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Abstract
The model theory of finite and pseudofinite fields as well as the model theory of finite and

pseudofinite groups have been and are thoroughly studied. A close relation has been found

between algebraic and model theoretic properties of pseudofinite fields and psedudofinite

groups.

In this thesis we present results contributing to the beginning of the study of model

theory of finite and pseudofinite rings.

In particular we classify the theory of ultraproducts of finite residue rings in the context

of generalised stability theory. We give sufficient and necessary conditions for the theory

of such ultraproducts to be NIP, simple, NTP2 but not simple nor NIP, or TP2 .

Further, we show that for any fixed positive l ∈ N the class of finite residue rings

{Zp/plZp : p ∈ P} forms an l-dimensional asymptotic class. We discuss related classes

of finite residue rings in the context of R-multidimensional asymptotic classes.

Finally we present a classification of simple and semisimple (in the algebraic sense)

pseudofinite rings, we study NTP2 classes of J-semisimple rings and we discuss NIP

classes of finite rings and ultraproducts of these NIP classes.
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Chapter 1

Introduction

1.1 Brief overview

In this work we deal with finite and pseudofinite rings, so it is natural to start with some

background comments on pseudofinite structures. We first discuss pseudofinite fields and

we use this to introduce pseudofinite structures.

We say M is a pseudofinite field (resp. ring, group) if it is an infinite field (resp. ring,

group) which satisfies every first order sentence which is true in every finite field (resp.

ring, group).

Pseudofinite fields were thoroughly studied in [2] where Ax provided a classification for

these fields. Namely the following was shown.

Theorem 1.1.1 (Ax, [2] ). A field F is pseudofinite if and only if the following holds.

i) F is perfect. I.e. is of characteristic 0 or if it has characteristic p then every element

has a p-th root.

ii) F is quasifinite. This means, within a fixed algebraic closure, for every n there is a

unique field extension of degree n.
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iii) F is pseudo-algebraically closed. That is, each absolutely irreducible variety V

defined over F has an F -rational point.

Ax also showed in [2] that the theory of finite fields is decidable, i.e., there is an

algorithm to decide whether or not a given sentence holds for all finite fields.

Examples of pseudofinite fields are mentioned in 1.3.1 below.

Pseudofinite groups form another class of pseudofinite structures that has been widely

studied and for which a rich theory has been found. Notably we find the main result in

[49] in which Wilson nicely relates simple pseudofinite groups and pseudofinite fields,

see Theorem 1.3.4 in Subsection 1.3.2. Also, as noted in [49] it follows from a result of

F. Point that Chevalley groups over a pseudofinite field are pseudofinite groups.

Another important result from Wilson is the fact that a certain important radical of a

group can be nicely described. Namely in [50] we find Theorem 1.3.6, where Wilson

finds that the soluble radical, see Subsection 1.3.2, can be defined uniformly in finite

groups using a first order formula.

Finally, it is the aim of this work to contribute towards the study of pseudofinite rings.

1.2 Model theory

1.2.1 Preliminaries on model theory

We now present some model theoretic notions that have an important role in the present

work.

Notation throughout the thesis is mostly standard.

Typically we use L to denote a first order language,M to denote an L-structure, and T

for a complete first order theory T . Sometimes we use Th(M) to denote the complete
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first order theory ofM. We always work with a first order structure. Given a first order

language L, a modelM and A ⊆ M we denote by LA the language obtained by adding

to L a constant ca for each element a in A. Then,M is an LA structure by interpreting

each constant ca by a ∈ A. We call a set p(x̄) = {ϕi(x̄)} of LA-formulas consistent with

Th(M, a)a∈A a partial |x̄|-type over A. If the set p(x̄) is maximal we call it a complete

type, and we usually drop the adjective ‘complete’ and call p a type. Further, given an

element b ∈ M we denote by tp(b/A) the set of LA- formulas that are satisfied inM by

the element b.

Also we write x, y, . . . for variables and a, b, . . . for parameters (possibly tuples). If

we want to emphasise that a variable or parameter is a tuple we will write x̄, ȳ or ā, b̄

respectively.

We use T to denote a complete first order theory andM to denote a sufficiently saturated

model of T .

For the sake of completeness we present here a couple of model theoretic notions. For

a more in-depth, thorough treatment the reader may check [46], [33] or the classic text

[22].

Definition 1.2.1. Let I be a linear order and M an L structure. We say a sequence

(ai : i ∈ I) of elements (possibly tuples) inM is indiscernible over A if and only if for

all LA-formulas ϕ(x1, . . . , xn) and all i1 < . . . < in and j1 < . . . < jn from I we have

M |= φ(ai1 , . . . , ain)↔ ϕ(aj1 , . . . , ajn).

Let {(ai,j : j ∈ Ii) : i ∈ S} be a family of indiscernible sequences over A. We say the

sequences are mutually indiscernible over A if and only if for each k ∈ S the sequence

(ak,j : j ∈ Ik) is indiscernible over A ∪
( ⋃
i 6=k
{(ai,j : j ∈ Ii)}

)
.

Definition 1.2.2. 1. We say a formula ϕ(x, a) divides over a set B of parameters if

there is an indiscernible sequence (ai : i ∈ ω) of realisations of tp(a/B) such that



Chapter 1. Introduction 4

{ϕ(x, ai) : i ∈ ω} is k-inconsistent for some k ∈ N, i.e. any collection of k many

formulas from {ϕ(x, ai) : i ∈ ω} is inconsistent.

2. We say a formula ϕ(x, a) forks over B if and only if it implies a disjunction
n∨
1

ϕl(x, al) of formulas ϕl(x, al) each of them dividing over B.

Definition 1.2.3. We will say that a first order structureM in the languageL has quantifier

elimination if and only if any L-formula φ is equivalent in M to a formula ψ without

quantifiers, cf. [46].

For more on quantifier elimination see [22] or [46].

1.2.2 Ultraproducts, pseudofinite structures

As usual, given a set I of indices, a family {Mi : i ∈ I} of first order L-structures and U

an ultrafilter on I , we define an equivalence relation ∼ between infinite sequences in the

cartesian product
∏
i∈I
Mi where (ai) ∼ (bi) if and only if {i ∈ I : ai = bi} ∈ U . Then we

denote by either
∏
UMi or

∏
i∈I
Mi�U the set of equivalence classes from the equivalence

relation ∼. We often write [ai]U for an element of
∏
i∈I
Mi�U ; we may write [ai] if the

ultrafilter U is clear from the context. Furthermore
∏
i∈I
Mi�U is itself an L-structure,

interpreting constants c ∈ L as [cMi ]U , making f([ti]U) = [f(ti)]U and defining for each

relation R in L that R([t1,i]U , . . . , [tn,i]U) holds in
∏
UMi if and only if

{i ∈ I :Mi |= R(t1,i, . . . , tn,i)} ∈ U .

We call
∏
UMi the ultraproduct of the structuresMi with respect to the ultrafilter U .

We say an ultraproduct is non-principal if the ultrafilter considered contains no finite set.

We will write U , V ,W , . . . for ultrafilters, and U , V , W , . . . for elements of ultrafilters.

Unless specified otherwise, “U is an ultrafilter” means U is a non-principal ultrafilter. For
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V an element in a non-principal ultrafilter U we call {V ∩ U : U ∈ U} the induced

ultrafilter on V by U .

The following result relates the first order behaviour of the ultraproduct to the behaviour

of the factors.

Theorem 1.2.4 (Łoś’s theorem). If {Mi : i ∈ I} is a family of L-structures, ϕ is an

L-formula and [ai]U ∈
∏
i∈I
Mi�U then

∏
i∈I

Mi�U |= ϕ([ai]U) if and only if {i ∈ I :Mi |= ϕ(ai)} ∈ U .

Further details about ultraproducts can be found in [5].

We now connect the notion of pseudofiniteness and the construction of ultraproducts.

Namely a structure M is pseudofinite if and only if it is elementarily equivalent to a

non-principal ultraproduct of finite structures. See Theorem 1.3.2 in Subsection 1.3.1.

A more in depth survey about pseudofinite structures can be found in [29].

1.2.3 Stable theories

We now present a very brief overview of the generalised stability theory concepts we will

use in the course of the thesis. For more about these topics the reader can check [46] or

[45].

It can be argued that stability theory started with the work of Morley in [36] when he

studied the number of possible models of a given cardinality for a given theory, proving

the following.

Theorem 1.2.5 (Morley [36]). Let κ be an uncountable cardinal. If a theory in a countable

language L is κ-categorical i.e., there is only one, up to isomorphism, model of size κ then

it is λ-categorical for all uncountable λ.
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Morley’s result gives a strong result concerning theories with very few models, up to

isomorphism, of an uncountable cardinality.

Later work of Shelah and others gave an appropriate context for distinguishing when

theories have few or plenty of models of a given cardinality. It is in this context that the

next definition was first considered.

The notion of stable theory was introduced in [42]. These theories provide a nice context

for talking about the possible number of distinct models of a given cardinality of a theory.

Definition 1.2.6. We say an L-formula ϕ(x, y) has the order property inM if there are

sequences (ai : i ∈ ω) and (bj : j ∈ ω) of elements (possibly tuples) in M such that

ϕ(ai, bj) holds inM if and only if i < j.

We say a theory T is stable if no formula has the order property in any model of T . We

say the structureM is stable if Th(M) is stable.

Theorem 1.2.7. An unstable theory over a countable language has 2λ models of cardinality

λ for any uncountable cardinal λ.

For example algebraically closed fields (ACF ) are stable.

1.2.4 NIP theories.

We follow the notational conventions of 1.2.1.

Definition 1.2.8. An L-formula ϕ(x, y) has the independence property for T if there are

(ai : i ∈ N) and (bJ : J ⊆ N) inM such thatM |= ϕ(ai, bJ) if and only if i ∈ J .

We say that a theory T is NIP if no formula satisfies the independence property in any

model of T . Moreover we say a structureM is NIP if Th(M) is NIP.

The useful notion of dp-rank is defined as follows in [45].
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Consider p to be a partial type, and A to be a set of parameters.

Definition 1.2.9 ( Definition 4.12, [45] ). We say a (partial) type p has dp-rank less than

α in symbols dp-rk(p/A) < α, if for every family (It : t < α) of mutually indiscernible

sequences over A and b |= p, there is t < α such that It is Ab-indiscernible.

We say a partial type has dp-rank equal to α, in symbols dp-rk(p/A) = α, if dp-rk(p/A) <

α+ but is not the case that dp-rk(p/A) < α.

Given a ∈M we write dp-rk(a/A) for dp-rk(tp(a)/A).

When there is no ambiguity we will write dp-rk(p) for dp-rk(p/A)

Example 1.2.10. In [3] it is shown that for any prime p the p-adic numbers Qp has NIP

theory. Furthermore in [16] it is shown that it is dp-minimal, i.e. has dp-rank 1. In

Section 6 of [16] the authors prove that every sufficiently saturated elementary extension

of Qp is dp-minimal.

For further introduction and overview of NIP theories the reader can check [45].

1.2.5 NSOP theories

The notion of NSOP theory was first introduced in [43].

Definition 1.2.11. An L-formula ϕ(x̄, ȳ) has the strict order property, SOP (with respect

to a complete theory T ), if there are (āi : i < ω) inM such that

M |= ∃x̄(ϕ(x̄, āj) ∧ ¬ϕ(x̄, āi))

if and only if i < j. We say that a theory T is NSOP if no formula has SOP in any model

of T .

Equivalently, a theory is NSOP if for each modelM, there is no definable partial order

with arbitrarily long chains.
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As before we say a structureM is NSOP if Th(M) is NSOP.

Example 1.2.12. It can be found in [11] that triangle-free homogeneous universal graphs

are NSOP. More generally Kn-free homogeneous universal graphs are NSOP.

We can now mention the following well-known characterisation of stability.

Theorem 1.2.13 (Theorem 4.1 [43] or Theorem 2.67 from [45]). A theory is stable if and

only if is both NIP and NSOP.

1.2.6 Simple theories

Simple theories are a generalisation of stable theories in the context of the NSOP theories.

Definition 1.2.14. We say that an L-formula ψ(x̄, ȳ) has the tree property for T if there

are (āη : η ∈ ω<ω) inM and some k ≥ 2 such that:

a) For every δ ∈ ω<ω the set of formulas {ψ(x̄, āδ_l) : l ∈ ω} is k-inconsistent;

b) If γ ∈ ωω then the set {ψ(x̄, āγ�n) : n ∈ ω} is consistent.

A theory is said to be simple if no formula has the tree property.

Alternatively, a theory is simple if and only if for any type p ∈ Sn(B) over B there is a

set A ⊆ B with |A| < |T | such that p does not divide over A.

Furthermore we say a simple theory is supersimple if and only if for every type p ∈

Sn(B) we can find a finite A ⊆ B such that p does not fork (divide) over A.

We say a structureM is simple (resp. supersimple) if Th(M) is simple (resp. supersimple).

Remark 1.2.15. It is straightforward to check that any simple theory is NSOP.

We now present the definition of SU -rank. For more details see Chapter 13 from [7].
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Definition 1.2.16 (Definition 13.5, [7]). Let p be a complete type over A in a modelM

of a theory T . We define SU(p) the SU-rank of p recursively for ordinals.

1. SU(p) ≥ 0.

2. SU(p) ≥ α + 1, for an ordinal α, if and only if there is a forking extension q of p

such that SU(q) ≥ α.

3. SU(p) ≥ λ, for a limit ordinal λ, if and only if SU(p) ≥ β for all β < λ.

We say SU(p) = α if SU(p) ≥ α but SU(p) � α + 1. If SU(p) ≥ α for every ordinal α

we write SU(p) =∞.

An example which is quite relevant for this work is the following.

Example 1.2.17. Pseudofinite fields are simple, in fact, supersimple of SU-rank 1, cf.

[48].

When we say that simple theories are a generalisation of stable theories we mean that

the non-forking relation behaves rather nicely. The reader can refer to [25] or [48].

1.2.7 NTP2 theories.

The notion of an NTP2 theory was first introduced in [44] as a common generalisation

of both NIP and simple theories. Further discussion and advances in the study of these

theories appear in [12] and [11].

Definition 1.2.18. We say that an L-formula ϕ(x̄, ȳ) has the tree property of the second

kind, in short TP2 , if there are {b̄i,j : i, j < ω} inM such that

(1) The set {ϕ(x̄, b̄i,j) : j ∈ ω} is 2-inconsistent for all i ∈ ω.
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(2) For all ξ ∈ ωω the set {ϕ(x̄, b̄i,ξ(i)) : i ∈ ω} is consistent.

We say a theory T is NTP2, or does not have TP2 , if no formula satisfies TP2 .

We say a structureM is NTP2 if Th(M) is NTP2 .

The definition of burden can be found in [11] Definition 2.1.

Definition 1.2.19 (Definition 2.1, [11]). An inp-pattern in a partial type p(x̄) of depth κ

consists of an array (āα,i : α < κ, i < ω), formulas ϕα(x̄, ȳα) and kα < ω such that:

i) The collection {ϕα(x̄, āα,i) : i < ω} is kα-inconsistent, for each α < κ,

ii) The set {ϕα(x̄, āα,f(α)) : α < κ} ∪ p(x̄) is consistent for any f ∈ ωκ.

The burden of p(x̄), denoted by bdn(p), is the supremum of the depths of all inp-patterns

in p(x).

Hence if a formula ϕ has TP2 , then bdn(ϕ) ≥ ω.

The next example is quite relevant for the present work.

Example 1.2.20 (Example 7.7, [11]). Any (infinite) ultraproduct of fields of the form Qp

is an NTP2 structure.

As mentioned earlier we have the following remark.

Remark 1.2.21. NTP2 theories are a common generalisation of NIP and simple theories,

that is, any simple and any NIP theory is NTP2 .

This follows from the fact that in a complete theory T , the existence of a formula with the

tree property of the second kind implies the existence of a formula with the tree property

and the existence of a formula with the independence property.

More examples of NTP2 theories are mentioned in [11], [35] and [14].
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1.2.8 Asymptotic classes

We present here the following definition from [17], which extends a definition from [30].

This will be the basis for Chapter 3 below.

Definition 1.2.22. Let L be a first order language, and N ∈ ω. We say a class C of finite

structures is an N -dimensional asymptotic class if for every L-formula ϕ(x̄, ȳ), where

the length of x̄ is n and the length of ȳ is m, the following hold.

1. There is a finite set of pairs D ⊆ ({0, . . . , Nn} × R>0) ∪ {(0, 0)} and a partition

{Φδ,µ : (δµ) ∈ D} of the set {(M, ā) : M ∈ C, ā ∈ Mm} such that for each

(δ, µ) ∈ D ∣∣|ϕ(Mn, ā)| − µ|M|
δ
N

∣∣ = o(|M|
δ
N )

for all (M, ā) ∈ Φ(δ,µ) as |M| → ∞.

2. Moreover, each element Φ(δ,µ) of the partition is definable. This means, for each

(δ, µ) there is a formula ψ(δ,µ)(ȳ) such that

M |= ψ(δ,µ)(ā) if and only if (M, ā) ∈ Φ(δ,µ).

Here we consider formulas ϕ(x̄, ȳ) on |x̄| free variables. In fact this is equivalent to the

above conditions for formulas ϕ(x, ȳ) with just one free variable. Namely the following

is true.

Lemma 1.2.23 ([17], Lemma 2.2). Suppose C is a class of finite structures which satisfies

Definition 1.2.22 for formulas ϕ(x̄, ȳ) where |x̄| = 1. Then C is an N -dimensional

asymptotic class.

The seminal example is the main theorem from [9], where the authors proved the following.

Theorem 1.2.24 (Chatzidakis, van den Dries, Macintyre [9]). Let ϕ(x̄, ȳ) be a formula in

the language Lrings, with l(x̄) = n and l(ȳ) = m. Then there is a positive constant C, a
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finite setD of pairs (δ, µ) with δ ∈ {0, . . . , n} and µ a non-negative rational number, such

that for each finite field Fq and ā ∈ Fmq ,
∣∣|ϕ(Fnq , ā)|−µqδ

∣∣ ≤ Cqδ−
1
2 for some (δ, µ) ∈ D.

