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Abstract 

 
 

Elevated vascular smooth muscle cell (VSMC) proliferation is a feature of various 

cardiovascular conditions including restenosis, abdominal aortic aneurysm (AAA) and 

atherosclerosis. Voltage-gated T-type Ca2+ channels are implicated in VSMC 

proliferation as their expression is markedly up-regulated in proliferative phases of the 

VSMC cell-cycle (Kuga et al., 1996). The Thioredoxin (Trx) system is also associated with 

proliferative disorders of the heart and vasculature, e.g. Trx concentrations are 

elevated in AAA (Martinez-Pinna et al., 2010) and atherosclerosis (Okuda et al., 2001). 

Trx has recently been shown to regulate T-type Ca2+channels (Boycott et al., 2013). 

This PhD has investigated the hypothesis that VSMC proliferation is modulated by 

interactions between Trx and T-type Ca2+ channels. 

 

Proliferation assays revealed that the T-type Ca2+ channel inhibitor NNC55-0396 (NNC, 

1-3µM) decreased A7r5, HEK293/CaV3.1 and HEK293/CaV3.2, but not wt HEK293, cell 

proliferation. In contrast the L-type Ca2+ channel inhibitor nifedipine (2µM) was 

without effect. The Trx inhibitors PX-12 (1µM) and auranofin (AuF, 300nM) 

preferentially inhibited the proliferation of CaV3.2-expressing cells, i.e. A7r5 and 

HEK293/CaV3.2 cells. Basal Ca2+ influx in A7r5 cells was also significantly reduced by 

NNC (3µM) and AuF (3µM). Whole-cell patch-clamp recordings in recombinant cells 

revealed that PX-12 (1-300μM) inhibited CaV3.1 and CaV3.2 currents with similar 

sensitivities. In contrast, Trx (4µg.ml-1) enhanced CaV3.2, but not CaV3.1, peak current 

amplitude. Similarly, AuF (3µM) selectively reduced the current-density of 

HEK293/CaV3.2 cells. Data suggest that CaV3.2 channels are positively and selectively 

regulated by Trx, yet PX-12 could inhibit T-type Ca2+ channels independently of Trx. 

The sensitivity of CaV3.2 channels to Trx was found to be dependent on an extracellular 

histidine residue at position 191 (H191), especially as mutation to a glutamine (Q) 

residue (H191Q) abolished Trx-sensitivity. In summary, these data indicate that 

interactions between Trx and CaV3.2 channels can regulate the proliferation of CaV3.2–

expressing cells. 
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Chapter 1 - Introduction 

This PhD project has explored the regulation of T-type Ca2+ channels by thioredoxin 

(Trx) and the potential significance of this modulation on vascular smooth muscle cell 

(VSMC) proliferation. The following introduction initially outlines a range of 

cardiovascular disorders associated with pathological VSMC proliferation. Central 

observations detail how increased levels of T-type Ca2+ channels and Trx have 

coincidentally been reported in numerous proliferative disorders. The established 

structure-function relationships, expression profiles and physiological roles of T-type 

Ca2+ channels and Trx are subsequently discussed in detail.  

 

1.1. Vascular smooth muscle cells (VSMCs) and blood vessels 

Within the human body, the walls of arteries and veins are composed of three layers. 

The outer tunica adventitia is made up of connective tissue, the central tunica media is 

comprised of VSMCs and structural proteins i.e. collagen and elastin, and the internal 

tunica intima is formed by endothelial cells. Compared to veins, the medial layer of 

arteries is considerably thicker, as summarised by Figure 1.1. This underpins the 

greater tensile strength and elasticity of arterial vessels. Capillaries are contrastingly 

made up of a single intimal layer supported by pericytes (Zhang & Wang, 2015). VSMCs 

typically align circumferentially within the medial layer of blood vessels and are also 

present within the walls of organs and bronchi. Typically 100µm x 5µm in size, 

differentiated VSMCs are spindle shaped in appearance. The contraction and 

relaxation of VSMCs underlies their primary function in the regulation of blood vessel 

diameter and correspondingly local blood flow (Matsumoto & Nagayama, 2012).  

 

VSMC function is heavily reliant on Ca2+ signalling which is influenced by numerous 

factors including Ca2+ influx via plasma membrane channels and also Ca2+ release from 

internal stores. Regarding contraction, depolarisation of the VSMC plasma membrane 

can activate voltage-gated L-type Ca2+ channels which facilitate Ca2+ influx and large 

increases in intracellular Ca2+ levels ([Ca2+]i). Subsequent activation of Ca2+/calmodulin-

dependent myosin light chain kinase (MLCK) initiates VSMC contraction. Increases in 

[Ca2+]i also activates ryanodine receptors (RyR) on the surface of the sarcoplasmic 
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reticulum (SR), leading to Ca2+-induced Ca2+ release (CICR) and subplasmalemmal Ca2+ 

sparks. Activation of Ca2+-activated K+ channels can then repolarise the VSMC and 

enable blood vessel relaxation. Contraction of VSMCs occurs slowly and often tonically, 

which directly contrasts with the rapid contractile activities of cardiac myocytes, as 

reviewed (House et al., 2008).  

 
Excessive VSMC proliferation is a common pathological feature observed in a variety of 

cardiovascular disorders. VSMCs exhibit considerable phenotypic plasticity and readily 

dedifferentiate from their contractile phenotype in response to functional demand. 

There are several non-contractile phenotypes including proliferative, migratory and 

inflammatory VSMCs. This process of dedifferentiation is referred to as the 

“phenotypic switch” and is a key feature of normal blood vessel development and 

repair. Whilst adult VSMCs typically exhibit a stable contractile phenotype, in 

pathological conditions such as restenosis, hypertension and atherosclerosis, 

phenotypic switching is common. This often results in excessive VSMC proliferation 

and a narrowing of lumen diameter (Matchkov et al., 2012), as shown in Figure 1.1(B). 

The following section discusses the significance of pathological VSMC proliferation 

within the development of specific cardiovascular disorders.  

 
 
1.2. Phenotypic switching, VSMC proliferation and cardiovascular disorders 

1.2.1. Restenosis 

Restenosis is a common consequence of surgical vascular intervention, such as 

coronary artery bypass grafting. Arbitrarily defined as ≥50% narrowing of luminal 

vessel diameter, restenosis is characterised by increased VSMC proliferation and 

migration, growth factor release, platelet aggregation and inflammatory cell invasion. 

Vascular injury produces platelet deposition which release mitogenic factors and 

cytokines, such as platelet-derived growth factor (PDGF). This stimulates the 

phenotypic switch and subsequent VSMC proliferation and migration. Two weeks post-

injury, VSMCs can multiply 3-5 times resulting in neointima formation and luminal 

narrowing (Marx et al., 2011).  

.  
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Figure 1.1. Schematic diagrams showing blood vessel structure 

The walls of arteries and veins are made up of three layers: tunica adventitia (A), 
tunica media (M) and tunica intima (I). A, representative cross-sectional views of 
showing the thickness of layers within an artery, vein and capillary B, representation of 
the internal structure of an artery showing endothelial cells (ECs) within the intima on 
top of the basement membrane (BM), vascular smooth muscle cells (VSMCs) within 
the media and connective tissue comprising the adventitia. Dashed oval area highlights 
increased VSMC proliferation and subsequent narrowing of the lumen (L). Diagrams 
adapted from Clemmons (2007) and Lafleur et al, (2003). (Clemmons 2007; Lafleur et 
al., 2003) 
 
Quiescent or contractile VSMCs are maintained in the non-proliferative G0 phase of the 

cell-cycle. Following vascular injury, growth factors stimulate VSMCs to enter the G1 

gap phase, where factors are produced for DNA replication within the subsequent 

synthetic (S) phase. Cells then progress to the G2 gap-phase where protein synthesis 

occurs prior to mitosis (M phase). Restriction (R) phases, at the interfaces of G1-S and 

G2-M, enable the regulation of VSMC cell-cycle progression by various factors including 

cyclins and cyclin-dependent kinases (CDKs). Regarding VSMC migration, activation of 

cell-surface receptors initiates remodelling of the cytoskeleton, reduces matrix 

adhesiveness and activates motor proteins. As VSMC migration can only occur within 

the G1 phase of the cell-cycle, it is intimately associated with proliferation (Marx et al., 

2011).  
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Carotid artery ligation or wire injury is commonly used to induce neointima formation 

in animals, and provides an effective model of arterial stenosis. For example, wire 

injury of carotid arteries of mice led to increased VSMC proliferation and significant 

neointima formation 2 weeks post-surgery (Lindner et al., 1993; Tzeng et al., 2012). 

Immunohistochemical staining demonstrated that VSMCs were the primary cell type 

within the neointimal tissue. 5-Bromo-2′-deoxyuridine (BrdU) labelling further revealed 

that the neointimal VSMCs were proliferative (Tzeng et al., 2012). Interestingly, genetic 

knockdown of matrix metalloprotein-8 (MMP-8) within mice subjected to carotid wire 

injury significantly reduced VSMC proliferation and neointima formation. In vitro 

proliferation assays confirmed that VSMCs lacking MMP-8 exhibited slower 

proliferative rates and considerably less migration compared to controls (Xiao et al., 

2014).   

 

1.2.2. Atherosclerosis  

Atherosclerosis, an increasingly common chronic disease of the arterial wall, is a 

leading cause of death in the developed world (Barquera et al., 2015). Atherosclerotic 

remodelling of blood vessel walls is heavily reliant on the VSMC phenotypic switch. 

VSMCs can also transdifferentiate into macrophage- and chondrocyte-like cells which 

additionally contribute to atherosclerotic plaque formation. Whilst proliferative VSMCs 

of local origin are the major component in atherosclerotic plaques, circulating 

peripheral blood mononuclear cells can also transform into VSMCs (Martin et al., 

2009). Within the intima of arteries, oxidation of low-density lipoprotein (LDL) is 

thought to provide the initial atherogenic factor. Lectin-type oxidised LDL (ox-LDL) 

receptors type-1 (LOX-1) are the primary mediators of ox-LDL activity and are 

expressed by VSMCs and endothelial cells (ECs) (Pirillo et al., 2013). Within VSMCs, 

LOX-1 activation promotes the dedifferentiation of VSMCs to proliferative and 

migratory phenotypes (Liu et al., 2014). At higher concentrations, ox-LDL can also 

initiate VSMC apoptosis, which destabilises the plaque eventually leading to its 

rupture. Plaque rupture is a serious event which can lead to acute coronary events 

such as myocardial infarction (MI). Arterial branch points are highly susceptible to 

atherosclerotic plaque formation due to disturbed (i.e. non-laminar) blood flow, 

leading to shear stress and VSMC dedifferentiation. Whilst laminar blood flow down-
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regulates mitogenic factors, disturbed flow stimulates the vascular endothelium to 

secrete pro-inflammatory cytokines and adhesion molecules, such as interleukin-8 (IL-

8) and vascular cell adhesion molecule-1 (VCAM-1). Adhesion molecules attract 

monocytes which secrete interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α). 

The VSMC phenotypic switch is subsequently activated. During the advancement of 

plaque formation localised plaque regions are subject to different patterns of shear 

stress. Specifically, high shear stress at the plaque cap can induce VSMC apoptosis and 

subsequent plaque rupture, whilst lower shear stress levels around plaque shoulders 

increases VSMC proliferation and correspondingly plaque size (Fan & Karino, 2010). It 

is also important to consider that changes in many other factors, including gene 

expression, basal lamina (BM) composition and VSMC calcification have also been 

found to influence atherosclerotic phenotypic switching of VSMCs, as reviewed 

(Chistiakov et al., 2015).  

 

Atherosclerosis is a multi-factorial disease involving accumulation of foam cells and 

formation of fatty streaks in addition to plaque formation. The disease is also 

associated with complications such as aneurysms, blood vessel calcification, 

thrombosis and stenosis. As such, the development of an effective animal model 

encompassing all of these features has proven challenging (Kapourchali et al., 2014). 

Apolipoprotein E (apoE) is a glycoprotein which is involved in the clearance of 

lipoproteins from the circulation. Correspondingly, although appearing healthy, apoE 

knockout (KO) (apoE-/- or apoE+/-) mice have increased circulating cholesterol and 

triglyceride levels, develop spontaneous foam-cell rich deposits within proximal aorta 

and show evidence of fatty streaks. Progressive occlusion of coronary arteries was also 

observed in these mice (Zhang et al., 1992). As such, apoE-deficient mice are routinely 

used to study the induction and prevention of atherosclerosis. For example, treatment 

of apoE-/- mice with S-adenosyl-homocysteine significantly increased VSMC 

proliferation and migration, leading to larger atheromatous plaque formation. These 

effects were attenuated by the antioxidant enzyme superoxide dismutase and thus 

confirmed a role for oxidative stress in the development of atherosclerosis (Luo et al., 

2012).  
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1.2.3. Aortic aneurysm  

Localised or diffuse dilation of the aorta to ≥50% normal diameter is classified as an 

aortic aneurysm. Aneurysms can occur throughout the body although aortic 

aneurysms are particularly common within the thoracic abdomen, where they are 

termed thoracic abdominal aortic aneurysms (TAAA). Upon diagnosis, TAAAs are 

generally asymptomatic however resultant acute aortic dissection can lead to 

peripheral malperfusion, cardiac tamponade, paraplegia, stoke and aortic regurgitation 

(Goldfinger et al., 2014). Correspondingly, TAAAs are associated with high mortality 

and morbidity rates, and are increasingly prevalent. The incidence and likelihood of 

TAAA rupture (i.e. aortic dissection) correlates with co-morbid atherosclerosis and 

hypertension. Generally, aneurysms involve all three layers of the blood vessel wall. 

TAAAs put considerable strain on the aorta and dissection occurs via intimal tearing. 

This leads to separation of the aortic wall and the false passage of blood. Increased 

activity of MMPs can induce matrix degradation and medial degeneration which 

correspondingly weakens and reduces the elasticity of the aorta, as reviewed (Zhang & 

Wang, 2015). The role of the VSMC phenotypic switch within aneurysm development 

was also recently explored in more detail. Rat TAAA was successfully induced by 

soaking sections of aorta with porcine pancreatic elastase (PPE). Significant thickening 

of the aortic wall around the site of PPE administration was found to correspond with 

VSMC phenotypic switching. This was evident by a decline in contractile VSMC markers 

such as α-smooth muscle cell actin (α-SMA) and smooth muscle myosin heavy chain 

(SM-MHC). An increase in proliferative markers such as MMP-2 was also observed. In 

addition, VSMCs isolated from TAAA rats proliferated at a significantly higher rate 

when compared to those isolated from control animals (Mao et al., 2015). As these 

pathological characteristics correlated closely with observations made in human 

thoracic aortic dissection (Wang et al., 2012), the PPE animal model of AAA was 

validated.    

 

1.2.4. Hypertension  

Isolated clinical hypertension is defined by persistently elevated blood pressure, with 

mean daytime ambulatory values > 135/85 mmHg (Cuspidi et al., 2007). Secondary 

hypertension is directly linked to a cause, such as renal disease or pheochromocytoma. 
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In contrast, essential hypertension accounts for approximately 90-95% of all 

hypertension cases, and is an insidious disease without an identifiable primary cause. 

Hypertension can lead to cardiac overload, aneurysms and organ damage. In patients 

with established hypertension, cardiac output remains unaltered whilst changes in 

total peripheral resistance (TPR) account for increases in blood pressure. In addition to 

functional changes (e.g. vascular tone), structural changes in resistance vessels 

resulting in luminal narrowing and increased intima/lumen ratios can contribute to 

increased TPR (Mulvany, 2012). Pulmonary hypertension (PH) relates to a group of 

individual conditions with differential causes, which share common hemodynamic 

dysfunction. Specifically, persistently elevated mean pulmonary arterial pressure leads 

to right ventricular (RV) overload, hypertrophic remodelling, RV failure and ultimately 

death (Bogaard et al., 2009). While PH is commonly secondary to an underlying 

condition, familial and idiopathic forms also exist. The majority of research into PH 

relates to pulmonary artery hypertension (PAH), which is characterised by sustained 

vasoconstriction and remodelling of pulmonary vessels. Remodelling is believed to 

occur in response to pulmonary artery EC (PAEC) death and dysfunction. This has been 

shown to trigger the proliferation and migration of pulmonary artery SMCs (PASMCs), 

fibroblasts and PAECs (Hassoun et al., 2009). Increased VSMC proliferation leads to a 

thickening of the medial layer of vessel walls and is accompanied by the formation of 

plexiform lesions and intimal fibrosis. This leads to the progressive obliteration of 

small-resistance pulmonary arteries and arterioles, a pathological hallmark of PAH 

(Vaillancourt et al., 2015). 

 

Current therapies aim to redress the functional effects of PH, for example by reducing 

vasoconstriction. The potential of targeting structural remodelling by reducing PASMC 

proliferation however, although suggested (Paulin et al., 2014), remains clinically 

unexplored. The validity of various animal models of PH is a widely debated topic. It is 

correspondingly suggested that reliable assessment of novel therapeutics should 

involve at least two different models. The most commonly used method to induce PH 

within mice and rats is by exposure to chronic hypoxia (CH) or injection of 

monocrotaline (MCT). Single-pathological-insult (SPI) models, such as the two 

mentioned above, can be combined to produce multiple-pathological-insult (MPI) 

models, which exhibit more severe PH phenotypes (Lawrie, 2014; Maarman et al., 
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2013). Specifically, exposure of mice to hypoxic conditions (10% O2 and 90% N2) for 4 

weeks increased VSMC proliferation leading to medial thickening of pulmonary 

arteries. This was accompanied by increased RV systolic pressure and an increased 

ratio weight of the right ventricle, compared to the left ventricle plus septum. This 

study revealed that cyclophilin A (CyPA), which is secreted by VSMCs under conditions 

of oxidative stress, promotes VSMC proliferation and plays a key role in the 

pathogenesis of PH (Satoh et al., 2014). An alternative study subjected mice to the 

hypoxia SPI model, and rats to MCT and Su5416 SPI models. Brain derived 

neurotrophic factor (BNDF) was found to promote PASMC proliferation in PH, in all 

three SPI models (Kwapiszewska et al., 2012).   

 

1.2.5. Diabetes  

One of the caveats when assessing the effects of hypertension on blood vessel lumen 

diameter in humans is that many hypertensive patients often also suffer from diabetes 

(Rizzoni et al., 2003). This is significant as diabetes itself is associated with pressure-

independent arterial remodelling. Type 2 diabetes mellitus (T2DM) is an increasingly 

common chronic metabolic and inflammatory disease which accelerates vascular 

aging. It also commonly leads to numerous other cardiovascular complications such as 

restenosis and atherosclerosis. A growing amount of evidence shows that the 

metabolic disturbances caused by dysregulated blood glucose alter the phenotype of 

VSMCs which contribute to the increased incidence of macrovascular complications. 

Endothelial damage is believed to be an early pathological event in pre-diabetic 

patients. In addition, EC abnormalities are also commonly observed in T2DM, as 

reviewed (Porter & Riches, 2013). When human VSMCs isolated from T2DM patients 

are cultured ex vivo and compared with VSMCs isolated from non-diabetic patients, 

significant alterations in VSMC morphology are observed. Specifically, T2DM VSMCs 

have a flattened rhomboid morphology in contrast to the elongated “hill and valley” 

spindle-shaped morphology, which typifies contractile VSMCs. In addition, T2DM 

VSMCs have significantly elevated proliferative rates and show considerably more 

migration and adhesion. Collectively, this indicates that T2DM stimulates the 

dedifferentiation of VSMCs (Faries et al., 2001).  
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There are numerous animal models of T2DM ranging from a leptin receptor mutant 

mouse (db/db), equivalent Zucker diabetic fatty (ZDF) rat model and diet-induced 

metabolic syndrome porcine models. These animal models have been shown to 

recapitulate many of the pathological features of T2DM, although to varying extents 

(Porter & Riches, 2013). Animal models of specific T2DM pathologies such as 

nephropathy (Betz & Conway, 2016), retinopathy (Jiang et al., 2015) and neuropathy 

(Gao & Zheng, 2014) are also commonly implemented. For example, an experimental 

study examined the aorta of ZDF and obese Zucker rats (an alternative metabolic 

T2DM model) and compared them against controls, i.e. lean Zucker rats. The anti-

proliferative effects of nitric oxide (NO) on aortic VSMCs isolated from T2DM rats were 

significantly greater than in controls. The degree of neointima formation induced by 

carotid artery wire injury was also far greater in T2DM rats (Ahanchi et al., 2008).  

 

To summarise, the dedifferentiation of VSMCs to a proliferative phenotype is a 

common pathology in a wide range of cardiovascular disorders which are associated 

with high degrees of mortality and morbidity. By developing a more detailed 

understanding of the mechanisms involved in phenotypic switching and elevated 

VSMC proliferation, the identification of much needed novel therapeutics may be 

possible.   

 

 

1.3. Voltage-gated Ca2+ (CaV) channels  

Considerable differences in [Ca2+]i dynamics between different VSMC phenotypes are 

well established. Specifically, dedifferentiated VSMCs exhibit Ca2+ handling responses 

more typical of non-excitable cells such as sustained elevations in basal [Ca2+]i (House 

et al., 2008). Of significant interest to the current investigation is that dramatic 

changes in voltage-gated Ca2+ (CaV) channel expression are observed in proliferating 

VSMCs. Principally, a sharp decline in L-type CaV channels which mediate VSMC 

contraction, and a corresponding increase in T-type CaV channels which are believed to 

be crucial for cell-cycle progression (Kuga et al., 1996).  

 

In addition to being expressed in the majority of excitable cells, CaV channels are also 

present within the VSMC membrane. Activated by membrane depolarisation, CaV 



10 
 
channels facilitate Ca2+ influx which can stimulate a wide variety of cellular processes. 

As such, Ca2+ can function as a second messenger to electrical signalling. Within 

mammalian cells there are 10 subtypes of CaV channels which serve distinct roles in 

signal transduction. CaV channels are broadly categorised into two groups, high-voltage 

activated (HVA) and low-voltage activated (LVA). Biochemical, molecular cloning and 

co-expression studies have shown that HVA CaV channels are heteromeric protein 

complexes, which require the co-assembly of pore forming α1 subunits with auxiliary β, 

α2δ and γ subunits. In contrast, LVA channels are rendered fully functional by 

expression of a single α1 subunit, although auxiliary subunits may alter LVA channel 

trafficking (Catterall, 2011). 

 

1.3.1.   Structure-function relationships of CaV channels 

The α1 subunit is the key determinant of the CaV subtype. HVA channels include: L-type 

(CaV1.1-1.4), P- or Q-type (CaV2.1), N-type (CaV2.2) and R-type (CaV2.3) CaV channels. 

LVA channels or T-type Ca2+ channels facilitate tiny transient currents. Three distinct T-

type isoforms (CaV3.1-3.3) have been identified, which are encoded by separate α1 

subunits (α1G, α1H and α1I respectively). Key differences between LVA and HVA 

channels is that T-type Ca2+ channels are activated at relatively lower voltages, and 

inactivate over a shorter time period at comparatively lower membrane potentials, as 

reviewed extensively (Catterall, 2011; Perez-Reyes, 1999; Perez-Reyes, 2006; Simms & 

Zamponi, 2014).  

 

Mammalian α1 subunits are comprised of approximately 2000 amino acids and share a 

common membrane topology predicted to be similar to that of voltage-gated Na+ (NaV) 

channels. As illustrated by Figure 1.2 (A), α1 subunits are arranged into four domains 

(DI-DIV) which are each made up of 6 transmembrane segments (S1-S6). DI-DIV 

arrange in a clockwise manner within the lipid bilayer to form the 3D α1 subunit 

structure (Figure 1.2 (B)). A key feature within each domain is the charged S4 segment 

which controls voltage-dependent activation. The S4 segment is believed to physically 

orientate within the centre of each domain. It is thought that S4 segments slide 

upwards upon depolarisation to open the CaV channel. Conversely, upon repolarisation 

downward movement of S4 segments may close CaV channels. A further notable 
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feature is the P-loop, which forms between S5-S6 of each domain. The pore loops 

project to the centre of the channel to form a selectivity filter, which provides the ion 

permeation pathway (Figure 1.2 (B)). Highly conserved, negatively charged amino acid 

residues within the P-loop impart a high degree of Ca2+ selectivity. Within HVA 

channels, this sequence is composed of four Glu residues (EEEE), whereas aspartic acid 

residues also contribute to the selectivity filter of T-type Ca2+ channels (EEDD). The 

four domains of the α1 subunit are connected by large cytoplasmic linker regions. The 

N- and C-termini, linked to DI and DIV respectively, are both cytoplasmic. The greatest 

amount of sequence variation between CaV subtypes is observed within cytoplasmic 

regions. Specifically, within the large repeats joining DI-DII and DII-DIII and within the 

relatively smaller linker region between DIII-DIV, Illustrated in Figure 1.2(A). Within 

HVA channels, these regions provide an important contact site for regulatory proteins 

and auxiliary subunits. In contrast with LVA channels, the expression of auxiliary 

subunits is crucial for membrane trafficking and the overall biophysical properties of 

HVA channels (Perez-Reyes, 1999).   

 

Prolonged depolarisation of the plasma membrane can result in Ca2+ overload, 

therefore most CaV channels possess both Ca2+- and voltage-dependent inactivation 

mechanisms. The extent of voltage-dependent inactivation (VDI) varies drastically 

between different CaV subtypes. For HVA channels, VDI involves structural re-

arrangement of S6 segments to expose a docking site within the DI-DII linker region. 

VDI of HVA channels is also profoundly influenced by β subunit expression. Compared 

to HVA channels, T-type Ca2+ channels show considerably more VDI, predicted to 

involve the DIII-DIV cytoplasmic linker region acting as an inactivation particle. It is 

important to emphasise that resolution of the crystal structure of CaV channels will 

ultimately be required to fully determine structure-function relationships (Simms & 

Zamponi, 2014).    
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Figure 1.2. Schematic diagrams showing the structure of the CaV channel α1 subunit 

All mammalian α1 subunits share a similar membrane topology; i.e. four repeated 
domains (DI-DIV), each made up of 6 transmembrane segments (S1-S6). Views as 
though: (A, C) looking through a cross-section of a stretched lipid bilayer and (D, E) 
looking down on the channel from outside the cell. A, Snake-diagram showing the 
arrangement of the α1 subunit within the lipid bilayer (orange box), DII is highlighted 
(blue box) and magnified in C. B, 3-dimesional (3D) representation of the predicted 
arrangement of DI-DIV, with pore loops angling towards the centre of the channel, DII 
is highlighted (blue box) and magnified in D. C, 2D structure of a single α1 subunit 
domain (DII) magnified from (A), showing the S4 voltage-sensor (red hatched lines) and 
the pore loop between S5-S6, as labelled. Diagrams adapted from Perez-Reyes (1999).  
 
 

1.3.2. T-type Ca2+ channels: three distinct isoforms 

The expression of T-type Ca2+ (CaV3.x) channels has been identified in a number of 

species, ranging from humans to snails. By comparing the amino acid sequences of 

CaV3.x channels isolated from human, cow, dog, rat and mice, several isoform specific 

differences are apparent. Between the five aforementioned species, CaV3.1 channels 

show the highest degree of sequence homology (90-95%), CaV3.2 channels show the 

lowest (70-80%) and CaV3.3 channels show an intermediate degree (85-90%). A high 

degree of evolutionary conservation indicates that CaV3.1 channels serve crucial 

physiological roles. Conversely, the lower degree of evolutionary conservation 

between CaV3.2 channels predicts that these channels have more diverse modulatory 

functions (Perez-Reyes, 2006).   
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In order to isolate T-type Ca2+ currents from native tissues, a major goal has been to 

identify specific pharmacological T-type Ca2+ channel blockers (CCBs). An early 

electrophysiological study conducted in rabbit sinoatrial (SA) node myocytes revealed 

that LVA currents were inhibited by Ni2+ (40µM), which was without effect on HVA 

currents (Hagiwara et al., 1988). However, subsequent studies have noted 

considerable variation in the level of Ni2+-sensitivity of LVA channels recorded from 

different tissues. Providing an extreme example, LVA currents recorded from rat clonal 

pituitary (GH3) cells showed Ni2+-sensitivity comparable to HVA currents (IC50 of 

777µM) (Herrington & Lingle, 1992). Further investigation using recombinant 

expression systems revealed considerable differences in CaV3.x isoform sensitivity. 

Specifically, when expressed in HEK293 cells, CaV3.2 channels were inhibited by 

significantly lower Ni2+ concentrations (IC50 of 13µM) when compared to CaV3.1 and 

CaV3.3 channels (IC50 values of 250µM and 216µM respectively) (Lee et al., 1999). As 

such, the differential Ni2+-sensitivity of LVA currents recorded in native tissues is 

attributable to differential CaV3.x channel isoform expression profiles.  

 

A variety of preceding investigations generated chimeric CaV3.x channels, whereby 

individual domains of the CaV3.2 channel were substituted with equivalent domains 

from an alternative CaV3.x isoform. In combination with site-directed mutagenesis, 

these studies revealed a unique metal binding site within DII of the CaV3.2 channel, 

composed of an Asp-Gly-His (D189, G190, H191) motif within the extracellular S3-S4 

loop. An additional Asp residue (D140) on the extracellular surface of S2 was also 

found to participate. This high affinity binding site was subsequently found to mediate 

the binding of endogenous trace metals such as zinc (Zn2+). Interestingly, Zn2+ is 

thought to bind tonically to CaV3.2 channels in an isoform-specific manner (Kang et al., 

2006; Kang et al., 2010; Nelson et al., 2007b). Trace metal binding at this unique site is 

believed to stabilise CaV3.2 channels in their closed state, as reviewed (Perez-Reyes & 

Lee, 2014).  

 

A further distinguishing feature of CaV3.2 channels is their unique sensitivity to redox 

modulators. This is highlighted by the observation that both native and recombinant 

CaV3.2 channels are selectively inhibited by ascorbate, whilst CaV3.1 and CaV3.3 

channels are relatively insensitive (Nelson et al., 2007a). Ascorbate is an endogenous 
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redox agent which can function as both an anti- and pro-oxidant. Regarding its 

functions as a pro-oxidant, ascorbate can reduce transition metals such as iron and 

copper to generate reactive oxygen species including  hydroxyl radicals (OH-), via a 

process termed metal-catalysed oxidation (MCO) (Stadtman, 1991). Interestingly, the 

His191 residue which forms part of the CaV3.2 unique metal binding site has been 

shown to mediate the inhibitory effects of ascorbate on CaV3.2 activity. This indicates 

that ascorbate may inhibit CaV3.2 channels by interacting with metal contaminants 

bound to the metal binding site and/or by initiating MCO (Nelson et al., 2007a).  

 

Remarkably, ascorbate, Ni2+ and Zn2+ are the most isoform specific T-type Ca2+ channel 

inhibitors currently available. Ni2+ is still occasionally used to differentiate between LVA 

and HVA channels, although subtype specific pharmacological CCBs are more typically 

used for this purpose. Mibefradil is a widely used T-type CCB which was originally 

named Ro 40-5967 and previously licensed as an anti-hypertensive drug. Its potent 

inhibition of T-type Ca2+ channels (IC50 =100nM) was first described in primary cultures 

of neonatal rat azygos VSMCs, although at higher concentrations (10µM) inhibition of  

L-type Ca2+ currents (66%) was also observed (Mishra & Hermsmeyer, 1994). 

Subsequent studies have shown that a metabolite of mibefradil accounts for its non-

specific inhibition of HVA channels (Bezprozvanny & Tsien, 1995; Wu et al., 2000). 

NNC55-0396 (NNC) is a structural analogue of mibefradil which is considerably more 

stable, and is not readily metabolised. As such, NNC was shown to inhibit T-type Ca2+ 

channels whilst having no effect on HVA channels expressed by pancreatic β (INS-1) 

cells when applied at 10-fold greater concentrations (Li et al., 2005). Nifedipine 

belongs to a family of drugs called dihydropyridines (DHPs), which are highly selective 

L-type CCBs. The high selectivity arises as the pore forming α1C subunit of L-type Ca2+ 

channels has a unique high affinity DHP binding site involving IIIS6 and IVS6 

transmembrane segments (Peterson et al., 1996). In rat arterial smooth muscle cells, 

nifedipine (300nM) was shown to selectively inhibit L-type Ca2+ currents and thus 

enabled successful T-type Ca2+ current isolation (Abd El-Rahman et al., 2013).  

 

Before discussing the kinetic features of CaV3.x channels in detail, it is important to 

define the terminology used to describe ion channel gating in general. Depolarisation 

can stimulate ion channels in their resting state to open, which is referred to as 
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channel activation. A feature of CaV3.x channels is that, similar to NaV channels, they 

rapidly inactivate (close) during a depolarising stimulus. Removal of depolarisation and 

the return to lower (more hyperpolarized) membrane potential allows any channels 

that were still open to close – this process is called deactivation. Furthermore, 

hyperpolarisation enables recovery from inactivation, allowing channels to return to 

their resting state. Recombinant expression of CaV3.x channels produces robust 

currents, with kinetics which are virtually identical to their equivalent, native 

counterparts. Figure 1.3, shows an example CaV3.2 current trace recorded from a 

HEK293 stably-expressing CaV3.2 channels. Importantly, CaV3.x currents both activate 

and inactivate at low voltages, recover rapidly from inactivation and deactivate slowly 

leading to prominent tail currents (Perez-Reyes, 2003).  

 

All three CaV3.x channels begin to activate at approximately -70mV however as their 

current kinetics are highly voltage-dependent, variable current shapes are produced by 

small depolarisations. This is highlighted by the characteristic criss-cross pattern of 

traces evoked by current-voltage (I-V) protocols. As such, when comparing the kinetics 

of CaV3.x isoforms it is useful to examine currents stimulated by relatively higher 

voltages (e.g. -10mV). Depolarisation to -10mV causes rapid activation of CaV3.1 and 

CaV3.2 channels (τ = 1-2ms), alongside relatively slower inactivation (τ = 10-16ms). 

Significantly, CaV3.3 channels activate and inactivate much more slowly when 

compared to CaV3.1 and CaV3.2 channels. Despite differences in inactivation rates, 

steady-state inactivation when measured by applying pre-pulses of varying potentials 

prior to the test pulse (e.g. -30mV), is similar for all CaV3.x channels (Klockner et al., 

1999; Perez-Reyes 2003). Interestingly, the generalised half-maximal steady-state 

inactivation voltage of -72mV indicates that CaV3.x channels can inactivate without 

passing through their open state. Regarding CaV3.3 channels, up to 30% of channels 

have been shown to inactivate without opening during a depolarising pulse (Frazier et 

al., 2001).  Recovery from inactivation of CaV3.x channels is rapid, with CaV3.1 channels 

showing the fastest deinactivation and CaV3.2 channels showing the slowest (Klockner 

et al., 1999). This feature is particularly important for the physiological roles of T-type 

Ca2+ channels in rapid oscillatory activity. Finally, when compared to HVA channels 

CaV3.x channels deactivate (or close) more slowly (10-fold difference), which accounts 

for their prominent tail currents. Specifically, CaV3.3 channels display the quickest 
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deactivation (τ = 1ms), with CaV3.1 channels exhibiting the slowest (τ = 3ms) (Klockner 

et al., 1999; Perez-Reyes, 2003).  

. 
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Figure 1.3. T-type Ca2+ channel gating parameters  

Example CaV3.2 current trace recorded using whole-cell patch-clamp 
electrophysiology, evoked by 200ms step-depolarisations from -80 to -20mV. The 
depolarising pulse opens the channel (activation), the channel then closes in the 
continued presence of the depolarising pulse (inactivation). Removal of depolarisation 
allows the channel to return to its closed resting state (deactivation). Scale bar 200pA, 
40ms.  
 
 
As CaV3.x channel activation and inactivation is observed at similar, relatively low 

voltages, T-type Ca2+ channels can open without fully inactivating. This can produce a 

“window current”, i.e. tonic Ca2+ influx at resting membrane potentials. Specifically, 

window current is defined as the overlap between voltage-dependent activation and 

steady-state inactivation curves, as illustrated in Figure 1.4. As electrophysiological 

protocols predict that T-type Ca2+ channels facilitate a window current at or around 

the resting membrane potential (Vm), CaV3.x channels can be crucial mediators of 

intracellular Ca2+ concentration [Ca2+]i. All three CaV3.x isoforms are predicted to 

mediate window current which is predicted to be facilitated by approximately 1% of 

channels (Perez-Reyes, 2003). As such, recombinant expression of CaV3.1 or CaV3.2 

channels in HEK293 cells produced observable window currents which correspondingly 

resulted in a significant elevation in basal [Ca2+]i (Chemin et al., 2000).            
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Figure 1.4. T-type Ca2+ channels can facilitate a window current 

Schematic diagram showing the voltage-dependence of activation (m, squares) and 
steady-state inactivation (h, circles) of CaV3.2  channels, plotted as % of maximal 
current (ICa2+). Curves represent Boltzmann fits to activation and inactivation. Overlap 
between curves predicts the window current, as highlighted by the pink shaded region. 
Diagram reproduced with permission from data previously gathered by Prof Chris 
Peers (Fearon et al., 2000).  
 
 
 
 
 

1.4. Isoform specific expression and physiological roles of CaV3.x channels  

T-type Ca2+ channel expression has been observed in many areas of the body including 

the heart, kidneys, smooth muscle, endocrine tissues and nervous systems. 

Interestingly, many of the physiological roles of CaV3.x channels within these areas 

concerns their ability to facilitate window currents, as reviewed (Perez-Reyes, 2003). 

This following section will outline some of the characterised expression profiles of 

CaV3.x channels and their associated functions within various areas. It should be noted 

that this summary is not an exhaustive list; a few examples have been selected to 

emphasise the range of physiological functions of T-type Ca2+ channels.  

 

1.4.1. Peripheral and central nervous system  

Due to their potential involvement in pathological brain disorders such as epilepsy, the 

expression and physiological roles of CaV3.x channels within the CNS has been studied 

extensively. Specifically, in situ hybridisation has revealed that CaV3.x channel mRNA 

expression shows unique and largely complementary patterns of distribution within 

the peripheral and central nervous systems (PNS and CNS respectively). Many regions 
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including the cerebral cortex, brainstem and thalamic relay neurons primarily 

expressed CaV3.1 channels. In contrast, dentate gyrus granule neurons and pituitary 

cells expressed CaV3.2 in isolation. In some areas such as the subthalamic nuclei and 

olfactory tubercles CaV3.1 co-localised with CaV3.2 channels. Similarly, CaV3.2 co-

localised with CaV3.3 channels in thalamic reticular neurons. Expression of all three 

CaV3.x isoforms, at similar levels, was demonstrated in areas including the 

hippocampus, caudal hypothalamus and olfactory granule cells (Talley et al., 1999).  

 

Regarding the PNS, CaV3.2 was shown to be the most predominantly expressed 

isoform. CaV3.2 channels were identified within the dorsal root ganglia (DRG), nodose 

ganglia, pituitary and pineal glands. Contrastingly, co-expression of CaV3.3 and CaV3.2 

channels was observed in the DRG, whilst the superior cervical ganglia expressed low 

levels of CaV3.1 mRNA in isolation (Talley et al., 1999). Subsequent studies have also 

revealed differential patterns of CaV3.x channel distribution between dendritic, axonal 

and somatic neuronal compartments (McKay et al., 2006). These studies collectively 

indicate that the physiological roles of CaV3.x channels within the CNS are highly 

complex.  

 
Due to differential patterns of T-type Ca2+ channel isoform expression within different 

brain regions, neuronal subtypes and compartments, the repertoire of the effects of 

LVA Ca2+ channels on cellular excitability is vast. Within some neuronal populations 

activation of CaV3.x channels at low voltages can produce low-threshold Ca2+ spikes 

(LTCS), leading to the recruitment of NaV channels and burst action potential (AP) firing 

(Powell et al., 2014). Conclusive proof that T-type Ca2+ channels mediate LTCSs and 

correspondingly lead to burst AP firing, is provided by a study which used CaV3.1 KO 

(CaV3.1-/-) mice. Thalamocortical relay (TCR) neurons play a key role in coordinating 

network activity and exhibit burst AP firing patterns. TCR neurons in CaV3.1-/- mice 

were found to lack LTCSs and burst AP firing, although tonic AP firing patterns were 

preserved. Furthermore, CaV3.1-/- mice were largely resistant to spike-and-wave 

discharges, which are characteristic of epileptic absence seizures, stimulated by GABAB 

receptor agonists. It was resultantly shown that CaV3.1 channels within the 

thalamocortical pathways are mediators of epileptogenesis (Kim et al., 2001). LTCSs 

facilitated by CaV3.x channels are believed to be central to their physiological roles in 
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controlling pacemaker activity. Due to the prominent voltage-dependency of CaV3.x 

channel recovery from inactivation, LTCSs are generally activated by hyperpolarising, 

as opposed to depolarising stimulation. LTCSs induce depolarisation leading to NaV and 

KV channel activation and high frequency APs. HVA CaV channels, and subsequently 

Ca2+-activated K+ channels, activate leading to afterhyperpolarisation (AHP). The AHP 

allows CaV3.x channels to deinactivate and the membrane potential returns back to 

resting levels (Perez-Reyes, 2003).  

 

As reviewed by Powell et al., (2014), T-type Ca2+ channels are further implicated in 

hypersynchronous oscillatory activity within thalamocortical neurons in generalised 

absence epilepsy (GAE); and also in the burst firing activity of hippocampal neurons 

associated with temporal lobe epilepsy (TLE). For example, genetic mutations in CaV3.2 

channels have been detected in patients with genetic and childhood GAEs. These 

mutations typically lead to alterations in CaV3.2 surface expression and channel 

kinetics, and ultimately result in neuronal hyperexcitability (Chen et al., 2003b; Heron 

et al., 2007; Vitko et al., 2005). Additionally, the Genetic Absence Epilepsy Rats from 

Strasbourg (GAERS) express a gain-of-function CaV3.2 channel splice variant, and 

correspondingly provide a valuable animal model of GAE. The GAERS splice variant 

arises from a single-point mutation of an arginine residue found within the intracellular 

DIII-DIV linker region of CaV3.2 channels (Powell et al., 2009). In the GAERS model, 

CaV3.2 expression and LVA current amplitude within reticular thalamic nuclei is 

dramatically increased when compared to seizure free animals. Interestingly, as the 

increases in LVA current density were larger than the increases in CaV3.2 mRNA, 

evidence for elevated CaV3.2 membrane trafficking is provided (Tsakiridou et al., 

1995).  

 

1.4.2. Heart  

Whilst CaV3.3 channel expression is generally restricted to the nervous system, CaV3.1 

and CaV3.2 channels are also prominently expressed within the cardiovascular system. 

Within the heart, the physiological role of T-type Ca2+ channels has been explored with 

a particular emphasis on pacemaker activity. Whilst CaV3.x channels are generally 

lacking from adult ventricular myocytes, they are heavily expressed within pacemaker 



20 
 
and conduction cells, particularly in the sinoatrial (SA) node. In the human SA node, 

CaV3.1 is predominantly expressed (Chandler et al., 2009). However, in the murine SA 

node, CaV3.2 channels have also been shown to be expressed alongside CaV3.1 

channels (Bohn et al., 2000). The SA node is the primary rhythmogenic centre of the 

heart and thus regulates myogenic contractility. Pacemaker activities of SA myocytes 

are dependent on the expression of a plethora of ion channels, including CaV and 

hyperpolarisation-activated cyclic-nucleotide-gated 4 (HCN4) channels. At maximal 

diastolic membrane potentials, T-type Ca2+ channels exhibit stable steady-state 

availability which can result in a window current. This contributes to pacemaker 

activity in a manner similar to that described within the CNS. CaV3.x-mediated Ca2+ 

currents have also been detected within other components of the heart conduction 

system including the atrioventricular (AV) node and Purkinje fibres, as reviewed 

(Mesirca et al., 2014). Whilst the complete physiological contribution of T-type Ca2+ 

channels to cardiac pacemaker activity remains to be fully elucidated within humans, 

KO mouse models have provided some valuable insights. For example, in CaV3.1-/-/ 

CaV1.3-/- double KO mice almost complete AV block was observed which resulted is 

dissociated atrial and ventricular rhythms. The myogenic nature of SA node myocyte 

activity was also considerably reduced within CaV3.1-/-/ CaV1.3-/- mice (Marger et al., 

2011).  

 

Expression of CaV3.1 and CaV3.2 channels within cardiac myocytes, outside of the 

primary conduction system, is most apparent at birth and gradually declines with age. 

However, in some pathological conditions such as cardiac hypertrophy T-type Ca2+ 

channel re-expression is observed (Martinez et al., 1999; Swynghedauw, 1999). 

Specifically, in rats, cardiac hypertrophy initiated by myocardial infarction increased 

CaV3.1 mRNA expression in viable left ventricular myocytes. Functional upregulation of 

CaV3.2 channels was also observed as an increased sensitivity of LVA currents to Ni2+ 

(Elvan, 2000). As hypertrophic ventricular modelling involves myocyte proliferation, 

this observation may bear significance to the role of T-type Ca2+ channels in the 

regulation of cell-cycle progression, as subsequently discussed (section 1.5).  

 

A role of CaV3.2 channels within hypertrophic cardiac remodelling has also been 

ascertained from studies using KO mice. Although expressed developmentally, T-type 
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Ca2+ channel expression is typically absent within adult ventricular myocytes. 

Significantly, T-type Ca2+ channels are re-expressed following myocardial infarction 

which subsequently results in pathological hypertrophy (Huang et al., 2000; Izumi et 

al., 2003). Within wt and Cav3.1-/- mice, cardiac hypertrophy could be induced by 

pressure overload, which was achieved by aortic banding or exposure to angiotensin II. 

In stark contrast, pressure- and angiotensin II-induced hypertrophy was suppressed in 

Cav3.2-/- mice. Following aortic banding, the thickness of ventricular walls and also the 

cross sectional diameter of myocytes was significantly increased in wt mice but not in 

Cav3.2-/- mice. As there were no apparent differences in blood pressure between wt 

and CaV3.2 mice, stong evidence that CaV3.2 channels contribute to pathological 

cardiac remodelling was therefore provided (Chiang et al., 2009).  

 

A final physiological role for atrial T-type Ca2+ channels is in the secretion of atrial 

natriuretic factor (ANF). ANF is a hormone which inhibits the release of renin, 

aldosterone and vasopressin. In addition to the diuretic and natriuretic effects on the 

kidney, ANF has vasodilatory effects (Inagami. 1989). Ca2+ currents recorded from 

atrial and ventricular myocytes freshly dissociated from 8-day old rats have been 

shown to be facilitated by both L-type (CaV1.2) and T-type (CaV3.1 and CaV3.2) Ca2+ 

channels. The predominant current species within atrial myocytes was LVA. 

Concurrently, ANF secretion evoked in 8-day old rats by small depolarisations was 

almost completely abolished by mibefradil (1µM). Evidence that ANF secretion by 

atrial myocytes is, at least partially, dependent on CaV3.x channels is thus provided. 

Consistent with previous reports, comparison of current density between young and 

adult rats revealed a progressive decline in functional T-type Ca2+ channels in atrial 

myocytes alongside a complete disappearance within ventricular myocytes 

(Leuranguer et al., 2000).  

 

1.4.3. Endocrine tissue  

The role of T-type Ca2+ channels in hormone secretion is not restricted to atrial cells 

but is also applicable to adrenal, pituitary and pancreatic tissues. Within rat and bovine 

adrenal glands, CaV3.2 channels are the primary CaV3.x isoform. This was shown by 

both in situ hybridisation and the high Ni2+-sensitivity of LVA currents recorded from 
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both glomerulosa (Schrier et al., 2001) and fasciculata (Mlinar et al., 1993) cells. In 

adrenal glomerulosa cells, which also express HVA CaV channels, rises in extracellular 

K+ concentrations can activate T-type Ca2+ channels leading to Ca2+-dependent APs and 

the synthesis and release of aldosterone. Similarly, in adrenal fasciculata cells, 

depolarisation induced by adrenocorticotropic hormone (ACTH) activates T-type Ca2+ 

channels leading to the synthesis and release of cortisol. It has correspondingly been 

suggested that CaV3.2 channels play important roles in stimulus-secretion activity, as 

reviewed (Perez-Reyes, 2003).  

