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Filamentary plasma eruptions in tokamaks

Abstract

The nonlinear MHD ballooning model [1–3] is exploited for two distinct studies: firstly,
the interaction of multiple filamentary eruptions in magnetised plasmas in a slab geometry
is investigated and secondly, this model is examined quantitatively against experimental
observations of ELMs in MAST and JET-like geometries.
The model consists of two differential equations which characterise the spatial and tem-
poral evolution of the displacement: the first differential equation describes the displace-
ment along the field line, the second differential equation is a two-dimensional nonlinear
ballooning-like equation which is often second order in time, but can involve a fractional
derivative in a tokamak geometry.
Filaments always evolve independently in the linear regime and equally sized filaments
evolve independently in the nonlinear regime. However, we find that filaments with vary-
ing heights interact with each other in the nonlinear regime: Smaller filaments are slowed
down and eventually are completely suppressed by the larger filaments which grow faster
due to the interaction. This mechanism is explained by the down-draft caused by the
nonlinear drive of the larger filaments which pushes the smaller filaments downwards.
To employ the second differential equation for a specific geometry one has to evaluate the
coefficients of the equation which is non-trivial in a tokamak geometry as it involves field
line averaging of slowly converging functions.
The coefficients of a Type I ELMy equilibrium from MAST and a Type II ELMy JET-like
equilibrium have been determined. In both cases the two coefficients of the nonlinear terms
are negative which would imply imploding rather than exploding filaments. By changing
the equilibrium the signs of these coefficients can be inverted. This suggests that either the
nonlinear Ballooning model does not capture the behaviour of Type I and Type II ELMs,
or that the calculation of the coefficients are too sensitive to a given equilibrium.
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1. Introduction

1.1. Motivation: CO2, climate change and energy demand

The carbon dioxide (CO2) concentration in the atmosphere has reached its highest histor-

ical level since the Industrial Revolution, see Fig. 1.1. The global temperature has also

increased, which is a symptom of climate change, also called global warming, see Fig. 1.2.

It is very likely that the major cause for the increase in temperature is carbon dioxide and

(a) The data presented are reconstruction from
ice cores. Shown are the ice age cycles in
CO2. The minima indicate ice ages. see [9]
and [10].

(b) The monthly mean CO2 which is globally
averaged over marine surfaces sites is dis-
played, see [10]

Figure 1.1.: Global mean CO2 development in the atmosphere.

other greenhouse gas emissions [13]. This change in temperature and therefore the climate

has ramifications such as extreme weather conditions, therefore it must be a priority for

the world to decrease CO2 emissions. The high increase of carbon dioxide concentration is

mainly due to burning fossil fuels such as coal, oil and natural gas for energy production

and transportation [14]. Additionally, the world’s energy demand is quickly rising, and

could increase by 33% by 2040 [15]. Therefore, it is necessary to develop energy sources

which have reduced or no CO2 emissions. Solutions could involve an increased use of fission

1



1.1. MOTIVATION: CO2, CLIMATE CHANGE AND ENERGY DEMAND
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Figure 1.2.: Increase of the global mean temperature over the last 130 years, see [11] and [12].

power and renewable energy sources, since they do not produce CO2. However, both of

these have disadvantages.

LLLLL LLL LLL Renewable energy sources depend highly on the weather (solar panels

need sun, wind turbines need the right wind speed, etc) and hence they do not always

deliver a steady supply of energy. This intermittency means renewables are insufficient to

meet the energy demand without the development of energy storage or the use of supple-

mentary energy sources. Additionally there are debates on whether exclusively renewable

energy sources can deliver enough energy for the human demand [16, 17]. The main dis-

advantages of fission power stations are the long lived radioactive waste they produce and

the potential safety risk (e.g. melt down).

Since both renewable energy and fission have drawbacks, it is advisable to explore other

options. Fusion as an energy source has very good features: it has no CO2 emissions and

the readily available fuel would be sufficient to provide energy for thousands of years. Ad-

ditionally it has the advantage over fission power that it could only produce short lived

radioactive waste, and with the current power plant designs it is not vulnerable to human

failure or natural disasters [18].

2



1.2. NUCLEAR FUSION

1.2. Nuclear fusion

The mass of an atomic nucleus is less than the sum of the masses of its isolated nucleons

(protons and neutrons). The mass m is related to the energy E by E = mc2 where c is the

speed of light, and the difference in mass measured when forming an atom corresponds to

the binding energy EB which would be needed to separate the nucleons. The experimental

observed relation between the binding energy per nucleon and the number of nucleons A

in an atom is presented in Fig. 1.3. The element iron (A = 56) represents the maximum

Figure 1.3.: Binding energy EB per nucleon versus number of nucleons in an atom A [19].

of this curve, which means that its nucleus is the most tightly bound. With this plot one

can understand why fusion and fission can provide energy. If one splits atoms which are

heavier than iron into two elements, one moves from the far right of the plot towards iron.

The difference in energy is the energy release per nucleon one gains during this process

which is called fission. On the other side, if one fuses two elements which are lighter than

iron, the difference in the binding energy is released and therefore one can also gain energy.

With this figure it also becomes clear why the energy release per nucleon for fusion is larger

than for fission since there are larger differences in the binding energy.

The fusion reactions with high cross sections σ (which means they are more likely to happen
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than other reactions) are as follows:

D + D −→


3He + n +3.3MeV(50%)

T + p +4MeV(50%)

D +3He −→4He + p + 18.4MeV

D + T −→4He + n + 17.6MeV

where D stands for deuterium, a hydrogen isotope with one additional neutron, T denotes

tritium, the hydrogen isotope with two additional neutrons, n indicates neutrons, p stands

for protons and the numbers next to the He (Helium) indicate how many nucleons there

are in the helium isotope. The energy displayed after the reaction is the released energy.

We understand now why we can gain energy through fusion, but why does it not happen

frequently if it causes a more optimised state of energy? The reason is the repulsive

Coulomb force between protons, see Fig. 1.4. This force has to be overcome first before

Figure 1.4.: A sketch of potential energy for deuterium - tritium.

nucleons fuse together, which means that the nuclei must come very close to each other.

It is not necessary to actually overcome the barrier as the particles can tunnel through it

if they have high enough energy, which is a quantum effect. The probability of tunneling

is proportional to exp

(
−2πZ1Z2e

2

~v

)
where Zi is the charge of the reacting particle and v

is the relative velocity [20]. Therefore the tunnelling, and with it fusion, can be achieved
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at high enough temperatures.

The reaction rate of fusion, which indicates the likelihood of a reaction, is proportional to

〈σν〉, which is displayed in Fig. 1.5. It is clear from Fig. 1.5 that the D-T reaction is more

likely than the others at the considered temperatures. Additionally it produces the second

Figure 1.5.: 〈σν〉 versus temperature for D-T, D-D and D-3He [21]

highest amount of energy per reaction compared to the other reactions presented before.

This makes the D-T reaction a promising candidate for fusion devices. Another important

feature is how available and lasting the fuel is. Deuterium can be easily extracted from

ocean water, however, tritium is rarer as it is radioactive with a half life of 12.26 years

with the following decay process:

T −→3He + e− + νe

where νe is an electron antineutrino. During the D-T reaction a fast neutron is created

with 14.1 MeV kinetic energy and a He-atom with 3.5 MeV. This fast neutron can be used

in combination with lithium to breed tritium:

n(slow) +6Li −→4He + T + 4.8MeV

n(fast) +7Li −→4He + T + n− 2.5MeV

5



1.2. NUCLEAR FUSION

Natural lithium consists of 7.4% 6Li and 92.6% 7Li [19]. However, the 7Li reaction needs

energy to be initiated and one finds that the 6Li reaction is the dominant reaction in

fusion relevant conditions [19]. With this in mind one can build a fusion power plant

with a lithium coated wall to provide the required tritium and with that the fuel for D-T

reactions would last for thousands of years.

The state of matter we are interested in to achieve fusion is plasma which is an ionised gas

and will be described further in Sect. 1.3. The energy W in the plasma is roughly given

by

W =

∫
3nTdV

where n is the density, T is the temperature and V the volume of the plasma. We denote the

energy lost from the plasma as PL, the energy used for external heating as PH and the en-

ergy gained from the α particle produced during the D-T reaction as Pα =
∫

1
4n

2 〈σv〉EαdV

where Eα is the energy of an α particle. One can define the confinement time, which is a

parameter describing how well the plasma is confined, as:

τE =
W

PL

The power balance for a steady state plasma is:

PL = PH + Pα

The point when no external heating is needed is called ignition. This means PH = 0 and

we obtain: ∫
1

4
n2 〈σv〉EαdV =

∫
3nTdV

τE

Estimating the density and temperature to be constant we obtain the ignition condi-

tion [22]:

nτE >
12T

〈σv〉Eα
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where the dependency of 〈σv〉 on the temperature is presented in Fig. 1.5. One can

approximate this behaviour in the range of 10− 20keV :

〈σv〉 ≈ 1.1× 10−24T 2m3s−1.

where the temperature T is measured in keV. With Eα = 3.5MeV we obtain the ignition

condition for temperatures in the range of 10− 20keV :

nTτE > 3× 1021m−3keV s

With this condition it becomes clear that the triple product of density, temperature and

confinement time must be large. This allows some freedom to achieve fusion; for example

one can choose a very high density and short confinement time (used in inertially confined

fusion) or a very high confinement time but low density (used in magnetically confined

fusion).

A common measure of the energy produced in a plasma is the parameter Q defined as

Q =
Pfus
PH

where Pfus is the thermonuclear power produced in the plasma. Pfus is five

times higher than Pα. Therefore we can write

Q =
5Pα
PH

.

There are several important values of Q representing important plasma conditions. Ignition

is equivalent to Q→∞. Another important value of Q is Q = 1 which indicates the state

when the heating power is the same than the thermonuclear power produced due to fusion.

This is called break-even.

1.3. Plasma physics

Sustainable fusion requires the fuel to be in a state of matter called plasma to obtain the

required triple product. A plasma is an ionised gas with some additional characteristics.

It has to be quasi-neutral which means that there are approximately as many positively as

negatively particles in a volume element. Furthermore charge exchange, which is the pro-

cess when a neutral particle and a charged one collide and become charged and neutralised
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respectively, is not too frequent. This just means that the particles remain charged for

long enough to behave significantly different than a gas [23].

It is very useful to consider a single charged particle first to understand the behaviour of

plasmas. The force acting on a charged particle in a given magnetic field B and electric

field E is the Lorentz force F :

F = q (E + v ×B)

where q is the charge of the particle and v is its velocity. Ignoring the electric field and

assuming that the magnetic field has only one component pointing in the z direction

(B=Bz) one obtains an orbit around the magnetic field lines for the particle (see Fig. 1.6):

v = v⊥ (sin(Ωt)x+ cos(Ωt)y) + v‖z

where v⊥ =
√
v2
x + v2

y is constant in an homogeneous magnetic field and Ω is the cyclotron

or (gyro-) frequency given by:

Ω =
qB

m

where m is the mass of the particle. The parallel component of the velocity v‖ is never

Figure 1.6.: Orbital path of positive and negative charges. For electrons the Larmor radius is much
smaller than for protons. Additionally they rotate in opposite directions around the
magnetic field line because Ω depends on the charge.

affected by a homogeneous magnetic field as its force only influences the perpendicular

components. The radius of the particle orbit around the magnetic field lines is called

8



1.3. PLASMA PHYSICS

Larmor radius rL:

rL =
v⊥
Ω

In a homogeneous, straight magnetic field without electric fields, a particle simply follows

the magnetic field line. However, there are effects which lead to a change of direction, or

drift of particles.

The most common particle drifts are:

E ×B-drift: vE×B =
E ×B
B2

(1.1)

curvature drift: vc =
mv2
‖

qB2

Rc ×B
Rc

(1.2)

∇B-drift: v∇B =
1

2
rLv⊥

B ×∇B
B2

(1.3)

where Rc is the radius of curvature vector which points away from the centre of curvature

and Rc is its magnitude. The sign of the curvature and ∇B drifts depend on the sign of

the charge which therefore can cause charge separation. However, the E × B-drift is the

same for both positive and negative charged particles.

1.3.1. Magnetic confinement

Magnetic confinement fusion (MCF) is the approach to obtain fusion through the use of

magnetic coils to achieve good confinement of plasma at fusion relevant temperatures and

densities.

Two useful quantities to understand MCF are the magnetic moment µ and the total energy

E since both quantities are conserved. The magnetic moment is given by

µ =
mv2
⊥

2B

and the total energy is:

E =
1

2
mv2 + qφ

where φ is the electrostatic potential and v2 = v2
⊥ + v2

‖. With these two expressions we

can obtain a condition for the turning point of charged particles in a magnetic field with

spatially varying magnetic field strength. We begin by neglecting the electric field and
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assuming a particle moves in the z-direction with a starting velocity v0 in a region where

the magnetic field is initially B0 towards a stronger magnetic field B. Exploiting the

expressions for the magnetic moment leads to:

v2
⊥ =

B

B0
v2
⊥0

and from the energy conservation neglecting φ we obtain:

v2
‖ = v2

0

(
1− B

B0

v2
⊥0

v2
0

)

When v2
‖ changes sign the particle turns around since the velocity cannot be imaginary.

This turning point is at a magnetic field strength given by:

B =
B0 v

2
0

v2
⊥0

This process of reflecting particles due to a stronger magnetic field is called a magnetic

mirror. This effect can be used to confine the plasma, which has been done before in linear

mirror devices, see Fig. 1.7 which shows a sketch of a simple linear mirror. However, we

Figure 1.7.: A mirror with two sets of coils such that the plasma is confined in between [19].

can determine the maximum magnetic field strength Bmax such that all particles with

v2
⊥0

v2
0

<
B0

Bmax
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are lost since the magnetic field is not strong enough to reflect them. Due to collisions

there will always be particles which have a small enough speed ratio
v2
⊥0

v2
0

to escape and

therefore there will always be lost from the plasma. The basic solution to losing particles

at the ends is to connect the ends of a magnetic mirror which leads to a toroidal magnetic

confinement device. One such kind of toroidal confinement device is called the Tokamak.

1.4. The tokamak

Tokamak (a Russian acronym meaning "Toroidal chamber in magnetic coils") is a toroidal

magnetic fusion device with helical magnetic field lines which are located on nested flux

surfaces. To understand why tokamaks need helical fields, one can investigate the particle

drifts introduced before. Let us assume a purely toroidal field (see Fig. 1.8 for the definitions

of toroidal and poloidal direction). This purely toroidal field has a gradient in the magnetic

Figure 1.8.: A sketch of a tokamak. a denotes the minor radius and R0 denotes the major radius.
In a cylindrical coordinate system with the conventionally used variables φ, R and Z,
the toroidal direction points in the φ-direction and the poloidal is the θ-direction. The
poloidal cross section is described by a radius r and the angle θ.

field strength since its magnetic field is stronger for smaller radii R. This gradient causes

a ∇B-drift, see equation (1.3), which causes a charge separation. If the magnetic field

points in the direction of the cylindrical coordinate φ, see Fig. 1.8, positive particles drift

vertically up and negative particles drift downwards. This charge separation causes an

E × B drift, which for both types of charged particles points outwards, see Fig. 1.9b.
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Therefore particles are not very well confined. If we consider positively charged particles

(a) The magnetic field strength is stronger at the
inside of the tokamak than on the outside be-
cause it decays like ∼ 1

R . Charge separation
is generated through ∇B drift.

(b) The created electrical field and the toroidal
magnetic field causes a E×B drift outwards
for both positive and negative particles.

Figure 1.9.: The particle loss due to a purely toroidal field.

in a helical field instead, the ∇B force still exists and it still points upwards, but it shifts

the positive particle onto another flux surface. If it is on the top half it will drift onto a

flux surfaces with a larger radius, and if it is on the bottom half it will drift onto a flux

surfaces with a smaller radius. Therefore the net-drift of such a particle averages to zero.

The same is valid for a negative particle but with opposite drift-directions.

To characterise tokamaks one uses the aspect ratio which is defined as:

aspect ratio =
R0

a

where R0 is the major radius and a is the minor radius, see Fig. 1.8. Tokamaks with a

tight aspect ratio (1.2-1.5) are called spherical tokamaks. Tokamaks with larger aspect

ratios (2.5-3.5) are considered conventional tokamaks.

1.4.1. High confinement mode (H-mode)

Two main operational regimes exist in a tokamak fusion device: the low-confinement mode

(L-mode) and the high-confinement mode (H-mode) which has an improved energy con-

finement time compared to the L-mode. This improvement is due to altered transport

processes which also changes the appearance of the edge, see Fig. 1.10. Fusion devices aim

to operate in H-mode because the improved confinement increases the performance. The

L-mode was achieved first, then the H-mode was unexpectedly detected for the first time
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Figure 1.10.: Image of MAST plasma during (a) L-mode (b) H-mode (c) ELM [24]. The visible
plasma edge differs in all three cases due to diverse transport processes.

Figure 1.11.: Schematic pressure profile for L- and H-mode.

on the ASDEX experiment in Garching in 1982, [25]. The transition from L- to H-mode

occurs when a power threshold is reached [26], although it is not fully understood why this

transition exists [27]. The main difference between these regimes is a steep edge pressure

gradient region caused by an edge transport barrier in the H-mode, called the pedestal

(Fig. 1.11). The transport is reduced due to a sheared perpendicular rotation caused by

a radial electric field Er (Er × B rotation) [28]. Because of the shear the large, turbulent

eddies are suppressed and therefore the turbulent transport is reduced as well [29]. Though

an improvement in confinement is desirable, there are negative side effects of the H-mode.

The steep pressure gradient can drive instabilities such as Edge Localised Modes which

can damage the device‘ but can also help to control density and impurities, [30].
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Edge Localised Modes

Edge Localised Modes (ELMs) are quasi-periodic instabilities which have a filamentary

structure and grow very rapidly, see Fig. 1.10. They release a large amount of energy

and particles which decreases the confinement of the plasma and can erode plasma facing

components on future fusion devices, such as ITER [31]. Therefore it is very important to

understand the nature of ELMs and how they can be controlled.

We will discuss the latest understanding and research relevant to ELMs in Sect. 2.4.

ELMs are an ubiquitous phenomenon and have been observed in many tokamaks such as

ASDEX-Upgrade in Germany [32, 33], DIII-D [34] and NSTX (National Spherical Torus

Experiment) in the USA [35, 36] , and MAST [37] and JET [38] in the UK. Next we

discuss MAST and the EU device JET in more detail since we investigate data from these

experiments in Chapter 5.

1.4.2. MAST

MAST (Mega Amp Spherical Tokamak) is a UK spherical tokamak based at CCFE (Cul-

ham Centre for Fusion Energy) in the UK [39–41]. MAST is currently being upgraded [42]

Figure 1.12.: MAST (Mega Amp Spherical Tokamak) plasma and its dimensions [21]. The results
from this configuration are used in this thesis.
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MAST
Major radius 0.85 m
Minor radius 0.65m
Aspect ratio ≥ 1.3
Plasma current 2 MA
Toroidal field 0.52 T

Table 1.1.: Parameters of the spherical tokamak MAST [41]

and any references to MAST in this thesis will refer to the older version which is shown

in Fig. 1.12. MAST has a high speed, wide angle camera which captures pictures of the

entire plasma including ELMs, as shown later in Fig. 2.7.

MAST and NSTX [43, 44] at the Princeton Plasma Physics Laboratory are the two largest

spherical tokamaks in the world. MAST itself has an aspect ratio of 1.3, see Table 1.1.

This and the large vacuum vessel are why it is possible for MAST to have a wide angle

camera which can show the entire plasma cross section [41, 45].

1.4.3. JET

The JET (Joint European Torus) is the largest tokamak currently in operation worldwide

and it is a joint research device between 16 European countries [46]. It has an aspect ratio

of about 2.96 and therefore it is a conventional tokamak, see Fig. 1.13 and Table 1.2. The

JET
Major radius ∼ 2.96 m
Minor radius ∼ 1m
Aspect ratio ∼ 2.96
Plasma current ∼ 7 MA
Toroidal field ∼ 3.8 T

Table 1.2.: Ballpark parameters of the original JET design [21]

first plasma in JET was produced in 1983 [47], the first operation with D-T in 1991 [48],

and it achieved the world’s record peak fusion power of 16MW in 1997 [49, 50].

JET has undergone several upgrades such as implementing different types of divertors [51],

and changing the plasma facing components from carbon (mainly carbon fibre-reinforced

carbon composite (CFC)) to an ITER-like wall (tungsten and beryllium) [52]. These

changes were made to examine the consequences of the design of the next generation
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tokamak ITER which is currently being built in the south of France [53]. ITER is designed

to achieve Q ≈ 10 in order to prove that tokamaks can be viable fusion power plants which

will attempt to produce even higher fusion gain (Q ∼ 30).

The data used in this thesis were obtained with the carbon wall and with the MKII-

HD divertor which allows a quasi-double-null configuration (which is approximately an

up-down-symmetric configuration) to be produced [54].

Figure 1.13.: Original JET (Joint European Torus) [21].
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1.5. Outline of the dissertation

This thesis uses an analytical model to simulate the nonlinear dynamics of ballooning in-

stabilities and attempts to apply this model in realistic tokamak geometries to compare

it with experimental observations of ELMs. Chapter 2 provides the background material

for this thesis. It starts with a description and overview of coordinate systems used in

tokamaks (Section 2.1). Then a short introduction to magnetohydrodynamics is presented

(Section 2.2) as this model is the starting point of the derivation provided in Chapter 3.

Chapter 3 presents the derivation of the nonlinear ballooning model for tokamak geome-

tries. This model was derived by Cowley and Wilson [2] from ideal MHD. However, a

detailed description of the derivation for tokamak geometry has not been published previ-

ously and therefore it will be provided in this thesis.

Chapter 4 presents results for how filaments with different sizes interact. These calcula-

tions have been done in slab geometry for which the nonlinear ballooning model has been

derived separately.

The last research chapter (Chapter 5) starts with an outline of how the coefficients, needed

for the nonlinear ballooning model in tokamaks, are determined. The results of simulations

in both MAST (Type I ELMs) and JET (Type II ELMs) geometries are presented.

Chapter 6 contains the conclusion of this thesis and an outlook for future work.
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2. Background

2.1. Common coordinate systems in tokamaks

Several coordinate systems and basis vectors for tokamak geometries are used in this thesis.

To make it easier for the reader to follow which variable names correspond to a certain

coordinate system, an overview of all coordinate systems is presented here. A more detailed

description of the coordinate systems can be found in [55].

2.1.1. Clebsch coordinate system (ψ, α and l)

Figure 2.1.: Spatial components of the coordinate system where B0 = ∇ψ × ∇α. (Thanks to
Brendan Shanahan for producing the Figure.)

In the Clebsch coordinate system the magnetic field is written as [55]:

B0 = ∇ψ ×∇α (2.1)

where α labels the magnetic field lines on a certain flux surface ψ, see Fig. 2.1. α is chosen
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to be:

α = q(ψ)θ − φ (2.2)

where φ is the toroidal angle, θ is the poloidal angle in straight field line coordinates and

q is the safety factor which describes how many times a certain magnetic field line goes

around the torus for one poloidal revolution. It is defined as:

q ≡ 1

2π

∮
dθ
rBφ
RBθ

(2.3)

where Bφ is the magnetic field component in the toroidal direction and Bθ is the component

in the poloidal direction.

So far we have only chosen two variables for the Clebsch coordinates: ψ and α. The third

one can be chosen freely. Here we choose it as l which measures the distance along a

magnetic field line. Later, in Sect. 2.1.2, we will define another variable .

The Jacobian in this coordinate system is given by:

J =
1

∇ψ · ∇α×∇l

=
1

B0

Therefore the operator B0 ·∇ is:

B0 ·∇ =
1

B0

∂

∂l

∣∣∣∣
ψ,α

.

Contravariant coordinate system of ψ, α and l

The contravariant basis vectors are given by:

eα = ∇α eψ = ∇ψ el = ∇l

Contravariant basis vectors are perpendicular to the surfaces on which the corresponding

coordinate is constant. In this system one can represent the nabla operator ∇ as:

∇ = ∇α ∂

∂α

∣∣∣∣
ψ,l

+∇ψ ∂

∂ψ

∣∣∣∣
α,l

+∇l ∂
∂l

∣∣∣∣
α,ψ

(2.4)
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A more detailed explanation can be found in reference [55].

e⊥, e∧ and B0

We generate new basis vectors: e⊥, e∧ and B0 to decompose the quantities into perpen-

dicular and parallel components relative to the magnetic field line. The first two vectors

are defined as:

e⊥ ≡
∇α×B0

B0

e∧ ≡
B0 ×∇ψ

B0

e⊥ and e∧ are vectors perpendicular to the equilibrium magnetic field lines B0 whose

components are along the magnetic field lines. One can show that (see Appendix A):

|e⊥|2 = |∇α|2

|e∧|2 = |∇ψ|2

To determine what e⊥ · ∇ and e∧ · ∇ are we can use equation (2.4) and equation (2.1) to

obtain the useful relations:

e⊥ ·∇ = B0
∂

∂ψ

∣∣∣∣
α,l

−
eψ ·B0

B2
0

(B0 ·∇)

e∧ ·∇ = B0
∂

∂α

∣∣∣∣
ψ,l

− eα ·B0

B2
0

(B0 ·∇) (2.5)

B0 ·∇ = B0
∂

∂l

∣∣∣∣
α,ψ

where we have defined two new vectors:

eα ≡ ∇l ×∇ψ eψ ≡ ∇α×∇l

2.1.2. The ψ-χ-φ coordinate system

Lets replace l by the variable χ where χ is a poloidal angle which increases by 2π every

time a field line goes around poloidally. It is chosen such that ∇χ is orthogonal to ∇ψ and

∇φ. All equilibrium quantities are periodic with respect to χ. In this coordinate system,
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the (B0 ·∇)-operator becomes:

B0 ·∇ =
1

Ĵ

∂

∂χ

∣∣∣∣
ψ,α

where Ĵ is given by

Ĵ =
1

∇ψ · ∇χ×∇φ

and the representation of the nabla operator is:

∇ = ∇χ ∂

∂χ

∣∣∣∣
φ,ψ

+∇φ ∂

∂φ

∣∣∣∣
χ,ψ

+∇ψ ∂

∂ψ

∣∣∣∣
χ,φ

(2.6)

The absolute values of the contravariant basis vectors are:

|∇χ| = 1

ĴBp
(2.7)

|∇φ| = 1

R
(2.8)

|∇ψ| = RBp (2.9)

where Bp is the poloidal component of the magnetic field. The variable α can be written

as:

α = q(χ− χ0) + Y − φ (2.10)

where χ0 is a constant and the periodic function Y is defined as:

Y ≡
∫ χ

0
νdχ− q(χ− χ0)

with ν defined as ν =
fJ

R2
with f = BφR. ν is related to the safety factor defined in

Eq. (2.3) by the relation: q =
1

2π

∮
νdχ (see [56]).

With these quantities we can rewrite e⊥ and e∧ as:

e⊥ ≡
∇α×B0

B0
=

B0

|∇ψ|2
∇ψ − Λ

B0
B0 ×∇ψ (2.11)

e∧ ≡
B0 ×∇ψ

B0
=
f(ψ)

B0
B0 −R2B0∇φ (2.12)
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where the quantity Λ is given by Λ = q′χ+ Y ′ with the prime denoting a derivative with

respect to ψ. And we can show (see Appendix A):

|e⊥|2 = |∇α|2 (2.13)

=
B2

0

R2B2
p

+ Λ2R2B2
p

|e∧|2 = |∇ψ|2

= R2B2
p

2.1.3. Straight field-line (or toroidal flux) coordinates system (ψ, θ and φ)

One can construct toroidal flux coordinates in which the magnetic field is straight. In

axisymmetric devices one can choose the flux surface label ψ, the toroidal angle φ and a

poloidal-like angle θ which was mentioned in the definition of α (Eq. (2.2)). Exploiting

the Clebsch representation of the magnetic field (2.1), we can see that magnetic field lines

are described by constant α and ψ surfaces. Using equation (2.2) we obtain the following

equation for a magnetic field line on a given flux surface:

α = constant = q(ψ)θ − φ.

This equation describes a straight line. This means that the coordinate system consisting

of ψ, θ and φ is a straight field line system. Using again equation (2.1) we obtain for the

magnetic field:

B0 = q(ψ)∇ψ ×∇θ +∇φ×∇ψ

with

|∇ψ| = BpR |∇φ| = 1

R
|∇θ| = 1

JBp

where Bp is the poloidal component of the magnetic field, R is the radial component of a

cylindrical coordinate system, where the origin is at the axis of the toroidal symmetry and
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J is the Jacobian determinant of this coordinate system:

J =
1

∇φ · ∇ψ ×∇θ
(2.14)

Because of axisymmetry the following equations are valid:

∇ψ · ∇φ = 0 ∇φ · ∇θ = 0

However, it is generally not true that ∇ψ is perpendicular to ∇θ. Therefore this coordinate

system is not an orthogonal one. Since ∇ψ and ∇θ are both orthogonal to ∇φ, the vector

given by ∇θ×∇ψ is parallel to ∇φ and can therefore be written as: ∇ψ×∇θ = s∇φ. By

using the equation of the Jacobian determinant (2.14), we can obtain an equation for s:

s =
R2

J

With that the representation of the magnetic field becomes

B0 = f∇φ+∇φ×∇ψ (2.15)

with f = f(ψ) defined as f ≡ qR2

J and Bφ = f
R .

2.2. Magnetohydrodynamics

In Sect. 1.3, we analysed the plasma behaviour with a particle picture. A more realistic

treatment would take into account the interaction of the particles with each other and the

electromagnetic fields. The inclusion of these interactions greatly increases the complexity.

Because of this we exploit a reduced model which is called magnetohydrodynamic (MHD).

In this section we summarise the most important aspects of the MHD description of plas-

mas. This model describes plasma as a single fluid, which means it combines the electrons

and ions. Furthermore ideal MHD neglects all dissipative effects such as resistivity and

viscosity. It is commonly used to determine the stability of a plasma with respect to small

perturbations. Detailed reviews of MHD can be found in [57–59]
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2.2.1. Eulerian MHD

Kinetic theory describes the position x and velocity v of each particle in a fluid with a

distribution function fj(x,v, t). fj(x,v, t) gives the number of particles per unit volume

in a phase space where j stands for electrons "e" or ions "i". The density nj , the flow

velocity uj and the pressure tensor P
j
are defined by the zeroth, first and second moments

of the distribution function in the following way:

nj(r) =

∫
fj(r,v, t)dv

uj =
1

nj

∫
vfj(r,v, t)dv(

P
j

)
l,m

= mj

∫
fj(r,v, t)

[
(v)l (v)m − (uj)l (uj)m

]
dv

The distribution function can be changed by sinks, sources or collisions. If there are no

sources or sinks, f can be described by:

dfj
dt

= Cj(fj)

where C is the collision operator. Without collisions the RHS is zero and one can derive

the so called Vlasov equation (or collisionless Boltzmann equation):

∂fj
∂t

+ (v ·∇) fj +
1

mj
(F ·∇v) fj = 0

where F is a force and the total derivative has been expanded into inertial and advective

components.

If one integrates the Vlasov equation over the velocity space (which is equivalent to taking

the zeroth moment) one obtains the continuity equation:

∂nj
∂t

+∇ · (njuj) = 0
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If one multiplies the Vlasov equation by mjv and then integrates over the velocity space

(or taking the first moment) one can obtain the force balance (or momentum) equation:

mjnj

[
∂uj
∂t

+ (uj ·∇)uj

]
= −∇pj + njqj (E + uj ×B)

where the Maxwellian distribution was assumed to reduce the pressure tensor to a scalar

with pj = njkBTj . To obtain an expression for the pressure pj one could take the next

moment of the Vlasov equation. Instead we assume an adiabatic behaviour which is given

by pjV Γ = constant = C where V is the volume and Γ is the ratio of the specific heats.

