poles locations for all the
models are within the unit circle in the z-plane. It is further observed that there are some
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(a) The output response

(b) The response (zoomed-in)

Figure 6.5: The actual and predicted outputs

Figure 6.6: The error measured between actual and predicted outputs
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zeros located outside the unit circle. Therefore, it could indicate that the models obtained
were stable with non-minimum phase behaviour.

The results of the correlation validation tests for the models are shown in Figures 6.9, 6.10
and 6.11 where the red tick lines represent the 95% confidence boundary intervals with 1000
data pairs used in the validation phase. It is noted that for models obtained with IWO, IWO-
eSSF, MIWO-eSSF and both hybrid algorithms, HIWFO and HIWFO-SF show that their
correlation functions were within the 95% interval. This implies that the model outputs were
unbiased and the predicted model outputs were acceptable. On the other hand, FA variants
algorithms showed some difficulty in achieving correlation functions within 95% confidence
interval.

(a) The output response

(b) The response (zoomed-in)

Figure 6.7: Power spectrum densities of actual and predicted outputs
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(a) FA (b) FA-NSF

(c) FA-eSF (d) IWO

(e) IWO-eSSF (f) MIWO-eSSF

(g) HIWFO (h) HIWFO-SF

Figure 6.8: Pole-zero diagrams of the obtained models



6.2. Application to Modelling of Twin Rotor System 139

(a) FA: auto-correlation (b) FA: cross-correlation

(c) FA-NSF: auto-correlation (d) FA-NSF: cross-correlation

(e) FA-eSF: auto-correlation (f) FA-eSF: cross-correlation

Figure 6.9: Correlation tests of residuals for FA variants
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(a) IWO: auto-correlation (b) IWO: cross-correlation

(c) IWO-eSSF: auto-correlation (d) IWO-eSSF: cross-correlation

(e) MIWO-eSSF: auto-correlation (f) MIWO-eSSF: cross-correlation

Figure 6.10: Correlation tests of residuals for IWO variants
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(a) HIWFO: auto-correlation (b) HIWFO: cross-correlation

(c) HIWFO-SF: auto-correlation (d) HIWFO-SF: cross-correlation

Figure 6.11: Correlation tests of residuals for HIWFO and HIWFO-SF
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6.3 Application to Control Mechanism of a Flexible Manip-
ulator

In this section, the proposed algorithms are used to determine the desired optimal parameter
values of controller for single-link FMS. The FMS has been widely researched especially in
the area of industrial automation. The manipulators complexity and flexible character have
motivated researchers to look into the potential of FMS in various applications within the
automation industry. Due to the flexible nature of FMS, accurate system model is needed in
order to achieve precision control. Among classical control techniques based on dynamical
model, PID control is found most effective with direct calculation of the torque. However, in
order to derive the inverse model of FMS, the approach requires a time-consuming procedure.
Thus, to avoid such issues artificial intelligence techniques such as neural networks, fuzzy
logic and their combination are employed, and these type of controllers for FMS have drawn
interest of many researchers.

Optimisation techniques can be used in the control systems that have big impact on
achieving the desired characteristics of a control process. Recently, considerable attention
has been paid for bio-inspired optimisation techniques. Various control mechanisms with
bio-inspired algorithms have been proposed for flexible manipulators. These include using
genetic algorithm (Siddique and Tokhi, 2002), particle swarm optimisation (Elkaranshway
et al., 2011; Yatim and Darus, 2014), bacteria foraging algorithm (BFA) (Alavandar et al.,
2010; Nasir and Tokhi, 2012; Supriyono et al., 2010), and hybrid BFA with spiral dynamics
(Nasir and Tokhi, 2015). To the best knowledge of the author, FA and IWO algorithms have
not been applied to control of flexible manipulators.

Therefore, this section presents the development of an FLC mechanism optimised by the
algorithms for a flexible manipulator. The focus of this section is to investigate the control of a
flexible manipulator with an FLC mechanism optimised by the algorithms. The performance
of the proposed algorithms as well as comparison with FA and IWO algorithms in tuning
parameters of a fuzzy logic controller for a flexible manipulator are evaluated.

6.3.1 Control Mechanism of a Single-link Flexible Manipulator

The main parts of the flexible manipulator considered in this work comprise a drive motor,
a flexible arm and measuring devices. A shaft encoder and tachometer placed at the hub
are used to measure the hub-angular position and hub-angular velocity. An accelerometer
placed at end-point of the manipulator is used for measurement of end-point acceleration. A
schematic diagram of the laboratory scale planar-constrained single-link flexible manipulator
(Azad, 1994) used in this work is shown in Figure 6.12. The experimental installation’s
mechanism can be described using Figures 6.12 and 6.13. The POQ and P ′OQ′ represent
the stationary and moving coordinates. τ represents the motor torque applied at the hub
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resulting the angular displacement θ. l is the length of the beam, u is linear displacement of a
point x along the beam, and Mp and Ip represent a payload mass with associated inertia at the
end-point of the manipulator. The manipulator is considered with hub inertia Ih and moment
of inertia Ib. The maximum angular range of the manipulator is [−80, 80] degrees.

Figure 6.12: Schematic diagram of flexible manipulator system

Figure 6.13: Single-link flexible manipulator representation (Azad, 1994)

According to Figure 6.13, the angular position y(x, t) of a point at distance x from the
hub is represented as follows:

y(x, t) = xθ(t) + u(x, t) (6.14)

where θ(t) and u(x, t) denote the rigid body motion and elastic deflection respectively. The
dynamic equation for the single-link flexible manipulator was developed by Azad (1994) and
Poerwanto (1998) and can be formulated as follows:

El
∂4u(x, t)

∂x4
+ ρ

∂2u(x, t)

∂x2
−Ds

∂3u(x, t)

∂x2∂t
= −ρxθ (6.15)

where El ∂
4u(x,t)
∂x4

is a damping moment which is dissipated in flexible manipulator structure.
To solve the mathematical model in equation (6.15) the finite difference method is used. A
state-space model has been derived and represented in simulink based on parameters of the
real experimental setup (Azad, 1994; Poerwanto, 1998). The developed models proposed by
Azad (1994) and Poerwanto (1998) are configured into one model and used in simulating the
system in this work.
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Due to the non-linear character of mathematical model of flexible manipulator system,
it will prove difficult to satisfactorily achieve performance requirements such as accuracy,
speed, quality of transient with classical control techniques. An effective solution can be
obtained by combining the system with fuzzy logic control and an optimisation algorithm.
Optimisation of fuzzy controller in this work is carried out using the bio-inspired approaches
used in this research. In the controller optimisation process, tuning of parameters of scaling
factors and membership functions of each linguistic variable are considered. The flexible
manipulator model and the controller design are implemented and simulated in MATLAB /
Simulink environment.

The research is focused on tracking control for hub-angular position based on pre-determined
set point. The fuzzy control scheme for hub-angular position control is shown in Figure 6.14.
In this FMS, the output variables of end-point acceleration, hub-velocity and hub-angle are
taken into account.

Figure 6.14: The block diagram of PD-fuzzy logic control for single-link flexible manipulator

A zero-order Takagi-Sugeno fuzzy inference system (FIS) is used to design the fuzzy con-
troller. Two inputs and one output PD type fuzzy logic controller is developed as illustrated
in Figure 6.14. Thus, the input to flexible manipulator can be represented as follows:

u(k) = Kpe(k) +Kd∆e(k) (6.16)

where Kp and Kd are proportional and derivative gains, e(k) is error and M e(k) is change-
in-error at sample number, k defined as:

e(k) = θd(k)− θ(k) (6.17)

∆e(k) = e(k)− e(k − 1) (6.18)

where θd(k) is reference input and θ(k) is derived output.

In the membership function of zero-order Sugeno, two inputs (error and change of error)
are represented in the form of linguistic variables and they are characterized via triangular-
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shaped membership functions. There are five linguistic variables for both inputs: negative big
(NB), negative small (NS), zero (ZO), positive small (PS) and positive big (PB). The range
of each input is in [-1, 1]. The optimisation technique is used to estimate these 10 values in
the specified range. Figure 6.15 shows the fuzzy input terms that represent the parameters to
be optimised. The values a1 ... a5, b1 ... b5 will be notated as x1 ... x5, x6 ... x10 respectively.
amax, bmax are large positive values and amin, bmin are large negative values. The membership
functions are set in symmetrical about zeroth axis.

The parameters of membership functions x1 ... x5 are associated with fuzzy error input
and x6 ... x10 fuzzy with change of error input. In the experiment, pre-determined scaling
factors are considered. For the input scaling factors (Kp and Kd), proportional gain, Kp is
set to 0.006, derivation gain, Kd = 0.03. The output fuzzy scaling factor, K is chosen to be
large number and is set in this experiment as K = 500.

(a) error, e(k) (b) change of error, M e(k)

Figure 6.15: The description of fuzzy input term

The fuzzy rule-base represent a correspondence between the particular membership func-
tions of inputs and output. In the experiment, the 5 terms used for each input corresponding
to 25 control rules as shown in Figure 6.16 constitute the fuzzy rule-base containing fuzzy
statements in If-Then form.

Figure 6.16: The fuzzy rule-base
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The zero-order Takagi-Sugeno FIS output is selected in the range [0, 1]. The constant
value for each term is shown in Table 6.2.

Table 6.2: The fuzzy rule-based output

Torque Constant value

NB -1

NS -0.5

ZO 0

PS 0.5

PB 1

The optimisation algorithms are used in this research to minimise the error between the
reference and actual hub-angle displacement. Thus, a cost function to be minimised based on
the error can be formed, and here the integral of absolute error is selected

min
e(k)

f = min

∫
|e(k)|dt (6.19)

where e(k) is the error calculated between the reference and actual output.

