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Abstract 

 

The design of advanced wireless communication systems has been one of the most important 

research areas in recent years. High performance error correction schemes and high speed 

data services are at the heart of these systems.  

Due to the excellent performance of Low-Density Parity-Check (LDPC) codes, they are good 

candidates for many new wireless communication standards. However, complexity, latency 

scalability and flexibility remain a challenge. 

This thesis is concerned with investigating a new approach to coding and decoding LDPC 

codes based on Parallel Concatenated Gallager Code (PCGCs) using multiple constituent 

codes. These are a class of concatenated codes built from the direct parallel concatenation of 

LDPC codes without interleavers. They are characterized by a competitive BER performance 

while still maintaining the low complexity and flexibility attributes. New methods for 

encoding and decoding are presented together with BER simulation results showing the 

performance of these codes. Analysis in terms of the number of constituent codes is also 

carried out. 

Complexity analysis is performed and preliminary implementation results are also given 

based on a proposed high throughput architecture. 
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Chapter 1 

 

Introduction 

 

Channel Coding is one of the most important and active fields in digital communication 

systems. Low-Density Parity-Check (LDPC) codes are related to the class of Linear Block 

Codes which were introduced by Gallager with an iterative probability based decoding 

algorithm, they have simple and less complex iterative decoding algorithm, and show good 

performance that is very close to the Shannon Limit. This feature makes LDPC codes very 

attractive and widely used in applications which requiring highly efficient information 

transfer and reliable data transfer over bandwidth or return channel transmission capacity 

constraints, such as WiGig (802.11ad) and IEEE 802.15.3c for 60GHz wireless LAN and 

PAN [2]-[4], low-distance high-rate (802.15.3a) and low-rate high-distance (802.15.4a), 

WiMax (802.16e), Ethernet (802.3a), 10 Gigabit Ethernet (10GBASE-T) and Second 

generation scheme for satellite communication (DVB-S2) standards and terrestrial digital 

television (DVB-T2) [5]. 

Several modifications based on it like Quasi-Cyclic-LDPC, Parallel Concatenated Gallager 

Codes (PCGC) to meet the less complication and more flexible with less sacrifice of 

performance and throughput. 
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1.1 Background and Evolution 

To control errors occur in data transmission over unreliable or noisy communication channels, 

forward error correction (FEC) or channel coding techniques have been used, the transmitter 

encodes the message using an error-correcting code in a redundant way and decodes them at 

the receiver. In the 1940s, Richard Hamming pioneered this field and introduced the first 

error-correcting code called the hamming code in 1950 [6]. 

Different kinds of channel coding are used for minimizing the effect of the channel after that. 

There are two main classes channel coding which are Block Codes and Convolutional Codes. 

Turbo codes is discovered in 1993 for its good performance of capacity limit approaching (in 

terms of Shannon limit), it can be seen as a hybrid of the Block Codes and Convolutional 

Codes, the iterated soft-decoding scheme producing block code by two or more simple 

convolutional codes combination and an interleaver, used for applications such as the satellite 

communications and deep space network. 

However, in 1962, Gallager first introduced Low-Density Parity-check (LDPC) codes with an  

iterative belief propagation based decoding algorithm in his Ph.D. thesis [7] predates Turbo 

codes, these codes are a class of linear block error correcting codes and having relatively less 

complexity of iterative decoding algorithm, and make them very close to the theoretical 

Shannon Limits. But there is no significant progress was made after that until 1996, because 

of the computational cost of LDPC codes were beyond the scope of the processors present at 

that time. Tanner introduced a graphical representation of LDPC codes in 1981 to construct 

longer codes from smaller ones, it is known as Tanner graph representation [8]. In 1996, 

Mackay has proposed a practical implementation of LDPC codes in his landmark paper [9]. 

Mackay’s successful implementation brings interest back to LDPC codes due to the good 

coding performance, and most of the work has started on it [10]. In the beginning, most 

works focused on the binary and regular LDPC codes implementation. In 2001, the concept 

of a new parity check method irregular LDPC codes were proposed by Michael G. Luby and 

his colleague [11]. The bit-error-rate curves they got from irregular LDPC codes show the 

relatively better performance than the regular LDPC codes. And based on LDPC, a structured 

codes consisting of square sub-matrices named Quasi-Cyclic LDPC (QC-LDPC) codes have 

been proposed [12], [13], the main feature is that their parity check matrix is composed of 

several cyclic permutation submatrices, which could be either based on the small random 

matrix [15] or the identity matrix [16], [17]. The main advantage of Quasi-Cyclic structure 

compare to randomly constructed codes is that they contain several similar blocks to make 

https://en.wikipedia.org/wiki/Satellite_communication
https://en.wikipedia.org/wiki/Satellite_communication
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encoding and decoding procedure easier [14] which saved much more hardware resources. 

Considering of the hardware implementation, the computational complexity of encoding of 

LDPC codes is still high, especially for the large size codes, it may cause delay during the 

real-time applications [18].  

Another new coding method named Parallel Concatenated Gallager Code (PCGCs) have been 

introduced recently, they are a class of concatenated codes built from the direct parallel 

concatenation of LDPC codes without interleavers, it got a competitive BER performance 

while still maintaining the low complexity and flexibility attributes. The proposed coding 

method in this thesis combined PCGCs with Quasi-Cyclic structure for its every single 

concatenated LDPC codes, it shows a good performance in saving hardware consumption 

without too much influence on the good bit error rate performance that PCGC has. 

 

1.2 Related Work 

Although no significant work has been proposed on FPGA implementation for multiple 

paralleled concatenated LDPC decoders since it has been developed in [27], much work has 

been done on highly-parallel with multi-gigabit performance decoder of QC-LDPC. In 

particular, Swapnil Mhaske proposed a 2.48Gb/s FPGA-based QC-LDPC Decoder 

implementation operating at 200MHz on the Xilinx Kintex-7 FPGA in [30] in 2015, and 

improved the parallel decoding structure from single core decoder to multi-cores decoder in 

[31], they developed several versions for different degree of parallelism in each iteration, 

which are compiled by LabVIEW FPGA IP compiler with high-level algorithmic description 

and get the hardware resource utilization and throughput on the specific device, the 

implementation is very fast for a standard compliant QC-LDPC using an algorithmic 

compiler at that time. Swapnil Mhaske’s decoder based on the layered decoding architecture 

which is similar to the decoding method in MPCGC decoder [27], what’s more, Yeong-Luh 

Ueng also proposed an excellent design for non-binary QC-LDPC using the permutation 

network which based on barrel-shifter and minimum value filter [33], they enabled the 

layered decoders to be realized efficiently.  

Many other designs have been developed for the layer LDPC decoder before [40]-[42], the 

degree of parallelism and memory in hardware of all the above decoders limit the throughput. 

Even if the clock frequency is increased to get better performance results, the lift range has a 

limitation due to the single decoder with a layered architecture requiring  processing the 

whole parity check information exchange, and the power would increase dramatically.  
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1.3 Research Contributions 

This thesis is concerned with investigating a new approach to coding and decoding LDPC 

codes based on Parallel Concatenated Gallager Code (PCGCs) using multiple constituent 

codes (MPCGC). There are a class of concatenated codes built from direct parallel 

concatenation of LDPC codes without interleavers. There are characterized by a competitive 

BER performance while maintaining the low complexity and flexibility attributes. 

In this thesis, new methods for encoding and decoding are presented together with BER 

simulation results showing the performance of these codes. Analysis in terms of the number 

of constituent codes is also carried out. 

The design of MPCGC codes is addressed and a new architecture is proposed for the efficient 

implementation of this code. To date no hardware architecture has been reported for 

implementing MPCGC codes. 

This proposed architecture extends the popular QC-LDPC coding structure. In this structure,  

highly-parallelized and pipelined decoder is achieved by dividing the code into three parts for 

three decoders, the pipeline depth decreases for lower rate codes with large submatrices 

because less stages of the check nodes’ compare-select tree need to be traversed as the 

number of inputs are less for the finer check nodes. This is only used in large submatrices 

because the depth of the check nodes is large enough to justify pipelining it. 

In addition, the thesis not only covers the theory, simulation models and architecture but also 

estimates memory costs and evaluates several main blocks in the component decoder, 

LabVIEW FPGA IP compiler is used to get realistic resource utilization and throughput 

estimates based on a specific device (Xilinx Kintex-7X160T). According to the clock 

frequency, we could have a realistic estimate about the throughput this decoder may achieve. 

The proposed design takes advantage of a layered architecture and fully pipelining to 

intelligently distribute the hardware resources, and therefore is suitable for multi-Gb/s 

wireless network. 

 

1.4 Organization 

The organization of the rest of the work is as follows, chapter 2 begins by introducing the 

decoding theory of error correcting code and different classes of LDPC codes as well as the 

decoding algorithms. Chapter 3 introduce the coding structure of MPCGC including serial 

and parallel decoder. Chapter 4 discuss the BER performance of MPCGC with different 
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parameters and situations, looking for a better combination and improvement method. 

