

INTEGRATION OF SOFTWARE SAFETY ASSURANCE PRINCIPLES WITH AN

AGILE DEVELOPMENT METHOD

 Osama Doss

 MSc by Research

 University of York

 Computer Science

 May 2016

2

Abstract

Agile software development has had success in different domains. However there is one

area where the implementation of agile methods still needs significant development – that

is in the field of agile and safety-critical system development. In this field, software

engineering processes need to be justified against the requirements of software safety

assurance standards (such as ISO 26262 in the automotive domain). It is therefore

important that agile development processes can be justified to levels of assurance

equivalent to that provided by traditional development approaches. While there is existing

literature concerning the integration of agile methods with specific safety-critical system

development standards and agile methods, the question of how fundamental software safety

assurance principles can be addressed within agile methods has received little attention. In

this thesis we describe the results of practitioner surveys that highlight the primary

concerns regarding the use of agile methods within safety-critical development. In the

context of this survey, and of existing work on software safety assurance principles, we

then present an initial proposal as to how assurance could be addressed with an existing

agile development method – Scrum. This proposal was submitted to practitioners for initial

feedback and evaluation. The results of this evaluation are also presented.

3

Table	of	Contents	

List	of	Figures	...	5	

List	of	Tables	...	6	
Acknowledgements	..	7	

Author’s	 Declaration	..	8	
Chapter	1	..	9	

Introduction	..	9	
1.1	 Research	Problem	...	9	
1.2	 Research	Questions	...	10	
1.3	 Research	methods	..	12	
1.4	Thesis	outline	..	13	
1.5	Summary	...	13	

Chapter	2	..	15	

Background	and	 Related	work	..	15	
2.1	 Introduction	...	15	
2.2	 Definitions	of	Safety	Engineering	Concepts	...	15	
2.2.1	 Safety	...	15	
2.2.2	 Hazard	..	16	
2.2.3	 Failures,	Errors	and	Faults	..	17	
2.2.4	 Safety-critical	Systems	...	17	
2.2.5	 Safety	Case	..	18	
2.2.6	 Safety	Case	Patterns	...	19	
2.2.7	 Safety	Standards	...	20	

2.3	 System	Safety	...	20	
2.4	 System	safety	process	...	21	
2.5	 Software	hazard	analysis	techniques	..	22	
2.6	 Agile	Background	...	23	
2.6.1	 Agile	Software	Development	..	23	
2.6.2	 Agile	manifesto	and	values	..	24	
2.6.3	 Agile	Principles	...	25	

2.7	 Agile	Methods	..	26	
2.7.1	 Extreme	Programming	..	27	
2.7.2	 Scrum	..	28	
2.7.3	 Scrum	Roles	..	29	
2.7.4	 SafeScrum	...	31	

2.8	 Existing	work	on	the	use	of	Agile	Methods	for	Safety-Critical	Systems	32	
2.8.1	Agile	Processes	and	Compliance	with	Standards	...	38	
2.8.2	 Integrating	agile	practices	with	an	assurance	case	...	41	

2.9	Summary	...	43	
Chapter	 3	...	44	

Survey	...	44	
3.1	 Introduction	...	44	

4

3.2	 Importance	of	research	..	44	
3.3	 Survey	Design	..	44	
3.3.1	Survey	findings	...	45	

3.4	 Results	and	Discussion	...	64	
Chapter	4	..	66	
Integrating			Software			Safety			Assurance			Principles	with	Scrum	66	
4.1	 Introduction	...	66	
4.2	 The	4+1	challenges	and	recommendation	...	66	
4.2.1	 Software	Safety	Assurance	Principle	1:	..	67	
4.2.2	 Software	Safety	Assurance	Principle	2:	..	69	
4.2.3	 Software	Safety	Assurance	Principle	3:	..	70	
4.2.4	 Software	Safety	Assurance	Principle	4:	..	72	
4.2.5	 Software	Safety	Assurance	Principle	4+1:	..	74	

4.3	Summary	and	further	work	..	76	
Chapter	5	..	78	
Feedback		and		Evaluation		on		the		4+1		Scrum		 Integration	..	78	
5.1	 Introduction	...	78	
5.2	 Aims	of	semi-structured	interview	process	..	78	
5.3	 Research	questions	and	their	motivations:	...	79	
5.4	 Participants	and	Interviews	...	79	
5.6	 Interview	Findings	...	80	
OVERVIEW	OF	STUDY	FINDINGS	(Participant	1)	..	81	
OVERVIEW	OF	STUDY	FINDINGS	(Participant	2)	..	83	
OVERVIEW	OF	STUDY	FINDINGS	(Participant	3)	..	86	
OVERVIEW	OF	STUDY	FINDINGS	(Participant	4)	..	90	
OVERVIEW	OF	STUDY	FINDINGS	(Participant	5)	..	92	
OVERVIEW	OF	STUDY	FINDINGS	(Participant	6)	..	95	

5.7	 Identification	of	emerging	themes	...	97	
5.7.1	 4+1	principles	within	agile	and	mapping	agile	to	standards	..	97	
5.7.2	 Agile	and	Documentation	..	100	
5.7.3	 Safety	Backlog	..	100	
5.7.4	 Safety	Team	Member	...	101	
5.7.5	 Hybrid	agile	approach	and	relationship	to	safety	...	102	
5.7.6	 Sprint	Duration	for	Safety	...	102	
5.7.7	 Queries	and	Recommendations	..	103	

5.8	 Summary	and	Issues	Arising	..	104	
Chapter	6	...	106	
Conclusion	and	 Future	Work	..	106	
6.1	 Introduction	...	106	
6.2	 Initial	perceptions	..	107	
6.3	 Initial	Survey	..	108	
6.4	 The	development	of	the	initial	proposal	for	the	integration	of	the	4+1	principles
	 108	
6.5	 Semi-structured	interviews	..	109	
6.6	 Limitations	...	109	
6.7	 Future	Work	...	110	

Abbreviations	..	112	
References	..	113	

	

5

List of Figures

FIGURE	1	RESEARCH	METHODS …………………………………………………………………………….12	

	

	
FIGURE	2:	IMPACTED	POPULATIONS	WITHIN	SCOPE	OF	SAFETY	ADOPTED[5]…………………………………14	

	

	
FIGURE	3:	CORE	SYSTEM	SAFETY	PROCESS	ADOPTED	FORM[4]……………………………………………….19	

	

	
FIGURE	4	AGILE	MANIFESTO	VALUES	[40]…………………………………………………………………..21	

	

	
FIGURE	5:DIFFERENCE	BETWEEN	AGILE	METHODS	AND	TRADITIONAL	METHODS	[8]………………………23	

	

	
FIGURE	6:	XP	DEVELOPMENT	PROCESS[64]………………………………………………………………...24	

	

	
FIGURE	7:SCRUM	SKELETON	ADOPTED	FROM	[14]…………………………………………………………25	

	

	
FIGURE	8:	SCRUM	DEVELOPMENT	PROCESS[73]……………………………………………………………26	

	

	
FIGURE	9:	SAFESCRUM	MODEL	[45]………………………………………………………………………..28	

	

	
FIGURE	10:	SPRINT	IMPLEMENTATION	FLOW	[56]…………………………………………………………35	

	

	
FIGURE	11:	R.	SCRUM	REGULATED	IMPLEMENTATION	AT	 QUMAS	[50]…………………………………….36	

	

	
FIGURE	12:	THE	AGILE	SOFTWARE	DEVELOPMENT	PROCESS	[58]…………………………………………...37	

6

 List of Tables

													TABLE	1:	AGILE	AND	SAFETY	CRITICAL	SYSTEMS	SOFTWARE	[53]…………………………………………..33	

7

Acknowledgements

There are so many people to thank for helping me during my study and for making my

short stay in York a lot easier than I thought it was going to be. Writing this thesis has had

a big impact on me. I would like to reflect on the people who have supported and helped

me so much throughout this period.

First, I would like to thank my supervisor Professor Tim Kelly for his guidance,

encouragement and patience. Thank you so much for teaching me new skills, to look at

research and my work in different ways and for opening my mind. Your support was

essential to my success here.

I would like to thank Dr Katrina Attwood for her support and patience, and Drs Richard

Hawkins, Xiaocheng Ge and Thomas Richardson for support, friendship and conviviality.

Finally, I would like to thank my Lord for his mercy and justice. And also my parents, wife

and daughters for their love and support.

8

Author’s Declaration

'I declare that this thesis is a presentation of original work and I am the sole author. This

work has not previously been presented for an award at this, or any other, University. All

sources are acknowledged as References'.

Some of the material presented within this thesis has previously been published in the

following papers:

• Osama Doss, Tim Kelly "Assurance Case Integration with An Agile

Development Method" In: XP 2015, LNBIP 212, pp. 347–349, 2015.

o This material has formed the basis of chapter 1

• O. Doss and T. P. Kelly. 2016. Challenges and Opportunities in Agile

Development in Safety Critical Systems: A Survey. SIGSOFT Software

Engineering. Notes 41, 2 (May 2016), 30-31.

o This material has formed the basis of chapter 3

• Osama Doss, Tim Kelly "The 4+1 Principles of Software Safety Assurance

and Their Implications for Scrum" (Eds.): XP 2016, LNBIP 251, pp. 1–5, 2016.

o This material has formed the basis of chapter 5

• Osama Doss and Tim Kelly. 2016. Addressing the 4+1 Software Safety

Assurance Principles within Scrum. In Proceedings of the Scientific Workshop

Proceedings of XP2016 (XP '16 Workshops). ACM, New York, NY, USA,

Article, 17, 5 pages. DOI: 10.1145/2962695.2962712

o This material has formed the basis of chapter 4

9

Chapter 1

Introduction

Agile methods are known for being fast, efficient and adaptive, as well as for fostering

discipline and good practices in engineers. It is claimed that the use of agile methods can

support both quality and team productivity [26]. Agile methodologies have grown in

popularity in software development since the presentation of the Agile Manifesto in

2001[40]. They are intended to produce software of higher quality and lower cost [41],

while satisfying both employers and stakeholders.

Safety-critical systems are those where the system can either cause harm to humans or the

environment, or is responsible for preventing such harm. There are many such systems, for

example, in the railway, medical devices and automotive domains. Most safety-critical

systems must be certified by a regulatory agency (or at least independently assessed) to

ensure that they are safe for deployment, and that appropriate development and verification

practices have been applied. It is therefore important that adherence to the objectives of the

relevant standards can be demonstrated [26].

Evidence and experience concerning the integration of Agile in the field of safety-critical

software development is limited. However, there are some published case studies and

research on successes or failures/ problems in that field, (e.g. [42,43,44]). Since the

development of safety-related software is generally governed by standards, we need to

investigate whether it is possible to use agile methods that are flexible with respect to

planning, documentation and specification while still being acceptable by standards [45]. In

particular, we need to consider how a structured argument providing assurance of the safety

of the system can be incorporated with a typical agile development method.

1.1 Research Problem

Whilst the use of agile methods is seen by some as attractive – for example, there is

evidence of increasing use in safety-critical domain (e.g. in the railway domain for Train

control systems, automatic control, Doppler radar, Axle counters) - there are still many

safety experts who express concerns. For example, Redmill [46] raises concerns about

10

whether Agile incremental development would be a "good thing" in the safety-critical

system domain, and states that evolutionary delivery would not be. He raises the question

of how the importance of safety features could be distinguished if we cannot envisage the

working system early in the analysis process? Hazard

identification and analysis cannot be carried out on a system in the absence of a design. As

is clear from the literature reviewed in Chapter Two below, the question of how to

integrate Agile methods and Safety Assurance is not new (see related work section). But

there is one particular area of practice that remains neglected in the existing work – namely

the integration of safety (assurance) case development with an agile approach.

A safety case is the argument and evidence that establishes the acceptable safety of safety-

critical system [29]. It is normally prepared (by the developer) and assessed (by an

independent assessor or regulator) as part of safety critical systems development. Safety

cases are an increasingly widespread approach to the management of assurance [47].

Structured argumentation approaches (such as the use of the Goal Structuring Notation –

GSN - [48]) have become popular as a means of explicitly representing the arguments (and

links to evidence) contained within a safety case. In this thesis, we are concerned with the

research problem of how assurance case development (including the incremental

development of structured arguments) can best be integrated with a typical agile

development method.

1.2 Research Questions

We propose the following two research questions (RQ) concerning the relationship

between Agile Methods and Safety-Critical systems:

RQ1 What are the current concerns and opportunities voiced by safety-critical systems

professionals regarding the use of agile development methods for safety-critical systems

development?

RQ2 What changes are necessary to the Scrum Process in order to address the 4+1

Software Safety Assurance Principles?

As will be outlined in Chapter 2, there has been significant development in recent years

towards integrated methods for agile and system safety engineering. One notable example

is the Scrum methodology, which incorporates processes and concerns from the IEC

Functional Safety Standard 61508. However, what is missing in this work is any mention

or treatment of the safety case. It is our concern to examine how this can be integrated into

a certification process. It is infeasible for us to establish an entirely new integrated

11

approach within the timescales of the Masters program. Therefore we intend to base our

approach on extending the existing work of Scrum to address safety case development.

Our research will focus on investigating best practice evolution of GSN arguments as a

means for safety case development as part of a Scrum process. We expect to develop

guidance that will

support the development of a goal structure as an integral part of this process. Incremental,

or phased, safety case development is already recognized as a useful activity within safety

engineering. It can be advantageous to release the safety case in incremental stages

throughout the project to gain early acceptance of the project safety approach [49]. In

addition, past work has suggested that safety case argumentation notations (such as GSN)

can help with providing a lightweight mechanism for safety case evolution. By addressing

the two research questions defined above, we aim to examine how at least one aspect of

software safety assurance and agile development methodology can be usefully aligned. The

following hypothesis is therefore proposed:

It is possible and useful to successfully integrate software safety assurance case

development within an existing agile development method (Scrum), in a way that can help

address existing concerns.

• "Useful" - In this context this means that it means that it helps support accepted

principles of safety assurance

• “Successfully” – Assurance is provided whilst still enabling the process to be agile

• "Existing concerns" - there are a number of concerns that people have expressed

with using agile methods in safety-critical development (e.g. absence of necessary

documentation). These are discussed further in Chapter 3.

Past work [48] has suggested that safety case argumentation notations (such as GSN) can help

provide a lightweight mechanism for safety case evolution. Answering the two research

questions defined above, we aim to examine how at least one aspect of software safety

assurance and agile development methodology can be aligned within a GSN framework

informed by the 4+1 principles. The principles are outlined in Chapter 4 below. We contend

that this approach will address various existing concerns relating to the integration of safety and

agile

Useful needs to be that it helps both in the attainment of agility (i.e. we can build better software

more efficiently) and the achievement and assurance of safety (i.e. we can better address safety

concerns as and when they arise). As well the 1-to-1 semi-structured is to investigate the success of

the proposed framework for safety case development within Scrum

12

1.3 Research methods

In order to answer the research questions and substantiate the proposed hypothesis, a

defined research method is necessary. Beyond the obligatory literature review, the research

methods being used in this study are survey, peer review and interviews:

• We will conduct a survey to investigate the practical problems which practitioners

perceive and experience in integrating the two disciplines. The answers collected

from this survey will help to establish a framework to promote an iterative

approach of building and evaluating artifacts, in the context of a safety case, as a

part of an agile development methodology (Scrum).

• 1-to-1 semi-structured interviews will also be used with some of the respondents

from our initial survey, the purpose of this interview study is to investigate the

success of the proposed framework for safety case development within Scrum.

As described above, we will investigate existing concerns from safety critical systems

engineering professionals by eliciting their opinions through a survey. The feasibility, and

practicality of the proposed integration of safety case development with Scrum will be

judged through peer review using structured interviews.

We have chosen these methods firstly because the lack of information from practitioners

concerning the integration of Agile methodologies into safety-critical development.

Secondly, whilst it is desirable to seek case study experience and evaluation of the

proposed approach, it has not been possible to conduct a case study within the duration of a

one year MSc by Research programme. Given the timescales of the work, we assert that

having practitioners’ views from the real world, scalable problems is perhaps more

significant for problems of this kind than small-scale case study examples.

The results from the research methods, survey and semi-structured interview helped us provide

a clear direction in terms of the importance of incremental hazard analysis, safety requirements

development, and assurance case development.

We will gain from these methods offered one of the most feasible methods for gaining insight

as to whether the proposed approach would be successful (i.e. support agility, not compromise

safety) given that it was not feasible to run a trial software development during the timescales

of the masters research programme, to evaluate how safety activities are currently being

proposed within the Scrum method, and to help define a process model for how requirements

13

development, hazard analysis and assurance case development can be performed as in-

increment activities.

The figure below indicates the steps of our research methodology, and indicates what needs

to be done in future work in this area.

 1.4 Thesis outline

This thesis is organized as follows:

Chapter 1: This chapter introduces our work, research problem, questions, and methods.

Chapter 2: Introduces the literature relating to safety critical systems engineering and

agile methods when dealing with software development. It aims to give an overview of

the various terms, safety standards, Agile methodologies, including their values and

principles. The chapter provides an overview of the existing literature that specifically

addresses the use of agile methods in the safety critical domain.

Chapter 3: In this chapter we describe the results of our survey designed to elicit the

opinions of safety practitioners as to the challenges and opportunities posed by the

application of agile development methods in the field of safety critical systems

development.

Chapter 4: In this chapter, we present an initial proposal as to how Scrum can be modified

to address the 4+1 principles of safety assurance.

Chapter 5: In this chapter we describes the results of the interviews conducted to identify

and address challenges associated with the integration of Agile methodologies into safety-

critical systems development.

Chapter 6: concludes the thesis with a summary of the results, limitations and further

work.

 1.5 Summary

Ultimately, this research will develop and evaluate a process model of an adapted version

of Scrum that clearly integrates the activities of software safety requirements evolution,

software hazard analysis and software safety (assurance) case development. To support

the assurance case development aspect of this process, the results from the survey and

semi-structured interview have provided a clear direction in terms of the importance of

incremental hazard analysis, safety requirements development, and assurance case

development (i.e. they indicate clearly that these activities must be performed within an

incremental, rather than simply being up-front or end-of-development activities).

14

Figure 1 Research Methods

15

Chapter 2

Background and Related work

2.1 Introduction

This chapter introduces important concepts pertinent to the thesis. These concepts are

important for understanding the thesis challenges and recommendations. Firstly, we define

basic concepts in safety engineering and discuss standard processes and techniques from

that field. We then address essential issues from agile methods, introducing the agile

manifesto and core values and principles. These are then illustrated through three examples

of agile methodologies: Scrum, Extreme Programming (XP) and Scrum. Finally, we

provide a summary of previous work which identifies challenges and proposes methods for

integrating agile methods within safety critical systems engineering.

2.2 Definitions of Safety Engineering Concepts

2.2.1 Safety

Safety has been defined in different ways in the literature and various domain-specific

standards. Here, we illustrate some of the scientific terms about safety:

Safety is a state in which someone or something is secure from the possibility of death,

injury, or loss [1]. Safety as defined in MIL- STD-882D [79], Standard Practice for System

Safety, is “freedom from those conditions that can cause death, injury, occupational illness,

damage to or loss of equipment or property, or damage to the environment”. In addition

safety is described as freedom from accidents or losses, however, it should be pointed out

that no system can be absolutely safe, the aim in design a system is to be as much as

adequately safe. Figure 2 illustrates the scope to which the concept of safety can apply, in

terms of potentially impacted people, equipment and the environment.

16

Figure 2: Impacted populations within scope of

safety [5]

The concept of safety revolves around the related concepts of hazard, risk and mishap,

which are closely entwined together [1]. These concepts are explored below. For the

system to be made safe, the potential for mishaps must be cut down or eliminated. Any

failure in any part of the system - whether mechanical, electronic, software or human - has

the potential to cause injury or death and ultimately to lead to significant litigation [2]

2.2.2 Hazard

NPR 8715.3C defines a hazard as “a state or a set of conditions, internal or external to a

system, that has the potential to cause harm” [5]. Hazards are caused by failures (discussed

in Section 2.2.3 below). Examination of the effects of hazards effects is a way to determine

system risks.

