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Abstract

Lexical Simplification is the process of replacing complex words in texts to create simpler,
more easily comprehensible alternatives. It has proven very useful as an assistive tool for
users who may find complex texts challenging. Those who suffer from Aphasia and Dyslexia
are among the most common beneficiaries of such technology.

In this thesis we focus on Lexical Simplification for English using non-native English
speakers as the target audience. Even though they number in hundreds of millions, there are
very few contributions that aim to address the needs of these users.

Current work is unable to provide solutions for this audience due to lack of user studies,
datasets and resources. Furthermore, existing work in Lexical Simplification is limited
regardless of the target audience, as it tends to focus on certain steps of the simplification
process and disregard others, such as the automatic detection of the words that require
simplification.

We introduce a series of contributions to the area of Lexical Simplification that range
from user studies and resulting datasets to novel methods for all steps of the process and
evaluation techniques. In order to understand the needs of non-native English speakers,
we conducted three user studies with 1,000 users in total. These studies demonstrated that
the number of words deemed complex by non-native speakers of English correlates with
their level of English proficiency and appears to decrease with age. They also indicated
that although words deemed complex tend to be much less ambiguous and less frequently
found in corpora, the complexity of words also depends on the context in which they occur.
Based on these findings, we propose an ensemble approach which achieves state-of-the-art
performance in identifying words that challenge non-native speakers of English.

Using the insight and data gathered, we created two new approaches to Lexical Simplifi-
cation that address the needs of non-native English speakers: joint and pipelined. The joint
approach employs resource-light neural language models to simplify words deemed complex
in a single step. While its performance was unsatisfactory, it proved useful when paired with
pipelined approaches. Our pipelined simplifier generates candidate replacements for complex
words using new, context-aware word embedding models, filters them for grammaticality
and meaning preservation using a novel unsupervised ranking approach, and finally ranks
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them for simplicity using a novel supervised ranker that learns a model based on the needs of
non-native English speakers. In order to test these and previous approaches, we designed
LEXenstein, a framework for Lexical Simplification, and compiled NNSeval, a dataset that
accounts for the needs of non-native English speakers. Comparisons against hundreds of
previous approaches as well as the variants we proposed showed that our pipelined approach
outperforms all others.

Finally, we introduce PLUMBErr, a new automatic error identification framework for
Lexical Simplification. Using this framework, we assessed the type and number of errors
made by our pipelined approach throughout the simplification process and found that com-
bining our ensemble complex word identifier with our pipelined simplifier yields a system
that makes up to 25% fewer mistakes compared to the previous state-of-the-art strategies
during the simplification process.
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Chapter 1

Introduction

The form in which content is structured and presented has a direct impact on how accessible
information is. In efforts to ensure that the ever increasing amount of information produced
nowadays is available to all, guidelines for the creation of more accessible content have
long been promoted. The Plain English Campaign1 in the UK is an example. The initiative
provides comprehensible guidelines on how to ensure that documents, websites and other
forms of content written in English will be as simple and easily comprehensible as possible.
Nonetheless, as stated by former Prime Minister Tony Blair himself, “The Plain English
Campaign has played a major role in improving the way public bodies communicate with
citizens. However, there is still plenty of room for improvement - not least from politicians -
so the campaign’s work is far from over”. Additionally, these initiatives are limited to certain
countries, languages and types of content (mostly government-related).

An alternative approach to improve accessibility is to devise technologies that can be
applied to already written texts to make them easier to understand. The task of automatic
Text Simplification (TS) is an example of that. It consists in adapting portions of text so that
they become easier to understand by a certain target audience. It was first introduced in 1996
in the work of Chandrasekar et al. (1996). They propose several interesting applications
for TS, such as helping those affected by reading disabilities to understand complex texts
and improving on the performance of other NLP tasks such as Machine Translation, Text
Summarisation, among others.

TS can be performed in many different levels of information. Syntactic Simplification
strategies, for example, attempt to make deep transformations to a sentence’s syntactic
structure in order to make it easier to read and comprehend. These strategies focus mostly
on operations such as sentence splitting, passive to active voice transformation, anaphoric
resolution and sentence compression (Paetzold and Specia, 2013; Siddharthan, 2006). Se-

1http://www.plainenglish.co.uk
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mantic Simplification strategies, on the other hand, aim to adapt the semantic content of a
sentence or paragraph through changes in its dialog structure and/or writing style (Kandula
et al., 2010; Kauchak and Barzilay, 2006).

Lexical Simplification (LS) is perhaps the most self-contained of all methods of TS. It can
be formally described as the task of transforming a given sentence’s words in order to make
it simpler, without applying direct modifications to its grammatical or syntactic structures.
In simpler terms, LS consists in finding the best candidate substitution for a target complex
word, given the needs of a target audience. This can be a very challenging task since different
target audiences might have very distinct needs.

Throughout the years, researchers have shown that LS plays a crucial role in TS. It has
been found to be an effective way of making texts more accessible to various target audiences,
such as the dyslexic (Rello et al., 2013a,b,c), aphasic (Carroll et al., 1998) and those who
have low levels of literacy (Aluisio and Gasperin, 2010; Watanabe et al., 2009). It is also
versatile across different languages: LS strategies have been developed for English (Carroll
et al., 1998; Glavaš and Štajner, 2015; Horn et al., 2014; Paetzold, 2015b), Spanish (Bott
et al., 2012; Rello et al., 2013b), Swedish (Keskisärkkä, 2012), Portuguese (Aluisio and
Gasperin, 2010) and others.

Research in Psycholinguistics can explain why LS is so effective in making texts more
accessible. The contributions of Hirsh et al. (1992) and Nation (2001), show that English
learners need to be familiar with around 95% of a text’s vocabulary in order to achieve
basic comprehension and with an even higher proportion of 98% for leisure. They observed,
however, that those who are familiar with the vocabulary of a text can often understand the
entirety of its meaning even if the grammatical constructs used are confusing to them. These
findings suggest that replacing words that are unknown to the reader, which is what a reliable
lexical simplifier does, can suffice, and consequently discard the need for more complex,
risky and costly simplification methods, such as Syntactic and Semantic Simplification.

Although the approaches in literature vary in nature, most of them adhere to the pipeline in
Figure 1.1. Simplifiers first identify a complex word in a text, generate candidate substitutions,
select the ones that fit the context in which the complex word was found, rank them according
to their simplicity, and finally replace the complex word with the simplest alternative. Using
this “divide and conquer” approach as opposed to joint modelling all steps, modern LS
approaches have managed to obtain accuracy improvements of 42% over earlier work (Horn
et al., 2014).

The biggest challenges in producing simplified versions of sentences is to ensure that
they do not have grammatical errors (such as improperly inflected verbs) and that they have
the same meaning as the original sentence. The study of Shardlow (2014b) shows that earlier
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Fig. 1.1 Lexical Simplification pipeline

approaches, such as the ones of Devlin and Tait (1998) and Carroll et al. (1998), suffer from
very serious limitations and tend to make several mistakes with respect to grammaticality
and meaning preservation in each step of the pipeline. Even though LS approaches have
greatly evolved since then, experiments with modern approaches, such as the ones reported
by Biran et al. (2011), Paetzold and Specia (2013) and Glavaš and Štajner (2015), show that
the quality of the simplifications produced still needs to be improved in order for LS to be
employed in practice. Their results show that, despite employing much more sophisticated
techniques, modern LS strategies still make some of the same simplification mistakes made
by early approaches.

In this thesis, we focus on understanding and addressing the LS needs of non-native
English speakers, who are numbered in hundreds of millions in the U.S alone (Lewis et al.,
2016). Surprisingly, the reading challenges they face have not been thoroughly studied from
an LS perspective. The scarcity of this type of work has led to a shortage of knowledge
and resources about the needs of non-native speakers of English with respect to the types of
reading comprehension challenges they face, hampering progress in the field.

There are also numerous limitations in modern approaches to LS. Perhaps the most
outstanding of them is the weak connection between Complex Word Identification and the
remaining steps in the pipeline. To our knowledge, very few simplifiers for English perform
Complex Word Identification explicitly. As demonstrated by Shardlow (2014a), ignoring this
step can lead to numerous unnecessary replacements that can compromise the sentence’s
grammaticality and/or meaning.

In order to generate candidate substitutions for complex words, most contributions still
rely on resources such as complex-to-simple parallel corpora (Horn et al., 2014; Paetzold
and Specia, 2013) and manually created thesauri (Baeza-Yates et al., 2015; Biran et al.,
2011). Although these resources can be very useful, they can only be found in abundance
for the English language, which makes these Substitution Generation approaches language-
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constrained. As discussed by Shardlow (2014a), these resources also suffer from low
coverage, meaning that one may not find candidate substitutions for many words which
should be simplified.

Another characteristic that most LS strategies share is the absence of a dedicated Sub-
stitution Selection step. Because of the inherent complexity of Substitution Selection, most
modern simplifiers ignore this task entirely, and instead employ a context-aware Substitution
Ranking approach (Baeza-Yates et al., 2015; Glavaš and Štajner, 2015; Horn et al., 2014;
Paetzold and Specia, 2013). Although the results reported in these contributions show that
these simplifiers offer noticeable performance improvements over earlier work, they also
reveal that these strategies still struggle to ensure grammaticality and meaning preservation,
mostly due to the fact that their Substitution Ranking approaches alone are not able to
effectively capture these linguistic properties along with simplicity.

One of the main reasons for that is the fact that most Substitution Ranking approaches
for LS are unsupervised, and rely mainly on either hand-crafted metrics, or word frequency
features (Baeza-Yates et al., 2015; Biran et al., 2011; Bott et al., 2012; Glavaš and Štajner,
2015; Nunes et al., 2013). Although supervised rankers require training data, they can learn
how to combine different features in order to ensure that the rankings produced will fit
the needs of a target audience, provided that the training data represents said needs. They
can also combine features that represent different linguistic properties, such as simplicity,
grammaticality and meaning preservation, which can help in the creation of more reliable
joint models for Substitution Selection and Ranking. The only supervised rankers available
are the ones of Jauhar and Specia (2012) and Horn et al. (2014), which use Support Vector
Machines (SVM). Although sophisticated, SVM ranking was devised as a general ranking
algorithm and thus has limited potential for the purposes of LS.

Another limitation in previous work refers to how the performance of simplifiers is
assessed. In order to evaluate their simplifiers, most choose to either compare the performance
of their strategies to that of others on an evaluation dataset, or to conduct a human evaluation
of the simplifications produced. The later is the most reliable of the two, but because of
its inherently high cost of both time and resources, it prevents performance comparisons
from including more than a handful of simplifiers. The former, on the other hand, allows for
much larger benchmarks, but is often performed over datasets created by annotators without
a known background. The most frequently used evaluation datasets are LSeval (De Belder
and Moens, 2012a) and LexMTurk (Horn et al., 2014), which include barely any information
on the profile of the annotators who created them. Since there is no way of knowing whose
needs these datasets represent, a simplifier that obtains high performance scores on these
datasets is not guaranteed to help a given target audience in practice. Another problem with
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the evaluation methods used in literature is that they do not incorporate Complex Word
Identification, nor do they provide any insight on what the limitations of the simplifiers
evaluated are, which consequently makes it difficult for one to know how they can be
improved.

In the Section that follows, we discuss how we aim to address each of these limitations in
LS.

1.1 Aims and Scope

1. To provide a better understanding of the simplification needs of non-native speak-
ers of English: It is very important to thoroughly investigate the simplification needs
of the audience being targeted before creating new technologies to assist them. This
is demonstrated by Rello et al. (2013a,b,c), who perform numerous user studies with
dyslexic people in order to better outline the challenges they face. Using this knowl-
edge, they were able to create cost-effective TS approaches for them.

We focus on studying the simplification needs of non-native speakers of the English
language, an ever growing audience composed by all English speakers who have been
taught a different native language. We conducted several user studies with non-native
speakers of English, each focusing on a different part of the Lexical Simplification
process. Through these, we produced new resources and knowledge that allowed us to
create even more reliable simplifiers for non-native English speakers.

2. To model word complexity as perceived by non-native English speakers:

The experiments of Shardlow (2013a) show that Machine Learning techniques can
outperform the threshold-based approaches commonly used in Complex Word Identifi-
cation. Although valuable, their experiments assess the performance of Support Vector
Machines only.

In order to further understand their potential, we experiment with various Machine
Learning techniques, ranging from the simple Perceptron to more elaborate Neural
Networks. We propose Performance-Oriented Soft Voting, an ensemble technique
capable of combining systems with heterogeneous confidence estimates. Using this
technique, we create a complex word identifier that outperforms all other 41 systems
submitted to the Complex Word Identification shared task of SemEval 2016, in which
21 teams participated.

3. To create effective language-agnostic Substitution Generation strategies:
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We tackle the task of Substitution Generation by exploring modern distributional
semantics models, otherwise known as word embedding or word vector models. Unlike
the widely used thesauri and complex-to-simple parallel corpora, these models can be
trained on raw text alone, which allow them to be applied to almost any language.

We introduce a novel version of these models that exploits not only the grammatical
information of the word being simplified, but also the data available in hand-crafted
thesauri, such as the synonymy, hypernymy and hyponymy relations available in
WordNet (Fellbaum, 1998). This way, we create a Substitution Generation strategy that
can be easily adapted to various languages and also improved through the incorporation
of the manually created resources available for them.

4. To devise a novel unsupervised approach to Substitution Selection: The few LS
strategies which do employ a dedicated Substitution Selection step use some form of
Word Sense Disambiguation. However, these strategies have been shown not to be
very suitable for LS, since Word Sense Disambiguation is an open problem on itself
(Basile et al., 2014), and requires language-constrained thesauri that often suffer from
low coverage (Nunes et al., 2013; Thomas and Anderson, 2012).

In order to address this problem, we introduce a new unsupervised approach to the task.
Our strategy, which we name Unsupervised Boundary Ranking, learns a supervised
model from data collected in an unsupervised fashion. It collects said data by exploring
the assumption that the complex word being simplified is irreplaceable, and then uses
this data to train a state-of-the-art ranker that determines how likely each candidate
substitution is of fitting the context in which the complex word was found. Much like
our Substitution Generation approach, this Substitution Selection strategy can be easily
adapted to any language and incorporated in any LS architecture.

5. To conceive a novel supervised Substitution Ranking approach tailored to Lexi-
cal Simplification: The SVM-based rankers of Jauhar and Specia (2012) and Horn
et al. (2014) are the only strategies in literature that employ supervised learning from
data. The experiments of Glavaš and Štajner (2015) show, however, that despite being
the most sophisticated approaches in literature, their SVMs can be outperformed by
much simpler unsupervised approaches.

Since supervised rankers are the only approaches that can automatically learn a model
based on data that represents the needs of non-native English speakers, we focus in
creating a new approach of this kind. We name our strategy Supervised Boundary
Ranking. It uses the same learning framework of our Unsupervised Boundary Ranking
approach to Substitution Selection, but instead of learning a model from data gathered
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in an unsupervised fashion, it learns a model from human annotations made by non-
native English speakers. Unlike existing SVM-based rankers, our approach can learn a
state-of-the-art model from data using various Machine Learning techniques.

6. To design more informative and cost-effective evaluation strategies for Lexical
Simplification: Although there have been numerous efforts in creating Lexical Sim-
plification systems, not much attention has been paid when it comes to ensuring that
they are properly evaluated.

We address this problem in two ways. By re-using existing datasets and incorporating
information from our user studies, we produce a new gold-standard dataset for evalua-
tion that better captures the needs of non-native English speakers. We also introduce
a new framework for the automatic categorisation of errors made by simplifiers that,
unlike other evaluation methods, incorporates all steps of the typical LS pipeline.

1.2 Main Contributions

The main contributions from this thesis are:

1. Valuable new insight on the Lexical Simplification needs of non-native speakers of
English. Through an array of user studies, we find that the words which challenge
them the most tend to be less ambiguous and more frequently found in corpora than
those which do not. We also find that a word’s context offers clues with respect to its
simplicity, and that word length and number of syllables have little to do with word
complexity for non-native English speakers.

2. An experiment that highlights the effectiveness of pipelined LS approaches. We
introduce a new LS strategy that jointly models Substitution Generation, Selection
and Ranking with Neural Language Models, and compare its performance to various
pipelined approaches. We find that our joint model can only perform competitively to
previous work when incorporated into the typical LS pipeline.

3. Novel, state-of-the-art approaches for each and every step of the typical LS pipeline. We
generate candidate substitutions using new retrofitted context-aware word embedding
models, select them employing an innovative unsupervised approach that learns a
model from unannotated data, and rank them using a novel supervised approach that
models the needs of non-native English speakers while addressing the limitations in
previous work.
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4. The LEXenstein framework, which provides the implementation of dozens of LS strate-
gies. LEXenstein is a modular and extensible Python framework with implementations
of all Complex Word Identification, Substitution Generation, Selection and Ranking
approaches mentioned in this thesis, and also of numerous other useful tools for LS.

5. A range of new datasets and resources to be used in the creation of new LS approaches.
Through our user studies with non-native English speakers, we produced datasets that
contain 211,564 annotations made by 1,000 annotators for different steps of the LS
pipeline. To ensure that our novel strategies for LS achieve state-of-the-art performance
in simplifying words for non-native English speakers, we also created new datasets for
LS, a new corpus of subtitles of movies and series for family and children, as well as a
database of automatically inferred psycholinguistic features.

6. An extensive survey and benchmark of work in LS. We describe and discuss the main
contributions in literature to each step of the typical LS pipeline individually. In order
to provide a better outline of the state-of-the-art in LS, we benchmark all approaches by
comparing the performance of 1,344 distinct combinations of Substitution Generation,
Selection and Ranking strategies.

7. A new evaluation strategy that better outlines the limitations of LS approaches. We
introduce PLUMBErr: a novel method for automatic error categorisation for LS. It
disregards the needs for human annotation by exploiting some of the new resources
introduced in this thesis to identify numerous types of errors made by pipelined
simplifiers throughout the simplification process.

8. The Complex Word Identification task of SemEval 2016, which has expanded the
reach of LS in the research community. Using the dataset created in our user study
on Complex Word Identification, 21 teams contributed with 42 novel approaches to
identifying words that challenge non-native English speakers.

1.3 Published Material

Much of our work has been published in international conferences and workshops:

• Our thesis proposal and a summarised version of our survey was published in the
Student Research Workshop at NAACL 2015 (Paetzold, 2015b).

• Our Complex Word Identification user study and shared task are the subject of a task
description paper in SemEval 2016 (Paetzold and Specia, 2016f).
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• The SV000gg systems, which employ our ensemble approaches to Complex Word
Identification, are the subject of a system description paper in SemEval 2016 (Paetzold
and Specia, 2016h).

• The SubIMDB corpus, as well as our Substitution Generation and Substitution Selec-
tion approaches were published in AAAI 2016 (Paetzold and Specia, 2016i).

• The LEXenstein framework was published as a system demonstration in ACL 2015,
which is also our first contribution featuring Substitution Ranking through Boundary
Ranking (Paetzold and Specia, 2015).

• Our bootstrapping technique for the inference of psycholinguistic properties of words
was published as a short paper in NAACL 2016 (Paetzold and Specia, 2016c).

• A benchmarking of Lexical Simplification systems that features our Substitution
Generation, Selection and Ranking strategies was published as an abstract in LREC
2016 (Paetzold and Specia, 2016b).

• The PLUMBErr framework was published as a long paper in QATS 2016 (Paetzold
and Specia, 2016e).

We have also published numerous contributions that do not pertain directly to this thesis’
subject:

• An algorithm for Tree Kernel calculation that employs novel Positional Suffix Trees
was published as a short paper at NODALIDA 2015 (Paetzold, 2015c).

• A flexible lexical analyzer for compilers that allow for error identification was published
as in the Brazilian Electronic Magazine for Scientific Innovation and Technology
(Paetzold and Schemberger, 2015).

• Okapi+QuEst: a translation quality estimation extension to Okapi was published in
EAMT 2015 (Paetzold et al., 2015).

• QuEst++: a multi-level quality estimation framework was published as a system
demonstration in both ACL 2015 (Specia et al., 2015) and EAMT 2016 (Paetzold and
Specia, 2016d).

• SHEF-NN: a set of quality estimation approaches that exploit Neural Networks was
published as a long paper in WMT 2015 (Shah et al., 2015).
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• The SimpleNets systems, which present supervised approaches with Recursive Neural
Networks to Text Simplification and Machine Translation quality assessment was the
subject of system description papers in both QATS 2016 (Paetzold and Specia, 2016g)
and WMT 2016 (Paetzold and Specia, 2016a).

• SHEF-MIME: an imitation learning approach to Machine Translation Quality As-
sessment was published as a system description paper in WMT 2016 (Beck et al.,
2016).

1.4 Thesis Structure

Chapter 2 provides a detailed outline of the state-of-the-art in Lexical Simplification, as
well as a discussion of what the main limitations in each contribution are. Our survey also
includes an extensive discussion on the user studies conducted with various distinct target
audiences from a Lexical Simplification standpoint.

Chapter 3 describes three user studies conducted with non-native English speakers. We
present the methodology used in each one of them, the findings from our data analyses
and the resources produced. In this Chapter are also included the findings of the Complex
Word Identification shared task of SemEval 2016, in which researchers from very diverse
backgrounds have conceived strategies for identifying complex words in English sentences.

Chapter 4 introduces our joint Lexical Simplification strategy, which employs language
models based on Recurrent Neural Networks to model steps of the traditional LS pipeline
jointly. We show that this joint approach is not as reliable as pipelined strategies.

Chapter 5 is the first of three chapters that present our individual approaches for each
step of the traditional LS pipeline. It introduces our approach for Substitution Generation,
which explores the use of retrofitted context-aware word embedding models. Our models
innovate by incorporating lexicon retrofitting (Faruqui et al., 2015) in a context-aware setup
that allows for words to be represented by more than one vector. Our approach outperforms
other generators in literature by a considerable margin.

