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Abstract

Weather radars have been used to quantitatively estimate precipitation since their de-

velopment in the 1940s, yet these estimates are still prone to large uncertainties which

dissuade the hydrological community in the UK from adopting these estimates as their

primary rainfall data source. Recently dual polarisation radars have become more com-

mon, with the national networks in the USA, UK and across Europe being upgraded,

and the benefits of dual polarisation radars are beginning to be realised for improving

quantitative precipitation estimates (QPE).

The National Centre for Atmospheric Science (NCAS) mobile Doppler X-band dual po-

larisation weather radar is the first radar of its kind in the UK, and since its acquisition

in 2012 has been deployed on several field campaigns in both the UK and abroad. The

first of these campaigns was the Convective Precipitation Experiment (COPE) where the

radar was deployed in Cornwall (UK) through the summer of 2013. This thesis has used

the data acquired during the COPE field campaign to develop a processing chain for the

X-band radar which leverages its dual polarisation capabilities.

The processing chain developed includes the removal of spurious echoes including second

trip, ground clutter and insects through the use of dual polarisation texture fields, logical

decision thresholds and fuzzy logic classification. The radar data is then corrected for the

effects of attenuation and partial beam blockage (PBB) by using the differential phase

shift (ΦDP ) to constrain the total path integrated attenuation and calibrate the radar

azimuthally. A new smoothing technique has been developed to account for backscatter

differential phase in the smoothing of ΦDP which incorporates a long and a short av-

eraging window in conjunction with weighting smoothing using the copolar correlation

coefficient (ρhv). During the correction process it is shown that the calculation of PBB

is insensitive to the variation in the ratio between specific attenuation and specific dif-

ferential phase shift (α) provided a consistent value is used. It is also shown that the

uncertainty in attenuation correction is lower when using a constrained correction such

as the ZPHI approach rather than a direct linear correction using differential phase shift

and is the preferred method of correction where possible.



viii

Finally the quality controlled, corrected radar moments are used to develop a rainfall

estimation for the COPE field campaign. Results show that the quality control and cor-

rection process increases the agreement between radar rainfall estimates and rain gauges

when using horizontal reflectivity from an R2 of -0.01 to 0.34, with a reduction in the

mean absolute percentage difference (MAPD) from 86% to 31%. Using dual polarisation

moments to directly estimate rainfall shows that rainfall estimates based on the theo-

retical conversion of specific attenuation to reflectivity produce the closest agreement to

rain gauges for the field campaign with a MAPD of 24%. Finally it is demonstrated that

merging multiple dual polarisation rainfall estimates together improves the performance

of the rainfall estimates in high intensity rainfall events while maintaining the overall

accuracy of the rainfall estimates when compared to rain gauges.
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Chapter 1

Introduction

Flooding is a major challenge for many countries around the world, while drought can

be equally devastating. Recent flash flooding has caused fatalities in Utah (Sep 2015),

Macedonia (Aug 2015) and Morocco (Nov 2014), to name just a few examples, while the

economic costs of larger flood events have been substantial, for example the 2007 summer

floods in the United Kingdom cost more than £3.2 billion (Morris et al., 2010) and more

recent flooding in Europe (2014) led to over e100 million of aid being distributed by the

European Commission from the EU solidarity fund. Conversely the western USA, par-

ticularly California has experienced an extended period of drought, with over 60% of the

region being abnormally dry and at least 20% of the region suffering from severe drought

or worse since the spring of 2012 and the UK was experiencing water deficit prior to the

wet summer of 2012. Accurate measurements of rainfall allow the effective management

of flooding situations, informing flood forecasts and providing context to events, while

they also allow the evaluation of drought situations, improving understanding of their

hydrological drivers. With the risk of flooding and drought predicted to increase over

the coming century, as a result of increased population pressure, changes in land use

and climate change (Conway et al., 2015; Veldkamp et al., 2015; Schneider et al., 2013;

Kollat et al., 2012; Environment Agency and DEFRA, 2011), action to prevent, mitigate

and manage these risks is required to lessen their future impacts. Rainfall measurements

are just one aspect of this action, contributing to operational water resources planning

and flood risk management, informing hydrological research as a critical input variable

and also meteorological research, for assimilation into forecasts, forecast validation and

1
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improved process understanding. The following thesis considers the use of weather radar

for rainfall measurement, due to the continued expansion and technological development

of weather radar networks across the world. Of particular importance is how the reliabil-

ity of radar measurements may be improved for hydrological applications, and how the

uncertainty of those measurements can be accurately represented.

1.1 Why use weather radar?

Weather radar provide distributed rainfall estimates at high spatial and temporal resolu-

tion (1 km2 and 5min for the current UKMO composite, for example), allowing rainfall to

be estimated in real time across wide areas with a single instrument. As they observe the

atmosphere at multiple elevation angles they can provide a more complete three dimen-

sional view of the weather systems observed, allowing regions of interest to be studied in

greater detail or short term extrapolations (nowcasts) to be made. The use of nowcasts

is particularly relevant during periods of localised convective activity. In particular flash

flooding from convective systems is a significant challenge for forecasters and flood risk

management professionals (Moore et al., 2006; Collier, 2007; Broxton et al., 2014), and

one which weather radar can help with. During convective situations it is common that

the forecast location of individual cells is more uncertain than the forecast intensity, with

current nowcasting systems using a distributed rainfall input from weather radar as an

initial boundary condition to improve their performance, which is then advected to match

modelled rainfall over the duration of the nowcast (Bowler et al., 2006; Golding, 2009;

Hapuarachchi et al., 2011; Alfieri et al., 2012).

Another benefit of weather radar is the ability to produce distributed rainfall estimates.

With the growing availability of distributed hydrological models facilitated by expanding

CPU and GPU processing power the need to produce accurate measurements of dis-

tributed rainfall as input has never been greater. The traditional hydrological input from

rain gauges no longer meets these needs as rain gauge networks with a high enough spa-

tial density for accurate distributed modelling are a rare occurrence and too costly to be

implemented on an operational scale (Atencia et al., 2011).

Weather radars also provide the opportunity to measure additional atmospheric vari-

ables, in addition to precipitation. Doppler technology allows the measurement of the
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radial motion of the atmosphere in relation to the radar location, which can extended to

absolute motion vectors provided overlapping radar coverage is available. Another newer

technology, particularly in relation to the operational radar networks of Europe, includ-

ing the network in the UK, is dual polarisation, which allows additional measurements

of the shape and size of particles within the atmosphere.

Despite these advantages, and the long held view that weather radar are the next great

development in hydro-meteorological observation for flood forecasting, the quantitative

precipitation estimates obtained from weather radar are still not viewed as a reliable

measurement. These estimates are often ignored in favour of simulated rainfall or inter-

polated rain gauge data and when they are used they are heavily weighted to conform

to rain gauge point measurements obtained at a vastly different temporal and spatial

scale (Berne and Krajewski, 2013; Price et al., 2012; Neale, 2012). This approach can

be attributed to the many uncertainties which affect quantitative precipitation estimates

from radar (QPE) (Villarini and Krajewski, 2010a; Joss and Germann, 2000).

The aforementioned widespread implementation of dual polarisation weather radar sys-

tems should change this perception, by improving the data quality and accuracy of radar

QPE while better constraining the uncertainty in those measurements.

1.2 Assessing dual polarisation rainfall estimates

The following thesis will assess the magnitude of these improvements using a dual po-

larisation radar dataset from the COnvective Precipitation Experiment (COPE) field

campaign, obtained using a mobile, dual polarisation, Doppler X-band radar. To obtain

accurate rainfall estimates the raw reflectivity dataset will be processed and corrected

using multiple techniques made possible with dual polarisation observations, before con-

trasting several methods of dual polarisation rainfall estimation to ascertain the uncer-

tainty within the rainfall estimates. A final rainfall product for the field campaign will

then be available which utilises these methods to provide the most accurate rainfall es-

timate possible. The inclusion of multiple rainfall estimates from the radar in this final

rainfall product will reduce its uncertainty through selective merging of the estimates,

driven by the uncertainty analysis conducted throughout the thesis.
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To achieve the above objectives it is first necessary to introduce rainfall estimation with

weather radar, dual polarisation and the benefits of utilising dual polarisation (Chap-

ter 2). Then the datasets used can be described in context (Chapter 3) and evaluated

as an initial product (Chapter 4). Following initial analysis, which identifies common

radar errors and uncertainties, the data can be quality controlled (Chapter 5) and cor-

rected (Chapter 6) using dual polarisation techniques. Chapter 7 then introduces several

methods of rainfall estimation using dual polarisation, comparing their output to rain

gauges for the field campaign and describes the combination of these estimates into a

final rainfall product for the COPE campaign.



Chapter 2

Introducing weather radar for

quantitative precipitation

estimation and hydrological

applications

The deployment of radar for meteorological observation began soon after its military

development (Watson-Watt, 1945; Maynard, 1945). Despite these early beginnings its

use for hydrological applications has always been secondary to other measurements of

rainfall, especially rain gauges. Since this early inception two notable technological up-

grades have occurred. The upgrade to Doppler systems, capable of measuring the radial

velocity of detected echoes occurred in the 1980s and 1990s, with many countries across

the globe now operating a multi-radar observational Doppler network (Meischner et al.,

1997; Collier, 1996, for example). The second major technological improvement, dual

polarization, has taken longer to reach operational networks, with networks such as the

United Kingdom Met Office (UKMO) radar network and MeteoFrance’s radar network

currently in the process of upgrade, and the United States WSR-88D network upgrade

recently finished in 2013 (Figueras i Ventura et al., 2012; Zhu and Cluckie, 2012).

These technological improvements aim to address many of the major sources of error in

single polarisation radar measurements of rainfall, which are often cited as a major reason

5
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for the continuing lack of confidence in radar data within the hydrological community

(Villarini and Krajewski, 2010a; Neale, 2012). Another proposed solution to addressing

these errors in radar QPE is the statistical modelling of the total combined errors when

compared to a reference observation, typically rain gauges (Germann et al., 2009, for

example). These error models can then be used to generate ensembles of rainfall fields

which encompass the statistical variability of the radar errors.

Here follows an overview of single polarisation weather radar (2.1) and its uncertainties

(2.2), dual polarisation radar (2.3) and how the application of dual polarization radar

can address some of these uncertainties (2.4) and, finally the combination of radar obser-

vations with rain gauge observations which includes the development of observed rainfall

ensembles (2.5).

2.1 Rainfall estimation with single polarisation weather radar

Single polarization radars transmit radiation in pulses, polarized along a known plane.

These pulses then interact with the atmosphere and the hydrometeors within it, scattering

the radiation. The radar then receives incoming radiation from this scattering, thereby

observing the atmosphere. As hydrometeors are an incoherent radar target (Marshall

and Hitschfeld, 1953) this received power is averaged over a number of pulses to produce

the received signal. The number of pulses is determined by the scanning speed of the

radar, the azimuthal gate spacing and the pulse repetition frequency. Once calculated the

average received power (Pr) can then be converted into the equivalent radar reflectivity

factor (Ze) using the simplified radar range equation (2.1).

P̄r = C|Kp|2Ze(r0)
r2

0
(2.1)

Kp =
ε2p − 1
ε2p + 2 (2.2)

C = PtG
2θ1φ1τcπ

3

λ21024 ln(2) (2.3)

In this case C is termed the radar calibration constant and is determined by the radar

hardware configuration and pulse characteristics (see symbols section for components of
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C) and should remain constant for a given radar, εp is the complex index of refraction

of the observed particles and r0 is the range of the observed particles. See Collier (1996)

or Bringi and Chandrasekar (2001) for full derivations of this formula, including a full

treatment of the assumptions required. Equation 2.1 is valid when the observed particles

are much smaller than the radar wavelength and Rayleigh scattering occurs, as is usually

the case for weather radars. The other most pertinent assumptions are that the observed

echo completely fills the radar beam volume and that a single εp can be used to char-

acterise the observed particles, which is typically taken to be the di-electric constant of

water (εp), both of which can lead to errors in the retrieval of Ze, which will be covered

in the following section (2.2).

The advantage of converting radar received power to the equivalent reflectivity factor is

that it can be directly related to the drop size distribution (DSD) of the observed volume,

as first shown by Marshall et al. (1947). The relationship can be described as a function

of the number of drops (Ni) of a given diameter (Di) and that diameter raised to the

sixth power, integrated over the whole range of diameters within the sample volume (Eq.

2.4).

Ze =
∑

i

NiD
6
i (2.4)

For meteorological observations D can vary from ≈50µm for cloud droplets to ≈ 8mm

for the largest raindrops and hail, leading to large variations in observed Ze. As a result

it is typically expressed in units of decibels of reflectivity (dBZ) using a logarithmic

transformation, as opposed to its linear units of mm6m−3. The reflectivity of a volume

can then be related to rain rate (R) as the rain rate is also a function of the DSD. The

relationship between diameter and rain rate (expressed in its common units of mm hr−1)

is shown in equation 2.5.

R = 0.6π × 10−3
∞∫

0

N(D)D3Vt(D)δD (2.5)

where Ni is again the number of drops of a specified diameter Di and Vt is the terminal

velocity of the drops, which is again a function of diameter. In practice a parametrised

DSD is chosen for the climatological situation and then Eq. 2.4 and Eq. 2.5 can be
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combined to allow calculation of rain rate using an equation of the form shown in Eq.

2.6.

Z = aRb (2.6)

In Eq. 2.6 the coefficient (a) and exponent (b) are dependant on the DSD parametrisa-

tion used. Commonly used values are shown in table 2.1, though a wealth of different

schemes have been derived for differing geographic locations and atmospheric conditions

(for example Battan (1973) lists 60 different options developed across the world). The

UK standard is to use a=200 and b=1.6 (Harrison et al., 2012).

Application a b

Drizzle 140 1.5 (Joss et al., 1970)
Stratiform rain 200 1.6 (Marshall et al., 1955)
Convective storm 500 1.5 (Joss et al., 1970)
Met Office C-Band Radar 200 1.6 (Harrison et al., 2012)
WSR-88D Radar 300 1.4 (Fulton et al., 1998)
MeteoSwiss network 316 1.5 (Germann et al., 2006b)

Table 2.1: Standard rainfall reflectivity conversion relations for differing atmospheric
conditions and locations as presented in the literature

It is also worth noting that across the world three distinct radar frequency bands, com-

monly referred to as S-band, C-band and X-band, are used for rainfall estimation with

weather radar (see Table 2.2 for details). This distinction is important when considering

error sources for the radar system, the reasons why one may be chosen and also the

potential benefits of dual polarisation to the system. In the United States the NEXRAD

system uses high power S-band systems, in Europe C-band systems are more common

(UK and Germany for example) and X-band is generally restricted to research systems

(NCAS) and more recently urban scale radar coverage (CASA).

Band Frequency range (GHz) Wavelength (cm) Example system (wavelength)

S 2 to 4 7.5 to 15 NEXRAD (10.7 cm)
C 4 to 8 3.75 to 7.5 UKMO (5.4 cm)
X 8 to 12 2.5 to 3.75 NCAS (3.2 cm)

Table 2.2: The three most common weather radar frequency bands and their respective
frequencies
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2.2 Error sources for single polarisation weather radar

The process of estimating rainfall using weather radar has many components which can be

subject to error. Firstly there are errors in the process of measuring the received power,

then in relating those measurements to the precipitation and finally in translating those

precipitation estimates into rainfall accumulations at the ground. Each of these stages

has several sources of uncertainty, which are covered in the following section, starting

with processes which affect the measurement of the received power.

2.2.1 Radar calibration

The radar calibration constant (C, Eq. 2.3) is a clear source of error in the initial radar

equation (Eq. 2.1) as it is a function of several hardware related variables, including the

antenna gain, transmitted power, wavelength, the pulse dimensions and system losses.

Due to the fluctuations in the radar components due to degradation and temperature

fluctuations the true value of C can vary in time, with changes being difficult to detect

from the radar data alone. Studies show that C can be calibrated to better than 1 dB

(Collier, 1996) but this accuracy deteriorates with time from the calibration. For single

polarisation radars detection is possible by comparison with other overlapping radar sites,

giving a relative miscalibration between the two, through the use of a range of known

reflectors (Atlas (2002) provides a good summary of target techniques) or by compari-

son to other meteorological observations, such as rain gauge accumulations, disdrometer

measurements and aircraft observations of drop sizes. Research by Manz et al. (2000)

showed that the use of a target sphere provided the most accurate calibration (0.5 dB)

for UK radars, provided that the sphere’s position could be accurately known and it be

held stationary. Given the difficulty of these conditions, and the fact that a sphere could

only be used for offline calibration they recommended an external transponder as the

most accurate solution (still offline) or power monitor and test signal generator as the

most feasible online calibration solution (quoted accuracy of 1.5 dB). An online solution

allows more regular monitoring of the calibration and therefore more consistency in the

measurements made, for example Germann et al. (2006b) indicate that weekly relative

calibration is undertaken to ensure the stability of the MeteoSwiss radar network, while

absolute calibration is not performed. Taking this approach allows for a stable set of
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measurements which can then be bias corrected using long term observations to account

for the lack of absolute calibration.

While miscalibration can be managed for single polarisation radars it can become a more

serious issue when correcting for attenuation, where results can be extremely sensitive

to calibration errors due to the cumulative effect of bias in the reflectivity measurements

(Nicol and Austin, 2003; Hitschfeld and Bordan, 1954, for example). Attenuation will be

explored further in the next section.

2.2.2 Attenuation

A reduction in received power can be caused by attenuation, where the beam power

is reduced by hydrometeors between the radar and the target range. This causes the

measured power (reflectivity, Zm) at a given range to no longer be directly comparable

to the reflectivity resulting from the observed rainfall DSD (Eq. 2.4, Ze), but instead

being a function of the true reflectivity and the intervening hydrometeors. The effects

of attenuation were first detailed by Atlas and Banks (1951) for wavelengths shorter

than 7 cm (C-band and X-band, for example) with long wavelength radars being unaf-

fected by all but the most extreme rainfall events. This is a function of the relative size

difference between the hydrometeors and the radar wavelength, and it is even possible

for attenuation to cause complete extinction of the radar beam, such that observations

beyond an attenuating storm cannot be made. Several studies have calculated the ex-

pected attenuation due to differing phases of hydrometeors, changing temperature ranges

and operating wavelengths (Delrieu et al., 1991; Wexler and Atlas, 1963; Gunn and East,

1954). For example, Delrieu et al. (1991) showed that at X-band attenuation ranged from

about 0.1 dB km−1 for moderate rainfall intensities (8mm hr−1) to up to 3 dB km−1 for

heavy rainfall (100mm hr−1), with temperature variation only becoming significant at

rainfall intensities in excess of 40mm hr−1. C-band radars occupy a middle ground, with

more moderate attenuation for a given rainfall (0.7 dB km−1 from a rainfall intensity

of 100mm hr−1) and a reduced temperature dependence at higher rainfall intensities.

Clearly attenuation can cause serious changes in measured reflectivity, especially at short

wavelengths, which reduces the accuracy of rainfall estimates when heavily precipitating

storms are present.
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To account for attenuation, many correction schemes have been developed (Nicol and

Austin, 2003; Delrieu et al., 1997; Hildebrand, 1978; Hitschfeld and Bordan, 1954, for

example), which are based on an attempt to quantify the attenuation and then return

the measured reflectivity to a true reflectivity using a variation of the simple formula

shown here, where A(r) is the specific attenuation in dB km−1.

Ze(r) = Zm(r) + 2
r∫

0

A(r)ds (2.7)

As Nicol and Austin (2003) explain, single polarisation attenuation corrections largely rely

on the corrected reflectivity measurements along a segment to determine the attenuation

(A(r)) at the end of the segment using an empirical relationship of a similar form to the

Z-R relationship (Eq. 2.6), and as such any calibration bias can quickly lead to unstable

solutions as the bias accumulates along the radial. As a result attenuation correction

relies on a measurable constraint to prevent these divergent solutions, whether these be a

power from a ‘known’ source such as a mountain (Serrar et al., 2000; Delrieu et al., 1999)

or the use of external measurements such as rain gauges for a complete bias adjustment

(Hildebrand, 1978). Even when these are available, errors persist in correction due to

inherent variability in these measures and attenuation remains a significant problem for

single polarisation radars.

In addition to attenuation from the atmosphere it is also possible for attenuation to

occur due to wetting of the radome (Bechini et al., 2010; Baeck and Smith, 1998). Collier

(1996) details the unpublished results of Eccleston and Hill (1980), showing the reduction

in observed rainfall to be up to 15mm h−1 due to radome wetting at the Clee Hill radar

in the UK. It is possible to reduce these impacts using careful design, such as hydrophobic

materials, geometry and size, but as Kurri and Huuskonen (2008) show, all radomes will

cause attenuation in wet conditions.

2.2.3 Beam blockage

Another factor influencing the measurement of reflectivity and its comparison to the

true reflectivity is the presence of a blockage within the radar beam, such as a hill,

trees, buildings and other infrastructure. As the standard radar equation assumes that
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the entire beam samples the pulse volume at the given range, a blockage introduces a

reduction in received power for observations beyond the blockage and therefore a bias in

the measurements. Provided the amount of beam blockage can be calculated, using a

method such as that of Gabella and Perona (1998), the bias can be corrected. Calculating

the degree of blockage relies on simple geometric optics, but requires accurate measures

of surface topography (which is possible), the location and shape of buildings (more

difficult), the refractive state of the atmosphere and possibly the vegetative state of

the land causing the blockage. Bech et al. (2003) showed that refractivity changes in

the atmosphere can change the bias caused by blockage by several dB, and as such

static corrections cannot correct for all situations and are prone to errors in anomalous

conditions. Many approaches only consider correcting blockage provided the degree of

blockage is not too great, for example MeteoSwiss correct beam blocked data if less than

87% of the beam is blocked (Germann et al., 2006b), while the WSR-88D setup in the

USA and the UKMet Office correct all data where the beam is 50% blocked or less (Fulton

et al., 1998; Harrison et al., 2009). Even in these cases blockage can reduce echoes to

below the background noise level, and correction is unable to recover this data leading

to under measurement. In these cases and those where total beam blockage occurs, data

extrapolation from higher elevation scans or adjacent rays is required (Germann et al.,

2006b; Gabella and Perona, 1998).

As data that undergoes beam blockage correction is less reliable than clear sight obser-

vations, careful choice of radar site is the best means of ensuring good quality data, the

use of a terrain model technique like the one developed by Gabella and Perona (1998)

prior to radar placement is therefore advised. Another approach is to only use beam

elevations that do not suffer from beam blockage, however these higher elevations are

prone to errors caused by sampling higher in the atmosphere, especially at longer ranges.

2.2.4 Non meteorological echoes

Alongside the issue of obtaining accurate reflectivity measurements, it is vital to deter-

mine whether those measurements are from hydrometeors or another, non-meteorological,

target. Common non-meteorological targets include ground clutter (which includes to-

pography, vegetation and man-made structures), sea clutter (reflections from the sea
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surface), biological scatterers (birds and insects), interference (RLAN and other radars)

and even clear air echoes (due to humidity changes in the atmosphere).

Identifying, and removing, these spurious echoes is possible using either static techniques

for known clutter, signal-level correction of the return pulse (Torres and Zrnić, 1999;

Nguyen et al., 2008) or dynamic filtering (Steiner and Smith, 2002). Static maps, usually

developed over time with summary statistics, are reasonably successful at removing the

effect of ground clutter (Harrison et al., 2014, 2000). However when anomalous propaga-

tion (AP) increases the area of the returns, through refraction of the beam closer to the

ground surface, or when the ground clutter signals are a result of moving vegetation or

wind turbines these static techniques become ineffective. They also are unable to remove

echoes from other, non-meteorological sources, particularly biological scatterers.

Dynamic systems that respond to the variation in ground clutter returns due to AP

have been developed as a response to these issues. Signal level, spectral filtering of the

raw I/Q data received by the radar is one approach to this problem (Doviak and Zrnić,

1984, e.g.), provided the radar has Doppler capability. By processing the data prior to

the radar generating a reflectivity measurement from the received power, ground clutter

returns, which have a near zero Doppler velocity and a narrow spectral width, can be

removed. However this can lead to the removal of weather echoes which also have near

zero radial velocity, for example aggressive filtering of the WSR-88D network can lead

to up to 20% of meteorological echoes being lost (Serafin and Wilson, 2000). Even with

less aggressive filtering reflectivity is still removed along the so-called zero velocity isodop

(Hubbert et al., 2009). Doppler filtering schemes also fail to cope with other sources of

spurious returns, due to these returns having a velocity component.

There have also been many schemes created which utilise a machine learning approach,

such as fuzzy logic, Bayesian inference or a decision tree, which incorporate the reflectivity

measurements themselves along with vertical changes in reflectivity, the extent of the

reflectivity, the spatial variability of the reflectivity and even Doppler fields if available

(Pamment and Conway, 1998; Berenguer et al., 2006; Cho et al., 2006; Steiner and Smith,

2002, for example). In all these cases the identification of other non-meteorological echoes

is not considered, due to the difficulty of identification with a single polarisation radar and

also the fact that ground clutter / AP returns are the most significant non-meteorological

source in terms of returned intensity and frequency of observation.
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2.2.5 Parametrising the drop size distribution

As already mentioned, there are a multitude of different possible parametrisations of

the drop size distribution available, which determine the values of a and b in the ex-

ponential rainfall-reflectivity relationship (Eq. 2.6). The wide range of available values

describe differing precipitation processes, from tropical warm rain events which contain

larger numbers of smaller drops (Fujiwara, 1967) to intense convective systems where the

distribution has a much greater median diameter (Joss et al., 1970). Even within these

classically defined precipitation types there is a great variation in the values presented

with this variability all inherent within one possible radar scan which leads to uncertainty

in the ’best’ value to use for a given observation (Atlas et al., 1999; Uijlenhoet et al.,

2003). Figure 2.1 shows just a small subset of the available parametrisations and high-

lights the possible variation in retrieved rainfall depending on the DSD parametrisation

chosen, for example just using the four distributions shown a reflectivity measurement of

40 dBZ could equate to a rainfall intensity of between 8 and 20 mm hr−1 depending on the

type of rainfall being observed. In order to deal with DSD variations, pre-classification

of echoes is required to allow the application of an appropriate parametrisation, particu-

larly in the USA where the radar network covers an extensive geographical area with wide

variations in atmospheric conditions. For single polarisation radar this is achieved using

the intensity of the reflectivity measurements, generally in combination with their three

dimensional structure(Rosenfeld et al., 1995; Steiner et al., 1995; Anagnostou, 2004; Qi

et al., 2013), with results showing improved rainfall estimation provided the classification

can be achieved with a high level of accuracy.

2.2.6 Variations in hydrometeor phase

One of the main limitations of the assumptions is that the particles must be considered

to be all of the same phase (water or ice), not a mixture. In practice this leads to K

(Eq. 2.2) for water being used as standard and an overestimation of Zm when solid

hydrometeors are observed. To counteract this DSD parametrisations for snow and ice

exist, and can be applied provided it is possible to identify solid phase hydrometeors. The

presence of both solid and liquid phase precipitation intermixed within a sample volume

presents an even greater challenge and single polarisation radars struggle to make accurate
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Figure 2.1: Variation in retrieved rainfall intensity resulting from the use of different
DSD parametrisations. The four shown are taken from Table 2.1.

precipitation estimates in these cases. Another consequence of changes in hydrometeor

phase is the impact on attenuation corrections, as mixed phase particles can have a

stronger attenuating affect than purely liquid phase particles, with solid cores supporting

large liquid drops (Ryzhkov and Zrnić, 1995), while ice crystals have a much smaller

attenuating affect than liquid precipitation (Vivekanandan et al., 1994).

The most documented example of hydrometeor phase causing rainfall estimation errors

is in the case of the bright band, which is elevated reflectivity due to the radar beam

intersecting the melting layer in stratiform conditions (Austin and Bemis, 1950; Hooper

and Kippax, 1950; Klaassen, 1988; Huggel et al., 1996; Sánchez-Diezma et al., 2000, for

example). The strength of the enhancement is dependent on the elevation angle and the

range at which the beam intercepts the melting layer, along with the fall speed of the

melting hydrometeors. The regions of enhanced reflectivity can generally be identified

using a combination of the radar data and information about the melting layer height

(from numerical models or radiosondes for example) and then corrected for using a vertical

reflectivity profile to transform elevated reflectivities to their surface equivalent (Smith,
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Figure 2.2: Variation in retrieved precipitation intensity resulting from the use of
different DSD parametrisations for snowfall. The relations shown are from Gunn and
Marshall (1958), Carlson (1968) and Sekhon and Srivastava (1970) respectively. The

UKMO rainfall parametrisation is shown for comparison.

1986; Kitchen et al., 1994; Hardaker et al., 1995; Smyth and Illingworth, 1998b; Gourley

and Calvert, 2003; Rico-Ramirez and Cluckie, 2007).

2.2.7 Rainfall accumulation

An inherent aspect of radar QPE is that the radar observes instantaneous rainfall in-

tensity in specific volumes of the atmosphere, while hydrological applications generally

use surface rainfall accumulations in a given time period over a defined area, be it a

river catchment or a model grid box (Beven, 2011). Jordan et al. (2000) found that the

largest contribution to this uncertainty is the fact that the radar measures at a given

height above the ground, with the random variability increasing with height and reduc-

ing given the size of the accumulation area. Clearly using radar observations from as

close to the ground as possible provides the most representative measurements, but this

must be balanced against the increased likelihood of partial beam blockage and ground

clutter returns as discussed above. Another uncertainty in converting rainfall intensities
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of rainfall to accumulations is the temporal variability of the rainfall over the accumula-

tion interval, and the number of radar observations that fill that sampling volume. For

example, Wilson and Brandes (1979) show that the greater the sampling interval the

larger the variability in the comparison between radar and rain gauges, while Villarini

et al. (2008) show that the variability is largest over the shortest accumulation intervals

given a fixed measurement interval. To reduce the uncertainty from a radar perspec-

tive it is important to have as short as possible interval between measurements, while

schemes have also been developed which interpolate between observations to generate

more accurate accumulations (Liu and Krajewski, 1996; Tabary, 2007, for example).

2.3 Dual polarisation weather radar

The first application of dual polarisation to weather radar was by Seliga and Bringi (1976)

but it is only in the past decade that dual polarisation radars have been incorporated

into national observational networks such as the United States of America’s NEXRAD

/ WSR-88D programme (upgrade completed in summer 2013) and the United Kingdom

Met Office’s radar network (upgrade ongoing, completion expected in 2018).

As opposed to single polarisation radar, dual polarisation radars transmit and receive

along two planes of incidence, typically the horizontal and vertical planes (Fig. 2.3). The

addition of a second plane of observation allows comparative radar moments to be studied,

which investigate the relative changes between the two planes. These moments include

the differential reflectivity, the differential phase shift and the co-polar cross correlation,

among others, which are discussed in section 2.3.2. Prior to the discussion of these new

moments it is necessary to differentiate between the two possible implementations of dual

polarisation available, as they can provide different moments and levels of accuracy.

2.3.1 Simultaneous vs alternating transmission

There are several possible transmission and reception modes for dual polarisation radars

determined by the configuration of the radar hardware, particularly the number of re-

ceivers and the presence of a waveguide switch. The two main modes of operation are

alternating transmission, with dual receivers and simultaneous transmission with dual
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Figure 2.3: Two orthogonal polarised planes in the horizontal (solid) and vertical
(dashed). Transmitted in the direction of the arrow, with zero phase offset.

receivers (Bringi and Chandrasekar, 2001). In alternating transmission mode the state

of the transmitted pulse is switched alternately between the horizontal and vertical state

(hv), although some systems implement a repeated block pulsing of these states such as

hhv or hhvv (Fig. 2.4). This allows sampling of the cross-polar elements of the scattering

matrix, while co-polar elements are only available where that state is transmitted (every

other pulse for the simple alternating state). In simultaneous or hybrid transmission

mode both planes are transmitted at the same time, with the received orthogonal signals

being a combination of the copolar and cross polar return signals from the transmitted

wave (Fig. 2.4).

The advantages of alternating transmission mode, or a block pulse style derivative, are

that the linear depolarisation ratio (LDR) can be measured, that measurement errors

are less sensitive to antenna polarisation errors and that the system isolation require-

ments are lower for a specific required observational accuracy (Wang and Chandrasekar,

2006). Conversely the advantages of hybrid transmission are direct measurement of the

coherency matrix, leading to direct estimation of both the copolar correlation coefficient

and the propagation phase (with greater unambiguous range), more accurate variables for
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a given scan rate due to twice the number of observations and lower cost radar hardware

as a waveguide switch is not required (Doviak et al., 2000).
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Figure 2.4: Schematic pulse diagrams of alternating (A), block pulsed hhv (B), and
simultaneous (C) transmission.