Chapter 5 describes the proposed decoder architecture which combine three component 

decoders, and introduces the hardware detail for several key blocks. Chapter 6 shows the 

preliminary results from compilation and synthesis in LabVIEW, estimation of hardware 

memory cost is also presented. Chapter 7 concludes the thesis with a summary. 
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Chapter 2 

 

Low-Density Parity-Check Codes 

 

Coding for error correction is a common approach to achieving reliable data transmission in 

communication systems. The LDPC code is a widely used liner error correcting code 

transmitting a message over a noisy transmission channel, the coding method is based on 

iterative belief propagation techniques and the constructions it has allowing the noise 

threshold to be set very close to the theoretical maximum (called Shannon limit which will be 

discussed later) for a memoryless channel.  

 

2.1 Noisy-channel coding theorem 

Claude E. Shannon presents the concept of information theory in his landmark paper [19] in 

1948. He determined fundamental limits on the transmit reliability of data over channels such 

in figure 2.1 with particular bandwidth and noise characteristics, and how they can be 

calculated, this theory called Shannon capacity or Shannon limit.  

 

Figure 2.1 Data transmission in noisy-channel 

The following capacity formula (2.1) is applying the channel capacity concept to an additive 

White Gaussian Noise Channel (AWGN).  

C = W log2(1 +
S

N
)                                                         (2.1) 

Here W is the bandwidth of the channel in Hz, S is the signal power and N is the total noise 

power of the channel in watt, the S/N is called the signal-to-noise rate, C is measured in bits 

Information Source 

Information Sink 

Encoder 

Decoder 

Modulator 

Demodulator 

Noise Channel 
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per second. According to this formula, there is always a theoretical maximum information 

transfer rate of the communications channel with particular noise level.  

The noisy channel coding theorem proves that if properly coded information is transmitted at 

a rate bellow maximum rate at which data can be sent without error, then the probability of 

decoding error at the receiver can be made to arbitrarily approach zero exponentially with the 

code length [20]. This means that, theoretically, we may transmit information nearly without 

coding error at any rate that below a limit rate. The previous research shows that some good 

constructed QC-LDPC codes perform about only 1dB to the Shannon limit at the BER of 10
-6

 

with sum-product algorithm [21], even some long codes perform very small gap (0.6 dB) 

between Shannon limit. This makes QC-LDPC a good candidate for the channel coding 

methods. 

 

2.2 Encoding LDPC codes 

The encoding of LDPC codes is rely on the Generator Matrix G which is obtained by taking 

the transpose of parity check matrix H, it means that generator matrix G and parity check 

matrix H should be orthogonal to each other, here is mode 2 multiply. 

𝐺 ∗ 𝐻𝑇 = 0 

The encoding process is getting the code vector c by multiplying massage vector m with the 

generator matrix G. 

 c = m ∗ G 

The LDPC codes can be represented by C (n, k) which shows the code length n after 

encoding and the original information bits length k, then the code rate R is defined as R=k/n 

which give the fraction of information bits in code words. 

The generator matrix G is combined with two parts, G=[ P
T
 | I ]. The second part is identity 

matrix to get the original massage vector after encoding. The first part can be obtained either 

from Mackay’s construction theory, or gallager’s construction theory which is used for  

regular LDPC code. 

 

2.3 Classification of LDPC 

According to the different parity check matrix H, the LDPC code can be classified into 

several types. The low density parity check matrix is very sparse which means that there are 

many ‘0’ elements in the matrix and very less nonzero elements in the matrix, the non-zero 

elements could be ‘1’, and this kind of codes called binary LDPC codes cause there are only 
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‘0’ and ‘1’ in the parity check matrix. If the non-zero elements are in the Galois field GF(q), 

where q>2, it is non-binary LDPC codes or called q-ary LDPC codes. The binary LDPC 

codes can be classified as regular and irregular codes, the regular LDPC codes means the row 

weight Wr (number of 1’s in each row of matrix H) should be the same and also the column 

weight Wc (number of 1’s in each column of matrix H) should be fixed, while the irregular 

LDPC codes have variable row weight and column weight. And according to how the non-

zero elements arranged, it also can be classified into random LDPC codes and structured 

LDPC codes, which means that the position of non-zero elements in the matrix can be 

arranged in a specific order. 

The early mentioned in Gallager’s paper is a binary, regular, random LDPC codes, and the 

other kinds of LDPC codes which proposed later are all based on this. Amount of research 

[22], [23] found that non-binary LDPC codes outperform binary LDPC in the moderate code 

word length area,  and it also can efficiently against mixed types of noise and achieving a 

good performance in the circumstance of burst errors [24]. 

 

2.4 Hard-Decision and Soft-Decision 

The advantage of error correcting code is the soft-decision decoding methods, which is a 

class of algorithm used to decode data that has been encoded with the redundancy 

information, where the hard-decision takes on a fixed set of possible values. For binary 

signaling, the received sampled pulses are compared with a single threshold, and they have 

just two possible results ‘0’ and ‘1’ that decided by the value is greater or less than the 

threshold, regardless of how close it is to the threshold. The inputs to a soft-decision decoder 

may take on a whole range of values including of the possibility to be ‘0’ or ‘1’, this extra 

probability information indicate the reliability of each input data, and estimate the original 

data more reasonable according to the reliability. Therefore, the soft-decision decoder has 

better performance in correcting corrupted data than hard-decision. 

The soft-in soft-out (SISO) decoder is a type of soft-decision which commonly used in the 

iterative decoding. The input data contains the possible code bit and also how much 

likelihood it should be, and also for the output to take on a value indicating the reliability. 

During the decoding iteration, the soft output is used as the modified soft input to a further 

iteration until getting the final decision. Or it will input to the outer decoder in a system for 

concatenated codes. 
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2.4.1 Tanner Graph 

The LDPC codes belong to the class of linear block codes defined by a sparse parity check 

matrix H, the decoding process relies on the parity check matrix, the structure of parity check 

matrix have strongly effect on the coding result, so how to build the parity check matrix 

becomes very important. 

Tanner graph is introduced by R. Michael Tanner in 1981 [25], this graph is basically used 

for the graphical representation of parity check matrix H to make the information calculation 

in decoding is easy to understand. Tanner graph contains two set of nodes: check nodes and 

variable nodes( or bits nodes), the every check nodes represent each row of matrix H, and 

every variable node is each column of matrix H, between the check and variable nodes there 

are several lines which represent the ‘1’ in matrix H. For example in figure 1, all red lines 

represent the parity check equation in figure 2.3 which is also marked in red. 

 

                           V1       V2      V3      V4    V5     V6      V7       Variable Node 

 

 

 

                                            C1            C2          C3             Check Node 

                        Figure 2.2 Tanner Graph of Parity Check Matrix 

                                                                              V1+V2+V4+V6=0 

                        [
1 1 0 1 0 1 0
1 0 1 1 0 0 1
1 1 1 0 1 0 0

]                               V1+V3+V4+V7=0 

                                  H                                          V1+V2+V3+V5=0               

Figure 2.3    Parity Check of Matrix H 

The messages passing between check nodes and variable nodes are the probability that each 

bit equals ‘1’ or ‘0’, they iterative several times through the lines and calculate by a specific 

decoding algorithm in every iteration until get the final probability. Here defined the size of 

parity check matrix H is m*n, m represents the number of parity checks. The code length n is 
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the number of bits in the code which is after the encoding, and should be the same as number 

of variable nodes, because of k=n-m, then code rate R=(n-m)/n. 

 

2.5 Decoding Algorithms 

Compare to the hard decision and one-shot decoders which are used before, LDPC decoder 

uses soft decision and iterative decoding algorithm called belief propagation. It is highly 

reduced the Bit Error Rate during the information transmission. LDPC decoder using soft 

information which has multi-bit resolution, it can represent not only whether the received bits 

are ‘1’ or ‘0’ (determined by the sign), but also the reliability of this decision (determined by 

the magnitude), and then the detector decides the received bits is ‘1’ or ‘0’ with the decoding 

algorithm and output a soft information to next iteration, the soft decoder never making a 

hard decision until an output is required. The mainly used decoding algorithms will be 

discussed next. 

 

2.5.1 Sum-Product Algorithm 

The Sum-Product Algorithm (SPA) also called Belief Propagation Algorithm (BPA), it is the 

traditional formulation of the message passing algorithm, using the iteration to calculate the  

probability information. The complexity of SP algorithm is directly related to the number of 

‘1’s in parity check matrix H, more ‘1’s it has then it will be more complexity. Some terms in 

the algorithm are given below: 

qij: message passing from variable nodes vi to check node cj. 

rij: message passing from check node cj to variable nodes vi. 

Row[j]: represents the position of ‘1’ in row number j. Row[j]={i:hj,i=1} 

Row[j]\{i}: represents the position of ‘1’ in row number j except column number i.  

Col[i]: represents the position of ‘1’ in column number i. Col[i]={j:hj,i=1} 

Col[j]\{i}: represents the position of ‘1’ in column number i except row number j. 

The main idea of SPA is passing the probability information from variable nodes to check 

nodes, then calculating and passing back the new probability from the check nodes to 

variable nodes, after several times iterative correcting and getting the final information. 

In the probability domain, the SP algorithm runs as follow. If hj,i=1 then: 

(1) Initialization 
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All variable nodes have their prior values (priori information), they are based on the channel 

model, these priori information are the probabilities of the corresponding bits equals ‘0’ and 

‘1’. 

qij(0)=Pi
pr

(ci=0|yi) 

qij(1)=Pi
pr

(ci=1|yi) 

Where: qij(0)+qij(1)=1 

Here the qij(n) (n=0,1) is the information sent from variable node i to check node j, the qij(0) 

and qij(1) are sent from the same node, present the probability of this bit equals zero and one 

respectively. 