6.3.2 Experiments

In the simulations presented here, the flexible manipulator is excited with a bang-bang in-
put. Since membership functions of each input are described symmetrically with respect to
zeroth axis. There were five variables needed to optimise the membership values. Hence,
a ten-dimensional problem with respect to two inputs was considered. For all the tests, the
algorithms used the same population size, n and the maximum number of iterations for a fair
comparative evaluation. The basic criteria thus used are as follows:

• Maximum number of population, nmax = 30.

• Maximum number of iterations, itmax = 30 (NFE = 900).

The resultant cost functions, f(x) values and desired gains are given in Table 6.3.

Based on Table 6.3, the obtained numerical values can be transcribed into membership
function values of the algorithms. Samples of triangular membership function for FA variants
are shown in Figure 6.17. The NB and PB values are infinite and all the other membership
functions are in the range [-1, 1].

Figure 6.18 shows the convergence graph of the cost function value obtained from the
simulation output of the PD fuzzy logic control experiment. As noted, all the proposed al-
gorithms were able to converge to low level as compared to FA and IWO algorithm, except
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Table 6.3: Optimised control parameters of membership functions

Method e(k) ∆e(k) f(x) time, t

FA A1 0.66558 B1 0.91496 7.95E+06 1.08E+04

A2 0.42546 B2 0.87175

A3 0.3944 B3 0.83992

A4 0.34353 B4 0.83261

A5 0.32589 B5 0.48597

FA-NSF A1 0.6211 B1 0.99592 3.91E+06 1.10E+04

A2 0.50674 B2 0.98436

A3 0.40401 B3 0.84515

A4 0.35146 B4 0.79465

A5 0.33532 B5 0.43918

FA-eSF A1 1 B1 1 3.94E+06 1.07E+04

A2 0.4872 B2 0.9473

A3 0.4525 B3 0.8822

A4 0.3837 B4 0.6524

A5 0.3271 B5 0.3984

IWO A1 0.92377 B1 0.99826 8.01E+06 1.96E+04

A2 0.92132 B2 0.98533

A3 0.63919 B3 0.82928

A4 0.47635 B4 0.82503

A5 0.4753 B5 0.60572

IWO-eSSF A1 1 B1 0.95761 3.85E+06 1.77E+04

A2 0.37789 B2 0.91537

A3 0.37443 B3 0.74399

A4 0.35766 B4 0.68861

A5 0.35647 B5 0.48492

MIWO-eSSF A1 0.9894 B1 1 7.90E+06 1.81E+04

A2 0.731 B2 0.9962

A3 0.3621 B3 0.9435

A4 0.3429 B4 0.806

A5 0.3314 B5 0.4242

HIWFO A1 0.80902 B1 0.93263 3.85E+06 1.07E+04

A2 0.36178 B2 0.83276

A3 0.36045 B3 0.73869

A4 0.35841 B4 0.73034

A5 0.35746 B5 0.4841

HIWFO-SF A1 0.8945 B1 1 4.01E+06 1.07E+04

A2 0.85898 B2 1

A3 0.84402 B3 0.84011

A4 0.46384 B4 0.83485

A5 0.46274 B5 0.59213

MIWO-eSSF algorithm. FA-NSF and IWO-eSSF achieved faster convergence and FA had
slower convergence in determining the optimal value point.

In Figure 6.18, the maximum number of iterations was set small but enough to obtain the
optimal solution and avoid time-consuming computations. The derived time domain specifi-
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(a) FA error (b) FA change of error

(c) FA-NSF error (d) FA-NSF change of error

(e) FA-eSF error
(f) FA-eSF change of error

Figure 6.17: Fuzzy error and change of error for FA variants

Figure 6.18: Convergence plot for the FMS

cation results are presented in Table 6.4. As noted FA produced faster rise time but showed
the highest response overshoot value. On the other hand, HIWFO, IWO-eSSF and FA-eSF
produced competitive rise time value and lower overshoot value than other algorithms. They
also managed to obtain shorter settling time.



6.3. Application to Control Mechanism of a Flexible Manipulator 149

(a) FA variants

(b) IWO variants

(c) HIWFO and HIWFO-SF

Figure 6.19: Hub-angle response of the single-link flexible manipulator
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Table 6.4: Results of time domain parameters

Parameters FA FA-NSF FA-eSF IWO IWO-eSSF MIWO-eSSF HIWFO HIWFO-SF

RiseTime, (tr1,s) 0.33 0.34 0.34 0.36 0.35 0.34 0.35 0.36

SettlingTime (ts1,s) 2.76 2.64 2.62 1.66 2.32 2.66 2.31 1.63

Overshoot (PO1,%) 19.28 12.43 9.28 15.36 11.26 14.31 10.63 15.06

RiseTime, (tr2,s) 0.48 0.49 0.49 0.82 0.5 0.49 0.5 0.83

SettlingTime (ts2,s) 6.02 6.34 5.96 5.39 5.64 6.36 5.64 5.4

Overshoot (PO2,%) 9.18 4.37 5.9 1.68 3.28 4.67 3.14 1.16

Undershoot (PU2,%) 99.86 99.59 99.94 100.01 99.84 99.54 99.83 100.03

RiseTime, (tr3,s) 0.34 0.36 0.36 0.38 0.36 0.35 0.36 0.38

SettlingTime (ts3,s) 10.36 10.29 10.22 9.66 9.81 10.29 9.81 9.64

Overshoot (PO3,%) 2.90E+08 3.00E+08 3.30E+10 3.50E+09 1.70E+08 1.10E+11 1.60E+08 4.90E+09

Undershoot (PU3,%) 2.20E+09 4.00E+09 7.80E+11 3.90E+08 2.70E+09 9.90E+09 2.70E+09 5.30E+08

Figure 6.20: The hub-angle response in time range 0.5 - 2.0 seconds
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It can be seen in Figure 6.19 and 6.20 that the proposed algorithms achieved better results
and were able to damp overshoots and undershoots as compared to FA and IWO, although
small oscillations were also present. Figure 6.20 compares responses produced by the pro-
posed algorithms to part first step of the bang-bang input. FA-eSF achieved better result as
it produced decent rise time and lowest response overshoot. IWO-eSSF and HIWFO also
resulted in competitive results.

In this experiment, all of the algorithms were able to determine the membership function
values. Further tuning of scaling gains can result in shorter rise time and lower overshoot
value. Based on the results obtained, the steady state error was zero, thus resulting in desired
steady-state system response.

6.4 Application to Exoskeleton Control of Upper and Lower
Limb Models

Assistive robotic devices are increasingly needed to facilitate mobility and rehabilitation re-
quirements of elderly and disabled (Moubarak et al., 2009). Therefore, research interest in
upper and lower extremities robot assistance has intensified in the academic and industrial
sectors. Exoskeleton is an assistive device designed for mobility and for rehabilitation pur-
pose (Ghassaq et al., 2015). Significant research within academic and industrial sectors in the
area of exoskeleton mobility and robot assistance for medical and rehabilitation applications
(Ali et al., 2015; Ghassaq et al., 2015; Glowinski et al., 2015; Moubarak et al., 2009).

Human arm model of upper extremities and lower limb exoskeleton model for lower ex-
tremities are used in this experiment. The proposed algorithms are used to devise control
mechanisms for lower and upper extremities. A set-point tracking position control using pro-
portional, integral and derivative (PID) control is developed as the control mechanism. The
bio-inspired algorithms are applied to optimise the controller to achieve preferable manoeu-
vrability of the model. Figure 6.21 shows a block diagram of the control mechanism used
in this experiment. Performances of the proposed algorithms with the control strategy are
evaluated and analysed.

6.4.1 Human Arm Movement

In this section, the proposed algorithms are employed for upper limb exoskeleton exercise.
The significant research and development efforts have been placed into upper limb exoskele-
ton such as ARMin III (Nef et al., 2009) and recently NTUH-II (Lin et al., 2014). Most of
the applications of upper limb exoskeletons include rehabilitation such as to help stroke and
disability patients.

A lot of the research work has been reported using bio-inspired algorithms in the design
and development of upper limb exoskeleton. For example, Hassan and Karam (2015) used
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Figure 6.21: PID-based bio-inspired control mechanism of exoskeleton system

PSO in designing the structure of rehabilitation robot arm. Khan et al. (2015) also employed
PSO in determining the control gains of upper limb assist exoskeleton robot. Furthermore,
Bryson et al. (2015) have reported the use of PSO in the study of optimal design of arm
manipulator. Wu et al., (2012) have proposed ABC algorithm to tune the controller of a
rehabilitation robot arm.

Control Design Mechanism

In the research of upper limb exoskeleton, bio-mechanical arm prototype can be developed
in order to represent humanoid upper limb. Bio-mechanical models of the upper limb have
been well described by Moubarak et al. (2009). The model can be used to design controller
for evaluation and diagnosis for rehabilitation purposes. In this experiment, human model is
used as a plant and a controller is developed in order to evaluate the performance of the arm
movement. A human arm model proposed by Ali et al. (2015) is used in this experiment.
The model is part of research in upper limb exoskeleton. The human parameters used in the
human arm model are from Głowiński et al. (2015) and sim-mechanics / MATLAB is used as
the software platform. Figure 6.22 show the human arm model developed by Ali et al. (2015)
and used in this experiment. Human arm movement is as shown in Figure 6.22a. The work
here focuses on the motion of shoulder joint from static to external movement. Elbow joint
is set to move in flexion and extension. The movements of elbow and shoulder are shown in
Figures 6.22b and 6.22b and the actual range of motion of the shoulder and elbow given in
Table 6.5 are as provided by Moubarak et al. (2009).