 

Pituitary cells are capable of generating LTCS and spontaneous APs which result in 

growth hormone secretion (Tomic et al., 1999). The expression of all three CaV3.x 

isoforms has been shown in pituitary tissue, with CaV3.2 channels being predominant 

(Talley et al., 1999). The link between T-type Ca2+ channels, pacemaker activity and 

hormone secretion is similarly applicable to insulin secretion by pancreatic β-cells. 

Specifically, elevation of glucose levels increases ATP concentrations which results in 

the closure of ATP-gated K+ channels. This can lead to the activation of T-type Ca2+ 

channels and high frequency Ca2+-dependent spikes, as reviewed (Satin, 2000). 

Interestingly, the expression profiles of CaV3.x channels in pancreatic β-cells shows 

considerable species variation. For example, whilst T-type Ca2+ channel currents are 

prominent within human pancreatic β-cells (Barnett et al., 1995), T-type Ca2+ channel 

currents in the equivalent cells of mice are only detectable upon IL-1β pre-treatment 

(Wang et al., 1999).  

 

1.4.4. Blood vessels and VSMCs  

The expression of CaV3.1 and CaV3.2 channels has been demonstrated within a variety 

of blood vessels including the cerebral, mesenteric and renal microcirculations, as 

reviewed (Kuo et al., 2011). As previously detailed, differentiated VSMCs primarily 

express L-type CaV channels which facilitate the Ca2+ influx required for VSMC 

contraction. In addition to prominent L-type HVA currents, LVA currents have also 

been detected within VSMCs isolated from veins, arteries and organs. Prior to the 

molecular cloning of CaV3.x channels it was difficult to confirm conclusively that LVA 

currents were mediated by T-type Ca2+ channels. This was largely due to the fact that 
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LVA currents recorded from VSMCs are tiny, necessitating the use of very high 

concentrations of charge carriers. Importantly, this can shift current-voltage activation 

profiles to more positive potentials, which can be misleading when identifying LVA 

channels (Perez-Reyes, 2003). As a further complication, HVA P-type (CaV2.1) Ca2+ 

channel expression has also been identified in VSMCs isolated from rat aortic and renal 

preglomerular resistance vessels and in the rat thoracic aorta VSMC cell line (A7r5). P-

type Ca2+ channels inactivate at similar voltages to LVA currents and are also inhibited 

by mibefradil. Electrophysiological studies have further indicated that functional P-

type Ca2+ channels can contribute to depolarisation-induced contraction, particularly 

within renal afferent arterioles (Hansen et al., 2000).  

 

Subsequent studies have revealed that both CaV3.1 and CaV3.2 channels are expressed, 

in addition to CaV1.2 (L-type) channels, within renal blood vessels. In rats, regions of 

expression included pre- and post-glomerular resistance vessels and juxtamedullary 

efferent arterioles. Ca2+ imaging of rabbit afferent and rat juxtamedullary efferent 

arterioles revealed that exposure to high K+ concentrations induced rises in [Ca2+]i. This 

response could be partially inhibited by the T-type CCB mibefradil (100nM) or the L-

type selective CCB calciseptine (Hansen et al., 2001). It was further demonstrated that 

K+-induced contraction of rabbit afferent arterioles could be completely abolished by 

mibefradil (1µM), Ni2+ (1mM) and calciseptine (10pM). In contrast, no CaV channel 

expression was observed in cortical efferent arterioles. Furthermore, K+-induced rises 

in [Ca2+]i within rabbit cortical efferent arterioles were considerably smaller than those 

observed in other vessels, and unaltered by CCBs. These data indicate that CaV3.1, 

CaV3.2 and CaV1.2 channel expression is functionally important for the contraction of 

certain renal blood vessels (Hansen et al., 2001).  

 

The contribution of T- and L-type Ca2+ channels to vasomotor function has also been 

compared between segments of the large thoracic aortic and small mesenteric vessels. 

Within rat aorta, CaV3.1, CaV3.2 and CaV1.2 channels were abundantly expressed in 

equal amounts. Within rat mesenteric resistance vessels however, the expression of 

CaV3.1 and CaV3.2 channels was considerably greater than that of CaV1.2 channels (Ball 

et al., 2009). Vasomotor function was subsequently assessed using wire myograph 

recordings. Contraction was stimulated, in the presence or absence of various CCBs, by 
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exposure to increased K+ concentrations or to endothelin-1 (Et-1). In order to assess 

the contribution of ECs to the effects of CCBs, the contractile response of denuded 

vessels was also examined. Within intact segments, endothelial integrity was observed 

by inhibition of contractile responses (≥80%) upon application of the endothelium-

dependent vasodilators, bradykinin (BK) or acetylcholine (ACh), to human and rat 

vessels respectively. Regarding the CCBs applied, verapamil (1µM) and nifedipine 

(1µM) were used as selective L-type CCBs. Efonidipine (21nM) and mibefradil (1µM), 

referred to as combined CCBs, were applied with the purpose of inhibiting both L- and 

T-type Ca2+ channels (Ball et al., 2009). An important consideration is that previous 

studies have shown that when applied for similar time periods as used by Ball et al., 

(2009), mibefradil (1µM) selectively inhibits vascular T-type Ca2+ currents but is 

without effect on L-type Ca2+ currents (Brueggemann et al., 2005). Contrastingly, when 

applied as a mixture of its R(-) and S(+) enantiomers, efonidipine inhibits recombinant 

L- and T-type Ca2+ channels with similar potencies, without significant effect on other 

HVA channel subtypes (Furukawa et al., 2004). As such, the classification of combined 

CCB within the study accurately describes efonidipine, but arguably not mibefradil. As 

an interesting side note, the isolated R(-) enantiomer of efonidipine has been found to 

preferentially inhibit T-type over L-type Ca2+ channels (Furukawa et al., 2004). 

 

Pre-treatment with each of the four CCBs was found to inhibit Et-1-induced contractile 

responses to similar extents within intact (i.e. endothelium present) rat aortic 

segments. In comparison to L-type specific CCBs, efonidipine and mibefradil were 

significantly more effective at inhibiting the contractile responses of intact and 

denuded rat and human mesenteric microvessels. As the contribution of ECs to CCB 

responses was ruled out, VSMC Ca2+ channel expression is implicated. It was also 

shown within rat microvessels that efonidipine produced further inhibition of 

contractile responses, proceeding maximal nifedipine- or verapamil-mediated 

inhibition. Collectively, these findings show that T-type Ca2+ channels contribute 

considerably to the vascular responses of small mesenteric blood vessels, and also to a 

lesser extent within the aorta (Ball et al., 2009).  

 

Alternative studies have confirmed that CaV channels expressed by VSMCs contribute 

to vasomotor function. Within isolated rat mesenteric terminal arterioles, CaV3.1, 
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CaV3.2 and CaV1.2 channels were shown to be expressed by VSMCs. CaV3.2 expression 

was also apparent within adjacent ECs. Ratiometric Ca2+ imaging revealed that 

potassium chloride (KCl) microinjection led to increases in VSMC [Ca2+]i, observed in 

areas localised and remote to the site of injection. Both localised and remote increases 

in [Ca2+]i were inhibited by bath application of nifedipine and the T-type selective CCBs, 

R(-)-efonidipine and NNC55-0396 (NNC). Remote [Ca2+]i responses could also be 

inhibited by the gap-junction un-couplers carbenoxolone and palmitoleic acid. Since 

both nifedipine and NNC were equally capable of reducing the [Ca2+]i response, it is 

suggested that functional coupling between L- and T-type Ca2+ channels occurs within 

VSMCs. Of key significance is that when CCBs were applied away from the site of KCl 

microinjection, no modification of localised or remote [Ca2+]i response were observed. 

This study therefore concluded that whilst L- and T-type Ca2+ channels contribute to 

local electromechanical coupling, they are not critical for the conduction of 

vasoconstrictor responses (Braunstein et al., 2009).  

 

Expression of CaV3.1, CaV3.2, CaV1.2, and CaV1.3 channels has also been detected in 

adult rat basilar and middle cerebral arteries and their branches. CaV3.1 and CaV1.2 

channels were expressed in the greatest abundance. Notably, the expression of CaV3.2 

channels was considerably greater in arterial branches compared to major cerebral 

arteries. Electron microscopy revealed that CaV1.2 channels were localised to the cell 

membranes of SMCs and absent from ECs. In contrast, CaV3.1 and CaV3.2 channels 

were localised in SMCs and ECs where they exhibited both membranous and 

cytoplasmic patterns of distribution. In addition to L-type Ca2+ currents, patch-clamp 

electrophysiology of isolated SMCs identified nifedipine- and nimodipine-insensitive 

Ca2+ currents which also displayed characteristic T-type Ca2+ current kinetics. These 

Ca2+ currents accounted for approximately 20% of the total Ca2+ current in SMCs 

isolated from main arteries and approximately 45% of total current in SMCs isolated 

from branches. It was additionally shown that nifedipine-insensitive currents could be 

inhibited by mibefradil, NNC and efonidipine, strongly indicating the involvement of T-

type Ca2+ channels (Kuo et al., 2010). 

 

Within main cerebral arteries, contractile responses were shown to be solely mediated 

by L-type Ca2+ channels, as nifedipine completely abolished vasoconstriction. In 
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contrast, nifedipine-insensitive vasoconstriction was observed within branches, the 

extent of which increased with decreasing arteriole diameter. It was correspondingly 

suggested that nifedipine-insensitive Ca2+ currents play a larger role in vasoconstriction 

within smaller vessels of the cerebrovascular circulation (Kuo et al., 2010). It is 

important to consider that the nifedipine-insensitive currents, described by Kuo et al. 

(2010), are not explicitly referred to as T-type Ca2+ currents. This is due to the fact that 

they activated at voltages more characteristic of HVA channels. Subsequent studies 

have similarly reported nifedipine-insensitive Ca2+ currents within cerebral arteries 

which, compared to L-type Ca2+ currents, show more hyperpolarised I-V relationships 

and have faster activation and inactivation kinetics. Interestingly, these currents were 

blocked by low Ni2+ (50µM) concentrations, thereby implicating a specific contribution 

of CaV3.2 channels. The nifedipine-insensitive Ca2+ currents appeared likely to be 

facilitated by T-type Ca2+ channels. However, when compared to the typical biophysical 

profile of T-type Ca2+ channels, activation and inactivation occurred at more positive 

potentials. It was thus suggested that T-type Ca2+ channel splice variants may be 

expressed within the vasculature (Harraz & Welsh, 2013). This suggestion has been 

confirmed by studies which have identified vascular-specific T-type Ca2+ channel spice 

variants, which arguably fit better within the HVA category (Kuo et al., 2011; Kuo et al., 

2014).   

 

Many recent advances in our understanding about the specific contribution of CaV3.1 

and CaV3.2 channel isoforms to normal and pathological cardiovascular functions has 

come from studies using global CaV3.1-/- and CaV3.2-/- KO mice. Of specific 

consideration is that both CaV3.1-/- and CaV3.2-/- mice exhibit neurological deficits, as 

reviewed (Cheong & Shin, 2013). A further problem associated with KO models is that 

compensatory mechanisms can occur. As such, it is important that results are 

compared against the effects of appropriate pharmacological inhibitors where 

possible. The CaV3.1-/- KO mouse was developed by deleting the N-terminus of the α1G 

subunit (Kim et al., 2001), whereas the CaV3.2-/- KO mouse involved deletion of the S5 

segment within DI of the α1H subunit (Chen et al., 2003a).  

 

Opposing results regarding the role of CaV3.1 channels in the maintenance of vascular 

tone within different regions of the vasculature have been described. For example, 
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within intrarenal arteries, contraction induced by the α1 adrenoceptor agonist 

phenylephrine was significantly greater in CaV3.1-/- mice. In contrast, phenylephrine-

induced contraction within mesenteric arteries was significantly reduced in CaV3.1-/- 

mice. Importantly, no differences in K+-induced contraction of intrarenal and 

mesenteric vessels was observed between CaV3.1-/- and wt mice. It has therefore been 

proposed that CaV3.1 channels are involved in vascular responses to endogenous 

phenylephrine, and can also be involved in both contraction and relaxation. Further 

investigations are required to establish whether factors such as vessel diameter, 

oxidative state or NO availability, account for the disparate effects of CaV3.1 channel 

expression within different vessels (Hansen, 2015). 

 

Early studies conducted on CaV3.2-/- mice revealed that, when compared to wt mice, 

coronary arteries were constitutively constricted and exhibited large areas of fibrosis. 

Whilst typical contractile responses were preserved in isolated coronary arterioles, 

ACh- or nitroprusside-induced relaxation was considerably reduced. In addition, low 

Ni2+ concentrations prevented relaxation, further indicating that CaV3.2 channels play 

an important physiological role within vasorelaxation of coronary arteries (Chen et al., 

2003a).  

 

It has been suggested that the role of CaV3.2 channels in the process of vasodilation 

may result from their regulation by NO. Treatment of rat middle cerebral arteries with 

the nitric oxide synthase (NOS) inhibitor, NG-nitro-L-arginine methyl ester (L-NAME), 

has been shown to produce vasoconstriction. L-NAME-induced contraction could be 

partially inhibited by mibefradil (100nM) and NNC (300nM), implicating a role for T-

type Ca2+ channels (McNeish et al., 2010). Interestingly, incubation of cerebral vessels 

with L-NAME increased the expression of CaV3.1 channels within isolated VSMCs, and 

was accompanied by a redistribution of CaV3.1 channels from the cytoplasm to the 

membrane. Unfortunately, patterns of CaV3.2 expression were not determined within 

cerebral arterioles. Furthermore, whilst CaV3.1 and CaV3.2 staining was generally 

absent from cremaster muscle arterioles, treatment with L-NAME significantly 

increased the expression of both CaV3.1 and CaV3.2 channels (Howitt et al., 2013). The 

contribution of L- and T-type Ca2+ channels to myogenic vascular tone were next 

examined by manipulating intraluminal pressure in the presence or absence of 
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nifedipine, NNC or mibefradil. A key strength of this study was that NNC and mibefradil 

were always applied following nifedipine treatment, thus ruling out any potential 

effects of mibefradil or NNC on L-type Ca2+ channels. Acute treatment of basilar 

arteries with L-NAME increased the contribution of T-type, and decreased the 

contribution of L-type, Ca2+ channels to cerebral artery tone. Significantly, these effects 

were attenuated in both CaV3.1-/- and CaV3.2-/- mice. These findings collectively show 

that both CaV3.1 and CaV3.2 contribute to vascular tone during NO deficiency (Howitt 

et al., 2013). An alternative study found that 5,6-epoxyeicosatrienoic acid (5,6-EET) 

potently inhibited recombinant human CaV3.1, CaV3.2 and CaV3.3 (Cazade et al., 2014). 

Furthermore, 5,6-EET was also shown to have vasodilatory effects on pre-constricted 

mesenteric arteries. In addition, the vasodilatory effects of 5,6-EET were impaired in 

CaV3.2-/-, but not CaV3.1-/- mice (Cazade et al., 2014). Collectively, these studies 

indicate that CaV3.2 channels specifically play an important role in the process of 

vasodilation.  

 

 

1.5. The role of T-type Ca2+ channels in proliferation  

Due to their overlapping voltage-dependencies of activation and inactivation, T-type 

Ca2+ channels can facilitate a window current at or around resting Vm, as shown by 

Figure 1.4. This tonic Ca2+ influx can be a key determinant of [Ca2+]i (Chemin et al., 

2000). The issue of whether T-type Ca2+ channels expressed by VSMCs facilitate a 

window current has been debated (Perez-Reyes ,2003). This is primarily due to the fact 

that the resting Vm of pressurised arterioles has been shown to be between 

approximately -55mV and -40mV (Hirst & Edwards, 1989). At these potentials T-type 

Ca2+ channels are generally inactivated. A likely resolution for this issue was provided 

when vascular-specific CaV3.1 splice variants, which both activate and inactivate at 

more depolarised potentials, were identified (Kuo et al., 2014). It remains feasible, 

therefore, that T-type Ca2+ channel splice variants expressed by VSMCs may facilitate a 

window current. 

 

Central to the current investigation are observations that within VSMCs a co-ordinated 

elevation in [Ca2+]i is required for cell cycle progression (Husain et al., 1997). In relation 

to this, the expression of T-type Ca2+ channels in primary cultures of rat aortic VSMCs is 
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restricted to the proliferative phases of the cell-cycle. Specifically, immunohistological 

and electrophysiological techniques revealed that within the G0 phase T-type Ca2+ 

channel expression was absent and Ca2+ currents were solely mediated by L-type Ca2+ 

channels. Within the proliferative G1 and S phases a significant increase in T-type Ca2+ 

currents was observed alongside a dramatic reduction in L-type Ca2+ currents (Kuga et 

al., 1996). As described below, subsequent studies have revealed an intimate link 

between T-type Ca2+ channel expression, VSMC proliferation and vascular remodelling, 

within both developmental and pathological situations.  

 

The ductus arteriosus (DA) is a vascular shunt within the foetal circulatory system 

which predominantly expresses CaV3.1 in addition to CaV3.2 channels. Postpartum, 

VSMC proliferation and migration mediates intimal cushion formation and rapid 

closure of the DA (Yokoyama et al., 2006). CaV3.1 channels were shown to mediate this 

remodelling process, as oxygenation induced an up-regulation of CaV3.1 channels in 

proliferating VSMCs of the neonatal rat DA. Concurrently, CaV3.1 up-regulation 

increased VSMC migration whilst down-regulation decreased VSMC migration. 

Pharmacological T-type Ca2+ channel inhibition using (R)-efonidipine produced similar 

anti-migratory and anti-proliferative effects on VSMCs. Furthermore, when R(-

)efonidipine was administered in vivo a significant delay in the closure of the DA was 

observed (Akaike et al., 2009).  

 

Neointima formation is a common undesirable consequence of vascular intervention 

that involves increased VSMC proliferation and migration, resulting in restenosis. Early 

studies demonstrated that oral administration of mibefradil significantly reduced 

neointima formation in rats subjected to carotid balloon injury. This indicated a 

causative role for T-type Ca2+ channels in pathologically elevated VSMC proliferation 

(Schmitt et al., 1996). Regarding KO studies, Tzeng et al. (2012) demonstrated that 

carotid artery wire injury induced neointima formation in both wt and Cav3.2-/- mice. 

Significanlty, however, neointima formation was not observed in Cav3.1-/- mice, which 

importantly displayed no other vascular abnormalities. Immunohistological processing 

revealed that neointima formation within wt mice was due to increased VSMC 

proliferation. Furthermore, CaV3.1 mRNA was up-regulated in response to wire injury 

in wt mice prior to neointima formation, suggesting that CaV3.1 up-regulation was 



30 
 
crucial for the development of this pathogenic phenotype. Such evidence strongly 

supports a role for T-type Ca2+ channels in pathological vascular remodelling and VSMC 

proliferation (Tzeng et al., 2012).  

 

In vitro studies have also implicated T-type Ca2+ channels in the control of VSMC 

proliferation. Freshly isolated VSMCs typically exhibit a contractile phenotype and have 

correspondingly been shown, within isolated rat aortic VSMCs, to predominantly 

express L-type Ca2+ channels. Upon subsequent culture, VSMCs were found to revert 

to a proliferative phenotype. This switch in phenotype was characterised by an 

increase in LVA currents, alongside a corresponding decrease in HVA currents and loss 

of contractile activity (Richard et al., 1992). In a rabbit model of neointima formation, 

balloon-induced arterial injury caused a rapid dedifferentiation of medial VSMCs. 

Proliferation assays conducted on cultured VSMCs demonstrated that mibefradil only 

exerted anti-proliferative effects on dedifferentiated, and not contractile, VSMCs 

(Louis et al., 2006). Furthermore, it has been shown that down-regulation of CaV3.1 

using small interfering RNA (siRNA) significantly reduced the proliferation of cultured 

human pulmonary artery smooth muscle cells (HPASMCs). Importantly, mibefradil was 

also found to reduce HPASMC proliferation whilst the specific L-type Ca2+ channel 

inhibitor diltiazem was without effect (Rodman et al., 2005).  

 

Cancer  

The link between T-type Ca2+ channel expression and cellular proliferation is not 

restricted to VSMCs. Indeed, stable transfection of HEK293 cells with CaV3.2 channels 

has been shown to produce functional currents with corresponding increases in 

cellular proliferation (Wang et al., 2002b). The first connection between T-type Ca2+ 

channels and cancer was discovered in T-cell leukaemia cell lines; namely Jurkat, Molt-

4 and HSB. LVA currents displaying characteristic T-type Ca2+ channel kinetics such as 

rapid activation and inactivation, were recorded from all three cell lines (Densmore et 

al., 1992). It has since been shown that both mibefradil and CaV3.1-targeted siRNA are 

anti-proliferative in both human and mouse neuroblastoma cell lines, U87MG and 

N1E-115 respectively. Furthermore, mibefradil was shown to reduce significantly 

CaV3.1 and CaV3.2 expression levels in a manner similar to growth serum deprivation, 

thus supporting the notion that T-type Ca2+ channel expression is restricted to the 
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proliferative phases of the cell-cycle. Over-expression of CaV3.2 channels in U87MG 

and N1E-115 cells increased intracellular Ca2+ influx stimulated by modest 

depolarisation and concurrently doubled their rates of proliferation. As the observed 

Ca2+ influx was inhibited by mibefradil, but not by the specific L-type CCB verapamil, T-

type Ca2+ channels are conclusively implicated in the aberrant proliferation of 

cancerous cells (Panner et al., 2005). Similar findings have been reported in 

retinoblastoma, C6 glioma, prostate and breast cancer lines (Panner & Wurster, 2006).  

 

Further evidence linking T-type Ca2+ channel expression, elevations in basal [Ca2+]i and 

increased proliferative rates, has been provided by studies conducted in cancerous cell 

lines. Within differentiated human prostate cancer epithelial cells (LNCaP), up-

regulated CaV3.2 channel expression has been shown to result in increased basal [Ca2+]i 

(Mariot et al., 2002). Similarly, electrophysiological investigations in human 

neuroblastoma cells (SK-N-MC) revealed functional expression of T-type Ca2+channels. 

Peak T-type Ca2+ channel current amplitude was increased upon treatment with the 

glycoprotein, erythropoietin (Epo), which was accompanied by a corresponding 

increase in basal [Ca2+]i. Elevations in [Ca2+]i were found to be dependent on Ca2+ influx 

through T-type CaV channels as opposed to Ca2+ release from internal stores (Assandri 

et al., 1999).  

 

Within all cell types, Ca2+ influx at various stages of the cell-cycle, such as the G1/S 

transition phase, is fundamental for cell-cycle progression and subsequent 

proliferation. Specifically, at the G1/S restriction point a concerted input of increased 

[Ca2+]i, growth factor stimulation and nutrient availability is required. Dysregulation of 

the G1/S restriction point is believed to underpin the mitogen-independent cellular 

proliferation observed in cancerous pathologies. It has correspondingly been proposed 

that elevated CaV3.1 and CaV3.2 Ca2+ channel expression provides the “all or nothing” 

event that is central to the transition from graded and regulated proliferation in 

physiological conditions to the irreversible linear sequence of cellular proliferation 

characteristic of cancerous cells (Gray et al., 2013).  
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1.6. The thioredoxin (Trx) system 

Cell-surface proteins, or those within the extracellular environment, are subject to 

oxidising conditions and are rich in stabilising disulphides (S2). In contrast, the 

intracellular environment is maintained in a reduced state and intracellular proteins 

contain many free thiol or sulfhydryl (SH) groups. Thioredoxin (Trx) serves as a major 

intracellular disulphide reductase. As such, Trx functions as an antioxidant which can 

counterbalance oxidative stress when up-regulated or over-expressed (Nakamura et 

al., 1997). The Trx system is ubiquitously expressed within mammalian cells and plays a 

key role in the maintenance of cellular redox balance. The system is composed of Trx, 

thioredoxin reductase (TrxR), nicotinamide adenine dinucleotide phosphate (NADPH), 

and vitamin D3 up-regulated protein (VDUP). TrxR reduces Trx to its active form using 

electrons donated from NADPH, whilst VDUP serves as the endogenous negative 

regulator. Due to the rapidly reversible nature of thiol-disulphide exchange reactions, 

Trx also plays a key role in the dynamic control of enzymes dependent on structural 

and catalytic thiol groups (Arner & Holmgren, 2000).   

 

1.6.1. Structure- function relationships of the Trx system  

For Trx to exert the majority of its biological effects the active site disulphide of 

oxidised Trx (oTrx) must be reduced by TrxR to generate an active site dithiol ((SH)2) 

group. As such, the functions of Trx are dependent on its redox-state and 

correspondingly the activity of TrxR. TrxR belongs to the pyridine nucleotide disulfide 

oxidoreductase family, which also includes glutathione reductase (GR) and 

trypanothione reductase (TryR). Mammalian TrxR is a homodimeric protein made up of 

two 55kDa subunits, arranged head to tail. Key structural features of mammalian TrxR 

include; flavin adenine dinucleotide (FAD) and NADPH binding domains, an interface 

domain and two separate active sites. The N-terminal CVNVGC active site motif is also 

found within GR and TryR, whilst the second Gly-Cys-Sec-Gly selenocysteine (Sec) 

active site motif is unique to TrxR. Electrons are initially transferred from NADPH to the 

N-terminal active site of TrxR, then to the Sec TrxR active site and finally to the Trx 

disulphide substrates. Interestingly, TrxR isolated from lower organisms, such as 

bacteria and plants, has a significantly lower molecular weight (Mr~35kDa per subunit), 

does not contain the Sec active site and has a lower substrate specificity, as reviewed 
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(Arner, 2009; Holmgren & Lu, 2010). Following the reduction of Trx by TrxR, dithiol-

exchange reactions between reduced Trx (rTrx) and target proteins can occur, as 

summarised by Figure 1.5. 

 

NADPH + H+

NADP+

TrxR(S2)

TrxR(SH)2

Trx(SH)2

Trx(S)2

protein(S)2

protein(SH)2  
Figure 1.5. The activities of Trx rely upon reversible dithiol-exchange reactions 

Schematic diagram showing the reversible redox reactions (green arrows) utilised by 
the Trx system. The initial source of electrons is provided by the conversion of 
nicotinamide adenine dinucleotide phosphate (NADPH) to NADP+. Electrons are then 
transferred to oxidised thioredoxin reductase (TrxR(S2)) which is reduced to TrxR(SH2). 
Oxidised thioredoxin (Trx(S2)) is correspondingly reduced by TrxR(SH2) to produce 
Trx(SH2), which ultimately catalyses the reduction of disulphide bonds within many 
target proteins, highlighted by the grey box. Diagram adapted from Holmgren & Lu 
(2010). (Holmgren & Lu 2010) 
 
 
Trx is a 12kDa protein which is expressed by a vast array of organisms ranging from 

bacteria to humans. Trx isolated from Escherichia coli (E.coli) provides the most 

characterised form, with early reports showing it to be composed of 108 amino acid 

residues. This same study also identified that the functional group of Trx involved two 

cysteine residues at positions 32 and 35 (Cys32 and Cys35), separated by a glycine (Gly) 

and a proline (Pro) residue (Holmgren, 1968). When compared to E.coli Trx, the 

sequence homology of Trx isolated from different species is variable (27-69%), 

although the Cys-Gly-Pro-Cys active site sequence is highly conserved. The overall 3-

dimensional (3D) structure of Trx, referred to as the Trx fold, is also common to all 

forms. As shown by Figure 1.6, the Trx fold is composed of four α-helices surrounded 

by a central core of five β-strands. The active site of Trx is located at the end of the β2-

strand and the beginning of the α2-helix (Holmgren, 1995).  

 

The high-resolution solution structure of Trx has been successfully resolved using NMR 

spectroscopy, thereby enabling comparisons between oTrx and rTrx and also between 

mammalian and bacterial forms. Regarding E.coli Trx, only minor structural differences 

between oTrx and rTrx were observed. The backbone structures were virtually 



34 
 
identical although a local conformational change involving Cys32 and Cys35 residues 

within the disulphide active site was observed. Specifically regarding rTrx, the side 

chain of the Cys32 residue was tilted towards the solvent and away from Cys35, to 

accommodate for the increased distance between the sulphur (S) atoms upon 

reduction of the disulphide. Different patterns of hydrogen bonding also indicated that 

rTrx has more conformational substrates compared to oTrx, which could contribute to 

their differences in functional activity (Jeng et al., 1994).  

 

α1

α2

α4

β1

β2
β5
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C

α3

β3

β4

 
Figure 1.6. Schematic diagram of the crystal structure of oTrx 

The central core of five β-strands (green arrows) are surrounded by four α-helicies 
(blue cylinders), as numbered. The N-terminus (N) is found at the start of β1 with the 
C-terminus (C) at the end of the α4-helix. The redox-active site cysteine residues (Cys32 
and Cys35, red circles) are located on a protrusion between the β2-strand and the α2-
helix. Diagram adapted from Holmgren (1995) and Hwang et al. (2015). (Holmgren 
1995; Hwang et al., 2015) 
 
Mammalian Trx (12kDa) has been shown to be composed of 110 amino acids (Luthman 

& Holmgren, 1982). The crystal structure of human Trx (hTrx) has also been 

determined. A key difference between hTrx and prokaryotic forms is that, in addition 

to active site Cys32 and Cys35 residues, hTrx also contains three non-canonical Cys 

residues, at positions 62, 69, and 73. In agreement with findings from E.coli, the 

structures of human oTrx and rTrx exhibit only subtle differences involving the 

conserved active site. A striking difference between hTrx and E.coli Trx however, is that 

the crystal structure of both oxidised and reduced forms of hTrx were dimeric. 
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Specifically, substitution of active site Cys residues to serine residues (C32S/C35S) had 

no effect on hTrx dimerisation. Trx dimers were also observed when the equivalent 

mutation was conducted on Cys73 (C73S), although C73S dimers were linked by 

hydrogen bonds, as opposed to stronger disulphide bonds linking dimeric wt and 

C32S/C35S hTrx. As dimeric Trx is not a substrate for TrxR, inter-molecule covalent 

bond formation via Cys73 residues may provide a mechanism for the regulation of Trx 

inactivation (Weichsel et al., 1996).  

 

Whilst much work has been conducted to elucidate the function of active site Cys 

residues, the functional importance of non-canonical Cys residues is only recently 

emerging. Importantly, oTrx generally refers to Cys32 and Cys35 residues being in their 

disulphide form and does not take into account the redox state of non-canonical Cys 

residues (Weichsel et al., 1996). With respect to this, the crystal structure of fully 

oxidised hTrx has recently been determined (Hwang et al., 2015). Significantly, fully 

oxidised hTrx was comprised of only 3 α-helices, surrounding the typical core of 5 β-

strands. While the active site disulphide bond between Cys32 and Cys35 was identical to 

that previously described (Weichsel et al., 1996), an additional disulphide bond 

between Cys62 and Cys69 was also identified. This bond disrupted the structure of the 

α3 helix, thereby producing a bulging loop and resultantly exposed hydrophobic 

residues to the solvent. This modification is predicted to prevent reduction of Trx by 

TrxR. Confirmation that inter-molecular disulphide bonds occurring via hTrx Cys73 

residues mediate hTrx homodimer formation was also provided. It is consequently 

suggested that compared to prokaryotic Trx, hTrx responds to and regulates its 

environment in a much more complex way, involving all five cysteine residues (Cys32, 

Cys35, Cys62, Cys69 and Cys73). The contribution of non-canonical Cys residues, in 

addition to active site Cys residues, to the diverse biological activities of hTrx are 

therefore of important consideration (Hwang et al., 2015).  

 

The primary endogenous negative regulator of Trx activity is VDUP, also referred to as 

Trx binding protein-2 (TBP2) or Trx interacting protein-1 (TXNIP). VDUP is a 50kDa 

protein which selectively inhibits the disulphide reductase activities of rTrx, as 

reviewed (Yoshihara et al., 2014). As VDUP does not interact with oTrx it has been 

suggested that it may inactivate Trx by forming disulphide bonds with active site Cys 
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residues of rTrx. In agreement with this, two Cys residues within the VDUP protein 

(Cys63 and Cys247) have been identified as being crucial for Trx binding. It was further 

shown that VDUP and rTrx undergo thiol-exchange reactions involving Cys247 of 

oxidised VDUP and Cys32 of rTrx. This results in the formation of a stable mixed 

disulphide which inhibits Trx activity. Conversely, these findings also indicate that in 

addition to the activities of Trx as a disulphide reductase molecule, Trx could also 

participate in redox signalling by forming stable mixed disulphides with other signalling 

molecules (Patwari et al., 2006).  

 

1.6.2. The intracellular functions of Trx as a disulphide reductase molecule  

The physiological functions of Trx are extremely wide-ranging, and as such, thorough 

discussion is beyond the scope of this introduction. However, within the intracellular 

environment Trx plays a key role in numerous physiological processes including, but is 

not limited to, DNA synthesis, cell growth, apoptosis, inflammatory responses and 

redox balance control. These functions generally, although not always, require the 

reducing capabilities of Trx which are dictated by the active site Cys32 and Cys35 

residues, as summarised in Figure 1.7.  Whilst new roles for Trx are constantly 

emerging, the intracellular functions of this protein are broadly categorised into two 

main groups. Firstly, as an electron carrier for biosynthetic enzymes and secondly in 

the protection of cytosolic proteins from oxidative formation of intra- or inter-

molecular disulphide bonds, as reviewed (Arner & Holmgren, 2000). 

 

Regarding the molecular mechanisms of the oxidoreductase actions of Trx, Cys 

residues within the classical Cys-Gly-Pro-Cys active site sequence undergo reversible 

dithiol-disulphide reactions. It is proposed that the hydrophobic surface area of rTrx 

binds to and subsequently makes a complex with the substrate protein. The thiolate (S -

) group of Cys32 then acts as a nucleophile which attacks the target protein resulting in 

a covalently-linked mixed disulphide transition state. Finally, the now deprotonated 

thiolate group of the Cys35 residue generates a dithiol in the target protein, thereby 

leaving Trx is its disulphide form. Considerable conformational changes within the Trx 

molecule are observed during protein binding and also within electron transfer steps, 

as shown in Figure 1.7 and reviewed in detail (Holmgren, 1995; Holmgren & Lu, 2010). 
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Figure 1.7.  Proposed mechanism of Trx-mediated protein disulphide reduction 

Schematic diagram showing electron transfer steps as represented by the black 
arrows. A, Reduced thioredoxin (Trx(SH)2) binds to the oxidised target protein and the 
thiolate group of  the Cys32 residue then acts as a nucleophile. B, This results in the 
transient formation of a mixed disulphide between Trx and the target protein, 
followed by nucleophilic attack of the deprotonated Cys35 residue. C, The target 
protein is subsequently reduced and oxidised Trx(S2) is generated. Note, Trx undergoes 
conformational changes as the reaction proceeds. Diagram based on E.coli Trx, 
adapted from Holmgren (1995). (Holmgren 1995) 
 

Some of the key physiological functions of Trx are conserved between lower and 

higher organisms. For example, by virtue of its disulphide reductase capabilities rTrx is 

a hydrogen donor for ribonucleotide reductase. This enzyme provides 

deoxyribonucleotides and is essential for DNA synthesis in both lower and higher 

organisms (Holmgren, 1989). Many of the antioxidant properties of Trx are also 

conserved across species. Within both mammalian and many bacterial cells there are 

two major thiol-dependent antioxidant systems, namely the Trx and glutaredoxin (Grx) 

systems. The antioxidant actions of Trx are generally achieved by electron transfer to  

peroxiredoxins (Prxs) and methionine sulfoxide reductases (MSRs). Prxs are key players 

in both the removal of ROS and in the defence against oxidative stress. Regarding the 

mechanism for this, Prxs also contain two Cys residues within their active site which 

are reduced and subsequently activated by rTrx. Thiol groups within the Prxs then act 

to remove ROS such as hydroxyl (OH-) superoxide (O2
-) and hydrogen peroxide (H2O2) 

(Lu & Holmgren, 2014). The H2O2 scavenging mechanism of Prx has been shown to be 

extremely fast within both human and yeast cells (Cox et al., 2009; Ogusucu et al., 

2007). MSRs are also antioxidant enzymes which receive electrons donated by the Trx 

system. Under conditions of oxidative stress, free and protein-bound methionine is 

oxidised to produce methionine sulfoxide, which is accompanied by a corresponding 

loss in antioxidant function. When reduced by rTrx, MSR-A and MSR-B can repair 
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methionine sulfoxide and thus indirectly participate in ROS removal (Lu & Holmgren, 

2014).  

 

As implied by the greater structural complexity of mammalian forms of Trx, its 

physiological roles are more varied and extensive when compared to bacteria. A key 

example of the additional functions of mammalian Trx is within the activation or 

inactivation of a variety of transcription factors. Indeed, Trx has been shown to be 

crucial for redox-mediated regulation of the nuclear transcription factor-κβ (NF-κβ). 

This is particularly important as NF-κβ activity influences the expression of numerous 

inflammatory genes (Hayashi et al., 1993). Interestingly, Trx can also form complexes 

with other proteins and correspondingly acts as a structural component of some 

enzymes. Trx-protein binding has been shown to be redox-dependent as rTrx, but not 

oTrx, binds with high affinity to T7 DNA polymerase forming a 1:1 complex and 

increasing enzyme activity (Huber et al., 1987). Within mammalian cells, rTrx but not 

oTrx has also been found to make inhibitory complexes with apoptosis signalling kinase 

1 (ASK1). As such, apoptosis can be stimulated when Trx becomes oxidised (Saitoh et 

al., 1998). The activity of a large number of other transcription factors including redox 

effector factor (Ref-1), phosphatase and tensin homolog (PTEN) and hypoxia inducible 

factor-α (HIF-α), and various other proteins such as p53 and oestrogen receptors, are 

regulated by Trx in a redox-dependent manner. The redox state of Trx is therefore 

believed to be central to its extensive biological activities within the intracellular 

environment, as reviewed extensively (Arner & Holmgren, 2000; Holmgren, 1979; 

Holmgren & Lu, 2010; Lu & Holmgren, 2014). 

 

1.6.3. Emerging roles for Trx as an extracellular signalling molecule  

In addition to its extensively characterised intracellular roles, Trx can also be released 

from cells and therefore act as an extracellular signalling molecule. An early study 

examined human T-lymphotropic virus type I (HTLV-I) transformed T-lymphocytes and 

found that these cells secreted a protein originally termed adult T-cell leukaemia-

derived factor (ADF). ADF was found to up-regulate interleukin-2 (IL-2) receptors and 

also had co-cytokine activity (Wakasugi et al., 1990). Further investigation revealed 

that ADF was actually extracellular Trx (Gasdaska et al., 1994). Subsequent studies 



39 
 
have reported that Trx is secreted into the extracellular environment by both normal 

and neoplastic cells in response to inflammation or oxidative stress (Rubartelli et al., 

1992; Rubartelli et al., 1995). Extracellular Trx has been found to have chemotactic 

properties similar to the chemokine IL-8 inducing the migration of T lymphocytes, 

monocytes and polymorphonuclear leukocytes when applied at ng/ml concentrations 

(Bertini et al., 1999). Within fibroblasts, Trx has also been shown to directly enhance 

the release of cytokines (Yoshida et al., 1999). Whilst the mechanism of Trx secretion is 

not fully established, a key study conducted on activated lymphocytes has 

demonstrated that it occurs via a leaderless secretory pathway independent of the 

classical endoplasmic reticulum-Golgi route (Rubartelli et al., 1992). A similar pattern 

of Trx secretion has been described in MCF-7 (breast cancer), HT-29 (colon carcinoma), 

U937 (histiocytic lymphoma), and IM9 (multiple myeloma) cells. It is noteworthy that 

Trx secretion was unaltered by treatment with brefeldin A, which disrupts the ER-Golgi 

mechanism, and was also independent of cell lysis (Tanudji et al., 2003). 

 

An important consideration is whether the redox state of Trx influences its secretion or 

indeed its extracellular functions, as shown for its numerous intracellular physiological 

roles. Mutation of the Trx active site Cys residues (C32S/C35S) has been shown to 

prevent its chemotactic activity, suggesting extracellular Trx to be rTrx (Bertini et al., 

1999). However, this observation contradicts with findings that Trx is secreted in 

response to oxidative stress (Nakamura et al., 2006); indicating that extracellular Trx is 

likely oTrx (Arner & Holmgren, 2000). In support of this suggestion, the effects of 

cellular redox status on Trx secretion was explored by Kondo et al. (1994), who 

conducted an extensive study using the T-lymphocyte cell lines, ATL2 and Jurkat. 

Measurement of Trx levels from culture supernatants and cell lysates confirmed that 

oxidative stress, achieved by treatment with H2O2, increased both intracellular and 

extracellular Trx levels. Importantly, whilst having no effect on intracellular Trx, 

treatment with the reducing agent and antioxidant N-acetylcysteine (NAC) caused a 

significant reduction in extracellular Trx. This provided strong evidence that cellular 

redox-status regulates Trx secretion (Kondo et al., 2004).  

 

Jurkat cells were also transfected with either recombinant wt Trx or mutant 

(C32S/C35S) Trx. Stimulation of Jurkat cells with H2O2 rapidly stimulated Trx secretion 
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from cells transfected with wt Trx, however not in cells transfected with the C32S/C35S 

Trx. This strongly suggested that an intact redox-active site is essential for Trx secretion 

(Kondo et al., 2004). Interestingly, it was also observed that application of exogenous 

rTrx to Jurkat cell culture media decreased Trx secretion, but not intracellular levels. It 

is subsequently suggested that Trx regulates its own release (Kondo et al., 2004). In 

continuation of this proposal, application of fluorescently-labelled wt Trx to the 

extracellular environment resulted in cellular Trx uptake. Specifically, time-dependent 

increases in Trx levels within cytosolic and plasma membrane fractions were observed. 

As no cellular uptake was observed when mutant Trx (C32S/C35S) was applied, 

evidence that the redox-active site of Trx determines both its secretion and cellular 

uptake is provided (Kondo et al., 2004).  

 

In contrast with these findings, an alternative study conducted on Chinese hamster 

ovary (CHO) cells indicated that Trx secretion can occur independently of the cell’s 

redox state (Tanudji et al., 2003). CHO cells transiently transfected with hTrx were 

found to slowly and efficiently secrete hTrx. Acute treatment with NAC did not alter 

Trx secretion, although treatment with NAC for 12hrs did decrease both intracellular 

and extracellular Trx levels. As mutation of hTrx Cys35 (active site) or Cys73 residues 

(dimerisation site) did not alter secretion, evidence that intact active sites or 

dimerisation sites are not required for Trx secretion was provided (Tanudji et al., 

2003). Further evidence that the functions of extracellular Trx are, at least not entirely, 

dependent on its redox active site, are provided by studies investigating non-typical 

Trx structural forms. In addition to its standard 12kDa form, hTrx secreted from human 

platelets and cytotrophoblast cell lines was shown to also be comprised of a 10kDa 

derivative of the 12kDa Trx (Di et al., 1998). This truncated Trx form, subsequently 

termed Trx80, has been shown to be an extracellular product of Trx cleavage, as 

reviewed (Holmgren & Lu, 2010).  

 

Despite the fact that Trx80 lacks disulphide reductase activity it has been shown to act 

as a mitogenic cytokine on human peripheral blood mononuclear cells (PBMCs). In 

PBMCs, Trx80 also stimulated the release of interleukin-2 (IL-2) whilst wt Trx was 

without effect (Pekkari et al., 2001). Trx80 has also been referred to as eosinophil 

cytotoxicity-enhancing factor (ECEF). Exogenous Trx80 has also been found to increase 
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dramatically the expression of the human immunodeficiency virus (HIV) in human 

macrophages. In stark contrast, exogenous human rTrx potently inhibited the 

expression of HIV by human macrophage cells (Newman et al., 1994). It has also been 

suggested that post-translational modification of non-canonical Cys residues in hTrx 

influences its extracellular functions (Tao et al., 2004). A further consideration is that 

TrxR has also been shown to be present at the surface of some cells and within the 

extracellular environment (Soderberg et al., 2000; Zhang et al., 2013). 

Correspondingly, the redox state of secreted Trx does not necessarily correspond with 

its redox state in the extracellular environment. Collectively, these studies emphasise 

that the physiological roles of Trx within the extracellular environment are not entirely 

dependent on its redox active site. 

 

 

1.7. Clinical implications of Trx expression in proliferative disorders 

Regarding clinical situations, increased levels of circulating Trx are detected within 

numerous pathological conditions, including but not limited to; a variety of cancers 

(Baker et al., 2013), acute myocardial infarction (AMI) (Miyamoto et al., 2003), 

abdominal aortic aneurysm (Martinez-Pinna et al., 2010), atherosclerosis (Okuda et al., 

2001), rheumatoid arthritis (Yoshida et al., 1999) and HIV (Nakamura et al., 1996). 

Elevated Trx levels are also detected in the blood plasma of patients subject to 

cardiopulmonary bypass operations (Nakamura et al., 1998). Whilst elevations in Trx 

may initially serve to counterbalance oxidative stress, Trx over-expression in cancer 

patients is associated with aggressive tumour growth, increased proliferation, 

decreased apoptosis, and reduced patient survival (Raffel et al., 2003).  

 

1.7.1. Cardiovascular disorders 

Oxidative stress is believed to be a key factor in the development of atherosclerosis 

which can ultimately lead to myocardial infarction (MI). A hallmark feature of 

atherosclerosis is atheromatous plaque formation resulting from elevated VSMC 

proliferation and increased platelet aggregation (Chistiakov et al., 2015). Within non-

atherosclerotic human coronary vessels, Trx expression has been shown to be localised 

within medial VSMCs. In contrast, within atherosclerotic coronary vessels, Trx was 
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additionally present throughout the vessel wall and surrounding infiltrating 

macrophages (Okuda et al., 2001). An alternative clinical study was conducted on three 

groups of patients suffering from acute MI (AMI), coronary artery occlusion with stable 

exertional angina (SEA) or chest pain syndrome (CPS) without arterial stenosis or 

spasm. Plasma Trx levels were considerably elevated in the AMI group when compared 

to the SEA and CPS groups. Increased levels of extracellular Trx within the AMI group 

positively correlated with increased platelet aggregation and negatively correlated 

with left ventricular ejection fraction. These changes, although reduced, were still 

apparent four weeks post-AMI. Whilst oral administration of statins did not alter 

plasma Trx levels, it did significantly decrease the degree of small platelet aggregates 

within the AMI group. Therefore, the application of statins, which are capable of 

reducing oxidative stress, could improve the prognosis of AMI patients (Miyamoto et 

al., 2003). A more recent study measured plasma Trx levels from MI patients 1, 2 and 3 

days post-event. Significantly, patients who died 24hrs post-MI had the highest plasma 

Trx levels. Patients with coronary risk factors are subject to prolonged oxidative stress; 

as such, increased serum Trx levels may initially appear as a compensatory antioxidant 

mechanism. However, as increased Trx did not counteract oxidative stress or 

inflammatory responses post-MI; in fact, increased serum Trx actually provides a 

negative indicator of MI severity and outcome (Mongardon et al., 2013). Increased 

levels of Trx have also been directly implicated in the differentiation and proliferation 

of SMCs, leading to pathological cardiac remodelling following AMI in rats (Suresh et 

al., 2015). Cardiovascular remodelling can also occur in hypertensive patients. 

However, in contrast with findings reported for atherosclerosis and AMI, increased 

levels of oxidative stress were accompanied by reductions in Trx expression within the 

aorta, heart and kidney of spontaneously hypertensive rats (Tanito et al., 2004). 

 

A further complication of atherosclerosis involving the differentiation of VSMCs is the 

development of abdominal aortic aneurysm (AAA). Increased levels of plasma Trx have 

also been reported in patients suffering from AAA. Discontinuous patterns of growth 

and periods of acute expansion exhibited in AAA can result in fatal vessel rupture. 

Vessel diameter, a surrogate marker of growth rate, is therefore used to assess AAA 

severity and as a surgical indication. Using two cohort populations, AAA patients were 

shown to have significantly higher circulating Trx levels when compared to control 
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patients. The degree of Trx elevation correlated with increased AAA vessel diameter. 

Immunohistochemical processing of surgically removed thrombi revealed that Trx was 

produced and released by the luminal, as opposed to the abluminal, layer of the 

thrombus. Thrombus formation within AAA also leads to the production of ROS. 