Furthermore, for each (δ, µ) ∈ D, there is a formula ϕ(δ,µ)(ȳ) which defines in each

finite field Fq the set of tuples ā such that
∣∣|ϕ(Fnq , ā)| − µqδ

∣∣ ≤ Cqδ−
1
2 .

In the asymptotic classes terminology, this means that the class of finite fields is a 1-

dimensional asymptotic class.

It is worth mentioning that in the original presentation of 1-dimensional asymptotic

classes in [30], there is a more explicit error term much in the spirit of that one given

in 1.2.24. More examples and proper development of the theory of asymptotic classes is

done in [30] and [17].

Example 1.2.25. • Finite cyclic groups form a 1-dimensional asymptotic class. See

[30].

• Fix a prime p, and integers m,n co-primes. Put

Cm,n,p := {(Fpkn+m , F robk) : k ∈ N}.

Here (Fpkn+m , F robk) is the difference field where Frob denotes the Frobenius

automorphism mapping x 7→ xp. Then, the classCm,n,p is a 1-dimensional asymptotic

class. See [41] or Theorem 5.8 from [18].

One relation between N-dimensional asymptotic classes and the generalised stability

notion of simplicity is given in [17], Corollary 2.6.

Proposition 1.2.26 (Corollary 2.6, [17]). Any infinite ultraproduct of elements in an N -

dimensional asymptotic class has supersimple SU-rank ≤ N theory.

The more general notion of multidimensional asymptotic class is studied by S. Anscombe,

D. Macpherson, C. Steinhorn and D. Wolf in [1] (in preparation). Multidimensional
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asymptotic classes extend the notion of N-dimensional asymptotic class, and deal with

classes of finite structures where there is a strong uniformity in the asymptotic cardinalities

of definable sets, in terms of the cardinalities of certain sorts or other features, which may

vary freely.

We mention briefly an example, from [20], of a class that exhibits this behaviour.

For this we consider the two sorted language L′, where we include the vector space sort

V including a binary function symbol “ u”, a unary function symbol “−̇”, and a constant

symbol “0̇”; the field sort K in Lrings; and a function symbol for scalar multiplication

K × V → V . Form the language Lvs by adding to L′, for each n > 0, an n-ary relation

symbol θn. In a k-vector space V interpret θn(v1, . . . , vn) as saying the vectors v1, . . . , vn

are linearly independent.

Theorem 1.2.27 (Theorem 4.1, [20]). Let C be the class of all Lvs structures (V, F )

where F is a finite field and V is a finite-dimensional F -vector space. Let ϕ(x̄, ȳ) be a

formula, where the length of x̄ is r and the length of ȳ is s, and let V,F be indeterminates.

Then there is a finite set E of polynomials p(V,F) ∈ Q[V,F], such that for every

M = (V, F ) ∈ C and every ā ∈Ms, there is some p(V,F) ∈ E such that

∣∣|ϕ(Mr, ā)| − p(|V |, |F |)
∣∣ = o(p(|V |, |F |)).

Furthermore, for every p ∈ E there is a formula ψp(ȳ) such that ifM is sufficiently large

and ā ∈Ms thenM |= ψp(ā) if and only if
∣∣|ϕ(Mr, ā)| − p(|V |, |F |)

∣∣ = o(p(|V |, |F |)).

1.3 Algebra

1.3.1 Fields and pseudofinite fields

We denote by Fq the finite field with q elements. Also we denote by Falg the algebraic

closure of a field F .
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Example 1.3.1. Some examples of pseudofinite fields include the following.

• Ultraproduct of distinct finite fields, cf. [2].

• Infinite subfield of Falgp generated by Fp2 ,Fp3 ,Fp5 , . . . for all prime powers of p. Cf.

the remark before Theorem 1 in [8].

We will first repeat that pseudofinite fields have supersimple theory of rank 1. This

follows e.g. from the main theorem and Proposition 4.11 of [9] (or from Theorem 1.2.24

and Proposition 1.2.26 above).

We can now connect the notion of pseudofinite and infinite ultraproducts.

Theorem 1.3.2. A field (resp. group, ring) is pseudofinite if and only if it is elementarily

equivalent to an infinite ultraproduct of finite fields (resp. groups, rings).

1.3.2 Groups and pseudofinite groups

We now briefly mention some classical group-theoretic notions.

Definition 1.3.3. We say a group is simple if it has no proper non-trivial normal subgroups.

Theorem 1.3.4 (Wilson [49]). A pseudofinite group G is simple (in the group theoretic

sense) if and only if G is elementarily equivalent to a Chevalley group over a pseudofinite

field.

Furthermore by work of Ryten [41] the following is true: a pseudofinite group G is

simple if and only if it is isomorphic to a simple group of (possibly twisted) Lie type over

a pseudofinite field.

Definition 1.3.5. We say a group G is soluble if there exists n ∈ N such that the n-th

derived subgroup is trivial, i.e. G(n) = {eG}.
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By the soluble radical of G, in symbols R(G), we mean the largest soluble normal

subgroup of G.

Theorem 1.3.6 (Wilson [50]). The soluble radical of a group is uniformly first order

definable in finite groups; that is, there is a formula ϕ(x) such that for any finite group G,

the soluble radical R(G) equals {x ∈ G : ϕ(x) holds}.

Below we use the following terminology.

Definition 1.3.7. We say a group G is nilpotent-by-finite (resp. soluble-by-finite) if and

only if there exists a nilpotent (resp. soluble) normal subgroup N such that |G : N | is

finite.

Definition 1.3.8. We call a class C an NIP (resp. simple, stable, NTP2 ) class of groups

(rings) if all non-principal ultraproducts of elements of C are NIP (resp. simple, stable,

NTP2 ).

Further results about stable and NIP classes of groups can be found in [31] and [32]

respectively. Here we mention a couple of these results.

H. D. Macpherson and K. Tent showed in [31] that if G is a pseudofinite group with

stable theory then it has a definable soluble normal subgroup of finite index.

Theorem 1.3.9 ([31]). Stable pseudofinite groups are soluble-by-finite.

Later, Macpherson and Tent proved a generalisation of the previous result in [32]. Namely

they showed

Theorem 1.3.10 (Theorem 1.1 , [32]). Suppose that G is such that: (1) There is a natural

number n = n(G) such that there do not exists F1, . . . , Fn+1 ⊂ G with CG(F1) < . . . <

CG(Fn+1), and (2) G is pseudofinite with NIP theory. Then G has a soluble definable

normal subgroup of finite index. Hence G is soluble-by-finite.
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In particular, (Corollary 1.4, [32]) pseudofinite groups with NIP rosy theory are soluble-

by-finite.

Furthermore it is shown (in [32], Theorem 3.1) that condition (1) is necessary.

Also they show the following.

Proposition 1.3.11 (Proposition 1.2 of [32]). If C is a NIP class of finite groups, then

there is d = d(C) ∈ N such that |G : R(G)| ≤ d for every G ∈ C.

Combining results from J.S. Wilson, E. Hrushovski and M. Ryten, pseudofinite groups

which are simple in the sense of group theory have supersimple finite rank theory.

In [13] the authors investigate groups and fields with NTP2 . In particular they prove the

following lemma.

Lemma 1.3.12. Let T be NTP2 ,G a definable group inM |= T , and (Hi)i∈ω a uniformly

definable family of normal subgroups of G, with Hi = ϕ(x, ai). Let H =
⋂
i∈ω
Hi, and

H6=j =
⋂

i∈ω\{j}
Hi. Then there is some i∗ ∈ ω such that, [H6=i∗ , H] is finite.

Finally, we mention Remark 4.2.10 from [29]. Using Theorem 4.2.9 in [29] H. D.

Macpherson shows that if G is a pseudofinite group with NTP2 theory then G has a

definable proper normal subgroup H such that the quotient G�H has a definable normal

subgroup K ≤ G�H such that K is a direct product of finitely many definable finite or

pseudofinite simple groups.

1.3.3 Simple, semisimple and definable rings

Throughout the thesis we will work in the language of rings Lrings := {+, ·,−, 0, 1}. In

particular unless otherwise stated all our rings have 1.



Chapter 1. Introduction 17

We denote by P the set of prime numbers. Whenever we talk about a finite residue ring

we mean a ring obtained by taking a quotient of Z of the form Z/nZ for some n ∈ N>0.

Given any ring R we denote by Mn(R) the set of n × n matrices with entries from R.

Then Mn(R) is a ring with the usual matrix addition and multiplication. We denote by

GLn(R) the general linear group, and if R is commutative by SLn(R) the special linear

group in Mn(R).

In this subsection we recall the definitions of the main concepts we will use later in

Chapter 4.

Definition 1.3.13 (Jacobson radical. See Section 4 from [27]). Given a ring R with 1,

define a ◦ b := a+ b− ab. Then (R, ◦) is a monoid with 0 as the identity element. We say

a ∈ R is left (resp. right) quasi-regular if a has a left (resp. right) inverse in the monoid

(R, ◦). Furthermore we say a is quasi-regular if it is both left and right quasi-regular. A

set I ⊆ R is called (left, right) quasi regular if every element is (left, right) quasi-regular.

Whenever I is a left quasi-regular left ideal then it is quasi-regular.

The Jacobson radical J(R) of R is defined as J(R) := {a ∈ R : Ra is quasi-regular}.

Remark 1.3.14. We see from the definition above that the Jacobson radical is first order

definable. However, the classical definition is equivalent to the one we just presented.

Namely if R is a ring with 1, then the Jacobson radical is given by the intersection of the

maximal (right) ideals of R. For example, see Section 4 from [27].

We now recall the following classical ring theoretic notions (and a module theoretic

consideration).

Definition 1.3.15. 1. We say a ringR is simple ifR has no non-trivial two sided ideal.

2. Let S be a ring. A left S-module M is called a semisimple S-module if every

S-submodule of M is an S-module direct summand of M .
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3. We call a ring R semisimple if all left R-modules are semisimple R-modules.

4. We say a ring R is J-semisimple if the Jacobson radical is trivial, i.e. J(R) = 0.

We present below Theorem 1.3.19, which characterises semisimple rings in terms of

matrix rings over division rings. The reader could take the characterisation in 1.3.19 as

the working definition for semisimple rings.

There are a lot of interesting J-semisimple rings. For example freely generated rings

by a set of indeterminates {xi} over a division ring K are J-semisimple, see Corollary

4.16 in [27]. Any polynomial ring over a division ring K in commuting variables {xi} is

J-semisimple, cf. 4.17 in [27].

We mention below some properties of the Jacobson radical of a ring that we will use

later.

Remark 1.3.16. i) From example (7) after Theorem 4.15 in [27], for any R ring with

identity, we have J(Mn(R)) = Mn(J(R)).

ii) For any direct product
∏
Ri of a family of rings {Ri} we have J(

∏
Ri) =

∏
J(Ri).

In particular, the product of any family of J-semisimple rings is J-semisimple. See

end of Section 4 from [27].

iii) Because J(R) = 0 is first order expressible, any ultraproduct of rings
∏
U Ri is

J-semisimple if and only if U-many of the rings are J-semisimple.

The next definition is standard.

Definition 1.3.17. 1. We say an element x of a ringR is nilpotent of nilpotent exponent

n if n ∈ N is the minimum such that xn = 0.

2. We say a (left/right/ two sided) ideal I of R is nil if every element in I is nilpotent.
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3. We call a (left/right/ two sided) ideal I a nilpotent ideal of exponent n if n ∈ N is

the minimum such that In = 0. I.e. for every n elements a1, . . . , an in I we have

a1 · . . . · an = 0.

4. We say an element x of a ring R possibly without 1 is null if we have xR = Rx =

{0}.

5. We call a ring R′ possibly without 1, a null ring if every element in R′ is null.

Similarly for null ideal.

6. We say a ring R is nilpotent-by-finite (respectively null-by-finite) whenever R has

a two-sided nilpotent (respectively null) ideal I such that the quotientR�I is finite.

The following is also classical.

Definition 1.3.18. We call a ring (left/right) Artinian if it satisfies the descending chain

condition (DCC) on (left/right respectively) ideals, i.e. for any sequence I1 ⊇ I2 ⊇ . . . of

(left/right) ideals there is N ∈ N such that for all j, k > N we have Ij = Ik.

On the other hand, we call a ring (left/right) Noetherian if it satisfies the ascending

chain condition (ACC) on (left/right) ideals, i.e. for any sequence I1 ⊆ I2 ⊆ . . . of

(left/right) ideals there is N ∈ N such that for all j, k > N we have Ij = Ik.

Recall the Wedderburn-Artin theorem.

Theorem 1.3.19 (Wedderburn-Artin Theorem, see 3.5 from [27]). Let R be a semisimple

ring. Then R is isomorphic to a finite direct product of rings of the form Mn(D) for some

division ring D and n ∈ N.

Recall also the following characterisation of simple artinian rings.

Theorem 1.3.20 (Theorem 3.10, [27]). Let R be a simple ring, then the following are

equivalent.
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1. R is left artinian.

2. R is semisimple.

3. R has a minimal left ideal.

4. R is isomorphic to some n × n matrix ring over a division ring, i.e. R ∼= Mn(D)

for some n ∈ N and some division ring D. Furthermore n and D are uniquely

determined.

The following is folklore.

Proposition 1.3.21 (Theorem 4.14, [27]). For any ring R, the following are equivalent:

1. R is semisimple.

2. R is J-semisimple and left artinian.

3. R is J-semisimple, and satisfies DCC on principal left ideals.

We finish this short overview with the following result from Krupinski, [26], on the

relation between algebraic properties of definable rings and algebraic properties of definable

groups being defined in a given first order structure.

Theorem 1.3.22. [Theorem 2.1, [26]] LetM be a first order structure.

i) If every group definable inM is soluble-by-finite then every ring with identity, or of

finite characteristic, definable inM is nilpotent-by-finite.

ii) If every nilpotent group definable inM is abelian-by-finite, then every ring definable

inM is null-by-finite.

iii) If every nilpotent group definable inM is (finite central)-by-abelian-by-finite, then

every ring definable in M is (finite null)-by-null-by-finite. Definitions for (finite

central)-by-abelian-by-finite groups and (finite null)-by-null-by-finite rings can be

found in [26].
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1.3.4 Valued fields

Throughout this thesis we regularly work in the context of valued fields. Namely we

heavily use definability of certain pseudofinite residue rings in well known valued fields.

When handling valued fields, we will usually work in the multisorted Denef-Pas language

of valued fields Lvalf defined with more detail in Definition 1.3.25.

For the sake of completeness we mention briefly some notions we will use further on in

the manuscript. A complete treatment and exposition can be found in the book [40] or the

survey [47].

Definition 1.3.23. Consider a field K and an ordered abelian group Γ to which we add a

symbol∞. We extend the operations and the order from Γ so∞ is the maximum element

of Γ ∪ {∞}. We call a function v : K → Γ ∪ {∞} a valuation on K if and only if the

following hold.

i) v(a) =∞ if and only if a = 0,

ii) v(a+ b) ≥ min{v(a), v(b)},

iii) v(a · b) = v(a) + v(b).

We call the pair (K, v) a valued field. We denote the valuation ring by O := {x ∈

K : v(x) ≥ 0}. Let M := {x ∈ Kv(x) > 0} denote the unique maximal ideal of O.

The quotient k = O/M is called the residue field of (K, v). We let res : O → k be the

canonical projection and call it the residue map.

Definition 1.3.24. An angular component map, āc, in a valued field (K, v) is a map

from K to the residue field k which satisfies the following.

• āc(0) = 0;
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• The restriction of āc to K∗ has image in k∗ and it is a morphism of multiplicative

groups;

• For any x ∈ K of valuation 0, āc(x) = res(x).

It is worth noting that angular component maps need not exist for arbitrary valued fields

(and are not in general definable). However, (see Corollary 5.18 from [47]) any valued

field has an elementary extension that has an angular component map on it.

We now define the 3-sorted Denef-Pas valued fields language Lvalf .

Definition 1.3.25. The Denef-Pas language is a three sorted language, with a sort for

the valued field in the language of rings Lrings = {·,+,−, 0, 1}, a sort for the ordered

abelian group, in the language of ordered abelian groups Logps = {+, 0, <} together with

an extra symbol∞, and a sort for the residue field in the language of rings, Lrings. We

also include symbols for a valuation map v : K → Γ and an angular component map

āc : K → k.

Further we use the following.

Definition 1.3.26 (Valued fields in the Denef-Pas language). A valued field in the three

sorted Denef-Pas language consists of (K,Γ,k, v, āc) where K is the valued field, Γ is

the value group and k is the residue field, v is a valuation map and āc is an angular

component map as above.

We often work in the context of p-adic numbers, which we define below.

Definition 1.3.27 (The p-adic numbers, Qp). For a given prime p we define the p-adic

valuation in Z, in symbols vp. For a ∈ Z assign vp(a) ∈ N ∪∞ as follows. vp(0) = ∞

and if a 6= 0, then vp(a) is the natural number such that a = pvp(a)b where b ∈ Z and p

does not divide b. Then, for all a, b ∈ Z we get:
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1. vp(a+ b) ≥ min{vp(a), vp(b)} ,

2. vp(ab) = vp(a) + vp(b),

3. vp(1) = 0.

Also, putting |a|p = p−vp(a) we get an absolute value on Z. This absolute value putting

vp(
a
b
) = vp(a) − vp(b) extends uniquely to Q and it is called the p-adic absolute value.

The completion, as a metric space, with respect to the p-adic absolute value is denoted

by Qp and it is called the field of p-adic numbers. By extension we denote by ||p the

absolute value inQp. The integral closure of Z inQp is denoted by Zp and called the ring

of p-adic integers.

Remark 1.3.28. Alternatively we can view the field of p-adic numbers as the set of formal

power series {
∞∑
i=z

aip
i : z ∈ Z, ai ∈ Fq}. Here the addition and multiplication are done

“carrying over” depending on whether the coordinatewise operation done in the usual

way in Z gives a result greater than p.

We use the following result for valued fields in the Denef-Pas language. See [37], or

[38]. See also [47] for a thorough treatment.