(2) Update Check Nodes step 

This step will update the information on each check nodes with the received probabilities 

from variable nodes, because of the information transfer direction in matrix H is horizontal, it 

also called horizontal step. As it shown on the tanner graph below, depending on the position 

of ‘1’s in matrix H, the information transmitted through the lines. 

                                       V1       V2      V3      V4    V5     V6      V7 

   

                                                            rij 

 

                                                    C1            C2          C3     

Figure 2.4 Update Check Nodes 

All the linked variable nodes passed the information to the check nodes if in the first iteration, 

if not, every variable nodes passed the information to the check nodes except from c j which is 

sent back to it. 

𝑟𝑖𝑗(0) =
1

2
(1 + ∏ (

𝑖′∈𝑅𝑜𝑤[𝑗]\{𝑖}

𝑞𝑖′𝑗(0) − 𝑞𝑖′𝑗(1))) 

𝑟𝑖𝑗(1) =
1

2
(1 − ∏ (

𝑖′∈𝑅𝑜𝑤[𝑗]\{𝑖}

𝑞𝑖′𝑗(0) − 𝑞𝑖′𝑗(1))) 

For example, if update the value of check node Cj, all the probabilities on variable nodes qij, 

i=(0:m), j=(0:n) will be calculated together except the probability rj which is received from 

check node Cj itself.  



 

12 
 

(3) Update Variable Nodes step 

This step will update the value on each variable nodes with the received intrinsic probabilities 

from check nodes last step, because of the information transfer direction in matrix H is 

vertical, it also called vertical step. It is also shown on the tanner graph below. 

                                      V1       V2      V3      V4    V5     V6      V7 

 

                                                qij 

 

                                                  C1            C2          C3   

Figure 2.5 Update Variable Nodes 

All the check nodes passed the intrinsic probabilities to the variable nodes except from itself. 

Then calculated as below. 

𝑞𝑖𝑗(0) = 𝑐𝑖𝑗𝑝𝑖
𝑝𝑟
(0) ∏ 𝑟𝑖𝑗′(0)

𝑗′∈𝐶𝑜𝑙[𝑖]\{𝑗}

 

𝑞𝑖𝑗(1) = 𝑐𝑖𝑗𝑝𝑖
𝑝𝑟
(1) ∏ 𝑟𝑖𝑗′(1)

𝑗′∈𝐶𝑜𝑙[𝑖]\{𝑗}

 

Here cij is a normalizing factor to make sure qij(0)+qij(1)=1. Also removed the probability of 

check node Cj sent to variable node Vi so that only extrinsic information is passed. 

(4) Decision 

The previous step computes the new information that variable nodes will send to check nodes 

in the next iteration, which only contains extrinsic information. To obtain the posterior 

probabilities and decide the final value of each bits,(Pi
post

), the information from check node j 

is not excepted and a new normalization constant ci replaced the cij. 

𝑝𝑖
𝑝𝑜𝑠𝑡(0) = 𝑐𝑖𝑝𝑖

𝑝𝑟
(0) ∏ 𝑟𝑖𝑗′(0)

𝑗′∈𝐶𝑜𝑙[𝑖]

 

𝑝𝑖
𝑝𝑜𝑠𝑡(1) = 𝑐𝑖𝑝𝑖

𝑝𝑟
(1) ∏ 𝑟𝑖𝑗′(1) 

𝑗′∈𝐶𝑜𝑙[𝑖]

 

Here the pi
post

 is the soft output of variable node vi, then using the decision rule below to 

obtain the hard decision output. 

𝑐𝑖̂ = { 
0,    𝑖𝑓 𝑝𝑖

𝑝𝑜𝑠𝑡(0) ≥ 𝑝𝑖
𝑝𝑜𝑠𝑡

(1)

1,                                      𝑒𝑙𝑠𝑒 
                                        (2.2) 
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The hard decision can be taken to check if all the parity checks are satisfied (H*bi=0), if it is 

satisfied or the maximum number of iteration have reached, outputting the final result which 

is computed in the hard decision. 

 

2.5.2 Logarithm BP algorithm 

As the multiplication requires large amounts of hardware consumption and power, to make a 

mathematical simplification, information can be transmitted with log likelihood ratios (LLR) 

instead of in probability domain, it is known as Logarithm BP algorithm which changes the 

multiplications to additions. LLR for the priori information is defined below. 

𝐿𝑝𝑟(𝑐𝑖) = log
𝑝𝑖
𝑝𝑟
(𝑐𝑖 = 0|𝑦𝑖)

𝑝𝑖
𝑝𝑟
(𝑐𝑖 = 1|𝑦𝑖)

=
2

𝜎2
𝐸𝑐                                          (2.3) 

Where 𝜎2 is the noise variance of the channel and Ec is the energy per transmitted codes. This 

equation is only for AWGN channel. Similarly the LLR for variable to check nodes, check to 

variable nodes and posterior information are: 

𝐿(𝑟𝑖𝑗) = log
𝑟𝑖𝑗(0)

𝑟𝑖𝑗(1)
 

𝐿(𝑞𝑖𝑗) = log
𝑞𝑖𝑗(0)

𝑞𝑖𝑗(1)
 

𝐿𝑝𝑜𝑠𝑡(𝑐𝑖) = log
𝑝𝑖
𝑝𝑜𝑠𝑡

(0)

𝑝𝑖
𝑝𝑜𝑠𝑡

(1)
 

In the LLR domain, the calculation process as follows. 

(1) Initialization 

Initialize all variable nodes with their corresponding 𝐿𝑝𝑟(𝑐𝑖) which calculated from equation 

(2.3). 

(2) Update Check Nodes step 

The equation bellow shows the updating of each check nodes’ information from the 

neighboring variable nodes i, the sign and magnitude here should be processed separately. 

𝐿(𝑟𝑖𝑗) = − tanh
−1 (− ∑ tanh

|𝐿(𝑞𝑖′𝑗)|

2
𝑖′∈𝑅𝑜𝑤[𝑖]\{𝑗}

)( ∏ 𝑠𝑖𝑔𝑛(

𝑖′∈𝑅𝑜𝑤[𝑖]\{𝑗}

𝐿(𝑞𝑖′𝑗))) 

(3) Update variable nodes step 

Variable nodes updating based on the message computed form check nodes and the prior 

information. 
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𝐿(𝑞𝑖𝑗) = 𝐿𝑝𝑟(𝑐𝑖) + ∑ 𝐿(𝑟𝑖𝑗′)

𝑗′∈𝐶𝑜𝑙[𝑖]\{𝑗}

                                      (2.4) 

(4) decision 

Different from probability domain SPA, the information from check node j should be added 

to the extrinsic information in equation (2.4) to compute the soft output for decision in LLR 

domain. 

𝐿𝑝𝑜𝑠𝑡(𝑐𝑖) = 𝐿
𝑝𝑟(𝑐𝑖) + ∑ 𝐿(𝑟𝑖𝑗′)

𝑗′∈𝐶𝑜𝑙[𝑖]

 

Then make a hard decision on 𝐿𝑝𝑜𝑠𝑡(𝑐𝑖) for the early termination, typically determined by the 

sign and decide if bit equals to ‘1’ or ‘0’. 

𝑐̂𝑖 = { 
0,    𝑖𝑓 𝐿𝑝𝑜𝑠𝑡(𝑐𝑖) ≥ 0
1,                          𝑒𝑙𝑠𝑒 

 

Repeating these steps for iteration until the bit code result meet the parity check requirement 

or the maximum number of iteration is reached.  

 

2.5.3 Min-Sum Algorithm 

The SPA and other modifications based on it such as Logarithm Belief Propagation 

Algorithm shown a good performance on reducing the bit error, but they still have a complex 

expression for check nodes update which requires high computation,  and still not ideal for 

the hardware implementation cause it needs too much area in hardware. The Min-Sum 

Algorithm (MSA) simplified the computation only in addition and subtraction and modified 

the expression of value only require the calculation of sign and minimum value. The 

optimized for computational cost of MSA will definitely come at the expense of decoding 

performance, but the performance can be improved by increasing the number of iteration 

properly, as it just increases the latency of hardware.  

(1) Initialize the APP ratio 

Here the 𝐿𝑖
(0)

 is the original LLR for 𝑐𝑖 which can be calculated by the equation bellow. 

𝐿𝑖
(0)
= ln {

𝑃(𝑐𝑖 = 0|𝑦𝑖)

𝑃(𝑐𝑖 = 1|𝑦𝑖)
} 

(2) Update Check Nodes step 

The MSA for this step not involves the inverse hyperbolic tangent function which must be 

implemented with the look up tables (LUTs), it makes the hardware implementation friendly. 

The k here represents the k
th
 decoding iteration. 
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𝑅𝑖𝑗
(𝑘)
= [ ∏ 𝑠𝑖𝑔𝑛 (𝐿

𝑖′𝑗

(𝑘−1))

𝑖′∈𝑅𝑜𝑤[𝑗]\{𝑖}

] ∙ min
𝑖′∈𝑅𝑜𝑤[𝑗]\{𝑖}

{|𝐿
𝑖′𝑗

(𝑘−1)|}              (2.5) 

(3) Update Variable Nodes step 

The summation step in the variable node adding all neighboring check nodes’ information 

exclusive the information form itself to get posterior LLR. 