2.3.2 Dual polarisation moments

As already mentioned, the addition of a second, orthogonal, plane of transmission to

weather radars allows the measurement and estimation of several new radar moments

based on differences between the two planes. These new moments provide additional

information about the echoes being sampled, which are of great use in radar hydrome-

teorology. These new parameters are the differential reflectivity (ZDR), the differential

phase shift (ΨDP ) (which is composed of the forward propagation phase shift (ΦDP ) and

the backscatter differential phase shift (δco)), the specific differential phase (KDP ), the

co-polar cross correlation (ρco) and the linear depolarisation ratio (LDR). The follow-

ing section describes each of these parameters in turn, along with a description of their

physical meaning. The benefits of these new moments are then covered in the following

section (2.4)
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2.3.2.1 Differential reflectivity

Differential reflectivity (ZDR) is the observed ratio of the horizontally and vertically

polarized linear reflectivity measurements. It was first proposed as a method of ob-

serving rainfall by Seliga and Bringi (1976), with the aim being to add information to

help quantify the rainfall drop size distribution. Due to the oblate spheroidal shape of

falling raindrops, they produce a positive reflectivity shift in the horizontal, relative to

the vertical, which is proportional to their diameter. Scattering simulations and field

measurements show that ZDR ranges from 0.2 dB in very light drizzle to over 4.5 dB

for very large rain drops (Seliga and Bringi, 1978; Hall et al., 1984; Balakrishnan and

Zrnić, 1990, for example). Scattering simulations by Ryzhkov and Zrnić (2005) quantified

this relationship for S, C and X-band wavelengths and show the variation between them,

with X-band suffering from minor resonance effects at a diameter of 3.5 mm and C-band

suffering from more extreme resonance effects at diameters above 5 mm (Fig. 2.5). These

resonance effects are the result of Mie scattering (Matrosov et al., 2002; Meischner et al.,

1991), with the reduced resonance at X-band believed to be a consequence of increased

absorption dampening the resonance effect (Park et al., 2005; Ryzhkov and Zrnić, 2005).
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Figure 2.5: Theoretical variation of differential reflectivity with increasing equivolume
diameter at S, C and X-band. Redrawn from Ryzhkov and Zrnić (2005).
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2.3.2.2 Differential phase shift

The total differential phase shift (ΨDP ) is the observed phase difference between the

received horizontal and vertical pulses and contains two components, the backscatter

differential phase (δco) and the propagation differential phase ΦDP (Eq. 2.8) (Bringi and

Chandrasekar, 2001). As there is often a phase shift on transmission the received phase

shift also contains this component, which must be removed to gain the shift resulting

from atmospheric interaction.

ΨDP = ΦDP + δco (2.8)

The differential propagation phase measures the change in phase between the horizontal

and vertical phase of returns along the beam path which varies as a function of the total

cross section of scatterers along the path. Therefore it varies as a function of both axis

ratio of the drops and number of drops, with measurements in rainfall monotonically

increasing along the beam path due to the positive axis ratio of raindrops (Seliga and

Bringi, 1978; Jameson, 1985). Due to this dependence on the DSD, phase shift has

frequently been proposed as an additional means of estimating rainfall using weather

radar (Sachidananda and Zrnic, 1986, for example). These approaches have often been

limited to higher rainfall rates as the phase shift is inversely proportional to wavelength

for a given rainfall rate, with most early studies using S-band systems (Matrosov et al.,

1999). Conversely the phase shift for an X-band system is 3 times greater than at S-

band, which increases the sensitivity to lower rainfall rates. As a cumulative quantity the

propagation phase is often differentiated with range to calculate the specific differential

phase (KDP ) for each range gate for the purposes of rainfall estimation (see next section).

The backscatter differential phase forms the second component of the observed phase

difference (Eq. 2.8). It is a function of non-Rayleigh scattering and is not cumulative

along the rain path but a function of the distribution of scatterers in each range gate.

Due to it being a function of non-Rayleigh scattering it is often ignored at S-band, but

becomes an increasing component of the measurements at lower wavelengths, particularly

X-band when equivolume drop diameters exceed 2 mm (Matrosov et al., 1999). As the

backscatter phase has often proven difficult to separate from the total phase difference
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measurements its use has been limited, however recent studies including Trömel et al.

(2013) and Tyynelä et al. (2014) have begun to explore the potential of using backscatter

differential phase, particularly for observing melting particles.

2.3.2.3 Specific differential phase

The specific differential phase (KDP ) is simply the range derivative of the forward prop-

agation differential phase ΦDP , typically expressed in units of degrees per kilometre

(◦ km−1). It is a calculated, rather than measured, radar moment, being derived from

one component of the measured differential phase shift. At shorter wavelengths calcu-

lation requires either the filtering of the observed phase shift to remove the backscatter

component, or careful selection of the calculation path to ensure the change in backscat-

ter between the start and end of the path is minimal. The simplest method of calculation

is a finite difference along a range path, however for rainfall estimation a more accurate

method is required (Bringi and Chandrasekar, 2001). These methods include linear re-

gression over varying path lengths (Ryzhkov and Zrnic, 1996), iterative range smoothing

(Hubbert and Bringi, 1995), solving linear equations with linear programming (Gian-

grande et al., 2013) and even calculation using the angular domain with cubic spline

estimation of KDP (Wang and Chandrasekar, 2009).

2.3.2.4 Co-polar cross correlation

The co-polar cross correlation coefficient (ρco) is the correlation between the co-polar

return at horizontal polarisation and the co-polar return at vertical polarisation. For

alternating transmission mode only one of the co-polar elements can be measured per

pulse and the co-polar correlation has to be estimated given the time lag between pulses.

For simultaneous transmission the cross-polar components of the received powers are

negligible compared to the co-polar components of the powers and therefore the co-polar

cross correlation can be taken to be the measured co-polar correlation. However, in the

presence of cross-polarizing scatterers, the measured value begins to deviate from its

intended physical description as detailed by Galletti and Zrnić (2012). By measuring the

correlation between the two pulses the homogeneity of the sample volume can be assessed,

for example raindrops exhibit a large degree of spatial homogeneity and therefore have
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correlations above approximately 0.97 (Balakrishnan and Zrnić, 1990). Mixed phase

returns, particularly the melting layer have lower correlations, typically reported to be

around 0.9 (Ryzhkov et al., 2005b; Bringi et al., 1991; Balakrishnan and Zrnić, 1990),

although this is somewhat dependant on the radar configuration (particularly the dwell

time and the beamwidth), for example Illingworth and Caylor (1989) observed values as

low as 0.6 in the bright band with a 0.25 degree beamwidth S-band radar, while Zrnić

et al. (2006) showed the variation of correlation with antenna rotation speed, with faster

speeds leading to lower expected values. As a result the co-polar cross correlation is a

useful parameter for identifying mixed phase returns, and also for identifying regions of

non-meteorological echoes (see 2.4.1).

2.3.2.5 Linear depolarisation ratio

The linear depolarisation ratio is the amount of depolarisation which occurs due to cross

polarising scatterers. To measure LDR requires the radar to operate in alternating trans-

mission mode, such that a single polarisation is transmitted at any one time, and that

both received polarisations are recorded. The LDR is then the amount of signal that

is converted from the transmitted orientation (either horizontal or vertical) to the or-

thogonal direction by the observed hydrometeors. LDR increases with rainfall intensity

as heavier rainfall has a more varied DSD, but is greater still for melting snow, hail,

and strongly orientated ice crystals which all exhibit more variability in their shape and

movement during descent (Bringi et al., 1986; Brandes and Ikeda, 2004; Ryzhkov and

Zrnic, 2007). As such LDR is most often used in identification of scatterers, particularly

solid phase scatterers.

2.4 Applications to hydrometeorology

There are three main applications of dual polarisation moments which can lead to im-

provements in rainfall estimates from weather radar. The first is the use of dual polar-

isation for quality control of the incoming data (2.4.1), filtering out non-meteorological

echoes and highlighting areas of degraded signal quality due to attenuation and/or beam

blockage. This prevents spurious echoes being converted into rain rate and highlights ar-

eas where interpolation or adjustment may be required to improve the data quality. The
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second application is to use dual polarisation as a means of data correction (2.4.2), as it is

possible to quantify and correct for radar miscalibration, attenuation and beam blockage

using a combination of dual polarisation observations. The third area of improvement

is through better characterisation of the observed precipitation (2.4.3), through the im-

proved measurement of the DSD, identification of precipitation phase and hydrometeor

type (hail vs wet snow for example). This leads to improved rainfall estimation as more

appropriate Z-R relationships and other rain rate parametrisations which are a function

of multiple dual polarisation moments can be used appropriately.

2.4.1 Quality control

The variation of dual polarisation measurements with target shape, size and orientation

provides a distribution of observations which can be used to identify the targets ob-

served (Giuli et al., 1991). One of the main uses of these properties is the identification

and removal, or filtering, of non-meteorological or poor quality radar returns. A wide

range of techniques exist for this purpose, including simple thresholding, logical decision

systems for filtering, including Boolean decision trees, fuzzy logic and Bayesian proba-

bility (Lakshmanan et al., 2014; Rico-Ramirez and Cluckie, 2008; Gourley et al., 2007;

Da Silveira and Holt, 2001) and more complete logical decision systems which incorporate

non-meteorological targets into a wider hydrometeor classification process (Chandrasekar

et al., 2013; Dolan and Rutledge, 2009; Park et al., 2009).

The most common elements of these schemes are their incorporation of standard dual

polarisation moments, such as ρco which is used because the majority of meteorological

returns having a ρco greater than 0.85 and ZDR where extremely high or low values

are more generally associated with non-meteorological returns. Also incorporated into

these schemes are texture fields, particularly the texture of ΦDP , where meteorological

conditions are associated with low variation in texture and non-meteorological with high

texture.

Another approach to radar quality control using dual polarisation is the production of

quality index fields, which the end user can utilise to inform their use of the data. For ex-

ample Friedrich et al. (2006) combine beam propagation effects, attenuation, cross beam

gradients, identification of rainfall and consistency of the dual polarisation parameters
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(Z, ZDR and KDP) to calculate a total quality index for each range gate in the radar

volume, which can then be used for a weighted combination of overlapping radar scans

and general filtering of unsuitable data. A similar approach has been taken in the Bal-

trad project, where quality indicators are derived during each step of the quality control

process and can be combined to produce an overall metric for the quality of the radar

data (Collis et al., 2014).

These approaches lead to more accurate rainfall estimates by removing data that would

compromise these estimates while also providing quality information to the end user.

The range of data available leads to more accurate and dynamic identification of spurious

echoes than is possible with single polarisation weather radar.

2.4.2 Data correction

Dual polarisation has also allowed easier implementation of corrections for radar miscal-

ibration, beam blockage and attenuation, through the use of the phase shift parameters

(ΦDP and KDP). All of these corrections work as a result of phase shift being independent

of received power, therefore errors which alter the received power do not affect phase shift

providing a signal can be retrieved (Vivekanandan et al., 1999; Zrnić and Ryzhkov, 1996).

2.4.2.1 Radar miscalibration

Calibration of radar using the self consistency of dual polarisation variables has been

proposed by Gourley et al. (2009) and Vivekanandan et al. (2003) for example. These

techniques rely on the principle that reflectivity and differential reflectivity and also

differential phase shift are a function of the DSD, and therefore phase measurements

can be estimated using power measurements. These can then be compared to measured

phase shifts (Scarchilli et al., 1996). In the work of Vivekanandan et al. (2003) KDP

is estimated using Eq. 2.9 and then integrated to calculate a total path phase shift

which can be compared to the actual phase shift, the bias between which is a result of

miscalibration of reflectivity. Gourley et al. (2009) apply the same approach, but using a

variation of Eq. 2.9 and show calibration accuracy of 0.6 dB when using a C-band radar.



Chapter 2. Weather radar for hydrology 26

KDP = 2.79× 10−5Z1.0086Z−0.9543
DR (2.9)

Another approach, proposed by Ryzhkov et al. (2005a), is to directly compared reflectivity

and differential reflectivity to specific differential phase, using area-time integrals rather

than path integrals. This approach was more suited to the S-band radar used as it allows

lower values of KDP to be used than the path integral approach, and it again showed

calibration was possible to within 1 dB.

The main advantage of these techniques is their applicability during normal operating

conditions, as they lack the requirement of an external calibration device, and testing

procedure, allowing the calibration to be performed regularly without compromising the

operational usage or performance of the radar. Therefore ongoing monitoring of the

radar calibration is possible without additional costs, which allows easier updating of the

calibration, where required.

2.4.2.2 Partial beam blockage

An extension of these approaches is the use of dual polarisation consistency in partial

beam blockage correction. In theory, once a radar is well calibrated, any azimuthal

differences in self consistency are a result of partial beam blockage and can therefore

be used to correct the reflectivity fields accordingly, while it is also possible to apply a

simplified approach, where differential reflectivity is not considered (Zhang et al., 2013;

Lang et al., 2009). This simplification negates the required correction of differential

reflectivity for partial beam blockage, an issue first noted in the literature by Giangrande

and Ryzhkov (2005), although correction is still advisable for other uses of differential

reflectivity. These approaches all show calibration is possible even in severely blocked

sectors (over 90% in the case of Lang et al. (2009)) provided extensive dual polarisation

data is available. Another approach recently employed is the use of specific attenuation

to quantify partial beam blockage (Diederich et al., 2015a; Ryzhkov et al., 2014), which

also allows accurate calibration provided sufficient data is available, with Diederich et al.

(2015a) calculating that 19 days of rainfall data may be required to provide a stable

correction to within 1 dB.
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The main advantage of these methods is their ability to account for buildings, vegeta-

tion and subtle topographic effects not captured by the traditional digital terrain model

approach, and also their independence, as they do not require detailed elevation models

which may not be available in some locations. Another advantage is the ability to recal-

culate corrections seasonally, which can respond to changes in the local vegetation and

new or removed structures. The main disadvantage of these approaches is the amount of

data required for stable results, which precludes their use during the initial stages of a

deployment.

2.4.2.3 Attenuation

Another application of dual polarisation is the correction of the hydrometeor attenuation

particularly prevalent at shorter wavelengths. As discussed in section 2.2.2 attenuation

results in a decreasing signal as path integrated rainfall increases, with correction routines

relying on estimating the attenuation along the path using empirical relationships or

returns from a fixed source. Dual polarisation radars can improve on these corrections as

they allow better constraint of the path total attenuation through the use of differential

reflectivity (Smyth and Illingworth, 1998a) or differential phase measurements (Schneider

et al., 2013; Jameson, 1992, for example). Again these dual polarisation techniques utilise

the consistency of dual polarisation measurements, for example Smyth and Illingworth

(1998a) constrain attenuation using light drizzle beyond the attenuating rainfall, which

should produce an expected differential reflectivity value of between 0 to 0.2 dB. By

attributing under measuring in this region to differential attenuation, reflectivity and

differential reflectivity can then be corrected, distributing the total attenuation along the

path using specific differential phase. They report accuracy of corrections to within 1 dBZ,

however the scheme is limited by identifying and observing the correct precipitation

beyond the attenuating region, which is not always possible.

Other techniques choose to use differential phase shift to calculate path integrated atten-

uation, and then distribute the attenuation using reflectivity measurements. The path

integrated attenuation is calculated using DSD coefficients derived from disdrometer mea-

surements or scattering simulations. The application of this method varies through the

choice of integral path, coefficients and final application, for example Testud et al. (2000)

use segments of the radial as the integration path and use attenuation estimation as a



Chapter 2. Weather radar for hydrology 28

precursor to rainfall estimation using an estimated normalised intercept parameter of

the DSD, while Ryzhkov et al. (2014) use the whole radial below the melting layer as

the integration path and derive rainfall directly from the specific attenuation calculated

during the process. It is also worth noting that these methodologies are sensitive to

the presence of hail, where the relationship between phase shift and attenuation is much

stronger than in rainfall, the so called “hot-spot" effect, which requires these regions to

be treated separately for best results (Ryzhkov et al., 2014, 2013, 2012).

Subject to the accurate estimation of the relationship between specific phase shift and

attenuation (the parameter α), the correct treatment of “hot spots" and attenuation not

reducing the signal to noise levels, dual polarisation techniques can successfully correct

for attenuation. For example, Gu et al. (2011) used simultaneously collected S-band and

C-band data to validate successful correction of the C-band data using a variation of

the Testud et al. (2000) technique. While most studies use attenuation correction as

an intermediary to rainfall estimation, with their results showing the positive impact of

attenuation correction, some recent studies have begun to directly estimate rainfall from

specific attenuation, which is also showing promising results, particularly when multi

radar compositing is required (Diederich et al., 2015b; Ryzhkov et al., 2014; Schneider

et al., 2013; Zhu and Cluckie, 2012, for example).

2.4.3 Improved rainfall characterisation

Beyond the correction of data, dual polarisation observations provide the ability to iden-

tify hydrometeors, allowing specific approaches for different particles during rainfall es-

timation. Another advantage of dual polarisation is the ability to use combinations of

parameters to estimate rainfall, such as combining reflectivity and differential reflectivity

to better estimate the DSD or using specific differential phase as a rainfall estimator.

Hydrometeor classification is an extension of the quality control methods discussed in

section 2.4.1, where the dual polarisation observations are combined with external data,

such as temperature to classify the observed hydrometeor population. There are nu-

merous classification schemes available, which use various machine learning techniques

including fuzzy logic, unsupervised clustering and Bayesian statistics to partition the

observed volume into identifiable hydrometeor classes, including heavy rainfall, drizzle,
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hail, graupel, etc. (Grazioli et al., 2015; Al-Sakka et al., 2013; Dolan and Rutledge,

2009; Marzano et al., 2008, to name but a few). As discussed in section 2.2.6, changing

hydrometeor phase produces very different precipitation estimates from the same reflec-

tivity measurements, particularly for hail and snow, and therefore identification of these

hydrometeors can lead to improvements in rainfall estimation (Dixon et al., 2015; Lim

et al., 2013; Schneider et al., 2013).
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Figure 2.6: Parametrised rainfall estimation using specific differential. Variation with
frequency band shows increasing sensitivity with decreasing wavelength and variation
of parametrisations within X-band is also shown, showing increasing variation at ex-
treme rainfall intensities (>100 mm/hr). These parametrisations are from the following
sources: S-band (Sachidananda and Zrnic, 1986), C-band (Wang et al., 2014) and X-
band (Ryzhkov et al., 2014; Matrosov et al., 2013; Matrosov, 2010; Matrosov et al.,

2006)

To best utilise the ability to identify hydrometeors, specific precipitation algorithms are

required, for example Cifelli et al. (2011) use 6 different algorithms to quantify precipita-

tion which use reflectivity, differential reflectivity and specific differential phase as inputs,

while Dixon et al. (2015) use 4 different algorithms. In both cases an algorithm based on

specific differential phase is used. KDP is an attractive proposition for rainfall estimation

because it is proportional to D3 making it less sensitive to changes in the DSD than

reflectivity and ZDR (which are proportional to D6). KDP is related to rain rate using
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equations of the same form as Eq. 2.6, however unlike these reflectivity relationships

the parametrisations are wavelength specific due to the scaling of KDP with wavelength.

Figure 2.6 illustrates a sample of these relationships for different wavelengths, highlight-

ing the sensitivity differences between the frequency bands. Research by Matrosov and

colleagues (2013; 2010; 2006) and also Ryzhkov et al. (2014) suggest the values used for

a and b in the parametrisations at X-band can vary substantially, with a specific phase

shift of 10 degrees per kilometre being equivalent to a rainfall intensity between 80 and

110 mm hr−1 (Fig. 2.6).

Multi algorithm QPE is a clear advantage of dual polarisation radar, particularly when

mixed phase hydrometeors are likely to be present. These advantages are likely to be

greater at shorter wavelengths where the greater sensitivity of rainfall estimates which

use specific differential phase allows for greater diversity of measurements in complex

mixed phase environments, particularly when hail is present.

2.5 Rainfall estimation using both radar and rain gauges

Another complementary approach to rainfall estimation with radar is the combination

of radar QPE with external rainfall measurements, mainly from rain gauges. The ap-

proaches taken include using rain gauges to adjust radar data at a given temporal scale

(Cole and Moore, 2008; Joss and Lee, 1995; Collier, 1986, for example), the merging of the

data sources together using geospatial techniques such as Kriging (Jewell and Gaussiat,

2015; Goudenhoofdt and Delobbe, 2009, for example) and recent developments in the

generation of stochastic ensembles which represent the combined error structure of the

two data sources (Wu et al., 2015; Germann et al., 2009; Llort et al., 2008, for example).

Each of these methods utilises rain gauge measurements of rainfall as do many validations

of radar QPE, and it is important to recognise that rain gauges have their own sources

of error and operate at a different spatial and temporal scale to weather radars.

2.5.1 Rain gauge measurements of rainfall

Rain gauges measure the amount of rainfall falling in a small area (typically in the order of

200 cm2) and vary in complexity from manually read devices to weighing principle gauges
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with complex filtering electronics. Many studies have been undertaken to determine the

accuracy of these gauges with common sources of error being evaporation, wetting loss,

wind under catch, splash and false readings during high intensity rainfall (Beven, 2011;

Lanza and Vuerich, 2009; Sieck et al., 2007; Sevruk, 1982). While many of these errors

have corrections or mitigation techniques rain gauge measurements of rainfall are still

subject to a degree of uncertainty which is highly dependant on the type of gauge used

and its location. (Sevruk et al., 2009; Duchon and Essenberg, 2001; Humphrey et al.,

1997).

Another aspect of uncertainty when comparing or merging rain gauges and radar esti-

mates of rainfall is the resolution differences between the two observations. Rain gauges

are an accumulated point measurement while radar is an instantaneous measurement over

a wider area. Studies have shown that the effect of these differences on comparisons are

most apparent when comparing data on short time scales in small areas and that both

spatial and temporal integration of the data reduces the random errors in the comparison

(Villarini and Krajewski, 2008; Ciach, 2003; Habib et al., 2001).

Despite these errors rain gauges are routinely used as the primary measurement of rain-

fall both for validation of other datasets (radar QPE, satellite QPE, numerical weather

prediction) and for hydrological modelling. The next section covers there usage in con-

junction with radar QPE.

2.5.2 Combination with radar

The simplest application of rain gauges in relation to radar is for validation of new rainfall

estimation methods (Diederich et al., 2015b; Jiang et al., 2012; Biggs and Atkinson, 2011,

for example) however they have also been used to adjust radar measurements to account

for differences between radar and rain gauges accumulations. Radar rainfall estimates

are often adjusted to remove any bias between them and rain gauges over a given time

period (Collier, 1996, 1986). For example the UKMO adjust radar rainfall estimates such

that 24 hour accumulations are unbiased in relation to 24 hour rain gauge accumulations

(Harrison et al., 2000; Golding, 1998).
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More recent adjustment techniques are actually spatial merging of the two data sources,

typically using a variant of Kriging (Jewell and Gaussiat, 2015; Goudenhoofdt and De-

lobbe, 2009, for example). These techniques account more for the spatial variation of

the biases between gauge and radar while maintaining the spatial resolution of the radar

data. A new variation of the Kriging with external drift technique has just become op-

erational in the UKMO radar system based on the work of Jewell and Gaussiat (2015)

(Katie Norman, personal communication, July 2016).

Stochastic rainfall ensembles derived from radar are another relatively new addition to

hydro–meteorology (Ciach et al., 2007; Germann et al., 2006a). The main advantage of

these statistical ensembles are their computational and experimental ease of implemen-

tation, as all the radar’s error sources are lumped into one residual error derived through

comparison with the rain gauges. One limitation is that the residual error is also in-

fluenced by the errors in ground observations, another being that the method does not

directly identify the cause of the errors be they beam blockage, attenuation or parametri-

sation errors. Each of the ensemble techniques contains a stochastic perturbation which is

modulated by residual error distributions obtained by comparison to ground observations

(Villarini and Krajewski, 2010b; Germann et al., 2009, for example). This perturbation

can then be used to generate multiple realisations of the rainfall, the distribution of which

has the same statistical structure as the radar gauge comparisons. One emerging use of

these ensembles is the quantification of overall uncertainty in the hydrological modelling

process, allowing comparison with other sources of uncertainty including other inputs,

model structure and seasonal parametrisations (Liechti et al., 2013; Quintero et al., 2012;

Schröter et al., 2011; Zappa et al., 2011).

Each of these merging and ensemble techniques will provide more accurate rainfall esti-

mates if the radar QPEs used within them is the best possible estimate available, and

dual polarisation provides the ability to improve these estimates as discussed earlier in

this Chapter. The primary focus of the following research is to ensure this accuracy for

rainfall estimates from the NCAS mobile radar, prior to their application in any future

stochastic studies of hydrological modelling of river flow.
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Instrumentation and data

acquisition

The data used in this study comes from the National Centre for Atmospheric Science’s

dual polarisation Doppler mobile X-band radar, primarily obtained during the Convec-

tive Precipitation (COPE) field experiment in the summer of 2013 (3.2). This data is

supported by additional measurements from the field campaign (3.2.2) and also from

the United Kingdom’s operational monitoring network (3.4). Additional data has been

analysed obtained during testing deployments of the radar at the Burn field site (York-

shire, UK) and also during the ICE-D (Cape Verde) and SESAR (Braunschweig, Germany)

projects (3.3).

3.1 The NCAS dual polarisation Doppler mobile X-band

radar

The primary data source for this study is a dual polarisation Doppler mobile X-band radar

operated by NCAS. The radar is a Meteor 50DX manufactured by Selex ES GmbH, with

a custom fitted 2.4m antenna which precludes the use of a radome (Fig. 3.1). The radar

operates at a frequency of 9.375GHz (a wavelength of 3.2 cm) at a peak transmission

power of 83 kW allowing operational ranges in excess of 150 km. The addition of a larger

antenna reduces the half power beam width to 0.98 degrees and the radar is capable of

33
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scanning from -1 to 90 degrees in elevation (unlike many operational radars) at a speed of

up to 36 ◦s−1. The radar operates in hybrid transmission mode, simultaneously transmit-

ting in horizontal and vertical polarisations, and can also transmit in single polarisation

(H or V) while still receiving in both channels. Many of the specific scan parameters,

including the azimuth and range gate spacing, the pulse repetition frequency and the an-

tenna rotation speed are fully customisable depending on the research requirements and

as such are specific to each deployment. The following section (3.2) covers the specifics

of the radar’s deployment during COPE, along with a more general introduction to the

field campaign.

Figure 3.1: The modified Meteor 50DX operated by NCAS deployed at the Burn
testing site, 30-01-2013. Notice the absence of a radome due to the oversized parabolic

antenna fitted to the radar.

3.2 The COPE field campaign

The COnvective PrEcipitation (COPE) experiment is a NERC funded project to improve

forecasts of flash flooding. The field campaign for the project took place in Cornwall,

south west UK, between June and August 2013 (Blyth et al., 2015; Leon et al., 2016).

During this period the mobile radar was operated from Davidstow airfield on a case by

case basis. Figure 3.2 shows the location of Davidstow airfield, along with the maximum,

150 km, range observed by the radar during the project.
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Figure 3.2: Location of Davidstow airfield (red square), range rings are at 50 km
intervals out to 150 km range, the maximum range observed during COPE. Orange
circles indicate the location of two C-band UKMO radars, see section 3.4 for more

details.

During the field campaign the radar operated in 5 primary scanning patterns, all of

which were azimuth scanning volumes as opposed to the range height indicators (RHIs)

often used during research field campaigns. Four of these volumes were a variation

of the most often used scan strategy, COPE10, which accounts for 1110 of the 1451

netcdf files available from the project. COPE10 is a general purpose volume scan pattern,

containing plane position azimuth sweeps at 10 elevations spaced at one degree intervals

from 0.5 degrees up to 9.5 degrees (Fig. 3.3). The antenna rotation speed was 20 degrees

per second, allowing a full volume scan to be completed in under 5 minutes. Actual

volume scan spacing during the campaign ranged from 4 minutes to 6 minutes, which

will require consideration in the analysis when computing rainfall accumulations and

evaluating the temporal evolution of convection. The pulse width for COPE10 was one

microsecond, matched to a gate spacing of 150m with a dual pulse repetition frequency

(PRF) set to 1000/800Hz (a 5/4 ratio). Data was sampled using one degree angle steps.
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These parameters combined to give 44 samples per range gate, an unambiguous range of

149 km and a unambiguous Doppler velocity range of 31.89 metres per second. The three

additional volume scan patterns based on COPE10 were COPE20, COPE30 and COPE40,

these varied only in the spacing of the 10 elevations contained within the volume, which

increased from one degree for COPE10 to two, three and four degrees respectively. As

can be seen in Figure 3.3, the default scan strategy could not observe the tops of deep

convective clouds when they were close to the radar, for example a cloud top height

of only 5 km was only visible if the cloud was at least 30 km from the radar. These

additional strategies were used to increase the maximum height observable close to the

radar, when convection was occurring in this region. This increased height was at the

expense of lower vertical resolution of measurements due to the increased sweep spacing.

All of these scan patterns contained a lowest scan of 0.5 degrees elevation, which provides

the close to ground observations most applicable for rainfall estimation.
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Figure 3.3: Scan volume coverage for the COPE10 scan strategy. Height is measured
with the radar as reference, during COPE the radar was sited at 298.9m above mean
sea level. The sweeps are labelled with their elevation angle running around the right

and top edge of the plot. The radar scanned at 20ms−1 during the campaign.

The other scan strategy used during COPE was ClearAir (CA), a volume scan containing

5 elevation sweeps, at one degree spacing from 0.5 to 4.5 degrees. The antenna scan

speed was reduced to five degrees per second and the PRF mode was changed to single

frequency at 1000Hz. Data was collected to a maximum range of 100 km. This reduced

the unambiguous Doppler velocity to 7.9 metres per second but increased the number of
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samples per range gate to 198. The scan was operated during periods of no precipitation,

with the purpose being to increase the sensitivity of measurements to allow more clear

air echoes to be observed (typically insects, but also associated with humidity gradients).

This allows zones of convergence to be detected prior to convective initiation.

Between 20 June 2013 and 17 August 2013 the radar operated on 23 days, of which 14

were IOPs for the field campaign. Prior to the 4 July, the radar operated on 5 testing

days, while there were 3 days of operation during the IOP period which were insignificant

in regards to convective precipitation and are not considered to be IOPs. A summary

of operations is shown in Table 3.1, while full details of all the scans are available in

Appendix A.

Table 3.1: Operating periods for the X-band radar during COPE. Times represent the
start and end point for each day in UTC but do not guarantee continuous running. Scan
strategies are listed by their number with the prefix COPE removed. Strategies X1-X4
represent scans that are not described in the text, occur infrequently but are described

fully in Appendix A

Date Scan period Number of scans Scan strategy
20/06/2013 09:51 to 17:38 70 Testing only
27/06/2013 14:57 to 15:17 6
01/07/2013 13:42 to 15:33 16
02/07/2013 10:01 to 15:42 84
03/07/2013 08:57 to 12:25 47
04/07/2013 09:47 to 16:06 73
05/07/2013 09:00 to 16:08 55 CA
16/07/2013 10:37 to 15:51 46 CA
17/07/2013 10:10 to 16:16 48 CA
18/07/2013 08:48 to 15:23 78 CA, 10, 20, 30, 40, X1, X2
23/07/2013 09:13 to 16:18 33 10
25/07/2013 08:26 to 14:47 88 10
27/07/2013 11:16 to 15:56 60 10
28/07/2013 09:13 to 15:53 82 10
29/07/2013 10:50 to 16:29 75 10
31/07/2013 08:40 to 12:03 50 10
02/08/2013 09:55 to 18:14 101 10, 20, 30
03/08/2013 09:25 to 15:40 71 10, 20, X3, X4
05/08/2013 10:51 to 15:25 51 10, 20
06/08/2013 08:20 to 15:01 77 CA, 10
14/08/2013 10:31 to 15:06 56 10
15/08/2013 09:01 to 14:56 72 10
17/08/2013 07:31 to 16:23 112 10, 20
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3.2.1 Data fields obtained during COPE

During the COPE field campaign the radar stored the following radar moments, 19 fields

in total. Of these 19, 17 are included in the processed CF-radial files provided after

quality control, with reflectivity and filtered reflectivity from vertical polarisation omit-

ted. Quality control also corrects for drift in the transmitted frequency, along with the

application of a fixed value differential reflectivity calibration and reflectivity calibration

based on the self consistency of dual polarisation returns, which will be discussed more

in section 4.1.

1. Reflectivity from both horizontal and vertical polarisations

2. Reflectivity from both polarisations filtered using a Doppler FIR filter

3. Differential reflectivity using Doppler filtered fields

4. Co-polar cross correlation coefficient

5. Degree of polarisation

6. Differential phase shift

7. Differential phase shift filtered using Fourier transform

8. Specific differential phase (derived by signal processor)

9. Specific differential phase (derived by Rainbow© from filtered differential phase

shift)

10. Doppler velocities using both horizontal and vertical polarisations

11. Doppler velocities using filtered horizontal and vertical returns

12. Signal quality index from both polarisations

13. Spectral width from both horizontal and vertical polarisations
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3.2.2 Additional COPE instrumentation

A number of other meteorological instruments were deployed during the field campaign

at a site within 1 km of the radar deployment site at Burn airfield and also throughout

Cornwall. The Davidstow field site contained a vertically pointing micro rain radar, a

scanning Lidar, a wind profiler and a tower mounted weather station along with a suite of

aerosol measuring instruments. Beyond the field site, radiosondes were launched from the

radar location throughout the project and automated weather stations were installed by

the UKMO in locations around Cornwall for the duration of the project. Measurements

from these instruments have been used to add context to the research and to complement

the observations from the mobile radar where possible.