The pressure is then given by:

pj = CnΓ
j

To obtain the MHD model from a two-fluid model (with electrons and ions) one must use

the following approximations:

ni ≈ ne = n

meue � miui

me � mi

and one can use the following definitions:

ρv ≡ n (meue +miui)

ρ ≈ nmi

v ≈ ui

p = pe + pi
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where ρ is the mass density of a fluid element. With these definitions and approximations

and Maxwell’s equation, one obtains the MHD equations:

Conservation of mass:
∂ρ

∂t
+∇ · (ρv) = 0

Momentum equation: ρ
dv

dt
= J ×B −∇p

Energy equation:
d

dt

(
p

ρΓ

)
= 0 (2.16)

Ohm’s law: E + v ×B = 0 (2.17)

Maxwell’s equations:

(Maxwell-Faraday equation) ∇×E = −∂B
∂t

(2.18)

(Ampère’s law) ∇×B = J

(Gauss’s law for magnetism) ∇ ·B = 0

where ρ is the mass density, v is the fluid velocity, J is the current density, p is the pressure,

Γ is the ratio of specific heats and E is the electric field. The convective derivative
d

dt
can

be written as:
d

dt
=

∂

∂t
+ v ·∇. Additionally one can use Ampère’s law to replace the

current density J in the expression J ×B = B ·∇B −∇B2

2
. Therefore the momentum

equation can be written as:

ρ

(
∂v

∂t
+ v ·∇v

)
= −∇

(
p+

B2

2

)
+B ·∇B. (2.19)

With an additional kinematic, scalar viscosity term that is included to provide simple

viscous dissipation [60] the momentum equation becomes:

ρ

(
∂v

∂t
+ v ·∇v

)
= −∇

(
p+

B2

2

)
+B ·∇B + νρ4v.

where the Laplace operator ∆ is defined as ∆ ≡ ∇2 and v = ∂r
∂t is the velocity and ν is

the scalar viscosity.
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2.2.2. Lagrangian MHD

We choose to perform the calculation later in this thesis in Lagrangian variables. In this

approach all quantities can be expressed in terms of the displacement ξ of a fluid element.

The position vector of a fluid element, r(t), is related to its initial position vector, r0,

through r(t) = r0 + ξ(r0, t) (see Fig. 2.2), so that the components of the Jacobian matrix

Figure 2.2.: The movement of a fluid element with its starting position r0, its position r at time
t and the vector connecting the two position vectors: ξ, which is the displacement
vector.

Jij are

Jij = (∇0r)ij = δij +
∂ξj
∂x0i

,

where x0i are the components of r0 and i, j run from 1 to 3 to label x, y and z coordinates

of a Cartesian system. The operator ∇0 is defined as derivatives with respect to x0, y0

and z0 and in general the subscript "0" indicates an equilibrium quantity when we use the

Lagrangian description. The Jacobian J is the determinant of the Jacobian matrix Jij .

J = 1 + ∇0 · ξ +
1

2

[
(∇0 · ξ)2 + (ξ ·∇0) (∇0 · ξ)−∇0 · (ξ ·∇0ξ)

]
+O(ξ3) (2.20)

A unit volume at r is given by: dr = Jdr0. Conservation of mass is equivalent to:

ρ0dr0 = ρ(r, t)Jdr0 where the density at position r at time t is ρ(r, t) and the equilibrium

density at r0 is ρ0(x0). This yields

ρ(r, t) =
ρ0(r0)

J
.
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Exploiting Eq. (2.16) and the expression for ρ(r, t) we obtain:

p(r, t) =
p0(r0)

JΓ

The conservation of magnetic flux yields (using equations (2.17) and (2.18)):

B(r, t) =
B0(r0) ·∇0r

J
.

With these results the ideal MHD momentum equation in the Lagrangian description is:

ρ0

J
(∇0r) · ∂

2ξ

∂t2
= −∇0

[
p0

JΓ
+
|(B0 ·∇0r)|2

2J2

]
+ (∇0r) ·

[
1

J
(B0 ·∇0)

(
1

J
(B0 ·∇0r)

)]
. (2.21)

A complete derivation of the Lagrangian MHD can be found in [61].

2.2.3. Equilibrium

At this point it is useful to discuss the equilibrium case as it will be used later. The

equilibrium is characterised by ∂
∂t ≈ 0 in Eq. (2.19). This leads to:

∇
(
p+

B2

2

)
= B ·∇B (2.22)

or

∇p = J ×B (2.23)

The right hand side of Eq. (2.22) defines the so called magnetic curvature κ:

κ ≡ B ·∇B

= ∇
(
p+

B2

2

)
(2.24)

That the curvature is equal a gradient of plasma pressure and magnetic pressure is used

many times in the nonlinear analysis later in this thesis.
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Flux surfaces

Using Eq. (2.23) one can easily see that magnetic field lines lie on constant pressure surfaces

since:

B ·∇p = 0

The same is valid for the current J as:

J ·∇p = 0

These surfaces on which the currents and magnetic field lines lie are called flux surfaces

and they are usually labelled with ψ:

B · ∇ψ = 0

J · ∇ψ = 0

In axisymmetric equilibria these flux surfaces can be closed and nested. However, this is

not always the case in non-axisymmetric scenarios. Several quantities are so called flux

quantities since they only depend on ψ like the pressure p = p(ψ) or the quantity f defined

in 2.1 f = f(ψ).

Grad-Shafranov equation

A very important equation which describes equilibrium in an axisymmetric plasma is the

Grad-Shafranov equation [62]. It is given by:

∆∗ψ ≡ R2∇ ·
(
∇ψ
R2

)
= −R2p′(ψ)− ff ′(ψ) (2.25)

where the primes denote a derivative with respect to the flux variable ψ.

2.2.4. Energy principle

One can calculate the change of potential energy δW caused by perturbation to determine

the stability of the plasma [63]. If δW is negative it means that the plasma has lost

potential energy, converting it to kinetic energy and therefore it is unstable. If δW for any
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possible perturbation is positive the plasma is stable and if it is equal to 0, it is considered

marginally stable, see Fig. 2.3. The plasma contribution to the energy in the intuitive form

Figure 2.3.: Mechanical analogues for a stable, an unstable and a marginal stable case.

is given by [57]:

δW =
1

2

∫
dV

{
|B1|2 Field-line bending ≥ 0

+B2|∇ · ξ⊥ + 2ξ⊥ · κ|2 Magnetic compression ≥ 0

+ Γp0|∇ · ξ|2 Plasma compression ≥ 0

− 2 (ξ⊥ · ∇p) (κ̃ · ξ∗⊥) Pressure gradient+ or − (2.26)

−B1 · (ξ⊥ × b) j‖

}
Parallel current drive + or −

where B1 = ∇ × (ξ ×B0), the ∗ indicates a complex conjugated vector, and κ̃ ≡ b ·∇b

with b ≡ B

|B|
and κ̃ = −Rc

R2
c

[57]. The first three terms can only be stabilising since they

are always positive. The last two terms can be either stabilising or destabilising.

2.3. Ballooning instability

2.3.1. Ballooning modes

Ballooning modes are pressure driven MHD instabilities which appear in toroidal devices.

They are driven by a combination of the pressure gradient and field line curvature and

typically have high mode numbers. Additionally they set a limit on the maximum stable
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β which is defined as:

β =
2p

B2
.

β is therefore a measure of how strong the magnetic field pressure B2

2 is compared to the

plasma pressure p. The geometry of ballooning modes is caused by good and bad curvature

and typically takes the form shown in Fig. 2.4 [64], which is the reason for their name.

Figure 2.4.: Ballooning structure at a poloidal cross section. The instability is smaller at the
inboard side (good curvature) and larger at the outboard side (bad curvature).

Good and bad curvature

If one assumes a perturbation on the plasma edge with the pressure gradient ∇p pointing

in the same direction as the curvature κ̃, one obtains a charge separation by the curvature

drift (equation (1.2)), which then leads to a destabilising E × B drift (equation (1.1)),

see Fig. 2.5. This is called bad curvature. However, if one assumes the pressure gradient

∇p to point in the opposite direction relative to the curvature κ̃, one obtains a stabilising

E ×B drift (Fig. 2.5). This combination of pressure gradient and curvature is called good

curvature.

The same can be observed when investigating the pressure gradient term in the energy

equation (see Eq. (2.26)). If the vector of the pressure gradient and the curvature vector

have the same sign the entire term is negative and therefore destabilising. However, if

they point in different directions, this term becomes positive and therefore stabilising. In

a tokamak the bad curvature normally lies on the low field side and the good curvature

normally lies on the high field side, see Fig. 2.6. This explains why the ballooning modes

are mainly found at the outboard side of a tokamak, as shown in Fig. 2.4.
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Figure 2.5.: A sketch for an intuitive picture of bad (top) and good (bottom) curvature. a) a
small perturbation; b) the radius of curvature crossed with the magnetic field creates a
curvature drive (see Eq. (1.2)) in opposite directions for positive and negative charges
which leads to an electric field; c) Bad curvature (top): the E×B drift reinforces the
perturbation because of the pressure gradient; Good curvature (bottom): the E × B
drift reduces the perturbation because of the pressure gradient.

Figure 2.6.: Good and bad curvature in a circular cross section tokamak.

2.3.2. Ballooning stability

With the MHD energy principle one can determine if a plasma is unstable to certain

instabilities. The so called Mercier criterion is a necessary but not sufficient local condition
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for interchange stability in tokamaks [65] which was derived from the energy principle

(similar to the Suydam criterion [66] which is the cylindrical limit of the Mercier criterion).

The Mercier criterion is:

DM <
1

4

whereDM is the Mercier coefficient1 [65] which only depends on equilibrium quantities [57].

One has to test each flux surface for Mercier stability. If a plasma is Mercier stable (which

means none of the flux surfaces are Mercier unstable), then the linear ballooning mode

differential equation is applicable to test ballooning stability. This equation is of the

following form:

(B0 ·∇0)

[
|e⊥|2

B2
0

(B0 ·∇0)X

]
+

2µ

B4
0

(e⊥ · κ0) (e⊥ ·∇0p0)X = 0 (2.27)

where X describes the leading order radial displacement2 and µ(ψ) is the so called balloon-

ing eigenvalue which has to be determined. If 1 − µ is positive the plasma is ballooning

unstable, if it is negative the plasma is stable and if it is equal to zero, the plasma is

marginally stable [57].

2.3.3. Nonlinear ballooning theory

In this subsection an overview of the development of the nonlinear ballooning model is out-

lined. But since there is an entire Chapter which describes the derivation of the nonlinear

ballooning model in tokamak geometries (Chapter 3) and an Appendix deriving the nonlin-

ear ballooning model in slab geometries (Appendix D), this subsection is relatively concise.

Cowley et al.[1, 67] used nonlinear calculations to determine a mechanism for the be-

haviour of a plasma detonation (such as solar flares or precursors of tokamak disruptions),

exploiting a Rayleigh-Taylor instability in a line tied equilibrium. After this, Hurricane et

al.[3] described the filamentary eruptions with the nonlinear ballooning approach, but for

generalised magnetic field geometries. Fong et al. [68, 69] investigated how a finite Larmor

radius affects the evolution of the filaments. In 2003 the nonlinear envelope equation for

1See Eq. (3.9) for more detail.
2The leading order radial displacement can be separated into two function χ̂ and X where only X depends
on the field aligned variable, see Eq. (3.30) for more detail.
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some toroidal cases was derived by Cowley et al. [70], which mentioned the potential appli-

cation for ELMs. Wilson and Cowley [2] continued these calculations for a more complete

tokamak geometry and therefore presented the nonlinear ballooning differential equations

for tokamaks. In [4] (or for more details [71]) there is a more detailed description of how

filaments behave in plasmas including the nonlinear ballooning model with an additional

scalar viscosity term. The investigation of the viscosity and how it changes the evolution

is presented in more detail in Section 4.2 of Chapter 4. Additionally how filaments with

different initial sizes interact with each other has been investigated [5], and is presented in

Chapter 4.

The nonlinear ballooning model has been derived by using the momentum equation (4.2).

To solve the incompatibility problem of shear and periodicity3, we assume that the in-

vestigated filament lies on a non-rational magnetic field line or that the filament decays

sufficiently fast along the field line so that there is no problem of overlapping.

This model is not just used to determine stability, but to predict the early evolution of

filaments with their explosive growth. Some indications that this model describes ELMs

are that it can explain why the inter-ELM times are long compared to explosive growth of

the ELMs, why the ELMs have filamentary structures, and why the spacing between ELM

filaments are larger than the ELM filament width.

To allow, however, a quantitative comparison between this nonlinear ballooning theory

and experiments (e.g. ELMs) one must evaluate the coefficients of the nonlinear balloon-

ing equation for tokamak geometries. Previously only one of the coefficients has been

evaluated for a model JET-like equilibrium [73]. A full study of all relevant coefficients

has now been done and is presented in Chapter 5.

2.4. Current knowledge of ELMs

ELMs are quasi-periodic instabilities which grow very rapidly and have a filamentary struc-

ture [37, 45, 74], see Fig. 2.7, which was correctly predicted by the nonlinear ballooning

model [75]. They release a large amount of energy (e.g. approximately 15% of stored

energy during Type I ELMs in JET [77]) which is still tolerable in current tokamaks but

3This problem is usually solved with the so called ballooning formalism [56, 72]. However, we analyse
nonlinear terms, for which the ballooning mode formalism is not applicable.
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Figure 2.7.: High speed camera image of an ELM in MAST [76]. Filamentary structure of the
ELM is evident.

is a potential issue for future tokamak devices such as ITER [31]. However, there are also

advantages to ELMs since they do not only release energy but also flush out impurities [78].

This is needed because the high Z impurities radiate energy from the core decreasing the

energy confinement.

Types of ELMs and ELM mitigation

There are different kinds of ELMs including Type I or large ELMs (e.g. in MAST and

ASDEX Upgrade [45, 74]), Type II or grassy ELMs (e.g. in JET [79, 80]; in ASDEX

Upgrade [54]), Type III or small ELMs (e.g. in JET [81]), and small Type V ELMs at

NSTX [82]. They are characterized by the dependence of the repetition frequency on

heating power and by different kinds of ancillary effects, [83, 84]. For example Type I

ELMs are large and less frequent, and Type III ELMs are smaller and more frequent.

Additionally, each of these types has a preferred operating regime [76, 85, 86].

Ideally Type I ELMs should be suppressed because they are the most harmful ones. Other

mechanisms to decrease the impurities should instead be identified, such as smaller ELMs.

There are several approaches to mitigating Type I ELMs [87]. One of them is to trigger the

smaller ELMs via pellet injection in the regime of the Type I ELMs [88]. These pellets could

be used to inject the fuel needed in future fusion power plants. Therefore, it is possible to

maximize the confinement without having the large ELMs. Another approach is magnetic

triggering or vertical kicks which uses a vertical movement of the plasma to change the
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plasma conditions such that a less harmful type of ELM is triggered [89, 90]. One method

which can not only mitigate but also suppress ELMs is resonant magnetic perturbations

(RMPs) which create a stochastic magnetic boundary to suppress the ELMs [91–93].

2.4.1. ELM theory and simulation

Theory

The leading theory for the Type I ELMs is the peeling-ballooning model [94–96]. It com-

Figure 2.8.: Left: Sketch of peeling-ballooning stability limits for different shaping. The peeling
limit is reached by increasing the pedestal current (y-axis) and the ballooning limit
is reached by exceeding certain pressure gradients (x-axis). Right: A model of ELM
cycles of Type I, II and III is shown. Type I ELMs appear at a peeling-ballooning
limit, Type II ELMs appear at the ballooning limit, and Type III ELMs are caused by
the peeling limit [96].

bines the boundaries of two instabilities: ballooning instability and the peeling instability,

[30, 94], see Fig. 2.8. These modes are driven by different sources of free energy. The

ballooning instability was discussed before in Sect. 2.3. In H-mode a large edge current

(Bootstrap current) exists which can drive peeling modes that are typically driven by the

edge current density and stabilized by the edge pressure gradient. Peeling modes have

rather small toroidal mode number (8-10). The peeling-ballooning model can also provide

an ELM cycle model for the other types of ELMs, see Fig. 2.8. The MHD stability code

ELITE can evaluate at which stability boundary an equilibrium is located [97] and there

has been good agreement of the peeling-ballooning model with experiments [96, 98].

Furthermore the nonlinear ballooning theory describes the early nonlinear evolution of

ELMs, see Sect. 2.3.3 for more details.
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Simulations

There are many simulations of ELMs with less reduced models than the nonlinear bal-

looning model for example: there have been ELM simulations with BOUT++[99–101];

BOUT [102] which produces qualitatively the same results as analytic nonlinear ballooning

theory predicts [73]; with JOREK [103] and with NIMROD [104]. However, it seems that to

reach the point where ELMs self-consistently develop in the simulations one must change

the plasma parameters in such a way that the plasma is beyond the peeling-ballooning

boundary. The initial growth depends on how far beyond the stability boundary the pa-

rameters where chosen. Therefore these simulations cannot be used to predict ELM sizes

with certainty at this stage [105].

2.5. Computational background

For the research presented within this thesis, enhancements have been made primarily to

two different codes. In this section, some of the fundamental methods used in these codes

are described.

2.5.1. Deton8

Deton8 was written in Fortran90 to investigate one of the two differential equations of the

nonlinear ballooning model [2] and edited and benchmarked [106]. Deton8 evaluates the

ballooning envelope equation for up-down symmetric equilibria of the following form:

D0κ
∂λ

∂tλ
ξ =

(
D1 −

(ψ − ψ0)2

∆2

)
ξ −D2

∂2u

∂ψ2
+D3

(
ξ2 − ξ2

)
+D4ξ

∂2ξ2

∂ψ2
(2.28)

where ξ is the displacement which depends on the spatial variables α, ψ (see Sect. 2.1.1),

the time t, and the quantity λ which can only be between 1 and 2 in this model [2]. The

variable u is defined by u = ∂2ξ
∂α2 , the overbar is indicating an average over the α variable,

the ∆-term originates from a Taylor expansion of the eigenvalue µ and therefore ∆ has

to be determined from equilibrium quantities, and κ = Γ(2 − λ) is the complete gamma
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function. The fractional derivative in the LHS of Eq. (2.28) is given by:

∂λ

∂tλ
f(t) =

1

Γ(2− λ)

∂2

∂t2

∫ t

0
dt′

f(t′)

(t− t′)(λ−1)

Each of the coefficients Di in Eq. (2.28) depends on the equilibrium. However, one can

modify the variables α, ψ, t and the displacement ξ in a way such that all the coefficients

disappear. Then the equation is a generic equation with the exception of the parameter ∆.

The code itself can compute this generic ballooning envelope equation by simply setting

all coefficients equal 1.

Predictor-corrector method

The code exploits a finite difference method for solving this partial differential equation.

More precisely this method is an iterative predictor-corrector algorithm [107]. This nu-

merical method is a combination of an explicit and implicit method. In our case, Euler’s

method is the first step which is explicit and is used to solve problems of the following

form:
dy(t)

dt
= f(t, y(t)) (2.29)

with an initial condition: y(t0) = y0 and the time tn+1 = tn + ∆t with n being the label

for the time steps with size ∆t.

The first guess for the solution at the next time step with Euler’s method is:

y
(1)
n+1 = yn + ∆t · f(tn, yn)

where the (1) labels that it is the first iteration value for yn+1. This subsequent correction

is an implicit method of the following form:

y
(i)
n+1 = yn +

1

2
∆t
[
f(tn, yn) + f

(
tn+1, y

(i−1)
n+1

)]

where i labels the iteration step and starts with 2.

This expression is an average of the right hand side of equation (2.29) for the previous time

step (n) and the n+ 1 time step of the previous iteration multiplied by the time difference
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∆t. This implicit method is called the trapezoidal rule.

Deton8 solves a set of two first order differential equations of the form (2.29) with this

predictor corrector method. For λ = 2 the set of differential equations is:

dy

dt
=

(
D1 −

(ψ − ψ0)2

∆2

)
ξ −D2

∂2u

∂ψ2
+D3

(
ξ2 − ξ2

)
+D4ξ

∂2ξ2

∂ψ2

dξ

dt
= y

For λ = 1 the second equation changes to: ξ = y and therefore Deton8 only solves one

differential equation in that case.

2.5.2. Mercier-Luc formalism

The Mercier-Luc formalism [108] is a technique to provide equilibrium quantities of ad-

joining flux-surfaces by expanding the Grad-Shafranov equation (2.25) locally near to the

reference flux surface, which enables one to calculate radial derivatives. These are required

to determine the coefficients of the ballooning mode envelope equation for tokamak ge-

ometries (Chapter. 5), in particular the second order expansion is needed. The original

Mercier-Luc formalism uses only a first-order expansion of the flux-surface [108, 109], how-

ever, the results of the second order expansion are derived in [97] since the code ELITE

requires the second order derivatives.

The Mercier-Luc coordinate system is introduced to expand the Grad-Shafranov equa-

tion (2.25). This orthogonal coordinate system consists of ρ, l and the toroidal angle

φ, see Fig. 2.9. ρ is the radial distance from the reference flux surface ψ0 and l labels

the poloidal position on the flux surface ψ0 (Fig. 2.9). The tangent vector of the refer-

ence flux surface ψ0 on the poloidal cross section, which is labelled by Rs(l) and Zs(l),

is given by T =
(
dRs(l)
dl , dZs(l)dl

)
where the subscript s indicates the reference flux surface.

The angle u which is introduced to make the calculation clearer can be defined such that

T = (− sin(u), cos(u)). Therefore dRs(l)
dl = − sin(u) and dZs(l)

dl = cos(u). It follows that

∂u
∂l = − 1

Rc
since the derivative of a tangent vector with respect to l is inversely proportional

to the radius of the curvature Rc. The Jacobian of the Mercier-Luc coordinate system with

respect to the Cartesian coordinate system is given by J =
∣∣∣∂(x,y,z)
∂(ρ,l,φ)

∣∣∣ = R
(

1− ρ
Rc

)
. The

approach to obtain analytic expressions for the adjoining flux surfaces is to expand ψ with
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Figure 2.9.: Mercier-Luc coordinate system.

respect to ρ:

ψ = ψ0 + ρψ1 + ρ2ψ2 + ρ3ψ3 + . . .

The magnetic field is described by B = ∇φ×∇ψ+f(ψ)∇φ (see equation (2.15)). There-

fore the poloidal component Bp can be expressed as:

Bp = ∇φ×∇ψ

=
l̂

R

[
ψ1 + 2ψ2ρ+ 3ψ3ρ

2
]
− ρ̂

R

[
∂ψ1

∂l
ρ+

∂ψ2

∂l
ρ2

]
+O(ρ3)

The lowest order of this equation determines ψ1:

ψ1 = Rs(l)Bps(l)
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The Grad-Shafranov equation (2.25) is expanded up to the second order in ρ to obtain ψ2

and ψ3:

ψ2(l) =
1

2

[(
Rs
Rc

+ sin(u)

)
Bps −R2

sp
′(ψ0)− ff ′(ψ0)

]
ψ3(l) =

1

6

[
− 2Bps sin(u)

(
sin(u)

Rs
+

1

Rc

)
+ 4ψ2

(
sin(u)

Rs
+

1

Rc

)
−Rs

∂

∂l

(
1

Rs

∂ψ1

∂l

)
−R2

sp
′(ψ0)

(
sin(u)

Rs
− 1

Rc

)
+ff ′(ψ0)

(
sin(u)

Rs
+

1

Rc

)
−RsBps(R2

sp
′′(ψ0) + (ff ′)′|ψ=ψ0

]

2.5.3. Algorithm for determining the ballooning eigenvalue µ

In this section we present an algorithm to determine numerically the ballooning eigenvalue

µ and the function X, which describes the radial displacement (see Eq. (3.30)) and is

determined by Eq. (2.27). The differential equation and λS depend on the eigenvalue. For

the first iteration n = 1 we set the first two eigenvalues to one and just below one: µ0 = 1

and µ1 = 0.999. We start the algorithm by determining X for χ > 0.

Shooting method for χ > 0

The Runge-Kutta-Nyström method (e.g. [110]) is used to solve the linear ballooning equa-

tion (2.27) which is a second order differential equation for the shape of the displacement

along the magnetic field line. This method is an initial value solver, however, the bound-

ary values are given for the displacement instead. This is why the shooting method is

exploited, as it can convert a boundary value problem to an initial value problem, [111].

Starting with a second order differential equation:

X ′′ = pX ′ + qX + r (2.33)

with the boundary conditions: X(0) = 1 and X ′(χa) = D where D ≈ −λS X(χa)/χa is

determined in Chapter 3 via an asymptotic treatment of the derivative of X with respect

to χ, which is the field aligned variable. χa is the largest value of χ in the numerical
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calculation and λS is defined as:

λS =
1

2
+

√
1

4
−DM .

The function X can be split up into two functions: X = X1 + cX2 with the following

properties of X1 and X2:

X ′′1 = pX ′1 + q X1 + r

X ′′2 = pX ′2 + q X1

and the boundary conditions:

X1(0) = 1, X ′1(0) = 0

X2(0) = 0, X ′2(0) = 1

(2.34)

The sum of X1 and cX2 satisfies (2.33) which can be easily seen by substituting X =

X1 + cX2 into equation (2.33). The boundary conditions (2.34) are exploited to determine

the scaling factor c. The boundary condition of the original function is

X ′(χa) = D ≈ −λS X(χa)/χa (2.35)

Now X = X1 + cX2 is substituted into equation (2.35):

X ′1(χa) + cX2(χa)
′ =− λS X1(χa)/χa − cλS X2(χa)/χa

⇒ c =− λS X1(χa) + χaX
′
1(χa)

χaX2(χa) + λS X2(χa)
(2.36)

The numerical procedure to find the solution of the linear ballooning equation for χ > 0

is to determine the functions X1 and X2 with the Runge-Kutta-Nyström method, then

calculate the scaling factor c with equation (2.36). The solution of this iteration n of the

linear ballooning equation for χ > 0 is then given by Xn
+ = X1 +cX2 where the + indicates

that the function X is calculated along the positive χ range.
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Secant method for χ < 0

For negative χ ones solves the differential equation (2.33) again with the Runge-Kutta-

Nyström method with the boundary condition Xn
−(0) = Xn

+(0) where the − indicates

the negative χ range and X ′−
n(0) = X ′+

n(0). Analytically we know that X ′− = λSX
χ for

χ� −1. Therefore we define a function ∆:

∆(µn) ≡ −χaXn
−(−χa) + λsX

′
−
n(−χa)

With the correct eigenvalue µ this function ∆ is zero. We use the secant method to find

the root of ∆ [110]:

µn+1 = µn −∆(µn)
µn − µn−1

∆(µn)−∆(µn−1)

After updating the eigenvalue µ we must re-apply all of what was presented: re-calculating

X+ and then X−. This entire routine is iterated until the correct eigenvalue µ is obtained

for which ∆(µ) = 0.

2.6. Summary

We have now provided a technical background: of the coordinate systems used in this thesis

and of the MHD description which is needed to derive the nonlinear ballooning model. A

physical description has been given of the ballooning instability which is described by the

nonlinear ballooning model, and the current experimental knowledge of ELMs since we

will examine whether the nonlinear ballooning model can describe ELMs quantitatively.

Furthermore we provided some background on the computational methods used.

In the next chapter the nonlinear ballooning model for tokamak geometries is derived.
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model for tokamak geometries

The derivation of the nonlinear ideal MHD ballooning model for tokamak geometries is

outlined in this chapter. This theory is originally derived by Wilson and Cowley [2] and

builds on previous work [1, 3, 70]. However, a detailed description of the derivation for

tokamak geometry has not been published yet and therefore it will be provided here for

the convenience of the reader.

The result of the derivation is two differential equations: the linear ballooning equation

which describes the displacement of the filaments along the field lines and the nonlinear

ballooning mode envelope equation, which is a two-dimensional, nonlinear differential equa-

tion which can involve fractional temporal-derivatives but is often second-order in time and

space.

This chapter starts with the ordering and boundary condition used for the derivation

(Sect 3.1). One of the basic ideas of the derivation is to divide the magnetic field line

into segments where different physical mechanisms are dominant (shown in Section 3.2

and Fig. 3.1): the nonlinear region is discussed in Subsection 3.2.3, the inertial region in

Subsection 3.2.1 and the matching region of inertial and nonlinear solutions is discussed

in 3.2.2, 3.2.4 and 3.2.5. In the final section, where the matching of the two main regions

is described, the final ballooning envelope equation is derived.

The following Chapter 4 applies the ballooning envelope equation to investigate the in-

teraction between these filaments. The coefficients of this equation are field-line averaged

quantities and depend strongly on the geometry. To get quantitative results we must de-

termine these coefficients, which will be described in Section 5.1 of Chapter 5 for tokamak

geometries and then used in the following sections.
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3.1. BALLOONING ORDERING AND BOUNDARY CONDITIONS

Figure 3.1.: Regions along a magnetic field line. Region I: nonlinear region(Section 3.2.3); Region
II: matching region (Sections 3.2.2, 3.2.4 and 3.2.5) and Region III: inertial region
(Section 3.2.1).

In this chapter all the coordinate systems presented in Section 2.1 are used.

3.1. Ballooning ordering and boundary conditions

In this section we introduce the common ordering of ballooning modes and the boundary

conditions which will be used in the entire chapter.

3.1.1. Ordering

A dummy small parameter ε (which is related to n of Chapter 4 by n ∼ ε−2) is com-

monly used in ballooning theory to simplify the MHD momentum equation, in our case

the Lagrangian momentum Eq. (2.21). This parameter ε exploits the geometry of the lin-

ear ballooning mode, as the ballooning instability varies slowly along the magnetic field,

moderately radially outwards and rapidly in the remaining spatial direction perpendicular

to the field lines. This can be expressed by ordering the spatial derivatives as well as the

order of the Lagrangian displacement [56]:

∂

∂ψ
∼ O(ε−1)

∂

∂α
∼ O(ε−2)

∂

∂l
∼ O(1) .

where the coordinate system with ψ, α and l is described in Sect. 2.1.1 and their derivatives

are given by equations (2.5) where they are related to the basis vectors e⊥, e∧ and B0

(see Equations (2.11) and (2.12)).

With Lagrangian variables all quantities can be expressed in terms of the displacement
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3.1. BALLOONING ORDERING AND BOUNDARY CONDITIONS

ξ of a fluid element. The position vector of a fluid element, r(t), is related to its initial

position vector, r0, through r(t) = r0 + ξ(r0, t), so that the components of the Jacobian

matrix Jij are Jij = (∇0r)ij where i, j run from 1 to 3 to label x,y and z coordinates of a

Cartesian system. The Jacobian J is the determinant of the Jacobian matrix Jij .

Expanding the components of the displacement ξ = ξψe⊥+ ξ‖B0 + ξ∧e∧ and the Jacobian

J in powers of ε we anticipate:

ξψ =

∞∑
i=2

εiξ
(i)
ψ ξ‖ =

∞∑
i=2

εiξ
(i)
‖ ξ∧ =

∞∑
i=3

εiξ
(i)
∧ J = 1 +

∞∑
i=1

εiJ (i).

If we only have one region because the displacement is decaying fast enough along the

magnetic field line, then we describe the inertia as a perturbation. The growth rate γ

of the most unstable position is of order ε since the ballooning instability initially grows

slowly as we assume the plasma to be close to marginally stable. Thus

∂

∂t
∼ O (ε) .

in case of a perturbed inertia.

If, however, the displacement decays slower, then we use the three regions as in Fig. 3.1.

The inertia must only be considered in the inertial region and is of order:

∂

∂t
∼ O(ε0)

To derive both possible solutions we will include a perturbed inertia in the nonlinear

region. However, this only needs to be considered for a fast decaying displacement along

the magnetic field line, where the terms arising from the inertial region can be neglected.

3.1.2. Assumptions and boundary conditions

We use the geometry of the ballooning instability to determine the boundary conditions

(needed to solve the two differential equations derived in this chapter). The ballooning

instability is assumed to be highly localised in the radial direction which is motivated by

the filamentary geometry, (see Section 1.4.1) which is equivalent to the following boundary
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3.2. REGIONS ALONG THE MAGNETIC FIELD LINE

condition:

lim
|ψ−ψfil|→∞

ξ = 0 (3.1)

where ψfil is the flux surface, labelling the initial position of the filament. It is not possible

to apply the Ballooning Transformation (see [56]) to a nonlinear equation. To avoid the

problem of combining shear and periodicity, we require the filament to be on a high order

rational surface so that we can assume that the magnetic field line (on which our filament

is positioned) is effectively infinitely long. This implies that the filament will vanish before

it could overlap with itself, which is the next boundary condition:

lim
|l|→∞

ξ = 0 (3.2)

where l measures the distance along a magnetic field line.

In the next section, the variable χ described in Sect. 2.1.2 is mainly used instead of l. χ

increases by 2π each time one has moved once around poloidally.