𝐿𝑖𝑗
(𝑘)
= 𝐿𝑖

(0)
+ ∑ 𝑅

𝑖𝑗′
(𝑘)

𝑗′∈𝐶𝑜𝑙[𝑖]\{𝑗}

                                       (2.6) 

(4) Decision 

At the end of each iteration, decision is taken as following equations. 

𝐿𝑖
(𝑘)
= 𝐿𝑖

(0)
+ ∑ 𝑅𝑖𝑗

(𝑘)

𝑗∈𝐶𝑜𝑙[𝑖]

 

𝑐𝑖̂ = { 
0,    𝑖𝑓 𝑠𝑖𝑔𝑛(𝐿𝑖) = 1
1,                         𝑒𝑙𝑠𝑒 

 

If 𝑐̂HT
=0, where 𝑐̂ = (𝑐̂1, 𝑐2̂, … , 𝑐̂𝑛), or meet the maximum number of iteration, the code 

words 𝑐̂ should be output as the decoding result. 

 

2.5.4 Modified Min-Sum Algorithm 

This algorithm simplified the general MSA only on the computation for check nodes which is 

the most complexity and important part, and the rest steps are as same as the general MSA.  

In check nodes updating step here, the minimum value will be selected from all the input 

values instead of excluding the input which will be passing back, the equation modified as 

(2.7). The performance results showing a slight difference between modified MSA and 

general MSA, compare to the cost of complexity, the modified MSA is more implementation 

friendly.  

𝑅𝑖𝑗
(𝑘)
= [ ∏ 𝑠𝑖𝑔𝑛 (𝐿

𝑖′𝑗

(𝑘−1))

𝑖′∈𝑅𝑜𝑤[𝑗]\{𝑖}

] ∙ min
𝑖′∈𝑅𝑜𝑤[𝑗]

{|𝐿
𝑖′𝑗

(𝑘−1)|}                              (2.7) 

Selecting the smallest magnitude in the equation above may results in an overestimation of 

the check node to variable node information because of the large summation, there are 

another two options to correct this, one is optimizing the magnitude by a constant 𝛼 which is 

greater than one, the equation (2.8) shows how this constant works and the other one 

subtracts an offset γ which is shown in equation (2.9), meanwhile, keep the magnitude value 

always large than zero. 
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𝑅𝑖𝑗
(𝑘)
= [ ∏ 𝑠𝑖𝑔𝑛 (𝐿

𝑖′𝑗

(𝑘−1))

𝑖′∈𝑅𝑜𝑤[𝑗]\{𝑖}

] ∙
min

𝑖′∈𝑅𝑜𝑤[𝑗]
{|𝐿

𝑖′𝑗

(𝑘−1)|}

𝛼
                              (2.8) 

𝑅𝑖𝑗
(𝑘)
= [ ∏ 𝑠𝑖𝑔𝑛 (𝐿

𝑖′𝑗

(𝑘−1))

𝑖′∈𝑅𝑜𝑤[𝑗]\{𝑖}

] ∙ max { min
i′∈Row[j]

{|L
i′j

(k−1)| − γ} , 0}                        (2.9) 

The correction parameters 𝛼 and γ can be designed to have a different value according to the 

specific decoder, and also have different times during the iteration. It is obviously that the 

method of γ correction has a better implementation since it only needs a subtractor instead of 

a divider in 𝛼 correction, and also has a finer tuning range than 𝛼 correction [26]. 
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Chapter 3 

 

Multiple Parallel Concatenated Gallager Codes 

 

As LDPC codes shows such a good performance (in terms of error probability) especially for 

the binary symmetric channels, a new class of concatenated codes named Multiple Parallel 

Concatenated Gallager Codes (MPCGCs) designed from the parallel concatenation of LDPC 

codes has been proposed [27], the motivation is using the good LDPC codes in the turbo 

structure. They are considered as a one of the best error correcting procedure based on linear 

block code. 

 

3.1 MPCGCs Encoding 

MPCGCs breaking a long code into multiple small LDPC codes to offer scalability and scope 

for improving performance in practical implementation, especially for the resource 

constrained and delay sensitive applications. 

There are m component LDPC encoders in the encoding part of MPCGCs, each encoder has 

its parity check matrix and generator matrix, the original code words c will go through to 

every component encoder before go into the channel. As shown in Figure 3.1, the c denotes 

the systematic information bits, and e
m
 is the parity information bits which is generated based 

on systematic information by the m
th

 encoder. For example, if the code rate of each LDPC 

encoder is half, then the total code rate of MPCGCs is R=1/(m+1).   

 

 

 

 

 

 

Figure 3.1 MPCGCs Encoder 

LDPC encoder 1 

LDPC encoder 2 

LDPC encoder m 

c c 

e1 

e2 

 

em 
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The final encoded code words should contain the original systematic information c and 

several parts of parity information [e
1
 e

2
…e

m
] which will be send to demultiplexer to prepare 

for decoding. 

 

3.2 MPCGCs Decoding 

The decoder should have matching component decoders which seem like the single LDPC 

decoders, using soft probability information and iterative decoding algorithm for calculating. 

There are two techniques for decoding, serial decoding and parallel decoding structure, they 

all contain several component LDPC decoders to compute the a posteriori probability with a 

specified decoding algorithm from received a priori information during each super iteration.  

 

3.2.1 Serial Decoder 

The MPCGCs serial decoder illustrated in Figure 3.1, each one circle here is one super 

iteration which using m component decoders. Firstly input the initial probability P
0
(c) and 

encoded words d
m

 after adding noise (d
m

=[e
0
 e

m
]) to the matching component decoder 

respectively and prepare for the iterative calculation. During first super iteration, the first 

component decoder received d
1
(sequence e

0
 and

 
e

1
 which is systematic information and parity 

information respectively) and computes the a posteriori probability P
1
(c) which will be the 

input of the second component decoder as a priori information, and there is no a priori 

information for the first component decoder cause it is the first iteration and the information 

bits are -1 or +1for binary phase shift keying (BPSK) modulation. And then, the second 

component decoder using the received d
2
 (d

2
=[e

0
 e

2
]) with an extrinsic information P

1
(c) 

computes the a posteriori probability P
2
(c). The decoding operation is similar for the next 

several decoders, they all calculates the a posteriori probability P
m
(c) according to the 

received d
m
(sequences e

0
 and

 
e

m
) and an extrinsic information P

m-1
(c). 

 

Figure 3.2 MPCGCs Serial Decoder 

What’s more, each component decoder has an output P
m
(ĉ) for the decision of early 

convergence, the iteration will stop early when meet the condition. 

Decoder 1 Decoder 2 Decoder m 

d
1

 d
2

 d
m

 

P
1
(ĉ) P

2
(ĉ) P

m
(ĉ) 

P
1
(c) P

2
(c) P

m
(c) 

P
0
(c) 
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3.2.2 Parallel Decoder 

As the performance of serial decoding can’t satisfy the basic requirement for bit error rate, 

even it is worse than a simple LDPC decoder, our work is focused on another decoding 

technique which is parallel decoding. The structure is illustrated in Figure 3.3, the all 

component decoders in each column is in a same super iteration, each one using its own 

parity check matrix to decodes its own code words, and computes the corresponding a 

posteriori probabilities P
m
(c), every component decoder sends their a posteriori probabilities 

to the next super iteration as the a priori information, and during next super iteration, each 

component decoder computes the a posteriori probability using the received a priori 

information from previous super iteration except its own, that is to say, the a priori 

information from all other m-1 component decoders are received. The super iteration process 

will continue until all component decoders converge to valid code words or reach the 

maximum number of super iterations. 

 

Figure 3.3 MPCGCs Parallel Decoder 

(1) MPCGCs Parallel Decoder with two component decoders 

To understand how does the extrinsic (a priori) information calculates between component 

decoders exactly, let’s start from the simplest MPCGCs which only have two component 

decoders. The decoding process in Figure 3.4 bellow shows how do the two decoders work 

together. Firstly, the MPCGCs decoder de-multiplex the code words which is received from 

the noise channel and divided them into two vectors d
1
 and d

2
, and send them to the first and 

second component decoders respectively. After decoding through each single LDPC decoder, 
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the extrinsic information we got will be exchanged and send to the other component decoder 

as a priori information for next super iteration. 

 

Figure 3.4 Decoding process for MPCGC with two component decoders 

According to the Gaussian probability density function, the probability for code word equals 

to +1 at site l should be calculated as equation (3.1) 

𝑓𝑙(1) = 𝑝(𝑐𝑙 = +1|𝑑𝑙) =
1

1 + exp (
−2𝑑𝑙
𝜎2

)
                                        (3.1) 
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Here 𝑑𝑙
 
is code word after BPSK modulation in AWGN and 𝜎 denote the channel model. 

When the probability of source information bits are p(ul=-1)=p(ul=+1)=1/2, then the 

probability that the code word is -1 at site l is  

𝑓𝑙(0) = 𝑝(𝑐𝑙 = −1|𝑑𝑙) = 1 − 𝑓𝑙
1 =

1

1 + exp (
2𝑑𝑙
𝜎2
)
                                (3.2) 

Then the new extrinsic information for next super iteration should be generated from the 

outputs of the other two decoders as the a priori information which is shown bellow. 