Table 3.2: Summary of other instruments deployed during COPE.

Instrument Operating period Summary

Micro rain radar 24/06 to 21/08/2013 24GHz vertically pointing radar
with 1.5◦ beam width. Sampling 31
levels from 35m up to 1085m.

Halo Lidar 20/06 to 21/08/2013 1.55µm scanning Lidar providing
aerosol backscatter coefficient and
radial velocity. Scanned two fixed
azimuth RHI profiles and vertically
during the campaign.

Wind profiler 27/06 to 31/08/2013 Boundary layer UHF (1290MHz)
Doppler radar recording boundary
layer wind speed and direction,
along with SNR and spectral width
at continuous 15 minute intervals.

Davis AWS 20/06 to 20/08/2013 Automated weather station mea-
suring temperature, humidity, pres-
sure, wind speed and direction,
rainfall and humidity at continuous
5 minute intervals.

Radiosondes 18/07 to 14/08/2013 Event specific soundings measuring
height, temperature, pressure and
humidity. Launched from radar de-
ployment location.
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3.3 Additional radar deployments

During the course of this research the NCAS radar has also been deployed in other field

locations, for both testing at the Burn Airfield site (3.3.1) and for research deployments

in Cape Verde, Germany and Scotland (Appendix B). Data from these deployments has

been used to guide the techniques applied to the COPE data throughout the rest of this

thesis and will be invaluable for future investigations of these techniques. The following

section provides a brief summary of the Burn field site while summaries of the other

deployments can be found in Appendix B.

3.3.1 Burn airfield

The mobile radar has been deployed at Burn airfield, North Yorkshire (Fig. 3.4) for

testing, on several occasions since its acquisition in 2012. The airfield site is prone to

blockage at low elevations, mainly as a result of trees and the extensive power infrastruc-

ture present in this location (two coal fired power stations and their associated power

lines). The site does however offer extensive coverage of Yorkshire and also provides

higher level observations over the western side of the Pennines. Data from a deployment

on 6 October 2014 has been used during this study, particularly for the testing of clutter

identification and correction routines discussed in later chapters. During this deployment

the COPE10 and COPE20 scan strategies were reused. Data was collected for the traverse

of a frontal system across the UK from west to east, with the radar operating between

09:46 UTC and 13:06 UTC and collecting 43 volume scans. All the fields collected during

COPE were also recorded here, but unlike the COPE data, they have not been calibrated

by the instrument scientist.

3.4 UK operational monitoring networks

The UKMet Office (UKMO), Environment Agency (EA), Natural Resources Wales, Scot-

tish Environment Protection Agency (SEPA) and the Rivers Agency Northern Ireland

between them operate and collate a network of meteorological and hydrological monitor-

ing stations across the UK providing the observational basis for the UK flood warning
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Figure 3.4: Location of Burn airfield (red square), range rings are at 50 km intervals out
to 150 km range. Orange circles indicate the location of three closest C-band UKMO
radars, see section 3.4 for more details. Within range of the radar are several major
UK cities which have experienced flooding, these are labelled on the map with a cross
marking their location. Other smaller towns and cities prone to flooding are also within

range of the deployment site.

systems. These monitoring systems include a network of C-band weather radars, rain

gauges, river level, river flow and reservoir level stations. For the purposes of this research

data from the C-band radar network and rain gauges and river telemetry from within

the EA’s network have been used, details of which are covered below.

3.4.1 C-band radar network

The UKMO operate a network of 15 C-band radars across the UK (Fig. 3.5). This net-

work is currently being upgraded to dual polarisation with 9 of the radars now upgraded.

Though many of the dual polarisation radar have been operational for a few years the

composite radar rainfall product (Nimrod) produced by the UKMO does not yet incor-

porate dual polarisation corrections and enhancements. The Nimrod product is the final
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result of a single polarisation processing chain implemented on the polar raw radar reflec-

tivities obtained from the network. The processing chain includes the removal of noise,

ground clutter and occlusions, attenuation correction, bias correction using surface rain

gauge adjustment, conversion to a Cartesian grid with 1 km resolution and composit-

ing of data with the lowest uncertainty available (Harrison et al., 2009; Golding, 1998).

The Nimrod product is supplied to researchers via the British Atmospheric Date Centre

(BADC) as a gridded instantaneous rain rate in millimetres per hour for the whole of the

UK at five minute intervals, with a 1 km grid resolution. Dual polarisation polar data

from individual radars is also available from the BADC, however it is worth noting that

during the COPE campaign the Predannack radar was non-operational due to it being

upgraded to dual polarisation and the Cobbacombe radar had not yet been upgraded to

dual polarisation. As a result the nimrod composite is the only available network radar

data for the period of the field campaign.
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Figure 3.5: Location of the UKMO C-band weather radars, shown with the coloured
circles. Red circles denote those radars already upgraded to dual polarisation. Orange
circles are awaiting upgrade. The green triangles denote radars which are not operated
by the UKMO but contribute to the nimrod composite. Range rings are drawn at

100 km.
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3.4.2 Tipping bucket rain gauges

The EA in England collates and records data from a telemetered network of rain gauges,

operated by itself, water authorities and the UKMO. These rain gauges are tipping bucket

gauges, with a bucket size of 0.2mm recording data at 15 minute intervals. These gauges

are collocated with a daily check gauge to provide a measure of quality control. For the

purposes of this research, data from the 20 rain gauges within 50 km of the Davidstow

deployment site (Fig. 3.6) were obtained from the EA. These gauges cover the Cornish

peninsula in this area, providing distributed point observations to compare with the radar

data.
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Figure 3.6: Location of the rain gauges telemetered by the Environment Agency (grey
triangles). Davidstow radar site is shown with red square and 50 km range ring is shown

for scale.
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Evaluation of the COPE dataset

The primary dataset for this study is that collected during the COPE field campaign,

particularly the data collected with the X-band radar. The following chapter provides

an overview of the data collected, highlighting data quality issues, reviewing the spatial

distribution and occurrence of radar echoes and comparing the derived rainfall rates with

those obtained from rain gauges and the network weather radar. As discussed in 3.2.1

the data has been pre-processed to calibrate reflectivity and differential reflectivity, with

particular attention paid to frequency drift during the field campaign (4.1).

4.1 Pre-processing

Data from the X-band radar has been calibrated using the dual polarisation consistency

principles by the radar instrument scientist (Bennett, personal communication, February

2015). Firstly differential reflectivity has been corrected using measurements of very

light drizzle, where drops are expected to be spherical and differential reflectivity should

be in the region of 0 to 0.2 dB. Secondly the self-consistency technique of Gourley et al.

(2009) has been used to correct the miss-calibration of horizontal reflectivity. Finally both

reflectivity and differential reflectivity were corrected for drifts in the radars intermediate

frequency, which varied from 55 to 69MHz during the field campaign due to a hardware

fault causing increased warm up durations on startup (Fig. 4.1). A linearly interpolated

correction has been applied to both fields to correct for the combination of frequency

drift and miss-calibration. The correction varies between -3 to -4.3 dBZ for reflectivity

45
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and -0.5 to -2 dB for differential reflectivity. These corrections are applied during the

conversion of raw radar files to the cf radial standard for radar data storage. Analysis

shows that for later radar deployments frequency drift occurs over a much smaller range,

for example during ICE-D (Section B.1) frequency varied between 58 and 62MHz.

Figure 4.1: Intermediate frequency drift on the 17th August 2013, typical of the
standard drift seen during the field campaign on radar start up. Time axis displays
number of seconds since the beginning of the field campaign, with frequency stabilising

after approximately 2.7 hours.

4.2 Mobile radar location

During the field campaign the mobile radar required off-site storage and redeployment

every day, which led to a variation in radar position between days. For the majority of

the campaign the position of the radar varied over a distance of approximately 5 metres,

however on the 27-06-2013 and 05-08-2013 the radar was sited approximately 60 metres

to the north east (Fig 4.2). Although this was only a relatively small shift in position,

it had significant implications for the location of beam blockages caused by obstructions

close to the radar and has required consideration in further analysis. The published cf

radial files will require modification as they were set with a fixed position for the entire

campaign, which is not representative for the two dates mentioned.
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Figure 4.2: Variation of radar’s position during the COPE field campaign. Green
circles show the actual radar position for the majority of the campaign, while red circles
show position on 27-06-2013 and blue circles show position on 05-08-2013. The black
cross shows the fixed position coded into the cf radial files available on the BADC.

4.3 Reflectivity analysis

Initial inspection of the raw reflectivity fields easily identified common radar errors oc-

curring in the data, namely beam blocking, ground clutter returns, non-meteorological

echoes, radio interference, attenuation and second trip echoes. Examples of these features

are shown later in the work when discussing their identification and/or correction using

dual polarisation. Initial analysis focused on the bulk characteristics of the polar reflec-

tivity fields, including the frequency and magnitude of echo occurrence. As Harrison et al.

(2014) discuss, the computation of bulk statistics allows radar errors, including ground

clutter and beam blockage, to be easily identified, and can be used to assess the quality of

the correction routines applied. Therefore establishing a set of benchmarks from the raw

data has allowed the later corrections to be assessed. As the statistical methods focused

on polar data (rather than regridded cartesian data), a subset of the whole dataset has

been used, which omitted those scans which are not directly comparable. This included

the omission of the two dates mentioned above, where the radar position was altered sig-

nificantly, and also those scans which do not have 1000 range gates at a spacing of 150m

and a one degree azimuth angle step. Using a common data array allowed bulk statistics

to be computed without introducing uncertainties through interpolation or re-gridding.
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4.3.1 Echo occurrence percentage

The first statistical measure considered is the echo occurrence percentage for each range

gate, which is simply the count of all reflectivity observations exceeding a threshold value

divided by the total number of scans in the dataset. As precipitation occurs in variable

locations, and is not persistent over long time periods, the echo occurrence percentage

can indicate locations which are prone to persistent non-meteorological echoes, such as

ground clutter. Azimuthal gradients in the echo percentage also indicate where beam

blockage may be causing a reduction in sensitivity for the radar. Data from the lowest

four elevations is shown in Figure 4.3, where both these signals are visible.

Figure 4.3: Percentage of radar scans containing a non zero reflectivity observation
during the COPE field campaign when using raw reflectivity data. A shows the percent-
age for 0.5◦ elevation scans (1075 scans during the campaign), B shows 1.5◦ elevation
(1041 scans), C shows 2.5◦ elevation (1075 scans) and D shows 3.5◦ elevation (1041 scans).

Images cover 200 km x 200 km centred on the mobile radar.

The echo occurrence percentages in excess of 90% to the east of the radar at 0.5◦ indicate

the presence of persistent signals from Dartmoor (an area of elevated topography, shown
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in Figure 4.4), this is supported by the reduced occurrence of the these echoes with

increasing elevation.
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Figure 4.4: Surface elevation of Cornwall in region surrounding Davidstow radar site.

Similarly beam blockages are indicated by the reduction in echo occurrence at fixed

azimuths in the lowest elevation scan, which do not occur at higher elevations. The

beam blockages visible are caused by a mixture of topography and man-made structures

(unfortunately including the radar command centre for the project at 68 degrees azimuth).

These blockages are better represented when azimuthally averaging the echo occurrence

(Figure 4.5). Given normal atmospheric conditions with no beam blockage you would

expect the number of echoes to decrease with increasing elevation angle, as the radar beam

begins to overshoot low level precipitation (particularly at far range). This is observable

in the zero to fifty degree azimuth range, however there are clear azimuth ranges at

0.5◦ elevation where the echo occurrence decreases compared to the surrounding angles

and higher elevations, indicating areas of beam blockage. For example the blockage at

305◦ is caused by the old airfield control tower, while the less pronounced blockage signal

between 210◦ and 230◦ is caused by Davidstow Woods. Comparison between the 1.5◦ and

2.5◦ elevations indicates that the 1.5◦ scan clears almost all of the blockages, with some
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blockage from the control tower at 305◦ and from the high topography between 170 and

190 degrees. The degree of blockage is quantified and corrected for in Chapter 6.

Figure 4.5: Azimuthal average echo occurrence percentages for the lowest three eleva-
tion angles used during the campaign. These are 0.5◦ (blue line), 1.5◦ (green line) and
2.5◦ (red line). Echo occurrences are as per the data periods in Figure 4.3 with 1075
scans used for the 0.5◦ and 2.5◦ elevations and 1041 scans used for the 1.5◦ elevation.

The azimuthal averaging of echo occurrence also highlights an oscillating signature within

the lower elevations, which is more extreme at 0.5◦ . The signal indicates the likely pres-

ence of second trip echoes within the dataset, which are made apparent by the staggered

PRF transmission mode operated during the campaign, where the maximum unambigu-

ous range varies between high and low PRF pulses (150 km and 187.5 km at 1000Hz

and 800Hz respectively). Echoes beyond the unambiguous range can be observed as

closer echoes during the next pulse, leading to superposition of signals. The staggered

PRF causes this superposition to fluctuate position as the unambiguous range changes,

creating different echo distributions dependant on the PRF being transmitted. The

phenomena occurs more frequently at lower elevations because higher elevation sweeps

overshoot most precipitation at longer ranges. As these echoes are clearly visible using

the echo occurrence statistic, they have been identified in individual scans and have been

removed, where possible, during the quality control process (Chapter 5).

Another feature visible using the echo occurrence measure is the central bullseye of high

values which is present at all four elevations. This is caused by clear air echoes, most
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likely insects, which are detected at close range, where the radar sensitivity is highest.

This is confirmed by Figure 4.6, which shows the echo occurrence when reflectivity is

greater than a threshold of -1.4 dBZ (which equates to the 0.03mm/hr threhsold used by

Harrison et al. (2014) if the UKMO standard Z-R relation is used). After thresholding

the bullseye is no longer visible due to clear air echoes typically being low intensity

and therefore under the threshold. Again these echoes have been identified as either

precipitation or clear air clutter during the quality control process, and removed where

necessary (Chapter 5).

Figure 4.6: Percentage of radar scans containing a reflectivity observation greater
than -1.4 dBZ during the COPE field campaign. Panels are as in Fig. 4.3. Panels cover

200 km x 200 km centred on the mobile radar.

4.3.2 Conditional average reflectivity

A second long duration statistical measure that is also used to analyse radar data quality

is the conditional average reflectivity or conditional average rainfall. In this case the
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average reflectivity has been calculated for all echoes exceeding a threshold of 0 dBZ

(which is equivalent to 0.0365mm/hr if using the Marshall-Palmer relation) using the

same data subset as for the echo occurrence calculations. Figure 4.7 shows the results

from the four lowest elevations used in the COPE campaign, further highlighting the

data quality issues shown by echo occurrence percentages.

Figure 4.7: Average reflectivity observed at each elevation conditional on the observa-
tion exceeding a threshold of 0 dBZ. Panels are as in Fig. 4.3. Images cover 200 km x

200 km centred on the mobile radar.

Panel A in Figure 4.7 clearly shows the effect of beam blockage due to the airfield control

tower, where the average reflectivity observation is approximately 15 dBZ lower than the

surrounding areas, and also the high topography to the south of the radar, which suffers

a similar magnitude of change. The results show that the other areas of beam blockage

identified using echo occurrence percentages are less severe, but will still need correction.

Also clearly visible in panel A is the elevated mean reflectivity to the east of the radar,

which confirms that the echo occurrence percentages of over 90% in this area are a result

of strong ground clutter returns. Both these signals are not present in panels C and D,
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with only the extreme beam blockage resulting from the airfield control tower affecting

scans at 1.5◦ elevation (panel B).

4.4 Radar filtered reflectivity

A potential option to alleviate the issue of ground clutter is to use the radar’s filtered

reflectivity field, which uses discrete Fourier transform notch filter in the IQ data to

remove reflectivity signals centred on zero velocity. However this filtered field has two

noticeable flaws, the first of which being that the filter tends to reduce but not remove

ground clutter reflectivity signals when there is no rainfall due to the velocity notch being

smaller than the velocity range of the ground clutter signals (Figure 4.8).

Figure 4.8: Reflectivity PPIs at 0.5◦ elevation from the 2013-08-17 07:56:03 UTC vol-
ume scan. Panel A shows the raw reflectivity field (dBuZ) measured by the radar and
Panel B shows the filtered reflectivity field from the signal processor. The panels are
130 km boxes centred on the radar, with range rings at 25 km (solid line) and 50 km

(dashed line).

Figure 4.8 shows two reflectivity PPIs (0.5◦ elevation) from the 07:56UTC volume scan

on 17 August 2013, with Panel A showing the raw reflectivity field and Panel B the radar

filtered reflectivity field. Rainfall at this time is sparse (based on rain gauges and higher

elevation data), with the majority of the echoes observed being spurious. Most noticeable

are the second trip echoes to the west and the ground clutter echoes from Dartmoor to

the east. The presence of the ground clutter echoes in Panel B but at a lower intensity
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(10 to 20 dBZ as opposed to 30 to 50 dBZ) indicates that the filter notch is too narrow

to completely eliminate the ground clutter signal. The filter has also boosted the signal

in some regions, most noticeably for Exmoor in the north east at 70 km range. Changes

to the ground clutter signals are likely to be noticed in long term statistical overviews of

the data, and the echo occurrence percentages for these two fields are compared in Figure

4.9.

Figure 4.9: Percentage of radar scans containing a reflectivity observation greater than
-30 dBZ during the COPE field campaign. Panel A shows the occurrence percentage for
raw reflectivity at 0.5◦ elevation and Panel B shows the percentage for radar filtered

reflectivity at 0.5◦ elevation. Panels are 100 km boxes centred on the mobile radar.

As previously shown in Figure 4.3 the echo occurrence percentages in regions of ground

clutter are very high, typically greater than 90% for COPE. The radar’s internal clutter

filtering reduces the occurrence of echoes over Dartmoor to nearer 50% in places, though

some regions still have over 90% echo occurrence, highlighting that the filter often re-

duces these echoes without removing them. There is also an increase in echo occurrence

percentage to the north east of the radar and strangely within the beam blocked sector to

the north west. Another feature of the radar filter which can’t be observed in long term

statistics but is noticeable in individual PPIs is the reduction in intensity of echoes along

the naturally occurring zero velocity isodop, where the wind is travelling tangentially to

the radar beam and therefore has zero radial velocity. This can be seen in Figure 4.10

which shows reflectivity data from the Burn test site (10:30UTC 2014-10-06) again at

0.5◦ elevation. On each panel the 3ms−1 radial wind speed both towards and away from

the radar is shown, with a decrease in reflectivity observed within the low velocity region

between these contours in the filtered data. The magnitude of this change is up to 8 dBZ
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which could be significant for rainfall estimation, although this will be a transient effect

dependant on wind speed and direction.

Figure 4.10: Reflectivity PPIs at 0.5◦ elevation from the 2014-10-06 10:30:40 UTC
volume scan. Panel A shows the raw reflectivity field (dBuZ) measured by the radar
and Panel B shows the filtered reflectivity field from the signal processor. The thin
solid black lines on each panel are the 3 ms−1 and −3 ms−1 radial velocity contours with
the region between them being the low velocity zone including the zero velocity isodop.
The panels are 60 km boxes centred on the radar, with the Humber estuary marked as

coastline on the eastern edge of each panel.

The presence of these errors within the filtered reflectivity data suggests an alternative

approach to filtering radar echoes is required for accurate rainfall estimates in this region,

and the following Chapter covers the development and implementation of both threshold

filtering of second trip echoes and fuzzy logic filtering of non-meteorological echoes to

provide an alternative filtered reflectivity field for analysis.





Chapter 5

Dual polarisation radar data

quality control

Given the indiscriminate radiation pattern of radar it is no surprise that they detect

echoes from a range of source objects, including those which are not of meteorological

origin (see section 2.2.4). To provide accurate rainfall estimates these echoes must be

removed from the dataset where possible, while those echoes which are a mix of meteo-

rological and non meteorological returns should be treated with caution.

Though a variety of quality control methods have previously been implemented on both

single and dual polarisation radar, either by processing the raw I/Q data (Torres and

Zrnić, 1999) or by classifying echoes with the radar moments using machine learning

(Chandrasekar et al. (2013), also see sections 2.2.4 and 2.4.1) there is no clearly applied

approach in the literature, with each organisation tending to produce a bespoke solution

(or several) which fits their requirements. The following chapter outlines an approach

for identifying and removing these erroneous echoes developed using the COPE data,

befitting the needs of the mobile X-band radar operated by NCAS. The data processing

and visualisation in Chapter 4 shows the clear need for the application of quality control,

with both ground clutter and insect contamination occurring in the data along with single

point interference from other radiation sources and second trip echoes from beyond the

maximum unambiguous range of the radar. Given the varied end user applications of the

data (cloud microphysics studies, model comparison, hydrological modelling) an approach

57
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has been developed which is adaptable to the end user, with the implementation here

focusing on the need for accurate rainfall estimation for hydrological modelling.

5.1 Dual polarisation rainfall signature

To identify spurious radar echoes is it first necessary to determine how a true rainfall

echo appears using dual polarisation radar moments. Previous studies have shown that

rainfall should have a correlation coefficient of generally greater than 0.97 (Balakrishnan

and Zrnić, 1990; Zrnić and Ryzhkov, 1999), differential reflectivity in the range 0 dB to

5 dB (see 2.3.2) with the majority of rainfall at the lower end of that range and positive

differential phase shift ranging from 0◦ km−1 in light drizzle to over 15◦ km−1 in very

heavy rainfall at X-band (also see 2.3.2). To determine how the mobile X-band radar

performs in relation to these usual expected values several rainfall events from the COPE

dataset were identified, using rain gauges and the UKMO radar composite to “ground

truth” the identification. The rainfall event on 5 August was then analysed to extract the

dual polarisation moments from range gates which contained rainfall. This process was

aided by the raw statistics discussed in Chapter 4 to avoid regions of potential ground

clutter contamination. By collating data collected over an hour, the distribution of radar

moments for those range gates identified as rain can be constructed using histograms.

Figure 5.1 shows the constructed histogram for horizontal radar reflectivity, as you would

also obtain from a single polarisation radar, showing the rainfall event to be mainly of

moderate intensity, with some echoes representing heavier rainfall if considering reflec-

tivity alone.

Histograms of differential reflectivity, specific differential phase shift, correlation coeffi-

cient and normalised coherent power for the same rainfall event are shown in Figure 5.2.

The differential reflectivity histogram indicates a range expected for smaller median rain

drop diameters, with the majority of the observations being between 0 dB and 1 dB. The

presence of negative values indicates a small degree of measurement noise influencing the

observations and also shows the effect of differential attenuation reducing the observed

differential reflectivity. With the exception of the negative observations, the observations

lie within those expected based on previous research, with the absence of very high values
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Figure 5.1: Histogram of raw horizontal radar reflectivity during rainfall event on the
5 August 2013, from 12:08:04 UTC to 13:03:04 UTC. N=367213.

indicating that the high reflectivity values are likely a result of an increased concentration

of moderately sized drops, rather than fewer large rain drops.

The observed correlation coefficients are as expected from the literature, with over three

quarters of the observations exceeding a correlation of 0.97, over 90% of the observations

exceeding 0.9 and only 3% of the observations being below 0.8. However these lower values

present indicate the correlation coefficient in rainfall can be affected by measurement

errors, resulting from low signal to noise ratios and non-uniform beam filling.

The specific differential phase observed during the rainfall event largely matches expec-

tations, however 29% of the observations are between 0 ◦km−1 and -0.5 ◦km−1 indicating

the internal processing of KDP is generating negative values in light rain where the total

differential phase shift is low, which is a known difficulty for KDP calculation and a rea-

son for the use of hybrid rainfall algorithms which use reflectivity for light rainfall and

KDP for heavier rainfall. Alternative options for processing KDP have been explored in

Chapter 6.

The final radar moment shown in Figure 5.2 is the normalised coherent power (NCP)

also known as the signal quality index (SQI), which is available to both single and dual

polarisation radars. The normalised coherent power is given by the magnitude of the
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Figure 5.2: Histograms of the dual polarisation radar moments, differential reflectiv-
ity, correlation coefficient and specific differential phase along with normalised coherent
power during a rainfall event on the 5 August 2013, from 12:08:04 UTC to 13:03:04
UTC. The data was pre-classified to sample only range gates highly likely to be rainfall

of variable intensity.

covariance at t1, divided by the power at t0, and indicates how predictable the signal is

from one pulse to the next (Bell et al., 2013; Dixon and Hubbert, 2012). The observations

indicate a high degree of coherence in rainfall, with 71% of the observations exceeding

0.8, and 96% of the observations exceeding 0.3, with lower values being attributable

to increased turbulence, indicated by increased spectral width as noted by Dixon and

Hubbert (2012).

It is worth noting that Doppler velocity, spectral width and degree of polarisation (DOP)



Chapter 5. Quality control 61

are also observed by the NCAS radar, however these results have not been presented. In

the case of Doppler velocity, it can be expected to be of any value within the Nyquist

velocity range for a moving rainfall system, depending on its true atmospheric velocity and

the position of the radar relative to the system, while DOP mirrors correlation coefficient

almost exactly and adds no additional value to characterising rainfall observations in this

case.

The observations presented in Figures 5.1 and 5.2 show that the expected dual polari-

sation rainfall signature is replicated in the NCAS radar observations from COPE, and

provide a point of reference for comparisons with dual polarisation observations that are

not of meteorological origin.

5.2 Second trip echoes

A clear feature of the analysis in Chapter 4, particularly evident in Figure 4.5, is the

presence of second trip echoes, which vary by azimuth due to the staggered PRF operated

by the radar. Second trip echoes occur when a target reflects a signal back to the radar

after the time the radar was expecting that pulse to generate a return (Figure 5.3). In

the example shown a signal from pulse 1, the blue pulse, returns to the radar during

the listening period for pulse 2 (in the yellow box). This superimposes the signal from

pulse 1 onto the returns from the second pulse and generates a second trip echo within

the radars unambiguous range. The maximum unambiguous range for a radar (rmax) is

a function of the pulse repetition frequency used by the radar and is given by equation

5.1. A second trip echo will be visible at a distance equal to the actual range of the

cloud minus the maximum unambiguous range. For the COPE scans this equates to a

variable maximum range of either 187.5 km or 150 km when the staggered PRF settings

of 800Hz and 1000Hz were used (the majority of the scans). This variation allows second

trip echoes to be identified more effectively than when a single PRF is implemented, as

the second trip echo location varies depending on the PRF of the given azimuth. For

example, for the two PRFs given an echo at 200 km range would produce a second trip

echo at either 50 km or 12.5 km depending on the PRF staggering used.

rmax = c

2.PRF (5.1)



Chapter 5. Quality control 62

Figure 5.3: Schematic representation of second trip echoes, A shows a simplified sketch
of the radar procedure for 2 pulses, while B relates this to the maximum unambiguous
range of the radar (rmax), showing pulse 1 travelling beyond this range and returning
the signal from the cloud during the receive period of pulse 2, creating a second trip

echo as though pulse 2 was observing the cloud at a closer distance to the radar.

5.2.1 Identifying second trip echoes

To develop a filtering method individual examples of second trip echoes were identified in

the COPE data, such as the one shown in Figure 5.4 from 17 August, where widespread

rainfall approached from the west, extending from the southern Irish coast to the English

Channel as seen in the wider rainfall composite produced by the UKMO (Fig. 5.5). The

example shows an alternating reflectivity signal between radials to the west and north

west of the radar, as a result of the staggered PRF used and the presence of second trip

echoes. Embedded within that region is a first trip rainfall echo, which is visible in both

of the lowest elevations and in the UKMO composite.

Although the second trip echoes are clearly identifiable visibly it is beneficial to identify

and remove the second trip echoes automatically during processing of the radar data.

Dual polarisation was a potential solution to this filtering, provided the second trip

echoes had a dual polarisation signature that was distinct from the rainfall signature

presented in the preceding section. Figure 5.6 shows six of the available moments for the

second trip echo example shown previously in Figure 5.4. On visual inspection the second

trip echoes observed have a differential reflectivity comparable to rainfall (panel A), with

the first trip echo not being distinct from the second trip echo. There is evidence of
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Figure 5.4: Example of second trip echoes identified in the COPE data, 2013-08-
17 08:16 UTC. A shows the 0.5◦ elevation scan and B shows the 1.5◦ scan, showing the
discontinuity of echoes with increasing elevation. Both panels are 150 km squares centred

on the radar.

differential attenuation impacting the second trip echoes to the west of the radar, which

is supported by the high differential phase shift values observed there (panel D), but

again the differential phase shift values generally are not unusual for a rainfall event.

The correlation coefficient (panel E) for the second trip echoes (≈0.95) is slightly lower

than for the first trip (>0.97), which could be useful for filtering. This decrease is

expected due to non uniform beam filling, which is more likely at the true range of the

second trip echoes than close to the radar where the first trip echoes occur. However non

uniform beam filling and therefore decreased CC is possible within the range of the radar

(150 km) which may lead to difficulties with a filter based on CC. The specific differential

phase shown in panel F is again within the bounds expected for a rainfall echo, with the

only distinguishing feature being a strong negative KDP along the radial boundary of the

first trip echo, caused by the superposition of elevated phase shifts closer to the radar

than the first trip echo which then decrease where the first trip echo occurs. The panel

also shows that the radar’s internal filtering is removing some but not all of the second

trip echoes prior to KDP calculation. The internal filter thresholds the data, removing

segments which contain bad data, with the thresholds being a signal to noise ratio below

3, a CC below 0.8 and a standard deviation of phase shift below 12. Clearly a different

filter will be required to adequately remove second trip echoes from the data. Finally

panel B suggests the NCP/SQI may be a useful parameter for filtering second trip echoes,

with the first trip echo to the north west having values expected for rainfall of 0.9 and



Chapter 5. Quality control 64

Figure 5.5: UK Nimrod radar composite provided by the UK Met Office for the COPE
field campaign, 2013-08-17 08:15 UTC.
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above, while the second trip echoes in that region blend into the background noise data

and have a SQI of 0.4 and below.

Figure 5.6: Multiple radar moments for the example shown in Figure 5.4. A shows the
ZDR, B the signal quality index (SQI), C the Doppler velocity, D the differential phase
shift, E the correlation coefficient and F the specific differential phase. Again these are

150 km squares centred on the radar.

Extending the analysis to multiple radar scans using moment histograms supports these

initial findings, with the histograms in Figure 5.7 indicating an overlap of both KDP

and ZDR between rain and second trip echoes, with CC having a broader distribution

of moderately high values for second trip echoes (>0.8) than rainfall echoes, which are

strongly distributed towards high values (>0.95). However, as 20% of the second trip

echo observations have a CC greater than 0.98 there is still significant overlap between
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Figure 5.7: Histograms of the dual polarisation radar moments, differential reflectiv-
ity, correlation coefficient and specific differential phase along with normalised coherent
power during a rainfall event on the 17 August 2013, from 07:56:03 UTC to 08:56:03
UTC. The data was pre-classified to sample only range gates highly likely to be caused
by second trip echoes returning from rainfall beyond the maximum unambiguous range

of the radar.
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the two distributions. In contrast the SQI observations have a very different distribution

for second trip echoes than for first trip rainfall echoes, with over 70% of the observations

below 0.3 and over 95% below 0.5, compared to the rainfall echoes where 71% of the

observations were greater than 0.8 and 91% were greater than 0.5. Dixon and Hubbert

(2012) suggested that SQI could be used to filter noise from radar observations, with

these results indicating it can also be used to filter second trip echoes. Following the

suggestion in that paper, the possibility of using SQI averaged over a window of range

gates has been explored. Figure 5.8 shows the variation in SQI when it is taken from an

individual range gate compared to taking the mean of the field over a three by three gate

window and a five by five gate window, for both rainfall and second trip echoes.

Figure 5.8: Histograms of raw SQI and SQI averaged over a 3x3 and 5x5 gate moving
window centred on the observation range gate. The observations are from the same

events shown in Figure 5.1 for precipitation and Figure 5.7 for second trip echoes.

Figure 5.8 shows that as the size of the averaging window increases the distribution of SQI

values observed during second trip echoes narrows, while the rainfall distribution varies



Chapter 5. Quality control 68

only slightly. For second trip echoes the interquartile range is 0.17 when using the raw

data, while this decreases to 0.04 when using a 5 gate averaging window, similarly 90% of

the data in the later case is within a range of 0.12, while this increases to 0.42 for the raw

data. In contrast the 90 percentile range of the rainfall observations only decreases from

0.63 to 0.56, and interquartile range doesn’t vary by more than 0.003 across the three

averaging domains. The narrowing of the distribution of second trip echo observations

when using an averaging window reduces the overlap between the two distributions,

suggesting a better ability to discriminate between the two signals when using averaging

windows. Another potentially viable discriminator between the two signals is to generate

azimuthal difference fields which take advantage of the dual PRF of the radar producing

the alternating signals already seen in the data.