3.2. Regions along the magnetic field line

The magnetic field line can be divided into three regions to simplify the mathematical

description of the displacement, see Fig. 3.1. Far along the magnetic field line when l ∼ vA
γ

or χ ∼ vA
Rγ (where γ is the linear growth, R is a typical length scale, and vA is the Alfvén

speed indicating that inertia cannot be neglected) the displacement is assumed to be small

since we expect it to decay rapidly. Therefore the nonlinear terms are negligible, but

the inertia cannot be treated as a perturbation – hence the name "inertial region"(see

Section 3.2.1).

In the nonlinear region, where |χ| �
∣∣∣ vARγ ∣∣∣, we can treat the inertia as small as we assume the

equilibrium to be close to marginal stability. The derivation of these differential equations

follows that of [3] and is described in Sect. 3.2.3. The final solution for the displacement

of this region needs to match to the inertial region at the matching region.

The matching region is where χ satisfies 1 � |χ| � vA
Rγ . The two expressions for the

displacement ξ from the inertial and nonlinear region must match in this region. The

matching procedure is described in Section 3.2.2.
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3.2.1. Inertial region

This region is characterised by a small amplitude of the displacement so that the nonlinear

effects can be assumed to be small but the inertia is expected to be large, hence the name

for that region. This description is only needed to get a boundary condition via a matching

procedure for the nonlinear main region.

Asymptotic Equations

In this section we discuss the differential equations for the displacement and for the Jaco-

bian far along the field lines.

Analysing the Lagrangian MHD momentum equation (2.21) up to the third order yields

the following three differential equations1:

ρ0
|e⊥|2

B2
0

∂2y

∂t2
= (B0 ·∇0)

[
|e⊥|2

B2
0

(B0 ·∇0) y

]
+

2

B4
0

(e⊥ · κ0) (e⊥ ·∇0p0) y

+
2Γp0

B3
0

(κ0 · e⊥) δJ (3.3)

ρ0B
2
0

∂2ξ‖

∂t2
= Γp0 (B0 ·∇0) δJ (3.4)

(B0 ·∇0) ξ‖ =

(
Γp0

B2
0

+ 1

)
δJ + 2

κ0 · e⊥
B3

0

y (3.5)

where κ0 is the magnetic field curvature, p0 is the equilibrium pressure, Γ is the ratio of

specific heats and we have defined y ≡ ξψ|B0| and δJ ≡ J − 1.

The variable χ, which denotes the position along the equilibrium magnetic field line, can be

divided into two variables, as there exists a periodic (θ) and a nonperiodic (v) behaviour of

all the quantities, see Fig. 3.2. All the equilibrium quantities only depend on the periodic

variable θ which is due to the variation of these quantities along a field line from the low

to the high field side of a tokamak. The nonperiodic part is caused by the perturbation.

The derivative with respect to χ can be written as ∂
∂χ = ∂

∂v + ∂
∂θ since df = ∂f

∂v dv + ∂f
∂θ dθ.

Therefore (B0 ·∇0) can be written as:

(B0 ·∇0) =
1

Ĵ

∂

∂χ
=

1

Ĵ

(
∂

∂v
+

∂

∂θ

)
.

1The derivation for this set of differential equations is not presented here since it is basically the same as
for the nonlinear region. The difference is that the inertia enters in the parallel component in second
order and the e⊥-component in third order, see Sect. 3.2.3 and Appendix C.1.1.
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Figure 3.2.: Here is a sketch of the nonperiodic and periodic behaviour together (on the left) and
separated (on the right).

All quantities which depend on v can be written as inverse orders of v, i.e.,

A(θ, v) =

(
Ã0(θ) +

Ã1(θ)

v
+
Ã2(θ)

v2
+ · · ·

)
f(v)

= A0(θ, v) +
A1(θ, v)

v
+
A2(θ, v)

v2
+ · · · .

By evaluating the components of the momentum equation (3.3), (3.4), and (3.5) and using

the expressions (A.1), (A.2), (A.3) and (A.4) we can show that the lowest orders of y and

δJ do not depend on the periodic variable θ. Additionally the lowest order of ξ‖ can be

written as a sum with one term independent of θ and a second part depending on θ:

y(θ, v, t) = Y0(v, t) +
Y1(θ, v, t)

v
+ · · ·

δJ(θ, v, t) = J0(v, t) +
J1(θ, v, t)

v
+ · · ·

ξ‖(θ, v, t) = Ξ−1(v, t) + q′I

(
1

B2
0

− V ′〈
B2

0

〉
θ

)
vY0(v, t) + Ξ0(θ, v, t) + · · ·

where the angled brackets are defined as:

〈A〉θ =
1

2π

∮
AĴdθ =

1

2π

∮
A

dl

B0

where l is defined in 2.1.1. Only the lowest order terms of y, δJ and ξ‖ are needed since the

other orders are small in comparison. These lowest orders (Y0,Ξ−1 and J0) only depend
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on v and are determined by the following differential equations:

A0v
2∂

2Y0

∂t2
=

∂

∂v

[
v2∂Y0

∂v

]
+ D̃M

[
Y0 +

Γp0

p′0
J0

]
+A1v

∂J0

∂v
(3.6)

∂Ξ−1

∂v
= A2J0 +A3Y0 +A4

∂(vY0)

∂v
(3.7)

A6
∂2Ξ−1

∂t2
= A5

∂J0

∂v
(3.8)

with the coefficients defined as:

A0 = ρ0

〈
B2

0

|∇ψ|2

〉
θ

[〈
R2
〉
θ
−
I2 〈1〉θ〈
B2

0

〉
θ

]

A1 = I
Γp0

q′

[〈
1

|∇ψ|2

〉
θ

−
〈

B2
0

|∇ψ|2

〉
θ

〈1〉θ〈
B2

0

〉
θ

]

A2 =

〈
1 +

Γp0

B2
0

〉
θ

− I2Γp0

[〈
B2

0

|∇ψ|2

〉−1

θ

〈
1

|∇ψ|2

〉2

θ

−
〈

1

B2
0 |∇ψ|2

〉
θ

]

A3 =
q′2

p′0

〈
B2

0

|∇ψ|2

〉−1

θ

D̃M

A4 = − q′2

Γp′0

〈
B2

0

|∇ψ|2

〉−1

θ

A1

A5 = −A1

A4

A6 =
ρ0

q′2

〈
B2

0

|∇ψ|2

〉
θ

〈
B2

0

〉
θ

D̃M =
p′0
q′2

(
fq′
〈

1

R2B2
p

〉
θ

− p′0f2

〈
1

R2B2
p

〉2

θ

+

〈
B2

0

R2B2
p

〉
θ

[
p′0f

2

〈
1

R2B2
pB

2
0

〉
θ

+ 2

〈
1

R2B2
pB

2
0

(∇ψ · ∇)

(
p0 +

B2
0

2

)〉
θ

− f
〈

ν ′

JB2
0

〉
θ

])
(3.9)

where D̃M is the Mercier coefficient at marginal stability [65]. To solve the differential

equations we need boundary conditions which can be determined by investigating the far

inertial region.
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Far inertial region

To solve the set of differential equations in the inertial region, we must estimate their

asymptotic behaviour. In the far inertial region we have:

|v| �
∣∣∣∣VARγ

∣∣∣∣
When solving the differential equations (3.6) - (3.8), it is useful to replace Y0 by f defined

as f ≡ Y0 v. If we take the second time derivative of Eq. (3.7) and a derivative with respect

to v of Eq. (3.8) we can eliminate the Ξ−1 dependency:

A0
∂2f

∂t2
=
∂2f

∂v2
+ D̃M

[
f

v2
+

Γp0

p′0v
J0

]
+A1

∂J0

∂v
(3.10)

A5

A6

∂2J0

∂v2
= A2

∂2J0

∂t2
+
A3

v

∂2f

∂t2
+A4

∂3f

∂v∂t2
(3.11)

The solution of the homogeneous part of these differential equations is proportional to

an exponential dependence of v: ∼ e±τv (where τ is a constant). This means that the

derivative with respect to v is not changing the order of that term. Therefore the D̃M

term and the A3 term are of a lower order and can be neglected for high values of v.

Additionally we can take the second derivative in Eq. (3.10) and another derivative with

respect to v of Eq. (3.11). This leads to a fourth order differential equation for f = Y0v

which is independent of J0:

(
τ2
A

∂2

∂t2
− ∂2

∂v2

)(
τ2
s

∂2f

∂t2
− ∂2f

∂v2

)
= τ2 ∂4f

∂v2∂t2
(3.12)

and for J0:

A0
∂2f

∂t2
=
∂2f

∂v2
+A1

∂

∂v
J0

with

τ2
a = A0 τ2

s =
A2A6

A5
τ2 = −A1A4A6

A5
(3.13)

This differential equation (3.12) has four general solutions of which only two are decaying

in v and therefore fulfil our boundary conditions (3.2). So we are left with two general
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solutions for Y0.

Solutions of inertial region

We must find the solution of the inertial region in order to match it to the solution of

the nonlinear region so that our final differential equation already includes the matching.

One way to solve the set of differential equations (3.6), (3.7) and (3.8) is with a Laplace

transform:

Ỹ0(v, p) ≡
∫ ∞

0
e−ptY0(v, t)dt

J̃0(v, p) ≡
∫ ∞

0
e−ptJ0(v, t)dt

Ξ̃−1(v, p) ≡ p
∫ ∞

0
e−ptΞ−1(v, t)dt

which leads to:

A0x
2Ỹ0 =

∂

∂x

[
x2∂Ỹ0

∂x

]
+ D̃M

[
Ỹ0 +

Γp0

p′0
J̃0

]
+A1x

∂J̃0

∂x
(3.14)

∂Ξ̃−1

∂x
= A2J̃0 +A3Ỹ0 +A4

∂(xỸ0)

∂x
(3.15)

A6Ξ̃−1 = A5
∂J̃0

∂x
(3.16)

where x is defined as:

x ≡ vp

Note that all equations (3.14), (3.15) and (3.16) only depend on x and not on v or p

separately. We expect a solution growing in time. Therefore the initial (time) values are

set to 0 as they are negligible.

To solve the set of differential equations, the boundary condition in the far inertial region

is needed. For that we can take the Laplace transform of equation (3.12). Then it is easy

to see that the solution for Ỹ0 is:

lim
x→∞

Ỹ0 =
A1+

x
e−τ1x +

A2+

x
e−τ2x (3.17)
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with

τ2
1 ≡

1

2

{(
τ2
a + τ2

s + τ2
)

+

√
(τ2
a + τ2

s + τ2)2 − 4τ2
a τ

2
s

}
τ2

2 ≡
1

2

{(
τ2
a + τ2

s + τ2
)
−
√

(τ2
a + τ2

s + τ2)2 − 4τ2
a τ

2
s

}

where the τ ’s are defined in equations (3.13), and for J0:

lim
x→∞

J̃0 = A1+

(
τ2

1 − A0
A1

τ1

)
e−τ1x +A2+

(
τ2

2 − A0
A1

τ2

)
e−τ2x (3.18)

We need the solutions (3.17) and (3.18) to calculate the solution of the differential equation

numerically. Including the equations for x < 0, we have four unknowns: A1+, A1−, A2+

and A2−. We also have three equations given by connection conditions for Y0, J0 and Ξ−1

of the positive and negative regions. Therefore we can reduce the four constants to one

unknown constant a0 with the following relations: for v > 0: Ỹ0(v , p) = a0(p)Ỹ0+(x) and

for v < 0: Ỹ0(v , p) = a0(p)Ỹ0−(x). We have equivalent expressions for J̃0 and Ξ̃−1. We

will show shortly that a0 can be eliminated and therefore does not need to be determined.

For the matching process to the nonlinear region, we can set the inertial terms of equa-

tion (3.15) equal zero (A0x
2Ỹ0 and A6Ξ̃−1) since the inertial component is relatively small.

The leading order solutions for Y0 are then:

Ỹ0+(x) = −Γp0

p′0
Ĵ +

[
YS+

xλS
+
YL+

xλL

]
(3.19)

Ỹ0−(x) = −Γp0

p′0
Ĵ +

[
YS−
d±xλS

+
YL−
xλL

]
(3.20)

To evaluate Ĵ , YS+ and YL+ we must calculate the solution of the set of differential equa-

tions numerically and then solve for the three variables analytically.

3.2.2. Nonlinear limit of the inertial regions

Here we describe the solution of the inertial region in the limit of the matching region.

This region is characterised by 1� |v| � VA
γ

. In this limit the inertia terms are small and

can be neglected when evaluating the differential equations. Therefore the lowest order
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results become:

Y0(v, t) = −−Γp0

p′0
J (t) +

yS(t)

vλS
+
yL(t)

vλL
+O(

vRγ

VA

2

Y0) (3.21)

J0(v, t) = J (t) +O(v

(
Rγ

VA

)2

Ξ)

Ξ−1 = Ξ(t) +A2vJ (t) +
λS

D̃M

(A3 + (1− λS)A4)v
yS(t)

vλS

+
λL

D̃M

(A3 + (1− λL)A4)v
yL(t)

vλL
+O(v

(
Rγ

VA

)2

v
yS(t)

vλS
)

where the bars indicate constants along v. ys and yl are the small and large solution for

Y0(v, t) where the λS/L are the small and large Mercier solutions which are defined with

the Mercier coefficient D̃M :

λS/L =
1

2
±
√

1

4
− D̃M . (3.22)

If we compare equation (3.19) and (3.20) with the nonlinear matching region equation (3.21)

and recalling that the numerical solution differs by a factor a0 we obtain:

a0YS+

pλS
=

∫ ∞
0

e−pt
′
yS+(t′)dt′

a0YL+

pλL
=

∫ ∞
0

e−pt
′
yL+(t′)dt′

To eliminate the coefficient a0 we can use the (Mellin’s) inverse formula for Laplace trans-

form, [112], which leads to:

yL+(t) =
YL+/YS+

2πi

∫ ∞
0

dt′yS+(t′)

∫ i∞+p0

−i∞+p0

pλep(t−t
′)dp

where

λ = λS − λL

with λS and λL given by equation (3.22). It is easy to show that this is equivalent to:

yL+(t) =
YL+/YS+

2πi

∂2

∂t2

∫ ∞
0

dt′yS+(t′)

∫ i∞+p0

−i∞+p0

pλ−2ep(t−t
′)dp

The inverse Laplace transform from the right integral can be found in a table (see [113]).
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It has the following form:

yL+(t) =
YL+/YS+

κ

∂2

∂t2

∫ ∞
0

dt′
yS+(t′)H(t− t′)

(t− t′)1+λ−2

=
YL+/YS+

κ

∂2

∂t2

∫ t

0
dt′

yS+(t′)

(t− t′)1+λ−2

Here κ ≡ Γ(2 − λ) where Γ is the gamma function and H(t − t′) is the Heaviside step

function which can be absorbed into the limit of the integral. For a simplification of the

equation, we can introduce the definition of the so called fractional derivative, [114]:

∂λ

∂tλ
f(t) ≡ 1

κ

∂2

∂t2

∫ t

0
dt′

f(t′)

(t− t′)λ−1

Therefore we obtain the shorter expressions:

δ+ =
yL+(t)

yS+(t)
=
YL+/YS+

yS+

∂λyS+

∂tλ

δ− =
yL−(t)

yS−(t)
=
YL−/YS−
yS−

∂λyS−
∂tλ

(3.23)

In an up-down symmetric case we expect δ+(t) = δ−(t) = δ(t).

The results from here are used to match the small and large solutions to the solution of

the nonlinear region which will now be derived.

3.2.3. Nonlinear region

In this subsection the derivation of the differential equations for the nonlinear region is

outlined. The first three orders will lead us to the linear ballooning equation. With the

fourth and fifth order we can finally obtain the nonlinear ballooning equation by matching

the results of these orders with the inertial region.

For the nonlinear region we need to take again the components of the momentum equation

(i.e. the Lagrangian form) (2.21):

ρ0

J
(∇0r) · ∂

2ξ

∂t2
= −∇0

[
p0

JΓ
+
|(B0 ·∇0r)|2

2J2

]
+ (∇0r) ·

[
1

J
(B0 ·∇0)

(
1

J
(B0 ·∇0r)

)]
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where the viscosity and gravity are neglected.

We can re-write this equation to make the calculation more clear:

ρ0

J
(∇0r) · ∂

2ξ

∂t2
= ∇0F +

1

J
(B0 ·∇0)

[
(B0 ·∇0) r

J

]
−∇0

[
1

J
(B0 ·∇0)

[
(B0 ·∇0) r

J

]]
· ξ

(3.24)

with the scalar function F defined as

F ≡ − p0

JΓ
− 1

2J2
| (B0 ·∇0) r|2 +

1

J
ξ · (B0 ·∇0)

[
1

J
(B0 ·∇0) r

]
.

First Order: Incompressibility

The lowest order for the e⊥ component (O(ε0)) and for the e∧ component (O(ε−1)) are

given by:

(e⊥ ·∇0)
[(

Γp0 +B2
0

)
J (1)

]
= 0

(e∧ ·∇0)
[(

Γp0 +B2
0

)
J (1)

]
= 0

where the equilibrium relation (2.24) was used.

If these equations are integrated over a perpendicular variable to far away from the field

line we find that J (1) has to be equal to a constant divided by Γp0 + B2
0 . However, the

chosen boundary condition, (3.1), implies that J has to go to zero as well, which means:

J (1) = 0

This means that the lowest order of the parallel component of Eq. (3.24) is zero.

By using the ordering (2.20) we find that the lowest order of ∇ · ξ is equal to zero which

allows us to write:
∂ξ

(3)
∧
∂α

= −
∂ξ

(2)
ψ

∂ψ
(3.25)

This relation is a lowest order incompressibility condition on the plasma. Averaging this

expression with respect to α (in the range of −π to π), we can see that ξ(2)
ψ is constant
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with respect to ψ (as well as to α). Using the boundary conditions leads to

ξ
(2)
ψ = 0 (3.26)

where the overbar is defined by

A ≡ 1

2π

∫ π

−π
Adα (3.27)

which is an averaging with respect to α.

Second order

The lowest relevant order of the parallel component of Eq. (3.24) is of order O(ε2) and

given by:

(B0 ·∇0) J (2) = 0

Therefore J (2) is constant along the magnetic field lines. The perpendicular components

of order O(ε) and O(ε0) are:

B0
∂F (2)

∂ψ

∣∣∣∣∣
α,l

= 0

B0
∂F (2)

∂α

∣∣∣∣∣
ψ,l

= 0

(3.28)

where F (2) is:

F (2) = (Γp0 +B2
0)J (2) − (B0 ·∇0) (B2

0ξ
(2)
‖ ) + 2κ0 · ξ(2)

Note that the equations (3.28) contain higher order terms, which must be subtracted at

the appropriate order.

Following a similar argument to that in the previous order, it follows that F (2) = 0. This

gives a relation between ξ(2)
‖ and ξ(2)

ψ :

(B0 ·∇0) ξ
(2)
‖ −

2ξ
(2)
ψ e⊥ · κ0

B2
0

=
Γp0 +B2

0

B2
0

J (2) (3.29)

We can average this equation with respect to α using ξ(2)
ψ = 0, then integrate with respect

to the field-aligned variable. We use the fact that J (2) is constant along B0 and that ξ(2)
‖
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must vanish far along the field lines at the matching region. This yields J (2) = 0 and

ξ
(2)
‖ = 0.

Third order: The ballooning equation

Since the derivation of the equations of this order is slightly longer, a summary of the

results is given here, and a full derivation can be found in Appendix C.1.1.

With the terms of the third order we can show that J (2) = F (3) = 0. Additionally we can

obtain a second order differential equation of ξ(2)
ψ with respect to l. Therefore a separation

of variables is applicable. Since ξ(2)
‖ is related to ξ

(2)
ψ by an equation containing only

derivatives along the magnetic field line (C.3), we can also use the separation approach for

the parallel component of ξ(2) which leads to:

ξ(2) = ξ̂(ψ, α; t)

[
X

B0
e⊥ +GB0

]
= ξ̂(ψ, α; t)H (3.30)

where H is defined as: H ≡ X
B0
e⊥+GB0. The ratio X

B0
is independent of a fast variation

of ψ, α and t and is determined by the linear ballooning equation:

(B0 ·∇0)

[
|e⊥|2

B2
0

(B0 ·∇0)X

]
+

2µ

B4
0

(e⊥ · κ0) (e⊥ ·∇0p0)X = 0 (3.31)

where µ is the so called ballooning eigenvalue. Since we assume the plasma to be close to

marginal stability, we set 1−µ close to zero and of the order ε2. To introduce this eigenvalue,

we added a term of a higher order (ε4) which will be subtracted in the appropriate order.

The equation describing the parallel component of ξ(2) is:

G = − 1

µ p′0

|e⊥|2

B2
0

(B0 ·∇0)X (3.32)

By using the separation (3.30) we can also determine an expression for ξ(3)
∧ by using

equation (3.25) which leads to:

ξ
(3)
∧ = − ∂u

∂ψ

X

B0
+ ξ

(3)
∧

where u is defined as u ≡ ∂ξ̂

∂α
.
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Fourth order

A summary of the results of the fourth order are given here, and the full derivation is found

in Appendix C.1.2.

We can show that the third order of the Jacobian is independent of α:

∂J (3)

∂α
= 0

Note a shift of the α variable by a function f = f(ψ) does not affect the equilibrium

(i.e. the magnetic field B0), which means that the equilibrium is invariant under this

transformation. However, by shifting the variable α, the ballooning eigenfunction µ, e⊥,

and the function X change. We can show that ∂e⊥
∂f ′ = −e∧ where f ′ ≡ ∂f

∂ψ . Additionally

it is possible to show that
∂µ

∂f ′
≈ 0

This means that we must calculate µ for each flux surface to find the most unstable one,

which then will be used for this model.

The final main result is a representation of the third perpendicular order of the displace-

ment:

ξ
(3)
⊥ =

1

B0

∂u

∂ψ

∂ (Xe⊥)

∂f ′
+
B0

2
H2∂ξ̂

2

∂ψ
e⊥ + ξ

(3)
∧ e∧

where the second and third terms are the α independent parts of ξ(3)
⊥ . This relation is used

in the fifth order to achieve an equation only depending on ξ̂.

Fifth Order: The nonlinear ballooning equation

This is the last order from the nonlinear region which will be used to calculate the bal-

looning envelope equation. After some algebra which is presented in the Appendix C.1.3
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we can derive the following equation:

e⊥ · L

(
∂Z

(4)
⊥

∂α

)
− e∧ · L

(
∂Z

(3)
⊥

∂ψ

)
+

2

B2
0

(1− µ)(e⊥ · κ0)(e⊥ ·∇0p0)
∂ξ

(2)
ψ

∂α

+

[
(eψ ·B0)

B2
0

(B0 ·∇0) +
2

B2
0

(e⊥ · κ0)

] [
1

B0
e∧ · L

(
ξ

(2)
⊥

)]
+ 2B0

∂ξ
(2)
ψ

∂ψ
e∧ · L

(
∂ξ

(2)
⊥

∂ψ

)

+B0

∂ξ(3)
∧
∂ψ

e∧ · L

(
∂ξ

(2)
⊥

∂α

)
−
∂ξ

(2)
ψ

∂α
e⊥ · L

(
∂Z

(3)
⊥

∂ψ

)+ P
∂ξ2

∂α

− ξ̂B0
∂

∂ψ

∣∣∣∣
α,l

[
1

B0
e∧ · L

(
Xe⊥
B0

)]
+ 2J (3) (e⊥ ·∇0κ0)

∂ξ(2)

∂α

= ρ0|e⊥|2
X

B0

∂

∂α

∂2ξ̂

∂t2
+
B0Γp0

p′0
(B0 ·∇0)

[
|e⊥|2

B2
0

(B0 ·∇0) J (4)

]
= ρ

[
|e⊥|2

X

B0
+
B0

p′0
(B0 ·∇0)

[
|e⊥|2G

]] ∂

∂α

∂2ξ̂

∂t2
(3.33)

where L is the linear operator which is defined acting on a perpendicular vectorW⊥ (with

only e⊥ and e∧ components) as:

L (W⊥) ≡ B0 ·∇0 [B0 ·∇0 (W⊥)]−(∇0κ0)·W⊥+[B0 (B0 ·∇0) + 2κ0]

[
2

B2
0

(κ0 ·W⊥)

]

Z⊥ is defined as:

Z
(i)
⊥ = ξ

(i)
⊥ +

Γp0

p′0B0
J (i)e⊥

where the third order of this quantity satisfies:

e∧
B0
· L
(
Z

(3)
⊥

)
=

X

B0

∂ξ̂2

∂ψ
e∧ · L (H⊥) .

We separate the α derivative of Z(4)
⊥ into its e⊥ and e∧ components:

∂Z
(4)
⊥

∂α
=

1

B0

∂Z

∂α
e⊥ +

U

B0
e∧ (3.34)
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The function Z will be determined asymptotically and the quantity U which is given by

U ≡ B0
∂ξ

(4)
∧
∂α is given by the following equation, where we used J (2) = 0:

U = −B0

∂ξ
(3)
ψ

∂ψ
− (e⊥ ·∇0p0)

B2
0

ξ
(2)
ψ −

ξ̂

B0
e⊥ ·∇0X +B2

0

∂ξ(2)
ψ

∂α

∂ξ
(3)
∧
∂ψ

−
∂ξ

(2)
ψ

∂ψ

∂ξ
(3)
∧
∂α


+

1

2
(H ·∇0H) ·∇0α

∂ξ̂2

∂α
(3.35)

Equation (3.33) is the last equation needed to determine the nonlinear ballooning envelope

equation. To achieve it we must find a solution for the nonlinear solution as it approaches

the inertial limit and match that with the solution in the inertial region as it approaches

the nonlinear limit. These steps are presented in the next two subsections.

3.2.4. Inertial limit for the nonlinear region

In this section the solutions for the functions X, G (and thereforeH) and Z are presented

for the limit χ → ∞. These solutions are needed to match the inertial solution to the

nonlinear solution. To evaluate the nonlinear equations as the inertial region is approached

the asymptotic forms (|χ| � 1) for the functions X, G and Z are derived next, since these

functions appear several times. We again use the separation of χ into θ and v (see Sect. 3.2.1

for more detail).

Asymptotic form of X

Here we outline the steps of the derivation of the asymptotic form of X. The more detailed

description can be found in Appendix C.2.1. The function X is described by the linear

ballooning mode equation (along field lines) at marginal stability (3.31). This equation

can be exploited to determine the behaviour of X for high values of χ. Expanding X with

respect to v: X = X0 + X1
v + X2

v2
+ · · · and using the relations (A.1), (A.2), (A.3) and (A.4)
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we obtain:

0 =

(
∂

∂v
+

∂

∂θ

)[
1

JR2B2
p

[
1 +

R4B4
p

B2

(
q′v + Y ′

)2]( ∂

∂v
+

∂

∂θ

)(
X0 +

X1

v
+
X2

v2
+ · · ·

)]
+

+2µp′

[
J

B2R2B2
p

(∇ψ · ∇)

(
p+

B2

2

)
+
I

2

∂

∂θ

(
1

B2

)(
q′v + Y ′

)](
X0 +

X1

v
+
X2

v2
+ · · ·

)
(3.36)

The next step is to examine each order of equation (3.36). From the lowest order we can

obtain that X0 only depends on v: X0 = X0(v).

Exploiting the next higher order we can obtain the expression for the θ derivative of the

second lowest order of the displacement X:

∂X1

∂θ
=
JµIp′

R2B2
pq
′

B2

〈
1

R2B2
p

〉
θ〈

B2

R2B2
p

〉
θ

− 1

X0 +

 JB2

R2B2
p

1〈
B2

R2B2
p

〉
θ

− 1

 v∂X0

∂v
(3.37)

where 〈· · ·〉θ is the θ average. Determining the next order and using the expression for ∂X1
∂θ

we can obtain, after some algebra, the differential equation for X0:

∂

∂v

[
v2∂X0

∂v

]
+DMX0 = 0 (3.38)

where DM defined by Eq. (C.15) is the Mercier coefficient including the ballooning eigen-

value, [65], where DM ≈ D̃M for µ ≈ 1. The general solution for equation (3.38) is:

X0 =
C1

|v|λ+
+

C2

|v|λ−
(3.39)

with

λ± =
1

2
±
√

1

4
−DM (3.40)

Since we assume our system to be close to marginal stability we will refer to the small and

large solution λS (≈ λ+) and λL (≈ λ−) respectively.
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Asymptotic form of G

The asymptotic form for the parallel component of the lowest order displacement is deter-

mined here. We can use equation (3.32) to evaluate the leading order of G. Using Eq. (A.4)

and expanding G into its orders we obtain:

G0 +
G1

v
+ · · · = − 1

R2B2
p

[
1 +

R2B2
p

B2
0

(q′v + Y ′)2

](
∂X0

∂v
+

1

v

∂X1

∂θ
+ · · ·

)

where we can easily determine the lowest order of G0 by using Eq. (3.37):

G0 = − q
′2

B2
0

v2

 Jµfp′

R2B2
pq
′

B2

〈
1

R2B2
p

〉
θ

B2

R2B2
p

− 1

 X0

v
+

JB2

R2B2
p

1〈
B2

R2B2
p

〉
θ

∂X0

∂v

 (3.41)

Asymptotic form of Z

Here we determine the asymptotic behaviour of the function Z given in Eq. (3.34). Starting

with the final equation of the previous section (3.33), but including only the leading orders,

we obtain:

e⊥ · L
(

1

B0

∂Z

∂α
e⊥

)
+ F (v, θ) = ρ0

[
|e⊥|2

B0
X +

B0

p′0
B0 ·∇0

[
|e⊥|2G

]] ∂

∂α

∂2ξ̂

∂t2

where F (v, θ) represents the terms including e⊥ · L
(
U
B0
e∧

)
. There are two larger contri-

butions which makes this second order differential equation an inhomogeneous equation.

First we consider the inertia term on the right hand side. If we ignore the inertia term, we

can solve this differential equation with ZF as its special solution given by:

∂ZF
∂α

= − 1

q′v
U0.

where U0 is the dominant term of U containing only the last term of Eq. (3.35). By adding

the ZF to our solution Z0 we can eliminate F (v, θ) in the differential equation:

e⊥ · L
(

1

B0

∂Z

∂α
e⊥

)
= ρ0

[
|e⊥|2

B0
X +

B0

p′0
B0 ·∇0

[
|e⊥|2G

]] ∂

∂α

∂2ξ

∂t2

Note, that the homogeneous part of this differential equation is of the same form as the

asymptotic equation for X, Eq. (3.31). Therefore we proceed in the same way and apply
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our results for X to the inertia term, which enters our calculation at order O(v). The

highest order O(v2) looks exactly like our equation for X0:

q′2
∂

∂θ

[
R2B2

p

JB2

∂Z0

∂θ

]
= 0

We find that Z0 only depends on v: Z0 = Z0(v). We can obtain an expression for the

derivative ∂Z1
∂θ by investigating the next order:

∂Z1

∂θ
=

JIp′

R2B2
pq
′

B2

〈
1

R2B2
p

〉
θ〈

B2

R2B2
p

〉
θ

− 1

Z0 +

 JB2

R2B2
p

1〈
B2

R2B2
p

〉
θ

− 1

 v∂Z0

∂v

+
ρ0

p′
v

JB2
0G0 −

〈
B2

0G0

〉
θ〈

B2

R2B2
p

〉
θ

JB2
0

R2B2
p

 ∂2ξ

∂t2
(3.42)

The result for ∂Z1
∂θ has an additional term compared to ∂X1

∂θ which is due to the inertia.

Using the next highest order and averaging over θ we obtain:

∂

∂v

[
v2∂Z0

∂v

]
+DMZ0 = ρ0

{〈
B2

0

R2B2
p

〉
θ

〈
R2B2

p

B2
0

〉
θ

v2X0 +
1

p′0

∂

∂v

(
v2
〈
B2

0G0

〉
θ

)
+
f

q′
v 〈G0〉θ

〈
B2

0

R2B2
p

〉
θ

− f

q′

〈
1

R2B2
p

〉
θ

v
〈
B2

0G0

〉
θ

}
∂2ξ̂

∂t2

If we assume that X0 only consists of the small solution (left term of Eq. (3.39)) which is

discussed in the next section, we can write:

∂

∂v

[
v2∂Z0

∂v

]
+DMZ0 ≡ Q(z)(θ) v2−λS .

where we defined the function Q(z)(θ) such that it includes all the periodic quantities of

the right hand side. The general solution of that differential equation is:

Z0 =
C

(z)
1

vλS
+
C

(z)
2

vλL
+
Q(z)v2−λS

2(3− 2λS)
(3.43)

3.2.5. Matching of the nonlinear and inertial regions

In this section we merge the solutions of the inertial and nonlinear regions by using the

solutions of the limits (Equations (3.21), and Equations (3.39), (3.41), (3.43)) which leads
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3.2. REGIONS ALONG THE MAGNETIC FIELD LINE

to the final ballooning envelope equation for tokamak geometries.