Theorem 1.3.29. Given K̃ = (K,Γ,k, v, āc) a Henselian valued field with residue field

of characteristic 0 in the three sorted Denef-Pas language, then Th(K̃) eliminates field

quantifiers.

A consequence of the elimination of quantifiers is the well known Ax-Kochen, Ershov

theorem.

Theorem 1.3.30 (Ax-Kochen, Ershov). Two henselian valued fields of residue characteristic

0, (K,Γ,k, v, āc), and (K ′,Γ′,k′, v′, āc′) are elementarily equivalent if and only if both

Γ ∼= Γ′ and k ∼= k′.
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It is worth noting that similar results of quantifier elimination have been proved also for

the mixed characteristic case. For example, in [28] it is shown that Qp admits quantifier

elimination in the one sorted language of rings together with a binary symbol “|” interpreted

as a|b ↔ v(a) ≤ v(b) and a family of unary predicates {Pn : n ∈ ω} interpreted as the

sets of n-th powers in Qp.

1.4 Main results

Here we present the results found in this work which contribute towards the study of

pseudofinite rings and classes of finite rings.

In chapter 2 we will present the classification of pseudofinite residue rings in terms of

generalised stability. Namely we present the following theorem.

Theorem 1.4.1 (See 2.1.1, 2.1.2, 2.1.3 and 2.1.4). An ultraproduct of finite residue rings

of the form
∏
n∈N
Z/nZ�U has NTP2 theory if and only if there exists d ∈ N and U ∈ U

such that every n ∈ U is a product of fewer than d prime powers. Moreover if it has

NTP2 theory then it has finite burden.

Furthermore the following holds for NTP2 pseudofinite residue rings.

i) The ultraproduct
∏
Z/nZ�U has NIP theory if and only if there exists V ∈ U and

d ∈ N such that every n ∈ V is a product of fewer than d prime powers each of the

primes being less than d. Furthermore if the ultraproduct has NIP theory then it has

finite dp-rank.

ii) The ultraproduct
∏
Z/nZ�U has supersimple theory if and only if there exists V ∈

U and d ∈ N such that every n ∈ V is a product of fewer than d prime powers and

whenever a prime power pl divides n we have that l ≤ d. Furthermore, when the

ultraproduct has supersimple theory then it has finite SU-rank.
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We will also show the following.

Proposition 1.4.2 (See 2.5.3). If the ultraproduct
∏
n∈N
Z/nZ�U is not supersimple then

its theory is SOP.

From the theorem above we find that ultraproducts of elements of the class of finite

residue rings of the form {Z/nZ : n ∈ U} where there is a bound on the number and the

exponent of prime divisors for all n ∈ U are supersimple. This leads to ask whether the

class of such rings has an asymptotic behaviour in the sense of Section 1.2.8 above. To

answer this question we present the following result.

Theorem 1.4.3 (See 3.2.1). Let l ∈ N. Then the class of finite residue rings of the form

{Z/plZ : p ∈ P} is an l-dimensional asymptotic class.

Furthermore we mention the connection of this result with work of Daniel Wolf to obtain

that if d ∈ N>0 and l1, . . . , ld ∈ N, then classes of the form {Z/nZ : n = pl11 ·. . .·p
ld
d , p1 <

. . . < pd ∈ P} are interpretable in a finite disjoint union of elements of Ni-dimensional

asymptotic classes and hence after expanding the language by unary predicates form a

multidimensional asymptotic class in the sense of Section 1.2.8 above.

Finally, in chapter 4 we will address some general observations about pseudofinite rings,

ultraproducts of elements of classes of finite rings under some generalised stability properties,

and some remarks about what algebraic behaviour can we obtain from the generalised

stability conditions in the spirit discussed in Subsections 1.3.1 and 1.3.2.

Among other results we show the following for NIP and NTP2 classes of finite rings.

Proposition 1.4.4 (See 4.3.12). If C is an NIP class of finite rings then there exists d such

that every R ∈ C has a nilpotent two-sided ideal of index bounded by d.

Proposition 1.4.5 (See 4.3.7). Let C be an NTP2 class of finite J-semisimple rings. Then

there is N ∈ N such that the rings in the class are of the form
k∏
i

Mni(Fqi) for some k and

n1, . . . , nk in N and q1, . . . , qk primes where n1, . . . , nk and k are bounded by N .
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Also, we make general observations about pseudofinite rings like the following.

Proposition 1.4.6 (See 4.2.2). Pseudofinite simple rings are of the form Mn(F) where F

is a pseudofinite field.
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Chapter 2

Ultraproducts of finite residue rings

2.1 Introduction

As mentioned in 1.3.1 above any pseudofinite field has supersimple rank 1 theory. In this

chapter we investigate generalised stability properties of arbitrary pseudofinite residue

rings. More specifically, we describe non-principal ultrafilters onN such that the ultraproduct∏
Z/nZ�U is supersimple, or NIP but non-simple, or NTP2 but not NIP or simple, or

TP2 , noting that all these possibilities occur. The information is depicted in the following

diagram.
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Bounded number

of prime divisors



Bounded exponents, (e.g.
∏
p∈P
Z/pbZ�U , for fixed

b) Simple case

Unbounded exponents



Bounded set of primes,

(e.g.
∏
n∈N
Z/qnZ�U , for fixed

prime q) NIP case

Unbounded set of primes,

(e.g.
∏

p∈P,n∈N
Z/pnZ�U)

NTP2 case

Unbounded number

of prime divisors,

(e.g.
∏
n∈N
Z/nZ�U) TP2 case

We see this work as the beginning of a structure theory for pseudofinite rings with

generalised stability properties. We take a moment here to mention that there is some

overlap between work done in this chapter and independent work of Paola D’Aquino and

Angus Macintyre. However, D’Aquino and Macintyre’s point of view is different from

ours.

We now state the main theorems that make up this chapter and indicate where they can

be found below.

Theorem 2.1.1 (Corollary 2.2.3). Let U be a non-principal ultrafilter on N \ {0} and let

R =
∏
n∈N
Z/nZ�U . Then the following are equivalent.

1. The theory Th(R) of R is NIP.

2. There is U ∈ U and b ∈ N such that every n ∈ U is a product of primes each one

being less than b.
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Theorem 2.1.2 (Corollary 2.2.10). Let U be an ultrafilter on N such that there exists

b ∈ N and U ∈ U such that for every n ∈ U there are at most b prime divisors. Then∏
n∈N
Z/nZ�U is NTP2 .

Theorem 2.1.3 (Corollary 2.3.7). Consider a non-principal ultrafilter U on N and let

R =
∏
n∈N
Z/nZ�U . Then the following are equivalent.

1. The theory Th(R) is supersimple.

2. There exists b ∈ N and U ∈ U such that if n ∈ U then n is a product of fewer than

b primes and if pl divides n then l < b.

Theorem 2.1.4 (Proposition 2.4.2). Let U be an ultrafilter on N such that for every b ∈ N

the set

{n ∈ N : there are at least b distinct prime divisors of n }

is in U . Then
∏
n∈N
Z/nZ�U has TP2 theory.

Proposition 2.1.5 (Proposition 2.5.3). If the ultraproduct
∏
n∈N
Z/nZ�U is not simple, then

it has SOP (the strict order property - see Definition 1.2.11).

In the second section we present both Theorem 2.1.1 and Theorem 2.1.2, concerning the

NIP and NTP2 cases respectively.

In the third section we present Theorem 2.1.3 about the simple theory case, and also

mention some results on coordinatisation, as found in [21].

In the fourth section we present Theorem 2.1.4 for the TP2 case.

Finally in the fifth section we address questions raised by A. Chernikov and make some

comments about SOP, how it is related to the previous cases and prove Proposition 2.1.5.

We heavily use definability of certain pseudofinite residue rings in well known valued

fields. When handling valued fields, we will usually work in the multisorted Denef-Pas

language of valued fields Lvalf defined with more detail in Definition 1.3.25.
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Below we deal with theories satisfying Definition 1.2.18, 1.2.14, 1.2.8, and 1.2.11.

As mentioned in Section 1.2.7, by Example 7.7 of [11] any ultraproduct
∏
p∈P
Qp/U of

p-adic fields, where U is a non-principal ultrafilter on P, has NTP2 theory. This follows

from the more general (Ax-Kochen,Ershov)-like result found in Theorem 7.6 in [11].

Paraphrased, this says the following.

Proposition 2.1.6 (Theorem 7.6, [11]). Let K = (K,Γ,k, v : K → Γ, āc : K → k) be a

Henselian valued field of characteristic (0, 0) in the Denef-Pas language. Then the depth

λ of an array of parameters {b̄i,j : j < ω, i < λ} in K which satisfies clauses (1) and

(2) from Definition 1.2.18 for some formula with a single free variable is less than the

depth of arrays of parameters either in k or in Γ which satisfy clauses (1) and (2) from

Definition 1.2.18 for some formulas with a single free variable.

In particular we have that if k has NTP2 theory in Lrings, then so does K.

Observe that in Proposition 2.1.6, if we consider K := (
∏
Qp/U ,Γ,k, v, āc) then K is

strictly NTP2 , in the sense that since k is a pseudofinite field it has IP and so K has IP,

and Γ has SOP so K has SOP.

2.2 NIP, and NTP2 cases

First, for a fixed prime p we consider the ring
∏
n∈N
Z/pnZ�U .

Proposition 2.2.1. Fix a prime p. Ultraproducts of the form
∏
n∈N
Z/pnZ�U with U a non-

principal ultrafilter on N are interpretable in the ultrapower
∏
n∈N
Qp�U of Qp and hence

are NIP.

Proof. We first recall that Qp has NIP theory, c.f. [4], [15] or [34]. We will show that

uniformly in n, Z/pnZ is interpretable in Qp, the p-adic numbers. We know that the
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valuation ring Zp is definable inside the valued field Qp. Also we can use a parameter

a ∈ Qp with v(a) = n to define pnZp, since pnZp = {x ∈ Zp : v(x) ≥ v(a)}. Hence the

structure Zp/pnZp ∼= Z/pnZ is interpretable in Qp, uniformly in n (a parameter varying

through the value group Z). Furthermore the ultraproduct
∏
n∈N
Z/pnZ�U is interpretable

by the same formula in the ultrapower
∏
n∈N
Qp�U which is still NIP. Since being NIP is

preserved under interpretability we conclude that ultraproducts of the form
∏
n∈N
Z/pnZ�U

are NIP.

We present now a lemma that will be useful further on. Here for j in an index set J , and

a collection of structures (Aj)j∈J we denote by πj the usual projection map from
∏
k∈J

Ak

to Aj . We extend this notation to ultrafilters, i.e. if we consider U an ultrafilter on
∏
k∈J

Ik,

where each Ik is an index set, we will denote by πj(U) the ultrafilter

{V ⊆ Ij : ∃U ∈ U
(
πj(U) = V

)
}

induced by πj on Ij .

Lemma 2.2.2. Let {Ik : 1 ≤ k ≤ n} be a family of index sets, for each Ik let {Rk
i : i ∈ Ik}

be a family of rings indexed by Ik, and U an ultrafilter on
n∏
k=1

Ik. Then

∏
(i1,...,in)

(R1
i1
× · · · ×Rn

in)�U ∼= (
∏
i1

R1
i1
�π1(U))× · · · × (

∏
in

Rn
in�πn(U)).

Proof. We can show that the assignment ϕ given by sending [(a)(k1,...,kn)|]U to(
[(ak1)]π1(U), . . . , [(akn)]πn(U)

)
is an isomorphism.

The assignment ϕ is a well defined function. We can see that if

[(ak1 , . . . , akn)(k1,...,kn)]U = [(βk1 , . . . , βkn)(k1,...,kn)]U ,

then there exists U ∈ U such that aki = βki for all n-tuples (ki)i≤n ∈ U . Hence aki = βki

for all ki ∈ πi(U) and so
(
[(ak1)]π1(U), . . . , [(akn)]πn(U)

)
=
(
[(βk1)]π1(U), . . . , [(βkn)]πn(U)

)
.

To show that ϕ is injective we consider [(ak1 , . . . , akn)]U and [(bk1 , . . . , bkn)]U such that
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ϕ([(ak1 , . . . , akn)]) = ϕ([(bk1 , . . . , bkn)]). Note that since ([(aki)]πi(U)) = ([(bki)]πi(U))

there are Ui ∈ πi(U) (for i ∈ {1, . . . , n}) that witness this equality. For each Ui put

U ′i := I1 × . . .× Ii−1 ×Ui × Ii+1 × . . .× In. Taking
n⋂
i=1

U ′i we have an element in U that

witness the equality of [(ak1 , . . . , akn)]U and [(bk1 , . . . , bkn)]U .

To show that ϕ is surjective note that for

αk :=
(
[(ak1)]π1(U), . . . , [(akn)]πn(U)

)
∈

(∏
i1

R1
i1
�π1(U)

)
× · · · ×

(∏
in

Rn
in�πn(U)

)

we have that ϕ([(aki , . . . , akn)]) = αk.

Furthermore ϕ is an homomorphism. First note that ϕ([(1ki)]U) = ([1ik ]πk(U))k. Since

the operations on∏
(i1,...,in)

(R1
i1
× · · · ×Rn

in)�U ∼= (
∏
i1

R1
i1
�π1(U))× · · · × (

∏
in

Rn
in�πn(U))

are defined coordinatewise we have that

ϕ([(aki)]U + [(bki)]U) = ϕ([(aki + bki)]U) =
(
[aki + bki ]πi(U)

)
i≤n = . . .

. . . =
(
[aki ]πi(U) + [bki ]πi(U)

)
i≤n = ϕ([(aki)]U) + ϕ([(bki)]U)

and similarly ϕ([(aki)]U · [(bki)]U) = ϕ([(aki)]U) · ϕ([(bki)]U).

Corollary 2.2.3. Let U be a non-principal ultrafilter on N and let U ∈ U and b ∈ N be

such that every n ∈ U is a product of powers of fewer than b primes each prime being

less than b. Then
∏
n∈N
Z/nZ�U is NIP.

Proof. Put R′ :=
∏
n∈N
Z/nZ�U . Let U ∈ U be as in the hypothesis, and consider the

induced ultrafilter on U by U , namely V := {U ∩ V : V ∈ U}. Put R :=
∏
n∈U
Z/nZ�V .

Then R ∼= R′.
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Furthermore we can find V ∈ V such that every n ∈ V has the same d prime factors,

p1, p2, . . . , pd. ConsideringW the induced ultrafilter on V by V and using Lemma 2.2.2

and the first paragraph using V in place ofU we have thatR ∼=
(∏
m

(Z/pm1 Z)�W1

)
×· · ·×(∏

m

(Z/pmd Z)�Wd

)
, for some ultrafiltersW1, . . . ,Wd onN. Since each of

∏
m

(Z/pmk Z)�Wk

is NIP by Proposition 2.2.1 we can conclude that R′ is NIP.

We take a moment here to note that we are using and will use the following result

throughout the chapter.

Proposition 2.2.4. Each of the rings R1, . . . , Rn is NIP (respectively, simple, NTP2 ) if

and only if the algebraic direct productR1×. . .×Rn is NIP (respectively, simple, NTP2 ).

This is proven using the following two lemmas.

Lemma 2.2.5. Let L := L1 t L2 be the disjoint union of L1 and L2. Let ϕ(x̄, ȳ) ∈ L,

where x̄ ∈ L1 and ȳ ∈ L2. Then ϕ(x̄, ȳ) is equivalent to a finite disjunction of formulas

of the form θ(x̄) ∧ ψ(ȳ), where θ(x̄) ∈ L1 and ψ(ȳ) ∈ L2.

Proof. By induction on the length of the formula ϕ. See for example section 9.6 of

[22].

Lemma 2.2.6. Let L1 and L2 be disjoint languages. Let A be an L1-structure, and B be

an L2-structure. If A,B are NIP , simple or NTP2 then so respectively is the disjoint

union A tB when considered in a multisorted context.

Proof. We present here the proof for the NTP2 case.

Note that if either A or B have TP2 then AtB the disjoint union has TP2 witnessed by

the same formula and array. Now assume that A t B has TP2 . Then TP2 is witnessed

by a formula ϕ(x, ȳ) with x a single variable and an array (b̄i,j) from A t B. But by

Lemma 2.2.5 ϕ is a finite disjunction of formulas of the form θl ∧ ψl. From [11] (Lemma
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7.1) we know that disjunction preserves NTP2 . Hence, for a particular index k, there

is a subarray from (b̄i,j) that witnesses the tree property of the second kind for θk ∧ ψk.

Furthermore, since |x| = 1 we can find an array of parameters only inA such that θk(x, ȳ)

holds, or only in B such that ψk(x, ȳ) holds. This means that either A or B have the tree

property of the second kind.

Remark 2.2.7. The previous Lemma 2.2.6 can be generalised for finitely many structures

A1, . . . , An in disjoint languages L1, . . . ,Ln when considered in a multisorted context.

We now turn back to the proof of Proposition 2.2.4.

(Proof of Proposition 2.2.4). We present here the NIP case. The other cases are done

similarly.

First, assume that at least one of R1, . . . , Rn has the independence property, without

loss of generality say R1 has IP. Since R1 is isomorphic to the ∅-definable substructure

R1 × 0R2 × . . .× 0Rn then the direct product has also the independence property.

Finally, assume that all R1, . . . , Rn are NIP and assume that the direct product

R1 × . . . × Rn has IP. Since the direct product is definable over the disjoint union R1 t

. . . tRn we get that the disjoint union also has the independence property. However, this

is impossible by Lemma 2.2.6, since each one of R1, . . . , Rn is NIP.

Now let both p ∈ P, and n ∈ N vary in
∏

(p,n)∈P×ω
Z/pnZ�U with U a non-principal

ultrafilter on P× ω. Consider the following class of residue rings

C := {Z/pnZ : p ∈ P, n ∈ ω}.

Proposition 2.2.8. Any ultraproduct of rings in C = {Z/pnZ : p ∈ P, n ∈ ω} has

NTP2 theory.