Table 6.5: The human arm movement

Shoulder rotation Elbow flexion

Range of motion Actual −80o − 100o 0o − 145o

Experiment 0o − 40o 0o − 45o

The bio-mechanical arm model can be used for the design and control of a prototype to
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(a) Human arm model

(b) Elbow flexion movement

(c) Shoulder rotation movement

Figure 6.22: Human arm model and its basic movement

simplify the interaction mechanism between human and exoskeleton (Moubarak et al., 2009).
For example, it can be used to control the forces generated by the upper limb movements dur-
ing assistive rehabilitation exercise. Therefore, this works only focuses on set point tracking
control of the human arm model. PID control is used to reduce the error in positional the
human arm. The controller is developed to control the arm movement so that, it follows the
desired position. The PID control law used in this experiment is

u(t) = kpe(t) + ki

∫ t

0

e(t)dt+ kd
de(t)

dx
(6.20)

where e(t) is the error between actual reading and desired trajectory, kp, ki and kd are gains
of proportional, integral and derivative terms of the controller, respectively. The gains of the
controller will be optimised by the proposed optimisation algorithms to minimise the error,
e(t). The block diagram of the PID controller used in the human arm control is shown in
Figure 6.23.
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Figure 6.23: The PID controller for the human arm system

As seen in Figure 6.23, the control mechanism consists of three parts. PID 1 refers to
the control mechanism of the shoulder, PID 2 is of elbow and PID 3 is of the wrist. El(θ),
Sh(θ) and Wr(θ) represent the reference trajectories elbow, shoulder and wrist, respectively
and yelbow(θ), yshoulder(θ), and ywrist(θ), represent the actual trajectories of the human arm
model. The output of each controller is the produced torque for the respective part.

The bio-inspired algorithms are used to minimise the error of each control loop. The
MSE is used as cost function. The e2 in the MSE represents the square of error between
the reference trajectory and the actual trajectory measured from the human arm model. The
overall cost function of the system is as follows:

fhuman arm(x) = ω1MSE1 + ω2MSE2 + ω3MSE3 (6.21)

where fhumanarm (x) is the cost function, MSE1 is the mean squared error of the shoulder
control loop, MSE2 is for the elbow and MSE3 is for the wrist. The aggregation method
mentioned in the previous chapter is implemented here. Therefore, the weights ω1, ω2 and ω3

are carefully selected so that their sum is equal to 1.

Experiments

Simulation were performed for only one human arm. The algorithms were used to tune and
optimise the controller to determine the best gains for the system. The performance of the
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control system with the used optimisation algorithms is evaluated. The error and torque
characteristics are also monitored.

For all the tests, the algorithms used the same population size, n and the maximum num-
ber of iterations for a fair comparative evaluation. This basic criteria used were thus as
follows:

• Maximum number of population, nmax = 30.

• Maximum number of iterations, itmax = 30 (NFE = 900).

The minimum cost functions, f(x) values achieved with the respective desired gains of
each controller are as shown in Table 6.6.

Table 6.6: Optimised control parameters of the human arm model

FA FA-NSF FA-eSF IWO IWO-eSSF MIWO-eSSF HIWFO HIWFO-SF

f(x) 4.39E-02 3.07E-02 3.45E-02 3.63E-02 4.01E-02 3.20E-02 3.63E-02 3.50E-02

t, (sec) 1.08E+03 1.15E+03 1.05E+03 1.14E+03 1.02E+03 1.08E+03 1.05E+03 1.05E+03

x1 483.321 397.505 308.509 352.29 473.254 496.29 497.451 304.583

x2 484.666 38.042 333.82 355.445 459.841 83.038 77.076 280.149

x3 258.553 499.949 462.484 218.787 22.408 478.965 498.341 372.232

x4 326.401 477.913 488.942 404.934 283.08 335 499.915 500

x5 449.641 378.743 348.925 482.203 27.298 413.828 259.328 241.977

x6 64.304 463.003 496.74 1.084 411.665 442.146 422.946 389.404

x7 308.661 50.335 29.771 179.289 151.019 458.518 71.798 272.79

x8 440.777 128.142 412.867 120.782 110.615 445.179 212.872 191.365

x9 103.62 188.722 314.436 108.247 147.745 141.577 445.296 57.438

Table 6.6 shows the fitness value as well as the respective optimised parameters of control
mechanism for the human arm model. Figure 6.24 shows the convergence plots of the best
fitness values of the algorithms. It is noted that, FA-NSF and MIWO-eSSF achieved the
lowest fitness value as compared to the other algorithms. However, all the algorithm did not
appear to converge further after 15 iterations. The fitness values of the algorithms were also
low to the optimal value point.

In the simulations, the elbow and shoulder joints were actuated individually. In this ex-
periment, wrist was considered static and hence, the wrist movement was followed based on
the elbow movement. Figure 6.25a shows the trajectory based on the movements from Table
6.5. In this case, the tracking was based on the movement of elbow and arm. The starting
point was standing position in normal condition. Both shoulder and elbow were initialised to
zero position. Zero position refers to human in standing where both elbow and shoulder are
in straight downward position. For this experiment, the shoulder moved in outward rotation
while the elbow was raised by moving in flexion and extension condition.

The actual trajectory and the output tracking of the controller optimised by the algorithms
are also compared in Figure 6.25. For all the algorithms, the PID control successfully tracked
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Figure 6.24: The convergence plot of human arm model

(a) Elbow (b) Shoulder

Figure 6.25: The actual and desired movements
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(a) Elbow (b) Shoulder

Figure 6.26: The torque value of the human arm model

(a) Elbow (b) Shoulder

Figure 6.27: Positional errors
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the movement. The torque profiles in Figure 6.26 also shows the same pattern. The movement
was successfully achieved with the range of torque not more than 2.5 Nm for the elbow and
less than 0.07 for the shoulder. The shape of the torque followed the tracking point similar to
that noted by Glowinski (2015). As noted in 6.26, after 2 seconds, the torque decreased as the
elbow begun to extend to normal condition (straight downward) and the shoulder movement
remained in place.

The response errors for elbow and shoulder are shown in Figures 6.27a and 6.27b, respec-
tively. As noted FA-eSF, FA-NSF, MIWO-eSSF, HIWFO and HIWFO-SF achieved low range
of error for elbow. On the other hand, HIWFO-SF, FA-NSF and IWO produced higher range
of response error for shoulder. However, in this case, all the error values were insignificant as
they were less than 0.08. As the range of torque for elbow was higher, the movement of the
arm depended on elbow movement. All the optimisation algorithms successfully produced
desired parameters resulting good control and tracking of the movement. It can be conclude
that the proposed algorithms produced low error in the elbow and could be considered better
than other algorithms.

6.4.2 Lower Limb Exoskeleton Movements

In this section, control mechanisms for lower-extremities exoskeleton assistance are devised
and evaluated with the proposed algorithms. The lower limb exoskeleton system model as
described by Ghassaq et al. (2015) is used in this experiment. The exoskeleton system is
to control and balance both lower limb exoskeleton and humanoid movement in a walking
cycle.

The humanoid model structure has been developed by Ghasaq et al. (2015) in Visual
Nastran 4D (VN4D) environment. The model segmentation parameters have been built in the
humanoid model based on Winter (2009). The evaluations are performed using MATLAB
2012 / Simulink linked with VN4D. In VN4D, simulation of a complex mechanical system
is easily developed (Ghasaq et al., 2015; Shih-Liang et al., 2001). For simulated walking, a
specific trajectory of the knee joint movement is set using Clinical Gait Analysis (CGA) data
with reference to Kirtley (2006). The exoskeleton model is with reference to the Proyecto
Control Montaje (PCM) exoskeleton model developed by Virk et al. (2014) and later simpli-
fied by Miranda-Linares et al. (2015).

The use of bio-inspired algorithms in the design and development of lower limb exoskele-
ton has great potential. The algorithm can be used to find optimal parameters of exoskeleton
design and also to fine tune the control structure used for the exoskeleton. Lui et al. (2012)
used PSO enhanced with simulated annealing to enhance the lower limb exoskeleton design.
Long et al. (2016), used GA to optimise a sliding mode controller in lower limb exoskeleton
application.
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Control design mechanism

In the exoskeleton design, development of control approach play an important role to ensure
the exoskeleton always follow the human movement. The main issue is that either the ex-
oskeleton could support the user’s body weight in the self-balancing control, which make the
exoskeleton system more complex (Ghasaq et al., 2015). Hence, an assistive torque is to be
provided by exoskeleton to enhance the ability of human to walk. Considering, for exam-
ple, an elderly person with exoskeleton for upright walking, the exoskeleton control system
will provide the necessary response for appropriate support on the lower limb for the elderly
person to walk.

In this research, PID control is developed for knee joint movement. The bio-inspired al-
gorithms are used to optimise and minimise the orientation error for the knee joints while the
exoskeleton system is in walking phase. The classical PID control law used is as mentioned
in equation (6.20).

The value of e(t) represents the error between actual and reference trajectory, kp, ki and
kd are proportional, integral and derivative gains of the PID controller, respectively. The
proposed optimisation algorithms are used to fine tune the controller gains to minimise the
error, e(t). The block diagram of the PID control used for the lower limb exoskeleton is
shown in Figure 6.28.

Figure 6.28: Lower limb exoskeleton with PID control

The simulation focused on the trajectory of right and left knee and the ability of the
controller to move the exoskeleton model accordingly. The output of the controller is the
knee torque of the model which is fed to the humanoid. In Figure 6.28, the Error 1 and 2
need to be minimised, and the proposed algorithms as the optimisation tools in the controller.
The performance index of the controller set as the cost function is the MSE as mentioned in
equation (6.5). The value of e2 in the MSE represents the square of error captured between
the reference trajectory and the actual trajectory measured from VN4D simulation output of
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the exoskeleton model. The right knee and left knee joints are controlled based on the cost
function:

fknee(x) = ω1MSE1 + ω2MSE2 (6.22)

where fknee(x) is the cost function, MSE1 is the MSE for the left knee and MSE2 is for the
right knee, ω1 and ω2 are the weights selected for the knee joints.