Correspondingly, aspirin treatment was found to decrease circulating Trx levels in AAA 

patients. Importantly, these findings show that oxidative stress increases serum Trx 

levels, which provides an important biomarker for the severity and progression of AAA 

(Martinez et al., 1999). In direct agreement with these findings, serum Trx levels are 

elevated in patients following acute ischemic stroke (AIS). High Trx levels were also 

shown to be an effective diagnostic and prognostic marker for AIS (Qi et al., 2015). 

Plasma Trx levels have also been measured in patients suffering from chronic heart 

failure (CHF). Urinary β2-microglobulin-creatinine ratios (UBCR) were additionally 

measured as a marker for renal tubular damage. Significant elevations in plasma UBCR 

and Trx levels were recorded in CHF patients suffering from cardiac events when 

compared to cardiac event-free patients. In agreement with findings from other 

cardiovascular disorders, the extent of Trx elevation correlated with poor CHF outcome 

(Otaki et al., 2014).  

 

The link between increased extracellular Trx levels and cardiovascular disorder severity 

is commonly associated with pathological oxidative stress. It is suggested that the 

antioxidant functions of up-regulated Trx may provide a compensatory mechanism in 

response to increased ROS generation, as reviewed (Billiet & Rouis, 2008; Burke-

Gaffney et al., 2005). Interestingly, many of the cardiovascular pathologies associated 

with increased oxidative stress and elevated Trx also involve VSMC dedifferentiation, 

increased proliferation and cardiovascular remodelling, as discussed in section 1.2. As 

such, the pathophysiological significance of elevated extracellular Trx may additionally 

concern the mitogenic functions of Trx. Evidence linking the Trx system to the 

phenotypic switching of VSMCs and vascular remodelling is provided by a retrospective 

study which reported that patients with T2DM had significantly elevated levels of 

circulating VDUP. Interestingly, increased VDUP levels correlated with carotid artery 

neointima thickness (Zhao et al., 2015). Direct evidence of the pro-proliferative nature 

of Trx in VSMCs is provided by a study showing that Trx over-expression significantly 

increased DNA synthesis in VSMCs, a key marker of proliferation. In contrast, VDUP 
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over-expression reduced Trx activity and inhibited mitogen-stimulated VSMC 

proliferation (Schulze et al., 2002). Furthermore, it has also been shown that VDUP can 

inhibit Trx-induced protein synthesis in cardiomyocytes. Cells with elevated VDUP were 

also shown to develop less hypertrophy following aortic constriction. Importantly, this 

study emphasised that in addition to its role as an antioxidant, Trx serves as a signalling 

molecule which participates in the development of pressure-induced cardiac 

hypertrophy (Yoshioka et al., 2004). The role of Trx as an extracellular signalling 

molecule and the dependency of these effects on the redox-state of Trx are discussed 

extensively in Chapter 5.   

 

1.7.2. Cancers 

Malignant disorders characterised by aberrant cellular proliferation demonstrate 

increased extracellular Trx levels. It is believed that Trx upregulation can initially act to 

counterbalance oxidative stress induced by carcinogenic agents and thereby serve a 

protective role. Contrastingly, within established malignancies the pro-proliferative 

effects of Trx on cancerous cells considerably outweighs its initial beneficial 

antioxidant functions. As discussed in sections 1.6.2 and 1.6.3, due to the range of 

biological targets of Trx, potential mechanisms of Trx-mediated growth stimulation are 

numerous. This includes activating transcription factors, providing essential reducing 

equivalents for DNA synthesis and increasing cellular-sensitivity to growth factors and 

cytokines, as reviewed (Burke-Gaffney et al., 2005). Specifically within tumour cells, Trx 

has been shown to enhance tumorigenesis by increasing the levels and activity of HIF-

1α and also protein products of hypoxia-responsive genes, such as vascular endothelial 

growth factor (VEGF) and NOS (Welsh et al., 2002). Trx can also inhibit the tumour 

suppressor gene PTEN, which involves binding of the Trx Cys32 residue with the PTEN 

Cys212 residue. This results in a steric influence of Trx on the PTEN active site, and 

enhances tumorigenesis. A further important mechanism of tumorigenesis is that Trx 

has also been found to inhibit apoptosis by influencing polyamine-induced apoptosis 

pathways (Husbeck et al., 2003) and also through its regulation of ASK1 (Powis et al., 

2000; Saitoh et al., 1998). Given that many chemotherapy drugs act to promote cancer 

cell apoptosis, increased Trx levels could account for reduced effectiveness of these 

treatment strategies (Burke-Gaffney et al., 2005).  
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The range of cancers associated with increased blood plasma and cellular Trx levels is 

constantly expanding. The current list includes, but is not limited to, pancreatic cancer 

(Nakamura et al., 2000); lung cancer (Kahlos et al., 2001; Kakolyris et al., 2001; Soini et 

al., 2001); cervical cancer (Fujii et al., 1991) and hepatocellular carcinoma (Kawahara 

et al., 1996; Nakamura et al., 1992). Increased Trx levels have also been described in 

human primary gastric carcinomas, where elevated Trx was directly shown to promote 

tumour cell proliferation and inhibit apoptosis (Grogan et al., 2000). A further key 

study examined Trx levels in human primary and metastatic colorectal cancers and 

found them to be significantly elevated when compared to normal colonic mucosa. 

Follow up studies further revealed that increased levels of Trx correlated with 

decreased patient survival. Crucially, it was also suggested that elevations in Trx levels 

occur relatively late in colorectal carcinogenesis, providing an effective biomarker of 

patient prognosis (Raffel et al., 2003).  

 

In light of the wealth of evidence associating Trx with cancerous cell growth, the Trx 

inhibitors PX-12 and AuF are currently being explored clinically as anti-cancer agents 

(Ramanathan et al., 2011; Roder & Thomson, 2015). Importantly, cancer patients 

showed significantly elevated plasma Trx levels when compared to healthy controls, 

which were subsequently reduced following PX-12 treatment. In addition to the 

human studies, it was also reported that PX-12 decreased circulating Trx in non-

tumour bearing mice, observed 2 and 24 hours post-treatment. Interestingly, the 

authors postulate that this was due to rapid cellular uptake of modified Trx, although 

decreased Trx secretion could also contribute to this observation (Baker et al., 2013). 

 

1.8.  Aims and hypothesis: 

Recent findings have shown that extracellular Trx can regulate not only recombinantly-

expressed CaV3.2 channels (Boycott et al., 2013) but also TRPC1 and TRPC-5 channels 

(Xu et al., 2008). These observations may explain the, as of yet, undetermined 

functional significance of coincident upregulation of T-type Ca2+ channels and Trx in 

proliferative disorders. This thesis has therefore explored the hypothesis that Trx can 

regulate T-type Ca2+ channels and, in so doing, modulate VSMC proliferation. The 

specific aims of this study were to initially assess the effects of T-type Ca2+ expression 
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and pharmacological Trx inhibition on both VSMC proliferation and Ca2+ handling. An 

additional aim was to characterise the mechanism and isoform sensitivity of Trx-

mediated T-type Ca2+ channel regulation in detail. 
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Chapter 2 -Methods and materials 

2.1. Cell culture  
 
All cells were maintained in a humidified incubator at 37°C, CO2 (5%): air (95%), and all 

culture reagents were purchased from Gibco, Thermo Fisher Scientific, (Paisley, UK), 

unless otherwise stated.  

2.1.1.  A7r5 cells 

Rat aortic smooth muscle cells (A7r5; ECACC, Public Health England, Porton Down, UK) 

were cultured in complete growth media consisting of Dulbecco’s modified eagle 

medium (DMEM) supplemented with antibiotic/antimycotic (1%) and foetal bovine 

serum (FBS, 10%, Biosera, UK). Cells were passaged on a weekly basis from 75cm3 

culture flasks by trypsinisation; media was removed and cells washed with Dulbecco’s 

phosphate buffered saline (PBS) before trypsin-EDTA (2mL, 0.05%) was applied and 

incubated with cells (3mins, 37°C). Cell detachment was verified under a microscope 

before cells were suspended in complete growth media (10ml), transferred to a 50ml 

Falcon tube and centrifuged (400xg, 6mins). The trypsin containing supernatant was 

discarded and the cell pellet re-suspended in complete growth media (20ml). From this 

suspension, fresh 75cm3 culture flasks were seeded at 1:10 or 1:20 dilutions, and the 

remaining cell suspension was plated into various culture vessels for subsequent 

experiments. 

 

Two batches of A7r5 cells purchased from the same supplier were used within the 

project: initial A7r5 cells referred to as “old” A7r5 cells had been sub-cultured at 90-

100% confluency and stored by the group for a number of years. The “old” A7r5 cells 

were used between passage (p) 14-17 and exhibited phenotypic variation with 

increasing p number. This was hypothesised to be due to a reduction in T-type Ca2+ 

channel expression due to culture at relatively high confluency, as previously described 

within primary cultures of rat thoracic aortic smooth muscle cells (Richard et al., 1992). 

In an attempt to maximise T-type Ca2+ channel expression, a new batch of A7r5 cells 

were purchased, sub-cultured at 70-80% confluency and used between p1-12. 

Increased T-type Ca2+ channel expression was validated using real-time reverse 
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transcriptase polymerase chain reaction (qRT-PCR, as described in section 2.2). The 

“new” A7r5 cells were used for all subsequent experiments.  

 

2.1.2. wt HEK293 and recombinant HEK293/CaV3.1 and HEK293/CaV3.2 cells 

Wild-type (wt) human embryonic kidney 293 (HEK293) cells (ECACC, Public Health 

England, Porton Down, UK) were cultured in complete growth media consisting of 

minimum essential medium (MEM) supplemented with antibiotic/antimycotic (1%), 

non-essential amino acids (1%), gentamicin (0.1%) and FBS (10%, Biosera, UK). HEK293 

cells stably expressing either rat CaV3.1 or human CaV3.2 (HEK293/CaV3.1 and 

HEK293/CaV3.2 cells respectively, originally a gift from Dr. E. Perez-Reyes, University of 

Virginia, Charlottesville, VA, USA) were cultured in the same media additionally 

supplemented with G-418 (400µg/ml) as the selection antibiotic. For comparison, 

HEK293 cells stably transfected by Dr Jason Scragg in-house with the CaV3.2-containing 

mammalian expression vector to generate HEK293/CaV3.2/clone P cells, were also 

used occasionally. In addition to HEK293 cells transfected with the Cav3.2(H191Q) 

construct (a gift from Dr. E.Perez-Reyes) whereby the histidine (H) residue at position 

191 of the Cav3.2 channel had been mutated to a glutamine (Q) residue 

(HEK293/CaV3.2(H191Q) cells). HEK293/CaV3.2/clone P and HEK293/CaV3.2(H191Q))  

cells were cultured in the same media as used for other recombinant cells. All cells 

were passaged weekly at 90-100% confluence as previously described (2.1.1). Fresh 

culture flasks were seeded at 1:40 dilutions for WT HEK293 and HEK293/CaV3.2/clone 

P and HEK293/CaV3.2(H191Q) cells and 1:80 dilutions for HEK293/CaV3.1 and 

HEK293/CaV3.2 cells. All HEK293 cells were used between p 1-12.  

 

2.2. Real-time polymerase chain reaction (qRT-PCR)  

To quantify native CaV3.1 and CaV3.2 channel expression in “new” A7r5 cells, and 

enable comparison with “old” A7r5s as previously determined (Duckles et al., 2015); 

CaV3.1 and CaV3.2 mRNA levels were measured using qRT-PCR. This technique is 

superior to standard PCR as it enables real-time detection and accurate quantification 

of the amplified gene of interest (amplicon), typically through the inclusion of 

fluorescently-labelled, sequence-specific primers, measured by fluorescence detectors 

within specialised thermal cyclers. Initial amplification cycles, whilst producing 
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exponential increases in amplicon level, do not produce enough fluorescence to be 

detected. The cycle number which yields enough amplicon accumulation to enable 

fluorescence detection is referred to as the threshold cycle (CT) and is used to calculate 

the amount of template initially present.  

 

2.2.1. Cell culture and RNA extraction 

A7r5 cells were plated at 1:10 or 1:20 dilutions and cultured in T75 flasks for 7 days 

(70-80% confluent respectively), cells were then trypsinised as described (section 

2.1.1) and re-suspended in ice-cold PBS and centrifuged (400xg, 6mins, x2). The 

supernatant was discarded and cell pellets triturated with 100μL of RNAlater® 

(Ambion, Cambridge, UK) and transferred to microcentrifuge tubes which were 

refrigerated (4°C) for 24hrs then stored at -80°C.  

 

When required, samples were thawed, washed and centrifuged with PBS (400xg, 

6mins, x3) and all supernatant was discarded. Due to the highly unstable nature of 

RNA, all surfaces were thoroughly cleaned with ethanol (70%) and then RNAase AWAY 

(Molecular Bio Products, CA, USA); RNA extraction was conducted using the Aurum 

total RNA mini kit (Bio-Rad, Hemel Hempstead, UK) following manufacturer’s 

instructions. Briefly, PBS (1ml) was added and cells were triturated and centrifuged 

(12,000xg, 30secs). Supernatant was discarded and lysis buffer and ethanol was then 

added in equal volume (350µL). After thorough mixing the suspension was transferred 

to an RNA binding column and low-stringency wash solution (700µL) was added prior 

to centrifugation (12,000xg, 30secs). All flow-through was discarded and RNAase-free 

DNAase I (80µL) was applied to the membrane stack at the bottom of each column and 

incubated at room temperature (RT, 15mins). High-stringency wash solution (700µL) 

was then added and the binding column centrifuged (12,000xg, 1min, x3), which was 

repeated with low-stringency wash solution (700µL). Flow-through was discarded and 

elution buffer (80µL, pre-warmed to 70°C) was added to the membrane stack and 

incubated at RT (1min). The column was then centrifuged (12,000xg, 2min) to elute 

total RNA, which was used immediately or stored at -80°C.  
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2.2.2. cDNA generation and qRT-PCR protocol  

All surfaces were thoroughly cleaned with ethanol (70%) and RNAase AWAY then cDNA 

templates were generated from extracted RNA samples using the iScript cDNA 

synthesis kit (Bio-Rad; Hemel Hempstead, UK), according to manufacturer’s 

instructions. Briefly, RNA samples and reagents were allowed to thaw over ice. iScript 

reaction mix (4µL), iScript reverse transcriptase enzyme (1µL) and RNase/DNase-free 

H2O (12.5µL, Gibco; Thermo Fisher Scientific, Paisley, UK) were added to each RNA 

sample (2.5µL) contained within a PCR tube, which was transferred to the 3Prime 

thermal cycler (Techne, Staffordshire, UK). Samples were heated to 25°C (5mins), 42°C 

(30mins), 42°C (30mins), and held at 4°C (5mins). Samples were then centrifuged 

(12,000xg, 30secs) and immediately stored at -20°C. 

 

qRT-PCR was conducted using Taqman probes for rat Cav3.1, rat Cav3.2 and the 

endogenous housekeepers rat hypoxanthine phosphoribosyltransferase (HPRT1), and 

rat large ribosomal subunit (17S), (all supplied Applied Biosystems (ABI), UK). The 

relevant Taqman Primer (0.5µL) was mixed with RNase/DNase-free H2O (8.5µL, Gibco; 

Paisley, UK), Taqman Universal PCR Master Mix (10µL, ABI) and the cDNA template 

(1µL) within individual wells on a 96-well PCR plate (ABI, Cambridge, UK. The plate was 

sealed with an optical adhesive cover and qRT-PCR was carried out using a 7500 real-

time PCR system (ABI). The reaction profile was set to 50°C (2mins), 95°C (10mins), 

95°C (5secs) for 60 cycles, and 60°C (1min) before holding at 4°C. All samples were 

measured in triplicate. 

 

2.2.3. Data analysis- comparative CT method for relative quantification 

Data were analysed using the 7500 software (ABI) and relative gene expression was 

calculated using the 2-∆∆CT method using HPRT1 as the endogenous control. Using this 

method the amount of target, normalised to the endogenous control and relative to a 

calibrator is calculated by the formula: 
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RQ = 2-∆CT 

 RQ = relative quantification value. 

 CT = threshold cycle number for a particular sample and refers to a particular 

target (e.g. CaV3.1 or HPRT1). 

 ∆CT = difference between CT values for target (CaV3.1 or CaV3.2) and reference 

(HPRT1) 

Finally, the relative expression of CaV3.1 or CaV3.2 in relation to the housekeeper was 

expressed by multiplying 2-∆CT by 100. All measurements were made in triplicate wells 

with the mean value used as n=1. Paired or un-paired Student’s t-tests were conducted 

(GraphPad Software, Inc), as described in section 2.11.  

 

2.3. Immunohistochemistry  

To assess the subcellular localisation of CaV3.1 and CaV3.2 channels in the cell lines 

used for the current project, immunohistochemistry was conducted. All primary and 

secondary antibodies were purchased from NeuroMab (UC Davis, NIH NeuroMab 

Facility, CA, USA). As recommended, antibody concentrations were optimised prior to 

experiments. Following trypsinisation (2.1), HEK293/CaV3.1, HEK293/CaV3.2 and 

HEK293/CaV3.2/clone P cells were plated at 1:10 dilutions, whereas A7r5 cells were 

plated at a 1:5 dilution, onto poly-L-lysine coated sterile glass coverslips (22x22mm, 

thickness 0). Coverslips were held within 6-well plates containing the relevant 

complete growth media (2ml per well). Cells were then incubated for 3 days before 

media was removed and coverslips were washed with ice-cold PBS (5mins, x3).  

Paraformaldehyde (1ml per well, 4% in PBS, Sigma-Aldrich, UK) was applied for 40mins 

at 4°C. The fixative was removed and coverslips were incubated in PBS containing 

Triton®X-100 (0.1%, Sigma-Aldrich, UK) and bovine serum albumin (BSA, 10%, Sigma-

Aldrich, UK) for 20mins at RT (1ml per well). This was to both permeabilise cells and 

block non-specific staining respectively. Cells were then washed with Triton®X-100 

(0.1% in PBS, 1ml per well, 5mins, x3), before a final wash with BSA (1% in PBS, 1ml per 

well, 5mins). Primary (1°) antibodies were made up to the appropriate dilutions using 

PBS + BSA (1%). Coverslips were then incubated with either anti-CaV3.1 (1:100, mouse, 

clone N178A/9) or anti-CaV3.2 (1:1000, mouse, clone N55/10) for 12hrs at 4°C. To 

minimise usage, for all 1° antibody incubations coverslips were inverted on ParafilmM® 

(Sigma-Aldrich, UK), using 100µL of 1° antibody per coverslip.   
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Two fluorophore-bound secondary (2°) antibodies were used to detect anti-CaV3.1 or 

anti-CaV3.2 1° antibodies. Coverslips were first washed with BSA (1% in PBS, 1ml per 

well, 5mins, x3). AlexaFluor555 goat anti-mouse IgG1 (red) or AlexaFluor488 goat anti-

mouse IgG1 (green) were then diluted to 1:1000 in PBS + BSA (1%). 2° antibodies were 

applied to coverslips for 1hr at RT (1ml per well), protected from light. Finally cells 

were washed with PBS (1ml per well, 5mins, 3x) before a final wash with double-

distilled H2O (ddH2O, 1ml per well, 5mins). Coverslips were allowed to air-dry, then 

mounted onto microscope slides using VectashieldR mounting media containing 4',6-

Diamidino-2-Phenylindole Dihydrochloride (DAPI, Vector Laboratories; Peterborough, 

UK), to label total DNA. Coverslips were finally sealed round the edges with nail varnish 

and refrigerated (40C) in the dark.  

 

2.3.1. Image acquisition and analysis 

Slides were removed from the fridge and allowed to warm to RT for 30mins before 

viewing with a light microscope (Nikon Eclipse E600, COOL LED pE illumination system, 

x40 magnification, used throughout). For each coverslip, 5 fields of view were 

randomly selected and the appropriate LEDs and filter sets used to detect different 

fluorophores. DAPI was visualised using the blue channel (400nm), AlexaFluor488 using 

the green channel (470nm) and AlexaFluor555 using the red channel (GYR). Images 

were captured via an integrating analogue CCD camera (JVC KYF 55B) attached to an 

Acquis image-capture system (Synoptics; Cambridge, UK). To examine co-localisation, 

Images were merged post-acquisition and were adjusted for brightness and contrast 

using Corel photo paint.  

 
2.4. MTT viability assays  

In order to assess whether the thioredoxin inhibitors Auranofin (AuF) and PX-12 would 

affect cell viability, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide 

(MTT) assays were conducted on A7r5, wt HEK293 and HEK293/CaV3.2 cells. The MTT 

assay is based on the principle that only active mitochondria are able to cleave MTTs 

tetrazolium ring and convert the pale yellow soluble substrate to the partially soluble, 

dark blue formazan product. The degree of colorimetric absorbance at 570nm is thus 
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directly proportional to the number of living cells present (Mosmann, 1983). 96-well 

plates were coated with poly-L-lysine (100µL) which was removed before plates were 

allowed to dry for 30mins. Cells were plated in complete growth media, at the 

appropriate cell density to achieve confluence 24, 48 or 72 hours post-drug treatment. 

Cells were incubated overnight and media was replaced with complete growth media 

(100µL) ± AuF (1nM-3µM) or PX-12 (300nM-300µM). The 96-well plate layout shown 

within Figure 2.1 enabled 8 treatment and 2 control groups to be analysed, as the 

outer wells were prone to evaporation and plate reader inaccuracy.  

 

 

Figure 2.1. 96-well plate layout used for MTT assay 
Red line, omitted from analysis, blue line, control wells. 

 
Following drug treatment (24, 48 or 72 hours), MTT (11µL, 5mg/ml, Sigma-Aldrich) was 

added to each well and cells were incubated for 3 hours (37°C). A solubilising solution 

of propan-1-ol (Sigma-Aldrich) and 1M HCl (1:25) was added to each well (111µL), to 

lyse cell contents and standardise media coloration. Cell suspensions were thoroughly 

triturated and absorbance was measured at 570nm using a spectrophotometer 

(Glomax multi-detection system; Promega, UK). Absorbance values were normalised to 

control values and averages taken for each condition. The mean value of 8 wells was 

used as n=1. All experiments were repeated three times over different passage 

numbers. Data were analysed using one-way ANOVA and Dunnett’s post-hoc tests 

(GraphPad Software, Inc), as described in section 2.11. 

 

 

2.5. Proliferation assays - direct cell counting 

The direct cell counting protocol used for proliferation assays was based on 

longstanding published methods (Porter et al., 2002). Cells were trypsinised as detailed 

(2.1.1), and after centrifugation the cell pellet was re-suspended in complete growth 
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media (1ml), and cell number was counted using the T10 automated cell counter (Bio-

Rad; Hemel Hempstead, UK). Cells were plated into 24-well plates at appropriate 

densities estimated to not exceed 100% confluency on the final day of the assay; 

1x104.ml-1 or 2x104.ml-1 for A7r5 cells and HEK293 cells respectively. Due to poor 

adherence of WT HEK293, HEK293/CaV3.1 and HEK293/CaV3.2 cells, 24-well plates 

were coated with poly-L-lysine, allowed to dry for 30mins prior to plating. Cells were 

incubated in the relevant complete growth media for 9 hours to enable optimum cell 

adherence, washed with PBS (1ml per well), and incubated in serum free media (SFM, 

0% FBS) for 12 hours to encourage cell cycle synchronisation. Day 0 counts were taken, 

and media changed to complete growth media ± various drugs as listed in Table 2.1. 

Cells were incubated for 3 days and counted either daily or on day three alone. 

 

All cell counts were made in triplicate (i.e. from three wells) including day 0 counts. 

Media was retained from a single well from each condition to enable floating cell 

quantification, which was added to the non-viable cell count. Adherent cells were 

washed with PBS (1ml) and trypsinised (200µL trypsin-EDTA per well). Cells were 

triturated and transferred to micro-centrifuge tubes (1.5ml) along with complete 

growth media (800µL per well), to inhibit further trypsin dissociation. Cells were 

centrifuged (400xg for 6mins) and 950µL of supernatant was removed. Cell 

suspensions were then mixed with equal amounts of Trypan blue (50µL, Sigma-Aldrich, 

UK), to stain unviable cells and counted using the automated cell counter. For low 

concentration cell suspensions (i.e. floating cells and day 0) counts were performed 

using a haemocytometer. Un-paired Student’s t-tests were conducted (GraphPad 

Software, Inc), as described in section 2.11.  
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Drug and 
vehicle 

Working 
conc’ 

Purpose of application  

Auranofin  
(DMSO) 

300nM 
100nM 

A gold containing compound initially characterised as an 
anti-rheumatic drug (Finkelstein et al., 1976) which was 
later shown to Inhibit thioredoxin reductase (TrxR), the 
enzyme responsible for the reduction and subsequent 
activation of thioredoxin (Trx) with a Ki of 4nM when 
measured in the presence of 50µM Trx (Gromer et al., 
1998).  

PX-12 
(DMSO) 

1µM Trx inhibitor originally named IV-2 (1-methylpropyl 2-
mercaptoimidazolyl disulfide) which inhibits Trx via 
irreversible thioalkylation of Cys73. At higher concentrations 
reversible thioalkylation of Cys32 and Cys35 also (Ki=31µM) 
occurs (Kirkpatrick et al., 1998). 

NNC 55-0396  
(ddH20) 

1µM, 
3µM 

T-type selective Ca2+ channel blocker (CCB), which shows no 
inhibition of high voltage activated (HVA) currents at 
100µM (Li et al., 2005). 

ML218 
(DMSO) 

3µM A recently developed compound, shown by high-
throughput screening technique, to be T-type selective at 
10µM (Xiang et al., 2011). 

Mibefradil  
(ddH20) 

1µM, 
3µM 

Within VSMCs mibefradil (≤ 1µM) selectively inhibits T-type 
Ca2+ currents (Brueggemann et al., 2005). It has also been 
shown its metabolite can also activate L-type Ca2+   
channels when applied at higher concentrations (Li et al., 
2005).  

Nifedipine 
(DMSO) 

2µM Nifedipine (300nM) has been shown to selectively inhibit L-
type Ca2+ currents in arterial smooth muscle, enabling T-
type Ca2+ current isolation (Abd El-Rahman et al., 2013).  

Table 2.1. Drugs used in proliferation assays and Ca2+ microfluorimetry 
 All purchased from Sigma-Aldrich, UK, except Auranofin and PX-12 (Tocris biosciences; 
Bristol, UK and ML218 (kindly gifted from Craig Lindsley, Vanderbilt University, 
Tennessee, USA) 
 

 

2.6. Proliferation assays - EdU incorporation assay 

As an alternative to the direct cell counting proliferation assay, the Click-iT® EdU assay 

(Invitrogen Molecular Probes; Thermo Fisher Scientific, Paisley, UK) was employed to 

examine the effects of PX-12 on WT HEK293 and HEK293/CaV3.1 cell proliferation. EdU 

(5-ethynyl-2´-deoxyuridine) is a nucleoside analog of thymidine which becomes 

incorporated into newly synthesised DNA, and is detected by utilisation of the 

principles of click chemistry i.e. it involves a copper-catalyzed covalent reaction 

between an alkyne (EdU incorporated into DNA) and an azide (Alexa Fluor detection 

reagent). This newly developed assay can be used as a replacement for the standard 
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BrdU (5-bromo-2’-deoxyuridine) nucleoside incorporation assay with the main 

advantage that the small size of the azide allows detection without denaturing DNA, 

circumventing potential effects on cell morphology and nuclear counterstaining 

associated with BrdU. As the assay utilises bio-orthogonal moieties, high detection 

sensitivities and low background signals are achieved.  

 

2.6.1. Cell culture and EdU incubation 

EdU incorporation assays were performed according to manufacturer’s instructions.  

As recommended EdU concentration/incubation time (5 or 10µM, 1-48 hours) and 

plating density (1-4x104.ml-1) was optimised prior to experiments. Following 

trypsinisation, cell number was determined as described (2.5) and wt HEK293 and 

HEK293/CaV3.2 cells were plated at 4x104.ml-1 onto poly-L-lysine coated sterile glass 

coverslips (22x22mm, thickness 0) within 6-well plates containing the relevant 

complete growth media (2ml per well). Cells were allowed to adhere for 24 hours, 

washed with PBS (2ml per well) and incubated in SFM (2ml per well) for 12 hours to 

encourage cell cycle synchronisation. Media was then changed to complete growth 

media ± PX-12 (1µM) and/or NNC55-0396 (3µM). After 12 or 32 hours, EdU (5µM) was 

added by half changing the growth media, PX-12 and NNC concentrations were 

maintained. Cells were incubated for a further 12 hours.  

 

2.6.2. Cell fixation, permeabilization and EdU detection 

Following EdU incubation, media was removed and coverslips were washed with PBS 

(2ml per well) before paraformaldehyde (3.7% in PBS, Sigma-Aldrich, UK) was applied 

for 15mins at RT. The fixative was removed and coverslips were washed with PBS 

containing bovine serum albumin (BSA, x2, Sigma-Aldrich, UK) before PBS containing 

Triton®X-100 (0.5%, Sigma-Aldrich, UK) was added for 20mins at RT to permeabilise 

cells. Next coverslips were washed with PBS containing BSA (3%, x2) before EdU 

detection cocktail (50µL) was added to each coverslip. The EdU detection cocktail 

contained CuSO4, Alexa fluor-555 azide and proprietary reaction buffers and additives 

and was made fresh each day. Coverslips were incubated for 30mins at RT and 

protected from light. The detection cocktail was then removed and coverslips washed 

with PBS containing BSA (3%, x2) and also then with ddH2O. Coverslips were allowed to 
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air-dry, then mounted onto microscope slides using VectashieldR mounting media 

containing DAPI, (Vector Laboratories; Peterborough, UK) to label total DNA, and 

finally sealed round the edges with nail varnish. All slides were refrigerated (40C) in the 

dark.  

 

2.6.3. Image acquisition and analysis 

Images were acquired as detailed (2.3.1). For each coverslip, 5 fields of view were 

randomly selected and visualised under the blue channel (400nm) for DAPI and the red 

channel (GYR) for EdU. DAPI and EdU images were merged post-acquisition using Corel 

photo paint in order to examine co-localisation. DAPI is a well characterised nuclear 

stain which binds to DNA and so was used to label the total number of nuclei. As DNA 

synthesis, fundamental for proliferation, occurs within the nucleus; EdU incorporation 

labelled the nuclei of cells which had synthesised DNA within the 12hour incubation 

period. Therefore EdU labelling reliably co-localised with DAPI staining. In order to 

compare DNA synthesis between control and drug treated conditions, the number of 

EdU-labelled nuclei (EdU+) was expressed as a percentage of the DAPI-labelled nuclei 

(DAPI+) for each image.  

 

An attempt was made to custom build an automated analysis pipeline using an open 

source programme CellProfiler (www.cellprofiler.org). However, due to inaccuracies in 

results when compared to counting the nuclei by eye (manual counting), it was 

decided that for the current project manual counting was the best option (discussed in 

Chapter 4). Using Corel photo paint, EdU+ nuclei were outlined and counted and the 

resultant outline was then superimposed onto the corresponding DAPI image. The 

percentage of EdU+/DAPI+ nuclei was calculated for each of the five images in each 

condition and an average taken (to count as n=1).  Data were normalised to the control 

condition and analysed by one-way ANOVA with Dunnets’ post-hoc comparison test or 

un-paired Student’s t-tests (GraphPad Software, Inc), as described in section 2.11.  
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2.7. Ca2+ microfluorimetry 

Ca2+ microfluorimetry uses fluorescent indicators to measure intracellular Ca2+ 

concentration ([Ca2+]i) within cell populations. In the current project, Fura-2-AM (4µM, 

Invitrogen Molecular Probes; Thermo Fisher Scientific, Paisley, UK) was used to load 

A7r5, wt HEK293, HEK293/CaV3.1 and HEK293/CaV3.2 cells with the ratiometric 

fluorophore Fura-2. As the conjugated acetoxymethyl (AM) ester group confers a high 

degree of lipophilicity it is readily taken up by cells. Intracellular esterases then break 

down the AM group, thereby preventing the charged Fura-2 from leaving the cell, 

enabling the use of low incubation concentrations.  Fura-2 is a dual excitation 

fluorophore which emits light at 510nm in response to excitation at 340nm and 

380nm. With increasing Ca2+ binding; emission intensity (510nm) increases in response 

to excitation at 340nm, whilst correspondingly decreasing in response to excitation at 

380nm, as detailed in Figure 2.2. The ratiometric nature of Fura-2 compensates for 

potential differences in dye loading, cell thickness and instrument sensitivity 

(Grynkiewicz et al., 1985). 

 

 

Figure 2.2. Fluorescence excitation spectra of Fura-2 
As measured in solutions containing 0–39.8 µM free Ca2+ (diagram adapted from 
www.thermofisher.com).  
 



59 
 
2.7.1. Cell culture  

Following trypsinisation (as described in 2.1.1) cells were plated at various dilutions 

onto circular sterile glass coverslips (10mm, thickness 0) within 24-well plates 

containing the relevant complete growth media (1ml per well). Cells were then 

incubated for 1-4 days until they were ~ 50-70% confluent. Coverslips were transferred 

to 35mm Petri dishes and incubated with Fura 2-AM (4µM) diluted in control buffer 

(see Table 2.2) at RT for 40mins.  After washing with control buffer (2ml, x3), coverslips 

were incubated for 15mins with control buffer to allow AM group de-esterification. 

After fragmentation, coverslip segments were transferred to a perfusion chamber 

mounted over an epi-fluorescence microscope. Buffers were perfused from one of six 

reservoirs, connected to a 6-way Hamilton tap (Hamilton GB Ltd; UK), via Tygon tubing 

(0.83mm internal diameter, Merck; UK). A suction tube connected to a peristaltic 

pump (Gilson, Minipulse 3, Anachem) provided the outlet. Cell populations were 

identified and emission intensity at 510nm was recorded in response to synchronised 

excitation at 380nm and 340nm (ME-SE Photometry system, Cairn Research, 

Faversham, UK). The ratio of absorbance (340:380nm) at 1Hz, directly proportional to 

[Ca2+]i, was visualised via a computer using Acquisition Engine 1.6.1 software (Cairn 

Research, UK). 

 

Chemical  Concentration (mM) 

 

Control perfusate  High [K+] perfusate Ca2+ free perfusate 

NaCl 135 120 135 

KCl 5 20 5 

HEPES 5 5 5 

Glucose 10 10 10 

Sucrose 29 29 29 

MgCl2  1.2 1.2 1.2 

CaCl2   2.5 2.5 - 

EGTA - - 1 

Table 2.2. Ca2+ microfluorimetry perfusate compositions, all adjusted to pH = 7.4 
using NaOH. 
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2.7.2. Depolarisation induced intracellular Ca2+ oscillation protocol - A7r5 cells 

To study the effects of Trx inhibition, “old” A7r5 cells were incubated with auranofin 

(AuF, 2µM) dissolved in control buffer (RT, 25mins) post Fura-2 incubation. Baseline 

[Ca2+]i  measured in control buffer, replicating physiological resting state conditions, 

was stabilized before switching to a perfusion buffer containing a modestly elevated 

[K+] (20mM, control 5mM), as shown within Table 2.2. The modest [K+] elevation was 

designed to induce a small degree of depolarisation of ~35mV as calculated by the 

Nernst equation detailed in Figure 2.3, with the aim of preferentially activating T-type 

Ca2+ channels recruited by small voltage increases. In control situations, this stimulus 

reliably produced rapid oscillations in [Ca2+]i comparable to spontaneous oscillations 

observed in “new” A7r5 cells. After any response to the depolarising stimuli had 

reached a plateau, the perfusion buffer was switched back to control and baseline 

[Ca2+]i re-established. In some conditions, dithiothreitol (DTT, 1mM; Sigma-Aldrich, 

UK), dissolved in control buffer, was then applied prior to repeating the depolarisation 

protocol for a second time.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Schematic representation of the Nernst equation  
As used to calculate the degree of depolarisation induced by switching extracellular 

[K+] from 5mM to 20mM 
  

      
  

  
     

     
     

  

 

Where: 
   = K+ equilibrium potential  
      = extracellular K+ concentration (5 or 20mM) 
      = intracellular K+ concentration (140mM) 
R = gas constant, T = temperature, z = valency of ion, F = Faraday constant 

                                  
  
  

 = 58mV  

 
   = 58 x log10 (5/140) = -84mV 

 
   = 58 x log10 (20/140) = -49mV 
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The effects of various Ca2+ channels blockers (CCBs) on [Ca2+]i, as used in the 

proliferation studies as detailed in Table 2.1 were also examined. The same initial 

depolarisation protocol was applied as detailed above; however CCBs were then 

perfused firstly in control and then in the high [K+] buffer. This enabled comparison 

between the first and second depolarisation responses. The perfusion buffer was then 

switched back to the control buffer and baseline [Ca2+]i re-established.  

 

2.7.3. Window current protocol 

As T-type Ca2+ channels are activated at low voltages there is commonly a small 

population open at or around the resting membrane potential. These facilitate tonic 

Ca2+ influx, often referred to as window current, believed to be important for 

proliferation. In order to measure and compare any window current within A7r5, wt 

HEK293, HEK293/CaV3.1 and HEK293/CaV3.2 cells, baseline [Ca2+]i in control buffer was 

established before switching to a Ca2+ free perfusate (CF, replaced with 1 mM EGTA). 

Any changes in [Ca2+]i were allowed to stabilise before the perfusate was switched 

back to the control buffer. When investigating the effects of CCBs (Table 2.1), drugs 

were diluted and applied firstly in control and then in CF perfusate.  

 

2.7.4. Data analysis  

All data analysis was conducted using Graphing (an in-house program) and GraphPad 

Prism version 6 (GraphPad Software, Inc). As detailed in Figure 2.4 regarding the 

induced depolarisation experiments, the amplitude of the response (Δ[Ca2+]i) was 

measured by deducting the baseline Fura-2 ratio (in control buffer, A1), from the Fura-

2 ratio measured at the response plateau (A2). For drug treatments, baseline ratio was 

measured from drug + control buffer perfusion. To calculate the frequency of Ca2+ 

oscillations observed in response to depolarisation, the number of spikes was counted 

and divided by the duration of the high [K+] perfusion (T2-T1).  

 

Regarding window current experiments, the response to removal of extracellular Ca2+ 

was calculated by deducting the baseline Fura-2 ratio in CF buffer (A2) from the 

baseline Fura-2 ratio in control buffer (A1) as detailed within Figure 2.4. For drug 

treatment conditions, baseline ratio was measured from drug + control buffer 
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perfusion. All data was analysed using paired or un-paired Students t-tests or one-way 

ANOVA with Dunnett’s post-hoc comparison tests, as appropriate (section 2.11). 

 
A1

A2

T1 T2

240secs

0.2 ru

 
 

A1

A2

120secs

0.1 ru

 

Figure 2.4. Example control Ca2+ microfluorimetry traces 
Illustrating analysis parameters used for induced depolarisation protocols; A, response 
amplitude (A2-A1) and B, firing frequency in A7r5 cells (no° spikes/(T2-T1)) and C, 
window current protocols in A7r5 and HEK293 cells (A1-A2). Red lines show high K+ 
stimulus, purple line shows Ca2+ free perfusate. Scale bars showing time in seconds 
(horizontal bars) and ratio units (ru,) i.e. the ratio of absorbance (340:380, vertical 
bars).  
 

 

2.8. Electrophysiology  

In order to assess whether Trx directly modulated voltage-gated Ca2+ (CaV) channels 

within A7r5 HEK293/CaV3.1 and HEK293/CaV3.2 cells, patch-clamp electrophysiology 

(whole-cell configuration) was implemented. All recordings were made in the presence 

of tetraethylammonium chloride (TEA) and CsCl (both Sigma-Aldrich, UK) to block 

voltage-gated K+ channels and non-selective cation channels respectively.  

 

A B 

C 
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2.8.1. Cell culture 

Following trypsinisation (as detailed 2.1.1), cells were plated at various dilutions (1:10-

1:80) onto poly-L-lysine coated sterile glass coverslips (22x22mm, thickness 0) or 

circular sterile glass coverslips (10mm, thickness 0) in 6 or 24-well plates, containing 

2ml or 1ml of the relevant complete growth media per well, for recombinant HEK293 

or A7r5 cells respectively. Cells were incubated overnight before media was replaced 

with antibiotic-free growth media (FBS, 10%, no added antibiotic/antimycotic, 

gentamicin, or G-418), which was found to increase the success rate of stable 

recordings. Cells were then incubated for a further 1-3 days prior to recording. 

Coverslips were transferred into 35mm petri dishes and fragmented, enabling small 

sections to be transferred into the recording chamber.  

 

2.8.2. Electrophysiology rig set up  

The recording chamber was mounted over a light microscope (Olympus CK40) and 

perfused by one of four reservoirs connected to a 4 way Hamilton tap (Hamilton GB 

Ltd) via Tygon tubing (0.83mm internal diameter, Merck, UK). A suction tube 

connected to a vacuum pump (JUN-AIR, Redditch, UK) provided the outlet. Patch-

pipettes with a resistance of 3-7 MΩ were made from borosilicate glass capillary tubes 

(0.86mm internal diameter; Harvard Apparatus, Cambridge, UK) using an electrode 

puller (PP-83; Narishige, London, UK). Patch-pipettes were filled with intracellular 

solution as detailed in Table 2.3 ensuring no air bubbles were present. The patch-

pipette was then attached securely to the electrode holder so that the silver/silver 

chloride (Ag/AgCl2) recording electrode was connected to the headstage and was also 

in contact with the intracellular solution. The Ag/AgCl2 chloride ground electrode 

connected to the headstage was placed in the recording chamber in contact with the 

extracellular solution (Table 2.3). The headstage positioning was controlled by a 

micromanipulator (Patch star (PS-700C), Scientifica, East Sussex, UK) enabling precise 

manoeuvre of the patch-pipette over three axes (x, y and z) to allow its delicate 

placement against cell membranes.  

 

The electrode holder contained a side-arm air outlet attached to Tygon tubing 

facilitating manual suction required to rupture the cell membrane and achieve the 
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whole-cell configuration. This could be connected to a syringe with a three-way tap to 

maintain suction. To reduce electrical noise, all apparatus was contained within a 

Faraday cage and individual electrical items were grounded to a common earth point. 

Patch-clamp recordings were made using an Axopatch 200A amplifier/Digidata 1200 

interface (Axon Instruments; Foster City, CA, USA) controlled by Clampex 9.0 software 

(Molecular Devices; Foster City, CA, USA). Signals were sampled at 10 kHz and low-pass 

filtered at 2 kHz.  

 

Chemical Concentration (mM) 

 

ICaT* extracellular ICaL * extracellular Intracellular 

NaCl 95 95 - 

CsCl 5 5 120 

MgCl2 0.6 0.6 2 

TEA 20 20 20 

HEPES 5 5 10 

glucose 10 10 - 

sucrose 20 20 - 

CaCl2 15 - - 

BaCl2 - 15 - 

EGTA - - 10 

Na - ATP - - 2 

Mg- ATP - - 2.5 

Table 2.3. Composition of solutions used for electrophysiology 
Extracellular solutions were adjusted to pH 7.4 using NaOH, whilst the intracellular 
solution was adjusted to pH 7.2 using CsOH. ICaT = T-type Ca2+ current. ICaL= L-type 

Ca2+ current. All chemicals supplied by Sigma-Aldrich, UK. 
 

2.8.3. Whole-cell recording configuration  

All electrophysiological recordings were made in the whole-cell configuration. Upon 

placement of the patch-pipette against the cell membrane, gentle suction was applied 

until a mechanically and electrically tight seal (≥1GΩ resistance) was formed between 

the patch-pipette and cell membrane. Membrane potential was set to the required 

voltage (-80mV for T-type Ca2+ currents (ICaT)) and pipette capacity transients were 

minimised using amplifier controls. Suction was then gradually increased until the cell 
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membrane ruptured, which was detected as a sudden increase in slower capacitance 

transients which were subsequently minimised using the whole-cell capacitance and 

series resistance controls.  

 

2.8.4. Single step (SS) voltage protocols  

T-type Ca2+ channels exhibit marked differences when compared to other members of 

the CaV family such as L-type Ca2+ channels (CaV1.1-1.4).  Specifically they have lower 

voltage thresholds for activation (-70mV vs. -40mV), they inactivate rapidly, have 

transient kinetics and exhibit slower rates of deactivation leading to prominent tail 

currents after a depolarising pulse (Perez-Reyes, 1999). Correspondingly, when 

recording ICaT cells were maintained at a holding potential of -80mV (to ensure 

channels were in their closed state) and step depolarisations to -20mV (voltage for 

peak ICaT activation) were applied for 200ms (sufficient time to observe activation and 

inactivation), before return to the holding potential (-80mV). Repeated depolarising 

steps were made at 0.1 Hz. 

 

Contrastingly, when recording L-type Ca2+ currents (ICaL) cells were maintained at a 

holding potential of -50mV and step depolarisations to +20mV  (voltage for peak ICaL 

activation) were applied initially for 200ms, before returning to the holding potential (-

50mV). Over this period, no inactivation was observed, however the depolarising pulse 

duration was reduced to 100ms to minimise current rundown. Repeated depolarising 

steps were made at 0.1 Hz. Ba2+ (15mM) was used as the charge carrier for ICaL 

recordings to circumvent Ca2+ dependent inactivation associated with L-type Ca2+ 

channels and augment current amplitudes.  

 

The two individual SS protocols detailed above were designed to maximally activate T- 

or L-type Ca2+ channels. Whilst these protocols are ideal for recording currents from 

recombinant expression systems, it is important to note that contamination of ICaT or 

ICaL may have occurred within A7r5 cells which natively express both subtypes of Ca2+ 

channel. CaV1.2 channels have been previously shown to begin activating ~-20mV, 

when expressed recombinantly (Scragg et al., 2007). Furthermore, recombinant CaV1.3 

channels have been shown to have considerably lower activation thresholds compared 
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to CaV1.2 channels (Lipscombe et al., 2004). As such, the global Ca2+ influx in A7r5 cells 

evoked using the T-type SS protocol (-80mV to -20mV) may be a combination of ICaL 

and ICaT. Care was therefore taken when interpreting results from A7r5 cell T-type SS 

recordings, and nifedipine was applied to eliminate the contribution of ICaL where 

possible.  

 

2.8.5. Current-voltage (IV) relationship protocol and data analysis 

To assess potential effects of compounds of interest on current amplitudes in response 

to a range of voltages, current-voltage (IV) relationship protocols were also 

implemented. Cells were maintained at a holding potential of -80mV and a series of 

80ms depolarising steps from -100 to +40mV in 10mV increments were made, with a 

return to -80mV between each step. 

 

All data analysis was performed offline using Clampfit 9.0 (Molecular Devices) and 

GraphPad Prism version 6 (GraphPad Software, Inc). For single-step protocols, 

statistical analysis was initially conducted using raw peak current amplitude values. For 

effective visual representation, peak amplitude in the presence of a drug was 

expressed as a % of peak amplitude under control conditions for each cell. For 

consistency, final statistical analysis was conducted on data in this format Data were 

analysed using paired or un-paired Students t-tests or one-way ANOVA with Dunnett’s 

post-hoc comparison tests, as appropriate (detailed in section 2.11). 

 

2.9. Thioredoxin assays  

As the classical function of Trx is to reduce intracellular proteins via cysteine thiol-

disulphide exchange the standard way to measure Trx activity is using insulin disulfide 

reduction assays (Holmgren, 1979). A commercially available Trx assay was purchased 

(FkTRX-02-V2, IMCO Corporation Ltd AB; Stockholm, Sweden), which is based on the 

reduction of insulin by Trx. As shown by the three equations within Figure 2.5, the 

eosin-labelled insulin fluorescence signal at 545nm (after excitation at 520nm) 

increases upon reduction, and is applied in relative excess in addition to thioredoxin 

reductase (TrxR) and nicotinamide adenine dinucleotides phosphate (NADPH) 

(Montano et al., 2014). These assays were performed with the aim of measuring 
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endogenous Trx activity within cell lines and to potentially examine the effects of Trx 

inhibitors on this activity.  