𝑓𝑙(1) =
1

1 + [(
𝑝(𝑐𝑙 = −1|𝑑𝑙)
𝑝(𝑐𝑙 = +1|𝑑𝑙)

) exp (
−2𝑑𝑙
𝜎2

)]
                                      (3.3) 

                                

𝑓𝑙(0) =
1

1 + [(
𝑝(𝑐𝑙 = −1|𝑑𝑙)
𝑝(𝑐𝑙 = +1|𝑑𝑙)

) exp (
2𝑑𝑙
𝜎2
)]
                                        (3.4) 

(2) MPCGCs Parallel Decoder with three component decoders 

The three component decoders show better performance than two in practical application, but more 

complex in exchanging the extrinsic information. Firstly, the de-multiplexer dividing the 

received vectors into three part of code words d
1
 d

2
 and d

3
, and sending them to the first, 

second and third component decoders respectively. After the normal LDPC decoding during 

first super iteration, the exchanging calculation of extrinsic information which from the other 

two component decoders is needed during the all remaining super iterations, update these two 

equations (3.1) and (3.2) above to (3.5) and (3.6), adding the extrinsic information and their 

modulus k1 and k2 as a priori information, the extrinsic information is used in every 

component decoders are come from another two component decoders except itself.  

𝑓𝑙(1) =
1

1 + [𝑘1 (
𝑝(𝑐𝑙 = −1|𝑑𝑙)
𝑝(𝑐𝑙 = +1|𝑑𝑙)

) 𝑘2 (
𝑝(𝑐𝑙 = −1|𝑑𝑙)
𝑝(𝑐𝑙 = +1|𝑑𝑙)

) exp (
−2𝑑𝑙
𝜎2

)]
                    (3.5) 

                                

𝑓𝑙(0) =
1

1 + [𝑘1 (
𝑝(𝑐𝑙 = −1|𝑑𝑙)
𝑝(𝑐𝑙 = +1|𝑑𝑙)

) 𝑘2 (
𝑝(𝑐𝑙 = −1|𝑑𝑙)
𝑝(𝑐𝑙 = +1|𝑑𝑙)

) exp (
2𝑑𝑙
𝜎2
)]
                      (3.6) 

    

The equations (3.5) and (3.6) here are how the extrinsic information be calculated among 

three decoders, and they are specific for BP algorithm. For Min-Sum algorithm or modified 

Min-Sum algorithm, the calculations are shown below: 

According to the calculating method of the probability of a priori information 𝑃𝑙
𝑝𝑟

. 



 

22 
 

𝑃𝑙
𝑝𝑟(𝑐𝑙 = +1|𝑑𝑙) =

1

1 + exp (
−2𝑑𝑙
𝜎2

)

 

𝑃𝑙
𝑝𝑟(𝑐𝑙 = −1|𝑑𝑙) = 1 − 𝑃𝑙

𝑝𝑟(𝑐𝑙 = +1|𝑑𝑙) 

And the a priori information 𝜆𝑙
𝑚 (m is the number of component decoders, here m=[1,2,3]) 

coming from the other component decoders is calculated as: 

𝜆𝑙
𝑚 =

𝑝𝑙
𝑚(𝑐𝑙 = +1|𝑑𝑙)

𝑝𝑙
𝑚(𝑐𝑙 = −1|𝑑𝑙)

 

Then we can get the modified equation of (3.5). 

𝑓𝑙(1) =
1

1 + [𝑘1𝜆𝑙
𝑚 ∙ 𝑘2𝜆𝑙

𝑚 ∙ exp (
−2𝑑𝑙
𝜎2

)]
 

For Min-Sum algorithm, the new a priori information is 𝐿𝑙  which computed bellow, 𝐹𝑙
𝑚 

represent the new information after extrinsic exchanging.  

𝐿𝑙 = ln
𝑝𝑙
𝑚(0)

𝑝𝑙
𝑚(1)

=
−2𝑑𝑙
𝜎2

 

𝐹𝑙
𝑚 = ln(𝑘1𝜆𝑙

𝑚 ∙ 𝑘2𝜆𝑙
𝑚 ∙ exp (

−2𝑑𝑙
𝜎2

)) 

In this case, the modulus k1 and k2 are fixed and equal to 1, the information exchange for 

each component decoders are: 

{
 
 

 
 𝐹𝑙

1 = 𝐿𝑙
2 + 𝐿𝑙

3 −
2𝑑𝑙
𝜎2

𝐹𝑙
2 = 𝐿𝑙

1 + 𝐿𝑙
3 −

2𝑑𝑙
𝜎2

𝐹𝑙
3 = 𝐿𝑙

1 + 𝐿𝑙
2 −

2𝑑𝑙
𝜎2
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Chapter 4 

 

Simulation Results 

 

4.1 Different Number of Component Decoders 

The number selecting of MPCGCs component decoders have an effect on the whole 

decoder’s performance, it may get a better result with more component decoders theoretically 

cause there much more parity check matrix be taken to correct the code words. But as long as 

the number increased, more utilization of hardware source and decoding time will be taken, 

the appropriate number of decoders becomes vital in this design. 

For the code (192,768) with code rate 1/4 here, two, three and four component decoders are 

simulated. 

(1) Case for 2 component decoders: 

As shown in Figure 4.1, separating the original systematic information into 2 parts equally for 

2 component decoders respectively, the new partial systematic information linked with parity 

information to get new partial code words with code rate 2/5, each component decoder 

process this partial code words respectively. The size of parity matrix for partial code words 

will be (288,480). 

 

Figure 4.1 Case for 2 component decoders 

(2) Case for 3 component decoders: 

As shown in Figure 4.2, separating the original systematic information into 3 parts equally for 

3 component decoders respectively, the new partial systematic information linked with parity 

information to get new partial code words with code rate 1/2, each component decoder 

process this partial code words respectively. The size of parity matrix for partial code words 

will be (192,384). 

Parity information 

Systematic information 

Rate=1/4 

Rate=2/5 
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Figure 4.2 Case for 3 component decoders 

(3) Case for 4 component decoders: 

As shown in Figure 4.3, separating the original systematic information into 4 parts equally for 

4 component decoders respectively, the new partial systematic information linked with parity 

information to get new partial code words with code rate 4/7, each component decoder 

process this partial code words respectively. The size of parity matrix for partial code words 

will be (144,336). 

 

Figure 4.3 Case for 4 component decoders 

As shown in Figure 4.4, The BER performance may increase while more component 

decoders are adapt, but the increasing of decoders lead to a huge utilization of hardware 

source, as there are no more obviously improve performance while decoder more than 3, then 

3 parallel component decoders adapted in this proposed design. Also take into consideration 

that the density of parity check matrix in each component decoder might affect the 

performance, we will discuss it in next paragraph, then making an appropriate combination of 

matrices in 3 decoders may getting good results with relatively low area consumption. 

 

Parity information 

Systematic information 

Rate=1/4 
Rate=1/2 

Parity information 

Systematic information 

Rate=1/4 

Rate=4/7 
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Figure 4.4 Comparison of different number of component decoders 

 

4.2 MCW Combination 

As there are several component decoders in MPCGC, and the parity check matrices should be 

different, choosing an appropriate combination of matrices is vital because it affects the BER 

performance directly. Firstly, let’s discuss the concept of Mean Column Weight (MCW), it is 

the average number of column weight (the number of ‘1’s) in whole matrix, as the column 

weight in each column is different, define the maximum value is m and the minimum value 

should be 1. 𝜆𝑖 is a fraction represents the proportion of columns which weight equal to i in 

the parity matrix. Then the MCW can be calculated bellow: 

𝑀𝐶𝑊 ≜∑𝑖𝜆𝑖

𝑚

𝑖=1

                                                              (4.1) 

The research was done before found that the BER performance of LDPC codes with low 

MCW is better than the relatively higher MCWs at low to moderate signal noise rate (Eb/N0) 

region, while it is worse at high signal noise rate [28]. The aim of this design is to combine 
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the strength of LDPC codes with low MCW during the low to moderate Eb/N0, and high 

MCW in the high Eb/N0 region. 

The main idea of super-iterative decoding in MPCGCs is sharing the extrinsic information 

with each component decoders on the systematic information. To measure the quality of 

extrinsic information (a priori messages), a Gaussian approximation to the probability density 

function for the extrinsic information can be used [29], because of the density value approach 

Gaussian distribution for SP algorithm with the increasing iterative number. The calculation 

of signal-to-noise rate (SNR) is based on the variance value σ
2
 and the mean value μ which 

are shown bellow.  

𝑆𝑁𝑅 =
𝜇2

𝜎2
 

Here for log-likelihood based on Gaussian distribution, mean value μ can be approximated by 

equation bellow. 

𝜇 =
𝜎2

2
 

The Gaussian approximation simplified the analysis of probability for each individual LDPC 

codes with different MCW by estimating instead of simulating the actual probability density 

of extrinsic information, here the higher SNR value represents the better quality of extrinsic 

information. 