Experiments

Typical walking comprises repeated gait cycle. In this investigations here, simulations are
performed for one gait cycle. The controller gains are tuned using the proposed optimisa-
tion algorithms as well as FA and IWO algorithms. The performances of the algorithms are
assessed based on the extent of MSE achieved and ability to smoothly follow a pre-defined
trajectory.

For a fair comparative evaluations of the algorithms, the same population size, n and
the maximum number of iterations are used for each. The basic criteria thus used were as
follows:

• Maximum size of population, nmax = 30.

• Maximum number of iterations, itmax = 30 (NFE = 900).

The resulting cost function, f(x) values and desired gains are as given in Table 6.7.

Table 6.7: Optimised control parameters of lower limb exoskeleton

Algorithm f(x) t, (sec) x1 x2 x3 x4 x5 x6

FA 1.19277 1.22E+05 5 2.12 0.19 5 1.4 0.23

FA-NSF 1.1588 2.36E+05 4.14 1.8 0.22 4.79 2.82 0.28

FA-eSF 1.14242 1.99E+05 3.66 1.79 0.23 4.71 1.31 0.25

IWO 1.29199 1.99E+05 3.4 1.24 0.21 2.79 2.22 0.28

IWO-eSSF 1.16381 2.16E+05 4.17 1.79 0.2 4.82 1.7 0.24

MIWO-eSSF 1.18274 2.79E+05 4.17 0.76 0.19 4.44 2.84 0.26

HIWFO 1.1837 3.47E+05 4.1 1.42 0.19 4.76 1.02 0.25

HIWFO-SF 1.19786 4.12E+05 3.84 2.38 0.21 4.25 1.25 0.25

Figure 6.29 shows the convergence graphs of the algorithms. As noted, all the algorithms
were able to converge to the optimal value point. FA-eSF, FA-NSF and IWO-eSSF performed
better than other algorithms. Other algorithms also achieved decent performance, however,
IWO achieved the worst cost function value.

The performance of the controller tuned by the algorithms was also evaluated based on
reference tracking performance for both knee joints. The angle trajectories of the knee joints
were measured by an angle sensor attached to the exoskeleton model provided by VN4D
software. Figure 6.30 shows the achieved angle trajectories of the right and left knee joints.
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Figure 6.29: The convergence plot of algorithms in lower limb exoskeleton control

Figure 6.30 provides comparison of the reference angle trajectory with the actual outputs.
It is noted that all the algorithms seems to have struggled at the early stage of the walking cy-
cle for both left and right knee joints. After 0.4 seconds, all the algorithms manage to achieve
smoother angle response. Figure 6.31 shows zoomed-in actual and desired movements. As
noted in Figure 6.31, the control mechanism with IWO variants and both proposed hybrid
algorithms performed better than other algorithms. As noted in Figures 6.31a and 6.31b, FA
slightly struggled to achieve the reference trajectory and the response fluctuated. The IWO
also struggled more than the proposed IWO variants, as noted in Figures 6.31c and 6.31d.
Although the response due to the proposed algorithms also showed fluctuation, they followed
the angle trajectories and hence, performed better than their respective predecessors.

Table 6.8 shows the minimum and maximum torque profiles of the right and left knee
joints of both humanoid and exoskeleton during walking phase. Samples of the torque profile
are shown in Figure 6.32 for the case of torque profiles for both humanoid and exoskeleton
of the FA-NSF and HIWFO-SF, respectively. Most of the algorithms achieved good results
as they showed that the average torque of exoskeleton was less than 30 Nm. This is because,
according to Low (2011), the maximum assistive torque for exoskeleton in the application to
support knee joint is advised to be lower than 60 Nm.

From Table 6.8, it can concluded that FA-NSF, IWO-eSSF, MIWO-eSSF, HIWFO and
HIWFO-SF resulted lower torque for both right and left knee in the exoskeleton section.
Above all, the HIWFO needed the smallest torque. The simulation result justified that the
HIWFO and HIWFO-SF result in smoother trajectory and lower response fluctuation.
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(a) FA (b) FA

(c) IWO (d) IWO

(e) HIWFO and HIWFO-SF (f) HIWFO and HIWFO-SF

Figure 6.30: Actual and desired movements of right-knee and left-knee



6.4. Application to Exoskeleton Control of Upper and Lower Limb Models 163

(a) FA (b) FA

(c) IWO (d) IWO

(e) HIWFO and HIWFO-SF (f) HIWFO and HIWFO-SF

Figure 6.31: Actual and desired movements of right-knee and left-knee (Zoomed-in)
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Table 6.8: The min-max (minimum and maximum) torque profile of right and left knee joints

Humanoid Exoskeleton

Right Left Right Left

Algorithm min max min max min max min max

FA -21.317 41.858 -14.211 27.905 -32.896 30 -21.93 20

FA-NSF -39.39 44.086 -26.26 29.391 -25.812 32.529 -17.208 21.686

FA-eSF -30.964 39.208 -20.643 26.138 -29.706 33.873 -19.804 22.582

IWO -34.732 40.856 -23.154 27.237 -27.487 33.518 -18.325 22.346

IWO-eSSF -24.355 41.737 -16.236 27.825 -26.01 32.023 -17.34 21.348

MIWO-eSSF -32.845 39.545 -21.896 26.363 -25.541 31.76 -17.027 21.173

HIWFO -30.435 39.216 -20.29 26.144 -24.3 31.584 -16.2 21.056

HIWFO-SF -32.055 37.727 -21.37 25.152 -23.878 32.766 -15.918 21.844

(a) FA-NSF: Elbow (b) FA-NSF: Shoulder

(c) HIWFO-SF: Elbow (d) HIWFO-SF: Shoulder

Figure 6.32: The torque value of lower limb exoskeleton system for FA-NSF and HIWFO-SF
algorithms
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6.5 Summary

In this chapter, the proposed bio-inspired optimisation algorithms have been employed in four
engineering applications. The applications comprises system modelling of a TRS, tracking
control of an FMS and controller design for two exoskeleton applications.

In the case of system modelling, dynamic models of vertical channels for the TRS have
been developed and compared based on the optimisation algorithms. The modelling process
is based on input-output data taken in the preliminary experimental work on the actual system.
The validation of the derived model produced has been assessed for a given new real input
data. The stability and correlation tests have also been carried out to validate the predicted
model. IWO-eSSF, MIWO-eSSF, HIWFO and HIWFO-SF have shown better convergence
value and have outperformed other algorithms. The algorithms have also produced predicted
models that satisfy all the validation tests and the models have been acceptable for the system.

Application of the optimisation algorithms to optimise parameters of a PD fuzzy logic
controller (PD-FLC) for position tracking control of the FMS and PID control for trajectory
tracking of upper and lower extremity exoskeletons. The performance comparison has been
made based on ability of the algorithms to achieve best fitness and convergence to optimal
solution.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this research, a swarm intelligence firefly algorithm (FA) and ecology-based invasive weed
optimisation (IWO) algorithm have been investigated and enhanced to solve global optimi-
sation problems. The research has led to two improved variants of FA algorithm by using
non-linear and exponential adaptation and enhancements with spread factor mechanism. The
two proposed algorithms are referred to as FA-NSF and FA-eSF. Two new variants of inva-
sive weed algorithm, IWO-eSSF and MIWO-eSSF have also been proposed. A new concept,
referred to as normalized seed-spread factor (SSF) has been introduced into the algorithms
to examine the rate of evolution of seeds spreading, and this enhances the search process
by using local knowledge during spatial dispersal process. Furthermore, two new hybrid al-
gorithms (HIWFO and HIWFO-SF) based on hybridization of the invasive weed and firefly
algorithms have been proposed in this work. The hybridization of the algorithms has been
achieved by embedding the FA method into IWO algorithm structure to enhance the local
search capability of IWO complimenting its already very good exploration capability. HI-
WFO has been proposed by combining the FA and IWO algorithms, whereas HIWFO-SF
is an enhanced version of HIWFO with spread factor mechanism placed in the seed distri-
bution movement and randomization of the firefly section of the algorithm. The algorithms
thus formulated have been proposed in an attempt to improve the exploration and exploitation
abilities of the search space to avoid premature convergence and achieve better optimum so-
lution. The proposed algorithms have rigorously tested and evaluated with single-objective,
constrained and multi-objective optimisation problems. The algorithms have further been
tested and evaluated in a set of practical constrained problems and engineering applications.
Comparative assessments of performances of the proposed algorithms with the predecessor
FA and IWO algorithms have been presented.

Performance evaluations of the proposed algorithms on the single-objective optimisation
problems have included unconstrained and constrained problems. In these evaluations, ten
standard benchmark functions and 16 CEC 2014 test functions exemplifying single-objective
unconstrained optimisation problems have been used. The problems have been formulated

167
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with various problem dimensions. The constrained optimisation problems considered have
included CEC 2006 test functions and practical design problems with continuous design vari-
ables. The practical constrained design problems included the pressure vessel design, spring
design, welded beam design, speed reducer and gain design problems. The experimental re-
sults have been analysed based on numerical results, convergence plot, success rate of the
each algorithm and statistical analysis using Kruskal-Wallis tests. The analyses carried out
have shown that the proposed algorithms especially IWO-eSSF, MIWO-eSSF and HIWFO-
SF achieve better performance among the algorithms. Although some of the algorithms have
performed better in different test functions, HIWFO-SF has been shown to be more efficient
among the algorithms. The SF concept has been shown to have significant impact in perfor-
mance of proposed adaptive FA and IWO algorithms and the HIWFO-SF algorithms, as they
have achieved better solution accuracy and faster convergence rate in solving single-objective
optimisation problems.