 

 

Figure 2.5.  Schematic depiction of Trx activity assay reactions. 
  Showing, 1, the reduction of oxidised thioredoxin (Trx-S2) to its reduced dithiol form 
(Trx-(SH)2) by thioredoxin reductase (TrxR) with nicotinamide adenine dinucleotide 
phosphate (NADPH) as a cofactor. 2, Trx-(SH)2 reduces insulin disulfide (insulin-S2) to its 
dithiol form (insulin-(SH)2) and Trx-S2 with 3, a corresponding increase in fluorescence 
(derived from (Montano et al., 2014))  
 

2.9.2. Cell sample preparation  

To assess the effects of chronic application of Trx inhibitors on endogenous Trx activity 

levels, A7r5, WT HEK293 and HEK293/CaV3.1 cells were cultured in T75 flasks (as 

detailed 2.1.1) in the appropriate complete growth media (20mL) for three days before 

media was replaced with media ± AuF (300nM) or PX-12 (1µM). Cells were then 

cultured for a further 3 days before they were trypsinised and cell number determined 

(as described 2.5). Cells were then suspended in PBS (10mL) and centrifuged (1000xg, 

10mins, x2). All supernatant was removed and the cell pellet re-suspended in TE buffer 

(500µL, pH 7.3, Qiagen, UK) and divided into 2 samples. To lyse cells, samples were 

sonicated (XL-2000; Misonic, NY, USA) for 5 seconds and centrifuged (10,000xg, 4°C, 

20mins) to remove cellular debris. The supernatant was retained and frozen (-80°C) for 

subsequent Trx analysis.  

 

To assess the effects of acute exposure to higher PX-12 concentrations HEK293/CaV3.1 

and HEK293/CaV3.2 cells were cultured in T25 flasks (6ml total volume, 1:10 dilution) in 

the relevant complete growth media for 3 days before media was replaced for 

complete growth media ± PX-12 (10-300µM, 6mL) and incubated for 10mins prior to 

trypsinisation. Samples were then processed as detailed above. 
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2.9.3. Bicinchoninic acid (BCA) assay  

Before conducting Trx assays, it was important to quantify the total protein content of 

each sample in order to standardise the amount loaded using the bicinchoninic acid 

(BCA) protein assay (Thermo Scientific; Rockford, USA). This assay involves protein 

mediated reduction of Cu2+ which is chelated by BCA producing a deep purple colour, 

the intensity of which is proportional to the amount of protein present, and can be 

measured colorimetrically (Smith et al., 1985). The assay was conducted according to 

manufacturers’ instructions. Briefly, 10µL BSA protein standards (0, 250, 500, 750, 

1000, 1250, 1500, 1750 and 2000µg/ml) and either 2.5 or 10µL of cell sample was 

loaded onto a 96 well plate and total volume was made up to 200µL with working 

reagent. Plates were incubated for 30mins and absorbance was measured at 570nm 

(Glomax multi-detection system; Promega, UK). A calibration curve was generated 

from the BSA standards using GraphPad Prism version 6 (GraphPad Software, Inc) and 

the absorbance values of the cell sample fitted to calculate total protein.  

 

2.9.4. Assay protocol and data analysis  

Briefly, cell samples were allowed to equilibrate to RT and 15µg total protein was 

loaded into each well. Half of the wells contained TrxR (100nM), which was omitted 

from the other half to enable measurement of background fluorescence. Volume 

(100µL per well) was standardised with assay buffer. For calibration, reference wells 

containing known Trx concentrations (0-244ng) were included. To facilitate the 

reduction of Trx, β-NADPH (5µL per well) was added and plates incubated for 30mins 

prior to fluorescent substrate (20µL per well) addtion. Emission was recorded at 

545nm after excitation at 520nm (Varioskan Flash; Thermo Scientific, UK) over a 60 

minute period (1Hz). All test, background and reference samples were performed in 

triplicate.   

 

All data analysis was conducted offline using GraphPad Prism version 6 (GraphPad 

Software, Inc). Average values per minute were taken and emission intensity was 

plotted against time for each sample. The 10min time point which showed the most 

linear increase in fluorescence was selected (25-35 ± 10 mins) and linear regression 

was conducted to generate a fitted line for each sample. The slope of the background 
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reference sample (0ng Trx) was subtracted from the other reference sample slopes 

(taken from the calculated fit) and a calibration curve was generated. Linear regression 

analysis was then conducted to obtain the Trx standard line equation, and R2 values 

were noted. To calculate Trx concentrations within the cell samples the background 

slope values were deducted from the corresponding test sample slope. This resulting 

slope value was then used to calculate Trx concentration from the standard line 

equation generated from the Trx standards.   

  

2.10. Preparation of reduced thioredoxin (rTRX) 

In order to assess directly the effects of rTrx it was necessary to convert Trx to its 

reduced and active form. To do this, Trx (200µL, 1mg/ml; Sigma-Aldrich, UK), dissolved 

in binding buffer (10mM HEPES, 1mM EDTA, 50mM NaCl, pH, 7.0) was incubated with 

DTT (1mM) at RT (30mins). This solution was then transferred to a strong anion 

exchange spin column (Pierce mini; Life technologies, UK) which was pre-washed with 

binding buffer (400µL) and centrifuged (2000xg, 5mins). The column was then washed 

and centrifuged with binding buffer (400µL, 2000xg, 5mins, x3) with the flow-through 

discarded each time to completely remove any DTT. Elution buffer (250µL, 10mM 

HEPES, 1mM EDTA, 1mM NaCl, pH, 7.0) was added and the column centrifuged 

(2000xg, 5mins) enabling collection of rTrx. BCA assays were conducted (as described 

2.9.3) to determine rTrx concentrations and rTrx was used immediately to minimise 

oxidation.  The effects of oxidised Trx (oTrx), i.e. non-reduced Trx were also examined.  

 

 
2.11. Statistical analysis  

Prior to the selection of statistical analysis, where sample sizes allowed, D'Agostino-

Pearson normality tests were conducted, to ensure that parametric tests were 

appropriate. Unless otherwise stated, Student’s t-tests were subsequently conducted 

when examining differences between two groups, whilst one-way ANOVA with 

multiple comparison tests were used to examine three or more groups. Regarding 

ANOVA, Dunnett’s post-hoc comparison tests were chosen when comparing the mean 

of a control condition with the mean of every other condition. In contrast, Tukey’s 

post-hoc comparison tests were used to compare the mean of each condition with the 

mean of every other condition. As a final option, Bonferroni’s post-hoc comparison 
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tests were used when comparing a selected set of means.  When assessing the effects 

of different experimental conditions on the same cell(s) i.e. matched groups, paired 

Student’s t-tests or repeated-measures one-way ANOVA were used. When 

experimental groups comprised of different populations of cells, un-paired Student’s t-

tests or ordinary one-way ANOVA tests were conducted. All statistical analysis 

described within this thesis was conducted using GraphPad Prism version 6 (GraphPad 

Software, Inc), p values <0.05 were considered statistically significant. 
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Chapter 3 -The role of T-type Ca2+ channels in cellular 

proliferation and [Ca2+]i mobilisation. 

3.1. Introduction  

The current project has been conducted using the commercially-available VSMC cell 

line, A7r5 cells in addition to HEK293 cells stably expressing recombinant CaV3.1 or 

CaV3.2 channels. A7r5 cells were originally derived from rat thoracic aorta (Kimes & 

Brandt, 1976) and have been widely used as a convenient and relatively well 

characterised in vitro VSMC model, particularly for studying mechanisms of Ca2+ 

regulation (Carre et al., 2015; Erac et al., 2014; Simard et al., 2015; Sperti & Colucci, 

1991). HEK293 cells contain all the essential biochemical machinery required for post-

translational modifications, they have enabled functional expression of a huge range of 

recombinant proteins such as ion channels, and have been used extensively over the 

past 35 years as both transient and stable expression systems. Originally derived from 

epithelial cells of the human embryonic kidney, HEK293 cells are small in size and have 

minimal processes which make them ideal for patch-clamp electrophysiology (Thomas 

& Smart, 2005). 

 

Previous projects conducted by the Peers group investigating the effects of novel T-

type Ca2+ channel regulators CO and H2S on VSMC proliferation, have utilised the same 

cell lines as reported here (Duckles et al., 2015; Elies et al., 2015). As variations in ion 

channel expression can occur with prolonged cell culture (Richard et al., 1992), it was 

important to re-validate T-type Ca2+ channel expression and dissect the contribution of 

individual CaV channel isoforms to proliferation and Ca2+ handling. Mibefradil is a 

widely used T-type Ca2+ channel blocker (CCB), although when applied at high 

concentrations also  inhibits  L-type Ca2+ currents (Mishra & Hermsmeyer, 1994). 

Nifedipine belongs to a family of drugs called dihydropyridines (DHPs), which are 

highly selective L-type CCBs. The high selectivity arises as the pore forming α1C subunit 

of L-type Ca2+ channels has a unique high affinity DHP binding site involving IIIS6 and 

IVS6 transmembrane segments (Peterson et al., 1996).  
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3.2. Results  

3.2.1. Characterisation of CaV channels in A7r5 cells 

Two batches of A7r5 cells were used within the current project: “old” A7r5 cells were 

sub-cultured to 100% confluency and had been used within the group for many years 

whilst the “new” A7r5 cells were sub-cultured at lower confluence, in an attempt to 

maximise T-type Ca2+ channel expression (Richard et al., 1992). To quantify CaV3.1 and 

CaV3.2 mRNA expression and allow for comparison between the two batches of cells, 

real-time polymerase chain reaction (rtPCR) was conducted. When using this 

technique, it is important to select a housekeeping gene which is expressed at similar 

levels to the target gene(s) of interest. It was determined that the large ribosomal 

subunit (17S) was expressed at higher levels than both hypoxanthine 

phosphoribosyltransferase (HPRT1) and the target genes CaV3.1 and CaV3.2; reflected 

by the lower threshold cycle (CT) values. As the average CT value for HPRT1 was similar 

to that of CaV3.1, it was confirmed to be an appropriate housekeeper gene and was 

used for all subsequent analysis (Figure 3.1). Both batches of A7r5 cells expressed 

CaV3.1 mRNA at significantly higher levels than CaV3.2 mRNA. CaV3.1 and CaV3.2 mRNA 

expression was much higher in the “new” A7r5 cells sub-cultured at low confluence 

(70-80%) compared to the “old” A7r5 cells sub-cultured at greater confluence (90-

100%), as detailed in Figure 3.1. Consequently, the “new” A7r5 cells were used for all 

subsequent experiments unless otherwise stated. Note, rtPCR on the “old” A7r5 cells 

was conducted by Dr Hayley Duckles using an identical protocol and data are included 

with permission (Duckles et al., 2015).  
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Figure 3.1. CaV3.1 and CaV3.2 mRNA is expressed by A7r5 cells 

A, Bar graph showing the average (mean ± s.e.m) threshold cycle (CT) values for the 
target genes CaV3.1 and CaV3.2, and the housekeeping genes hypoxanthine 
phosphoribosyltransferase (HPRT1) and large ribosomal subunit (17S) within A7r5 cells 
(n=8). B, Bar graph showing relative mRNA expression of CaV3.1 (upper y-axis) and 
CaV3.2 (lower y-axis), channel expression is plotted as (mean ± s.e.m) % expression of 
HPRT1, for “old” A7r5 cells sub-cultured at 90-100% confluence (n=7, experiments 
conducted by Dr H. Duckles). C, As B except with “new”A7r5 cells sub-cultured at 70-
80% confluence (n=8, note larger axis). A7r5 cell lysates were measured in triplicate 
wells with the mean value used as n=1. All data were analysed using unpaired students 
t-tests, *p≤0.05, ****p ≤0.0001.  
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In order to assess the sub-cellular distribution of CaV3.1 and CaV3.2 channels, 

immunofluorescence was conducted on “new” A7r5 cells. On all occasions, DAPI (4',6-

diamidino-2-phenylindole) was co-applied to label cell nuclei. Initial attempts to detect 

the CaV3.1 and CaV3.2 antibodies within A7r5 cells using the Alexa Fluor 488 secondary 

antibody (detected in green) were unsuccessful due to prominent background 

fluorescence, apparent upon omission of either the primary or secondary antibodies 

(Error! Reference source not found.). NAD(P)H is a common source of 

autofluorescence detected within cytosolic, mitochondrial and nuclear regions. Within 

bovine coronary artery smooth muscle cells, NAD(P)H-mediated autofluorescence has 

been observed, with peaks of excitation and emission around 340nm and 450nm 

respectively (Gao & Wolin, 2008). Resultantly, Alexa Fluor 555 (detected in red) was 

used as the secondary antibody within A7r5 cells, as no background fluorescence was 

observed at these wavelengths (Error! Reference source not found.). Low levels of 

immuno-reactivity (IR) to both CaV3.1 and CaV3.2 antibodies were detected within 

some A7r5 cells. CaV3.2 channels were found to be localised around nuclear regions 

(Error! Reference source not found.), whereas CaV3.1 channels appeared to have a 

more generalised distribution throughout A7r5 cells (Error! Reference source not 

found.). Both CaV3.1 and CaV3.2 primary antibodies were found to be highly specific, as 

they showed no cross-reactivity with the opposing isoform, i.e. no CaV3.2 IR was 

apparent within HEK293/CaV3.1 cells and vice versa (Error! Reference source not 

found. and 0, discussed in further detail within section 3.2.4). 
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Figure 3.2. Background fluorescence is detected in “new” A7r5 cells at 488nm 

Control images for dual-label immunofluorescence using anti-CaV3.1 (1:100) and anti-
CaV3.2 (1:1000) primary antibodies, with Alexa Fluor-488 secondary antibody (1:1000, 
left panel, green images), and DAPI to label cell nuclei (right panel, blue images). 
Fluorescence is observed within A7r5 cells when; A, the Alexa Fluor 488 secondary 
antibody is applied alone, B, when the CaV3.1 primary antibody is applied alone (i.e. no 
secondary) and C, when the CaV3.2 primary antibody is applied alone (i.e. no 
secondary). All scale bars 50µm.  
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Figure 3.3. No background fluorescence is detected in “new” A7r5 cells at 555nm 

Control images for dual-label immunofluorescence using anti-CaV3.1 (1:100) and anti-
CaV3.2 (1:1000) primary antibodies, with Alexa Fluor-555 secondary antibody (1:500, 
left panel, red images), and DAPI to label cell nuclei (right panel, blue images). No 
fluorescence is observed within A7r5 cells when; A, the Alexa Fluor 555 secondary 
antibody is applied alone, B, when the CaV3.1 primary antibody is applied alone (i.e. no 
secondary) and C, when the CaV3.2 primary antibody is applied alone (i.e. no 
secondary). All scale bars 50µm.  
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Figure 3.4. Sub-cellular distribution of CaV3.1 channels within “new” A7r5 cells 

Dual-label immunofluorescence using anti-CaV3.1 (1:100) with Alexa Fluor-555 
secondary antibody (1:500, left panels, red images) and DAPI to label cell nuclei (centre 
panel, blue images), merged CaV3.1 and DAPI images (right panels). A, A7r5 cells show 
low levels of diffuse CaV3.1 immuno-reactivity (IR), regions of interest (white box) are 
magnified in (i). All scale bars 50µm.   
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Figure 3.5. Sub-cellular distribution of CaV3.2 channels within “new” A7r5 cells 

Dual-label immunofluorescence using anti-CaV3.2 (1:1000) with Alexa Fluor-555 
secondary antibody (1:500, left panels, red images) and DAPI to label cell nuclei (centre 
panels, detected in blue), merged CaV3.1 and DAPI images (right panels). A, A7r5 cells 
show low levels of CaV3.2 immuno-reactivity (IR) localised within and around cell 
nuclei, regions of interest (white box) are magnified in (i). All scale bars 50µm.  
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Due to a wide variety of factors such as post-translational modification and dynamic 

membrane trafficking, mRNA expression does not necessarily equate to functional ion 

channel expression. For example, increased T-type Ca2+ channel current-density 

observed in response to chronic insulin stimulation within rat pituitary derived GH3 

cells was shown to be due to increases in dynamic endosomal recycling and trafficking 

of CaV3.1 to the surface membrane and not alterations in mRNA levels or promoter 

activity (Toledo et al., 2012). We therefore employed patch-clamp electrophysiology to 

assess functional T-type and L-type Ca2+ channel expression within A7r5 cells. 

 

As illustrated by Figure 3.2, both the T- and L-type SS protocols evoked Ca2+ currents 

within some A7r5 cells. Whilst the SS protocols were designed to maximally activate T- 

or L-type Ca2+ channels it was possible that these voltage protocols were not entirely 

subtype selective (Chapter 2). As such, quotations marks are used when describing 

currents evoked using the SS protocols in A7r5 cells. The distribution of Ca2+ currents 

was highly heterogeneous; some A7r5 cells expressed either “T-type” or “L-type” Ca2+ 

currents in isolation, some cells expressed both types of current and many cells had no 

detectable CaV current. As approximate values, 75% of cells expressed both “T-” and 

“L-type” Ca2+ currents, 10% expressed “L-type” Ca2+ currents alone, 5% expressed “T-

type” Ca2+ currents in isolation and 5% showed no detectable CaV current. It would 

have been advantageous to provide a more accurate quantification, however, on many 

occasions recordings did not last long enough to run both single-step protocols. In 

addition, to ensure effective voltage-clamp, only small A7r5 cells were recorded from 

which would have introduced a selection bias and decreased the validity of any 

quantification. Regarding current-voltage (I-V) relationships, cells exhibiting 

predominantly “L-type” Ca2+ currents showed maximal activation at +20mV. By 

contrast, cells exhibiting predominantly “T-type” Ca2+ currents displayed maximal 

activation at -20mV and cells with mixed populations showed maximal activation at 

0mV.  
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Figure 3.2. T-type and L-type Ca2+ channel currents are heterogeneously expressed 
within “new” A7r5 cells 

Whole-cell patch-clamp recordings from 3 representative “new” A7r5 cells using Ca2+ 

(15mM), as the charge carrier. A, Cell with both T- and L-type Ca2+ currents. B, Cell with 
predominant “L-type” Ca2+ current. C, Cell with predominant “T-type” Ca2+ current. (i), 
Current-voltage relationships with red line showing voltage producing maximal 
current, (ii), “T-type" Ca2+ current traces evoked from single step(SS)-depolarisations 
to -20mV from a holding potential of -80mV, (iii), “L-type” Ca2+ current traces evoked 
from SS-depolarisations to +20mV from a holding potential of -50mV. All scale bars 
50pA (vertical), 50ms (horizontal). Due to the potential activation of L-type mediated 
Ca2+ current using the T-type SS protocol and vice versa, “T-type” and “L-type” currents 
are labelled with quotation marks.   
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For single step (SS) voltage protocols, “T-type” Ca2+ currents were stimulated by 

repetitive depolarisations (0.1Hz) to -20mV (200ms) from a holding potential (Vh) of -

80mV. This evoked Ca2+ currents showing rapid activation and inactivation, the 

characteristic shape of T-type Ca2+ channel currents. “L-type” Ca2+ channel currents 

were stimulated by SS voltage protocols to +20mV (200ms, 0.1Hz) from a Vh of -50mV. 

When using Ca2+ as the charge carrier this produced currents with rapid activation and 

both a slowly inactivating and a sustained component. L-type Ca2+ currents are 

generally characterised by their sustained shape resulting from their very small degree 

of voltage-dependent inactivation. It should be noted however, that the kinetics and 

resultant current shape is highly dependent on the L-type Ca2+ channel isoform, splice 

variant and auxiliary subunits expressed. These factors can dictate varying degrees of 

Ca2+-dependent inactivation which may account for the slowly inactivating component 

observed, as reviewed within (Lipscombe et al., 2004). 

 

Interestingly, the amplitude of currents recorded in response to L-type SS protocols 

were of smaller amplitude than those recorded at the equivalent voltage (+20mV) in I-

V protocols, also illustrated in Figure 3.2. This further raises the possibility that 

summation of L- and T-type Ca2+ currents was occurring. In order to determine 

whether the currents evoked by the two SS protocols were mediated solely by the 

channel of interest, we examined the effects of specific T- and L-type Ca2+ channel 

blockers (CCBs). Currents evoked using the T-type SS voltage protocol were inhibited 

by the selective T-type CCB NNC55-0396 (3µM, NNC) in a partially reversible manner, 

whilst the L-type selective CCB nifedipine (2µM) had no significant effect on T-type 

Ca2+ channel current amplitudes, when applied to a limited number of cells (Figure 

3.3). This suggested that only T-type Ca2+ channels were contributing to the Ca2+ influx 

using this SS protocol. Due to the heterogeneous patterns of T- and L-type Ca2+ current 

expression in A7r5 cells (Figure 3.2), the observation that some currents evoked using 

the T-type SS were nifedipine-insensitive does not necessarily translate to the whole 

A7r5 population 

  

For the L-type SS voltage protocols, Ba2+ (20mM) was examined as an alternative 

charge carrier. This significantly enhanced the amplitude of L-type Ca2+ currents and 

almost completely eliminated the slowly inactivating component, resulting in a 
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sustained current shape more characteristic of L-type Ca2+ currents (Figure 3.4). 

Reducing the stimulating voltage-pulse duration (100ms from 200ms) whilst using Ba2+ 

had the added advantage of reducing L-type Ca2+ current rundown (data not shown). 

Consequently, Ba2+ was used for all SS L-type recordings. Nifedipine (2µM) inhibited 

currents evoked by the L-type SS protocol in a partially reversible manner. Surprisingly, 

L-type Ca2+ currents were also inhibited by NNC (3µM), indicating either that NNC was 

not selective for T-type Ca2+ channels at 3µM or that some of the current recorded 

using the L-type SS was being facilitated by T-type Ca2+ channels.  

 

Together, these results show that A7r5 cells express functional T- and L-type Ca2+ 

channels, that both CaV3.1 and CaV3.2 mRNA is expressed with CaV3.1 in greater 

abundance and that CaV3.1 channels tend to be localised around the cell membrane, 

whereas CaV3.2 channels tend to be localised around nuclear regions.  
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Figure 3.3. A7r5 “T-type” Ca2+ currents are inhibited by NNC55-0396 
Whole-cell patch-clamp recordings from “new” A7r5 cells. Currents evoked by step-
depolarisations (200ms duration, 0.1Hz) from -80mV to -20mV. Due to potential 
activation of L-type mediated Ca2+ currents using this protocol “T-type” is labelled with 
quotation marks. A, Example time-series plot illustrating the effects of NNC55-0396 
(NNC, 3µM, black bar) applied via the perfusate on “T-type” Ca2+ current amplitude B, 
Corresponding current trace (from A) showing both the effects of NNC (black trace) on 
control amplitude (red trace) and the small degree of washout (blue trace), scale bar 
50pA (vertical), 50ms (horizontal). C, Bar chart illustrating (mean ± s.e.m) peak “T-
type” Ca2+ current amplitude (% of control) in the presence of NNC (black box) and 
after washout (white box), n=4. D-F, As (A-C), except with nifedipine (2µM) and no 
washout data. F, n=3.  
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Figure 3.4. Ba2+ augments the size and shape of A7r5 “L-type” Ca2+ currents 

Whole-cell patch-clamp recordings from “new” A7r5 cells. Currents evoked by step-
depolarisations (100ms duration, 0.1Hz) from -50mV to +20mV. Due to potential 
activation of T-type mediated Ca2+ currents using this protocol “L-type” is labelled with 
quotation marks. A, Example time-series plot illustrating the effects of switching to 
Ba2+ (20mM, black bar) from Ca2+ (15mM) as the charge carrier on L-type Ca2+ current 
amplitude. B, Corresponding L-type Ca2+ current trace (from A) showing effects of Ba2+ 
(black trace) on control amplitude and current shape (red trace), scale bar 100pA 
(vertical), 40ms (horizontal). C, Bar chart illustrating peak amplitude (mean ± s.e.m) of 
L-type Ca2+ currents using either Ca2+ (black box) or Ba2+ (grey box) as the charge 
carrier, n=7. Data were analysed using paired Student’s t-test, **p<0.01.  
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Figure 3.5. A7r5 “L-type” Ca2+ currents are inhibited by nifedipine and NNC55-0396 
Whole-cell patch-clamp recordings from “new” A7r5 cells. Currents evoked by step-
depolarisations (200ms duration, 0.1Hz) from -50mV to +20mV, using Ba2+ (20mM) as 
the charge carrier. Due to potential activation of T-type mediated Ca2+ currents using 
this protocol “L-type” is labelled with quotation marks. A, Example time-series plot 
illustrating the effects of nifedipine (nif, 2µM, black bar) applied via the perfusate 
(black bar) on L-type Ca2+ current amplitude, B, Corresponding L-type Ca2+ current 
trace (from A) showing both the effects of nif (black trace) on control amplitude (red 
trace) and the small degree of washout (blue trace), scale bar 50pA (vertical), 50ms 
(horizontal). C, Bar chart illustrating (mean ± s.e.m) peak L-type Ca2+ current amplitude 
(% of control amplitude) in the presence of nif (black box, n=12) and after washout 
(white box, n=6). D-F, As (A-C), except showing the effects of NNC (3µM). F, n=5, (no 
washout data). 
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3.2.2. The effects of subtype specific CCBs on A7r5 proliferation and Ca2+ handling  

We then examined what effects subtype specific CCBs would have on proliferation. As 

shown by the control growth profiles within Figure 3.6, both batches of A7r5 cells were 

proliferative, reflected by the significant increase in cell number between day 0 and 

day 3 (d0-d3). This also confirmed that a three day assay was a suitable time-course for 

proliferation assays. Both batches similarly exhibited slow rates of growth over the first 

day of the assay following serum deprivation (d0-d1) indicating that effective 

synchronisation of the cell cycle had been achieved.  

 

Upon comparing the average daily increases in A7r5 cell number within Figure 3.6 key 

differences between the two batches are apparent. Between d1-d2 only the “new” 

batch of A7r5 cells significantly increased in cell number whereas between d2-d3 only 

the “old” A7r5 cells significantly increased. This shows that the newer A7r5 cells began 

and ceased to proliferate more quickly. As T-type Ca2+ channel expression is associated 

with proliferation (Kuga et al., 1996; Rodman et al., 2005; Tzeng et al., 2012); the 

faster initiation may be due to the higher levels of T-type Ca2+ channel expression as 

detailed in Figure 3.1. The “new” A7r5 cells were larger in size (Figure 3.7) and 

correspondingly showed greater confluency on day three of the assay, despite a much 

lower average cell number compared to “old” A7r5 cells. Cultured cells do not 

proliferative within confluent cultures due to a well-defined process termed contact 

inhibition of proliferation (CIP), which is evident by a plateau in growth curves 

(McClatchey & Yap, 2012). With consideration to this, the greater confluence of the 

“new” A7r5 cells likely explains the faster decline in proliferation. In addition to their 

smaller size, the morphology of “new” A7r5 cells was flatter and less spindle-shaped 

when compared to the “old” A7r5 cells (Figure 3.7). A decline in the spindle-shaped 

“hill and valley” morphology within VSMCs has been previously reported alongside 

increased proliferative responses to serum. These morphological changes are 

associated with the switch from contractile to proliferative phenotypes (Faries et al., 

2001; Pandolfi et al., 2003). An alternative explanation for the morphological 

differences currently observed could be contamination of the “new” A7r5 cell culture 

with fibroblasts. Further studies using immunohistochemistry with antibodies directed 

again SMC markers such as smooth muscle myosin heavy chain, calponin-1 and 

smooth muscle α-actin (SMA) would address this possibility.   
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Figure 3.6. Different A7r5 batches exhibit contrasting growth profiles 

 Line graphs showing average A7r5 cell number (mean ± s.e.m) over three day 
proliferation assays. A, “Old” A7r5 cells proliferate between day 0 and day 3, with the 
greatest daily increase between day 2 and 3 (n=7). B, As (A) except with “new” A7r5 
cells showing greatest daily increase between day 1 and 2, (note different y axis, n=10). 
All cell counts were made in triplicate with the mean value counting as n=1. Data were 
analysed by one-way ANOVA followed by Bonferroni’s multiple comparison test, 
**p<0.01, ****p<0.0001.  
 
 
 

A C

B D

 
Figure 3.7. “New” A7r5 cells are larger in size than “old” A7r5 cells 

Representative phase-bright images showing: A-B, “new” A7r5 and C-D, “old” A7r5 cell 
morphology. Scale bars 50µm.  
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Proliferation assays examining the effects of CCBs using the “old” A7r5 cells were 

previously conducted by Dr Hayley Duckles. Mibefradil was shown to cause a 

concentration-dependent decrease in proliferation without any significant effect on 

cell viability (1-5µM). Contrastingly, nifedipine was without significant effect on “old” 

A7r5 cell proliferation or viability (Figure 3.8, (Duckles et al., 2015). These data were 

used to select appropriate concentrations of mibefradil and nifedipine for subsequent 

proliferation assays.   

 

Similar observations were made when these experiments were repeated with “new” 

A7r5 cells (Figure 3.9). Mibefradil (3µM) significantly inhibited A7r5 proliferation 

without any effect on viability, whilst nifedipine (2µM) was without effect. The effects 

of the more recently developed T-type Ca2+ channel inhibitors ML218 and NNC were 

also examined over a range of concentrations. NNC caused a concentration-dependent 

reduction in A7r5 proliferation without effecting cell viability. At higher concentrations, 

NNC (10-30µM) was cytotoxic as reflected by the dramatic increase in average dead 

cell counts. ML218 also reduced proliferation in a concentration-dependent manner, 

with ML218 (30µM) showing the greatest reduction in average A7r5 cell number with 

no significant increase in cell death. As many of the drugs used were dissolved in 

DMSO, we also examined the potential effects of exposing cells to the vehicle alone. 

DMSO (1:1000) was the highest concentration used throughout the project, and as 

shown, had no effect on A7r5 proliferation (Figure 3.9). Together, these findings 

demonstrate that T-type Ca2+ channels regulate A7r5 proliferation and rule out the 

contribution of L-type Ca2+ channels. 

 

As intracellular Ca2+ (Ca2+
i) plays an integral role in VSMC proliferation, it was 

important to assess the effects of CCBs on A7r5 Ca2+ handling. For “old” A7r5 

populations, a modest depolarising stimulus was applied with the aim of preferentially 

activating T-type, rather than L-type Ca2+ channels, achieved by switching to a 

perfusate containing a modestly elevated K+ concentration ([K+] 20mM, 5mM control). 

Under control conditions, the high K+ stimulus reliably induced a rapid increase in 

[Ca2+]i leading to sustained high frequency oscillations. Removal of the depolarising 

stimulus was accompanied by a rapid cessation of oscillations and gradual return of 

[Ca2+]i back to baseline levels (Figure 3.10 & Figure 3.11). 
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Figure 3.8. Mibefradil suppresses proliferation of “old” A7r5 cells 
Bar graphs showing the proliferative response (mean ± s.e.m) of A7r5 cells to 
increasing concentrations of specified drugs. Proliferation (plotted as bar graphs, 
corresponding to the left-hand y-axis) was monitored on day 0 (solid bars) and on day 
3 (open bars) in the absence or presence of either mibefradil (A, n=4) or nifedipine (B, 
n=3). The open circles show the corresponding non-viable cell count (plotted against 
corresponding right-hand y-axis). All cell counts were made in triplicate with the mean 
value representing n=1. Data were analysed via ratio repeated measures one-way 
ANOVA followed by Dunnett’s multiple comparison test using day 3 control (no drug) 
counts as control, **p<0.01,****p<0.0001. Data was taken with permission from 
Duckles et al. (2015). (Duckles et al., 2015) 
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Figure 3.9. T-type Ca2+ channel inhibitors reduce “new” A7r5 proliferation  

Bar graphs showing the proliferative response (mean ± s.e.m) of “new” A7r5 cells to 
specified drugs, as monitored on day 3. A, Effects of mibefradil (mib, 3µM) and 
nifedipine (nif, 2µM) both (n=9) and B, DMSO (1:1000, n=6) on A7r5 proliferation as 
monitored on day 3, data analysed using unpaired students t-tests. C, Proliferation 
with increasing concentrations of NNC55-0396 (plotted against the left-hand y-axis) 
monitored on day 0 and on day 3. The red circles show the corresponding non-viable 
cell count (plotted against the right-hand y-axis). Data were analysed via one-way 
ANOVA followed by Dunnett’s multiple comparison test (n=7 (n=2 for 10 and 30µM)). 
D, As (C), except with ML218 (n=4). All cell counts were made in triplicate with the 
mean value representing n=1, for all graphs *p≤0.05, **p≤0.01.  
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For all experiments, control responses were individually recorded to ensure that when 

the depolarising stimulus was reapplied to the same cell population there was no 

significant difference in the amplitude of responses (Figure 3.10 & Figure 3.11). 

  

A variety of CCBs were applied to “old” A7r5 cells prior to and during the 2nd 

depolarisation, and it was found that the selective T-type CCBs ML-218 (30µM) and 

mibefradil (1µM) significantly reduced the amplitude of the response to the 2nd 

depolarisation when compared to the corresponding 1st depolarisation (Figure 3.10). A  

Mibefradil (3µM) was also shown to produce a similar degree of inhibition. The L-type 

Ca2+ channel specific inhibitor nifedipine (2µM) also reduced the amplitude of the 2nd 

response (Figure 3.11). Collectively, these findings show that Ca2+ oscillations observed 

in response to depolarisation within “old” A7r5 cells are facilitated by both T-type and 

L-type Ca2+ channels.  

 

The effects of NNC were also examined, however, for these experiments a decline in 

the amplitude of response between the 1st and 2nd depolarisations was apparent 

alongside a dramatic reduction in Ca2+ oscillations within control situations (data not 

shown). This indicated a phenotypic variation within the “old” A7r5 cells and 

prevented reliable conclusions regarding NNC effects. New A7r5 cells, were resultantly 

purchased and shown to express significantly higher levels of CaV3.1 and CaV3.2 mRNA 

(Figure 3.1). These “new” A7r5 cells were used for the majority of subsequent 

experiments.  
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Figure 3.10. T-type CCBs reduce depolarisation-induced Ca2+ entry in “old” A7r5 cells 

Example Ca2+ microfluorimetry traces showing the effects of CCBs on Fura 2 ratio units 
(340:380), representing Δ [Ca2+]i in response to depolarisation. Black bars above traces 
show periods where perfusate containing elevated [K+] (20mM, control 5mM) was 
applied in order to depolarise cells. Red lines show the period of CCB application (as 
stated). A, Example control trace matched with, B, Example trace showing the effects 
of ML218 (30µM) applied between the 1st and 2nd depolarisations. C, Bar graph 
showing the (mean ± s.e.m) response amplitude to the 1st and 2nd depolarisations in 
control (blue bar, n=4) and ML218 (30µM, red bar, n=7) conditions. D-E, As (A-B), 
except showing the effects of mibefradil (1µM). F, As (C), except showing control (blue 
bar, n=9) and mibefradil (1µM, red bar, n=11). All data were analysed using paired 
Student’s t-tests, ****p≤0.0001. 
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Figure 3.11. T-type and L-type CCBs reduce depolarisation-induced Ca2+ entry in “old” 

A7r5 cells  
Example Ca2+ microfluorimetry traces showing the effects of CCBs on Fura 2 ratio units 
(340:380), representing Δ [Ca2+]i in response to depolarisation. Black bars above traces 
show periods where perfusate containing elevated [K+] (20mM, control 5mM) was 
applied in order to depolarise cells. Red lines show the period of CCB application (as 
stated). A, Example control trace matched with, B, Example trace showing the effects 
of mibefradil (3µM) applied between the 1st and 2nd depolarisations. C, Bar graph 
showing the (mean ± s.e.m) response amplitude to the 1st and 2nd depolarisations in 
control (blue bar, n=9) and mibefradil (3µM, red bar, n=11) conditions. D-E, As (A-B), 
except with nifedipine (2µM), F, As (C), except with nifedipine (2µM, control n=12, 
mibefradil n=11). All data were analysed using paired Student’s t-tests, ****p≤0.0001.  
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Upon examination of basal Ca2+ levels within the “new” A7r5 cells, spontaneous Ca2+ 

oscillations of variable frequencies were apparent under control conditions within 

some A7r5 populations as represented in Figure 3.12. These oscillations rapidly ceased 

upon removal of extracellular Ca2+ (Ca2+
e) suggesting that they were mediated by Ca2+ 

channel influx, presumably via channels present within the cell membrane. As T-type 

Ca2+ channels have well established roles in pacemaker activity within the sinoatrial 

node and various brain regions (Mesirca et al., 2014; Nelson et al., 2006), this 

spontaneous oscillatory activity may be attributable to increased levels of T-type Ca2+ 

channels.   

 

Further investigation revealed that removal of Ca2+
e also caused a decrease in baseline 

Ca2+ levels within “new” A7r5 populations which did not exhibit spontaneous 

oscillations. This suggested that a small degree of Ca2+ influx was occurring under 

control conditions in the absence of oscillations. As T-type Ca2+ channels exhibit a 

characteristic overlap in activation and steady-state inactivation voltages, they can be 

open without fully inactivating at the cell’s resting membrane potential (Vm). This 

commonly facilitates tonic basal Ca2+ influx, referred to as a “window current”, as 

reviewed (Perez-Reyes, 2006). As no measurable window current was detectable 

within the “old” A7r5 cells (data not shown) which expressed significantly lower levels 

of T-type Ca2+ channels, it was likely that the recorded window current within the 

“new” A7r5 cells was mediated by these channels. In order to investigate this further, 

NNC (3µM) was applied to A7r5 populations and, as illustrated in Figure 3.13, such an 

exposure decreased basal Ca2+ levels. After pre-treatment with, and in the continued 

presence of NNC (3µM), the fall in ratio units (ru) in response to removal of Ca2+
e was 

considerably lower when compared to control conditions. These findings clearly 

demonstrate that T-type Ca2+ channels contribute a window current within “new” A7r5 

cells.  

 
Following an identical protocol, the effects of nifedipine (2µM) were also assessed. 

Nifedipine was surprisingly found to have similar effects on “new” A7r5 cell basal 

[Ca2+]i as was observed for NNC. Removal of Ca2+
e, after both pre-treatment and in the 

continued presence of nifedipine, caused a reduction in [Ca2+]i, which was significantly 

lower than observed in control conditions (Figure 3.13). This suggested that the 
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observed window currents were also partially facilitated by L-type Ca2+ channels. This 

was unexpected as these channels are activated at relatively high voltages and are 

therefore usually presumed to be closed at resting Vm. Whilst, electrophysiological 

recordings had shown that T-type Ca2+ currents were insensitive to nifedipine (Figure 

3.3), further investigation was conducted within recombinant HEK293/CaV3.1 cells to 

assess the potential non-specific effects of nifedipine on basal Ca2+ levels (Figure 3.17). 
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Figure 3.12. “New” A7r5 cells with higher T-type Ca2+ channel expression exhibit 

spontaneous Ca2+ oscillations 
Example Ca2+ microfluorimetry traces showing the Fura 2 ratio units (340:380), 
representing Δ [Ca2+]i,, under both control conditions and following the removal of 
extracellular Ca2+ (purple bar), and clearly showing different patterns of oscillatory 
activity within 3 different A7r5 populations (A-C).  
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Figure 3.13. NNC55-0396 and nifedipine inhibit the “new” A7r5 Ca2+ window current 

Example Ca2+ microfluorimetry traces showing Fura 2 ratio units (340:380), 
representing Δ [Ca2+]i, upon removal of extracellular Ca2+  (CF, purple bar) under: A,D, 
control conditions, B, after pre-treatment and in the continuous presence of NNC55-
0396 (green bar, NNC, 3µM). E, As (B), except with nifedipine (orange bar, nif, 2µM). C, 
Bar graph showing (mean ± s.e.m) decrease in ratio units (340:380) in response to: CF 
in control conditions (black box, CF, n=44), during NNC pre-treatment (green box, 3µM, 
n=12), and during CF with NNC present (purple box, 3µM, n=12). F, As (C), except 
showing control conditions (black box, n=44), nif pre-treatment (orange box, 2µM, 
n=25), and CF with nif present (purple box, 2µM, n=25). Effects of CF between control 
and NNC or nif conditions were analysed using unpaired Student’s t-tests, *p≤0.05, 
**p≤0.01.  
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3.2.3. Effects of CaV3.1 and CaV3.2 expression on HEK293 cell proliferation and Ca2+ 

handling 

In order to examine the effects of T-type Ca2+ channel expression on cellular 

proliferation and Ca2+ handling in isolation, and also to assess potential isoform 

differences, recombinant HEK293 cells stably transfected with either CaV3.1 or CaV3.2 

channels (HEK293/CaV3.1 and HEK293/CaV3.2 respectively) were employed. 

Proliferation assays, conducted over a three day period, revealed that both 

HEK293/CaV3.1 and HEK293/CaV3.2 cells proliferated at a significantly greater rate 

when compared to untransfected (control) HEK293 cells (wt HEK293), as shown by the 

differences in average cell number on day 3 (Figure 3.14). NNC was applied at a lower 

concentration (1µM)  than used for A7r5 proliferation assays as NNC (3µM) caused an 

increase in HEK293 non-viable cells counts on some occasions (data not shown). Figure 

3.15 demonstrates that NNC (1µM) caused a significant reduction in HEK293/CaV3.1 

and HEK293/CaV3.2 cell proliferation but was without effect on wt HEK293 cells. 

Despite this observed reduction, the average HEK293/CaV3.1 and HEK293/CaV3.2 cell 

numbers in NNC conditions remained elevated when compared to wt HEK293 cells 

under control conditions. As the IC50 of NNC within HEK293/CaV3.1 cells is 7µM (Li et 

al., 2005) it is likely that NNC (1µM) only partially inhibited T-type Ca2+ channels, which 

may explain why the proliferative rate of recombinant cells remains higher than for wt 

HEK293 cells. These data demonstrate that CaV3.1 or CaV3.2 expression increases 

HEK293 cell proliferation.  

 

The proliferative rate of a HEK293/CaV3.2 cell line generated within the Peers group by 

Dr Jason Scragg (HEK293/CaV3.2/clone P) was also examined and, as shown in Figure 

3.15, proliferated at a similar rate to wt HEK293 cells. Furthermore, no inhibition in 

HEK293/CaV3.2/clone P proliferation was observed with NNC (1µM). This 

demonstrates that CaV3.2 expression in itself does not augment proliferation and 

indicates that some form of post-translational modification, sub-cellular localisation 

and/or trafficking mechanism may be critical for development of the highly 

proliferative phenotype. NNC treatment was shown also shown to be without effect on 

viability for any of the cell lines examined (Figure 3.15).  
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Figure 3.14. Recombinant HEK293/CaV3.x cells proliferate at a greater rate compared 
to wild type HEK293 cells 

Bar graph showing the proliferative rates (mean ± s.e.m) of untransfected (control) 
HEK293 cells (WT HEK, n=8) and HEK293 cells stably expressing Cav3.1 and Cav3.2 
(HEK293/CaV3.1, n=12; and HEK293/CaV3.2, n=10, respectively), as counted on day 3. 
All cell counts were made in triplicate with the mean value counting as n=1. Data were 
analysed using one-way ANOVA with Dunnett’s post-hoc comparison test, **p≤0.01, 
****p≤0.0001.  
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Figure 3.15. NNC55-0396 reduces elevated HEK293/CaV3.x cell proliferation 

Bar graphs showing the proliferative responses (mean ± s.e.m) of recombinant 
HEK293/CaV3.x and wt HEK293 cells in the presence of NNC55-0396 (NNC, 1µM) or 
DMSO (1:1000) as counted on day 3; day 0 counts also shown (plotted against the left-
hand y-axis), red circles show the corresponding non-viable cell count (plotted against 
the right-hand y-axis). A, wt HEK293 cells (n=5). B, HEK293/CaV3.1 cells (n=4). C, 
HEK293/CaV3.2 cells (n=4). D, HEK293/CaV3.2/clone P cells (n=6). All cell counts were 
made in triplicate with the mean value counting as n=1. All data were analysed via 
one-way ANOVA followed by Dunnett’s multiple comparison test *p≤0.05, **p≤0.01.  
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3.2.4. Sub-cellular localisation of CaV3.1 and CaV3.2 within recombinant HEK293 cells 

Immunohistochemistry using monoclonal antibodies directed against CaV3.1 or CaV3.2 

was conducted on recombinant HEK293 cells in order to both validate antibody 

specificity and enable comparison of the sub-cellular localisation of T-type Ca2+ 

channels within HEK293/CaV3.1, HEK293/CaV3.2 and HEK293/CaV3.2/clone P cell lines. 

DAPI was co-applied to label cell nuclei. Both the CaV3.1 and CaV3.2 antibodies were 

shown to be highly specific (Error! Reference source not found. and 0 respectively) as 

they showed no cross reactivity with the opposing isoform; i.e. no staining was 

detected when the CaV3.1 antibody was applied to HEK293/CaV3.2 cells and vice versa. 

In addition, no fluorescence was observed when either the primary or secondary 

antibodies were omitted, thus ruling out auto-fluorescence and non-specific labelling 

as confounding factors. 

 

Within HEK293/CaV3.1 cells, CaV3.1 channels were found to be widely distributed 

throughout most cells (0). Dense clusters of CaV3.1 immuno-reactivity (CaV3.1-IR) were 

commonly apparent and adjacent to cell nuclei, i.e. displaying perinuclear distribution. 

In addition, punctate regions of CaV3.1-IR were often observed localised in or around 

the plasma membrane (0). A small number of cells (highlighted by white circle) that did 

not express CaV3.1 were also apparent, labelled by DAPI but showing no CaV3.1-IR. As 

illustrated within 0, a virtually identical pattern of CaV3.2 immuno-reactivity (CaV3.2-IR) 

was observed in HEK293/CaV3.2 cells with dense perinuclear and punctate regions of 

CaV3.2-IR reliably detected. Contrastingly, although CaV3.2-IR was prominent 

throughout HEK293/CaV3.2/Clone P cells the distribution was comparatively diffuse, 

and no clustering of CaV3.2 channels was identifiable (0). This observation may explain 

why HEK293/CaV3.2/Clone P did not show an elevated proliferative rate; suggesting 

that sub-cellular localisation and/or compartmentalisation of CaV3.2 channels may be 

critical for the development of the highly proliferative phenotype. 
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Figure 3.20. CaV3.1 antibody is highly specific 

Dual-label immunofluorescence using anti CaV3.1 (1:100) with Alexa Fluor-488 
secondary antibody (1:1000, left panels, green images) and DAPI to label cell nuclei 
(right panel, blue images). Negative controls showing no CaV3.1 immunoreactivity (IR) 
is detected within; A, HEK293/CaV3.1 cells when the primary (1°) anti-CaV3.1 antibody 
is omitted, B, within HEK293/CaV3.1 cells when the secondary (2°) antibody is omitted 
and C, within HEK293/CaV3.2 cells when both anti-CaV3.1 (1°) and 2° antibodies are 
applied. All images shown are typical representations of findings from a minimum of 
three repeats.  
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Figure 3.21. Sub-cellular localisation of CaV3.1 channels within HEK293/CaV3.1 cells 

Dual-label immunofluorescence using anti-CaV3.1 (1:100) and Alexa Fluor-488 
secondary antibody (1:1000, left panels, green images) and DAPI to label cell nuclei 
(centre panel, blue images), merged CaV3.1 and DAPI images (right panels). A, 
HEK293/CaV3.1 cells show extensive CaV3.1 immunoreactivity (IR) with highly 
pronounced clusters adjacent to nuclei and punctate regions of CaV3.1-IR around the 
plasma membranes; regions of interest (white box) are magnified in (i) where white 
arrows highlight punctate CaV3.1-IR within the plasma membrane. All images shown 
are typical representations of findings from a minimum of three repeats. All scale bars 
50µm.  
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Figure 3.22. CaV3.2 antibody is highly specific 

Dual-label immunofluorescence using anti-CaV3.2 (1:1000) and Alexa Fluor-488 
secondary antibody (1:1000, left panels, green images) and DAPI to label cell nuclei 
(right panel, blue images). Negative controls showing no CaV3.2 immunoreactivity (IR) 
detected within; A, HEK293/CaV3.2 cells when the primary (1°) anti-CaV3.2 antibody is 
omitted, B, within HEK293/CaV3.2 cells when the secondary (2°) antibody is omitted 
and C, within HEK293/CaV3.1 cells, when both anti-CaV3.2 (1°) and 2° antibodies are 
applied. All images shown are typical representations of findings from a minimum of 
three repeats. All scale bars 50µm.  
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Figure 3.23. Sub-cellular localisation of CaV3.2 channels within HEK293/CaV3.2 cells 

Dual-label immunofluorescence using anti-CaV3.2 (1:1000) and Alexa Fluor-488 
secondary antibody (1:1000, left panels, green images) and DAPI to label cell nuclei 
(centre panel, blue images), merged CaV3.2 and DAPI images (right panels). A, 
HEK293/CaV3.2 cells show extensive CaV3.2 immunoreactivity (IR) with highly 
pronounced clusters adjacent to nuclei and punctate regions of CaV3.2-IR around 
plasma membranes; regions of interest (white box) are magnified in (i) where white 
arrows highlight punctate CaV3.2-IR within the plasma membrane. All images shown 
are typical representations of findings from a minimum of three repeats. All scale bars 
50µm.  
 