In [3] Leveson indicates that recent technical advances in various fields such as science and

industry have created new hazards. For example, developments that have occurred in the

food industry, such as the increasing use of food additives, adversely affect public health.

Similarly, large numbers of people may be harmed by unknown side effects of

pharmaceutical products. Arguably, existing safety engineering strategies have limited

impact on many of these hazards [3].

Hazard analysis identifies and lists potential hazards in the system design including

subsystems, components, and interfaces for the intended use of the system in its intended

operational context [62,63,7] and considers their effects.

17

2.2.3 Failures, Errors and Faults

A failure is defined by Leveson as “the non-performance or inability of the system or

component to perform its intended function for a specified time under specified

environmental conditions” [7].

There are many reasons why a system might fail. Often, a failure is the result of an inherent

weakness of the design or implementation. Failures also arise in the transition between a

correct and an incorrect service.

An error: is that part of the system state that may cause a subsequent failure [16].

A fault: is the adjudged or hypothesized cause of an error [16].

The above definition of fault and error indicates that faults are preconditions for errors: a

failure happens when an error reaches the interface of a service and changes the service. In

other words, an error may happen when a fault is active. Also, failure can be identified as a

hazard. Finally, failures, faults, and errors are sometimes collectively referred to as defects

[19].

2.2.4 Safety-critical Systems

The literature contains many definitions for the term ‘Safety-Critical Systems’. Essentially,

they all share the intuitive notion that the system is concerned with the consequences of

failure: if the failure could lead to danger or loss, then the system is system-critical [6]. The

term ‘safety-critical’ therefore refers to systems that either can cause harm or are

responsible for preventing harm [26]. In general, ‘harm’ refers to loss life, physical injury

or danger, economic loss or environmental loss.

John C. Knight [6] classifies Safety-critical systems into traditional systems and non-

traditional systems. Traditional systems are active in the areas that have long been

considered as safety-critical systems e.g. nuclear power, medical care, airspace, and

weapons. In these areas, any failure can lead to death or disaster, loss of equipment and so

on. However, there are some new types of system that have the potential for very high

consequences of failure, for example transportation control systems. Knight considers

these systems as non-traditional safety-critical systems.

18

2.2.5 Safety Case

Safety cases are produced to provide argument and evidence to substantiate a claim that a

system is acceptably safe to function.

The purpose of a safety case can be defined as follows:

“The best safety case should contain a clear, exhaustive and defensible argument that a

system is acceptably safe in the designated frame.” U.K. Ministry of Defence Ship Safety

Management System Handbook JSP430 [77]

 “A safety case is a comprehensive and structured set of safety documentation which is

aimed to ensure that the safety of a specific vessel or equipment can be demonstrated by

reference to:

• Safety arrangements and organisation

• Safety analyses

• Compliance with standards and best practice

• Acceptance tests

• Audits

• Inspections

• Feedback

• Provision made for safe use including emergency arrangements [29]”

As we can see from the above definitions, the U.K. Ministry of Defence focuses on some

important elements. Furthermore, as we shall see later in this chapter, some of these

elements are also the main goals for agile methods.

The concept of the safety case has been introduced across many industries for example the

19

field of defence, aerospace and railway. So, in order to meet safety standards, it is

necessary to provide a structured argument followed by evidence to support your claim,

thus, argument and evidence are crucial elements of the safety case that must go hand-in-

hand [29]. Documenting safety arguments is considered beneficial in improving safety

assessment and safety case maintenance [31].

One approach to representing safety arguments is the Goal Structuring Notation (GSN).

The purpose of a goal structure is “to show how goals are broken down into sub-goals, and

eventually supported by evidence (solutions) whilst making clear the strategies adopted, the

rationale for the approach (assumptions, justifications) and the context in which goals are

stated.” [66]

2.2.6 Safety Case Patterns

Generic safety case patterns have been identified from the study of existing safety cases

and safety standards, and from discussion with safety case practitioners. There are several

published pattern catalogues, in which all of the patterns presented have been subjected to

(at-least) peer review [48]. Software safety argument patterns present best practice in

structuring and presenting software safety arguments.

Hawkins [33] demonstrates that software safety argument patterns may be combined in

order to construct a software safety argument for the system under consideration. The

following argument patterns are currently described in Hawkins’s Pattern Catalogue:

1. High-level software safety argument pattern – This pattern provides the high-level

structure for a generic software safety argument. The pattern can be used to create the high

level structure of a software safety argument either as a stand-alone argument or as part of

a system safety argument.

2. Software contribution safety argument pattern - This pattern provides the generic

structure for an argument that the contributions made by software to system hazards are

acceptably managed. This pattern is based upon a generic ‘tiered’ development model in

order to make it generally applicable to a broad range of development processes.

3. Derived Software Safety Requirements identification pattern - This pattern provides the

generic structure for an argument that derived software safety requirements (DSSRs) are

adequately captured at all levels of software development.

4. Hazardous contribution software safety argument pattern – This pattern provides the

generic structure for an argument that the identified DSSRs at each level of software safety

20

development adequately address all identified potential hazardous failures.

5. Strategy justification software safety argument pattern - This pattern provides the

generic structure for an argument that the strategy, which is adopted in a software safety

argument, is acceptable given the confidence that is required to be achieved in the relevant

claim.

Later on we will explain more on how to integrate these patterns in the research.

2.2.7 Safety Standards

Nowadays “safety” is an obsession, which is healthy. The formal interpretation of “safety”

for systems within safety-critical domains is the role of standards. There are different

standards that address safety-critical systems and regulations; each one of these standards

has a different philosophy. The core concepts of each standard depend on arbitrary

variances in criteria and assessment that come from the broad collection of stakeholders

[35]. For system developers, this results in the challenge of having dozens of criteria to

fulfill and various assessments to provide. In addition, some of these standards provide

generic approaches, while some are designed for specific domains or industries. Hatcliff

[35] identified that there are many applicable safety assurance standards such as IEC 61508

[38], ISO 26262 [39], EN 50128 [36], DO-178C [65], IEEE 7-4.3.2 [37] and IEC

62304[32].

McDermid [34] shows that safety standards do not normally determine the software

development process; however they may recommend processes and practices to be used in

order to achieve particular safety levels. If the standards do not explicitly define the

software process, we are surely permitted to ask whether we could use agile methods as

long as the safety goals can be achieved.

2.3 System Safety

System theory started from the 1930s and 1940s. Initially these theories were developed in

response to the classical analysis techniques, to help cope with the increasingly complex

systems starting to be built at that time [3]. The aim of the system safety is the reduction of

losses to lives, systems and the environment. Therefore the main objective is to avoid

hazards that can lead to loss or damage to the environment and to ensure the discovery of

hazards to the fullest extent possible.

21

The US Air Force System Safety Handbook [78] provides the following definition of

‘system safety’: “The application of engineering and management principles, criteria, and

techniques to optimize all aspects of safety within the constraints of operational

effectiveness, time, and cost throughout all phases of the system lifecycle.”

System safety is defined in MIL-STD-882D [79] as follows: “The application of

engineering and management principles, criteria, and techniques to achieve acceptable

mishap risk, within the constraints of operational effectiveness and suitability, time, and

cost, throughout all phases of the system life cycle” [4]. NASA general safety program

requirements [80] define system safety as the “application of engineering and management

principles, criteria, and techniques to optimize safety... within the constraints of operational

effectiveness, time, and cost throughout all phases of the system life cycle [5].

System safety is thus a kind of process aim to manage the system, personnel, environment,

and health accident risks that happen through the design and development of a safety-

critical system. The goal of a system safety program is to reduce or eliminate hazards

through design, engineering and management. That can be through the application of

engineering, and management principles. Moreover, techniques are employed to improve

safety within the constraints of operational effectiveness, time, and cost throughout all

phases of the system life cycle. That leads us to the question: can the principles and

processes defined for agile methods contribute in the field of “system safety” for safety-

critical systems?

2.4 System safety process

MIL-STD-882D illustrates the essential aspects of the system safety process in eight

principal steps, as presented in Figure 3:

Figure 3: Core system safety process [4]

22

The system safety process is initially documented in the safety program plan, and is then

carried through as all safety tasks are completed, including hazard analysis and reports.

System safety is based on a lifecycle approach according on the idea that safety measures

to manage risks and mishaps must be started as soon as possible in the life of the system.

Safety processes run parallel to and complement system development processes [28].

Safety process are structured around the notion of the hazard and its management: any

changes with it can lead to danger or damage. For example, a System (airframe) - travelling

down runway at circa 170 knots, without braking.

2.5 Software hazard analysis techniques

Regarding to (NIST 1993 National Institute of Standards and Technology)[81,67] Software

hazard analysis “ eliminates or controls software hazards and hazards related to interfaces

between the software and the system (including hardware and human components). It

includes analyzing the requirements, design, code, user interfaces and changes.”

The IEEE Standard for Software Safety 1228-1994 [82] describes the relationship between

the system safety analysis and the software safety analysis. If we are going to talk about

software hazard analysis, we need to understand the role of the software on the

performance of the system safety functions, as well the performance of the system on the

monitoring and controlling functions and the impact of the software throughout the system.

Therefore, the Software hazard analysis should be carried out within the context of the

overall design of the system, for both attributes and assigned tasks of the software that

contribute to the system's ability to perform its assigned tasks [67].

It is also important to note that Software Hazard Analysis is part of Software Design, the

main goals of the hazard analysis program are to understand and correct deficit, as well to

provide secure information. J. Dennis Lawrence [67] introduced four types of actions that

may be appropriate, depending on the circumstances:

1. The system design may be changed to eliminate identified hazards which are

affected by software or are not adequately handled by software, or to reduce the

hazards to acceptable levels, or to adjust the system architecture so that identified

hazards are compensated by defense-in-depth.

2. The software design may be changed to eliminate identified hazards, or reduce

them to acceptable levels.

23

3. The quality of the software may be improved sufficiently to reduce the probability

of a hazard to an acceptable level.

4. The application system may be rejected if it is considered too hazardous.

However, early hazard identification is the best approach. Thus it might be argued that one

benefit of using agile methods is that they should be helpful in encouraging early and

iterative evaluation that could reveal hazards and enable responsive introduction of risk

reduction measures.

2.6 Agile Background

In this section, we introduce basic concepts from Agile Methods. This foundation is

essential for comprehending the motivation of the thesis. Firstly, we introduce the Agile

Manifesto and associated principles and values for agile methods. Then we describe three

examples of Agile process methodologies: Scrum, Extreme Programming and SafeScrum.

2.6.1 Agile Software Development

Agile software development is an attempt to prioritise tasks in software development and to

acknowledge that the user requirements change. Agile Methods can thus be defined as

methods that try to focus on the primary goal of software development, i.e., the creation of

working (defect-free) software [8] The Agile philosophy also implies being both effective

and sufficient for the current situation. Agile development is a broad term that combines to

characterise a certain group of development methods. The core of Agile development itself

is not a definitive methodology: rather, ‘Agile development’ is umbrella term that

accommodates and describes various similar methodologies, as well as core principles and

values.

The main idea of Agile was to create something “untraditional” and more effective, to

improve product quality, and to reduce costs and the time to market [8]. Agile

methodologies have increasingly gained respect in the software engineering field since the

presentation of the Agile Manifesto in 2001 [40]. Agile Methods have started to be widely

used as a development approach for software [32]. The majority of companies today use

either traditional or agile approaches, or, increasingly, a combination of traditional and

agile approaches [9].

24

2.6.2 Agile manifesto and values

In February 2001[8], the Agile Software Development alliance, which comprised

seventeen independent representatives and several others considered to be leaders in the

software industry, came together to introduce the “Agile Manifesto” [40,10]. The

Manifesto they produced contained four core values, supported by twelve principles. These

values and principles led to the evolution of lightweight methodologies, which were

essentially people-oriented rather than process-oriented [27]. Figure 4 presents the Agile

Manifesto values, which are discussed in more detail below:

Figure 4 Agile Manifesto Values [40]

Individuals and Interactions over Processes and Tools

Individuals and interactions is one of the must important aspects for high-performing

teams. This principle motivates software developers to consider the people who are

involved in the development process as high priority. Note that this does not mean that

processes are not important, but that the priority is for “People rather than processes”.

Working software over comprehensive documentation

One significant difference between Agile development and more traditional software

development philosophies is the concern with working software. Agile software

developments depend on the development artifact itself and create only those documents

that are needed at every stage [8,10]. Progress is made by delivering small releases of

software to the customer at set intervals.

25

Customer Collaboration Over Contract Negotiation

Having a larger degree of customer involvement is vital, essential and logical. Logically,

the customers have more knowledge about the product more than anybody. Therefore, the

strategy in Agile Methods is to achieve customer satisfaction by regular engagement of

customers rather than by considering the narrow confines of contracts. Moreover, it is

recommended for customers to be involved in close daily interaction with development

teams. In principle, such engagement should allow customers and developers to identify

risks in the early stages of software development, which is what we seek in this research.

Responding to change over following a plan

Customers cannot generally predict all of their requirements a priori. Therefore, a gradual

process, by which the requirements are incrementally understood by the customer and are

delivered to and shared with the team, should be established [8,11]. Thus, Agile software

development allows for changes in the development product, which derive from an

increasingly clear understanding of the software.

2.6.3 Agile Principles

As we mentioned earlier, The Agile Manifesto introduces 12 principles which underpin the

Agile philosophy: these principles are intended as a statement of what it means to be Agile,

and to help people to identify and understand better what agile software development is

centered around. As can be seen from the list below, the highest priority in Agile Manifesto

is to satisfy the customer through early and continuous delivery of valuable software:

1. Highest priority is to satisfy the customer.

2. Welcome change.

3. Deliver working software frequently.

4. Business people and developers must work together daily.

5. Build projects around motivated individuals.

26

6. Face-to-face communication is best.

7. Working software is the primary measure of progress.

8. Promote sustainable development.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity – the art of maximising the amount of work not done – is essential.

11. The best architectures, requirements and design emerge formself-organising teams.

12. Introspection – teams should regularly review itself and its processes to try and

improve. [8.17].

2.7 Agile Methods

Agile methodologies share the common essential idea that primarily concerned with the

achievement of a working solution, in the context of changing user/stakeholder

requirements. Although traditional development methods are, of course, also concerned

with the development of a working solution, there is a fundamental difference concerning

their flexibility in the light of requirements change [8]. Figure 5 illustrates this difference:

27

Figure 5:Difference Between Agile Methods And Traditional Methods [8]

There are a number of existing agile methods: for example, Extreme Programming (XP)

[12], Scrum [14,30], Dynamic Systems Development Method (DSDM) [18], Adaptive

Software Development (ASD) [23], Crystal [24] and Feature Driven Development (FDD)

[25]. In this section, we consider three of these methodologies in detail, and discuss the

potential for their integration in the development of safety-critical systems. The examples

we consider are: Extreme Programing (XP), Scrum and SafeScrum

2.7.1 Extreme Programming

XP (Extreme Programming) is a an incremental, lightweight methodology and discipline,

that was conceived and developed to address the specific needs of software development

[12] It seeks to produce software which satisfies the customer through a set of working

releases that focus on the timely delivery of specific software requirements. Further, XP

defines basic principles to govern the development process: Communication, Simplicity,

Feedback and Courage. XP has been one of the most widely adopted of the Agile

approaches, and is widely seen as placing an emphasis on individuals and interactions over

processes [13]. These four basic principles have led to the following key ideas presented

within XP: (1) Code in pairs, (2) Stay in contact with the customer,

(3) Create tests before coding then test heavily, (4) Short iterations, (5) Keep it simple,

don’t anticipate: code for current needs, and (6) Collective ownership [8]. These principles

28

have a positive impact on software development. For example, as discussed in the next

chapter, we have found from responses to our survey that there is a perceived need for

these practices in traditional safety processes.

Figure 6: XP Development Process [64]

2.7.2 Scrum

Scrum is an iterative, incremental process, which can be captured as interlinked two

circles, the lower circle and upper circle, as seen in Figure 7. The lower circle represents an

iteration of daily development activities that occur in sequence. The output of each

iteration is an increment of the software product. The upper circle represents the daily

inspection process that occurs during each iteration [14].

29

Figure 7: Scrum Skeleton [14]

Scrum is based on a small set of core values, principles, and practices [15]. In particular,

the method defines three core team roles: the Product Owner, the Team, and the

ScrumMaster [14].

Figure 8: Scrum Development Process [73]

2.7.3 Scrum Roles

Software development projects undertaken using the Scrum methodology are carried out by

one or more scrum teams. Each Scrum team consists of three Scrum roles as follows:

Product Owner, Scrum Master and Development Team. In this thesis, we have added one

more element on top of the Scrum roles, i.e. Safety Member. This role is very important for

projects which seek to use Scrum in the field of safety critical systems. We will discuss this

addition in more detail later on.

30

The Product Owner

The Product Owner is responsible for ensuring that the most valuable functionality is

produced inside the Product Backlog, and for and turning the backlog items into developed

features. Also, the Product Owner chooses to develop product functionality that solves

critical business problems [14].

Scrum Master

The Scrum Master establishes what is necessary to help the team to be successful. In

particular, the Scrum Master is responsible for teaching and championing Scrum and for

helping the team to understand and embrace Scrum values and practices [15]. In addition,

the Scrum Master acts like a lifeguard, protecting the team from outside interference and

acting as a problem solver.

Development Team

The Scrum team is self-organized, which enables it to set up the best way for its members

to achieve the team’s goals, sprint goals, estimate effort and review the product backlog as

determined by the Product Owner. The team typically consists of between five and nine

people

 [15]. Essentially, the team members must have good skills that match with the project

goals and provide for the development of good quality software. The team members have

collective responsibility for the success of each iteration and ultimately for the whole

project [14].

Scrum Artifacts

Scrum Artifact is the collective term used for the resources which are used by the Scrum

process: product backlog and sprint backlog.

Product Backlog

Product Backlog items initially describe features which are required to meet the Product

Owner’s vision [15]. The Product Owner is responsible for identifying, managing and

31

prioritizing the requirements and other contents that define the Product Backlog items, and

for ensuring that the items are placed in the correct order. In addition, the Product Backlog

is kept continuously variable, in order to meet the changing needs of the users/ customer.

Sprint Backlog

The Sprint Backlog describes the work as tasks: during a sprint, the Team selects tasks

from the Product Backlog, potentially using it to develop product functionality for a given

increment. Each sprint has a fixed start- and end- date/time. Each sprint should also deliver

some identifiable, valuable, completed work to the customer or stakeholder – this is

referred to as the ‘Sprint Release’.

2.7.4 SafeScrum

Stålhane et al. [45] propose “Safe Scrum”. This was motivated by the need to make it possible

to use methods that are flexible with respect to planning, documentation and specification while

still being acceptable to the safety standard IEC 61508. Stålhane illustrates two kinds of Product

Backlog within the SafeScrum: the Functional Product Backlog and a Safety Product Backlog.

These backlogs are linked to show dependencies between the functional requirements and the

safety requirements. Whilst there are obvious potential opportunities to extend this work to

include safety case development (e.g. linking the documentation and traceability of safety goals

with an explicit safety argument development) there is no discussion of safety case

development in this work.

32

Figure 9: SafeScrum Model [45]

 In addition, Safescrum has three main parts: The first part consists of the IEC 61508 steps

needed for developing the environment description and the SSRS phases 1-4 (concept, overall

scope definitions, hazard and risk analysis and overall safety requirements). The second part,

which is the Scrum process and the last part, RAMS (Reliability, Availability, Main-tainability,

Safety) final validation in each iteration. SafeScrum focuses on compliance with IEC 61508.