The proposed single-objective optimisation algorithms have successfully been extended
to solve multi-objective problems. The proposed adaptive FA and IWO variants have shown
potential in finding Pareto-optimal solutions of multi-objective problems. Eight multi-objective
problems consisting of unconstrained and constrained multi-objective problems have been
considered in the evaluations of the algorithms. A practical design problem related to multi-
objective optimisation problem has also been considered. In this research, three performance
measurements, namely hypervolume (HV), spacing (SP) and maximum spread (MS) have
been used in the analysis of results. HV has been used for evaluation of the convergence cri-
teria, whereas SP and MS have been used for evaluation of the coverage criteria. Analyses of
the results have shown that MIWO-eSSF and HIWFO-SF have superior performance among
the algorithms in solving multi-objective optimisation problems, by finding better Pareto-
optimal solutions with improved coverage and convergence of the Pareto sets to the Pareto
front.

The proposed algorithms have been exposed to four engineering applications, namely
system modelling of a twin rotor system (TRS), tracking control of a flexible manipulator
system (FMS) and controller design for upper extremity and lower extremity exoskeleton
applications. For system modelling, the identification of dynamic models in linear parametric
form of the TRS have been carried out using the proposed algorithms. Dynamic models of
vertical channels for the TRS have been developed and a comparative assessment of the
models in replicating the behaviour of the TRS and hence performances of the algorithms
has been carried out. The results have shown that, while all algorithms achieved acceptable
models for the system, IWO-eSSF, MIWO-eSSF, HIWFO and HIWFO-SF algorithms have
better convergence value and superior performance among the algorithms.

The proposed algorithms have further been evaluated in the design of controllers for hub-
angle position tracking of the FMS and for tracking control of upper and lower extremity
exoskeletons. The performance comparison have been made based on the capability of the
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algorithms to achieve best fitness and convergence speed. The results have shown that FA-
NSF, IWO-eSSF and both proposed new hybrid algorithms have faster convergence among
the algorithms. However, HIWFO, IWO-eSSF and FA-eSF outperform other algorithms by
achieving competitive response rise time, faster settling time and lower overshoot.

The application of upper limb exoskeleton is referred to the control of human arm model
with the exoskeleton. The model consists of shoulder, elbow and wrist controlled for cer-
tain arm movement. The results have shown that all the algorithms successfully tuned the
controller to track the human arm movement. Among the algorithms, FA-eSF, FA-NSF,
MIWO-eSSF, HIWFO and HIWFO-SF are considered more competitive. On the other hand,
in the application of the lower limb exoskeleton, the investigations have focused on trajectory
control of right and left knee during walking cycle. The results have shown that all the algo-
rithms have converged to acceptable fitness values, resulting in good reference tracking. The
IWO-eSSF algorithms have achieved competitive convergence values among the algorithms.
IWO-eSSF, HIWFO and HIWFO-SF have performed better in position tracking control and
with lower torque profile for right and left knee joints among the algorithms.

In conclusion, the proposed algorithms have shown to be capable in solving single and
multi-objective optimisation problems of unconstrained and constrained types in various di-
mensions. The algorithms can deal with complex multi-objective unconstrained and con-
strained problems by achieving diverse Pareto optimal solutions. The proposed algorithms
have shown competitive performances relative to one another and have outperformed their
predecessor, FA and IWO algorithms in solving global optimisation problems.

7.2 Future Work

Potential areas of research that could not be carried out due to time constraints, and may be
explored in the future, include;

1. Include knowledge sharing and memory into the research algorithm.

The proposed algorithms mainly aimed to countermeasure the weaknesses of the basic
algorithms. The potential to use information of local knowledge during iteration pro-
cess is still huge to be explored to enhance the original algorithm. So far, IWO and FA
algorithms are memory-less optimisation algorithms and have tendency to get stuck at
local optima in the early iterations. In the nature, fireflies always move in groups and
weeds are often found in more than one plant, the need to implement memory-based
algorithm for these algorithms is one of the future work to be explored. The aim is not
only to maintain the natural life phenomenon in each algorithm, but to help the algo-
rithm to avoid unnecessary pace at any local extreme point in local exploration and be
able to accelerate to the global optimum point at the end of the search process.

2. Apply the research algorithm for advanced control of exoskeleton system
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Developing control system for exoskeleton application is a challenge especially in a
real system. Various types of control system approaches have been developed to con-
trol an exoskeleton device. The development of advanced non-linear control strategies
such as fuzzy type-II control, sliding mode control and computed torque control are es-
sential to handle the non-linear properties of the system. The optimisation algorithms
developed in this research can be applied to design such advanced controller strategies.

3. Application to industrial multi-objective optimisation problems

The proposed algorithms have potential in solving high dimensional single-objective
problems as well as multi-objective optimisation problems. Therefore, the need to im-
prove the algorithm to adapt and meet the real life test environment is one of the poten-
tial future works. Real life industrial applications such as water distribution problems,
smart–grid distribution problems and other real life industrial applications usually have
more than one conflicting objectives that not only affect the solutions, they also affect
the human and environment. The proposed optimisation algorithms can be used to
solution of such complex industrial problems.

4. Implementation of the algorithms in real-time applications

Most of the works presented in the literature relating to FA and IWO algorithms are
reported in simulation tests. Hence, there is some huge potential for the future work
for the algorithms to work in solving real time optimisation problems. Current meth-
ods such as parallel computing, high performance computerization and so on could be
applied to modify the algorithm in adopting and solving real-time problems. The real-
time applications may include robotics, industrial and biomedical engineering prob-
lems.
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ential evolution in constrained numerical optimization: an empirical study. Information
Sciences, 180(22), 4223–4262.

Miranda-Linares, D., Alrezage, G., & Tokhi, M. O. (2015). Control of lower limb exoskeleton
for elderly assistance on basic mobility tasks. 19th International Conference on System
Theory, Control and Computing (ICSTCC), Cheile Gradistei, October 2015, (pp. 441–
446), IEEE.

Mirjalili, S., & Lewis, A. (2015). Novel performance metrics for robust multi-objective
optimization algorithms. Swarm and Evolutionary Computation, 21, 1–23.

Mishra, A., Agarwal, C., Sharma, A., & Bedi, P. (2014). Optimized gray-scale image wa-
termarking using dwt–svd and firefly algorithm. Expert Systems with Applications,
41(17), 7858–7867.

Mohammadi, S., Mozafari, B., Solimani, S., & Niknam, T. (2013). An adaptive modified
firefly optimisation algorithm based on hong’s point estimate method to optimal op-
eration management in a microgrid with consideration of uncertainties. Energy, 51,
339–348.

Moubarak, S., Pham, M. T., Pajdla, T., & Redarce, T. (2009). Design and modeling of
an upper extremity exoskeleton. World Congress on Medical Physics and Biomedical
Engineering, Munich, Germany, September 7-12, 2009, (pp. 476–479), Springer.

Mun, S., & Cho, Y.-H. (2012). Modified harmony search optimization for constrained design
problems. Expert Systems with Applications, 39(1), 419–423.

Naidu, K., Mokhlis, H., Bakar, A., Terzija, V., & Illias, H. A. (2014). Application of firefly al-
gorithm with online wavelet filter in automatic generation control of an interconnected
reheat thermal power system. International Journal of Electrical Power & Energy
Systems, 63, 401–413.

Naidu, Y. R., & Ojha, A. K. (2014). Solving nonlinear constrained optimization problems by
invasive weed optimization using penalty function. 2014 IEEE International Advance
Computing Conference (IACC), Gurgaon, February 2014, (pp. 1326–1330), IEEE.

Naidu, Y. R., & Ojha, A. K. (2015a). A hybrid version of invasive weed optimization with
quadratic approximation. Soft Computing, 19(12), 3581–3598.

Naidu, Y. R., & Ojha, A. K. (2015b). Solving nonlinear constrained optimization problems
using invasive weed optimization. Intelligent Computing, Communication and Devices,
(pp. 127–133), Springer.

Nasir, A., & Tokhi, M. O. (2014). A novel hybrid bacteria-chemotaxis spiral-dynamic algo-
rithm with application to modelling of flexible systems. Engineering Applications of
Artificial Intelligence, 33, 31–46.

Nasir, A., & Tokhi, M. O. (2015). Novel metaheuristic hybrid spiral-dynamic bacteria-
chemotaxis algorithms for global optimisation. Applied Soft Computing, 27, 357–375.



References 181

Nasir, A. N. K., Ismail, R. R., & Tokhi, M. O. (2016). Adaptive spiral dynamics metaheuristic
algorithm for global optimization with application to modelling of a flexible system.
Applied Mathematical Modelling, 40(9–10), 5442–5461.

Nasir, A. N. K., Tokhi, M. O., Ghani, N. M. A., & Ahmad, M. A. (2012). A novel hybrid spi-
ral dynamics bacterial chemotaxis algorithm for global optimization with application
to controller design. 2012 UKACC International Conference on Control (CONTROL),
Cardiff, Wales, September 2012, (pp. 753–758), IEEE.

Nayak, M. R., Krishnanand, K. R., & Rout, P. K. (2011). Optimal reactive power dispatch
based on adaptive invasive weed optimization algorithm. 2011 International Con-
ference on Energy, Automation, and Signal (ICEAS), December 2011, Bhubaneswar,
Odisha, (pp. 1–7), IEEE.

Nef, T., Guidali, M., & Riener, R. (2009). Armin iii–arm therapy exoskeleton with an
ergonomic shoulder actuation. Applied Bionics and Biomechanics, 6(2), 127–142.

Nekouie, N., & Yaghoobi, M. (2016). A new method in multimodal optimization based on
firefly algorithm. Artificial Intelligence Review, 1–21.

Niknam, T., Azizipanah-Abarghooee, R., & Roosta, A. (2012). Reserve constrained dy-
namic economic dispatch: a new fast self-adaptive modified firefly algorithm. Systems
Journal, IEEE, 6(4), 635–646.