 
 
 
 
 
 
 
 
 
 



106 
 

A

(i)

CaV3.2 DAPI merged

 
Figure 3.24. Sub-cellular localisation of CaV3.2 channels within HEK293/CaV3.2/Clone 

P cells 
Dual-label immunofluorescence using anti-CaV3.2 (1:1000) and Alexa Fluor-488 
secondary antibody (1:1000, left panels, green images) and DAPI to label cell nuclei 
(centre panel, blue images), merged CaV3.2 and DAPI images (right panels). A, 
HEK293/CaV3.2 cells show extensive and diffuse CaV3.2 immunoreactivity (IR); regions 
of interest (white box) are magnified in (i). All images shown are typical 
representations of findings from a minimum of three repeats. All scale bars 50µm. 
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3.2.5. T-type Ca2+ channels facilitate the window current in recombinant HEK293 cells.  

Ca2+ microfluorimetry was then used to assess the effects T-type Ca2+ channel 

expression on basal Ca2+
i levels. Removal of extracellular Ca2+ (Ca2+

e) was achieved by 

switching the standard perfusate to one where EGTA was substituted for Ca2+ (CF). For 

cells facilitating tonic Ca2+ influx (window current) this produced a measurable fall in 

[Ca2+]i, represented by a decrease in the Fura-2 ratio (340:380). Figure 3.16 shows that 

HEK293/CaV3.1 cells conduct a significantly larger window current compared to wt 

HEK293 cells. As the decrease in response to CF for HEK293/CaV3.1 cells is significantly 

reduced after both pre-treatment and in the continual presence of NNC (3µM), which 

is without effect on wt HEK293 cells, it is apparent that CaV3.1 expression increases 

basal [Ca2+]i levels within HEK293 cells. The small fall in [Ca2+]i in wt HEK293 cells also 

suggests that other routes of Ca2+ entry may be present in these cells, but these were 

dominated by the much larger responses in transfected cells.  

 

The aforementioned CF protocol was also used to demonstrate that nifedipine was 

without effect on the HEK293/CaV3.1 window current, as shown in Figure 3.17, ruling 

out potential non-specific effects of nifedipine on the T-type mediated window 

current. This provides supporting evidence to the observation that the decrease in 

basal Ca2+ observed with nifedipine in A7r5 cells, as shown in Figure 3.13, is due to L-

type Ca2+ channels partially mediating the A7r5 window current rather than non-

specific effects of nifedipine. Previous work conducted by Dr Hayley Duckles showed 

that HEK293/CaV3.2 cells also mediate a window current of significantly larger 

amplitude than that observed in wt HEK293 cells. Figure 3.18, reproduced with 

permission from Duckles et al. (2013), additionally demonstrates that NNC (3µM) 

caused a significant reduction in basal [Ca2+]i in HEK293/CaV3.2 cells but not in wt 

HEK293 cells. Collectively, these data demonstrate that CaV3.1 or CaV3.2 expression 

increases tonic Ca2+ influx within HEK293 cells.  
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Figure 3.16. CaV3.1 expression influences basal [Ca2+]i in HEK293 cells 

Example Ca2+ microfluorimetry traces illustrating Δ[Ca2+]i (ratio of absorbance), upon 
removal of extracellular Ca2+ (CF, purple line, replaced with 1 mM EGTA) for A, 
HEK293/CaV3.1 cells and B, wt HEK293 cells. Also shown are the effects of NNC55-0396 
(NNC, 3µM, blue line) before and during CF application for C, HEK293/CaV3.1 cells and 
D, wt HEK293 cells. E, Bar chart showing the (mean ± s.e.m) Δ[Ca2+]i  in response to CF 
exposure in control conditions for wt HEK293 cells (blue bars, n=6) and HEK293/CaV3.1 
cells (red bars, n=11), and also in the presence of  NNC55-0396 (3µM, CF+NNC) for wt 
HEK293 cells (n=6) and HEK293/CaV3.1 cells (red bars, n=7). All scale bars 0.1 ru 
(vertical), 120 seconds (horizontal). Data were analysed via one-way ANOVA followed 
by Tukey’s multiple comparison test, ***P<0.001. 
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Figure 3.17. Nifedipine has no effect on the CaV3.1-mediated window current 

Example Ca2+ microfluorimetry traces showing Fura 2 ratio units (340:380) 
representing the Δ[Ca2+]i upon removal of extracellular Ca2+ (purple bar) under A, 
control conditions and B, after both pre-treatment and in continuous presence of 
nifedipine (nif, 2µM). C, Bar graph showing the (mean ± s.e.m) decrease in ratio units 
(340:380) in response to removal of extracellular Ca2+ in control conditions (black bar, 
n=6) and during nif (2µM) pre-treatment (pink bar, n=7). Scale bars 0.05 ru (vertical), 
120 seconds (horizontal). Data analysed using unpaired Student’s t-tests, **p≤0.01.  
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Figure 3.18. CaV3.2 expression influences basal [Ca2+]i in HEK293 cells 
Example Ca2+ microfluorimetry traces illustrating the Δ[Ca2+]i (ratio of absorbance), 
upon removal of extracellular Ca2+ (CF, grey bar, replaced with 1 mM EGTA) for; A, 
HEK293/CaV3.2 cells and D, wt HEK293 cells. C, Bar graph illustrating (mean ± s.e.m) 
basal [Ca2+]i levels recorded in HEK293/CaV3.2 cells (open bars, n=6) and wt HEK293 
cells (shaded bars, n=6) in the presence and absence of extracellular Ca2+ as indicated. 
B, Example trace showing, effects of NNC55 0396 (NNC, 3μM, grey bar) on 
HEK293/CaV3.2 cells and E, wt HEK293 cells. F, Bar graph illustrating (mean ± s.e.m.) 
basal [Ca2+]i levels recorded in HEK293/CaV3.2 cells (open bars, n=8) and wt HEK293 
cells (shaded bars, n=8) before (con), during (NNC) and after (wash) exposure to NNC 
as indicated. Data were analysed via paired or unpaired Student’s t-tests as 
appropriate, and compared with appropriate controls, *P<0.05; **P<0.01, ***P<0.001. 
All scale bars 0.1ru (vertical), 100ms (horizontal). Figure reproduced with permission 
from Duckles et al. (2013).  
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3.3. Discussion  

3.3.1. A7r5 cells express functional T- and L-type Ca2+ channels  

A7r5 cells used throughout the current project as an in vitro VSMC model were shown 

to express T-type Ca2+ channels and rtPCR revealed that CaV3.1 mRNA was the primary 

isoform expressed, but CaV3.2 mRNA was also detected. A number of previous studies 

using molecular biology techniques have demonstrated both CaV3.1 and CaV3.2 

expression in rat, mouse and human VSMCs, throughout a range of vascular beds 

including rat renal, cerebral, mesenteric and cremaster arteries as reviewed recently 

by (Hansen, 2015). The “new” A7r5 cells cultured at lower confluence expressed 

considerably more CaV3.1 and CaV3.2 mRNA when compared to “old” A7r5 cells 

cultured at 90-100% confluence. This observation supports the findings of Richard et 

al. (1992) who used electrophysiological and pharmacological means to characterise 

the functional expression of low-voltage activated (LVA, i.e. T-type) channels and high-

voltage activated (HVA, i.e. L-type) Ca2+ channels within primary cultures of rat 

thoracic aortic smooth muscle cells. An inhibitory effect of confluency on functional 

LVA channel activity was reported as LVA current expression declined dramatically, 

alongside a smaller decrease in HVA currents, when primary cultures were allowed to 

reach 100% confluence prior to passage (Richard et al., 1992). Results presented here 

are consistent with these findings. 

 

Immunofluorescence revealed differential staining patterns for both CaV3.1 and CaV3.2 

channels in “new” A7r5 cells. Low levels of CaV3.2 immuno-reactivity (IR) was 

detected; localised within and around cell nuclei which were co-labelled by DAPI. 

Contrastingly, A7r5 cell nuclei were typically devoid of CaV3.1-IR, with low levels of 

diffuse CaV3.1-IR apparent within the cell body. Similar observations have been 

previously reported in cultured A7r5 cells, where diffuse cytoplasmic CaV3.1-IR was 

described, alongside CaV3.2-IR limited within some A7r5 nuclei (Brueggemann et al., 

2005). A similar study conducted with human pulmonary artery smooth muscle cells 

(HPASMCs) detected LVA currents alongside HVA currents using patch-clamp 

electrophysiology. Whilst both CaV3.1 and CaV3.2 mRNA was detected using rtPCR, 

immunohistochemistry indicated that only CaV3.1 channels were transcribed to give 

detectable protein levels within HPASMCs. The authors speculate that the lack of 
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CaV3.2 translation may be concerned with low expression levels, poor antibody 

sensitivity or post-transcriptional control of expression dependent on translational 

efficiency. They also discuss how temporal control as opposed to constitutive 

expression of CaV3.1 and CaV3.2 channels may be important for the control of 

proliferation (Rodman et al., 2005).  

 
Patch-clamp electrophysiology confirmed that A7r5 cells expressed functional T-type 

Ca2+ currents which, shown on some occasions to be inhibited by NNC (82%) and 

resistant to nifedipine. Upon development, NNC was shown in CaV3.1-expressing 

HEK293 cells to have an IC50 of 7µM (Li et al., 2005). In native cells such as bovine and 

rat embryo adrenal chromaffin cells  however, the IC50 of NNC on LVA T-type Ca2+ 

currents was shown experimentally to be much lower at approximately 2µM 

(Fernandez-Morales et al., 2015). The average degree of inhibition currently observed 

with NNC applied at a single concentration of 3µM (82%) is therefore consistent with 

previous reports. This single concentration was examined as it is the NNC 

concentration used for proliferation assays. The contribution L-type Ca2+ currents to 

the global Ca2+ current evoked using the T-type SS protocol was also raised as a 

possibility. Future experiments requiring the isolation of T-type Ca2+ currents from 

A7r5 cells would be conducted in the continuous presence of nifedipine.  

 
L-type Ca2+ currents were also recorded in A7r5 cells which were both inhibited by 

nifedipine (average of 75%) and of significantly larger amplitude when using Ba2+ as 

the charge carrier. In extracellular solutions containing physiological ionic 

concentrations, L-type Ca2+ channels are highly selective for Ca2+ over more abundant 

cations such as K+ and Na+ due to the presence of a selectivity filter composed of four 

glutamate amino acid residues, this being highly conserved amongst CaV channels 

(Yang et al., 1993). A key feature of L-type Ca2+  channels however, is that when Ba2+ is 

substituted for Ca2+ they conduct Ba2+ much more easily (Almers & McCleskey, 1984). 

For example, it was demonstrated with recombinant CaV1.2-expressing HEK293 cells 

that currents were doubled in amplitude when recorded using Ba2+ as the charge 

carrier as compared to Ca2+ (Li et al., 2010). Contrastingly, upon substitution of 

extracellular Ca2+ with Ba2+ T-type Ca2+ channels are generally equally permeable, yet 

in the presence of Mg2+ CaV3.1 currents have actually been shown to conduct Ca2+ 

preferentially (Serrano et al., 2000). Evidence that the currents evoked using the SS 
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protocol using the relatively higher holding and test potentials were primarily 

mediated by L-type Ca2+ channels is therefore provided.   

 

3.3.2. Potential expression of HVA T-type Ca2+channel splice variants 

As a point of interest, the potential contribution of other HVA Ca2+ channels was also 

raised as a possibility. The IC50 of nifedipine has previously been shown to be 55nM in 

CaV1.2-expressing HEK293 cells (Scragg et al., 2007), therefore it was surprising that 

complete inhibition of L-type currents using 2µM nifedipine in the current 

investigation was not observed. In addition, NNC also caused partial inhibition of L-

type Ca2+ currents, a finding which conflicts with the developers’ original publication 

showing that NNC had no effect on HVA currents when applied at 100µM to pancreatic 

INS-1 cells, which express P/Q, N and R-type in addition to L-type HVA channels (Li et 

al., 2005). Furthermore, currents evoked at +20mV within IV protocols were of 

considerably larger amplitude than those produced using a SS protocol to the 

equivalent voltage, suggesting potential summation of currents facilitated by different 

CaV subtypes was occurring.  

 

This possibility could be addressed by future experiments using protocols similar to 

those described in a study conducted by Harraz & Welsh, (2013). T- and L-type Ca2+ 

currents were effectively isolated in primary cultures of cerebral VSMCs. When using 

physiological Ca2+ concentrations, L- and T-type components were not clearly 

distinguishable as individual components on IV traces. However, when Ba2+ was 

substituted for Ca2+ a small rightward shift in the voltage for maximal activation was 

observed, likely due to the selective enhancement of L-type Ca2+ currents. The 

contribution of T-type Ca2+ channels to the whole-cell Ba2+ current was dissected by 

selectively inhibiting L-type currents using nifedipine (200nM). The nifedipine-

insensitive components showed relatively more hyperpolarised I-V relationships, faster 

activation and inactivation kinetics and were abolished by NNC (1µM). In agreement 

with current observations, application of NNC without prior nifedipine treatment 

significantly attenuated both T- and L-type mediated components. The off-target 

effects of NNC, emphasise the importance of applying L-type blockers prior to T-type 

Ca2+  channel inhibitors (Harraz & Welsh, 2013).  
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Interestingly, the activation and inactivation voltages of the isolated T-type Ca2+ 

currents were right-shifted when compared to the typical biophysical profiles of T-type 

Ca2+ channels. This was attributed to the use of Ba2+ as the charge carrier as replacing 

Ca2+ with Ba2+ also produced depolarising shifts in IV relationships when recording 

recombinant CaV3.1 or CaV3.2 mediated currents (Harraz & Welsh, 2013). In contrast 

with this explanation a growing amount of information is emerging that show tissue-

specific splice variants of CaV3.1 and CaV3.2 are common within VSMCs, which arguably 

fit better, functionally, within the HVA category. This alternative splicing generally 

occurs in exons 25 and 26, within the III-IV linker region of the α1G gene, producing 

shifts in activation and inactivation voltages to more depolarised potentials. Within the 

vasculature, expression of multiple T-type splice variants has been demonstrated 

thereby producing overlaps in T- and L-type Ca2+ channel activation voltages (Kuo et 

al., 2011; Kuo et al., 2014). Consequently, an interesting further investigation would be 

to explore whether CaV3.1 and CaV3.2 splice variants are expressed within A7r5 cells.  

It would also be useful to assess the extent of off-target NNC effects in recombinant 

HEK293 expressing a range of L-type CaV isoforms.    

 

3.3.3. T-type Ca2+ channels regulate A7r5 proliferation.   

Proliferation of all A7r5 cells used within the current project was partially inhibited by 

mibefradil and yet insensitive to nifedipine. A7r5 cells showing relatively higher CaV3.1 

and CaV3.2 expression profiles proliferated faster than “old” A7r5 cells, and were 

inhibited by the newer more specific T-type Ca2+ channel inhibitors (NNC and ML218) 

to greater extents than mibefradil. These observations collectively demonstrate that 

A7r5 cell proliferation is regulated by T-type Ca2+ channels and also rule out the 

contribution of L-type Ca2+ channels. Many similar observations have been reported 

within the vasculature; for example, Rodman et al. (2005) reported that selective 

blockade of CaV3.1 using small interfering RNA (siRNA) completely inhibited human 

pulmonary artery smooth muscle cell (HPASMC) proliferation and prevented entry into 

the cell cycle in response to stimulation with 5% serum. In addition, mibefradil 

completely prevented entry into the cell cycle whilst the L-type specific inhibitor 



115 
 
diltiazem was without effect when applied at 3 times the IC50 concentration (Rodman 

et al., 2005).  

 

One of the pivotal studies implicating T-type Ca2+ channels in the control of VSMC 

proliferation was conducted by Kuga et al. (1996) who demonstrated using both 

immunohistological and electrophysiological techniques that functional T-type 

expression was restricted to proliferative G1 and S phases of the cell cycle in rat aortic 

VSMCs. In addition to in vitro studies, a number of in vivo studies have implicated a 

role for T-type Ca2+ channels in the control of VSMC proliferation as a feature of both 

development and pathological vascular remodelling. Neointima formation is a 

common undesirable aspect of vascular disease, and also a consequence of vascular 

intervention, involving increased VSMC proliferation and migration, resulting in 

restenosis. Tzeng et al. (2012), demonstrated that carotid artery wire injury induced 

neointima formation in WT mice but not, crucially, in Cav3.1-/- knockout mice, which 

demonstrated no other vascular abnormalities. Immunohistological processing 

demonstrated that this neointima formation was due to VSMC proliferation. In WT 

mice, Cav3.1 mRNA was up-regulated in response to wire injury prior to neointima 

formation, suggesting that up-regulation of Cav3.1 was crucial for the development of 

this pathogenic phenotype (Tzeng et al., 2012). 

 

3.3.4. T- and L-type Ca2+ channels regulate basal and oscillatory Ca2+ levels within A7r5 

cells 

Oscillations in [Ca2+]i are a widely discussed phenomenon reported in a variety of 

VSMC beds, and have been shown to be regulated by both voltage-dependent and 

voltage-independent mechanisms. Oscillations are thought to be observed as a result 

of signal integration of Ca2+ waves which, enabled by gap junctions, propagate through 

VSMCs over significant lengths of arteries without decrement. This activity has been 

shown to underlie spontaneous rhythmical contractions of blood vessels, a process 

collectively referred to as vasomotion, involving cyclical vasoconstriction and 

vasodilation, reviewed extensively by (Haddock & Hill, 2005)  
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Spontaneous oscillations in intracellular Ca2+ ([Ca2+]i) of varying frequencies were 

observed within some A7r5 populations. As these were abolished following the 

removal of external Ca2+, they are thus shown to be dependent on Ca2+ entry through 

the cell membrane, most likely through CaV channels. Similarly, a proportion of A7r5 

cells have been previously shown to exhibit spontaneous [Ca2+]i oscillations, which 

were dependent on external Ca2+ and abolished by cobalt (Co2+), applied for the 

purpose of blocking CaV channels (Otun et al., 1992). A more recent study utilised 

confocal microscopy to demonstrate that spontaneous Ca2+ oscillations occurred in 

79% of A7r5 cells within both cytoplasmic and nuclear compartments. Interestingly, 

the occurrence of spontaneous oscillations was correlated with greater amounts of 

sarcoplasmic reticulum. Whilst cytoplasmic and nuclear oscillations were of variable 

amplitudes they followed identical time-courses. Complete substitution of extracellular 

Ca2+, or application of the CCBs diltiazem and nimodipine, not only rapidly abolished 

spontaneous cytoplasmic [Ca2+]i oscillations but also gradually inhibited nuclear [Ca2+]i 

oscillations over a 10min period, thereby showing that [Ca2+]i oscillations were 

mediated by CaV channels (Fedoryak et al., 2004). In the current investigation a similar 

but more reliable pattern of [Ca2+]i oscillations was reproduced in “old” A7r5 cells 

through modest membrane depolarisation, achieved by slightly elevating external K+ 

(20 vs. 5mM). As the response to K+ was significantly and similarly inhibited by ML218, 

mibefradil and nifedipine, the induced [Ca2+]i oscillations were dependent on both T- 

and L-type Ca2+ channels.  

 

Arginine vasopressin (AVP) is a vasoconstrictor hormone important for vasomotion and 

has been shown in vitro to induce [Ca2+]i oscillations in VSMCs (Brueggemann et al., 

2005; Otun et al., 1992). Caution must be taken however as many of the studies used 

relatively high AVP concentrations which can induce changes in [Ca2+]i through a 

variety of different mechanisms including, but not limited to, IP3 production, 

membrane hyperpolarisation and activation of non-specific cation channels (Otun et 

al., 1992). Application of physiologically relevant concentrations of AVP (picomolar 

range) however has been shown to induce reliable oscillations in A7r5 populations, 

which were inhibited by mibefradil in a concentration-dependent manner at 

concentrations the authors reported to have no effect on L-type Ca2+ currents. The 

contribution of endogenously expressed CaV3.1 channels on the oscillatory activity was 
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confirmed as CaV3.2 over-expression had no effect on basal or oscillatory patterns of 

[Ca2+]i (Brueggemann et al., 2005). A conclusive role for the involvement of CaV3.1 is 

provided by a study which expressed CaV3.1 channels within the neuronal NG108-15 

cell line. This produced an increase in spontaneous Ca2+ oscillations corresponding with 

membrane potential oscillations (MPOs) and also an increase in basal [Ca2+]i, shown to 

be mediated by a T-type Ca2+ window current (Chevalier et al., 2008). The potential 

involvement of Ca2+ release from intracellular stores was also ruled out. Whilst any 

potential evidence for a role of [Ca2+]i oscillations in proliferation is unclear, they 

provide an interesting phenotype involving both T- and L-type Ca2+ channels, which can 

be utilised for assessing the effects of novel signalling molecules on A7r5 Ca2+ handling 

under relatively physiological conditions. 

 

A further key difference between the A7r5 cells expressing relatively higher T-type Ca2+ 

channels levels compared to the “old” A7r5 cells, in addition to the spontaneous 

nature of [Ca2+]i oscillations, was that basal Ca2+ influx was apparent under resting 

conditions. Basal Ca2+ influx was detected by a fall in baseline [Ca2+]i upon substitution 

of extracellular Ca2+ with EGTA, suggesting the presence of a window current within 

some A7r5 populations. As the fall in response to Ca2+ removal was partially inhibited 

by both NNC and nifedipine it is suggested that the A7r5 window current is facilitated 

by both T- and L-type Ca2+ channels. Due to a characteristic overlap in activation and 

steady-state inactivation voltages, T-type Ca2+ channels can open without fully 

inactivating. This commonly facilitates basal Ca2+ influx at resting Vm, referred to as 

window current, and reviewed elsewhere e.g. (Perez-Reyes, 2006). The intimate link 

between T-type Ca2+ channel-mediated window currents regulating [Ca2+]i and the 

resulting control of proliferation is well summarised (Capiod, 2011). This review 

additionally considers the potential contributions of store-operated Ca2+ entry to cell 

cycle regulation. Inhibition of the T-type Ca2+ channel-mediated window current can 

therefore be directly linked to the anti-proliferative effects of T-type Ca2+ channel 

inhibition previously reported in a wide variety of cells including: A7r5 cells (Duckles et 

al., 2015), HPASMCs (Rodman et al., 2005), mesangial cells of the kidney (Cove-Smith 

et al., 2013) and a range of different cancers including leukaemia and glioblastoma 

(Huang et al., 2015; Zhang et al., 2012), further discussed in section 3.3.3.  
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Current findings also revealed that L-type Ca2+ channels also partially facilitated the 

basal Ca2+ influx observed in A7r5 cells. Potential non-specific effects of nifedipine on 

T-type Ca2+ channels were considered unlikely as basal Ca2+ influx within recombinant 

HEK293/CaV3.1 cells was unaltered by this agent. Previous studies have described L-

type Ca2+ channel-mediated window currents at the single channel level within canine 

cardiac Purkinje cells (Shorofsky & January, 1992), and also using [Ca2+]i imaging within 

equine tracheal myocytes (Fleischmann et al., 1994).  A more recent study conducted 

in mouse VSMCs demonstrated that in addition to their role in voltage-dependent 

contraction, L-type Ca2+ channels also mediate the window current which controls 

basal [Ca2+]i and correspondingly basal contraction of VSMCs at physiological Vm 

(Fransen et al., 2012). This was demonstrated through the simultaneous measurement 

of isometric tension and [Ca2+]i  in mouse aortic segments, which were correlated with 

Vm. To replicate voltage-clamp protocols, Vm was manipulated via modification of 

extracellular [K+] to achieve depolarisation and repolarisation within physiological Vm 

ranges (-77 to -51mV) (Fransen et al., 2012).  

 

As discussed in relation to T-type Ca2+ channels, a rapidly expanding body of work is 

currently emerging that shows not only tissue, but also cell and developmental stage 

specific CaV splice variants are common, which can impart atypical voltage-

dependencies. A relevant example of this is provided by a study which demonstrated 

that expression of a CaV1.2 splice-variant previously isolated from VSMCs in HEK293 

cells produced currents with more hyperpolarised activation profiles and with larger 

window currents at resting Vm, when compared to the standard full-length clone (Liao 

et al., 2007). Consistent with current observations demonstrating that nifedipine has 

no effect on A7r5 cell proliferation, the potential physiological relevance of L-type Ca2+ 

channel-mediated window currents within VSMCs is therefore likely concerned with 

contractile activity and not proliferation. A potential explanation as to how T-type Ca2+ 

channel-mediated window current selectively influences proliferation could be that 

different CaV isoforms may have restricted subcellular distributions. This suggestion is 

further discussed in section 3.3.5.  
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3.3.5. Recombinant expression of CaV3.1 and CaV3.2 increases cellular proliferation and 

window current.  

In direct support of observations made in A7r5 cells, expression of either recombinant 

CaV3.1 or CaV3.2 channels significantly increased basal Ca2+ influx and proliferation 

which could be partially inhibited by NNC. Further evidence is therefore provided that 

T-type Ca2+ channels regulate [Ca2+]i and subsequently proliferation. The finding that 

both CaV3.1 and CaV3.2 channel expression can increase cellular proliferation is 

significant as many conflicting findings regarding isoform specificity have been 

previously reported. Due to the current lack of isoform specific CaV3.1 or CaV3.2 

pharmacological inhibitors the majority of studies regarding isoform specificity have 

been conducted using knockout mice. Tzeng et al. (2012) demonstrated that Cav3.1-/- 

knockout mice showed reduced VSMC proliferation and were resistant to neointima 

formation following carotid wire injury whereas Cav3.2-/- knockout mice showed a 

similar degree of neointima formation compared to wt mice. Contrastingly, Chiang et 

al. (2009) demonstrated that Cav3.2-/- knockout mice were resistant to both pressure 

overload-induced or angiotensin II-induced cardiac hypertrophy/remodelling (Chiang 

et al., 2009).  

 

A further interesting observation was that HEK293/CaV3.2/clone P cells, transfected in-

house with the CaV3.2-containig mammalian expression vector, proliferated at a rate 

directly comparable to wt HEK293 cells and showed no inhibition by NNC. The similar 

growth profiles and lack of response to NNC suggests that the presence of CaV3.2 

channels per se is not sufficient to drive proliferation. Similarly, Chemin et al. (2000) 

demonstrated that whilst expression of CaV3.1 or CaV3.2 in HEK293 cells increased 

[Ca2+]i, it had no effect on proliferation. A potential explanation for this can be provided 

by current observations that CaV3.2-IR was highly diffuse throughout 

HEK293/CaV3.2/clone P cells whereas, contrastingly, dense perinuclear clusters and 

punctate membranous CaV3.2-IR was additionally prominent within the highly 

proliferative HEK293/CaV3.2 cells. Resultantly, evidence is provided that aggregation or 

clustering of T-type Ca2+ channels within specific sub-cellular domains may be crucial 

for increased basal Ca2+
i to drive elevated cellular proliferation. As the development of 

highly specific CaV3.1 and CaV3.2 antibodies is only very recently improving there are 

very few previous studies assessing the subcellular localisation of these channels in 
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VSMCs. One of the few papers that exist however has shown that CaV3.2 Ca2+ channels 

co-localise within caveolin3 microdomains in ventricular myocytes. It was also 

demonstrated that when CaV3.2 and caveolin3 are co-expressed in HEK293 cells peak 

CaV3.2 density is decreased, indicative of important functional interplay within 

compartmentalisation of Ca2+ signalling (Markandeya et al., 2011). Further 

investigations using antibodies against various sub-cellular markers’ such as caveolin3 

and mitochondrial proteins would be very useful to assess potential co-localisation 

with CaV3.1 and CaV3.2 channels in more detail. It would also be interesting to assess 

the subcellular localisation of different T- and L-type isoforms with A7r5 cells.    

 

3.3.6. Summary and conclusions  

Collectively, findings within this chapter demonstrate that T-type Ca2+ channels control 

basal Ca2+ levels and modulate cellular proliferation. These data additionally 

characterise cell lines and validate techniques subsequently used to assess thioredoxin 

as a novel regulator of T-type Ca2+ channels and VSMC proliferation.  
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Chapter 4 -The role of thioredoxin (Trx) in cellular proliferation 

and [Ca2+]i handling 

4.1. Introduction  

The thioredoxin (Trx) system is ubiquitously expressed within all mammalian cells and 

plays a key role in the maintenance of cellular redox balance. The Trx system is 

composed of Trx, thioredoxin reductase (TrxR), NADPH, and vitamin D3 up-regulated 

protein (VDUP). TrxR reduces Trx to its active form, using electrons donated from 

NADPH, whilst VDUP serves as the endogenous negative regulator. Trx has a range of 

biological activities, including antioxidant, growth promotion, inflammatory response 

modulation and anti-apoptosis. These functions generally require the reducing 

capabilities of Trx, dictated by two cysteine (Cys) residues at positions 32 and 35 within 

the active site (Cys32 and Cys35). Trx has been shown to utilise both intracellular and 

extracellular signalling pathways as nuclear translocation and extracellular secretion 

upon activation have been demonstrated, as reviewed (Burke-Gaffney et al., 2005).  

 

Trx upregulation has been demonstrated in a variety of conditions including cancer 

and cardiovascular disease. For example, elevated serum Trx levels have been 

detected in patients with acute myocardial infarction (AMI), abdominal aortic 

aneurysm as detected within the aortic lumen and circulation (Martinez-Pinna et al., 

2010), atherosclerosis (Okuda et al., 2001) and is positively correlated with platelet 

hyper-aggregability (Miyamoto et al., 2003). Whilst elevations in Trx may initially serve 

to counterbalance increased oxidative stress, Trx over-expression within cancer 

patients is associated with aggressive tumour growth, increased proliferation, 

decreased apoptosis, and reduced patient survival (Raffel et al., 2003).  

 

In order to assess the effects of Trx on cellular proliferation and Ca2+ handling, two 

pharmacological Trx inhibitors, PX-12 (1-methylpropyl 2-imidazolyl disulfide) and 

auranofin (AuF, triethylphosphinegold(I)tetraacetylthioglucose), were employed. PX-12 

is a direct Trx inhibitor currently undergoing clinical trials for the treatment of a variety 

of cancers, including gastrointestinal and pancreatic cancer (Baker et al., 2013; 

Ramanathan et al., 2007; Ramanathan et al., 2011). PX-12 has been shown to directly 

inhibit Trx through thioalkylation of redox-sensitive Cys residues. Thioalkylation of 
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Cys32 and Cys35 residues found within the redox-active site of Trx has been shown to 

occur in a reversible manner with a Ki of 31µM. Contrastingly, thioalkylation of the 

Cys73 residue found outside the active site occurs at PX-12 concentrations several 

orders of magnitude lower, and in an irreversible manner (Kirkpatrick et al., 1998). 

Whilst the reducing capabilities and corresponding cellular functions of Trx generally 

concern Cys32 and Cys35 within the active site (Oblong et al., 1994); other studies have 

demonstrated that Cys73 is also important for the growth promoting effects of Trx 

(Gasdaska et al., 1996). 

 

AuF is a gold-containing compound originally developed as an oral treatment for 

rheumatoid arthritis (RA) (Finkelstein et al., 1976). Due to its potent anti-inflammatory 

effects, AuF has been used as an effective RA treatment for over 30 years, although 

the mechanism of action in vivo is not yet fully established (Kean et al., 1997; Madeira 

et al., 2012). Whilst intramuscular injection of gold compounds such as aurothiomalate 

and aurothioglucose have generally replaced AuF in the treatment of RA (Kean et al., 

1997), AuF has also been shown to inhibit TrxR. Consequently, AuF is currently being 

explored as a re-profiled anti-cancer agent (Roder & Thomson, 2015; Tonissen & Di, 

2009). TrxR is a pyridine nucleotide-disulfide oxidoreductase which uses electrons 

donated from NADPH to reduce Trx. Whilst TrxR is closely related to glutathione 

reductase (GR), it additionally contains a rarely found selenocysteine (Sec) sequence 

(Cys-Sec). Unfortunately, the presence of this Sec sequence has complicated the 

successful recombinant expression of mammalian TrxR. Isolation of TrxR from placenta 

is therefore generally required for experimental studies. In the presence of NADPH and 

Trx, AuF has been shown to inhibit TrxR isolated from human placenta with a K i of 

4nM. Contrastingly, the effects of AuF on GR were shown to be at least three orders of 

magnitude lower. Interestingly, the effects of AuF on TrxR were attributed to the gold 

moiety within the AuF molecule as gold-free thioglucose was without any effect 

(Gromer et al., 1998).  
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4.2. Results  

4.2.1. Trx measurement within A7r5 and recombinant HEK293 cells  

To quantify endogenous Trx activity within cell lines, a fluorescence-based assay 

utilising the reducing capabilities of Trx was conducted. The fluorescence signal of the 

eosin-labelled (EL) insulin substrate at 545nm (after excitation at 520nm) increases 

upon reduction by Trx. The rate of increasing fluorescence (Δf) is therefore 

proportional to Trx activity (Montano et al., 2014). It is crucial to note that as TrxR) and 

NADPH are applied in excess, it can be assumed that all Trx is in its reduced form (rTrx). 

As such, Trx activity reports cellular Trx levels. Following subtraction of background 

fluorescence values, the Δf of cell samples was compared against known Trx standards, 

as detailed in Figure 4.1. Initial attempts to calibrate the assay using Trx standards (0-

24ng) were unsuccessful as the resultant Δf values were similar for each concentration 

used (data not shown). As the assay was shown upon development to be effective with 

Trx (7nm-900nM) (Montano et al., 2014), the concentration of Trx standards was 

increased (0-192ng). As shown in Figure 4.1, this produced different rates of Δf for 

each Trx standard which enabled effective assay calibration.  

 

Endogenous Trx activity was reliably detected within A7r5, wt HEK293, HEK293/CaV3.1 

and HEK293/CaV3.2 cells (~60-215ng per 15µg total protein). Trx levels within wt 

HEK293 cells appeared lower when compared to the other cell types; however, this 

difference was not statistically significant (Figure 4.2). Chronic pre-treatment (72hrs) 

with AuF (300nM) or PX-12 (1µM) was found to be without effect on A7r5, 

HEK293/CaV3.1 or HEK293/CaV3.2 cells Trx levels (Figure 4.3). Acute pre-treatment 

(10mins) with higher concentrations of PX-12 (3-300 µM) did produce significant 

reductions in Trx levels for HEK293/CaV3.1 cells (3µM) and HEK293/CaV3.2 cells 

(30µM). Acute pre-treatment with PX-12 (300µM) produced a more uniform reduction 

in Trx activity, however this was commonly accompanied by a decrease in the 

background fluorescence values. As this produced an amplified final slope value, these 

data had to be omitted from the final analysis (Figure 4.4). 
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A(i) C(i)

A(ii) C(ii)

B D
Calibration Y = 0.0104*X + 0.03059

CaV3.2 (T-B)
CaV3.2 (T)

CaV3.2 (B)

Y = 1.108*X + 38.71
Y = 1.670*X + 283.5
Y = 0.5624*X + 244.8

X=(y-c)/m (1.108- 0.03059)/0.0104

Trx = 103.6ng

 

Figure 4.1. Quantification of unknown Trx concentrations using Trx activity assays  
Illustrative example of a single Trx assay: A(i), mean fluorescence values of eosin-
labelled (EL) insulin (545nm after 520nm excitation) with known Trx concentrations (0-
192ng), monitored for 60mins at 1min intervals (triplicate wells). Grey box highlights 
10min analysis region. A(ii), magnified from A(i), but with background fluorescence 
values (i.e. 0ng Trx) deducted. Linear regression used to calculate line equations. B, 
Calibration-curve generated from slope values calculated in A(ii). Line equation and R2 
values from linear regression are included, red line estimates calculation in D. C(i), As 
A(i), except with HEK293/CaV3.2 cell lysates (15µg), in test conditions (CaV3.2(T), all 
reagents) and background conditions (CaV3.2(B), TrxR omitted). C(ii), As A(ii), except 
showing CaV3.2(T)-CaV3.2(B) fluorescence values. D, Equations and working 
calculations used to quantify Trx concentration from HEK293/CaV3.2 cell lysates. Y=Δ in 
fluorescence, X=Trx (nag), m=slope/gradient and c=y axis intercept.  
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Figure 4.2. Quantification of endogenous Trx levels within cell lysates 

Example traces from two Trx assays (further details provided in Figure 4.1) showing 
increasing mean fluorescence values and reporting endogenous Trx activity within: A, 
“new” A7r5, HEK293/CaV3.1 and HEK293/CaV3.2 cell lysates (15µg total protein, 
triplicate wells). B, Calibration-curve corresponding with (A), showing slope values of 
mean fluorescence of known Trx concentrations (0-192ng). Line equation and R2 values 
are included. C-D, As (A-B) except, different assay with A7r5, wt HEK293 and 
HEK293/CaV3.1 cell lysates. E, Bar chart showing (mean ± s.e.m) endogenous Trx levels 
in A7r5, wt HEK293, HEK293/CaV3.1 and HEK293/CaV3.2 cell lysates (15µg total 
protein, all n=3 except HEK293/CaV3.1 (n=6)). Data were analysed via repeated 
measures one-way ANOVA with Dunnett’s post-hoc comparison test, with no 
statistically significant differences observed.  
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C F

 
Figure 4.3. Trx assays do not detect any effect of chronic treatment with AuF 

(300nM) or PX-12 (1µM) 
Example traces from a single Trx assay (details of method and analysis provided in 
Figure 4.1) showing increasing mean fluorescence values and reporting Trx activity 
under control conditions and after chronic pre-treatment (72hrs) with auranofin (AuF, 
300nM) or PX-12 (1µM). Examples from: A, “new” A7r5 and B, HEK293/CaV3.1 cell 
lysates (15µg total protein, triplicate wells). Line equations are included. C, Calibration-
curve corresponding with (A-B), showing slope values of mean fluorescence of known 
Trx concentrations (0-192ng). Line equation and R2 values are included. D-F, Bar charts 
showing (mean ± s.e.m) Trx levels under control conditions and after chronic pre-
treatment (72hrs) with AuF (300nM) or PX-12 (1µM) within: D, A7r5, E, HEK293/CaV3.1 
and F, wt HEK293 cell lysates (15µg total protein, all n=2). All data were analysed via 
repeated measures one-way ANOVA with Dunnett’s post-hoc comparison test, with no 
statistically significant differences observed.  
 
 

A

B

D

E



127 
 

A

B

Assay 10

C

A(i)

D E

 
Figure 4.4. Trx levels are altered by acute treatment with PX-12 

Example traces from single Trx assay (further details provided in Figure 4.1) showing 
increasing mean fluorescence values and reporting Trx activity under both control 
conditions and after acute pre-treatment (10mins) with PX-12 (3-300µM) within: A, 
HEK293/CaV3.1 and B, HEK293/CaV3.2 cell lysates (15µg total protein), triplicate wells. 
Line equations are included. A(i), as A, except with individual test and background 
values for control and PX-12 (300µM) conditions. C, Calibration-curve corresponding 
with (A-B), showing slope values of known Trx concentrations (0-192ng). Line equation 
and R2 values included. D-E, Bar charts showing (mean ± s.e.m) Trx levels ± PX-12 pre-
treatment (10mins, 3µM and 30µM), within: D, HEK293/CaV3.1 and E, HEK293/CaV3.2 
cells (both n=3). Note, as PX-12 (300µM) produced decreasing background 
fluorescence values, amplifying the deducted slope value shown in A(i), these data are 
omitted. Data analysed by repeated measures one-way ANOVA with Dunnett’s post-
hoc comparison test,*p≤0.05. 
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4.2.2. The effects of Trx inhibitors on A7r5 cell viability and proliferation  

As Trx serves as an important cellular antioxidant, Trx inhibition may potentially 

disrupt the redox balance within cells. For example, AuF has been shown to induce 

apoptosis in Jurkat T-lymphoma cells (Cox et al., 2008). It was therefore necessary to 

deduce what concentrations of PX-12 and AuF would be tolerated by A7r5 cells before 

using these drugs for proliferation assays. The MTT assay is a means of assessing cell 

viability. It is based on the principle that only active mitochondria are able to cleave 

MTT’s tetrazolium ring and convert the pale yellow soluble substrate to the partially 

soluble, dark blue formazan product. The degree of colorimetric absorbance at 570nm 

is thus directly proportional to the number of living cells present (Mosmann, 1983).  

 

Treatment with a single dose of AuF (≤1µM) or PX-12 (≤1µM) over a 72hr period had 

no significant effect on A7r5 cell viability. Significant reductions were observed with 

AuF (3µM) or PX-12 (10-300µM) when applied for 24-72hrs. PX-12 (3µM) was 

additionally shown to reduce A7r5 cell viability 48-72hrs post-treatment (Figure 4.5). 

Changes in A7r5 morphology that are suggestive of cell death such as rounding-up and 

cell detachment were observed alongside viability reductions. As these morphological 

changes were also apparent following a 72h exposure to 1µM AuF, it was subsequently 

determined that AuF (300nM) and PX-12 (1µM) were the highest concentrations to be 

applied for proliferation assays.  

 
As the IC50 of TrxR inhibition by AuF has been shown experimentally to range between 

20nM (Gromer et al., 1998) and 200nM (Cox et al., 2008), the effects of a variety of 

AuF concentrations within this range were examined on A7r5 cell growth. 

Concentration-response proliferation assays conducted on “old” A7r5 cells revealed 

that AuF (300nM, 72hrs) significantly decreased “old” A7r5 proliferation. AuF (30-

100nM) appeared to have modest but non-significant anti-proliferative effects. As the 

number of dead cells present was consistent between control and drug treatment 

groups, it was confirmed that AuF (10-300nM, 72hrs) did not induce cell death (Figure 

4.6). Daily cell counting of “old” A7r5 cells revealed that the anti-proliferative effects of 

AuF (300nM) positively correlated with the length of exposure.  
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Figure 4.5. Auranofin (AuF ≤1µM) and PX-12 (≤1µM) do not effect ”old” A7r5 cell 

viability  
Concentration-response graphs (mean ± s.e.m) from MTT cell viability assays. Showing 
effects of AuF (1nM- 3µM) on “old” A7r5 cell viability after: A, 24 hrs, B, 48 hrs and C, 
72hrs. D-F, As (A-C), except with PX-12 (300nM-300µM). Data were analysed by one-
way ANOVA with Dunnett’s post-hoc comparison test, AuF compared to control 
condition, PX-12 compared to DMSO (1:1000) condition, all n=3, ***p≤0.001, 
****p≤0.0001. Data were also fitted with log-inhibitor normalised-response curves.  
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The largest reduction in “old” A7r5 cell proliferation compared to control conditions 

was apparent on d3 (Figure 4.6). When these experiments were repeated on “new” 

A7r5 cells, shown to express considerably higher levels of CaV3.1 and CaV3.2 mRNA 

compared to the “old” A7r5 cells (further detailed in Chapter 3), a much larger anti-

proliferative response to AuF was observed. The average number of “new” A7r5 cells 

was significantly lower in AuF (300nM) treatment groups when compared to control on 

d1, d2 and d3. The largest difference was apparent on d2, prior to a plateau growth 

phase (Figure 4.6). These data indicate that higher levels of T-type Ca2+ channel 

expression result in higher sensitivity to AuF. This also suggests that T-type Ca2+ 

channel modulation could potentially be mediating the anti-proliferative effects of 

AuF.   

 

The effect of PX-12 on “new” A7r5 cell proliferation was also examined. The 

mechanism of Trx inhibition by PX-12 is complex as different cysteine residues within 

Trx are sensitive to considerably different PX-12 concentrations. Regarding its anti-

proliferative effects, PX-12 has been previously shown to inhibit the growth of MCF-7 

cells, with IC50 values of 1.2µM or 3.2µM when using Trx or FBS as the mitogenic 

stimulus respectively (Kirkpatrick et al., 1998). As PX-12 (≥3µM) was shown to induce 

significant reductions in A7r5 cell viability (Figure 4.5), a single PX-12 concentration 

was used in the proliferation assays. PX-12 (1µM) had small but significant anti-

proliferative effects on “new” A7r5 cells, being most apparent on d2. When further 

experimental repeats comprising of d3 counts in isolation were conducted, PX-12 

(1µM) was also found to significantly reduce average cell number on d3 (Figure 4.7).  

 

. 
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Figure 4.6. Auranofin (AuF) reduces A7r5 proliferation 

Proliferation (plotted against the left-hand y-axis), was monitored on day 0 and day 3 ± 
AuF (n=4). Red circles show the corresponding non-viable cell count (plotted against 
the right-hand y-axis). A, Bar graph showing the proliferative response (mean ± s.e.m) 
of “old” A7r5 cells to AuF (10-300nM). B, Daily counts of “old” A7r5 cells illustrate that 
the anti-proliferative effects of AuF (300nM, red line) are most apparent on day 3 
(n=3). B(i), Bar graph showing CaV3.1 (upper y-axis) and Cav3.2 (lower y-axis) mRNA 
expression levels, determined in “old” A7r5 cells. Channel expression is plotted as 
(mean ± s.e.m) % expression of the housekeeping gene, hypoxanthine 
phosphoribosyltransferase (HPRT1) (n=7) (Duckles et al., 2015). C, As (B), except with 
“new” A7r5 cells showing higher sensitivity to AuF (n=3), and higher CaV3.1 and CaV3.1 
expression in C(i), n=8.  All cell counts were made in triplicate with the mean value 
counting as n=1. Data were analysed by; (A,B,C), one-way ANOVA with Dunnett’s (A) or 
Bonferroni’s (B,C) post-hoc comparison tests, or (B(i)-C(i)), unpaired Student’s t-tests, * 
p≤0.05,        ** p≤0.01, **** p ≤0.0001. 
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Figure 4.7. PX-12 reduces “new” A7r5 proliferation 

 A, Line graph showing (mean ± s.e.m) daily cell counts of “new” A7r5 cells in both 
control conditions (blue line) and after PX-12 (1µM) treatment (red line), and thereby 
illustrating that the anti-proliferative effects of PX-12 are most apparent on day 2 
(n=4). B, Bar graph (mean ± s.e.m) showing proliferative response (mean ± s.e.m) of 
“new” A7r5 cells to PX-12 (1µM) as counted on day 3 (n=8). All cell counts were made 
in triplicate with the mean value counting as n=1.Data were analysed using unpaired 
Student’s t-tests, *p≤0.05.  
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4.2.3. The effects of AuF on A7r5 Ca2+ handling 

As discussed in detail in Chapter 3, oscillations in intracellular Ca2+ levels [Ca2+
i] could 

be stimulated by modest depolarisation of “old” A7r5 cells, achieved by application of 

a high [K+] (20mM) perfusate. This project has previously demonstrated that Ca2+ 

oscillations are dependent on both T- and L-type Ca2+ channels (Chapter 3). In order to 

investigate potential effects of Trx inhibition on Ca2+ handling, “old” A7r5 cells were 

pre-treated with AuF (2µM, 25min). Unfortunately, PX-12 could not be used for Ca2+ 

microfluorimetry as it selectively enhanced the fluorescence signal at 340nm indicating 

direct interactions between Fura-2 and PX-12 (data not shown). For both control and 

AuF pre-treatment conditions, two high [K+] stimuli were applied to each A7r5 

population. Importantly, it was ensured that baseline [Ca2+
i] was re-established prior to 

the 2nd high [K+] stimulus. The effects of AuF (2µM, 25min) pre-treatment on the 

amplitude of the response were variable. When compared to control conditions, the 

amplitude of the response to the 1st depolarisation was significantly reduced in AuF 

conditions, within some experiments (Figure 4.9), although not in others (Figure 4.8). A 

more reproducible analysis parameter to quantify the qualitative effects of AuF was 

found to be the frequency of depolarisation-induced [Ca2+]i oscillations (i.e. firing 

frequency). To ensure that re-application of the depolarising stimulus did not produce 

a decline in the observed firing frequencies, matching control data was gathered for all 

experiments (Figure 4.8, Figure 4.9). 