Perhaps. One possible criticism of this work is that, by focussing on one standard, it does not

'step back' and concentrate on the core intent of safety assurance and standards in general.

2.8 Existing work on the use of Agile Methods for Safety-
Critical Systems

The purpose of this section is to give an overview of the existing literature that specifically

addresses the use of agile methods in the safety critical domain. As well contains a

selection of literature concerning the following:

1. Safety Principles and Agile Principles, and their relationship

2. Integration of Assurance Processes and Agile Methodologies

3. Agile Processes and Compliance with Standards

4. Integrating Agile Practices with an Assurance Case.

33

5. Safety Process and Agile

Ge, Paige, and McDermid [51] have published a paper on the iterative and agile

development of safety critical software, in which they claim that there has hitherto been

no tangible, documented deployment of agile methods on a real industrial safety-critical

project. They mention a modular approach for building safety arguments incrementally

using the Goal Structuring Notation (GSN)[48]. The process they propose “...precisely

captures the notion of sufficient up-front design...” They also illustrate how to use safety

patterns and introduce the notion of a modular safety argument to enable the iterative

development of safety argument. However, their conclusion is that agile practices may not

change the nature of the entire safety-critical development procedure model, but might

improve the agility of the development. Furthermore, it is important to note that this paper

is intended as a conceptual proposal, and is far from industrial practice.

Stephenson et al [52] propose an explicit representation of safety concerns in order to

introduce Agile into the safety-critical development process: the Agile Health Model.

Similar work has been done to introduce agility in security-critical systems, using an

explicit representation of security concerns known as Iterative Security Architecture.

They study the relationship between safety-critical and agile software development

processes: this results in the Agile Health Model. Their main conclusion is that even

though there are some problems with introducing agile methods in this area, there is

nothing to prevent the use of agile methods in safety-critical development. They highlight

that we need to add the certifying authority into the process. They also point to future

work required to consolidate their findings.

Vuori [53] analysed the agile values and principles that are expressed in the Agile

Manifesto, and considered what they would mean in the safety critical context and how

they might be demonstrated. From the analysis, Vuori developed a generic, simple model

to present the most prevalent agile features.

34

Agile value Special meaning in a safety-

critical development context

Practical principles to

fulfil the meaning

[we value

more]Individuals and

interactions [than]

Processes and tools.

Substance and understanding

and sharing safety information

is of the utmost importance.

Safety information should

be discussed and not just be

read in documents and

analysis report

[we value more]

Working software [than]

Comprehensive

documentation.

True safety is more important

than fulfilling safety

requirements (though the latter

are mandatory)

We shall openly analyse

safety and respond to real

hazards first. Standards help

in that, but we must not

work only by standards. We

need good systems, not

systems that are documented

as being good and safe.

[we value more]

Customer collaboration

[than] Contract

negotiation.

While safety issues and

features are important, they are

always things that need

collaboration so that we find

practical, working solutions

instead of non-robust ad-hoc

solutions that cause more

problems than they solve

Active collaboration with

customers on safety-critical

features.

[we value more]

Responding to change

[than] Following a plan.

When situation change, we

need to assess the implication

for safety immediately and not

just blindly follow a project

plan.

Every development must

keep track of safety issues

and respond to changes

immediately

Principles Special meaning in a safety-

critical development context

Practical principles to

fulfil the meaning

Our highest priority is to

satisfy the customer

Early releases shall be safe and

able to provide value

Safety of early releases

needs to be validated;

35

through early and

continuous delivery of

valuable software.

hazard and analysis, safety

assessment and testing

needs to be an ongoing

activity. This does not

necessarily imply test

automation, but an actively

ongoing testing activity.

Welcome changing

requirements, even late

in development. Agile

processes harness change

for the customer's

competitive advantage.

Safety requirement shall not

hinder making sensible

changes that provide value.

The product architecture

needs to be flexible so as to

encourage good changes

that add value without

compromising safety.

Deliver working

software frequently,

from a couple of weeks

to a couple of months,

with a preference to the

shorter timescale.

-------- Periodical releases shall not

compromised in their safety.

Business people and

developers must work

together daily throughout

the project.

People who are responsible for

safety or who are responsible

for assuring it should work

together with the development

team.

Gradually, safety and

reliability analysis tasks can

give to the development

teams’ tasks, yet

independent analysis can be

required to be carried out by

an independent party.

Build projects around

motivated individuals.

Give them the

environment and support

they need, and trust

them to get the job done.

People who are participate in

the development must be

motivated by safety too and

they need to be given resources

and tools to use that

motivation.

Participation in risk analysis

is very good way of sharing

information to be

documented properly.

The most efficient and

effective method of

Safety information is shared in

face-face meetings and not just

One metric of progress is

how efficiently the process

36

conveying information to

and within a

development team is

face-to-face

conversation.

assessment report. Safety

issues need to be given place in

meeting agendas.

can deriver good, working

software that is also safe to

use and meets the safety

requirements.

Safety requirements need to

be based on risk and safety

assessment, not just

standards.

Working software is the

primary measure of

progress.

True safety of the software is

one measure of the progress;

not just how designs and plans

pass safety assessments.

Work on safety on safety

features needs to be planned

and resourced realistically,

just like any other

development activity

Agile processes promote

sustainable development.

The sponsors,

developers, and users

should be able to

maintain a constant pace

indefinitely.

Working overtime exhausts

developers and tester and

makes them overlook essential

factors. Tired people should

not participate in safety-critical

development any more than

they should be exposed to risk

in using machinery.

Development of safe systems

also benefits from experience,

so it is not good if

development if development

change jobs due to exhaustion.

Work on solid safety

architectures and elegant

integration of safety features

to the general architecture is

essential.

37

Table 1: Agile And Safety Critical Systems Software [53]

Continuous attention to

technical excellence and

good design enhances

agility.

Safety, properly implemented,

is technical excellence. Safety

features need to be properly

designed, not just add-ons.

There must be absolutely no

design flaws in safety systems.

Simple base architectures

for safety features should be

designed.

Simplicity--the art of

maximizing the amount

of work not done--is

essential.

Simplicity and

understandability of safety-

critical features are essential

qualities. Simple safety

features are easy to adjust to

the changing functionality.

The best architectures,

requirements, and

designs emerge from

self-organizing teams.

The team should have freedom

for the design of safety

features, but not safety

requirements.

Yet all decisions need to be on

solid analysis and proven(or

provable) techniques. The

person who is appointed to be

responsible for safety issues

has responsible for safety

issues has the final vote on al

decisions, whether she/he is

part of a team or not.

Present the safety

requirements to the team

clearly, let them understand

what they mean and what

their implication are and let

the team do the designing as

it best frits the whole

system. Yet the results need

to be validated in a

sufficiently independent

way

At regular intervals, the

team reflects on how to

become more effective,

then tunes and adjusts its

behaviour accordingly.

How well development of

safety features has succeeded

needs to be assessed as part of

the team’s self-assessment.

Reaching of safety goals as

part of lessons learned-

agendas and such.

38

Paige et al [54] addressed the tension between the needs of safety critical software

development, and the principles of agile processes. They analyzed agile processes and

their applicability in the domain of safety critical software, and presented a number of

concrete recommendations for adapting agile processes to the domain. Paige et al

suggested that cross-referencing could be used to link safety experience stories to user

scenarios to illustrate how certain failure conditions affect the correct execution of code,

and illustrated the use of simulator “pipelined iterations” in order to perform acceptance

test, reiterated for a small V model. The authors also observed that the safety case was

generally developed as an external activity to software. In our approach, we implement

the safety case incrementally inside Scrum. .

2.8.1 Agile Processes and Compliance with Standards

Most early theories talked about how to integrate agile methods in to the regulator

environment [50]. Jonsson [55] illustrated the analysis of agile practices in regulated

environment EN 50128 standard by mapping between EN 50128 requirements and agile

practices. This mapping showed that all agile practices can be said to support some

objective of the standard. Jonsson claimed that agile practices have the potential to lead to

more efficient development, by reducing the gaps between customers, developer and tester.

This can be achieved by short iterations, frequent integration and regular tracking of

progress. Jonsson identified the fundamental challenge for the integration of agile

processes into safety-critical product development as the need to find some way to produce

all of the required documentation. He also stressed the importance of working with the

quality assurance department and the safety assessor to ensure that the new practices are

documented thoroughly.

Marques et al [56] presents a model for airborne software, including CRD-RM (Certifiable,

Agile, Reusable, and Disciplined Reference Model). This is an attempt to define a generic

model that can be instantiated on each airborne software project, in order to increase

efficiency without interfering with DO-178C compliance. The authors argue that some of

the compliance objectives are achieved during each sprint. However, the reference model is

specified only for the domain of airborne software certification.

39

Figure 10: Sprint Implementation Flow [56]

In a similar vein, Fitzgerald et al [50] presented a case study to demonstrate that agile

methods could be scaled to regulated environments. Their paper described a number of

issues - quality assurance, safety and security, effectiveness, traceability, and verification

and validation - and illustrated how they react with the model. The authors found that

“living traceability” helps to establish compliance to standards and regulations, and

concluded that agile processes can be augmented to work very well in regulated

environments. The work also focused on how to implement an integrated model to achieve

compatibility in terms of agility, safety/security, certification, and Quality Assurance.

Fitzgerald et al made the important point that “the assumption of incompatibility between

agile methods and regulated environments is more accidental than essential” [50].

40

Figure 11: R. Scrum Regulated Implementation At QUMAS (Management and

Compliance Solutions) [50]

Coe and Kulick [57] examined potential sources of conflict between Agile principles and

DO-178C certification requirements in the context of the inherent technical and procedural

complexities in the aerospace domain. The Agile process emphasizes good communication

and highlights the benefits of conveying information without rigorous process. However,

DO-178C requires documentation to reflect organisations’ commitment to processes and

tools. Furthermore, Agile processes recommend that the Working Software principle

discussed in Section 2.6.3 above is preferable to documentation in terms of achieving

requirements satisfaction. However, DO-178C requires documented evidence that process

objectives relating to requirements have been satisfied. Coe and Kulick also observed that,

whereas planning activites are part of Agile processes, the key element required for DO-

178C is evidence for certification. Lotfi [58] reduced that conflict by preserving the Agile

Values through the process. They introduced a Model-Based Agile process, which

combined Agile development processes and model-based engineering methodologies to

satisfy a FAA-mandated process [83]. The goal of the Model-Based Agile process is to

help promote the use of Agile methods in the field of safety-critical systems.

Stålhane et al [45] proposed the “Safe Scrum” approach. This was motivated by the need to

make it possible to use methods that are flexible with respect to planning, documentation

and specification while still adhering to the safety standard IEC 61508. Stålhane illustrates

two kinds of Product Backlog within SafeScrum: the Functional Product Backlog and

Safety Product Backlog.

41

These Backlogs are linked to show dependencies between the functional requirements and

the safety requirements. The work of Guo and Hirschmann [75] expresses similar ideas.

The key difference concerns how the Product Backlog is managed. They claim that a

Safety Manager will oversee safety assurance throughout the whole process. In addition,

the Safety Manager will check the Product Backlog for certain safety goals and ensure

proper ranking and arrangement in the Release Plan. Whilst there are obvious potential

opportunities to extend this work to include safety case development (e.g. linking the

documentation and traceability of safety goals with an explicit safety argument

development) there is no discussion of safety case development in this work.

2.8.2 Integrating agile practices with an assurance case

To date, there has not been any work which directly addresses the integration of Agile

principles and methods in assurance cases for safety critical-systems. However, Lotfi, et al

[58,59] illustrate a method for the iterative development of “security” features within the

Scrum method which uses security assurance cases as a "technique for ensuring fulfilment

of the security requirements of the feature". Their findings are broadly positive: they claim

that the approach helps to minimize the cost of assurance of software security, and reduces

the costs of mitigating threads. However, they do indicate some barriers to adoption of the

method: as presented, the technique is not sufficiently scalable, and is costly because of the

rework it requires. Furthermore, the authors note that” assumption limits the security

reassurance of a new increment to the re-evaluation of a set of claims associated with the

components”. Lotfi et al conclude, "that the agile software development approach does not

prevent ensuring the security of software increments produced at the end of each iteration".

The process they define is described in Figure 12:

Figure 12: The Agile Software Development Process [58]

42

Other researchers have examined how conventional methods and techniques used for

security assurance suit Agile methodologies. Beznosov and Kruchten [60] evaluated how

well security assurance practices match the typical practices of Agile methods. For

example, they identify that the informal review practices of agile methods match well, but

that many agile approaches lack the external review and formal validation required for

security. In addition, they identify that many security practices are independent of the

adoption of agile practices – e.g. the use of security design principles. Similarly, Lotfi [59]

(as described earlier in Section 2.8) found that some security assurance practices can be

easily integrated. In particular, [53] begins to describe how security assurance cases can be

used within Scrum to help iteratively develop security features.

Finnegan and McCaffery [61] introduced a work in the filed of medical devices security

assurance within the regulated software research center. They developed a framework to

meet the requirements of this regulatory guidance through the use of assurance cases. They

then used this framework to influence on a number of security related standards” six

standards”, through the adaptation of Goal Structure Notation (GSN) argument pattern.

This security argument pattern will facilitate to the regulators and healthcare organisations

with a link between the security and risks, by mapping the six standards to 19 security

capabilities to facilitate traceability for the regulators. Similar to Fitzgerald, et al [50]

presented on how agile methods can be scaled to regulated environment.

Finnegan and McCaffery [61] introduced work in the field of security assurance for

medical devices carried out at the Regulated Software Research Center. They developed a

framework to meet the requirements of regulatory guidance in that domain through the use

of assurance cases. They then used this framework to influence a number of security

related standards (“six standards” ISO 27799, ISO/IEC 27002,IEC 62443-3,NIST SP 800-

53,ISO/IEC, 15408-2, ISO/IEC 15408-3.).

Their assurance approach is documented through the use of a Goal Structuring Notation

(GSN) argument pattern. This security argument pattern is intended to provide regulators

and healthcare organisations with a means to link security measures and risks, by mapping

the objectives of the six standards to 19 security capabilities to facilitate traceability for the

regulators.

43

2.9 Summary

In this chapter we have explained some of the funcdamental concepts and practices relating

to safety assurance and Agile methods in order to provide context for the remainder of the

thesis. Moreover, we have presented an overview of the literature relating to the integration

of Agile within safety-critical systems, highlighting previous successes, challenges and

obstacles faced by the researchers.

In the literature Stålhane et al [85] illustrate some of difficulties perceived in the

integration of agile development and safety case. Stålhane describes the concern that safety

case development does not directly contribute to the development of running software and

only indirectly contributes to the test and verification activities. They state that,

"Documentation produced simply for the sake of compliance or assurance is considered by

some to run counter to the agile manifesto’s idea of customer focus. Reuse of documents

and use of document templates, however, can reduce the extra effort needed for building a

safety case. Working with the safety case offers the potential to increase system

understanding and will thus lead to a more efficient process" [85].

However our work focuses on the satisfaction of 4+1 principles within an agile framework

“Scrum”. Specially, the focus of the work is on assurance rather than being seen to comply

with a specific safety standard.

44

Chapter 3

Survey

3.1 Introduction

In this chapter we describe the results of our survey designed to elicit the opinions of safety

practitioners as to the challenges and opportunities posed by the application of agile

development methods in the field of safety critical systems development. In particular, the

survey explored the relationship between three key activities in safety engineering and an

agile approach – namely, safety requirements development, hazard analysis, and safety

case development. The results of this survey are presented together with brief discussion of

the implications for integration.

3.2 Importance of research

As outlined in the literature survey in Chapter 2, despite progress in the use of agile

development methods in safety critical systems development (e.g. [45,50,58], there are still

those with doubts about the potential for successful integration. There are also reported

experiences [43] that highlight the complementary nature of the iterative and incremental

approach underlying many agile methods and recognised best practice in risk management

in safety critical systems development. Rather than start with a theoretical evaluation of the

compatibility of the principles of agile development with software safety assurance, we

decided to draw out these experiences, opinions (and possibly preconceptions) by means of

a practitioner survey. In particular, the survey attempted to draw out specific responses

relating to the (possible) incremental and iterative nature of safety requirements

development, hazard analysis and safety (assurance) case development.

3.3 Survey Design

The first section (8 questions) of the survey was designed to elicit information about the

respondents: job role, knowledge and experience of safety critical systems engineering

45

practice and standards, and knowledge and experience of agile methods. The main body of

the survey – which is presented in the following section - was designed as a series of

statements about the potential integration of safety engineering activities with agile

development with respondents prompted for responses on a five-point Likert scale. To

avoid biasing responses, both positive and negative statements about possible integration

were included. In addition, some statements were designed with deliberate overlap and/or

contradiction to check the consistency of the respondent’s answers.

3.3.1 Survey findings

This section displays and discussing the themes in the survey with graphs for illustration.

At the end of this chapter, we will highlight the most important themes, which emerged

from this part of the research.

Q9. Please rate the following statement: “Agile Methods can be integrated with Safety

Critical Systems Development”.

Responses

Count
Assigned

Weight

%

Percentage of total respondents

Strongly disagree 1 1 3.23%

Mildly disagree 2 2 6.45%

Neither agree or

disagree

3

3

9.68%

 Mildly agree 12 4 38.71%

Strongly agree 13 5 41.94%

Weighted Score : 4.10

Total Responses 31

Q9. We asked whether respondents thought that Agile methods could be integrated with

safety- critical systems development. 41.94% of respondents Strongly Agreed, slightly

followed by the number who Mildly Agreed 38.71%, these respondents indicated

significant approval of integration between agile methods and safety critical systems. On

the contrary, the figures for Nether Agree or Disagree 9.68%, Mildly Disagree 6.45%,

Strongly Disagree 3.23% were very low. The result was an overwhelmingly positive

response (80% Agree or Strongly Agree). That indicates an enthusiasm for integration.

46

Q10. Please rate the following statement: "Hazard Analysis is an ongoing activity that

must be applied throughout the lifecycle".

Responses

Count
Assigned

Weight

%

Percentage of total respondents

Strongly disagree 1 1 3.23%

Mildly disagree 0 2 0%

Neither agree or

disagree

1

3

3.23%

 Mildly agree 8 4 25.81%

Strongly agree 21 5 67.74%

Weighted Score : 4.55

Total Responses 31

Q10. We asked whether respondents agree that hazard analysis is an ongoing activity that

must be applied throughout the lifecycle. The majority of respondents Strongly Agree with

that statement 67.74%, a little over quarter 25.81% Mildly Agree. Neither Agree or

Disagree 3.23%, Strongly Disagree 3.23% and 0% Mildly Disagree. The final result

strongly supported the notion that these activities are iterative and incremental, and need to

be revisited throughout software development.

Q11. Please rate the following statement: "As well as making a safe product, it is

necessary to provide assurance of safety (for others)".

Responses

Count
Assigned

Weight

%

Percentage of total respondents

Strongly disagree 0 1 0%

Mildly disagree 0 2 0%

Neither agree or

disagree

2

3

6.45%

 Mildly agree 6 4 19.35%

Strongly agree 23 5 74.19%

Weighted Score : 4.68

Total Responses 31

47

Q11. "As well as making a safe product, it is necessary to provide assurance of safety (for

others)"? Another interesting result is that 74.19% of the survey respondents Strongly

Agree. 19.35% with this statement. The important point here is that there is strong

recognition that the primary concern for safety engineering is not about just making a

product safe, it’s also about how we convince

others that the product is safe – i.e. assurance. The significance of this response is that it

relates to the issue of demonstration of safety, e.g. with documentation, that others can

independently review and evaluate. This response suggests that there is a need to establish

an explicit safety case that be used to present the arguments and evidence of achieved

safety to others.

Q12. Please rate the following statement: "Compliance with standards is important".