Figure 4.5 illustrates the quality of extrinsic information with three different MCWs 

(MCW1=1.94, MCW2=2.81, MCW3=1.81) in each MPCGCs component decoder and MCW 

combination of these three decoders at Eb/N0=0.5dB, the SNRi denotes the SNR for the a 

priori information which is the input bits for each single LDPC decoder, and SNRo is SNR 

for the extrinsic information which is the output bits. It is clearly that code with low MCW 

shows better performance in low SNRi and as SNRi increases in moderate area, the SNRo 

starts increasing fast with relatively high MCW. The combination of three serial decoders 

scheme increase the decoding performance by maintaining the good asymptotic performance, 

and the value of three MCWs is crucial for reaching a good performance. We discuss the first 

graph of Figure 4.5 bellow to show how extrinsic information transmitted among three single 

decoders. 
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Figure 4.5 Effect of different MCWs on extrinsic information 

Firstly, the a priori information input into the first decoder and output as extrinsic information 

which will be passed to the second decoder as its a priori information, this process is shown 

in Figure 4.6 where SNR1o becomes SNR2i on the surface of red curve (MCW1=1.94), and 

then SNR2o becomes SNR3i and SNR3o becomes SNR1i after passing through second and 

third decoders respectively in each super iteration, the green arrows represent the decoding 

path during first super iteration. Similarly, the remaining iterative decoding repeats this 

process until converging. To decrease the BER and get faster convergence, the total decoding 

path should be reduced as much as possible. Here setting a relatively lower MCW for first 

decoder that can provide higher SNR1o during first few iterations while SNR1i is low, and it 

leads a high SNR2i for next decoder, then setting a higher MCW for the second decoder to 

have a balance that making the SNR2o increase slightly, therefore, a lower MCW can be used 

in the third decoder. 
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Figure 4.6 Decoding path between three different MCWs in MPCGCs at Eb/N0=0.5dB 

 

4.3 Complexity Comparison 

As the probability information go back and forth along the edges between variable nodes and 

check nodes in tanner graph to iterative updating, the complexity of iterative decoding can be 

measured by the density of parity-check matrix (in terms of edges). To compare the 

complexity of MPCGC with LDPC, first computing the average number of iterations needed 

at different SNR levels. For MPCGC, each component decoder performs 38 local iterations 

before passing the extrinsic output to the other component decoders, and there are 30 super 

iterations. During each super iteration, the 38 local iterations are done by three component 

decoders, to make a fair comparison, the number of iteration of LDPC can be calculated by: 

𝐼 = 𝐼𝑠 × (𝑁𝑑 × 𝐼𝑙) 

Here the local iteration 𝐼𝑙  and super iteration 𝐼𝑠 equals 38 and 30 respectively, and the 

component decoder 𝑁𝑑 is 3, then the iterative number I for LDPC should be 3420. 
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To represent the decoding complexity per iteration, counting the edges based on the code 

length and the density of parity-check matrix (in terms of MCW). The complexity of LDPC 

here is 768*2.82=2166 edges, and for some code length and code rate MPCGC with different 

MCWs, there are 384*(1.9+2.82+1.79)*38=2500 edges in each super iteration. Table 4.6 

illustrates the comparison of complexity in different condition of SNRs. The edges there is 

the total complexity for the whole super iteration in MPCGC and whole LDPC iteration. 

 Iteration Total Edges 

SNR LDPC MPCGC LDPC MPCGC 

0 3.42e+3 3.42e+3 7.41e+6 2.85e+6 

0.5 3.39e+3 3.08e+3 7.34e+6 2.56e+6 

1 9.31e+2 9.18e+2 2.02e+6 7.65e+5 

1.5 4.25e+2 5.40e+2 9.20e+5 4.50e+5 

2 1.83e+2 3.60e+2 3.96e+5 3.00e+5 

Table 4.1 Complexity comparison between LDPC and MPCGC 

The result shows that in a low to moderate SNR area, the coding iteration and message 

passing edges of LDPC are more complex than MPCGC, while with the increasing of SNR, 

complexity for both of them are decrease and the LDPC decreasing faster than MPCGC. The 

decreasing tendency of complexity is illustrated in Figure 4.7. Predicting with this tendency, 

the number of MPCGCs edges will go beyond LDPC’s in relatively high SNR area.  

 

Figure 4.7 Complexity comparison between LDPC and MPCGC  
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Chapter 5 

 

Proposed Decoder Architecture 

 

To meet the needs of multi-Gb/s wireless application, there already lots of architectures 

which based on the fully parallel and fixed decoder are developed, due to the fixed decoder is 

not available for different coding parameters, another scalable and reconfigurable decoder 

architecture is proposed in [30], [31], it is more flexibility and still got a good performance in 

high-throughput. The decoder architecture, in this case, is based on the idea of Quasi-Cyclic 

LDPC decoder, this chapter discusses the strategies for optimizing the parallel decoder 

architecture, the modified features and other decoder parameters. 

 

5.1 Techniques for High Throughput. 

For a better understanding of the high-throughput requirements for MPCGCs decoder, we can 

define the iterative MPCGCs decoding throughput T as follow: 

𝑇 =
𝑛 ∗ 𝑟 ∗ 𝐹𝑐

𝑁𝑐[𝑁𝑠𝑖(𝑁𝑖 + 1) − 1]
     (𝑏/𝑠) 

Here, n is the code length and r is the code rate, Fc is the Top-level clock frequency, Ni is the 

number of local iterations and Nsi is the number of super iterations, Nc is the number of clock 

cycles for each local iteration. The n, r, Ni and Nsi are all depends on the parameter of 

transmit code and the decoding algorithm methods, the Fc and Nc are determined by the 

hardware architecture. 

The optimization of architecture is looking for a higher decoder throughput with a relatively 

lower resource utilization, which means that the optimized architecture could operate at 

higher clock frequency and have minimal latency between each iteration. Although the fully 

parallel architecture could achieving the highest throughput, the maximum throughput cannot 

be always accepted by application, compare to the fully parallel, layered and serial-parallel 

architecture, they show the different advantages in different aspects. 

 

5.2 Parity Check Matrix Structure 
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5.2.1 Quasi-Cyclic Matrix 

Although random parity check matrix with different column weight can achieve a good 

decoding performance, it needs amount of hardware consumption doing different number of 

check nodes and variable nodes in each column and row respectively, due to the irregular 

position of ‘1’s in matrix. Instead of random matrix, the matrix in constant column weight 

can simplify the hardware structure but in sacrifice the bit error rate performance, to have a 

different column weight without increase too much hardware consumption, the quasi-cyclic 

matrix gives flexibility of matrix have different column weight in each column and more 

easily to manage the MCW in total. 

The size of parity check matrix in every component decoder is (192,384) in this case study. 

Separating the whole matrix into several parts, we call them sub-matrix, the size of them are 

the same z*z, here z=24. They are either cyclic permuted from the identity matrix with 

different shift amount or all-zero sub-matrices. Figure 5.1 shows the example of shift amount 

0,1 and 22 (the superscript gives shift amount), the identity matrix shift to right cyclically 

according to the shift amount gives. 

𝛽0 =

[
 
 
 
 
 
 
1 0 0
0 1 0
0 0 1

⋯
0 0 0
0 0 0
0 0 0

⋮ ⋱ ⋮
0 0 0
0 0 0
0 0 0

⋯
1 0 0
0 1 0
0 0 1]

 
 
 
 
 
 

 

𝛽1 =

[
 
 
 
 
 
 
0 1 0
0 0 1
0
 

0
⋮

0
 

… 0 0 0
    0 0 0
⋱ 0
 ⋱

0
 

0
⋮

0 0 0
0 0 0
1 0 0

    0 1 0
… 0 0 1
    0 0 0]

 
 
 
 
 
 

        𝛽22 =

[
 
 
 
 
 
 
0 0 0
0 0 0
1
 

0
⋱

0
 

   0 1 0
… 0 0 1
    0
  

0
⋮

0
 

0 0 1
0 0 0
0 0 0

   0 0 0
⋱ 0 0 0
   1 0 0]

 
 
 
 
 
 

 

Figure 5.1 Example of cyclically right shifted identity matrices 

 

5.2.2 Non-Overlapping Layers 

Although the fully parallel implementation may seem as an attractive option for achieving 

high-throughput performance, it has its own drawbacks, firstly, it becomes quickly intractable 

in hardware due to the complex interconnect pattern between CN units and VN units, 

secondly, such an implementation usually restricts itself to a specific code structure. In spite 

of the serial nature of the algorithm which mentioned before (scaled min-sum), one can 

process multiple nodes at the same time if the following condition is satisfied. 
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From the perspective of CN processing, two or more CNs can be processed at the same time 

(i.e. they are independent of each other) if they do not have one or more VNs (code bits) in 

common. The row-layering technique used in this work essentially relies on the above 

condition being satisfied. In terms of H, an arbitrary subset of rows can be processed at the 

same time provided that, no two or more rows have a 1 in the same column of H. This subset 

of rows is termed as a row-layer. 

Figure 5.2 illustrate the parity check matrix that creates with several sub-matrices, these sub-

matrices are either quasi-cyclic matrix or null matrix (zero matrix), we can control the MCW 

flexibly with this layered structure. The number in boxes are the shift amount and the blank 

boxes are zero matrces, no matter how much the quasi-cyclic matrix shift, the column weight 

always be 1, calculating by the equation (4.1), the MCW here is 3.25. 