 

Pre-treatment of “old” A7r5 cells with AuF significantly reduced the frequency of 

[Ca2+]i oscillations, in response to the 1st and 2nd depolarisations when compared to 

control responses. The oscillation frequency in response to the 2nd depolarisation was 

significantly greater than for the 1st depolarisation in AuF conditions. The effects of AuF 

were therefore shown to be time-dependent (Figure 4.8). Dithiothreitol (DTT) is a 

commonly used reducing agent that was applied to some A7r5 populations, between 

the 1st and 2nd depolarisations. DTT treatment completely reversed AuF-mediated 

inhibition and normalised the firing frequencies in response to the 2nd depolarisation. 

DTT was additionally shown to significantly increase the frequency of Ca2+ oscillations 

under control conditions (Figure 4.9). As A7r5 Ca2+ oscillations were shown to be 

dependent of T- and L-type Ca2+ channels (Chapter 3), these data collectively indicate 

that AuF regulates CaV channels via a redox-dependent mechanism.   



134 
 
The effects of pre-treatment with AuF (2µM, 25min) on basal Ca2+ levels in “new” A7r5 

cells were also examined. Previous investigation within the current project had shown 

a measurable window current in “new” A7r5 cells, detected as a fall in the baseline 

Ca2+ level upon removal of extracellular Ca2+ (CF) (Chapter 3). Pre-treatment with AuF 

significantly reduced the response to CF, revealing partial AuF-mediated window 

current inhibition (Figure 4.10). This window current has been shown to be partially 

facilitated by T-type Ca2+ channels (Chapter 3), and is believed to be crucial for cellular 

proliferation. Evidence that AuF may regulate basal Ca2+ levels and proliferation 

through modulation of CaV channels is therefore provided.    
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Figure 4.8. Auranofin (AuF) reduces depolarisation-induced Ca2+ oscillations in “old” 

A7r5 cells 
Example Ca2+ microfluorimetry traces showing Fura 2 ratio units (340:380). 
Representing Δ[Ca2+]i in response to depolarisation, achieved by switching to a high 
[K+] perfusate (20mM vs. 5mM, black line above traces) under: A, control conditions 
and B, after auranofin pre-treatment (AuF, 2µM 25mins). C, Bar graph showing the 
(mean ± s.e.m) firing frequency in response to the 1st and 2nd depolarisations in control 
(blue bars, n=19) or AuF pre-treated (red bars, n=13) conditions. D, As (C), except 
showing (mean ± s.e.m) response amplitude. All data were analysed using one-way 
ANOVA with Tukey’s post-hoc comparison test, (*p≤0.05, ****p≤0.0001). 
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Figure 4.9. DTT reverses the effects of AuF on depolarisation-induced Ca2+ oscillations 

in “old” A7r5 cells 
Example Ca2+ microfluorimetry traces showing the effects of dithiothreitol (DTT, 1mM, 
red bar) on Fura 2 ratio units (340:380). Representing Δ[Ca2+]i in response to 
depolarisation achieved by switching to a high [K+] perfusate (20mM vs. 5mM, black 
line above traces) under: A, control conditions and B, after auranofin pre-treatment 
(AuF, 2µM, 25mins). C, Bar graph showing the (mean ± s.e.m) firing frequency in 
response to the 1st and 2nd depolarisations (i.e. before and after DTT application), in 
control (blue bars, n=24) or AuF pre-treated (red bars, n=18) conditions. D, As C, 
except showing (mean ± s.e.m) response amplitude. All data were analysed using one-
way ANOVA with Tukey’s post-hoc comparison test, **p≤0.01, ***p≤0.001, 
****p≤0.0001. 
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Figure 4.10. Auranofin inhibits the window current in “new” A7r5 cells 

Example Ca2+ microfluorimetry traces showing Fura 2 ratio units (340:380) 
representing Δ[Ca2+]i upon removal of extracellular Ca2+ (CF, purple bar) under: A, 
control conditions and B, after pre-treatment with auranofin (AuF, 3µM, 25mins). C, 
Bar graph showing (mean ± s.e.m) the decrease in ratio units (340:380) in response to 
CF in: control conditions (black bar, n=11), and after AuF pre-treatment (grey bar, 
3µM, 25mins, n=7). Data were analysed using unpaired Student’s t-tests, ***p≤0.001.  
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4.2.4. Effects of Trx inhibitors on HEK293 cell viability and proliferation  

Previous investigations revealed that CaV3.1 or CaV3.2 expression increased the Ca2+ 

window current and proliferation of HEK293 cells (Chapter 3). The effects of Trx 

inhibitors on wt HEK293, HEK293/CaV3.1 and HEK293/CaV3.2 cell proliferation were 

therefore next examined. These experiments enabled further investigation of the 

potential interactions between Trx and T-type Ca2+ channels and any isoform specific 

differences.  

 

Firstly, MTT assays were conducted to determine the potential effects of both AuF and 

PX-12 on HEK293 cell viability. HEK293/CaV3.2 cells showed no significant reductions in 

cell viability after 72hrs of treatment with AuF (≤300nM) or PX-12 (≤1µM). At higher 

concentrations, AuF (3µM) and PX-12 (10-300µM) caused rapid and significant 

reductions in cell viability, as measured 24hrs post-treatment. Furthermore, 48-72 hrs 

post-treatment, AuF (1µM) and PX-12 (3µM) further reduced HEK293/CaV3.2 cell 

viability (Figure 4.11). All conditions exhibiting viability reductions were accompanied 

by morphological changes such as “rounding-up” and cell detachment indicating cell 

death. As these observations are in direct agreement with the findings from A7r5 cells 

(Figure 4.5), the cytotoxicity thresholds of AuF and PX-12 appears to be independent of 

cell type. Consequently, the optimal concentrations of AuF and PX-12, as determined 

for A7r5 cell proliferation assays, were also deemed appropriate for use in all HEK293 

cell proliferation assays.  

 

To assess the effects of Trx inhibition on the elevated proliferation of HEK293 cells 

resulting from CaV3.1 or CaV3.2 channel expression as described in Chapter 3, the 

effects of PX-12 and AuF were examined. For all experiments, HEK293/CaV3.1 and 

HEK293/CaV3.2 cells, shown on some occasions to be partially inhibited by NNC (1µM), 

proliferated more than wt HEK293 cells (Figure 4.13). Concentration-response 

proliferation assays revealed that both wt HEK293 and HEK293/CaV3.1 cell 

proliferation was unaffected by AuF (10-300nM), as shown in Figure 4.12. Similarly, PX-

12 (1µM) was also without effect on either wt HEK293 or HEK293/CaV3.1 cell 

proliferation, when applied alone or in combination with NNC (Figure 4.13). 

Contrastingly, HEK293/CaV3.2 cell proliferation was significantly reduced by AuF 

(300nM) and PX-12 (1µM). The effects of PX-12 and NNC were shown to be non-
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additive on HEK293/CaV3.2 cells, indicating that both drugs were acting via CaV3.2 

inhibition. As the number of dead cells present was consistent between control and 

drug treatment groups, it was confirmed that the observed reduction in cell number 

was due to the anti-proliferative effects of AuF and PX-12, as opposed to increased cell 

death (Figure 4.12 and Figure 4.13). All drugs used for proliferation assays throughout 

the project were dissolved in double distilled water (ddH2O) or DMSO. We examined 

the effects of DMSO at the highest concentration used (1:1000) and found that it had 

no effect on the proliferative rate of any of the HEK293 cell types used (Figure 4.13).  

Collectively, these data demonstrate that Trx regulates cellular proliferation through 

selective modulation of CaV3.2 channels.  

 

In order to validate the observation that wt HEK293 and HEK293/CaV3.1 cell 

proliferation was insensitive to Trx inhibition, EdU assays were employed as an 

alternative to the direct cell counting proliferation assay. EdU (5-ethynyl-2´-

deoxyuridine) is a nucleoside analog of thymidine which becomes incorporated into 

newly synthesised DNA. It is detected by a copper-catalyzed covalent reaction 

between an alkyne (EdU incorporated into DNA) and an azide (Alexa Fluor detection 

reagent). When DAPI is co-applied to label total cell nuclei, the percentage of 

proliferating cells (i.e. those labelled by EdU) can be calculated. As this assay had not 

been previously conducted within the group, optimisation of EdU incubation times, 

concentrations and analysis methods was required. Pulse-labelling i.e. incubation with 

EdU (10µM) for 1-4 hours, produced a small percentage of EdU positive 

HEK293/CaV3.1 cell nuclei. Contrastingly, incubation with EdU (10µM) for 16 or 24hrs 

resulted in EdU labelling in almost 100% of HEK293/CaV3.1 cell nuclei. Incubation with 

EdU (5µM, 12hrs) produced approximately 60-70% of EdU positive nuclei, enabling 

potential decreases or increases in proliferation to be observed. As pulse-labelling 

represented only a small percentage of cells which had proliferated within a narrow 

time-frame, results regarding potential anti-proliferative effects could be masked by 

alterations in the rate of cell cycle progression. It was subsequently decided that EdU 

(5µM, 12hrs) was the optimal condition and would be used for all future EdU 

experiments (Error! Reference source not found.). 
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Figure 4.11. Auranofin (AuF ≤300nM) and PX-12 (≤1µM) did not affect 

HEK293/CaV3.2 cell viability 
Concentration-response graphs (mean ± s.e.m), from mitochondrial activity-based MTT 
cell viability assays, showing the effects of auranofin (AuF, 1nM- 3µM) on 
HEK293/CaV3.2 cell viability after: A, 24 hrs, B, 48 hrs and C, 72hrs treatment. D-F, As 
(A-C), except showing the effects of PX-12 (300nM-300µM). Data were analysed by 
one-way ANOVA with Dunnett’s post-hoc comparison test, AuF compared to control, 
PX12 compared to DMSO, ***p≤0.001, ****p≤0.0001, all n=3. Data were fitted with 
log-inhibitor normalised-response curves. 
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Figure 4.12. Auranofin selectively reduces HEK293/CaV3.2 cell proliferation 

Bar charts (mean ± s.e.m) showing live cell number (white boxes, left Y axis) and dead 
cell number (red circles, right Y axis), counted on day 3 of proliferation assays. 
Illustrating effects of auranofin (AuF, 10-300nM) on: A, wt HEK293 cell (n=3), B, 
HEK293/CaV3.1 cell (n=4), and C, HEK293/CaV3.2 cell proliferation (n=5). All cell counts 
were made in triplicate with the mean value counting as n=1. Data were analysed by 
one-way ANOVA with Dunnett’s post-hoc comparison test,*p≤0.05, **p≤0.01.  
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Figure 4.13. PX-12 selectively reduces HEK293/CaV3.2 cell proliferation  

Bar charts (mean ± s.e.m) showing live cell number (white boxes, left Y axis) and dead 
cell number (red circles, right Y axis), counted on day 3 of proliferation assays. 
Illustrating effects of PX-12 (1µM), applied alone or in combination with NNC55-0396 
(NNC, 1µM) or with DMSO (1:1000) alone on: A, wt HEK293 cell (all n=5), B, 
HEK293/CaV3.1 cell (control and PX-12 n=5, NNC +/- PX-12 n=4, DMSO, n=3)and C, 
HEK293/CaV3.2 cell proliferation (all n=4). All cell counts were made in triplicate with 
the mean value counting as n=1. Data were analysed by one-way ANOVA with 
Dunnett’s post-hoc comparison test,*p≤0.05, **p≤0.01.  
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CellProfilerTM is free open-source software that allows users to custom build a wide 

range of analysis pipelines enabling automated processing of immunofluorescence 

images. Comparison of the results from manual and automated counts of 

HEK293/CaV3.1 cell nuclei revealed the two counting techniques to yield significantly 

different results. The automated count under-estimated the number of DAPI nuclei by 

30% and under-estimated the number of EdU positive nuclei by a factor of 10%, as 

detailed by Error! Reference source not found.. Resultantly, all future image counting 

was conducted manually to ensure accuracy. Treatment with PX-12 (1µM, 48hrs) 

significantly reduced HEK293/CaV3.1 cell proliferation (Error! Reference source not 

found.) but was without significant effect on wt HEK293 cell proliferation (Error! 

Reference source not found.). A noteworthy point is that the % EdU-positive value was 

almost identical for HEK293/CaV3.1 and wt HEK293 cells, and did not reflect the 

elevated proliferative rate of HEK293/CaV3.1 and wt HEK293 cells (Error! Reference 

source not found. & Error! Reference source not found.). The average total number of 

HEK293/CaV3.1 nuclei (DAPI labelled) was considerably greater than for wt HEK293 

cells (164 vs. 69 respectively, data not shown). This confirmed the proliferative 

advantage of CaV3.1 expression. In summary, these data collectively demonstrate that 

CaV3.2-expressing cells are most sensitive to Trx inhibition-mediated anti-proliferative 

effects. In addition, data suggest that HEK293/CaV3.1 cells are slightly sensitive to PX-

12-mediated anti-proliferative effects, whilst wt HEK293 cells show complete 

insensitivity. 
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Figure 4.14. Optimisation of EdU incubation time and concentration for subsequent 

proliferation assays 
Representative images showing EdU incorporation in HEK293/CaV3.1 cells following 
incubation with EdU (1-16hrs, 5-10µM). Total cell nuclei are labelled by DAPI (left 
panel, blue images) and nuclei containing newly synthesised DNA are labelled by EdU 
(centre panel, orange images), merged images illustrating co-localisation (right panel, 
pink images). A, EdU (10µM, 1hr). B, EdU (10µM, 4hrs). C, EdU (10µM, 16hrs). D, EdU 
(5µM, 12hrs). Scale bars 50µm. 
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Figure 4.15. Comparison of automated and manual counting techniques for analysis 

of EdU incorporation assays 
A-C, Representative images showing HEK293/CaV3.1 cell nuclei labelled by DAPI (left 
panel, blue images) and nuclei containing newly synthesised DNA are labelled by EdU 
(centre panel, orange images), from the same field of view, following incubation with 
EdU (5µM, 12hrs). Scale bars 50µm. B, Nuclei identified by automated analysis 
software CellProfilerTM using DAPI and EdU images, number of identified nuclei given in 
top left corner of each image. C, As B, except nuclei counted and outlined manually. D, 
Trend graph showing the difference in the number of counted nuclei labelled by DAPI; 
between automated and manual techniques. Data were analysed using paired 
student’s t-tests, **p≤0.01, ***p≤0.001, n=10.  E, As D, except for EdU labelled nuclei.    
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Figure 4.16. PX-12 (1µM) reduces HEK293/CaV3.1 cell proliferation 

Representative images showing EdU incorporation in HEK293/CaV3.1 cells following 
incubation with EdU (12hrs, 5µM). Total cell nuclei are labelled by DAPI (left panel, 
blue images) and nuclei containing newly synthesised DNA are labelled by EdU (centre 
panel, orange images), merged images illustrating co-localisation (right panel, pink 
images). Showing differences between: A, control conditions and B, following PX-12 
incubation (1µM, 48hrs). C, Bar graph showing, (mean ± s.e.m) EdU positive nuclei (% 
of DAPI labelled nuclei) within HEK293/CaV3.1 cells, calculated by manual counting, 
n=5. Five randomly selected fields of view were counted with the mean value 
represented as n=1.Data were analysed using paired Student’s t-tests, **p<0.01.  
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Figure 4.17. PX-12 (1µM) has no effect on wt HEK293 cell proliferation 

Representative images showing EdU incorporation in wt HEK293 cells following 
incubation with EdU (12hrs, 5µM). Total cell nuclei are labelled by DAPI (left panel, 
blue images) and nuclei containing newly synthesised DNA are labelled by EdU (centre 
panel, orange images), merged images illustrating co-localisation (right panel, pink 
images). Showing differences between: A, control conditions and B, following PX-12 
incubation (1µM, 48hrs). C, Bar graph showing, (mean ± s.e.m) EdU positive nuclei (% 
of DAPI labelled nuclei) within wt HEK293 cells, calculated by manual counting, n=5 
Five randomly selected fields of view were counted with the mean value represented 
as n=1.Data were analysed using paired Student’s t-tests, although significance was 
not observed.   
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4.3. Discussion  

Trx is ubiquitously expressed in both prokaryotic and eukaryotic organisms and is 

known to have a variety of important functions. In light of this, literature regarding the 

structure, function and localisation of Trx is extremely wide ranging and so reference is 

constrained to studies conducted within mammalian cells. Trx inhibitors are currently 

being explored clinically as anti-cancer agents. Consequently, much of the following 

discussion concerns malignant cell lines. Angiogenesis involves excessive VSMC 

proliferation and is a key pathological phenotype crucial for tumour growth. Malignant 

cells also share other similarities with proliferative VSMCs, such as elevated T-type Ca2+ 

channel expression (Dziegielewska et al., 2014) and increased Trx levels (Powis et al., 

2000). As such, studies examining the effects of Trx inhibition on cancer cells relate 

well to the current investigation.  

 

4.3.1. Comparison of methods for the quantification of endogenous Trx levels  

The principles of determining Trx activity spectrophotometrically, using insulin 

reduction assays, utilise the properties of Trx as a major cellular protein disulphide 

reductase. Whilst this technique is longstanding, many different fluorescent reporters 

have been used. Upon initial development, turbidity analysis was used to detect the 

precipitation of free A and B chains, resulting from Trx-mediated reduction of two 

inter-chain disulphide bonds, within the insulin molecule. This was detected as 

increases in absorbance at 650nm (Holmgren, 1979). Other spectrophotometric 

variants include monitoring (i) NADPH consumption, observed as a decrease in 

absorbance at 340nm (Zhang et al., 2014), (ii) reduction of tryptophan, observed as an 

increase in fluorescence at 350nm (Holmgren, 1979), and (iii) reduction of 5,5-

dithiobis(2-nitrobenzoic acid) (DTNB), detected as increasing fluorescence at 412nm 

(Huang et al., 2014; Schulze et al., 2002). A key problem with these assays however, is 

that they lack substrate specificity which results in large background values. Two key 

advantages of the newly developed assay currently used are: it does not require the 

addition of DTT to reduce Trx, and due to the high degree of substrate specificity it 

enables more accurate quantification of unknown Trx concentrations (Montano et al., 

2014).  
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Within the current investigation, Trx levels were measured by assessing the rate of 

increasing fluorescence of eosin-labelled insulin which in turns corresponds with the 

rate of Trx-mediated reduction. As insulin reduction requires Trx to be in its reduced 

and active form (rTrx), the assay involves pre-incubation with excess amounts of both 

TrxR and NADPH. Resultantly, it is assumed that all endogenous oxidised Trx (oTrx) is 

converted to rTrx. It is important to emphasise that as known Trx standards were used 

to calibrate the assay, Trx levels are deduced from Trx activity. Endogenous Trx was 

reliably detected within A7r5, HEK293/CaV3.1, HEK293/CaV3.2 and wt HEK293 cells. 

Despite standardising the total amount of protein loaded for each sample (15µg), Trx 

levels were highly variable between experimental repeats and cell types. As previous 

studies looking at Trx levels in cell lysates often only report increases or decreases in 

Trx activity with reference to control values (Schulze et al., 2002), only limited 

comparison is possible. Using an identical protocol as currently implemented, Trx 

levels within peripheral blood mononuclear cells (PBMCs) and human histocytic 

lymphoma (U937) cell lysates have been shown to be 1.75ng and 2.25ng per 1µg total 

protein respectively (Montano et al., 2014). Although performed in different cell types, 

current values were relatively higher (~4-16ng/µg). Further investigations, comparing 

A7r5 and U937 Trx levels within the same assay, would be useful to establish whether 

this difference is due to disparate Trx levels between cell lines or inter-laboratory assay 

variability.  

 

In the current investigation, chronic treatment of A7r5, wt HEK293 or HEK293/CaV3.1 

cells with low concentrations of AuF (300nM, 72hrs) did not produce any measurable 

decrease in Trx levels. This observation is consistent with the indirect nature by which 

AuF inhibits Trx, i.e. via TrxR. As the assay requires the addition of exogenous TrxR and 

NADPH in excess, potential effects of TrxR inhibition by AuF were unlikely to be 

detected. A very similar fluorescence assay which requires Trx to be added in excess, 

as opposed to TrxR, has been used successfully to study TrxR activity within cell lysates 

(Cox et al., 2008; Lessa et al., 2011). This alternative assay would be more suitable for 

subsequent investigations into the interactions between AuF and Trx.  

 

The effects of PX-12 treatment on Trx activity were also examined. This indicated that 

chronic PX-12 pre-treatment (1µM, 72hrs) had no effect on Trx levels within A7r5, wt 
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HEK293 or HEK293/CaV3.1 cells. Contrastingly, acute PX-12 treatment (3µM or 30µM, 

10mins) did produce a small but significant reduction in Trx levels within 

HEK293/CaV3.1 and HEK293/CaV3.2 cells respectively. Whilst, PX-12 (300µM) produced 

a clear and uniform reduction in Trx activity, it also caused the rate of background 

fluorescence to decrease. Resultantly, this concentration was excluded from the final 

analysis. The effects of PX-12 on Trx were originally described by Kirkpatrick et al., 

(1998), who used spectrophotometric analysis alongside electrophoresis and mass 

spectrometry. The mechanism by which PX-12 inhibited human Trx (hTrx) was shown 

to be highly complex as different Trx cysteine (Cys) residues  were found to be 

sensitive to considerably different PX-12 concentrations.  

 

Firstly, Cys32 and Cys35 within the redox active site of Trx were shown to be rapidly 

inhibited by reversible thioalkylation, with a dissociation constant (Ki) of 31µM 

(Kirkpatrick et al., 1998). As redox-sensitive Cys residues within the active site are 

known to mediate the disulphide reductase abilities of Trx, this mechanism appears to 

correspond with the reductions in Trx activity currently observed following acute pre-

treatment with PX-12 (3µM or 30µM, 10mins). In addition, Cys73 found outside of the 

Trx active site was also originally shown to be modified by irreversible thioalkylation, at 

PX-12 concentrations several orders of magnitude lower than observed for Cys32 and 

Cys35, and with a considerably slower rate of reaction. Furthermore, irreversible 

thioalkylation of Cys73 as a result of pre-treating hTrx with PX-12 for 24hrs prior to 

measuring Trx activity was reported to prevent TrxR-mediated reduction of Trx. As 

substitution of Cys73 with a serine (Ser) residue (C73S Trx mutant) did not prevent the 

effects of TrxR on Trx, it was suggested that irreversible thioalkylation of Cys73 

produced a steric blockade of the interaction between Trx and TrxR (Kirkpatrick et al., 

1998). This mechanism would also theoretically prevent Trx-mediated insulin 

reduction, which would be detected currently as a decrease in Trx levels. However, as 

PX-12 (1µM, 72hrs) was currently found to be without effect on Trx levels, evidence 

against this alternative mechanism of Trx inhibition is provided.   

 

It should be noted that the reductions in Trx levels observed following acute PX-12 pre-

treatment were not concentration-dependent and also highly variable between cell 

types and experimental repeats. A potential explanation for this could be the 
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reversible nature of Cys32 and Cys35 thioalkylation. Specifically, PX-12 could not be 

directly applied to cell lysate samples using the current technique due to known 

interactions of alkylating agents with reaction components. As such, PX-12 had to be 

washed off immediately prior to measuring its effects on Trx. This could theoretically 

result in some reversal of the effects of PX-12 upon the NADPH and TrxR pre-

incubation step. An alternative explanation, which would also additionally account for 

the general variability in results, may concern the sensitivity of the recording 

equipment used for Trx assays. The current investigation used a dual-monochromator 

microplate reader (Varioskan Flash; Thermo Scientific, UK), whereas quad-

monochromator devices (Enspire or Victor3, PerkinElmer) are recommended by the 

assay developers. In support of this, especially when compared to the findings of 

Montana et al. (2014), the current investigation required higher Trx reference samples 

to generate accurate calibration curves and the absolute fluorescence values were 

much lower. Suggested improvements to the current assay would be to ensure that a 

quad-monochromator spectrophotometric recording device was used, and that the 

alternative TrxR assay was implemented to assess the effects of AuF. Further 

investigation could then be conducted to conclusively establish potential differences in 

both endogenous Trx levels between different cell lines and also the effects of AuF and 

PX-12.  

 

As a final note on the subject of Trx quantification, the majority of previously described 

methods do not differentiate between reduced and oxidised forms. As the balance 

between oTrx and rTrx is a crucial feature of its activity, important effects of AuF and 

PX-12 may be masked when reducing agents are applied exogenously. The redox 

western blot provides a way of independently measuring oTrx and rTrx. This technique 

requires incubating Trx with a maleimide derivative prior to separating samples using 

non-reducing SDS gel electrophoresis and detecting with antibodies. Maleimide is only 

able to bind to rTrx and thereby selectively increases its molecular size, whilst having 

no effect on oTrx. The ratio of rTrx/oTrx can be calculated using band densitometry, 

and the redox state quantified using the Nernst equation (Hansen, 2012). To 

investigate Trx activity within HeLa cells, redox western blotting using iodoacetamide 

and iodoacetic acid to detect the redox state of Trx has been used effectively alongside 

a spectrophotometric assay identical to that currently used (Zhang et al., 2014).  
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4.3.2. High concentrations of Trx inhibitors induce cell death  

The current investigation demonstrated that AuF (1-3µM) and PX-12 (3-300µM) 

significantly reduced A7r5 and HEK293/CaV3.2 cell viability following 72hrs of 

treatment. Similar findings have been previously reported within a variety of cell lines. 

A key point to emphasise is that MTT assays were used in the current investigation to 

assess cell viability and not cell number as referenced in some other studies (Raninga 

et al., 2015; Shin et al., 2013; You et al., 2014). It is possible that a reduction in cell 

number could correspond with reduced production of the formazan product (i.e. 

absorbance at 560nm), due to a lower number of cells and thus total mitochondria. 

However, within the current investigation morphological changes indicating cell death, 

such as rounding-up and cell detachment, were observed within all treatment groups 

exhibiting reduced absorbance. This supported the conclusion that reduced 

absorbance values were due to reductions in cell viability and not anti-proliferative 

effects. Resultantly, previous studies which used MTT assays to quantify cell number 

will be interpreted with this caveat in mind. 

 

Treatment of tumour cell lines, including Jurkat and MCF-7 cells, with high 

concentrations of AuF (10µM, 48hrs) has been shown to induce significant reductions 

in cell viability, as measured using MTT assays. MCF-7 cells showed the greatest 

sensitivity and also exhibited cellular DNA fragmentation in approximately 20% of cells. 

This indicated that the cytotoxic effects of AuF were mediated, in part, by apoptosis 

induction. Spectrophotometric TrxR activity assays using DTNB as the fluorescent 

reporter were also implemented and revealed that AuF (500nM) inhibited TrxR activity 

by 79%. Whilst these findings confirmed that TrxR is a biological target of AuF, they 

employ considerably higher AuF concentrations than currently used to investigate 

effects on cell viability (Lessa et al., 2011). The effects of lower AuF concentrations on 

Jurkat T-lymphoma cell viability were also examined in an alternative study. Using 

propidium iodide uptake as a measurement, AuF (0.5-4µM, 24hrs) was found to 

reduce Jurkat cell viability in a concentration-dependent manner with a half maximal 

lethal dose (LD50) of 1.4µM. In addition, AuF (2-3µM, 24hrs) increased caspase-3 

activity, confirming a role of apoptosis in AuF-mediated cell death (Cox et al., 2008). 

These findings are in close agreement with current observations that AuF (≥1µM) 

reduced A7r5 and HEK293/CaV3.2 cell viability. In contrast with the current finding that 
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the cytotoxicity threshold of AuF was independent of cell type, Cox et al. (2008) also 

reported that not all cells responded to AuF in the same manner. Compared to Jurkat 

cells, mouse B cell hybridoma (B9) cells were comparatively resistant to AuF-induced 

apoptosis. Treatment of B9 cells with AuF (3µM, 24hrs) had no effect on cell viability, 

although direct cell counting revealed that it did completely halt cell proliferation. All 

of the effects of AuF in this study are attributed to inhibition of TrxR, confirmed 

directly using DTNB reduction assays to have an IC50 of 200nM (Cox et al., 2008). Of 

note, however, is that AuF was applied at relatively higher concentrations for 

apoptosis experiments than were shown necessary to inhibit TrxR. Though potential 

off-target effects of AuF should be considered, this discrepancy in concentrations may 

be due to the indirect nature of Trx inhibition. Specifically, it could take more than 

24hrs for the effects of TrxR inhibition on the redox-state of Trx to fully equilibrate. 

Current observations that AuF (1µM) was without significant effect on HEK293/CaV3.2 

cell viability after 24hrs, although did reduce viability 48 and 72hrs post-treatment, are 

in agreement with this interpretation.  

 

Regarding the PX-12 (≥3µM)-mediated reductions in A7r5 and HEK293/CaV3.2 cell 

viability currently observed, a limited number of studies exploring the effects of PX-12 

on cellular apoptosis have also recently been reported. Treatment of hepatocellular 

carcinoma (HCC) cell lines HepG2 and SMMC-7721 with PX-12 (48hrs) was shown to 

reduce average cell number with IC50 values of 6.32μM and 13.38μM respectively. 

Importantly, these findings were demonstrated using a commercially-available cell 

counting kit (CCK-8, Dojindo, Japan) which although referred to as a viability assay, did 

not differentiate between cytotoxic and anti-proliferative effects. Further investigation 

was subsequently conducted using Annexin V-FITC assays to directly measure 

apoptosis, dichlorofluorescein (DCF) assays to quantify reactive oxygen species (ROS) 

levels and flow cytometry for cell cycle analysis. This revealed that PX-12 reduced 

average cell number via both ROS-induced apoptosis and S-phase cell cycle arrest. 

Furthermore, these effects were prevented by pre-treatment with the antioxidant N-

acetyl cysteine (NAC). As PX-12 was also found to sensitise HCC cells in vitro and in vivo 

to 5-fluorouracil (5-FC), the principal cytotoxic chemotherapy agent for HCC, the 

authors suggest that these drugs provide an effective drug combination to reduce 

tumour growth (Li et al., 2015a). An alternative study implemented MTT assays to 
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show that PX-12 decreased human cervical adenocarcinoma (HeLa) cell number with 

an IC50 value of 7µM. This reduction was shown to involve both ROS-induced apoptosis 

and cell cycle G2/M-phase arrest. In direct agreement with current findings, PX-12 

(1µM, 72hrs) was without effect on the MTT signal at 570nm (Shin et al., 2013). In 

addition, the growth of A549 lung cancer cells has also been shown to be reduced by 

PX-12 (IC50 20µM) and similarly found to be mediated through G2/M-phase arrest and 

ROS-dependent apoptosis (You et al., 2014).  

 

Of final interest is a study which explored the suitability of PX-12 and AuF as novel 

treatments for multiple myeloma (MM), a haematological disorder involving aberrant 

growth and accumulation of clonal plasma cells. Human PBMCs were isolated from 

healthy volunteers and used as control cells to directly compare against MM cell lines. 

Elevated Trx and TrxR protein levels alongside higher ROS levels were detected in MM 

cells when compared to PBMCs, as measured using western blotting and DCF analysis 

respectively. In direct contrast with current methodologies, the authors incorrectly 

used direct cell counting as a measure of cell viability and MTT assays to quantify 

proliferation. Following incubation with AuF ≤8µM) or PX-12 (≤40µM) for 24hrs the 

average number of cells was reduced in a concentration-dependent manner. MM cell 

lines showed the greatest sensitivity to these reductions. MM cells cultured in 

methylcellulose additionally revealed that PX-12 (5µM) and AuF (4µM) reduced colony 

formation. Regarding the potential mechanisms of these anti-clonogenic effects, PX-12 

(5µM) was found to induce ROS-mediated apoptosis in MM cells but not in PBMCs. In 

addition, PX-12 sensitised cells to apoptosis induced by nuclear transcription factor 

(NF) NF-κβ inhibitors such as curcumin (Raninga et al., 2015). This may be significant as 

NF-κβ regulates the expression of various genes involved in cell proliferation and 

tumorigenesis (Matthews et al., 1992). 

 

In conclusion, the ability of the AuF (≤1µM) and PX-12 (≤3µM) to induce cell death are 

well established. Whilst the ROS-induced apoptotic effects of Trx inhibition may have 

therapeutic potential in the treatment of cancer, apoptosis could have detrimental 

effects on healthy VSMCs. Therefore, when assessing the suitability of Trx inhibitors as 

novel treatments for proliferative cardiovascular disorders, only AuF and PX-12 

concentrations below those directly shown to reduce cell viability are considered.  
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4.3.3. Low concentrations of Trx inhibitors selectively reduce cellular proliferation in 

CaV-expressing cells.  

The current investigation demonstrated that PX-12 (1µM) and AuF (300nM) 

significantly reduced A7r5 and HEK293/CaV3.2 cell proliferation following 72hrs of 

treatment. Notably, direct cell counting suggested that the proliferation of wt HEK293 

and HEK293/CaV3.1 cells was not significantly altered. To confirm this observation, 

DNA synthesis was assessed using EdU nucleoside incorporation assays over a 12hr 

period. Results confirmed that the proliferation of wt HEK293 was unaltered by PX-12 

(1µM, 48hrs). In contrast, significant reductions in the number of HEK293/CaV3.1 cells 

which had progressed through the G1-S phase of the cell-cycle were apparent. Findings 

within HEK293 cells therefore indicate that Trx inhibitors selectively reduce the 

proliferation of T-type Ca2+ channel expressing cells. In support of this conclusion, 

“new” A7r5 cells were shown using qRT-PCR to express considerably higher levels of T-

type Ca2+ channels when compared to “old” A7r5 cells and were much more sensitive 

to the anti-proliferative effects of AuF. Whilst this proposal is novel, many previous 

studies report anti-proliferative effects of Trx inhibitors within cell lines coincidently 

shown to express T-type Ca2+ channels.  

 

In addition to studies in cancer cell lines showing AuF- and PX-12-mediated cell cycle 

arrest (as described in section 4.3.2), the anti-proliferative effects of Trx inhibition 

have also been examined in a variety of other cell types. Interestingly, early studies 

provided conflicting findings regarding the effects of Trx on cell growth. For example, 

AuF (100-500nM) significantly decreased the proliferation of primary cultures of 

vascular endothelial cells (VECs) when determined using thymidine incorporation 

measurements and without affecting viability (Matsubara & Ziff, 1987). Contrastingly, 

an alternative study additionally used direct cell counting to show that application of 

Trx to the culture media inhibited the growth of HepG2 cells. This same study also 

reported opposing stimulatory growth effects of Trx on the B-cell lymphoma cell line, 

A20 (Rubartelli et al., 1995). 

 

Within pulmonary hypertensive (PH) diseases associated with hypoxia, pathological 

pulmonary artery SMC (PASMC) proliferation leads to vascular remodelling. A recent 

study determined that Trx levels from lung homogenates, isolated from mice 
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maintained in hypoxic conditions (10% oxygen, 4 weeks) were double that of controls 

(normoxia) (Chen et al., 2013). In vitro studies additionally compared Trx levels in 

HPASMCs cultured in hypoxic conditions (1% O2, 24-72hrs) to controls, using western 

blotting. Under normoxic conditions, Trx expression remained constant whilst hypoxia-

exposed HPASMCs showed considerable elevations in Trx (65%, 72hrs). HPASMCs 

cultured for 120 days under normoxia or hypoxia were also counted using a direct cell 

counting approach. Hypoxia was found to increase HPASMC proliferation. 

Furthermore, genetic knockdown of Trx using siRNA abolished hypoxia-induced 

elevations in proliferation, and also reduced HPASMC proliferation under normoxic 

conditions. In close agreement with current observations, PX-12 (2µM) was found to 

fully reproduce the anti-proliferative effects of genetic Trx inhibition. Regarding 

potential mechanisms for the pro-proliferative effects of Trx, increased Trx expression 

was found to correlate with activation of hypoxia-inducible factor (HIF) and 

phosphatidylinositol 3-kinase (PI3K)/serine/threonine kinase (Akt). It was concluded 

that Trx regulates hypoxia-induced PASMC proliferation via HIF-dependent 

mechanisms with downstream effects on PI3KAkt signalling (Chen et al., 2013). Of 

significant interest to the current investigation is that chronic hypoxia has also been 

shown to up-regulate the expression of CaV3.2 channels in HPASMCs (Wan et al., 

2013). These findings are therefore also consistent with the suggestion that Trx 

regulates T-type Ca2+ channels and controls cell proliferation.  

 

The effects of AuF on vascular endothelial cell (VEC) proliferation have also been 

studied recently. Angiogenesis is the process by which existing blood vessels form a 

network of new vessels, and involves the proliferation, invasion, migration and tube 

formation of VECs. Human umbilical VECs (HUVECs) were used to examine the anti-

proliferative effects of AuF in vitro. Using a cell-counting kit-8, the number of HUVECs 

was found to be reduced by AuF in a concentration-dependent manner with an IC50 

value 178nM. It should be noted however, that this technique does not differentiate 

between cytotoxic and anti-proliferative effects. To compensate for this, cellular 

migration was assessed using a wound-healing assay, whereby a small strip of cells are 

removed from a confluent monolayer of cultured HUVECs. HUVECs cultured under 

control conditions for 10hrs showed significant migration into the denuded region, 

which was inhibited by AuF (25-390nM) in a concentration-dependent manner. As no 
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morphological changes, such as blebbing, cell shrinkage, nuclear fragmentation or 

chromatin condensation were observed potential cytotoxic effects of AuF were 

therefore ruled out. In addition, under control conditions, culture of HUVECs on 

matrigel resulted in tube formation which was also significantly inhibited by AuF (98-

390nM) (He et al., 2014). The concentrations of AuF shown to be anti-angiogenic 

within this study are very similar to those currently found to reduce A7r5 and 

HEK293/CaV3.2 cell proliferation.  

 

The anti-angiogenic properties of AuF were confirmed in vivo using transgenic 

zebrafish. In addition to its anti-angiogenic effects, treatment of zebrafish embryos 

with AuF (98nM) was found to up-regulate vascular endothelial growth factor (VEGF) 

expression whilst higher doses caused a sharp down-regulation in VEGF mRNA. 

Expression of the VEGF receptors flt-1 and kdr was consistently down-regulated by AuF 

in a concentration-dependent manner. As the expression of TrxR remained unaltered 

by AuF treatment, the authors postulate that the anti-proliferative and anti-angiogenic 

effects of AuF are due to direct interaction with VEGF signalling. This conclusion is 

debateable however as AuF exerts its effects by altering the activity of TrxR (Gromer et 

al., 1998) and has not previously been shown to alter TrxR expression. Downstream 

regulation of VEGF signalling pathways by Trx is therefore an equally plausible 

conclusion, though not explored within the study (He et al., 2014). As T-type Ca2+ 

channels have been previously shown to be expressed within VECs, for example CaV3.1 

within HUVECs (Wang et al., 2006), these observations may also correspond with the 

proposed regulation of T-type Ca2+ channels by Trx.    

 

Confirmation that the anti-proliferative effects of AuF and PX-12 are mediated by Trx is 

provided by genetic studies. Vitamin D3-upregulated protein (VDUP), also known as Trx 

interacting protein or Trx-binding protein interacts with the redox active site of Trx and 

functions as its endogenous inhibitor. Over-expression of Trx or VDUP using 

adenovirus-mediated gene transfer has been conducted in primary aortic SMCs. Trx 

transfection increased Trx activity (2.8- fold), as determined by spectrophotometric 

insulin reduction assays. Correspondingly, cellular DNA synthesis was also increased 

(3.8- fold) when determined by methyl-[3H] thymidine incorporation over a 5hr period. 

Platelet derived growth factor (PDGF), a powerful mitogenic stimulus, was found to 
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increase both Trx activity and cellular DNA synthesis within SMCs. As Northern analysis 

did not detect any increases in Trx mRNA with PDGF treatment, it was suggested that 

changes to the redox status of Trx was mediating its effects. Furthermore, as PDGF 

treatment significantly decreased VDUP mRNA and protein levels, and subsequently 

inhibited by NAC, evidence suggested that VDUP expression is a redox-regulated 

process. Conversely, transfection with VDUP reduced Trx activity (61%) in SMCs and 

also completely blocked PDGF-induced increases in Trx activity. Whilst VDUP over-

expression alone did not alter methyl-[3H] thymidine incorporation it did block PDGF-

induced increases in SMC proliferation. VDUP over-expression was also shown to have 

no effect on the apoptotic rate. The authors therefore conclude that VDUP 

suppression increases Trx activity, and as such endogenously regulates cellular redox 

state and SMC mitogenesis. Findings also suggest that the pro-proliferative effects of 

PDGF act via this mechanism (Schulze et al., 2002). 

 

Schulze et al. (2002) also assessed the cellular distribution of Trx using 

immunohistochemistry. In quiescent cells serum starved for 48hrs, a homogenous 

cytoplasmic Trx distribution was detected with nuclear staining evident in only ~10% of 

cells. Interestingly, PDGF induced rapid translocation of Trx to cell nuclei in 58% of 

cells. This nuclear translocation was inhibited by VDUP over-expression. Translocation 

of Trx to VSMC nuclei has been previously shown to produce lipopolysaccharide and 

interleukin 1 (IL1)–induced increases in the DNA-binding activity of the transcription 

factor AP-1 (Wiesel et al., 2000). These findings therefore suggest an alternative 

potential mechanism for the growth modulating effects of Trx which could be 

influenced by intracellular Ca2+ levels. Furthermore, as discussed previously in Chapter 

3, T-type Ca2+ channels are widely expressed in VSMCs and therefore the anti-

proliferative effects of VDUP may also concern reduced interaction between Trx and T-

type Ca2+ channels.  

 

The effects of genetic-mediated Trx over-expression have also been examined. 

Following myocardial infarction (MI), pathological cardiac remodelling commonly 

occurs. Engraftment of mesenchymal stem cells (MSCs) is currently being explored as a 

potential therapeutic approach to mediate myocardial repair following MI. Rat MSCs 

were genetically modified to over-express Trx via adenoviral transfection. The 
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proliferation and differentiation potential of wild type MSCs (wt-MSC), MSCs over-

expressing Trx (Trx-MSC) and MSCs transfected with control plasmids (LacZ-MSC) were 

compared. Immunohistochemical markers such as α-tubulin to label microtubules and 

Ki-67 as a marker of proliferation were applied. This revealed that under hypoxia Trx-

MSCs had increased proliferative capacity and maintained better pluripotency when 

compared to wt-MSCs and LacZ-MSCs. This enabled successful differentiation into 

cardiomyocytes, SMCs and endothelial cells (Suresh et al., 2015).  

 

The effects of Trx expression in vivo were also examined. Rats were subject to MI prior 

to administration of pre-conditioned Trx-MSCs or LacZ-MSCs into the peri-infarct 

region. Interestingly, 7 days post MI, the number of proliferating cells was elevated in 

mice treated with Trx-MSCs. Furthermore, 60 days post MI, echocardiography and 

immunohistochemistry revealed increased myocardial function and capillary density 

alongside reduced fibrosis in Trx-MSC mice when compared to MSC-LacZ or sham MI 

controls. A significantly smaller improvement was observed in mice treated with wt-

MSCs. Western blot analysis of MI mice exposed to Trx-MSCs revealed increased 

expression of the pro-angiogenic factors VEGF and heme oxygenase-1. Furthermore, 

the expression of chemokine receptor CXCR4 was also increased, thus indicating the 

contribution of paracrine effects. It was subsequently concluded that administration of 

MSCs over-expressing Trx provides therapeutic potential in the treatment of ischemic 

disease (Suresh et al., 2015).  

 

Electrophysiological and biochemical investigations in embryonic SCs, has revealed 

that Ca2+ currents within these cells are primarily mediated by CaV3.2 channels. As 

CaV3.2 expression peaked at the G1/S transition phase of the cell-cycle it was suggested 

that CaV3.2 channels play an important role in the maintenance of undifferentiated 

states (Rodriguez-Gomez et al., 2012). Collectively, these studies support the view that 

Trx is pro-proliferative. Findings are also indirectly consistent with the potential 

involvement of T-Type Ca2+ channels in Trx-mediated growth regulation.  

 

A final interesting point to consider is what structural determinants of Trx mediate its 

growth promoting effects. The characterised actions of Trx as a ubiquitous disulphide 

reductase generally involve Cys32 and Cys35 within the active site. Resultantly, these 
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residues appear most likely to mediate the stimulatory growth effects. In support of 

this notion, a study conducted by Oblong et al. (1994) used site-directed mutagenesis 

to substitute either or both of the Cys32 and Cys35 residues in the Trx active site to 

serine residues (C32S, C35S, C32S/C35S). When applied to murine fibroblasts, Trx 

stimulated both DNA synthesis and proliferation. When the C32S, C35S, or C32S/C35S 

mutated forms of Trx were applied however, no such effects were observed. This 

indicated that the Cys residues in the redox-active site were required for Trx-mediated 

growth stimulation (Oblong et al., 1994). In contrast, current observations indicated 

that low PX-12 concentrations not expected to modify catalytic Cys residues did have 

anti-proliferative effects in both A7r5 and HEK293/CaV3.2 cells. This was similarly 

observed for MCF-7 cells where low concentrations of PX-12 inhibited proliferation, 

with IC50 values of 1.2µM or 3.2µM, when using Trx or FBS as the mitogenic stimulus 

respectively (Kirkpatrick et al., 1998). Collectively, this emphasises that the slower 

irreversible thioalkylation of Cys73 residues in Trx, which occurs at low PX-12 

concentrations (Kirkpatrick et al., 1998), may account for the growth inhibitory effects 

of PX-12.  

 

The above studies conclusively support current findings that Trx inhibition using low 

concentrations of PX-12 or AuF reduces cellular proliferation. They also propose a 

range of intracellular mechanisms which may account for this effect, including 

regulation of VEGF signalling (He et al., 2014; Suresh et al., 2015), HIF and Akt 

activation (Chen et al., 2013), increased expression of HO-1 and chemokine receptors 

(Suresh et al., 2015) and also modulation of AP-1 transcription factor activity (Schulze 

et al., 2002). Of potential significance is the observation that the majority of these 

studies were conducted on cells which have also previously been shown to express T-

type Ca2+ channels. Indirect support is therefore also provided to current observations 

that only CaV3.1 and/or CaV3.2-expressing cells are sensitive to the anti-proliferative 

effects of Trx inhibition. Changes in intracellular Ca2+ regulates a huge variety of 

signalling cascades, including those which mediate proliferation and gene transcription 

(Berridge et al., 2000). It is subsequently possible that alterations in Ca2+ influx, via 

modulation of T-type Ca2+ channels by Trx, provides an initial upstream signalling event 

which controls cell proliferation. This proposal is summarised by the following 
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schematic diagram, which also provides examples of how Ca2+ and Trx-mediated 

signalling pathways regulate gene transcription (Figure 4.14).  
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Figure 4.14. Schematic diagram showing how Trx and Ca2+ can regulate proliferation 

Showing examples of both Ca2+ (black lines) and Trx (red lines)-mediated signalling 
pathways that function to control gene transcription and cell proliferation. Potential 
interactions between these pathways, i.e. via CaV3.2 channel regulation (red dashed 
line) are highlighted. Ca2+ enters the cell membrane through voltage-gated Ca2+ 
channels (e.g. CaV3.2) which may lead to Ca2+-induced Ca2+ release from internal 
stores. Cytosolic Ca2+ regulates protein kinase C (PKC) leading to nuclear translocation 
of nuclear transcription factor (NF-κβ). In addition, nuclear Ca2+ stimulates the 
transcription factor CREB via Ca2+/calmodulin-dependent protein kinase type IV 
(CaMKIV) (Berridge et al., 2000). Reduced Trx (Trx(SH)2) is generated by thioredoxin 
reductase (TrxR) which in turn regulates the activity of transcription factors NF-κβ and 
AP-1, in addition to various progression factors. Oxidised Trx (TrxS2) is then re-
generated via oxidation. Trx is also found bound to the cell membrane and is secreted 
extracellularly; occasionally in the form of Trx80. The molecular targets of the direct 
and indirect Trx inhibitors, PX-12 and auranofin (AuF) are also shown. Diagram adapted 
from Arner & Holmgren (2000) and Lu & Holmgren (2014). (Arner & Holmgren 2000; Lu 
& Holmgren 2014) 
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4.3.4. The potential for Trx as a T-type Ca2+ channel modulator  

Current observations that AuF augments Ca2+ handling in A7r5 cells support the 

suggestion that modulation of T-type Ca2+ channels may mediate the  growth 

promoting effects of Trx. Specifically, AuF pre-treatment reduced depolarisation-

induced Ca2+ oscillations in “old” A7r5 cells, and also partially inhibited the Ca2+-

mediated window current recorded from “new” A7r5 cells. Both of these measures of 

A7r5 Ca2+ handling were previously confirmed to involve T-type Ca2+ channels (Chapter 

3). As AuF-mediated inhibition of Ca2+ oscillations in “old” A7r5 cells was reversed by 

DTT, evidence is also provided that the Trx-mediated regulation of T-type Ca2+ 

channels occurs via a redox-dependent mechanism. Unfortunately, the effects of PX-12 

on Ca2+ handling could not be examined as PX-12 was found to interfere with 

microfluorimetric signals, selectively increasing the fluorescence signal excited at 

340nm but not at 380nm. In addition, due to time constraints of the project, the 

effects of AuF on recombinant HEK293 cell window currents were not determined.  