Responses

Count
Assigned

Weight

%

Percentage of total respondents

Strongly disagree 0 1 0%

Mildly disagree 1 2 3.33%

Neither agree or

disagree

6

3

20.00%

 Mildly agree 8 4 26.67%

Strongly agree 15 5 50.00%

Weighted Score : 4.23

Total Responses 30

Q12. Half of the respondents 50% Strongly Agree that compliance with standards is

important, followed by slightly more than quarter 26.67%, Neither Agree or Disagree 20%

and Mildly Disagree 3.23%. Overall, there is an overwhelmingly positive response 77%

Agree or Strongly Agree, indicating the practitioners acknowledge the importance of the

standards that prevail over the development and assurance of safety critical systems.

Q13. Please rate the following statement: "Traceability (e.g. of safety requirements) is

important".

Responses

Count
Assigned

Weight

%

Percentage of total respondents

48

Strongly disagree 0 1 0%

Mildly disagree 0 2 0%

Neither agree or

disagree

3

3

9.68%

 Mildly agree 4 4 12.90%

Strongly agree 24 5 77.42%

Weighted Score: 4.68

Total Responses 31

Q13. The majority of our respondents Strongly Agreed that traceability for safety

requirement is important for software development projects 77.42%, and Mildly Agree

scored 12.90%. By contrast, only 9.68% of responses were on the Neither Agree nor

Disagree survey scale and both Mildly Disagree and Strongly Disagree scored 0%. Again,

this is an overwhelmingly positive response that recognizes the importance of traceability

90%. This is a specific illustration of the point about assurance that was raised in the

response to Q11, in that traceability provides a means for, being able to demonstrate how

requirements are decomposed and allocated.

Q14. Please rate the following statement: "Software safety assurance requires system level

knowledge".

Responses

Count
Assigned

Weight

%

Percentage of total respondents

Strongly disagree 0 1 0%

Mildly disagree 0 2 0%

Neither agree or

disagree

1

3

3.23%

 Mildly agree 8 4 25.81%

Strongly agree 22 5 70.97%

Weighted Score: 4.68

Total Responses 31

Q14. There is a clear convergence between this question and the previous one. Our

respondents appear to be Strongly Agreed 70.97% that software safety assurance requires

49

system level knowledge. Mildly Agree scored 25.81%, and Neither Agree nor Disagree

3.23%. Again, the answers reveal overwhelming support for the statement that system level

knowledge is essential for the safety assurance of software 96%. Whilst this is true, it

should be noted that it relates to one of the biggest problems encountered in safety critical

software development, that it is hard (and potentially unsafe) to develop software without

system level safety knowledge.

Q15. Please rate the following statement: "Safety case development is an ongoing activity

that must be applied throughout the lifecycle".

Responses

Count
Assigned

Weight

%

Percentage of total respondents

Strongly disagree 0 1 0%

Mildly disagree 1 2 3.23%

Neither agree or

disagree

3

3

9.68%

 Mildly agree 9 4 29.03%

Strongly agree

5

58.06%

 Weighted Score: 4.42

Total Responses 31

Q15. This is one of the most interesting set of responses in the survey. 58.06% of the

responses to affirm the importance of safety case development as an ongoing activity

which must be applied throughout the lifecycle. This is followed by Mildly Agree with a

score of 29.03% and Neither Agree or Disagree with a score of 9.68%. The lowest score

was for Mildly Disagree 3.23%. These answers are an indication of the importance of

safety case development. The responses suggest approximately 90% overall support for

this concept.

Q16. Please rate the following statement: "Regular evaluation of safety assurance / safety

case progress should take place throughout the lifecycle".

Responses

Count

Assigne

d

Weight

%

Percentage of total respondents

Strongly disagree 0 1 0%

50

Mildly disagree 2 2 6.45%

Neither agree or disagree 1 3 3.23%

Mildly agree 8 4 25.81%

Strongly agree 20 5 64.52%

Weighted Score: 4.48

Total Responses 31

Q16. Another affirmation of the importance of safety assurance and the safety case. We

asked whether regular evaluation of safety assurance and safety case progress should take

place throughout the lifecycle. Around 64.52% of the respondents consider that regular

evaluation of safety assurance and the safety case need to take place throughout the

lifecycle, as demonstrated by their support for Strongly Agree on the survey scale. 25.81%

of the respondent Mildly Agree, 6.45% Mildly Disagree, and finally a small percentage

3.23% Neither Agree or Disagree with the statement. The most obvious position in the

system lifecycle for review of the assurance case position is “preoperational” – i.e. just

prior to the system being approved to enter service. However, staged safety case review

(alongside staged production of the assurance case, as advocated in [1] and [2]) is far less

risky (in project risk terms). If there are problems with the arguments and evidence being

offered up by the assurance case it is desirable to find this out as early as possible in the

lifecycle.

Q17. Please rate the following statement: "Safety critical systems development should involve

regular contact with the regulator / acceptance authority".

Responses Count Assigned Weight % Percentage of total

respondents
1 - 1 1 1 3.23%
2 - 2 1 2 3.23%

3 - 3 7 3 22.58%

4 - 4 6 4 19.35%

5 - 5 16 5 51.61%

Weighted Score : 4.13

Total Responses 31

51

Q17. A little over half of the respondents 51.61% Strongly Agree with the notion that

safety critical systems development should involve regular contact with the regulator /

acceptance authority. 22.58% of the respondents Neither Agree or Disagree, followed by

19.35% who Mildly Agree. Finally Mildly Disagree and Strongly Disagree each score the

same 3.23%.

Q18. Please rate the following statement: "Safety assurance and certification difficulties discovered

late in the lifecycle (e.g. failure to establish an acceptable safety case) have resulted in significant

cost and time overruns".

Responses

Count
Assigned

Weight

%

Percentage of total

respondents
1 - 1 0 1 0%

2 - 2 1 2 3.23%

3 - 3 1 3 3.23%

4 - 4 4 4 12.90%

5 - 5 25 5 80.65%

Weighted Score : 4.71

Total Responses 31

Q18. An overwhelming majority 80.65% of the respondents Strongly Agree with the

following statement: "Safety assurance and certification difficulties discovered late in the

lifecycle (e.g. failure to establish an acceptable safety case) have resulted in significant cost

and time overruns". 12.90% Mildly Agree, and Mildly Disagree and Strongly Disagree

each score 3.23%. The results therefore indicate strong overall support for this statement

(>90%). This highlights the importance of “early and often” approaches to getting

feedback on the development of an acceptable safety case.

Q19. Please rate the following statement: "Software Safety Requirements can be defined

once, at the beginning of the project, then used (unchanged) through the software

development and assurance activity".

Responses

Count
Assigned

Weight

%

Percentage of total respondents

Strongly disagree 20 1 64.52%

52

Mildly disagree 9 2 29.03%

Neither agree or

disagree

0

3

0%

Mildly agree 2 4 6.45%

Strongly agree 0 5 0%

Weighted Score: 1.48

Total Responses 31

Q19. The most interesting part of this survey is that 64.52% of our respondents Strongly

Disagree with the idea that Software Safety Requirements can be defined once, at the

beginning of the project, then used (unchanged) through the software development and

assurance activity. 29.03% mildly disagree, 0% Neither Agree or Disagree and 0%

Strongly Agree. 6.45% of respondents Mildly Agree with the statement. The strong

disagreement with this statement challenges any view of safety requirements that is static

through the process. It challenges the view that requirements can be defined (principle 1)

to cover hazards but then unaltered. In addition, the disagreement here is consistent with

the strong agreement with the statement proposed in Q10 (Hazard Analysis is an ongoing

activity that must be applied throughout the lifecycle). The response here highlights the

fact that we cannot simply establish a safety requirements backlog at the beginning of

software development and expect this to be unchanged through the software development

process.

Q20. Please rate the following statement: "Compliance with standards is the primary

objective of software safety assurance".

Responses

Count
Assigned

Weight

%

Percentage of total respondents

Strongly disagree 15 1 50.00%

Mildly disagree 7 2 23.33%

Neither agree or disagree 5 3 16.67%

Mildly agree 3 4 10.00%

Strongly agree 0 5 0%

Weighted Score: 1.87

Total Responses 30

53

Q20. 50% of the respondents Strongly Disagree that compliance with standards is the

primary objective of software safety assurance, 23.33% Mildly Disagree, 16.67% Neither

Agree or Disagree, 10% Mildly Agree and, unexpectedly, 0% Strongly Agree. The strong

disagreement with this statement highlights the view that whilst standards are important

(note the strong positive response to Q12) they are not the primary objective of safety

critical systems development, which could (for example) be argued to be concerned with

building a safe product. This suggests that our approach to integrating safety critical

systems development and Agile should be aware of, and demonstrate compliance with

standards (such as IEC 61508). We must, more importantly, address how integrated

processes help us establish compelling arguments (and evidence) of safety.

Q21. Please rate the following statement: "The interface and interaction between software

engineers and safety engineers is

Responses

Count
Assigned

Weight

%

Percentage of total respondents

Strongly disagree 6 1 19.35%

Mildly disagree 13 2 41.94%

Neither agree or

disagree

11

3

35.48%

 Mildly agree 1 4 3.23%

Strongly agree 0 5 0%

Weighted Score : 2.23

Total Responses 31

Q21. As we can see from the results for this question, 41.94% Mildly Disagree with the

statement that the interaction between software engineers and safety engineers is not well

managed, followed by 35.48% who Neither Agree or Disagree and 19.35% who Strongly

Disagree. By contrast, Mildly Agree scores 3.23% and Strongly Agree. The responses are

therefore basically neutral to negative, showing that this is an area for improvement. If we

get the ‘customer’ stakeholder involvement part of Agile right then this is an opportunity to

improve on this experience.

54

Q22. Please rate the following statement: "Safety case development only needs to be

considered at the end of the lifecycle after development is complete".

Responses

Count
Assigned

Weight

%

Percentage of total respondents

Strongly disagree 24 1 77.42%

Mildly disagree 5 2 16.13%

Neither agree or

disagree

1

3

3.23%

 Mildly agree 0 4 0%

Strongly agree 1 5 3.23%

Weighted Score: 1.35

Total

Responses

31

Q22. 77.42% of respondents Strongly Disagree with the statement that safety case

development only needs to be considered at the end of the lifecycle after development is

complete. 16.13% Mildly Disagree, 3.23% Neither Agree or Disagree, 3.23% Strongly

Agree and 0% Mildly Agree. This answer is the opposite of that indicated for Q15 (Safety

case development is an ongoing activity that must be applied throughout the lifecycle),

which emphasizes the perceived importance of safety case development throughout the

lifecycle

Q23. Please rate the following statement: "Safety problems, including safety assurance

problems, are identified and managed early in the lifecycle as they arise".

Responses

Count
Assigned

Weight

%

Percentage of total respondents

Strongly disagree 1 1 3.23%

Mildly disagree 11 2 35.48%

Neither agree or

disagree

5

3

16.13%

 Mildly agree 9 4 29.03%

Strongly agree 5 5 16.13%

Weighted Score : 3.19

55

Total Responses 31

Q23. Responses to this statement are much more spread – a variety of experiences is

clearly being hinted at. Just over a third of the participants 35.48% Mildly Disagree with

the statement here, as compared with just under a third 29.03% who Mildly Agree. Two

categories (Strongly Agree and Neither Agree or Disagree) have the same figure 16.13%,

and 3.23% Strongly Disagree. So there is clearly some recognition that safety problems

aren’t always identified early in the lifecycle. The fact that there are some positive

indications and some negative ones from the spread of responses implies that there is room

for improvement in the early identification of safety and assurance problems. Incremental

development of assurance cases offers one potential means to supply this improvement.

Q24. Please rate the following statement: "The level of effort spent in the design and

assurance of a safety-critical system should be commensurate (in balance) with the level of

risk posed by that system".

Responses

Count
Assigned

Weight

%

Percentage of total respondents

Strongly disagree 1 1 3.23%

Mildly disagree 1 2 3.23%

Neither agree or

disagree

3

3

9.68%

 Mildly agree 12 4 38.71%

Strongly agree 14 5 45.16%

Weighted Score : 4.19

Total Responses 31

Q24. As we see, 45.16% of respondents Strongly Agree with the statement, followed

38.71% who Mildly Agree and 9.68% who Neither Agree or Disagree. By contrast, Mildly

Disagree and Strongly Disagree each score 3.23%. Prioritisation of assurance effort

(according to risk) was thus recognized as important by 84% of the respondents. Together

with the observations regarding evaluation, this suggests that incremental safety case

development may be useful in helping guide an incremental software development process

56

Q25. Which of the following are recognised as features of agile development?

Responses Count % Percentage of total respondents

Active customer involvement is

imperative

26

83.87%

 The development team must be

empowered to make decisions

28

90.32%

 Requirements evolve but the

timescale is fixed

15

48.39%

 Capture requirements at a high

level; lightweight & visual

8

25.81%

 Develop small, incremental

releases and iterate

31

100.00%

 Focus on frequent delivery of

products

21

67.74%

 Complete each feature before

moving on to the next

11

35.48%

 Testing is integrated throughout

the project lifecycle – test early

and often

29

93.55%

 A collaborative & cooperative

approach between all

stakeholders is essential

28

90.32%

 Apply the 80/20 rule 4 12.90%

None 0 0%

Total Responses 201

Multiple answers per participant possible. Percentages added may exceed 100 since a

participant may select more than one answer for this question.

Q25.This question was included specifically to check how much experience and

knowledge participants had of Agile methods, specifically practices and principles. As can

be seen from the table above, participants have some knowledge on agile practices, but

knowledge is estimated through exercise and experience.

57

Q26. Please rate the following statement: "The process of software development is less

important than the finished software product".

Responses

Count
Assigned

Weight

%

Percentage of total respondents

Strongly disagree

5

1
16.13

%

Mildly disagree

7

2
22.58

%

Neither agree or disagree

7

3
22.58

%

Mildly agree

6

4
19.35

%

Strongly agree

6

5
19.35

%

 Weighted Score : 3.03

Total Responses 31

Q26. As we can see from the table above, that the participants’ answers indicate a spread

of different opinion ns here. This indicates that there is no unified opinion as to whether

the software development process is less important than the finished software product.

Q27. Please rate the following statement: "Documentation should be minimised during

software development".

Responses

Count
Assigned

Weight

%

Percentage of total respondents

Strongly disagree 5 1 16.13%

Mildly disagree 10 2 32.26%

Neither agree or disagree 7 3 22.58%

Mildly agree 4 4 12.90%

Strongly agree 5 5 16.13%

Weighted Score : 2.81

58

Total Responses 31

Q27. More than a third 32.26% Mildly Disagree with the idea of minimized documentation

during software development posed in Q27. After that comes Neither Agree nor Disagree

22.58% followed by both Strongly Agree and Strongly Disagree, each of which has

16.13%. Mildly Agree, comes in last at 12.90% This indicates the importance of

documentation.

Q28. Please rate the following statement: "Requirements should be addressed according to

their priority".

Responses

Count
Assigned

Weight

%

Percentage of total respondents

Strongly disagree 0 1 0%

Mildly disagree 3 2 10.00%

Neither agree or

disagree

4

3

13.33%

 Mildly agree 15 4 50.00%

Strongly agree 8 5 26.67%

Weighted Score : 3.93

Total Responses 30

Q28. Half of the participants 50.00% Mildly Agree and 26.67% Strongly Agree with the

statement that, requirements should be addressed according to their priority. In total, 77%

of respondents indicate broad agreement with the principle of requirements prioritization,

which is a fundamental principle of Agile methods: developers are given space and

freedom in the choice of tasks. 13.33% of respondents Neither Agree or Disagree with the

statement and 10.00% Mildly Disagree. As we can see above the practitioners reject the

idea that documentation should be minimised during software development.

Q29. Which of the following practices of agile development can contribute safety-critical

systems development and assurance?

Responses Count % Percentage of total respondents

None (Please leave a

comment)

0

0%

59

All above 6 33.33%

User stories 7 38.89%

Small/short releases 8 44.44%

Simple design 12 66.67%

Refactoring 6 33.33%

Continuous Integration 11 61.11%

Pair Programming 9 50.00%

Release Planning 10 55.56%

Other (please specify) 0 0%

Total Responses 69

Multiple answers per participant possible. Percentages added may exceed 100 since a

participant may select more than one answer for this question.

Q29. The responses indicate clear support for the need for agile practices and principles, at

the forefront came Simple Design with score of 66.67%. Continuous Integration scored

61.11%, followed by Release Planning with 55.56%. Half of the participants (50.00%)

prefer to use Pair Programming, less than half 44.44% indicate support for Small/short

releases, 38.98% for User Stories 38.89%. 33.33% agreed that all of the principles and

practices listed are important, and the same proportion support Refactoring.

Q30. Which one of the following features of agile development could be in conflict with

safety critical systems? (If you chose one or more please leave a comment)

Responses Count % Percentage of total respondents

Active user involvement

imperative

is

3

9.68%

 The team must be empowered to

make decisions

5

16.13%

 Requirements evolve but

timescale is fixed

the

13

41.94%

 Capture requirements at a high level;

lightweight & visual

10

32.26%

 Develop small, incremental releases

and iterate

4

12.90%

60

Focus on frequent delivery

products

of

10

32.26%

 Complete each feature before

moving on to the next

7

22.58%

 Testing is integrated throughout the

project lifecycle – test early and

often

0

0%

A collaborative & cooperative

approach between all stakeholders is

essential

2

6.45%

 Apply the 80/20 rule 12 38.71%

None 4 12.90%

Other (please specify) 9 29.03%

Total Responses 79

Multiple answers per participant possible. Percentages added may exceed 100 since a

participant may select more than one answer for this question.

Q30. We asked which Agile features could be in conflict with safety-critical systems. The

participants’ answers indicate their concern with fixed timescales 41.94%, with applying

the 80/20 rule 38.71%. Around a third of responses express concern about requirements at

a high level, and the focus on frequent delivery of products (32.26% for each of these)

22.58% of responses indicate concern with the need to complete each feature before

moving on to the next. Some of the participants agreed that the notion that the team must

be empowered to make decisions is potentially in conflict with safety critical systems

principles. 12.90% feel that developing in small, incremental releases and iterating these is

in conflict with safety critical systems principles. However, 12.90% believe that none of

factors indicated in the question necessarily conflicts with safety-critical systems

principles. Finally, 9.68% believed that active user involvement in development as a

principle conflicts with safety critical systems methodologies.

Q31. Which one of these practices could be beneficial for safety-critical systems

development and assurance?

Responses Count % Percentage of total respondents

Active user involvement is imperative 21 67.74%

61

The team must be empowered to make

decisions

17

54.84%

 Requirements evolve but the timescale

is fixed

10

32.26%

 Capture requirements at a high level;

lightweight & visual

9

29.03%

 Develop small, incremental releases

and iterate

18

58.06%

 Focus on frequent delivery of products 14 45.16%

Complete each feature before moving

on to the next

7

22.58%

 Testing is integrated throughout the

project lifecycle – test early and often

29

93.55%

 A collaborative & cooperative approach

between all stakeholders is essential

22

70.97%

 Apply the 80/20 rule 1 3.23%

None 0 0%

Total Responses 148

Multiple answers per participant possible. Percentages added may exceed 100 since a

participant may select more than one answer for this question.

Q31. The question here is the exact opposite of the previous question. Here, we found that

the participants indicated that some Agile practices could potentially contribute to and be

beneficial for safety-critical systems. 93.55% agreed that the principle of testing being

integrated throughout the project lifecycle – test early and often - could be beneficial for

safety-critical systems development and assurance. 70.97% agreed that a collaborative &

cooperative approach between all stakeholders is essential for safety-critical systems.

58.06% felt that developing in small, incremental releases and iterating these was

potentially beneficial.

Q32. Which of the following statements best represents your overall opinion regarding

agile development methods and safety?