 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 

L1 21  16  12  23  1        

L2 5  7  18   14 9 20       

L3  4  3  16  6  4 13      

L4  12  19  10 5    14 6     

L5 19  17  14  13  22   15 18    

L6 8  5   20  2  18  3  4   

L7  22  11  6  19   20   23 7  

L8  7  20 15  21  2    12  19 11 

Figure 5.2 sub-matrices distribution in parity check matrix 

Obviously, the layer 1 and layer 3 here are independent of each other, they do not have any 

VN units in common, it is the same to L6 with L8, L2 with L4 and L5 with L7, In this case, 

the matrix can overlapping as the figure 5.3 shown below, it reduce the layers from 8 to 4 

super-layers. 

 

 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 

L’1 21 4 16 3 12 16 23 6 1 4 13      

L’2 5 12 7 19 18 10 5 14 9 20 14 6     

L’3 19 22 17 11 14 6 13 19 22  20 15 18 23 7  

L’4 8 7 5 20 15 20 21 2 2 18  3 12 4 19 11 

Figure 5.3 Structure of matrix with non-overlapping layers 

The component decoder processing 16 sub-matrix blocks for each layers and processing 4 

blocks for each columns with this non-overlapping structure. 
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5.3 Component Decoder Design 

The MPCGC decoder in this scenario has three component decoders, each one has its own 

parity check matrix in the same dimension with each other. Take one decoder for example, as 

mentioned before, the parity check matrix with overlapping layers can modify the check node 

architecture, the component decoder here has z Check Node Units (CNs), z is the dimension 

of sub-matrix Hs, each CN has N inputs, which N is the number of columns in Hs, and there 

are N*z Variable Node Units (VNs) that are combined into N groups of z VNs in each group, 

and each VN in this group connects to one port of a z-input barrel shifter to complete the 

cyclically right shift in a specific number, and all the outputs are further routed in pre-routers 

and then connect to the CNs. During the super iteration, all of the VNs in each component 

decoder will exchange the extrinsic information with the others in Extrinsic VtoC Updating 

Unit, and get back the updated a priori information which going to the CNs. Figure 5.4 shows 

the block connection of one component decoder. 

The decoder architecture in this scenario is based on the layered property of the parity check 

matrix and implements with the Modified Min-Sum algorithm.  

z: submatrix size 

N: numbers of the columns in sub-matrix B 
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Figure 5.4 Component decoder architecture for MPCGC 

 

5.3.1 Check Nodes Unit 

To reduce the complexity of processing the minimum value in equation (2.5) of Check Node 

(CN) Unit, here divide the process into two phases, one is in the check node step that selects 

two smallest values (first minimum and second minimum value) in the set instead of just 

output one minimum value. Another one is during the variable node step which will discuss 

later. This modification reduces the complexity from quadratic complexity O(nci²) to linear 

complexity O(nci). A similar method is also found in [32]. 

As explained in Chapter 2, the CNs are processing the equation (2.5) which has the most 

computational complexity due to the calculation of the minimum magnitude and the sign for 

all the neighboring VNs, in order to allow CN processing two non-overlapping layers, the 

comparator tree have two outputs, one is a pair of first and second minimum from the 

bottom-half of the tree and the other pair of minimum is select between the top-half tree’s and 
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the final stage’s, the block diagram of the CN’s magnitude comparator tree is shown in figure 

5.5. 

 

 

Figure 5.5 Message Magnitude Computation in Check Nodes Unit 

The magnitude comparator tree constitute mainly of several  compare-select (CS) blocks 

which compare four inputs and select the first and second minimum value. Figure 5.6 is the 

graph function of CS blocks in LabVIEW.  

 

Figure 5.6 Compare-Select Blocks 
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Another computation tree for the inputs’ sign processing the first half part of equation (2.5), 

this constitute by XOR gates as shown in figure 5.7,  

   

Figure 5.7 Message Sign Computation in Check Nodes Unit 

 

5.3.2 Variable Node Unit 

All the VNs received a prior information with both first and second minimum from previous 

steps, and loads them in accumulation registers, then outputs the variable to check (VtoC) 

information to all its neighboring CNs in sign-magnitude format. During the performance  in 

VNU, comparing the first minimum magnitude to the VtoC magnitude in the register to 

marginalize the magnitude. VNU will select the first minimum magnitude in next add tree 

part if VtoC not equal to first minimum, or will select the second minimum magnitude if they 

are equal. Let 𝑓(𝑡)  and  𝑠(𝑡)  denote the value of first and second minimum at time t 

respectively, 𝐿
𝑖′𝑗

(𝑡)𝑠𝑒𝑙
 will be the chosen minimum value of  𝐿

𝑖′𝑗

(𝑡)   in equation (5.1) of VN Unit.  

𝐿
𝑖′𝑗

(𝑡)𝑠𝑒𝑙
= {

 𝑠(𝑡) ,    |𝐿
𝑖′𝑗

(𝑡) | = 𝑓(𝑡)

𝑓(𝑡),                 𝑒𝑙𝑠𝑒
                                                   (5.1) 

Then the value going through the accumulation part as shown in figure 5.8, adding with the 

priori information together,  
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Figure 5.8 Architecture of Magnitude Accumulation in Variable Nodes Unit 

 

5.3.3 Barrel Shifters 

In order to simplify and reduce the wiring, VN Units and CN Units connect to barrel shifters 

to implement the circular shifters required by each sub-matrix,  

Barrel shifter rearranges the sub-matrix elements from their original order to a uniform order 

according to each shifter number it is, it seems like change each sub-matrix to an identity 

matrix. After computation of all CNs, the barrel shifter changing the order back to the 

original order for each layer. 

 

5.3.4 VtoC and CtoV Router 

Here is a serial processing by each non-overlapping layer, there are z CNs grouped together 

in a single layer which called Check Node Group (CNG), and all the VNs divided into N 

groups according to the sub-matrices they belong to. Since the messages passing between 

CNG and VNG in each non-overlapping layer are coming from at most two layers, the 

routers between them must ensure the massages from the first layer and second layer go to 

the top half and the bottom half of each CN block respectively. Each Barrel Shifter connect 

with z VNs in the same group, and output the massages through VtoC Router to connect each 

CN correctly, and then back to the VNGs through CtoV Router and Back Shifter, figure 5.9 

shows the function in a section of the matrix. 
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Figure 5.9 VtoC and CtoV Router function 

 

5.3.5 Extrinsic VtoC Updating Unit 

This block is outside the component decoder structure which connecting all three decoders, it 

is only executing  when super iteration occurred, all of VNs in each component decoder will 

exchange the extrinsic information Fl as a priori information through this VtoC exchanging 

unit, and the new information is going to the CNs in corresponding component decoders. 

 

Figure 5.10 Structure of Extrinsic VtoC Updating Unit 

 

5.4 Pipeline Architecture 

As we discussed the non-overlapping layers before, all the CNs in a group are processed in 

parallel to compute one non-overlapping layer. And for each layer it can be only processed in 
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serial since they are dependent on each other for some block columns, it requires enough 

clock cycles (as same as the number of non-overlapping layers) to time multiplex the serial 

CNG. Each VN needs to receive message from all layers in its column to compute VtoC 

extrinsic message for next iteration, it means that until the last message from the last layer to 

be received and stored into memory in VN, it is impossible to calculate the new message to 

CNG for the first block row operating, it will results in a delay for waiting all layers executed 

and output the final message before starting a new loop. The non-pipelined case in figure 

5.11(A) shows clearly that, dependent layers limit the degree of parallelization and the idle 

clock cycles impact on achieving high throughput directly.  

To maximize the effectiveness of the component decoder, let us first understand the layer-to-

layer independence condition. Within a non-overlapped super-layer, when VNs process 

messages for the block b’(u,v), the CNs can process messages for the block b’(u+1,v) at the 

same time, u={1,2,…,L’}, and v={1,2,…,N}. The figure 5.11(B) shows how the pipeline 

works only in the local iteration, each β (u,w) block including all the b’(u,v) blocks in the 

same super-layer which execute in parallel, w is the number of local iteration. Compare to the 

non-pipeline one, the pipeline architecture reduces three clock cycles per iteration.  

 

 

Figure 5.11 Pipeline timing diagram in local-iteration 

(A) Non-pipeline case of one component decoder. (B) Pipeline case of one component 

decoder. 
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For MPCGC decoder, exchanging the messages output from VNG is required during the 

super-iteration, each component decoder passing the posterior probability after decision step 

to the other decoders, and get back the updated message which is going to CNG. The 

extrinsic VtoC updating unit cannot compute the new messages until received messages from 

all component decoders, this also brings a large amount of idle cycles when super-iteration 

occurred, shown as Figure 5.12 (A). The pipeline technique here is similar to the inner 

pipeline of component decoder, all the b’(u,v) blocks in one super-layer pass VtoC messages 

to the updating unit in parallel, it is same for messages from the other two component 

decoders and  the updated VtoC messages newFl
1 

newFl
2 

and newFl
3 are send back to CNG 

respectively in the next clock cycle. Figure 5.12 (B) illustrate that pipeline reduces half the 

clock cycles per super-iteration.  

 

Figure 5.12 Pipeline timing diagram in super-iteration 

(A) Non-pipeline case of one component decoder. (B) Pipeline case of one component 

decoder. 