Niknam, T., Azizipanah-Abarghooee, R., Roosta, A., & Amiri, B. (2012). A new multi-
objective reserve constrained combined heat and power dynamic economic emission
dispatch. Energy, 42(1), 530–545.

Nikoofard, A. H., Hajimirsadeghi, H., Rahimi-Kian, A., & Lucas, C. (2012). Multiobjective
invasive weed optimization: Application to analysis of pareto improvement models in
electricity markets. Applied Soft Computing, 12(1), 100–112.

Niu, B., Wang, J., & Wang, H. (2015). Bacterial-inspired algorithms for solving constrained
optimization problems. Neurocomputing, 148, 54–62.

Nunes de Castro, L. (2012). Nature-inspired computing design, development, and applica-
tions. IGI Global.

Ojha, A. K., & Naidu, Y. R. (2015). A hybrid cat swarm optimization with invasive weed op-
timization. 2015 International Conference on Electrical, Electronics, Signals, Commu-
nication and Optimization (EESCO), Visakhapatnam, January 2015, (pp. 1–3), IEEE.

Olamaei, J., Moradi, M., & Kaboodi, T. (2013). A new adaptive modified firefly algorithm to
solve optimal capacitor placement problem. 2013 18th Conference on Electrical Power
Distribution Networks (EPDC), Kermanshah, May 2013, (pp. 1–6), IEEE.

Opara, K., & Arabas, J. (2011). Benchmarking procedures for continuous optimization
algorithms. Journal of Telecommunications and Information Technology, 73–80.

Ouyang, A., Peng, X., Wang, Q., Wang, Y., & Truong, T. K. (2016). A parallel improved
iwo algorithm on gpu for solving large scale global optimization problems. Journal of
Intelligent & Fuzzy Systems(Preprint), 1–11. doi: 10.3233/JIFS-169033

Ozsoydan, F. B., & Baykasoglu, A. (2015). A multi-population firefly algorithm for dynamic
optimization problems. , (pp. 1–7), IEEE.

Pahlavani, P., Delavar, M. R., & Frank, A. U. (2012). Using a modified invasive weed
optimization algorithm for a personalized urban multi-criteria path optimization prob-
lem. International Journal of Applied Earth Observation and Geoinformation, 18,
313–328.

Pal, S., Basak, A., & Das, S. (2009). Constrained real parameter optimization with an
ecologically inspired algorithm. World Congress on Nature & Biologically Inspired
Computing (NaBIC 2009), Coimbatore, December 2009, (pp. 1270–1275), IEEE.



182 References

Parsopoulos, K. E., & Vrahatis, M. N. (2002). Particle swarm optimization method in multi-
objective problems. Proceedings of the 2002 ACM Symposium on Applied Computing,
Madrid, Spain, March 2002, (pp. 603–607), ACM.

Passino, K. M. (2002). Biomimicry of bacterial foraging for distributed optimization and
control. IEEE Control Systems, 22(3), 52–67.

Peng, S., Ouyang, A.-J., & Zhang, J. J. (2015). An adaptive invasive weed optimization
algorithm. International Journal of Pattern Recognition and Artificial Intelligence,
29(02), 1559004.

Poerwanto, H. (1998). Dynamic simulation and control of flexible manipulator systems
(Unpublished doctoral dissertation). Department of Automatic Control and Systems
Engineering, The University of Sheffield, UK.

Pourjafari, E., & Mojallali, H. (2012). Solving nonlinear equations systems with a new
approach based on invasive weed optimization algorithm and clustering. Swarm and
Evolutionary Computation, 4, 33–43.

Pouya, A. R., Solimanpur, M., & Rezaee, M. J. (2016). Solving multi-objective portfo-
lio optimization problem using invasive weed optimization. Swarm and Evolutionary
Computation, 28.

Rad, H. S., & Lucas, C. (2007). A recommender system based on invasive weed optimiza-
tion algorithm. 2007 IEEE Congress on Evolutionary Computation (CEC), Singapore,
September 2007, (pp. 4297–4304), IEEE.

Rahmani, A., & MirHassani, S. A. (2014). A hybrid firefly-genetic algorithm for the capaci-
tated facility location problem. Information Sciences, 283, 70–78.

Rajan, A., & Malakar, T. (2015). Optimal reactive power dispatch using hybrid nelder–mead
simplex based firefly algorithm. International Journal of Electrical Power & Energy
Systems, 66, 9–24.

Rakshit, P., Das, P., Konar, A., Nasipuri, M., & Janarthanan, R. (2012). A recurrent fuzzy
neural model of a gene regulatory network for knowledge extraction using invasive
weed and artificial bee colony optimization algorithm. 2012 1st International Confer-
ence on Recent Advances in Information Technology (RAIT), (pp. 385–391), IEEE.

Rangaiah, G. P. (2009). Multi-objective optimization: techniques and applications in chemi-
cal engineering (Vol. 1). World Scientific.

Rao, S. S., & Rao, S. S. (2009). Engineering optimization: theory and practice. John Wiley
& Sons.

Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2009). Gsa: a gravitational search
algorithm. Information Sciences, 179(13), 2232–2248.

Rechenberg, I. (1973). Evolutionsstrategie: Optimierung technischer systeme nach prinzip-
ien der biologischen evolution. Frommann-Holzboog, Stuttgart.

Reddy, N. S., Saketh, M. S., Pal, P., & Dey, R. (2016). Optimal pid controller design of an
inverted pendulum dynamics: A hybrid pole-placement & firefly algorithm approach.
2016 IEEE First International Conference on Control, Measurement and Instrumenta-
tion (CMI), (pp. 305–310), IEEE.

Rizk-Allah, R., Zaki, E. M., & El-Sawy, A. A. (2013). Hybridizing ant colony optimization
with firefly algorithm for unconstrained optimization problems. Applied Mathematics
and Computation, 224, 473–483.

Roeva, O., & Slavov, T. (2012). Firefly algorithm tuning of pid controller for glucose concen-
tration control during e. coli fed-batch cultivation process. Proceedings of the Feder-
ated Conference on Computer Science and Information Systems (FedCSIS), Wroclaw,
September 2012, (pp. 455–462).



References 183

Roshanaei, M., Lucas, C., & Mehrabian, A. R. (2009). Adaptive beamforming using a novel
numerical optimisation algorithm. Microwaves, Antennas & Propagation, IET , 3(5),
765–773.

Roy, G. G., Chakraborty, P., & Das, S. (2010). Designing fractional-order piλdµ controller
using differential harmony search algorithm. International Journal of Bio-Inspired
Computation, 2(5), 303–309.

Roy, G. G., Chakraborty, P., Zhao, S.-Z., Das, S., & Suganthan, P. N. (2010). Artificial forag-
ing weeds for global numerical optimization over continuous spaces. IEEE Congress
on Evolutionary Computation (CEC), Barcelona, Spain, July 2010, (pp. 1–8), IEEE.

Roy, G. G., Das, S., Chakraborty, P., & Suganthan, P. N. (2011). Design of non-uniform
circular antenna arrays using a modified invasive weed optimization algorithm. IEEE
Transactions on Antennas and Propagation, 59(1), 110–118.

Roy, S., Islam, S. M., Das, S., & Ghosh, S. (2013). Multimodal optimization by artificial
weed colonies enhanced with localized group search optimizers. Applied Soft Comput-
ing, 13(1), 27–46.
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Appendix A

Flow-charts of The Algorithms

A1. Firefly Optimisation Algorithm

Randomly place
fireflies, xi(k)
in search space

Input

Light intensity
for each firefly,
I(xi(k), xj(k)..)

If Ij > Ii

Evaluate f(xi)
of each fireflies

Move firefly-i
towards firefly-j

Rank the fireflies

Max iter

Iteration = Iter + 1

Result Stop

No

Yes

Yes

No

Figure A.1: Flow-chart of firefly algorithm
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A2. Invasive Weed Optimisation Algorithm

Randomly place
weeds, xi(k)

in search space

Evaluate f(xi(k))
of each weeds

Input

Reproduction
(Seed/s generation)

Spatial distribution
(Seed/s dispersal)

Max pop?

Weeds (Seeds
and parent

plants) = colony

Competitive
exclusion

Re-evaluate
value f(xi(k))

Max iter

Iteration = Iter + 1

Result

End

No

Yes

Yes

No

Figure A.2: Flow-chart of invasive weed optimisation algorithm



Appendix B

Benchmark Functions

Details of the benchmark problems utilized in the thesis are as follows:

B1 CEC2014 Benchmark Functions
All test functions are minimisation problems and each function has a shift data and is scalable.
For convenience, the search ranges are defined for all test functions as:

Search range : [−100, 100]D

Problem 1 - High conditioned elliptic function

f11(x) =
D∑
i=1

(106)
i−1
D−1x2

i (B.1)

Problem 2 - Bent cigar function

f12(x) = x2
1 + 106

D∑
i=2

x2
i (B.2)

Problem 3 - Discus function

f13(x) = 106x2
1 + 106

D∑
i=2

x2
i (B.3)

Problem 4 - Rosenbrock’s function

f14(x) =
D−1∑
i=1

[100(x2
i − xi+1)

2
+ (xi − 1)2] (B.4)

Problem 5 - Ackley’s function

f15(x) = −20 exp

−0.2

√√√√ 1

D

D∑
i=i

xi2

− exp ( 1

D

D∑
i=1

cos 2πxi

)
+ 20 + e (B.5)
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Problem 6 - Weierstrass function

f16(x) =
D∑
i=1

kmax∑
k=0

[ak cos(2πbk(xi + 0.5))]− [ak cos(2πbk(xi · 0.5))] (B.6)

a = 0.5, b = 3.0, kmax = 20.0

Problem 7 - Griewank’s function

f17(x) =
1

4000

D∑
i=1

xi
2 −

D∏
i=1

cos(
xi√
i
) + 1 (B.7)