Chapter 6 presents our approach to Substitution Ranking. It uses a flexible supervised
ranking strategy that we name Boundary Ranking, in which a ranking model is learned from
a binary classification setup inferred from ranking examples.

Chapter 7 describes our approach to Substitution Selection, which is the step between
Substitution Generation and Ranking. We arrange our Chapters this way because our
approach to Substitution Selection builds on our approach to Substitution Ranking. We
take Substitution Selection to be a ranking problem, and address it using an unsupervised
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Boundary Ranking approach, in which a supervised model is learned from training data
acquired in an unsupervised fashion. We find that our strategy outperforms all others in
literature.

Chapter 8 presents various resources, tools and benchmarks. We introduce SubIMDB: a
corpus of subtitles of movies and series for family and children that aims to represent the
vocabulary with which non-native English speakers are familiar. By exploiting SubIMDB as
well as other resources, we propose a strategy for the automatic inference of psycholinguistic
properties of words. We use these features to improve on the performance of our Substitution
Ranking strategy. We then describe LEXenstein: a framework for Lexical Simplification
that provides a wide array of utilities, as well as several Complex Word Identification,
Substitution Generation, Selection and Ranking approaches from literature, including ours.
Using LEXenstein, we present a benchmarking that compares the performance of 1,344
simplifiers over NNSeval, a new evaluation dataset created from our user studies that better
represents the needs of non-native English speakers. We then assess the performance of the
best performing simplifiers using PLUMBErr: an automatic error identification framework
for Lexical Simplification. The results suggest that combining our approaches to Complex
Word Identification, Substitution Generation, Selection and Ranking yields a simplifier that
makes the least amount of mistakes when simplifying words for non-native English speakers.

Finally, in Chapter 9 we provide our final remarks and directions for future work.





Chapter 2

Lexical Simplification: A Survey

In the last two decades, multiple approaches have been proposed to perform Lexical Simplifi-
cation. Perhaps the most straightforward of them all is simplification by synonym substitution,
where the main goal is to replace complex words in a given sentence by simpler synonyms.
This approach was first devised by Devlin and Tait (1998), who extract synonyms from
WordNet (Fellbaum, 1998) and rank candidates according to their Kucera-Francis coefficient
value (Rudell, 1993).

Other approaches to Lexical Simplification combine both lexical and syntactic informa-
tion to improve simplification performance. Paraphrasing strategies such as the ones by
Kauchak and Barzilay (2006) and Paetzold and Specia (2013) aim to replace complex phrasal
constructions with simpler alternatives. Some approaches focus on a specific knowledge
domain, or on a specific class of word. Rello et al. (2013c), for example, aim to simplify
numerical expressions, while Kandula et al. (2010) and Elhadad and Sutaria (2007) focus on
simplifying complex medical expressions.

Even though approaches differ from one another in various ways, most of them use a
very similar sequence of steps to simplify sentences. To allow for a better comprehension of
the general procedures involved in LS, we define the task as the pipeline of steps illustrated
in Figure 1.1, as introduced by Shardlow (2014b). The steps are the following:

1. Complex Word Identification: Task of deciding which words of a given sentence
may not be understood by a given target audience and hence must be simplified.

2. Substitution Generation: Task of finding words or expressions that could replace the
target complex word.

3. Substitution Selection: Task of deciding which of the generated candidate substitu-
tions can replace the complex word without compromising the sentence’s grammatical-
ity nor meaning in a given context.
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4. Substitution Ranking: Task of ranking the remaining candidate substitutions of a
given complex word by their simplicity.

Previous work includes various approaches to each one of these steps throughout the
years. Supervised Substitution Ranking strategies such as the one of Joachims (2002), for
example, can be used not only in LS, but also any other ranking task, such as sentence
re-ranking in Machine Translation and page ranking in Information Retrieval. Yet popular
Text Simplification surveys, such as the ones of Siddharthan (2014) and Shardlow (2014b),
tend to ignore the intricacies of LS approaches.

In an effort to address this gap in literature, the following Sections describe a survey on
the many contributions presented for the various steps in the typical LS pipeline.

2.1 User Studies

One of the main goals of LS approaches in literature is to allow for people that suffer from
linguistic-related illnesses and impairments to have access to a given type of content which is
inherently complex to read. Consequently, a very important step in the process of developing
a simplifier is assessing the needs of the target audience for which it is designed.

The two most frequently addressed target audiences in LS are Aphasia and Dyslexia. A lot
of contributions in Psycholinguistics and Medicine focus on understanding those conditions,
and provide valuable information about them. Because they are out of the scope of this thesis,
we do not attempt to survey all the contributions that assess the difficulties and needs of those
target audiences from a strictly medical standpoint. Rather, we focus only on contributions
that provide discussions on how simplification can help users.

Each of the following Sections addresses a single target audience, providing a survey of
the user studies conducted with the intent of understanding their needs from a simplification
standpoint.

2.1.1 Aphasia

Aphasia is an acquired disorder which is usually caused by blunt traumas in certain areas
of the brain, brain hemorrhages, tumors or even progressive neurological diseases, such as
Alzheimer’s syndrome. According to the American Speech-Language-Hearing Association1,
there have been also documented cases of Aphasia being caused by strokes and severe cases
of epilepsy.

1http://www.asha.org/public/speech/disorders/Aphasia



2.1 User Studies 15

According to Goodglass et al. (2001) and Devinsky and D’Esposito (2003), there are four
main types of Aphasia, each associated to a distinct array of complications and symptoms.
They are:

• Non-Fluent Aphasia: Also commonly referred to as Broca’s Aphasia, it mostly affects
the patient’s ability to express himself, through both speaking and writing. The patient’s
ability to comprehend spoken and written content is usually not affected. Some of the
most frequently observed impairments are the inability to pronounce long sentences in
their entirety and the difficulty in constructing sentences to express elaborate thoughts.

• Fluent Aphasia: Frequently referred to as Wernicke’s Aphasia, it can affect the
patient’s capability of speaking and understanding the meaning of speech, and it can
also severely impair their ability of reading and writing. One of the most frequently
observed symptom among patients is the inclusion of inadequate or out of context
words in spoken sentences, rendering them incoherent, and sometimes leading the
patient to lose their train of thought mid-sentence.

• Anomic Aphasia: Also known as Dysnomia, Anomic Aphasia is different than Fluent
and Non-Fluent Aphasia in the sense that it rarely affects the patient’s reading, writing
and speaking skills directly, but rather makes it difficult for them to select the appropri-
ate words to express a given concept. Patients are often able to pronounce words with
not much difficulty, but frequently fail to find the words to describe even mundane
objects to which they are very familiar.

• Global Aphasia: Shown to be the most debilitating type of Aphasia, it is carried
by patients who have suffered lesions in multiple parts of the brain, usually caused
by strokes. Patients can suffer from all symptoms associated with Fluent and Non-
Fluent Aphasia, and can also have severe difficulties related to speech impairment.
In some cases, patients are almost entirely incapable of pronouncing words and/or
understanding speech in general.

One can find many contributions from the fields of Psycholinguistics and Medicine that
show practical investigations as to how Aphasia affects the reading skills of patients. The
studies conducted with Fluent and Non-Fluent Aphasia patients described by Swinney et al.
(1989) reveal very important information with respect to what types of words can represent
obstacles for them. The aphasic subjects, as well as a control group of people without
Aphasia, were asked to decide on which is the meaning of a word with respect to the sentence
where they were extracted from. The results show that Fluent Aphasia patients and the
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control group were, in general, not challenged by this task. In contrast, Non-Fluent Aphasia
patients have shown to find difficult to identify the correct meaning of a word when such word
does not represent its most frequently used meaning. This observation provides evidence
that those affected specifically by Non-Fluent Aphasia may have problems understanding
sentences with highly ambiguous words, or words that can be of multiple lexical categories,
such as “roll”, which can be both a verb (as in “to roll on the ground”) and a noun (as a
synonym for “sandwich” or “streak”).

Studies about the speed of lexical activation in the task of lexical priming with aphasic
patients have also provided valuable insight on the types of challenges faced by them. The
task of lexical activation can be described as the process performed by the brain in accessing
the semantic information related to a given word in order for one to decide on its meaning.
The process of priming, on the other hand, can be described as a stimulation which is
triggered at a given time in response to a previous stimulus. Lexical priming is an expression
commonly used in literature to describe the process of deciding on the meaning of a word
given a previously presented context.

Prather et al. (1992) describes a user study conducted with a single Non-Fluent Aphasia
patient in order to find evidence of whether or not this type of Aphasia delays lexical
activation in lexical priming. The subject was asked to decide on whether or not a given
string of characters is a valid word of the English language after being exposed to an either
related or unrelated reference valid word. In order to estimate the lexical activation speed
of the subject, a series of ISI’s (Inter-Stimulus Intervals) were tested. In this context, an ISI
is the time for which the reference word stays on the screen before the subject is presented
the target word for it to judge. The results show that larger ISI’s allow the user to be more
accurate, but that the average speed of lexical activation of the Non-Fluent Aphasia patient is
slower than the one of healthy elderly subjects. Such results suggest that those affected by
Non-Fluent Aphasia have problems comprehending sentences which are presented to them
only temporarily over short spans of time, such as the subtitles of a movie. We are not aware
of any LS systems that consider the task of simplifying subtitles for the aphasic.

In the user study of Prather et al. (1997), the speed of lexical activation of Non-Fluent and
Fluent aphasic patients were compared. The experiment conducted with the subjects is nearly
identical to the one of Prather et al. (1992), in which they are asked to decide whether or not
a sequence of characters is a valid word of the English language after being presented an
either related or unrelated word after an ISI. The results obtained are in accordance with the
ones obtained by Prather et al. (1992): the Non-Fluent Aphasia patient presents slower speed
of lexical activation in comparison to both healthy elderly subjects and the Fluent Aphasia
patient. Such phenomenon has also been found by Milberg et al. (1987), who performed
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almost identical experiments with Fluent and Non-Fluent aphasic subjects. The studies
highlight the fact that each type of Aphasia is unique, and should be studied individually in
order for LS systems to better suit their needs.

Aphasic patients were also the target audience in the work of Devlin (1999), a thesis
focused on assessing and addressing the needs of the aphasic with respect to LS. His work
provides a thorough analysis on the many varieties of Aphasia, as well as a survey on
previous efforts regarding the usage of computational resources and methods in the creation
of assistive software for the aphasic. Carroll et al. (1999) lists five techniques suggested
by Lesser and Milroy (1993) on how to help the patients who suffer from linguistic-related
conditions to recover from lost linguistic abilities:

1. Reactivation: Reiterating over how to perform the basic linguistic tasks which have
become challenging.

2. Reorganisation: Conceiving and using new methods of teaching for affected patients
to re-learn how to perform the linguistic tasks which have become challenging.

3. Cognitive Relay Substitution: Teaching affected patients new adapted strategies of
performing challenging linguistic tasks.

4. Substitution by Prostheses: Incorporating prostheses such as electronic devices and
computers as assistive tools to help patients perform challenging linguistic tasks.

5. Functional Communication Strategies: Refers to teaching patients personalised
ways of performing challenging tasks, such as speaking and writing, so that they can
participate in social and academic activities with more ease.

Considering the description of those techniques, one could argue that Lexical Simplifica-
tion systems can be categorised as prostheses, which modify texts in order for patients to
perform the task of reading more easily. The LS approach described by Carroll et al. (1999)
selects the most frequent synonyms to replace the words of a given sentence.

Following the contributions of Devlin (1999), Carroll et al. (1998) and Carroll et al.
(1999) present very similar LS strategies that also aim to assist the aphasic. They also
extract synonyms of target words from Wordnet and select the one with the highest Kucera-
Francis score to replace it. Devlin and Unthank (2006)’s approach is, to our knowledge,
the first that incorporates Human-Computer Interaction resources in order to help patients
to comprehend texts. They explore the concept of “memory jogging” which is the process
of using suggestions of synonyms and related images to remind readers of the meaning of
certain words and expressions.
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Although simplifiers have greatly evolved throughout the years after these contributions
have been published, there are not, to our knowledge, any more contributions that focus their
attention on the necessities of aphasic patients with respect to LS. Modern contributions have
focused mostly on improving the performance of simplifiers based on evaluation datasets
annotated by English speakers of undisclosed background (Glavaš and Štajner, 2015; Horn
et al., 2014).

We were not able to find any studies that investigate the needs of Anomic and Global
aphasic patients in relation to Text Simplification. Considering how important the findings
presented by contributions such as the ones of Prather et al. (1997), Prather et al. (1992) and
Milberg et al. (1987) are, and the fact that there are very few records of LS systems that use
those findings as motivation, we believe that there is still a high demand for contributions
focused on helping the aphasic. Since there is already a wide range of simplifiers available,
trying to understand what type of strategy better suits each of the main types of Aphasia
would be a step towards effectively helping those affected.

2.1.2 Dyslexia

Dyslexia is a disorder commonly diagnosed during childhood, found to be caused by abnor-
malities in visual and auditory devices. Dyslexia can manifest itself at any stage of one’s life,
with causes ranging from blunt traumas to the head, to strokes and progressive diseases. As
in the case of Aphasia, Dyslexia can be of different types, and patients can have multiple
obstacles with respect to reading, writing and text comprehension. Some of the varieties of
Dyslexia (Baddeley et al., 1982; Friedman and Hadley, 1992; Galaburda, 2006; Gitterman
et al., 2012) are:

• Deep Dyslexia: Impairs the patient to accurately decide on the precise meaning of a
word. Often, the patient will be able to read words, but will only be able to associate
them with similar or related meanings.

• Surface Dyslexia: Partially impairs the patient’s speaking skills. Frequently causes
the patient to have difficulty in pronouncing words with unfamiliar phonetic structure.

• Pure Dyslexia: A type of Dyslexia which impairs the patient’s reading skills, usually
not affecting their speaking ability. The patient presents what is frequently referred
to in literature as “letter-by-letter” reading, which causes reading to be considerably
slower than that of a non-dyslexic.
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• Neglect Dyslexia: Another variety of Dyslexia that affects the patient’s reading ca-
pabilities. While reading, the patient ignores certain letters of words, which can
sometimes hinder their capability of comprehending a word’s meaning.

• Attentional Dyslexia: Characterised by rendering the patient confused when reading
sentences or documents in which letters are closely grouped together due to lack of
space. Patients often find it easier to comprehend the meaning of a sentence when
reading one word at a time.

Each type of Dyslexia shows very distinct symptoms, and can be modelled with dedicated
assistive tools. While patients with Attentional Dyslexia might benefit from a tool that
rearranges the layout of a document in order to add more space between words, Pure
Dyslexia patients might instead have problems while reading movie subtitles, and hence
making them shorter could be of help.

In the context of Text Simplification, contributions can be found that evaluate how certain
LS strategies influence the readability and understandability of sentences with respect to the
needs of the dyslexic. Rello et al. (2013c) presents a study that investigates which forms
of number representations are easier to comprehended dyslexic people. Their experiment
investigates the following six hypotheses:

1. Numbers represented by digits, such as “10”, are easier to read than numbers repre-
sented by words, such as “ten”.

2. Numbers represented by digits are easier to comprehend than numbers represented by
words.

3. Rounded numbers, such as “10”, are easier to read than non-rounded numbers, such as
“10.55”.

4. Rounded numbers are easier to comprehend than non-rounded numbers.

5. Numbers represented by percentages, such as “10%”, are easier to read than numbers
represented by fractions, such as “1/10”.

6. Numbers represented by percentages are easier to comprehend than numbers repre-
sented by fractions.

A total of 72 subjects participated in the experiment: 36 people with Dyslexia and
36 healthy control subjects. All subjects were asked to read texts containing one of the
aforementioned number representations while wearing an eye-tracking device. Subjects were



20 Lexical Simplification: A Survey

also asked to answer questionnaires about the content of each text after reading them. In their
work, they define readability as the speed with which a segment of text can be read. The
use of eye-tracking allows for one to measure the fixation time spent by each subject while
reading the excerpts, and hence judge how readable it is. The findings from their experiments
are:

• Numbers represented by digits have shown to be significantly easier to read than written
numbers for the dyslexic subjects. The readability measures for healthy subjects have
shown not to be significantly different between the two representations.

• No statistical significance was found for either healthy or dyslexic subjects to support
that numbers represented by digits are easier to comprehend than written numbers.

• No statistical significance was found for either healthy or dyslexic subjects to support
that rounded numbers are easier to read than non-rounded numbers.

• No statistical significance was found for either healthy or dyslexic subjects to support
that rounded numbers are easier to comprehend than non-rounded numbers.

• Percentages have shown to be significantly easier to read than fractions for the dyslexic
subjects. The readability measures for healthy subjects have shown not to be signifi-
cantly different between the two representations.

• No statistical significance was found for either healthy or dyslexic subjects to support
that percentages are easier to comprehend than fractions.

Their results are evidence that the dyslexic can indeed be aided by LS in the context
of numerical representations: using digits instead of words and percentages instead of
fractions has proven to be an effective way of increasing text readability for patients. Another
experiment that assesses how LS can help the dyslexic is described in (Rello et al., 2013b).
Four hypothesis are tested in their experiment:

1. Sentences with a larger number of high frequency words offer increased readability to
the dyslexic.

2. Sentences with a larger number of high frequency words offer increased understand-
ability to the dyslexic.

3. Sentences with a larger number of short words offer increased readability to the
dyslexic.
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4. Sentences with a larger number of short words offer increased understandability to the
dyslexic.

A group of 46 subjects participated in their experiment, 23 of which had Dyslexia and
23 were healthy control subjects. They were asked to read sets of texts that have been
manually simplified in two ways: by replacing an arrange of selected words by their most
frequent synonyms, and by their shortest synonyms. To estimate readability, an eye-tracking
device was used, and in order to assess understandability, subjects were asked to answer
questionnaires about the texts after reading them. The results revealed that:

• Dyslexic subjects showed considerably larger reading and fixation times than healthy
subjects in general.

• The usage of more frequent synonyms has caused a significant reduction in the reading
and fixation times of the dyslexic, but has no impact on reading times of the control
group.

• Sentences with a larger number of high frequency words offer higher understandability
to the dyslexic.

• The usage of shorter synonyms has caused a significant reduction in the reading times
of the dyslexic, but had no impact on reading times of the control group.

• Sentences with a larger number of short words offer higher understandability to the
dyslexic.

• The usage of more frequent synonyms has no impact on comprehension scores of both
dyslexic and healthy subjects.

• The usage of shorter synonyms has shown a significant increase in the comprehension
scores of the dyslexic.

While replacing words by their most frequent synonyms has been shown to increase the
readability of a text, replacing words by shorter synonyms has been shown to significantly
increase its comprehensibility. A small survey conducted by Rello et al. (2013b) also lists
some contributions that have identified categories of words that represent a challenge to
dyslexic people:

• Coltheart (1996) found that words which are not pronounced as their arrangement of
syllables suggests, such as “vase” or “butter”, can be challenging to the dyslexic.
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• Ellis (1993) found that words which have very similar orthography, such as “addition”
and “audition” can be confusing to the dyslexic.

• Patterson et al. (1985) found that homophonic words i.e. words that sound very similar
but are written differently, such as “weather” and “whether”, can also cause readability
problems.

• Vega (2008) and Coltheart (1996) found that foreign, unfamiliar and made up words
can also be obstacles for the dyslexic.

Rello et al. (2013a) presents another user study that identifies the needs of the dyslexic
with respect to LS. They conduct an experiment to discover what type of text adaptation
strategy better suits dyslexic people. Two adaptation strategies were tested:

1. SubsBest: Replaces complex words with more frequent synonyms. The system used
to employ this strategy is LexSis, a simplifier introduced by Bott et al. (2012).

2. ShowSyns: Shows a list of available synonyms for the words that the users them-
selves annotate as challenging in the text. This system performs not simplification,
but Text Elaboration, in which complex words and expressions are enhanced with
complementary information that clarifies on their meaning.

A total of 96 subjects participated in the study, 47 of which were dyslexic. Subjects
were asked to read four distinct versions of texts: its original unsimplified version, a version
simplified by SubsBest, a version enhanced by ShowSyns, and a manually simplified gold-
standard. An eye-tracking device was used to measure reading and fixation times. Subjects
were also asked to answer multiple-choice questions about the content of the texts, and to
judge in a five point Likert scale how easy each text was to read, understand and remember.
The main conclusions drawn from the experiment are:

• The SubsBest strategy has been shown to not affect reading and fixation times of
dyslexic subjects significantly, and actually showed lower comprehension scores in
comparison to the ones obtained for the unsimplified version of the texts.

• The ShowSyns strategy has caused for a significant increase in comprehension scores
for dyslexic subjects.

• Dyslexic subjects judged the texts read with the assistance of ShowSyns to be more
easily readable, understandable and memorizable than both original, SubsBest and
gold-standard versions. Nevertheless, non-dyslexic subjects disagreed, giving lower
scores for SubsBest texts than to the original versions in all three aspects.
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In summary, their experiments have revealed that even a modern LS system can com-
promise the understandability of a text. In contrast, a system that “suggests” synonyms to
words that the user selects have shown very promising results, helping dyslexic people to
comprehend texts.

2.1.3 Autism

Autism is a neurodevelopmental disorder that falls into the category of Autism Spectrum
Disorders, and is characterised by an array of conditions that can cause an individual to
suffer from several medical, behavioral and linguistic impairments. Among Autism Spectrum
Disorders are also Asperger and Heller’s syndromes, which provoke complications similar to
the ones caused by Autism.