Proof. We first note that Z/pnZ ∼= Zp/pnZp, where Zp denotes the ring of p-adic integers.
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Let U be a non-principal ultrafilter on P×ω. For each (p, e) ∈ P×ω choose an element

ape ∈ Qp such that v(ape) = e. This defines peZp in Qp, as the set of elements in Zp with

value greater or equal to the value of ape . Hence Zp/peZp is interpretable in (Qp, ape),

and R :=
∏

(p,e)∈P×ω
(Zp/peZp)�U is interpretable in

∏
(p,e)∈P×ω

(Qp, ape)�U , where ape is

an element in
∏

(p,e)∈P×ω
Qp with (p, e)-projections equal to ape . By Proposition 2.1.6 we

have that any ultraproduct
∏
p∈P
Qp/W is NTP2 , so

∏
(p,e)∈P×ω

(Qp, ape)�U is also NTP2 .

By the above observations,R is NTP2 . So every ultraproduct in C has NTP2 theory.

Remark 2.2.9. Furthermore, in Proposition 2.2.8 R need not be simple or NIP. If the

ultrafilter concentrates on a prime p then R is NIP but not simple (see Remark 2.5.1),

and if it concentrates on prime powers with exponent 1 then R is supersimple since the

ultraproduct is then a pseudofinite field. Since pseudofinite fields have the independence

property, R is not NIP.

Corollary 2.2.10. Let U be an ultrafilter on N such that there exist b ∈ N and U ∈ U

such that every n ∈ U has at most b prime divisors.

i) Then
∏
n

Z/nZ�U is NTP2 .

ii) If for each e there is Ue ∈ U such that for every n in Ue some prime divides n with

exponent at least e, then the theory is not NSOP, in particular not simple.

Proof. i) Let R′ be such an ultraproduct and U an element of the ultrafilter as in the

hypothesis. Consider V := {V ∩U : V ∈ U}. PutR :=
∏
n∈U
Z/nZ�V . Furthermore

there is a V ∈ V such that every n ∈ V has exactly d prime divisors. Choose as

earlier an ultrafilterW on V such that R ∼=
∏
n∈V

(Z/pen(1)n(1) Z× · · · ×Z/p
en(d)
n(d) Z)�W .

Using Lemma 2.2.2 we have that

R ∼=
( ∏

(pn(1),en(1))

Z/pen(1)n(1) Z�W1

)
× · · · ×

( ∏
(pn(d),en(d))

Z/pen(d)n(d) Z�Wd

)
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for some Wi. Hence by Proposition 2.2.8 we have that R (and therefore R′) has

NTP2 theory.

ii) See Remark 2.5.1.

2.2.1 Dp-rank and burden

At the end of this section we turn to investigate the dp-rank and burden of the ultraproducts

in the NIP and NTP2 case.

Recall Definition 1.2.9 from Subsection 1.2.4

As we mentioned in Subsection 1.2.4, since the ultrapower
∏
n

Qp�U is an elementary

extension of the p-adics, it is dp-minimal.

The corresponding notion to dp-rank in the more general context of NTP2 structures is

that of burden presented above in Definition 1.2.19 in Subsection 1.2.7.

Furthermore, A. Chernikov and P. Simon showed in [14] that ultraproducts of p-adics

(in the language LRV ) are inp-minimal, i.e. have burden 1. The language LRV is a three

sorted language for valued fields viewed as K̄ = (K,RV,Γ, valrv) obtained from Lrings
by adding the quotient group K×�(1 + M) as a sort with multiplicative group structure

“·, 1”, plus a constant 0, a predicate for the residue field k ⊆ RV together with an addition

+̂ on k and a map valrv : RV → Γ between the RV and Γ sort. In LRV the valuation

is definable, although not necessarily the angular component map. See Sections 2 and 3

from [14] for more details.

Remark 2.2.11. Given two NTP2 structures M, N and a ∈ M, b ∈ N with

bdn(a) = r inM and bdn(b) = s in N , then the burden of (a, b) in the disjoint union of

M and N is less than or equal to r · s. I.e. bdn((a, b)) ≤ r · s inMtN .
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Proof. First note that from the definition of burden we have that for two types p, q if p ⊆ q

then bdn(p) ≥ bdn(q). By theorem 2.5 in [11] we have that bdn(ab) ≤ rs.

We now mention the following result from [11].

Proposition 2.2.12 (Corollary 2.6, [11]). “Sub-multiplicativity” of burden. If bdn(ai) <

ki for i < n with ki ∈ N, then bdn(a0, . . . , an−1) <
∏
i<n

ki.

Remark 2.2.13. In the context of the ultraproducts of finite residue rings, when considering

the strict NTP2 case we note that an ultraproduct of the form∏
(pn(1),en(1))

Z/pe(1)
n(1)Z�W1 × . . .×

∏
(pn(d),en(d))

Z/pe(d)
n(d)Z�Wd

would have burden bounded by the product of the burdens of each structure, given that

each structure has finite burden. From [14] we have that an ultraproduct
∏
Qp�U of the

p-adic numbers has burden 1 (in LRV ). Since we only use the valuation to interpret the

corresponding ultraproduct of finite residue rings in the ultraproduct of p-adic numbers

we have that each factor also has burden 1. This implies that the product would have

burden at most 2d. Furthermore it is conjectured, e.g. Conjecture 2.7 in [11], that burden

is sub-additive in NTP2 theories. Hence, if the conjecture holds then the burden would

be bounded by d.

Remark 2.2.14. In the NIP case, it is known that Qp is dp-minimal and dp-rank is a

particular case of burden in NIP theories, and moreover it is shown in [24] that dp-rank

is sub-additive. Hence we get that an ultraproduct of finite residue rings of the form∏
m

Z/pm1 Z�W1 × . . .×
∏
m

Z/pmd Z�Wd

has dp-rank bounded by d.
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2.3 Simple case

Now fix b ∈ N and consider the following ultraproduct,
∏
p∈P
Z/pbZ�U .

In [10] we find the following definition.

Definition 2.3.1 (Definition 2.1.9, [10] ). Let D ⊆ N be structures possibly in different

languages with D definable in N , and let a ∈ N eq be a canonical parameter for D.

1. D is canonically embedded in N if the ∅-definable relations of D are the relations

on D which are a-definable in the sense of N .

2. D is stably embedded in N if every N -definable relation on D is D, a-definable,

uniformly, in the structureN . The uniformity can be expressed by requiring that the

form of the definition over D be determined by the form of the definition over N .

3. D is fully embedded in N if it is both canonically and stably embedded in N .

In [11] it is mentioned in the proof of Theorem 7.6 that if K̄ = (K,Γ,k, v, āc) is a

henselian valued field of characteristic (0, 0) in the three sorted Denef-Pas language then

Γ and k are stably embedded with no new induced structure so are fully embedded. For

completeness we include a proof. We first recall the definition of the Denef-Pas language

for Henselian valued fields, see Definition 1.3.25.

Proposition 2.3.2. Let K̄ = (K,Γ,k, v, āc) be a Henselian valued field of characteristic

(0, 0) in the Denef-Pas language. Then the value group Γ and the residue field k are fully

embedded.

Proof. In the Denef-Pas language we have elimination of field quantifiers, cf. [37], or

[38].

Let us show first that Γ is stably embedded. Consider a K̄-definable relation R on Γ,

defined by ϕ(x̄, ᾱ, β̄). By Denef-Pas quantifier elimination we may assume ϕ has the form
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Q̄(ā, b̄)ψ(x̄, ᾱ, ā, β̄, b̄) where ψ is a quantifier free formula, Q̄ is a tuple of quantifiers on

the group and residue field sorts, x̄ is a tuple of free variables of the valued field sort, ᾱ

and ā are tuples of free variables and bound variables respectively of the ordered group

sort, and β̄ and b̄ are tuples of free and bound variables respectively from the residue field

sort.

Furthermore we may assume ψ is a disjunction of formulas of the form

ψ1(x̄)∧ψ2

(
v(t2(x̄)), ᾱ, ā

)
∧ψ3

(
āc(t3(x̄)), β̄, b̄

)
, whereψ1(x̄) is a formula without quantifiers

on the valued field sort, ψ2

(
v(t2(x̄)), ᾱ, ā

)
is a formula without quantifiers on the value

group sort, and ψ3

(
āc(t3(x̄)), β̄, b̄

)
is a quantifier free formula from the residue field sort,

also t2(x̄) and t3(x̄) are terms obtained from the variables x̄ via the operations from the

valued field sort. We may assume the variables from ā only appear in formulas like ψ2,

and the variables from b̄ only appear in formulas like ψ3. Hence ϕ is equivalent to a

disjunction of formulas of the form ψ1(x̄)∧ϕ2

(
v(t2(x̄)), ᾱ

)
∧ϕ3

(
āc(t3(x̄)), β̄

)
. Here ψ1

is a quantifier free formula on the sort of valued fields, ϕ2

(
v(t2(x̄)), ᾱ

)
is a (quantified)

formula from the sort of ordered groups where the bound variables are among ā, and

ϕ3

(
āc(t3(x̄)), β̄

)
is a (quantified) formula from the residue field sort where the bound

variables are from b̄.

Since the formula ϕ defines a relation on Γ we end up with a formula made up with

a disjunction of formulas of the form of ϕ2 and the parameters involved are all from Γ,

possibly of the form v(p̄) for some p̄ ∈ K.

Next we show that Γ is canonically embedded. Consider now S an ∅-definable relation

in Γ, defined by ϕ(x̄, ᾱ, β̄). By the above argument we end up with S being definable

by a disjunction of formulas of the form ϕ2

(
v(t2(x̄)), ᾱ

)
with no parameters. Hence S is

∅-definable and so Γ is canonically embedded in K̄.

In an analogous way we have that when a formula defines a subset of k the only part of
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the formulas in the disjunction of formulas of the form

ψ1(x̄) ∧ ϕ2

(
v(t2(x̄)), ᾱ

)
∧ ϕ3

(
āc(t3(x̄)), β̄

)
we are interested in is that corresponding to ϕ3(āc(t3(x̄)), β̄) and every parameter used

can be taken to be from k, where some may be of the form āc(p̄) for p̄ ∈ K. Hence

k is stably embedded. Furthermore an ∅-definable relation in k defined by a formula

ϕ(x̄, ᾱ, β̄) ends up being ∅-definable by a formula only in the residue field sort. Hence k

is canonically embedded in K̄.

Definition 2.3.3 ([21], Definition 4.1). In the next definition and proposition, taken from

[21], we work in a saturated modelM = Meq
of T = T eq. (HereMeq stands as usual

for imaginaries overM, cf. [7] .)

• Suppose that P is a class of (partial) types (over a small subset ofM) closed under

automorphisms. We say that T is coordinatised by P if for every a ∈ M there is

n ∈ ω and ai for i ≤ n such that an = a and tp(ai/ai−1) ∈ P for all i ≤ n, with

a−1 = ∅. The sequence (ai : i ≤ n) is called a coordinatising sequence.

• A type q is said to be simple if for each extension p′ ∈ S(B) there is a subset A of

B with |A| ≤ |T | such that p′ does not divide over A.

• A type q is said to be supersimple if for each extension p′ ∈ S(B) there is a subset

A of B with |A| < ℵ0 such that p′ does not divide over A.

Proposition 2.3.4 ([21], Proposition 4.2). If a type p is coordinatised by simple types then

p is simple. Furthermore if p is coordinatised by supersimple types then p is supersimple.

We turn now to prove the following. We will work in
∏
p∈P
Qp�U .
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Proposition 2.3.5. Fix b ∈ Z+ and let R be the ultraproduct
∏
p∈P
Z/pbZ�U , where U is a

non-principal ultrafilter on P. Then R has supersimple theory.

Proof. Since
∏
Zp/pbZp�U ∼=

∏
Z/pbZ�U , we will think about R inside the valued

field structure Q = (
∏
p∈P
Qp�U ,Γ,

∏
Fp�U , v, āc), where Γ is the corresponding ultrapower

of Z. We will use below the definable function φ on
∏
p∈P
Qp�U where φ([xp]U) =

[pxp]U . This is definable using only the parameter [p]U . Thus we want to show R′ :=∏
p∈P
Zp/pbZp�U has supersimple theory with the induced structure in which the ∅-definable

relations on R′ are all those arising from ∅-definable relations on Q.

The key idea is to use Proposition 2.3.2 and Proposition 2.3.4, by showing that types

from R′ are coordinatised by types in the residue field, which is a fully embedded pseudofinite

field and hence is supersimple. Thus, it suffices to coordinatise R′ by types in definable

bijection with those in the residue field. We will consider the class of types P of the form

tp([piap + (pb)]/[pi+1ap + (pb)]), for [ap + (pb)] ∈ R′.

For any given [ap + (pb)] ∈ R′ we have the following coordinatising sequence

[pb−1ap + (pb)], . . . , [piap + (pb)], . . . , [pap + (pb)], [ap + (pb)].

Furthermore tp([piap+(pb)]/[pi+1ap+(pb)]) contains the formula [p]x = [pi+1ap+(pb)].

Put Si = {x ∈ R′ : [p]x = [pi+1ap + (pb)]}. Then

Si = [piap + pb−1R′ + (pb)] := {[piap + pb−1x+ (pb)] : x ∈ R′}.

To show that tp([piap + (pb)]/[pi+1ap + (pb)]) is simple it is enough to find a definable

bijection ϕi (using just one parameter w ∈ Si) over [piap + (pb)] between
∏
Zp/pZp�U

and Si. To see this, note that for cp ∈ Zp/pbZp written as

cp := cp(0) + pcp(1) + . . .+ pb−1cp(b−1) + (pb)
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we can define, uniformly in p, a bijection ϕi,p from Zp/pZp to

Si,p := {z ∈ Zp/pbZp : pz = pi+1cp + (pb)} = picp + pb−1Zp/pbZp + (pb)

as follows ϕi,p(x) := pb−1x + picp + (pb). Therefore we can find the wanted definable

bijection ϕi as the induced by ϕi,p sending [xp] ∈
∏
Zp/pZp�U to [piap + pb−1xp + (pb)]

(otherwise [w + pb−1xp + (pb)]).

Moreover
∏
Zp/pZp�U is a pseudofinite field stably embedded in Q, so all the types

realised in
∏
Zp/pZp�U are supersimple. Hence all the types of the form

tp([piap + (pb)]/[pi+1ap + (pb)])

are also supersimple.

Finally we note that P is closed under automorphisms of R′.

Now we can apply Proposition 2.3.4 to conclude that since R′ is coordinatised by

supersimple types then it is supersimple.

Remark 2.3.6. It is noted in Remark 4.3 of [21] that if (ai : i ≤ n) is a coordinatising

sequence then SU(an) ≤ SU(an/an−1)⊕. . .⊕SU(a0). Hence the structure
∏
p∈P
Z/pdZ�U

has finite SU-rank and this rank is at most d since the coordinatisatising sequence used

in the proof of Proposition 2.3.5 has length d and each of the types of the sequence has

SU-rank 1, cf. [23]. For a particular p, the sequence of ideals

pd−1Zp/pdZp < . . . < pZp/pdZp < Zp/pdZp

has successive indices equal to p. Hence in the ultraproduct the successive indices

are infinite, and the ideals in the chain are uniformly definable in p. This implies that

SU
∏
Zp/pdZp�U ≥ d.

We can now use Proposition 2.3.5 together with Lemma 2.2.2 to cover the following
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more general case.

Corollary 2.3.7. Consider an ultrafilter on N such that there exists b ∈ N and U ∈ U

such that if n ∈ U then n is a product of fewer than b primes and if pl divides n then l < b.

Then R′ :=
∏
Z/nZ�U is supersimple, of finite SU-rank.

First note that for example the ultrafilter U will include the set

U = {n ∈ N : If pe | n then e ≤ b, and n has fewer than b prime divisors}.

Proof. Let U ∈ U be as in the hypothesis, and consider V the induced ultrafilter on U

by U . We put R :=
∏
n∈U
Z/nZ�V , so R ∼= R′. There is V ∈ V such that every n ∈ V

has the same number d of prime factors, pn(1), pn(2), · · · pn(d) and every pn(i) has the same

exponent ei. Hence using Lemma 2.2.2 onW the induced ultrafilter on V by V we have

that R ∼= (
∏
m

(Z/pe1m(1)Z)�W1) × · · · × (
∏
m

(Z/pedm(d)Z)�Wd), for someWi. Since each

one of
∏
m

(Z/peim(i)Z)�Wi is supersimple by Proposition 2.3.5, R′ is supersimple.

Remark 2.3.8. Suppose that for each k there is Uk ⊆ U such that Uk ∈ U , for each

n ∈ Uk we have that n has d prime divisors, and each prime divisor is greater than or

equal to k. Then, the ring∏
m

Z/pe1m(1)Z�W1 × . . .×
∏
m

Z/pedm(d)Z�Wd

has SU-rank exactly e1 + . . .+ ed.

Remark 2.3.9. There is an alternative, maybe more direct, way of proving Proposition

2.3.5. We present here a brief sketch of the proof for R :=
∏
p

Zp/p2Zp�U , but the

argument also yields Corollary 2.3.7.

We note by the Ax-Kochen-Eršov theorem that
∏
p∈P
Z/p2Z�U is elementarily equivalent

to R′ :=
∏
p∈P
Fp[[t]]/(t2)�U in the language of rings, cf. Proposition 2.4.10 of [47].
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We have that R′ is interpretable in k :=
∏
p

Fp�U . In order to see this we only need to

note that for any prime q the ring Fq[[t]]/(t2) is uniformly (in q) interpretable in Fq since

we can identify a+ bt+ (t2) ∈ Fq[[t]]/(t2) with the pair (a, b) and interpret addition, (⊕),

and multiplication, (∗), from Fq[[t]]/(t2) inside Fq × Fq in the following way.

• For pairs (a, b), (c, d) we put (a, b)⊕ (c, d) := (a+ c, b+ d);

• For pairs (a, b), (c, d) we put (a, b) ∗ (c, d) = (ac, ad+ bc).

Since k is supersimple of SU-rank 1, R′ is supersimple of SU-rank 2 and hence R is also

supersimple of SU-rank 2.