Problem 8 - Rastrigin’s function

f18(x) =
D∑
i=1

[xi
2 − 10 cos(2πxi) + 10] (B.8)

Problem 9 - Modified schwefel’s function

f19(x) = 418.9829×D −
D∑
i=1

g(zi) (B.9)

zi = xi + 4.209687462275036 e+ 002

Problem 10 - Katsuura function

f20(x) =
10

D2

D∏
i=1

(1 + i
3∑
j=1

2
|2jxi − round(2jxi)|

2j
)

10
D1.2 − 10

D2
(B.10)

Problem 11 - HappyCat function

f21(x) =

∣∣∣∣∣
D∑
i=1

x2
i −D

∣∣∣∣∣
1/4

+ (0.5
D∑
i=1

x2
i +

D∑
i=1

xi)/D + 0.5 (B.11)

Problem 12 - HGBat function

f22(x) =

∣∣∣∣∣(
D∑
i=1

x2
i )

2 − (
D∑
i=1

xi)
2

∣∣∣∣∣
1/2

+ (0.5
D∑
i=1

x2
i +

D∑
i=1

xi)/D + 0.5 (B.12)

Problem 13 - Expanded griewank’s plus rosenbrock’s function

f13(x) = f7(f4(x1, x2)) + f7(f4(x2, x3)) + ...+ f7(f4(xD−1, xD)) + f7(f4(xD, x1))
(B.13)

Problem 14 - Expanded scaffer’s F6 function

Scaffer′s F6 function : g(x, y) = 0.5 +
(sin2(

√
x2 + y2)− 0.5

(1 + 0.001(x2 + y2))2

f14(x) = g(x1, x2) + g(x2, x3) + ...+ g(xD−1, xD) + g(xD, x1) (B.14)
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B2 Constrained Optimization Problems

The set of well known benchmark functions for global constrained optimization problems
utilised are described below.

Problem g01: Minimize

fg01(x) = (x1 − 2)2 − (x2 − 1)2 (B.15)

Subject to:

h (x) = x1 − 2x2 + 1 = 0

g (x) =
x2

1

4
+ x2

2 − 1 ≤ 0

where −10 ≤ x1 ≤ 10 and −10 ≤ x2 ≤ 10.

Problem g02: Minimize

fg02(x) = 5.35785474x2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141 (B.16)

Subject to:

g1 (x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5 − 92 ≤ 0

g2 (x) = −85.334407− 0.0056858x2x5 − 0.0006262x1x4 + 0.0022053x3x5 ≤ 0

g3 (x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x2
3 − 110 ≤ 0

g4 (x) = −80.51249− 0.0071317x2x5 − 0.0029955x1x2 − 0.0021813x2
3 + 90 ≤ 0

g5 (x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4 − 25 ≤ 0

g6 (x) = −9.300961− 0.0047026x3x5 − 0.0012547x1x3 − 0.0019085x3x4 + 20 ≤ 0

where 78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ x3 ≤ 45, (i = 3, 4, 5).

Problem g03: Minimize

fg03(x) = (x1 − 10)3 − (x2 − 20)3 (B.17)

Subject to:

g1 (x) = −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0

g2 (x) = (x1 − 6)2 − (x2 − 5)2 − 82.81 ≤ 0

where 13 ≤ x1 ≤ 100 and 0 ≤ x2 ≤ 100.

Problem g04: Minimize

fg04(x) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + (x5 − 3)3

2(x6 − 1)2 + 5x2
7 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10− 7)2 + 45 (B.18)
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Subject to:

g1 (x) = −105 + 4x1 + 5x2 − 3x2 − 3x7 + 9x8 ≤ 0

g2 (x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0

g3 (x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0

g4 (x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2
3 − 7x4 − 120 ≤ 0

g5 (x) = 5x2
1 + 8x2(x3 − 6)2 − 2x4 − 40 ≤ 0

g6 (x) = x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0

g7 (x) = 0.5(x1 − 8)2 + 2(x2 − 42 + 3x2
5 − x6 − 30 ≤ 0

g8 (x) = −3x1 + x2 + 12(x9 − 8)2 − 7x10 ≤ 0

where −10 ≤ x1 ≤ 10, (i = 1, ..., 10).

Problem g05: Minimize

f(x) = −sin3(2πx1) sin(2πx2)

x3
1(x1 + x2)

(B.19)

Subject to:

g1 (x) = x2
1 − x2 + 1 ≤ 0

g2 (x) = 1− x1 + (x2 − 4)2 ≤ 0

where 0 ≤ x1 ≤ 100 and 0 ≤ x2 ≤ 10.

Problem g06: Minimize

fg06(x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2

10x6
5 + 7x2

6 + x4
7 − 4x6x7 − 10x6 − 8x7 (B.20)

Subject to:

g1 (x) = −127 + 2x2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 ≤ 0

g2 (x) = −282 + 7x1 + 3x2 + 10x2
3 + x4 − x5 ≤ 0

g3 (x) = −196 + 23x1 + x2
2 + 6x2

6 − 8x7 ≤ 0

g4 (x) = 4x1 + x2
2 − 3x1x2 + 2x2

3 + 5x6 − 11x7 ≤ 0

where −10 ≤ x1 ≤ 10, (i = 1, ..., 7).

Problem g07: Minimize

fg07(x) = x2
1 + (x2 − 1)2 (B.21)

Subject to:

h (x) = x2 − x2
1 = 0

where −1 ≤ x1 ≤ 1 and −1 ≤ x2 ≤ 1.
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Problem g08: Minimize

f(x) = 1000− x2
1 − 2x2

2 − x2
3 − x1x2 − x1x3 (B.22)

Subject to:

h1 (x) = x2
1 + x2

2 + x2
3 − 25 = 0

h2 (x) = 8x1 + 14x2 + 7x3 − 56 = 0

where 0 ≤ x1 ≤ 10, (i = 1, 2, 3).

Problem g09: Minimize

fg09(x) = 0.000117y14 + 0.1365 + 0.00002358y13 + 0.0000001502y16 + 0.00321y12

0.004324y5 + 0.0001
c15

c16

+ 37.48
y2

c12

− 0.0000005843y17 (B.23)

Subject to:

g1 (x) =
0.28

0.72
y5 − y4 ≤ 0

g2 (x) = x3 − 1.5x2 ≤ 0

g3 (x) = 3496
y2

c12

− 21 ≤ 0

g4 (x) = 110.6 + y1 −
62212

c17

≤ 0

g5 (x) = 213.1− y1 ≤ 0

g6 (x) = y1 − 405.23 ≤ 0

g7 (x) = 17.505− y2 ≤ 0

g8 (x) = y2 − 1053.6667 ≤ 0

g9 (x) = 11.275− y3 ≤ 0

g10 (x) = y3 − 35.03 ≤ 0

g11 (x) = 214.228− y4 ≤ 0

g12 (x) = y4 − 665.585 ≤ 0

g13 (x) = 7.458− y5 ≤ 0

g14 (x) = y5 − 584.463 ≤ 0

g15 (x) = 0.961− y6 ≤ 0

g16 (x) = y6 − 265.916 ≤ 0

g17 (x) = 1.612− y7 ≤ 0

g18 (x) = y7 − 7.046 ≤ 0

g19 (x) = 0.146− y8 ≤ 0

g20 (x) = y8 − 0.222 ≤ 0
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g21 (x) = 107.99− y9 ≤ 0

g22 (x) = y9 − 273.366 ≤ 0

g23 (x) = 922.693− y10 ≤ 0

g24 (x) = y10 − 1286.105 ≤ 0

g25 (x) = 926.832− y11 ≤ 0

g26 (x) = y11 − 1444.046 ≤ 0

g27 (x) = 18.766− y16 ≤ 0

g28 (x) = y12 − 537.141 ≤ 0

g29 (x) = 1072.163− y13 ≤ 0

g30 (x) = y13 − 3247.039 ≤ 0

g31 (x) = 8961.448− y14 ≤ 0

g32 (x) = y14 − 26844.086 ≤ 0

g33 (x) = 0.063− y15 ≤ 0

g34 (x) = y15 − 0.386 ≤ 0

g35 (x) = 71084.33− y16 ≤ 0

g36 (x) = −140000 + y16 ≤ 0

g37 (x) = 2802713− y17 ≤ 0

g38 (x) = y17 − 12146108 ≤ 0

where:
y1 = x2 + x3 + 41.6

c1 = 0.024x4 − 4.62

y2 =
12.5

c1

+ 12

c2 = 0.0003535x2
1 + 0.5311x1 + 0.08705y5x1

c3 = 0.052x1 + 78 + 0.002377y2x1

y3 =
c2

c3

y4 = 19y3

c4 = 0.04782(x1 − y3) +
0.1956x1 − y3

2

x2

+ 0.6376y4 + 1.594y3

c5 = 100x2

c6 = x1 − y3 − y4

c7 = 0.950− c4

c5

y5 = c6c7

y6 = x1 − y5 − y4 − y3

c8 = (y5 + y4)0.995

y7 =
c8

y1
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y8 =
c8

3798

c9 = y7 −
0.0663y7

y8

− 0.3153

y9 =
96.82

c9

+ 0.321y1

y10 = 1.29Y5 + 1.258y4 + 2.29y3 + 1.71y6

y11 = 1.71x1 − 0.452y4 + 0.580y3

c10 =
12.3

752.3
c11 = (1.75y2)(0.995x1)

c12 = 0.995y10 + 1998

y12 = c10x1 +
c11

C12

y13 = c12 − 1.75y2

y14 = 3623 + 64.4x2 + 58.4x3 +
146312

y9 + x5

c13 = 0.995y10 + 60.8x2 + 48x4 − 0.1121y14 − 5095

y15 =
y13

c13

y16 = 148000− 3310000y15 + 40y13 − 61y15y13

c14 = 2324y10 − 28740000y2

y17 = 14130000− 1328y10 − 531y11 +
c14

c12

c15 =
y13

y15

− y13

0.52

c16 = 1.104− 0.72y15

c17 = y9 + x5

bounded with 704.4148 ≤ x1 ≤ 906.3855, 68.6 ≤ x2 ≤ 288.88, 0 ≤ x3 ≤ 134.75,
193 ≤ x4 ≤ 287.0966 and 25 ≤ x5 ≤ 84.1988.