To take advantage of these signals a difference function was developed to calculate the

median difference between a radial and its adjacent radials, along a moving five range

gate window which is shown in equations 5.2 and 5.2.

xi,j = Md P (5.2)

Where P is the following set and i varies in azimuth and j varies in range:

P = {|xi−1,r − xi,r|, |xi+1,r − xi,r| : xj−2 6 r 6 xj+2} (5.3)

Using equation 5.2 the radial differences of the radar moments were computed for the

rainfall and second trip echoes identified previously, with only reflectivity and phase shift

showing a noticeable signal difference between the two echo types. Histograms for these

two moments are shown in Figure 5.9.

Figure 5.9 shows a stronger signal difference between rainfall and second trip rainfall

echoes when using median phase shift compared to median reflectivity, with only 14%

overlap compared to 56% overlap. Given the two distributions are largely distinct there is

potential for using median azimuthal phase shift difference for identifying and removing

second trip echoes.
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Figure 5.9: Histograms of median azimuthal difference in raw reflectivity and phase
shift over a 5 gate window centred on the observation range gate. The observations are
from the same events shown in Figure 5.1 for precipitation and Figure 5.7 for second

trip echoes.

5.2.2 Removing second trip echoes

The identification of second trip echoes within the COPE dataset has shown that they

have distinct signatures when observed using normalised coherent power, especially when

averaged over a moving window, and median azimuthal phase shift difference. These sig-

natures have been used to remove second trip echoes during processing, removing the

effects previously seen in Figure 4.3 and Figure 4.5, using a logical decision process. Po-

tential options for the logical decision process were based on those used previously in

radar filtering and included threshold filtering, a decision tree and fuzzy logic (Chan-

drasekar et al., 2013). As the filter only has to identify and remove one signal, based

on at most two radar moments a simple threshold approach was taken, akin to a very

basic decision tree. The distribution of both mean SQI and azimuthal phase shift change

were re-examined in a two dimensional distribution space (Figure 5.10) to determine the

relationship between echo type, mean SQI and phase difference. Two possible filtering

approaches were developed based on these distributions. Option 1 is a simple threshold

filter, based only on the mean SQI in the 25 gate moving window, with any observations

with a mean SQI below 0.3 being removed as a second trip echo. Option 2 applies a

mean SQI threshold which varies as a function of the median azimuthal phase difference,

as shown in equation 5.4, where δΦ is the median azimuthal phase difference and SQIthr

is the variable threshold.
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SQIthr(δΦ)


0.2 + 0.02δΦ, if 0 6 δΦ 6 10

0.4, if δΦ > 10

0.3, where δΦ is missing

(5.4)

Figure 5.10: Two moment heat maps, indicating the number of observations identified
that fall within the given hexagonal bins. Identified rainfall echoes are indicated with
the purple colour scaling, while second trip echoes are shown with the red colour scale.
A hexagonal bin is only coloured if it contains at least 20 observations, which is less than
0.01% of the total observations in each category. The observations are from the same

events shown in Figure 5.1 for precipitation and Figure 5.7 for second trip echoes.

To assess the merits of each filtering approach the 111 volume scans taken on the 17 Aug

2013 were processed using both filters. The 17 August was chosen as it has a significant

number of second trip echoes, located across a range of azimuths at varying intensities.

Figure 5.11 shows the impact of applying the filter to the number of echoes observed

as a percentage of the total number of scans at 0.5◦ elevation. The raw data shows

the alternating pattern also seen in Figure 4.5, where the second trip echoes are visible

in every other radial due to the staggered PRF. Application of the simple threshold

filter removes this affect, suggesting it is successfully removing second trip echoes and

the variable filter also successfully removes the affect. The difference between the two
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filtering options is that the variable filter is more aggressive, removing more echoes as

second trip signals in comparison to the simpler option, removing 1-2% more echoes

on average. Analysis of the data using animated comparisons suggests this aggressive

filtering is robust and indicated much better performance of the variable filter compared

to the simple filter in turbulent conditions.

Figure 5.11: Azimuthal variation of mean echo occurrence within a radial on the 17
August 2013. Solid black line shows the echo occurrence for the raw reflectivity data,
the blue line shows the impact of using a single value threshold filter of 0.3 and the green

line indicates the echo occurrence for the variable filter shown in equation 5.4.

Figure 5.12 shows an example of the two filtering options, compared to the raw data,

from a single elevation scan (2013-08-17 09:48 UTC, 0.5◦ elevation). In this example both

filters are successfully removing the second trip echoes occurring to the north east of the

radar, with the variable filter being more aggressive in its filtering of the interlaced first

and second trip echoes at about 30 km range. The variable filter also removes some of the

ground clutter signals resulting from Dartmoor due east of the radar, which is a primary

reason for the differences in echo occurrence percentages between the two filters seen

between 75◦ and 120◦ in Figure 5.11. The main difference between the two filtering options

occurs to the north west of the radar, at around 40 km range, where the simple filter is

removing a large region of reflectivity which shows no visible indication it is a second trip

echo (using reflectivity and the other available radar moments). The variable filter does

not remove this region as it has a low δΦ, which results in a lower SQIthr being applied in

this region. Further investigation reveals this area to have unusually low SQI values for
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first trip echoes, which are coincident with a zone of convergence indicated in the Doppler

wind field and in the Doppler spectral width. These observations are consistent with the

presence of a warm front indicated on UKMO analysis charts which passes through this

area at this time. This signature and the associated removal of first trip echoes by

the simple filter can be seen in the preceding and following volume scans. Dixon and

Hubbert (2012) indicate this potential issue with SQI in turbulent areas, only suggesting

that elevated spectral width may help in moderating the threshold used, although this is

also susceptible to increase in areas of noise and second trip echoes, indicating the two

moments are not mutually exclusive. It is noticeable that the introduction of δΦ to the

filter (Fig. 5.12, panel C) greatly reduces this erroneous filtering, and strongly supports

the use of the two moment variable filter for the removal of second trip echoes.

Figure 5.12: Error in simple second trip filter due to turbulent mixing as a result of
frontal convergence. Data shown is the 0.5◦ elevation angle reflectivity data from 2013-
08-17 09:48 UTC in raw form (A), after the application of the simple filter (B) and after
application of the variable filter (C). Range rings shown at 25 km and 50 km from the

radar.
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5.2.3 Second trip echoes - concluding remarks

Section 5.2 has shown that second trip echoes can be identified and filtered using the

radar moments available from the mobile X-band radar as operated during COPE. The

most effective filtering was achieved using a combination of space averaged normalised

coherent power (SQI) and the median azimuthal difference in phase shift (δΦ) due to a

staggered PRF, which were combined to produce a variable SQI threshold using equation

5.4, derived from empirical analysis of the distribution of both second trip and rainfall

echoes. This variable threshold filter has been applied to the entire COPE dataset and the

filtered reflectivity obtained using this filter will be used in all further processing steps.

The impact of the filter on echo occurrence percentages is shown in Figure 5.13. The

filtering process successfully removes the staggered echo occurrences most visible to the

north west and north east in the raw data shown in panel A, while also partially filtering

the ground clutter echoes to the north east and east of the radar, which is an unexpected

benefit of the filtering process. However the filtering does not sufficiently remove these

non meteorological echoes, and a dedicated approach to filtering these echoes is required

to provide a more accurate rainfall product from the data. The following section describes

the filter used to remove these non meteorological echoes as the final stage of the initial

radar quality control process.

Figure 5.13: Echo occurrence percentages at 0.5◦ elevation angle for the 1075 COPE
files which meet the standard scan parameters and contain all dual polarisation variables.
A shows the percentage for raw reflectivity data, while B shows the percentage after

removal of second trip echoes with the variable filter.
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5.3 Identifying non meteorological returns using fuzzy logic

The ability of polarimetric radars to provide distinctive signatures for differing echo

types, as already demonstrated for rainfall and second trip rainfall echoes in sections 5.1

and 5.2.1 respectively, has led to the widespread development of dynamic filtering and

identification algorithms based on machine learning / artificial intelligence techniques.

These include the use of decision trees, neural networks, Bayesian classification and fuzzy

logic classification (Berenguer et al., 2006; Lakshmanan et al., 2007; Chandrasekar et al.,

2013). The following section describes the implementation of a fuzzy logic identification

scheme, which is highly adaptable, and has been implemented in this case to focus on

identifying echoes at low elevation angles for the purpose of accurate rainfall estimation,

particularly the need to remove the non meteorological echoes already identified in the

data (Chapter 4).

5.3.1 Fuzzy logic and weather radars

Fuzzy logic schemes are a popular tool for the classification of weather radar echoes, be

that the filtering of spurious echoes (Gourley et al., 2007; Rico-Ramirez and Cluckie, 2008,

for example) or for the identification of different hydrometeors (Dolan and Rutledge, 2009;

Park et al., 2009). These schemes all rely on the basic principles of fuzzy logic (Zadeh,

1983), but take different approaches to the variables, classifications and post processing

used.

Gourley et al. (2007), for example, limit the fuzzy classifier to three fields (texture of spe-

cific differential phase (σ(ΦDP)), texture of differential reflectivity (σ(ZDR)) and cross-

correlation coefficient (ρHV)), using probability density functions to define their sets.

They then apply post-fuzzy reclassification based on an additional 3 fields (velocity,

reflectivity and ΦDP). Their scheme successfully identifies non-precipitating echoes in

a range of cases. In contrast, Dolan and Rutledge (2009) use five fields, including tem-

perature, to define their one dimensional beta functions for hydrometeor classification.

In this way, fuzzy logic presents a highly adaptable framework, the advantage of which

is the ability to use the increasing number of moments available from dual polarisation

weather radars to produce dynamic filters. These schemes are highly adaptable and can

be trained with a limited volume of both empirical and simulated data, which allows rapid
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implementation in the field or application to limited datasets. The non-meteorological

echo classification filter developed for the NCAS radar is based on fuzzy logic as a result

of these characteristics, allowing continuing development and improvements as new field

campaigns provide different requirements for the filter.

The scheme uses novel radial texture parameters of reflectivity, differential reflectivity and

correlation coefficient, which are corrected for range effects, in combination with standard

dual polarisation moments and beam height to identify and remove spurious echoes. The

scheme has been developed and then tested using data from COPE, with some additional

verification achieved using data from the Burn testing site. The filter uses empirically

derived membership functions of variable form, based on human classification of the radar

data using ground observations and previous studies’ dual polarisation signatures. These

functions were derived using a similar approach to the method used in Section 5.1 for

identifying dual polarisation signatures of rainfall. Although the filter results presented

here are for reprocessed data, the scheme was designed to compute classifications in near

real time, allowing filtering of echoes during future radar deployments. The code has

also been developed to allow the addition of more echo classes in the future, allowing

additional hydrometeor types to be added to the identification process in the future.

The following sections will describe the fuzzy filtering methodology in detail, including the

polarimetric signatures of ground clutter and insects, the development of linear texture

fields, the derivation of the empirical membership functions used, the combination of

these functions using fuzzy logic, additional post filtering radar processing and finally

present examples of the fuzzy filter applied to test cases from both COPE and a testing

deployment at Burn airfield.

5.3.2 The expected dual polarisation signature of non-meteorological

echoes

The commonly available dual polarisation parameters have been widely studied in rela-

tion to non meteorological echoes, for example Mueller and Larkin made the first dual

polarisation observations of insects in 1985, using the S-band CHILL radar, with numer-

ous studies following that (Zrnić and Ryzhkov, 1998; Chilson et al., 2012, for example),
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while Zrnić and Ryzhkov (1998, 1999) have made several notable dual polarisation ob-

servations of ground clutter, which have been supported by the results from additional

filtering studies. The following sections summarise these results, to inform identification

of these non meteorological echoes.

5.3.2.1 Ground clutter

Ground clutter returns have no obvious ZDR signature, being broadly distributed through

a range of values, with an average value of 0 dB (reported in Zrnić and Ryzhkov, 1999;

Zrnić et al., 2006, for example). They are also known to have widely distributed corre-

lation coefficients ranging from very low to moderately high values (0.2-0.95). Filtering

studies typically take advantage of known locations of ground clutter, or the widely

varying texture of the dual polarisation fields, rather than the absolute values observed

(Gourley et al., 2007; Rico-Ramirez and Cluckie, 2008; Hubbert et al., 2009).

5.3.2.2 Insects

Single polarisation observations have successfully attributed some clear air radar echoes to

both insect and bird targets, with insects having relatively low reflectivity values (Plank,

1956; Harper, 1958). The dual polarisation attributes of these returns were first observed

using the S-band CHILL radar by Mueller and Larkin (1985). These observations show

ZDR to be a function of insect orientation, ranging from 0.5 dB if the insects are aligned

radially (head-on/tail-on) to the radar, increasing to 5 dB when viewed azimuthally

(broadside) to the radar. More recent studies have confirmed these results with a range

of radar systems, with the typical reported insect ZDR range being 2 dB to 9 dB depending

on orientation (Zrnić and Ryzhkov, 1998; Chilson et al., 2012). However Melnikov et al.

(2015) indicate that this variation may in fact be a result of depolarisation associated

with simultaneous transmit and receive radars. Correlation coefficients are also known

to be asymmetric for insects, and range from very low values (0.2) to moderately high

(around 0.8). There is no distinct differential phase shift associated with insects, due to

their low number concentrations, although they again show azimuthal variation of total

phase shift as a result of potential depolarisation effects. In comparison to rainfall the
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combination of lower correlation coefficients with higher ZDR and low reflectivity allows

a probable distinction to be made, allowing for filtering of these returns.

5.3.2.3 Noise and clear air returns

Radars often observe echoes from clear air, which can not be attributed to precipitation or

biotic scatterers. These clear air echoes are attributed to changes in the refractive index

of the atmosphere (Wilson et al., 1994; Lane, 1969), and are most often observed close

to the radar where the absolute received power is greater. In addition to these echoes,

the atmosphere typically has a background radiation signature which can sometimes be

visible, depending on the noise filtering active on the radar instrument. These echoes are

typically of very low reflectivity (>0 dBZ), especially at X-band. Though there are few

observational studies of non biological clear air echoes and background noise with dual

polarisation radar, Dixon and Hubbert (2012) showed that noise can be identified as it

has a high radial texture of phase shift (in their case a standard deviation greater than

45◦ ) and also a low normalised coherent power (below 0.15).

5.3.3 Identifying polarimetric signatures empirically

Fuzzy logic requires membership functions to be defined for each echo type to be clas-

sified. These membership functions define the radar signature of the echoes, with each

radar parameter requiring its own separate function. The parameters used for classifi-

cation in the following scheme are shown in Table 5.1. As previously mentioned texture

fields have been computed to improve the classification scheme, in addition to the use

of standard radar moments. It is first necessary to introduce these texture fields, and

their calculation before showing the empirical radar signatures developed which use both

standard radar moments and these new texture parameters. These empirical signatures

were derived using examples of typical spurious echoes, identified using inspection, and

manual classification, of the polar data, cross-checked with field observations and the

expected radar signatures outlined above.
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Parameter Shorthand Units

Uncorrected horizontal radar reflectivity dBuZ dBZ
Texture of horizontal radar reflectivity σ(Z) dBZ
Differential radar reflectivity between h&v ZDR dB
Texture of differential radar reflectivity σ(ZDR) dB
Cross polar correlation coefficient ρHV −
Texture of cross polar correlation coefficient σ(ρHV ) −
Texture of differential phase shift between h&v σ(ΨDP ) ◦
Height of radar beam centre above sea level H metres

Table 5.1: Radar parameters used in the classification scheme, as seen in Dufton and
Collier (2015).

5.3.3.1 Radial texture parameters

Texture parameters are frequently used in fuzzy logic classification schemes, particularly

for the removal of spurious echoes. The majority of texture fields derived use a 3 × 3

(range gates by azimuth sector) or larger moving window (Chandrasekar et al., 2013),

and compute either the standard deviation or root mean square difference within this

window to obtain texture. Texture parameters for the present classification are defined

using a radial window of 7 range gates length by 1 azimuth step width producing a one

degree by one kilometre moving window. The standard deviation for this window then

defines the texture for the central point (Eq. 5.5). A similar window has been shown to

be successful by Cho et al. (2006), who used the parameter for 1 km classifications. This

method of calculating texture parameters was chosen to retain the finer resolution of the

radar observations, allowing further processing at maximum polar resolution. The linear

method is also computationally faster than a moving window which includes multiple

azimuths and as such is advantageous for real time processing applications. Simple side

by side comparisons show that a linear window gives comparable texture fields to using

a multi azimuth moving window, while more detailed analysis shows that the differences

between the fields are insignificant when computing membership functions. Figure 5.14

shows ground clutter histograms of two texture fields, computed using a radial window

(1 × 7) and a multi azimuth window (3 × 3), with the histograms overlapping by 87%

and 92% for correlation coefficient and phase shift respectively.
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σ(xr) =

√√√√√ 1
N − 1

(N−1)/2∑
i=−(N−1)/2

(xr+i − x)2 (5.5)

As many other radar error sources operate along the radials of the collected data (partial

beam blockage for example), the use of this radial window also prevents these effects

influencing the surrounding data.

Figure 5.14: Texture histograms for correlation coefficient (left) and differential phase
shift (right) taken from 13 radar scans from the 17 August 2013, from 10:06:04 UTC
to 11:23:05 UTC. The radial windows are shown in red, while the square windows are
shown in blue, the overlapping section of these methods is shown in grey. Histograms
were computed for ground clutter echoes identified using a ground clutter mask. Details

of the mask can be found in section 5.3.3.3.

As previously noted by Gourley et al. (2007), texture parameters exhibit a range de-

pendent structure as a result of increasing sample volume due to beam spreading. To

allow the universal application of derived membership functions it is necessary to correct

for this range dependent behaviour. The linear textures used for this classification are

shown to exhibit the same range dependent variation, and correction has been achieved

by inverting a third order polynomial fitted to the range average texture over a period of

12 scans from the 17 August 2013. This date was chosen as radiosonde soundings place

the zero degree isotherm at 4 km elevation, reducing the chances of mixed phase echoes

biasing the range averaged texture of the lowest elevation scan. The polynomial is then

used as a multiplicative correction factor beyond a fixed range of 25 km for σ(ZDR) and
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σ(ΨDP) and 45 km for σ(ρHV). Figure 5.15 shows an example of range corrected tex-

ture of differential reflectivity, including the correction polynomial. The corrected signal

clearly shows the variability within the texture field, while the range dependent increase

in texture has been removed when compared to the original signal, making comparisons

between echoes at differing ranges possible.

5.3.3.2 The texture field signatures of rainfall

To fully utilise the radial texture fields in a classification scheme it was necessary to cre-

ate their signatures for rainfall to compare with those from non meteorological echoes.

These new signatures were added to the dual polarisation rainfall signatures already

characterised in section 5.1 to create a complete picture of the expected dual polarisa-

tion rainfall signature for the NCAS X-band radar. Using the same rainfall echoes as

those identified in section 5.1 histograms and normalised kernel density estimates were

constructed for the textures of horizontal reflectivity, differential reflectivity, correlation

coefficient and differential phase shift and are shown in Figure 5.16. The skewed, peaked

distributions shown indicate rainfall echoes typically have low texture values indicative

of low variability within the rainfall field, which is a valuable signature when compared

to the distributions found for non meteorological echoes as described in the following

sections and shown in Figure 5.17.

5.3.3.3 Empirical ground clutter signature

Normal propagation condition ground clutter is the easiest spurious echo to identify, es-

pecially once a reference period of radar data is available, like the results presented in

Chapter 4. Statistical analysis of multiple radar scans easily identifies range gates affected

by ground clutter. In this case a mask was created to extract clutter signals, defining

clutter stringently using two measures. The first measure is the echo occurrence per-

centage across the campaign, taken to be greater than 95% for clutter, the second being

the total reflectivity summation during the campaign, where values exceeding the mean

total plus three standard deviations were taken to be clutter (a summation threshold of

9516 dBZ). This method identified 1408 range gates which are highly likely to contain
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Figure 5.15: A. Multiplicative correction factor used to correct differential reflectivity
texture. B. Range variance of σ(ZDR) along the 281◦ azimuth for the 09:11:04 2013-
08-17 volume scan at 0.5◦ elevation, Davidstow deployment site. Dashed line is before
correction and solid line is corrected texture as used in the fuzzy logic classifier. Figure

is redrawn from Dufton and Collier (2015).
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Figure 5.16: Histograms of calculated texture of correlation coefficient, differential
reflectivity, horizontal reflectivity and differential phase shift for rainfall echoes. The
observations are from the same echoes used in Figure 5.1 for conventional radar moments.

ground clutter, which were then cross checked against topographic mapping. This sta-

tistical mask was then applied to 26 radar scans from the 18th July 2013 (dry day, 13

scans) and 17th August 2013 (stratiform rainfall, 13 scans) to produce histograms and

normalised kernel density estimates (KDEs) for the classification parameters, a selection

of which are shown in Figure 5.17. Greatest discrimination between ground clutter and

precipitation was found in the texture fields, particularly σ(ρHV ). It is worth noting that

ρHV values extend across a wide range and overlap with precipitation, although not as

much as in previous studies such as Zrnić et al. (2006). This difference is down to the

shorter wavelength and faster antenna speed used during the COPE campaign, which
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reduces the expected cross correlation of ground clutter returns.

5.3.3.4 Empirical insect signature

The presence of biological scatters within weather radar echoes is difficult to indepen-

dently verify, yet research has indicated a typical echo signature can be observed (see

section 5.3.2.2). To recap, insect echoes typically have low reflectivity (0-15dBZ), high

ZDR (>3dB) and low ρHV (0.3-0.6). Manual classification indicates a potential large

concentration of insect returns on the 18th July 2013 which was a warm day with morn-

ing temperatures in excess of 24◦C, a moderate onshore breeze and rainfall restricted

to isolated locations in the afternoon. Using 13 scans insect signature histograms and

unit normalised KDEs were again constructed (Figure 5.17, dash-dot lines). The ZDR

observations show a bimodal distribution above 4dB, which could be attributed to the

two preferred orientations of insect flight. The ρHV signature from these observations lies

between 0.7 and 1, higher than previously shown by most other studies. This may be

indicative of a highly uniform insect population, which exhibits little variation given the

short dwell time of the radar scan strategy. A similarly high region of ρHV was detected

by Bachmann and Zrnić (2007) when distinguishing between insect and bird echoes. The

observed texture parameters lie between those of precipitation and ground clutter, with

the exception of reflectivity texture which has a peaked signature of less than 3dBZ.

5.3.3.5 Empirical noise signature

The X-band radar used in this study uses a passive scan to set a zero level for environ-

mental noise, repeated at regular intervals. At times environmental conditions change

such that the noise level increases in this intermittent period causing an abundance of

low reflectivity echoes within the radar observations. The introduction of the second trip

echo filter described in section 5.2 has removed the majority of this low level echo break-

through as the noise echoes have a low normalised coherent power, similar to second trip

echoes. Even so, it was straightforward to identify these echoes when they occurred in

the raw reflectivity and generate a classification set for them, to allow for the filtering of

any noise echoes that did pass through the second trip filter. Histograms for noise have

been omitted from Figure 5.17 for clarity but those computed showed noise echoes have
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Figure 5.17: Normalised kernel density estimates for a sample of the dual-polarisation
and texture parameters used in this study. Classes are precipitation (solid line), ground
clutter (dashed line) and insects (dash-dot line). Derived from expert analysis of radar
data from the COPE campaign. Figure is redrawn from Dufton and Collier (2015).

very low texture of reflectivity (<1 dBZ) and low cross correlation coefficient (<0.7), yet

a very high texture of differential phase shift (>30◦ ).

5.3.4 Fuzzy logic membership filtering

Having defined the parameter ranges of the desired filtering classes, a filtering scheme has

been implemented which uses fuzzy logic to combine the available parameters, allowing

classification of the radar echoes. Firstly the empirical signatures identified above were

simplified into membership functions for each class and parameter, using a variable vertex

method. These membership functions were then applied to the available radar moments

to generate individual parameter scores, which are combined to calculate a single frac-

tional membership score for each echo class. Defuzzification of the fractional totals is

achieved by selecting the class with the maximum fractional score provided a certainty
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threshold has been crossed. Once identified, meteorological echoes are then retained by

the filter and despeckled to remove isolated range gates that passed through the filter.

This filter has been applied to the COPE field dataset and testing data from Burn air-

field, examples from which are shown in section 5.3.5. The process can be run in near

real time, taking less than 30 s per radar volume (10 elevation scans), making it suitable

for real-time application in future field deployments.

5.3.4.1 Variable vertex membership functions

Typical fuzzy logic membership functions are often triangular and trapezoid in shape or

defined by a centrally peaked decaying function. In the present work a variable vertex

membership scheme has been implemented, which allowed variation of the membership

functions’ form for different parameters and classes. Between vertices linear interpolation

was used to define the membership function. The minimum number of vertices required

for the function to operate is 2, defining the parameters’ limits (x0 and xn) and the

membership score at those limits (y0 and yn). Outside of these limits the membership

score is always zero. An example of this approach is shown in Fig. 5.18. The approach

allows greater flexibility in the membership functions than the use of a fixed shape for

membership functions, and incorporates parameter weighting in the individual scores

themselves.

Each of the empirical radar signatures derived in the previous section were then simplified

to a multiple vertex function, which approximated the shape of the distribution around its

peak. During the analysis it was found that using equally weighted membership functions

(maximum score of 1) was no less effective than using variable weighting optimised with

a genetic algorithm. Ultimately the most parsimonious set of variables was chosen for

each class. This was tested using a validation set of problem cases, where identification

was deemed to be challenging, including rainfall signals mixed with wind farm ground

clutter and convection embedded within probable insect returns.

For each of the four echo classes (precipitation, ground clutter, insects and noise) a

limiting set of observations was identified, for example in the case of noise it was simply

that the reflectivity would be below 5 dBZ and in the case of ground clutter it was

a combination of reflectivity being greater than 10 dBZ and the altitude of the radar
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Figure 5.18: Example of the multiple vertex membership function approach, with
vertices in the range 0 to n. Grey points represent vertices defining the membership
function, with the dashed line indicating the interpolation between those points. Figure

is redrawn from Dufton and Collier (2015).

return being below 2000m. This allowed these limits to be incorporated into the fuzzy

combination process as described in the next section, removing the need for a secondary

re-classification stage as found in some fuzzy logic radar filters (Gourley et al., 2007, for

example).

All the membership vertices derived for the fuzzy classifier are shown in tables 5.2–5.5,

with the limiting parameters being shown at the end of each table.

Table 5.2: Precipitation membership functions, reproduced from Dufton and Collier
(2015).

Parameter Parameter vertices Membership vertices

σ(ZDR) 0, 1, 5 1, 0.1, 0
ρHV 0.9, 0.94, 0.98, 1.0 0, 0.4, 1, 1
σ(ρHV ) 0, 0.05, 0.1 1, 0.1, 0
σ(ΨDP ) 0, 6, 20 1, 0.2, 0

dBuZ -11,-10, 100, 101 0, 1, 1, 0
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Table 5.3: Ground clutter membership functions, reproduced from Dufton and Collier
(2015).

Parameter Parameter vertices Membership vertices

σ(Z) 0, 5, 15, 40, 50 0, 0.6, 1, 1, 0
σ(ZDR) 0, 1, 3, 10 0, 0.1, 1, 1
ρHV 0, 0.4, 0.7, 1 0, 1, 1, 0
σ(ρHV ) 0.05, 0.2, 0.4 0, 1, 0
σ(ΨDP ) 0, 20, 50, 100, 120 0, 1, 0.8, 0.8, 1

dBuZ -50, 10, 20, 200 0, 0, 1, 1
H 0, 1000, 2000 1, 1, 0

Table 5.4: Noise membership functions, reproduced from Dufton and Collier (2015).

Parameter Parameter vertices Membership vertices

σ(Z) 0, 0.5, 1, 2 1, 0.8, 0.1, 0
ρHV 0, 0.6, 0.7, 1 1, 0.75, 0, 0
σ(ΨDP ) 0, 15, 30, 100 0, 0.1, 1, 1

dBuZ -30, 5, 10, 200 1, 1, 0, 0

Table 5.5: Insect membership functions, reproduced from Dufton and Collier (2015).

Parameter Parameter vertices Membership vertices

σ(Z) 0, 1, 2, 5 0.4, 1, 0.2, 0
σ(ZDR) 0, 1, 2 0, 1, 0
ρHV 0.6, 0.8, 0.89, 1 0, 0.5, 1, 0
σ(ρHV ) 0, 0.05, 0.1 0, 1, 0
σ(ΨDP ) 0, 8, 20 0, 1, 0

dBuZ -11,-10, 20, 21 0, 1, 1, 0
ZDR 0, 2, 4, 20 0, 0, 1, 1
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5.3.4.2 Combination and defuzzification

To calculate an overall membership score for each echo it was necessary to define a method

of combining the individual membership functions specified above. The method used was

a combination of additive and multiplicative elements to allow the limit control discussed

above, leading to the total fuzzy membership score for each class (F (x)) being calculated

using Eq. 5.6.

F (x) = F (x)K × F (x)J (5.6)

where

F (x)J =
∑
j∈J

M(x)j (5.7)

and

F (x)K =
∏

k∈K

M(x)k (5.8)

The process requires individual membership scores (M(x)) for each parameter to be cal-

culated using the defined variable vertex membership functions. Those parameters which

form the additive group (J) then have their totals summed to calculate the additive to-

tal (F (x)J). Those parameters in the multiplicative threshold switch set (K) conversely

have their totals multiplied together to calculate their total (F (x)K). These two totals

are then multiplied together to calculate the final class score (F (x)). The multiplicative

threshold parameters are used to suppress certain classifications based on observational

constraints, as discussed in the preceding section. The total score(F (x)) is then converted

to a fraction of the maximum possible score obtainable for that class. Classification is

assigned to the class with the highest fractional score, provided the fractional score ex-

ceeds a predetermined certainty threshold. Using the complex validation cases mentioned
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above this threshold was set to 0.25, using a critical success index to find the optimal

balance between false alarms and probability of detecting echoes. Threshold exceedance

prevents uncertain range gates from being classified based on very low total class scores,

instead marking these cells as unknown echo type. Once echo classification is complete,

the new classification field is used for filtering of the radar data. In the examples pre-

sented in section 5.3.5, the filter has been set to pass through only echoes identified as

precipitation, though the inverse is also possible depending on the final application of the

data.

5.3.4.3 De-speckling using connected component analysis

To further process the resulting rainfall field a de-speckling procedure has been intro-

duced to remove isolated range gates which pass through the filter. The de-speckling

applies connected component analysis (with 8 connectivity) (Dillencourt et al., 1992),

to determine the independently connected areas of rainfall within the radar scan. Once

identified those regions smaller than 5 range gates in size are removed. This approach

removes regions that are unlikely to be precipitating rain cells due to their small size (no

more than 1.6 km2 at the extreme limit of the radar and no more than 0.7 km2 within

50 km of the radar). This is similar to the nearest neighbour count approach used in

other classification schemes, but has the advantages of retaining connectivity on the edge

of large cells and of not reclassifying range gates surrounded by a different classification,

which can be a reasonable outcome in the case of point target clutter for example. The

de-speckling only applies to the classified fields, and not to the classification itself, which

is retained for future analysis. This process is the final stage in the quality control proce-

dure developed for the NCAS radar as deployed during the COPE field campaign. The

following section presents examples of the quality control process in action for individual

radar scans, along with an overview of its impact on the campaign data as a whole using

the statistics first shown in Chapter 4.

5.3.5 Examples of the application of the fuzzy classifier

The fuzzy classifier has been applied retrospectively as a rainfall filter to all the data

collected during the COPE field campaign, and has also been applied to subsequent
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deployments of the radar at the Burn field site. The following examples show its benefits

for both qualitative and quantitative analysis of the radar data, using individual case

studies from COPE and Burn and also longer term, cumulative analysis of the COPE

dataset. These examples show the filters impact in different situations and draw attention

to both its benefits and limitations, which are summarised in the concluding remarks of

this chapter.

5.3.5.1 Example 1: Convection embedded within biological scatterers

The first example presented here is from the 18 July 2013. With daytime temperatures

in excess of 20◦C driving an onshore sea breeze, convective showers eventually developed

during the afternoon, breaking through a stable boundary layer. Rain gauges observed

only two isolated events during the day, with accumulations of 0.2 mm recorded at two

gauges.

Panel A in Figure 5.19 shows a snapshot of these isolated convective showers, two to the

north east and one to the south of the radar, embedded within a strong clear air signal

prevalent across the radar sweep. The application of the fuzzy classifier identifies the

three convective showers, using the parameters shown in Fig. 5.20, while also identifying

ground clutter signals from Dartmoor to the east and local topography around the radar.