Responses
Count

%

Percentage of total respondents

62

Agile development methods are in

conflict with safety critical systems

development and assurance

2

6.67%

 Agile development methods can

sometimes be in conflict, and sometimes

in harmony with safety critical systems

development and assurance (add

comment below)

14

46.67

%

Agile development methods can be in

harmony with safety critical systems

development and assurance

14

46.67

%

 Other (please specify) 12 40.00

%

(Did not answer) 0 0%

Total Responses 42

Multiple answers per participant possible. Percentages added may exceed 100 since a

participant may select more than one answer for this question.

Q32. The results indicate a spread of opinion here: 46.67% of participants were agreed that

Agile development methods can be in conflict, and occasionally in harmony with safety

critical systems development and assurance, and the same proportion 46.67% agreed that

Agile development methods can be in harmony with safety critical systems development

and assurance, 6.67% agreed that Agile development methods are in conflict with safety

critical systems development and assurance. 40.00% of responses indicated an “Other”

response. There were a variety of additional comments made by those stating ‘Other’,

including the following:

“Depending	on	how	you	apply	agile	method.	Must	still	provide	documentation	as	

evidence.”	
	

“I	believe	they	can	be	in	harmony	if	one	considers	the	essential	complexity	of	the	

problem	space.	Agile	methods	help	us	address	complexity,	but	they	should	not	be	

applying	dogmatically	in	the	same	manner	as	other	non	safety-critical	domains.	

Likewise,	they	should	not	be	discounted	due	to	dogmatic	thinking	in	w.r.t.	[with	

respect	to]	traditional	SE	[Software	Engineering]	methods	-	that	one	has	to	do	it	

only	the	same	way	it	has	been	done	before”	

63

	

“Work	is	needed	to	put	them	into	harmony,	but	it	can	be	done.”	

	
“The	standard	agile	practices	are	fine	but	must	be	supplemented	with	additional	

practices	for	safety	critical	systems”	

	

“Only	 when	 project	 management	 acknowledges	 iterative	 software	 and	

requirements	 evolution,	 the	 typical	 conflict	 between	 safety	 and	 software	

development	can	be	avoided.”	
	

“Agile	is	an	attitude,	not	an	ideology”	

	
“It	depends	on	the	complexity	of	the	project/product/service	and	also	the	ability	

of	the	teams/stakeholders	and	also	timescales.”	
	

“The	agile	 culture	 encourages	people	 to	 hack.	Agile	methods	adapted	 to	 safety	

critical	projects	often	just	look	like	normal	monolithic	methods	which	are	mostly	

what	has	to	be	done”	
	

“Depends	on	the	external	assessor	and	the	PoC	[Points	of	Contact]	he's	provided”	

	
“If	 they	 seem	 in	 conflict	 its	 through	 thinking	 too	 literally	 about	 popular	

branded	agile	methodologies	and	a	shallow	understanding.”	

	“The	mindset	must	be	adjusted	as	to	how/what	to	test	and	form	documentation	

can	take”	
	

“Agile	 can	 support	 building	 safety	 critical	 systems	 and	 ease	 to	 build	 them	 -	

compared	to	using	other	methods.	Because	of	the	ongoing	attention	to	it.”	
	

	

	

	

	

	

	

64

3.4 Results and Discussion

31 people completed the questionnaire. A broad range of industrial sectors was represented.

We selected the participants from different roles, to get as broad a representation of

practitioners as possible with respondents from health, aerospace automotive, railway, and

the process sector. The majority of respondents represented organisations involving 150

people or more. 87% had practical experience of safety critical system development. 77%

had practical experience of the application of agile development methods. A broad range of

agile methods were cited as the basis for this practical experience, with the most popular

method (76%) being Scrum. The limited case study sample meant that not enough data was

collected from only 31 practitioners, and more than 31 practitioners are needed. We had

considerable difficulty finding practitioners who were sufficiently expert in both Agile and

safety. The majority of our participants were based in the Germany, the USA Sweden,

Norway, UK, and Italy.

At the outset of the survey 80% either agreed or strongly agreed that agile methods can be

integrated with safety critical systems development. Answers to the final survey question

shows a more nuanced response with 48% believing agile and safety methods to be in

harmony, and 45% believing that some agile and safety practices are in harmony whilst

some are in conflict practices are in harmony whilst some are in conflict. The following

themes emerge from the responses to individual questions:

The response to statements regarding the processes associated safety requirements

elicitation, hazard analysis, assurance case development and evaluation strongly supported

the notion that these activities are iterative and incremental, and need to be revisited

throughout software development. This challenges the view that safety requirements and

hazard analysis can largely be performed outside of the sprint / incremental cycle

• The need to provide assurance of product safety, as well as making the product

safe was strongly recognized (>95%). This indicates the importance of establishing

the safety case alongside development.

• Whilst compliance with standards was recognized as important (50%) it was also

recognized (>73%) as not being the primary objective of software safety assurance.

• 75% recognized that software safety assurance should involve system level

knowledge and engineers. (70%) also recognized the importance of involving

regulators and evaluators during software development. This helps inform the

definition of the traditional agile ‘customer’ role when applied in a safety critical

65

systems development context.

• There was recognition (50%) that safety problems aren’t always identified early in

the lifecycle. There was strong support (90%) for regular evaluation of safety case

progress during development. Again, this suggests safety case development should

be treated as an ‘in-increment’ activity.

• Prioritisation of requirements (77%) and assurance effort (84%) (according to risk)

was recognized as important. Together with the observations regarding evaluation,

this suggests that incremental safety case development may be useful in helping

guide an incremental software development process.

66

Chapter 4

Integrating Software Safety Assurance
Principles with Scrum

4.1 Introduction

In this chapter, we present an initial proposal as to how Scrum can be modified to address

the 4+1 principles of [84] safety assurance. We discuss the 4+1 principles in detail in

section 4.2, and provide suggestions for the modification of Scrum targeted to each

principle in turn. The following ‘design criteria’ motivated these modifications: change as

little as necessary, keep agility as far as possible, do not compromise on safety assurance.

We believe that the use of Agile in the field of safety critical systems is likely to present a

number of challenges. These challenges, and our recommendations for how to address

them, are also discussed in this chapter.

Agile development traditionally promotes the view that the delivery of working software to

the customer is the primary measure of progress [40]. However, for safety critical systems

development it needs to be clear that the definition of ‘working’ software implies safety

assured software. If the safety of the software isn’t assured, it cannot be considered as

working software, because it cannot be used. Therefore our primary measures of progress

(for safety critical software) must take into account both the status of the software and the

status of the software’s safety assurance. As discussed in Chapter 2, Scrum is an agile

development approach that uses an iterative, incremental process, and is based on a small

set of core values, principles, and practices [15]. Scrum does not explicitly address

software safety assurance. e software safety assurance into Scrum.

4.2 The 4+1 challenges and recommendation

The 4+1 Principles were developed by Kelly el al [76]. The value of using the 4+1

principles as the basis for this project is that the principles capture the spirit, or intention,

of the standards, which provides us with a more abstract basis for attempting a

modification / integration with Scrum than would a specific safety standard. These

principles are constant across domains and across projects, and can be regarded as the

immutable core of any software safety justification. The principles also help maintain

67

understanding of the ‘big picture’ of software safety issues whilst examining and

negotiating the detail of individual standards, and provide a reference model for cross-

sector certification.

4.2.1 Software Safety Assurance Principle 1:

Software safety requirements shall be defined to address the software contribution to

system hazards

Kelly provides the following description of Principle 1 [76]:

“Software by itself cannot be safe or unsafe. It is only when placed in a system context that

the ‘safety’ of software can be judged by considering the contribution that the software

could make to system level hazards. For example, software can play a role as the initiator

of a causal chain of events leading to a system level hazard (and eventual accident).

Software (e.g. when placed in the role of a protection system) can also play a role by

failing to mitigate failures of other (non- software) elements. The first challenge of

software safety assurance is to identify all of the ways in which software can contribute to

system level hazards and to capture the necessary behaviour of the software in relation to

these contributions in terms of a clearly defined set of software safety requirements at the

system software boundary. (Note these behavioural software safety requirements are

distinct from the assurance requirements of software safety standards, e.g. to maintain

traceability.)”

Challenges posed

• For assurance (e.g. certification), software safety requirements (and their

treatment) must be easily identifiable within the total set of requirements being

addressed.

• Safety requirements can be positive functional requirements in their own right,

constraints to be satisfied (e.g. timing) when addressing other requirements, or

negative requirements (i.e. behavior to not be exhibited)

• Safety requirements are therefore often associated and interrelated with core

product requirements (i.e. requirements in the product backlog)

• Safety requirements should not be addressed as an ‘after thought’ following

68

implementation of core product requirements.

• Relevant (related) safety requirements need to be highlighted when addressing core

requirements from the Product Backlog (so that they can be addressed as an

integral of the implementation of these requirements.

Recommendations for Scrum

• A second Product Backlog – the Safety Backlog – should be maintained alongside

the Product Backlog to explicitly store, manage and prioritise software safety

requirements.

• The Safety Backlog should record traceability between safety requirements and

system hazards

• The Safety Backlog should record traceability between safety requirements and

‘core’ Product Backlog requirements (e.g. between a safety constraint and the

function to which it relates)

• The Safety Backlog is initially populated as a result of (deductive, ‘top down’)

system level safety analysis performed prior to the software development

commencing (i.e. analysis that identifies potential software contributions to system

level hazards).

• The Safety Backlog should also be populated through performing (inductive,

‘bottom up’) hazard analysis (e.g. functional failure analysis) on the core Product

Backlog requirements.

• Both the system level safety analysis, and the software hazard analysis should

involve the following stakeholders: the system team (as ‘customer’ to the software

team), the system customer (e.g. system operator), competent safety engineers

capable of carrying out the analyses, the safety regulator (as safety ‘customer’)

potentially supported by additional independent and internal safety reviewers (as

proxies for the regulator).

• Maintenance of the Safety Backlog is the responsibility of a nominated safety team

member from within the software team. This team member must ensure that they

fully understand the source and rationale behind each of the requirements in the

69

safety backlog. (This may involve discussion with the stakeholders involved in the

original safety and hazard analyses.)

• When product requirements are chosen for a given sprint, the related safety

requirements from the Safety Product Backlog should be identified, discussed and

explained (by the nominated safety team member) at the beginning of the sprint.

• One team member should be explicitly responsible for maintaining and explaining

the safety product backlog.

4.2.2 Software Safety Assurance Principle 2:

The intent of the software safety requirements shall be maintained throughout

requirements decomposition

Kelly provides the following description of Principle 2 [76].

As the software development lifecycle progresses, the requirements and design are

progressively developed and a more detailed software design is created. Having established

complete and correct software safety requirements at the highest (most abstract) level of

design, it must be possible to demonstrate that the intent of those requirements is

maintained as the software safety requirements are developed, reinterpreted, allocated and

decomposed.

Challenges posed

• If software safety requirements are reinterpreted, allocated or decomposed during

development, the new safety requirements that emerge should be documented

• If software safety requirements are reinterpreted, allocated or decomposed during

development, traceability must be maintained between the original safety

requirement and the new requirements or design that emerges.

• When new requirements or design emerge as a response to the original requirement

they must be reviewed to check whether they fully address the intent of the original

safety requirement.

70

• Justification must be maintained as to how the new requirements and address the

original safety requirement.
Recommendations for Scrum

• If software safety requirements are reinterpreted, allocated or decomposed during a

sprint, the new safety requirements that emerge should be documented in the

Safety Product Backlog, with traceability to the original safety requirement

• As part of the Sprint review, those responsible for developing the original safety

requirement must present the design (or refined requirements) solution proposed

and new safety requirements that have emerged.

• The Sprint review should attempt to check whether the proposed solution fully

addresses the intent of the original safety requirement.

• Independent stakeholders are required as part of this review. It should involve the

nominated safety team member and potentially some or all of the following: the

system team (as ‘customer’ to the software team), the system customer (e.g. system

operator), a suitable internal safety reviewer (as proxy for the regulator’s position).

• If it is determined that more time is required to assess the adequacy of the proposed

solution (than the sprint review allows) then a more thorough review will need to

be allocated as an activity to the following Sprint. Whilst this activity is taking

place, ideally further implementation of the solution should be avoided (i.e. other

requirements from the Backlogs should be prioritized)

• The decomposition of the original safety requirement into the new safety

requirements, and the justification as to the adequacy of this decomposition should

be documented in the assurance case by the nominated safety team member. This

should take place in the Sprint immediately following the review and will be

presented as during the following Sprint review).

4.2.3 Software Safety Assurance Principle 3:

Software safety requirements shall be satisfied

Kelly provides the following description of Principle 3 [76].

71

Ultimately, it is necessary to demonstrate that any safety requirements allocated to software

have been satisfied (i.e. present evidence to establish whether the required behaviour will

occur in operation). It is important to present evidence that shows the satisfaction of safety

requirements under anticipated operating conditions. For example, this requires presenting

evidence that addresses satisfaction under both normal and abnormal (fault) conditions.

Challenges posed

• Verification evidence must be presented to demonstrate the satisfaction of any

safety requirements claimed to be implemented.

• Explicit traceability must be maintained between verification evidence and

implemented safety requirements.

• Verification evidence generated must be reviewed to check whether it fully

addresses the intent of the safety requirement.

• Justification must be maintained in order to indicate how the verification evidence

demonstrates satisfaction of the safety requirement.

Recommendations for Scrum

• Daily Scrum meetings can be used to provide an early indicator for monitoring

progress towards safety requirements satisfaction.

• As part of Sprint review, those responsible for the implementation of a particular

safety requirement must present the solution and explain how the intent of the

safety requirement is fully satisfied.

• The Sprint review should attempt to check whether the implementation fully

addresses the intent of the original safety requirement, and should review the

verification evidence presented.

• Independent stakeholders are required as part of this review. It should involve the

nominated safety team member and potentially some or all of the following: the

system team (as ‘customer’ to the software team), the system customer (e.g. system

operator), a suitable internal safety reviewer (as proxy for the regulator’s position).

• After initial inspection in the Sprint review if it is determined that more

72

verification evidence is required (e.g. to satisfy the verification criteria of a safety

standard) then further verification will need to be allocated as an activity to the

following Sprint. It may be necessary for this verification activity to be performed

by independent team members or teams (according to Principle 4+1).

• The traceability of safety requirements to the verification evidence, and the

justification as to the adequacy of the evidence set should be documented in the

assurance case by the nominated safety team member. This should take place in the

Sprint immediately following the review and will be presented as during the

following Sprint review).

4.2.4 Software Safety Assurance Principle 4:

Hazardous behaviour of the software has been identified and mitigated

Kelly provides the following description of Principle 4 [76].

Whereas Principle 2 is concerned with maintaining the intent of safety requirements in the

presence of increasing design commitment, Principle 4 is concerned with the potential

undesirable and unintended consequences of design and implementation decisions.

Principle 2 is concerned with whether lower levels of requirements and implementation do

what is required (intended). Principle 4 is concerned with whether the design and

implementation does anything else that is considered unsafe. These potentially emergent

hazardous behaviours could firstly result from design decisions that have unintended

hazardous side effects. Secondly, they can also result from implementation (process

execution) errors during the software development process – e.g. modelling errors, coding

errors, and tool-use errors. It is necessary to ensure that assurance effort has been targeted

at attempting to reveal both of these sources of errors.

Challenges posed:

• Unintended hazardous behaviour can emerge as a result of the design and

implementation of both safety and core requirements and therefore has to be

identified in both cases.

• Where new hazardous behaviour is identified new safety requirements must be

defined to manage this behaviour

73

• Identifying hazardous behaviour can require system-level domain expertise from

outside of the software development team.

Recommendations for Scrum

• At the planning stage of a Scrum development the chosen modelling approach,

implementation language, development environment and assessment tools should

be documented. Hazard analysis should be conducted on the chosen languages,

processes and tools to identify the potential for the introduction of implementation

errors. Where the potential for error is identified it is necessary to provide evidence

for non-introduction of error (e.g. tool qualification), controls for the minimization

of error introduction (e.g. process guides) or means of demonstrating the absence

of introduced errors (e.g. static analysis tools). Justification of the chosen strategies

must be documented in the case.

• Daily Scrum meetings can be used to provide an early opportunity to identify

unintended side-effects emerging from a chosen implementation approach.

• (Inductive, ‘bottom up’) Hazard analysis should be performed as part of Sprint

review in order to identify hazardous side effects from the design and

implementation activity

undertaken during the Sprint. This hazard analysis should include a check of the

implementation of the chosen strategy for dealing with implementation error

introduction. This analysis should be performed in the context of the existing

identified system level- hazards, but be open to the possibility of identifying new

hazards.

• Independent stakeholders are required as part of this hazard analysis. It should

involve the nominated safety team member and potentially some or all of the

following: the system team (as ‘customer’ to the software team), the system

customer (e.g. system operator), a suitable internal safety reviewer (as proxy for the

regulator’s position).

• If it is determined that more time is required for the hazard analysis (than the

Sprint review allows) then a more thorough review will need to be allocated as an

activity to the following Sprint. Whilst this activity is taking place, ideally further

implementation of the solution should be avoided (i.e. other requirements from the

Backlogs should be prioritized)

• Where new hazardous behaviours (i.e. new software level contributions to system-

74

level hazards) are identified, new safety requirements (to manage these behaviours)

must be added to the Safety Backlog.

• Where the Sprint activity and subsequent review relates to the implementation of

safety requirements, the decomposition of the original safety requirement into the

new safety requirements, and the justification of the identification and mitigation

(through new safety requirements) of hazardous behavior should be documented in

the assurance case by the nominated safety team member. This should take place in

the Sprint immediately following the review and will be presented as during the

following Sprint review).

• Where the Sprint activity and subsequent review relates to the implementation of

core (i.e. non-safety specific) requirements, and new hazardous behavior is

identified, and new safety requirements defined, the assurance case needs to be

extended to include the new safety requirement.

4.2.5 Software Safety Assurance Principle 4+1:

The confidence established in addressing the software safety principles shall be

commensurate to the contribution of the software to system risk

Kelly provides the following description of Principle 4+1 [76].

This principle is expressed as ‘+1’, rather than principle number 5 because it underlies the

implementation of the first 4 principles. Perfect assurance of the other four principles is

unachievable. For example, it is impossible to prove that all hazards have been identified,

and that all the necessary corresponding safety requirements have been identified.

Consequently, we have to consider how to much effort to expend in addressing the first

four principles, and how much evidence to generate. We have to decide upon a sufficient

level of evidence to present. This principle states that the level of evidence needs to be

proportional to the level of risk associated with the software in question.

For a highly critical software-intensive system, the level of confidence in addressing the

first four principles needs to be high. For a lower criticality system, the level of confidence

can be lower.

75

Challenges posed

• To implement this principle it is necessary to be able to identify the criticality of

any software safety requirement

• Implementing this principle will affect the amount of effort required, and the level

of argument and evidence presented in the assurance case, to provide assurance of

the first four principles. This can affect the length of Sprints, whether assurance

activities take place alongside implementation activities within Sprints, or need

their own Sprint Cycles to complete. This can also affect the type of stakeholder

involvement required (e.g. whether independent verification or assessment is

required, or when customer stakeholder involvement is sought). It will also

influence the level of rigour in modelling and implementation techniques, and the

level of qualification required in tools used within the process.

• Different standards have different approaches to defining required levels of

assurance: IEC61508 sets a Safety Integrity Level according to the probability

delta in risk reduction; DO-178C places more focus on severity; ISO 26262

incorporates the concept of controllability of the vehicle. In addition, there are

many differences in the recommended techniques and processes at different levels

of criticality. If conformance to these standards is sought, the specific requirements

will need to be identified and a conformance argument established as part of the

assurance case.

Recommendations for Scrum

• The Safety Backlog should record the criticality associated with each safety

requirement. This could be expressed using the language of a particular safety

standards (e.g. Safety Integrity Levels – SILs) or through risk attributes (e.g.

the severity of the hazard associated with a requirement, and the degree of

contribution of the requirement to the hazard).