 

Previous investigations looking at the effects of AuF on [Ca2+]i levels are limited and 

their findings somewhat contrast with current observations. A previous study used 

Fura-2 Ca2+ microfluorimetry to demonstrate that AuF (10-50µM) induced Ca2+ release 

from intracellular stores, thus elevating basal [Ca2+]i. These findings do not translate 

well to the present discussion however, as considerably higher AuF concentrations 

likely to induce apoptosis were applied (Wong et al., 1990). A more recent study 

examined the effects of AuF on [Ca2+]i within MCF-7 cells. MTS assays (an alternative to 

the MTT assay) were used to assess cell viability. Using fluo-4 as the ratiometric 

indicator, baseline [Ca2+]i levels were monitored for 30mins before AuF was perfused 

continually for 2hrs. It was subsequently demonstrated that AuF (1-10µM) produced a 

sustained increase in [Ca2+]i in a concentration- and time-dependent manner. AuF 

(24hrs) was also shown to cause apoptotic cell death, confirmed using flow cytometry, 

with a calculated IC50 value of 3.37µM. Whilst the mechanism of Ca2+ entry was not 

established, these data suggest that the apoptosis-inducing effects of higher AuF 

concentrations may also be dependent on [Ca2+]i (Varghese & Busselberg, 2014). 

Whilst these findings contrast with current observations (i.e. AuF decreases Ca2+ 

influx), they refer specifically to cytosolic [Ca2+]i and not Ca2+ influx. It would therefore 

be interesting to determine whether higher doses of AuF, applied for longer periods of 
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time, alters Ca2+ influx in A7r5 cells. In addition, further investigation to determine the 

effects of AuF on wt HEK293, HEK293/CaV3.1 and HEK293/CaV3.2 window currents 

would be useful to establish any potential isoform specific effects.  

 

4.3.5.  Summary and conclusions 

Findings discussed within chapter 3 demonstrate that T-type Ca2+ channels contribute 

to the regulation of basal Ca2+ levels. In addition, they emphasise that selective T-type 

Ca2+ channel inhibition reduces A7r5, HEK293/CaV3.1 and HEK293/CaV3.2 cell 

proliferation, whilst inhibition of L-type Ca2+ channels is without effect. Findings 

reported in the current chapter demonstrate that Trx inhibition using high 

concentrations of AuF or PX-12 increases cell death, whilst lower concentrations 

reduce the proliferation of HEK293/CaV3.2 and A7r5 cells. AuF was also found to 

reduce Ca2+ influx within A7r5s cells. The degree of the anti-proliferative effect of AuF 

was similar to those observed with the selective T-type Ca2+ channel inhibitor NNC. 

Furthermore, as the effects of PX-12 and NNC on HEK293/CaV3.2 cell proliferation 

were shown to be non-additive, evidence is provided that both drugs may act via the 

same target, i.e. CaV3.2 channels. Further investigation (using EdU incorporation assays 

as an alternative measure of cellular proliferation) confirmed that wt HEK293 cells 

were insensitive to the anti-proliferative effects of PX-12. They also indicated that DNA 

synthesis within HEK293/CaV3.1 cells was altered by PX-12 (1µM, 48hrs). This 

highlighted the potential involvement of CaV3.1, in addition to CaV3.2, channels as 

targets for Trx regulation and should also be considered in subsequent investigations. 

Support is therefore provided that Trx controls cellular proliferation via modulation of 

T-type Ca2+ channels.  
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Chapter 5 -The effects of thioredoxin (Trx) and inhibitors on 

voltage-gated Ca2+ (CaV) channels  

5.1. Introduction  

Cell-surface proteins within the extracellular environment are subject to oxidising 

conditions and are rich in stabilising disulphides (S2). In contrast, intracellular proteins 

contain many free sulfhydryl or thiol (SH) groups as the intracellular environment is 

maintained in a reduced state. Thioredoxin (Trx) serves as a major disulphide 

reductase and can counterbalance the effects of oxidative stress when up-regulated or 

over-expressed (Nakamura et al., 1997). Whilst the intracellular actions of Trx are well 

characterised, it can be excreted by cells, via a leaderless secretory pathway (Rubartelli 

et al., 1992; Tanudji et al., 2003). Although the physiological consequences of 

extracellular Trx remain relatively undetermined, it has been found to have both 

mitogenic and co-cytokine effects on monocytes (Bertini et al., 1999; Pekkari et al., 

2001). Significantly, increased levels of circulating extracellular Trx are detected within 

pathological conditions involving aberrant cellular proliferation including, but not 

limited to, a variety of cancers (Baker et al., 2013), abdominal aortic aneurysm 

(Martinez-Pinna et al., 2010) and atherosclerosis (Okuda et al., 2001).  

 

Within rat vascular smooth muscle cells (VSMCs), a coordinated elevation in [Ca2+]i is 

required for cell cycle progression (Husain et al., 1997). Whilst L-type Ca2+ channels 

have been shown to mediate VSMC contraction, T-type Ca2+ channel expression is 

restricted to proliferative phases of the cell-cycle (Kuga et al., 1996). As such, T-type 

Ca2+ channels can control basal Ca2+ levels and regulate cellular proliferation, as 

discussed extensively in Chapter 3. A key feature of CaV3.2 channels which 

distinguishes them from other T-type Ca2+ channel isoforms is their unique sensitivity 

to redox modulators and trace metals, such as ascorbate (Nelson et al., 2007a), Ni2+ 

(Kang et al., 2006; Lee et al., 1999) and Zn2+ (Kang et al., 2010). As described in Chapter 

4, CaV3.2-expressing cells were the most sensitive to the anti-proliferative effects of 

Trx inhibitors. In addition, previous findings from the research group have shown that 

Trx selectively regulates CaV3.2 channels (Boycott et al., 2013). This chapter will 

therefore examine the potential interactions between Trx and T-type Ca2+ channels 

using whole-cell patch-clamp electrophysiology.  
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5.2. Results  

5.2.1.  The effects of Trx inhibitors on native and recombinant T-type Ca2+ currents 

Findings detailed within Chapters 3 & 4 show that Trx inhibitors and selective T-type 

Ca2+ channel blockers (CCBs) reduce A7r5 cell proliferation and Ca2+ window currents 

to similar extents. In order to explore potential interactions between Trx and T-type 

Ca2+ channels directly, electrophysiology was employed. Firstly, the effects of PX-12 on 

native T- and L-type Ca2+ currents were examined in A7r5 cells. Due to the potential 

activation of L-type mediated Ca2+ current using the T-type SS protocol and vice versa, 

current subtypes are labelled with quotation marks.  Initial experiments revealed that 

PX-12 (30µM) partially inhibited native “T-type” Ca2+ currents, but at a slow rate (data 

not shown). As A7r5 recordings did not typically last for long periods of time, 

quantification of the maximal effects of PX-12 (≤30µM) was unreliable. PX-12 (100µM) 

was found to produce a faster rate of inhibition and was applied for subsequent 

experiments. As shown in Figure 5.1, bath application of PX-12 (100µM) partially 

inhibited T-type Ca2+ currents in a poorly reversible manner. L-type Ca2+ currents were 

similarly inhibited by PX-12 (100µM; Figure 5.1) although to a slightly lesser extent 

than was observed for T-type Ca2+ currents. T-type Ca2+ currents were recorded under 

conditions which favour T-type Ca2+ channels (i.e. low stimulating-voltages and using 

Ca2+ as the charge carrier). However, the sustained component of some T-type Ca2+ 

current traces indicated a small contribution of high voltage-activated (HVA) channels 

(Figure 5.1). Due to the potential summation of A7r5 T- and L-type Ca2+ currents, 

further discussed in Chapter 3, recombinant HEK293/CaV3.1 and HEK293/CaV3.2 cells 

were used for all subsequent recordings. 

 

Proliferation studies described in Chapter 4 demonstrated that HEK293/CaV3.2 cells 

were more sensitive to the anti-proliferative effects of PX-12 and AuF, when compared 

to HEK293/CaV3.1 and wild-type (wt) HEK293 cells. In order to investigate this isoform 

specific difference further, CaV3.1 and CaV3.2 currents were recorded from 

HEK293/CaV3.1 and HEK293/CaV3.2 cells respectively. Bath application of PX-12 (1-

300µM) was found to inhibit both CaV3.1 and CaV3.2 channels in a concentration-

dependent manner, with almost complete inhibition achieved with 300µM PX-12. The 
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sensitivity of each channel type was similar, although PX-12 was slightly more potent in 

inhibiting CaV3.2 compared to CaV3.1 currents (Figure 5.2).  

 

Current-voltage (I-V) protocols demonstrated that PX-12 (30mM) significantly inhibited 

CaV3.1 and CaV3.2 currents at all activating test potentials (-100mV to +60mV), as 

shown in Figure 5.3. This revealed that PX-12-mediated inhibition was voltage-

independent. Importantly, no significant effects on CaV3.1 and CaV3.2 current 

amplitude were observed when the vehicle control (DMSO) was applied alone. As PX-

12 washout was not accompanied by any recovery in current amplitude, PX-12-

mediated inhibition was shown to be irreversible, at least over the ~10-15min 

timescale examined. Contrastingly, following inhibition with PX-12 (30mM) the 

amplitude of both CaV3.1 and CaV3.2 currents was essentially fully recovered by 

exposure to the reducing agent dithiothreitol (DTT, 1mM). DTT also enhanced CaV3.1 

and CaV3.2 current amplitudes when applied in isolation, as shown by Figure 5.4 and 

Figure 5.5 for CaV3.1 and CaV3.2 currents respectively. These findings show that PX-12 

inhibits both Cav3.1 and Cav3.2 channels by a redox-sensitive mechanism. 

 
During its development PX-12 was shown to inhibit Trx directly, through both 

reversible and irreversible thioalkylation of Cys residues (Kirkpatrick et al., 1998). In 

order to determine whether PX-12-mediated inhibition of CaV3.1 and CaV3.2 currents 

was due to Trx inhibition, the effects of reduced thioredoxin (rTrx) on current 

amplitudes was examined. As illustrated in Figure 5.6, bath application of rTrx 

(4mg/mlwas without significant effect on CaV3.1 currents. In addition, rTrx failed to 

reverse the inhibitory effects of PX-12. In direct contrast, rTrx caused significant 

reversal of the effects of PX-12 on CaV3.2 currents, and also modestly enhanced the 

amplitude of CaV3.2 currents when applied in isolation (Figure 5.7). These findings 

demonstrate that PX-12-mediated inhibition of CaV3.2, but not CaV3.1, is in part due to 

Trx inhibition. They also indicate that a Trx-independent mechanism of PX-12-

mediated T-type Ca2+ channel inhibition occurs, which does not discriminate between 

CaV3.1 and CaV3.2 channels.  
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Figure 5.1. PX-12 inhibits native T-type and L-type Ca2+ currents in A7r5 cells 

Whole-cell patch-clamp recordings from A7r5 cells; A-C, “T-type” Ca2+ channel 
recordings evoked by 200ms step-depolarisations from -80 to -20mV (0.1Hz), with Ca2+ 

(15mM) as the charge carrier. D-F, “L-type” Ca2+ channel recordings evoked by 100ms 
step-depolarisations from -50 to +20mV (0.1Hz), with Ba2+ (20mM) as the charge 
carrier.  Due to the potential activation of L-type mediated Ca2+ current using the T-
type SS protocol and vice versa, “T-type” and “L-type” currents are labelled with 
quotation marks. A, Example time-series plot illustrating “T-type” Ca2+ current 
amplitude and the effects of bath application of PX-12 (100µM, black bar). B, Example 
“T-type” Ca2+ current trace corresponding with (A) showing effects of PX-12 (as 
labelled), scale bar, 100pA (vertical), 40ms (horizontal). C, Bar chart illustrating peak 
(mean ± s.e.m) “T-type” Ca2+ current amplitude (% of control amplitude) following 
exposure to DMSO (vehicle control 1:1000, grey box, n=4) and PX-12 (100µM, black 
box, n=6). D-F, As (A-C), except showing L-type Ca2+ currents. F, DMSO n=4, PX-12 n=7.  
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Figure 5.2. PX-12 inhibits CaV3.1 and CaV3.2 channels in a concentration-dependent 

manner 
Whole-cell patch-clamp recordings from HEK293/CaV3.1 (A-C) and HEK293/CaV3.2 cells 
(D-F), currents evoked by step-depolarisations (200ms duration, 0.1Hz) from -80mV to 
-20mV. A, Example CaV3.1 current trace under control conditions (red trace) and 
during exposure to PX-12 (300µM) over a 10 minute period as labelled. Scale bar 
400pA (vertical), 40ms (horizontal). B, Example time-series plots showing 
representative examples of the effects of PX-12 (1-300µM, as indicated), applied to the 
extracellular solution (black bar), on peak CaV3.1 current amplitude (% of control 
amplitude). C, Concentration-response (mean ± s.e.m) relationship graph showing the 
effects of PX-12 (1-300µM) on peak Cav3.1 current amplitude (% of control amplitude), 
n numbers in parentheses. Data were fitted with log-inhibitor normalised-response 
curves with extended ranges. D-F, As (A-C), except showing CaV3.2 currents. D, Scale 
bar 200pA (vertical), 40ms (horizontal).  
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Figure 5.3. PX-12 inhibits CaV3.1 and CaV3.2 currents in a voltage-independent 

manner 
Whole-cell patch-clamp recordings from HEK293/CaV3.1 (A-B) and HEK293/CaV3.2 (C-
D) cells. Currents evoked by 80ms step-depolarisations (-100mV to +60mV in 10mV 
increments) from -80mV (Vh). A, Current-density (mean ± s.e.m.) vs. voltage (I-V) 
relationships for CaV3.1, before (open triangles) and during (solid circles) exposure to 
PX-12 (30µM, n=6). B, Example CaV3.1 I-V traces in (i) control conditions and (ii) during 
PX-12 (30µM) treatment. C-D, As (A-B), except showing CaV3.2 responses, n=11.  
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Figure 5.4. DTT fully reverses PX-12-mediated inhibition of CaV3.1 channels 

Whole-cell patch-clamp recordings from HEK293/CaV3.1 cells, currents evoked by 
200ms (0.1Hz) step-depolarisations from -80 to -20mV. A, Example time-series plot 
showing inhibition of CaV3.1 current amplitude by PX-12 (30µM, black bar) and 
reversal by DTT (1mM, red bar). B, Corresponding, CaV3.1 current traces (from A) 
under control conditions (red trace) and during exposure to PX-12 and DTT (as 
labelled). Scale bar 500pA (vertical), 40ms (horizontal). C-D, As (A-B), except showing 
the effects of DTT (1mM) applied in isolation. E, Bar chart (mean ± s.e.m) showing the 
effects on CaV3.1 current amplitude (% of control) of DMSO (blue bar, 1:1000, n = 5), 
PX-12 (black bar, 30µM, n=12), PX-12 washout (grey bar, n=5), DTT (1mM) applied 
after PX-12 (red bar, n=7) and DTT applied in isolation (white bar, 1mM, n=11). Data 
were analysed by one-way ANOVA with Bonferroni’s post-hoc comparison test, 
***p≤0.001, ****p≤0.0001. 
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Figure 5.5. DTT fully reverses PX-12-mediated inhibition of CaV3.2 currents  

Whole-cell patch-clamp recordings from HEK293/CaV3.2 cells, currents evoked by 
200ms (0.1Hz) step-depolarisations from -80 to -20mV. A, Example time-series plot 
showing inhibition of peak CaV3.2 current amplitude by PX-12 (30µM, black bar) and 
reversal by DTT (1mM, red bar). B, Corresponding CaV3.2 current traces (from A) under 
control conditions (red trace), and during exposure to PX-12 and DTT (as labelled). 
Scale bar 400pA (vertical), 40ms (horizontal). C-D, As (A-B), except showing the effects 
of DTT (1mM) applied in isolation. Scale bar 500pA (vertical), 40ms (horizontal). E, Bar 
chart (mean ± s.e.m) showing the effects on CaV3.2 current amplitude (% of control) of 
DMSO (blue bar, 1:1000, n = 5), PX-12 (black bar, 30µM, n=13), PX-12 washout (grey 
bar, n=6), DTT applied after PX-12 (red bar, 1mM, n=7) and DTT applied alone (white 
bar, 1mM, n=12). Data were analysed using one-way ANOVA with Bonferroni’s post-
hoc comparison test, *p≤0.05, **p≤0.01.  
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Figure 5.6. rTrx does not reverse PX-12-mediated inhibition of CaV3.1 channels 

Whole-cell patch-clamp recordings from HEK293/CaV3.1 cells, currents evoked by 
200ms (0.1Hz) step-depolarisations from -80 to -20mV. A, Example time-series plot 
showing inhibition of peak CaV3.1 current amplitude by PX-12 (30µM, black bar) and 
the lack of effect of rTrx (4µg/ml, red bar). B, Corresponding CaV3.1 current traces 
(from A) under control conditions (red trace), and during exposure to PX-12 and rTrx 
(as labelled). Scale bar 200pA (vertical), 40ms (horizontal). C-D, As (A-B), except 
showing no effect of rTrx (4µg/ml, red bar) applied in isolation. E, Bar chart (mean ± 
s.e.m) showing the effects on CaV3.1 current amplitude (% of control) of PX-12 (black 
bar, 30µM, n=13), rTrx (4µg/ml) applied after PX-12 (red bar, n=13) or rTrx applied in 
isolation (white bar, 4µg/ml, n=11). PX-12 and rTrx conditions were analysed using 
paired Student’s t-tests, no significant differences were observed.  
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Figure 5.7. rTrx partially reverses PX-12-mediated inhibition of CaV3.2 channels 

Whole-cell patch-clamp recordings taken from HEK293/CaV3.2 cells, currents evoked 
by 200ms (0.1Hz) step-depolarisations from -80 to -20mV. A, Example time-series plot 
showing inhibition of peak CaV3.2 current amplitude by PX-12 (30µM, black bar) and 
partial reversal by rTrx (4µg/ml, red bar). B, Corresponding CaV3.2 current trace (from 
A) under control conditions (red trace), and during exposure to PX-12 and rTrx (as 
labelled). Scale bar 200pA (vertical), 40ms (horizontal). C-D, As (A-B), except showing 
the effects of rTrx (4µg/ml, red bar) in isolation. E, Bar chart (mean ± s.e.m) showing 
the effects on CaV3.2 current amplitude (% of control) of PX-12 (black bar, 30µM, 
n=10), rTrx (4µg/ml) applied after PX-12 (red bar, n=10) or rTrx applied alone (white 
bar, 4µg/ml, n=6). Data were analysed using paired Student’s t-tests, ****p≤0.0001.  
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To further investigate the apparent selective regulation of CaV3.2 channels by Trx, the 

effects of AuF on HEK293/CaV3.1 and HEK293/CaV3.2 currents were also examined. As 

AuF inhibits Trx indirectly via inhibition of thioredoxin reductase (TrxR), cells were pre-

treated with AuF (3µM, 30mins) prior to recording currents to allow the effects of AuF 

on Trx to equilibrate. As illustrated in Figure 5.8, the current-density of HEK293/CaV3.1 

cells was not significantly altered by pre-treatment with AuF. Furthermore, the degree 

of CaV3.1 current potentiation by DTT was similar between control and AuF conditions. 

In stark contrast however, AuF pre-treatment significantly reduced the current-density 

of HEK293/CaV3.2 cells, and also dramatically increased the degree of CaV3.2 current 

enhancement by DTT (Figure 5.9). These data confirmed that Trx positively and 

selectively regulates CaV3.2 channels.  

 
Initial experiments in A7r5 cells had shown that both native T- and L-type Ca2+ currents 

were inhibited by PX-12, indicating that both CaV subtypes were regulated by Trx 

(Figure 5.1). However, as PX-12 was subsequently found to inhibit recombinant CaV3.1 

currents via a Trx-independent mechanism (Figure 5.6), further investigation was 

required to establish if Trx regulates native Cav3 channels in these cells. As illustrated 

in Figure 5.10, bath application of rTrx did not significantly reverse PX-12-mediated 

inhibition of T-type Ca2+ current amplitudes, confirming that PX-12 was acting 

independently of Trx. Furthermore, rTrx did not generally alter T-type Ca2+ current 

amplitude when applied in isolation (Figure 5.10). As previous investigations had 

shown that Trx selectively regulated CaV3.2 currents, this observation is consistent 

with CaV3.1 being the primary T-type Ca2+ channel isoform expressed within A7r5 cells 

(Chapter 3). These findings indicate that Trx does not regulate A7r5 T-type Ca2+ 

currents, and also supports the finding that PX-12-mediated inhibition of CaV channels 

is Trx-independent.   

 

Of considerable interest however, is that the amplitude of a very limited number of T-

type Ca2+ currents in A7r5 cells (1 of 5 cells) was clearly enhanced by rTrx under control 

conditions (i.e. when applied without prior treatment with PX-12). Corresponding 

immunohistochemistry conducted on the same batch of A7r5 cells revealed a dramatic 

increase in CaV3.2-immunoreactivity (IR) when compared to CaV3.1-IR, which very 

likely accounted for the observed increase in sensitivity to Trx (Error! Reference source 
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not found.). Additionally, whilst CaV3.1-IR was directly comparable in terms of intensity 

and localisation to that previously reported (Chapter 3), findings regarding CaV3.2-IR 

were contrasting. Specifically, the pattern of CaV3.2-IR was much brighter with dense 

peri-nuclear regions detected alongside the nuclear staining previously reported 

(Chapter 3). Whilst this observation is only preliminary it suggests that CaV3.2 

expression may be dynamically regulated in A7r5 cells. It is also consistent with the 

idea that only T-type Ca2+ currents facilitated in part by CaV3.2 channels in A7r5 cells 

are regulated by Trx. This suggests that the pro-proliferative effects of Trx in VSMCs 

may be dependent on CaV3.2 expression levels.   
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Figure 5.8. Pre-treatment with AuF has no effect on CaV3.1 currents 

Whole-cell patch-clamp recordings from HEK293/CaV3.1 cells under control conditions 
(A-B) and following pre-treatment with AuF (3µM, 30mins, C-D). Currents evoked by 
200ms (0.1Hz) step-depolarisations from -80 to -20mV. A, Example time-series plot 
showing effects of DTT (1mM) on CaV3.1 current peak amplitude under control 
conditions. B, Corresponding CaV3.1 current trace (from A) under control conditions 
(red trace) and during exposure to DTT (as labelled). Scale bar 400pA (vertical), 40ms 
(horizontal). C-D, As (A-B), except showing the effects of DTT (1mM) following AuF pre-
treatment. E, Bar chart showing (mean ± s.e.m) CaV3.1 current-density under control 
conditions (blue bar, n=5) and after pre-treatment with AuF (3µM, 30mins, red bar, n = 
6). F, Bar chart showing (mean ± s.e.m) CaV3.1 current amplitude enhancement by DTT 
(1mM), applied under both control conditions (blue bar, n=6) and after pre-treatment 
with AuF (3µM, 30mins, red bar, n = 6). Data were analysed using unpaired Student’s t-
tests, no significant differences observed. 
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Figure 5.9. AuF reduces HEK293/CaV3.2 cell current-density and increases DTT-

mediated current enhancement 
Whole-cell patch-clamp recordings from HEK293/CaV3.2 cells under control conditions 
(A-B) and following AuF (3µM, 30mins) pre-treatment (C-D). Currents evoked by 200ms 
(0.1Hz) step-depolarisations from -80 to -20mV. A, Example time-series plot showing 
effects of DTT (1mM) on CaV3.2 current peak amplitude under control conditions. B, 
Corresponding CaV3.2 current trace (from A) under control conditions (red trace), and 
during exposure to DTT (as labelled). Scale bar 200pA (vertical), 40ms (horizontal). C-D, 
As (A-B) except showing the effects of DTT (1mM) following AuF pre-treatment. E, Bar 
chart showing (mean ± s.e.m) CaV3.2 current-density under control conditions (blue 
bar, n=11) and after pre-treatment with AuF (3µM, 30mins, red bar, n = 14). F, Bar 
chart showing (mean ± s.e.m) CaV3.2 current amplitude enhancement by DTT (1mM), 
applied under both control conditions (blue bar, n=13) and after pre-treatment with 
AuF (3µM, 30mins, red bar, n = 14). Data were analysed using unpaired Student’s t-
tests, *p≤0.05.  
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Figure 5.10. rTrx does not reverse PX-12-mediated inhibition of A7r5 T-type Ca2+ 

currents 
Whole-cell patch-clamp recordings from A7r5 cells, currents evoked by 200ms (0.1Hz) 
step-depolarisations from -80 to -20mV. A, Example time-series plot showing inhibition 
of T-type Ca2+ current peak amplitude by PX-12 (30µM, black bar) and the lack of effect 
of rTrx (4µg/ml, red bar) when applied to the perfusate. B, Corresponding T-type Ca2+ 
current trace (from A) under control conditions (red trace), and during exposure to PX-
12 and rTrx (as labelled). Scale bar 40pA (vertical), 40ms (horizontal). C-D, As (A-B), 
except showing the effects of rTrx (4µg/ml, red bar) in isolation. E, Bar chart (mean ± 
s.e.m) showing the effects of PX-12 (black bar, 100µM, n=4) and rTrx (4µg/ml) applied 
after PX-12 (red bar, n=4) or rTrx applied alone (white bar, 4µg/ml, n=5), on A7r5 T-
type Ca2+ current amplitude (% of control). Data were analysed using unpaired 
Student’s t-tests, no significant differences were observed. 
 
 
 
 
 
 
 



179 
 
 

rTrx

A B

C

D

CaV3.1 DAPI merged

CaV3.2 DAPI merged

 

CaV3.1/DAPI CaV3.2/DAPI
E F

 Figure 5.11. Increased A7r5 CaV3.2 channel expression correlates with T-type Ca2+ 
current rTrx-sensitivity 

Electrophysiology and immunohistochemistry was conducted on the same batch of 
A7r5 cells (A-D). A-B, Whole-cell patch-clamp recordings from A7r5 cells, currents 
evoked by 200ms (0.1Hz) step-depolarisations from -80 to -20mV. A, Example time-
series plot showing regulation of T-type Ca2+ current amplitude by rTrx (4µg/ml, red 
bar) applied to the perfusate. B, Corresponding T-type Ca2+ current traces (from A) 
under control conditions (red trace), and during exposure to rTrx (as labelled). Scale 
bar 50pA (vertical), 40ms (horizontal). C-D, Dual-label immunofluorescence using anti-
CaV3.1 (1:100, C) or anti-CaV3.2 (1:1000, D) with Alexa Fluor-555 secondary antibody 
(1:500) (left panels, red images) and DAPI to label cell nuclei (centre panel, blue 
images), merged CaV3.1 or CaV3.2 and DAPI images (right panels). Scale bars 50µm. E-F, 
As (C-D), except conducted on a different batch of A7r5 cells (images reproduced from 
Chapter 3) and showing only merged DAPI/CaV3.1 (E), and DAPI/CaV3.2 (F), images.   
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5.2.2. Mechanism of Trx-mediated CaV3.2 regulation 

After establishing that CaV3.2 channels were positively and selectively regulated by Trx, 

the mechanism and molecular determinants of Trx sensitivity were next explored using 

HEK293/CaV3.2 cells. I-V protocols revealed that AuF preferentially inhibited CaV3.2 

currents at lower stimulating voltages, and produced a rightwards shift in I-V profiles 

(Figure 5.11). Interestingly, as T-type Ca2+ channels activate and inactivate at similar 

voltages they can facilitate a window current at resting membrane potential (Vm), 

which can control basal [Ca2+]i. In confirmation of this suggestion, CaV3.2-mediated 

window currents were recorded directly from HEK293/CaV3.2 cells using Ca2+ 

microfluorimetry (Chapter 3). As a “window current” is operationally defined as the 

overlap between activation and steady-state inactivation curves (Perez-Reyes, 2003), 

the observed AuF-mediated shift in I-V profile (Figure 5.11) could theoretically 

decrease the CaV3.2-mediated Ca2+ window current. The AuF-mediated reduction in 

HEK293/CaV3.2 current-density observed (Figure 5.9) is also likely to reduce basal Ca2+ 

influx.  

 
CaV3.2 currents were augmented by bath-application of rTrx (Figure 5.7) indicating that 

the molecular determinant(s) of rTrx-sensitivity was located on the extracellular 

surface of the channel. As Trx uptake has been previously reported in Jurkat T-

lymphoma cells (Kondo et al., 2004), it was also important to assess any potential 

effects of applying rTrx to the intracellular environment. As shown by Figure 5.12, 

inclusion of rTrx (20µg/ml) to the patch-pipette solution did not significantly alter the 

current-density in HEK293/CaV3.2 cells, after a minimum of 5 min dialysis. 

Furthermore, intracellular rTrx had no effect on the degree of PX-12-mediated CaV3.2 

channel inhibition. Interestingly, whilst intracellular application of rTrx did not 

significantly alter HEK293/CaV3.2 cell current-density, a modest enhancement was 

detected (Figure 5.12). This may potentially be due to cellular Trx secretion.  
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Figure 5.11. AuF inhibits CaV3.2 currents in a voltage-dependent manner  
Whole-cell patch-clamp recordings from HEK293/CaV3.2 cells, currents evoked by 
80ms step-depolarisations (-100mV to +60mV in 10mV increments) from -80mV (Vh). 
A, Current-density (mean ± s.e.m.) vs. voltage (I-V) relationships for CaV3.2 currents 
under control conditions (open triangles, n=11) or following AuF (3µM, 25mins) pre-
treatment (solid circles, n=7). B, Example CaV3.2 I-V traces under (i), control conditions 
and (ii), following AuF (3µM, 25mins) pre-treatment. Scale bar 400pA (horizontal), 
20ms (vertical).  
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Figure 5.12. Intracellular rTrx application has no effect on CaV3.2 currents 

Whole-cell patch-clamp recordings from HEK293/CaV3.2 cells under control conditions 
(A-B) and with rTrx (20µg/ml) applied to the intracellular solution ((rTrx)i)(C-D). 
Currents evoked by 200ms (0.1Hz) step-depolarisations from -80 to -20mV. A, Example 
time-series plot showing the effects of PX-12 (100µM) on the peak CaV3.2 current 
amplitude recorded using standard intracellular solution. B, Corresponding CaV3.2 
current traces (from A) under control conditions (red trace), and during exposure to 
PX-12 (as labelled). Scale bar 200pA (vertical), 40ms (horizontal). C-D, As (A-B), except 
showing the effects of PX-12 (100µM) when rTrx (20µg/ml) is applied to the 
intracellular solution. E, Bar chart showing (mean ± s.e.m) CaV3.2 current-density 
under control conditions (black bar, n=5) and with intracellular rTrx (20µg/ml, (rTrx)i, 
white bar, n=5) exposure. F, Bar chart showing (mean ± s.e.m) inhibition of CaV3.2 
current amplitudes (% of control) by PX-12 (100µM) applied under control conditions 
(black bar, n=5) or with intracellular rTrx (20µg/ml, (rTrx)i) application (white bar, n=5). 
Data were analysed using unpaired Student’s t-tests, no significant differences were 
observed. 
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A distinguishing feature of CaV3.2 channels is their unique sensitivity to both redox 

modulators and trace metals. For example, CaV3.2 channels are blocked by significantly 

lower Ni2+ concentrations (IC50 value of 13µM) than either CaV3.1 and CaV3.3 channels 

(IC50 values of 250µM and 216µM respectively), (Lee et al., 1999). Interestingly, 

mutation of a single extracellular His residue at position 191 (H191) to a glutamine (Q) 

residue (CaV3.2(H191Q)), located within the S3-S4 loop of domain I, significantly 

reduced Ni2+ blockade of CaV3.2 channels (Kang et al., 2006). His191 has also been 

shown to be responsible for ascorbate-mediated inhibition of CaV3.2 channels as the 

CaV3.2(H191Q) mutant channel is completely insensitive to ascorbate (Nelson et al., 

2007a). In order to explore the His191 residue as a potential molecular target for Trx, 

currents were recorded from HEK293 cells stably expressing recombinant 

CaV3.2(H191Q) mutant channels (HEK293/CaV3.2(H191Q)). In agreement with previous 

reports, bath application of ascorbate had no effect on CaV3.2(H191Q) activity (Figure 

5.13). 

 

 When applied in isolation or in combination with ascorbate, PX-12 inhibited 

CaV3.2(H191Q) currents (Figure 5.13) to a similar degree as was observed for wt CaV3.2 

channels (Figure 5.2). A key difference with wt CaV3.2 channels, however, was that rTrx 

was completely unable to reverse PX-12-mediated inhibition of CaV3.2(H191Q) 

currents (Figure 5.14). Application of rTrx under control conditions was also found to 

be without effect on CaV3.2(H191Q) currents (Figure 5.14), thereby showing that this 

single point mutation (H191Q) abolished CaV3.2 channel sensitivity to rTrx. Whilst PX-

12 inhibited CaV3.2(H191Q) currents, when applied in isolation or co-applied with 

ascorbate (Figure 5.13), rTrx was unable to reverse the PX-12-mediated inhibition 

(Figure 5.14). These data provide conclusive evidence that the molecular target(s) of 

PX-12 is not the molecular determinant of CaV3.2 channel rTrx-sensitivity i.e. His191. 

 

The effects of ascorbate on wt CaV3.2 currents were also examined, initially for control 

purposes. As illustrated in Figure 5.15, bath application of ascorbate inhibited CaV3.2 

current amplitude, in contrast with its lack of effect on CaV3.2(H191Q) currents (Figure 

5.13). Strikingly, when PX-12 was co-applied with ascorbate, wt CaV3.2 current 

enhancement and full reversal of ascorbate-mediated inhibition was observed. This 
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was highly unusual considering that both ascorbate and PX-12 had inhibitory effects on 

wt CaV3.2 current amplitudes when applied in isolation (Figure 5.15). Furthermore, co-

application of ascorbate and PX-12 also significantly enhanced CaV3.2 tail current 

amplitudes on some occasions (7 out of 18 cells recorded), and appeared to reduce 

channel inactivation. Contrastingly, when PX-12 was applied initially in isolation prior 

to the subsequent co-application with ascorbate, a dual-inhibitory effect was observed 

(Figure 5.15). This indicates that the, as of yet unidentified, molecular target(s) for PX-

12 may interact in a complex manner with His191.  

 

The disulphide reductase capabilities of Trx are generally dictated by two Cys residues 

(Cys32 and Cys35) within the active site. When in their reduced dithiol form ((SH)2), 

these Cys residues transfer reducing equivalents to target proteins, as reviewed 

(Holmgren, 1995). In order to generate rTrx, Trx applied previously had been pre-

incubated with DTT, which was removed prior to application. To examine whether the 

redox-state of Trx determined its ability to modulate HEK293/CaV3.2 currents, the 

effects of oxidised Trx (oTrx, i.e. non-reduced) were next examined. Findings were 

compared with the effects of rTrx, as detailed in Figure 5.7. Under control conditions, 

bath application of oTrx enhanced CaV3.2 current amplitudes to a similar extent as 

rTrx, (Figure 5.16), indicating that the effects of Trx were independent of its redox-

status. Furthermore, oTrx also caused a small degree of CaV3.2 current enhancement 

following PX-12 application. In contrast to rTrx, the reversal of PX-12-mediated 

inhibition of CaV3.2 channels by oTrx was non-significant (Figure 5.17). 

 

Under storage conditions (i.e. non-reduced), Trx lacks disulphide reductase activity, 

indicating that active site Cys residues will be in their oxidised disulphide form 

(Montano et al., 2014). Freezing of tissue and cell samples, and also exposure to air, 

has been shown to oxidise active site Cys residues and inactivate Trx (Luthman & 

Holmgren, 1982). A further important, and generally overlooked, consideration when 

using mammalian Trx is the redox state of non-active site Cys residues (Cys62, Cys69 and 

Cys73). These non-canonical Cys residues do not infer disulphide reductase properties 

per se, but can influence the overall structure of Trx. Specifically, homodimer 

formation via inter-molecule disulphide bond formation between Cys73 residues 

(Weichsel et al., 1996), and intra-molecule disulphide bond 
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Figure 5.13. CaV3.2(H191Q) currents are inhibited by PX-12 but not ascorbate 

Whole-cell patch-clamp recordings from HEK293/CaV3.2(H191Q) cells, currents evoked 
by 200ms (0.1Hz) step-depolarisations from -80 to -20mV. A, Example time-series plot 
showing the effects of ascorbate (asc, 300µM, orange bar) and PX-12 (30µM, black bar) 
on peak CaV3.2(H191Q) current amplitudes. B, Corresponding CaV3.2(H191Q) current 
traces (from A) under control conditions (red trace) and during exposure to ascorbate 
(asc, 300µM) and PX-12 (30µM) as labelled. Scale bar 500pA (vertical), 40ms 
(horizontal). C-D, As (A-B), except showing the effect of PX-12 (30µM, black bar) in 
isolation. E, Bar chart (mean ± s.e.m) showing the effects of ascorbate (asc, 300µM, 
orange bar, n=4), ascorbate with PX-12 (30µM) (black bar, n=4) and PX-12 alone 
(30µM, white bar, n=5) on CaV3.2(H191Q) current amplitudes (% of control).  
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Figure 5.14. rTrx has no effect on CaV3.2(H191Q) currents 

Whole-cell patch-clamp recordings from HEK293/CaV3.2(H191Q) cells, currents evoked 
by 200ms (0.1Hz) step-depolarisations from -80 to -20mV. A, Example time-series plot 
showing inhibition of CaV3.2(H191Q) current amplitude by PX-12 (30µM, black bar) and 
no reversal by rTrx (4µg/ml, red bar). B, Corresponding CaV3.2(H191Q) current traces 
(from A) under control conditions (red trace), and during exposure to PX-12 and rTrx 
(as labelled). Scale bar 200pA (vertical), 40ms (horizontal). C-D, As (A-B), except 
showing the effects of rTrx (4µg/ml, red bar) in isolation. E, Bar chart (mean ± s.e.m) 
showing the effects of PX-12 (black bar, 30µM, n=4), rTrx (4µg/ml) applied after PX-12 
(red bar, n=4) and rTrx applied alone (white bar, 4µg/ml, n=4), on CaV3.2(H191Q) 
current amplitudes (% of control). PX-12 and rTrx conditions were analysed using 
paired Student’s t-tests, no significant difference was observed.  
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Figure 5.15. CaV3.2 currents are enhanced by co-application of ascorbate and PX-12 

Whole-cell patch-clamp recordings from HEK293/CaV3.2 cells, currents evoked by 
200ms (0.1Hz) step-depolarisations from -80 to -20mV. A, Example time-series plot 
showing the effects of ascorbate (asc, 100µM, orange bar) in isolation and when co-
applied with PX-12 (30µM, black bar) on both the CaV3.2 current peak amplitude 
(white circles) and tail current amplitude (blue circles). B, Corresponding CaV3.2 
current traces (from A) under control conditions (red trace), and during exposure to 
ascorbate (asc, black trace, 100µM) and ascorbate + PX-12 (green trace, 30µM) as 
labelled. Scale bar 500pA (vertical), 40ms (horizontal). C, Bar chart (mean ± s.e.m) 
showing the effects of ascorbate (asc, 100µM, orange bar, n=16), ascorbate co-applied 
with PX-12 (30µM) (green bar, n=16) and NNC (3µM, black bar, n=3) on CaV3.2 peak 
current amplitudes (solid bars, LHS axis) and tail current amplitudes (striped bars, RHS 
axis); both expressed as % of control. D-E, As (A-B), except showing the effects of PX-
12 applied in isolation prior to co-application with ascorbate. Scale bar 200pA 
(vertical), 40ms (horizontal). F, As (C), except showing the effects of PX-12 (30µM, 
black bars, n=5) and PX-12 co-applied with ascorbate (asc, 100µM) (green bar, n=5). 
Data were analysed using paired Student’s t-test, *p≤0.05,**p≤0.01. 
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formation between Cys62 and Cys69 residues (Watson et al., 2003), modifies the 

structure of Trx in such a manner that it is no longer a substrate for TrxR. An early 

study examined differences between the crystal structures of human rTrx and oTrx; 

oTrx crystals were generated by allowing rTrx to oxidise in air for 2 months, without 

the addition of further DTT. It was subsequently demonstrated that oTrx and rTrx 

exhibited only very subtle structural differences, specifically concerning a slight 

conformational modification around the active site (Weichsel et al., 1996). In stark 

contrast however, an alternative study generated oTrx crystals by leaving non-reduced 

Trx to oxidise for 6 months. This study revealed that intra-molecule disulphide bond 

formation occurred between Cys62 and Cys69 residues within fully oxidised Trx. The 

non-active site disulphide bond completely disrupted the structure of the α3 helix, 

exposing hydrophobic residues to the solvent (Hwang et al., 2015). This study 

emphasises that different Cys residues within Trx show differential sensitivities to 

oxidation. Consequently, it was important to consider whether the redox-state of non-

canonical Cys residues in Trx influenced its CaV3.2 channel enhancing activity.  

 

Due to time constraints, Trx could not be allowed to oxidise for the full 6 months, as 

shown previously necessary to oxidise Cys62 and Cys69 residues (Hwang et al., 2015). In 

an attempt to further oxidise oTrx however, non-reduced oTrx was subject to air-

mediated oxidation for 1 week and then bubbled with oxygen for 24hrs prior to use. 

Oxygenated oxidised Trx (ooTrx) was found to modestly enhance HEK293/CaV3.2 

currents under control conditions. Importantly, the degree of ooTrx-mediated current 

enhancement under control conditions was directly comparable to those observed 

following rTrx and oTrx exposure (Figure 5.16). Importantly, application of the Trx 

elution buffer (EB) was without significant effect. However, when the effects of all Trx 

redox forms, applied under control conditions, were combined and compared against 

the effects of EB exposure, a significant enhancement in CaV3.2 current amplitude was 

apparent (Figure 5.16). In contrast to rTrx (Figure 5.7), ooTrx was without any effect on 

HEK293/CaV3.2 currents following inhibition with PX-12 (Figure 5.17). Collectively, 

these data show that the ability of Trx to enhance CaV3.2 currents under control 

conditions was independent of its redox state. Contrastingly, Trx-mediated reversal of 

PX-12-mediated CaV3.2 current inhibition was shown to be redox-dependent.  
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Figure 5.16. Trx-mediated regulation of CaV3.2 channels under control conditions is 

Trx redox state-independent 
Whole-cell patch-clamp recordings from HEK293/CaV3.2 cells, currents evoked by 
200ms (0.1Hz) step-depolarisations from -80 to -20mV. A, Example time-series plot 
showing enhancement of CaV3.2 current amplitude by oxidised Trx (oTrx, 4µg/ml, blue 
bar) and no effect of the elution buffer (EB, 1:500, black bar) when applied to the 
perfusate. B, Corresponding CaV3.2 current traces (from A) under control conditions 
(red trace), and during exposure to oTrx (black trace). Scale bar 200pA, 40ms 
(horizontal). C-D, As A-B, except showing the effect of oxygenated oxidised Trx (ooTrx, 
4µg/ml, green bar). E, Bar chart (mean ± s.e.m) showing the effects of EB (black bar, 
1:500, n=8), rTrx (red bar, 4µg/ml, n=7), oTrx (blue bar, 4µg/ml, n=8) and ooTrx (green 
bar, 4µg/ml, n=3) on CaV3.2 current amplitude (% of control). Data were analysed 
using one-way ANOVA followed by Dunnett’s multiple comparison test, no significant 
difference. F, As E, except showing the combined effects of all forms of Trx (red bar, 
4µg/ml, n=18) compared to the effect of the EB (black bar, 1:500, n=8) on CaV3.2 
current amplitude (% of control). Data were analysed using un-paired Student’s t-test, 
**p≤0.01. 
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Figure 5.17. Trx-mediated reversal of PX-12 mediated CaV3.2 channel inhibition is Trx 

redox state-dependent 
Whole-cell patch-clamp recordings from HEK293/CaV3.2 cells, currents evoked by 
200ms (0.1Hz) step-depolarisations from -80 to -20mV. A, Example time-series plot 
showing inhibition of CaV3.2 current amplitude by PX-12 (30µM, black bar) and a very 
small degree of reversal by oxidised Trx (oTrx, 4µg/ml, blue bar) when applied to the 
perfusate. B, Corresponding, CaV3.2 current traces (from A) under control conditions 
(red trace) and during exposure to PX-12 and oTrx (as labelled). Scale bar 200pA 
(vertical), 40ms (horizontal). C-D, As (A-B), except showing no reversal with 
oxygenated oxidised Trx (ooTrx, 4µg/ml, green bar). E, Bar chart (mean ± s.e.m) 
showing the effects of PX-12 (black bar, 30µM, n=22), rTrx (red bar, 4µg/ml, n=10), 
oTrx (blue bar, 4µg/ml, n=8) and ooTrx (green bar, 4µg/ml, n=4) on CaV3.2 current 
amplitude (% of control). Data analysed using one-way ANOVA followed by Dunnett’s 
multiple comparison test, **p≤0.01.  
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5.3. Discussion  

Results described within Chapters 3 and 4 show how inhibitors of both T-type Ca2+ 

channels and Trx reduced the proliferation of CaV3.2-expressing cells. Ca2+ 

microfluorimetry further revealed that both T-type Ca2+ channel and Trx inhibitors 

decreased basal Ca2+ influx within A7r5 cells. These data collectively indicate that Trx 

may regulate proliferation via modulation of CaV3.2 channels (Chapters 3 & 4). Results 

described in the current chapter confirm that CaV3.2 channels are positively and 

selectively regulated by Trx.  

 

5.3.1. Trx regulates CaV3.2 channels via an extracellular histidine residue at position 

191 (His191) 

The novel finding that CaV3.2 channels are selectively regulated by Trx via an 

interaction with His191 is consistent with a previous study conducted by the Peers’ 

group. This study revealed that AuF selectively inhibited CaV3.2 channels whilst having 

no effect on CaV3.1 or CaV3.3 channels. Specifically, AuF (2-5µM) pre-treatment (30-

60mins) selectively reduced the current-density of HEK293/CaV3.2 cells in a time- and 

concentration-dependent manner. Additionally, AuF (2µM, 30mins) increased DTT- 

and rTrx-mediated enhancement of CaV3.2 current amplitudes. In contrast with the 

current finding that AuF shifted CaV3.2 I-V profiles to more positive potentials, the 

previous study indicated that AuF-mediated inhibition of CaV3.2 channels was voltage-

independent. A potential explanation for this discrepancy is that a higher AuF 

concentration (5µM) was applied than currently used, which was reported to cause 

visible damage and detachment of some cells (Boycott et al., 2013).  