X0 and Z0 can each consist of large (λL) and small (λS) solutions. However, we can choose

them in such a way that the entire small solution only enters the displacement in X0 and

that the entire large solution only enters the displacement in Z0. That choice is consistent

since the coefficient of the small solution is assumed to be large – valid close to marginal

stability. With that approach we obtain:

X0 =
C1

|v|λS
(3.44)

G0 = q′
(
f

B2
+ f0

)
vX0 (3.45)

with f0 defined as:

f0 ≡
λSq

′

µ0p′
1〈
B2

0
R2B2

p

〉
θ

− f

〈
1

R2B2
p

〉
θ〈

B2
0

R2B2
p

〉
θ

(3.46)

The constant C(Z)
2 from Eq. (3.43) needs to be matched to the solution of the inertial

region which means it is of this form A± ξ δ where δ is given by Eq. (3.23) and assuming

up-down symmetry. Therefore our complete solution for the lowest order of Z is:

Z0 =
A± ξ δ

vλL
+

Qv2−λS

2(3− 2λS)
− 1

q′v

∫
dαU0 (3.47)

Now using Equation (C.16), which is derived in the Appendix C.2.2, we can show that the

following terms of equation (3.33) can be written as:

〈
X

B0
e⊥ · L

(
1

B0

∂Z

∂α
e⊥

)〉
− ρ0

[〈
|e⊥|2

B0
X2

〉
+

〈
X

p′0
(B0 ·∇0)

(
|e⊥|2G

)〉] ∂

∂α

∂2ξ

∂t2

+

〈
X

B0
e⊥ · L

(
∂ξ

(4)
∧
∂α

e∧

)〉

= −C0
∂

∂α

∂2ξ

∂t2
+ (λS − λL) δ

(
A2

+ +A2
−
)
q′2
〈

B2
0

|∇ψ|2

〉−1

θ

∂ξ

∂α
+

〈
∂ξ

(4)
∧
∂α

e∧ · L
(
X

B0
e⊥

)〉
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3.3. DISCUSSION

where 〈· · ·〉 is an integral along the magnetic field line. With this relation and equa-

tion (3.33) we obtain the final equation: the nonlinear ballooning mode envelope equation:

C0
∂

∂α

∂2ξ

∂t2
+ C5

∂

∂α

∂n

∂tn

[∫ t

0
dt′

ξ(t′)

(t− t′)1+λ−n

]
= C1

[
2 (1− µ)

∂

∂α
ξ − ∂2µ

∂f ′2
∂2u

∂ψ2

]
+ C2

∂

∂α
ξ2 + C3

[(
∂ξ

∂ψ

)2

− ∂2u

∂ψ2

∂

∂α
ξ − 1

2

∂2ξ2

∂ψ2

]
+ C4

∂ξ

∂α

∂2ξ2

∂ψ2
(3.48)

The coefficients can be found in Chapter 5.1 where a method to calculate them is presented.

The C0, C3 and C5 coefficients are not always needed. The C0 coefficient has to be used if

λ > 2 otherwise it would not appear in the derivation. If λ < 2 we must evaluate and use

C5 instead, see Sect. 3.2.1. C3 needs to be determined only if the geometry of the plasma

is not up-down symmetric, otherwise it is close to zero and can be neglected2.

3.3. Discussion

To obtain an initial intuitive interpretation of this model we will discuss the physical mean-

ing of the relevant terms of the nonlinear ballooning envelope equation (3.48), [2, 67, 69].

The linear terms (C0, C1 and C5) of this equation are discussed first. The C0 and C5

terms represent the inertia of the filaments. The first term in C1 is the "linear drive term"

which drives the filaments initially. Its physical origin is a balance between stabilising field

line bending and the destabilising pressure gradient in the ballooning case (in Chapter 4

the pressure gradient drive is replaced by the Rayleigh-Taylor drive). The second term in

C1 is the so called "1/n-correction term" as it is a higher order linear term. It originates

from filaments pushing surrounding field lines aside, which causes field line bending in the

perpendicular directions. This is why we also call this term the "field line stability term".

The two nonlinear terms are the C2 and C4 terms. The quadratic C2 term is the "nonlinear

drive term" (or "quadratic nonlinear term") which is the explosive drive in the nonlinear

regime. It is mainly caused by a change of the field line bending force depending on the

equilibrium structure. The sign of C2 is responsible for the direction of the nonlinear drive.

If C2 is positive the field line bending force is nonlinearly weakened due to an expanding

2To obtain the equation calculated in the code Deton8 (see Sect. 2.5.1), we are using the Taylor-expansion
of the quantity µ and calculating its values and the second derivative of µ with respect to f ′ numerically.
We can set C3 = 0 since we only analyse up-down-symmetric cases. Furthermore we integrate with
respect to α and exploit the fact that ξ = 0 (see Eq. (3.26)).
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3.3. DISCUSSION

flux tube as it moves radially outwards and therefore accelerates the filaments outwards.

However, if the coefficient is negative the filament implodes instead. The cubic C4 term is

the "quasilinear nonlinearity term" which stabilises the filaments at the most unstable flux

surface but drives them radially further away from this flux surface; therefore it causes the

filaments to broaden in the ψ direction and to narrow in the α direction as long as C4 is

positive. It is a physical mechanism which couples the flux surfaces in the ψ direction such

as the flattening of any steep pressure gradients.

In Chapter 5 we analyse each coefficient and discuss it in more detail so that we can

calculate them for real equilibrium cases. But first in Chapter 4, we investigate how the

nonlinear terms change the behaviour of interacting filaments.

67



4. Nonlinear interaction of filamentary

eruptions

In this chapter the interaction of multiple filamentary plasma eruptions is investigated by

modelling the nonlinear MHD ballooning mode envelope equation with a mixed Eulerian

and Lagrangian characterisation of the boundary conditions. The study of multiple plasma

filaments is performed in a specific slab equilibrium susceptible to Rayleigh-Taylor insta-

bilities. We will argue that our main results are quite generic, independent of geometry

and drive mechanism (within ideal MHD). We therefore demonstrate the essential physics

with the relatively simple slab Rayleigh-Taylor-model, employed in [67]. We extend that

calculation to derive the system with Eulerian boundary conditions, as employed in [4].

We shall find that if the unstable system is initiated with three equal sized filaments, they

erupt at the same rate, independently of each other, even in the nonlinear regime. How-

ever, if one is initiated very slightly larger than the other two it causes a down-draft as it

erupts upwards, which suppresses the smaller filaments. This suggests that those filaments

which first enter the nonlinear regime will dominate the plasma eruption dynamics.

In section 4.1 the equilibrium is described with the boundary conditions and the derivation

of the nonlinear ballooning model in slap geometry is outlined (a more detailed derivation

can be found in Appendix D). In the next section (4.2) the influence of the included scalar

viscosity is quantified. Section 4.3 is the main section of this chapter which shows how

the so called "three filament system" is initialised and quantifies the interaction of the

filaments. Section 4.4 provides two examples of experimental observations that potentially

can be explained by our simulations. This chapter finishes with the conclusion in section

4.5.

Some parts of the viscosity section (4.2) have been reported in [4] and parts of section 4.3
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4.1. THEORETICAL MODEL

have been published in [5, 6].

4.1. Theoretical model

4.1.1. Nonlinear equation with mixed Eulerian and Lagrangian boundary

conditions

In this Section, we derive the nonlinear equation for the slab Rayleigh-Taylor model using

mixed Eulerian and Lagrangian boundary conditions. Specifically, we employ boundary

conditions with no vertical plasma displacement and no perturbed density or pressure at

the walls.

We analyse a system with an equilibrium of a simple one dimensional line tied magnetised

plasma atmosphere which is given by a magnetic field B0 = B0(x) ẑ, the pressure p0 =

p0(x), the density ρ0 = ρ0(x) and the gravitational acceleration g = −g x̂ where the

subscript “0" indicates equilibrium quantities, as shown in Fig. 4.1. Our starting point is

Figure 4.1.: Slab geometry: Straight field lines represent the equilibrium. The curved field lines
visualise a perturbed system. The displacement ξ is a measure of how much the
magnetic field lines or filaments have moved away from the equilibrium position. The
gravity g is pointing downwards and a density gradient is pointing upwards which
results in a Rayleigh-Taylor drive. In the equilibrium case this drive is balanced by
the pressure and magnetic field line gradient.

the ideal MHD momentum equation considering gravity and with an additional kinematic,

scalar viscosity term that is included to provide simple viscous dissipation [60]:

ρ

(
∂v

∂t
+ v ·∇v

)
= −∇

(
p+

B2

2

)
+B ·∇B − ρgx̂+ νρ4v.
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4.1. THEORETICAL MODEL

where v = ∂r
∂t is the velocity and ν is the scalar viscosity. We choose to perform the

calculation in Lagrangian variables. In this approach all quantities can be expressed in

terms of the displacement ξ of a fluid element. The position vector of a fluid element,

r(t), is related to its initial position vector, r0, through r(t) = r0 + ξ(r0, t), so that the

components of the Jacobian matrix Jij are

Jij = (∇0r)ij = δij +
∂ξj
∂x0i

,

where x0i are the components of r0 and i, j run from 1 to 3 to label x,y and z coordinates

of a Cartesian system. The Jacobian J is the determinant of the Jacobian matrix Jij . We

choose the boundary conditions so that ξx = 0 and J = 1 at the walls where z = 0 and

z = L, corresponding to unperturbed density ρ and pressure p. We assume that gradients

in the ρ and p profiles are in the x-direction and that the process is isothermal as the

thermal conduction along the field lines is fast. This implies that the ratio of specific heat,

Γ, is equal to one.

We measure the distance above marginal stability by a dummy large parameter n where

the growth rate of the most unstable perturbation Γ is order n−1/2. Thus

∂

∂t
∼ O

(
n−1/2

)

The order of the spatial derivatives as well as the order of the Lagrangian displacement

is set by the localised geometry of the most unstable linear mode structure [67] which is

similar to the ballooning mode structure [56]:

∂

∂x0
∼ O

(
n+1/2

)
ky ∼

∂

∂y0
∼ O(n)

∂

∂z0
∼ O(1) . (4.1)

Expanding the components of ξ = ξxx̂ + ξzẑ + ξyŷ and the Jacobian J in powers of n−1/2

we anticipate:

ξx =
∞∑
i=2

n−i/2ξ(i/2)
x ξz =

∞∑
i=2

n−i/2ξ(i/2)
z ξy =

∞∑
i=3

n−i/2ξ(i/2)
y J = 1 +

∞∑
i=1

n−i/2J (i/2).
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4.1. THEORETICAL MODEL

The viscosity is treated as small ν ∼ O(n−5/2) so that it only enters in our envelope

equation for ξx.

Conservation of mass yields ρ(r, t) = ρ0(x0)/J where the density at r at time t is ρ(r, t) and

the equilibrium density at r0 is ρ0(x0). Similarly pressure evolution is p(r, t) = p0(x0)/J

using p(x, y, z, t) = ρ(x, y, z, t)T0(x0) and the assumption of an isothermal process which

sets the ratio of specific heats to one: Γ = 1. The conservation of magnetic flux yields

B(r, t) =
B0(r0) ·∇0r

J
=
B0(x0)

J

[
ẑ +

∂ξ

∂z0

]
.

A full derivation can be found in [61].

With these relations the MHD momentum equation becomes:

ρ0

J
(∇0r) · ∂

2ξ

∂t2
= −∇0

[
p0

J
+
|(B0 ·∇0r)|2

2J2

]
+ (∇0r) ·

[
1

J
(B0 ·∇0)

(
1

J
(B0 ·∇0r)

)
+
ρ0

J
g

]
+ ν∇2

0

∂ξ

∂t
. (4.2)

Dotting Eq. (4.2) with B0 = B0ẑ and multiplying by J yields:

ρ0B0(x0)

[
ẑ +

∂ξ

∂z0

]
· ∂

2ξ

∂t2
= B0(x0)

∂

∂z0
[p0 ln J − ρ0gξx] + νB0J∇2

0

∂ξz
∂t

.

Dropping terms O(n−3) and higher we can solve for J using the boundary conditions:

J = exp

(
ρ0gξx
p0

+
ρ0

p0

∂2s

∂t2

)
+O

(
n−3

)
(4.3)

where s =
∫ z0

0 ξzdz0. The use of the Eulerian z boundary condition distinguishes this

calculation from previous derivations and simplifies the calculation as we have a specific

form of the Jacobian. The steps include analysing the different orders of n of the x0-

component and the y0-component of Eq. (4.2). This derivation is a simplified version of

the one summarised in Chapter 3 due to its boundary conditions and the simpler geometry

and the full calculation is reported in Appendix D which derives the following equation for
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4.1. THEORETICAL MODEL

the evolution of the filament in the direction perpendicular to the magnetic field lines:

Inertia Term︷ ︸︸ ︷
Ĉ0
∂2ξ

∂t2
=

Linear Instability Drive︷ ︸︸ ︷
Γ2(x0)ξ −

Field Line Stability Term︷ ︸︸ ︷
Ĉ2
∂2u

∂x2
0

+

Viscosity Term︷ ︸︸ ︷
ν
∂2

∂y2
0

∂ξ

∂t

(4.4)

+ Ĉ3ξ
∂2ξ2

∂x2
0︸ ︷︷ ︸

Quasilinear Nonlinearity Term

+ Ĉ4

(
ξ2 − ξ2

)
︸ ︷︷ ︸

Nonlinear Growth Drive

Here we have ξx(x0, y0, z0) = ξ(x0, y0, t)H(z) where the functionH(z) describes the vertical

displacement along the field line and is given in Appendix D: H(z) = sin(πzL ). We have

also defined ξ2 is the y0 average of the squared displacement, ξ2 and ∂2u
∂y20

= ξ. The local

linear growth rate Γ, which is also derived in Appendix D, is given by, [71]:

Γ2(x0) = −B
2
0π

2

ρ0L2
+
ρ0g

2

p0
+

g

ρ0

dρ0

dx0
.

The first term describes the stabilising effect of field line bending, the second term is the

Parker instability drive1 and the third term is the Rayleigh-Taylor instability drive.

The coefficients Ĉ0, Ĉ2, Ĉ3 and Ĉ4 are given by:

Ĉ0 =

(
1 +

ρ2
0g

2L2

p2
0π

2

)
Ĉ2 = −

(
B2

0π
2

ρ0L2

)
Ĉ3 =

(
B2

0π
2

8ρ0L2

)
Ĉ4 =

4

3π

(
g

ρ0

d2ρ0

dx2
0

− ρ2
0g

3

p2
0

)
(4.5)

Notice that the Eq. (4.4) has the same form as the one derived in Chapter 3 except that

it always has a second time derivative. Sect. 3.3 provides a discussion of the physical

interpretation of this Eq. (4.4). Also, this is one reason why the results shown in this

Chapter are generic and are considered to be relevant for tokamak geometry (especially

for strong shaping where λL − λS > 2 [2]).

1The Parker instability is also known as "magnetic Rayleigh-Taylor" instability. A simplified explanation
is that the supporting pressure gradient is replaced by a gradient in the magnetic pressure which can
lead to an unfavourable density distribution [115, 116].
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4.1.2. A model equilibrium

To obtain results for a specific situation we calculate coefficients for a simple model at-

mosphere in a slab geometry, which is an extension of that used in [71]. The equilibrium

density and magnetic field are given by:

ρ(x0) =
ρ

cosh2
[
x0−xρ
Lρ

] B2
0(x0) = B

2
1 −

B
2
2

cosh2
[
x0−xB
Lρ

] .
From the equilibrium equation ∂

∂x

(
p0 +

B2
0

2

)
= −gρ0 we obtain the following for the

Figure 4.2.: Sketch of the unperturbed density ρ(x0) = ρ

cosh2
[
x0−xρ
Lρ

] (blue, dashed), magnetic

field B2
0(x0) = B

2

1 −
B

2
2

cosh2
[
x0−xB
Lρ

] (red, solid) and pressure p0(x0) = p0 −
B2

0

2 −

gρ0Lρ tanh
[
x0−xρ
Lρ

]
(black, dotted).

equilibrium pressure profile:

p0(x0) = p0 −
B2

0

2
− gρ0Lρ tanh

[
x0 − xρ
Lρ

]
.

Similar to [71], we define normalised variables and constants:

x̃0 =
x0

Lρ
, ỹ0 =

y0

Lρ
, t̃ =

√
g

Lρ
t, B̃2

1 =
B

2
1

2gρ0Lρ
, ξ̃ =

ξ

Lρ
,

x̃B =
xB
Lρ
, x̃ρ =

xρ
Lρ
, A =

Lρ
L
, B̃2

2 =
B

2
2

2gρ0Lρ
.
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With these normalised variables the form of Eq. (4.4) would change unless we make the

following transformation:

C̃0 = Ĉ0
ρ0

2ρ
C̃3 = Ĉ3

Lρρ0

2gρ

Γ̃2 = Γ2Lρρ0

2gρ
C̃4 = Ĉ4

L2
ρρ0

2gρ

C̃2 = Ĉ2
Lρρ0

2gρ
ν̃ = ν

ρ0

2ρ
√
gL3

ρ

With these expressions we obtain:

C̃0
∂2ξ̃

∂t̃2
= Γ̃2(x̃0)ξ̃ − C̃2

∂2ũ

∂x̃2
0

+ C̃3ξ̃
∂2ξ̃2

∂x̃2
0

+ C̃4(ξ̃2 − ξ̃2) + ν̃
∂2

∂ỹ2
0

∂ξ̃

∂t̃

where ∂2ũ
∂ỹ20
≡ ξ̃. To derive the normalised coefficients C̃i we use equations (4.5) and assume

a large pressure to ensure that the Rayleigh-Taylor instability dominates over the Parker

instability drive. We obtain:

Γ̃2(x̃0) = −

(
A2B̃2

1 −
A2B̃2

2

cosh2(x̃0 − x̃B)

)
π2 − sinh(x̃0 − x̃ρ)

cosh3(x̃0 − x̃ρ)

C̃0 =
ρ0

2ρ0

=
1

2 cosh2(x̃0 − x̃ρ)

C̃2 = − Lρ
2gρ0

(
B2

0π
2

L2

)
= −

(
A2B̃2

1 −
A2B̃2

2

cosh2(x̃0 − x̃B)

)
π2

C̃3 =
Lρ

16gρ0

(
B2

0π
2

L2

)
=

1

8

(
A2B̃2

1 −
A2B̃2

2

cosh2(x̃0 − x̃B)

)
π2

C̃4 =
2L2

ρ

3πρ0

d2ρ0

dx2
0

=
8

3π

3 tanh2(x̃0 − x̃ρ)− 1

cosh2(x̃0 − x̃ρ)
.

The linear drive coefficient Γ̃2(x0) can be expanded about the position xmax where the

growth rate has a maximum:

Γ̃2(x0) ≈ Γ̃2(xmax)−

∣∣∣∣∣dΓ̃2

dx2
0

∣∣∣∣∣
xmax

(
(x0 − xmax)2

2

)

= C̃1

(
1− (x̃0 − x̃max)2

∆2

)

74



4.2. SCALAR VISCOSITY

We adopt the same choice of variables as Ref. [71] to enable comparison: x̃ρ = 2, x̃B = 0.8,

A2B
2
1 = 0.07834 and A2B

2
2 = 0.04701. With these parameters we obtain:

C̃0 = 0.248 C̃1 = 1.9× 10−4 C̃2 = −0.352

C̃3 = 0.044 C̃4 = 0.216

∆ = 0.017 x̃max = 1.1118

and we chose the viscosity to be ν̃ = 10−10.

4.2. Scalar viscosity

In this section the influence of the small scalar viscosity on the system is analysed. For

an investigation on how the viscosity changes the evolution of the filaments we perform

a simple balancing of the nonlinear terms of the ballooning mode envelope equation (4.4)

(i.e., inertia, viscosity, quasilinear nonlinearity and nonlinear growth drive term) which

leads to the following relations:

ξ ∝ (t0 − t)−2 ∆x2

∆y
∝ ξ ∆y ∝ (t0 − t)0.5 ∆x ∝ (t0 − t)−0.75 (4.6)

where ∆y is the width of the filament in the ∇y direction and ∆x is the width of the

filament in the ∇x direction; t0 is a quantity that depends on initial conditions. The

inclusion of viscosity allows for the derivation of the last two relations. We can define the

widths ∆y and ∆x as follows to calculate these quantities from our simulations:

∆y =

∫
dy ξ(xmax, y, t)

2

ξ(xmax, 0, t)2
(4.7)

∆x =

∫
dx
∫
dy (x− xmax)ξ2∫
dx
∫
dyξ2

(4.8)

where the x-integrals are over the whole regime of the simulation which should be a good

estimate since ξ decays to zero before the end of the numerical domain. The y-integrals are

over one periodic interval. Using these definitions we can estimate the numerical results
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to compare it with the indices of the relations (4.6):

ξ ∝ (t0−t)−2.52 ∆x2

∆y
∝ (t0−t)−2.5 ∆y ∝ (t0−t)1.04 ∆x ∝ (t0−t)−0.73

(4.9)

To refer to the indices we introduce the indices p, for each of the asymptotic forms: ξ ∼

(t0−t)pξ , ∆y ∼ (t0−t)py and ∆x ∼ (t0−t)px . The predicted indices (see (4.6)) indicate that

the width ∆y is shrinking and the width ∆x is growing as the finite time singularity, t→ t0,

is approached. Numerical simulations confirm this (Fig. 4.4 and (4.9)). The results always

Figure 4.3.: Evolution of the width ∆y de-
fined by Eq. (4.7). The process
of narrowing, but not the rate
of narrowing, agrees with the
relation given in (4.6).

Figure 4.4.: Evolution of the width ∆x de-
fined by Eq. (4.8). The broad-
ening, but not the rate of nar-
rowing, agrees with the relation
given in (4.6).

exhibit an explosive behaviour of the filaments independent of whether or not viscosity

is included. However, the simple balancing of terms does not give accurate quantitative

results for the individual indices pξ, py and px. This can be seen as a measure of how

dominant the viscosity term is in the nonlinear regime because the predicted indices py

and px are only valid if the influence of the viscosity is significant. Additionally numerical

errors can be introduced in the simulation which can also affect the determined indices.

This means that with the chosen values the viscosity term seems not as dominant as the

other two nonlinear terms. This is in agreement with comparing the energy of each term

to determine which terms are dominant. We can show that the energy of each term is

described by this expression where the dissipated energy is equal to the viscosity term on
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the right hand side:

2
dE

dt
=

d

dt

∫
dV

[
C0

(
∂ξ

∂t

)2

− Γ2ξ2 + C2

(
∂u

∂x0

)2

+
1

2
C3

(
∂ξ2

∂x0

)2

− 2

3
C4ξ

3

]

= −ν
∫
dV

(
∂2ξ

∂t∂y0

)2

(4.10)

where
∫
dV =

∫
dx0 dy0Lz is a volume integral. This relation enables us to quantify which

terms dominate the evolution of the filaments at different times.

Fig. 4.5 shows the evolution of the energies of each term. The left side shows the time

Figure 4.5.: Evolution of the energies of each term (see Equation (4.10)). On the left: the change
of linear to nonlinear regime; On the right: reaching the singularity in time in a very
nonlinear regime.

up to when the nonlinear drive overtakes the linear drive. The right hand side shows the

energies deep in the nonlinear regime.

The relation (2px−py)
pξ

≈ 1, which comes from balancing the nonlinear growth drive term

and the quasilinear nonlinearity term, is very robust, agreeing well with simulations with

and without viscosity. This indicates that these two terms are dominating the evolution

close to the finite time singularity.

In summary the small viscosity influences the nonlinear evolution as it determines the

behaviour of the widths ∆x and ∆y in the nonlinear regime. However, the viscosity

chosen here has only a minor impact on this.
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4.3. INTERACTING FILAMENTS

4.3. Interacting filaments

In this section the interaction of filaments with slightly different initial heights is investi-

gated. Previous research [5] using this nonlinear ballooning model studied the evolution of

single, isolated filaments in time and space. In a real plasma system it is more likely that

several filaments will erupt, and interact - ELMs are a classic example [37]. This motivates

our study to determine how the interaction of filaments affects their evolution, extending

the studies of [69].

4.3.1. Initiation - linear solution

A linear stability analysis of Eq. (4.4) (neglecting the last two terms of Eq. (4.4)) provides

an eigenmode structure of the displacement which can be used to initialise the simulations.

To solve the linear differential equation, one can use a separation of variables:

ξ = X(x0)Y (y0)T (t)

Using the ansatz that Y (y0) = cos(ny0) and T (t) = exp(γt), where n is the mode number

and γ the linear growth rate, one obtains a Weber differential equation for the x0 component

[112]:
C2

n2

∂2X(x0)

∂x2
0

+

[
C0γ

2 + n2νγ − C1

(
1− (x0 − xmax)2

∆2

)]
X(x0) = 0

Its solution is a Gaussian function: X(x0) = exp(− x2
0

2σ2
). Combining, we initialise the

displacement ξ with ξ(x0, y0, t = 0) = h cos(ny0) exp(− x2

2σ2
) where the Gaussian width

σ2(n) =
4∆

n

√
|C2|
C1

and a linear growth rate γ(n) = −n
2ν

2C0
+

√
C1

C0
−
√
C1|C2|
C0n∆

+
n4ν2

4C2
0

,

see Fig. 4.6. h is an arbitrary constant which has to be chosen sufficiently small so that

the linear terms of Eq. (4.4) are dominant. To explore the nonlinear evolution predicted

by Eq. (4.4) we initialise the system at t = 0 with the linear eigenmode and evolve in time.

We wish to explore how filaments of different heights evolve in time. We therefore initialise

four distinct systems with

1. a superposition of two linear eigenmodes, with two mode numbers n1, n2 and two
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4.3. INTERACTING FILAMENTS

Figure 4.6.: The linear growth rate γ vs the mode number n. Highlighted are the growth rates
for the mode numbers chosen in this section. Note that the three filament mode has
a higher linear growth rate and therefore should be dominant if the linear drive is the
full story.

heights h1 and h2:

ξinit = h1 cos(n1y0) e(−σ1x20+γ1t) + h2 cos(n2y0) e(−σ2x20+γ2t),

2. a single mode with the mode number n1 and height h1,

3. a single mode with the mode number n2 and height h2,

4. and a single mode with the mode number n2 and the height h = h1 + h2.

Case 1 is the new case we are mainly interested in. Cases 2 and 3 are simulated to

identify when the nonlinear regime is starting, and how the nonlinear interaction changes

the behaviour. Case 4 is used to show how the interaction changes the behaviour compared

to a case where the tallest filaments have the same heights, to exclude that as the reason

why the main filament grows faster.

Case 1: A superposition of two linear eigenmodes:

If we select n2 = 3n1, this provides a perturbation which repeats every three oscillations

in the y0-direction. Thus, our simulation domain in this direction needs to contain only

three oscillations, or filaments. If we take h1 = 0, all three filaments will initially have the

same amplitude (i.e. h2). By introducing a small amount of h1, we can enhance the initial

amplitude of the central filament compared to the two side filaments. We select n1 = 2600

and n2 = 7800 which have linear growth rates γ1 = 0.0033 and γ2 = 0.0136, see Fig. 4.6.
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4.3. INTERACTING FILAMENTS

This ensures that the linear evolution reinforces the three filaments, so any deviation from

this must be a nonlinear effect.

We initiate our perturbation with h2 = 50h1 which ensures the filaments are initially

very close in amplitude, but the central one penetrates slightly further than the two side

filaments, see Fig. 4.7.

Case 2 and 3: two single mode initiations

All parameters are chosen as in the first case, but the two cases are simulated separately

rather than superimposed. Therefore case 2 has n = n1 and h = h1, see the blue line in

Fig 4.7 and case 3 has n = n2 and h = h2, see the black line in Fig. 4.7.

Case 4: another single mode

(a) Superposition (red) of two modes with n2 =
3n1 and h2 = 5h1. Blue: n1 and black n2-
mode. In the middle is the main central fila-
ment with two side filaments.

(b) Superposition (red) of two modes. This time
with the actual heights h2 = 50h1 which pro-
duces a less than 2% larger main filament.

Figure 4.7.: Initiation of the filaments for two different choices of relative amplitude.

This time we chose the mode number and the height so that the mode is the same as the

dominant mode in case 1 but also the height is the same as the largest filament in case 1:

n = n2 and h = h1 + h2.

4.3.2. The evolution of multiple filaments

As the perturbation evolves, the energy is dissipated by the viscosity according to Eq. (4.10).

The dominant terms are those involving C0 and C4 which arise from the inertia and the

quadratic nonlinearity of Eq. (4.4), respectively. Figure 4.8 shows their evolution. We

estimate that the nonlinear regime starts when the energy of the quadratic nonlinear drive

term overtakes the energy of the linear drive term, which occurs at around t = 260. After

this time, the behaviour of a filament approaches a finite time singularity ξ ∼ (t0 − t)−α,
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4.3. INTERACTING FILAMENTS

Figure 4.8.: The two dominant drive terms of the energy Eq. (4.10) are shown. When the quadratic
nonlinear drive term (C4; blue, �-symbols) intersects with the linear drive term (C0;
black, ∗-symbols) we assume that the nonlinear dynamics start to dominate the evo-
lution of the filaments

where α is positive [67, 68]. We can fit this asymptotic form to the amplitude of the

main central filament to determine ξmf ∼ (t0 − t)−2.81. This is somewhat faster than our

earlier simulations with a single, isolated filament where we found ξ ∼ (t0 − t)−2.52 [71]

(equivalent to taking h1 = 0). Thus, simply enhancing one filament relative to the others

by even a small amount has a significant impact on its subsequent nonlinear evolution. To

explore this further, we plot in Fig. 4.9 the height of the main filament above the “ground

level". We see that the main filament accelerates continuously throughout the simulation.

To understand what we mean by the “ground level", we note that in the nonlinear regime,

ξ is negative and roughly constant over much of the region away from the three filaments

along x0 = xmax [67]. This effectively reduces the “ground level" compared to the initial

equilibrium. Thus we define Hmf (t) = ξ(x0 = xmax, y = 0.0, t) −min(ξ(xmax, y, t)), see

Fig. 4.10.

We now consider the height of the side filaments (Hsf is defined in the same way) which,

recall, were initiated with a height just 1.5% less than that of the main, central filament.

While the side filaments grow with the main filament in the linear phase (at the linear

growth rate) their growth rate reduces as they enter the nonlinear regime (at t ≈ 260),

and ultimately they are completely suppressed (beyond t ≈ 370), see Fig. 4.9. Fig. 4.11
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4.3. INTERACTING FILAMENTS

Figure 4.9.: The normalised height at x0 = xmax of the main filament Hmf (black, ♦-symbol)
and the normalised height of the side filament Hsf (red, 4-symbol) vs time where the
heights are shifted by the minimum value of ξ at each time.

Figure 4.10.: The main filament height Hmf and the side filament height Hsf on the most unstable
flux line is plotted. Note how the "ground level" is reduced compared to zero – the
starting point.
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4.3. INTERACTING FILAMENTS

(a) Initialised with three equal sized filaments
(case 4).

(b) Central, main filament is initialised slightly
larger (less than 2%) than the two side fila-
ments (case 1). At the later time the two
side filaments are much smaller than the
main central filament and the amplitude of
the main filament is approximately 5 times
larger than in case 4.

Figure 4.11.: The flux surfaces in the x-y plane at z = L/2 (half way between the plates). The
colour visualise additionally the displacement. The top is at the beginning of the
nonlinear regime t ≈ 260. The bottom shows the end of the simulation at a time
t = 370, which is deep in the nonlinear regime, just as the perturbed flux surfaces of
case 1 are about to overtake each other.

shows a contour plot of the flux surfaces at a later time (i.e. t = 370). We see that the

side filaments each form a double peak away from the most unstable x0 = xmax and are

much smaller than the main one. Fig. 4.12 shows how this double peak structure develops

through the nonlinear regime - the motion of the fluid element reverses direction at the
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4.3. INTERACTING FILAMENTS

Figure 4.12.: Evolution of a side filament vs x0 in the nonlinear regime at y0 ≈ ±0.0008. The
height is mainly reduced at the centre.

position of maximum drive x0 = xmax leaving two peaks either side. The evolution of the

ratio of the heights of the side and main filaments pH =
Hsf
Hmf

is shown in Fig. 4.13. During

the linear phase this ratio is close to 1, as expected, but by the time overtaking occurs

at t ≈ 370 the side filaments have negligible amplitude. To compare the solution of the

combined modes with the sum of the two individual mode solution, case 2 and 3, we define

∆ξ = ξn1+n2 − (ξn1 + ξn2).