• The criticality of Safety Backlog items can be used within Sprint planning to help

manage project risk. For example, satisfactory implementation of high criticality

safety requirements may be considered a project risk that should not be left until

late Sprint releases.

76

• Before the Scrum development commences, it is necessary to decide how the

assurance strategy will be moderated according to criticality. In particular, how the

chosen approach to representing criticality will influence the following:

o The amount and type of effort, stakeholder engagement, and assurance

evidence required for the initial population of the Safety Backlog

o Whether a dedicated safety team member is required within the software

development team

o The extent to which (system, regulator) customers are expected to be

involved in the activities described in the first four principles.

o The amount and type of effort, stakeholder engagement, and assurance

evidence required in reviewing safety requirements development during

Sprints (i.e. checking safety requirements validity)

o The amount and type of effort, stakeholder engagement, and assurance

evidence required in demonstrating satisfaction of safety requirements

o The amount and type of effort, stakeholder engagement, and assurance

evidence required in checking for implementation introduced errors and

performing hazard analysis as part of the Sprint Cycles.

• The criticality of chosen requirements for the Sprint (or requirements related to

those chosen) should be highlighted at the beginning of the Sprint. In particular, it

should be highlighted where independence cannot be demonstrated between the

implementation of requirements of differing criticality, the higher criticality should

be used.

4.3 Summary and further work

This chapter has summarized the 4+1 principles of software safety assurance and discussed

the challenges posed when applying 4+1 principles to Scrum. We have also made initial

recommendations as to how the principles can be accommodation within a Scrum

development. We believe that feedback on the proposed recommendation from safety and

agile practitioners will help us to understand further the effective use of 4+1 within Scrum.

77

The purpose of the Safety Backlog is to keep all of the safety requirements in one place so

that they can be explicitly identified and traced throughout the project development.

As well, the safety backlog is the focus of safety assurance and a safety case, whereas items

in the normal backlog (concerning the normal functioning of the system) are not expected

to need the same attention. We believe it is easier to track the relationship between 'core'

requirements and associated safety requirements by maintaining two separate (but

interrelated) backlogs. Also it's possible to examine the consistency of all safety

requirements contained in the safety backlog to examine the safety requirements for

potential inconsistency (e.g. conflicting requirements for safe behaviour).

In addition, the Safety Backlog forces a separation between safety requirements and other

requirements. Safety requirement are usually stable (according to Stålhane [45]) but

functional requirements will change to introduce new risks. When changes arise in the

functional requirements, especially if changes are made to some aspect of the system which

provides a safety barrier, it may be possible and desirable to update the safety

requirements. Since safety requirements can introduce barriers to the system, it is wise to

have them separately.

In the next chapter, we describe the results of semi-structured interviews with both Agile

and safety practitioners to review the challenges and recommendations presented above.

Beyond these interviews, it will be necessary to demonstrate how these recommendations

can be applied through illustrative case study examples, however this lies outside the scope

of a one-year Master’s thesis.

78

Chapter 5

Feedback and Evaluation on the 4+1 Scrum
Integration

5.1 Introduction

The primary focus of our work is to identify and address challenges associated with the

integration of Agile methodologies into safety-critical systems development. The

recommendations in the previous chapter seek to assist and encourage Scrum users in using

Scrum in the filed of safety critical systems project, while maintaining harmony with the

core philosophy of the Agile approach. In this chapter, we report on work to gain feedback

on the proposals made in the previous chapter.

In order to gain a deeper insight into the challenges identified for the integration of safety

assurance into Scrum, and into the practicality of the recommendations made above, we

conducted semi-structured interviews with safety engineers and Agile developers. It was

decided that we should perform this validation step at this relatively early point in the

development of the approach, because it was feasible given the short timescale of the

Masters degree.

Participants were presented with an overview of the challenges we identified as being

associated with applying the 4+1 software safety assurance principles to Scrum, together

with our initial recommendations as to how the principles can be accommodated within a

Scrum development. Participants were taken through a series of questions designed to gain

feedback on the feasibility of the approach, and were asked for an assessment as to whether

the 4+1 principles can be addressed without compromising the core principles of agility.

5.2 Aims of semi-structured interview process

This study is part of the research under the High Integrity System Engineering Group,

Computer Science Department, of the University of York. This introduce the 4+1

Principles of Software Safety Assurance and their implications for Scrum, specifically, the

79

impact on the processes, roles and artifacts associated with Scrum development.

Historically, there has been a reluctance to adopt agile methods within safety-critical

systems development. However, feedback from our initial research in this area suggests

that there are benefits to be gained from the application of agile methods to safety

critical systems [74].

Following this feedback we have done further work to assess how the 4+1 principles of

software safety assurance can be integrated with Scrum, and have developed an initial

proposal for how Scrum could be modified to better address the principles.

5.3 Research questions and their motivations:

This study specifically furthers our investigation into RQ1 and RQ 2 in Chapter 1. We now

have initial proposals for modifications to Scrum to accommodate safety assurance

concerns, and a fuller description of how assurance case development can be integrated

with Scrum. In these structured interviews, we are concerned to preliminary evaluation the

credibility, feasibility and efficacy of these proposals with practitioners.

5.4 Participants and Interviews

We interviewed 6 participants, from the academic and industrial domains in order to use

their experience and insight to gain feedback on our proposed approach. All of the

participants have been involved with Safety Critical-Systems, Agile methods, or both. We

approached the participants because of their skills, experiences, and the extent of their field

link to our research. The questions we asked aimed to explore a wide range of concerns,

challenges and feedback on the integration of 4+1 principles into Scrum, by giving the

practitioner's the liberty to provide detailed responses. Our participants were based in the

UK, Sweden, the USA, and Norway. The limited semi-structured interviews sample meant

that not enough data was collected from only 6 practitioners, and more practitioners are

needed. The table below shows participant qualifications:

PARTICIPANTS AND JOB TITLES

DATE INTERVIEWEE JOB TITLES

16/12/2015 Agile Coach and Certified Scrum Trainer

24/05/2016 Kernel Developer

15/03/2016 President and Managing Partner

Development Practice

80

12/04/2016 Software Engineering Professor

25/04/2016 Chief Evangelist

14/05/2016 Senior Implementation Project Manager

Interviewees were briefed with an introduction that explained the overall aims of the work,

i.e. to explore perceptions around the 4+1 Principles of Software Safety Assurance and

their implications for Scrum. Then the 4+1 principles were explained, along with an outline

of our proposal for integrating these principles within a Scrum development. After the

introduction, we asked for feedback relating to the proposal – picking out specific features

one-by-one (e.g. our recommendations for team composition). The questions were

designed to address two concerns: a) whether the proposed approach challenges agility and

b) whether the proposed approach challenges safety assurance. The majority of the

interviews were conducted over phone, email or via Skype.

5.6 Interview Findings

This section illustrates the responses from the feedback sessions that have been conducted

during this empirical study. The responses are organized as follows. Each participant’s

response is presented in a separate table. Each table is organized according to the proposed

modifications of Scrum (i.e. as presented in the previous chapter). Responses are presented

alongside the proposed modification.

81

OVERVIEW OF STUDY FINDINGS (Participant 1)

 Recommendation

 Response from participants

A second Product Backlog – the Safety

Backlog

New role in Scrum: Safety Team Member

for maintenance of the Safety Backlog and

ensure that they fully understand the source

and rationale behind each of the requirements

in the Safety Backlog.

Daily Scrum meetings can be used to provide

an early indicator for monitoring progress

towards safety requirements satisfaction

OK – already in SafeScrum. As an aside,

we would like to point out the difference

between the Safety Backlog and the SSRS.

In our opinion, the safety backlog is a

realization / concretization of the (SSRS).

Interesting idea. This implies that we

need a link from a functional requirement

to the related safety requirements – i.e.

safety requirements that are included

because the function could otherwise lead

to a hazard. This could be part of the

hazard log but is currently not considered

in SafeScrum.

Why do we need early indicators? How

can we identify a reasonable set of

indicators and how can we use them? In

our opinion, this is a lot of work with a

doubtful effect. It might, however, be

worthwhile if the proposed indicators

could be collected and analysed

automatically.

82

The Safety Backlog should also be populated

through performing (inductive, ‘bottom

up’) hazard analysis (e.g. functional failure

analysis) on the core product backlog

requirements.

What do they think about the idea of

documenting an assurance case ‘as they go’

during the Sprints?

Sprint review should attempt to check whether

the implementation ully addresses the intent of

the original safety requirement, and review the

verification evidence presented. Further

verification will need to be allocated as an

activity to the following Sprint.

Hazard analysis should be performed as part of

Sprint review.

Daily Scrum meetings can be used to provide

an early opportunity to identify unintended

side-effects emerging from a chosen

implementation approach.

This is a standard approach based on e.g.

user stories and part of the Hazard Log.

Decomposition of safety requirements is

performed in CIA (Change impact analysis)

This goes for all requirements and should

be considered together with ‘normal’

requirements. This will involve the liaison

between SafeScrum and RAMS (reliability,

availability, maintainability and safety),

Verification of safety requirements

(RAMS) are outside the current version of

SafeScrum. This might change for a

future version, especially since the

SafeScrum team has more system

knowledge. At the present, only V&V of

functional requirements are done inside

the sprint team. We should move

SafeScrum in a direction where part of

the safety V&V is moved inside the

SafeScrum team – if necessary together

with the SafeScrum RAMS liaison

Is this necessary? Seems like a lot of

work with doubtful benefits. In our

opinion, this is best done through the

daily stand-ups and by having a safety

83

The criticality of chosen requirements for the

sprint (or requirements related to those chosen)

should be highlighted at the beginning of the

sprint. In particular, it should be highlighted

where independence cannot be demonstrated

between the implementation of requirements

of differing criticality; the higher criticality

should be used.

Where new hazardous behaviours (i.e. new

software level contributions to system-level

hazards) are identified, new safety

requirements (to manage these behaviours)

must be added to the safety backlog

culture in the SafeScrum team.

Even though it is possible to assign

criticality to individual requirements or

functions, In my honest opinion it is more

reasonable to assign a criticality to the

system and use this criticality throughout

the project. Operating with different SIL-

values for different functions is not

reasonable.

OK. Done in CIA

OVERVIEW OF STUDY FINDINGS (Participant 2)

 Recommendation

 Response from participants

The Safety Backlog should record traceability

between safety requirements and system

hazards

I'm not sure if I entirely agree. I think the

user stories need to include safety steps,

issues, and concepts. As the team

develops the software for the user stories,

functional, non-functional, and safety

requirements ought to be developed

together. I'm not sure this will be easy to

coordinate with two distict Backlogs

84

A Second Product Backlog – the Safety

Backlog

(Inductive, ‘bottom up’) Hazard analysis

should be performed as part of Sprint review in

order to identify hazardous side effects from

the design and implementation activity

undertaken during the sprint.

Justification must be maintained as to how the

new requirements and design addresses the

original safety requirement

Independent stakeholders are required as part

of this review. It should involve the

nominated safety team member and

potentially some or all of the following: the

system team (as ‘customer’ to the software

To me a "Safety Backlog" could easily be

a database view on the principal

Backlog (much like a team-specific

backlog on a multi-team project can be a

database view on the one master backlog

-- show me only those stories from the

master Backlog that team one will work

on)... BTW, I am guessing that safety is in

part a non-functional requirement that

affects most other stories, which would

lessen the need for a separate Backlog.

Strictly speaking, this is reliability

analysis since the impact cannot be

assessed without understand how the

other engineering disciplines contribute

to safety in the scenario and context. But

the idea of doing on-going hazard and

safety analysis is a good one. I think that

an explicit role (Harmony process calls

it "Safety Czar") allows for this

independence of perspective.

What about how the SW safety requirements
will be verified?

Independence is particularly important

for the developers of the verification

procedures (testing, formal methods, etc).

Surely they should participate in the

review as well?

85

team), the system customer (e.g. system

operator), a suitable internal safety reviewer

(as proxy for the regulator’s position).

The traceability of safety requirements to the

verification evidence, and the justification as

to the adequacy of the evidence set should be

documented in the assurance case by the

nominated safety team member. This should

take place in the Sprint immediately

following the review and will be presented

during the following Sprint revie

Other Comment Generated

4+1 Fundamental Principles of Software
Safety.

It is necessary to ensure that assurance effort

has been targeted at attempting to reveal

modelling errors, coding errors, and tool-use

error

It is very unusual for a Scrum team to

have a separate V&V team but it is

required by a number of safety standards.

Probably should be called out here

I know it may not be part of the 4+1

framework but I'd also add "Software

safety shall be ensured throughout all

phases and activities of the software

development process". Too many people

think it's sometime addressed in only a

single step or phase.

Good to have this here.

86

OVERVIEW OF STUDY FINDINGS (Participant 3)

 Recommendation

 Response from participants

Does Agile have a culture of documentation?

Especially if we developing safety critical

system projects?

A second product backlog – the Safety backlog

That is the great mess: that there is no

documentation, that we encounter less and less

about documentation, that is misunderstood what

agile is. I would expect that skill sets of the

people would be appropriate to deal with safety

related concerns. For example one of my clients

for medical devices, needs to follow some kind of

regulatory documentation; sub-creating that

documentation is the another output that the

team create – just as we have the team support

software so we have the team support

documentation

My first impression is that we do not

want the Safety Backlog, In Scrum

the Product Backlog is the stream of

the work the team produces. I think

safety related issues can be

represented inside the normal

Backlog: The product backlog is

used to log user stories. These

stories may involve functionality

that is safety related to safety

critical. Safety experts can review

the stories with the stakeholders.

The other well-known, well- used

thing in Scrum is the use of

accepting criteria to clarify the

definition of “done”. The accepting

criteria define what it means to be

“done” with a particular user story.

[Safety] considerations probably

87

Maintenance of the Safety Backlog is the

responsibility of a nominated safety team

member from within the software team. This

team member must ensure that they fully

understand the source and rationale behind

each of the requirements

Daily scrum meetings can be used to provide

an early indicator for monitoring progress

towards safety requirements satisfaction

represent acceptance criteria.

I agree with the idea of having

Safety team member and one or

more people safety related experts. I

think that it is vital that if we doing

safety critical systems ether the

product owner is an experts in the

field of safety

The daily scrum is where the team

essentially creates the plan for that

day. We do that because new things

are typically coming up every day.

It is really appropriate for the safety

experts to be present and to bring

out their concerns. The biggest

thing is to identify which members

of the development team are

working particularly with sensitive

requirement: may be the safety

experts need to spend some time

after the daily scrum meeting to

ensure that [these requirements are]

understood. There is one more very

common meeting in Scrum - it is an

official activity - it is called the

Backlog Refinement Meeting. This

lasts for one hour, the purpose is for

the stakeholder and the product

owner to work with the development

team to refine Backlog items.

Understanding the upcoming stores

not the one we are doing in the

88

Is a good idea to have the Sprint longer than 2

weeks

Could the retrospective activity in Scrum help

the safety issues?

sprint new, we make sure that we

identified and redefine and we

documented the important

acceptance criteria or those story,

that is the incredible time for safety

experts to be present and see that

safety issues does get captured

The reason is, the shorter the Sprint

the shorter the feedback (the Sprint

review). The stakeholder community

We share with all of the stakeholder

community what the team has

produced, we show them the new

results, and the stakeholders

understand it, and we see their

reactions. We force contracting in

terms of whether we are building

the right product, specifically for

safety critical systems

That is an interesting question, the

retrospective activity is really the

time for the Scrum team to be a

better team; that meeting is not

really about the product at all. The

safety related staff [are concerned

with] all aspects about the product.

May be there are safety related

things that might come up in the

retrospective in terms of how the

team is working. What I mean by

tha ist if the team have ideas for

89

Other Comment Generated

What about having Scrum and XP at the same

time? Could that help safety critical projects?

Is it a good or bad idea to have two scrum

teams, the first working with the Safety

Backlog and the second with the normal

Backlog?

work process change - like how they

can do the work - that might

improve the chances of discovering

safety- related issues

I totally agree. My experience is

that very frequently Scrum teams

are highly functional teams -

eventually they almost adopt XP

practices. For example, pair

programing is a better way to create

the code - with two people you are

much more likely to find errors

early. These may be safety related

or not.

Bad idea, because every one who

building safety critical system need

to be aware of safety issues, and

need be examining safety related

issues, my be the another team do

not think much regard for safety,

and the anther safety team need to

modify that to make it safe, it is

much better to work on having

aware of safety issues and what are

the safety critical behavior need to

be maintained.

I think that Scrum is well suited for

90

What do you think about adapting Agile to

safety critical systems, especially Scrum?

software. It required complex work

and particularly requires a number

of experts that have different

specialties to all be coordinated in

order to get the final desire and

products

OVERVIEW OF STUDY FINDINGS (Participant 4)

 Recommendation

 Response from participants

As part of the Sprint review, those

responsible for implementation of a safety

requirement must present the solution and

explain how the intent of the safety

requirement is fully satisfied. The Sprint

review should attempt to check whether the

implementation fully addresses the intent of

the original safety requirement, and review

the verification evidence presented.

When product requirements are chosen for a

given Sprint, the related safety requirements

from the safety product backlog should be

identified, discussed and explained (by the

nominated safety team member) at the

beginning of the Sprint.

Does this imply that the whole of a safety

requirement will be met in one Sprint? What

about cross- Sprint safety requirements?

Is it permitted to break a safety

requirement – satisfied in one

Sprint? He highlighted some of the

challenges that we have not

addressed.

91

The Safety Backlog should record traceability

between safety requirements and system

hazards

It is necessary to ensure that assurance effort

has been targeted at attempting to reveal

modelling errors, coding errors, and tool-use

errors.

To implement this principle it is necessary to

be able to identify the criticality of any

software safety requirement

Other Comment Generated

Generally we trace requirements not to hazards,

but to the risk. The mitigation of each risk

becomes a safety requirement

Do you include the introduction of

race conditions in this? We find that

one of the most difficult things to

catch.

Is this possible in isolation? Can you

address the criticality of any one

safety requirement?

Have you considered Scrum as a

good way to produce a prototype (as

recommended in 26262, 61508)?

I wondered if it is worth mentioning

an existence proof: QNX'S (QNX

help build products that enhance

their brand characteristics –

innovative, high- quality,

dependable) kernel has been certified

to 61508 SIL3 and 26262 ASIL-D it

was developed by Scrum.

92

OVERVIEW OF STUDY FINDINGS (Participant 5)

 Recommendation

 Response from participants

A second Product Backlog – the Safety

Backlog

What is your opinion regarding principle two?

Safety Backlog -- I coach teams to

have only one Backlog for the

product, though it often divides into

sections to feed multiple teams. Still I

agree with your idea that some

Backlog items need to address safety.

Also agree that there should be a

bottom-up analysis of hazards. Also

agrees that we should have haz

analysis in the cycle

Intent of Safety Requirements Maintained -

Keeping the epics and stories compact, and

linked, goes a long way toward this.

Traceability via tools has a place in this too.

I would add that having a Sprint focused on

stories that all focus on one major feature is

a big help in 2 ways - less likely to overlook

a risk or mitigation test, and productivity is

higher because focus is concentrated in

related areas of the codebase. In my team,

we'd sometimes tell the Product Owner that

we could lower the points estimate on a

group of stories if they could all be done in

the same Sprint. Supporting principle two

and saying that there is practice within

agile to keep backlog items - e.g. user

stories linked.

Practitioner also highlighted the fact that

it’s ideal to tackle 'linked' items in one

93

Practitioner wants to highlight on some issues

Practitioner agrees but makes a

recommendation

Sprint. This might relate to us in terms of

trying to make sure that requirements and

their corresponding safety requirements are

tackled in the same Sprint.