Baron-Cohen (2000) presents a comprehensive survey on the effects of Autism in the
behavior of children. Most of the documented complications which are caused by the
disorder do not affect the linguistic capabilities of the autistic directly, but can most definitely
introduce challenges in reading comprehension and communication. Children that suffer
from Autism often have problems distinguishing mental from physical actions (Stone et al.,
2003). They have, for example, difficulty in understanding the difference in the degree of
knowledge obtained by a person who thinks of a certain object, and a person who actually
touches and/or examines it. Another impairment refers to understanding the function and
capabilities of the brain: autistic children have more difficulty in distinguishing between
processes that occur strictly in abstraction, such as thinking, dreaming and imagining, and
processes administered by the brain which provoke physical responses, such as touching,
walking and jumping. They are also known to have limited abstraction capabilities. When
presented with objects of dual-identity, such as an apple-shaped candle, autistic children have
been shown to be much less likely to correctly identify that the apple-shaped candle was
not, in fact, an apple (Stone et al., 2003). There are various other examples mentioned by
Baron-Cohen (2000) of complications caused by Autism:

• Autistic children often suffer from attention deficit, and struggle to concentrate on
subjects or topics which are of no interest to them.

• Autistic patients can find challenging to infer someone’s intent by observing their
behavior. They can also struggle to identify deceit, sarcasm and humorous remarks.

• Autistic patients can find themselves incapable of diagnosing the emotional state of
someone else, or predicting someone else’s reaction to their actions.
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• Autistic patients can consider only their opinion when making a decision, and hence
sometimes disregard the impact of some of their actions in the emotional state of
others.

Although not of linguistic nature, some of the aforementioned complications can also
affect autistic patients’ reading comprehension capabilities. When reading books with
elaborate plots and complex character development, for example, an autistic person may find
it challenging to comprehend the intent behind decisions made by characters, which could
consequently confuse them.

Despite the interest of researchers from the Medicine and Psycholinguistics in understand-
ing the problems caused by Autism, we were not able to find many examples of contributions
that focus on either understanding or addressing the linguistic-related complications caused
by them from a simplification perspective. Barbu et al. (2015) mention several problems
caused by Autism Spectrum Disorders that directly affect the linguistic capabilities of pa-
tients:

• Although they are usually proficient in comprehending the meaning of words individu-
ally, they often cannot infer the meaning of an ambiguous word from its context.

• They often cannot link objects in sentences with pronouns and anaphoric references to
them.

• Their incapability of linking pronouns and anaphoric references to objects becomes
more severe as the syntactic complexity of a sentence grows.

Their simplification system, which is called Open Book, addresses such linguistic lim-
itations by employing several strategies commonly used by successful simplifiers, such
as:

• Image Retrieval: The user can select which words they do not comprehend and ask for
an image search, which will retrieve images that illustrate them. Open Book acquires
images by querying ImageNet (Deng et al., 2009), Wikipedia, Google and Bing.

• Document Summarisation: Open Book employs an algorithm similar to Google’s
Page Rank, in which the sentences of a given document are ranked according to how
relevant they are to its overall content. The user can then retrieve a portion of the best
ranking sentences as a summary of the document’s content.

• Document Topic Modeling: By using a topic modelling approach called Latent
Dirichlet Allocation (Blei et al., 2003), Open Book presents the user with the excerpts
and expressions that best summarise the overall topic of a given document.
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Their simplification approach was evaluated by 243 Autistic patients. They were asked
to read the original and simplified versions of various documents, and then answer a ques-
tionnaire about the content of the document. They claim that subjects who read simplified
versions of the documents have achieved noticeably higher comprehensibility scores than
those who have read the documents in their original form. They do not, however, present any
statistics that would allow one to quantify how effective their approach is in comparison to
other strategies.

Yaneva et al. (2015) presents an eye-tracking study that also reveals much about how
simplification could aid the autistic. By comparing the fixation times of subjects while
reading various documents, they find that the autistic tend to fixate on photographs and
images much more than the non-autistic. Their findings suggest that, while adding visual
components that describe key components in a text can help the autistic in comprehending
its meaning, polluting the text with ads and/or images that are not descriptive of any content
in the text can hinder their capability of comprehending it. They also find that modifying
texts by following the Plain English guidelines of Freyhoff et al. (1998) allow for the autistic
to achieve noticeably higher comprehension.

One may notice that neither Barbu et al. (2015)’s or Yaneva et al. (2015)’s work present
any type of LS strategy, which shows that finding effective LS approaches for the autistic
is still an open problem. Given that those affected by Autism Spectrum Disorders find it
challenging to understand ambiguous words, perhaps an effective way of performing Lexical
Simplification would be by replacing them words with less ambiguous alternatives. Syntactic
or Semantic Simplification could also aid the autistic: resolving anaphoric references could
potentially increase reading comprehension.

2.1.4 Low-Literacy

Contrary to Aphasia, Dyslexia and Autism, Low-Literacy is not a medical, but rather a social
condition that affects people which have not had access to quality education. The Instituto
Paulo Montenegro2 is a Brazilian institution that created the Functional Illiteracy Index
(INAF), an initiative with the goal of measuring the levels of literacy in Brazil. The people
involved in collecting such statistics visit the houses of families of different social classes,
applying questionnaires to family members between the ages of 15 and 64 in order to assess
their literacy levels. The INAF groups those who participated in the questionnaires in four
categories of literacy:

2http://www.ipm.org.br
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1. Illiterate: The individual is not capable of completing even basic tasks related to
reading, but, in some cases, can understand familiar numeric expressions (such as
telephone numbers).

2. Rudimentary: The person is capable of assessing basic information from short and
familiar texts, read and write small numbers and perform basic tasks related to reading
and writing, such as counting money to pay for bills and using a measuring tape.

3. Basic: People under this category are also described as “Functionally Literate”. They
are capable of comprehending medium-sized texts, can assess information from texts
even when inference is required, read numbers in the magnitude of millions, can solve
mathematical problems that involve a sequence of simple operations, and have a notion
of proportionality. They are, however, incapable of solving problems involving an
increased amount of steps, components or relations.

4. Advanced: People under this category are the ones whose literacy skills no longer
impose limitations with respect to comprehending and interpreting the content of texts
in general. They are capable of reading long texts and understanding the relations
in them, can compare and evaluate pieces of information, can distinguish facts and
opinions, and can perform inference and synthesis over a subject. They can also
comprehend graphs, maps and tables, and solve more complex mathematical problems
that involve planning, reasoning, percentages, proportions and measurements.

The PorSimples Project (Aluisio and Gasperin, 2010) is the biggest contribution in the
field of Text Simplification for the Portuguese language. It aims to address the needs of those
who are affected by low-literacy by providing tools that simplify texts in many different
ways, such as through Summarisation, Syntactic Simplification, Lexical Simplification and
Text Elaboration.

Watanabe et al. (2009) introduces Facilita, one of the tools created in the PorSimples
project of which the goal is to perform real-time Syntactic and Lexical Simplification, as well
as Text Elaboration to pages of the web. Facilita is a browser plug-in with an easy-to-use
interface that allows for the user to customise the way texts are presented to them.

To our knowledge, there are no other contributions in literature that describe LS methods
for low-literacy readers. The INAF statistics for the years of 2011 and 2012 indicate that only
26% percent of the Brazilian population is judged to have Advanced literacy skills, while
47% are Functionally Literate and the remaining 27% are judged to have either Rudimentary
skills or to be completely illiterate. According a survey conducted by UNESCO (Huebler
and Lu, 2012), the proportion of literate citizens can also be as low as 37% in some countries
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in Africa and Asia. and These numbers show that low-literacy is still a serious problem
in developing countries, and consequently highlight the dimension of the role that Text
Simplification could still play in addressing this problem.

2.1.5 Second Language Learners

Second Language Learners are those who are at some stage, be it early or advanced, formally
or informally, of acquiring a second language. Statistics provided by ETS (Austin et al.,
2006) show that, throughout the years of 2004 and 2005, there were around 5.1 million
English learners in the United States alone (10% of the country’s population). They also
report a growth in the number of English learners of over 700% in some states between the
years 1994-1995 and 2004-2005. Such numbers have inspired many, specially in the field of
Psycholinguistics and teaching, to investigate the impact of simplification methods and tools
in the language acquisition process of second language learners.

One of the first contributions on the topic of second language learning was presented by
Krasher (1985), who introduce five hypotheses regarding language acquisition:

• The Acquisition-Learning Hypothesis: States that there are two types of knowl-
edge about a second language that are internalised in different ways: “acquired” and
“learned”. Acquired knowledge is described by Krasher (1985) as information which
learners are not consciously aware of the rules, such as the appropriateness of a sen-
tence in a certain context, while learned knowledge is described as information which
learners can consciously grasp in a more formal and structured fashion.

• The Natural Order Hypothesis: States that the elements of a given language can
only be learned in a certain order, which cannot be changed even under the influence
of distinct teaching methods.

• The Monitor Hypothesis: States that the learned knowledge acts as a monitor which
influences on the way that acquired knowledge is internalised. In order for said monitor
to be effective, it must respect three conditions: it requires reasonable time, a focus on
the form, and reliable knowledge of the rule.

• The Input Hypothesis: States that, in order for someone to be able to learn a second
language, they must be iteratively presented with comprehensible, yet moderately chal-
lenging knowledge. This strategy is referred by the author as “i+1”, where i is intended
to represent the state of knowledge of a given learner, and +1 a moderate increment
in the array of knowledge necessary for the learner to comprehend a given piece of
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content. The hypothesis assumes the existence of an innate Language Acquisition
Device (LAD) within the learner’s mental faculties, which is activated whenever they
are presented with comprehensible knowledge.

• The Affective Filter Hypothesis: Claims the existence of the “Affective Filter”, which
determines how much comprehensible knowledge can be presented to the LAD so that
it acquires/learns new information about a second language. A high Affective Filter,
which could be caused by low motivation, self-confidence or anxiety, would cause the
learner to have limited or impaired knowledge acquisition.

The extent to which these hypotheses hold could greatly influence the decision of whether
or not simplification could be used as a reliable tool for teaching, since it directly modifies
the linguistic properties of the content to which second language learners are exposed.
Throughout the years, such hypotheses have been frequently debated. In (Gass and Selinker,
2008), for example, is argued that the i+1 learning scheme proposed by Krasher does not
provide any practical insight with respect to teaching or language acquisition, and is rather
just a reductionist idealisation of the learning process. Burden (2006) mentions that there is
increasing evidence that Krashen’s Acquisition-Learning Hypothesis is flawed: contributions
such as the ones of Larsen-Freeman (1991) and Pica (1994) show that the output produced by
the learners’ own speaking skills can also act as an input of acquired knowledge. In contrast,
some authors claim that Krashen’s hypotheses can in fact be observed in practical contexts.
The work of Ellis (1994) presents evidence that there are certain dependencies between the
nature of linguistic knowledge and the proficiency stage of a learner.

By using Krashen’s hypotheses as an argument, some claim that simplification can
compromise the second language learning process. Campbell (1987) states that simplified
versions of texts can “water-down” the information inherent to the characters in a narrative,
which could hinder the overall comprehension of certain types of content. A similar argument
is made by Bacon and Finnemann (1990), who point out that simplification may cause an
unwanted change in the cultural heritage inherent to certain writing styles, which could
prevent the learner from overcoming cultural barriers during language acquisition. Yano et al.
(1994) argues that a learner would not be able to progress in second language acquisition if
only presented with knowledge they are already familiar with. The same argument is used by
Honeyfield (1977) and Oh (2001).

In more practical setups, many have chosen not to debate over the theoretical aspects of
language acquisition, but rather to investigate how the use of Text Simplification methods can
assist second language learners. Some contributions have shown that syntactic simplification
can actually lower the comprehensibility of texts. The work of Lotherington-Woloszyn
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Original Because he had to work at night to support his family, Paco often
fell asleep in class.

Text Simplification Paco had to make money for his family. Paco worked at night. He
often went to sleep in class.

Text Elaboration Paco had to work at night to earn money to support his family, so
he often fell asleep in class next day during his teacher’s lesson.

Table 2.1 Comparative example of Text Simplification and Text Elaboration, as described by
Long and Ross (1993)

(1992), Ulijn and Strother (1990), Oh (2001) and Yano et al. (1994) suggest that syntactically
modified sentences are often less cohesive than their original forms, and are rarely more
easily comprehensible. As an alternative, Oh (2001), Parker and Chaudron (1987), Yano
et al. (1994) and Long and Ross (1993) suggest Text Elaboration: a process which does not
shorten or rearrange the content of sentences, but rather complements it in order to make
it simpler. The example of Table 2.1, extracted from Long and Ross (1993), illustrates the
difference between their rendition of Text Simplification and Text Elaboration.

Lexical Simplification, on the other hand, have shown much more promise as an assistive
tool for second language learners. The results obtained by Tweissi (1998) reveal that
LS can in fact increase the comprehensibility of texts significantly. Gardner and Hansen
(2007) introduces a substantial compilation of contributions that highlight the potential
of LS. Among those contributions are the ones of Nation (2001) and Hirsh et al. (1992),
which present statistics obtained through experimentation about the relation between learned
vocabulary and reading comprehension: English language learners need to be familiar with
around 95% of a text’s vocabulary in order to achieve basic comprehension, and with an
even higher proportion for leisure (98%). Another very important argument in favor of LS
has been outlined by Carver (1994) and Nation and Coady (1988), who show that, when a
text’s vocabulary is matched by the reader’s, comprehension is often achieved even if the
text is composed of several sentences of high syntactic complexity. In other words, their
findings show that LS can, in some contexts, eliminate the need for Syntactic or Semantic
Simplification altogether.

There are, however, those who believe LS can hinder language acquisition. Honeyfield
(1977), for example, argues that LS causes a homogenisation of the content which a second
language learner is exposed to, which can slow the process of acquiring new vocabulary.
The experiments of Oh (2001), Yano et al. (1994) and Young (1999) present somewhat
discouraging findings for LS. Their results show that there is no discernible increase in
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comprehensibility of second language learners when different strategies of LS are applied in
texts of varying subjects. Such arguments are nonetheless disputed by Gardner and Hansen
(2007), who argue that, while Honeyfield (1977) has no practical evidence to support his
claims, the methodology used in the studies conducted by Oh (2001), Yano et al. (1994) and
Young (1999) impose an inherently strong bias against Text Simplification, given that they
do not properly assess the opinion of second language learners about simplified texts. They
also claim that the results obtained by them may be convoluted, since their simplification
operations comprised not only lexical substitutions, but also syntactic operations such as re-
ducing the sentence’s length. Finally, Leow (1993) claims that the gains in comprehensibility
commonly associated with the use of LS do not justify the costs of simplifying texts. This
argument, however, takes simplification strictly as a manual task, which becomes thus an
encouragement statement in favor of automatic approaches.

Given the arguments presented, we conclude that, although there is some evidence
that Text Simplification can hinder or slow second language acquisition, the potential of
LS systems to increase the comprehensibility of texts justifies investigating more effective
approaches for the task.

2.1.6 Non-Native Speakers

A non-native speaker of a given language is anyone who speaks said language, but have
learned a different first language earlier in their life. They can significantly vary in age,
cultural background, proficiency and education level, and are certainly the largest and most
diverse group among all the ones included in this survey. The audience of non-native speakers
comprise not only second language learners, but also those who have already achieved fluent
speaking status in a given language. Due to this diversity, researchers in the area of Text
Simplification often prefer to conceive simplifiers for more restricted, homogenous groups,
such as the dyslexic or aphasic.

We were not able to find many examples of user studies or LS approaches that address the
needs of non-native speakers who, differently from second language learners, have to process
language content without the purpose of learning the second language. The English Lexical
Simplification task of SemEval 2012 (Specia et al., 2012) has allowed for the research
community to submit and compare their strategies for LS. The data made available for
training and testing was created by non-native English speakers with various backgrounds.
Their findings show that the non natives’ perception of word simplicity strongly correlates
with word frequencies extracted from the Google 1T corpus (Evert, 2010)

But despite the scarcity of user studies with respect to Text Simplification specifically,
there is a wide array of studies that investigate how the profile differences between native
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and non-native English speakers affect the quality of their experiences as students and
teachers. Leki (2001) presents a study that investigates how non-native speakers of the
English language are perceived and treated in group projects. In their study, six non-native
speakers of English had their academic experience documented throughout five years of
their undergraduate courses. By interviewing the students about their performance in group
projects, they were able to find that the group members who were native English speakers
had low expectations with respect to their academic performance, and did not communicate
as frequently with non-native speakers of English as they did with the other members of the
group. By the end of the experiment, the non-native speakers of English showed a more
pronounced contempt towards group projects than they did before it started.

Several user studies have also been conducted with native and non-native teachers of
the English language and their students, most of which have been surveyed by Reves and
Medgyes (1994). The results obtained suggest that students perceive significant distinctions
between native (NET) and non-native English speaking teachers (NNET). It was found
that students often perceive NETs as more skilled English speakers than NNETs. NNETs
tend to use less usual sentence constructs during teaching, and often show to have a more
limited vocabulary than the ones of NETs. In contrast, NNETs often offer more thorough
explanations about the topics being taught, and are also more proficient in understanding and
addressing the difficulties that students may encounter when learning something new about
English.

Overall, most of the differences between NETs and NNETs are caused by divergences
in English proficiency, which suggests that even skilled non-native English speakers may
have somewhat limited fluency in comparison to native speakers. Such observation allows
us to conclude that there is still the need to investigate what causes such drawbacks in their
proficiency, specially with respect to limited vocabulary and speaking skills. We can also
conclude that, since LS mainly focuses on simplifying the vocabulary required to comprehend
a given text or sentence, it may also be an effective assistive tool for non-native speakers,
specially those who are not fluent speakers of said non-native language.

2.2 Complex Word Identification

We now review every one of the steps in the typical LS pipeline. In the Complex Word
Identification (CWI) step the goal is to select the words in a given sentence which should be
simplified. Shardlow (2014b) illustrates an interesting example of this task: in the sentence
“The cat perched on the window”, the word “perched” is a clear candidate for simplification,
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since one could argue that this is not a very common word, especially when compared to
some of its synonyms, such as “sat” and “rested”.

The following Sections discuss the advantages and limitations of six categories of strate-
gies for CWI:

• Simplify Everything;

• Threshold-Based;

• Lexicon-Based;

• Implicit Complex Word Identification; and

• Machine Learning-Assisted.

2.2.1 Simplify Everything

Early LS approaches (Devlin and Tait, 1998) did not perform Complex Word Identification.
Instead, they assumed that all words in a sentence could be simplified. This strategy has lost
popularity over the years since, as demonstrated by Paetzold and Specia (2013), a simplifier
without a CWI module might replace words which are already easy to understand by the
target audience in question, and hence make the text even more difficult or less meaningful.
In Devlin and Tait (1998)’s simplification approach, all words and phrases of a sentence
are targets for simplification. Their results report that 16.60% of the simplified sentences
had their grammatical structures compromised, while 44.50% of them had their meaning
modified. (Paetzold, 2013; Paetzold and Specia, 2013) reported that manual inspection
showed that many modifications made to the sentences were indeed performed over portions
of text which did not need simplification, leading to the multiple cases of ungrammatical
and/or incoherent substitutions.

2.2.2 Threshold-Based

Threshold-based approaches aim at searching for a threshold t over a given metric of simplic-
ity M for a word w such that if M(w)< t the word w can be more confidently categorised as
a complex (or simple) word.

Keskisärkkä (2012) reports a study on the effect of using a word’s length as a metric
for CWI. Their LS approach simplifies sentences by replacing complex words with their
most frequent synonym. Results show that increasing the word length decision threshold
effectively decreases the number of errors performed by their approach, i.e. simplifying only
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words with more than 7 letters in length proved to produce sentences with higher readability
scores than simplifying all words in the sentence.

Word frequency has been a much more popular choice of metric for threshold-based
approaches. Bott et al. (2012) describes an LS system for the Spanish language. By discarding
substitutions for words in a sentence which appear in more than 1% of sentences in a large
corpus, their method is able to outperform a baseline approach that does not discard any
candidates. Considerable improvements in both meaning preservation and simplicity have
been reported. Leroy et al. (2013) describe a similar approach that simplifies medical domain
texts. They choose to simplify only words with an occurrence count of less than 15.377.914
times, which is the occurrence count of the 5000th most frequent word in the Google 1T
(Evert, 2010). Human subjects reported a discernible reduction in the perceived reading
difficulty in comparison to unsimplified sentences. Shardlow (2013a) learns the threshold that
best separates complex and simple words from the CW corpus (Shardlow, 2013b). They use
word frequencies from the SUBTLEX corpus (Brysbaert and New, 2009a) as a metric. Their
threshold-based approach offers a noticeable improvement in performance over a baseline
“simplify everything” approach.

Threshold-based approaches are intuitive in nature and easy to implement. However, the
evaluation of a set documents in the Spanish language in (Bott et al., 2012) suggests that it is
difficult to elaborate a single simplicity feature or metric that is capable of discerning between
complex and simple words. Their analysis was performed over 40 manually simplified
documents. When evaluating simpler synonyms of complex words, it was found that less
than 70% of the simpler words were actually shorter in length than their complex equivalents.
This means that simplifying only words which are more than t characters in length could
lead to either ignoring certain complex words, or replacing simple words.

An analysis conducted by Shardlow (2014a) provides further evidence that threshold-
based approaches are unreliable. The goal of their work is to find out the most frequent types
of errors made by a baseline LS approach. Their LS approach is very similar to the one of
Devlin and Tait (1998), and identifies simplifiable words by computing their Kucera-Francis
coefficient: if it is lower than 5, the word is deemed complex and should be simplified. They
define seven types of errors that can be made throughout the LS pipeline, two of which are
CWI errors:

• Type A: A complex word is identified as simple.

• Type B: A simple word is identified as complex.

In order to find out how many mistakes are made by the system, a set of 115 sentences
were simplified, and a manual evaluation performed by the author over the output produced
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after each step of the LS pipeline. The findings show that a mistake was made in more than
65% of the complex word identification operations performed by the system, representing
a total of 119 mistakes out of 183 operations. 99 of the 119 total mistakes were of Type B,
which resulted in many simple words being unnecessarily (and incorrectly) replaced.