 

Boycott et al. (2013) also determined that all 3 T-type Ca2+ channel isoforms (CaV3.x) 

were inhibited by carbon monoxide (CO). Interestingly, AuF pre-treatment selectively 

decreased CO-mediated inhibition of CaV3.2 currents indicating that CO was acting, in 

part, by disrupting tonic Trx-mediated CaV3.2 regulation. Of relevance to the current 

finding that Trx regulates CaV3.2 channels via His191, is that mutant CaV3.2(H191Q) 

channels (as used currently) were shown to be equally sensitive to CO. Furthermore, 

the membrane-impermeant oxidising agent 5,5-dithiobis(2-nitrobenzoic acid) (DTNB) 

and also the endogenous reducing agent L-cysteine dramatically reduced the ability of 
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CO to inhibit CaV3.2 currents. As such, it was confirmed that CO acts via a redox-

sensitive extracellular location, likely to be Cys residues that are conserved amongst 

CaV3.x channels (Boycott et al., 2013). This proposed mechanism of CO-mediated 

inhibition of CaV3.x channels appears to share similarities with the isoform 

indiscriminate nature of PX-12-mediated inhibition of CaV3.1 and CaV3.2 channels, as 

currently reported. Interestingly, as CO appeared to interrupt Trx-mediated CaV3.2 

regulation (Boycott et al., 2013), it is possible that the molecular determinant(s) of CO 

sensitivity are in close physical proximity to His191. Consistent with this proposal, Cys 

residues conserved amongst all CaV3.x channels are located in close physical proximity 

to His191 in CaV3.2 channels, as further discussed in section 5.3.2 and illustrated in 

Figure 5.18.  

 

Trx has also previously been shown to regulate transient receptor potential canonical 

(TRPC) channels (Xu et al., 2008). TRPC channels are non-selective cation channels, 

which in terms of their structure and ability to form heteromultimeric channels, are 

most closely related to the voltage-gated K+ channel KV1.2. TRPC channels are typically 

made up of combinations of TRPC-1, TRPC-4 or TRPC-5 subunits (Bon & Beech, 2013). 

Xu et al. (2008) determined that recombinantly-expressed TRPC5 homomultimeric and 

TRPC5/TRPC1 heteromultimeric channels were both regulated by extracellular rTrx. 

Regarding potential mechanisms, TRPC5 channels are activated by application of 

lanthanide. The molecular target of lanthanide is a glutamic acid (Glu) residue at 

position 543 (Glu543), located within an extracellular loop adjacent to the ion pore. The 

authors determined that both the membrane-impermeant disulphide reducing agent 

Tris(2-carboxyethyl)phosphine hydrochloride (TCEP) and DTT activated TRPC5 currents. 

Substitution of Cys553 and Cys558 with alanine residues resulted in currents which were 

constitutively active. The effects of DTT and TCEP were correspondingly abolished. This 

revealed that Cys553 and Cys558 residues, found in close proximity to Glu543, form a 

disulphide bridge which constrains TRPC5 channels in a state of limited open 

probability. In a manner comparable to DTT, rTrx stimulated both TRPC5 and 

TRPC5/TRPC1 channels. Contrastingly, oTrx was without effect. It was subsequently 

proposed that extracellular rTrx activates TRPC5 and TRPC5/TRPC1 channels by 

breaking the disulphide bridge which forms between Cys553 and Cys558 around the ion 
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pore. Interestingly, following activation of TRPC5 channels with lanthanide rTrx 

subsequently caused channel inhibition (Xu et al., 2008).  

 

Upon comparison of the findings of Xu et al. (2008) with current results, a key 

similarity was that Trx acted via an extracellular site on the ion channel, supporting the 

conclusion that Trx released by cells can modulate ion channel activity. Contrastingly, 

the molecular determinants of Trx-mediated TRPC channel regulation i.e. Cys residues, 

were disparate to the molecular determinant in the CaV3.2 channel, His191. 

Importantly, oTrx was without effect on TRPC channels suggesting that modification of 

TRPC channel Cys residues was reliant on the disulphide reductase abilities of Trx, 

imparted by active site Cys residues being in their reduced dithiol form (Xu et al., 

2008). In direct contrast however, Trx-mediated regulation of CaV3.2 channels under 

control conditions, but not following PX-12 mediated inhibition, was independent of 

the Trx redox state, and as such dithiol-exchange. Resultantly, the potential role of 

non-active site Trx residues will also be considered in the subsequent discussion of Trx-

mediated CaV3.2 channel regulation.  

 

The suggestion that some of the physiological effects of extracellular Trx are 

independent of active site Cys residues dithiol-exchange is not a novel proposal. A key 

difference between hTrx and other mammalian Trx forms when compared to bacterial 

forms is that in addition to highly conserved active site Cys32 and Cys35 residues, hTrx 

contains three additional non-canonical Cys residues at positions 62, 69, and 73 (Cys62, 

Cys69 and Cys73) (Weichsel et al., 1996). Significantly, when hTrx was applied to culture 

medium lacking serum, MCF-7 breast cancer cell proliferation was stimulated. 

Contrastingly, no effect on MCF-7 cell proliferation was observed when E. coli rTrx was 

applied. Mutant hTrx(C32S/C35S) was also unable to stimulate MCF-7 cell proliferation 

(Gasdaska et al., 1995). It is important to note however, that extracellular application 

of bacterial Trx has been shown to exert mitogenic effects within certain cell lines. For 

example, a study reported that E. coli Trx, reduced using TrxR and NADPH, elevated 

cellular DNA synthesis in human B-cell lines when applied to the culture medium 

(Biguet et al., 1994). These previous studies collectively indicate that the growth-

promoting effects of extracellular Trx can be dependent on both intra- and extra-active 

site residues.  
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Interestingly, the pro-proliferative effects of hTrx were most apparent in minimal 

culture medium, and completely abolished by daily medium replacement. Evidence 

that extracellular hTrx can exert autocrine mitogenic effects was therefore provided. 

Application of radioisotope-labelled Trx further revealed that hTrx bound to MCF-7 cell 

membranes in a time-dependent manner (Gasdaska et al., 1995). It was suggested that 

this was due to Trx binding to a specific, but undetermined, cell surface receptor. 

Importantly, as MCF-7 cells have been shown to express CaV3.2 channels which 

influence cell proliferation (Taylor et al., 2008b), an alternative possibility consistent 

with current findings is that Trx binds to membranous CaV3.2 channels via His191. This 

proposed binding could account for both the membranous localisation of hTrx and also 

its stimulatory effects on MCF-7 cell proliferation (Gasdaska et al., 1995). An important 

and interesting future experiment, using immunohistochemistry, would be to assess 

the subcellular localisation of Trx within both HEK293/CaV3.2 and A7r5 cells. The 

effects of AuF treatment on the potential patterns of Trx and CaV3.2 channel co-

localisation could also be examined. A key consideration however, would be the 

epitope sequence to which the Trx primary antibody binds. This could be significant as 

a modified form of Trx has been previously identified within the extracellular 

environment (Di et al., 1998), which may not contain the antibody recognition 

sequence.    

 

The human cytotrophoblast cell lines BeWo, Jar and Jeg-3 have been shown to 

synthesise and secrete Trx to varying degrees (Di et al., 1998). Intracellular Trx was 

comprised entirely of the typical 12kDa form. Contrastingly, in addition to the 12kDa 

form, a previously unidentified 10kDa Trx form was detected in abundant amounts 

within the extracellular environment. This 10kDa form of Trx was similarly isolated 

from the conditioned media of stimulated human platelets. N-terminal sequencing 

indicated that the 10kDa form was derived from the standard 12kDa form of Trx (Di et 

al., 1998). Interestingly, subsequent investigations have confirmed the existence of a 

truncated form of Trx, referred to as Trx80 in the literature, and showing it to be an 

extracellular cleavage product of cytosolic Trx. Interestingly, Trx80 lacks C-terminal 

amino acid residues and correspondingly shows no disulphide reductase activity, as 

reviewed (Holmgren & Lu, 2010). Significantly, Trx80 has been shown to act as a 
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mitogenic cytokine in human peripheral blood mononuclear cells (PBMCs) and to 

stimulate the release of interleukin 2 (IL-2) (Pekkari et al., 2001). These findings are 

consistent with the current suggestion that Trx residues contained outside of the 

active site can be important for the physiological effects of Trx within the extracellular 

environment. In further support of this, an alternative study reported that intra-

peritoneal injection of hTrx reduced ischemic-reperfusion injury in mice, following 

myocardial infarction (MI). Pre-treatment of hTrx with S-nitrosoglutathione, which 

causes S-nitrosation of Cys69, significantly enhanced the cardio-protective effects of 

hTrx. Importantly, E. coli Trx which lacks Cys69 was without effect (Tao et al., 2004). 

This study therefore illustrates how post-translational modification of Cys residues in 

the non-active site of Trx can determine its function(s) as an extracellular signalling 

molecule.   

 
Regarding the observation that oTrx was equally capable at potentiating 

HEK293/CaV3.2 currents under control conditions as rTrx, an alternative consideration 

is that Trx could be endogenously reduced at the cell-surface. A previous report 

demonstrated that TrxR was localised at the cell membrane of both murine 

macrophage and human monocytes, particularly on the extracellular surface. The 

expression of cell-surface TrxR was also found to be increased by arylselenium 

compounds (Zhang et al., 2013). In agreement with these findings, TrxR has also been 

detected in human blood plasma. This study reported that in addition to an abundant 

membranous localisation, TrxR was secreted from peripheral blood cells, tumour-

transformed leukaemia cells and also melanoma cells. Metabolic labelling further 

revealed that in contrast with Trx, TrxR secretion occurred via the typical ER-Golgi 

pathway (Soderberg et al., 2000). These studies collectively indicate that reduction of 

oTrx at the cell surface, within the extracellular environment, is feasible.  

 

Bath application of mutant forms of Trx e.g. C32S/C35S, C73S and Trx80, which are 

available commercially (IMCO Corporation Ltd AB; Stockholm, Sweden), and 

subsequent assessment of their effects on CaV3.2 current amplitude would address 

this possibility. If Trx(C32S/C35S) and Trx80 did not enhance CaV3.2 current amplitude 

under control conditions, evidence, this would indicate that endogenous reduction of 

Trx, applied exogenously, was occurring at the cell membrane. This would 
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correspondingly indicate that Trx-mediated CaV3.2 channel regulation is actually 

dependent on the redox state of Trx. As reversal of PX-12-mediated CaV3.2 channel 

inhibition by Trx was currently shown to be Trx redox state-dependent, PX-12 could 

potentially prevent the reduction of oTrx at the cell surface (Kirkpatrick et al., 1998). 

 

5.3.2. PX-12 may inhibit CaV3.x channels via interaction with conserved cysteine 

residues 

Another important finding of the current investigation is that PX-12 inhibited CaV 

channels via a Trx-independent redox-regulated mechanism.  Recombinant CaV3.1 and 

CaV3.2 channels were inhibited by PX-12 in a DTT-reversible manner, with virtually 

identical sensitivities. Contrastingly, only CaV3.2 channels were regulated by Trx. Whilst 

Cys is one of the least abundant amino acids, due to the unique chemistry of its thiol 

(sulfhydryl) groups, Cys residues are highly conserved within functionally important 

protein regions. Indeed, Cys residues are the only thiol-bearing amino acids, and are 

commonly found in close proximity to each other and thereby participating in 

disulphide bond formation. As thiol groups (R-SH) are readily deprotonated, whereby 

they lose H+ to form distinct thiolate groups (R-S-), Cys residues are highly redox-

sensitive (Poole, 2015).  

 

Upon development, PX-12 was shown to inhibit Trx directly via thioalkylation of Cys 

residues. As PX-12 was without effect on TrxR or glutathione reductase, it was 

introduced as a selective Trx inhibitor (Kirkpatrick et al., 1998). A proceeding study has 

however demonstrated that in addition to inhibiting Trx with an IC50 value of 20µM, 

PX-12 directly oxidised Cys residues in tubulin (18 out of 20), thus preventing 

polymerisation. PX-12 was also shown to inhibit the protease enzymes papain and ficin 

via oxidative inactivation of active site Cys residues (Huber et al., 2008). These findings 

illustrate that PX-12 is a more prolific oxidising agent than was originally described. 

Huber et al. (2008) also emphasised that the observed anti-proliferative effects of low 

concentrations of PX-12 on MCF-7 breast cancer cells and HUVECs were not solely 

attributable to Trx inhibition. Whilst MCF-7 cells express both CaV3.2 and CaV3.1 

channels (Taylor et al., 2008b), HUVECs primarily express CaV3.1 channels (Wang et al., 

2006). It is therefore possible that direct PX-12-mediated inhibition of CaV3.x channels 

may contribute to the anti-proliferative effects of this drug. This conclusion is 
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consistent with current findings that whilst CaV3.1 channels were not sensitive to Trx, 

EdU incorporation assays revealed PX-12 (1µM) had small but significant anti-

proliferative effects on HEK293/CaV3.1, but not wt HEK293 cells (Chapter 4).  

 

With regards to its stated purpose as a Trx inhibitor, PX-12 is currently undergoing 

clinical trials as an anti-cancer agent (Baker et al., 2013; Ramanathan et al., 2007; 

Ramanathan et al., 2011). Importantly, the non-specific effects of PX-12 currently 

described raise important questions about the validity of its clinical use. Whilst direct 

inhibition of T-type Ca2+ channels by PX-12 could arguably contribute favourably to the 

drugs’ anti-cancer properties, it is highly likely that indiscriminate oxidation of Cys 

residues would be accompanied by a host of adverse physiological effects. In support 

of this proposal, a recent clinical trial analysed the proteomic profile of clinical trial 

patients both pre- and post-PX-12 treatment. In addition to Trx modification, 8 unique 

peaks resulting from PX-12 treatment were observed in all patients, further indicating 

that the effects of PX-12 are not restricted to Trx (Baker et al., 2013).  

 

Redox regulation of T-type Ca2+ channels is well established. For example, CaV3.2 

currents are approximately doubled in amplitude under reducing conditions i.e. when 

exposed to DTT or L-cysteine, and are conversely inhibited by oxidising agents such as 

DTNB (Todorovic et al., 2001). Of key relevance to the PX-12-mediated inhibition of 

CaV3.x channels currently described is α-lipoic acid (LA), a ubiquitous mitochondrial co-

factor which participates in redox reactions involving thiol groups (Smith et al., 2004). 

LA has been shown to inhibit CaV3.1 and CaV3.2 currents with similar sensitivities, via 

modification of extracellular Cys residues. As illustrated in Figure 5.18, the four target 

Cys residues of LA are highly-conserved amongst T-type Ca2+ channels. Three are 

located within the extracellular loop connecting S1-S2 in domain I (DI) (Cys123, Cys128 

and Cys133) and the other in the loop connecting S5 to the pore within DII (Cys939) (Lee 

et al., 2009). Within biological systems, the majority of Cys residues are found in close 

proximity to each other and form disulphide bonds which, although crucial for protein 

structure, are relatively inert. Resultantly, extracellular loops containing odd numbers 

of Cys residues, such as those regulated by LA, appear the most likely molecular 

target(s) to mediate the inhibitory effects of PX-12 on CaV channels. Further 

investigation exploring whether site-directed mutagenesis of the Cys residues at 
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positions 123, 128, 133 and 939 of CaV3.x channels alters their sensitivity to PX-12 

would be required to confirm this proposal.  

 

Current findings demonstrated that reversal of PX-12-mediated CaV3.2 channel 

inhibition was dependent on Trx being in its reduced form. Due to the Trx-independent 

mechanism by which PX-12 inhibited CaV3.1 channels however, only limited 

conclusions can be drawn from this observation. Specifically, rTrx could potentially 

reverse the effects of PX-12 via a mechanism separate to the non Trx redox state-

dependent mechanism found to regulate CaV3.2 channels under control conditions. 

For example, rTrx could undergo dithiol-disulphide exchange with CaV3.2 channel Cys 

residues previously oxidised by PX-12. As rTrx did not reverse PX-12-mediated 

inhibition of CaV3.1 or CaV3.2(H191Q) channels, this would also suggest interaction 

between conserved Cys residues and His191 in CaV3.2 channels, as further discussed in 

section 5.3.3.  

 

Boycott et al. (2013) previously described that when rTrx was applied under control 

conditions, significantly less CaV3.2 current amplitude enhancement was apparent 

than when rTrx was applied post AuF pre-treatment. To further extend this 

observation, and also current findings, it would be useful to examine any variation 

between different redox forms of Trx on HEK293/CaV3.2 currents following AuF pre-

treatment. This would establish whether reversal of Auf-mediated CaV3.2 channel 

inhibition is dependent on the redox status of Trx. An interesting consideration is that 

due to the indirect nature of AuF-mediated Trx inhibition i.e. via TrxR, a Trx redox 

state-dependent mechanism would arguably be predicted. Importantly however, Trx-

mediated regulation of CaV3.2 currents under control conditions was currently shown 

to be redox state-independent. Correspondingly, as the redox state of Trx influences 

its release (Bertini et al., 1999; Kondo et al., 2004), the effects of AuF on CaV3.2 

currents, proliferation and Ca2+ handling (Chapter 4) could be attributable to reduced 

extracellular Trx levels and a corresponding decrease in tonic CaV3.2 channel 

activation. 
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5.3.3.  Potential interaction of Trx with CaV3.2 channel trace metal binding  

Interestingly, the molecular determinant of CaV3.2 channel Trx-sensitivity (His191) is 

known to also contribute to the unique sensitivity of CaV3.2 channels to trace metals 

i.e. Ni2+, Zn2+ and redox modulators such as ascorbate. Initial studies described that 

when recombinantly expressed in Xenopus Oocytes or HEK293 cells, CaV3.2 currents 

were blocked by much lower Ni2+ concentrations (IC50 value of 13µM) when compared 

to CaV3.1 and CaV3.3 channels (IC50 values of 250µM and 216µM respectively) (Lee et 

al., 1999). A later study generated chimeric CaV3.x channels to investigate the 

structural determinants of CaV3.2 Ni2+-sensitivity. Chimeric channels are commonly 

used for preliminary CaV channel structure-function investigations. Their construction 

involves the isolation of individual α1 subunit domains (DI-IV), which can then be re-

assembled in various combinations and expressed recombinantly. For example, when 

DIII of the CaV3.2 channel is substituted with DIII of the CaV3.1 channel the chimeric 

channel is referred to as HHGH. As HGGG channels showed a Ni2+-sensitivity similar to 

wt CaV3.2 channels, it was predicted that the Ni2+ binding site was located within DI of 

the CaV3.2 channel (Kang et al., 2006). 

 

By aligning the amino acid sequences of DI from the three CaV3.x channel isoforms, un-

conserved regions likely to underpin the differential isoform sensitivities were 

identified. Specifically, a glutamic acid (Glu or E) residue (E137) and a His residue 

(H191), found within the extracellular loop linking S3-S4 within DI were unique to 

CaV3.2 channels. These residues were then individually mutated to glutamine (Gln or 

Q) residues. Whilst the CaV3.2(E137Q) mutant showed Ni2+-sensitivity comparable to 

wt CaV3.2 channels, the CaV3.2(H191Q) mutant channel exhibited significantly reduced 

Ni2+-sensitivity. Furthermore, when the Gln residue found within the equivalent 

position of CaV3.1 channels (Q172) was mutated to His (Q172H), CaV3.1 channel 

sensitivity to Ni2+ was increased (5-fold). As such, it was concluded that His191 

participated in Ni2+ binding. Importantly, as only partial Ni2+-sensitivity was imparted 

by the CaV3.1(Q172H) mutation, evidence that additional amino residues contributed 

to the Ni2+-binding site was also provided (Kang et al., 2006).  

 

Subsequent studies have also demonstrated that Zn2+ selectively inhibits CaV3.2 

channels over other CaV3.x isoforms. As the CaV3.2(H191Q) mutant was insensitive to 
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Zn2+ a crucial role for His191 in metal-binding was thus confirmed. Furthermore, Zn2+ 

chelation enhanced CaV3.2 current amplitude, indicating that Zn2+ may tonically bind 

to CaV3.2 channels via His191 (Kang et al., 2010; Nelson et al., 2007b). Generation of 

chimeric channels, alongside site-directed mutagenesis, revealed that aspartic acid 

(Asp or D) and glycine (Gly or G) residues immediately preceding His191 (D189 and 

G190) within the extracellular S3-S4 loop, and a second Asp residue on the outside in 

S2 (D140), were also critical determinants of CaV3.2 Zn2+ sensitivity (Kang et al., 2010). 

It was subsequently shown that this unique metal binding in CaV3.2 channels was 

responsible for trace metal binding, shown in Figure 5.18. Trace metal binding at this 

high affinity site is believed to stabilise CaV3.2 channels in their closed state, as 

reviewed (Perez-Reyes & Lee, 2014).  

 

Ascorbate is an endogenous redox agent which can function as both an anti- and pro-

oxidant. Regarding its functions as a pro-oxidant, ascorbate promotes the generation 

of reactive oxygen species (ROS) such as hydroxyl (OH-) superoxide (O2
-) and hydrogen 

peroxide (H2O2), via the reduction of transition metals such as iron (Fe3+, Fe2+) and 

copper (Cu+ and Cu2+). This process is collectively referred to as metal-catalysed 

oxidation (MCO). Significantly, MCO provides the major endogenous mechanism for 

oxidation of aliphatic and aromatic amino acids (Stadtman, 1991; Stadtman, 1993). 

When recorded from native tissues, or recombinantly expressed, CaV3.2 channels are 

potently inhibited by ascorbate whilst CaV3.1 and CaV3.3 channels are insensitive. 

Importantly, the mutant CaV3.2(H191Q) channel is also insensitive to ascorbate-

mediated inhibition. As such, His191 was shown to be a structural determinant of 

CaV3.2 channel ascorbate-sensitivity. Increasing extracellular Cu2+ concentrations 

significantly enhanced ascorbate-mediated inhibition of wt CaV3.2 channels. It was 

therefore suggested that ascorbate interacted with the metal binding site in CaV3.2 via 

His191 to initiate MCO and thereby inhibit CaV3.2 channels (Nelson et al., 2007a). 
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Figure 5.18. Schematic diagram highlighting key amino acid residues of CaV3.2 

channels 
Representative view looking through a cross-section of a stretched lipid bilayer (orange 
box) showing the arrangement of the α1H subunit (CaV3.2 channel). Domain I (DI) is 
highlighted (dashed box) and magnified below. The unique metal binding site in CaV3.2 
channels within DI is composed of a motif containing aspartic acid (D189, purple 
circle), glycine (G190, green circle) and histidine (H191, blue circle) residues found 
within the extracellular S3-S4 loop, and a second Asp residue on the outside S2 (D140, 
purple circle). Amino acid residues composing the metal binding site are in close 
proximity to cysteine residues (C123, C128, C133, red circles), which are conserved 
amongst CaV3.x isoforms. In addition to a further cysteine residue within the 
extracellular region of DII(S5) (C939, not shown) these residues provide the targets of 
α-lipoic acid, and potentially PX-12 and CO. Figure adapted from Perez-Reyes (1999); 
Todorovic & Jevtovic (2014). (Perez-Reyes 1999; Todorovic & Jevtovic-Todorovic 2014) 
 

An as of yet undetermined consideration is whether metal binding itself, or the 

resultant effects of MCO on surrounding amino acids, stabilises CaV3.2 channels in 

their closed state. Considering the dependency of Trx–mediated CaV3.2 current 

enhancement on His191, this consideration is highly relevant when discussing potential 

interactions between Trx and CaV3.2 channels. As extensive further research will be 

required to establish which (if any) of the proposed mechanisms are relevant, 

corresponding future experiments will also be outlined. Firstly, Trx could bind directly 
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to His191 and prevent trace metal binding. This could destabilise the CaV3.2 channel 

closed-conformation due to a direct absence of the metal ion itself, or due to an 

indirect reduction in MCO. Regarding additional experiments, if pre-treatment of 

CaV3.2 currents with metal chelators prevented the effects of Trx, the requirement of 

trace metals to the effects of Trx would be confirmed.  

 

The metal binding site in DI of CaV3.2 channels is mainly contained within the S3-S4 

extracellular loop (Kang et al., 2010). Also present in DI of all CaV3.x channels are 3 Cys 

residues (Cys123, Cys128, Cys133), located within the extracellular S1-S2 loop. 

Modification of these Cys residues using LA, and potentially following PX-12 and CO 

exposure (discussed in sections 5.3.2 and 5.3.1 respectively), inhibits CaV3.2 channels 

(Todorovic & Jevtovic-Todorovic, 2014). In terms amino acid sequence, these Cys 

residues are in close proximity to metal binding site residues (Figure 5.18). 

Furthermore, inferences can also be made regarding their 3D proximity. Although the 

crystal structure of CaV channels remains unresolved, a single domain of the α1 subunit 

is believed to bear close resemblance to KV subunits. As such, the extracellular S1-S2 

loop and the S3-S4 loop of CaV3.2 channels subunits are predicted to be in close 3D 

proximity (Long et al., 2007).  

 

Thiol-containing Cys residues are highly redox-sensitive (Poole, 2015). Interestingly, 

within many biological systems, Cys residues cluster around and contribute to the 

functional significance of metal-binding sites at the surface of proteins (Marino & 

Gladyshev, 2010). It is correspondingly feasible that CaV3.2 channel Cys residues are 

targets of MCO. In this regard, Cys residues may be the ultimate determinants of the 

stabilising effects of Zn2+, Ni2+ and ascorbate on CaV3.2 channels. Trx-mediated 

enhancement of CaV3.2 channels currently reported here could be explained by Trx 

binding to His191, thereby preventing metal binding and interrupting MCO of 

surrounding Cys residues.  

 

Interestingly, current findings highlight the potential for interaction between the 

CaV3.2 channel metal binding site and Cys residues. For example, co-application of 

ascorbate and PX-12 following ascorbate treatment significantly enhanced wt CaV3.2, 

but not CaV3.2(H191Q) current amplitude. This starkly contrasted with the inhibitory 
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effects each drug had on wt CaV3.2 channels when applied in isolation. Furthermore, 

co-application of PX-12 and ascorbate to wt CaV3.2 channels also commonly 

augmented the shape of CaV3.2 currents. Specifically, dramatically increasing tail 

current amplitude and appearing to reduce inactivation. These opposing effects of co-

application may concern the ability of  ascorbate to function as both an anti- and pro-

oxidant (Stadtman, 1991), and potential cross-reaction with PX-12. Alternatively, the 

targets of ascorbate (i.e. metal-binding site residues) that are unique to CaV3.2 

channels may interact with the potential targets of PX-12 (i.e. conserved Cys residues 

as detailed in section 5.3.2). Point-mutation of CaV3.2 channel Cys123 Cys128 and Cys133 

residues and subsequent application of Trx, Ni2+ and ascorbate would confirm, or 

disprove, the involvement of Cys residues in MCO within CaV3.2 channels.  

 

If subsequent experiments did not provide evidence in support of the aforementioned 

mechanisms, an alternative proposal as to the mechanism of Trx-mediated CaV3.2 

channel regulation is that His191 itself provides the end target of MCO. Studies 

conducted in E. coli have determined that metal-binding sites within the glutamine 

synthetase (GS) enzyme facilitate MCO, which thereby inhibits enzyme activity. 

Specifically, MCO inhibited GS activity by converting a single His residue to asparagine  

(Asp) and a single arginine (Arg) residue to glutamic semialdehyde (Farber & Levine, 

1986). It is correspondingly feasible that His191 serves as the end target for MCO. This 

could explain its role within, or be in addition to, the involvement of His191 in the 

CaV3.2 channel-stabilising effects of metal binding. With specific regard to the Trx-

mediated CaV3.2 channel regulation currently observed here, direct binding to His191 

could provide protection against MCO. A further possibility is that Trx does not bind to 

the channel directly but serves as the substrate for MCO, thus indirectly reducing 

the oxidative effects of MCO on CaV3.2 channels. If co-application of ascorbate 

reduced Trx-mediated CaV3.2 channel enhancement, evidence in support of this idea 

would be provided.   

 
Many of the data presented throughout this thesis (Chapters 3, 4 and 5) are 

preliminary in nature but provide interesting insights which warrant further research. 

In order to ensure the statistical validity of future investigations, it would be useful to 

implement power analyses to estimate the number of experimental repeats required. 
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Effective power analysis requires that the effect size i.e. the difference between the 

hypothesis and the null hypothesis, and the standard deviation or data spread, is 

known. Current data therefore would enable effective power analysis to be conducted 

prior to each future experiment.  

 

5.3.4. Summary and conclusions  

Results in this chapter demonstrate that CaV3.2 channels are positively and selectively 

regulated by Trx, via an interaction with a singular extracellular His191 residue that is 

unique to CaV3.2 channels. They also suggest that Trx-mediated CaV3.2 channel 

regulation, under control conditions, is independent of the redox state of Trx. PX-12 

was found to inhibit CaV channels indiscriminately, via a Trx-independent mechanism, 

raising important questions about its safety and validity as a Trx inhibitor for clinical 

use. Interestingly, the selective and observed reversal of PX-12-mediated inhibition of 

CaV3.2 currents by Trx was Trx redox state-dependent. This indicated that CaV3.2 

channel regulation may be dependent on both intra- and extra-active site residues in 

Trx. Further work is required to establish the exact mechanism of interaction between 

Trx and His191 in the CaV3.2 channel. Findings detailed within previous chapters show 

that AuF selectively reduced the proliferation of CaV3.2-expressing cells, therefore 

providing evidence that Trx can modulate cellular proliferation via CaV3.2 channel 

regulation.  
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Chapter 6 -The implications of Trx-mediated CaV3.2 channel 

regulation on cellular proliferation  

 
6.1. Principle findings 

6.1.1.  HEK293 cells  

It is ultimately important to consider the functional significance of Trx-mediated CaV3.2 

channel regulation on cellular proliferation. Findings from recombinant HEK293 cells 

are relatively simple to interpret; primarily because the contribution of CaV3.1 or 

CaV3.2 channel expression on cellular proliferation, basal Ca2+ influx and peak Ca2+ 

current amplitude can be examined individually. Expression of CaV3.1 or CaV3.2 

channels significantly elevated cell proliferation and basal Ca2+ influx in HEK293 cells. 

Crucially, as NNC reduced cell proliferation and [Ca2+]i influx in HEK293/CaV3.1 and 

HEK293/CaV3.2 cells, but not wt HEK293 cells, a causative role for both CaV3.1 and 

CaV3.2 channels in elevated proliferation was thus provided (Chapter 3). Significantly, 

inhibition of thioredoxin (Trx) using auranofin (AuF) selectively reduced 

HEK293/CaV3.2, but not HEK293/CaV3.1 or wt HEK293, cell proliferation (Chapter 4). 

These findings were consistent with previous observations that AuF and Trx selectively 

regulated CaV3.2 currents (Boycott et al., 2013). Furthermore, AuF produced a 

rightwards shift in the I-V profile of HEK293/CaV3.2 currents, which is likely to shift the 

voltage range for the CaV3.2-mediated window current away from the resting 

membrane potential (Vm) (Chapter 5).  

 

Both CaV3.1- and CaV3.2-facilitated window currents have been previously shown to 

elevate basal [Ca2+]i when expressed recombinantly (Chemin et al., 2000). 

Furthermore, recombinant expression of human CaV3.1 (Wang et al., 2002a) and 

CaV3.2 (Wang et al., 2002b) channels in HEK293 cells has been reported to confer 

significant growth advantages. Specifically, CaV3.1 or CaV3.2 channel expression 

significantly reduced population doubling times to similar extents, likely by promoting 

progression through the G1/S phase of the cell cycle (Wang et al., 2002a; Wang et al., 

2002b). The proliferative rate of HEK293/CaV3.2/clone P cells, transfected in-house 

with a CaV3.2-containing mammalian expression vector, was directly comparable to wt 

HEK293 cells and unaltered by NNC. It was coincidentally observed that in contrast to 
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the perinuclear clusters and punctate membranous patterns of CaV3.2- 

immunoreactivity (IR) observed in the highly proliferative HEK293/CaV3.2 cells, CaV3.2-

IR in HEK293/CaV3.2/clone P cells was highly diffuse. This suggested that aggregation 

or clustering of CaV3.2 channels in specific sub-cellular domains might be important for 

increased basal Ca2+ to result in elevated cellular proliferation (Chapter 3).  

 

These observations collectively indicate that Trx-mediated regulation of CaV3.2 

channels can promote cellular proliferation, potentially by enhancing the CaV3.2-

facilitated window current and corresponding basal [Ca2+]i. Further direct assessment 

of the effects of AuF and Trx on recombinant HEK293 cell window currents, using 

either Ca2+ microfluorimetry or electrophysiological protocols to individually measure 

the voltage-dependencies of CaV3.2 channel activation and steady-state inactivation, 

would substantiate this conclusion.   

 

6.1.2. A7r5 cells  

Interpretation of results gathered in the native VSMC A7r5 cell line is somewhat more 

complex than the situation in HEK293 cells. Whilst the high levels of T-type Ca2+ 

channel expression and relatively small size of recombinant HEK293 cells meant they 

were highly conducive to patch-clamp electrophysiology, the exact opposite applied to 

A7r5 cells. A7r5 cells were directly shown to express CaV3.1 channels primarily, in 

addition to CaV3.2 channels (Chapter 3). Therefore, an important consideration (given 

that AuF-mediated inhibition of HEK293 cell proliferation was dependent on CaV3.2 

channel expression) is whether CaV3.2 channels specifically influence VSMC 

proliferation. Whilst AuF reliably inhibited proliferation and basal Ca2+ influx in A7r5 

cells (Chapter 4), Trx only potentiated A7r5 T-type Ca2+ currents on a small number of 

occasions (Chapter 5).  

 

A potentially reconciling and preliminary observation for this discrepancy was that 

sensitivity of T-type Ca2+ channel currents to Trx was apparent when high CaV3.2 

channel expression levels were detected using immunohistochemistry (Chapter 5). This 

observation also indicated that CaV3.2 channel expression was dynamically regulated 

in A7r5 cells. With regard to this, a recent study has reported that expression of CaV3.2 
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channels within the plasma membrane is regulated by asparagine-linked glycosylation 

of CaV3.2 channel residues. It was also identified that increasing external glucose 

concentrations increased CaV3.2 channel glycosylation and surface expression in 

human embryonic kidney tsA-201 cells (Weiss et al., 2013). Interestingly, CaV3.2-IR in 

A7r5 cells reliably localised around the nucleus (Chapters 3 & 5). This directly 

contrasted with the diffuse pattern of CaV3.1-IR reliably observed in A7r5 cells 

(Chapter 3). In agreement with observations in recombinant HEK293 cells, it appears 

that the subcellular distribution of CaV3.2 channels determined their ability to 

influence cellular proliferation. Low levels of peri-nuclear CaV3.2 expression could 

potentially have a larger pro-proliferative effect than high levels of cytosolic CaV3.1 

channel expression.  

 
 
6.2. Clinical significance  

Previous studies examining the contribution of CaV3.x channels to VSMC proliferation 

have implicated CaV3.1 channels as a major proliferative driving force in both 

developmental and pathological vascular remodelling. The ductus arteriosus (DA) is 

the foetal vascular shunt vessel which undergoes developmental remodelling 

postpartum. VSMCs isolated from the DA of CaV3.1-/- mice show significantly less 

proliferation and migration (Akaike et al., 2009). Regarding pathological vascular 

remodelling, carotid wire injury has been shown up-regulate CaV3.1 channels leading 

to neointima formation in mice. Significantly, CaV3.1-/-, but not CaV3.2-/-, mice were 

shown to be resistant to neointima formation following vascular injury (Tzeng et al., 

2012).  

 

6.2.1. Hypoxia-induced vascular remodelling  

As discussed extensively in Chapter 1, many cardiovascular disorders are associated 

with VSMC dedifferentiation and increased proliferation. As T-type Ca2+ channels are 

selectively expressed in the proliferative phases of the VSMC cell-cycle (Kuga et al., 

1996), more VSMC proliferation logically equates to increased T-type Ca2+ channel 

levels. Importantly, the specific contribution of CaV3.2 channels to VSMC proliferation 

may be more significant in pathological situations. Pulmonary hypertension (PH) can 

be induced by hypoxia and is associated with elevated VSMC levels, leading to vascular 
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remodelling. Exposure of mice to chronic hypoxia resulted in PH, observed as a 

significant increase in right ventricular systolic pressure alongside significant thickening 

of the medial layer of pulmonary vessel walls (Satoh et al., 2014; Wan et al., 2013). 

Hypoxia has also been shown to induce a significant up-regulation in CaV3.2 and CaV1.2 

mRNA expression in pulmonary arteries (Wan et al., 2013). When pulmonary artery 

smooth muscle cells (PASMCs) were isolated from normoxic mice, exposure to high 

[K+] (40mM) caused only very small elevations in [Ca2+]i. In contrast, PASMCs isolated 

from hypoxic mice showed significant increases in [Ca2+]i in response to the same high 

[K+] stimulus, indicating that elevated CaV3.2 and CaV1.2 mRNA levels led to increased 

functional CaV channel expression (Wan et al., 2013). A more recent study conducted 

with rat PASMCs and pheochromocytoma (PC12) cells demonstrated that acute 

exposure to hypoxia (12-24hrs) induced prominent rises in CaV3.2 mRNA, protein and 

functional channel expression. No changes in these parameters were observed for 

CaV3.1 channels. It was also identified that hypoxia-induced CaV3.2 upregulation 

required the binding of hypoxia-inducible factor (HIF) to hypoxia-response elements 

within the promoter regions of the CaV3.2 channel (CACNA1H) gene (Sellak et al., 

2014). 

 

The effects of hypoxia on CaV3.2 channel expression levels, has also been examined in 

other vascular beds. Coronary interventions are commonly associated with neointima 

formation. Internal mammary arteries (IMA) often serve as replacement conduit 

vessels for coronary artery bypass surgeries, as they are less prone to restenosis when 

compared to saphenous vein grafts (Nwasokwa, 1995). During surgical procedures and 

subsequent revascularisation, grafted VSMCs can be subject to periods of hypoxia. 

Correspondingly, supplemental oxygen has been shown to reduce neointima 

formation and reduce VSMC proliferation in the aortic media, following intra-aortic 

stent implantation in rabbits (Tretinyak et al., 2002). In proliferating IMA SMCs 

(IMASMCs), exposure to hypoxia has been shown to increase functional T-type Ca2+ 

channels and decrease functional L-type Ca2+ channel levels. This was determined by 

measurement of depolarisation-induced Ca2+
 entry, in the presence or absence of 

various specific Ca2+ channel blockers (CCBs). As no changes in CaV1.2 or CaV3.2 mRNA 

levels were detected, it was suggested that altered membrane trafficking of T-type 

Ca2+ channels accounted for the functional differences (Aley et al., 2008).  
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Of further key interest is that when mice were subject to chronic hypoxia, a doubling 

of Trx levels in lung tissue was observed. In agreement with these observations, acute 

exposure of HPASMCs to hypoxia more than doubled Trx levels and significantly 

increased HPASMC proliferative rates. Final confirmation that Trx was pro-proliferative 

in hypoxia-exposed HPASMCs was the finding that siRNA-mediated Trx knockdown 

abolished hypoxia-induced elevations in proliferation. Increased activation of HIF was 

also reported by this study (Chen et al., 2013). Collectively, these studies emphasise 

that the pro-proliferative effects of Trx-mediated CaV3.2 current enhancement would 

be increased by hypoxia. Correspondingly, this novel signal pathway is likely to be 

involved in pathological vascular remodelling associated with hypoxia-induced PH.  

 

Regarding current results, A7r5 cell proliferation and basal Ca2+ influx was similarly 

inhibited by both selective T-type CCBs and AuF. Evidence that Trx-mediated 

regulation of CaV3.2 could modulate VSMC proliferation was therefore provided. 

Regarding future experiments, it would be interesting to see if high glucose 

concentrations, and or hypoxia, increased A7r5 CaV3.2 channel expression. If this was 

demonstrated, enhancement of the anti-proliferative effects of AuF would be 

correspondingly predicted, alongside a greater Trx-sensitivity of native A7r5 T-type 

Ca2+ currents. Conversely, genetic knockdown of CaV3.2 channels in A7r5 cells would 

be expected to reduce A7r5 proliferation and abolish the effects of AuF on both 

proliferation and Ca2+ handling.  

 

6.2.2. MI-induced cardiac remodelling  

The novel Trx-CaV3.2 channel signalling pathway characterised in the current 

investigation may also bear clinical significance to cardiac remodelling. Importantly, 

whilst hypertrophic remodelling involves increased growth of individual myocytes as 

opposed to increased proliferation, this process is also highly dependent on [Ca2+]i. 

Specifically, elevations in [Ca2+]i can activate Ca2+-dependent transcription factors 

leading to the expression of hypertrophic genes via a process termed excitation-

transcription (ET) coupling (Dominguez-Rodriguez et al., 2012). For example, 

myocardin is a transcription co-factor which plays an important role in the 

development of cardiac hypertrophy. Using embryonic rat heart-derived cells(H9c2), 
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elevated Ca2+ influx was shown to increase myocyte size and produce morphological 

phenotypic alteration to hypertrophic myocytes. Increased [Ca2+]i also resulted in 

elevated levels of hypertrophic markers such as B-type natriuretic peptide (BNP). 

Levels of myocardin mRNA were also increased significantly. Importantly, genetic 

knockdown of myocardin using siRNA dramatically attenuated Ca2+-induced 

hypertrophy of cardiomyocytes (Li et al., 2015b). 

 

Regarding the route of Ca2+ influx in Ca2+-dependent hypertrophy, CaV3.1 channels are 

known to be important for functional cardiac remodelling; e.g. elevations in heart rate 

and ventricular tachycardia post-myocardial infarction (MI) (Le et al., 2011). In 

contrast, a specific role for CaV3.2 channels in structural cardiac remodelling post-MI 

has been established. Within feline ventricular myocytes (or SMCs), MI-induced cardiac 

hypertrophy functionally up-regulated T-type Ca2+ channels, observed as an increased 

sensitivity of LVA currents to Ni2+ (Nuss & Houser, 1993). A subsequent study found 

that pressure-induced cardiac hypertrophy achieved by aortic banding was virtually 

abolished in CaV3.2-/- mice, but not in CaV3.1-/- mice. In direct contrast with CaV3.1-/- 

mice, the heart weight vs. body weight ratio measured 2 weeks post-surgery was not 

significantly altered in CaV3.2-/- mice when compared to control animals subject to 

sham surgical procedures. In wt mice, aortic banding led to a dramatic thickening of 

ventricular walls and a significant increase in the cross-sectional diameter of individual 

myocytes. No significant changes in any of these parameters were observed in the 

CaV3.2-/- mice. Additionally, myocytes isolated from neonatal CaV3.2-/- mice showed no 

hypertrophic response when stimulated with angiotensin II, as was observed for wt 

myocytes. As no changes in blood pressure were observed between wt and CaV3.2-/- 

mice, a specific role for CaV3.2 channels in structural as opposed to functional 

hypertrophic remodelling was indicated (Chiang et al., 2009). In support of these 

findings, a further study in wt mice observed increased CaV3.2 channel expression in 

response to aortic banding. The sharp up-regulation in CaV3.2 mRNA expression 

provided an early event in the development of cardiac hypertrophy. It was also shown 

that the transcription factor early growth response 1 (Egr1) provided the initial signal 

leading to hypertrophic CaV3.2 over-expression (Hsu et al., 2013).  
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Interestingly, alterations in the Trx system have also been reported in cardiac 

hypertrophy. Specifically, following aortic banding of mice, myocardial Trx activity was 

increased considerably whilst vitamin D3 up-regulated protein (VDUP) mRNA and 

protein levels were decreased in ventricular cells. Concurrently, genetic over-

expression of VDUP in mice significantly reduced cellular hypertrophy (Yoshioka et al., 

2004). In vitro studies of rat cardiomyocytes also revealed that Trx over-expression 

increased protein synthesis, whilst over-expression of VDUP reduced protein synthesis 

(Yoshioka et al., 2004). Elevated Trx expression has also been directly implicated in the 

differentiation and proliferation of SMCs, leading to pathological cardiac remodelling 

following MI in rats (Suresh et al., 2015). In light of current findings, activation of 

increased levels of CaV3.2 channels by elevated levels of Trx is likely to increase the 

window current. This would elevate [Ca2+]i leading to ET-coupling and Ca2+-induced 

hypertrophic remodelling post-MI. The potential of disrupting the interaction between 

Trx and CaV3.2 therefore provides a novel pathway which could also potentially be 

targeted for therapeutic advantage in cardiac hypertrophy.  

 

6.2.3. Cancer  

The pathophysiological significance of the growth promoting effects of Trx-mediated 

CaV3.2 channel regulation also readily extends to carcinogenesis. Increased CaV3.2 

channel expression has been specifically implicated in the increased basal Ca2+ levels 

and corresponding high proliferative rates of many cancer cells. This includes 

neuroblastoma (Panner et al., 2005), prostate (Mariot et al., 2002) and breast cancer 

cells (Taylor et al., 2008b). In agreement with findings from VSMCs (Kuga et al., 1996), 

expression of CaV3.1 and CaV3.2 channels in breast cancer MCF-7 cells has been shown 

to be restricted to the proliferative phases of the cell-cycle. High levels of CaV3.1 and 

CaV3.2 mRNA expression were detected in rapidly growing cultures of MCF-7 cells, but 

not cytostatic confluent cells. Furthermore, inhibition of T-type Ca2+ channels using 

NNC significantly reduced MCF-7 cell proliferation. A similar anti-proliferative effect 

was observed when CaV3.1 and CaV3.2 channels were knocked-down using siRNA 

(Taylor et al., 2008a). 
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 Significantly, elevated levels of extracellular Trx have also been determined in many 

cancers such as breast (Mariot et al., 2002), pancreatic (Nakamura et al., 2000), lung 

(Kahlos et al., 2001; Kakolyris et al., 2001; Soini et al., 2001) and cervical cancers (Fujii 

et al., 1991). Current findings therefore indicate that simultaneous increases in CaV3.2 

and Trx may provide a highly detrimental positive-feedback loop. Specifically, 

activation of CaV3.2 by Trx would increase proliferation, leading to more CaV3.2 

channel expression and further potentiation of the growth promoting effects of Trx. 

Resultantly, the rationale of blocking the interaction between Trx and CaV3.2 channels 

holds realistic therapeutic potential for the treatment of cancer. 

 

In light of the broad spectrum of crucial intracellular functions of Trx, an appealing 

prospect by which to minimise the potential side effects of Trx inhibition would be to 

develop a drug which specifically targets extracellular Trx. Interestingly, a recent study 

has explored how modification of the structure of PX-12 could make the drug 

membrane impermeant and correspondingly act as a selective inhibitor of extracellular 

Trx (DiRaimondo et al., 2013). Importantly, this study overlooks many important 

considerations such as the Trx-independent effects of PX-12, the potential of Trx being 

endogenously reduced in the extracellular environment and also the potential 

contribution of non-canonical Trx residues to its role as an extracellular signalling 

molecule and CaV3.2 channel modulator (Chapter 5). These issues should be of key 

consideration when assessing the clinical suitability of the novel asymmetric disulphide 

PX-12 variants engineered by DiRaimondo et al. (2013). 

 
 
6.3. Summary and conclusion  

This project has provided evidence showing that Trx-mediated CaV3.2 channel 

regulation has pro-proliferative effects. Both CaV3.2 channels and Trx have been 

associated with vascular and cardiac remodelling, induced by hypoxia or MI 

respectively. As such, pharmacological disruption of the interaction between Trx and 

CaV3.2 channels holds novel, therapeutic potential for the treatment of both PH and 

cardiac hypertrophy. Importantly however, further investigations into the mechanisms 

and extent of CaV3.2 channel upregulation, in other cardiovascular disorders involving 

excessive proliferation, are required to establish the full clinical relevance. The 
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involvement of CaV3.2 channels in the aberrant proliferation of cancerous cells is also 

well established. Current observations therefore conclusively support the rationale 

that Trx inhibitors provide effective chemotherapy agents. Significantly, compelling 

evidence that PX-12 is not a selective Trx inhibitor was provided. This is highly 

indicative of the potential undesirable side effects and contraindications of clinical use 

of PX-12 as a Trx inhibitor. As the site for Trx-mediated CaV3.2 channel regulation was 

located extracellularly (His191), the development of membrane impermeant Trx 

inhibitors may provide an opportunity to develop novel treatments for proliferative 

disorders involving cells which express CaV3.2 channels.  
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