Here ξn1+n2 is the displacement developed from the interaction of the two modes and ξn1

and ξn2 are the solutions from two separate nonlinear simulations for each n = n1 and

n = n2. The plasma is in a linear regime at the beginning of the simulation as we start

from close to marginal stability with a weak linear growth rate. Therefore we are expecting

∆ξ to be nearly zero at the beginning when the linear terms dominate as the modes evolve

independently since they satisfy the superposition principle: F (
∑

i xi) =
∑

i F (xi), where

F represents the solution of the differential equation and xi are different initiations. As

the plasma enters the nonlinear regime the superposition of the modes will deviate from

the sum of the two distinct solutions. We are interested in how the interaction between the

two modes changes their evolution. To explore this we examine ∆ξ, as shown in Fig. 4.14.

Positive values of ∆ξ imply that the coupled filaments grow further than the sum of the
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Figure 4.13.: The ratio of the normalised height of the side filament to the main filament (pH =
Hsf
Hmf

) vs time (green, +-Symbol) and the interaction-coefficient for the main filament

vs time (pi = ∆ξ
ξn1+n2

)(black, ∗-Symbol).

Figure 4.14.: The spatial structure of ∆ξ deep in the nonlinear regime. Note the holes at the
position of the side filaments which indicate that they get "eaten" by the main-
filament.

two individuals modes and negative values of ∆ξ mean that they grow slower. In Fig. 4.14

we show the spatial structure of ∆ξ deep inside the nonlinear phase. The main filament

is indicated by the positive ∆ξ peak, and clearly grows stronger, suppressing the two side

filaments for which ∆ξ < 0. To quantify this effect further, we introduce the interaction

coefficient pi =
∆ξ

ξn1+n2

for the main filament, which characterises the fraction of the main
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4.4. EXPERIMENTAL OBSERVATION

filament height which is due to the coupling to the side filaments. In the linear phase pi

is expected to be zero, as shown in Fig. 4.13. However, deep in the nonlinear regime, at

t = 370, the height of the main filament is mostly (over 80 %) due to the interaction with

the side filaments.

To understand this behaviour, let us return to Eq. (4.4). There are two key terms: the

quasilinear nonlinearity term C3ξ
∂2ξ2

∂x2
0

and the nonlinear growth drive term C4

(
ξ2 − ξ2

)
.

Apart from the weak effect of viscosity, these are the only terms that couple in the y-

direction, through the averaging of ξ2. This is therefore the dominant effect driving the

interaction between the filaments. Later in time ξ2 is mainly dominated by the contribution

from the main filament peak as it is the largest contribution and there is little contribution

from the side filaments. Therefore, for values of y0 in the vicinity of the main filament

peak, where ξ2 > ξ2, this provides a drive. Elsewhere, ξ2 < ξ2 so the term is negative

which explains the reduced “ground level" mentioned previously. It also serves to damp the

side filaments. The quasilinear nonlinearity coefficient (C3) is stabilising for both signs of

ξ when x = xmax where the second derivative of ξ2 is negative. It does, however, drive the

disturbed region to broaden in x0 since the second derivative of ξ2 is positive and therefore

destabilising at the edges of the disturbed region.

To understand the physics, we return to our earlier statement that the ξ2 averaging is

a consequence of the incompressibility of the plasma. As the main filament pushes up

into the background plasma above it, it must displace that plasma. This causes a down-

draft of plasma (represented by ξ2) that pushes back to either side of the main filament.

This downwards flow of plasma suppresses the two side-filaments, particularly around

x0 = xmax, where the main filament is situated.

4.4. Experimental observation

In this section, we want to present experimental observations which may be described by

our simulations shown in the previous subsections. We present two selected examples: Type

V ELMs in the NSTX tokamak [82] and ELMs in KSTAR [117]. The small, Type V ELMs

in NSTX involve fine-scale filaments that one would typically associate with higher toroidal

mode number n. However, these ELMs only consist of one or two filaments, see Fig. 4.15,
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Figure 4.15.: From [82]: "Visible camera pictures in unfiltered light of a single-filament Type V
ELM with a wide-angle midplace view."

which is in disagreement with what one would expect, ∼ n filaments, from linear theory.

While their preliminary stability calculation indicates the dominant instability drive is

current density rather than ballooning modes, it is possible that a similar mechanism to

that identified here acts to limit the number of filaments.

Another example which might be described by the nonlinear ballooning mode with inter-

acting filaments are ELMs in KSTAR [117]. They observe slowly growing "fingers" out

of the plasma, see Fig. 4.16 which at some point suddenly transforms into a more irregu-

lar formation and then it seems that the filaments are being suppressed, which could be

explained by the results presented here.

4.5. Conclusion

In summary, we have shown how the interaction between plasma filaments of slightly differ-

ent amplitudes influences their evolution by solving the nonlinear ballooning mode envelope

equation with a mixed Lagrangian-Eulerian boundary condition. We have quantified this

effect for a three filament system by introducing the quantity pi which characterises the

difference between the two-mode simulation and the two independent single mode simula-

tions. We demonstrated that the larger filament gains amplitude from the interaction with

the smaller filaments, which are suppressed. The larger filaments grow faster by devouring

the smaller ones. It is expected therefore, that the filaments which first enter the nonlinear

regime will dominate the physics of plasma eruptions. This is in agreement with Ref. [69],
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Figure 4.16.: From [117]: First row:"Initial growth (frames 1-3) and saturation (frame 4) of mul-
tiple ELM filaments. The short arrows identifying individual filaments illustrate the
apparent counterclockwise rotation of the filaments (also indicated by the long dashed
arrow in frame 1)". Bottom row: "Changes of the filament structure through a short
transient period. All frames are plotted in the same color scale."
In frame 5 one can see a single filament on the top, which is not in the next frame.
It is possible that the single filament is still there, but out of the view and returns in
frame 7.

where it is shown that if one starts with random small fluctuations, the filament with the

biggest amplitude at the transition from linear to nonlinear grows fastest, and suppresses

the other filaments. The qualitative behaviour of the main filament is similar to the single

mode calculation, but it does grow faster as the finite time singularity is approached.

Although our results are derived from a simple slab plasma model, it has the same features

as more complex magnetic geometries, including tokamaks [2, 3]. We therefore believe the

phenomenon of large filaments feeding off the smaller ones is a generic feature of ideal MHD.

Supporting our model we presented two examples of experimental observations (Type V

ELMs in NSTX and ELMs in KSTAR) which show dominant filaments where one would

expect a higher mode number from linear theory.

We note that the theory is only valid in the early nonlinear stages of the evolution, and

it requires that the dominant filaments will have time to have formed before the model
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becomes invalid. It is therefore important to test these ideas in full, large scale simulations,

close to marginal stability.

89



5. Simulation of ELMs in real tokamak

equilibria

In this chapter we investigate whether the nonlinear ballooning model can capture quan-

titative features of Edge Localised Modes (ELMs) by applying this model to real tokamak

equilibria. To exploit this model we must analyse the coefficients of the ballooning equa-

tion (3.48). The first part of this chapter (Sect. 5.1) presents the methods used to investi-

gate the coefficients. Next, the coefficients of a MAST Type I ELMy H-mode equilibrium

are calculated to verify the methods introduced previously (see Section 5.2). Finally, a

JET-like Type II ELM case is studied in Section 5.3.

5.1. Coefficients of the nonlinear envelope equation

The coefficients of the nonlinear ballooning equation, derived in Chapter 3, are given by:

C0 = ρ0

〈
|e⊥|2

B2
0

X2 +B2
0G

2

〉
−
[

ρ0

(3− 2λs)

(
q′2
〈
|∇ψ|2

B2
0

〉
θ

v3X2
0 + v

〈
B2

0G
2
0

〉
θ

)]pχ
−pχ

C1 =

〈
(e⊥ · κ0)

B4
0

(e⊥ · ∇0p0)X2

〉
C2 =

〈
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B0

〉

C3 =

〈
X2

B3
0

e∧ · L
(
X

B0
e⊥

)〉
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〈
XT∧e∧ · L

(
X
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e⊥
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−
〈
X2

B0
e⊥ · L (T⊥)

〉
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+ +A2
−
)
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〈
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〉−1

θ
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where the brackets 〈· · ·〉 denote integrals along the field aligned variable χ, ±pχ are the

limits of these integrals, and:

T⊥ ≡ Tψe⊥ + T∧e∧

e∧ · L (T⊥) = Xe∧L
(
Xe⊥
B

)
Tψ =

X2

2B

b0 =
YL+

YS+

XP̂

B0
= H [(e⊥ · ∇)H] · (B0 · ∇) [(B0 · ∇)H]− 1/2H(e⊥ · ∇) [H · (B0 · ∇) [(B0 · ∇)H]]

+
1

2B0
[(H · ∇)H] · ∇αe∧ · L (He⊥) + 2(e⊥ · k0)

Q−H

B2

with

Q± ≡
1

2

[
H(B0 · ∇) ((B0 · ∇)H)± |(B0 · ∇)H|2

]
H ≡ X

B0
e⊥ +GB0

with λ = λS −λL (λS and λL defined by (3.40)) and where YL+ and YS+ are the large and

small solutions of the set of differential equations (3.14), (3.15) and (3.16) of the inertial

region.

Two coefficients (C0 and C2) have slowly converging integrands as their leading orders are

proportional to |χ|(2−2λS) and |χ|(2−3λS) respectively, where λS is between 1 and 2. To

minimise the numerical calculations we divide the integrals into numerical evaluated parts

and remaining integrals which can be evaluated analytically. This is described in the next

section. For the coefficients C4 and C5 we must solve differential equations to calculate

T⊥ and b0 as presented in Section 5.1.6 and 5.1.7.

The C0, C3 and C5 coefficients are only used under certain conditions. The C0 coefficient

must be used if λ = 2. If λ < 2 we compute and use C5 instead, see Sect. 3.2.1. C3 must

be determined only if the geometry of the plasma is not up-down symmetric, otherwise it

is close to zero. Since we only evaluate up-down symmetric equilibria in this thesis, this

coefficient and its corresponding term are neglected.
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5.1.1. Dividing the integrals into numerical and analytic components

The integrands of the coefficients C0 and C2 converge slowly to zero with respect to the

field aligned variable χ over which we integrate. Therefore we divide the integral at the

points ±pχ: ∫ ∞
−∞

Ind dχ =

∫ −pχ
−∞

Ind dχ+

∫ pχ

−pχ
Ind dχ+

∫ ∞
pχ

Ind dχ (5.1)

where Ind represents the integrand. For this estimation the point pχ must satisfy pχ � 1

so that an asymptotic expansion of Ind can be used in the first and third integrals on the

RHS of Eq. 5.1. If pχ is too small the asymptotic approximation is invalid. For higher

values, however, the calculation becomes increasingly more numerically expensive.

We separate the coordinate χ, which labels the coordinate along the field line, into v and

θ, where θ labels the periodic variation and v labels the secular (asymptotic) variation (see

Section 3.2 for more details).

The standard trapezoid rule is used for the numerical calculation of the integrals
∫ pχ
−pχ Ind dχ

which will not be discussed [110]. Here we want to concentrate on how the asymptotic

part (first and third term of the RHS of Eq. (5.1)) are determined. We expand the in-

tegrands in 1
v � 1 and use the dominant, asymptotic expression of the integrand to find

an analytic expression for its integral. The integrands of all coefficients can be expressed

asymptotically (v � 1) in the form

Ind = a
Q(θ)Cαx
vβ

+O
(

1

vβ+1

)
(5.2)

where Cx ≡ X0|v|λs (see Eq. (3.44)) withX0 being the dominant order ofX in an expansion

in 1
v � 1. a, α and β are constant and Q is a periodic function which means that it only

depends on θ. Since we assume pχ � 1 we can exploit the expression (5.2) for the integrand

of the coefficient for the first and third term of Eq. (5.1):

Ind ≈ a
CαxQ(θ)

vβ
(5.3)

Furthermore the Reynolds decomposition states that every quantity can be divided into

its mean Q and its fluctuating part Q̃: Q = Q + Q̃ visualised in Fig. 5.1. In general,

the fluctuation has an average of zero. By using the expression (5.3) and the Reynolds
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Figure 5.1.: Reynolds decomposition of Q = Q + Q̃. The fluctuating part is periodic because Q
itself is periodic.

decomposition for the quantity Q we obtain for the third term on the RHS of Eq. (5.1)

(dropping the constants Cx and a for now to make the steps easier to follow):

∫ ∞
pχ

Q(θ)

χβ
dχ =

∫ ∞
pχ

Q+ Q̃(θ)

χβ
dχ

=

∫ ∞
pχ

Q

χβ
dχ+

∫ ∞
pχ

Q̃(θ)

χβ
dχ

=
Q

(β − 1)pβ−1
χ

+

∫ ∞
pχ

Q̃(θ)

χβ
dχ (5.4)

Here we have assumed that (β − 1) > 0 where β is the power of v in the integrand, see

Eq. (5.2). If (β− 1) < 0 the integral would diverge and this method is not applicable since

the nonlinear effects cannot be considered small for large values of χ [2] and our procedure

becomes invalid.

Now we show that the second term of Eq. (5.4) is higher order than the first term which

implies that it can be neglected. Using integration by parts for the second term on the

right hand side of Eq. (5.4) we obtain:

∫ ∞
pχ

Q̃(θ)

χβ
dχ =

[∫
Q̃(θ)dχ

χβ

]∞
pχ

−
∫ ∞
pχ

(−β)

∫
Q̃(θ)dχ

χβ+1
dχ (5.5)

The second term on the right hand side is of the same form as the starting term but with a

higher order in pχ. If we can show that the first term in (5.5) is also of a higher order than

the first term of Eq. (5.4) we have proven that the second term of (5.4) can be neglected.

The integral of the first term of Eq. (5.5) can be divided into its average and its fluctuating

93



5.1. COEFFICIENTS OF THE NONLINEAR ENVELOPE EQUATION

part. The fluctuation is again periodic because the average of Q̃(θ) is zero, see Fig. 5.2.

(a) Reynolds decomposition of F ≡∫
Q̃(θ)dθ = F + F̃ (θ) where F repre-

sents the constant of integration. The
fluctuation is again periodic because the
average of Q̃(θ) is zero.

(b) Reynolds decomposition of G ≡∫
Q(θ)dθ = G + G̃. The fluctuation is

not periodic because the average of Q is
not zero.

Figure 5.2.: Differences of the Reynolds decompositions of function with zero average and non-zero
average.

We can write F ≡
∫
Q̃(θ)dθ = F + F̃ (θ). Therefore the first term on the RHS of Eq. (5.5)

can be written as:

[∫
Q̃dχ

χβ

]∞
pχ

= − F̃ (θ)

pβχ
− F

pβχ

Both terms have a higher order with respect to pχ than the first term of Eq. (5.4). Therefore

we obtain the following expression for the third term on the RHS of Eq. (5.1):

a

∫ ∞
pχ

Q(θ)Cαx
χβ

dχ = a
QCαx

(β − 1)pβ−1
χ

+O(p−βχ ) (5.6)

with Q given by:

Q ≡ 1

2π

∫ π

−π
Q dχ

The derivation of the first term of Eq. (5.1) is equivalent to the one shown here.

To utilise expression (5.6) for the evaluation of the integral of the coefficients, we must

determine the asymptotic form a Q
χβ

of the coefficients.

94



5.1. COEFFICIENTS OF THE NONLINEAR ENVELOPE EQUATION

5.1.2. Note on the implementation of the asymptotic function X0

All the asymptotic quantities depend on the lowest order asymptotic term, X0, of the

function X given by equation (3.31). However, it is not fully determined analytically as

we must estimate the constant Cx as

Cx ≡ X0|v|λs .

X itself is not fully defined as it has an arbitrary boundary condition which we usually

choose to be X(χ = 0) = 1. To obtain the constant Cx such that X0 is consistent with the

function X, we exploit this numerically calculated function X.

One way would be to use the value of X at the highest numerically available χ: χmax.

That approach would be sensible as the asymptotic expression X0 becomes increasingly

valid for larger values of χ: lim
χ→∞

X = X0.

However, X has a periodic behaviour which X0 does not have, see Fig. 5.3. To account

Figure 5.3.: The functions X and X0 near the numerical maximum of χ.

for this we can use an averaged value of X and X0 for the last period in the numerically

analysed range: [χmax − 2π, χmax].

To implement this behaviour we average both X and 1
|χ|λs with respect to χ over the last

periodic range of the largest χ to obtain 〈X〉χmax ≈ 〈X0〉 and
〈

1
|χ|λs

〉
χmax

. The ratio of

〈X〉χmax to
〈

1
|χ|λs

〉
χmax

gives the coefficient Cx. With this method we have a consistent

asymptotic function X0 for the numerically calculated function X. It is also clear that the
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function X is better approximated for higher values of χmax.

Another approach is to use higher orders of X in the fitting procedure. This has been

tested and did not lead to significantly better results.

Having shown we can split the terms into numerical and analytical components, we are

now able to begin evaluating each coefficient.

5.1.3. Inertial coefficient C0

In this section we discuss the inertial coefficient C0 which only has to be calculated if λ = 2.

C0 is defined as:

C0 = ρ0

〈
|e⊥|2

B2
0

X2 +B2
0G

2

〉
−
[

ρ0

(3− 2λs)

(
q′2
〈
|∇ψ|2

B2
0

〉
θ

v3X2
0 + v

〈
B2

0G
2
0

〉
θ

)]pχ
−pχ

For pχ → ∞ the boundary term (second term on the RHS) only diverges for λ < 2.

Interestingly, investigating the dominant asymptotic part of the first term on the RHS1 we

find that it cancels the divergent boundary term. Therefore C0 always has a finite value.

5.1.4. Linear coefficient C1

The linear coefficient C1 has the form:

C1 =

〈
(e⊥ · κ0)

B4
0

(e⊥ · ∇0p0)X2

〉

The dominant asymptotic term of its integrand is of the order O(v−2(λS)+1) which means

that it converges quickly and does not need an asymptotic treatment.

The linear ballooning equation (3.31) is used to obtain a second expression for C1. The

following expression can be derived by integration by parts:

C1 =

〈
(e⊥ · κ0)

B4
0

(e⊥ · ∇0p0)X2

〉
=

1

2µ

〈
|e⊥|2

B2
((B0 · ∇)X)2

〉

Therefore we have two expressions for C1 which have both been used to verify the code.

1using the expressions for |e⊥|2 (equation (A.1)), X (equation (3.44)) and G (equation (3.45)) and
equation (5.6)
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5.1.5. Quadratic nonlinear coefficient C2

The quadratic, nonlinear coefficient C2 is investigated here, which is given by:

C2 =

〈
XP̂

B0

〉
(5.7)

where XP̂
B0

= HP̂ is defined as:

HP̂ =H [(e⊥ · ∇)H] · (B0 · ∇) [(B0 · ∇)H]− 1/2H(e⊥ · ∇) [H · (B0 · ∇) [(B0 · ∇)H]]

+
1

2B0
[(H · ∇)H] · ∇αe∧ · L (He⊥) + 2(e⊥ · κ0)

Q−H

B2

with

Q± ≡
1

2

[
H(B0 · ∇) ((B0 · ∇)H)± |(B0 · ∇)H|2

]
(5.8)

H ≡ X

B0
e⊥ +GB0

The lowest order of the asymptotic expression of the integrand of the nonlinear drive

coefficient is proportional to v2−3λS , which will be shown later. This means that the integral

converges very slowly and therefore we need the analytic expression for the remaining

integral beyond the numerical range [−pχ, pχ]. Since this coefficient consists of many

terms it is sensible to divide the coefficient into a sum of terms called 〈Qi〉 which makes

the treatment clearer:

C2 =

〈
XP̂

B0

〉
≡

6∑
i=1

〈Qi〉

where we define six terms:

Q1 ≡ −
〈
f

B2
Q−B0 ·∇0(XΛ)

〉
Q2 ≡

〈[
∂

∂ψ

(
2p+B2

0

)] XQ−
B2

0

〉
Q3 ≡ −

〈
X

∂

∂ψ
Q+

〉
Q4 ≡ 〈[B0 ·∇0 (XΛ)]S〉 (5.9)

Q5 ≡ −
〈
X

J

∂

∂ψ
JT

〉
−
〈

[B0 ·∇0X]
∂

∂ψ
(H) [B0 ·∇0H]

〉
Q6 ≡

1

2

〈
1

B
u ω

〉
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with Λ ≡ q′(χ− χ0)− Y ′ and the following definitions:

S ≡ {[B0 ·∇0H] [R(eφ · ∇)H]} T ≡ |B0 ·∇0H|2

u ≡ {[(H · ∇)H] · ∇α} ω ≡ e∧ · L (He⊥)

Appendix E presents the proof that the sum of these six terms is equivalent to the original

equation, (5.7).

The next step is to evaluate the analytic expressions for the integrands of Eqs (5.9) at

large v. The expressions for X and H are derived in Chapter 3. The remaining task is

to determine the analytic expressions for Q±, S, T , u and ω. We start by determining

Q±, which appears in Q1, Q2 and Q3 and is defined by equation (5.8). By investigating

the orders of Q± we find that Q± ≈ Q0±(θ)(vX0)2 which means that the highest order is

∼ v(2−2λS). Q0± is purely periodic and given by:

Q0± =
1

2
q′2
[
(f0B0 +Reφ) · [(f0B0 +Reφ) · ∇κ0]± |B0 ·∇0 (f0B0 +Reφ) |2

]
where f0 is defined as (see Eq. (3.46)):

f0 ≡
λSq

′

µ0p′
1〈
B2

0
R2B2

p

〉 − f
〈

1
R2B2

p

〉
〈

B2
0

R2B2
p

〉
By using equations (A.9), (A.10) and the fact that f0 does not depend on χ we can re-write

the expression of Q0± as:

Q0+ =
q′2

2

{
RkR +

f2
0

2
B0 ·∇0

[
B0 ·∇0B

2
]

+B2
R +B2

φ

}
Q0− =

q′2

2

{
(R+ 4f0Bφ)κR +

f2
0

2
B0 ·∇0

[
B0 ·∇0B

2
]
− 2f2

0 |κ0|2 −B2
R −B2

φ

}

where BR is defined as BR ≡ B · ∇R and κR is given by κR ≡ κ · ∇R.

The variable S is defined as S ≡ R [B0 ·∇0H] · [(eφ · ∇)H], which appears in Q4, and

can be expressed in the form lim
χ→∞

S = S0(θ) (vX0)2 with S0 given by:

S0 = q′2
{
f0

(
−RκR +B2

R +B2
φ

)
+RBφ − f2

0BφκR
}
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where we used the following expressions:

(eφ · ∇)B = −
Bφ
R
R̂+

BR
R
eφ

(eφ · ∇) eφ = − 1

R
R̂

(B · ∇) (eφR) = −BφR̂+BReφ

These are derived by using the expression of the material derivative in the cylindrical

coordinate system2. The variable T is defined as T ≡ |B0 ·∇0H|2. It appears in Q5 and

can be written in the same asymptotic form as the other quantities lim
χ→∞

T = T0(θ) (vX0)2

with T0:

T0 = q′2
[
f2

0 |κ0|2 − 2f0BφκR +B2
R +B2

φ

]
The function u ≡ [(H · ∇)H] · ∇α (appearing in Q6) is of a lower order compared to the

previous quantities since its asymptotic expression is lim
χ→∞

u = u0(θ) v (vX0)2, where we

can show that:

u0 = q′3
[
f2

0R
2B2

p

∂

∂ψ

(
p+B2

)
+ (R+ 2f0Bφ)RBz

]

Here we have used (eφ · ∇) (Reφ) = −R̂ and ∇R · ∇ψ = −RBz.

Finally, we need the asymptotic form of ω ≡ e∧B0
· L
(
X
B e⊥

)
which requires more steps than

for the previous terms3.

Using Eq. (A.11) we can write ω as:

e∧
B0
L
(
X

B0
e⊥

)
=

1

J

(
∂

∂θ
+

∂

∂v

)[
−
R2B2

p

JB2

(
q′v + Y ′

)( ∂

∂θ
+

∂

∂v

)(
X0 +

X1

v
+
X2

v2
+ · · ·

)

+ σ

(
X0 +

X1

v
+
X2

v2
+ · · ·

)]
(5.10)

2The material derivative in the cylindrical coordinates is given by
A · ∇B =

(
AR

∂BR
∂R

+
Aφ
R

∂BR
∂φ

+Az
∂BR
∂z
− AφBφ

R

)
R̂ +

(
AR

∂Bφ
∂R

+
Aφ
R

∂Bφ
∂φ

+Az
∂Bφ
∂z

+
AφBR
R

)
eφ +(

AR
∂Bz
∂R

+
Aφ
R

∂Bz
∂φ

+Az
∂Bz
∂z

)
ẑ

3The equation needed to derive the following expressions are: The expressions derived in Appendix B and
Section C.2.1. From Appendix B we used Eq. (B.5) which is the e∧-component of the linear operator
L used on e⊥-components. From Section C.2.1 we used the linear ballooning mode equation of order
O(v) (Eq. (C.12)) and of order O(1) (Eq. (C.14)), and the relations (A.11), (B.6) and (A.12) derived
in A
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Eq. (5.10) is divided into its order of v since we are seeking the leading order of ω. The

lowest order is equal to zero as X0 is constant in θ:

1

J
∂

∂θ

(
−
R2B2

p

JB2
q′v

∂

∂θ
X0

)
= 0

and therefore we must investigate the next order O(1) which is:

e∧
B0
L
(
X

B0
e⊥

)
=

1

J
∂

∂θ

[
R2B2

p

JB2

(
q′v

∂

∂v
X0 + q′

∂

∂θ
X1

)]
+X0

∂

∂θ
σ +O(v−1)

Exploiting Eq. (A.12) and Eq. (C.12) we find that this order is also zero. Therefore we

must calculate the next order O(v−1):

e∧
B0
L
(
X

B0
e⊥

)
= − 1

J

{
∂

∂θ

[
R2B2

p

JB2
q′v

∂

∂v
X1 −

R2B2
p

JB2
q′v

∂

∂θ

(
X2

v2

)
−
R2B2

p

JB2
Y ′

∂

∂θ

(
X1

v

)

−
R2B2

p

JB2
Y ′

∂

∂v
X0

]
+

∂

∂v

(
−
R2B2

p

JB2
q′
∂

∂θ
X1

)
+

∂

∂v

(
−
R2B2

p

JB2
q′v

∂

∂v
X0

)

+
∂

∂θ

(
σ
X1

v

)
+ σ

∂

∂v
X0

}
+O

(
v−2
)

We already have the analytic, asymptotic expressions for X0 and X1, but not for X2. Using

Eq. (C.14) and Eq. (C.12) we finally obtain:

ω =
e∧
B0
L
(
X

B0
e⊥

)
≈ − 1

J

{
ν ′
R2B2

p

JB2

(
1

v

∂X1

∂θ
− λSX0

v

)
+ µσ

(
1

v

∂X1

∂θ
− λSX0

v

)

+
µp′J

q′vB2

∂

∂ψ

(
2p+B2

)
X0

}

Now that we have the asymptotic forms of all the quantities appearing in all the terms of

C2, we present the equations for the analytic parts of the integrals (Casy2 =
∑

i 〈Qi〉
asy)
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given by equation (5.6):

〈Q1〉asy = 2

{
f
B2

0
Q0−

[
ν ′ + q′

(
−λS +

(
1

X0

∂X1

∂θ

))]}
C3
x

6π(λS − 1)p
(3(λS−1))
χ

〈Q2〉asy = 2

(
∂

∂ψ

(
2p0 +B2

0

) J Q0−
B2

0

)
C3
x

6π(λS − 1)p
(3(λS−1))
χ

〈Q3〉asy = 2

(
J

(
∂

∂ψ
Q0+ + Q0+

Cx

∂

∂ψ
Cx

))
C3
x

6π(λS − 1)p
(3(λS−1))
χ

− 4

JQ0+C
3
x

∂

∂ψ
l (1 + 3(λS − 1) log(pχ))

18π(λS − 1)2p
(3(λS−1))
χ

〈Q4〉asy = 2

(
S0

[
ν ′ + q′

(
−λS +

(
1

X0

∂X1

∂θ

))])
C3
x

6π(λS − 1)p
(3(λS−1))
χ

〈Q5〉asy = 2

(
T0

∂

∂ψ
J

)
C3
x

6π(λS − 1)p
(3(λS−1))
χ

〈Q6〉asy = 2
(u0 ω0)C3

x

6π(λS − 1)p
(3(λS−1))
χ

We have made use of the fact that the equilibria are up-down symmetric and to eval-

uate 〈Q3〉asy we have exploited the relation d(bu(x))
dx = bu(ln b)du(x)

dx , and
∫
xa log xdx =

x1+a(−1+(1+a) log x)
(1+a)2

.

5.1.6. Quasilinear nonlinearity coefficient C4

In this section the quasilinear nonlinearity coefficient is investigated:

C4 = 2

〈
XT∧e∧ · L

(
X

B0
e⊥

)〉
−
〈
X2

B0
e⊥ · L (T⊥)

〉

To be able to evaluate this coefficient we must determine the quantity T⊥ by evaluating

its differential equation, which is described in the next section.
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Determining T⊥

T⊥ is defined so that it satisfies the following two equations:

e∧ · L (T⊥) = Xe∧L
(
Xe⊥
B

)
(5.11)

Tψ =
X2

2B
(5.12)

with

T⊥ =
K

B0
e∧ + Tψe⊥ (5.13)

where we defined K ≡ T∧|B0| to simplify the subsequent calculation. By using these

relations (equations (5.11), (5.12) and (5.13)) we obtain:

e∧
B
L
(
K

B0
e∧

)
=
Xe∧
B
L
(
Xe⊥
B

)
− e∧
B
L
(
X2e⊥

2B

)
(5.14)

Using the expressions for the e∧ components of the linear operator L acting on vectors

with either e∧ or e⊥ components (equations (B.2) and (B.5)), Eq. (5.14) can be re-written

as:

JB0 ·∇0

{
|e∧|2

JB2
JB0 ·∇0K

}
= −e⊥ · e∧

B2J
[JB0 ·∇0X]2 +

X2

2
JB0 ·∇0σ

We will show that only the derivative B0 ·∇0K is needed. To determine it numerically,

we can integrate the right hand side along a field line and multiply the result by JB2

|e∧|2 .

Determining the integrals

In this subsection the two terms of the quasilinear nonlinearity coefficient are simplified so

that the coefficient can be easily implemented.