2.2.3 Lexicon-Based

To tackle the limitations of threshold-based approaches, some domain-specific LS systems
have used a different approach for CWI. Their strategy consists in using a lexicon of complex
words to identify simplifiable candidates: if a given word w is part of the lexicon of complex
words L, then it should be simplified.

Deléger and Zweigenbaum (2009) present a method for building a lexicon of complex
paraphrases in the medical domain. The method consists in automatically identifying aligned
paraphrases in technical medical articles from the Web which have a corresponding summary
written in lay terms. The approach uses a topic segmentation tool (Hearst, 1994) to identify
pairs of segments likely to have aligned paraphrases, and then selects the pairs of segments
which have a word co-occurrence vector cosine similarity higher than 0.33. The lexicon is
hence composed by all segments extracted from documents written in technical terms.

When available, manually constructed lexicons can also be useful. The paraphrase
extraction approach of Elhadad and Sutaria (2007) uses the lexicon provided by UMLS
(Unified Medical Language System) (Bodenreider, 2004), a database of technical medical
terms, to identify complex words and expressions. A more elaborate technique is used by
Elhadad (2006): they consider simple all expressions from UMLS that can also be found
in the Brown corpus. This filtering method explores the intuition that, if an expression that
is commonly used in medical documents is found in a corpus of an unrelated domain, it is
likely that such an expression is not complex. Through an experiment where college-level
lay readers were asked whether or not a given medical expression was familiar, they found
that abbreviations are extremely likely to be unfamiliar to readers. Based on these results,
they also employed the heuristic that all abbreviations found in a sentence are considered
complex to readers.

Kajiwara et al. (2013) present an automatic method for the extraction of paraphrases
of complex words for children. The lexicon of simple words used is the Basic Vocabulary
to Learn, a manually collected set of 5.404 words of the Japanese language that can help
children communicate more efficiently.

Lexicon-based strategies can be very effective in practice. The success achieved by the
FACILITA system, described in (Watanabe et al., 2009), is a good example of that. FACILITA
is a tool designed to simplify Web pages, and it was part of the PorSimples project (Aluisio
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and Gasperin, 2010), a simplification framework for low literacy readers of the Portuguese
language. The lexicon used to identify simple words in the PorSimples framework is
composed by words extracted from books for children, and a manually constructed list of very
frequent words in news documents and a set of words judged “concrete” in (Janczura et al.,
2007). The FACILITA tool proved to effectively assist low-literacy readers in comprehending
texts of complex nature, such as news articles.

Lexicon-based approaches also have limitations, since manually creating large lexicons
of complex or simple words can be prohibitively expensive. In addition, deciding which
words should be present in the lexicon is a challenge since it is very unlikely that different
individuals even within the same target audience will consider complex the same words.

2.2.4 Implicit Complex Word Identification

More recent approaches perform CWI not as an initial step in the process of simplification,
but rather implicitly during other steps of the pipeline. They consider all words in a sentence
to be targets for simplification, but during the simplification process they discard substitutions
(w1→ w2) that, when applied, replace a word w1 with a more complex alternative w2.

Biran et al. (2011); Bott et al. (2012) define word simplicity metrics, and then discard
candidate substitutions which are estimated to be more complex than the target word being
simplified. The metric of Biran et al. (2011) is described in Equation 2.1, where F(w,C) is
the frequency of word w in corpus C, and ∥w∥ the length of candidate w.

M(w) =
F(w,Complex)
F(w,Simple)

×∥w∥ (2.1)

The metric used by Bott et al. (2012) is more elaborate and was devised to account for
the simplification needs of the dyslexic. These readers find it difficult to comprehend words
that are long and unfamiliar. For each candidate substitution of a given target complex word,
they first calculate its length score, as illustrated in Equation 2.2.

scorewl (w) =

{√
∥w∥−4 if ∥w∥ ≥ 5

0 otherwise
(2.2)

They then combine the length score with the word’s frequency in a weighted linear
function, as shown in Equation 2.3.

M(w) = α1scorewl (w)+α2 log(F (w,Simple)) (2.3)
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A similar approach is used by the LS system of Glavaš and Štajner (2015), which only
replaces a target word if it is less informative than the candidate substitution selected. Their
informativeness measure is described in Equation 2.4, where V is the set of all words in a
vocabulary.

M(w) =− log
F (w,Google1T)+1

∑w′∈V F
(
w′,Google1T

)
+1

(2.4)

The denominator of Equation 2.4 is the same for any two words in vocabulary V , which
means that their measure depends on no more than their word frequency. In other words,
their LS system only simplifies a target word if it has a lower frequency than that of the
candidate substitution selected.

A different strategy is employed by Horn et al. (2014), which simply adds a substitution
(wi→ wi) to the set of candidate substitutions of complex word wi. In other words, the
complex word becomes a candidate substitution for itself. If their system decides that the
target word is the simplest alternative to replace itself, then the target word is not simplified.

These implicit approaches avoid the problem of trying to decide which words are inher-
ently complex enough for simplification, and instead focus on the question of whether or not
simpler substitutions can be found for a given word. Although these approaches can lead to
a reduced number of ungrammatical and/or incoherent simplifications (Glavaš and Štajner,
2015), they may still lead to unnecessary replacements, given that they do not explicitly
account for the LS needs of the target audience.

2.2.5 Machine Learning-Assisted

Very few LS strategies employ Machine Learning techniques in CWI. To our knowledge, the
only approach published prior to our thesis is the one of Shardlow (2013a), which provides a
comparison between a Support Vector Machine, a threshold-based strategy and the “simplify
everything” approach. The threshold-based approach uses the frequency of the word in the
SUBTLEX corpus (Brysbaert and New, 2009b) as a metric, which is composed of over
six million sentences extracted from subtitles of assorted movies. The final threshold that
separates complex from simple words was determined by 5-fold cross validation over all
possible frequency values. The features used by the SVM approach are:

• Frequency in the SUBTLEX corpus;

• Number of films in SUBTLEX;

• Word length;
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• Number of syllables;

• Number of senses; and

• Number of synonyms

The SVM model was trained and tested with the CW corpus (Shardlow, 2013a), which
contains Wikipedia sentences with a single target complex word along with a simpler
alternative. The results show that the SVM approach slightly outperforms the other strategies,
but leads to the lowest recall. The scores obtained by the“simplify everything” approach,
however, which does not perform any type of complex word identification at all, contradict
the discussion provided in Section 2.2.1: it obtains over 84% F1, which is the highest score
among the systems. We believe these results are due to the evaluation corpus used. In order
to train their CWI systems, they require not only the complex word examples in the CW
corpus, but also examples of simple words. In order to produce examples of simple words,
they simply take one randomly selected word from a portion of the CW corpus’ sentences.

We believe, however, that there is an issue with how the these negative examples are
generated. If a Wikipedia editor judges that only one word should be simplified in a given
sentence, it is implied that the remaining words were judged to be simple already. It is not
clear why this simpler intuition was not used for the CW corpus. We believe that the results
reported by Shardlow (2013a) do not capture the potential of Machine Learning methods
in CWI, and that a more rigorous evaluation of such approaches must be performed for
conclusions to be drawn.

2.3 Substitution Generation

Substitution Generation (SG) refers to the process of producing candidate substitutions for
complex words. In the typical LS pipeline, an ideal SG strategy will be able find all words
that can replace a given target complex word in all contexts in which it may appear. In the
case of ambiguous words, the strategy would have to find candidate substitutions for all their
possible senses, so that, at Substitution Selection time, the LS approach is able to select
the one that fits the context of a sentence being simplified. This strategy would maximise
the recall of candidate substitutions for complex words, and consequently allow for simpler
output.

The biggest challenge in SG is to identify all possible words which can replace a complex
word in the various contexts it may appear. An LS approach with a “perfect” SG strategy is
also not guaranteed to produce sentences without errors: the Substitution Selection strategy
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must be able to effectively select the candidate substitutions that fit a given context with
respect to its grammatical constructions and meaning.

Existing SG approaches fall under one of two categories:

• Linguistic Database Querying; or

• Automatic Generation.

In the following Sections we discuss their advantages and limitations.

2.3.1 Linguistic Database Querying

When searching for candidate substitutions for complex words, using linguistic databases
manually constructed by professionals is intuitively a very sensible approach: synonyms
related words as given by human will certainly lead to substitutions that can replace complex
words. However, building such resources can be very expensive and time consuming.

There are very few examples of LS approaches that address the task of creating a database
of semantically related words. Ong et al. (2007) report the creation of a dictionary containing
descriptions of complex medical terms. Similarly, Kandula et al. (2010) create a small
database composed of paraphrases describing 150 complex medical expressions in lay terms.

Most work uses instead resources already consolidated to search for candidate substitu-
tions. WordNet is the most frequently used database for LS. The earliest LS approaches in
literature (Carroll et al., 1998, 1999; Devlin and Tait, 1998) used synonyms extracted from
WordNet as candidate substitutions of complex words. Nunes et al. (2013); Sinha (2012)
used not only the synonyms listed in WordNet, but also hypernyms and hyponyms. An
empirical study conducted by Drndarević and Saggion (2012) provides evidence that related
words other than just synonyms, such as hypernyms, hyponyms and meronyms, can also
provide strong simpler candidates for complex words. Although WordNet has proved useful
for Lexical Simplification, Shardlow (2014a) show that using only WordNet synonyms can
limit the potential of LS, since WordNet does not cover all complex words in the English
vocabulary, nor does it contain all candidates which can replace a complex word. In their
experiment they evaluated the most frequent types of errors made by an LS approach similar
to the one of Devlin and Tait (1998). The results showed that over 42% of the 164 errors
made by their approach were caused by WordNet not having suitable simpler substitutions
for complex words.

Combining multiple linguistic databases has shown to be a more reliable alternative
for SG. Leroy et al. (2013) aim to simplify texts in the medical domain. As candidate
substitutions, they use the relations provided by WordNet along with the ones provided
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by UMLS (Unified Medical Language System) and Wiktionary3. UMLS provides a large
ontology containing semantic relations between pairs of medical terms. This resource
was also used in the LS approach of Chen et al. (2012), which replaces complex medical
expressions with simpler equivalent lay terms in order to improve the performance of
Statistical Machine Translation systems. The “define:” function of Google provides a
dictionary definition of a given word, and has been used in (Elhadad, 2006) to provide
definitions in lay terms for medical expressions.

Associating the querying of linguistic databases with an automatic approach has also
shown promising results in (De Belder and Moens, 2010). They intersected the synonyms
extracted from WordNet with a set of related words learned through a latent-variable language
model. They found that the resulting reduced set had fewer spurious substitution candidates.

Since the content of WordNet may not offer enough coverage for languages other than
English, researchers have also used other linguistic databases to find simpler candidate substi-
tutes for complex words. The strategy of Bott et al. (2012) uses the Spanish OpenThesaurus4

to find synonyms for complex words in Spanish. The same resource is used by Baeza-Yates
et al. (2015) with a more sophisticated SG strategy. Instead of simply querying the database
for synonyms of a given complex word, they first create a list of words for each meaning
registered in the Spanish OpenThesaurus. Each list is composed of all words associated with
such a meaning. They then enrich such lists by querying the Google 1T corpus for the words’
frequencies, as well as for all 5-grams where they occur as the third word. Such a generation
strategy allows a more effective choice for the most suitable replacement for a complex word
in Substitution Selection.

SynLex5 is a thesaurus for the Swedish language used by Keskisärkkä (2012) to find
synonyms for complex words. The PorSimples project (Aluisio and Gasperin, 2010), which
provides an LS approach for Brazilian Portuguese, uses sets of related words provided by
the databases TeP 2.0 (Maziero et al., 2008) and PAPEL 6, which were created through a
methodology that aims at maximising the coverage of synonyms and antonyms available.

2.3.2 Automatic Substitution Generation

As discussed in the previous Section, even though large linguistic databases can be of great
help in gathering candidate substitutes for complex words, they are not always available or
sufficient. Automatic SG approaches aim to extract candidates from other, less expensive

3http://en.wiktionary.org
4http://openoffice-es.sourceforge.net/thesaurus
5http://folkets-lexikon.csc.kth.se/cgi-bin/synlex
6http://www.linguateca.pt/PAPEL



40 Lexical Simplification: A Survey

resources, such as parallel corpora. Exploring this type of strategy is very important, since
some languages do not have manually created linguistic resources.

The most straightforward automatic SG approach in the literature is that of Kajiwara
et al. (2013). It takes advantage of dictionaries that do not include synonymy relations, but
still provide word descriptions. The approach first queries a dictionary for a complex word’s
definition, and then uses a tagger to produce the Part-of-Speech (POS) tag of each word in it.
It then extracts as candidate substitutions all words with the same POS tag as the target word.
This strategy has been shown to be an effective alternative for the Japanese language.

Replacing complex words with equivalent paraphrases has also been shown to be a
promising LS approach (Paetzold and Specia, 2013). Automatic paraphrase extraction is
a task that has been addressed in many ways in recent years. It is not our goal to survey
paraphrase extraction methods, but rather to discuss how these methods have been employed
in the task of LS. Elhadad and Sutaria (2007) present a strategy to extract simpler paraphrases
for medical expressions using articles related to medicine aligned at document level. Their
approach uses contingency tables describing the contextual differences between expressions,
along with statistical modelling to determine whether or not an expression found in a technical
medical article is equivalent to a simpler expression found in an aligned document written
in lay terms. They compare their set of paraphrases found with a gold-standard set of
paraphrases produced by professionals in the area, achieving an F1 score of over 66%.

Deléger and Zweigenbaum (2009) also extract paraphrases from articles aligned at
document level, but go a step further by performing topic segmentation to produce alignments
at sentence level. Once aligned sentences have been produced, heuristics are applied in order
to find nominalisations of complex expressions and paraphrases of neo-classical compounds
(such as “gastritis”).

The most widely used resource in automatic SG in the context of LS is the English Simple
Wikipedia, which contains a subset of the articles from the original English Wikipedia edited
so that more readers can understand them. Yatskar et al. (2010) describe one of the first
automatic approaches that use Simple Wikipedia. It extracts paraphrases of complex terms
from Simple Wikipedia edits marked with the “simplification” label. Their method has
proven to extract many useful paraphrases, such as “stands for”→ “is the same as”, and
“indigenous”→ “native”.

Tree transduction has also been used as a technique for the extraction of paraphrases for
LS. Paetzold and Specia (2013) uses the tree transduction model by Cohn and Lapata (2009)
to extract lexical simplifications from a corpus of parallel sentences taken from Wikipedia
and Simple Wikipedia. A similar tree transduction approach is described in (Feblowitz and
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Kauchak, 2013). They also use word alignment and syntactic trees to extract both lexical and
syntactic simplifications.

Some approaches in the literature focus on finding only single word equivalences in
parallel corpora, rather than looking for paraphrases of any size. An example is the method in
(Kauchak and Barzilay, 2006). Using a series of syntactic and semantic filtering procedures,
the approach extracts pairs of words with related meaning by comparing target texts in
English produced by translation systems, and equivalent source reference texts produced by
humans.

Extracting complex-to-simple word correspondences from a corpus of parallel sentences
(Kauchak and Barzilay, 2006) has been proven to be effective as well, according to the results
reported by Horn et al. (2014). They produce alignments over the parallel sentences, and
then use various filtering techniques to extract the best alignments between complex words in
Wikipedia sentences, and simpler words in Simple Wikipedia sentences. Specia (2010) takes
TS as a complex-to-simple translation problem, and uses Statistical Machine Translation
techniques to extract, among other types of simplification rules, lexical equivalences between
words in Wikipedia and Simple Wikipedia. The biggest limitation in these approaches is that
they require a parallel corpus of aligned sentences. These resources are however scarce and
mostly available for the English language only.

To address this, Yatskar et al. (2010) uses Simple Wikipedia in a different way: instead
of searching for word equivalences between aligned complex and simple sentences, they
look for simplification operations in Simple Wikipedia edits. The effectiveness of their
approach was not evaluated in practice, however. Biran et al. (2011) describe another
approach that avoids the need for aligned parallel corpora. Instead of using aligned words
as an initial set of candidate substitutions, they consider every pair of distinct words in
the Wikipedia and Simple Wikipedia to be a possible simplification pair. They filter any
pairs which are morphological variants of each other or that are not registered as either
synonyms or hypernyms in WordNet. In an experiment, they hired humans to manually
evaluate the quality of 65 simplified sentences produced by their approach with respect to
grammaticality, meaning preservation and simplicity. The results show that 77.91% of the
simplified sentences were grammatically correct, while 62.79% retained the meaning of the
original sentence, and 75.58% were simpler than the original. Although they did not use an
aligned parallel corpora to extract an initial set of candidate substitutions, they still require a
parallel corpus and WordNet in order to filter word pairs that are not semantically related.
However, their results have shown that associating automatic methods with the use of human
created linguistic resources can be a very effective approach for SG.
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In an effort to entirely avoid the need for manually created resources in SG, the strategy
recently proposed by Glavaš and Štajner (2015) offers a completely unsupervised approach
for the task. It resorts to word embedding models, which require only unannotated text
corpora to be trained. In a word embeddings model, each word in the corpus vocabulary is
represented by a unique vector containing a user-defined number of n real values. Given a
trained word embeddings model and a complex word, the generator extracts as candidate
substitutions the 10 words whose embeddings vector has the highest cosine similarity with the
complex word, except for their morphological variants. The results obtained are comparable
to the ones in (Horn et al., 2014).

2.4 Substitution Selection

The goal of Substitution Selection (SS) is to determine which of the candidates available for
a given complex word fits the context of the sentence being simplified. This task is one of
the most important in the LS pipeline, since it should prevent an LS system from performing
lexical substitutions that alter the meaning and fluency of a complex sentence, and hence,
in some cases, rendering it incomprehensible. SS is, nonetheless, the step with the fewest
approaches reported in the literature.

The surveyed SS approaches can be divided in the following five categories:

• Select All Candidates;

• Explicit Sense Labeling;

• Implicit Sense Labeling;

• Part-of-Speech Tag Filtering; and

• Semantic Similarity Filtering.

2.4.1 Select All Candidates

Similarly to what has been observed for the task of CWI, early LS approaches do not address
the task of SS at all, and instead choose to consider all possible substitutions of a given
complex word as valid candidates for simplification (Carroll et al., 1998; Devlin and Tait,
1998).

The error analysis conducted by Shardlow (2014a) provides substantial insight on the
impact of disregarding SS on the quality of simplifications produced. 115 sentences were
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simplified by their approach, and it has been found that the absence of an SS strategy led to
over 29% of simplifications to severely change the meaning of the original sentence. Since a
single incoherent substitution can compromise the meaning of a sentence, the results obtained
by Shardlow (2014a) imply that selecting all candidates could lead to almost a third of the
simplified sentences produced by an LS approach to compromise the original meaning of the
text.

2.4.2 Explicit Sense Labeling

LS approaches that explore Explicit Sense Labeling attempt to model SS as a Word Sense
Disambiguation (WSD) task directly. This strategy uses classification methods to decide the
sense label of an ambiguous target word in the sentence being simplified, and then selects as
valid candidates those which have the same label. Such sense labels can be found in linguistic
databases, such as WordNet.

Thomas and Anderson (2012) focus on the tasks of SG and SS. They evaluate three WSD
and two lexicon reduction strategies for the creation of a reduced lexicon for a document.
As sense labels, they use the “synsets” from WordNet. Evaluation is done by measuring
the semantic distance between the content of the reduced lexicons produced over a given
document and the lexicon of its manually simplified version. Their results seem promising,
but they do not conduct experiments to investigate whether or not lexicon reduction helps in
the task of LS.

Nunes et al. (2013) describe a full LS system that uses Explicit Sense Labeling. During
SS, they select only synonyms found in WordNet which are linked to the meaning of a
complex word. To determine a complex word’s meaning, they employ the WSD approach of
Navigli and Ponzetto (2010). In an experiment, they ask humans to determine whether or not
a simplified sentence produced by their system is grammatical, and if it has the same meaning
of the original sentence. They achieve 82% in meaning preservation, but grammaticality is
compromised in 37% of the cases.

In an effort to address the lack of WSD resources for Spanish, Baeza-Yates et al. (2015)
introduces a novel approach. In order to disambiguate a word to be simplified in a certain
sentence, they first extract the 5-gram composed by the target word itself and two words
to both its left and right. They then calculate the score of each of the word’s sense in the
Spanish OpenThesaurus by summing the frequency with which each synonym appears as the
third token of the 5-gram in the Google 1T corpus. The synonyms pertaining to the sense
with the highest frequency are then selected as suitable candidates. Although the results
presented are promising, their strategy was not compared to other modern LS approaches.
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However promising, Explicit Sense Labeling has several limitations in practice. Perhaps
the most obvious one is the need for manually created sense/synonym databases, which are
often limited to very few languages and quite expensive to produce. Due to the nature of
WSD, Explicit Sense Labeling also hinders the capability of an LS approach to replace words
with simpler multi-word paraphrases: while determining the sense of a single word is already
challenging, determining the sense of a paraphrase is even more so.

2.4.3 Implicit Sense Labeling

An intuitive way to address some of the limitations of Explicit Sense Labeling is to use
automatic methods to learn sense classes of complex words, instead of querying them from
sense databases. De Belder and Moens (2010) describe, to our knowledge, the only example
of LS approach that does so. They select as valid candidates only those substitutions which
are grouped together by a latent variable language model trained over large corpora. Their
experiments show that their LS approach effectively increases the readability of documents,
but since they do not compare their approach with any other, it is difficult to draw conclusions
with respect to whether or not their SS approach is more effective than state-of-the-art
strategies.

Latent variable language models differ from standard n-gram language models by auto-
matically learning latent classes which group words that appear in similar contexts. Such
classes are often interpreted as “sense classes” that have a strong correlation with synonymy
groups. Such language models, however, are difficult to produce: the complexity of the
algorithms used to create them is often quadratic with respect to the number of classes which
it is set to learn (Brown et al., 1992a).