Safety Requirements shall be Satisfied -- One

of the weakest traditional practices in my

opinion has always been demonstrating safety

through analysis. The rationale was that

certain situations were too difficult to test

explicitly, so a walkthrough of the source code

is allowed. I can't recall having to resort to

that even once in the 3-year Agile project my

team did back when Agile was first emerging.

We could test our embedded application on the

target hardware or on a desktop PC on top of

Windows. We could also break out any task

and run it solo on the target hardware or on

Windows. And we could inject error situations

too.

You have this: "The traceability of safety

requirements to the verification evidence,

and the justification as to the adequacy of

the evidence set should be documented in

the assurance case by the nominated safety

team member. This should take place in the

Sprint immediately following the review and

will be presented as during the following

Sprint review)." I'd aim to do all this in the

Sprint that implements the story, to avoid

the errors and waste associated with context

switching for team members

94

Practitioner agreeing but making a

recommendation

What do you think about the identification and

mitigation of Hazardous behaviour?

Practitioner raises an interesting question

You have this: "The traceability of safety

requirements to the verification evidence, and

the justification as to the adequacy of the

evidence set should be documented in the

assurance case by the nominated safety team

member. This should take place in the sprint

immediately following the review and will be

presented as during the following sprint

review)." I'd aim to do all this in the sprint that

implements the story, to avoid the errors and

waste associated with context switching for

team members.

Hazardous behaviour of the software has

been identified and mitigated - Yes! Very

much needed. I'd do the hazard analysis

during the early sprints rather than at a

sprint review. I coach teams to use one or

more of the early iterations to deliver

knowledge rather than product

increments (or a combination of both),

especially for projects where there is much

technical uncertainty. Also, as part of

loading the Backlog, I'd use hazard analysis

periodically to load new safety stories into

the Backlog. You have a bullet point saying

essentially the same.

The confidence established in addressing

the software safety principles shall be

commensurate to the contribution of the

software to system risk. -- Agree with all

you've said here except that I wouldn't move

the work to a later Sprint (as already

discussed). Better to split the story to fit the

95

Other Comment Generated

Sprint length, and have it disabled in the

partial releases till enough of it is present to

really release.

General comment - I think the role you call out

as safety team member can operate alongside

the rest of the Agile team in the same Sprints. I

believe that's in line with what you're saying

OVERVIEW OF STUDY FINDINGS (Participant 6)

 Recommendation

 Response from participants

Practitioner supportive of our proposal. “From

the Recommendation Script “

You capture just about all of the safety

practices I advocate:

- Assessing potential hazards "top

down" early in design (this is

where Fault Tree Analysis is

helpful).

- Including specific "safety stories"

in the Backlog.

- Establishing and maintaining

traceability of the "safety stories"

to the hazards which were

identified

- Making sure that safety features

don't get lost or removed (this is

why the features need to be clearly

96

commented as such)

- Directly checking that safety

stories have been implemented

effectively, that is, that the

mitigations work

- Regularly reviewing status of

safety issues to look for (a) new

hazards arising from design, and

(b) hazards as a result of errors

- Conducting "bottom up" safety

analysis as design emerges

(FMEA, FMECA can be useful

here)

- Involving independent reviewers

with specific product knowledge to

look at safety controls

- Tempering the safety efforts by

the overall product risk level.

The one point Osama makes that I'm not

sure I agree with is that maintaining the

safety items should be made the

responsibility of a single team member.

This is similar to the classic problem

with quality

- "QA is not our job." My feeling

is that in industries where hazards

to life and limb are present (e.g.

aviation, rail transportation,

nuclear power, medical devices),

awareness of and attention to

safety need to be everyone's job.

97

Other Comment Generated

It might be helpful to you to review the

old AAMI TIR 32 – (the medical device

software risk guidance) which was

superseded by IEC TIR 80002-1.

TIR 32 talks about many of the issues

you discuss, and in addition describes

such concepts of "first point of software

control" and "last point of software

control." Since TIR 32 is now obsolete, I

don't see any problem with sharing that.

5.7 Identification of emerging themes

In this section, we highlight some of the important findings from the 6 semi-structured

interviews summarized in the preceding section. There were also some answers that were not

included on the interview scripts, so we also report here on some of the potentially interesting

issues raised by the participants.

5.7.1 4+1 principles within agile and mapping agile to standards

This section addresses differences in the practitioners’ opinions regarding the interaction of

the 4+1 principles into agile and the integration of agile methods within one of the standards,

and also addresses queries raised in the interviews.

We should discuss one of the practitioner’s answers in more detail. His responses were often

formulated with respect to the specific obligations of standards (i.e. his benchmark was

whether the practice is compliant, in this case with IEC 61508).

We quote some of our recommendations and the practitioners’ answers (R means

‘Recommendation’; the practitioners’ responses are quoted in italics):

R. The Safety Backlog should record traceability between safety requirements and ‘core’

product Backlog requirements (e.g. between a safety constraint and the function to relates).

98

“OK. This info is found in the Hazard Log which is a part of IEC 61508”

R. The traceability of safety requirements to the verification evidence, and the justification as

to the adequacy of the evidence set should be documented in the assurance case by the

nominated safety team member. This should take place in the sprint immediately following

the review and will be presented as during the following Sprint review).

“OK. Traceability is already required in IEC 61508. The adequacy of evidence is not a part

of IEC 61508. In addition, we see no good measure for adequacy. This will be a problem if

we try to apply such a measure.”

R. If it is determined that more time is required to assess the adequacy of the proposed

solution (than the Sprint Review allows) then a more thorough review will need to be

allocated as an activity to the following Sprint. Whilst this activity is taking place, ideally

further implementation of the solution should be avoided (i.e. other requirements from the

backlogs should be prioritized)

“The V&V of safety requirements are taken care of in the RAMS [Reliability, Availability,

Maintainability, and Safety] process[es] – see diagram on separation of concerns – and is

outside current SafeScrum. … implementations that fail here are returned to phases 1 – 4 in

IEC 61508 and will go through CIA [Change Impact Analysis] phase 1“1

R. At the planning stage of a Scrum development the chosen modelling approach,

implementation language, development environment and assessment tools should be

documented. Hazard analysis should be conducted to on the chosen languages, processes and

tools to identify the potential for the introduction of implementation errors. Where the

potential for error is identified, it is necessary to provide evidence for non-introduction of

error (e.g. tool qualification), controls for the minimization of error introduction (e.g. process

guides) or means of demonstrating the absence of introduced errors (e.g. static analysis tools).

Justification of the chosen strategies must be documented in the assurance case.

“OK. This is already done for all projects ran according to IEC 61508. The process is

defined via the SIL value. We have two questions related to this issue. What do you mean by

a. “Conducted to on the chosen language”?

b. “Potential for errors” and how can this be identified?”

99

Another participant made a good point about the need to think beyond the framework of

standards. In this respect, working to the 4+1 principles – which capture the general, rather

than the specific intent of standards – could be more valuable: “More generic 4+1 principles

as you do in this thesis, rather than restrict the work to one of the many standards ”

The main criticism that has been made about SafeScrum so far is that the approach focuses on

compliance with IEC 61508; people do not step back from individual standard and

concentrate on the sprit of the standards (and of safety) in general.

“More generic 4+1 principles as you do in this thesis, rather than restrict the work to one of

the many standards ”

1 Here the respondent is referring to elements of the SafeScrum process

100

R. When product requirements are chosen for a given sprint, the related safety

requirements from the safety product backlog should be identified, discussed and explained

(by the nominated safety team member) at the beginning of the Sprint

Interesting idea. This implies that we need a link from a functional requirement to the

related safety requirements – i.e. safety requirements that are included because the

function could otherwise lead to a hazard. This could be part of the hazard log but is

currently not considered in SafeScrum.

In the literature review, we identified several challenges to the integration of Agile

Methods to standards-based safety engineering (see, particularly, section 2.8 above).

However, the empirical study carried out for this thesis aimed to reduce confusion in this

area, by collecting more information about the integration of agile methods into the field of

safety critical systems and by suggesting an approach to this integration which goes beyond

“the letter” of a given standard. Our experience in the study provided some reassuring

answers and motivation to continue to find better research results.

5.7.2 Agile and Documentation

Another practitioner provided the following comment on the lack of understanding as to

how Agile methodologies deal with documentation:

“Like the team support software, the same the team supports documentation”

This practitioner commented that one of the biggest misconceptions of agile methods is

that they are not willing to support documentation in the process. However, for example, in

XP documentation is recognised as part of the development team’s responsibility [70].

5.7.3 Safety Backlog

There are major differences of opinion among our respondents concerning our proposal to

introduce a second Product Backlog, the Safety Backlog, to track safety-critical concerns

through the Scrum-based process. As will be seen from the extracts quoted below, the

practitioners’ most commonly-held opinion was that the Safety Backlog was non-essential.

However, some of the literature promotes the importance of a Security Backlog [21], to

helps to deal with the security “safety” issues in Scrum.

The following extracts from our interviews indicate the practitioners’ differing views:

101

“Until I see really compelling evidence that there should be a separate backlog there is

only ONE backlog that includes all of the work that needs to be completed. If safety is so

critical to the effort then the development team should have on it people with deep safety

expertise. The safety people might collectively form a safety community of practices but the

individuals can and likely should be fully contributing members of Scrum development

teams.”

“Safety Backlog -- I coach teams to have only one backlog for the product, though it often

divides into sections to feed multiple teams. Still I agree with your idea that some backlog

items need to address safety. Also agree that there should be a bottom-up analysis of

hazards.”

“A safety requirement is a requirement derived from the initial system level safety

analysis, but to the development team they are just a requirement the same as any other

requirement that may have been developed from the system level. In some Agile

approaches there is a separate ‘safety’ backlog (see Thor Myklebust [45]), in other cases

within the overall product backlog those requirements that are safety related are just

‘tagged’ to indicate they are safety related”

The general view that we discern is that addition of the Safety Backlog may be a good idea,

but that we need to conduct more investigation to see if that is true.

5.7.4 Safety Team Member

Almost all of the interviewees felt that our proposed addition of a team member with

specific responsibility for safety issues was a sensible idea. We present extracts from the

interviews below:

“I agree with the idea of having a Safety team member and one or more safety related

experts. I think that it is vital that if we doing safety critical systems the Product Owner is

an expert in the field of safety.”

I think the role you call out as safety team member can operate alongside the rest of the

Agile team in the same Sprints. I believe that's in line with what you're saying.

The Safety Team Member is our proposal, to improve communication between the

development team and the independent assessor, to ensure that the safety requirements,

safety criticality, and safety case will meet the costumer requirements, and to ensure that

the development team has fully understood the safety requirements.

102

5.7.5 Hybrid agile approach and relationship to safety

R. Hybrid approaches that combine two Agile practices within the area of safety critical

systems should be developed, in order to achieve better safety results. There is some

evidence from literature and the practitioners to support this recommendation, for example

the Certified Software Development Process based on XP@Scrum for ISO9001:2000 [72] .

I totally agree, in my experience is that very frequently scrum team are highly functional

team, eventually adopt almost the XP practices, for example pair programing is the better

way to create the code with 2 people you much likely to find errors early, my be safety

related or not

Some features of XP practices are likely to benefit the treatment of safety issues. For

example Paige et al [20] suggest the use of Pair Programming which is likely to help in

catching errors, identifying problematic code (that may need refactoring vs rewriting) and

providing instant feedback on ideas.

The challenges and observations identified in our semi-structured interviews, suggest that

there may be considerable advantages in adopting a hybrid Scrum-XP approach for safety-

related projects, in order to take the benefits of both Scrum and XP approaches.

5.7.6 Sprint Duration for Safety

Agile practitioners generally recommend a Sprint length of one to two weeks. However,

some of our interviewees argue that one to two weeks are not enough to satisfy safety

requirements, and suggest that it is better to extend Sprints for safety-critical projects.

Here we list some of the different opinions about the Sprint duration from the practitioners

we interviewed:

“The shorter the Sprint, the shorter the feedback”

“We're generally concerned by the time it takes to assess safety issues as part of sprint

planning. If the "Stakeholder consortium" is large (i.e. more than about 2 people), then

how often does it meet and make decisions? (The Scrum approach seems to assume a

single "product owner" who can make decisions _really_ fast - will this work if all safety-

related planning and decisions have to be taken by some big committee??)”

103

“In Agile the timescale takes precedence so if functionality cannot be completed in time it

is removed from the current backlog. Consequently until an increment has been completed

you cannot be certain what functionality will actually have been completed.”

5.7.7 Queries and Recommendations

In our initial interviews, we captured practitioners recommendations and queries

concerning the integration of safety assurance into Agile methodologies, and also elicited

their feedback concerning the challenges posed by this approach. These challenges and

recommendations will be checked and examined in the next phase of our work, and

appropriate ones will be implemented in future.

Below, we have listed some of the participants’ queries and recommendations:

Under "Principle 1", you talk of the Safety Backlog being "initially populated" by both "top

down" and "bottom up" analysis. Totally agree, of course, but that seems to infer that you

already have enough design and architecture to give you something to "iterate over" ... so

you need to have done

enough architecture and design to do the safety analysis. This seems contradictory to

Agile's "minimal design" mantra, but seems (at least to us) to be the crux issue - how much

"up front design" is "just right" for a particular system?

In P1 - you say that "when a product requirement is chosen for a given Sprint, the related

safety requirements from the safety product backlog should be identified, discussed, and

explained." Why not go further? Why not require that the safety requirements are

implemented in the _same_ Sprint as the "product requirement". Put another way - would

you ever want to implement a "feature" in a particular Sprint, but NOT implement its

related safety requirements in the same Sprint?

In Principle 4 - you talk about "justification of chosen strategies" being documented. I

would go further and require justification of the _rejected_ strategies too. This is important

in very long- lived projects, where you want future maintainers (years in the future) to

know what you rejected and why...

You don't talk about Refactoring. This is important - the Agile people say a refactoring is

"Done" when "all the tests pass..." Big deal! In the context of maintaining a safety

argument, how would you define "when a refactoring is done”?

104

We have discussed and summarized the practitioner’s opinions regarding our

recommended approach and our initial analysis of the challenges it presents. These findings

will be taken into consideration for any future work.

5.8 Summary and Issues Arising

In this chapter, we have reported on the results of 6 semi-structured interviews which were

conducted in order to gain actual practitioners’ reactions to our approach to integrating the

4+1 safety assurance principles within Scrum and our initial assessment of the challenges

associated with the approach. Although the research sample is limited, the study has

benefitted from the introduction of a more pragmatic perspective, which complements our

rather theoretical viewpoint.

We summarise the results in forms of answers to the two research questions we posed at

the beginning of the study:

RQ1 What are the current concerns and opportunities voiced by safety-critical systems

professionals regarding the use of agile development methods for safety-critical systems

development?

We encountered some difficulties during the interviews. Foe example, on aspect that we

briefly touched on was misunderstanding and lack of knowledge or awareness from both

the Agile and the safety practitioners concerning each others’ outlooks and work.

Nonetheless, the semi- structured interviews have motivated us to propose further work

involving interviews on a much larger scale in order to achieve better results. We need to

move from the basic questions that we asked during the current research – i.e. “is it feasible

to integrate safety into Agile methods?” – towards more specific questions, such as the

following:

• Is it permitted to break a safety requirement which has been satisfied in one Sprint?

• Safety backlog - Yes or No?

• Safety team member - Yes or No?

• Hybrid agile approach - Yes or No?

105

• Sprint duration: 1 to 2 weeks? Or longer?

• Independence is particularly important for the developers of the verification

procedures (testing, formal methods, etc). Surely they should participate in the

review as well?

• What about how the software safety requirements will be verified?

• Would it be desirable/possible to implement a "feature" in a particular Sprint, but

NOT to implement its related safety requirements in the same Sprint?

• Is Scrum a good way to produce a prototype (as recommended in 26262, 61508)?

RQ2 What changes are necessary to the Scrum Process in order to address the 4+1

Software Safety Assurance Principles?

The findings indicate clear support for the recommendations that we propose to integrate

the 4+1 safety assurance principles into the Scrum process in order to help demonstrate

compliance with safety standards, and with our initial survey of the challenges presented

by such an approach. Our recommendations stem from the use of the 4+1 principles to

build on the strengths of the Scrum process to improve management of safety issues in

system development. Finally the numbers of practitioners were not adequate for a good

credibility, but more is needed.

106

Chapter 6

Conclusion and Future Work

6.1 Introduction

• This chapter summarizes all of the previous chapters, from the literature review

through to the evaluation. In the literature review, we examined previous work in

the area of safety assurance and Agile methods, to identify potential challenges and

barriers for the integration of safety into Agile methodologies. This was followed

by empirical research to collect a snapshot of current practitioner opinions. Our

initial survey gave us a number of vital points that influenced the second stage of

our research, the semi-structured interviews. For example, we retrieved the

following substantial points from our initial survey:

• The need to provide assurance of product safety, as well as making the product

safe was strongly recognized (>95%). This indicates the importance of establishing

the safety case alongside development.

• There was recognition (50%) that safety problems aren’t always identified early in

the lifecycle. There was strong support (90%) for regular evaluation of safety case

progress during development. Again, this suggests safety case development should

be treated as an ‘in-increment’ activity.

• Prioritisation of requirements (77%) and assurance effort (84%) (according to risk)

was recognized as important. Together with the observations regarding evaluation,

this suggests that incremental safety case development may be useful in helping

guide an incremental software development process.

After that, we presented an preliminary analysis of challenges, which stemmed from the

literature review and responses to the initial survey. We then made a series of

recommendations as to how Scrum could be adapted to allow for the incorporation of

safety assurance concerns. We subjected our analysis and recommendations to evaluation,

107

by means of semi-structured interviews with practitioners.

The results from the semi-structured interviews were encouraging, and opinion was

broadly supportive of our approach. That is indicated by the following key points from the

semi-structured interviews:

• One of the practitioners stated his support for Principal 2, saying that there is an

established practice within Agile to keep Backlog items - e.g. user stories - linked.

He also highlighted the point that it is considered best practice to tackle 'linked'

items in one Sprint. This provides support for our attempt to ensure that

requirements and their corresponding safety requirements are tackled in the same

sprint.

• Support for the inclusion of hazard analysis in the Sprint.

• Support for the idea of a separate safety team member (the new role we proposed

in this work).

• Inclusion of specific "safety stories" in the Backlog.

• Establishment and maintenance of traceability between the "safety stories" and the

hazards which were identified.

• Support for the observation that it is necessary to ensure that assurance effort has

been targeted at attempting to reveal modelling errors, coding errors, and tool-use

errors.

6.2 Initial perceptions

Our research began with a literature review that explored the theoretical implications of our

topic, from both the safety assurance and the Agile perspectives. Some gaps and needs in

existing approaches became clear during the review. In particular, some felt that agile

development insufficiently recognized the need to provide assurance of product safety, as

well as making the product. Furthermore, we found that there are only a few surveys and

empirical studies concerning the possibility of integrating Agile Methods into the field of

safety critical systems engineering.

108

Moreover, we used the preliminary results from the literature to support our hypothesis.

Therefore, we conducted our initial survey, followed thereafter with semi-structured

interviews to strengthen the evidence required to support the hypothesis. In conclusion, the

reaction to the proposal to integrate the 4+1 safety assurance principles into Scrum was

generally positive, however a number of concerns emerged from the evaluation. These key

concerns were discussed in chapter 5.

6.3 Initial Survey

The initial survey attempted to draw out specific responses relating to the (possible)

incremental and iterative nature of safety requirements development, hazard analysis and

safety (assurance) case development.

The survey successfully targeted practitioners with experience of safety critical systems

development and agile development methods. The responses received from the survey

indicated that the practitioners have a largely positive view on the integration of Agile and

safety methods. By addressing specific practices in safety assurance, the survey responses

also help inform the features of future integration attempts (e.g. concerning the placement

of safety activities inside and outside of the increment ‘cycle’).

6.4 The development of the initial proposal for the
integration of the 4+1 principles

Some researchers have attempted to tailor agile methods to comply with specific standards (e.g.