Problem g10: Minimize

fg10(x) = −0.5(x1x4 − x2x3 + x3x9 − x5x9 + x5x8 − x6x7) (B.24)

Subject to:

g1 (x) = x2
3 + x2

4 − 1 ≤ 0

g2 (x) = x2
9 − 1 ≤ 0

g3 (x) = x2
5 + x2

6 − 1 ≤ 0

g4 (x) = x2
1 + (x2 − x9)2 − 1 ≤ 0

g5 (x) = (x1 − x5)2 + (x2 − x6)2 − 1 ≤ 0

g6 (x) = (x1 − x7)2 + (x2 − x8)2 − 1 ≤ 0
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g7 (x) = (x3 − x5)2 + (x4 − x6)2 − 1 ≤ 0

g8 (x) = (x3 − x7)2 + (x4 − x8)2 − 1 ≤ 0

g9 (x) = x2
7 + (x8 − x9)2 − 1 ≤ 0

g10 (x) = x2x3 − x1x4 ≤ 0

g11 (x) = −x3x9 ≤ 0

g12 (x) = x5x9 ≤ 0

g13 (x) = x6x7 − x5x8 ≤ 0

where −10 ≤ x1 ≤ 10, (i = 1, ..., 8) and 1 ≤ x9 ≤ 20.

B3 Engineering Optimization Problems
The set of well known engineering problems comprising constrained optimization problems
utilised in the research are described below,

Problem e01: Design of a welded beam problem

fe01(x) = 1.10471x1
2x2 + 0.04811x3x4(14.0 + x2) (B.25)

Subject to:

g1 (x) = τ(x)− τmax ≤ 0

g2 (x) = σ(x)− σmax ≤ 0

g3 (x) = x1 − x4 ≤ 0

g4 (x) = 0.10471x1
2 + 0.04811x3x4(14.0 + x2)− 5.0 ≤ 0

g5 (x) = 0.125− x1 ≤ 0

g6 (x) = δ(x)− δmax ≤ 0

g7 (x) = P − Pc(x) ≤ 0

where:

τ(x) =

√
(τ)2 + 2ττ

x2

2R
+ (τ)2, τ ′ =

P√
2x1x2

, τ ′′ =
MR

J

M = P
(
L+

x2

2

)
, R =

√
x2

2

J = 2

{
√

2x1x2

[
x2

2

12
+

(
x1 + x3

2

)2
]}

σ(x) =
6PL

x4x3
2
, δ(x) =

4PL2

Ex3
3x4

Pc(x) =
4.013E

√
x32x46

36

L2

(
1− x3

2L

√
E

4G

)
P = 6000 lb, L = 14 in, E = 30× 106 psi, G = 12× 106 psi
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Bounded with 0.1 ≤ x1, x4 ≤ 2, 0.1 ≤ x2, x3 ≤ 10

Problem e02: Design of a pressure vessel problem

fe02(x) = 0.6224x1x2 + 1.7781x2x3
2 + 3.1661x1

2x4 + 19.84x1
2x3 (B.26)

Subject to:

g1 (x) = −x1 + 0.0193x3 ≤ 0

g2 (x) = −x2 + 0.00954x3 ≤ 0

g3 (x) = −πx3
2x4 −

4

3
πx3

3 + 1296000 ≤ 0

g4 (x) = x4 − 240 ≤ 0

Bounded with 0 ≤ x1, x2 ≤ 99, 10 ≤ x3, x4 ≤ 200.

Problem e03: Design of a tension / compression spring problem

fe03(x) = (x3 + 2)x2x1
2 (B.27)

Subject to:

g1 (x) = 1− x2
3x3

71785x1
4
≤ 0

g2 (x) =
4x2

2 − x1x2

12566(x2x1
3 − x1

4)
+

1

5108x1
2
− 1 ≤ 0

g3 (x) = 1− 140.45x1

x2
2x3

≤ 0

g4 (x) =
x1 + x2

1.5
− 1 ≤ 0

Bounded with 0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3, 2 ≤ x3 ≤ 15.

Problem e04: Design of a speed reducer problem

fe04(x) = 0.7854x1x2
2(3.3333x3

2 + 14.9334x3 − 43.0934) (B.28)
− 1.508x1(x6

2 + x7
2) + 7.4777(x6

3 + x7
3) + 0.7854(x4x6

2 + x5x7
2)

Subject to:

g1 (x) =
27

x1x2
2x3

− 1 ≤ 0

g2 (x) =
397.5

x1x2
2x3

2
− 1 ≤ 0

g3 (x) =
1.93x4

3

x2x6
4x3

− 1 ≤ 0

g4 (x) =
1.93x5

3

x2x7
4x3

− 1 ≤ 0
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g5 (x) =

√
745

(
x4
x2x3

)2

+ (16.9× 106)

110x3
6

− 1 ≤ 0

g6 (x) =

√
745

(
x5
x2x3

)2

+ (157.5× 106)

85x3
7

− 1 ≤ 0

g7 (x) =
x2x3

40
− 1 ≤ 0

g8 (x) =
5x2

x1

− 1 ≤ 0

g9 (x) =
x1

12x2

− 1 ≤ 0

g10(x) =
1.5x6 + 1.9

x4

− 1 ≤ 0

g11(x) =
1.1x7 + 1.9

x5

− 1 ≤ 0

Bounded with 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3,
7.3 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5.5 ≤ x7 ≤ 5.5.

Problem e05: Design of a gear train problem

fe05(x) = ((1/6.931)− (x3x2/x1x4))2 (B.29)

Subject to: 12 ≤ xi ≤ 60, (i = 1, 2, 3, 4).
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B4 Multi-objective Benchmark Functions
Multi-objective optimisation problems comprising unconstrained, constrained and engineer-
ing design problems considered are described below.

B4.1 Multi-objective Functions for Unconstrained Benchmark Problems

Problem MO1: Schaffer function 1 (SCH1):
Minimize

f1 (x) = x2 (B.30)

f2 (x) = (x− 2)2

where −10 ≤ x1 ≤ 10 and 1 ≤ i ≤ 20.

Problem MO2 Zitzler-Deb-Thiele’s function (ZDT1):
Minimize

f1 (x) = x1 (B.31)

f2 (x) =

(
1 +

9

(n− 1)

n∑
i=2

x1

)
(1−

√
f1/g)

where 0 ≤ x1 ≤ 1 and 1 ≤ i ≤ 20.

Problem MO3 Kursawe function:
Minimize

f1 (x) =
2∑
i=2

(
−10e−0.2

√
x2i +x2i+1

)
(B.32)

f2 (x) =
2∑
i=2

(
|xi|0.8 + 5 sinx3

i

)
where −5 ≤ x1 ≤ 5 and 1 ≤ i ≤ 3.

B4.2 Multi-objective Functions for Constrained Benchmark Problems

Problem MO4: CTP 1 function:
Minimize

f1 (x1, x2) = x1 (B.33)

f2 (x1, x2) = (1 + x2)e

(
x1

1+x2

)

subject to:

g1 (x1, x2) =
f2(x1, x2)

0.858e(−0.541f1(x1,x2))
≥ 1

g2 (x1, x2) =
f2(x1, x2)

0.728e(−0.295f1(x1,x2))
≥ 1
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where −5 ≤ x1, x2 ≤ 1.

Problem MO5: Constr-Ex function:
Minimize

f1 (x1, x2) = x1 (B.34)

f2 (x1, x2) =
1 + x2

x1

subject to:

g1 (x1, x2) = x2 + 9x1 ≥ 6

g1 (x1, x2) = −x2 + 9x1 ≥ 1

where 0.1 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 5.

Problem MO6: Binh and Korn function:
Minimize

f1 (x1, x2) = 4x2
1 + 4x2

2 (B.35)

f2 (x1, x2) = (x1 − 5)2 + (x2 − 5)2

subject to:

g1 (x1, x2) = (x1 − 5)2 + x2
2 ≤ 25

g2 (x1, x2) = (x1 − 8)2 + (x2 + 3)2 ≥ 7.7

where 0 ≤ x1 ≤ 5 and 0 ≤ x2 ≤ 3.

Problem MO7: Changkong and Haimes function:
Minimize

f1 (x1, x2) = 2 + (x1 − 2)2 + (x2 − 1)2 (B.36)

f2 (x1, x2) = 9x1 − (x2 − 1)2

subject to:

g1 (x1, x2) = (x1)2 + x2
2 ≤ 225

g2 (x1, x2) = x1 − 3x2 + 10 ≤ 0

where 20 ≤ x1, x2 ≤ 20.

B4.3 Multi-objective Functions for Engineering Design Problems

Problem MO8: Four bar plane truss problem:
Minimize

f1 (x) = L(2x1 +
√

2x2 +
√
x3 + x4) (B.37)

f2 (x) =
FL

E

(
2

x1

+
2
√

2

x2

− 2
√

2

x3

+
2

x4

)
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subject to:

(F/σ) ≤ x1 ≤ 3(F/σ)
√

2(F/σ) ≤ x2 ≤ 3(F/σ)
√

2(F/σ) ≤ x3 ≤ 3(F/σ)

(F/σ) ≤ x4 ≤ 3(F/σ)

where F = 10kN , E = 2× 105kN
cm2 , L = 200cm, σ = 10kN

cm2 .
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