To make sure this pipeline design for super-iteration works well, the dimension and MCW of 

parity check matrix in each component decoder will be adapted, especially for the size of sub-

matrix and the arrangement, so this pipeline design did not suitable for the parity check 

matrices in different number of super-layers. 
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The pipeline design here allowing us to overcome the layer dependency and improve 

throughput, although there are some idle cycles at the end of each iteration, the number of the 

clock cycles are much less than the non-pipeline structure. 
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Chapter 6 

 

LabVIEW
TM

 Simulation and Compilation  

 

As a graphical programming language, National Instruments’ LabVIEW with its Modulation 

Toolkit and virtual instruments (VIs) makes it easy to design and produce a flexible and 

powerful communication test system, especially for simple applications, such as quick lab 

tests or monitoring applications. It is in contrast to the sequential logic of most text-based 

programming languages that LabVIEW stands out, the executability and execution of 

graphical block dependents on the dataflow architecture, which means that the output data 

sending to all other connected blocks while all input data are available. And for large 

development project, it is more intuitive to plan the project and check the error with graphical 

functions in LabVIEW. 

 

6.1 Simulation of BER Performance 

The decoder implementation based on the pipelined architecture which mentioned in chapter 

5, each component decoder operating for 192*384 parity check matrix with z=24 sub-matrix 

and code rate R=1/2. The MCWs of each matrix are different and controlled by the sub-

matrix arrangement, we select a combination of MCW which has a good performance in test 

before, MCW1=1.94, MCW2=2.81 and MCW3=1.81, the sub-matrix arrangement is shown 

in figure 6.1 that the grey boxes are Quasi-Cyclic matrix in different shift amount.  

 

 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 

L’1                 
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L’3                 
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(a) MCW1=1.94 
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 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 

L’1                 

L’2                 

L’3                 

L’4                 

 (b) MCW2=2.81 

 

 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 

L’1                 

L’2                 

L’3                 

L’4                 

 (c) MCW3=1.81 

Figure 6.1 Sub-matrix layout in parity check matrix 

Compare to the Bit Error Rate performance of MPCGC (with three component decoders) in 

different parameters. We select several sets with different number of local- and super-

iteration to compare in LabVIEW, the performance in Figure 6.2 shows that the BER 

performance is more based on the number of super-iteration, one more super-iteration would 

have much more improvement. As shown in Figure 6.3 there is slightly different with blue 

line (8 local-iteration, 3 super-iteration) and red line (13 local-iteration, 3 super-iteration), the 

total iteration number for red line is 13*3=39, to compare with it, a 8 local-iteration and 5 

super-iteration (white) case which have nearly same iteration number 8*5=40 been chosen, it 

shows better performance to red line. The performance of green line in Figure 6.3 is better 

than others but it needs much more clock cycles for the huge number of iteration, compare to 

the total number of clock cycles they needed, we choose the blue line case here which needs 

less iteration number for the relatively acceptable BER performance and compile it in 

LabVIEW which discussed in next paragraph. 
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Figure 6.2 MPCGC Bit Error Rate (BER) performance comparison between 5 local-iteration, 

1 super-iteration (green); 5 local-iteration, 2 super-iteration (red); 5 local-iteration, 3 super-

iteration (white); 8 local-iteration, 3 super-iteration (blue). 
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Figure 6.3 MPCGC Bit Error Rate (BER) performance comparison between 8 local-iteration, 

3 super-iteration (blue); 8 local-iteration, 5 super-iteration (white); 13 local-iteration, 3 super-

iteration (red); 38 local-iteration, 30 super-iteration (green). 

 

6.2 LabVIEW
TM

 FPGA Compilation 

In previous works, the IEEE802.11ad standards required multi-gigabit LDPC decoders, in 

order to achieve high throughput and low power consumption, many types of architecture are 

used for the decoder. Because of the MPCGC decoder is combined with multi LDPC 

decoders, to find an optimal architecture for LDPC decoder which can achieve a good 

performance is helpful to the optimization of MPCGC decoder. 

As the LabVIEW
TM

 FPGA and can compile the design in a very fast way with a high-level 

language graphical code in it instead of the hardware description language, while the real-

time operating system increases the PC’s usefulness by limiting the variation in latency. Here 

compiling one component decoder on the Xilinx Kintex-7K160T FPGA which available on 

the NI cRIO-9033 FPGA board, it can estimate the FPGA resource utilization very quickly, 

here is only 39min. And the decoding core achieves throughput of at an operating frequency 

120MHz. Table 6.1 shows the resource utilization for only one component decoder, for the 

whole decoding system there are three decoders processing in parallel, the resource may 

triple than it due to the Extrinsic VtoC Updating Unit do not take many logic gates and slices. 

The throughput achieved for one component decoder is T=576Mb/s. 

Device   Kintex-7K160T 

Clock Frequency  120MHz 

Time Compile  39min 

 

Total Slice 

 usage amount 

5754   

(percentage of total) 

       (25.1%)  

Slice Register  46122        (22.7%) 

Slice LUTs  39855        (39.3%) 

Block RAMs  32         (9.8%) 

DSP48s  41         (6.8%) 

Table 6.1 MPCGC component decoder IP FPGA resource utilization on Kintex-7K160T 

 

6.3 Memory Cost Estimation 
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The MPCGC decoder will store three type of messages during the decoding process, the 

initial LLR values with calculated from the channel parameters, the extrinsic CtoV messages 

which are updated in each iteration including the super iterations, the hard decision messages 

which used for the early convergence.  

The bit width for one LLR value is 6 bits, the memory size of the initial variable messages 

and hard decision messages are 6912 here (384*6*3=6912). But the memory size of extrinsic 

CtoV messages are different for different decoding methods and structures, here we discuss 

the total memory size of extrinsic messages in this scenario. 

 MPCGC  LDPC 

Rate Z L(Com) Memory  Z L Memory 

1/4 24 8(3) 27,648  24 24 55,296 

1/3 24 8(2) 18,432  24 16 39,168 

2/5 24 4(3) 10,368  24 12 31.680 

1/2 16 4(3) 9,216  16 12 13,824 

3/4 16 2(2) 8,064  16 4 3,072 

8/9   4 2(3) 7,200  8 3 2,592 

Table 6.2 Comparison of the memory size with MPCGC and LDPC 

It is obviously in Table 6.2 that both the memory size is reducing while the code rate 

increasing, the MPCGC have an advantage in the lower code rate especially when the rate is 

less than 1/2, that because MPCGC just divides the systematic information into several parts 

for each component decoders while remaining the redundant information. The proportion of 

parity information in the total information is rising while the increasing of code rate, then the 

memory size gap between MPCGC and LDPC will increase highly with the high code rate. 

The MPCGC code is more suitable for lower code rate situation such as the rate 1/4 in DVB-

S2 standard, it has less advantage on higher code rate especially higher than 1/2. 
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Chapter 7 

 

Conclusion 

 

7.1 Advances 

This thesis was concerned with investigating a new approach to coding and decoding LDPC 

codes based on Parallel Concatenated Gallager Code (PCGCs) using multiple constituent 

codes (MPCGC). These are a class of concatenated codes built from the direct parallel 

concatenation of LDPC codes without interleavers. They are characterized by a competitive 

BER performance while still maintaining the low complexity and flexibility attributes.  

Encoding and decoding techniques for these codes have been considered and BER results 

obtained confirming the improved performance of these codes. Further analysis in terms of 

the number of constituent codes and complexity has also been given.  

A key novelty of the work in this thesis is to propose a highly-parallelized and pipelined 

MPCGC decoder based on the QC-LDPC structure, which is suitable for multi-Gb/s wireless 

network, this design takes advantage of layered structure to intelligently distribute the 

hardware resources, and also fully pipelined. The simulation result supported by preliminary 

FPGA implementation of the constituent sub-blocks using LabVIEW FPGA IP tools indicate 

that the proposed coding structure supports high throughput with slight sacrifice in the 

resources consumption. This, to my knowledge, is the first work to consider implementation 

issues of MPCGC codes. 

 

7.2 Future work 

Although this work proposed an architecture which is a near-optimal design, the test of actual 

application with this structure is still required. Firstly, completing the whole MPCGCs 

decoding system to find how much improvements in throughput and hardware resource 

utilization. 

1. To meet the requirement for the development of wireless communication, high-

throughput coding method received attention in the research community, then increasing 
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the operating frequency and pipeline depth to process extra frames simultaneously 

becomes crucial in next work. 

2. The amount of previous works shown the good performance of non-binary LDPC codes 

in wireless channels compare with the binary codes [33], such as the multiple-input 

multiple-output (MIMO) transmission which is one of the most practical methods to 

increase the capacity and against fading effects of wireless channels [34]. Because of non-

binary LDPC codes can efficiently combat mixed types of noise and perform well in the 

presence of burst errors [35], next work can focus on the non-binary GF(q) (q>2) 

MPCGCs to increase the performance on error correcting. 

3. As MPCGCs breaking a long complex code into multiple small codes that only breaking 

the redundant information of original long code, then it makes the message with relatively 

low code rate take more advantage of applying MPCGCs coding method. Apply the 

MPCGCs coding scheme to DVB-S2 with code rate 1/3 and 1/4 or even other popular 

IEEE standards which accept low code rate (less than 1/2) can be attempted in the future 

works.  
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