SafeScrum and IEC61508). However, this risks over-configuring the agile method in such a

way as to make difficult to apply to another safety standard. Our approach sought to look at

the problems of addressing the more fundamental principles of safety assurance by adopting the

emerging “4+1” safety principles [76] and investigating how a Scrum process challenges, and

can be adapted to support, these principles. Our aim was to suggest the minimum of changes

necessary to make the Scrum process support the assurance principles. By adopting a principle-

based approach, as well as getting to the ‘heart’ of the problem of safety assurance, it also

provided us with greater flexibility in configuring the development and assessment process.

109

6.5 Semi-structured interviews

We conducted semi-structured interviews with participants to gain feedback on our

proposed approach. More specifically, the semi-structured interviews were designed to

explore the general feasibility of the approach, and to provide an assessment as to whether

the 4+1 principles can be addressed without compromising agility.

The results of our 1-to1 semi-structured interviews gave strong indication that the

practitioners felt that there is a significant potential for successful integration of the 4+1

principles within Scrum. As discussed above, there were some issues where practitioners

were concerned to focus only on one safety standard, and it was also the case that neither

the Agile practitioners nor the safety practitioners had a clear understanding of the

outlook and work of the other group. However, we used these issued to inform a further set

of questions.

6.6 Limitations

Our study suffered from some limitations which should be addressed in future work:

a) Large scale empirical evaluation is simply not possible in the timescale of a Masters

programme;

b) We had considerable difficulty finding practitioners who were sufficiently expert in both

Agile and safety – in the end, we were able only to interview those with an interest in the

integration of agile and safety;

c) The limited research sample meant that not enough data was collected from the

practitioners;

d) We needed to establish specific criteria in order to avoid deviation from the interview

script.

110

6.7 Future Work

In this section we will illustrate a number of potential work need to be achieved:

As outlined above, there has been very little research to date concerning the integration of

safety assurance concerns in Agile methodologies. Within the confines of the Masters

degree, we have been able to conduct an initial evaluative survey and to propose a potential

approach. It must be noted, however, that this represents only the preliminary stage of a

line of research in this area. In this section we will illustrate a number of potential ways in

which the initial work presented in this thesis could be expanded and validated in future.

• It would be desirable for future researchers to conduct a pilot project. This should

be formulated in such a way as to address the particular themes that emerge from

our survey: for example, the pilot project could evaluate how difficult it was to

establish safety requirements at the outset, and how much they change during the

project.

• Our initial survey in this area highlighted some areas of interest in the role of the

safety case. Further work is required to explore how GSN safety cases could be

linked to a notion of safety Product backlog within Scrum. The research indicates

that existing assurance case activities need to be adjusted.

• Software safety argument patterns provide a way of capturing good practice in

software safety arguments. Future research could develop a pattern-based

approach to integrating software safety cases, Scrum’s Safety Product Backlog,

risk-based planning, and requirements-based evaluation. Software safety

argument patterns describe the nature of the argument and safety claims that

would be expected for any software safety case.

• Peer review (through structured questionnaire) of our proposed approach as

applied to a worked case study example should be conducted.

• It would be useful for future researchers to engage in a larger-scale interview-based

evaluation of an approach for safety case development within Scrum. In particular,

research should address the development of pragmatic techniques to ensure that

evidence to validate the safety case is developed and collected in all incremental

111

(Sprint) processes.

• A realistic case study should be developed, to investigate where there are

opportunities to build up a safety case as a part of an Agile development, to

determine the risks and conflicts associated with this approach and how these risks

could be mitigaed.

112

Abbreviations

ACM Association for Computing Machinery

ASD Adaptive Software Development

CIA Change impact analysis

CMMI Capability Maturity Model Integration

CRD-RM Certifiable, Agile, Reusable, and Disciplined Reference Model

DSSRs Derived Software Safety Requirements

DSDM Dynamic Systems Development Method

FDD Feature Driven Development

FAA Federal Aviation Administration

GSN Goal Structuring Notation

IEEE Institute of Electrical and Electronics Engineers

IEC Functional Safety Standard

ISO International Organisation for Standardisation

MIL-STD Military Standard

NIST National Institute of Standards and Technology

NASA National Aeronautics and Space Administration

QUMAS Quality Management and Compliance Solutions

RAMS Reliability, Availability, Maintainability and Safety

RQ Research Questions

SIL Safety Integrity Level

SSRS System Safety Requirements Specification

XP Extreme Programing

113

References

 [1] Ericson, C.A. ‘Concise encyclopedia of system safety’ definition of terms

and concepts (Wiley, 2011)

[2] Paul, F.G., B.Bruce, D.Ben, A. ‘Model-Driven Development for Safety-

Critical Projects in Intelligent Energy’, 28–30 October 2013

[3] Leveson, N. ‘Engineering a safer world : systems thinking applied to safety’

(MIT Press, 2011.

[4] Ericson, C.A. ‘Hazard analysis techniques for system safety’ (Wiley-

Interscience, 2005.

[5] ‘NASA system safety handbook’ (National Aeronautics and Space

Administration, NASA headquarters, 2011, Version 1.0. edn. 2011)

[6] Knight, J.C. ‘Safety critical systems: challenges and directions’, in Editor

(Ed.)^(Eds.): ‘Book Safety critical systems: challenges and directions’ (2002,

edn.), pp. 547-550

[7] Leveson, N. ‘SafeWare : system safety and computers’ (Addison Wesley,

1995)

[8] Hunt, J. ‘Agile software construction’ (Springer, 2006)

[9] McCaffery, F., Pikkarainen, M., and Richardson, I. ‘Ahaa --agile, hybrid

assessment method for automotive, safety critical smes’, in Editor (Ed.)^(Eds.):

‘Book Ahaa --agile, hybrid assessment method for automotive, safety critical

smes’ (2008, edn.), pp. 551-560

[10] Hazzan, O., and Dubinsky, Y. ‘Agile software engineering’ (2008)

[11] Hazzan, O., & Dubinsky, Yael. ‘ Essays on agile projects and

beyond (SpringerBriefs in computer science).’

 [12] Beck, K. (2004). ’Extreme Programming Explained’. Embrace Change

(2nd Edition ed.). Boston, MA: Addison Wesley PublishingCo., Inc.

[13] S̆ mite, D., Moe, N.B., and Ågerfalk, P.r.J. ‘Agility across time space :

implementing agile methods in global software projects’ (Springer, 2010)

 [14] Schwaber, K. ‘Agile project management with Scrum’ (Microsoft Press 2004)

[15] Rubin, K.S. ‘Essential Scrum’, a practical guide to the most popular agile

process (Addison-Wesley, 2012)

[16] Avizienis, A., J.-C. Laprie, and B. Randell. ‘Fundamental Concepts of

114

Dependability’. In Third Information Survivability Workshop (ISW-

2000). 2000.Cambridge, Massachusetts, USA: IEEE Computer Society

Press

[17] Beck, K. (2000). Manifesto for Agile Software Developement.

[18] Stapelton, J. ‘The Agile Software Development Series‘ Business

Focused Development 2nd (second) Edition 2003.

 [19] Weihang Wu. ‘Architectural Reasoning for Safety-Critical Applications’ In

Degree of Doctor of Philosophy, The University of York, September 2007

[20] Richard F. Paige, Howard Chivers, John A. McDermid, and Zoë R. Stephenson.

‘High-integrity extreme programming’. In Proceedings of the 2005 ACM

symposium on Applied computing (SAC '05), Lorie M. Liebrock (Ed.). ACM,

New York, NY, USA, 1518-1523.

[21] Z. Azham, I. Ghani and N. Ithnin, ‘Security backlog in Scrum security practices’

Software Engineering (MySEC), 5th Malaysian Conference in, Johor Bahru,

2011, pp. 414-417.

[22] R. Dardar, B. Gallina, A. Johnsen, K. Lundqvist and M. Nyberg, ‘Industrial

Experiences of Building a Safety Case in Compliance with ISO 26262’

Software Reliability Engineering Workshops (ISSREW), 2012 IEEE 23rd

International Symposium on, Dallas, TX, 2012, pp. 349-354.

[23] Highsmith, J. (2000). ‘Adaptive Software Developement’.A

Collaborative Approach to Managing Complex Systems. Dorset House.

[24] Cockburn, A. (2002). ‘Agile Software Developement’ AddisonWesley.

[25] Palmer, S. and J. Felsing.’A Practical Guide to Feature Developement’.

Prentice Hall 2002.

 [26] Bruce,D. 19 February 2013 (Agile analysis practices for safety-critical

http://www.ibm.com/developerworks/rational/library/agile-analysis-practices-

safety-critical-development/.

[27] Fowler, M. (2005, December). The New Methodology

[28] John, McDermid.: ‘Software Hazard and Safety Analysis’ in 7th International

Symposium, FTRTFT 2002 Co-sponsored by IFIP WG 2.2 Oldenburg,

Germany, September 9–12, 2002 Proceedings.

[29] T P Kelly.: ‘A Systematic Approach to Safety Case Management’ in Proceedings

of SAE 2004 World Congress, Detroit, March 2004 (Proceedings published by the

Society for Automotive Engineers).

[30] Chris Sims and Hillary Johnson "Scrum: a Breathtakingly Brief Agile

115

Introduction" – April 3, 2012

[31] Kelly, T.P., ‘Arguing Safety - A Systematic Approach to Safety Case

Management’ In PhD Thesis, in Department of Computer Science. 1999,

University of York.

[32] VersionOne: State of Agile Survey 2012 (7th Annual). 2013. Available:

http://www.versionone.com/pdf/7th-Annual-State-of-Agile-

Development- Survey.pdf [Accessed on 13th April 2013].

[33] Richard, H. Tim, K. Journal of System Safety, Volume 46, No. 4, pp 25-33,

System Safety Society Inc., July 2010.

[34] John A McDermid. ‘Software safety: where's the evidence? ’. In Proceedings of

the Sixth Australian workshop on Safety critical systems and software - Volume 3

(SCS '01), Peter Lindsay (Ed.), Vol. 3. Australian Computer Society, Inc.,

Darlinghurst, Australia, Australia, 1-6 2001.

[35] John Hatcliff, Alan Wassyng, Tim Kelly, Cyrille Comar, and Paul Jones 2014.

Certifiably safe software-dependent systems: challenges and directions. In

Proceedings of the on Future of Software Engineering (FOSE 2014). ACM, New

York, NY, USA, 182-200.

[36] European Committee for Electrical Standardization (CENELEC). Railway

applications - Communication, signalling and processing systems - Software

for railway control and protection systems. CENELEC Standard 50128, 2011.

[37] Institute of Electrical and Electronics Engineers (IEEE). IEEE Standard Criteria for

Digital Computers in Safety Systems of Nuclear Power Generating Stations .

IEEE Standard 7-4.3.2, 2010

[38] International Electrotechnical Commission. Functional Safety of

Electrical/Electronic/Programmable Electronic Safety-related Systems.

IEC Standard 61508 edition 2.0, 2010.

[39] International Organization for Standardization. Road Vehicles – Safety.

ISO Standard 26262, 2011. [60] RTCA. Software Considerations in

Airborne Systems and Equipment Certification. RTCA Standard DO-178C,

2012.

[40] Agile manifesto (2001). Available: http://agilemanifesto.org.

[41] Ambler, S.: Quality in an Agile World. SQP References 34 SQP VOL. 7, NO.

4/©, ASQ (2005).

[42] Hawkins, R., Habli, I., Kelly, T., McDermid, J. Assurance cases prescriptive

116

software safety certification: A comparative study. Volume 59, Pages 55–71

November (2013).

[43] Bedoll. R. A Tail of Two Projects: How ‘Agile’ Methods Succeeded after

‘Traditional’ Methods Had Failed in a Critical System-Development Project. In: F.

Maurer and D. Wells (Eds.): XP/Agile Universe, LNCS 2753, pp. 25–34.

Springer- Verlag Berlin Heidelberg (2003).

[44] Bowers, J., May, J., Melander, E., Baarman, M., Ayoob, A.: Tailoring XP for

Large System Mission Critical Software Development. In: Wells, D., Williams, L.,

(Eds.): XP/Agile Universe, LNCS 2418, pp. 100–111. © Springer-Verlag Berlin

Heidelberg (2002).

[45] Stålhane,T., Myklebust,T., Hanssen, G. The application of Scrum IEC-

61508 certifiable software, Unpublished, (2011).

[46] Felix, R. Software Projects: Evolutionary v Big-bang Delivery (Wiley Series

in Software Engineering Practice) Hardcover – 30 Jan (1997).

[47] +SAFE, V1.2. A Safety Extension to CMMI-DEV. Defence Materiel

Organization, Australian Department of Defence, Version1.2 (CMMI-DEV, V1.2)

SEI March (2007)

 [48] Kelly, T.; Weaver, R.: The Goal Structuring Notation – A Safety Argument

Notation. In: Proceedings of the International Conference on Dependable

Systems and Networks – Workshops on Assurance Cases, Florence, Italy, (2004)

[49] Paige R., Charalambous R., Ge X., Brooke P.: Towards Agile Engineering of

High- Integrity Systems. Proc. In: 27th International Conference on Computer

Safety, Reliability and Security (SAFECOMP), September (2008)

[50] B. Fitzgerald, K. J. Stol, R. O, Sullivan and D. O. Brien, "Scaling agile methods

to regulated environments: An industry case study," 2013 35th International

Conference on Software Engineering (ICSE), San Francisco, CA, 2013, pp. 863-

872.

[51] Ge, X., Paige, R, F., McDermid, J, A.: An Iterative Approach for Development

of Safety-Critical Software and Safety Arguments. Agile Conference, Orlando,

Florida, p. 35 – 43, (2010

[52] Z.R. Stephenson et al.: Health modelling for agility in safety-critical systems

development, The 1st Institution of Engineering and Technology

International Conference on Systems Safety, 2006

[53] Matti Vuori.: Agile Development of safety-critical Software, Tampere University

117

of Technology. Report 14 Department of software systems Tampere 2011. ISBN

978-952-15-2595-7

[54] Richard F. Paige, Andy Galloway, Ramon Charalambous, Xiaocheng Ge, and

Phillip J. Brooke. 2011. High-integrity agile processes for the development of

safety critical software. Int. J. Crit. Comput.-Based Syst. 2, 2 (July 2011), 181-

216.

[55] H. Jonsson, S. Larsson and S. Punnekkat, "Agile Practices in Regulated Railway

Software Development," Software Reliability Engineering Workshops

(ISSREW), 2012 IEEE 23rd International Symposium on, Dallas, TX, 2012, pp.

355-360.

[56] J. C. Marques, S. M. H. Yelisetty, A. M. Da Cunha and L. A. V. Dias, "CARD-

RM: A Reference Model for Airborne Software," Information Technology: New

Generations (ITNG), 2013 Tenth International Conference on, Las Vegas, NV,

2013, pp. 273-279.

 [57] David J. Coe and Jeffrey H. Kulick.:"A Model-Based Agile Process for DO-

178C Certification" Department of Electrical and Computer Engineering

University of Alabama in Huntsville, Huntsville, Alabama, USA

[58] L. b. Othmane, P. Angin, H. Weffers and B. Bhargava, "Extending the Agile

Development Process to Develop Acceptably Secure Software," in IEEE

Transactions on Dependable and Secure Computing, vol. 11, no. 6, pp. 497-

509, Nov.-Dec. 2014.

[59] L. b. Othmane, P. Angin and B. Bhargava, "Using Assurance Cases to Develop

Iteratively Security Features Using Scrum," Availability, Reliability and

Security (ARES), 2014 Ninth International Conference on, Fribourg, 2014, pp.

490-497.

[60] Konstantin Beznosov and Philippe Kruchten. 2004. Towards agile security

assurance. In Proceedings of the 2004 workshop on New security

paradigms (NSPW '04). ACM, New York, NY, USA, 47-54.

[61] A. Finnegan and F. McCaffery, "A Security Argument Pattern for Medical Device

Assurance Cases," Software Reliability Engineering Workshops (ISSREW),

2014 IEEE International Symposium on, Naples, 2014, pp. 220-225.

[62] Bruce Douglass. "Agile Systems Engineering2015.

[63] Bruce Douglass. "Real-Time Agility June 2009

[64] Wells, D. (2009, September). Extreme Programming: A Gentle Introduction.

 [65] RTCA. Software Considerations in Airborne Systems and Certification. RTCA

118

Standard DO-178C, 2012.

[66] R.D. Hawkins, T.P. Kelly.: A Systematic Approach for Developing Software

Safety Arguments. Department of Computer Science, The University of York,

York, YO10 5DD, UK,

[67] J . Dennis Lawrence. “Software Safety Hazard Analysis”, Prepared for

U.S. Nuclear Regulatory Commission, Manuscript date: October 1995.

[68] G. Melnik and F. Maurer, “Comparative analysis of job satisfaction in agile

and non-agile software development teams,” in Extreme Program- ming and

Agile Processes in Software Engineering. Springer, 2006, pp. 32–42.

 [69] L. Gren, R. Torkar and R. Feldt, "Work Motivational Challenges Regarding the

Interface between Agile Teams and a Non-Agile Surrounding Organization: A

Case Study," Agile Conference (AGILE), 2014, Kissimmee, FL, 2014, pp. 11-

15.

[70] Robinson, H., and Sharp, H. (2004) The characteristics of XP teams, in Proceedings

of XP2004 Germany, June, pp 139 -147

[71] Nicoll, Dav, 23-24 September 2008, “Use of Agile Techniques in the

Development of a Safety- Critical Rail Application”, Agile Business Conference,

London.

[72] C. Vriens, "Certifying for CMM Level 2 and IS09001 with XP@Scrum," Agile

Development Conference, 2003. ADC 2003. Proceedings of the, 2003, pp.

120-

124. doi: 10.1109/ADC.2003.1231461

[73] Mike Cohn . “Scrum Overview for Agile Software Development”

https://www.mountaingoatsoftware.com/agile/scrum/overview

[74] O. Doss and T. P. Kelly. 2016. Challenges and Opportunities in Agile

Development in Safety Critical Systems: A Survey. SIGSOFT Softw. Eng. Notes

41, 2 (May 2016), 30-31.

[75] Z. Guo, C.Hirschmann “An Integrated Process for Developing Safety-

critical Systems using Agile Development Methods” ICSEA 2012 The

Seventh International Conference on Software Engineering Advances

[76] Kelly, Tim. "Software Certification: Where is ConfidenceWon and Lost?."

Addressing Systems Safety Challenges, T. Anderson, C. Dale (Eds), Safety

Critical Systems Club (2014)

[77] U.K. Ministry of Defence, “JSP 430 - Ship Safety Management

System Handbook,” Ministry of Defence January 1996.

119

 [78] Department of Defense: Standard Practice – System Safety (MIL-STD-882E).

2012.

[79] Department of Defense.MIL-STD-882D: standard practice for system safety.

U.S. Department of Defense January 2000.

[80] NASA. NPR 8715.3C, NASA General Safety Program Requirements,

Washington, DC. 2008.

[81] NIST 1993. Review of Software Hazard Analyses. National Institutes of Standards

and Technology. Draft (June 4).

[82] IEEE: Standard for Software Safety Plans, IEEE STD 1228-1994. 17 logical p. of

23 physical pages.

[83] Federal Aviation Administration, Job Aid-Conducting Software Reviews Prior

to Certification, FAA, 2004.

[84] Osama Doss, Tim Kelly "Addressing the 4+1 Software Safety Assurance Principles

within Scrum" In: Second International Workshop on Agile Development of

Safety-critical Software Workshop, XP 2016, Edinburgh, UK, 2016

 [85] T. Stålhane ,T. Myklebust.” The Agile Safety Case” SAFECOMP 2016

 Workshops, LNCS 9923, pp. 5–16, 2016. DOI: 10.1007/978-3-319 1_1