First term of the coefficient C4
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By dividing C4 = C4/1 + C4/2 the first term of the fourth coefficient can be written as:

C4/1 ≡ 2

〈
X
K

B0
e∧ · L

(
X

B0
e⊥

)〉
= 2

〈
K

[
e∧
B0
· L
(
K

B0
e∧

)
+
e∧
B0
· L
(
X2

2B0
e⊥

)]〉
= 2

〈
K

{
B0 ·∇0

(
|e∧|2

B2
0

B0 ·∇0K

)
+

1

2
B0 ·∇0

[
e⊥ · e∧
B2

0

B0 ·∇0X
2

]
+

1

2
B0 ·∇0

(
σX2

)}〉

using Eq.s (B.2), (B.5) and (5.11). It is evident that each term is of the form 〈KB0 ·∇0F 〉

where F is a place holder for any expression. This can be re-written in the following way:

〈KB0 ·∇0F 〉 = −〈FB0 ·∇0K〉+
���

���
���:0

〈B0 ·∇0 (KF )〉

≈ − 〈FB0 ·∇0K〉

The term 〈B0 ·∇0 (KF )〉 can be neglected since the asymptotic parts of the variables go

to zero at infinity. It follows that:

C4/1 = −2

〈
|e∧|2

B2
0

[B0 ·∇0K]2 +
e⊥ · e∧
B2

0

[B0 ·∇0K] [XB0 ·∇0X] +
1

2
[B0 ·∇0K]σX2

〉

Second term of the coefficient C4

The second term of the fourth coefficient is:

C4/2 ≡ −
〈
X2

B0
e⊥ · L (T⊥)

〉
= −

〈
X2

B0

(
e⊥ · L

(
K

B0
e∧

)
+ e⊥ · L

(
X2

2B0
e⊥

))〉

Using the relations for L of the basis vectors (B.4), (B.3) and integration by parts leads

to:

C4/2 = 2

〈
e⊥ · e∧
B2

0

[B0 ·∇0K] [XB0 ·∇0X]

〉
+
〈
[B0 ·∇0K]σX2

〉
+

〈
2X2 [(B0 ·∇0)X]2

e2
⊥
B2

〉
−
〈

2

B4
0

(e⊥ · κ0) (e⊥ · ∇p0)
X4

2

〉
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Combining the two terms of C4 and using Eq.s (A.2) and (A.3) leads to the full expression

for this coefficient:

C4 = −2

〈
|e∧|2

B2
0

[B0 ·∇0K]2
〉

+

〈
X4Λfp′

2JB4

∂B2

∂θ

〉
+

〈
2e2
⊥X

2

B2
(B0 ·∇0X)2

〉
−
〈
X4p′

B2

(
p′ +

1

2

∂B2

∂ψ

)〉

5.1.7. Fractional derivative coefficient C5

The final coefficient C5, which is the fractional derivative coefficient, is given by:

C5 = − λb0
Γ(2− λ)

(
A2

+ +A2
−
)
q′2
〈

B2
0

|∇ψ|2

〉−1

θ

with λ ≡ λS −λL. To obtain b0 =
YL+

YS+
we must evaluate YL+ and YS+ which can be found

by solving the set of differential equations (3.14), (3.15) and (3.16) of the inertial region.

To solve this set of differential equations we reduce it by using Eq. (3.16) to eliminate the

Ξ̃−1 dependency in Eq. (3.15). The remaining set of two differential equations is given by:

A0x
2Ỹ0 =

∂

∂x

[
x2∂Ỹ0

∂x

]
+DM

[
Ỹ0 +

Γp0

p′0
J̃0

]
+A1x

∂J̃0

∂x

A5
∂2J̃0

∂x2
= A2J̃0 +A3Ỹ0 +A4

∂(xỸ0)

∂x

This can be solved numerically by exploiting a coupled Runge-Kutta-Nyström method [110]

combined with the shooting method [111], see Sect. 2.5.3. We must use the shooting method

since the boundary conditions (3.17) and (3.18) are used which gives asymptotic relations

for Ỹ0 and J̃0.

To obtain b0 we must evaluate the ratio
YL+

YS+
using the numerical solutions. We define

three of these numerical solutions yi for small xi which have the form of equation (3.19):

yi = −A+

(
Y n
S+

xλSi
+
Y n
L+

xλLi

)

where A, Y n
S+ and Y n

L+ are constant. Defining ai ≡ x−λsi and bi ≡ x−λLi we obtain for the

ratio:

b0 =
YL+

YS+
≈ a3(y1 − y2) + a1(y2 − y3) + a2(y3 − y1)

b3(y2 − y1) + b2(y1 − y3) + b1(y3 − y2)
(5.15)
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Therefore, we must determine the function Ỹ0 numerically and calculate three solutions at

points with xi � 1 to then evaluate b0 using equation (5.15).

5.1.8. Conclusion

Amethod for the calculation of each coefficient has been presented which includes a division

into numerically and analytically treated parts of the integrals for the coefficients. The next

step is to verify that the asymptotic expressions are correct and that each of the coefficient

converges with respect to the cut off pχ. These tests are performed using the Type I

ELMy MAST equilibrium case presented in the next section. After these verifications the

coefficients are investigated for Type I ELMs in MAST and Type II ELMs in a JET-like

equilibria.

5.2. Type I ELMs in a MAST equilibrium

In this section a MAST Type I ELMy H-mode equilibrium is investigated (shot 24763).

The fits of the profiles were produced by the standard equilibrium reconstruction code

EFIT [118] and the equilibrium was calculated with the fixed boundary equilibrium solver

HELENA which solves the Grad-Shafranov equation [119, 120]. We start by examining the

asymptotic expressions and the convergence of the coefficients with respect to the value pχ

in Sect. 5.2.1. Then we investigate the coefficients of this MAST equilibrium in Sect. 5.2.3

and study how they depend on the local pressure gradient (Sect. 5.2.4). Lastly we present

methods for comparing our results with experiments in Sect. 5.2.5.

5.2.1. Convergence verifications

In this subsection the implementation of the methods derived in Sect. 5.1 are tested.

In the first part we compare the asymptotic versus the numerical integrands derived in

Section 5.1.1. The method is found to be correct because the asymptotic integrands match

the numerical integrands for higher values of χ.

The second verification is that of the convergence with respect to the value pχ. As indicated

in the previous section, when pχ goes to infinity the integrals should become exact.
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Comparison: Asymptotic vs Numerical Integrands

In this subsection we compare the integrands (and not the integrals) of the asymptotic and

numerical quantities to verify that the asymptotic expressions derived in 5.1.3 and 5.1.5

are accurate. If they are correct they should match for sufficiently high values of χ.

The asymptotic treatment has only to be implemented for the inertial and the quadratic

nonlinear coefficients (C0 and C2), therefore only these integrands are investigated.

Inertial coefficient, C0

Figure 5.4.: The integrands of the inertial coefficient. Black: integrand calculated with the nu-
merical functions. Red: integrand calculated with the dominant order of the analytic,
asymptotic functions. After half a period (χ = π) the relative error is only 1.2%.

The integrand of the inertial coefficient presented in Section 5.1.3 is displayed here to verify

the calculations. We found that the asymptotic description of the integrand coincides with

the numerical integrand well, figure 5.4. We can define the relative error as:

Erel =

∣∣∣∣1− Casy0

Cnum0

∣∣∣∣
where Casy0 represents the asymptotic integrand and Cnum0 represents the numerical inte-

grand. After only half a period (half way around the poloidal circumference) the relative

error of the asymptotic integrand is Erel ≈ 1.2%. After 80 periods the relative error is
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Figure 5.5.: The relative error of the asymptotic form of the integrand relative to the numerical
form. Note that after around χ = 60 the relative error is throughout smaller than 1%.
Since the integrand of the C0 coefficient is an even function, only the positive values
of χ are shown.

≈ 0.28%. This is evidence that our method is sufficient.

Quadratic nonlinear coefficient, C2

The integrand of the quadratic nonlinear coefficient presented in Section 5.1.5 is displayed

here to verify the calculations. Since this coefficient was divided into six components la-

belled as Qi, we display each to ensure that all of these integrands are in agreement with

their asymptotic form.

The relative error is not useful here since the numerical form of the integrand of Qi is zero

periodically which means the relative error is not defined at these locations. Therefore the

absolute error is evaluated instead:

Eabs = Qasyi −Qnumi

The absolute error converges to zero quickly for all Qi, see Fig.5.6.

Fig. 5.4, 5.5 and 5.6 suggest that the analytical forms of the integrands are correct. How-

ever, we still must verify that the asymptotic form is accurate enough so that the total
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(a) Q1 (b) Q2

(c) Q3
(d) Q4

(e) Q5 (f) Q6

Figure 5.6.: The numerical (in black) and analytical (in red) form of each Qi integrand, and the
difference between them in green. We can see that the two forms agree quite well as
the difference converges to zero quickly

value calculated for the coefficient (i.e., by evaluating the integrals) converges.
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(a) The calculated value of the linear coefficient.
By fitting we estimate the limit of the real
value to be 5.50144 and that it converges
slowly with ∼ 1

p1.21χ
. The approximate value

of 5.5 is reached for a pχ around 10 which is
equivalent to two to three turns around the
torus.

(b) The calculated value of the quasilinear non-
linearity coefficient. We can see that the ap-
proximate value is −1.4 and we can use a fit-
ting to estimate its convergence to be ∼ 0.003

p2.26χ

which indicates that it converges quickly to
its value.

(c) The calculated value of the fractional deriva-
tive coefficient. This coefficient does not de-
pend on the cut-off of pχ since it is calcu-
lated with a differential equation. However,
its results improve as well if the function X
is evaluated further along the magnetic field
lines. It converges to 2.878.

(d) The calculated value of the nonlinear drive
coefficient. It converges very quickly to its
value of −33474 because of the asymptotic
treatment.

Figure 5.7.: Coefficients vs the cut off value pχ.

Convergence test of the coefficients

Here we present the convergence of all coefficients as a function of the integration range.

Only the inertial and the quadratic nonlinear coefficients have additional asymptotic parts.

We show that the other coefficients converge as well and therefore do not require an ex-

tension for the numerical integration.

We find that all coefficients converge, as shown in Figs. 5.7 and 5.8. By using a fitting

method we determine the values of the coefficients as pχ → ∞. We estimate the limit of
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the real value of the linear coefficient C0 to be 5.50144 and it converges slowly with ∼ 1
p1.21χ

.

The approximate value of 5.5 is reached for a pχ around 10 which is equivalent to two to

three turns around the torus.

The approximate value of the quasilinear nonlinearity coefficient C4 is −1.4 and we can

use a fitting to estimate its convergence to be ∼ 0.003
p2.26χ

which indicates that this coefficient

converges quickly.

The fractional derivative coefficient C5 does not need the asymptotic treatment. Never-

theless it depends on the cut-off of pχ since its results depend on the function X which

becomes more accurate if it is evaluated further along the magnetic field lines. The frac-

tional derivative coefficient converges to 2.878.

The nonlinear drive coefficient C2 converges very quickly to its value of −33474 because of

the asymptotic treatment.

In summary the values for each coefficient are:

C1 ≈ 5.501 C4 ≈ −1.4

C5 ≈ 2.878 C2 ≈ −33474

5.2.2. Note on the order of coefficients

A careful reader might notice that the nonlinear explosive coefficient C2 has a larger magni-

tude than the other coefficients. However, this depends on the chosen boundary condition

of the function X and can be changed by scaling this function. Since the displacement ξ

is given by ξ = ξ̂ XB0
, the real displacement stays the same if ξ̂ is scaled inversely to X.

Therefore the scaling of X does not change the physics if ξ̂ is changed with the inverse

scaling factor. Thus we can choose the boundary condition of the function X for χ = 0,

since the initial displacement is freely chosen under the constraint that it has to be small.

The values presented are for the boundary condition X(χ = 0) = 1.

All the terms of the nonlinear differential equation determining ξ̂ are of the form

〈F (χ)X(χ)α〉Aξ̂α
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Figure 5.8.: The convergence of each Qi of the nonlinear drive coefficient.

where F (χ) is a function andA is an operator. The averaged term 〈F (χ)X(χ)α〉 represents

the coefficient. One can see that changing X and inversely changing ξ̂ does not change

the equation. However scaling X will influence the coefficients. This effect is larger for

nonlinear terms when one deviates away from 1 since α > 1.

If for instance we change it to be X(χ = 0) = 10−4 and multiply the whole equation by a

scaling factor 108, we obtain the equivalent coefficients:

C1 ≈ 5.501 C4 ≈ −1.4 · 10−8

C5 ≈ 2.878 C2 ≈ −3.3474

If we use these coefficients the final displacement at χ = 0 would be ξ̂ multiplied by

X = 104 with this treatment. We see that the nonlinear explosive coefficient is of the same

order as the linear coefficients, but we also notice that the second nonlinear coefficient C4

is very small after this treatment.

For the following results we have used the original boundary condition X(χ = 0) = 1.
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5.2.3. Simulation with original coefficients

Here we discuss the results of the coefficients of the original MAST Type I ELMy equilib-

rium and we present the results of the simulations with these coefficients which are:

C1 ≈ 5.501 C4 ≈ −1.4

C5 ≈ 2.878 C2 ≈ −33474

µ ≈ 0.74 λ ≈ 1.252

We notice that both nonlinear coefficients are negative. If only the nonlinear drive coeffi-

cient were negative, the behaviour of the filaments would be the same as shown in previous

work [67, 68] but with the explosive drive inwards instead of outwards. To show this let’s

start with the nonlinear ballooning equation implemented in Deton84, equation (2.28):

D0κ
∂λ

∂tλ
ξ =

(
D1 −

(ψ − ψ0)2

∆2

)
ξ −D2

∂2u

∂ψ2
+D3

(
ξ2 − ξ2

)
+D4ξ

∂2ξ2

∂ψ2

If we transform: α→ aα, t→ τt, ψ → pψ and ξ → xξ with

a =
D1

D2

√
D4

D2
τ = κ

√
D0κ

D1

p =

√
D1D4

D3
x =

D1

D3

and

∆→
√
xp∆

we obtain a generic equation where ∆ is the only parameter. This generic equation was

used previously [67, 68] and with it the qualitative results of filaments are similar. If D3

reverses its sign, the filaments move in the opposite direction, which can be seen by replac-

ing ξ → −ξ. The only term that changes sign by this transformation is the nonlinear drive

term. When the sign of the nonlinear drive coefficient is negative, the filament implodes

rather than explodes.

4The nonlinear coefficients of deton8 are related to the nonlinear coefficients of the nonlinear envelope
equation as follows: D3 = C2 and D4 = C4.
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However, if the quasilinear nonlinearity coefficient is also negative this leads to an imaginary

transformation in the generic equation. This means that the change of this sign leads to

a new generic equation. If the quasilinear nonlinearity coefficient is positive it leads to a

broadening in the radial (ψ) direction and a narrowing in the periodic (α) direction. This

can be seen by plotting
∂2ξ2

∂ψ2
vs ψ, see Fig. 5.9b. It is negative at the most unstable flux

(a) A sketch of ξ2 versus ψ which has a similar
shape to a Gaussian.

(b) A sketch of ∂2ξ2

∂ψ2 which is of a similar form
of the second derivative of a Gaussian.

Figure 5.9.: Sketches of quantities appearing in the nonlinear terms (nonlinear drive term and
quasilinear nonlinearity term)

surface (displayed at the middle). It then changes sign radially further away from the most

unstable flux surface, labelled with ψ0. Multiplying by a positive ξ leads to a negative sign

at the most unstable flux surface which means the filament is damped and further away it

leads to a positive sign which means the filament is driven. Therefore the filament becomes

broader in ψ which reduces the value of the quasilinear nonlinearity term as the second

derivative with respect to ψ becomes smaller.

However, if this quasilinear nonlinearity coefficient is negative then it drives (instead of

damps) the filament at the most unstable flux surface and damps the filaments at other

flux surfaces. This means that the filament becomes very narrow in the ψ-direction which

therefore increases the quasilinear nonlinearity term as the second ψ-derivative becomes

large, see Fig. 5.10. Therefore the cubic term is the most dominant term (and not the

cubic together with the nonlinear drive term). This mechanism causes the model to break

almost as soon as the filament enters the cubic-drive regime since it leads to overlapping

flux surfaces which are not allowed in ideal MHD. As a result we cannot simulate the

filaments with this model in this cubic nonlinear regime if the quasilinear nonlinearity

coefficient is negative. Therefore this chapter concentrates more on the analysis of the
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Figure 5.10.: The quasilinear nonlinearity effect: the profile becomes sharply peaked due to the
negative sign of the quasilinear nonlinearity coefficient.

coefficients than on the simulation of these filaments.

To show that the negative quasilinear nonlinearity does indeed dominate the evolution of

the filaments at some time, we discuss the results of the simulation briefly. Since λ is close

to 1 we choose to use the first order derivative instead, to reduce the run time. The energy

of each of the terms is given by:

2
dE

dt
=

d

dt

∫
dαdψ

[
D0

(
∂ξ

∂t

)2

− Γ2ξ2 +D2

(
∂u

∂ψ

)2

+
1

2
D4

(
∂ξ2

∂ψ

)2

− 2

3
D3ξ

3

]

This relation enables us to quantify which terms dominate the evolution of the filaments

at different times.

Fig. 5.11a shows how the cubic nonlinear term overtakes the nonlinear drive term; thus

the cubic regime starts from about t ≈ 0.006. Fig. 5.11b shows how the cubic nonlinear
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(a) The energy terms vs time. The cubic quasi-
linear nonlinearity term overtakes the non-
linear drive term.

(b) The energy terms vs time. The cubic quasi-
linear nonlinearity term dominates the fila-
ment’s behaviour at the end.

Figure 5.11.: Energy evolution of each term of the nonlinear ballooning envelope equation, given
by Eq. (5.16).

term balances the inertial term which means that it dominates the behaviour entirely. This

change of regime can also be seen in the evolution of the displacement, Fig. 5.12, where

the beginning of the evolution is dominated by the quadratic nonlinear drive coefficient,

which forces the filaments inwards since it has a negative coefficient. Were we to display a

Figure 5.12.: The displacement vs time. The beginning of the evolution is dominated by the
quadratic nonlinear drive coefficient. It forces the filaments inwards because it has a
negative coefficient. When the cubic term starts to dominate it drives the filaments
outwards.

position of an initial minimum of ξ instead, we would see a larger (negative) growth. When

the cubic term starts to dominate it drives the filaments outwards which is in agreement

with Fig. 5.9b.
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To analyse why this quasi-linear nonlinearity coefficient (C4) is negative we investigate the

values of each of its terms:

−2

〈
R2B2

p

B2
[B0 ·∇0K]2

〉
= −1.344 < 0 always (5.16)

2

〈
X2 [B0 ·∇0X]2

[
1

R2B2
p

+
R2B2

pΛ2

B2

]〉
= 3.99 > 0 always

−
〈
fp′

2J

(
∂

∂θ

1

B2

)
Λ
X4

2

〉
= 0.184

−
〈
p′2X4

B2

〉
= −6.98 < 0 always

−
〈
p′X4

B2

∂

∂ψ

B2

2

〉
= 2.75

Comparing the last two terms we can see that the pressure gradient is larger than the

magnetic pressure gradient
(
∂

∂ψ

B2

2

)
which leads to a large negative contribution from

the second to last term.

We have presented why a negative quasilinear nonlinearity coefficient breaks the model as

soon as the filament enters the cubic regime. Additionally we have shown that a negative

nonlinear drive coefficient describes an imploding filament. Next we investigate if we can

find a positive nonlinear drive coefficient to compare this model with ELMs as we know

that these have an explosive nature.

5.2.4. Coefficient profiles

The nonlinear coefficients are negative for the current Type I ELM MAST case. Therefore

the profiles of each coefficient relative to the flux surfaces are investigated to determine if

they are negative on all relevant flux surfaces. Additionally we investigate the effects of

changing the local pressure gradient on the radial profiles of the coefficients.

The nonlinear ballooning model is valid if the ballooning eigenvalue µ is close to but smaller

than 1 and if ∂µ
∂ψ ≈ 0. µ . 1 indicates that the plasma is ballooning unstable. ∂µ

∂ψ ≈ 0

means that µ must be a minimum, see Chapter 3. This means that the values calculated for

the coefficients are less precise further away from the extreme of the ballooning eigenvalue.

We evaluated the profiles for the coefficients with pχ ≈ 250. The quantity λ remains

between 1 and 1.5, Fig. 5.13a. The ballooning eigenvalue has a broad minimum and
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(a) λ = λS − λL which determines the order of
the fractional derivative.

(b) The ballooning eigenvalue µ. If this value is
below 1 the plasma is ballooning unstable.

(c) The quasilinear nonlinearity coefficient,
which is negative where the plasma is
ballooning unstable.

(d) The explosive nonlinear drive coefficient C2.
It continues to be negative.

Figure 5.13.: Profiles of the coefficients with the original equilibrium.

differs by around 20% from 1, Fig. 5.13b. Additionally we observe that the nonlinear drive

coefficient continues to be negative on all flux-surfaces, but has a local maximum where

the plasma is ballooning unstable.

The profiles obtained by increasing the local pressure gradient no longer represent an

equilibrium, but help to understand the dependencies of the coefficients. The nonlinear

drive coefficient changes if the pressure gradient is adjusted, as illustrated in Fig. 5.14.

Specifically, as the pressure gradient is increased the nonlinear drive coefficient is also

increased. Additionally λ exceeds 2 (Fig. 5.14a) which means that the normal inertial

coefficient can be used, see Chapter 3. However, the quasilinear nonlinearity term remains

negative and its minimum decreases, see Fig. 5.14c.

Note that for this case there are flux surfaces which are ballooning unstable and have a

positive nonlinear ballooning drive, see Fig. 5.15. However, recall that the local pressure
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(a) λ = λS − λL which determines the order of
the fractional derivative.

(b) The ballooning eigenvalue µ. If this value is
below 1 the plasma is ballooning unstable.

(c) The quasilinear nonlinearity coefficient,
which is negative where the plasma is
ballooning unstable.

(d) The explosive nonlinear drive coefficient C2.
It now has a small but positive value near
ψN = 0.987.

Figure 5.14.: Profiles of the coefficients with an altered equilibrium where the local pressure gra-
dient is increased by 60%.
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Figure 5.15.: Scaled nonlinear drive coefficient and 1 − µ vs normalised flux surfaces for a local
pressure gradient which is increased by 60%. The plasma is ballooning unstable which
means that the linear drive term is initially driving the filaments. Also the nonlinear
drive coefficient is positive, which means that it drives the filaments outwards.

gradient must be changed by 60% in this case. This is larger than we would expect from

experimental errors of the pressure gradient measurements which are around 20% [80].

5.2.5. Methods for experimental comparison

To compare our results with experimental measurements we must first determine a suitable

method. The most obvious one is to visualise the results of the simulations and compare

these structures with observed structures in experiments. Here we present a method for

direct comparison with MAST high speed camera measurements. This method is insuf-

ficient for quantitative comparison, therefore a heuristic energy model is presented. It is

used to calculate the energy released in an ELM from the simulated plasma. This energy

can be easily compared with energies released in experiments.

We use the coefficients obtained from the case of the increased local pressure gradient, as it

is a case which is ballooning unstable with a positive nonlinear drive. However, the reader

should keep in mind that the equilibrium pressure gradient is increased by 60% which

makes the comparison to experiments qualitative, at best. Nevertheless these methods are

presented to show that comparison between simulations and experiments is in principle

possible.
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3D visualisation of filamentary structures

To visualise the perpendicular displacement of the filaments in Cartesian coordinates we

first superimpose the solutions of the separated function X
B0

and ξ̂ given in equation (3.30),

which are the solutions of the linear ballooning equation (3.31) and the nonlinear bal-

looning equation (3.48). The ψ meshes vary between the two codes (evaluating the linear

and nonlinear ballooning equations), but we only display the displacement from the most

unstable flux surface.

The next step is to switch from the Clebsch coordinate system to a Cartesian system.

We know that the cylindrical coordinate φ is related to the Clebsch coordinate α by the

following equation:

α = q (χ− χ0) + Y − φ

With this relation we calculate the toroidal angle φ for each given α and χ. Furthermore

we know the Z and R values for each given χ as these values are given in the input files

for the coefficient code (in the MAST case produced by HELENA). We then exploit the

transformation relations for cylindrical coordinates to Cartesian coordinates:

x = R cos(φ)

y = R sin(φ)

Z = Z

A typical result of displaying the filaments in 3 dimensions with an adjusted mode number5

is shown in Fig. 5.16 where the data are visualised on top of a high speed camera image

of an H-mode plasma in MAST. The brighter parts are regions with higher values of the

displacement.

Using this method, we could in principle compare simulations with fast camera obser-

vations, as long as the equilibrium used provided suitable coefficients for the nonlinear

ballooning mode envelope equation.

5The original mode number is reduced by a factor of approximately 20. This high mode number compared
to experiments is probably due to the Taylor expansion of the ballooning eigenvalue µ. This could be
investigated in the future.
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Figure 5.16.: 3D visualisation of the filamentary displacement with an enforced mode number of
n = 10.

Heuristic energy model

This model was continued from work presented in Reference [7].

We know that the linear drive in tokamaks is caused by the pressure gradient. The linear

drive in our nonlinear ballooning envelope equation (3.48) is proportional to the ballooning

eigenvalue, described by the following equation:

1− µ =
p′ − p′c
p′

where p′ is the pressure gradient in the plasma and p′c is the critical pressure gradient

which cannot be exceeded [121]. In our heuristic energy model we use observations from

experiments:

• The region of the steep pressure gradient (called pedestal) is increasing before an

ELM crash.

• We also know that the pressure gradient collapses during an ELM crash [121].

Therefore we introduce a pedestal that grows linearly with time in our model. It increases

until the nonlinear terms are of the same order as the linear terms. Then we make the

pressure gradient crash until the instantaneous force on the filaments is approximately
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Figure 5.17.: Evolution of the normalised width ∆
∆max

of the pedestal (top figure), the evolution
of the normalised pressure gradient where the drop of it is seen (middle figure), and
the evolution of the displacement (bottom figure). Note, that it is the very beginning
of the nonlinear regime where the crash of the pressure gradient is initialised.

zero, see Fig. 5.17.

To implement this model we must translate it into the correct form to input into our codes.

The 1−µ is replaced by the Taylor expansion: 1−µ(ψ(0))− ∂2µ
∂ψ2 (ψ − ψ0)2 = D1− (ψ−ψ0)2

∆2 ,

which allows us to represent the width of the pedestal by ∆. To estimate the energy

released during the drop in the pressure gradient we make the approximation that the

released energy is proportional to the drop in pressure gradient, the pedestal width, and

the volume of the pedestal. With that we obtain from this heuristic model the energy

released in one ELM cycle of ∼ 0.65kJ. Typical energy released during one Type I ELM

cycle in MAST are between 0.5-1.7kJ [45, 122].

At this point these values are not predictive. One has to compare several of the calculated

energies with experiments since we can adjust several quantities in the model. However,

it is already promising that it is possible to reach sensible values for the energy released,

especially if we consider that there is no kink-drive in our model. This could explain why

we had to increase the pressure gradient to find appropriate coefficients. A purely pressure
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driven ELM is typically a Type II ELM [80, 96] which exists in a high collisionality regimes

and reduced bootstrap current. Type II ELMs typically release less energy during one ELM

cycle, which could explain why the obtained energy is at the lower range of the energies

released in MAST.

To evaluate if the missing kink-drive is the explanation for the negative coefficients we

investigate Type II ELMs on JET next.

5.3. JET-like equilibrium: Type II ELMs

In this section the coefficients for a JET-like equilibrium with Type II ELMs are investi-

gated to examine if the missing kink drive in the nonlinear ballooning model is responsible

for the negative nonlinear coefficients. This is the motivation for investigating equilibria

susceptible to Type II ELMs, since they are considered to be purely ballooning driven [80,

96]. The coefficient code was constructed to analyse up-down symmetric equilibria, how-

ever, JET is not up-down symmetric. Fortunately the Type II case we are investigating

(#70500) is close to a double null configuration and is therefore close to being up-down

symmetric [80, 123, 124].

5.3.1. Obtaining up-down symmetric JET-like equilibrium

To obtain an up-down symmetric equilibrium to use for the coefficient code, we exploit the

code SCENE [8] which is a self-consistent equilibrium code including neoclassical effects.

As the input we have used an equilibrium created with HELENA and EFIT from shot

number 70500.

To symmetrise the original equilibrium we perform the following steps: We find the max-

imum and minimum radius and their corresponding indices i, where i is the label of each

original point of the boundary, see Fig. 5.18. To simplify the description here we assume

that i = 1 labels the point with the maximum radius Rmax and the subsequent labels

follow anticlockwise along the boundary. We can always shift the index such that this is

true, and the method is equivalent if the labels increase clockwise. Defining a new radial

grid with N points and an equidistant mesh spacing of (Rmax−Rmin)
N where the new radii

are Rsym(j) = Rsym(N2 +1−j) for jε[0, N2 ] where j is the new label of the points. For each
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Figure 5.18.: Sketch of grid of the plasma boundary.

(a) New radius Rsym between two original radii
R0 and the corresponding new vertical height
Ztop.

(b) New radius Rsym between two original radii
R0 and the corresponding new vertical height
Zbot.

Figure 5.19.: Sketch of old and new radii and vertical heights.

new radius Rsym we can find two original radii such that R0(i) < Rsym(jtop) < R0(i − 1)

in the top half and R0(i − 1) < Rsym(jbottom) < R0(i) in the bottom half, see Fig. 5.19.

We can then define a scaling parameter stop:

stop =
Rsym(jtop)−R0(itop)

R0(itop − 1)−R0(itop)
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and an equivalent scaling factor sbot for the bottom part of the boundary. We can now

estimate the vertical positions Ztop of the new point as:

Ztop = stop (Z0(itop − 1)− Z0(itop))

and equivalently for the bottom vertical position Zbot. The new symmetrical position is

the average of these two values:

Zsym =
Ztop − Zbot

2

The original and new boundaries for the equilibrium are shown in Fig. 5.20. To verify

Figure 5.20.: The original boundary from HELENA in black with the new up-down symmetric
boundary produced with SCENE in red.

that the modified equilibrium is indeed similar to the unmodified equilibrium, we display

all the equilibrium quantities in Fig. 5.21, which also lead to a very similar ballooning

eigenvalue profile, Fig. 5.22. Closer to the edge the differences become very small, which

is preferable as the most unstable flux surface is in this region. Therefore we can produce

up-down symmetric JET-like plasma equilibria (or for any other tokamak device) with

SCENE. Additionally we can change certain parameters like the pressure gradient or the

density to determine how these changes affect the coefficients.
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(a) Electron density ne profile (b) Electron temperature Te profile

(c) Safety factor q profile
(d) The flux function f defined as a product of

the toroidal magnetic field and the major ra-
dius f ≡ BφR

Figure 5.21.: Comparison between non-up-down symmetric profiles in black (created with HE-
LENA) versus up-down symmetric profiles in red (created with SCENE).

Figure 5.22.: The ballooning eigenvalue vs the normalised flux surfaces. When 1 − µ is positive,
the plasma is ballooning unstable which generates the initial linear drive.
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5.3.2. Results for the coefficients for JET-like equilibrium

For the up-down symmetric case we obtain the following coefficients:

C1 ≈ 0.38 C4 ≈ −0.0098

C5 ≈ 0.5 C2 ≈ −940

µ ≈ 0.975 λ ≈ 1.08

We find that the JET-like equilibrium again has two negative nonlinear coefficients. Since

we investigate Type II ELMs which are considered to be purely ballooning driven, we can

conclude that these negative coefficients are not (only) caused by the missing kink drive.

Furthermore we investigate how changing the density with either constant temperature or

with constant pressure influences the nonlinear coefficients. Since the first case is similar

to the change in the local pressure gradient we want to examine if it can also change the

coefficients similar to the MAST case. The second case is to evaluate how the coefficient

change with the same pressure gradient but with a modified bootstrap current. The orig-

inal density at the magnetic axis is ne ≈ 0.36 × 1020m−3, see Fig. 5.21a. We change the

density and and use SCENE to create a new equilibrium.

First, we increase the density with a constant temperature. The nonlinear drive coefficient

increases and the quasilinear nonlinearity decreases with increasing density, see Figures 5.23

and 5.24. Note that the most unstable flux surface varies depending on the density. This

change in the location of the most unstable flux surface also affects the coefficients.

Secondly, we change the density at a constant pressure. The nonlinear drive coefficient

decreases and the quasilinear nonlinearity coefficient increases by increasing density, see

Figures 5.25 and 5.26. There exists positive quasilinear nonlinearity coefficients for which

the nonlinear ballooning model can describe the evolution of the filaments for longer.

However, the change of the most unstable flux surface affects the quasilinear nonlinearity

coefficient stronger than the change in density.

This study is limited by the equilibrium profile, see Fig. 5.22. When the density is in-

creased further, the location of the 1− µ maximum moves outwards (ψN > 1).

In the first case, shown in Fig. 5.23 and 5.24, the bootstrap current increases with increas-

ing density and in the second case, presented in Fig. 5.25 and 5.26, the bootstrap current
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Figure 5.23.: The nonlinear drive coefficient vs the electron density [1020m−3] with constant tem-
perature. The green 4 has its most unstable flux surface at ψN ≈ 0.9958; the blue
+ has its most unstable flux surfaces at ψN ≈ 0.9966 and the red ◦ symbol indicates
the most unstable flux surface at ψN ≈ 0.99827.