By passing through only the precipitation echoes identified by the fuzzy classifier a much

clearer picture of the convective showers is available, as shown in Fig. 5.19c. From

Fig. 5.20 it is clear that the cells are identifiable in all of the parameters shown, with the

textures of ΨDP and ρHV being particularly indicative. These convective cells extended

up to ten kilometres in altitude, with reflectivity in excess of 50 dBZ and differential

reflectivity over 6 dB in the cores, indicating very large rain drops in places. It should

be noted that the fringes of these cells are generally unclassified by the filter due to

the certainty threshold, which is due to a combination of elevated linear textures at the

margins of strong convective cells and also low reflectivity. Although identifiable by eye,

the non classification of these range gates is negligible for radar QPE, as the reflectivity

values removed relate to inconsequential, near-zero, rainfall intensities.
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Figure 5.19: Application of fuzzy logic classifier to 0.5◦ elevation scan, 18 July 2013,
14:15UTC. A shows the horizontal reflectivity following second trip filtering, B the
results of applying the fuzzy classifier and C the filtered reflectivity from those echoes

identified as rainfall. Range rings are at 10 km intervals.
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Figure 5.20: Radar parameters used for the classification of Fig. 5.19. A shows
σ(ΨDP), B σ(Z), C ZDR, D σ(ZDR), E ρHV and F σ(ρHV).

5.3.5.2 Example 2: Frontal rainfall traversing the radar

A second example is the traversal of light rainfall across the radar, and more importantly,

local ground clutter targets. In this situation the rainfall dampens the signal from the

ground clutter, but there is still an elevated reflectivity signal due to its presence. On

the 17 August 2013 a frontal system moved across the Cornish peninsula during the day,

with widespread light rainfall (6–13 mm in 12 h) recorded across the region by the rain

gauge network. Figure 5.21 shows the filter removing ground clutter within 10 km of

the radar. The clutter signals removed are easily identifiable with local knowledge and
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include the high topography of Rough Tor and Brown Willy to the south of the radar at

approximately 5 km range, Davidstow Woods to the south west of the radar within 2.5 km

and the wind turbines located due east of the radar at 5 to 8 km range. During this period

rainfall is falling over these targets, creating a mixed signal echo which are often the most

difficult to process. In this case there is evidence of some clutter signals passing through

the filter on the fringes of the stronger returns and where the contrast between clutter

and rainfall reflectivity is minimal. These occurrences are preferable to the wholesale

removal of all echoes above known ground clutter, which could be achieved with a static

filtering approach however this example does highlight a limitation of this approach, in

that the removed signal is not replaced, thereby removing the rainfall component of the

mixed signal echo. This limitation is also highlighted in the quantitative analysis shown

in section 5.3.5.3.

5.3.5.3 Cumulative analysis of the COPE dataset

To fully analyse the impact of the fuzzy logic filtering, summary measures as already

used in Chapter 4 and section 5.2.3 have been calculated. These demonstrate the effec-

tiveness of the fuzzy filter in removing many of the spurious echo signatures seen in the

previous sections. Firstly the echo occurrence percentage has been calculated for the low-

est elevation angle (0.5◦ ) of the 1075 volume scans collected during the field campaign,

as shown in Figure 5.22. The echo occurrence result shows the removal of nearly all

echoes over Dartmoor to the east of the radar, with echo occurrence decreasing from over

90% to less than 5%, indicating the ground clutter removal is effectively removing these

echoes. The filters also reduce the echo percentage close to the radar from over 90% to

between 20-40%. These echoes were earlier (Chapter 4) shown to be a result of numerous

low reflectivity echoes, which have been filtered out through a combination of the noise

and insect classes. Two other regions of known ground clutter to the north east of the

radar are shown to be removed by these results, with their echo occurrences decreasing

from greater than 40% to between 20% and 40% in line with their surroundings. These

echoes demonstrate the capability of the filter to retain rainfall in these locations when

the mixed echo becomes dominated by the rainfall signal as opposed to the underlying

ground clutter signal. The mean azimuthal echo occurrence following both stages of fil-

tering shows a lot less variation than for the raw results and those that have undergone
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Figure 5.21: Application of fuzzy logic classifier to 0.5◦ elevation scan, 17 August 2013,
11:57UTC. A–C as for Fig. 5.19. Range rings are at 5 km intervals.
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only second trip echo filtering (Figure 5.23). These results indicate the removal of the

ground clutter echoes that predominate to the east of the radar between 70◦ and 100◦ ,

while showing the widespread removal of 2-3% of the echoes elsewhere. This reduction is

a result of the removal of the low power echoes highlighted above, along with individual

erroneous echoes occurring elsewhere in the radar scan. The inclusion of the reflectivity

occurrence after stage one of the filtering process indicates the consistency of the result

shown in Figure 5.13 where only one day of the field campaign was analysed as opposed

to the entire available dataset.

Figure 5.22: Change in echo occurrence percentage for the COPE field campaign
through application of quality control process. Panel A shows the percentage number of
0.5◦ radar scans that contain a raw reflectivity echo and B shows the percentage number
of 0.5◦ radar scans that contain a reflectivity echo after the filtering process. The panels
both show a 300 km box centred on the radar location. Total number of scans included

is 1075.

Analysis of rainfall totals produced using the UKMO Z-R relation (Chapter 2) and a

simple backwards projection accumulation show significant reductions over ground clut-

ter targets as expected. Comparison with rain gauges found only one site where the

radar accumulation changes significantly as a result of quality control filtering. Radar

accumulation for the St Clether rain gauge decreases from 155mm to 6.8mm while the

rain gauge itself measured 18.8mm during the same time period. This rain gauge is

located within the St Clether wind farm, and as a result the radar totals have changed

from significant overestimation due to clutter to underestimation due to the removal of

rainfall when mixed with a strong clutter signature. The other 19 rain gauges across the

peninsula show only small changes as a result of the process with 13 decreasing by less

than 2% and the remaining six decreasing by no more than 13%.
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Figure 5.23: Azimuthal variation of echo percentage during the quality control process.
Results shown are for raw reflectivity (red line), reflectivity after stage one of the process
(dashed black line) and reflectivity classified as rainfall (solid black line). These results

are from the whole of the COPE field campaign.

5.3.5.4 Example 3: The Burn field site

This final example is taken from the Burn airfield site. On the 6th October 2014 the

radar was deployed to observe the passage of a low pressure system across the UK. The

system brought persistent rainfall and strong winds. The Burn site suffers from severe

ground clutter at low elevations, as shown by the 0.5◦ scans shown in Panel A of Figure

5.24. Panel C of Figure 5.24 shows the success of the fuzzy filter in removing these

spurious echoes, even those caused by small features such as power lines and individual

clusters of power station cooling towers which are numerous across this area. The filter

applied is based on the membership functions derived from observations during COPE,

with no adjustments made due to the change in field site. The success of the filter in this

instance indicates that the filtering methodology is dependent on the scan parameters

used (such as pulse width and range spacing) rather than the location in which the radar

is deployed, at least within a similar climatic region. During future longer term field

deployments it would be advantageous to monitor the performance of the filter and re-

calibrate the membership functions if required due to specific nuances of the site or the

season of deployment.
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Figure 5.24: Application of fuzzy logic classifier to 0.5◦ elevation scan from Burn
airfield, 06 October 2014, 12:06UTC. A–C as for Fig. 5.19. Range rings are at 5 km

intervals.
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5.4 Conclusion

The identification and removal of spurious echoes from radar data has clear benefits for

both visualising weather systems and quantitative analysis of those systems, including

further post-processing of data to correct for other error sources. The two stage method-

ology outlined here uses both primary dual polarisation moments and secondary texture

fields, along with beam height to remove second trip echoes with a decision tree and then

identify and remove non meteorological echoes using a fuzzy logic classifier. The main

advantages of this approach are:

• Second trip echoes are easily removed, before they become confused with first trip

rainfall echoes

• Non meteorological echoes are dynamically classified in near real time, allowing for

changes in atmospheric conditions

• The fuzzy classifier only requires a limited sample of training data to produce

successful results, as shown here by the use of no more than 26 scans per echo type.

• The multi-vertex membership functions used are highly adaptable, allowing differ-

ing distributions to be specified for the range of parameters used in the scheme,

while also allowing easy addition of future variables and echo types.

This approach successfully identifies, and therefore filters, the majority of echoes as shown

by the three examples and longer term statistics presented here. The variety of exam-

ples highlights the adaptability of the approach, and from these examples the following

conclusions become evident:

• Static ground clutter is identified successfully, both in the near field region and

at longer ranges (Dartmoor, for example). This is most evident in the long term

statistics derived from the COPE field campaign.

• Insect classification is strongly influenced by the dual-polarimetry moments avail-

able, particularly ZDR, ρHV and σ(ρHV ) as the insect signatures differ from those

of rain and ground echoes. The other texture parameters provide less value here,

but are vital for distinguishing between rain, ground echoes and background noise.
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• The fringes of convective cells are often misclassified as noise, insects or left un-

classified due to the threshold filter. As these echoes are typically below 10 dBZ

the impact on precipitation estimates is minimal, but the effect should be noted for

process studies of cell evolution and extent.

• Deployment at a second field site (Burn) shows that the method is transferable,

without recalibration of the membership functions, provided the scan parameters

are similar and the local climate does not vary greatly.

• The Burn site also indicates the classifier is able to identify small scale clutter

features such as the evident power lines seen within 5 km of the radar.

The methodology presented here is applicable to not only X-band but also C- and S-band

dual polarisation radars, with the only requirement being training data with which to

develop the membership functions. The use of fuzzy logic provides the dynamic filtering

necessary to deal with transient spurious echoes such as anomalous propagation ground

clutter and biological scatterers, while other non meteorological echoes should be equally

detectable given sufficient training data (such as chaff). The methodology also allows

for expansion to include a more complete hydrometeor classification, including potential

identification of the melting layer, snow and hail. The texture fields presented here will

be of great value in such a classification, alongside the standard radar moments available.

While the results show the clear benefit of the implemented quality control process they

also highlight some of the errors that remain to be corrected. These are largely beam

propagation effects including beam blockage and attenuation. The following chapter

will address these errors, using dual polarisation radar moments to correct the filtered

reflectivity data to derive more accurate rainfall estimates.





Chapter 6

Data correction using dual

polarisation

As discussed in section 4.3 the radar data acquired during the COPE field campaign

requires correction for radar miss-calibration, partial beam blockage and attenuation.

Radar miss-calibration has already been corrected for by L. Bennett using the self-

consistency approach proposed by Gourley et al. (2009) but correction for beam blockage

and attenuation is still required to obtain the most accurate reflectivity measurements

possible (Bennett, personal communication, February 2015). The following chapter cov-

ers dual polarisation correction of both of these propagation affects using the additional

information provided by dual polarisation moments. Differential phase shift is the key

dual polarisation moment for correcting for attenuation and beam blockage due to it be-

ing proportional to atmospheric attenuation and immune to the effects of beam blockage

(Zrnić and Ryzhkov, 1999; Kumjian, 2013). This chapter first focuses on differential phase

shift and smoothing the data to remove measurement noise before applying correction

algorithms for both attenuation and partial beam blockage.

6.1 Differential phase shift

The differential phase shift (ΨDP ), as measured by the radar is a combination of the

atmospheric forward propagation phase shift (ΦDP ), the backscatter differential phase

shift (δco) and the radar system offset (Ψsys) as shown in equation 6.1 and measures the

101
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change in phase between the horizontal and vertical signal along the radar path. As the

radar is measuring the phase of the signals, not their power, the measurements are viewed

to be immune to the power reducing effects of both attenuation and beam blockage. As

both the differential phase shift and attenuation are a function of the number, orientation

and shape of the scatterers through which the beam propagates the phase shift can be

used to estimate attenuation (see 2.3.2.2 and 2.4.2.3 for more details).

ΨDP = ΦDP + δco −Ψsys (6.1)

During the COPE campaign two variables were stored by the radar, the raw measurement

of differential phase shift and a smoothed field generated by the radar software to remove

measurement noise and the system offset. To generate the smoothed signal the radar

software calculates continuous paths of "good" echoes using a data mask consisting of

a cross correlation threshold, a standard deviation of phase shift threshold and a signal

to noise ratio threshold, and then iteratively smooths these paths using an FIR filter.

Iterative smoothing is applied to remove the backscatter signature as first discussed by

Hubbert and Bringi (1995). The system offset is removed through an averaging of the

first range gates of each radial, and then taking 15◦ sector averages to reduce fluctuations

in the final interpolated estimation (Gematronik Weather Radar Systems, 2012). A single

ray example of each field is shown in figure 6.1, which shows the removal of the system

offset of approximately 131◦ , the smoothing of measurement noise throughout the range

of the radial and the removal of suspect data at the end of the signal.

However the simplicity of the smoothing method’s "good" data identification has been

found to produce erroneous results when processing radials containing second trip echoes

and these errors cannot be masked out using the identification methods developed in

Chapter 5 as they propagate into regions containing first trip echoes. To account for

these errors manual smoothing of the data is required prior to the implementation of

corrections based on differential phase shift.

The generation of a new smoothed phase shift field for the COPE data has been achieved

using a moving window average filter, weighted by the observed correlation coefficient

and then iterated to remove backscatter differential phase. The process is achieved as

follows:
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1. Mask the raw phase shift measurements (ΨDP) to those with a valid reflectivity

after second trip filtering, a ρhv of greater than 0.7 and a standard deviation of

ΨDP of less than 20.

2. Calculate a moving window average (Eq. 6.2) along each radial containing 28 range

gates. The weights, wi, are the correlation coefficient values of each valid phase shift

measurement within the window.

x =
∑n

i xiwi∑n
i wi

(6.2)

3. Compare the moving window average to the original phase shift measurements and

replace the phase shift measurements with the average where there is a difference

greater than 5◦ .

4. Repeat steps 2 and 3 a further 9 times for a total of 10 iterations, as per Hubbert

and Bringi (1995).

5. Calculate an estimate of the backscatter differential phase for the radial by sub-

tracting the average profile from the original data, with all values greater than

0.5◦ being taken to be δco.

6. Calculate the forward phase shift (ΦDP ) by subtracting the estimated backscatter

differential phase.

7. Repeat steps 2, 3 and 4 using the forward phase shift rather than the raw measure-

ments with a reduced window length of 14 range gates to generate a final smoothed

estimate of the forward phase shift.

An iterated moving window weighted average smoother has been used in this instance,

as opposed to the newer linear programming technique of Giangrande et al. (2013) or

the Kalman filtering technique of Schneebeli and Berne (2012) due to several observa-

tions of negative forward propagation phase shift within the data, either as a result of

beam shielding, non uniform beam filling or vertically aligned ice crystals. These newer

techniques are predicated on the monotonic increase of ΦDP with range and therefore

produce erroneous results in the presence of negative phase shift.
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Figure 6.1: Measured differential phase shift (solid grey line) and radar processed
atmospheric phase shift (thick red line). Example taken from 0.5◦ elevation scan, 2013-

08-02 17:51 UTC, at an azimuth of 87◦ .

An example of the smoothed phase shift is shown in figure 6.2, which also shows the

erroneous radar processed phase shift as a result of the second trip echo signature shown

in the first 40 km of the profile. The major point of error in this example being the

incorrectly calculated system offset, while there is also an error due to rebound from the

second trip echoes which have higher phase shift than the first trip echoes observed at far

range. As the iterative smoothing technique only processes the first trip echoes it more

closely replicates the underlying signal in the data making it suitable for application in

the corrections detailed in the remainder of this chapter.

6.2 Attenuation correction using dual polarisation

One of the primary benefits of dual polarisation radar is its ability to correct for atmo-

spheric attenuation (Section 2.4.2.3). During the process of attenuation correction there

are several elements that lead to uncertainty in the correction, including the choice of

method and the characterisation of the atmosphere. The following section explores both

the simplest method of attenuation correction (linear correction) and the most commonly

implemented method (ZPHI) to assess the uncertainty within these methods.
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Figure 6.2: Measured differential phase shift (solid grey line) and radar processed
atmospheric phase shift (thick red line), compared to new weighted average smoothing
(solid blue line). Example taken from 1.5◦ elevation scan, 2013-08-17 08:16 UTC, at an

azimuth of 339◦ .

6.2.1 Linear correction

The linear correction methodology for attenuation and differential attenuation is derived

from the proportionality of attenuation (both Ah and ADP ) to differential phase shift

(KDP ), as shown in Equation 6.3 (Bringi and Chandrasekar, 2001). The parameter α is

a function of the radar frequency, temperature and the atmospheric conditions and has

been shown to vary in time and space particularly at C-band and X-band frequencies

(Tabary et al., 2009; Park et al., 2005).

Ah = αKDP (r) (6.3)

As the attenuation at any point along a radial is a function of all preceding attenuation,

a correction for attenuation can be achieved using a range integral (Equation 6.4), where

Zc is the corrected reflectivity and Zm is the measured reflectivity. By then substituting

the specific differential phase into Equation 6.4 using the relationship shown in Equation

6.3 (Equation 6.5) and expanding the integral of specific differential phase shift along a

path to simply the change in path forward differential phase shift (ΦDP ) along the path

a simple correction for attenuation can be obtained (Equation 6.6).
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10 log10[Zc(r)] = 10 log10[Zm(r)] + 2
r∫

0

Ah(s)ds (6.4)

10 log10[Zc(r)] = 10 log10[Zm(r)] + 2α
r∫

0

KDP (s)ds (6.5)

10 log10[Zc(r)] = 10 log10[Zm(r)] + α[ΦDP (r)− ΦDP (0)] (6.6)

Equation 6.6 can therefore be applied to correct for attenuation, using the smoothed

profiles of forward phase shift calculated in the previous section, provided a value for α can

be defined. Park et al. (2005) show that α varies between 0.139 and 0.335 dB/deg at X-

band with a mean value of 0.254 dB/deg in their scattering simulations, while A. Ryzhkov

(personal communication, April 2015) expects α to vary between 0.17 and 0.35 dB/deg

with an expected value of 0.27 dB/deg. Similarly differential reflectivity can be corrected

in the same way by exchanging the proportionality constant α with the proportionality

constant between differential attenuation and specific differential phase (β). Again β

can take a range of values, typically in the range 0.03 to 0.06 dB/deg as noted by A.

Ryzhkov (personal communication, April 2015). Due to the inherent variability of these

parameters, and the simplification in Equation 6.3 (omitting the exponent of KDP to

provide linearity), the correction obtained from this approach is only approximate, but

is significantly more stable than the methods of attenuation correction typically applied

to single polarisation radar data (see Section 2.2.2).

The linear method has been implemented for both a stratiform and convective rainfall

event during the COPE campaign to identify the uncertainty introduced by the method.

For the stratiform case with widespread rainfall the uncertainty increases with distance

from the radar as the phase shift slowly increases with range, with every 5 degrees of

phase shift introducing an uncertainty of 1 dBZ for corrected reflectivity and 0.15 dB for

differential reflectivity if taking the widest range of values possible for α and β.

Figure 6.3. demonstrates the range of uncertainty introduced through attenuation correc-

tion for both horizontal reflectivity and differential reflectivity during a stratifrom rainfall

event with low differential phase shift (<20◦ ). The phase shift profile used to correct the

reflectivity measurements is shown in the bottom panel, and shows periods of decreasing
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Figure 6.3: Linear correction of horizontal reflectivity and differential reflectivity using
a linear transformation of ΨDP . Data shown is taken from the 2013-08-17 12:16UTC
radar volume at an azimuth of 72◦ and elevation of 0.5◦ . Measured radar variables are
shown by solid red lines, with the top panel showing horizontal reflectivity corrected
with an α of 0.27 dB/deg (solid black line) and bounded with α of 0.14 and 0.35 dB/deg,
the middle panel showing differential reflectivity corrected with a β of 0.045 dB/deg and

bounded with β of 0.03 to 0.06 dB/deg.
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phase shift which are a result of noise smoothing rather than a true atmospheric signal.

During convective events the smoothing no longer exhibits these fluctuations as the atmo-

spheric phase shift dominates the noise. Figure 6.4 shows a single radial from 2 August

2013 with almost 100◦ of atmospheric forward phase shift as a result of an evolving con-

vective line system. Both the measured profile of horizontal reflectivity and differential

reflectivity show significant attenuation, with differential reflectivity of -6 dB in rainfall

being over 6 dB less than the expected value in rainfall. Smyth and Illingworth (1998a)

previously used the positive differential reflectivity signal in the rainfall region beyond

an attenuating cell to constrain the value of β within the cell, which would indicate

that even the expected value of 0.045 dB/deg is too low for the atmospheric conditions

shown in Figure 6.4 as the corrected value (solid black line) descends to below 0 dB in

this region. The potential for under correction of differential reflectivity is significant in

these convective events where high differential phase shift is observed. This uncertainty

should be considered when using differential reflectivity for rainfall estimation, as has

been covered in Chapter 7.

The following section presents the ZPHI methodology which distributes attenuation with

the measured reflectivity constrained by the total phase shift along a radial. The advan-

tages of this methodology are the removal of errors resulting from smoothing fluctuations

in the phase shift or the presence of backscatter differential phase and also that the ZPHI

algorithms return the specific attenuation for each range gate, which can be utilised for

rainfall estimation and radar correction.

6.2.2 Correction using the simplified ZPHI method

6.2.2.1 Introduction to ZPHI

The ZPHI methodology is a rain profiling technique which is an extension of the single

polarisation methodology first proposed by Hitschfeld and Bordan (1954) and relies on the

relationship between reflectivity and attenuation (Equation 6.7) alongside the previously

mentioned linear relationship between attenuation and specific differential phase shift

(Equation 6.3).
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Figure 6.4: Linear correction of horizontal reflectivity and differential reflectivity using
a linear transformation of ΨDP . Data shown is taken from the 2013-08-02 17:51UTC
radar volume at an azimuth of 86◦ and elevation of 0.5◦ . Measured radar variables are
shown by solid red lines, with the top panel showing horizontal reflectivity corrected
with an α of 0.27 dB/deg (solid black line) and bounded with α of 0.14 and 0.35 dB/deg,
the middle panel showing differential reflectivity corrected with a β of 0.045 dB/deg and

bounded with β of 0.03 to 0.06 dB/deg.



Chapter 6. Correction using dual polarisation 110

Ah(r) = a[Zh(r)]b (6.7)

The technique as applied to ground based weather radars was proposed by Testud et al.

(2000) as the first component of a two stage rainfall estimation process and has been

utilised extensively for attenuation estimation since then (Diederich et al., 2015a; Wang

et al., 2014; Lim et al., 2013; Park et al., 2005, for example). Specific attenuation is

calculated using the following formula (Equation 6.8).

Ah(r1) = [Zh(r1)]b

I(r0, r2) + C(b, PIA)I(r1, r2)C(b, PIA) (6.8)

Where the components of Equation 6.8 are given in the following three equations to aid

readability (6.9, 6.10, 6.11).

C(b, PIA) = exp[0.23b(PIA)]− 1 (6.9)

I(r0, r2) = 0.46b
r2∫

r0

[Zh(s)]bds (6.10)

I(r1, r2) = 0.46b
r2∫

r1

[Zh(s)]bds for r0 < r1 < r2 (6.11)

In the above equations r0 is the starting range of the segment being profiled, r2 is the end

of the segment, and r1 is each range gate within the segment. b is the scaling exponent

from Equation 6.7 which has been shown to be effectively constant for a given radar

frequency (Bringi and Chandrasekar, 2001) and PIA is the path integrated attenuation,

which can be obtained using Equation 6.12 as per the principles covered in the previous

section on linear correction,

PIA = 2α
r2∫

r0

KDP (s)ds

= α[ΦDP (r2)− ΦDP (r0)] (6.12)
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The above equation uses a fixed value for α for the segment, ignoring any variation due

to temperature change and is used throughout this analysis. Recent studies have shown

that the variation of α with temperature is insignificant compared to variability due to

the DSD and the effects of temperature variation have also been shown to cancel out

when using specific attenuation for rainfall estimation and radar calibration (Diederich

et al., 2015a; Wang et al., 2014). The other potential unknown required to implement

the ZPHI algorithm is the exponent b. Research by Park et al. (2005) indicates b is equal

to 0.780 on average with a standard deviation of 0.019 across their scattering simulations

for an X-band radar with frequency 9.375GHz, while Diederich et al. (2015a) use a value

of 0.78 at 10 ◦C, with an increase (decrease) of 0.04 for every 10 ◦C increase (decrease) in

temperature. For the remainder of this study a fixed value of 0.78 will be applied, which

is consistent with these other studies given the summer climate in Cornwall.

6.2.2.2 Implementation of automated calculations using ZPHI

While the manual implementation of the ZPHI algorithm on a single radial is trivial one

of the main challenges of the method for operational implementation is the automation of

the process to successfully identify segment start and end points to allow the calculations

required in Equations 6.12, 6.10 and 6.11. The COPE dataset, while not as extensive as

operational datasets is sufficiently large to require automated processing of ZPHI. The

following methodology has been used to generate the radial segment locations required

for the algorithms. The start of each radial segment has been identified as the first 10

continuous range gates which contain rain as identified by the fuzzy logic QC process

provided that the window starts at a range beyond 4.5 km (to avoid near radar clutter

effects) and no further than 75 km from the radar. r0 is then defined as the first range

gate of the window, with ΦDP (r0) defined as the median ΦDP of the first three gates of

the window. The smoothed phase shift described in section 6.1 is used for this process.

Similarly the end of each segment (r2) is defined as the last range gate of the last 10 gates

of continuous rainfall, provided that the last gate is no closer to the radar than 7.5 km,

no further from the radar than 105 km and at am altitude no greater than 2000m, which

is a conservative approximation of the base of the melting layer (in contrast, Diederich

et al. (2015a) require a temperature no less than 6 ◦C at the end of a segment). As for

ΦDP (r0), ΦDP (r2) is taken to be the median ΦDP of the last 3 gates of the window. To
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further constrain the calculations, the segment defined by r2 and r0 must be at least 10

gates long and the phase shift difference across the segment must be positive.

Figure 6.5 shows an example from 17 August 2013, during a widespread frontal rainfall

event. The algorithm identifies the starting differential phase shift, avoiding the region

of decreasing phase shift possibly associated with ground clutter interference at the start

of the radial and also identifies the end of the segment along with a suitable value for

the differential phase shift at the end of the segment. The results are comparable to

what would be observed manually and allow the calculation of specific attenuation for

this radial. Several implementations of this methodology omit the identification of a

starting range and phase shift, instead using the beginning of the radial and a predefined

system differential phase shift offset for the calculations, however several examples during

COPE indicate decreasing differential phase shift within the first 5 km as a result of

beam interaction with ground clutter targets and the above methodology more accurately

derives the total path integrated attenuation in these cases.

Figure 6.5: Automation of ZPHI limit identification using the smoothed profile of
ΨDP . The radial shown is taken from the 2013-08-17 12:16UTC radar volume at an
azimuth of 150◦ and elevation of 0.5◦ . The smoothed phase shift is shown by the solid
grey line, with the red triangle indicating the range defined as r0 by the automated
procedure and the red circle showing r2. The dashed lines indicate the corresponding
differential phase shift values used to calculate the total segment differential phase shift.



Chapter 6. Correction using dual polarisation 113

Figure 6.6 provides an example of the automated procedure using the same radial previ-

ously shown in Figure 6.3. This particular example shows the difficulty of defining these

automation parameters, with the placement of r2 coinciding with a drop in phase shift

which introduces a one degree underestimation into the total path integrated attenuation

for this radial. Throughout the radial there are several small drops in differential phase

shift that could introduce a similar error, if different parameters were used for defining

the end of the segment and the current set of parameters have been chosen to produce

robust results within 75 km of the radar, where the radar beam is closer to the ground.

Several examples from the field campaign show decreasing differential phase shift within

the last 20-30 km of the radial, possibly related to non-uniform beam filling at these

longer ranges where the radar beam is broader, and it is these examples that have led

to limiting the maximum range of the segment to 105 km from the radar, despite this

specific example.

Figure 6.6: Automation of ZPHI limit identification using the smoothed profile of
ΨDP . The radial shown is taken from the 2013-08-17 12:16UTC radar volume at an
azimuth of 72◦ and elevation of 0.5◦ . The smoothed phase shift is shown by the solid
grey line, with the red triangle indicating the range defined as r0 by the automated
procedure and the red circle showing r2. The dashed lines indicate the corresponding
differential phase shift values used to calculate the total segment differential phase shift.

This automated procedure allows the COPE dataset to be processed using the ZPHI

method, with a single segment per radial and the same α values as used in section 6.2.1.
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6.2.3 ZPHI results

The following section presents examples of attenuation correction using ZPHI compared

to the earlier implementation of the linear method, focusing on the uncertainty in cor-

rected horizontal reflectivity along with estimates of specific attenuation and differential

reflectivity. The first example presented is from the stratiform event on 17 August 2013,

with the PPIs shown in Figure 6.7 observed at 12:16UTC. The original quality controlled

horizontal reflectivity is shown in the top left panel, with each of the remaining panels

showing the horizontal reflectivity corrected for attenuation with the ZPHI method, with

a different value of α used in each to represent the bounds (0.14 to 0.35 dB/deg) of the

likely atmospheric α values at X-band and the expected value (0.27 dB/deg).

Through comparison of the PPIs it is difficult to identify changes in reflectivity either

between uncorrected and corrected data, or between the different corrected fields. Across

the lowest elevation scan beyond the range at which ZPHI processing begins (4.5 km) the

average difference between the reflectivity corrected with the expected α of 0.27 dB/deg

and the uncorrected reflectivity is 1.2 dBZ, while the average difference between the up-

per and lower α bounds is 0.9 dBZ. Figure 6.8 shows the correction along a single radial,

previously shown in Figure 6.3, with the magnitude of the reflectivity correction (2 dBZ)

at this range falling within the lower end of the uncertainty bounds of the previously

implemented linear method and the uncertainty range for the ZPHI method being ap-

proximately half the range of the linear method. The difference between the two bounds

can be attributed to a combination of factors, firstly the estimated system phase shift

used in the linear correction is based on the whole radar volume rather than attributing

an independent value to each azimuth, secondly the ZPHI method for this radial under-

estimates the segment end phase shift by 2◦ as shown in Figure 6.6 and finally that the

distribution of attenuation along a radial is a function of reflectivity in the ZPHI method

rather than following the differential phase shift profile exactly as in the linear methodol-

ogy. Conversely the radial shown in Figure 6.5 where the automated ZPHI limits closely

match those identified by eye has only a slight reduction in uncertainty bounds for the

ZPHI method when compared to those from the linear methodology.

The lower panel in Figure 6.8 shows the specific attenuation derived by the ZPHI method-

ology as a function of the α value used, which shows firstly that specific attenuation in
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Figure 6.7: Horizontal reflectivity PPIs from the 2013-08-17 12:16UTC radar volume
at an elevation of 0.5◦ . The top left PPI shows quality controlled but uncorrected
reflectivity and the other three PPIs show attenuation corrected reflectivity through
application of the ZPHI technique, with α varying through the PPIs. The top right plot
uses the expected α value of 0.27 dB/deg, the bottom left shows the α value which leads
to the highest corrected reflectivity values (0.35 dB/deg) and the bottom right shows the
lowest corrected reflectivity values (α = 0.14 dB/deg). Range rings are shown at 25 km

and 50 km.
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Figure 6.8: Radial profiles of reflectivity taken from the PPIs shown in Figure 6.7 (top
panel) and specific attenuation (bottom panel). The radial shown is from the 2013-08-17
12:16UTC radar volume at an azimuth of 72◦ and elevation of 0.5◦ . The top panel shows
the uncorrected horizontal reflectivity (red line), the reflectivity corrected for attenuation
using ZPHI and an α of 0.27 dB/deg (solid black line) and the uncertainty ranges due
to alpha variation for the ZPHI method (blue fill) and the linear method (red fill).

low intensity stratiform rainfall is low, and that the variation as a result of changing α is

up to a factor of two, which could be significant for rainfall estimation based on specific

attenuation (see Chapter 7).

Figure 6.9 recreates Figure 6.8 using the previously seen convective example from 2 Au-

gust 2013 (17:51 UTC, 86◦ azimuth and 0.5◦ elevation) where peak corrected reflectivity

is 59.5 dBZ. Prior to the peak corrected reflectivity the uncertainty resulting from α

variation is significantly smaller for the ZPHI methodology than for the linear method.

Beyond the peak reflectivity the ZPHI uncertainty quickly expands to match the un-

certainty in the linear method, as the majority of the path integrated attenuation is

distributed in this region. The automation of limit detection is successful for this case,
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with the final difference in differential phase shift being 94.8◦when using the automated

procedure and 96◦when implementing the linear method with a fixed system phase offset

(an error of only 1.25%).