Although k is interpretable inR′ the isomorphism from (k2,⊕, ∗) toR′ is not definable in

R′. Otherwise, it would be also definable inR and thus we would get that for some U ∈ U

if p ∈ U then the ring Zp/p2Zp is isomorphic to the characteristic p ring ((Z/pZ)2,⊕, ∗)

but this is a contradiction.

In Proposition 2.3.5 we chose to give the proof using coordinatisation through supersimple

types because we believe it provides added information for the class of finite rings of the

form Z/pnZ. In particular, it motivates showing that for a fixed d the class of rings

{Z/pdZ : p ∈ P} is a d-dimensional asymptotic class in the sense of [17]; see also [18].

See Chapter 3 below.

2.4 TP2 case

Not every ultraproduct of finite residue rings is NTP2 . First, we note the following. The

proof is routine.

Claim 2.4.1. If {Ri : i ∈ I} is a collection of commutative rings, then

SL2(
∏
i∈I

Ri/U) ∼=
∏
i∈I

(SL2(Ri))/U .
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Proof. This follows from Łoś theorem. Alternatively, define β : SL2(
∏
i∈I
Ri/U) →∏

i∈I
(SL2(Ri))/U as follows

β
((

(a)i (b)i
(c)i (d)i

))
=
((

ai bi
ci di

))
i
.

Here (a)i, (b)i, (c)i and (d)i stand for representative tuples of an equivalence class in the

ultraproduct
∏
Ri/U . Also ai refers to the i-th coordinate of (a)i, similarly for bi, ci and

di. Let us first consider two elements in SL2(
∏
Ri/U) such that(

(a)i (b)i
(c)i (d)i

)
=
(

(a′)i (b′)i
(c′)i (d′)i

)
. This means that (a)i = (a′)i, (b)i = (b′)i, (c)i = (c′)i and

(d)i = (d′)i. Hence there are Ua, Ub, Uc, Ud such that ∀k ∈ Ua(ak = a′k), similarly

for Ub, b, b′; Uc, c, c′ and Ud, d, d′. Therefore, ∀k ∈ U ′ = Ua ∩ Ub ∩ Uc ∩ Ud we have(
ak bk
ck dk

)
=
(
a′k b′k
c′k d′k

)
, and so β

((
(a)i (b)i
(c)i (d)i

))
= β

((
(a′)i (b′)i
(c′)i (d′)i

))
. Hence, β is a well

defined function.

Also β is injective because whenever β
((

(a)i (b)i
(c)i (d)i

))
= β

((
(a′)i (b′)i
(c′)i (d′)i

))
we have that((

ai bi
ci di

))
i

=
((

a′i b
′
i

c′i d
′
i

))
i
. This means there isU ∈ U such that ∀k ∈ U we have

(
ak bk
ck dk

)
=(

a′k b′k
c′k d′k

)
which in turn means {i ∈ I : (a)i = (a′)i} ∈ U , similarly for (b), (b′); (c), (c′)

and (d), (d′). So
(

(a)i (b)i
(c)i (d)i

)
=
(

(a′)i (b′)i
(c′)i (d′)i

)
.

To see that β is surjective we note that given
((

ai bi
ci di

))
i

we consider (ai)i, (bi)i, (ci)i and

(di)i elements of
∏
Ri/U . Then β

((
(ai)i (bi)i
(ci)i (di)i

))
=
((

ai bi
ci di

))
i
.

To check that β is a homomorphism we note that β
((

(1)i (0)i
(0)i (1)i

))
=
((

1i 0i
0i 1i

))
i

and that

β
((

(a)i (b)i
(c)i (d)i

)
·
(

(a′)i (b′)i
(c′)i (d′)i

))
= β

((
(a)i(a

′)i+(b)i(c
′)i (a)i(b

′)i+(b)i(d
′)i

(c)i(a
′)i+(d)i(c

′)i (c)i(b
′)i+(d)i(d

′)i

))
which is equal to((

aia
′
i+bic

′
i aib

′
i+bid

′
i

cia
′
i+dic

′
i cib

′
i+did

′
i

))
i

and this in turn is equal to((
ai bi
ci di

)
·
(
a′i b

′
i

c′i d
′
i

))
i

=
((

ai bi
ci di

))
i
·
((

a′i b
′
i

c′i d
′
i

))
i

= β
((

(a)i (b)i
(c)i (d)i

))
· β
((

(a′)i (b′)i
(c′)i (d′)i

))
.

For an analogous result (over fields, but with arbitrary groups of Lie type) see Proposition
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1 of [39].

Recall now Lemma 1.3.12, presented in Section 1.3.2. Below we use this necessary

condition for a theory to be NTP2 from [13].

Proposition 2.4.2. Let U be an ultrafilter on N such that for every b ∈ N the set

{n ∈ N : there are at least b prime divisors of n}

is in U . Then
∏
Z/nZ�U has TP2 theory.

First we note these ultrafilters exist, since the collection

{
{n ∈ N : there are at least b prime divisors of n} : b ∈ N

}
has the finite intersection property.

Proof of Proposition 2.4.2. LetR :=
∏

(Z/nZ)/U . We want to find a definable group G

in R and a uniformly definable family of normal subgroups {Hi}i<ω that contradicts the

conclusion from Lemma 1.3.12, and to do this we consider for each j < ω the group

SL2(Z/jZ) ∼= Gj := Fj × SL2

(
Z/pej,1j,1 Z

)
× · · · × SL2

(
Z/p

ej,bj
j,bj
Z
)

such that Fj is isomorphic to SL2(Z/nZ) where n can only have prime factors smaller

than pj,1. The condition on the ultrafilter allow us to consider the case when both bi and

pi,1 increase as i → ∞, in such a way that pj,k > pj′,k′ whenever j > j′ or both j = j′

and k > k′.

We can now for a given j and k with 1 ≤ k ≤ bj find non-central elements

Aj,k =
(
aj,k 0

0 bj,k

)
∈ SL2

(
Z/pej,kj,k Z

)
with aj,k 6= bj,k. We may assume that aj,k, bj,k <

pj,k. Consider Aj,k inside Gj occurring as the k + 1-th entry in

Aj,k =

(
IdFj , IdSL2(Z/p

ej,1
j,1 Z)

, . . . , Aj,k, . . . , Id
SL2

(
Z/p

ej,bj
j,bj

Z
)
)



Chapter 2. Ultraproducts of finite residue rings 47

Now let Fj,k be the conjugacy class in Gj of Aj,k. This is uniformly definable (across

the class of groups Gj) using Aj,k as a parameter. Elements in Fj,k are of the form

(1, Id, . . . , gAj,kg
−1, . . . , Id) where g ∈ SL2

(
Z/pej,kj,k Z

)
.

Consider now Nj,k = CGj(Fj,k). Then this is a normal subgroup of Gj since for every

α ∈ Gj and every γ ∈ Nj,k we have that αFj,kα−1 = Fj,k so αγα−1 ∈ Nj,k. Furthermore

Nj,k = CGj(Fj,k) is uniformly definable using Aj,k through the formula defining the

centralizer, namely ϕ(x,Aj,k) := ∀g ∈ Gj(xgAj,kg
−1x−1 = gAj,kg

−1). We have

Nj,k =Fj × SL2

(
Z/pej,1j,1 Z

)
× . . .× C

SL2(Z/p
ej,k
j,k Z)

(
A
SL2(Z/p

ej,k
j,k Z)

j,k

)
× . . .

. . .× SL2

(
Z/p

ej,bj
j,bj
Z
)
.

We just note that if for a particular index i we have bi < k′ then we just put Ni,k′ := Gi.

Define Hk :=
∏
i

Ni,k�U . Put H :=
⋂
k

Hk and H6=j :=
⋂
k 6=j
Hk.

Fix d ∈ N. Since bi are increasing there is Q = Q(d) ∈ N such that whenever j > Q

then bj > d, i.e. there are at least d many big prime factors, so Nj,d is not the full Gj .

Also, since pi,1 are also increasing, we may choose Q so that pj,1 > d whenever j > Q.

Claim 2.4.3. Suppose that j > Q, and for k ∈ {1, . . . , bj} take Nj,k as above. Then

there are at least d elements ckj,1, . . . , c
k
j,d ∈ Gj , each of these with all coordinates not in

C
SL2(Z/p

ej,k
j,k Z)

(
A
SL2(Z/p

ej,k
j,k Z)

j,k

)
equal to the corresponding identity, such that

ckj,r · ckj,s
−1

/∈ Nj,k for any distinct r, s ∈ {1, . . . , d}. In particular, |Gj : Nj,k| ≥ d.

It is enough to show that if j > Q we have

|Gj : Nj,k| = |SL2

(
Z/pej,kj,k Z

)
: C

SL2(Z/p
ej,k
j,k Z)

(
A
SL2(Z/p

ej,k
j,k Z)

j,k

)
| ≥ pj,k.

To see this, let |Gj : Nj,k| = λ. Then for all B ∈ SL2

(
Z/pej,kj,k Z

)
we have that

Bλ ∈ C
SL2(Z/p

ej,k
j,k Z)

(
A
SL2(Z/p

ej,k
j,k Z)

j,k

)
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which means that in particular BλAj,kB
−λ = Aj,k. Considering the matrix D = ( 1 1

0 1 ),

we have

DλAj,kD
−λ =

(
aj,k λ(bj,k−aj,k)

0 bj,k

)
= Aj,k

only if λ(bj,k − aj,k) is a multiple of pej,kj,k . In particular, if λ < pj,k then pej,kj,k |(bj,k − aj,k),

which contradicts the choice of aj,k and bj,k. This proves Claim 2.4.3.

Claim 2.4.4. Let d ∈ N. Then |H6=j : H| ≥ d.

Let Q = Q(d) be as above. For s ∈ {1, . . . , d}, let

c̄s := [(1G1 , . . . ,1GQ−1
, cjQ,s, c

j
Q+1,s, . . .)]U .

We have c̄s ∈ H6=j for s ∈ {1, . . . , d}. This follows because we chose cjl,s ∈ Nl,k for all

k 6= j. Furthermore, for any distinct r, s ∈ {1, . . . , d}, we have c̄s · c̄−1
r /∈ H . This holds

because cjl,s · c
j
l,r

−1
/∈ Nl,j . Hence the index |H6=j : H| is at least d, which proves Claim

2.4.4.

From the above, since d was arbitrary, we get that the index |H6=j : H| is infinite for

every j.

Thus, by Lemma 1.3.12 applied to the family of groups {
∏
j

Nj,i}i<ω the ring
∏
Z/nZ/U

has the tree property of the second kind.

2.5 NSOP

We now turn to answer the questions raised by Artem Chernikov and prove Proposition

2.1.5. For this we recall the definition of NSOP theories. See Definition 1.2.11 in

Subsection 1.2.5 above.
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To prove Proposition 2.1.5, we must show that when R :=
∏
n∈N
Z/nZ�U is NIP but not

simple, or it is NTP2 but neither NIP nor simple, or it is TP2 then R has the strict order

property.

Let us focus first on the cases from Section 2.2.

Remark 2.5.1. Notice that in the NIP and NTP2 cases there is no bound on the exponents

considered. In the NIP case from Proposition 2.2.1 fix a prime q and look at the ultraproduct

R :=
∏
n∈N
Z/qnZ�U . The relation a|b, “a divides b”, is a definable partial order in the

language of rings, and 1, q, q2, . . . , qk−1 forms a chain of length k in the finite ring Z/qkZ.

Hence we are able to find arbitrarily long chains inside the ultraproduct R precisely

because there is no bound in the exponents. The same argument applies (with a non-

standard prime in place of q) in the non-simple NTP2 case considered in Proposition

2.2.8. Easily, this argument applies in the cases with boundedly many prime divisors

and unbounded exponents presented in Corollary 2.2.3 and 2.2.10. In particular if R is

non-simple NTP2 then it is SOP.

Next we deal with rings discussed in Section 2.4.

Remark 2.5.2. Consider now ultraproducts of the form R :=
∏
n

Z/nZ�U where the

ultraproduct U satisfies the conditions of Proposition 2.4.2. For every k ∈ N the set

Uk := {n ∈ N : there are at least k prime divisors of n}

is in the ultrafilter. We can write elements n ∈ Uk as

n = p
en(1)
n(1) · p

en(2)
n(2) · . . . · p

en(k)
n(k) ·m(n)

where m(n) ∈ N only has prime divisors greater than pn(k). If we consider the relation

given by divisibility we have, in each such Z/nZ, the following chain of length k,

pn(1)|pn(1) · pn(2)| . . . |pn(1) · . . . · pn(k).
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Hence we can define arbitrarily long chains in R and this implies that R has SOP.

Finally, we note that Proposition 2.1.5 follows from the two previous remarks.

Proposition 2.5.3. If the ultraproduct
∏
n∈N
Z/nZ�U is not simple, then it has SOP.

Proof. Indeed, a non-simple ultraproduct will either have unbounded exponents involved

in which case Remark 2.5.1 shows it is SOP, or it will have unbounded number of prime

divisors involved so Remark 2.5.2 shows that it is SOP.
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Chapter 3

Asymptotic classes of finite residue rings

We turn now to address the asymptotic behaviour of the class of finite residue rings studied

in Section 2.3; that is, the class of rings RU := {Z/nZ : n ∈ U} where U is an element

in a non-principal ultrafilter on N for which there is a bound b on the number and on the

exponents of prime divisors of every n ∈ U .

In Proposition 2.3.7 in Section 2.3 we showed that ultraproducts of rings of any class of

the formRU , where U is as above, have a supersimple finite rank theory.

As mentioned in Subsection 1.2.8, ultraproducts of elements ofN -dimensional asymptotic

classes are supersimple of rank ≤ N . Furthermore the proof of Proposition 2.3.7 hinted

towards a close relation between the ultraproducts of rings of the classRU and ultraproducts

of finite fields.

The aim of this chapter is to show that for any d ∈ N and l1, . . . , ld ∈ N the class of rings

{Z/nZ : n = pl11 · . . . · p
ld
d , p1 < . . . < pd ∈ P} is indeed a multidimensional asymptotic

class in an expansion of Lrings by unary predicates in the sense of [1] as mentioned in

1.2.8 above. See Definition 3.3.1.

As we noted in Section 2.3, ultraproducts of rings of the classRU can be viewed as finite

direct sums of ultraproducts of rings of the class {Z/plZ : p ∈ P} for some fixed l ∈ N>0.
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It is natural then to start by studying the latter classes. For this we present the notion of

asymptotic fragment, the main tool of the chapter to deal with classes of rings of the form

{Z/plZ : p ∈ P}.

3.1 Asymptotic fragments

The overall strategy to deal with the class of rings {Z/plZ : p ∈ P} is the following.

Inside each ring of the form Zp/plZp we find a definable subset A in correspondence with

the finite fieldZp/pZp and we note that we can “reflect” the asymptotic behaviour from the

finite field onto our definable set A. Next we define, using elements in A as parameters,

a partition of Zp/plZp \ A that has a nice asymptotic behaviour in Zp/plZp. Then, we

note that given a formula ϕ(x, ȳ) and some parameters ā ∈ Zp/plZp the solutions can be

found separately in the base A and in the elements of the partition. Finally the asymptotic

behaviour of both of these parts gives us the wanted asymptotic behaviour of Zp/plZp.

We present this in Theorem 3.2.1 below.

We work in the context of the valued fieldsQp for primes p in the three sorted Denef-Pas

language, as mentioned in Definition 1.3.25 in 1.3.4.

Hence, we think about Z/plZ as Zp/plZp. Further Zp/plZp is interpretable in Qp over a

parameter pl of value l, this is needed in the ultraproduct although not at each p. For Zp
is definable in Qp using only the valuation and for every k ∈ Z>0 we have pkZp = {x ∈

Zp : v(x) ≥ k}. Hence every definable set in Zp/plZp is interpretable in Qp.

We first present the following lemma that, loosely put, allows us to reflect some of the

asymptotic behaviour of the class of finite fields to the collection of uniformly definable

subsets of Zp/plZp which are in bijective correspondence with finite fields.

Lemma 3.1.1. Put l ∈ N and for every p ∈ P consider Zp/plZp.
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For every p ∈ P let Bp be a set uniformly Lrings-definable across the class {Zp/plZp :

p ∈ P}, possibly with parameters. If Bp is in uniform Lrings-definable (possibly using

parameters sp from Zp/plZp) bijective correspondence with Zp/pZp, then for any Lrings-

formula ϕ(x, ȳ) the following hold.

i) There exists a constant C and a finite setD of pairs (δ, µ) ∈ ({0, 1}×R>0)∪{(0, 0)}

such that for any p ∈ P and any āp ∈ Zp/plZp,∣∣|ϕ(Zp/plZp, āp) ∩Bp| − µpδ
∣∣ < Cpδ−

1
2

holds for some (δ, µ) ∈ D as p→∞.

ii) Furthermore, for each pair (δ, µ) in D there exists an Lrings-formula τ(δ,µ)(ȳ, z̄) such

that τ(δ,µ)(āp, sp) holds in Zp/plZp if and only if

∣∣|ϕ(Bp, āp)| − µpδ
∣∣ < Cpδ−

1
2 .

Proof. For any p ∈ P let fsp be the definable bijection (defined possibly with parameters

sp) from Bp to Zp/pZp.

Put ϕ(Bp, āp) := ϕ(Zp/plZp, āp) ∩ Bp the trace of the definable set ϕ(Zp/plZp, āp) in

Bp. The set ϕ(Bp, āp) corresponds uniformly in p to a definable set in Zp/pZp using

fsp , namely fsp(ϕ(Bp, āp)). Recall that the residue field Zp/pZp, the ring Zp/plZp and

ϕ(Zp/plZp, āp) are interpretable in Qp.

Moreover, the corresponding set in Zp/pZp is definable uniformly in p with parameters

āp, sp from Zp/plZp. Hence we obtain a definable set in any ultraproduct
∏
U Zp/pZp

using parameters [āp], [sp] in
∏
U Zp/plZp, namely f[sp] (ϕ(

∏
U Bp, [āp])). We work inside

the valued field Qp in the three sorted Denef-Pas language setting. Then
∏
U Zp/pZp is

fully embedded in
∏
U Qp, see Proposition 2.3.2. Hence, there exists an Lrings-formula
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ϕπ(x, w̄) and parameters [ēp] ∈
∏
U Zp/pZp such that

f[sp]

(
ϕ(
∏
U
Bp, [āp])

)
= ϕπ

(∏
U
Zp/pZp, [ēp]

)
.