2.4.4 Part-of-Speech Tag Filtering

Given the difficulty in determining the sense of complex words, some approaches use POS
tags as surrogates for sense labels. The PorSimples framework (Aluisio and Gasperin, 2010)
and the FACILITA system (Watanabe et al., 2009) are simplification systems for the Brazilian
Portuguese language that select as valid candidates only those substitutions which have the
same POS tag as the target complex word. The main motivation behind this strategy is
the absence of reliable WSD resources such as sense-based databases for the Portuguese
language.

This strategy has also been used in the context of tree transduction for simplification.
Paetzold and Specia (2013) describe an LS approach which replaces not only words, but entire
paraphrases with simpler alternatives by automatically learning lexico-syntactic substitution
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rules through tree transduction. Each rule is represented by a pair
(
Tcomplex,Tsimple

)
, where

both Tcomplex and Tsimple are subtrees of constituency parses which represent similar content.
To filter bad substitution rules, they discard all pairs

(
Tcomplex,Tsimple

)
in which the label of

the root node in Tcomplex is different from the one in Tsimple. Their results reveal that using
POS tags to filter bad paraphrases ensures grammaticality in over 83% of the cases.

Although POS tags may be able to successfully filter many inappropriate substitutions for
complex words which are associated with multiple grammatical classes, such as “roll”, they
are not sufficient for meaning disambiguation. This can be a problem when an LS system
has to decide on which substitutions are valid for highly ambiguous words, such as “pitch”,
which, aside from being both a verb and a noun, has 23 distinct meanings in WordNet. The
meaning preservation results of Paetzold and Specia (2013) highlight this limitation: only
56.5% of the simplified sentences have the same meaning as their original version.

2.4.5 Semantic Similarity Filtering

Semantic Similarity Filtering consists in establishing a metric of the similarity between
the meaning of a complex word in context and that of a substitution candidate, and then
discarding all candidates which do not have enough meaning similarity with the complex
word.

Biran et al. (2011) employs this SS strategy. After producing candidate substitutions
for complex words, they create 10-token window co-occurrence word vectors C (Sent (t))
and C (c), where C (Sent (t)) represents the semantic content of target word t in sentence
Sent, and C (c) the semantic content of candidate c in a large corpus. Finally, they discard
candidates whose cosine distance between C (Sent (t)) and C (c) is lower than 0.1, a threshold
achieved through experimentation.

The context-aware setup of this strategy is perhaps one of the most practical and promising
approaches for SS with respect to meaning preservation. Biran et al. (2011) reports 75.86%
of meaning preservation during simplification, which is the highest percentage reported in
experiments with humans that we know of. Additionally, this approach does not rely on
manually created linguistic databases, and hence can be applied to any language for which
large corpora are available.

A similar, yet even simpler approach was proposed by Paetzold and Specia (2015).
Instead of a co-occurrence model, they use a word embeddings model to determine the
semantic similarity between a candidate and the context of a complex word being simplified.
They rank all candidates according to the average cosine distance between each of them
and the content words in the sentence, and then retrieve a proportion of the most similar
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candidates. Although they do not provide with a human evaluation of their approach, their
selector outperforms all other strategies evaluated.

2.5 Substitution Ranking

The last step in the typical LS pipeline is deciding which of the candidate substitutions that
fit the context of a complex word is the simplest. In essence, the task of Substitution Ranking
(SR) consists in, given the needs of a target audience, quantifying the simplicity of candidate
substitutions, so that replacing a target complex word yields the simplest output possible.

Substitution Ranking has helped LS gain popularity in the NLP community. The English
Lexical Simplification task of SemEval 2012 brought visibility to the task. The shared task
attracted many participants and led to the introduction of various novel ranking approaches.
More recent approaches have also used the corpus and metrics proposed back then (Horn
et al., 2014; Shardlow, 2013b).

The following Sections discuss the merits and limitations of three categories of SR
strategies:

• Frequency-Based;

• Simplicity Measures; and

• Machine Learning Assisted.

2.5.1 Frequency-Based

Although simple, frequency-based SR strategies are one of the most popular choices for LS
systems, and can be quite effective. Approaches in this category explore the intuition that the
more frequently a word is used, the more familiar it is to readers.

The most widely used frequency-based approach is Kucera-Francis (Rudell, 1993), a
metric that determines the simplicity of a word given its frequency in the Brown corpus
(Carroll et al., 1998; De Belder and Moens, 2010; Devlin and Tait, 1998; Shardlow, 2014a).
Although popular, specially in early contributions, some studies show that the Kucera-Francis
coefficient is not the most sensible approach for SR. Burgess and Livesay (1998), for example,
argue that the frequencies taken from the Brown corpus, composed by roughly 1 million
words, can be outperformed by raw frequencies from larger corpora. More recently, Brysbaert
and New (2009b) have also shown that the origin of the corpora used to extract frequencies
from can greatly influence ranking results: raw frequencies extracted from a corpus composed
of movie subtitles have been shown to better capture word familiarity, and consequently



2.5 Substitution Ranking 47

correlate better with word simplicity than the Kucera-Francis coefficient. In SR, subtitles
have proven to be useful. The simplifier of Paetzold and Specia (2016i) uses a context-aware
frequency-based SR approach. It first trains a language model over a corpus of subtitles of
family movies, then ranks candidates according to their 5-gram frequency i.e. the candidate
surrounded by two words to the left and right of the target word. Although simple, their
ranker outperforms even Machine Learning-based supervised approaches.

In frequency-based ranking, most work use raw frequencies from very large corpora.
Ligozat et al. (2012) use frequencies extracted from the Microsoft N-gram Services platform7,
which offers access to language models of up to 5-grams for the English language. Similarly,
Leroy et al. (2013) and Baeza-Yates et al. (2015) use word frequency estimates from the
Google 1T Corpus8, composed by over one trillion words of the English language. Kauchak
(2013) discusses how combining word frequencies obtained from simplified texts, such
as articles from Simple Wikipedia, and frequencies obtained from unsimplified data, can
improve on the performance of frequency-based rankers. A ranker which uses interpolated
data between Wikipedia and Simple Wikipedia performs 23% better at the English Lexical
Simplification task of SemEval 2012 than a ranker that uses only data from Simple Wikipedia.

Contributions that describe frequency-based rankers for languages other than English,
or for specific text domains, also exist. (Keskisärkkä, 2012) is an example for the Swedish
language: it uses the Swedish Parole database9 as a source for word frequencies. Elhadad
and Sutaria (2007), who target the simplification of medical content, rank lay expressions for
technical medical terms according to their frequencies in a set of documents of the medical
domain.

Search engines have also been often used as sources for word frequency estimates. The
LS approach for the Portuguese language described in (Aluisio and Gasperin, 2010) ranks
substitutions by their number of occurrences in pages retrieved through the Google API10.
A similar ranking approach is presented in (Nunes et al., 2013): they use the Yahoo Search
Engine API11 to query for individual candidates and rank them according to the number of
pages in which they appear. This strategy can be a very practical alternative for the task in
online scenarios, since it discards the need for large language models trained over billions of
words, and hence allows for lightweight simplifiers to be created.

In practice, frequency-based approaches have been shown to outperform more sophis-
ticated ranking approaches quite often. In the results reported by Specia et al. (2012), a

7http://research.microsoft.com/en-us/collaboration/focus/cs/web-ngram.aspx
8https://catalog.ldc.upenn.edu/LDC2006T13
9http://spraakdata.gu.se/parole/lexikon/swedish.parole.lexikon.html

10https://developers.google.com
11https://developer.yahoo.com



48 Lexical Simplification: A Survey

baseline that ranked candidate substitutions according to their raw frequencies in the Google
1T Corpus outperformed 9 out of 11 ranking approaches, and consequently placed 3rd
overall.

There are, nonetheless, contrasting studies which show that word frequency is not
sufficient to estimate word simplicity. Drndarević and Saggion (2012) demonstrate so by
evaluating the characteristics of 40 manually produced correspondences between complex
and simple words in the Spanish language. They found that the simple words had a higher
usage frequency than their complex counterparts in only 54.76% of the cases.

2.5.2 Simplicity Measures

An alternative to address the limitations of frequency-based ranking strategies are metrics
that incorporate multiple features to represent the simplicity of a word. The metric introduced
by Biran et al. (2011), for example, considers a word’s frequency and length to determine its
complexity. Their metric is shown in Equation 2.5, where Comp(c) is the corpus complexity
of candidate c, and ∥c∥, its lexical complexity.

M(c) =Comp(c)∗∥c∥ (2.5)

In Equation 2.5, the corpus complexity is computed as illustrated in Equations 2.6, where
F (c,C) is the raw frequency of candidate c in corpus C. The “Complex” and “Simple”
corpora required by the metric must contain text of complex and simple nature, respectively.

Comp(c) =
F (c,Complex)
F (c,Simple)

(2.6)

A similar metric is used by Sinha (2012). It combines a candidate substitute’s length,
number of senses in WordNet, and frequency of occurrence in various corpora to determine a
word’s simplicity. Following the same notation used in Equation 2.6, the metric is computed
as illustrated in Equation 2.7, where Swn (c) is the number of senses of c in WordNet.

M(c) =F (c,Simple Wiki)+

F (c,Speech)+

F (c,Google1T)+

Swn (c)+
1
∥c∥

(2.7)
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The F (c,Simple Wiki) and F (c,Google1T) are word frequencies extracted from Simple
Wikipedia (Kauchak and Barzilay, 2006) and the Google 1T corpus (Evert, 2010). The
“Speech” corpus in F (c,Speech) is a proprietary compilation of written dialogue content.
The metric obtained the 2nd highest ranking scores in the English Lexical Simplification task
of SemEval 2012.

Bott et al. (2012) describe a word simplicity measure for the Spanish language. They
also consider a word’s length and usage frequency in their measure, but go a step further, as
described in Equation 2.8, to include two weighted scores, where α1 and α2 are adjustable
weights.

M(c) = α1scorewl (c)+α2score f req (c) (2.8)

In order to estimate weights α1 and α2, Bott et al. (2012) resort to a heuristic search that
maximises the score of the measure over a set of manually created lexical simplifications.
In Equation 2.8, the values of scorewl (c) and score f req (c) are calculated as illustrated in
Equations 2.9 and 2.10, where F (c,Simple) is computed over the Spanish Simplext Corpus
(Bott and Saggion, 2011).

scorewl (c) =

{√
∥c∥−4 if ∥c∥ ≥ 5

0 otherwise
(2.9)

score f req (c) = log(F (c,Simple)) (2.10)

The motivation behind scorewl (wc) comes from the observation that, in their set of
manually crafted lexical simplifications, the complex words in Spanish have on average four
characters more than their simple counterparts.

Simplicity measures can also be more sophisticated, and incorporate the relation between
the candidate and the context of the complex word to be simplified. Kajiwara et al. (2013),
for example, represent simplicity as the weighted sum of five metrics that consider various
relations between substitution candidate and the sentence to be simplified. Their simplicity
measure was designed for Japanese, and can be described as illustrated in Equation 2.11,
where Sense is the WordNet distance between the senses of candidate c and target t, Cooc
the co-occurrence sum of the words in sentence S and candidate c, Log the normalised
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co-occurrence sum between c and S, Trigram the frequency sum of all trigrams surrounding
c when replacing target word t in S, and Sim the distributional similarity between c and t.

M(S, t,c) =α1Fcorpus (c)+

α2Sense(c, t)+

α3Cooc(c,S)+

α4Log(c,S)+

α5Trigram(c,S)+

α6Sim(c, t)

(2.11)

We refer the reader to (Kajiwara et al., 2013) for more details on how Cooc, Log, Trigram
and Sim are calculated. A manual evaluation of the output produced by this LS approach
reveals promising results, but the SR strategy itself has not yet been compared to others.

Although the aforementioned metrics have managed to achieve promising results in SR,
only very recently efforts have been made to automatically combine various of these metrics
without the help of annotated data. Glavaš and Štajner (2015) introduced the first ranking
strategy that attempts to do so. Instead of manually crafting a single metric and ranking
candidates accordingly, they combine the rankings obtained by several metrics into one. They
resort to a very simple strategy: rank averaging. Their approach first produces the various
rankings resulting from the use of several metrics, such as n-gram frequencies and semantic
similarity. It then produces the score of each word by averaging all its rankings. Finally the
words are ranked according to their score: the lower the average rank, the simpler it is. In
their experiments, the approach outperformed all other systems in the dataset of the Lexical
Simplification task of SemEval 2012.

2.5.3 Machine Learning Assisted

Given the effectiveness of modern Machine Learning techniques for various language process-
ing tasks, they have also been adopted for SR. The most successful SR approach submitted
to SemEval 2012 (Jauhar and Specia, 2012) uses Support Vector Machines (Joachims, 2006)
along with the combination of various ranking functions to order candidates by simplicity.
They represent ranking functions as described in Equation 2.12, and employ them to deter-
mine the ranking of a candidate c. In Equation 2.12, ri is a standalone ranking function that
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determines the rank of candidate c according to a certain metric, with respect to target word t
in sentence S.

M(S, t,c) =
m

∑
i=1

1
ri (S, t,c)

(2.12)

The approach considers various ranking metrics, both context-aware and context-unaware,
such as n-gram language model probabilities and psycholinguistic word properties. In order
to optimise performance, they create various combinations of M ranking functions, use their
resulting ranking values as features, and then train an SVM ranker over a very small set of
training instances (300).

SVM ranking approaches have also been used in other work. Horn et al. (2014) trains an
SVM ranker with various features: word frequency and n-gram probabilities from various
corpora. Their LS approach outperformed two strong baselines in their evaluation, high-
lighting the potential of Machine Learning in SR. The main advantage of these strategies is
that they are able to learn a model from data produced by human annotators, which could
facilitate the process of adapting an SR approach to different target audiences.

2.6 Conclusions

We have presented a survey on Lexical Simplification which addresses the task as a series
of steps: Complex Word Identification, Substitution Generation, Substitution Selection and
Substitution Ranking. We have also presented a survey on user studies conducted with the
various target audiences addressed in Text Simplification.

For Complex Word Identification, it is clear that supervised approaches that use modern
Machine Learning techniques are more effective than threshold and lexicon-based alternatives.
Exploring the use of other Machine Learning techniques beyond standard classification
techniques, such as Neural Networks, could yield even more effective approaches for the
task.

Virtually all Substitution Generation strategies are context-independent i.e. they do
not take into account the context of a word being simplified when producing candidate
substitutions. We believe that generators that account not only for the grammatical forms
of complex words, but also their many possible senses should be explored. An intelligent
generator capable of accounting for a word’s grammatical class and sense while producing
candidate substitutions would prevent incoherent and/or ungrammatical substitutions, and
could also discard the need for a dedicated Substitution Selection step. Another limitation
of generators lie in the fact that none of those surveyed are able to produce multi-word



52 Lexical Simplification: A Survey

expressions for complex words. Pairing paraphrasing strategies with single word candidate
generators could yield better results.

An alternative to including a dedicated Substitution Selection step in simplifiers, is to
use word embedding models. The proved success in selecting candidates through semantic
similarity filtering, as well as the remarkable recent advances in word embedding modelling,
lead us to believe that future selectors would benefit from exploiting them.

There is also a noticeable absence of user studies and analyses focusing on understanding
concepts such as grammaticality and meaning preservation from a Text Simplification
standpoint. We believe that dedicated studies, such as the one described in the Sections to
follow, which aim at understanding what makes a candidate suitable to replace a complex
word, would benefit research in the field.

By analysing the intricacies of various Substitution Ranking approaches, it became
clear that strategies which automatically combine various features in supervised fashion are
more efficient than word frequency and hand-crafted metrics, which require an extensive
engineering process. By simply gathering human annotations from members of a given target
audience, one could use these supervised strategies to learn a model of their needs.

Given the considerations made, we can state that there is much left to be explored in
Lexical Simplification, particularly with respect to further understanding the needs of the
various audiences commonly targeted by simplifiers. We believe that the Text Simplification
research community would greatly benefit from the results of user studies such as those
introduced by Rello et al. (2013b) and Rello et al. (2013c), which aim to learn more about
specific readability and comprehensibility challenges caused by certain language impairments.
These studies would not only serve as a foundation for the creation of new simplification
strategies, but also result in new useful datasets and resources to be exploited in future
research.

It is also safe to say that there are still many interesting opportunities to be explored
when it comes to incorporating modern Machine Learning models and strategies in LS.
Deep Neural Networks, for example, have been successfully used to push the state-of-the-art
in various challenging Natural Language Processing tasks, such as Machine Translation
(Zou et al., 2013), Sentiment Analysis (Glorot et al., 2011), Semantic Similarity (Yih and
Qazvinian, 2012) and Question Answering (Iyyer et al., 2014). To this day, there are
no examples in literature of simplifiers that employ, for example, deep Recurrent Neural
Network architectures. These architectures could be used in strategies that jointly model the
entire Lexical Simplification process, and hence disregard the need to engineer each step
individually.



Chapter 3

User Studies with Non-Native Speakers
of English

Researchers in Text Simplification often resort to user studies to find more information about
reading challenges that a certain target audience may face. In Chapter 2 we present several
contributions on the findings of user studies conducted with various target audiences. The
user studies presented by Rello et al. (2013b), Rello et al. (2013a) and Rello et al. (2013c),
for example, are a pioneer effort that have allowed us to understand much more about how
texts should be simplified for dyslexic readers. As discussed in Section 2.1.6, however, there
are no similar user studies that focus on the simplification needs of non-native speakers of
English of a given language, the focus of this thesis.

Since non-native English speakers comprise one of the largest and most diverse groups
that could benefit from LS, we believe that much could be gained from user studies that
focus on how LS can help them overcome comprehension barriers. In this Section, we
present the findings of three user studies that we conduct: Complex Word Identification,
Substitution Selection and Substitution Ranking. For each one of them, we describe the data
and methodology used, as well as the profile of annotators who participated. We conduct
analyses on the annotations produced, and use the resulting datasets to conduct benchmarks
and explore new approaches to LS.

3.1 Complex Word Identification

An interesting first step in developing an LS strategy for non-native speakers of English would
be to understand the characteristics inherent to words they find complex. Such information
could then allow one to conceive a Complex Word Identification strategy that predicts which
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words will challenge them in reading. This information could be gathered from a user study,
such as the ones of Rello et al. (2013a,b,c), conducted with dyslexic subjects. A user study
on CWI would also address another gap in literature: the absence of reliable datasets for the
task.

As discussed in Section 2.2, the CW corpus (Shardlow, 2013b) is the first dataset
introduced for CWI. Although a relevant contribution, this dataset contains only 731 instances
extracted automatically from the Simple English Wikipedia edits, which raises concerns
about its reliability and applicability. Another limitation of the CW corpus is that there is no
way of knowing who were the annotators who produced the simplifications therein, which in
turn does not allow us to use this data to achieve our goal of outlining the needs of non-native
English speakers.

In an effort to provide better resources and new insights for CWI in the simplification of
texts for non-native English speakers, we have conducted a user study with 400 volunteers
of varying age, native language, education level and English proficiency level. In addition
to providing a better understanding on the characteristics of complex words, our user study
aimed to create a sizable dataset for CWI, as well as to evaluate the applicability of various
resources commonly used in the creation of LS approaches. In the study, volunteers were
asked to judge whether or not they could understand the meaning of each word in a given
sentence. The following Sections describe the user study in more detail.

3.1.1 Data Sources

We selected 9,200 sentences to be judged, after filtering out cases with spurious characters,
HTML or CSS markup, or outside the 20-40 word-length range. These sentences were taken
from three sources:

• CW Corpus (Shardlow, 2013b): Composed of 731 sentences from the Simple English
Wikipedia in which exactly one target word has been simplified by editors from
the standard English Wikipedia. 231 sentences that conformed to our criteria were
extracted.

• LexMTurk Corpus (Horn et al., 2014): Composed of 500 sentences from the Simple
English Wikipedia containing one target word simplified from the standard English
Wikipedia. 269 sentences that conformed to our criteria were extracted.

• Simple Wikipedia (Kauchak, 2013): Composed of 167,689 sentences from the Simple
English Wikipedia, each aligned to an equivalent sentence in the standard English
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Wikipedia. We selected a set of 8,700 sentences from the Simple Wikipedia version
that conformed to our criteria and were aligned to an identical sentence in Wikipedia.

The sentences in other LS datasets in literature did not conform to our criteria, so we
decided not to include them.

3.1.2 Annotation Process

400 non-native speakers of English speakers of English participated in the user study, all
university students or staff. Volunteers provided anonymous information about their native
language, age, education level and English proficiency level according to CEFR (Common
European Framework of Reference for Languages). They were asked to judge whether or
not they could understand the meaning of each content word (nouns, verbs, adjectives and
adverbs, as tagged by Freeling (Padró and Stanilovsky, 2012)) in a set of sentences, each
of which was judged independently. Volunteers were instructed to annotate all words that
they could not understand individually, even if they could comprehend the meaning of the
sentence as a whole.

A set of 200 sentences was split into 20 subsets of 10 sentences, and each subset was
annotated by a total of 20 volunteers. The remaining 9,000 sentences were split into 300
subsets of 30 sentences, each of which was annotated by a single volunteer.

3.1.3 Dataset Analysis

A total of 35,958 distinct words were annotated (158,624 in total), of which 3,854 distinct
words (6,388 total) were deemed as complex by at least one annotator. In the following
sections, we discuss details of the data collected.

Nature of Complex Words

We collected statistics that highlight the differences between simple words and those deemed
complex by the annotators. The features we have calculated are 15:

• Morphological: Word length and number of syllables, according to Morph Adorner
(Burns, 2013).

• Semantic: Number of senses, synonyms, hypernyms and hyponyms, according to
WordNet (Fellbaum, 1998).
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• Lexical: N-gram language model log-probabilities from the SubIMDB (Paetzold and
Specia, 2016i), Subtlex (Brysbaert and New, 2009b) and Simple Wikipedia (Kauchak,
2013) corpora.