Figure 6.9: Radial profiles of reflectivity (top panel) and specific attenuation (bottom
panel) from the 2013-08-02 17:51UTC radar volume at an azimuth of 86◦ and elevation
of 0.5◦ . The top panel shows the uncorrected horizontal reflectivity (red line), the
reflectivity corrected for attenuation using ZPHI and an α of 0.27 dB/deg (solid black
line) and the uncertainty ranges due to alpha variation for the ZPHI method (blue fill)

and the linear method (red fill).

Unlike beam blockage and persistent clutter echoes the effects of attenuation are difficult

to validate with long duration integrations and statistics, due to the localised, transient

nature of the effect. For example, attenuation correction will have no impact on echo

occurrence statistics, as an echo is always required to be present for attenuation correction

to be possible. The rainfall statistics in Chapter 7 provide a method of validation for the

attenuation correction, but are constrained by the location of rain gauge observations

and the number of events within the COPE database.
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6.3 Correcting for partial beam blockage using dual polar-

isation

Traditional partial beam blockage correction techniques rely on theoretical beam propa-

gation models combined with digital terrain models, as detailed in section 2.2. Given the

additional data requirements and uncertainties resulting from these techniques, utilising

the consistency of multiple dual polarisation parameters has been proposed as a new

solution to correcting reflectivity for partial beam blockage (see section 2.4.2).

The following section uses the specific attenuation values calculated in the previous sec-

tion to calculate the reflectivity bias for each azimuth. The technique utilises a theoretical

transformation from specific attenuation to reflectivity given their proportionality to the

atmospheric DSD. As reflectivity has been corrected for attenuation then the difference

between the theoretically calculated reflectivity (Z(Ah)) and the corrected reflectivity

is a result of miscalibration and beam blockage. As measurement errors can strongly

influence this comparison on a single gate or radial basis, a longer duration summation

is used to produce a more stable result.

6.3.1 Reflectivity bias estimates from specific attenuation - methodol-

ogy

The method presented here was first used by Diederich et al. (2015a) to calculate re-

flectivity biases for X-band radars in Germany. Firstly specific attenuation must be

calculated, as has been done in the previous section which can then be converted to the-

oretical reflectivity using Equation 6.13 with a1 and b1 set based on temperature (and

radar wavelength).

Z(Ah) = a1A
b1
h (6.13)

To maintain consistency with the previous section invariant values for a1 and b1 have been

used here taking the values equivalent to a fixed temperature of 10 ◦C (a1 = 1.15× 10−4

and b1 = 0.78). A direct bias correction can then be obtained for any range gate for

which it was possible to calculate specific attenuation, as simply the difference between
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the theoretical reflectivity from specific attenuation and the corrected reflectivity in log-

arithmic units, which is identical to the logarithm of the linear ratio of the theoretical

reflectivity from specific attenuation and the attenuation corrected horizontal reflectivity

(Equation 6.14).

BA(r) = Z(Ah)(r)− Zc(r)

= 10× log 10100.1Z(Ah)(r)

100.1Zc(r) (6.14)

By summing or averaging over a larger spatial or temporal window a more accurate

estimate of the bias can be obtained which mitigates DSD variability, temperature fluc-

tuations and measurement noise to give a bias correction for that window (Equation

6.15).

BA = 10× log 10
∑

100.1Z(Ah)∑
100.1Zc

(6.15)

The bias of the COPE dataset has been analysed for each of the α values used in the

previous section, with the averaging domain firstly extended on a gate by gate basis to

a whole day, then to each individual azimuth (beyond 15 km) for a single day and then

finally to each azimuth for the entire field campaign. The azimuthal analysis has been

done beyond 15 km to identify the end of beam bias correction, which may be a result of

more than one blockage within that first 15 km.

6.3.2 Reflectivity bias estimates from specific attenuation - results

Firstly the results for a single α (0.27 dB/deg) are presented for the 17 August 2013 using

both individual gate summations and azimuthal summations. Figure 6.10 shows that

while the results are broadly comparable for the two summations the gate by gate method

fluctuates within an individual azimuth, suggesting the time domain is not sufficient to

remove the effects of DSD variation, temperature variation and measurement uncertainty.

This is unsurprising as the average number of observations included within each gate

summation is only 18, with a maximum of 43 observations, this contrasts to the azimuthal
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method, where each azimuth contains on average 11000 observations, with the maximum

in any single azimuth being 20681. However the gate by gate analysis does provide

some localised insight, with evidence that Dartmoor is strongly influencing the results

despite the radar QC process, with measured reflectivity up to 5 dB lower than expected

over Dartmoor and lower than expected beyond the high ground. These results are

not reflected in the azimuthal segments which begin at 15 km, suggesting this region

might need multiple segments to account for the additional blockage experienced in the

range gates beyond Dartmoor. Segmenting the azimuths between 75◦ and 110◦ into two

summations, one between 15 km and 45 km range and the second beyond 60 km range

indicates that the region beyond Dartmoor is blocked by up to an additional 2.3 dBZ

compared to the region closer to the radar, which will need to be accounted for in the

beam blockage corrections.

The strongest regions of blockage are to the south of the radar, which correspond to

Brown Willy and Rough Tor, two hills in excess of 350m elevation located within 6 km

of the radar (Figure 4.4) and to the north west, which corresponds to the location of the

old airfield control tower which was within 500m of the radar. In both these locations

the dual polarisation calculations indicate the radar beam is blocked by over 90% when

scanning at 0.5◦ elevation. There is also another prominent, narrow blockage (>5 dBZ) to

the east north east of the radar, which corresponds to the location of the radar operating

container and wider blockages to the south west and south east which can be attributed

to forested areas and higher topography.

Repeating the above analysis using α values of 0.14 and 0.35 dB/deg provides a measure of

the uncertainty in the beam blockage calculations that can be attributed to α. In absolute

terms an increase (decrease) in α increases (decreases) the bias correction required (Figure

6.11, left panel) for the entire radar scan, however if the lowest bias correction is taken to

represent the radar miscalibration (in relation to α) and the azimuthal results are zeroed

using this value to represent the bias resulting from beam blockage then there is almost

no change in the bias that can be attributed to beam blockage (Figure 6.11, right panel).

This indicates that using the relative change in bias between the unblocked and blocked

regions of the radar scan gives an estimate of partial beam blockage that is independent

of the α value used in the calculations. Utilising this result beam blockage for the entire
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Figure 6.10: Measured reflectivity bias at 0.5◦ elevation computed on an individual
gate basis (left panel) and along each azimuth starting at 15 km (right panel). Both
panels use all available data from 17 August 2013, a day of widespread stratiform rainfall
particularly suitable for this methodology. Panels are 200 km squares centred on the

radar.

COPE dataset can be calculated using a single value of α (taken to be 0.27 dB/deg as

this agrees well with the radar calibration in unblocked sectors).

Figure 6.11: Dual polarisation estimates of bias correction for 2013-08-17. The left
panel shows the absolute radar bias corrections calculated using three different values
for α, 0.35 dB/deg (red line), 0.27 dB/deg (black line) and 0.14 dB/deg (grey line). The
right panel shows the results normalised to start at a bias of zero, with each line plotted

as per the left panel.

Expanding the beam blockage analysis from a single day (2013-08-17) to include all

matching files from the COPE dataset increased the number of usable files by 963 to 1074

files in total. This increased the average number of observations per azimuthal segment
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from 11000 to 24500, with no single range gate containing more than 105 usable observa-

tions for the comparison. This comparatively small increase compared to the number of

files added is a result of the distributed convective rainfall that occurred during the ma-

jority of the project as opposed to the widespread stratiform rainfall that occurred on the

17 August. The result of extending the analysis is shown in Figure 6.12, with the most

prominent beam blockages maintained from the single day analysis, but with increases in

the estimated blockage throughout the region between 200◦ and 280◦ azimuth. Again the

region beyond Dartmoor has been analysed as a separate segment with Dartmoor again

causing an additional 1 dB to 2.5 dB of blockage.

Figure 6.12: Measured reflectivity bias at 0.5◦ elevation computed along each azimuth
starting at 15 km (left panel) and the number of valid observations in each range gate
during the COPE field campaign (right panel). Both panels use all available data from

the field campaign and are 200 km squares centred on the radar.

Figure 6.13: Partial beam blockage correction maps generated using the specific at-
tenuation consistency with attenuation corrected reflectivity for the entire COPE field
campaign. The left panel is the correction for 0.5◦ elevation, the middle panel is for
1.5◦ and the right panel is for 2.5◦ . All panels are 150 km squares centred on the radar.
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A correction map has then been generated for each of the elevations up to 2.5◦with the

location of the last prominent blockage in each azimuth (within the first 15 km) taken

as the starting point for each segment. The final correction maps for 0.5◦ and 1.5◦ are

shown in Figure 6.13. At the higher elevations, particularly 2.5◦ there are fewer valid

observations leading to unexpected results, the most obvious example of which is the

apparent increase in blockage with increasing elevation angle between 30◦ and 50◦ seen in

Figure 6.13. Similarly the region between 25◦ and 40◦ at 2.5◦ elevation has a calculated

blockage of between 1.5 dB and 5 dB despite the analysis in section 4.3 showing the

influence of beam blockage at 2.5◦ is minimal, as does inspection of individual scans, which

all suggests that the results should be viewed with caution. This region has only 1500

observations per radial segment on average which is clearly insufficient for reliable results.

Diederich et al. (2015a) found that the method produced stable absolute calibration

results when accumulated over 19 rainy days (±1 dB), but with variation of up to 10 dB

for bias calculated on a daily basis.

The typical suitability of the corrections are shown in Figure 6.14 which contains two

examples of reflectivity corrected with the PBB maps. The first of these examples is

taken from the 17 August 2013 (previously seen in Figure 6.7) and the second of which

is from 18 July 2013 (previously seen in Figure 5.19). On the 17 August example, the

blocked azimuth at 67◦ is well corrected as are the beam blockages to the south east and

the south west, however the blockage caused by the control tower at 305◦ is severely over

corrected, and this section should be ignored in favour of using higher elevation scans

which are not blocked as the severity of the blockage (estimated at 30 dB, which equates

to a beam blocked fraction of 0.999) and instances of reflection from the control tower

surface lead to unreliable results. The region due south of the radar is potentially under

corrected in the first example, which contrasts to the second example from the 18 July

2013 where the correction appears to be at least 5 dB too large when compared to higher

elevations and adjacent azimuths. Given over 50% of the valid data used in calculating

the corrections comes from the 17 August it is unsurprising that the correction is more

applicable to that day than an earlier time, where changes in atmospheric and ground

conditions may have been responsible for a different level of beam blockage occurring.

These examples highlight two major uncertainties with the method applied, one is how

much data is required for the results to be quantitatively accurate representations of
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Figure 6.14: Examples of partial beam blockage correction from COPE. Panel A
shows the uncorrected reflectivity from 17-08-2013 12:16UTC at 0.5◦ elevation and panel
B shows that reflectivity corrected for partial beam blockage. Panel C shows the un-
corrected reflectivity from 18-07-2013 14:38UTC at 0.5◦ elevation while D shows that
reflectivity corrected for beam blockage. All four panels are 50 km squares centred on

the radar with range rings at 10 km (solid line) and 20 km (dashed line).

the beam blockage and the other being whether the average quantity over this duration

ever truly represents a single scan, given the natural variations in refractivity, vegetation,

surface wetness etc. which can all affect the amount of beam blockage occurring at any

one time. Due to the relatively small amount of available data from the COPE field

campaign it is not possible to do full sensitivity studies on the variation of calculated

correction with changing number of observations. The impact of these uncertainties,

particularly daily variability, on rainfall estimates and the total rainfall accumulations

for COPE are shown in Chapter 7.
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6.4 Dual polarisation correction - conclusions

The results presented in this chapter show that dual polarisation has been successfully

utilised to correct the COPE dataset for attenuation and beam blockage, however the

methods used are susceptible to high levels of uncertainty due to measurement errors

and atmospheric variability. Clearly the accuracy of the phase shift measurements of the

radar are crucial to these corrections as phase shift is the key parameter in all of the

methods presented here, and Section 6.1 presents a new method of smoothing phase shift

measurements which successfully obtains the forward propagation atmospheric phase

shift signal from the measurement noise and the included backscatter component. The

method is capable of retaining negative regions of phase shift as it does not assume

monotonic increase along the radial path, and while the data supports this approach

it is not clear whether these regions are due to atmospheric effects or the impact of

geometric effects as the beam broadens. Future research with the NCAS mobile radar

would benefit from considering the effects of scan speed and PRF on the accuracy of phase

shift measurements as phase shift underpins all elements of dual polarisation correction

(miscalibration, attenuation and beam blockage).

The greatest uncertainties in the attenuation correction methods presented are the pa-

rameters α and β, with corrected reflectivity varying by up to 20 dBZ in the most extreme

cases, which is a significant range when generating instantaneous rainfall rates. Of the

two methods the ZPHI approach has less uncertainty throughout the radial than the

linear method in these extreme cases, and should be the preferred method of correction

where possible as it is also less influenced by phase shift measurement errors along the

radial. It should also be noted that both methods are only suitable for correcting for

attenuation which occurs below the melting layer, while this is not a problem for the

COPE field campaign, as the summer melting level in this region is suitably high to

allow rainfall estimates to be taken from below the melting layer, it could be a factor in

corrections of future field campaigns.

This research has shown that using dual polarisation to correct for partial beam blockage

is viable despite the uncertainty in α which hinders attenuation correction, however

stable results require more data than is available from the COPE campaign, particularly

at higher elevation angles (1.5◦ and 2.5◦ ).
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The implications of these uncertainties when considering accurate QPE are explored in

the following Chapter which utilises these corrections along with rain gauge observations

and uncorrected data to address uncertainty within the radar processing chain.



Chapter 7

Multi-parameter quantitative

precipitation estimation

The derivation of accurate quantitative precipitation estimates from radar has been an

area of ongoing research since radar’s introduction for weather observation in the 1950s

(Atlas and Banks, 1951; Villarini and Krajewski, 2010a). As the previous chapters have

shown there are numerous uncertainties and errors in the measurement of radar moments

used in these calculations, which dual polarisation can be used to offset, while dual

polarisation also offers an increased number of radar moments to use for QPE. The

following chapter firstly explores the benefits of dual polarisation for radar QPE when

used to correct and constrain reflectivity measurements before going on to investigate

the use of differential reflectivity, specific differential phase shift and specific attenuation

as rainfall estimators in conjunction with reflectivity or as an alternative. All of these

rainfall estimates are compared with rain gauge observations of rainfall from the EA

network (Chapter 3) to assess their accuracy and provide guidance on the suitability of

the estimators along with their uncertainty. Finally two methods of combining these

estimates into a single, optimum rainfall estimate are considered, a decision tree and a

weighted average which both aim to reduce the uncertainty in the final rainfall estimate,

particularly during high intensity rainfall.

127
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7.1 Accumulation methodology

Before comparing rainfall estimates from radar to ground observations it is necessary to

outline the methodology used to allow this comparison. Radars provide an instantaneous

measure of the atmosphere at a fixed moment in time, which in the case of QPE is a

rainfall intensity in millimetres per hour, averaged over a radar range gate (which can

vary between 200m2 and 0.4 km2 in area depending on range) while rain gauges provide

a measure of accumulation over a period of time at a fixed point in space (generally over

an area of 200 cm2). Clearly the difference in temporal and spatial scale does not allow a

direct comparison to be made and for this work any comparisons will be based on inte-

grating the radar rainfall intensities into 15 minute accumulations to match the temporal

sampling of the rain gauge data obtained from the EA. These 15 minute accumulations

can then be summed to create rainfall accumulations at any greater time period, which

will remove some of the random variability of the comparisons to provide a clearer picture

of any systematic differences between the ground observations and the radar.

Figure 7.1: Derivation of rainfall accumulations through simple projection onto a regu-
larly spaced time grid. Red crosses represent the instantaneous measurements obtained
by the radar, the dashed line is the downscaled projection of these measurements in
time, using forward projection. The grey shaded area represents an accumulation in

millimetres as a time-intensity integral.

This temporal integration has been achieved by projecting the instantaneous radar mea-

surements onto a regular time grid (30s spacing), with the intensities then being converted
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into millimetres per time interval and summed into 15 minute accumulations. This ap-

proach (sketched in Figure 7.1) manages the semi-regular spacing of the radar scans

during the COPE project, which were collected at approximately 4.5 minute intervals

with some larger gaps. The projection of intensities in time is limited to a maximum

of 5 minutes, therefore missing radar scans are treated as zero accumulation within a

15 minute window, rather than older scans being projected over the missing time in-

terval, therefore missing data gaps can only contribute to an underestimation of total

accumulation in any 15 minute interval. Although there are more sophisticated tech-

niques available for integrating radar data in time which incorporate the motion of the

rainfall between radar scans including the generation of two dimensional advection fields

or the implementation of optical flow techniques (Tabary, 2007; Bowler et al., 2004) the

implementation of these techniques for COPE introduces further smoothing and adjust-

ment that will mask the underlying impact of radar uncertainty with regards to rainfall

accumulation.

Comparison between rain gauges and radar QPE in this chapter is based only on those

times when the radar was operational, limited to 15 minute intervals where at least some

data was recorded or projected. It is also limited to radar scans which contained azimuth

data spaced at one degree intervals with 1000 range gates at 0.15 km spacing. As a result

of the volume scan patterns employed during COPE the number of scans which meet

these criteria vary between elevation angles and therefore final accumulations may not

be directly comparable between elevations, which will be noted in the analysis where

relevant.

7.2 Horizontally polarised reflectivity as a rainfall estima-

tor

The following section uses horizontally polarised reflectivity as the sole estimator for

rainfall estimation, analogous to a single polarisation radar system. In doing so it shows

the benefits of using dual polarisation for radar quality control and correction as outlined

in the previous two chapters. Rainfall estimates have been calculated using the decibel
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reflectivity to rainfall conversion shown in Equation 7.1, where Ze is the equivalent re-

flectivity factor. This relationship is the inverse of the relationship detailed in Section

2.1, where a = 200 and b = 1.6.

R =
(

100.1Ze

200

)0.625

(7.1)

To establish a baseline for comparison the measured reflectivity (Zm) has been converted

to rainfall in addition to the reflectivity after QC (ZQC), the attenuation corrected reflec-

tivity (ZA) and the fully corrected reflectivity (ZC) which accounts for beam blockage.

The attenuation corrected reflectivity in this instance refers to correction using the ZPHI

method and a fixed α value of 0.27 dB/deg, the impact of different attenuation corrections

will be shown later in this section.

7.2.1 Total rainfall accumulation during COPE

The total rainfall accumulation for all valid COPE scans are shown in Figure 7.2 at the full

range of the radar and Figure 7.3 for the area within 50 km of the radar. Progressing from

Panel A to Panel B in both these figures shows the reduction in accumulation over the

Dartmoor area in particular, with peak rainfall accumulation from the raw reflectivity

measured at 27426.8mm and from the filtered reflectivity at 333.3mm which is a far

more reasonable estimate but still high enough to suggest contamination from ground

clutter. As this maximum accumulation is within 3 km of the radar to the north west it

strongly suggests the cause of such a large accumulation is ground clutter contamination

of the rainfall intensities in this area. The improvement between Zm and ZQC is also

shown by the rainfall accumulations over the St Clether rain gauge (83◦ azimuth, 5.7 km

range), where accumulations from Zm are 143.1mm compared to 6.6mm when using

ZQC which compare to a rain gauge total accumulation of 19.0mm. The raw reflectivity

measurements produce significant over estimates in rainfall accumulation as a result of

ground clutter in this area due to a combination of topography and wind turbines. The

post QC data largely removes this erroneous accumulation but at the expense of valid

rainfall during the field campaign contributing to an underestimation of 65% for this

gauge site.
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Figure 7.2: Total rainfall accumulation for the COPE field campaign as measured by
the NCAS mobile weather radar at an elevation of 0.5◦ . Panel A shows the rainfall as
derived from Zm, B the accumulation from ZQC , C the accumulation from ZA and D
the accumulation from ZC . Each panel is a 300 km square centred on the radar and

contains the accumulation from 1131 valid scans across the field campaign.

Between Panels B and C there is an increase in the rainfall accumulations in the lines

of rainfall to the north of the radar and to the south east of the radar as a result of

attenuation correction. This is most noticeable in the accumulations on the west facing

north Cornwall coast around Bude where rainfall accumulations increase from 25mm to

over 40mm. This region is most noticeable because the convective line which generated

this rainfall aligned with the direction of the radar beams causing high attenuation along

this direction as the beam travelled through the majority of the convective line. The

change from Panel C to Panel D is greatest in overall intensity and the blocked sectors

to the south west, south east and north-north-east are well corrected in the near field

region however the blocked region to the south east is still visible at longer ranges. This

occurs as only the rainfall measured by the radar can be corrected for beam blockage
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Figure 7.3: Total rainfall accumulation for the COPE field campaign as measured by
the NCAS mobile weather radar at an elevation of 0.5◦ . Panel A shows the rainfall as
derived from Zm, B the accumulation from ZQC , C the accumulation from ZA and D
the accumulation from ZC . Each panel is a 100 km square centred on the radar and

contains the accumulation from 1131 valid scans across the field campaign.

and if the rainfall is at a lower intensity and/or affected by attenuation as is the case

here then it is not recoverable by beam blockage correction techniques. This has a

greater impact at longer range as the radar’s minimum detectable reflectivity increases

with range, further decreasing the signals available for correction. For this reason the

blockages to the south of the radar are still clearly visible at most ranges as the beam

blockage is in excess of 20 dBZ although the rainfall accumulations in this region (average

of 5mm beyond 15 km) are still significantly higher than in the original rainfall estimates

from Zm (average of 0.5mm beyond 15 km). The sector between 305◦ and 310◦ blocked

by the radar control tower has been removed from the accumulations due to extreme

overcorrection and reflection effects. Figure 7.4 compares the total accumulations at

each of the EA rain gauges across the peninsula with rainfall accumulations from each
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of the four reflectivity estimates. For each of the estimates it is clear that the radar

underestimates total accumulation when using reflectivity as the rainfall estimator, with

the fully corrected reflectivity showing a significant improvement when compared to the

other stages of the processing chain. Linear regression shows the measured reflectivity

has no correlation with the rain gauge data (R2 = 0.05) and R2 increases through each of

the processing steps, with the final corrected reflectivity having an R2 of 0.36, a gradient

of 0.58 and an offset of 3.23mm. Clearly the offset between gauge and radar should be

zero and a linear regression with fixed offset instead shows an improvement in R2 from

-0.01 to 0.34 with a gradient change from 0.45 to 0.72 through the processing (ZM to ZC).

This improvement is also shown in the mean absolute percentage differences (MAPD)

for the gauges, which decreases from 86% to 31% throughout the processing, with a final

mean percentage difference (MPD) of 26% indicating the systematic under measurement

by the radar when compared to the rain gauges.

Often the rainfall calculated from higher elevations is used in preference to the lowest

elevation to avoid beam blockage and ground clutter, with many radar processing chains

incorporating the idea of a lowest usable elevation angle for each location (Harrison et al.,

2012; Tabary, 2007). Generating rainfall accumulations with data from an elevation angle

of 1.5◦ for the COPE campaign shows the increased elevation increases the gradient of

the relationship between radar and rain gauge data in all but the fully corrected case

and R2 increases from 0.0 to 0.26 for ZQC and from 0.05 to 0.39 for ZA. However for

ZC the correlation decreases from 0.34 to 0.15 when comparing the two elevations. The

reduction in R2 from ZA to ZC at 1.5◦ elevation is indicative of the uncertainty within

the PBB correction at this elevation. The beam blockage correction calculations for

1.5◦ contain fewer valid data points than the equivalent calculations for 0.5◦ , leading

to greater variability in the results. Despite the decrease in correlation between the

observations the PBB correction does improve the MAPD from 36% (ZA) to 28% (ZC)

suggesting the PBB correction improves the rainfall estimates on average, despite greater

variability between locations. This is a marginal improvement on the MAPD obtained

when using fully corrected 0.5◦ elevation reflectivity (31%) which could be attributed to

the different number of comparisons in each dataset (1.5◦ scans did not feature in several

of the COPE scan strategies, see Section 3.2), or could be a result of St Clether being

much better represented by the higher elevation data due to the reduction in ground

clutter returns and mixed signal echoes for this gauge site.
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Figure 7.4: Comparison of rain gauge total rainfall accumulation for the COPE field
campaign with rainfall as measured by the NCAS mobile weather radar at an elevation of
0.5◦ . The y-axis of panel A shows the rainfall accumulation from Zm, B the accumulation
from ZQC , C the accumulation from ZA and D the accumulation from ZC . Each blue
cross represents the total for each of the EA rain gauge sites. Panel A contains one less
data point than the other panels as the St Clether gauge has been omitted due to its

extreme raw rainfall total. The dashed line in each panel is the one to one line.

Figure 7.5 shows the total rainfall accumulations from the 1.5◦ elevation scans across a

100 km square centred on the radar, which is spatially similar to Figure 7.3 but with

some notable differences. The rainfall accumulations over Dartmoor are much lower, and

spatially continuous which suggests they are better representations of the true rainfall

in this area, while the accumulations to the north are much lower ( 20mm compared to

40mm at 0.5◦ ). It is much harder to validate this region, the closest rain gauge is Tamar

Lakes which is located at a radar azimuth of 28◦ and a range of 29.1 km however this lies

on the edge of the intense region of rainfall as seen at 0.5◦ . The radar accumulation at

this location was 9.6mm at 0.5◦ and 8.22mm at 1.5◦ compared to 13.40mm for the gauge,

which suggests the lower elevation is more representative but this result can’t be reliably
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Figure 7.5: Total rainfall accumulation for the COPE field campaign as measured by
the NCAS mobile weather radar at an elevation of 1.5◦ . Panel A shows the rainfall as
derived from Zm, B the accumulation from ZQC , C the accumulation from ZA and D
the accumulation from ZC . Each panel is a 100 km square centred on the radar and

contains the accumulation from 1131 valid scans across the field campaign.

extrapolated to the north west to cover the higher accumulations observed in this area

highlighting the difficulty of validating radar rainfall estimates even in a location that is

covered by a widely distributed rain gauge network.

Overall the total rainfall accumulations suggest that unless correction for partial beam

blockage is possible it is better to use data from a higher elevation than use blocked low

elevation data, but once correction is possible the reduced height of the beam at the

low elevation generates more representative rainfall estimates. They also indicate regions

of persistent ground clutter still present problems for the radar’s QPE despite the QC

processing and more work needs to be done to handle these regions to obtain accurate

QPE. Rainfall accumulations from the next available elevation indicates this could be
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achieved by merging in data from a height above the ground clutter, subject to a lack

of representatively due to increasing while another solution could be to selectively merge

in the velocity filtered reflectivity data from the radar while avoiding the inherent issues

previously observed in this field. These options will be explored more in the future and

are touched on briefly in Chapter 8.

7.2.2 Widespread stratiform rainfall of low intensity - an example of

uncertainty in reflectivity rainfall estimates

The following example highlights an interesting case which explores the uncertainty in

radar QPE. The case highlights the benefits of the processing system outlined in this the-

sis, while also demonstrating a situation that is difficult to account for when using radar

QPE. On the 17 August 2013 a warm front passed across the Cornish peninsula causing

widespread rainfall of 1 to 2mm/hr intensity with rainfall accumulations of 5.4mm to

10.4mm recorded in the EA rain gauges. Radar data from the event has previously been

shown in Figures 5.12, 6.7 and 6.14 while Figure 7.6 shows a further example of the fully

corrected reflectivity along with the location of the three rain gauges used to illustrate

this case study.

Figure 7.6: Corrected horizontal reflectivity PPI at 0.5◦ elevation, 2013-08-17 11:57
UTC. Range rings are spaced at 10 km intervals, and the panel is 90 km square centred
on the radar. Each of the open circles shows the location of a rain gauge used in this
section, the purple circle to the west is Wadebridge, the red circle to the east is Roadford

and the black circle to the east is Mary Tavy.
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The first rain gauge of interest is located at Wadebridge, at a radar azimuth of 233◦ and

a range of 20.7 km (purple circle, Figure 7.6), where 8.2mm of rainfall was recorded by

the gauge during the radar operating period on this day. This location is within a sector

of the 0.5◦ elevation scan blocked by Davidstow woods which requires a correction of

6 dBZ and the benefit of this correction can clearly be seen in Figure 7.7 which shows

the cumulative rainfall accumulation from this gauge as measured by the gauge and the

radar.

Figure 7.7: Rainfall accumulations at Wadebridge. The thick solid blue line is the
accumulation as measured by the tipping bucket rain gauge, while each of the remaining
lines is the accumulation of the radar pixel containing the rain gauge. The solid red
line is from the measured reflectivity (Zm), the solid green line is the accumulation from
attenuation corrected reflectivity (ZA, with α = 0.27 dB/deg) and the solid black line is
the fully corrected reflectivity (ZC). The grey region represents the variation of the fully
corrected accumulation when changing α from 0.14 to 0.35 dB/deg during attenuation

correction.

In the Figure, the rainfall from corrected reflectivity (ZC) after 5 hours is within 0.5mm

of the rain gauge accumulation and could be considered to agree within the measurement

uncertainty of both instruments (considering attenuation correction and gauge evapora-

tion). This contrasts greatly to the rainfall record generated from the original measured

reflectivity (Zm) which is 3.5mm less than that recorded by the rain gauge at this time,

indicating the magnitude of the correction is reasonable during this time period. However

during the four hour period from 12:30 to 16:30 the rain gauge measures an additional

2.4mm of rainfall compared to 1.1mm estimated by the radar a swing in percentage
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error from 9% to -54% which is a considerable difference. The first hypothesis to explain

this change is that the beam blockage is causing under measurement of rainfall during

periods of lower intensity rainfall. Observations shows there is no total blockage of the

rainfall signal during this period which would be required to create a low intensity under

measurement by the radar and the success of the correction within the first five hours of

the data record suggests the magnitude of the correction is robust in these conditions.

Investigation of additional rain gauge records (Figure 7.8) indicate a similar shift in mea-

surement accuracy occurs across the peninsula which suggests that the change is more

fundamental, either to the radar hardware or to the atmospheric conditions.

Figure 7.8: Rainfall accumulations at Mary Tavy (top panel) and Roadford (bottom
panel). The thick solid blue lines are the accumulation as measured by the tipping
bucket rain gauges, while each of the remaining lines is the accumulation of the radar
pixels containing each of the rain gauges. Each of the lines is as per Figure 7.7, with
the attenuation corrected green line in the top panel being directly overlain by the fully

corrected reflectivity as the PBB correction at this location is 0 dBZ.

Figure 7.8 shows the rainfall records for Mary Tavy, which is located at an azimuth
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of 101◦ and a range of 36 km (black open circle, Figure 7.6) and Roadford, which is

located at an azimuth of 80◦ and a range of 27.2 km. The change in rainfall intensity

observed at Wadebridge is also visible in the rain gauge records at these sites, with the

change occurring later as the sites progress eastwards, and the radar rainfall estimates in

each location maintain a near constant intensity after 12:30 in each location. The radar

underestimates the rainfall accumulation at Mary Tavy by 80% in the late afternoon

period compared to a 20% underestimation up to 12:30 while the radar underestimates

Roadford by 58% after 14:00 compared to an overestimate of 6% up to 12:30.

These locations suggest the hardware is unlikely to be at fault as indicators would be a

shift in the radar rainfall accumulations that match the timing of the rain gauge accumu-

lations but not the intensity or a concurrent change in the radar accumulations across all

locations, the absence of which suggests the atmospheric conditions are the most likely

cause of the significant underestimation of accumulation during this period.

To investigate the cause of the underestimation additional data from the vertically point-

ing micro rain radar (MRR) installed as part of the COPE project was investigated.

Figure 7.9 shows the time height profile of rainfall intensity estimated by the MRR dur-

ing this time period, with the two periods of moderate rainfall seen in the rain gauge

records observed as full depth rainfall intensities of greater than 4mm/hour occurring at

09:30 and 12:00, while the rainfall observed after 13:00 is concentrated within 400m of

the surface and at a much lower intensity.

The time-height data suggests low level rainfall generation following the passage of the

surface warm front at this time, which could explain the underestimation of the radar in

this situation as the beam overshoots the region of increasing rainfall intensity. A quasi-

vertical profile of reflectivity generated using data from the 8.5◦ elevation scans allows

further investigation of the vertical structure of the rainfall in this case (Figure 7.10)

and indicates a strong increase in the observed reflectivity close to the surface during the

period between 13:30 and 16:00, particularly after 15:00.