Since ϕπ(
∏
U Zp/pZp, [ēp]) is a definable set in an ultraproduct of finite fields, and the

ultrafilter was arbitrary, when going back to the factors we get finitely many Lrings-

formulas ψ1, . . . , ψrϕ such that for any particular p there is some j ∈ {1, . . . , rϕ} such

that

fsp (ϕ(Bp, āp)) = ψj (Zp/pZp, ēp) .

Let J ∗p be the set of all j ∈ {1, . . . , rϕ} such that fsp (ϕ(Bp, āp)) = ψj(Zp/pZp, ēp). Let

j∗p be the least element in J ∗p and consider the Lrings-formula ψj∗p (x, w̄)

By Theorem 1.2.24 from [9], mentioned in Subsection 1.2.8 above, there exists a constant

Cj∗p and a finite set Dj∗p ⊆ ({0, 1} × R>0) ∪ {(0, 0)} of pairs (δj∗p ,k, µj∗p ,k) for k ∈

{1, . . . , tj∗p} and a partition {Φ(δ,µ) : (δ, µ) ∈ Dj∗p} of the set {(Zp/pZp, ēp) : p ∈ P, ēp ∈

Zp/pZp} such that for each (δj∗p ,k, µj∗p ,k) ∈ Dj∗p∣∣|ψj∗p (Zp/pZp, ēp)| − µj∗p ,k|Zp/pZp|δj∗p,k∣∣ < Cj∗pp
δj∗p,k−

1
2

for all (Zp/pZp, ēp) ∈ Φ(δj∗p,k,µj∗p,k) as p → ∞. This means, after translating by the

function fsp there are finitely many possible approximate sizes for ϕ(Bp, āp) when we let

p and āp vary.

Furthermore, by Theorem 1.2.24 there are Lrings-formulas χj∗p ,k(v̄) for k ∈ {1, . . . , tj∗p}

such that χj∗p ,k(ēp) holds in Zp/pZp if and only if the pair (Zp/pZp, ēp) ∈ Φ(δj∗p,k,µj∗p,k).

That is, if
∣∣|ψj∗p (Zp/pZp, ēp)| − µj∗p ,k|Zp/pZp|δj∗p,k∣∣ < Cj∗pp

δj∗p,k−
1
2 .

Put the Lrings-formula ρz̄,j∗p (v̄, ȳ) to say fz̄(ϕ(Bp, ȳ)) = ψj∗p (Zp/pZp, v̄).

Also put the Lrings-formula τj∗p ,k(ȳ, z̄) to say

∃ē ∈ Zp/pZp∃z̄ ∈ Zp/plZp(ρz̄,j∗p (ē, ȳ) ∧ χj∗p ,k(ē)).
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Hence τj∗p ,k(āp, sp) holds if and only if
∣∣|ϕ(Bp, āp)| − µj∗p ,kp

δj∗p,k
∣∣ < Cj∗pp

δj∗p,k−
1
2 as p→

∞.

Moreover, since j ∈ {1, . . . , rϕ} and k ∈ {1, . . . , tj}we get finitely many pairs (δj,k, µj,k)

that represent possible approximate sizes for ϕ(Bp, āp) (with respect to |Zp/pZp|). Hence

we get finitely many formulas τ(j,k)(ȳ, sp) that pick out the parameters āp ∈ Zp/plZp such

that |ϕ(Bp, āp)| is approximated by the pair (δ(j,k), µ(j,k)).

We present now the following proposition.

Proposition 3.1.2 (Asymptotic fragment). Take s,m, l ∈ N such that m > 0 and s <

s+m < l. Put Cl = {Zp/plZp : p ∈ P}

Then for any Lrings-formula ϕ(x, ȳ) the following hold.

1. There exists a constant C, a finite set D of pairs (δ, µ) ∈ ({0, . . . ,m} × R>0) ∪

{(0, 0)} and a partition {Φ(δ,µ) : (δ, µ) ∈ D} of the set {(Zp/plZp, āp, bp) :

Zp/plZp ∈ Cl, āp ∈ Zp/plZp, bp ∈ ps+mZp/plZp} such that for each pair (δ, µ)

∣∣|ϕ(F (pm, bp), āp)| − µpδ
∣∣ < Cpδ−

1
2

for all (Zp/plZp, āp, bp) ∈ Φ(δ,µ) as p → ∞. Here F (pm, bp) = {x ∈ Zp/plZp :

pmx = bp}.

2. Furthermore, for each (δ, µ) ∈ D from above there is an Lrings-formula χ(δ,µ)(ȳ, z)

such that χ(δ,µ)(āp, bp) holds if and only if (Zp/plZp, āp, bp) ∈ Φ(δ,µ).

Proof. We prove this by induction on m.

First take m = 1. Let s, l ∈ N be such that s < s + 1 < l. Let ϕ(x, ȳ) be an Lrings-

formula.
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Put ϕ(F (p1, bp), āp) := ϕ(Zp/plZp, āp) ∩ F (p1, bp) to denote the trace of the definable

set ϕ(Zp/plZp, āp) in F (p1, bp).

We want to find a constant C and a finite set of pairs (δ, µ) such that for any given p ∈ P,

āp ∈ Zp/plZp and bp ∈ ps+1Zp/plZp the size of ϕ(F (p1, bp), āp) is approximated by one

of these pairs.

Now, F (p1, bp) = {x ∈ Zp/plZp : p1x = bp} is in definable bijection uniformly in

p with Zp/pZp. Indeed, for any p ∈ P the map θ : Zp → F (p1, bp) that maps z to

pl−1z + psβ induces a definable bijection f−1
βp

from Zp/pZp to F (p1, bp) that sends z +

(pZp) to θ(z). Furthermore, even when fβp depends on psβ, any β′ such that ps+1β′ = bp

induces a bijection from F (p1, bp) to Zp/pZp in the same way. Hence when we fix bp ∈

ps+1Zp/plZp, i.e. when ∃β ∈ Zp/plZp(ps+1β = bp) holds the choice of β doesn’t affect

the fact that fβp is a bijection.

The set ϕ(F (p1, bp), āp) corresponds uniformly in p to a definable set in Zp/pZp using

fβp , namely fβp
(
ϕ(F (p1, bp), āp)

)
.

By Lemma 3.1.1, taking the parameters to be {βp}, we obtain a constant C and a finite

set E of pairs (δ, µ) ∈ ({0, 1} × R>0) ∪ {(0, 0)} such that for all bp ∈ ps+1Zp/plZp and

āp ∈ Zp/plZp ∣∣|ϕ(F (p1, bp), āp)| − µpδ
∣∣ < Cpδ−

1
2

holds for some pair (δ, µ) as p→∞.

Furthermore for each (δ, µ), after quantifying out the parameters βp, there exists τ(δ,µ)(ȳ, z)

such that τ(δ,µ)(āp, bp) holds in Zp/plZp if and only if
∣∣|ϕ(F (p1, bp), āp)| −µpδ

∣∣ < Cpδ−
1
2

as pl →∞.

This shows that the statement in Proposition 3.1.2 holds when m = 1. The finite set

of pairs is E and the formula τ(δ,µ) defines each element of the partition. Note that each

δ ∈ {0, 1}.
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Now assume that the statement in Proposition 3.1.2 holds for some m. That is, for any

s, l ∈ N such that s < s + m < l for any Lrings-formula ϕ(x, ȳ) there exists a constant

C and a finite set D of pairs (δ, µ) ∈ ({0, . . . ,m} × R>0) ∪ {(0, 0)} and a partition

{Φ(δ,µ) : (δ, µ) ∈ D} of the set {(Zp/plZp, āp, bp) : Zp/plZp ∈ Cl, āp ∈ Zp/plZp, bp ∈

ps+mZp/plZp} such that for each pair (δ, µ)

∣∣|ϕ(F (pm, b), āp)| − µpδ
∣∣ < Cpδ−

1
2

for all (Zp/plZp, āp, bp) ∈ Φ(δ,µ) as p → ∞. Recall F (pm, bp) = {x ∈ Zp/plZp : pmx =

bp}.

Furthermore, for each pair (δ, µ) there is anLrings-formula χ(δ,µ)(ȳ, z) such that χ(δ,µ)(āp, bp)

holds if and only if (Zp/plZp, āp, bp) ∈ Φ(δ,µ).

We then want to show that the statement of Proposition 3.1.2 holds for m+ 1.

For this we let s and l be such that s < s+ (m+ 1) < l.

Fix a formula ϕ(x, ȳ). For each p ∈ P consider parameters āp in Zp/plZp and let bp be

an element in ps+(m+1)Zp/plZp (where bp = ps+(m+1)β for some β ∈ Zp/plZp).

Consider the set F (pm+1, bp) = {x ∈ Zp/plZp : pm+1x = bp}. We want to approximate

the size of ϕ(F (pm+1, bp), āp). For this consider the set Ŝbp = {x ∈ Zp/plZp : p1x = bp}.

Note that we have Ŝbp ⊆ ps+mZp/plZp and that Ŝbp = pm · F (pm+1, bp).

Take cp ∈ Ŝbp . Put F ′(pm, cp) := {x ∈ Zp/plZp : pmx = cp}. Note that the collection

{F ′(pm, c) : c ∈ Ŝbp} partitions the set F (pm+1, bp).

Also s < s + m < l ( for s + m < s + m + 1). Hence by inductive hypothesis if

we put Rl,p = Zp/plZp and consider the same formula ϕ(x, ȳ) we find a constant C, a

finite set E of pairs (δi, µi) ∈ ({0, . . . ,m} × R>0) ∪ {(0, 0)}, with i ∈ {1, . . . , r} and a

partition {Φ′(δi,µi) : (δi, µi) ∈ E} of the set {(Zp/plZp, āp, c′) : p ∈ P, āp ∈ Zp/plZp, c′ ∈
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ps+mZp/plZp} such that for each (δi, µi) ∈ E∣∣|ϕ(F ′(pm, c), āp)| − µipδi
∣∣ < Cpδi−

1
2

for all (Zp/plZp, āp, c) ∈ Φ′(δi,µi) as p → ∞. Note that this induces a partition of the set

{(Zp/plZp, āp, c) : p ∈ P, āp ∈ Zp/plZp, c ∈ Ŝbp} since Ŝbp ⊆ ps+mZp/plZp.

Furthermore since we assume Proposition 3.1.2 holds for m, there are Lrings-formulas

χi(w, ȳ) such that for āp ∈ Zp/plZp and c ∈ Ŝbp we have that χi(c, āp) holds in Zp/plZp
if and only if ∣∣|ϕ(F ′(pm, c), āp)| − µipδi

∣∣ < Cpδi−
1
2 .

Recall ϕ(F ′(pm, c), āp) denotes ϕ(Zp/plZp, āp) ∩ F ′(pm, c).

Note that each formula χi(x, āp) defines a set in Ŝbp = pmF (pm+1, bp).

Since Ŝbp = {x ∈ Zp/plZp : p1x = bp}, (s + m) < (s + m) + 1 < l and Proposition

3.1.2 holds when m = 1 we can now find an approximation for |χi(Ŝbp , āp)|.

Since each formula χi(x, āp) defines a set in Ŝbp = F (p1, bp) then for each i ∈ {1, . . . , r}

the statement of Proposition 3.1.2 gives a constantCi, and a finite setEi of pairs (εi,j, νi,j) ∈

({0, 1} × R>0) ∪ {(0, 0)} where j ∈ {1, . . . , ti}, such that

∣∣|χi(Ŝbp , āp)| − νi,jpεi,j ∣∣ < Cip
εi,j− 1

2 .

Recall that χi(Ŝbp , āp) = χi(Zp/plZp, āp) ∩ F (p1, bp).

Furthermore there are Lrings-formulas ηi,j(ȳ, x) for j ∈ {1, . . . , ti} such that ηi,j(āp, bp)

holds in Zp/plZp if and only if
∣∣|χi(F (p1, bp), āp)| − νi,jpεi,j

∣∣ < Cip
εi,j− 1

2 .

We follow ideas from [30] (also [17]). Note that for each bp, āp, there is a unique function

h = h(āp,bp) : {1, . . . , r} → ω such that for all i ∈ {1, . . . , r} we have h(i) ∈ {1, . . . , ti}

and ηi,h(i)(āp, bp) holds. Since h(i) ∈ {1, ..., ti} we get that the set of such possible

functions is finite.
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Consider āp, bp as above and a compatible h.

Define Ti(āp, bp) := {z ∈ Zp/plZp : ϕ(z, āp) ∧ z ∈ F (pm+1, bp) ∧ χi(pmz, āp)}. Then,

the collection {Ti(āp, bp) : 1 ≤ i ≤ r} forms a partition of ϕ(F (pm+1, bp), āp), i.e. we

have ϕ(F (pm+1, bp), āp) =
⊔
i

Ti(āp, b).

Furthermore, since
∣∣|χi(F (p1, bp), āp)| − νi,h(i)p

εi,h(i)
∣∣ < Cip

(εi,h(i)− 1
2

) if we put G :=

{q ∈ F (p1, bp) : χi(q, āp)} we have that |G| is approximately νi,h(i)p
εi,h(i) . Also, since

χi(q, āp) holds for all q ∈ G putting H := {z ∈ Zp/plZp : ϕ(z, āp) ∧ pmz = q} we

get |H| is approximately µipδi since
∣∣|ϕ(F (pm, q), āp)| − µip

δi
∣∣ < Cpδi−

1
2 . Hence the

following holds for |Ti(āp, bp)|.

First

|Ti(āp, bp)| <
(
µip

δi + Cpδi−
1
2

)
·
(
νi,h(i)p

εi,h(i) + Cip
(εi,h(i)− 1

2
)
)
.

Second (
µip

δi − Cpδi−
1
2

)
·
(
νi,h(i)p

εi,h(i) − Cipεi,h(i)−
1
2

)
< |Ti(āp, bp)|.

Hence

∣∣|Ti(āp, b)| − µiνi,h(i)p
δi+εi,h(i)

∣∣ < (Cνi,h(i) + µiCi)p
δi+εi,h(i)− 1

2 + CCip
δi+εi,h(i)−1.

This means that for some large enough C ′h ,

∣∣|Ti(āp, b)| − µiνi,h(i)p
δi+εi,h(i)

∣∣ < C ′hp
δi+εi,h(i)− 1

2

as p→∞.

Put Dh := max{δi + εi,h(i) : i ∈ {1, . . . , r}}. Note Dh ∈ {0, . . . ,m+ 1}. Consider the

set A := {i ∈ {1, . . . , r} : δi + εi,h(i) = Dh} and make Mh := Σ
i∈A
µiνi,h(i).

Then, ∣∣|ϕ(F (pm+1, bp), āp)| −Mhp
Dh
∣∣ < ( Σ

i∈A
C ′i)p

Dh− 1
2 +K

where K accounts for the terms where p has exponent less than Dh − 1
2
. Hence for a big
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enough C ′′h we have

∣∣|ϕ(F (pm+1, bp), āp)| −Mhp
Dh
∣∣ < (C ′′h)pDh−

1
2

as p→∞.

Since the pair (Dh,Mh) depends only on h there is a formula σh(ȳ, w) given by
∧
i∈A
ηi,h(i)(ȳ, w)

such that σh(āp, bp) holds if and only if

∣∣|ϕ(F (pm+1, bp), āp)| −Mhp
Dh
∣∣ < (C ′′h)pDh−

1
2

as p→∞.

As we note before, the set of possible functions h is finite. Hence the set of pairs

(Dh,Mh) is finite. Therefore we find a constant C ′′ = max
h
{C ′′h} and finitely many

formulas σh(ȳ, w) such that σh(āp, bp) holds if and only if

∣∣|ϕ(F (pm+1, bp), āp)| −Mhp
Dh
∣∣ < (C ′′)pDh−

1
2 .

Hence, the statement from Proposition 3.1.2 holds for m+ 1.

This completes the proof by induction. Therefore Proposition 3.1.2 holds for all m ∈

N>0.

Remark 3.1.3. Further to Proposition 3.1.2, we call the collection {F (pm, bp) : p ∈

P, bp ∈ ps+mZp/plZp} an asymptotic fragment of Cl over {ps+mZp/plZp : p ∈ P}.

3.2 The class {Zp/plZp : p ∈ P}

As we have done previously, we keep working in Zp/plZp in the context of the Henselian

valued fields Qp.
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We will now use Proposition 3.1.2 to show the following result.

Theorem 3.2.1. For any fixed l ∈ N>0 the class {Zp/plZp : p ∈ P} is an l-dimensional

asymptotic class.

Proof. We will use that for all m ∈ N, and all s, l ∈ N such that s < s + m < l

the collection {F (pm, vp) : p ∈ P, vp ∈ ps+mZp/plZp} is an asymptotic fragment of

{Zp/plZp : p ∈ P} over {ps+mZp/plZp : p ∈ P}.

By Lemma 1.2.23 it is enough to consider formulas ϕ(x, ȳ) in just one free variable x.

Given an Lrings-formula ϕ(x, ȳ), p ∈ P and āp some parameters in Zp/plZp we want to

study the asymptotic behaviour of |ϕ(Zp/plZp, āp)| across the class {Zp/plZp : p ∈ P}.

Put Rl,p = Zp/plZp, and Cl = {Rl,p : p ∈ P}. Note that if s = 0 and m = l − 1, we

get that 0 < l − 1 < l satisfies the hypothesis of Proposition 3.1.2. Then the collection

{F (pl−1, up) : p ∈ P, up ∈ pl−1Zp/plZp} is an asymptotic fragment of Cl over D0,l−1 =

{pl−1Zp/plZp : p ∈ P}. Hence there exists a constant C and finitely many pairs (δi, µi),

where δi ∈ {0, . . . , l − 1} for every i ∈ {1, . . . , r}, such that for the fixed p ∈ P,

āp ∈ Zp/plZp and any bp ∈ pl−1Zp/plZp we have that

∣∣|ϕ(F (pl−1, bp), āp)| − µipδi
∣∣ < Cpδi−

1
2

for some i ∈ {1, . . . , r}. Furthermore, there are Lrings-formulas ζi(ȳ, w) such that

ζi(āp, bp) holds in Zp/plZp if and only if

∣∣|ϕ(F (pl−1, bp), āp)| − µipδi
∣∣ < Cpδi−

1
2 .