We trained a 3-gram language model using SRILM (Stolcke, 2002) from all afore-
mentioned corpora in order to estimate n-gram probabilities. We choose these features
and resources because, to our knowledge, they are the most widely used word complexity
indicators in Text Simplification literature.

Table 3.4 shows the average feature values and standard deviations for all complex and
simple words in the part of the dataset annotated by 20 volunteers. We define as complex
any word which has been judged so by at least n ∈ {1,5,10} annotators. The [i, j] indicators
present in the n-gram features of Table 3.4 refer to the number of tokens to the left (i)
and right ( j) of the words that was considered. Consequently, [0,0] refer to single-word
frequencies. The column succeeding feature values indicate whether there was (•) or not (◦)
a statistically significant difference between complex and simple words (p<0.01), given the
results of an F-test1.

n=1 n=5 n=10
Feature Complex Simple p Complex Simple p Complex Simple p

Length 6.7±2 6.6±2 ◦ 7.5±2 5.9±2 ◦ 7.1±2 6.1±2 ◦
Syllables 2.1±1 2.2±1 ◦ 2.3±1 1.8±1 ◦ 2.2±1 1.7±1 ◦

Senses 6.6±8 8.2±8 • 2.1±2 9.1±9 • 1.1±1 8.8±9 •
Synonyms 16±21 20±21 • 5.3±6 22±23 • 2.3±3 22±22 •

Hypernyms 4.8±6 5.5±6 • 1.7±2 6.1±8 • 0.9±1 5.9±7 •
Hyponyms 24±48 32.3±64 • 4.0±13 36±52 • 0.8±2 32±52 •

Subimdb(0,0) −5.3±1 −4.8±1 • −6.5±1 −4.6±1 • −6.6±1 −4.5±1 •
Subtlex(0,0) −10±21 −5.0±5 • −31±41 −4.6±1 • −51±46 −4.4±1 •
Simple(0,0) −5.9±10 −4.3±1 • −11±22 −4.2±1 • −8.4±14 −4.2±1 ◦

Subimdb(1,1) −11±3 −10±3 • −12±3 −11±3 • −13±3 −9.7±3 •
Subtlex(1,1) −19±28 −13±18 • −40±45 −16±23 • −59±52 −13±21 •
Simple(1,1) −11±18 −8.7±9 • −16±26 −7.9±2 • −10±15 −8.1±2 ◦

Table 3.1 Average and standard deviation of features of words deemed complex or simple by
at least n annotators. The [i, j] indicators refer to the number of tokens to the left (i) and right
( j) considered by n-grams. The p columns’ values indicate the presence (•) or not (◦) of a
statistically significant difference.

The results shed some light on word complexity for a non-native English speaker. They
show that, unlike semantic and lexical features, length and number of syllables have little to do
with complexity. Although it has been found that shorter words do promote understandability

1The F-test is employed in these types of context to test the hypothesis that the variances from two population
samples (complex and simple words, in this context) are equal under the assumption that the null hypothesis is
true.
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for the Dyslexic (Rello et al., 2013b), our findings contradict the belief that longer words
tend to be more difficult to understand regardless of the audience being targeted (Biran et al.,
2011; Shardlow, 2013a).

When it comes to semantic properties, it can be noticed that, while both average and
standard deviation values for complex words decrease as the number of complex judgments
increase, the same does not happen for simple words. This phenomenon suggests a rela-
tionship between ambiguity and complexity, where complex words are more likely to be
unambiguous. This finding is in line with those of Shardlow (2013a), who successfully
modelled word complexity by exploring the hypothesis that complex words tend to be less
ambiguous.

Interestingly, a somewhat similar relationship can be observed between lexical properties
and word simplicity: while the n-gram probabilities of complex words are high in both
average and variance across all scenarios, the average probabilities of simple words are much
lower, and vary much less.

Table 3.2 illustrates statistics on the relation between grammatical classes and word
complexity. It shows the proportion between the number of occurrences of a grammatical
class in which the word was deemed complex by at least one annotator, and its total number
of occurrences in the dataset.

Class Complex Total Proportion
Nouns 2,826 66,600 4.24%
Verbs 913 28,255 3.23%

Adjectives 756 15,837 4.77%
Adverbs 198 7,504 2.64%

Prepositions 9 28,029 0.03%
Foreign 122 390 31.28%
Other 14 42,974 0.00%

Table 3.2 Number of complex occurrences of grammatical classes

We found that nouns compose the largest portion of complex words in the dataset, having
more complex occurrences than all other word classes combined. Foreign words, however,
have shown to contain the largest proportion of complex occurrences in the dataset. A foreign
word is considered complex almost a third of the time. Such words are often of Latin origin,
and are commonly used in academic articles (“et. al.”, “priori”, “posteriori”, etc).

Profile of Annotators

Annotators are speakers of 45 languages. The most predominant languages were Portuguese
(15.3%), Chinese (13%) and Spanish (11.3%). Annotators are between 18 and 66 years old
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(average 28.2). 63.7% of the volunteers were Postgraduate students, 32.3% Undergraduate,
and 4% were in High School. 36.8% claimed to have Advanced (C2) English proficiency
skills, 37.7% Pre-Advanced (C1), 16.6% Upper-Intermediate (B2), 6.4% Intermediate (B1),
2% Pre-Intermediate (A2) and 0.5% Elementary (A1).

By inspecting the data, we found interesting correlations between the number of complex
words annotated and volunteers’ age or English proficiency level. Figures 3.1 and 3.2
illustrate the average number of words deemed complex and their standard deviation values
with respect to annotators in 10-year age bands and proficiency levels, respectively.

Fig. 3.1 Age bands over complex words. The horizontal axis represents age bands, and the
vertical axis represents the average number of words deemed complex by the annotators in
each band.

Both graphs show that, although the average number of complex words drops as age and
proficiency level increase, the variance within each group is very high, suggesting that such
groups may not be significantly distinct from each other. By performing F-tests with p=0.05,
we found a significant difference between the band of 40+ years of age and the bands of 10+,
20+ and 30+ years of age, which suggests that one’s English knowledge peaks at such age
band. We also found significant differences between almost all English proficiency levels
above A2, except between B2 and C1, which happen to have identical descriptions in the
London School Level Scale2. We did not find significant differences among education levels.

Inspecting the annotations, we have also found that the speakers of certain languages are
sometimes challenged by words which, in most cases, are not considered complex by native
speakers of any other languages. Table 3.3 illustrates the words with the highest percentage

2http://www.londonschool.com/level-scale
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Fig. 3.2 Proficiency levels over complex words. The horizontal axis represents English
proficiency levels, and the vertical axis represents the average number of words deemed
complex by the annotators in each proficiency level.

of variance (Brysbaert and New, 2009b) between the number of times that they were deemed
complex by the speakers of a specific native language, and the rest of the annotators.

Language 1 2 3 4 5 6
Arabic fur juvenile apprenticed city serologic link

Chinese canton inscribed opium referendum thorax contaminants
French sewerage subsequent warships escudo dye ridges

German escape strong early city escudo iconoclastic
Portuguese rather hurricane undergo southern ruler crude

Spanish bailed cryptanalysis plaque debris demise perm
Table 3.3 Words with highest percentage of complexity variance per native language. Indexes
in the first row indicate the words’ percentage of variance rank, from highest to lowest.

Analysis of Data Sources

We collected several statistics about how well the perception of word complexity adopted
by Wikipedia editors correlate with that of our non-native speakers of English. Evaluating
the data, we found that the words deemed complex by Wikipedia editors were marked as
complex by our annotators in only 0.8% of the CW instances, and 19.7% of the LexMTurk
instances. In contrast, 51.9% of the edited words in the CW corpus and 40.8% of those in
the LexMTurk corpus were deemed complex by at least one of our annotators. As for the
remaining Simple Wikipedia instances, we found that at least one word in 27.3% of the
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instances was deemed complex by an annotator, which shows that the simplified version of
Wikipedia may still be challenging to non-native speakers of English.

We also inspected these and other datasets for the purposes of LS. In addition to the
aforementioned CW and LexMTurk corpora, we took the dataset used in the English Lexical
Simplification task of SemEval 2012, composed of 2,010 instances total, and the LS evalua-
tion dataset introduced by De Belder and Moens (2012b), composed by 430 instances. Each
instance in all these datasets contains a sentence and a target complex word. Table 3.4 shows
the number of distinct target words included in each dataset, how many of them appear in at
least one of our 9,200 sentences, and the proportion of the latter that was deemed as complex
by at least one of our annotators.

Total Appear in 9,200 Complex
CW 272 260 34.6%
LexMTurk 454 420 33.3%
SemEval 410 342 26.0%
De Belder 80 59 20.3%

Table 3.4 Results of dataset analysis for target words

Table 3.5 shows the same statistics as the ones illustrated in Table 3.4, except that they
pertain not to the target words present in the corpora, but rather the substitutions suggested
for them in Simple Wikipedia. Note that since the CW corpus does not provide substitutions
for the target word of each instance, it is omitted in Table 3.5.

Total Appear in 9,200 Complex
LexMTurk 3,943 2,342 22.7%
SemEval 3,216 1,732 22.5%
De Belder 664 427 21.8%

Table 3.5 Results of dataset analysis for substitutions

While the statistics in Table 3.4 show that most target words in the previous corpora are
not considered to be complex by non-native English speakers, the ones in Table 3.5 reveal
that, on average, one in five substitutions listed in those corpora are considered to be complex
as well. Such figures highlight the fact that the aforementioned resources are not appropriate
for the training or evaluation of CWI or LS approaches targeting non-native speakers of
English, since they do not necessarily capture their needs with respect to simplification.
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Agreement Analysis

We have calculated Kappa’s pairwise inter-annotator agreement coefficient (Carletta, 1996)
for all pairs of annotators who were presented with sentences from the overlapping portion
of the data. The values average to 0.616±0.05, which is much higher than the agreement
scores obtained by previous authors in similar tasks. While the annotators in the Lexical
Substitution tasks of SemEval 2007 (McCarthy and Navigli, 2007) and 2010 (Mihalcea et al.,
2010) obtain an agreement of 0.277, the annotators in the English Lexical Simplification task
of 2012 obtain an agreement of 0.398.

More impressive yet is the agreement within certain classes of annotators. Although
the agreement for annotators with the same proficiency level is lower (0.575± 0.07), the
agreement within education levels and age bands are noticeably higher, reaching 0.638±0.08
and 0.671± 0.08, respectively. Yet the highest agreement belongs to annotators with the
same native language: 0.718±0.1.

3.1.4 Benchmarking Automatic CWI Methods

In what follows, we discuss and compare several categories of approaches for automatic
CWI using the data produced in our user study.

Datasets

We created two training sets for the task: optimistic and conservative. Both contain all 200
sentences which were annotated by 20 distinct annotators. In the optimistic training set a
word receives label 1 (complex) if at least one volunteer annotated it as complex, whereas
in the conservative training set a word is only deemed complex if judged so by at least five
distinct annotators. The test set is comprised of all the remaining sentences which have been
annotated by only one volunteer (9,000).

Each instance is composed by a sentence, an annotated word, and its label. The training
set contains 2,237 instances and the test set, 88,221 instances. Using this setup, we are able
to create a realistic scenario for our performance assessment: the CWI systems must decide
on the individual needs of a person based on the overall needs of the target audience which
they are part of.

Approaches

The approaches compared in this experiment can be divided in four categories:
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• Lexicon-Based (LB): A word is deemed complex only if it does not appear in a lexicon
of simple words. We consider lexicons from three distinct sources: Ogden’s Basic
English (Ogden, 1968), the Simple Wikipedia (Kauchak, 2013), and a portion of the
SubIMDB corpus (Paetzold, 2015b), which is composed of 4,351 subtitles of movies
and series for children.

• Threshold-Based (TB): Given a certain feature, we find the threshold t that best
separates complex from simple words. We consider the words’ length, number of
syllables, senses, synonyms, hypernyms and hyponyms in WordNet, and frequency in
four distinct corpora: Wikipedia and Simple Wikipedia (Kauchak, 2013), SUBTLEX
(Brysbaert and New, 2009b) and SubIMDB (Paetzold, 2015b). To find t, an exhaustive
search was performed on the training set over 10,000 equally distant values in the
interval between the minimum and maximum value of each feature.

• Machine-Learning Assisted (MA): Using various Machine Learning techniques, we
train classifiers to decide whether or not a given word is complex. They are trained
over the previously described training sets, and use 69 distinct features, which can be
grouped into:

– Binary: If a target word is part of a certain vocabulary, then it receives label 1,
otherwise, 0. We extract vocabularies from Simple Wikipedia (Kauchak, 2013),
Ogden’s Basic English (Ogden, 1968) and SubIMDB Paetzold (2015b).

– Lexical: Includes word length, number of syllables, number of senses, synonyms,
hypernyms and hyponyms in WordNet (Fellbaum, 1998), and language model
probability in Wikipedia (Kauchak and Barzilay, 2006), Simple Wikipedia and
SubIMDB.

– Collocational: Language model probabilities of all n-gram combinations with
windows w<3 to the left and right of the target complex word in Wikipedia,
SUBTLEX, Simple Wikipedia and SubIMDB.

– Nominal: Includes the word itself, its POS tag, both word and POS tag n-gram
combinations with windows w<3 to the left and right, and the word’s language
model backoff behavior (Uhrik and Ward, 1997) according to Simple Wikipedia.

With the help of scikit-learn (Pedregosa et al., 2011), we learn models using the
following seven techniques:

– Support Vector Machines (SVM)
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– Passive Aggressive Learning (PA)

– Perceptron

– Decision Trees

– Ada Boosting

– Gradient Boosting

– Random Forests

With the help of Keras3, we train a Multi-Layer Perceptron voter as well. Its architec-
ture, including number and size of hidden-layers, is entirely decided through 5-fold
cross-validation over the training set. The aforementioned models use as input all
binary, lexical and collocational features. Finally, we also train a Conditional Random
Fields model (CRF) using CRFSuite (Okazaki, 2007). It uses as input all nominal
features described in the previous Section. The hyper-parameters of all Machine-
Learning-assisted voters, including kernels, loss functions and learning rates, are
optimised through 5-fold cross-validation.

• Baselines (BA): We include the “All Complex” and “All Simple” baselines, which
predict that all words are complex or simple, respectively.

Metrics

To assess the systems’ performance, we choose to diverge from the typical F-score, which is
the harmonic mean between Precision and Recall. Even though the F-score is arguably the
most frequently used evaluation metric to compare the performance of classifiers, we feel that,
as far as the relationship between Complex Word Identification and Lexical Simplification
are concerned, it does not accurately capture the effectiveness of a strategy for the task.

To motivate our decision, we must first outline the characteristics of a good lexical simpli-
fier. In order to be both effective and reliable, it must accomplish two things simultaneously:

1. To make a text as simple as possible.

2. Not to make any replacements that compromise the sentences’ grammaticality and/or
meaning.

In order to help a simplifier achieve these goals, a complex word identifier must conse-
quently:

3http://keras.io
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1. Avoid labeling complex words as simple, and hence impede them from being simpli-
fied.

2. Avoid labeling simple words as complex, and hence allow for unnecessary, possibly
erroneous simplifications.

3. To capture as many complex words as possible, and hence maximise the simplicity of
a sentence.

Now that we have outlined what the ideal complex word identifier must do, we can trans-
late these objectives into typical evaluation expressions used in the context of classification
problems. In this context, “positive” and “negative” decisions refer to labeling words as
complex and simple, respectively.

While objectives number 1 and 2 state that the identifier must minimise the number of
false negatives and false positives, item 3 states that it must maximise the proportion of true
positives. The proficiency of a classifier in achieving these goals is measured by Accuracy
and Recall, respectively. In order to balance these two metrics, we have conceived the G-
score, which measures the harmonic mean between Accuracy and Recall. For completeness,
we also include Precision and F-scores in our benchmark.

Results

The results for the optimistic and conservative settings are shown in Tables 3.6 and 3.7,
respectively. They show that Decision Trees and Random Forests achieve the highest G and
F-scores in the optimistic setup, but perform much less impressively in the conservative setup.
This phenomenon repeats itself with much more intensity, however, for Conditional Random
Fields (CRF), Adaptive Boosting, Passive Aggressive Learning (PA) and Neural Networks:
while they offer very competitive G and F-scores in the optimistic setup, they drop to values
close or even equal to zero in the conservative setup.

We believe that the cause for this is the reduced amount of complex words present in
the conservative setup. While the optimistic training set contains 706 complex words, the
conservative setup contains 117, which barely more than 5% of instances. This has caused
these classifiers to acquire a strong bias towards simple words, which have consequently led
them to neglect complex words almost entirely.

3.1.5 The Complex Word Identification Task of SemEval 2016

Using the datasets produced in our user study, we have proposed and organised the first run
of the Complex Word Identification task as part of SemEval 2016. The participants had the
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Cat. Approach A P R F G
LB Ogden’s 0.248 0.056 0.947 0.105 0.393
LB Simple Wikipedia 0.953 0.241 0.002 0.003 0.003
LB SubIMDB 0.913 0.217 0.332 0.262 0.487
TB Length 0.332 0.057 0.852 0.107 0.478
TB Senses 0.436 0.068 0.861 0.125 0.579
TB Synonyms 0.436 0.067 0.853 0.124 0.577
TB Hypernyms 0.572 0.076 0.728 0.137 0.641
TB Hyponyms 0.384 0.065 0.906 0.121 0.539
TB Freq:Simple Wiki 0.513 0.081 0.902 0.148 0.654
TB Freq:Wikipedia 0.536 0.084 0.901 0.154 0.672
TB Freq:SubIMDB 0.445 0.072 0.912 0.133 0.598
TB Freq:SUBTLEX 0.492 0.077 0.896 0.142 0.636
MA PA 0.852 0.171 0.562 0.262 0.677
MA SVM 0.715 0.061 0.357 0.105 0.476
MA CRF 0.534 0.076 0.808 0.140 0.643
MA Perceptron 0.648 0.057 0.423 0.101 0.512
MA Decision Trees 0.805 0.158 0.733 0.260 0.767
MA Adaptive Boosting 0.799 0.153 0.728 0.253 0.762
MA Gradient Boosting 0.802 0.147 0.672 0.241 0.731
MA Random Forests 0.826 0.170 0.698 0.273 0.756
MA Neural Networks 0.691 0.105 0.741 0.183 0.715
BA All Complex 0.047 0.047 1.000 0.089 0.089
BA All Simple 0.953 0.000 0.000 0.000 0.000

Table 3.6 Results for the optimistic training set
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Cat. Approach A P R F G
LB Ogden’s 0.248 0.056 0.947 0.105 0.393
LB Simple Wikipedia 0.953 0.241 0.002 0.003 0.003
LB SubIMDB 0.913 0.217 0.332 0.262 0.487
TB Length 0.591 0.067 0.595 0.120 0.593
TB Senses 0.731 0.107 0.648 0.184 0.687
TB Synonyms 0.754 0.106 0.574 0.179 0.652
TB Hypernyms 0.660 0.084 0.635 0.149 0.647
TB Hyponyms 0.687 0.092 0.644 0.162 0.665
TB Freq:Simple Wiki 0.848 0.186 0.665 0.290 0.745
TB Freq:Wikipedia 0.834 0.175 0.689 0.279 0.754
TB Freq:SubIMDB 0.743 0.125 0.752 0.215 0.747
TB Freq:SUBTLEX 0.842 0.176 0.648 0.277 0.732
MA PA 0.953 0.364 0.001 0.002 0.002
MA SVM 0.709 0.111 0.747 0.194 0.728
MA SGD 0.730 0.111 0.681 0.191 0.705
MA CRF 0.946 0.167 0.037 0.061 0.071
MA Decision Trees 0.931 0.282 0.308 0.294 0.462
MA Adaptive Boosting 0.953 0.504 0.044 0.081 0.084
MA Gradient Boosting 0.595 0.079 0.716 0.142 0.650
MA Random Forests 0.943 0.348 0.245 0.287 0.389
MA Neural Networks 0.953 0.000 0.000 0.000 0.000
BA All Complex 0.047 0.047 1.000 0.089 0.089
BA All Simple 0.953 0.000 0.000 0.000 0.000

Table 3.7 Results for the conservative training set
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goal of creating systems that, given a sentence and a target word within it, predict whether or
not the target word would be deemed complex by a non-native English speaker. Participants
were allowed to use any complementary external resources they desired.

Datasets and Evaluation

We have provided two training datasets for the task: joint and decomposed. Both of them
contain all instances which were annotated by 20 non-native speakers of English. The joint
dataset is identical to the one used in the optimistic setup in the benchmarking of Section 3.1.4.
It contains a single label for each instance, which is 1 if at least one of the 20 annotators
have deemed it complex, and 0 otherwise. In contrast, the decomposed dataset contains one
label for each of the 20 annotators, which is 1 if they have judged it to be complex, and 0
otherwise. The test set is also the same used in the setup of our benchmarking.

For evaluation, we use the same metrics from our benchmarking, which are Accuracy,
Precision, Recall, F-score and G-score.

SV000gg: CWI with System Voting

In order to participate in the task and compete with the various systems proposed by other
authors, we have conceived the SV000gg systems, which employ two voting techniques.

Our strategy explores the hypothesis that the popular saying “two heads are better than
one” apply to classification problems. We believe that combining the “opinion” of various
approaches to a given task can yield better results than if they are applied individually. This
idea is not new, and have been thoroughly explored in several ways.

Strategies that combine multiple Machine Learning classifiers are often referred to as
Ensemble methods. Such methods range from very simple approaches, such as Hard Voting,
in which labels are determined based on how many times they were predicted by the classifiers
considered, to very elaborate approaches, such as Random Forests (Breiman, 2001) and
Gradient Boosting (Friedman, 2001).

Our strategy consists on a variant of Soft Voting, in which the class of a given instance is
determined through Equation 3.1.

c f = argmax
c

f (c) = ∑
s∈S

T (s,c) (3.1)

In traditional Soft Voting, c f is the selected class, c is one of the possible classes in a
classification problem, S the collection of systems considered, and T a confidence estimate
i.e. a function that expresses how sure system s is that c is the correct class. Its goal is
to increment Hard Voting by incorporating the systems’ classification proficiency in the
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decision process, hopefully leading to a more reliable way of exploiting their strengths and
weaknesses.