The average vertical reflectivity gradient observed in the period between 15:00 and 16:30

is −5 dBZkm−1 in the first 200m of the profile (between 400m and 600m above sea

level) increasing to −20 dBZkm−1 once the profile is 800m above ground, which could

indicate the corrected reflectivity above the rain gauges is as much as 2.5 dBZ lower
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Figure 7.9: Time-height profile of micro rain radar data obtained during the COPE
field campaign on 2013-08-17. Data contains 31 vertical levels at 35m spacing, with 30 s

sampling intervals.

than the true surface reflectivity during this time period (Wadebridge is located at 2m

above sea level while the radar beam centre is at 505m at this range). To correct

for this apparent vertical intensification of rainfall requires the following assumptions,

firstly that the vertical gradient of horizontal reflectivity as measured within 5 km of the

radar represents a homogeneous stratiform layer which extends over the rain gauges, and

secondly that the vertical gradient can be extended to the surface with further increases

in reflectivity below the observation sites (both the X-band radar and the MRR are

located at approximately 300m above sea level), both of which would be difficult to

justify without the support of the rain gauge observations. However this case provides an

opportunity to test the correction against external data, the results of which are shown

in Figure 7.11 for Wadebridge.

The first correction (VPRa) is simply a linear VPR with a gradient of −5 dBZ/km, as

given by the average reflectivity gradient during the period from 15:00 to 16:30 in the

QVP which is effectively an addition of 2.5 dBZ for Wadebridge. This correction is ap-

plied to ZC for all times after 14:45 UTC, which is the time the QVP of reflectivity



Chapter 7. Radar QPE 141

Figure 7.10: Quasi-vertical profile of reflectivity generated from measured reflectivity
using the 8.5◦ elevation scans on 2013-08-17. Each vertical data point must contain at
least 270 azimuths to be included within the vertical profile. Vertical data separation at
8.5◦ varies from 22.5m at ground level to 23.5m at 10 km altitude due to earth curvature

with range.

begins to show a homogeneous vertical gradient of reflectivity around the radar. During

this period the correction only adds an additional 0.1mm to the rainfall at Wadebridge

and clearly doesn’t account for the difference between the rain gauge and the radar, with

both the magnitude and timing of the correction seen to be wrong. The second correc-

tion (VPRb) is a more bespoke correction for this site, with 5 dBZ added to each scan

after 13:50, representing a doubling of the reflectivity gradient to −10 dBZ/km. This is

more representative of the atmospheric conditions slightly higher in the atmosphere as

observed during the QVP rather than the profile very close to surface. The second profile

adequately models the vertical changes in reflectivity with the radar rainfall accumula-

tion closely matching the rain gauge accumulation until 15:15, after this time the radar

begins to underestimate the rainfall accumulation indicating a further intensification of

the vertical gradient of reflectivity which would require further site specific tuning to

correct.

This case study indicates the potential importance of vertical profile of reflectivity cor-

rection even in cases where the radar beam is well below the melting layer. The first 5
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Figure 7.11: Rainfall accumulations at Wadebridge corrected using a vertical profile
of reflectivity. The thick solid blue line is the accumulation as measured by the tipping
bucket rain gauge, while each of the remaining lines is the accumulation of the radar
pixel containing the rain gauge. The solid red line is from the corrected reflectivity (ZC),
the solid green line is the accumulation from reflectivity corrected with a 2.5 dBZ offset
applied from 14:45 onwards (VPRa) and the solid black line is the accumulation from

reflectivity corrected with a 5 dBZ offset applied from 13:50 onwards (VPRb).

hours of the day suggest that the corrected reflectivity values obtained using dual polari-

sation corrections produce much better QPEs than the original measured reflectivity data

and that the uncertainty introduced by attenuation correction is not significant in the

case of moderate intensity stratiform rainfall of this type. The case study also suggests

quasi-vertical profiles (QVPs) of reflectivity may be used for vertical profile of reflectiv-

ity correction below the melting layer and this is something that should be explored in

future research, particularly when more stratiform rainfall data is available. This idea is

explored briefly in Chapter 8.

7.3 Dual polarisation moments as direct rainfall estimators

In addition to the use of dual polarisation moments for the correction of the measured

reflectivity several studies have used these moments to directly estimate rainfall, either in

conjunction with the horizontal reflectivity or as an independent estimate. The following

section details the use of ZDR, KDP and specific attenuation as rain rate estimators, again



Chapter 7. Radar QPE 143

comparing these estimates to the rain gauge observations available for COPE along with

rainfall estimates from the corrected horizontal reflectivity.

7.3.1 Differential reflectivity as a rainfall estimator

Differential reflectivity is used in conjunction with horizontal reflectivity to estimate

rainfall rate. As ZDR indicates the equivolume drop diameter for the distribution it is

indicative of the size distribution of drops contributing to the horizontal reflectivity, which

is proportional toD6 and the number concentration of the drops. Therefore the higher the

ZDR the lower the number of drops required to generate the same horizontal reflectivity

and the lower the rainfall rate compared to a distribution containing a larger number of

smaller drops. Equation 7.2 indicates the typical relationship used at X-band to estimate

rainfall using reflectivity and differential reflectivity (Bringi and Chandrasekar, 2001),

where both Ze and ZDR are in logarithmic units. This equation is represented visually

in Figure 7.12 which also shows the equivalent representations of the reflectivity only

rainfall relationships first shown in Figure 2.1 which represent drizzle, convection and the

UKMO standard reflectivity-rain relationship. The phase space indicates that convective

conditions are generally associated with larger drop sizes (higher ZDR) than drizzle (low

ZDR) and that the same horizontal reflectivity can produce vastly different rain rates

depending on the bulk drop size.

R = 3.9× 10−3(100.107Ze)(10−0.597ZDR) (7.2)

The phase space can also be used to indicate some of the advantages and weaknesses

of using both reflectivity and differential reflectivity, particularly in attenuating rainfall

events. Taking a simple case where the measured horizontal reflectivity is 40 dBZ and the

measured ZDR is 1 dB, then the estimated rainfall rate would be 9.45mm/hour. If the

path phase shift to this point is 20◦ then the total horizontal attenuation would be 5.4 dBZ

and the total differential attenuation would be 0.9 dB giving actual values of 45.4 dBZ and

1.9 dB respectively. These would estimate a rain rate of 10.38mm/hour which indicates

that the original measured rainfall rate is only a slight underestimate of the actual if

attenuation correction is not possible and atmospheric conditions are as expected with

regards to α and β. This contrasts to the results obtained using only measured reflectivity
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Figure 7.12: Two dimensional representation of the R(Zh,ZDR) relation for X-band
radars. The colormap represents the rainfall intensity from the two radar moments. The
plotted lines represent the one dimensional rainfall equations which only use reflectivity
to estimate rainfall intensity, the solid line is the UKMO relationship (a = 200, b = 1.6),
the dashed line is the assumed Z-R relationship for drizzle (a = 140, b = 1.5) and the
dotted line is the assumed Z-R relationship for convective rainfall (a = 500, b = 1.5).

where the measured rain rate is 11.5mm/hour compared to an attenuation corrected rain

rate of 25mm/hour. This is visible within the 2D phase space, where attenuation and

differential attenuation move values towards the bottom left, almost parallel to the lines

of equivalent rainfall intensity within the plot. However in situations where horizontal

attenuation is much lower than differential attenuation (say β is doubled as a result of

a strong convective updraught) this no longer holds true and the rainfall estimated from

the measured values would be an overestimate of rainfall rate, which is maintained if both

reflectivity and ZDR are both not accurately corrected (if the average atmospheric β is

used for example). This is noticeable if we return to the example in Section 6.2.1, Figure

6.4 and convert the corrected Zh and ZDR into rainfall intensity using equation 7.2 which

leads to significant estimates of rainfall intensity which are clearly incorrect when the ZDR

is under corrected relative to the horizontal reflectivity. Figure 7.13 illustrates this, with
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the uncertainty bounds indicating the two most extreme scenarios. Firstly the case where

differential reflectivity is over corrected with respect to the reflectivity (α = 0.14 dBZ/deg

and β = 0.06 dB/deg being the extreme of this) leads to very low rainfall intensities and

secondly when differential reflectivity is significantly under corrected compared to the

reflectivity (α = 0.33 dBZ/deg and β = 0.03 dB/deg) which leads to extremely high

rainfall estimates. The bounds illustrate the extreme cases which are unlikely to occur in

reality, but the average case in this example is exhibiting signs of under correction of ZDR

which leads to rainfall intensity estimates of over 400mm/hour between 30 km and 35 km

range in comparison to those generated with just reflectivity which are no more than

100mm/hour at the same range. In this case this results from the corrected differential

reflectivity still being below zero, which is clearly inconsistent with observations of rainfall

and suggests that β should be higher for some of this radial, most likely in the region

of high reflectivity at 28 km which is probably a "hot-spot". Doviak and Zrnić (1984)

noted that R(Z,ZDR) performs best when the random errors in differential reflectivity

are small, which is clearly not the case when differential attenuation of this magnitude is

introduced, nor is it the case when rainfall rates are very low as measurement noise has

a greater effect at low intensities both of which suggest that differential reflectivity may

produce less accurate rainfall accumulations than the single moment approach, which has

been tested through the generation of multiple rainfall accumulations using R(Z,ZDR).

The most straightforward rainfall estimate using R(Z,ZDR) is to take the moments as

measured filtered using fuzzy logic to include only rainfall echoes, with the expectation

that in most cases any attenuation will be counteracted by differential attenuation as

discussed above. Secondly reflectivity can be corrected for partial beam blockage, which

should generate better estimates, then both fields can be corrected for attenuation using

ZPHI. To correct differential reflectivity for attenuation the specific horizontal attenua-

tion can be converted to specific differential attenuation using a fixed ratio as described

by Park et al. (2005) and set here to 0.14 as per the average value found for X-band in that

paper. Given the errors noted by Doviak and Zrnić (1984) and the problems in attenuat-

ing situations a final accumulation is proposed which uses R(Z,ZDR) when reflectivity is

greater than 10 dBZ and ZDR is greater than 0.2 dB but R(Z) otherwise. This avoids the

situations where ZDR is attenuated to below zero and not adequately corrected, and also

the light rainfall situations where measurement of ZDR is most uncertain (10 dBZ is a less

conservative threshold for this than the one proposed by Doviak and Zrnić (1984) who
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Figure 7.13: Rainfall estimates following correction of horizontal reflectivity and dif-
ferential reflectivity using a linear transformation of ΨDP . Data shown is taken from the
2013-08-02 17:51UTC radar volume at an azimuth of 86◦ and elevation of 0.5◦ . Rain-
fall estimates from measured radar variables are shown by solid red lines, with the top
panel showing rainfall from the UKMO Z-R relationship using horizontal reflectivity
corrected with an α of 0.27 dBZ/deg (solid black line) and bounded with α of 0.14 and
0.35 dBZ/deg. The lower panel shows rainfall estimated using Equation 7.2 where the
solid red line is the measured values of horizontal reflectivity and ZDR and the solid black
line is the reflectivity corrected using an α of 0.27 dB/deg and the ZDR corrected with a
β of 0.045 dB/deg. The bounds on the lower plot are equivalent to an α of 0.14 dBZ/deg
paired with a β of 0.06 dB/deg for the lower extreme and an α of 0.35 dBZ/deg paired

with a β of 0.03 dB/deg for the upper extreme.

propose a rainfall intensity of 20mm/hour as the threshold, equivalent to a reflectivity

of 43.8 dBZ if using the UKMO R-Z relationship). The total rainfall accumulations for

each of these methods is shown in Figure 7.14 and is significantly different to the totals

obtained using just reflectivity as seen in Figure 7.2. Firstly the filtered results from

each method (Panel A of Figure 7.14 and Panel B of Figure 7.2) show that the differ-

ential reflectivity method is far more susceptible to ground clutter contamination which

passes through the filter, with a much greater area of Dartmoor exceeding 50mm of ac-

cumulation. In addition the rainfall accumulations at the furthest ranges, particularly to

the east, are noticeably greater (>30mm compared to <20mm) when using differential

reflectivity which could be indicative of a DSD containing more small drops leading to

higher rainfall estimates or it could be a result of sampling wet snow above the bright

band (which typically has a ZDR of 0.1 to 0.2 dB) with moderate reflectivity which leads

to higher rainfall estimates than the Z-R method. Comparison between Panels C and
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D (Figure 7.14) indicates that the echoes contributing to the majority of this rainfall

accumulation must have a ZDR of below 0.2 dB as the combined estimate in Panel D is

much lower in this region than the pure R(Z,ZDR) method.

Figure 7.14: Total rainfall accumulation for the COPE field campaign as measured
by the NCAS mobile weather radar at an elevation of 0.5◦ when using R(Z,ZDR) as the
rainfall estimator. Panel A shows the rainfall as derived from ZQC and ZDR, B the
accumulation when ZQC is corrected for beam blockage and C the rainfall accumulation
using ZC with attenuation corrected ZDR (ratio of Ah to ADR set to 0.14) and D shows
the accumulation from a combination of R(Z,ZDR) and R(Z). Each panel is a 300 km
square centred on the radar and contains the accumulation from 1131 valid scans across

the field campaign.

With the exception of Dartmoor it is not clear whether the pure R(Z,ZDR) method is

bettered by the combination of R(Z,ZDR) and R(Z), although the accumulations appear

smoother. Close to the radar the two method produce largely equivalent results, with

slightly more rainfall when using the pure method which indicates accumulations that

are driven more by warm rain and smaller drops. The pure method also has much greater

localised variation in the estimates at far range which is a likely indicator of measurement
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variation strongly influencing the results. Comparison to rain gauges shows that the

pure method has the lowest mean percentage difference of all the methods analysed so

far (2% compared to 26% for R(ZC)) but it’s MAPD is 40% compared to 31% for fully

corrected reflectivity. These results indicate that the rainfall totals are less biased than

the reflectivity estimates but have a much greater spread across the sample, with large

over and under estimates compared to the rain gauges.

Figure 7.15 shows scatter plot comparisons of radar and rain gauge for each of the four

R(Z,ZDR) methods. Linear regression with zero offset indicates little difference in the R2

of the pure method (0.28) and the combined method (0.32) which are both lower than

the R2 of R(ZC) (0.34). The gradients of these regressions are 1.05 and 0.78 respectively.

Figure 7.15: Comparison of rain gauge total rainfall accumulation for the COPE field
campaign with rainfall as estimated by the NCAS mobile weather radar at an elevation
of 0.5◦ using R(Z,ZDR). Each of the panels y-axes shows the rainfall accumulations as
taken from the panels of Figure 7.14, A is QC filtered, B is corrected for beam blockage,
C includes attenuation correction of Zh and ZDR and D merges R(Z) and R(Z,ZDR).
Each blue cross represents the total for each of the EA rain gauge sites. The dashed line

in each panel is the one to one line.
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Removing Mary Tavy, which the radar systematically underestimates in all methods (rain

gauge total of 33.2mm), and St Clether, which is influenced heavily by ground clutter,

increases the gradient of both methods to 1.15 and 0.86 respectively and also the R2 to

0.42 and 0.51 respectively. Although a limited set of points for regression analysis the

comparison to rain gauges provides an indication that rainfall estimation using R(Z,ZDR)

is less biased than using reflectivity alone, but that measurement and correction uncer-

tainty lead to greater variability in the estimates, decreasing the correlation between the

radar results and the rain gauge totals. Combining the two methods as in Panel D of

Figures 7.14 and 7.15 decreases the variability caused by erroneous ZDR measurements

while providing rainfall estimates that are slightly biased towards under measurement

by the radar relative to the rain gauges, but less biased than those estimates using re-

flectivity alone. Clearly the combination of the two methods could be improved to more

accurately identify situations where one is more appropriate than the other, using addi-

tional radar variables and information from the fuzzy classifier along with case studies

but this will be explored in conjunction with combining rainfall estimates from the other

dual polarisation moments available (KDP and Ah) in Section 7.4.

7.3.2 Specific differential phase shift as a rainfall estimator

As shown in Section 2.4.3 specific differential phase is an often used estimator for rainfall

intensity due to its reduced sensitivity to the DSD when compared to reflectivity. It is

also insensitive to hail and graupel (as they have a circular effective cross section) and is

used to measure the liquid rainfall content of echoes which contain a mixture of ice and

liquid rainfall. The signal processor of the mobile radar generates KDP using Fourier

transformation of the measured phase shift, which can be used to assess the performance

of KDP in the first instance, given there are several alternative methodologies for the

calculation ofKDP (Schneebeli and Berne, 2012; Wang and Chandrasekar, 2009; Ryzhkov

and Zrnic, 1996, for example). One feature of all proposed methodologies is the difficultly

of accurately calculating low values of KDP due to measurement noise in the phase

shift, which leads to KDP being utilised more at higher rainfall rates. To examine this

uncertainty two rainfall accumulations have been generated here, one which uses R(KDP )

whenever possible, only utilising R(ZC) when KDP is not estimated and a second which

selectively uses R(KDP ). This second method uses R(ZC) when the measured KDP is
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below 0.5 deg/km and/or when R(ZC) is below 5mm/hr, it uses R(KDP ) when R(ZC) is

greater than 10mm/hr and the weighted average of R(ZC) and R(KDP ) when the rainfall

rate is between 5 and 10mm/hr where the weighting for R(KDP ) varies linearly from 0

at 5mm/hr to 1 at 10mm/hr. Through the process the X-band R(KDP ) relationship

from Ryzhkov et al. (2014) is used, where the rainfall coefficient is 16.9 and the exponent

is 0.801.

Figure 7.16 shows the total rainfall accumulations out to 150 km range for each of these

methods, with the large difference being a result of overestimation of rainfall by R(KDP )

at low rainfall rates where the estimation uncertainty has the greatest effect on rainfall

rates. Taking a true rainfall rate of 2mm/hr, the equivalent KDP would be 0.07 deg/km,

which when the measurement accuracy is no better than 0.2 deg/km is not accurately

recordable, with rainfall estimates in the range 0 to 6mm/hr being probable at these

intensities. When the rainfall rate is more intense the measurement uncertainty no longer

dominates the estimates, and with thresholding the performance of R(KDP ) is much more

reliable as seen in Panel B.

Figure 7.16: Total rainfall accumulation for the COPE field campaign as measured by
the NCAS mobile weather radar at an elevation of 0.5◦ when using R(KDP ) as the rainfall
estimator. Panel A shows the accumulation when using R(KDP ) whenever possible while
B shows the accumulation when selectively using R(KDP ) at only moderate to heavy
rainfall intensities. Each panel is a 300 km square centred on the radar and contains the

accumulation from 1131 valid scans across the field campaign.
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This improvement is observed in the correlations between radar accumulations and the

rain gauges, with R2 increasing from -0.04 to 0.26 and the gradient reducing from 1.68 to

0.70. The results for the second method are within the same range as the other approaches

explored so far, showing no benefit to using KDP over the other methods. However

previous research has indicated R(KDP ) to be beneficial during periods of intense rainfall,

and a closer look at its performance in this situation is required.

7.3.2.1 Performance in intense rainfall

The following example shows the benefit of using R(KDP ) during periods of intense rain-

fall by focusing on a period of convective rainfall on 2 August 2013, where a line of

convective cells developed along a convergence line running along the peninsula. This

example has previously been seen in Figure 7.13 where the problem of attenuation cor-

rection for both reflectivity and differential reflectivity was examined and Figure 7.17

repeats the rainfall estimates from corrected reflectivity alongside the rainfall estimate

obtained solely from using R(KDP ) for this radial. During the first 15 km of the shown

radial there is generally good agreement between the two estimates but the previous ob-

servations about estimation errors in lighter rainfall are shown between 10.5 and 13 km

where R(KDP ) estimates zero rainfall despite the reflectivity signature and between 13

and 19 km where R(KDP ) is estimating 6mm/hr compared to reflectivity estimates of

under 2mm/hr. During the most intense period of rainfall, between 27 and 35 km the

general trend of the two estimates is similar, but the R(KDP ) has a much smoother pro-

file and a lower peak rainfall intensity. One reason for this is the contamination of the

reflectivity estimates with ice phase hydrometeors which lead to higher reflectivity being

observed than would be generated solely from the liquid water content of the precipita-

tion while another reason is the smoothing required to generate acceptable estimates of

KDP from the noisy data, as smoothing always leads to a reduction in peak intensity.

The R(KDP ) lies within the uncertainty bounds of the reflectivity estimates due to the

significant amount of attenuation occurring in this example, and given R(KDP ) provides

a rainfall measurement which is not affected by attenuation it can be used to exam-

ine the value of α used in this study in these cases, with good agreement seen between

the R(KDP ) and the R(ZC) when α=0.27 dBZ/degree in the region beyond the rainfall

maximum.
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Figure 7.17: Rainfall estimates using R(KDP ) compared to R(ZC). Data shown is
taken from the 2013-08-02 17:51UTC radar volume at an azimuth of 86◦ and elevation
of 0.5◦ . Rainfall estimates from the radar calculated KDP is shown by the solid red line,
with the solid black line showing rainfall from the horizontal reflectivity corrected with
an α of 0.27 dBZ/deg (solid black line). The gray lines show the rainfall when correcting

using an α of 0.14 and 0.35 dBZ/deg (bottom and top respectively)

This example, and others from the field campaign, indicate that R(KDP ) adds useful

information to rainfall estimates in these higher intensity cases but the overly smooth

profile of KDP , particularly in convective cells and the difficulty in obtaining reliable

estimates of low values ofKDP indicates an alternative estimation ofKDP will be required

to obtain more accurate rainfall accumulations in the future. Alternative estimation

techniques exist which adapt the length of the filtering window applied to the data

depending on the reflectivity observed at that point, which gives higher spatial resolution

within the region of peak rainfall intensity leading to higher maximum intensities in

convective cells (Wang and Chandrasekar, 2009; Matrosov et al., 2006; Brandes et al.,

2001). Given this is likely to provide more accurate rainfall estimates in these regions

a more sophisticated estimation should be explored for the mobile X-band radar in the

future.

7.3.3 Specific horizontal attenuation as a rainfall estimator

Generating rainfall estimates using specific horizontal attenuation is a recent development

in radar QPE and simply involves a theoretical transformation from attenuation to rainfall
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intensity using Equation 7.3 where a and b are temperature and frequency dependant

(Ryzhkov et al., 2014; Wang et al., 2014; Diederich et al., 2015a,b).

R = a(Ah)b (7.3)

As in the work on beam blockage correction, the temperature dependant values for a

and b have been set to those for an atmospheric temperature of 10 ◦C (a = 45.5 and b =

0.83) and rain rates have been generated using Ah derived during the ZPHI attenuation

processing. Rainfall rates have been generated using just Ah, using Ah in-filled with

R(ZC) when missing, and using a tighter definition of Ah which requires at least 4◦ of

phase shift along the radial segment again in-filled with R(ZC) when R(A) is not available.

The first of these methods leads to rainfall underestimation as conditions are not always

suitable for the ZPHI method to generate Ah (Figure 7.18, Panel A). The second method

boosts these regions while also in-filling the region beyond 105 km range and within 4.5 km

where the constraints imposed during ZPHI calculation prevent Ah estimation (Panel

B, Figure 7.18). The third method, as proposed by Diederich et al. (2015b) provides

more stable estimates of Ah by enforcing the condition of minimum phase shift along

the radial and ensures complete coverage by in-filling with R(ZC). A fourth estimate

has also been generated which utilises the theoretical reflectivity estimated from specific

attenuation as in Section 6.3, but then applies the standard UKMO Marshall-Palmer

rain rate conversion for reflectivity. In theory this estimate should be less accurate

than the specific attenuation estimates as the coefficient and exponent for R(A) are

DSD invariant, while the Marshall-Palmer relationship assumes a DSD to fit the rainfall

estimate, however as the theoretical reflectivity is immune to beam blockage any changes

in beam blockage should be accounted for leading to a more reliable estimate than a pure

R(ZC) estimate.

Total rainfall accumulations for each of these four rainfall estimation techniques are

shown in Figure 7.18 to the full range of the radar. In Panel A the absence of rainfall

estimation beyond 105 km and within 4.5 km is visible as zero accumulation in these areas.

Rainfall estimation over Dartmoor is reduced compared to any previous method of rainfall

estimation, suggesting R(Ah) could provide the most reliable rainfall estimates in regions

of ground clutter while rainfall accumulations are elevated close to the radar, particularly
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Figure 7.18: Total rainfall accumulation for the COPE field campaign as measured
by the NCAS mobile weather radar at an elevation of 0.5◦ when using R(Ah) as the
rainfall estimator. Panel A shows the rainfall as derived from R(Ah) only, B the accu-
mulation when R(Ah) is in filled with R(ZC) when not available, C the accumulation
when R(Ah) is used only if the path phase shift is greater than 4◦ otherwise use R(ZC)
and D shows the accumulation from R(Z(Ah)) when path phase shift is greater than
4◦ otherwise use R(ZC). Each panel is a 300 km square centred on the radar and contains

the accumulation from 1131 valid scans across the field campaign.

to the west, compared to previous estimates, which is a function of specific attenuation

estimation in low total phase shift radials, as the effect is seen to disappear when applying

a threshold of 4◦ as in Panel C. Introducing R(ZC) estimates when Ah is not calculated

leads to increased accumulations (as expected) and the rainfall accumulation along the

convective line region to the south east of the radar increases from the mid thirties to

over 40mm (Panel B). All four methods show resilience to beam blockage, with the

blocked segments to the south west and north east not noticeable in any of the panels.

However the methods all still suffer from the sensitivity drop to the south and south east

of the radar, and this region is unrecoverable in all cases, suggesting higher elevation
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data will always be needed for accurate rainfall estimates in this region. Panel C which

shows the R(Ah) parametrisation of rainfall and Panel D which uses the theoretical

reflectivity combined with the UKMO Z-R parametrisation are spatially similar but the

UKMO parametrisation generates uniformly higher rainfall totals, particularly noticeable

between 190◦ and 200◦ azimuth off the south coast of the Cornish peninsula.

This difference is noticeable in the comparisons with rain gauge rainfall totals seen in

Figure 7.19 where only 3 sites have a higher radar accumulation than rain gauge accumu-

lation in Panel C which uses R(Ah) while 6 sites have a higher rainfall accumulation in

Panel D which uses the theoretical transformation approach. Linear regression gradients

are 0.72 and 0.81 for each of the methods respectively with R2 equal to 0.27 and 0.32 re-

spectively, suggesting using a single rainfall parametrisation provides the most correlated

results and that rainfall estimates using the theoretical reflectivity more closely match

rain gauge observations than the R(Ah) parametrisation. The mean absolute percentage

differences for each method are 29% and 24% respectively, both of which are lower than

the difference when using corrected reflectivity alone or when using any of the methods

which utilise differential reflectivity for rainfall estimation. Removing St Clether and

Mary Tavy as in the previous two sections increases both the gradient and R2 for each

method, to 0.78 and 0.47 for R(Ah) and to 0.88 and 0.53 for R(Z(Ah)) and reduces the

mean absolute percentage differences to 25% (R(Ah)) and 21% (R(Z(Ah))).

Contrary to the expectation that R(Ah) would outperform R(Z(Ah)) these results suggest

that the derived reflectivity technique is more representative of the conditions during the

field campaign. Analysis of the temperature variation of the parameters in Equation

7.3 and in the theoretical derivation of Z from Ah shows this result to be temperature

invariant, and that the closest agreement between rain gauges and radar is obtained

for both methods when using the parameters for 20 ◦C although the average increase

in accumulation between 10 ◦C and 20 ◦C is only 0.5mm for the R(Ah) technique and

0.3mm for the R(Z(Ah)) method. These small changes in accumulations suggest that the

influence of temperature variation is negligible for this method of rainfall estimation as

has also been theorised by Wang et al. (2014), while Diederich et al. (2015b) noticed only

a slight variation when using a fixed temperature compared to a variable temperature

for each scan.
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Figure 7.19: Comparison of rain gauge total rainfall accumulation for the COPE field
campaign with rainfall as estimated by the NCAS mobile weather radar at an elevation
of 0.5◦ using R(Ah). Each of the panels y-axes shows the rainfall accumulations as taken
from the panels of Figure 7.18, A is R(Ah), B is R(Ah) with R(ZC), C is as B but with
R(Ah) only when path phase shift is greater than 4◦ and D is as C but with R(Z(Ah))
instead of R(Ah). Each blue cross represents the total for each of the EA rain gauge

sites. The dashed line in each panel is the one to one line.

Of the rainfall estimation methods explored in this Chapter the R(Z(Ah)) method pro-

vides the closest comparison to rain gauge observations provided missing data is in filled

with an alternative rainfall estimate (in this case R(ZC)). The R(Ah), R(ZC) and thresh-

olded R(ZC ,ZDR) methods are the next most reliable, depending on how they are judged

with R(Ah) having the lowest mean absolute percentage difference, R(ZCZDR) the gradi-

ent closest to 1 and R(ZC) the highest correlation. Each of the methods explored appears

to have an advantage in certain situations, R(Z(Ah)) provides good results when it is pos-

sible to estimate Ah well, R(KDP ) is beneficial during intense rainfall and when atten-

uation has introduced greater uncertainty into R(Z(Ah)) and R(ZC) while R(Z,ZDR) is

more resilient to attenuation in light to moderate rainfall events provided ZDR is reliable.
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Given the corrections applied to reflectivity, R(ZC) is producing good rainfall estimates

and is always required in light rainfall and those situations where it is not possible to use

the other methods, all of which leads to the expectation that merging each of these fields

depending on the observed conditions should provide a more reliable rainfall estimate

than the use of any one method. Dixon et al. (2015) and Cifelli et al. (2011) provide two

examples of this approach which combine estimators through the use of a decision tree or

through a weighting based on hydrometeor type certainty from a classification scheme.

The following section explores variations on these techniques which combine the rainfall

estimates using the accuracy of each method rather than the inferred rainfall type as

used in previous studies.

7.4 Combining rainfall estimates

The combination of multiple dual polarisation rainfall estimates should lead to a more

accurate rainfall product than using any one single approach and new techniques are

emerging which have shown this to be possible (Dixon et al., 2015; Cifelli et al., 2011).

None of these techniques have as yet made use of rainfall estimates from specific attenua-

tion, and given R(Ah) and R(Z(Ah)) were two of the best performing rainfall estimators

when compared to the rain gauges in COPE the following section explores two tech-

niques for incorporating these estimates into combined estimators that also use R(ZC),

R(ZC ,ZDR) and R(KDP ).

7.4.1 Methods of combining radar rainfall estimates

The first technique uses a simple decision tree to select the rainfall estimate which is

likely to have the best rainfall estimate with the lowest uncertainty, the process for

which is shown in Figure 7.20. The decision tree uses specific differential phase shift

where the path maximum phase shift is high, where possible, or when the predicted

rainfall rate from the other estimators exceeds 120mm/hour, it then prefers specific

attenuation based rainfall estimates where they are available to the other methods and

finally uses differential reflectivity in moderate rainfall where it is valid otherwise reverting

to corrected reflectivity. So for each range gate only one method is used, which is likely
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to be the most accurate estimate for that particular range gate. A second method is

to combine the estimates using a weighted average, where the weight for each rainfall

product is a function of factors which determine its accuracy and uncertainty.

Figure 7.20: Flowchart describing the decision tree required to select the most ap-
propriate rainfall estimator from the four methods available. Green arrows represent
answering yes to each decision (grey box) and orange arrows represent answering no.
The selected rainfall options are shown in the orange boxes. For this method a valid
R(ZC ,ZDR) is obtained in any case where the corrected differential reflectivity is greater
than 0.5 dB, while valid KDP requires the radar to have calculated KDP and it to have
a value greater than 0.5 (deg/km). The maximum ΦDP at a range gate represents the

highest smoothed phase shift up to that point along the radial.

The weighting for each of the dual polarisation rainfall estimates is based on the maximum

phase shift along the radial up to that point and the corrected reflectivity, the weighting

for R(ZC) is also based on the partial beam blockage correction, while R(ZC ,ZDR) also
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uses the corrected differential reflectivity. In the case of R(Z(Ah)) the theoretical reflec-

tivity is used in preference to the corrected reflectivity. Figure 7.21 shows the weights for

each of these four variables, with the total weight for each variable at every range gate be-

ing the multiplication of each weight calculated at that range gate, and the rainfall being

the weighted average of the four rainfall estimates. For example the weighting for R(ZC)

for an echo with a reflectivity of 50 dBZ, a radial maximum phase shift of 40 degrees and a

differential reflectivity of 0.4 dB in an unblocked region of the scan (PBB = 0dBZ) would

be 0.325 (1× 0.325× 1), while for R(ZC ,ZDR) it would be 0 (1× 0× 0), for R(KDP ) it

would be 0.75 (1× 0.75) and for R(Z(Ah)) it would be 0.5 (0.5× 1).

Figure 7.21: Weighting functions to calculate the weighted average rainfall from dual
polarisation at each range gate. Each of the dashed lines represents a rainfall estimation
method, red is R(KDP ), blue is R(ZC ,ZDR), black is R(ZC) and green is R(Z(Ah). Each
panel represents a different weighting factor for the rainfall, the top left is corrected
reflectivity (Z(Ah) for R(Z(Ah)), the top right is the maximum phase shift along the
radial so far, the bottom left is differential reflectivity and the bottom right is the
partial beam blockage correction applied to reflectivity. Total weightings for each rainfall

estimate are the product of the weightings shown here.
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7.4.2 Results of combining rainfall estimates

Both of the described methods of combining multiple dual polarisation rainfall estimates

have been applied to the COPE radar data, with total rainfall accumulations for each at

0.5◦ elevation shown in Figure 7.22 with the decision tree method yielding much higher

rainfall accumulations than the weighted average method. In the accumulation resulting

from the convective line which spans the peninsula to the south of the radar, both meth-

ods yield lower rainfall estimates than all of the previous estimates with the exception

of selective R(KDP ), showing the influence of R(KDP ) in these areas of the combined

estimates. Unfortunately, given the location of the rain gauges this effect is not visible

within the verification results.