Now, each ζi(āp, w) defines a set in pl−1Zp/plZp. Note that pl−1Zp/plZp is in bijective

correspondence with Zp/pZp via the map f−1 : Zp/pZp → pl−1Zp/plZp which maps

z + (pZp) 7→ pl−1z + (plZp). The map f−1 is induced by the map θ : Zp → pl−1Zp/plZp
mapping z to pl−1z + (plZp).
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Since the map f is defined uniformly on p by Lemma 3.1.1 we get Ci and finitely many

pairs

(ε(i,1), ν(i,1)), . . . , (ε(i,si), ν(i,si)),

where ε(i,j) ∈ {0, 1} for all j ∈ {1, . . . , si} such that for all p ∈ P and āp ∈ Zp/plZp∣∣|ζi(āp, pl−1Zp/plZp)| − ν(i,j)p
ε(i,j)

∣∣ < Cip
ε(i,j)− 1

2

for some (ε(i,j), ν(i,j)) as p→∞

Furthermore for each pair (ε(i,j), ν(i,j)) there exists a formula χ(i,j)(ȳ) such that χ(i,j)(āp)

holds in Zp/plZp if and only if

∣∣|ζi(āp, pl−1Zp/plZp)| − ν(i,j)p
ε(i,j)

∣∣ < Cip
ε(i,j)− 1

2 .

Note that for each āp there is a unique function g : {1, . . . , r} → ω such that g(i) ∈

{1, . . . , si} and χ(i,g(i))(āp) holds. Since g(i) ∈ {1, . . . , si} the set of such functions is

finite.

Fix āp and consider a compatible g.

Define the set Ti(āp) := {x ∈ Zp/plZp : ϕ(x, āp) ∧ ζi(āp, pl−1x) ∧ χ(i,g(i))(āp)}. Note

that {Ti(āp) : i ∈ {1, . . . , r}} forms a partition of ϕ(Zp/plZp \ pl−1Zp/plZp, āp), i.e.

ϕ(Zp/plZp \ pl−1Zp/plZp, āp) =
⊔
i Ti(āp). Note also that for each i ∈ {1, . . . , r} we

have ∣∣|Ti(āp)| − µiν(i,g(i))p
δi+ε(i,g(i))

∣∣ < C ′ip
δi+ε(i,g(i))− 1

2

for some big enough constant C ′i as p→∞.

Put δ̂g := max{δi + ε(i,g(i)) : i ∈ {1, . . . , r}}. Observe that δ̂g ∈ {0, . . . , l}. Consider

the set A := {i ∈ {1, . . . , r} : δi + ε(i,g(i)) = δ̂g} and put µ̂g := Σ
i∈A
µiν(i,g(i)). Then for

some big enough constant Ĉ we have

∣∣|ϕ(Zp/plZp \ pl−1Zp/plZp, āp)| − µ̂gpδ̂g
∣∣ < Ĉpδ̂g−

1
2
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as pl →∞.

Furthermore there is a formula ηg(ȳ) given by
( ∧
i∈A
χ(i,g(i))(ȳ)

)
such that ηg(āp) holds if

and only if this last inequality is satisfied.

To obtain a complete approximation of ϕ(Zp/plZp, āp) it is only left to approximate the

size of the set ϕ(pl−1Zp/plZp, āp).

Again, since pl−1Zp/plZp is in bijective correspondence with Zp/pZp via f defined

above and the correspondence is uniform in p by Lemma 3.1.1 we get a constant C ′

and a finite set E ′ of pairs (γk, λk) with k ∈ {1, . . . , t} and γk ∈ {0, 1} such that for all

p ∈ P and āp ∈ Zp/plZp∣∣|ϕ(pl−1Zp/plZp, āp)| − λkpγk
∣∣ < C ′pγk−

1
2

for some pair (γk, λk) ∈ E ′.

Furthermore for each pair (γk, λk) we get an Lrings-formula τk(ȳ) such that τk(āp) holds

in Zp/plZp if and only if

∣∣|ϕ(pl−1Zp/plZp, āp)| − λkpγk
∣∣ < C ′pγk−

1
2 .

Finally, we write

|ϕ(Zp/plZp, āp)| = |ϕ(Zp/plZp \ pl−1Zp/plZp, āp)|+ |ϕ(pl−1Zp/plZp, āp)|.

The formula Ξg,k(āp) given by ηg(āp) ∧ τk(āp) holds if and only if both

∣∣|ϕ(Zp/plZp \ pl−1Zp/plZp, āp)| − µ̂gpδ̂g
∣∣ < Ĉpδ̂g−

1
2 , and∣∣|ϕ(pl−1Zp/plZp, āp)| − λkpγk

∣∣ < C ′pγk−
1
2

hold.

There are finitely many functions g and elements k ∈ {1, . . . , t}. Hence there are finitely
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many possible pairs (g, k) and µ̂g, δ̂g depends only on g. Also, there is a constant Ĉ that

works for all functions g simultaneously. Then for each (g, k) put:

i) δg,k = max{δ̂g, γk}.

ii) µg,k =


µ̂g, if δg,k = δ̂g

λk, if δg,k = γk

µ̂g + λk, if δ̂g = γk.

Then for a big enough constant C we have that

∣∣|ϕ(Zp/plZp, āp)| − µg,kpδg,k
∣∣ < Cpδg,k−

1
2

for some (g, k) as p→∞.

In conclusion we have obtained that given ϕ(x, ȳ) and āp ∈ Zp/plZp there exists C a

constant and finitely many pairs (δg,k, µg,k) with δg,k ∈ {0, . . . , l} such that

∣∣|ϕ(Zp/plZp, āp)| − µg,kpδg,k
∣∣ < Cpδg,k−

1
2

as pl →∞. Furthermore we find formulas Ξg,k(ȳ) such that Ξg,k(āp) holds if and only if

∣∣|ϕ(Zp/plZp, āp)| − µg,kpδg,k
∣∣ < Cpδg,k−

1
2

as p→∞.

We have shown that for a fixed l ∈ N the class of rings {Zp/plZp : p ∈ P} satisfies

the definition of an asymptotic class for formulas with a single variable x. By Lemma

1.2.23 we conclude that {Zp/plZp : p ∈ P} is an asymptotic class. Furthermore in the

argument above we obtained pairs (δg,k, µg,k) ∈ ({0, . . . , l} × R>0) ∪ {(0, 0)} since the

size of each structure in the class Cl as p varies is pl we obtain that {Zp/plZp : p ∈ P} is

an l-dimensional asymptotic class.
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We finish this section with the following remark presenting some ideas along the lines

of Remark 2.3.9.

Remark 3.2.2. By the Ax-Kochen-Eršov theorem we know that, with l fixed,
∏
p∈P
Z/plZ�U

is elementarily equivalent to
∏
p∈P
Fp[[t]]/(tl)�U in the language of rings. Also, one can

argue that for any p ∈ P the ring Fp[[t]]/(tl) and the finite field Fp are bi-interpretable,

uniformly in p. This together with results on bi-interpretability between classes of finite

structures, see for example Lemma 3.7 from [17], gives us that the class of rings F ′ :=

{Fp[[t]]/(tl) : p ∈ P} is anN -dimensional asymptotic class, in fact withN = l. However,

we take a moment to note that the proof that the class Cl = {Z/plZ} is an l-dimensional

asymptotic class required quite a different approach to that of the class F ′.

3.3 Multidimensional asymptotic classes of finite residue

rings

In Section 2.3 we looked at ultraproducts
∏
U Z/nZ of the class of finite residue rings

{Z/nZ : n ∈ N} where there exists U ′ ∈ U such that there is a bound on the number

and the exponent of prime divisors of every n ∈ U ′. These ultraproducts are isomorphic

to a finite direct product of ultraproducts of members of classes of the form discussed in

Section 3.2 above.

We now use results from Daniel Wolf’s Ph.D. thesis [51] to study the class Cd,l1,...,ld :=

{Z/nZ : n = pl11 · · · p
ld
d , p1 < . . . < pd ∈ P}, where d ∈ N>0 and l1, . . . , ld ∈ N, in the

context of multidimensional asymptotic classes.

For this we present the following definition from [1].

Definition 3.3.1 ( [1]). Let C be a class of finite L-structures and let R be a class of

functions from C to R≥0. We say C is an R-multidimensional asymptotic class in L, R-
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mac for short, if for every formula ϕ(x̄, ȳ), where the length of x̄ is n and the length of ȳ

is m, the following holds.

1. There exists a finite set F of functions hi ∈ R and a partition {Φhi : 1 ≤ i ≤ |F |}

of the set {(M, ā) :M∈ C, ā ∈M} such that for each i ≤ R

∣∣|ϕ(Mn, ā)| − hi(M)
∣∣ = o (hi(M))

for all (M, ā) ∈ Φhi as |M| → ∞.

2. For every hi ∈ R there exists L-formulas χhi(ȳ) such thatM |= χhi(ā) if and only

if (M, ā) ∈ Φhi .

Daniel Wolf has shown in his Ph.D. thesis, Lemma 2.3.5 [51] the following result.

Theorem 3.3.2 (Daniel Wolf, [51]). Let C1, . . . , Cn be Ri-multidimensional asymptotic

classes in disjoint languages L1, . . .Ln. Then the disjoint union C1 t . . . t Cn = {M1 t

· · · tMn :Mi ∈ Ci} of the Ri-MACs itself forms an R-MAC (for an appropriate R) in

the disjoint union of the languages L1 t . . . t Ln.

For fixed d ∈ N and l1, . . . , ld ∈ N put Cd,l1,...,ld := {Z/nZ : n = pl11 · · · p
ld
d , p1 < . . . <

pd ∈ P}. Then any ring in the class Cd,l1,...,ld can be seen as a finite direct product of fixed

length d. Moreover, the factors are taken from finitely many fixed classes C1 = {Z/pl1Z :

p ∈ P}, . . . , Ct = {Z/pltZ : p ∈ P}. By Proposition 3.2.1 above each of these Ci is an

li-dimensional asymptotic class.

Note that each N -dimensional asymptotic class is an R-multidimensional asymptotic

class for an appropriate R consisting of functions of the formM 7→ µ|M|δ.

By Theorem 3.3.2 we get the following.

Corollary 3.3.3. Put l1, . . . , ld ∈ N>0, and for each i ∈ {1, . . . , d} put Ci = {Z/pli : p ∈

P}. Then the disjoint union C1 t . . . t Cd is an R-multidimensional asymptotic class in

the disjoint union of d many copies of the language Lrings.
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Proof. This follows from Theorem 3.2.1 and the result of Daniel Wolf in Theorem 3.3.2.

Proposition 3.3.4. Put d ∈ N>0, and l1, . . . , ld ∈ N. Let Cd,l1,...,ld := {Z/nZ : n =

pl11 · · · p
ld
d , p1 < . . . < pd ∈ P}. Then Cd,l1,...,ld is an R-multidimensional asymptotic class

in Lrings + {Pi}1≤i≤b. Here each Pi is a unary predicate that interprets the i-th factor of

each element in Cd,l1,...,ld .

Proof. By expanding the language by the unary predicates {Pi} the class Cd,l1,...,ld and

the disjoint union from the corollary directly above are bi-interpretable. It follows from

Proposition 2.4.6 in [51] that Cd,l1,...,ld is also an R-multidimensional asymptotic class, for

some R.

Question 3.3.5. What can be said about the class {Z/nZ : n ∈ U ′}, when there is a

bound b on the number and the value of the exponents of prime divisors of elements in U ′?

Is this also anR-multidimensional asymptotic class? Can we get the definability clause to

hold? Note that we wouldn’t include the unary predicates and we would consider bounded

direct sums of rings of the form Z/peiZ where ei < b instead of the rings discussed earlier

where the length of the sums and the exponents appearing for the prime power divisors of

n are fixed.

Question 3.3.6. How can we study more examples of definable sets with an asymptotic

fragment behaviour. The naive approach presented in 3.3.7 below doesn’t quite seems to

work but it may be improved.

Definition 3.3.7. Let L be a first order language, C a class of finite L-structures and

A = {AM :M∈ C} where AM ⊆M is an ordered set of fixed size n∗ for allM∈ C.

Let ∆(x, z̄1) be an L-formula where |z̄1| = n∗. For eachM ∈ C put D(M, AM) :=

∆(M, AM). Write DA = {D(M, AM) :M∈ C}.

Let Υ(x, z̄1, z̄2) be an L-formula. For each M ∈ C and each c̄ ∈ D(M, AM) put

F (M, AM, c̄) = Υ(M, AM, c̄). WriteFA = {F (M, AM, c̄) :M∈ C, c̄ ∈ D(M, AM)}.
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We say FA is an N -dimensional asymptotic fragment of C overDA if for any formula

ϕ(x, ȳ) the following hold.

1. There is a finite set of pairs D ⊆ ({0, . . . , N} × R>0) ∪ {(0, 0)} and a partition

{Φ(δ,µ) : (δ, µ) ∈ D} of the set {(M, ā, c̄) :M∈ C, ā ∈M|ȳ|, c̄ ∈ (D(M, AM))|z̄2|}

such that for each (δ, µ) ∈ D

∣∣|ϕ(M, ā) ∩ F (M, AM, c̄)| − µ|F (M, AM, c̄)|
δ
N

∣∣ = o
(
|F (M, AM, c̄)|

δ
N

)
for all (M, ā, c̄) ∈ Φ(δ,µ) as |M| → ∞.

2. Furthermore, for each (δ, µ) ∈ D there is an L-formula χ(δ,µ)(ȳ, z̄2) such that

χ(δ,µ)(ā, c̄) holds inM if and only if (M, ā, c̄) ∈ Φ(δ,µ), i.e. if and only if

∣∣|ϕ(M, ā) ∩ F (M, AM, c̄)| − µ|F (M, AM, c̄)|
δ
N

∣∣ = o
(
|F (M, AM, c̄)|

δ
N

)
.

Remark 3.3.8. Note that if C is anN -dimensional asymptotic class, then making Υ(x, z̄1, z̄2) :=

(x = x) we get that C is an asymptotic fragment of itself over any DA.

Question 3.3.9. Could we show that if a collection of structures is uniformly coordinatised

(or analysed) by an asymptotic class as in this chapter, then the class is itself an asymptotic

class?
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Chapter 4

Further results on pseudofinite rings

In this short chapter we will address general results on the model theory of pseudofinite

rings and some results on how stability conditions imposed on a class of finite rings can

ensure some algebraic behaviour on ultraproducts of these classes.

4.1 Questions

We start by describing some of the questions we answer in this chapter.

As is done in many expositions of ring theory, we start by looking at simple and semisimple

rings. It is in this train of thought that we ask the following. Can we show that, up to

elementary equivalence, the following holds?

• Any simple pseudofinite ring is elementarily equivalent to one of the form
∏
Mni(Fqi)�U .

See 4.2.2 below.

• Any semisimple, perhaps plus some generalised stability condition, pseudofinite

ring has the form ∏
i

Mn1(Fq1)⊕ . . .⊕Mnki
(Fqki )�U
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up to elementary equivalence. See 4.2.1 below.

Furthermore, can we show what follows?

• The theory of a ring of the form
∏
i

Mn1(Fq1)⊕ . . .⊕Mnki
(Fqki )�U is supersimple

if and only if n1, . . . , nk and k are bounded in some U ∈ U ; and that if n1, . . . , nk

or k, are unbounded, the theory has TP2 . See 4.3.7.

• An ultraproduct of increasing powers of Mn(q) is TP2 . Is its model theory tame in

any sense? See 4.3.7.

To begin we note the following remarks.

Being a division ring is first order expressible. Further, Wedderburn showed that finite

division rings are fields, a result often referred to as “Wedderburn’s little Theorem”, see

Theorem 13.1 from [27]. Hence we have the following.

Remark 4.1.1. Pseudofinite division rings are pseudofinite fields.

Further, since being an integral domain is defined by a first order sentence and since a

straightforward argument shows that finite integral domains are fields, we get the next

remark.

Remark 4.1.2. Pseudofinite integral domains are pseudofinite fields.

4.2 Simple and semisimple pseudofinite rings

We have the next remark

Remark 4.2.1. A semisimple pseudofinite ringR is elementarily equivalent to an ultraproduct

of semisimple finite rings.
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Proof. Let R be a semisimple ring such that R ≡
∏

iRi�U , with the Ri all finite rings.

Then by 1.3.21, R is J-semisimple and (left)-Artinian. Since R is J-semisimple then

J(R) = 0. By Remark 1.3.14 J(R) is first order definable. By Łoś’s theorem and the

elementary equivalence between R and
∏

U
i

Ri we get J(R) = J(
∏
U Ri) = 0. Therefore,

J(Ri) = 0 for U-many of the Ri. Since each Ri is finite it is automatically Artinian, and

so semisimple since it is J-semisimple. See Proposition 1.3.21.

Further we note the following.

Proposition 4.2.2. If R is a simple pseudofinite ring then R ∼= Mn(F) for a pseudofinite

field F .

Proof. Let R be a simple pseudofinite ring. For a, b ∈ R define a < b if and only if

Ra ⊆ Rb, where Ra is the principal left ideal generated by a. Then ‘<’ is a definable

partial order. Furthermore by pseudofiniteness there is a minimal non-zero element a0

(every finite partial order has a minimal element). Then Ra0 is a minimal left ideal

of R by definition of <. By 1.3.20 the simple ring R is isomorphic to Mn(D) for

some n ∈ N and some division ring D. Further D is definable in Mn(D). Consider

E1 an element with entries 1 in the (1, 1) position and zeros elsewhere. Then the set

Mn(D)E1∩E1Mn(D) = DE1 (theD multiples ofE1) with the usual matrix addition and

multiplication is isomorphic toD. SinceR is pseudofinite we have thatD is a pseudofinite

division ring. By Remark 4.1.1 D is a pseudofinite field.