Although sensible in principle, Soft Voting might not able to effectively combine systems
if they do not have a reasonably uniform way of determining the confidence of their pre-
dictions. The presence of over-optimistic or over-pessimistic systems may skew the results
severely, and hence make the resulting classifier have a worse performance than that of the
best system among the ones considered. Another obvious limitation of traditional Soft Voting
is that it cannot include systems which simply do not have an established way of determining
the confidence of their prediction. Lexicon-Based approaches, for example, tend to be very
effective in certain contexts, but can only produce binary confidence estimates: if the word is
in the vocabulary, then they are 100% sure the word is simple, if not, they are 100% sure the
word is complex.

To address these limitations, we propose a different ensemble approach: Performance-
Oriented Soft Voting. Instead of using the systems’ summed confidence to predict a label,
it uses their performance score over a certain validation dataset. Formally, we decompose
function T from Equation 3.1 into the two functions illustrated in Equation 3.2.

c f = argmax
c

f (c) = ∑
s∈S

P(s,d)∗D(s,c) (3.2)

In Equation 3.2, P represents the score of system s over a certain dataset d given a certain
performance metric, such as Precision, Recall, F1, Accuracy, etc. Function D, on the other
hand, outputs value 1 if system s has predicted c for the classification problem in question,
and 0 otherwise.

This setup works under the assumption that the systems’ performance under a validation
dataset is a reliable surrogate for confidence predictions, and allows for any type of systems
to be combined, be they homogeneous in their way of predicting classes or not.

To train our systems for the CWI task of SemEval 2016, we combine the n systems
with the best G-score among the Lexicon-Based, Threshold-Based and Machine-Learning-
Assisted approaches benchmarked in the optimistic setup of Section 3.1.4. We select n
through 5-fold cross-validation over the joint dataset.

Submitted Systems

Each team was allowed to submit at most two distinct systems. In total, 40 systems were
submitted. The 20 teams that have submitted systems are:
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AI-KU Introduces two SVM classifiers trained with a Radial Basis Function over the joint
dataset. While one of their systems use as features the word embeddings of the target word
itself and its sub-strings (native), the other uses the embeddings of the surrounding words as
well (native1) (Kuru, 2016).

AKTSKI Presents two SVM classifiers: one that weights labels according to the annotators’
judgements (wsys), and another that does not (svmbasic). Their systems use various semantic
and morphological features, and were trained over the joint dataset.

Amrita-CEN Introduces two SVM classifiers trained over the joint dataset. While one
of them uses word embeddings as well as various semantic and morphological features
(w2vecSim), the other also includes POS tag information (w2vecSimPos) (sp et al., 2016).

BHASHA Presents two systems: an SVM (SVM) and a Decision Tree (DECISIONTREE)
classifier. The instances in the dataset are first pre-processed, then classified according
to various lexical and morphological features. Finally, the results are pos-processed with
hand-crafted rules. Both systems are trained over the joint dataset (Choubey and Pateria,
2016).

ClacEDLK Uses Random Forests to train two classifiers over the joint dataset with se-
mantic, morphological, lexical and psycholinguistic features. While one classifier uses a
class-assignment threshold of 0.5 (RandomForest-0.5), the other uses a threshold of 0.6
(RandomForest-0.6) (Davoodi and Kosseim, 2016).

CoastalCPH Introduces a Neural Networks and a Logistic Regression system. Their
Neural Networks system (NeuralNet) is trained over the joint dataset, and uses two hidden
layers leading to a single activation node. Their Logistic Regression system (Concatenation)
is trained over the decomposed dataset. Both systems use the same set of features, which
include word frequency measures and word embedding values (Bingel et al., 2016).

GARUDA Presents two approaches: a hybrid model (HSVM&DT) and an SVM classifier
ensemble (SVMPP). HSVM&DT obtains predictions from various SVM models, which
are then validated by Decision Tree classifiers trained specifically to judge whether the
predictions are correct. The validated predictions are then combined into a final label.
SVMPP trains a single SVM classifier for each of the 20 annotators of the decomposed
dataset, then uses a weighted average to combine their predictions (Choubey and Pateria,
2016).
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HMC Performs CWI through a Decision and a Regression Tree, both with a maximum
depth of four. During training, their systems deem complex those words which were judged
so by at least 25% (DecisionTree25) and 5% (RegressionTree05) of the first 19 annotators
in the decomposed dataset. Their systems are then tuned based on the judgment of the 20th
annotator (Quijada and Medero, 2016).

IIIT Resorts to Nearest Centroid Classification to perform CWI. While one of their clas-
sifiers uses the Manhattan distance during training (NCC), the other uses the Euclidean
distance (NCC2). As features, they use semantic and morphological features. Their systems
are trained over the joint dataset (Palakurthi and Mamidi, 2016).

JUNLP Presents a Random Forest (RandomForest) and a Naive Bayes (NaiveBayes) clas-
sifier trained over the joint dataset. Among the semantic, lexicon-based and morphological
features used are also the words’ POS tag and Named Entity information (Mukherjee et al.,
2016).

LTG Uses a very simple setup of Decision Trees trained over the decomposed dataset.
Both of their systems learn a threshold based on the number of complex judgments in the
decomposed dataset. While one of them learns only one threshold (System1), the other
combines various (System2) (Malmasi et al., 2016).

MACSAAR Introduces a Random Forest (RFC) and an SVM (NNC) classifier. Instead of
the usual, they instead use Zipfian features, such as the percentile ranking of the target word,
and character n-gram features, such as the probability sum of all character n-grams in the
sentence. For training, they use the joint dataset (Zampieri et al., 2016).

MAZA Employs Ensemble methods over the joint dataset. They train a context-independent
system (A) that uses various word frequency features, and a context-aware system (B) that
also includes frequency of the previous and following words (Malmasi and Zampieri, 2016).

PLUJAGH Presents two threshold-based approaches to CWI. Their first system (SEWDF)
judges a word to be complex if its frequency in Simple Wikipedia is lower than 147. Their
other system learns the frequency threshold from the joint dataset that maximises the F-Score
(SEWDFF) (Wróbel, 2016).
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Pomona Uses threshold-based bagged classifiers with bootstrap re-sampling. The thresh-
olds of their classifiers are determined through brute-force over the target words’ frequencies
in a given corpus. They use bag sizes of 10 re-samplings selected through 10-fold cross
validation, repeated 20 times. The corpora used are Wikipedia (NormalBag) and the Google
Web Corpus (GoogleBag). Their systems are trained over the joint dataset (Kauchak, 2016).

Sensible System that combines Recurrent Neural Networks and Ensemble Methods. Their
Neural Networks are composed of Long Short-Term Memory layers leading to a single
activation node. They predict that a word is only complex if the activation node outputs a
value equal or bigger than 0.5. The architecture of their networks is determined through cross-
validation over the joint dataset. While one of their systems consist on the best performing
Neural Network architecture found (Baseline), the other combines the five best architectures
using an eXtreme gradient boosted ensemble (Combined) (Nat, 2016).

TALN Uses Random Forests to perform CWI. While one of their systems is trained over
the joint dataset (RandomForest_SIM), the other is trained over the decomposed dataset
(RandomForest_WEI), and includes the number of annotators that deemed the word to be
complex as a feature. Both systems also include various lexical, morphological, semantic
and syntactic features (Ronzano et al., 2016).

USAAR Presents two Bayesian Ridge classifiers. Their first system (Entropy) is trained
based solely on a hand-crafted Word Sense Entropy metric, which is calculated for each
target word in the joint dataset. Their other system (Entroplexity) combines Word Sense
Entropy with perplexity measures calculated with a language model (Martínez Martínez and
Tan, 2016).

UWB Performs CWI with the help of Maximum Entropy classifiers. Both classifiers use
only one feature: document frequencies of words in Wikipedia. While one of them is trained
over the joint dataset (All), the other is trained over the decomposed dataset (Agg) (Konkol,
2016).

Results

The final G and F-score ranks obtained by each system are reported in the first two columns
of Table 3.8. The systems that have achieved the highest G-scores are our SV000gg systems,
which combine various Threshold-Based, Lexicon-Based and Machine Learning approaches
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with minimalistic voting techniques. Similarly, the system from the TALN team, which has
the third highest G-score, also uses an Ensemble method of Random Forests.

One of the most clearly highlighted phenomena in our results is the recurring effectiveness
of Decision Trees and Random Forests in CWI: out of the systems with the 10 best G-scores,
only three do not employ them. Their reliability is also highlighted by the variety of distinct
feature sets used to train them, which range from morphological to syntactic features. In
contrast, the scores obtained by the BHASHA-DECISIONTREE and GARUDA-HSVM&DT
systems reveal that Decision Trees and Random Forests can be much less effective when
incorporated in more elaborate setups.

When it comes to F-score, Decision Trees and Random Forests remain dominant among
the top 10 systems, but ultimately take the back seat to a much more minimalistic Threshold-
Based strategy. The PLUJAGH-SEWDFF system, which has obtained the highest F-score,
simply learns the threshold of word frequencies in Wikipedia that maximises the F-score over
the joint dataset. Similarly, the LTG systems, which achieved the second and third highest
F-scores, use Decision Trees to learn a threshold over the number of annotators that judged a
word to be complex.

Another interesting finding refers to the difference between raw word frequencies and
single-word language model probabilities. The systems submitted by the PLUJAGH team,
which learn thresholds over raw word frequencies from Simple Wikipedia, have consistently
outperformed the “(TB) Simple Wiki” baseline, which uses language model probabilities, in
both G and F-scores.

Perhaps the biggest surprise from our results comes from the overall poor performance
of systems which employ Neural Networks and/or word embedding models: all systems
that do so, which are the ones submitted by team AI-KU, AmritaCEN, CoastalCPH and
Sensible, have among them ranked no better than 18th in G-score and 30th in F-score.
This comes as a disappointing result, given that these techniques and resources have been
successfully employed in state-of-the-art approaches to a wide variety of tasks in recent years.
We hypothesise that the small amount of training data available is the main cause for their
unsatisfactory performance.

3.2 Substitution Selection

In the usual LS pipeline, after a word is classified as complex, a Substitution Generation (SG)
system produces candidate substitutions for it. However, in most LS approaches (Glavaš and
Štajner, 2015; Horn et al., 2014; Kajiwara et al., 2013), these candidates are produced in
context-independent fashion i.e. the SG system is not aware of the content surrounding the
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G F Team System Acc. Prec. Rec. F-score G-score
1 13 SV000gg Soft 0.779 0.147 0.769 0.246 0.774
2 16 SV000gg Hard 0.761 0.138 0.787 0.235 0.773
3 9 TALN RandomForest_WEI 0.812 0.164 0.736 0.268 0.772
4 10 UWB All 0.803 0.157 0.734 0.258 0.767
4 11 PLUJAGH SEWDF 0.795 0.152 0.741 0.252 0.767
4 15 JUNLP NaiveBayes 0.767 0.139 0.767 0.236 0.767
5 7 HMC RegressionTree05 0.838 0.182 0.705 0.290 0.766
6 5 HMC DecisionTree25 0.846 0.189 0.698 0.298 0.765
7 12 JUNLP RandomForest 0.795 0.151 0.730 0.250 0.761
8 8 MACSAAR RFC 0.825 0.168 0.694 0.270 0.754
9 6 TALN RandomForest_SIM 0.847 0.186 0.673 0.292 0.750
10 14 MACSAAR NNC 0.804 0.146 0.660 0.240 0.725
11 21 Pomona NormalBag 0.604 0.095 0.872 0.171 0.714
12 22 UWB Agg 0.569 0.089 0.885 0.161 0.693
13 23 Pomona GoogleBag 0.568 0.088 0.881 0.160 0.691
14 24 IIIT NCC 0.546 0.084 0.880 0.154 0.674
15 2 LTG System2 0.889 0.220 0.541 0.312 0.672
16 18 MAZA A 0.773 0.115 0.578 0.192 0.661
18 30 Sensible Baseline 0.591 0.078 0.713 0.140 0.646
19 29 ClacEDLK ClacEDLK-RF_0.6 0.688 0.081 0.548 0.141 0.610
20 1 PLUJAGH SEWDFF 0.922 0.289 0.453 0.353 0.608
21 31 IIIT NCC2 0.465 0.071 0.860 0.131 0.604
22 25 ClacEDLK ClacEDLK-RF_0.5 0.751 0.090 0.475 0.152 0.582
24 4 MAZA B 0.912 0.243 0.420 0.308 0.575
25 34 AmritaCEN w2vecSim 0.627 0.061 0.486 0.109 0.547
26 23 GARUDA SVMPP 0.796 0.099 0.415 0.160 0.546
27 38 AIKU native1 0.583 0.057 0.512 0.103 0.545
27 39 AIKU native 0.555 0.056 0.535 0.101 0.545
28 40 AKTSKI wsys 0.587 0.056 0.490 0.100 0.534
28 41 AKTSKI svmbasic 0.512 0.053 0.558 0.097 0.534
29 19 BHASHA DECISIONTREE 0.836 0.118 0.387 0.181 0.529
30 17 USAAR entropy 0.869 0.148 0.376 0.212 0.525
31 33 Sensible Combined 0.737 0.072 0.390 0.122 0.510
32 20 BHASHA SVM 0.844 0.119 0.363 0.179 0.508
33 35 CoastalCPH NeuralNet 0.693 0.063 0.398 0.108 0.506
34 3 LTG System1 0.933 0.300 0.321 0.310 0.478
35 28 USAAR entroplexity 0.834 0.097 0.305 0.147 0.447
36 40 AmritaCEN w2vecSimPos 0.743 0.060 0.306 0.100 0.434
38 26 GARUDA HSVM&DT 0.880 0.112 0.226 0.149 0.360
39 34 CoastalCPH Concatenation 0.869 0.080 0.171 0.109 0.285

Table 3.8 Results of the Complex Word Identification task of SemEval 2016
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complex word being simplified. The step responsible for deciding which of the generated
candidates can replace the complex word in the context in which it appeared is Substitution
Selection (SS).

As discussed in (Paetzold and Specia, 2013), the perfect selector would be able to reliably
answer the following two questions about each candidate substitution:

1. Can it replace the target word without compromising the sentence’s grammaticality?

2. Can it replace the target word without changing the sentence’s meaning?

Given that both these questions have two possible answers (Yes or No), it seems natural
that one way to approach SS would be by training binary classifiers over annotated data
containing examples of good and bad replacements. We could not, however, find any
examples of SS strategies in literature that attempt to do so.

In an effort to gather new insight on what separates good from bad word replacements,
we have conducted a user study with 400 fluent speakers of English. In this study, volunteers
were asked to judge the grammaticality and meaning preservation aspect of several candidate
substitutions for various complex words. Using the annotated data produced in the study,
we introduce new datasets for SS, which allow the training of supervised selectors. The
following Sections describe the user study in more detail.

Notice that we skip the step of Substitution Generation in our user studies. We do so
because we believe that the experiments of Horn et al. (2014) and De Belder and Moens
(2012a) already provide with sufficient insight with respect to the relationship between
Substitution Generation and the needs of non-native English speakers.

3.2.1 Data Sources

We first created a list of 1,471 complex words by filtering any numbers, names, colours
and stop words from the ones obtained in the CWI study. We then produced an average
of 50 candidate substitutions for each word by combining the output of all SG systems in
the LEXenstein framework (Paetzold and Specia, 2015), which exploit complex-to-simple
parallel corpora (Horn et al., 2014), word embedding models (Glavaš and Štajner, 2015;
Paetzold and Specia, 2016i), WordNet (Biran et al., 2011; Devlin and Tait, 1998) and the
Merriam Dictionary4. For more details on how each of these approaches work, please refer
to the LEXenstein documentation presented in Chapter 8.3.

Using the strategy described by Paetzold and Specia (2015), we selected the 10 candidates
with the highest cosine similarity to each complex word, given a typical bag-of-words

4http://www.merriam-webster.com
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(CBOW) word embeddings model with 500 dimensions trained over a corpus of 7 billion
words extracted from various sources (Mikolov et al., 2013a). Using the Text Adorning
module of LEXenstein, we ensure that all candidates have the same conjugation form as the
complex word itself.

Finally, we extract, according to availability, up to three sentences from Wikipedia in
which each of these complex words appear (2,554 in total), and create 25,540 annotation
instances by replacing the complex word in each sentence with one of the 10 candidate
substitutions selected.

3.2.2 Annotation Process

400 fluent English speakers participated, all university students and staff. We did not require
volunteers to be non-native speakers of English, since the complex words selected were
deemed so by themselves and, in order for someone to judge the quality of an alternative for
a complex word, it needs to understand its meaning. Each was presented with 80 annotation
instances accompanied by the original complex word for reference. For each instance, they
were presented with three hypothesis:

• The substitution preserves the sentence’s GRAMMATICALITY.

• The substitution preserves the sentence’s MEANING.

• None of the above.

Volunteers were obliged to select at least one option, but could not select neither of the
first two along with “None of the above”. The resulting dataset contains 25,540 annotated
instances in total. For agreement analysis purposes, 1,600 instances were annotated by 5
volunteers each, while the remaining 23,940 instances were annotated by a single volunteer.

3.2.3 Nature of Good Substitutions

We have calculated several features to compare the grammatical and/or meaning preserving
substitutions against the remaining substitutions. Table 3.9 illustrate the average and standard
deviation feature values of candidates annotated positively by at least three out of five
annotators (Good), and not (Bad), with respect to their grammaticality, meaning preservation,
and both of them jointly. We chose six features:

• Language model probabilities of the sentence with the candidate in place of the target,
given four 3-gram language models trained over the SubIMDB (Paetzold and Specia,



76 User Studies with Non-Native Speakers of English

2016i), SUBTLEX (Brysbaert and New, 2009b) and Simple Wikipedia (Kauchak,
2013) corpora. Language model sentence probabilities have been used in the creation
of some of the most effective Lexical Simplification systems in literature (Glavaš and
Štajner, 2015; Horn et al., 2014; Paetzold and Specia, 2016i). Language models were
trained with SRILM.

• The cosine word vector similarity between the candidate and the target (Target Sim.),
as well as the average cosine similarity between the vector of the candidate and the
vectors of content words in the sentence (Context Sim.). These features have been
used in the creation of the unsupervised lexical simplifier of Glavaš and Štajner (2015).
The embeddings model was trained with word2vec (Mikolov et al., 2013a) with the
CBOW architecture and 500 dimensions over a corpus of 7 billion words extracted
from various sources (Brysbaert and New, 2009b; Kauchak, 2013; Paetzold, 2015b).

• The probability of the candidate of receiving the same POS tag attributed to the target
(POS Prob.). This feature has shown to be a strong indicator of grammaticality (Aluisio
and Gasperin, 2010; Nunes et al., 2013). The POS tag conditional probability models
were trained over dependency parses produced by the Stanford Parser (Klein and
Manning, 2003) over the NewsCrawl corpus5.

The column following the average values for Good and Bad candidates contain • for
features for which it was found a statistically significant difference between the averages
through an F-test (p<0.01), and ◦ for the remainder. The results suggest that, even though
they are able to account for context, n-gram language model probabilities are much less
effective in distinguishing good from bad candidates than the word vector distance between
target and candidate. Nonetheless, the same cannot be observed for the average similarity
between candidate and context words.

Another interesting finding from our results that agree with previous contributions
(Aluisio and Gasperin, 2010; Nunes et al., 2013) regards the probability of the candidate
receiving the POS tag of the target (POS Prob.), which does indeed show a strong relationship
with grammaticality.

We have also found that, out of the 356 candidates judged both grammatical and meaning
preserving by at least three annotators, 171 (48%) are not listed in WordNet as either
synonyms, hypernyms or hyponyms of the target word. This suggests that simplification
strategies such as the ones of Devlin and Tait (1998) and Biran et al. (2011), which extract
candidate substitutions of complex words from WordNet, can suffer from low coverage.

5http://www.statmt.org/wmt11/translation-task.html
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Grammaticality Meaning Joint (G/M)
Feature Good Bad p Good Bad p Good Bad p

P. Subimdb −0.9±0 −1.0±0 ◦ −1.0±0 −0.9±0 ◦ −0.9±0 −1.0±0 •
P. Subtlex −3.1±1 −3.2±1 • −3.2±1 −3.2±2 • −3.1±1 −3.4±2 ◦
P. Simple −4.2±1 −4.3±2 • −4.2±2 −4.3±2 • −4.2±2 −4.4±2 ◦
Trgt Sim. 0.4±0.2 0.2±0.2 • 0.3±0.2 0.2±0.2 • 0.3±0.2 0.2±0.2 •
Ctxt Sim. 0.1±0.1 0.0±0.1 ◦ 0.1±0.1 0.0±0.1 ◦ 0.1±0.1 0.0±0.1 •

POS Prob. 0.6±0.4 0.4±0.4 • 0.5±0.4 0.4±0.4 ◦ 0.5±0.4 0.3±0.4 •
Table 3.9 Average and standard deviation of features of those words which were deemed
grammatical, meaningful, or both by at least 3 annotators, and those that were not.

3.2.4 Annotation Agreement

The average Kappa inter-annotator agreement scores for the data in this user study are
0.391±0.16 for grammaticality, 0.424±0.16 for meaning preservation, and 0.450±0.16
for both of them jointly. Inspecting the data, we found that most disagreements resulted
from situations in which the target word was part of a multi-word expression. Take, for
example, the target word turn in the sentence “That in turn makes it difficult to affect policies
to curb distracted driving”, which, in this case, is part of the multi-word expression in
turn. Annotators were very much divided on whether or not candidate reverse preserved
either grammaticality or meaning in this case: some judged it to be neither grammatical nor
meaningful, while others claimed the very opposite.