Figure 7.22: Total rainfall accumulation for the COPE field campaign as measured
by the NCAS mobile weather radar at an elevation of 0.5◦ when using a combination of
rainfall estimators. Panel A shows the accumulation when using rainfall produced with
the decision tree method while B shows the accumulation when rainfall is estimated
using a weighted average of the available rainfall estimates. Each panel is a 300 km
square centred on the radar and contains the accumulation from 1131 valid scans across

the field campaign.

Comparison to rain gauges shows the combined method to have a gradient of 0.82 and

a correlation coefficient of 0.31, which is similar to each of the individual methods, and

its mean absolute percentage difference is 25% which is bettered only by the theoretical

R(Z(Ah)) approach. The weighted method has a much shallower gradient of 0.69 and

a correlation coefficient of 0.44, the highest correlation of any method used to estimate
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rainfall. The shallower gradient suggests the weightings are biased towards rainfall es-

timates which produce lower rainfall intensities and there is future potential to study

how changing the combination weightings influences the rainfall estimates provided, but

the high correlation between gauges suggests the method is producing consistent rainfall

estimates. Removing St Clether and Mary Tavy from the regression analysis improves

both estimates, with the decision tree having a gradient of 0.88, a correlation of 0.48 and

a MAPD of 21% while the weighted method has a gradient of 0.76, a correlation of 0.65

and a MAPD of 28%.

Figure 7.23: Comparison of rain gauge total rainfall accumulation for the COPE field
campaign with rainfall as estimated by the NCAS mobile weather radar at an elevation
of 0.5◦ using combined rainfall estimates. Each of the panels y-axes shows the rainfall
accumulations as taken from the panels of Figure 7.22, A is using the decision tree and
B is using the weighted average. Each blue cross represents the total for each of the EA

rain gauge sites. The dashed line in each panel is the one to one line.

While these results indicate combining radar estimates to form a single merged product

is viable, they do not suggest they provide more accurate rainfall representations than

just using the best single variable rainfall estimate available (R(Z(Ah)), at least for the

rain gauge locations. The previous schemes all combined ice phase estimates in addition

to liquid rainfall estimates, which is unnecessary for COPE given the location of the rain

gauges and the height of the melting layer during the project and it is in these condi-

tions, along with the high intensity convective events hinted at in the widespread total

accumulations that combined estimates are likely to have the greatest value. The esti-

mates provided here could potentially be improved through adjustment of the weighting



Chapter 7. Radar QPE 162

factors, or values used in the decision tree and objectively doing so is an further item for

exploration in future work.

7.5 Rainfall estimation conclusions

This chapter has covered the estimation of rainfall using a number of dual polarisation

estimators and also the more traditional use of horizontal reflectivity. Rainfall estimation

using horizontal reflectivity (Section 7.2) showed the following:

• The introduction of quality control and data correction through dual polarisation

methods significantly improves rainfall estimates from horizontal reflectivity

• The single biggest improvement to the accuracy of rainfall estimates from 0.5◦ elevation

scan is gained through the correction of partial beam blockage

• In the absence of PBB correction, it is better to use rainfall estimates from the

1.5◦ elevation scan, rather than the lower elevation

• Rainfall estimation in regions of ground clutter is inadequate, due to mixed echo

signals generating extreme rainfall intensities, and an alternative estimate should

be used in regions of persistent ground clutter

The introduction of a case study demonstrated the accuracy of R(ZC) in typical moderate

rainfall conditions, but introduced another source of error previously neglected in this

thesis, the vertical profile of reflectivity. Most vertical profile of reflectivity corrections

focus on correcting for the effects of the melting layer and differences between reflectivity

above and below it in stratiform and convective situations. Given the melting level

height during the field campaign was in excess of 2500m and the rain gauges were all

located within 50 km of the radar vertical reflectivity gradients were not considered as

all the rainfall estimates have been taken from the warm region below the melting layer

in which a zero gradient is usually prescribed. The example detailed however shows

a strong vertical profile of reflectivity below the melting layer, with a gradient of up

to -20 dBZ/km with very localised timing of initiation and development which makes

correction very difficult. Further research into both the atmospheric conditions observed
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and the development of a localised VPR correction for this case could lead to further

accuracy improvements and should be considered in the future.

Section 7.3 covered the use of dual polarisation estimators and showed the following:

• The most accurate method of rainfall estimation for the COPE field campaign is to

use specific attenuation transformed to reflectivity in conjunction with the UKMO

R-Z relationship where the total path phase shift is greater than 4◦ and R(ZC)

otherwise, which yields a mean absolute percentage difference compared to the rain

gauges of 24% for total rainfall accumulation during the field campaign.

• Rainfall estimated with specific differential phase is most reliable in intense rainfall

situations. This is advantageous as these situations are also those with the greatest

uncertainty for the other methods of rainfall estimation.

• The radars calculated KDP has a low spatial resolution, even in high intensity

rainfall situations, which leads to reductions in the peak rainfall estimated and

an alternative method of calculation could yield further improvements in R(KDP )

estimates.

• Use of R(Z,ZDR) estimates of rainfall is highly dependent on the accuracy of the

differential reflectivity measurements in light rainfall and the robustness of attenu-

ation correction in heavy rainfall. This can lead to significant errors in the rainfall

estimates for both light and heavy rainfall.

• Rainfall estimation using differential reflectivity has most value when attenuation

correction has not been possible in moderate rainfall events with low phase shift, as

the complementary nature of the horizontal attenuation and differential attenuation

lead to smaller errors in these estimates than when using uncorrected reflectivity

alone.

The above conclusions lend themselves to merging the rainfall estimates from each of

the dual polarisation parameters to reduce the uncertainty in the final rainfall estimate.

Section 7.4 covers two techniques for merging the estimates, one which selects the single

most appropriate estimate using a decision tree and one which combines the rainfall

estimates using a weighted average where the weighting for each estimate is a function
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of their perceived accuracy at that range gate. Total rainfall accumulations from these

methods suggest the following:

• Combining with a decision tree produces rainfall estimates which more closely

match the rain gauge totals, with accuracy very similar to using the single best

dual polarisation rainfall estimate.

• Looking beyond the rain gauge locations the decision tree method produces lower,

more realistic rainfall accumulations in the areas affected most by convective rainfall

during the campaign due to the inclusion of KDP estimates in these regions

• The weighted combination has the highest correlation with the rain gauge totals,

but underestimates more than any of the individual corrected methods

It is not clear whether the combination of rainfall estimates leads to more representative

rainfall totals than using a consistent single rainfall estimate given the rainfall data

available. The increased correlation observed for the weighted average combination could

be indicative of a reduction in uncertainty as a result of merging more than one estimate

however more optimal weights may lead to a closer fit between the radar estimates and

the rain gauges. One possibility is to use the fractional classification from a fuzzy classifier

to weight the different estimates as proposed by Dixon et al. (2015) and this should be

explored in the future in conjunction with a hydrometeor classification scheme for the

radar.

The decision tree based combined rainfall estimate is recommended as the most suitable

method of rainfall estimation for the COPE field campaign, given its performance in

relation to the rain gauges and during high intensity rainfall events. Future work is likely

to improve rainfall estimates by improving rainfall estimates in regions of persistent

ground clutter, by introducing vertical profile corrections within the sub melting layer

region and by improving the weighted combination of rainfall estimates. There are two

other notable areas of further work which will improve rainfall estimates, one is to improve

the spatial resolution of KDP in intense rainfall and the other is to explore the impact of

more advanced accumulation methodologies on the correlation between radar and rain

gauge observations.
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Synthesis

This thesis presents the processing chain for the NCAS mobile X-band weather radar,

the first of its kind in the UK with a view to continued implementation and improvement

of the processing chain on future field campaigns. The processing chain leverages the

dual polarisation radar moments available from the radar to undertake quality control,

data correction and rainfall estimation methods which are not possible with a single

polarisation radar.

The schematic in Figure 8.1 summarises the steps within the processing chain, indicating

where within this thesis each stage of the process lies. The process outlined includes a

two stage quality control process to remove second trip and non meteorological echoes,

which requires the generation of several new radar fields. After quality control the radar

reflectivity data is corrected for the effects of attenuation and partial beam blockage

using a simplification of the ZPHI methodology of Testud et al. (2000). Finally rainfall

estimates are generated using each of the available dual polarisation parameters and a

final rainfall product is derived which combines those estimates.

Throughout the development of this scheme several areas of uncertainty have been as-

sessed which impact on the final QPE obtained from the radar and the following chapter

summarises these findings, the main advantages of the processing chain and provides de-

tails of future research which will further improve the processing chain and make wider

use of the dual polarisation observations and QPE obtained from the radar during both

COPE and more recent field campaigns.

165
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Figure 8.1: Schematic overview of the radar processing chain developed in this these.
Yellow boxes represent new radar fields derived during the processing, while blue boxes
represent adjustment of existing radar fields. The flow applies to each individual file
within a dataset, with the exception of partial beam blockage calculations, which require
multiple files to obtain a correction (green box). Where each stage fits within the thesis

is indicated by the dashed and dot dashed boxes.



Chapter 8. Synthesis 167

8.1 Conclusions

Analysis of the radar data - requirements for the processing chain

In Chapter 4 the raw reflectivity data from the COPE field campaign is analysed using

long term statistics and the following systematic errors are identified:

• Persistent regions of ground clutter within the lowest elevation PPI indicated by

echo occurrence percentages in excess of 90% with average reflectivity greater than

40 dBZ

• Areas of significant beam blockage where azimuthal variation in echo occurrence

showed clear drops in the 0.5◦ elevation scan compared to higher elevation scans

• An abundance of low intensity echoes within 30 km of the radar which had a reflec-

tivity of below -1.4 dBZ

Each of these errors sources has required attention within the processing chain and has

driven its development, with ground clutter and low intensity echoes filtered in Chapter

5 and partial beam blockage corrected for in Chapter 6.

Chapter 4 also analyses long term statistics for the filtered reflectivity field available from

the signal processor, which was found to reduce but not remove the majority of ground

clutter signals due to it underestimating the intensity of clutter signals in dry conditions.

An individual example from Burn airfield also highlighted its tendency to reduce the

intensity of rainfall echoes along the zero velocity isodop. Both of these errors made it

beneficial to find an alternative method of clutter removal.

Quality control - successful removal of spurious radar echoes

Chapter 5 details the successful development of two quality control procedures for the

radar, the first of which removes second trip echoes using a combination of normalised

coherent power measurements from the radar and the median azimuthal difference in

phase shift, which is a new parameter derived for the filtering which takes advantage of

the staggered PRF operating during COPE. Removal of second trip echoes benefited the
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phase shift smoothing required in Chapter 6, leading to more accurate corrections of the

radar data for the effects of attenuation.

Chapter 5 also demonstrates the successful implementation of a fuzzy logic non meteo-

rological echo identification scheme with the following key features.

• Radial texture fields of reflectivity, differential reflectivity, phase shift and correla-

tion coefficient were calculated to aid identification of spurious echoes

• The radial implementation improved computation time and a novel parametric

correction was applied to these fields to account for the increasing natural variation

in ΦDP , ZDR and ρhv with range

• Membership functions were derived using limited training data, allowing future

expansion of the method to include other spurious echo types

• Testing at Burn airfield showed the method to be transferable to new locations

Despite the success of the scheme there are examples of erroneous data removal, typically

in convective cells and within and above the melting level which indicate expansion of

the fuzzy logic scheme is required. The introduction of additional meteorological classes

in the future should resolve these issues as they relate to meteorological echoes with dual

polarisation signatures that do not fit within the existing classes or more closely resemble

ground clutter rather than precipitation.

Reflectivity correction - the greatest source of uncertainty

Chapter 6 covers the correction of the radar reflectivity and differential reflectivity fields

for two beam propagation effects, attenuation and partial beam blockage using both the

linear approach and a modified implementation of the ZPHI approach.

Both corrections utilise differential phase shift and the radar’s signal processor output

of this data is extremely noisy in its raw form and effected by second trip echoes in

its smoothed form requiring a new filtering methodology to be developed. The filtering

methodology builds on the iterative approach of Hubbert and Bringi (1995) but introduces

two new approaches, the first being to use ρhv as a weighting parameter in the moving
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average and the second being to use two iterations with variable filter length, the first to

identify and remove backscatter differential phase and the second to smooth the remaining

data at a finer spatial resolution.

The implementation of corrections for attenuation and beam blockage has led to the

following conclusions:

• The ratio parameters α and β, which define the ratio of specific differential phase

shift to attenuation (horizontal and differential) are the biggest source of uncertainty

in the correction calculations

• Using the ZPHI methodology for attenuation correction reduces the uncertainty

caused by α along the majority of the radar beam when compared to using the

linear method of attenuation correction

• The specific attenuation generated by the ZPHI method can be utilised to correct

for beam blockage with stable results requiring a large number of observations

• The beam blockage correction calculated is immune to the uncertainty in α provided

the data sample is large and the radar has been calibrated by alternative means

Chapter 6 shows that using dual polarisation to correct for attenuation and beam block-

age is possible despite the uncertainties inherent within the corrections and Chapter 7

confirms that these corrections have a beneficial impact on rainfall estimates despite these

uncertainties.

Rainfall estimation - uncertainty reduction through dual polarisation

The rainfall estimates derived in Chapter 7 provide the following conclusions:

• The radar processing chain greatly improves performance of rainfall estimates gen-

erated from horizontal reflectivity, with the mean absolute percentage difference

to rain gauge accumulations reducing from 86% for raw data to 31% for the fully

corrected reflectivity

• Without full correction for PBB and attenuation it is better to use higher elevation

reflectivity data than the 0.5◦ data
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• Rainfall estimated using a theoretical conversion of specific attenuation to reflec-

tivity provides the most accurate rainfall estimates of any of the dual polarisation

variables, with a MAPD of 24%

• Specific differential phase (KDP ) produces the rainfall estimates with the least

uncertainty in areas of high intensity rainfall, but has large uncertainty at low

rainfall rates due to estimation errors

• Combining multiple rainfall estimates improves performance in high intensity rain-

fall due to the inclusion of KDP while maintaining performance in lower rainfall

intensities by using specific attenuation and reflectivity (MAPD of 25%)

During Chapter 7 several improvements and extensions to the processing chain are noted,

including the requirement to improve rainfall estimation in regions of persistent ground

clutter, the benefit of hydrometeor classification for the merging of rainfall estimates,

improving the radars estimates of KDP and the potential application of quasi-vertical

profiles of radar moments for vertical gradient correction. The following section expands

on these areas further, introducing the concepts to stimulate future research into these

areas with the mobile X-band radar.

8.2 Future work

The following section introduces opportunities for future work which develop from this

thesis, the first three of which are aimed more towards further improving the processing

chain of the radar, while the remaining two have a more outward focus on other aspects

of radar hydrometeorology. In practice each method can be beneficially applied to both

radar processing and atmospheric science providing improvements in both QPE and

process understanding.

8.2.1 Merging QC reflectivity with radar filtered reflectivity

A potential improvement to the radar processing chain would be the inclusion of data

from the radar filtered reflectivity product where appropriate. Chapter 4 showed the

radar filtered reflectivity had two issues, the first being an under removal of ground
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clutter returns in dry conditions and the second being removal of rainfall along the zero

velocity isodop. As ground clutter signals have been identified using the fuzzy classifier

one potential approach would be to derive a fixed clutter map based on the reflectivity

data, the reflectivity signal for which would be set to invalid where the classifier identifies

ground clutter but to the radar filtered reflectivity where a rainfall echo is identified. This

approach would improve the reflectivity measurements in mixed echo type conditions

where both a ground clutter and rainfall echo are combined. A further extension of

this could then be using the radar filtered reflectivity in conditions where the fuzzy

classifier has identified a ground clutter echo outside of the clutter map, which could

improve performance when meteorological echoes have a similar signature to ground

clutter echoes, such as in narrow convective cores with high reflectivity and rapid spatial

variability.

8.2.2 Expansion of the fuzzy logic scheme

The expansion of the fuzzy logic classification scheme to include different hydrometeor

types including graupel, wet snow, hail and ice will lead to improvements in false classifi-

cation during quality control and has the potential to improve rainfall estimates through

selective combination of the moments used depending on the main echo signatures iden-

tified within a range gate. Existing classification schemes at X-band exist in the USA

based on the theoretical simulation of dual polarisation moments using T-matrix scat-

tering simulations (Schneider et al., 2013; Dolan and Rutledge, 2009). Modification of

the membership functions in these schemes to fit the fuzzy logic framework defined here

is one possible route to an expanded classification scheme while another option is to

empirically define new functions based on the observations obtained during COPE and

the additional field campaigns listed in Appendix B. Given many hydrometeor classifi-

cation schemes require a temperature profile to determine the difference between liquid

and solid phase precipitation there may be the need to incorporate external data into the

processing chain. Alternatively melting layer identification techniques could be applied

to the radar data, particularly to the QVP analysis noted later in this Chapter, to de-

fine the 0 ◦C height which is required by these schemes. The introduction of hydrometeor
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classification to the fuzzy logic scheme also has the potential to improve atmospheric pro-

cess studies through the comparison of radar derived hydrometeor type with modelled

hydrometeors and aircraft observations.

8.2.3 Estimating KDP with increased spatial resolution

The current radar estimates of specific differential phase shift have low spatial resolution

as a result of the smoothing undertaken in their production. This low resolution leads to

the underestimation of peak rainfall when using KDP and offsets between regions when

merging multiple rainfall estimates together. Alternative schemes exist for the calculation

of KDP which advocate a variable length window for calculation of the gradient of ΦDP

which decreases (increases) in length when reflectivity is high (low) and these could be

tested as a first alternative for KDP estimation with the mobile radar (Brandes et al.,

2001). Increasing the spatial resolution of KDP will improve rainfall estimates and allow

better process studies in convective cells where the gradients currently calculated are

unrepresentative of the rates of change occurring across a small distance. Another option

to explore is the modification of the new smoothing methodology for ΦDP developed

in this thesis, which currently uses two window lengths. Dynamic adjustment of these

filter lengths based on reflectivity values could lead to improved KDP estimates in light

rainfall through an extension of the filtering window in these regions which will reduce

the uncertainty in low values of KDP .

8.2.4 QVP

Quasi vertical profiles (QVP) of radar variables are an emerging method of visualising

dual polarisation radar data which use azimuthal averaging to reduce the measurement

uncertainty of dual polarisation moments and create a representation of the vertical

structure of stratiform storms (Kumjian et al., 2016; Ryzhkov et al., 2016; Schrom and

Kumjian, 2016). During Chapter 7 QVP of reflectivity were used to successfully identify

the cause of radar underestimation of ground rainfall during a period of low intensity post

frontal precipitation, though not to correct explicitly for the error due to local variations.

The application of QVP to case studies to improve our understanding of cloud micro-

physics has great potential as a future application of the mobile radar, while QVP will
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also be useful for numerical weather model evaluation. Figure 8.2 provides an example of

QVP showing the changing height profile of three dual polarisation moments (horizontal

reflectivity, differential reflectivity and the co-polar correlation coefficient) along with a

true vertical profile of Doppler velocity from the recent radar deployment during RAINS

(see Appendix B). Though none of the radar parameters have been corrected there are

some clear signals in the height profiles beyond the obvious delineation of the melting

layer including the change in differential reflectivity above the melting layer, which ap-

pears to be linked to echo top height and also decreases of the correlation coefficient

within the melting layer and broadening of its structure linked to the highest sub melting

level reflectivity. The investigation of these observations and others from COPE, RAINS

and other radar field campaigns will be a fascinating future application of the radar data

processing described in this study and will link strongly to the hydrometeor classification

work described earlier in this chapter.

8.2.5 Hydrological modelling and uncertainty

An original intention of this thesis was to incorporate dual polarisation radar estimates of

rainfall into hydrological models to develop an understanding of the uncertainty in flow

simulations driven by radar input. To undertake this research data from the Bealsmill

river gauge (Section A.3) was obtained for the COPE field campaign, along with river

level and UKMO network radar data from the preceding summers to allow calibration

of a rainfall-runoff model. Unfortunately the nature of the mobile radar deployment site

in Cornwall prevented continuous operation of the radar, making river runoff modelling

impossible without splicing together data records and the summer was particularly dry,

leading to only a single example of elevated river levels at the gauging site over the

course of the field campaign. Preliminary research presented at international conferences

suggested that the parametric uncertainty within hydrological models is as significant as

the uncertainty in radar rainfall estimates and that further connected studies combining

the two sources of uncertainty would be beneficial (Dufton et al., 2014; Dufton and

Collier, 2013). Although these studies are not possible using the data from the COPE

field campaign, the data obtained during the RAINS campaign (Appendix B) in 2016

will provide an excellent opportunity to revisit this research in the future.
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Figure 8.2: Quasi vertical profiles of reflectivity (top panel), differential reflectivity
(second panel), correlation coefficient (third panel) and true vertical profile of radial
velocity (bottom panel) from 24 July 2016 during the RAINS field campaign. Data from
a 20◦ elevation PPI scan has been averaged azimuthally and projected onto a vertical
plane to represent the vertical structure of the precipitation system. Vertical data is an

average of a bird bath 90◦ scan obtained immediately after each PPI volume.

8.3 Final synthesis

This thesis develops the NCAS X-band dual polarisation mobile weather radar’s pro-

cessing chain to allow generation of accurate quantitative precipitation estimates for the

COPE field campaign. The processing chain leverages dual polarisation radar moments

to quality control the radar data using a fuzzy logic classifier, correct the data using a

modified version of the ZPHI method and to generate multiple rainfall estimates. The fi-

nal rainfall estimate derived for the field campaign combines the dual polarisation rainfall

estimates to reduce uncertainty in both light and heavy rainfall using a logical decision
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tree. Several areas of improvement for the processing chain have been identified and

presented as potential areas of future work, along with two new areas of research this

thesis can complement (QVPs and hydrological model uncertainty).





Appendix A

Appendix A: The COPE field

campaign

The information in this appendix relates to the COPE field campaign and details the

scan strategies used by the mobile radar, the location of EA rain gauges in relation to

the radar deployment site and the location of the EA river level gauge at Bealsmill.

A.1 Radar scan strategy during COPE

During COPE a number of different scan strategies were employed. The following section

describes the operations on each day, with scans not covered in Section 3.2 explained in

detail. Also noted are periods when the COPE scans were operating but with a slight

adjustment in settings due to human error.

2013-06-20 and 2013-06-27

One the first two days of the campaign scans with very similar characteristics to COPE10

were operating, with the filtering settings on the radar being adjusted to identify and

optimum approach. 76 scans were collected in total, 70 on the 20 June and 6 on the 27

June.
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2013-07-01

16 scans were collected all using a testing volume which contained 5 elevations (0.5, 1, 2,

3, 5◦ ), with 300m gate spacing, 164 gates per radial, a PRF of 500Hz and a pulse width

of two microseconds. These scans were testing an option for clear air scanning with the

radar.

2013-07-02 and 2013-07-03

84 scans were collected on 2 July and 47 on 3 July all testing COPE10,

2013-07-04

Between 09:47 and 12:45 37 scans were collected testing COPE10, after which 25 clear

air scans were collected containing 4 elevations (0.5, 1, 2 and 3◦ ), with 332 gates at 300m

spacing with a PRF of 500HZ and a pulse length of two microseconds. At 15:11 these

scans were changed to a pulse length of one microsecond and 664 gates per radial at

150m spacing and 10 of these scans were collected.

2013-07-05

More clear air testing was done, with 55 scans collected. Throughout the day the pulse

length of the radar changed between one and two microseconds with the gate spacing

varying accordingly (150m and 300m), the remaining scan parameters were as per the

clear air scan described in Section 3.2.

20130716 and 2013-07-17

COPE clear air operated on both these days, with 46 scans collected on 16 July and 48

scans collected on 17 July.
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2013-07-18

COPE clear air was operated for the first 14 scans of the day, starting at 08:48 before

switching to COPE10 (first scan at 10:22). Four COPE10 scans were collected before a

change was made such that COPE10 was running but with only 993 gates per radial at

150m spacing (10:38), a change which persisted throughout the day in all COPE variant

scans collected. At 11:11 COPE30 was activated, with 4 scans collected before switching

back to COPE10 for another 13 scans. At 12:20 the scans were switched to COPE20,

before increasing the maximum elevation again at 12:41 (COPE30) and again at 12:49

(COPE40). At 13:09 a new scan (X1) was introduced containing 15 elevations with a

maximum elevation angle of 45.5◦ as convective cells were observed closer to the radar and

a single scan was collected. A further adjustment was made (X2) to have more consistent

elevation spacing with a maximum at 42.5◦ . After 2 of these scans were collected the

radar was switched back to COPE10 (993 range gates) for 6 scans, then to COPE20 for

1 scan and back to X2 for a further 4 scans before a final switch back to COPE10 for the

last 13 scans of the day.

2013-07-23 to 2013-07-31

After the repeated changes on 18 July the radar operated only in COPE10 mode for the

next 6 active days in July (23, 25, 27, 28, 29 and 31) but was returned to having 1000

range gates per radial at a spacing of 150m. 388 scans were collected over these 6 days.

2013-08-02

The radar collected 41 scans using COPE10 between 09:55 and 13:34 before changing to

COPE30 for two scans. After these two scans an azimuth spacing error was introduced

to the COPE30 scans with 401 azimuths collected per sweep at 0.9◦ spacing (compared

to 361 at 1◦ spacing). The radar collected 8 scans using COPE30 with the azimuth

error before switching to COPE10 at 14:25 with no errors. 15 scans were collected with

COPE10 before COPE30 (with error) was resumed for 2 scans, then 10 scans at COPE20

(normal) and a final 22 scans were then collected at COPE30 with azimuth error.
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2013-08-03

71 scans were collected on 03 August starting with 27 COPE10 scans. Then a single

scan with only 9 elevations, before a single COPE10 scan and then a COPE10 scan with

an azimuth error (3434 radials for 10 elevations). Normal COPE10 then resumed for 26

scans before a switch to COPE20 at 14:36 after which 14 scans were collected.

2013-08-05

The radar scanned using COPE10 for the first 11 scans of the day, then collected 18

scans at COPE20 (12:13 to 13:38) before switching back to COPE10 for 13 scans (13:43

to 14:42), then back to COPE20 for 5 scans (14:47 to 15:05) and back to COPE10 for

the last 4 scans of the day.

2013-08-06

The first 8 scans of the day were using the COPE clear air strategy before switching to

COPE10 for the remainder of the day (69 scans).

2013-08-14 and 2013-08-15

The radar operated only in COPE10 in these two days, collecting 56 scans and 72 scans

respectively.

2013-08-17

This was the final day of data collection for the COPE field campaign and the radar

started the day scanning using COPE10 at 07:31 before switching to COPE20 at 08:56

after 17 scans had been collected. 9 scans were then collected using COPE20 before the

radar was switched back to COPE10 for the remainder of the day collecting 86 more

scans.



Appendix A. COPE field campaign 181

A.2 Location of rain gauges relative to the mobile radar

The following table provides the name and location (relative to the radar) of each of the

20 Environment Agency rain gauges for which data was obtained for the duration of the

COPE field campaign.

Table A.1: Location of the Environment Agency rain gauges relative to the position
of the radar. Both references are given to provide the location of the nearside corner
of the range gate in which the rain gauge is located, for example 1◦ azimuth means the
rain gauge is located between 1◦ and 2◦ in azimuth and 12.3 km means the rain gauge

lies between a range of 12.3 km and 12.45 km.

Rain gauge Azimuth Range (km)
Bastreet 134◦ 12.3
Bodmin 202◦ 20.4
Crowford 44◦ 19.35
De Lank 195◦ 8.85
Lanreath 175◦ 28.5
Lee Moor 119◦ 47.7
Luxulyan 202◦ 29.1
Mary Tavy 101◦ 36.0
Newquay 232◦ 42.6
Otterham 1◦ 4.35
Roadford 80◦ 27.15
St Cleer 151◦ 20.25
St Clether 84◦ 5.7
St Columb 229◦ 32.55
Stoke Climsland 118◦ 22.8
Tamar Lakes 28◦ 29.1
Trebrown Blackadon 151◦ 28.05
Trefrida 24◦ 11.55
Wadebridge 233◦ 20.7
Werrington 84◦ 17.85

A.3 River level stations

The EA in England also maintains a wide network of river level and flow monitoring

sites. To allow future assessment of the impact of radar rainfall estimates on hydrological

simulations data for the River Inny at Bealsmill were obtained from the EA to cover

the period of the COPE campaign. The Inny catchment upstream of Bealsmill lies to

the south east of Davidstow with the radar deployment site in the headwaters of the

catchment. The catchment lies wholly within 25 km of the radar and covers 105 km2
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(Fig. A.1). The monitoring station is a broad crested weir, with the rating curve most

recently recalibrated in December 2009.

")

$+

Figure A.1: Location of the Bealsmill river gauge (yellow pentagon) in relation to the
Davidstow radar deployment site. Range rings are at 10 km and 25 km.
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Appendix B: Other radar

deployments

Since the completion of the COPE field campaign the radar has been deployed on several

additional field campaigns, all of which have provided data that will be beneficial in

further testing and improving the processing chain developed during this thesis. These

campaigns include ICE-D in Cape Verde, SESAR in Germany and RAINS in Scotland,

all of which are shown on the map in Figure B.1 and described in turn in the sections

below.

B.1 ICE-D

The Ice in Clouds Experiment - Dust (ICE-D) field campaign took place in August 2015,

sited on the island of Praia, Cape Verde. The primary aim of the project was to examine

the influence of Saharan dust on cloud microphysics and precipitation development, in

both convective and stratiform clouds. To this aim the BAe-146 research aircraft flew

from Praia collecting in-situ measurements of dust and cloud hydrometeors, while the

mobile X-band radar was deployed on Praia, along with ground based aerosol instrumen-

tation. The mobile radar operated a near continuous scan cycle, collecting volume scans

at five minute intervals between 3 August and 25 August 2015. Some testing data was

also collected in the week preceding 3 August. During the campaign the radar gener-

ally operated a default volume scan containing a low elevation (1◦ ) surveillance scan to
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Figure B.1: Location of NCAS mobile weather radar deployments since 2013. COPE
is shown by the red star, Burn by the black triangle, ICE-D by the yellow circle, SESAR

by the green pentagon and RAINS by the white square.

300 km range and 12 scans to 150 km range (1◦ to 10◦ in 1◦ intervals and then a 12◦ and

15◦ scan). Data from the campaign will be used in the future to validate and improve

the attenuation correction procedures applied in Section 6.2.2 and to investigate the use

of quasi-vertical profiles of dual polarimetric variables for visualising changes in cloud

microphysics through time (Section 8.2.4).

B.2 SESAR

SESAR (Single European Sky ATM Research) is the technical pillar of the Single Euro-

pean Sky project initiated in 2004 by the European Commission. As part of that project

the mobile radar was deployed by Selex ES GmbH (on loan from NCAS) in collaboration

with the German Aerospace Centre (DLR) at Braunschweig airport in northern Germany,

contributing to a unique set of meteorological sensors being piloted for use in air traffic

management. During the project the radar operated a continuous scan strategy from
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27 January 2015 to 18 May 2015, using a volume scan containing 10 sweeps at varied

elevations up to 90◦ (1◦, 2◦, 3◦, 5◦, 7◦, 12◦, 20◦, 30◦, 60◦ and 90◦), with rapid antenna

rotation speeds of up to 36 ◦ s−1. Data from the high elevation sweeps will be used for

the analysis of quasi-vertical profiles of dual polarimetric variables (Section 8.2.4).

B.3 RAINS

The Radar Applications in Northern Scotland (RAINS) project is an ongoing collab-

oration between NCAS and the Scottish Environmental Protection Agency (SEPA) to

improve rainfall observations in northern Scotland where UKMO national radar coverage

is sparse. As part of the project the NCAS mobile radar was deployed at Kinloss from

January 2016 to August 2016 operating on a continuous basis. Volume scans were col-

lected at sub 5 minute intervals and includes 12 elevation angles from 0.5◦ to 30◦ (0.5◦ ,

1◦ , 1.5◦ , 2◦ , 3◦ , 4◦ , 5◦ , 6◦ , 7◦ , 10◦ , 20◦ and 30◦ ) while also including a 90◦ birdbath

scan. The data collected (>50000 volume scans) will provide valuable dual polarisation

data for both radar QPE analysis and microphysical studies of precipitation above the

melting layer.
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