Corollary 4.2.3. Simple pseudofinite rings have supersimple theory.

Proof. This follows since Mn(F) is interpretable in F , and pseudofinite fields have

supersimple theory.
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4.3 Classes of finite rings with generalised stability properties

We will now focus our attention on the following results which link pseudofinite rings and

pseudofinite groups. Recall that in [26] Theorem 2.1 Krupinski proved Theorem 1.3.22

above.

Note that Theorem 1.3.22 yields at once the following.

Remark 4.3.1. If every definable group in any ultraproduct of a class C is soluble-by-

finite, then every ring with 1, or of finite characteristic, definable in any ultraproduct of

the class C is nilpotent-by-finite.

Proof. Let R be an ultraproduct of elements in C. Assume every definable group in R

is soluble-by-finite. Hence by 1.3.22 part (i) every definable ring in R is nilpotent-by-

finite.

The same proof of 1.3.22 from [26] goes through for this case. A detailed account of

part of the proof from [26] is presented in Proposition 4.3.12. In particular we have the

following.

Corollary 4.3.2. Suppose C = {Ri : i ∈ I} is a class of rings with 1 and the formula γ

defines a group γ(Ri). Then, if every group of the form
∏
γ(Ri)�U is soluble-by-finite

for every such formula γ, we conclude that every ultraproduct of the form
∏
Ri�W is

nilpotent-by-finite.

Proof. This follows from the above Remark 4.3.1.

Recall now what we mentioned in Proposition 1.3.11 in Subsection 1.3.2. From [32]

Corollary 1.4 we have that whenever a pseudofinite group is NIP and rosy then the

pseudofinite group is soluble-by-finite. This yields the following result.
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Proposition 4.3.3. Let C be a NIP, rosy class of finite rings. Let R =
∏
U Ri be an

ultraproduct of elements in the class C. Then R is nilpotent-by-finite.

Proof. Let C be a NIP, rosy class of finite rings. Let R =
∏
U Ri be an ultraproduct of

elements in the class C. Any group definable in R is pseudofinite NIP rosy, so soluble-by-

finite by 1.3.10. From 1.3.22 we have that R is nilpotent-by-finite.

Corollary 4.3.4. Any NIP rosy pseudofinite ring R with 1, or of finite characteristic, is

nilpotent-by-finite.

Proof. Again, any group definable in R will be NIP rosy, so soluble-by-finite by 1.3.11.

Hence R is nilpotent-by-finite by 1.3.22.

With respect to stable pseudofinite rings we mention the following.

Remark 4.3.5. Any ω-stable pseudofinite ring of finite Morley rank is null-by-finite.

Proof. In [32] it is noted that Khelif showed that pseudofinite ω-stable groups of finite

Morley rank are abelian-by-finite. The above remark follows from 1.3.22 part (ii).

Moreover, from [31] we have the following, which also follows directly from Corollary

4.3.4.

Remark 4.3.6. Any stable pseudofinite ring with 1, or of finite characteristic, is nilpotent-

by-finite.

Proof. By [31] we know that any stable pseudofinite group is soluble-by-finite. Hence by

1.3.22 part(i), we get that stable pseudofinite rings are nilpotent-by-finite.
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As mentioned earlier, we denote by Mn(R) the ring of n× n-matrices with entries over

a ring R, and we use Mn(q) as a shorthand for Mn(Fq).

Recall the definable subgroup condition stated in Lemma 2.1 from [13]. In this text this

is Lemma 1.3.12, in Section 1.3.2.

Proposition 4.3.7. Let C be an NTP2 class of finite J-semisimple rings. Then there is

N ∈ N such that the members of C are of the form Mn1(q1) × . . . ×Mnk(qk) for some k

and n1, . . . , nk in N and primes q1, . . . , qk where n1, . . . , nk, k are bounded by N .

Proof. By the Artin-Wedderburn theorem, Theorem 1.3.19, and Theorem 1.3.20 we know

that finite (hence Artinian) J-semisimple rings are of the form
k
⊕
j=1
Mnj(qj) for some k ∈

N, n1, . . . , nk ∈ N and q1, . . . , qk primes.

We deal with two cases. First assume there is no bound on k. Then for any d ∈ N there

are infinitely many rings in C isomorphic to direct sums with more than d summands.

Furthermore we have a collection of rings such that the number of summands is strictly

increasing.

Consider now an ultraproduct R :=
∏
i

Ri�U =
∏
i

(
ki⊕
j=1

Mni,j(qi,j)

)
�U . We now

proceed to find for every N ∈ N an N ×N array in R that satisfies the conditions in the

TP2 property, contradicting the fact that C is an NTP2 class.

Fix N ∈ N. Since there is no bound on k there exists U ∈ U such that for any i ∈ U the

ring Ri has more that N2 summands. I.e. we have rings of the form Ri =
ki⊕
j=1

Mni,j(qi,j)

where ki > N2. We can then assume that each Ri has more than N2 summands. We

address two possibilities.

• First, if there is V ∈ U such that every ni,j ∈ V equals 1 then Ri
∼=

ki⊕
j=1

Fqi,j

for all i ∈ V . Define (uniformly) in each Ri the group Gi = GL2

(
ki∏
j=1

Fqi,j

)
.
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A straightforward argument shows that GL2

(
ki∏
j=1

Fqi,j

)
∼=

ki∏
j=1

GL2(Fqi,j). Put

Gi,j := GL2(Fqi,j) so Gi =
ki∏
j=1

Gi,j .

• Otherwise we can assume that every ni,j appearing inRi is greater than 1. Define in

each Ri (uniformly, as the set of invertible elements) the group

Gi :=
ki∏
j=1

GLni,j(qi,j). Put Gi,j := GLni,j(qi,j) so Gi =
ki∏
j=1

Gi,j .

In any case, for each i take non-central elements {ai,j : 1 ≤ j ≤ N2} where ai,j ∈ Gi,j .

Put for every l ≤ N the sequence

ᾱi,l := (1, . . . , 1, ai,l, 1, . . . , 1, ai,(N+l), 1, . . . , 1, ai,((N−1)N+l), 1, . . . , 1).

I.e. ᾱi,l = (ci,j)j where

ci,j =

ai,kN+l if j = kN + l for some 0 ≤ k ≤ (N − 1), 1 ≤ l ≤ N ;

1Gi,j otherwise.

Since ai,j is not central, for any j ≤ d there is bi,j /∈ CGi,j(ai,j). Then we have

bi,jCGi,j(ai,j) ∩ CGi,j(ai,j) = ∅.

Put now β̄i,(l,k) := (1, . . . , 1, bi,l, 1, . . . , 1, ai,(kN+l), 1, . . . , 1, bi,((N−1)N+l), 1, . . . , 1).

This is, β̄i,(l,k) = (di,j)j where

di,j =


ai,kN+l if j = kN + l ;

bi,mN+l if j = mN + l for some 0 ≤ m ≤ (N − 1),m 6= k ;

1Gi,j otherwise.
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Note that β̄i,(l,k)CGi(ᾱi,l) =
ki∏
l=1

Hi,j where

Hi,j =


CGi,kN+l

(ai,kN+l) if j = kN + l ;

bi,mN+lCGi,mN+l
(ai,mN+l) if j = mN + l for some 0 ≤ m ≤ (N − 1),m 6= k ;

Gi,j otherwise.

Finally, for any l ≤ (N − 1) and k, k′ ≤ N with k 6= k′ we have

β̄i,(l,k)CGi(ᾱi,l) ∩ β̄i,(l,k′)CGi(ᾱi,l) = ∅.

This follows sinceCGi,kN+l
(ai,kN+l)∩bi,kN+lCGi,kN+l

(ai,kN+l) = ∅ (likewiseCGi,k′N+l
(ai,k′N+l)∩

bi,k′N+lCGi,k′N+l
(ai,k′N+l) = ∅). However, for any f : {0, . . . , N − 1} → {1, . . . , N} we

get
N⋂
j=1

β̄i,(l,f(l))CGi(ᾱi,l) 6= ∅. This is because the tuple (c′i,j) where

c′i,j =



ai,f(l)N+l if j = f(l)N + l for some 1 ≤ l ≤ N ;

bi,mN+t if j ≤ N2 and j 6= f(l)N + l for any 1 ≤ l ≤ N but

j = mN + t for some 0 ≤ m ≤ (N − 1), 1 ≤ t ≤ N ;

1Gi,j otherwise.

is an element of
N⋂
j=1

β̄i,(l,f(l))CGi(ᾱi,l) 6= ∅.

Then {ᾱi,l, β̄i,(l,k) : 0 ≤ l ≤ (N − 1), 1 ≤ k ≤ N} is an N × N TP2 array for the

formula ϕ(x; y, z) := x ∈ zCGi(y).

Since we can get arbitrarily deep and wide TP2 arrays in the ultraproduct we conclude

that the ultraproduct is TP2 .

On the other hand assume that there is a bound k on the number of summands that

appear in each Ri ∈ C but there is not a bound on ni,1, . . . , ni,k. This means that for some
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j ≤ k the set {ni,j : i ∈ I} is unbounded. Then in
∏
i∈I
Mni,j(qi,j)�U we can define an

ultraproduct elementarily equivalent to
∏
n∈N

GLn(Fn)�W for some fields Fn and some

ultrafilterW .

FixN ∈ N, then for every n > (2N)N we can pick inGLn(Fn) the following subgroups.

For j ≤ N2 consider the set of n× n matrices with entries from Fn

Gn,j = {
(
tr,s
)

:t2j−1,2j−1t2j,2j − t2j−1,2jt2j,2j−1 6= 0;

tr,s = 1 if r = s ∧ r 6= 2j − 1 ∧ r 6= 2j;

tr,s = 0 if r 6= s ∧
(
r < 2j − 1 ∨ 2j < r ∨ s < 2j − 1 ∨ 2j < s

)
}.

Then Gn,j is the group of diagonal block matrices of the form



H1 0 ··· 0 0 0
... . . . ...

...
...

...
0 ··· Hj ··· 0 0

... . . . ...
...

0 ··· ··· 0 HN2 0

0 ··· ··· 0 0 IdFn


where Hj ∈ GL2(Fn) and Hi = IdGL2(Fn) for all i 6= j, and IdFn is the identity in

GLn−2N2(Fn)

Arguing as above we find an N × N TP2 array for arbitrary N . The TP2 formula was

quantifier free, and GLn(F ) contains a direct product of N2 copies of GL2(F ). Hence

the ultraproduct is TP2 .

Remark 4.3.8. Furthermore for any finite field F the theory of the class {GLn(F ) : n ∈

N} of all general linear groups is undecidable by [19], Appendix 1 (see also section 6.3

of [6]).

We now turn to a natural example of a pseudofinite non-commutative ring, namely a ring

of matrices over a ring.
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Then 4.3.7 gives us the next result.

Corollary 4.3.9. Let R be an ultraproduct of the form
∏

(q,n)

(M2(q))n�U . Assume that

for any N there is U ∈ U such that for all (q, n) ∈ U , n > N . Then R is TP2 .

Proof. From the proof of 4.3.7 we get the array that witnesses TP2 .

Remark 4.3.10. From 4.2.1 and 4.3.7 if R is an NTP2 semisimple pseudofinite ring then

R is elementarily equivalent to a ring of the form
∏
i

ki⊕
j=1

Mni,j(qi,j)�U and there is a

bound on ki and the size of the matrices ni,j . This means R ≡
∏

(q1,...,qk)

Mn1(q1j) ⊕ . . . ⊕

Mnk(qkj)�V

We know NIP rosy pseudofinite rings are nilpotent-by-finite, see 4.3.4. Similarly to

Theorem 3.1 from [32], NIP pseudofinite rings are not necessarily nilpotent-by-finite.

Proposition 4.3.11. There are NIP pseudofinite rings that are not nilpotent-by-finite.

Moreover, ultraproducts of NIP classes of finite rings need not be nilpotent-by-finite.

Proof. Let p be a prime. Put Cp := {Z/pnZ : n ∈ N}. By 2.2.3 in Section 2.2 any

ultraproduct R of elements in Cp is NIP. Furthermore each ring in Cp has a nilpotent ideal,

e.g. pZ/pnZ ⊆ Z/pnZ. However R is not nilpotent-by-finite. Otherwise assume that I is

a finite index ideal. Let (1)n be the multiplicative identity inR and let (0)n be the additive

identity in R. Then for k = |R : I|, (1)n + . . .+ (1)n = (k)n = k̄ ∈ I . If we assume that

I is nilpotent then there is m such that the product of any m elements of I equals (0)n. In

particular k̄m = (0)n. This means that {n : pn|km} ∈ U but there is N ∈ N such that for

all n ≥ N we get pn ≥ km. Hence a finite index ideal cannot be nilpotent.

We can however get some information about NIP classes of finite rings. Namely, we get

the following.
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Proposition 4.3.12. Let C be a NIP class of finite rings with 1 or of finite characteristic.

Then there exists δ such that every R ∈ C has a nilpotent ideal of index bounded by δ.

Proof. As in Theorem 2.1 from [26] it is enough to consider the case when the rings have

1. Consider a NIP class C of finite rings (with 1). Write C := {Rl : l ∈ I}. We will define

uniformly in each Rl the group Gl := GL3(Rl). Write CG := {Gl : l ∈ I}.

Since each ultraproduct G of elements in CG is uniformly definable in an ultraproduct

R of elements R in the NIP class C (by using the same ultrafilter) we have that G is NIP.

Hence CG is an NIP class of finite groups.

By work of H.D. Macpherson and K. Tent from [32], which is mentioned in 1.3.11

on Subsection 1.3.2, there exists d = d(CG) such that for every Gl ∈ CG we have

|Gl : S(Gl)| ≤ d, where S(Gl) is the largest soluble, normal subgroup of Gl.

It is also mentioned in Subsection 1.3.2 that from [50] the largest soluble normal subgroup

of a finite group is first order definable, say by the formula ψ∗.

Hence, we have that S(Gl) is a definable normal, soluble, finite (bounded across CG)

index subgroup.

We follow the argument given by K. Krupinski in [26] to prove 1.3.22. Given distinct

i, j ∈ {1, 2, 3} define the matrix ti,j(α), for α ∈ Rl, as the matrix having 1’s in the

diagonal, α in the (i, j)-th place and 0 elsewhere. It follows that ti,j(α)ti,j(β) = ti,j(α+β)

and [ti,k(α), tk,j(β)] = ti,j(αβ)

Put Il := {α ∈ Rl : ti,j(α) ∈ S(Gl) for all distinct i, j ∈ {1, 2, 3}}.

We have that Il is a definable ideal of Rl.

• 0 ∈ Il for ti,j(0) = Id3 ∈ S(Gl) since S(Gl) is a subgroup.

• Given α, β ∈ Il then ti,j(α)ti,j(β) = ti,j(α + β), so α + β ∈ Il. Also we have

ti,j(−α) = ti,j(α)−1 so −α ∈ Il.



Chapter 4. Further results on pseudofinite rings 80

• Let τ ∈ Rl, and α ∈ Il so ti,j(α) ∈ S(Gl) for all distinct i, j ∈ {1, 2, 3}.

We have ti,j(τα) = [ti,k(τ), tk,j(α)] = ti,k(τ)tk,j(α)ti,k(τ)−1tk,j(α)−1. Since we

know ti,k(τ)tk,j(α)ti,k(τ)−1 ∈ S(Gl) by normality of S(Gl) and tk,j(α)−1 ∈ S(Gl)

because S(Gl) is a subgroup we get ti,j(τα) ∈ S(Gl). Hence τα ∈ Il. A similar

argument shows that ατ ∈ Il.

Furthermore Il has bounded index in Rl across C. Moreover it is strictly bounded by

δ(CG) := R(d + 1, d + 1, . . . , d + 1), the Ramsey number for a colouring with as many

colours as pairs of distinct i, j ∈ {1, 2, 3}, call them {c(i,j)} (6 possible entries).

Assume on the contrary that there are δ = δ(CG) many distinct Il cosets in Rl. We can

now pick {αn : 1 ≤ n ≤ δ} distinct coset representatives. Then αn − αm /∈ Il for any

distinct n,m.

Now consider the complete graph on the set of vertices {αn : 1 ≤ n ≤ δ(CG)} and colour

the edge between αn and αm with colour c(i,j) if and only if ti,j(αn)ti,j(αm)−1 /∈ S(Gl)

and c(i,j) is least lexicographically. Hence by applying finite Ramsey theorem there is a

colour c(i,j) such that there is a monochromatic complete graph with edges coloured c(i,j)

of size d(CG) + 1. This means that there are d(CG) + 1 elements of the form ti,j(αu)

with 1 ≤ u ≤ d(CG) + 1 such that ti,j(αn)ti,j(αm)−1 /∈ S(Gl). This implies that |Gl :

S(Gl)| ≥ d(CG) + 1 which contradicts the fact that S(Gl) has index bounded by d(CG).

Hence Il has index in Rl strictly bounded by δ(CG) across C.

Moreover
∏
l

Il�U is an ideal of index less than δ(CG) in the ultraproduct
∏
l

Rl�U .

Because of the solubility of S(Gl) there is some nl such that S(Gl)
(nl) = {e}. I.e. the

nl-th derived subgroup is trivial.

By induction on n it is straightforward to show that if S(Gl) has derived length n then

for any α1, . . . , α2n ∈ Il we have that ti,j(α1 · . . . · α2n) ∈
(
S(Gl)

)(n), which means that,

α1 · . . . · α2n = 0. Hence Il is nilpotent of nilpotent index less than or equal to 2nl .
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Therefore for any α1, . . . , α2nl ∈ Il we get α1 · . . . ·α2nl = 0. Hence Il is nilpotent ideal.

We can conclude that there exists δ such that every ring in the class C = {Rl : l ∈ I}

has a definable nilpotent ideal of index bounded by δ.

Question 4.3.13. Can we remove the assumption “R has a 1 or has finite characteristic”

from 4.3.4?

Question 4.3.14. Consider commutative nilpotent pseudofinite stable rings. Are these

null-by-finite?
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