Figure 5.24.: The quasilinear nonlinearity coefficient vs the electron density [1020m−3] with con-
stant temperature. The green 4 has its most unstable flux surface at ψN ≈ 0.9958;
the blue + has its most unstable flux surfaces at ψN ≈ 0.9966 and the red ◦ symbol
indicates the most unstable flux surface at ψN ≈ 0.99827.

increases with decreasing density. Therefore we detect an increasing nonlinear drive coeffi-

cient with an increasing bootstrap current. This means the inwards drive of the nonlinear

drive term reduces when the equilibrium is changed towards an equilibrium which is more

likely to have Type I ELMs.
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Figure 5.25.: The nonlinear drive coefficient vs the electron density [1020m−3] with constant pres-
sure. The green 4 has its most unstable flux surface at ψN ≈ 0.9966; the blue +
has its most unstable flux surfaces at ψN ≈ 0.997 and the red ◦ symbol indicates the
most unstable flux surface at ψN ≈ 0.9958.

Figure 5.26.: The quasilinear nonlinearity coefficient vs the electron density [1020m−3] with con-
stant pressure. The green 4 has its most unstable flux surface at ψN ≈ 0.9966;
the blue + has its most unstable flux surfaces at ψN ≈ 0.997 and the red ◦ symbol
indicates the most unstable flux surface at ψN ≈ 0.9958.

5.4. Conclusion

We have presented the methods to calculate the coefficients of the nonlinear ballooning

envelope equation and the results for these coefficients for Type I ELMs equilibria in MAST

and for Type II ELMs equilibria in JET.

We described the method used to calculate slowly converging integrals for the C2 coefficient

in an efficient way. Additionally we confirmed that the methods for the calculation of

coefficients were successfully implemented and worked as predicted.

We presented methods to compare simulations with experiments in two different ways:
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visualisation of the filaments to compare filament width and growth rates and a semi-

heuristic energy model to compare the energies released during ELMs. However, the current

results suggest that the nonlinear ballooning model on its own cannot sufficiently describe

Type I nor Type II ELMs in a quantitative manner.
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6. Conclusion and future work

6.1. Conclusion

As ELMs are predicted to have detrimental effects on the plasma facing components in

future tokamak devices, obtaining a deeper understanding of this type of instability would

increase the feasibility of fusion energy produced by magnetically confined plasmas in toka-

maks.

A promising candidate to describe ELMs quantitatively is the nonlinear ballooning model

since its qualitative characterisation of explosive filaments are in agreement with exper-

imental observations of ELMs. This model is derived from ideal MHD assuming close

proximity to marginal stability, and consists of two differential equations to describe the

evolution of the displacement: one differential equation describes the spatial distribution of

the displacement along the field aligned variable and the second, two-dimensional, nonlinear

equation describes the perpendicular evolution of the filaments and can involve fractional

temporal-derivatives, but is often second-order in time and space. In a tokamak geometry

the first differential equation is the linear second-order ballooning mode equation [56] and

the second differential equation describing the perpendicular evolution is referred to as

the nonlinear ballooning envelope equation in this thesis and was derived by Wilson and

Cowley [2].

In this thesis two main questions regarding the description of ELMs with the explosive

filaments characterised by the non-linear ballooning model are investigated:

• Does the nonlinear interaction of explosive multiple filaments influence their evolu-

tion?

• Can the nonlinear ballooning model describe Type I and II ELMs quantitatively?
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The second topic is of special interest because the model, once derived, is quite simple to

analyse because one only has to solve two differential equations. Additionally it is easy

to modify this model to investigate the effects of other physical impacts, e.g., nonscalar

viscosity, in a way similar to what we have done by addressing the first question investi-

gated in the first part of this thesis. Therefore this model has the potential to increase our

understanding of ELMs significantly.

In the first part of this thesis we have investigated the interaction of multiple explosive

filaments with varying amplitudes in the linear and nonlinear regime by exploiting the

nonlinear ballooning model in slab geometry with an added scalar viscosity. We presented

the derivation of the ballooning model in the slab geometry with a mixed Lagrangian and

Eulerian boundary conditions [71]. This set of boundary conditions allows the flow to pass

through the boundaries and simplifies the differential equation describing the displacement

along the field aligned variable. To implement filaments with different initial amplitudes

we changed the initialisation in the code Deton8, which is exploited to solve the nonlinear

ballooning envelope equation. Specifically, we adopted a superposition of the analytical

solutions of the linear terms of the nonlinear ballooning envelope equation.

We have shown that the multiple filaments interact as soon as they enter the nonlinear

regime, where we could demonstrate that the filaments which are able to enter the nonlin-

ear regime first suppress the other, smaller filaments and additionally gain amplitude from

the suppressed filaments. We have quantified this effect in two ways for a three filament

system by comparing four different cases; by introducing the quantity pi which charac-

terises the difference between the two-mode simulation and the two independent single

mode simulations, and by taking the ratio of the superimposed simulation with the sum of

two single mode simulations. With the latter method we could show in the superimposed

case that 80% of the amplitude of the larger filament at the final time was due to the

interaction with the smaller filaments.

We identified the non-linear suppression mechanisms to be the down-draft caused by the

dominant central filament as it erupts pushing down plasma which suppresses the sub-

dominant smaller filaments.

Our results are qualitatively consistent with Ref. [69], which investigated the evolution of
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random small fluctuations. The filament with the biggest amplitude at the transition from

the linear to nonlinear regime grows fastest and suppresses the other filaments, but the

interactions were not quantified previously.

Although our results are derived from a simple slab plasma model, it has the same fea-

tures as more complex magnetic geometries, including tokamaks [2, 3], because the form of

the nonlinear ballooning envelope equation is the same as for certain tokamak geometries.

We therefore believe the phenomenon of large filaments feeding off the smaller ones is a

generic feature of MHD. To support our model we presented two examples of experimental

observations (Type V ELMs in NSTX and ELMs in KSTAR) which show single dominant

filaments where one would expect a higher mode number from linear theory. These effects

could be potentially described by the methods shown in this thesis.

This theory is only valid in the early nonlinear stages of the evolution since it is derived

assuming a slow time derivative. Hence it requires that the dominant filaments will have

time to have formed before the model becomes invalid. It is therefore sensible to test these

ideas in large scale simulations with less reduced models, close to marginal stability, e.g.,

with a reduced MHD model similar to [101].

In the second part of this thesis we have studied whether or not the nonlinear ballooning

model can describe Type I ELMs in MAST and Type II ELMs in JET-like equilibria quan-

titatively. To this end, we have presented a method to calculate the required coefficients

of the nonlinear ballooning envelope equation to accomplish the comparison between the

model and experimental observations.

The coefficients of the nonlinear ballooning envelope equation are complicated, field line

averaged equilibrium quantities and two of their integrands decay slowly. Therefore we

presented a method to reduce the numerical domain of the field aligned variable by calcu-

lating the asymptotic form of the remaining integral analytically.

We examined whether the analytic description of the equilibrium quantities is appropriate

by comparing the numerical with the analytical integrands and found that they were in

agreement. Furthermore we successfully performed convergence tests on our code to ex-

amine if the method for the slowly converging integrals functions properly.

We determined the coefficients for a Type I ELMy H-mode MAST equilibrium where we
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found both nonlinear coefficients to be negative. We showed that this implies that the

filaments implode due to the negative nonlinear drive term and that the filaments do not

radially broaden which more quickly causes the model to enter a regime where the model is

invalid. By changing the local pressure gradient we obtained flux-surfaces with a positive

nonlinear drive coefficient, i.e. exploding filaments. We presented methods to compare

simulations with experiments in two different ways: visualisation of the filaments to com-

pare filament width and growth rates and a semi-heuristic energy model to compare the

energies released during ELMs.

Furthermore we investigated the coefficients for Type II ELMs in a JET-like equilibrium

since we know that Type II ELMs are considered to be purely ballooning unstable and

therefore could be captured more completely by the nonlinear ballooning model. We

changed the equilibrium so that it is up-down-symmetric and obtained again two nega-

tive nonlinear coefficients.

In summary, we obtained imploding filaments for which the description by the nonlinear

ballooning model breaks down faster than expected due to the second nonlinear coefficient,

but by changing the equilibria we were able to invert the signs. Therefore the results for

the ELM equilibria indicate that either the nonlinear ballooning model is not sufficient to

describe the explosive nature of the filaments or that the coefficients themselves are too

sensitive to the equilibria, since we can show that they can switch signs depending on the

input parameters. Either way the current results suggest that the nonlinear ballooning

model alone is insufficient to describe Type I or Type II ELMs quantitatively.

6.2. Future work

While the work presented in this thesis has shown that Type I and Type II ELMs cannot

be described quantitatively with the nonlinear ballooning model, there are several other

types of ELMs which are worthy of investigation with this model. Promising candidates

for future research are Type V ELMs from NSTX and the ELMs in KSTAR which both

show the interacting behaviour featured by the nonlinear ballooning model. Since they

show characteristics which only the nonlinear terms could describe, it would be more likely

that this model can capture their evolution quantitatively.
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Another possible application would be to investigate the equilibria of the ballooning pre-

cursors of disruptions which were found in the Tokamak Fusion Test Reactor (TFTR) [125].

Since disruptions can be very detrimental to tokamaks and can limit the operating regimes,

improving the understanding of disruptions is essential.

In addition to investigating more equilibria it would also be of interest to examine how the

neglected non-up-down-symmetric term would change the behaviour of the filaments. For

example we know that Type II ELMs can be reached in JET by creating a quasi-double

null configuration [80]. This could be explained by turning the non-up-down-symmetric

term on or off. Additionally one could investigate non-up-down symmetric equilibria in

general.

Lastly, the interacting filaments could be investigated with full, large scale simulations near

marginal stability, for example with BOUT++ [126]. This would address two purposes:

First one could then compare how much the evolution differs due to the neglected terms

in the analytic nonlinear ballooning model. This would help us to understand what effects

the different terms have on the plasma behaviour. Second one could determine how the

filaments behave, not only at the early evolution, but also throughout an entire ELM cycle.
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A. Common coordinate systems - useful

relations

The following relations are derived here:

|e⊥|2

B2
0

=
1

R2B2
p

[
1 +

R4B4
p

B2
0

(
q′v + Y ′

)2] (A.1)

e⊥ · κ0 =
B0

R2B2
p

(∇ψ · ∇)(p0 +
B2

0

2
)− I

2JB0

∂B2
0

∂θ

(
q′v + Y ′

)
(A.2)

e⊥ ·∇p0 = Bp′0 (A.3)

1

B4
0

∂B2
0

∂θ
= − ∂

∂θ

(
1

B2
0

)
(A.4)

(eφ · ∇)B = −
Bφ
R
R̂+

BR
R
eφ (A.5)

(eφ · ∇) eφ = − 1

R
R̂ (A.6)

(B · ∇) (eφR) = −BφR̂+BReφ (A.7)

B0 ·∇0eφ = −
Bφ
R
R̂ (A.8)

eφ ·B0 ·∇0κ0 =
κRBφ
R

(A.9)

eφB0 ·∇0R = Breφ (A.10)

e⊥ · e∧
B2

= −
R2B2

p

B2
Λ (A.11)

B0 ·∇0σ = −fp′0B0 ·∇0

(
1

B2

)
(A.12)

where v = χ − χ0. The derivation of equation (A.4) is straight forward. To obtain

expression (A.3) one can use e⊥ = B0
R2B2

p
∇ψ − Λe∧ and that p0 only depends on the flux

coordinate ψ.
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Now we will derive Eq. (A.1). Using the Eq. (2.6) which is the representation of the

operator ∇ in the ψ-χ-φ coordinate system and the expression for α (Eq. (2.10)) it follows

that:

∇α = v∇χ−∇φ+∇ψ
[
q′v + Y ′

]
(A.13)

where the primes denote derivatives with respect to ψ. Now we use the values for |∇χ| =
1

JBp
, |∇φ| = 1

R
and |∇ψ| = RBp (equations (2.7), (2.8), and (2.9)) to calculate the square

of ∇α:

(∇α)2 =
B2

0

R2B2
p

+R2B2
p

[
q′v + Y ′

]2 (A.14)

With Eq. (A.14) and Eq. (2.13) we obtain the Eq. (A.1).

Now Eq. (A.2) is derived. To derive it we use the representation of the magnetic field:

B0 = f∇φ + ∇φ × ∇ψ (see Sect. 2.1.3). By using the definition of e⊥ =
∇α×B0

B0

(Eq. (2.11)) and by using Eq. (A.13) we obtain:

e⊥ =
1

B0

[(
f

R2

1

R2B2
p

+
1

R2

)
∇ψ +A∇φ− f

(
q′v + Y ′

)
B0

]
,

where we do not need to specify the quantity A as we will multiply this equation with κ0.

κ0 can be written as ∇(p0 +
B2

0
2 ) and we exploit that all derivatives with respect to φ of

equilibrium quantities are equal to zero.

Using ∇ψ ×∇φ = −JB2
p∇χ and ∇χ×∇φ = 1

JR2Bp2
∇ψ we obtain:

e⊥ · k0 =
1

B0

[
B2

0

R2B2
p

(∇ψ · ∇)− f

J

(
q′v + Y ′

)( ∂

∂θ
+

∂

∂v

)](
p0 +

B2
0

2

)

Using
(
∂

∂θ
+

∂

∂v

)
(p0 +

B2
0

2 ) = 1
2

∂

∂θ
B2

0 it follows Eq. (A.2). To derive the equations (A.5),

(A.6), (A.7) and (A.8) we only need to use the material derivative in cylindrical coordinate
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system:

A · ∇B =

(
AR

∂BR
∂R

+
Aφ
R

∂BR
∂φ

+Az
∂BR
∂z
−
AφBφ
R

)
R̂

+

(
AR

∂Bφ
∂R

+
Aφ
R

∂Bφ
∂φ

+Az
∂Bφ
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+
AφBR
R

)
eφ

+

(
AR

∂Bz
∂R

+
Aφ
R

∂Bz
∂φ

+Az
∂Bz
∂z

)
ẑ

To derive Eq. (A.9) we can exploit that eφ · κ0 = 0 because of symmetry and we can use

Eq. (A.8):

eφ ·B0 ·∇0κ0 = −κ0 ·B0 ·∇0eφ

=
∇R
R
· κ0

=
κR
R

To derive Eq. (A.10) we only need to exploit Eq.s (A.6) and (A.8). Using the relation

e⊥ = B0
R2B2

p
∇ψ−Λe∧ and that e∧ is perpendicular to∇ψ by definition we obtain Eq. (A.11).

The last Eq. (A.12) can be derived by using σ’s definition (B.6): σ = −fp′0
B2

0
− f ′ and the

fact that the quantities f and p0 only depend on the flux coordinate ψ.
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B. Components of linear operator L

B.1. Properties

It is useful to find relations for each component of the linear operator acting on each com-

ponent. In this appendix we present the different expressions and the derivations of the

expressions.

The linear operator acting on a perpendicular vector W⊥ (with only e⊥ and e∧ compo-

nents) is defined as:

L (W⊥) ≡ B0 ·∇0 [B0 ·∇0 (W⊥)]−(∇0κ0)·W⊥+[B0 (B0 ·∇0) + 2κ0]

[
2

B2
0

(κ0 ·W⊥)

]
(B.1)

One useful property of L is:

B0 · L (W⊥) = 0

Another useful property of the linear operator is that it is self-adjoint, [63]:

〈A⊥ · L(C⊥)〉 = 〈C⊥ · L(A⊥)〉

where A⊥ and C⊥ are perpendicular vectors and 〈· · ·〉 is defined as:

〈· · ·〉 ≡
∫ ∞
−∞
· · · dl

B0
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where l measures the distance along the magnetic field line.

By expanding the linear operator of the basis vectors e⊥ and e∧ we obtain:

e∧
B0
· L
(
W

B0
e∧

)
= (B0 ·∇0)

[
|e∧|2

B2
0

(B0 ·∇0)W

]
(B.2)

e⊥
B0
· L
(
W

B0
e⊥

)
= (B0 ·∇0)

[
|e⊥|2

B2
0

(B0 ·∇0)W

]
+

2

B4
0

(e⊥ · κ0) (e⊥ ·∇0p0)W(B.3)

e⊥
B0
· L
(
W

B0
e∧

)
= (B0 ·∇0)

[
(e⊥ · e∧)

B2
0

(B0 ·∇0)W

]
− σ (B0 ·∇0)W (B.4)

e∧
B0
· L
(
W

B0
e⊥

)
= (B0 ·∇0)

[
(e⊥ · e∧)

B2
0

(B0 ·∇0)W + σW

]
(B.5)

where σ is the parallel current given by:

σ =
J ·B0

B2
0

= −f p
′
0

B2
0

− f ′ (B.6)

B.2. Description of derivations

Firstly, we derive some useful relations which simplify the derivation of the components of

the linear operator.

Deriving relation for e∧B0
· L
(
W
B0
e⊥

)
The derivation of Eq. (B.5) is very similar to the one for (B.4). However, one more relation

is needed to derive this equation:

2

B4
0

(e∧ · κ0) (e⊥ ·∇0p) = −fp′0 (B0 ·∇0)

(
1

B2
0

)
= (B0 ·∇0)σ

Deriving relation for ∇ · e

Deriving: ∇ · e = − 2
B2

0
(e · κ0) + 1

B2
0
e · ∇p0 where e = e⊥

B0
OR e = e∧

B0
.

1st e⊥B0
:
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We use the definition of e⊥, Eq. (2.11):

∇ ·
(
e⊥
B0

)
= ∇ ·

(
∇α×B0

B2
0

)
= −∇α×B0

B4
0

· ∇B2
0 +

1

B2
0

∇ · (∇α×B0)

= − 1

B3
0

(e⊥ · ∇)B2
0 −

1

B2
0

J · ∇α (B.7)

where the following vector identity ∇ · (A×B0) = B0 · (∇×A)−A · (∇×B0) was used

twice. To get an expression for J we use the equilibrium relation Eq. (2.23):

∇p0 ×∇α = (J ×B0)×∇α

= (J · ∇α)B0

⇒ (J · ∇α)B2
0 = ∇p0 · (∇α×B0)

= B0e⊥ · ∇p0

Using this relation for J in equation (B.7) we obtain:

∇ ·
(
e⊥
B0

)
= − 1

B3
0

e⊥ · ∇
(
p0 +B2

0

)
= − 2

B3
0

e⊥ · κ0 +
1

B3
0

e⊥ · ∇p0

2nd e∧B0
:

Here we use the definition for e∧ (Eq. (2.12)) and the same vector identity as above:

∇ ·
(
e∧
B0

)
= ∇ ·

(
B0 ×∇ψ

B2
0

)
= −B0 ×∇ψ

B4
0

· ∇B2
0 +

1

B2
0

∇ · (B0 ×∇ψ)

∇ · (B0 ×∇ψ) = ∇ψ · (∇×B0)− 0

= ∇ψ · J(ψ)

= 0

⇒ ∇ ·
(
e∧
B0

)
= − 1

B3
0

(e∧ · ∇)B2
0

To get the more general relation for ∇ · e we must show that e∧ · ∇p0 = 0 by using
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Eq. (2.12):

e∧ · ∇p0 =
(
B0 −R2B2

0∇φ
)
· ∇p0

= 0

Therefore it follows:

∇ · e = − 2

B2
0

(e · κ0) +
1

B2
0

e · ∇p0 (B.8)

Deriving a relation for (B0 ·∇0)e

In this subsection the derivation of the following relation is described:

(B0 ·∇0) e = −B0

[
2e · κ0

B2
0

]
+B0

e · ∇p0

B2
0

+

(
e

B0
·∇0

)
B0 (B.9)

To derive this expression we only need to use the vector identity:

∇× (A×B) = A (∇ ·B)−B (∇ ·A) + (B · ∇)A− (A · ∇)B

where the third term on the right hand side is equivalent to the left hand side of Eq. (B.9):

(B0 ·∇0)
e

B0
= ∇×

(
e

B0
×B0

)
− e

B0
(∇0 ·B0) +B0

(
∇0 ·

e

B0

)
+

(
e

B0
·∇0

)
B0

Then we can use the fact that the divergence of the magnetic field is equal to zero: ∇ ·

B0 = 0, which eliminates the second term on the right hand side. By using the identity

e∧ = B0×∇ψ
B0

or e⊥ = ∇α×B0
B0

and that ∇ψ or ∇α is perpendicular to the magnetic field

B0 · ∇ψ = 0, we can show that the first term on the right hand side is equal zero. By

exploiting the expression (B.8) derived in the previous section we can transform the third

term on the right hand side to −2B0
e·κ0

B2
0

+B0
e·∇p0
B2

0
, which means we are left with the

desired expression (B.9).
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Deriving relation for e∧B0
· L
(
W
B0
e∧

)
and e⊥B0

· L
(
W
B0
e⊥

)
To derive the relation (B.2) and (B.3) we can use Eq. (B.9), e ·B0 = 0 and the following

relation, which can be easily shown:

(B0 ·∇0)

[(
e

B0
·∇0

)
B0

]
=

[
(B0 ·∇0)

e

B0

]
·∇0B0 +

(
e

B0
·∇0

)
κ0

−
[(

e
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·∇0

)
B0
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·∇0B0

= −2κ0
e · κ0

B2
0

+ κ0
e ·∇0p0

B2
0

+

(
e

B0
·∇0

)
κ0 (B.10)

Deriving relation for e⊥B0
· L
(
W
B0
e∧

)
To derive the relation (B.4) we can exploit Eq. (B.9), (B.10), e∧ = f

B0
B0 − R2B0∇0φ

(Eq. (2.12)) , e⊥ = B0
R2B2

p
∇0ψ−Λe∧ (Eq. (2.11)) andB0 = f∇0φ+∇0φ×∇0ψ (Eq. (2.15)).

Additionally we can use the following equations, which can be easily derived:

A · (B · ∇)κ0 = B · (A · ∇)κ0

∇0ψ · (∇0φ ·∇0)B0 = 0

∇0φ · (∇0ψ ·∇0)B0 = B2
pf
′
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C. Derivation of the nonlinear ballooning

model for tokamak geometries - Regions

along the magnetic field line

C.1. Nonlinear orders of the momentum equation in the nonlinear

region

In this Appendix the more detailed steps of the third, fourth and fifth order of the derivation

of the nonlinear ballooning equation are presented. Most of these steps follow the derivation

of Hurricane et al. [3].

C.1.1. Third order

In this section a more detailed discussion of deriving the terms of the third order of the

nonlinear region is presented. Starting as in the previous order with the parallel component:

parallel component (ε3)

The equation for the parallel component looks identical to the previous order:

B0 ·∇0δJ
(3) = 0

Therefore δJ (3) is also constant along the magnetic field line.
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e∧-component (ε)

This order for the e∧-component of the momentum equation takes the form:

e∧ ·∇0F
(3) = 0

which means that F (3) is constant along α:

F (3) = F (3)

e⊥-component (ε2)

This order has more terms than the previous orders:

−e⊥ ·∇0F
(3) + e⊥ ·

[
B0 ·∇0

(
B0 ·∇0ξ

(2)
)
− 2δJ (2)κ0

]
− ξ(2) · (e⊥ ·∇0)κ0

=
2(1− µ)

B2
0

(e⊥ · κ0) (e⊥ ·∇0p0) ξψ (C.1)

The term on the right hand side has been added so that we can find solutions for ξ(2) which

satisfy the boundary conditions. Since we are close to marginal stability the ballooning

eigenvalue µ is close to 1, therefore we can estimate (1 − µ) to be of order ε2. By adding

this term, we obtain an eigenvalue problem.

By averaging equation (C.1) with respect to α and using ξ(2) = 0, δJ (2) = 0 and F (3) = F (3)

which we have shown previously, we obtain:

∂F (3)

∂ψ

∣∣∣∣∣
α,l

= 0

Integrating along ψ and using the boundary conditions leads to F (3) = 0 which is equivalent

to

(B0 ·∇0) ξ
(3)
‖ −

2ξ
(3)
⊥ · κ0

B2
0

=

[
Γp0 +B2

0

B2
0

]
δJ (3) (C.2)

Using that F (3) = 0 and equation (3.29) we can obtain:

e⊥ · L(ξ
(2)
⊥ ) =

2(1− µ)

B2
0

(e⊥ · κ0) (e⊥ ·∇0p0) ξ
(2)
ψ − 2Γ

p0

B2
0

(κ0 · e⊥) δJ (2)
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with the linear operate L defined as in (B.1). By using expression (B.3) we obtain a second

order differential equation for B0ξ
(2)
ψ :

B0 ·∇0

[
|e⊥|2

B2
0

B0 ·∇0

(
B0ξ

(2)
ψ

)]
+

2µ

B3
0

(e⊥ · κ0) (e⊥ ·∇0p0) ξ
(2)
ψ = −2

Γp0

B3
0

(κ0 · e⊥) δJ (2)

By using equation (3.29) to replace
(e⊥·κ0)ξ

(2)
ψ

B2
0

we obtain:

µ (e⊥ ·∇0p0) (B0 ·∇0) ξ
(2)
‖ +B0 ·∇0

[
|e⊥|2

B2
0

B0 ·∇0

(
B0ξ

(2)
ψ

)]
=

[
Γp0 +B2

0

B2
0

µ (e⊥ ·∇0p0)− 2
Γp0

B3
0

κ0 · e⊥
]
δJ (2) (C.3)

By integrating along the magnetic field line and using the fact that the displacement at

this order must go to zero, we obtain that δJ (2) = 0.

C.1.2. Fourth order

The steps in the derivation of the fourth order in the nonlinear region are discussed here.

parallel coponent (ε4)

The fourth order, and also the last order used, of the parallel component has the following

form:
ρ0B

2
0

p0Γ

∂2ξ
(2)
‖

∂t2
= (B0 ·∇0) δJ (4)

which means that δJ (4) is not constant along the magnetic field lines.

ε2 of e∧-component

After some algebra we can show that this order takes the form:

∂F̂ (4)

∂α
+
e∧
B0
· L
(
ξ

(2)
⊥

)
= 0 (C.4)
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where F̂ (4) is defined as:

F̂ (4) ≡ F (4)− 1

2
ξ(2) ·

[
(B0 ·∇0) (B0 ·∇0) ξ(2)

]
=
(
Γp0 +B2

0

)
δJ (4) +

1

2

[
ξ(2) · (B0 ·∇0) (B0 ·∇0) ξ(2) − | (B0 ·∇0) ξ(2)|2

]
−B0 (B0 ·∇0) ξ(4) + κ0 · ξ(4)

To obtain equation (C.4) it is useful to exploit the following relation which can be derived

with some straightforward algebra:

e · (B0 ·∇0) (B0 ·∇0) ξ‖ − ξ‖ · (e ·∇0)κ0 = 2e · κ0 (B0 ·∇0) ξ‖

where e can be either e⊥ or e∧ and ξ‖ = ξ‖B0. This relation is valid for each order of ξ‖.

By using equation (3.29) and δJ (2) = 0 we obtain for the second order:

e · (B0 ·∇0) (B0 ·∇0) ξ‖ − ξ‖ · (e ·∇0)κ0 = 4
ξ

(2)
ψ e⊥ · κ0

B2
0

e · κ0 (C.5)

The other important relation which was used is:

∂ξ(2)

∂x
A ξ(2) =

1

2

∂

∂x

[
ξ(2) A ξ(2)

]
+HOT (C.6)

where HOT stands for "higher order terms", x for either α or ψ and A for a linear,

equilibrium dependent operator. To derive this equation we can exploit the separation of

ξ(2) = ξ̂(α,ψ, t)H(α, l). The higher order terms which are neglected must be retained at

the appropriate higher order. However, in this current case these terms are of order ε4 and

therefore smaller than we are going to evaluate.

To determine an expression for B0 ·∇0ξ
(4)
‖ we can integrate equation (C.4) with respect

to α where a constant F̂ (4) appears:

B0 ·∇0ξ
(4)
‖ −

2κ0 · ξ(4)
⊥

B2
0

= (Γβ + 1) δJ (4) +
Q

B2
0

ξ̂2 +
u

B3
0

e∧L (H⊥)− F̂ (4) (C.7)
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where

Q ≡ 1

2

[
H (B0 ·∇0) (B0 ·∇0)H − | (B0 ·∇0)H|2

]
ε3 of e⊥-component

By using equation (C.6), (C.5) and (C.2) we obtain:

∂F̂ (4)

∂ψ
+
e⊥
B0
· L
(
ξ

(3)
⊥

)
+

2

B0
e⊥ · κ0ΓβδJ (3) = 0

where β ≡ 2µ0p0
B2

0
. We again neglect higher order terms by using equation (C.6). These are

of order ε4 which is a relevant order for the e⊥-component. The neglected terms are:

B0ξ̂
2∂H

∂α
[(B0 ·∇0) (B0 ·∇0)H]−B0

ξ̂2

2

∂

∂α
[H (B0 ·∇0) (B0 ·∇0)H]

These terms must be carried into the fifth order.

To evaluate the results from the two perpendicular components and to eliminate the F̂ (4),

we can differentiate the e∧-component with respect to ψ and subtract the α-derivative of

the e⊥-component, which leads to:

∂

∂ψ

[
e∧
B0
· L
(
ξ

(2)
⊥

)]
− ∂

∂α

[
e⊥
B0
· L
(
ξ

(3)
⊥

)]
− ∂

∂α

[
2

B0
e⊥ · κ0ΓβδJ (3)

]
= 0

Consider that the first term can be written in the form:

∂

∂ψ

[
ξ̂
e∧
B0
· L (H⊥)

]
=
∂ξ̂

∂ψ

e∧
B0
· L (H⊥)︸ ︷︷ ︸
~ε

+ ξ̂
∂

∂ψ

[
e∧
B0
· L (H⊥)

]
︸ ︷︷ ︸

~ε2

Note that the second term on the right hand side is of a higher order and therefore can be

neglected here but must be added at the higher order. Therefore:

∂ξ̂

∂ψ

e∧
B0
· L (H⊥) =

∂

∂α

[
e⊥
B0
· L
(
ξ

(3)
⊥

)]
+

∂

∂α

[
2

B0
e⊥ · κ0ΓβδJ (3)

]
(C.8)
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By integrating along the magnetic field line up to the matching region, which is indicated

by angled brackets 〈· · ·〉, and by differentiating with respect to α we can obtain:

∂

∂α

〈
2

B2
0

ξ
(3)
⊥ · κ0p

′
0

〉
+

〈
2Γp0

B3
0

(κ0 · e⊥)

〉
∂δJ (3)

∂α
= 0

where the term δJ (3) ∂

∂α

〈
2Γp0
B3

0
(κ0 · e⊥)

〉
is neglected. We can obtain a similar equation

by using equation (C.2) and integrating along the field line, multiplying by p′0:

〈
2

B2
0

ξ
(3)
⊥ · κ0p

′
0

〉
+
〈
p′0 + p′0Γβ

〉
δJ (3) = 0

By comparing the last two equations it follows that:

∂δJ (3)

∂α
= 0

We can exploit this result in equation (C.8) to obtain an equation to determine ξ(3):

∂ξ̂

∂ψ

e∧
B0
· L (H⊥) =

∂

∂α

[
e⊥
B0
· L
(
ξ

(3)
⊥

)]
(C.9)

We use the ansatz ξ(3)
⊥ = ∂u

∂ψH
(3)
⊥ + ξ

(3)
⊥ and neglecting higher order terms again. Note

that these are not relevant for the next order since they appear to be two orders higher.

We obtain:
∂ξ̂

∂ψ

e∧
B0
· L (H⊥) =

e⊥
B0
· L
(
∂2u

∂ψ∂α
H

(3)
⊥

)
where ξ̂ = ∂u

∂α and H⊥ = X
B0
e⊥:

e∧
B0
· L
(
X

B0
e⊥

)
=
e⊥
B0
· L
(
H

(3)
⊥

)

By using the results from the first order (3.25) we can derive the e∧-component of ξ(3)
⊥ :

H
(3)
⊥ = H(3)e⊥ −

X

B0
e∧

To investigate the third order of the displacement we can exploit the fact that the equi-

librium is invariant under the transformation: α → α + f(ψ) since the magnetic field is
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given by B0 = ∇ψ ×∇α. However, e⊥,µ and X depend on the choice of f where we can

show that de⊥
df ′ = −e∧ where f ′ is given by f ′ = ∂f

∂ψ . Starting with the linear ballooning

equation (3.31) and differentiate it with respect to f ′ we obtain:

−e∧ · L(ξ
(2)
⊥ ) + e⊥ · L

(
1

B0

∂

∂f ′
[Xe⊥]

)
= − 2

B2
0

∂µ

∂f ′
(e⊥ · κ0) (e⊥ ·∇0p0) ξ

(2)
ψ

Note that terms with (1 − µ) are of a higher order and therefore can be neglected. By

combining the last three equations we can obtain:

e⊥
B0
L
((

H(3) − ∂X

∂f ′

)
e⊥

)
= − 2

B2
0

∂µ

∂f ′
(e⊥ · κ0) (e⊥ ·∇0p0) ξ

(2)
ψ

By integrating along the magnetic field line we can show that

∂µ

∂f ′
≈ 0

Therefore we must calculate µ for each flux surface to find the most unstable surface on

which to apply the model presented in this thesis. Since ∂µ
∂f ′ ≈ 0, ξ(3)

⊥ is:

ξ
(3)
⊥ =

1

B0

∂u

∂ψ

∂ (Xe⊥)

∂f ′
+ ξ

(3)
⊥

To determine the α-independent part of ξ(3)
⊥ (second term on the right hand side) we can

examine the fact that δJ (2) = 0:

δJ (2) = B0

∂ξ(3)
ψ

∂ψ
+
∂ξ

(4)
∧
∂α

+ (B0 ·∇0) ξ
(2)
‖ + ξ̂∇0 ·

(
X

B0
e⊥

)

−B2
0

∂ξ(2)
ψ

∂α

∂ξ
(3)
∧
∂ψ

−
∂ξ

(2)
ψ

∂ψ

∂ξ
(3)
∧
∂α

− 1

2
[(H ·∇0)H] · ∇α∂ξ̂

2

∂α

which can be shown by evaluating equation (2.20). Averaging over α and using that ξ(2)
‖ = 0

and ξ(2)
ψ = 0 leads to the final results of this order:

ξ
(3)
⊥ =

B0

2

∂
(
ξ

(2)
ψ

)2

∂ψ
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C.1.3. Fifth order

The derivation of the final order is presented in this section. Only the perpendicular

components are needed here.

ε3 of e∧-component

The e∧ component at this order has the following form:

0 = B0
∂

∂α
F̂ (5) +

[
(e∧ ·∇0) ξ(2)

] [
−2δJ (3)κ0 +B0 ·∇0B0 ·∇0ξ

(3)
]

+
[
(e∧ ·∇0) ξ(3)

] [
B0 ·∇0B0 ·∇0ξ

(2)
]

+ e∧ · L
(
ξ

(3)
⊥

)
+ 2 (e∧ · κ0) ΓβδJ (3)(C.10)

where F̂ (5) is defined as:

F̂ (5) ≡ F (5)+δJ (3)ξ(2)·κ0+ξ(2)B0·∇0δJ
(3)B0−ξ(2)B0·∇0B0·∇0ξ

(3)+ξ(3)B0·∇0B0·∇0ξ
(2)

From equation (C.10) we can derive a relation between ξ(3)
⊥ , δJ (3), ξ̂ and X which must be

satisfied. To derive this relation we must take the integral with respect to the fast varying

part of α, which eliminates the F (5) term:

e∧
B0
· L
(
ξ

(3)
⊥

)
+

[
∂

∂α
ξ(2)

] [
L
(
ξ

(3)
⊥

)
+ (∇0κ0) ξ(3)

]
+

[
∂

∂α
ξ(3)

] [
L
(
ξ

(2)
⊥

)
+ (∇0κ0) ξ(2)

]

+
2e∧ · κ0

B0
ΓβδJ (3) = 0

where we have used that δJ (3) is independent of l and where the overbar is defined by

Eq. (3.27). We can combine the second parts of the second and third terms:

∂ξ(2)

∂α

[
(∇0κ0) ξ(3)

]
+
∂ξ(3)

∂α

[
(∇0κ0) ξ(2)

]
=

∂

∂α

(
ξ(2) (∇0κ0) ξ(3)

)

The α average of the combination is zero, which leads to:

e∧
B0
· L
(
ξ

(3)
⊥

)
+

(
∂

∂α
ξ(2)

)
L
(
ξ

(3)
⊥

)
+

(
∂

∂α
ξ(3)

)
L
(
ξ

(2)
⊥

)
+

2e∧ · κ0

B0
ΓβδJ (3) = 0
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By exploiting equations (3.25), (C.9) and (3.31) we obtain:

e∧
B0
· L
(
ξ

(3)
⊥

)
=

X

B0

∂ξ̂2

∂ψ
e∧ · L (H⊥)− 2

e∧ · κ0

B0
ΓβδJ (3)

We can simplify this equation by introducing a shifted displacement defined as:

Z(3) = ξ
(3)
⊥ +

Γp0

p′0B0
δJ (3)e⊥

which leads to:
e∧
B0
· L
(
Z

(3)
⊥

)
=

X

B0

∂ξ̂2

∂ψ
e∧ · L (H⊥)

ε4 of e⊥-component

The e⊥ component of order ε4 is:

ρ0|e⊥|2
∂2ξψ
∂t2

= B0
∂F̂ (5)

∂ψ
−
eψ ·B0

B2
0

B0 ·∇0F̂
(4) (C.11)

+
[
(e∧ ·∇0) ξ(2)

] [
−2δJ (3)κ0 +B0 ·∇0B0 ·∇0ξ

(3)
]

+
[
(e∧ ·∇0) ξ(3)

] [
B0 ·∇0B0 ·∇0ξ

(2)
]
− 2δJ (4)e⊥ · κ0 + e⊥ · L

(
ξ

(4)
⊥

)
+ 2e⊥ · κ0

[
B0 ·∇0ξ

(4)
‖ −

2

B2
0

κ0 · ξ(4)
⊥

]
− δJ (3)e⊥ (B0 ·∇0) (B0 ·∇0) ξ(2)

− e⊥ (B0 ·∇0) (B0 ·∇0)
(
δJ (3)ξ(2)

)
+

2

B2
0

(1− µ)e⊥ · κ0e⊥ ·∇0p0ξ
(2)
ψ

+B0ξ̂
2∂H

∂α
[(B0 ·∇0) (B0 ·∇0)H]−B0

ξ̂2

2

∂

∂α
[H (B0 ·∇0) (B0 ·∇0)H]

The terms which were neglected at lower orders have been added to equation (C.11). We

can show that:

(B0 ·∇0) (B0 ·∇0) ξ = L (ξ⊥) + (∇0κ0) ξ + [2κ0 +B0B0 ·∇0] (Γβ + 1) δJ
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where all ξ (and δJ) are either ξ(2) (δJ (2)) or ξ(2) (δJ (3)). Using the last equation and

equation (C.7) to replace B0 ·∇0ξ
(4)
‖ and taking the derivative with respect to α we obtain:

ρ0
∂

∂α

∂2

∂t2

(
e⊥ · ξ(2)

)
= B0

∂2F (5)

∂α∂ψ
−
eψ ·B0

B2
0

(B0 ·∇0)
∂F (4)

∂α
+ e⊥ · L

(
∂ξ

(4)
⊥

∂α

)

+ 2Γβ (e⊥ · κ0) +
2

B3
0

(e⊥ · κ0) e∧ · L
(
ξ

(2)
⊥

)
+

2

B2
0

(1− µ) (e⊥ · κ0) (e⊥ ·∇0p0)
∂ξ

(2)
ψ

∂α

+
∂

∂α

{[
(e⊥ ·∇0) ξ(2)

]
·
[
L
(
ξ

(3)
⊥

)
+ (∇0κ0) · ξ(3)

⊥

]
+
[
(e⊥ ·∇0) ξ(3)

]
·
[
L
(
ξ

(2)
⊥

)
+ (∇0κ0) · ξ(2)

⊥

]}

+
∂ξ̂2

∂α
P + Γβ

[
(e⊥ ·∇0)

∂ξ(2)

∂α

]
·
[
2κ0 −

1

B2
0

[
(B0 ·∇0)B2

0

]
B0

]
J (3)

− ξ̂B0
∂

∂ψ

[
1

B0
e⊥ · L

(
X

B0
e⊥

)]

Similar to the previous order we subtract the α derivative of the e⊥-component from the

ψ-derivative of the e∧ component. We define the Z(4) the same way as for the third order

and find:

e⊥ · L
(
ξ

(4)
⊥

)
+ 2e⊥ · κ0ΓβδJ (4) = e⊥ · L

(
Z(4)

)
− ρ0

[
(B0 ·∇0)

(
e2
⊥B0

p′0
G

)]
∂2ξ̂

∂t2

with some algebra (using equation (3.25) and (C.9) again and equation (C.4)) we obtain

the final equation of this order before the matching procedure (equation (3.33)).

C.2. Matching region

C.2.1. Asymptotic form of the parallel component of the displacement

The equation (4.1) can be separated with respect to its different orders. The highest order

of (4.1) is O(v2):
∂

∂θ

[
R2B2

p

JB2
0

∂X0

∂θ

]
= 0
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Evaluating this equation we can show that X0 only depends on v: X0 = X0(v). The next

order has the following form:

∂

∂θ

[
R2B2

p

JB2
0

q′2v2

(
∂X0

∂v
+

1

v

∂X1

∂θ

)]
+ µp′0f

∂

∂θ

(
1

B2
0

)
q′vX0 = 0 (C.12)

The last term of this order can be expressed as: µp′0f
∂
∂θ

(
1
B2

0

)
q′vX0 = ∂

∂θ

(
µp′0f

(
1
B2

0

)
q′vX0

)
.

Integrating over θ introduces a constant which depends on v:

∂X1

∂θ
=

JB2
0

R2B2
pq
′2v
∗ C(v)− fµp′0J

R2B2
pq
′X0 − v

∂X0

∂v
(C.13)

To determine C(v) we calculate the integral of the last equation:
∫
dθ, where we use the

definition: 〈· · ·〉θ = 1
2π

∮
· · · Jdθ. Using the fact that X0, p0 and f are periodic and q(ψ) is

independent of χ we find that the constant is given by:

C(v) =
q′2v〈
B2

0
R2B2

p

〉
θ

·

[
µfp′0
q′

〈
1

R2B2
p

〉
θ

X0 + v
∂X0

∂v

]

Combining this relation with Eq. (C.13) we obtain the expression for ∂X1
∂θ , Eq. (3.37):

∂X1

∂θ
=
Jµfp′0
R2B2

pq
′

B2
0

〈
1

R2B2
p

〉
θ〈

B2
0

R2B2
p

〉
θ

− 1

X0 +

 JB2
0

R2B2
p

1〈
B2

0
R2B2

p

〉
θ

− 1

 v∂X0

∂v

The next step is to calculate another order so that we can derive an equation for X1 so that

we can obtain a differential equation with only X0 and no X1, as we are only interested in

the highest order approximation for the asymptotic behaviour.

The next order has the following form:

0 =
∂

∂θ

{
R2B2

p

JB2
0

q′2v2

(
∂

∂θ

X2

v2
+

∂

∂v

X1

v

)
+ 2

R2B2
p

JB2
0

q′Y ′v

[
∂

∂θ

X1

v
+

∂

∂v
X0

]}

+
∂

∂v

[
R2B2

p

JB2
0

q′2v

(
∂

∂θ
X1

)]
+ µp′0f

∂

∂θ

(
1

B2
0

)
q′X1

+
∂

∂v

[
R2B2

p

JB2
0

q′2v2

(
∂

∂v
X0

)]
+ 2µp′0

[
J

B2
0R

2B2
p

(∇ψ · ∇)

(
p0 +

B2
0

2

)
+

1

2

∂

∂θ

(
1

B2
0

)
Y ′

]
X0

(C.14)
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C.2. MATCHING REGION

We again calculate the integral with respect to θ and notice that the first term of the right

hand side disappears:

0 =
1

2π

∮
dθ

[
∂

∂v

[
R2B2

p

JB2
0

q′2v

(
∂

∂v
X1

)]
+ µp′0f

∂

∂θ

(
1

B2
0

)
q′X1

]

+
1

2π

∮
dθ

[
∂

∂v

[
R2B2

p

JB2
0

q′2v2

(
∂

∂v
X0

)]

+ 2µp′0

[
J

B2
0R

2B2
p

(∇ψ · ∇)

(
p0 +

B2
0

2

)
+

1

2

∂

∂θ

(
1

B2
0

)
Y ′

]
X0

]

By using Eq. (3.37) to eliminate X1, the relation

1

2π

∮
dθ

∂

∂θ

(
1

B2
0

)
f = − 1

2π

∮
dθ

(
1

B2
0

∂

∂θ
f

)

and the equation
∂

∂θ
Y ′ = Y ′′ = ν ′ − q′, we get the following equation (3.38):

∂

∂v

[
v2∂X0

∂v

]
+DMX0 = 0,

where DM is the Mercier coefficient, [65], which has the following form:

DM =
µp′0
q′2

(
fq′
〈

1

R2B2
p

〉
θ

− µp′0f2

〈
1

R2B2
p

〉2

θ

+

〈
B2

0

R2B2
p

〉
θ

[
µp′0f

2

〈
1

R2B2
pB

2
0

〉
θ

+ 2

〈
1

R2B2
pB

2
0

(∇ψ · ∇)

(
p0 +

B2
0

2

)〉
θ

− f
〈

ν ′

JB2
0

〉
θ

])
(C.15)

With the ansatz that X0 = C
|v|λ we obtain a general solution for X0:

X0 =
C1

|v|λ+
+

C2

|v|λ−

with λ± = 1
2 ±

√
1
4 −DM where we will refer to the small λS and large solution λL.
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C.2. MATCHING REGION

C.2.2. Useful equation for the matching region

The following expression will be derived here as it is needed for the matching region:

〈
X

B0
e⊥ · L

(
Z

B0
e⊥

)〉
− ρ0

p′0

[
|e⊥|2XG

]l0
−l0 =

[
q′2
〈

B2
0

R2B2
p

〉−1

θ

(λS − λL)δX2
0v|v|2λSξ

+
ρ0

(3− 2λS)

(
q′2

〈
R2B2

p

B2
0

〉
θ

v3X2
0 + v

〈
B2

0G
2
0

〉) ∂2ξ

∂t2
+ q′v

R2B2
p

JB2
0

X0

∫
dα
∂U0

∂θ

]l0
−l0

(C.16)

where l0 sets the limits of the integral 〈· · ·〉 and it is determined by the matching of the

non-linear and inertia regions. By integrating by parts we obtain:

〈
X

B0
e⊥ · L

(
Z

B0
e⊥

)〉
− ρ0

p′0

[
|e⊥|2XG

]l0
−l0 =[

|e⊥|2

B2
0

(XB0 ·∇0Z − ZB0 ·∇0X)− ρ0

p′0
|e⊥|2XG

]

where the relation e⊥ · L
(
X
B0
e⊥

)
= 0 was used. These limits are non-zero for only the

highest order of the right hand side as l0 → ∞. Therefore lower orders can be neglected

and we obtain:

〈
X

B0
e⊥ · L

(
Z

B0
e⊥

)〉
− ρ0

p′0

[
|e⊥|2XG

]l0
−l0 =

[
q′2v2

R2B2
p

JB2
0

{
X0

(
∂Z0

∂v
+

1

v

∂Z1

∂θ

)

− Z0

(
∂X0

∂v
+

1

v

∂X1

∂θ

)}
− ρ0

p′0
q′2v2R2B2

pX0G0

]

+

[
q′2v2

R2B2
p

JB2
0

X0
∂

∂θ

(
− 1

q′v

∫
dαU0

)]

Using the expression (3.42) for ∂Z1
∂θ and equation (3.37) ∂X1

∂θ leads to:

〈
X

B0
e⊥ · L

(
Z

B0
e⊥

)〉
− ρ0

p′0

[
|e⊥|2XG

]l0
−l0 =[

q′2v2

〈
JB2

0

R2B2
p

〉−1

θ

(
X0

∂Z0

∂v
− Z0

∂X0

∂v
− ρ0X0

p′0

〈
B2

0G0

〉 ∂2ξ

∂t2

)]

+

[
q′2v2

R2B2
p

JB2
0

X0
∂

∂θ

(
− 1

q′v

∫
dαU0

)]
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C.2. MATCHING REGION

Using the expressions (3.47) and (3.44) for Z0 and X0 we can derive the desired expression:

〈
X

B0
e⊥ · L

(
Z

B0
e⊥

)〉
− ρ0

p′0

[
|e⊥|2XG

]l0
−l0 =

[
q′2
〈
JB2

0

R2B2
p

〉−1

θ

(λS − λL)δX2
0 |v|2λS

+
ρ̂0vX0

3− 2λS

{
q′2

〈
JR2B2

p

B2
0

〉
θ

v3X2
0 + v

〈
B2

0G
2
0

〉}
+ q′2v2

R2B2
p

JB2
0

X0
∂

∂θ

(
− 1

q′v

∫
dαU0

)]
,

where we additionally used the following relation which is easy to show by using the

expression of G0 once:

〈
B2

0G
2
0

〉
=

{
λS
p′0

〈
JB2

0

R2B2
p

〉−1

θ

v
〈
B2

0G0

〉
− fv

q′

〈
JB2

0

R2B2
p

〉−1

θ

〈
1

R2B2
p

〉
θ

〈
B2

0G0

〉
+
vf

q′
〈G0〉

}
X0q

′2
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D. Deriving the non-linear ballooning model in

slab geometry

Here we derive the ballooning mode envelope equation (4.4) and its coefficients (4.5) with

the Eulerian boundary condition. We start from the Lagrangian MHD momentum equa-

tion (4.2). To derive these relations we must calculate the different orders of the x0 and

y0 components of (4.2).

The x0 component of Eq. (4.2) to O(n−2) becomes

ρ0
∂2ξx
∂t2

= − ∂F
∂x0

+

(
B2

0

∂2ξx
∂z2

0

+
ρ2

0g
2

p0
ξx + ρ′0gξx

)
−B2

0

(
2(J − 1)

∂2ξx
∂z2

0

+
∂J

∂z0

∂ξx
∂z0

)
+
∂ξx
∂x0

(
B2

0

∂2ξx
∂z2

0

+
ρ2

0g
2

p0
ξx + ρ′0gξx

)
+

1

2
ρ′′0gξ

2
x −

ρ3
0g

3

2p2
0

ξ2
x

+B2
0

∂ξz
∂x0

[
∂

∂z0

(
1− J +

∂ξz
∂z0

)]
+
ρ2

0g

p0

∂2s

∂t2
+ ν

∂2

∂y2
0

∂ξx
∂t

. (D.1)

Similarly the y0 component to O(n−3/2) becomes:

0 = − ∂F
∂y0

+

(
B2

0

∂2ξy
∂z2

0

)
+
∂ξx
∂y0

(
B2

0

∂2ξx
∂z2

0

+
ρ2

0g
2

p0
ξx + ρ′0gξx

)
+B2

0

∂ξz
∂y0

[
∂

∂z0

(
1− J +

∂ξz
∂z0

)]
(D.2)

where we have defined F as

F ≡

[
p0

J
+
B2

0

2J2

(
1 + 2

∂ξz
∂z0

+

(
∂ξz
∂z0

)2

+

(
∂ξx
∂z0

)2
)

+ ρ0gξx +
1

2
ρ′0gξ

2
x

]
.

Lowest Order: Incompressibility

We now analyse the lowest order of F . It is given by: F (1/2) = −(p0 +B2
0) J (1/2) where the

superfix (i) indicates an order n−i term. From Eq. (4.3), we see that J (1/2) = 0. Therefore
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we can write

J (1/2) =
∂ξ

(3/2)
y

∂y0
+
∂ξ

(1)
x

∂x0
= 0 (D.3)

where we have used the relation J = |∇0r| and the ordering shown in Eq. (4.1). With

these relations we see that Eq. (D.2) is O(1) and Eq. (D.1) is O(n−1/2).

y0 component to O(1) and x0 component to O(n−1/2)

Integrating Eqs. (D.1) and (D.2) we deduce:

(p0 +B2
0)J (1) −B2

0

∂ξ
(1)
z

∂z0
− ρ0gξ

(1)
x = −F (1)(z0, t)

and from Eq. (4.3):

J (1) =
ρ0g

p0
ξ(1)
x .

The boundary condition that J and ξ must vanish as x0 → ±∞ forces F (1)(z0, t) = 0

which then provides

∂ξ
(1)
z

∂z0
= J (1) =

ρ0g

p0
ξ(1)
x . (D.4)

Using the expression for J (1) obtained from J = |∇0r| we find:

⇒ 0 =
∂ξ

(2)
y

∂y0
+
∂ξ

(3/2)
x

∂x0
+
∂ξ

(3/2)
y

∂y0

∂ξ
(1)
x

∂x0
− ∂ξ

(3/2)
y

∂x0

∂ξ
(1)
x

∂y0
. (D.5)

We now average Eq. (D.5) over y0, using the notation: Ā = lim
Y→∞

1
LY

∫ Y
−Y Ady0. Noting

from Eqs. (D.3) and (D.4) that ξ(1)
x = ξ

(1)
z = J (1) = 0 we obtain:

ξ
(3/2)
x =

1

2

∂
(
ξ

(1)
x

)2

∂x0
(D.6)

and from Eq. (4.3):

J (3/2) =
ρ0g

p0
ξ

(3/2)
x .
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y0 component to O(n−1/2) and x0 component to O(n−1)

These orders provide the equations:

∂

∂y0

(
(p0 +B2

0)J (3/2) −B2
0

∂ξ
(3/2)
z

∂z0
− ρ0gξ

(3/2)
x

)
= −∂F

(3/2)

∂y0
= 0 (D.7)

∂

∂x0

(
F (3/2)

)
= B2

0

∂2ξ
(1)
x

∂z2
0

+
ρ2

0g
2

p0
ξ(1)
x + ρ′0gξ

(1)
x . (D.8)

From Eq. (D.7) we deduce F (3/2) = F (3/2). Averaging Eq. (D.8) over y0 and observing that

ξ
(1)
x must vanish as x0 → ±∞, we find that F (3/2) = F (3/2) = 0. In order to satisfy the

boundary conditions at the walls we introduce a small eigenvalue Γ2(x0) ∼ O(n−1)
π2B2

0
L2ρ0

into Eq. (D.8). The same term is then subtracted at higher order so the procedure is

consistent. This provides an equation for the vertical displacement of the filament:

ρ0Γ2(x0)ξ(1)
x = B2

0

∂2ξ
(1)
x

∂z2
0

+
ρ2

0g
2

p0
ξ(1)
x + ρ′0gξ

(1)
x . (D.9)

We must solve Eq. (D.9) subject to the boundary condition ξx = 0 at z = 0, L (with

z = z0 + ξz) corresponding to field lines frozen to the wall. A solution is:

ξ(1)
x = sin

(πz
L

)
ξ(x0, y0, t) (D.10)

where ξ(x0, y0, t) is a function to be found from the higher order equations. While Eq. (D.10)

satisfies the boundary conditions exactly it is not quite a solution of Eq. (D.9) since:

∂

∂z0
=

∂z

∂z0

∂

∂z
=

[(
1 +

∂ξz
∂z0

)
∂

∂z

]
.

Our solution, Eq. (D.10) requires the second term, which is O(n−1), to be moved to higher

order. Specifically, Eq. (D.9) can be written in the form:

ρ0Γ2(x0)ξ(1)
x = B2

0

∂2ξ
(1)
x

∂z2
+
ρ2

0g
2

p0
ξ(1)
x + ρ′0gξ

(1)
x

+B2
0

(
2J (1)∂

2ξ
(1)
x

∂z2
0

+
∂J (1)

∂z0

∂ξ
(1)
x

∂z0

)
+O(n−5/2) . (D.11)
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The extra O(n−2) term will cancel with the second term on the second line of Eq. (D.1)

at the final order of interest. We therefore drop it here and reintroduce it at O(n−2) - see

Eq. (D.14) below. Finally using Eq. (D.10) we obtain the eigenvalue.

Γ2(x0) = −B
2
0π

2

ρ0L2
+
ρ0g

2

p0
+
ρ′0g

ρ0
.

Our procedure is only valid for equilibria close to marginal stability, such that Γ2 = O(n−1).

y0 component to O(n−1) and x0 component to O(n−3/2)

Some straigthforward algebra yields:

F (2) = −

(p0 +B2
0)J (2) −B2

0

∂ξ
(2)
z

∂z0
− ρ0gξ

(2)
x −

B2
0

2

(
∂ξ

(1)
z

∂z0

)2

− B2
0

2

(
∂ξ

(1)
x

∂z0

)2

− ρ′0g
(ξ

(1)
x )2

2

 .

This allows us to write Eq. (D.2) at O(n−1) in the form:

∂F (2)

∂y0
= 0

and Eq. (D.1) at O(n−3/2) becomes:

∂F (2)

∂x0
+B2

0

∂2ξ
(3/2)
x

∂z2
0

+
ρ2

0g
2

p0
ξ(3/2)
x + ρ′0gξ

(3/2)
x = 0 . (D.12)

Writing ξ(3/2)
x = ξ

(3/2)
x + ξ̃

(3/2)
x where ξ(3/2)

x (the y0 average) is given in Eq. (D.6). The

fluctuating part must satisfy:

B2
0

∂2ξ̃
(3/2)
x

∂z2
0

+
ρ2

0g
2

p0
ξ̃(3/2)
x + ρ′0gξ̃

(3/2)
x = 0.

Thus ξ̃(3/2)
x obeys the same equation as ξ(1)

x to the order of interest (to this order Γ and

the difference between z and z0 are not important)– thus we can absorb it into ξ(1)
x and

simply set ξ̃(3/2)
x = 0. We could then solve Eq. (D.12) by integrating in x0 – but we don’t

need to.
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y0 component to O(n−3/2) and x0 component to O(n−2)

To O(n−3/2) Eq. (D.2) becomes:

−∂F
(5/2)

∂y0
+B2

0

∂2ξ
(3/2)
y

∂z2
0

+ α
∂ξ

∂y0

∂ξ2

∂x0
= 0 (D.13)

where the α term comes from substituting for ξ(3/2)
x in the second bracket of the second

line of Eq. (D.2) and we have introduced

α =
B2

0π
2

2L2

[
2 cos2

(πz
L

)
sin
(πz
L

)
− sin3

(πz
L

)]
.

To O(n−2) Eq. (D.1) becomes:

ρ0 sin
(πz
L

) ∂2ξ

∂t2
= −∂F

(5/2)

∂x0
+ ρ0Γ2(x0) sin

(πz
L

)
ξ

+B2
0

∂2ξ
(2)
x

∂z2
+
ρ2

0g
2

p0
ξ(2)
x + ρ′0gξ

(2)
x

+ α
∂ξ

∂x0

∂ξ2

∂x0
+

1

2

(
ρ′′0g −

ρ3
0g

3

p2
0

)
sin2

(πz
L

)
ξ2

− L2ρ2
0g

2

π2p2
0

ρ0 sin
(πz
L

) ∂2ξ

∂t2
+ ν

∂2

∂y2
0

∂ξ

∂t
(D.14)

where we have included the eigenvalue term ρ0Γ2(x0) sin(πzL )ξ which was added to the

left hand side at O(n−1) in Eq. (D.11) and the higher order non-linear terms that we

dropped from Eq. (D.11) have been included in Eq. (D.14) (where they cancel the second

term in the second line of Eq. (D.1)). From Eq. (D.3), setting ξ = ∂2u
∂y20

, we have ξ(3/2)
y =

− sin(πzL ) ∂2u
∂y0∂x0

, so Eq. (D.13) provides:

F (5/2) = F (5/2) +
B2

0π
2

L2
sin
(πz
L

) ∂u

∂x0
+ αξ

∂ξ2

∂x0
.

From the y0 average of Eq. (D.14) we obtain

∂F (5/2)

∂x0
=

1

2

(
ρ′′0g −

ρ3
0g

3

p2
0

)
sin2

(πz
L

)
ξ2 .
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Thus combining these expression for F (5/2) in Eq. (D.14) and annihilating the ξ(2)
x terms

by multiplying by sin(πzL ) and integrating over z we obtain the final non-linear equation:

C0
∂2ξ

∂t2
= Γ2(x0)ξ + C2

∂2u

∂x2
0

+ C3ξ
∂2ξ2

∂x2
0

+ C4

(
ξ2 − ξ2

)
+ ν

∂2

∂y2
0

∂ξ

∂t
.

To reiterate, ξ̄2 is the y0 average of the squared displacement, ξ2, and ∂2u
∂y20

= ξ. The local

linear growth rate Γ0 is given by:

Γ2
0(x0) = −B

2
0π

2

ρ0L2
+
ρ0g

2

p0
+

g

ρ0

dρ0

dx0
.

The coefficients C0, C2, C3 and C4 are given by:

C0 =

(
1 +

ρ2
0g

2L2

p2
0π

2

)
C2 = −

(
B2

0π
2

ρ0L2

)
C3 =

(
B2

0π
2

8ρ0L2

)
C4 =

4

3π

(
g

ρ0

d2ρ0

dx2
0

− ρ2
0g

3

p2
0

)
.
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E. Expanding the nonlinear drive coefficient

In this appendix it is shown that the coefficient C2 =
〈
XP̂
B0

〉
can be divided into a sum of

functions: C2 ≡
∑6

i=1 〈Qi〉 which has been done to simplify the treatment of the numerical

and analytical calculations. We can determine the six terms as:

Q1 ≡ −
〈
f

B2
0

Q−B0 ·∇0(XΛ)

〉
Q2 ≡

〈[
∂

∂ψ

(
2p0 +B2

0

)] XQ−
B2

0

〉
Q3 ≡ −

〈
X

∂

∂ψ
Q+

〉
Q4 ≡ 〈[B0 ·∇0 (XΛ)]S〉

Q5 ≡ −
〈
X

J

∂

∂ψ
JT

〉
−
〈

[B0 ·∇0X]
∂

∂ψ
(H) [B0 ·∇0H]

〉
Q6 ≡

1

2

〈
1

B0
u ω

〉

with the defined variables:

S ≡ {[B0 ·∇0H] [R(eφ · ∇)H]} T ≡ |B0 ·∇0H|2

U ≡ {[(H · ∇)H] · ∇α} ω ≡ e∧ · L(He⊥)

The coefficient is defined as C2 =
〈
XP̂
B0

〉
where HP̂ is given by:

HP̂ =H [(e⊥ · ∇)H] · (B0 · ∇) [(B0 · ∇)H]− 1

2
H(e⊥ · ∇) [H · (B0 · ∇) [(B0 · ∇)H]]

+
1

2B0
[(H · ∇)H] · ∇αe∧ · L(He⊥) + 2(e⊥ · k0)

Q−H

B2
0

(E.1)

with

Q± =
1

2

[
H(B0 · ∇) ((B0 · ∇)H)± |(B0 · ∇)H|2

]
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We can use this definition to re-write the second term on the right hand side of Eq. (E.1):

−1

2
H(e⊥ · ∇) [H · (B0 · ∇) [(B0 · ∇)H]] = (e⊥ · ∇)Q− +

1

2
(e⊥ · ∇)| (B0 ·∇0)H|2

The next step is to expand e⊥ into its components: e⊥ = B0
R2B2

p
∇0ψ − Λf

B0
B0 + ΛRB0eφ

in the terms of HP̂ , where it appears as e⊥ ·∇0 in the first and second term of Eq. (E.1):

H [(e⊥ · ∇)H] · (B0 · ∇) [(B0 · ∇)H] + (e⊥ · ∇)Q− +
1

2
(e⊥ · ∇)| (B0 ·∇0)H|2

=
B0

R2B2
p

[(∇ψ · ∇)H] · (B0 ·∇0) [(B0 ·∇0)H]− B0

2R2B2
p

(∇ψ ·∇0) | (B0 ·∇0)H|2(E.2)

+ ΛRB0 [[(eφ ·∇0)H] · (B0 ·∇0) [(B0 ·∇0)H]] +
B0

R2B2
p

(∇0ψ · ∇)Q− −
Λf

B0
(B0 ·∇0)Q−

Here we used the cancellation of the terms with the resulting B0 ·∇0 - derivative and the

derivative with respect to φ vanishes because of symmetry.

By using:

R (eφ · ∇) [(B0 ·∇0)H] = (B0 ·∇0) [R (eφ · ∇)H]

we can show that:

R [(eφ · ∇)H] · (B0 ·∇0) [(B0 ·∇0)H] = (B0 ·∇0) {R [(eφ · ∇)H] · [(B0 ·∇0)H]}

which can be used for the last term of Eq. (E.2). To calculate the coefficient C2 we must

apply < · · · > to Eq. (E.1).The remaining steps to derive the terms (5.9) are integrating

by parts and using the relations: (B0 ·∇0)
∂H

∂ψ
=

∂

∂ψ
(B0 ·∇0H) +

J ′

J
B0 ·∇0H and

Q− − |B0 ·∇0H|2 = Q+.
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