3.2.5 Evaluating Binary Classification Methods

In this experiment, we use the data produced in our user study to assess the effectiveness
of several binary classification strategies in discerning between good and bad candidate
substitutions.

Approaches

The approaches compared in this experiment can be divided in three categories:

• Threshold-Based (TB): Given a certain feature, we find the threshold t that best sepa-
rates good from bad replacements. We consider all features described in Section 3.2.3.
To find t, an exhaustive search was performed on the training set over 10,000 equally
distant values in the interval between the minimum and maximum value of each feature.

• Machine-Learning Assisted (MA): Using various Machine Learning techniques, we
train classifiers to decide whether or not a given candidate substitution is appropriate.
We consider five techniques:
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1. Multi-Layer Perceptron: Trained over a categorical cross-entropy loss and
Stochastic Gradient Descent, with three layers with 64 dimensions.

2. Linear Perceptron: A typical linear model trained with the perceptron algorithm.

3. Support Vector Machines: Trained with Radial Basis Function kernel and an
L2 regulariser.

4. Decision Trees: Trained with a maximum entropy splitting function.

5. Random Decision Forests: Composed of 50 Decision Trees trained with a
maximum entropy splitting function.

The features used are the same used by the Threshold-Based approaches. We use Keras
to train our Multi-Layer Perceptron model, and scikit-learn to train all others. The
hyper-parameters of all classifiers, including the number and size of hidden layers in the
Multi-Layer Perceptron, kernels, regularisers and splitting functions, were optimised
through 10-fold cross validation.

• Baselines (BA): We include the “All Good” and “All Bad” baselines, which predict
that all candidate substitutions are good and bad, respectively.

Datasets

From the data collected in our user study, we extracted annotations pertaining to each of the
following three word replacement properties:

• Grammaticality: Considers only the judgments made with respect to the grammati-
cality of a candidate substitution. A candidate receives label 1 if a total of at least n
people has judged it to preserve the grammaticality of a sentence, and 0 otherwise.

• Meaning Preservation: Considers only the judgments made with respect to the
meaning preservation of a candidate substitution. A candidate receives label 1 if a
total of at least n people has judged it to preserve the meaning of a sentence, and 0
otherwise.

• Appropriateness: Considers the judgments with respect to grammaticality and mean-
ing preservation jointly. A candidate receives label 1 if a total of at least n people has
judged it to be both grammatical and meaning preserving, and 0 otherwise.

For each property, we then create training sets using two settings:
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• Optimistic: A candidate receives label 1 if at least one annotator has judged a given
property to be true, and 0 otherwise.

• Conservative: A candidate receives label 1 if at least three annotators have judged a
given property to be true, and 0 otherwise.

The training sets are comprised of all the 1,600 instances annotated by five volunteers.
In order to create test sets, we use the remaining instances, which have been annotated by
only one volunteer. We create one test set for each of the aforementioned word replacement
properties: a candidate receives label 1 if a given property was judged to be true by the
annotator, and 0 otherwise.

Evaluation

For evaluation, we use the traditional Accuracy (A), Precision (P), Recall (R), and F-score
(F).

Results

The results obtained for all properties and settings are presented in Tables 3.10 through 3.15.

Cat. Approach A P R F
TB Prob. SubIMDB 0.567 0.568 0.993 0.722
TB Prob. SUBTLEX 0.567 0.568 0.992 0.722
TB Prob. Simple 0.566 0.567 0.994 0.722
TB POS Tag Probability 0.643 0.658 0.771 0.710
TB Target Similarity 0.568 0.568 1.000 0.724
TB Context Similarity 0.568 0.568 1.000 0.724
MA Multi-Layer Perceptron 0.568 0.568 1.000 0.724
MA Decision Trees 0.600 0.589 0.977 0.735
MA Random Trees 0.583 0.578 0.983 0.728
MA Support Vector Machines 0.584 0.587 0.902 0.711
MA Linear Perceptron 0.553 0.570 0.872 0.689
BA All Bad 0.432 0.000 0.000 0.000
BA All Good 0.568 0.568 1.000 0.724

Table 3.10 Results for grammaticality in the optimistic setting

It can be noticed that, overall, Threshold-Based approaches offer very competitive
performance to that of Machine Learning techniques. Nonetheless, their performance is, in
most scenarios, very similar to that of the “All Good” baseline.
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Cat. Approach A P R F
TB Prob. SubIMDB 0.567 0.568 0.993 0.722
TB Prob. SUBTLEX 0.567 0.568 0.992 0.722
TB Prob. Simple 0.566 0.567 0.994 0.722
TB POS Tag Probability 0.646 0.666 0.755 0.708
TB Target Similarity 0.568 0.568 1.000 0.724
TB Context Similarity 0.568 0.568 0.999 0.724
MA Multi-Layer Perceptron 0.568 0.568 1.000 0.724
MA Decision Trees 0.637 0.633 0.857 0.728
MA Random Trees 0.632 0.642 0.794 0.710
MA Support Vector Machines 0.610 0.625 0.779 0.694
MA Linear Perceptron 0.530 0.570 0.698 0.628
BA All Bad 0.432 0.000 0.000 0.000
BA All Good 0.568 0.568 1.000 0.724
Table 3.11 Results for grammaticality in the conservative setting

Cat. Approach A P R F
TB Prob. SubIMDB 0.341 0.339 0.993 0.505
TB Prob. SUBTLEX 0.342 0.339 0.992 0.505
TB Prob. Simple 0.340 0.338 0.993 0.505
TB POS Tag Probability 0.461 0.349 0.686 0.463
TB Target Similarity 0.344 0.340 0.998 0.507
TB Context Similarity 0.339 0.339 1.000 0.506
MA Multi-Layer Perceptron 0.661 0.000 0.000 0.000
MA Decision Trees 0.342 0.339 0.993 0.505
MA Random Trees 0.407 0.345 0.835 0.488
MA Support Vector Machines 0.339 0.339 1.000 0.506
MA Linear Perceptron 0.404 0.327 0.721 0.450
BA All Bad 0.661 0.000 0.000 0.000
BA All Good 0.339 0.339 1.000 0.506

Table 3.12 Results for meaning preservation in the optimistic setting
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Cat. Approach A P R F
TB Prob. SubIMDB 0.429 0.340 0.725 0.463
TB Prob. SUBTLEX 0.468 0.340 0.609 0.437
TB Prob. Simple 0.452 0.337 0.641 0.442
TB POS Tag Probability 0.470 0.352 0.672 0.462
TB Target Similarity 0.545 0.406 0.740 0.524
TB Context Similarity 0.358 0.343 0.980 0.508
MA Multi-Layer Perceptron 0.661 0.000 0.000 0.000
MA Decision Trees 0.570 0.358 0.341 0.349
MA Random Trees 0.632 0.393 0.157 0.225
MA Support Vector Machines 0.339 0.339 1.000 0.506
MA Linear Perceptron 0.612 0.350 0.170 0.229
BA All Bad 0.661 0.000 0.000 0.000
BA All Good 0.339 0.339 1.000 0.506

Table 3.13 Results for meaning preservation in the conservative setting

Cat. Approach A P R F
TB Prob. SubIMDB 0.243 0.240 0.992 0.386
TB Prob. SUBTLEX 0.244 0.240 0.991 0.387
TB Prob. Simple 0.242 0.240 0.992 0.386
TB POS Tag Probability 0.464 0.278 0.769 0.408
TB Target Similarity 0.247 0.242 0.998 0.389
TB Context Similarity 0.241 0.240 1.000 0.388
MA Multi-Layer Perceptron 0.240 0.240 1.000 0.387
MA Decision Trees 0.459 0.277 0.777 0.409
MA Random Trees 0.438 0.267 0.768 0.397
MA Support Vector Machines 0.481 0.270 0.679 0.386
MA Linear Perceptron 0.309 0.237 0.844 0.370
BA All Bad 0.760 0.000 0.000 0.000
BA All Good 0.240 0.240 1.000 0.387

Table 3.14 Results for appropriateness in the optimistic setting
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Cat. Approach A P R F
TB Prob. SubIMDB 0.384 0.241 0.724 0.361
TB Prob. SUBTLEX 0.450 0.244 0.617 0.350
TB Prob. Simple 0.429 0.241 0.638 0.349
TB POS Tag Probability 0.496 0.286 0.730 0.411
TB Target Similarity 0.514 0.300 0.770 0.432
TB Context Similarity 0.241 0.240 1.000 0.388
MA Multi-Layer Perceptron 0.760 0.000 0.000 0.000
MA Decision Trees 0.646 0.278 0.297 0.287
MA Random Trees 0.733 0.318 0.099 0.151
MA Support Vector Machines 0.240 0.240 1.000 0.387
MA Linear Perceptron 0.416 0.248 0.705 0.367
BA All Bad 0.760 0.000 0.000 0.000
BA All Good 0.240 0.240 1.000 0.387
Table 3.15 Results for appropriateness in the conservative setting

Among Machine Learning approaches, Decision Trees are clearly the most consistent
throughout the different scenarios. But like our Threshold-Based approaches, the performance
of all Machine Learning techniques is very close to that of the “All Good” baseline, which
suggests that, in most scenarios, the strategies evaluated do not effectively learn how to
distinguish between good and bad candidates, and rather just acquire a strong bias towards
declaring all candidates good.

In order to discover how these binary classifiers perform as part of an LS system in
practice, we have conducted a benchmarking with them. The description and results of this
experiment can be found in Appendix A.

3.3 Substitution Ranking

After candidate substitutions have been generated and selected, they can be given to Sub-
stitution Ranking (SR), a step of which the goal is ensuring that the replacement selected
for a complex word is as simple as possible. As discussed in Chapter 2, SR approaches vary
from minimalistic frequency-based approaches (Carroll et al., 1998; Devlin and Tait, 1998)
to more sophisticated supervised strategies (Horn et al., 2014), and most of which do not
target a specific audience.

In this user study, in which 300 non-native English speakers took part, we investigate
how simplicity is perceived by them. Volunteers were presented with several sentences
with a “gap” and two words to fill it, and were asked to select which one of them made the
sentence easier to understand. The data produced led to a new dataset, and the findings of our
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experiments contradict previous claims on word simplicity. The following Sections describe
the user study in more detail.

3.3.1 Data Sources

We have extracted all 901 sentences from the ones in our Substitution Selection user study
which had a minimum of 2 and maximum of 4 candidates annotated as both grammatical and
meaning preserving by at least three annotators. In order for its simplicity to also be assessed,
we added the target complex word of each sentence to the set of candidates. We then replaced
the target word in each sentence with a gap marker, and created an annotation instance for
each pair of candidates, totalling 4,200 pairs (438 sentences * 3 pairs (3 candidates including
target) + 436 * 6 pairs (4 candidates including target) + 27 * 10 pairs (5 candidates including
target)).

3.3.2 Annotation Process

300 non-native English speakers participated as annotators, all university students and staff.
Volunteers provided anonymous information about their native language, age, education level
and English proficiency level. Each volunteer was presented with 70 annotation instances,
each composed of a sentence with a gap, and two candidates to fill it with.

For each instance, volunteers were asked to select which candidate made the sentence
easier to understand. Volunteers could also select a third option, in case both candidates
made the sentence equivalently complex/simple. All 4,200 instances were annotated by 5
volunteers.

Once instances were annotated, we used the algorithm introduced by Wauthier et al.
(2013) to infer rankings from binary comparisons for all 901 sets of candidate substitutions.
Their algorithm takes as input a matrix M of dimensions NxN, where N is the number of
candidates in a given ranking problem, and each cell M[i, j] is the probability of candidate
ci having a better rank i.e. being simpler than c j. We calculate each cell of matrix M using
Equation 3.3, in which C is the count of occurrences of a given type of judgment made by
the volunteers.

M[i, j] =
C
(
ci is simpler than c j

)
C
(
ci is simpler than c j

)
+C

(
c j is simpler than ci

) (3.3)
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Once matrix M is produced, the score of each candidate is inferred using Equation 3.4.

R(ci) = ∑
i̸= j

(2M[i, j]−1) (3.4)

The details of the mathematical model that leads to Equation 3.4 can be found in the
work of Wauthier et al. (2013). Finally, candidates are ranked in decreasing order of score.

3.3.3 Profile of Annotators

The annotators of this user study are speakers of 39 languages. The most predominant
languages were Portuguese (18.5%), Chinese (11.1%) and Spanish (10%). Annotators are be-
tween 18 and 63 years old (average 26.7). 55% of the volunteers were Postgraduate students,
33.8% Undergraduate, and 11.2% were in High School. 40.8% claimed to have Advanced
(C2) English proficiency skills, 31.6% Pre-Advanced (C1), 23.3% Upper-Intermediate (B2),
3.5% Intermediate (B1), and 0.6% Pre-Intermediate (A2).

3.3.4 Dataset Analysis

To understand which characteristics of candidates make them simpler, we computed the
correlation between the simplicity rankings and 24 features:

• Word Length.

• Number of syllables. Syllables were extracted with the Morph Adorner toolkit (Burns,
2013).

• Number of senses in WordNet.

• 3-gram language model probability from the Brown (Francis and Kucera, 1979),
SUBTLEX (Brysbaert and New, 2009b), SubIMDB (Paetzold and Specia, 2016i),
Wikipedia and Simple Wikipedia (Kauchak, 2013) corpora. Language models were
trained with the help of SRILM (Stolcke, 2002).

• Probabilities from a 3-gram language model trained over Simple Wikipedia of eight
n-grams with (l,r) tokens to the left (l) and right (r) of the candidate.

• The conditional probability of the candidate given the POS tag of the target word. The
models and parameters used are the same described in Section 3.2.3.

• The cosine distance between the embedding vectors of the target word and the candi-
date. The models and parameters used are the same described in Section 3.2.3.
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• The average cosine distance between the vector of the candidate and the content
words in the sentence. The models and parameters used are the same described in
Section 3.2.3.

The values in Table 3.16 reveal that, while word length and number of syllables correlate
poorly with word complexity, simpler words tend to be more ambiguous and occur more
frequently in corpora. These findings reinforce the ones from our CWI user study.

More importantly, our results show that correlation scores of (1,1) (one token to the left
and right) n-grams consistently outperform the scores of single-word frequencies (0,0) in all
metrics used. These findings contradict a long-standing assumption that context is not an
important factor in word simplicity estimation (Biran et al., 2011; Carroll et al., 1999; Devlin
and Tait, 1998; Rello et al., 2013b; Shardlow, 2013a).

We also found that the target complex word itself was the simplest candidate in 46.4%
of the instances, highlighting the need for more effective Complex Word Identification and
Substitution Generation methods for simplification.

Feature Spearman Pearson
Word Length −0.176±0.6 −0.153±0.6
Number of Syllables −0.099±0.6 −0.088±0.5
Frequency: SubIMDB 0.408±0.6 0.358±0.5
Frequency: SUBTLEX 0.450±0.5 0.394±0.5
Frequency: Simple Wiki 0.479±0.5 0.428±0.5
Frequency: Wikipedia 0.458±0.5 0.405±0.5
Frequency: Brown 0.363±0.6 0.316±0.5
Sense Count 0.328±0.6 0.292±0.5
Synonym Count 0.272±0.6 0.241±0.6
Hypernym Count 0.275±0.6 0.244±0.5
Hyponym Count 0.293±0.6 0.257±0.5
Minimum Sense Depth −0.207±0.6 −0.185±0.5
Maximum Sense Depth 0.126±0.6 0.109±0.6
N-gram (1,0) 0.506±0.5 0.453±0.5
N-gram (0,1) 0.478±0.5 0.421±0.5
N-gram (1,1) 0.489±0.5 0.430±0.5
N-gram (2,0) 0.505±0.5 0.451±0.5
N-gram (2,1) 0.492±0.5 0.432±0.5
N-gram (0,2) 0.477±0.5 0.420±0.5
N-gram (1,2) 0.487±0.5 0.428±0.5
N-gram (2,2) 0.487±0.5 0.428±0.5
POS Prob. 0.130±0.6 0.108±0.6
Target Sim. 0.247±0.6 0.219±0.6
Context Sim. 0.260±0.6 0.227±0.5

Table 3.16 Simplicity feature correlation scores



86 User Studies with Non-Native Speakers of English

3.3.5 Annotation Agreement

The average Kappa inter-annotator agreement scores for this user study also resemble the
ones reported in Section 3.1.3: although the agreement between all annotators is quite en-
couraging (0.454±0.05), the scores are even higher for annotators with similar backgrounds.
Annotators within the same education level, age band and proficiency levels reach agreement
scores of 0.468±0.01, 0.482±0.02 and 0.486±0.01, respectively. But much like what was
observed in our user study on Complex Word Identification, the highest agreement comes
from annotators that speak the same native language (0.601±0.15). This serves as further
evidence that one’s native language plays an important role in vocabulary acquisition.

3.3.6 Performance Comparison

In this experiment, we assess the performance of various Substitution Ranking strategies
over the ranks produced in our user study.

Approaches

We compare the performance of three rankers from literature:

• Biran (Biran et al., 2011): Employs the metric in Equation 8.4, in which F(c,C) is the
frequency of candidate c in corpus C, and ∥c∥ its length.

M(c) =
F(c,Wikipedia)

F(c,Simple Wikipedia)
×∥c∥ (3.5)

• Horn (Horn et al., 2014): Uses Support Vector Machines Joachims (2002) to learn a
ranking model from data with several word and n-gram frequency features.

• Glavas (Glavaš and Štajner, 2015): Ranks candidates according to several features,
such as n-gram frequencies and word vector similarity with the target word, and then
re-ranks them according to their average rankings.

For the Biran, Horn and Glavas rankers, we use the same parameters described in the
publications in which they were introduced. We optimise the parameters of all supervised
rankers through 10-fold cross validation. For completeness, we also include a metric-based
ranker for each one of the 24 features listed in Section 3.3.4. In total, we compare 27 ranking
strategies.
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Datasets

We first compile the 901 ranking instances produced in our user study into a dataset, which
is then split into a training and a test set, containing 450 and 451 instances, respectively.
The training set was used in the training of supervised rankers, and the test set was used for
evaluation.

Metrics

For evaluation, we use the TRank-at-n metric proposed by Specia et al. (2012), which
measures the proportion of times in which a candidate with a gold-standard rank equal to
r≤n was ranked first.

Results

The results in Table 3.17 reveal that the N-gram (2,0) ranker offers the highest TRank-at-
1, 2 and 3 scores, outperforming all other systems. Surprisingly, the Horn ranker, which
is the only one to learn a ranking model from data, was outperformed by much simpler
unsupervised strategies.

The unsatisfactory performance of the Horn ranker highlights the need for more suitable
supervised ranking models. Although unsupervised rankers can be more easily adapted to
different languages, supervised rankers can learn how to automatically combine different
features in order for the rankings produced to best suit the needs of a target audience.

3.4 Conclusions

In this Chapter, we have described three user studies with the goal of providing new resources
and insights on the simplification needs of non-native English speakers.

In our Complex Word Identification study we learned that words which do not challenge
non-native speakers are much more present in corpora, while those which do challenge them
tend to be much less ambiguous. In contrast with what was reported by Rello et al. (2013b)
in experiments with dyslexic readers, we found no evidence of a relationship between the
non-native English speakers’ perception of complexity and either word length or number of
syllables. Our experiments also suggest that while their English proficiency level indicates
how many words will challenge them, their native language indicates which words these will
be. Using the data produced in this user study, we launched the Complex Word Identification
task of SemEval 2016. From the task, we have learned that our Performance-Oriented Soft
Voting strategy is the most effective approach among all 42 submitted.
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Ranker TRank-at-1 TRank-at-2 TRank-at-3
Word Length 0.373 0.678 0.849
Number of Syllables 0.339 0.676 0.816
Frequency: SubIMDB 0.519 0.798 0.904
Frequency: SUBTLEX 0.075 0.366 0.485
Frequency: SimpleWiki 0.082 0.341 0.490
Frequency: Wikipedia 0.534 0.812 0.916
Frequency: Brown 0.503 0.812 0.916
Sense Count 0.494 0.792 0.904
Synonym Count 0.448 0.758 0.870
Hypernym Count 0.455 0.747 0.870
Hyponym Count 0.419 0.723 0.874
Minimum Sense Depth 0.392 0.716 0.833
Maximum Sense Depth 0.235 0.574 0.720
N-gram (1,0) 0.581 0.847 0.958
N-gram (0,1) 0.545 0.834 0.933
N-gram (1,1) 0.572 0.836 0.937
N-gram (2,0) 0.592 0.851 0.958
N-gram (2,1) 0.574 0.836 0.937
N-gram (0,2) 0.552 0.827 0.929
N-gram (1,2) 0.570 0.834 0.941
N-gram (2,2) 0.579 0.838 0.941
POS Prob. 0.333 0.639 0.774
Target Sim. 0.477 0.761 0.879
Context Sim. 0.466 0.758 0.879
Biran 0.404 0.725 0.866
Horn 0.565 0.831 0.933
Glavas 0.588 0.831 0.937

Table 3.17 Performance comparison of rankers over the data produced in this user study
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The user study on Substitution Selection has allowed us to better outline the character-
istics of good substitutes of complex words. It was found that they tend to take the same
grammatical role as the complex word, and also that they tend to appear closely in the
distributional space of word embedding models. From our agreement analysis, we learned
that single-word replacements tend to compromise the perception of multi-word expressions.

To complete our investigation, we presented a user study on the task of Substitution
Ranking. We found further evidence that, unlike ambiguity indicators and language model
probabilities, length and number of syllables have little to do with word simplicity for
non-native speakers of English. N-gram probabilities proved the most reliable simplicity
indicators among the features evaluated, which contradicts the assumption often made in
earlier contributions that context offers no important clues on a word’s simplicity. Through a
benchmark of Substitution Ranking strategies, we have also highlighted the need for more
effective supervised rankers that can learn the needs of a target audience.

Table 3.18 summarises the data produced from each of these studies. Some examples of
models and applications that could be built from these datasets are readability assessment
tools, semantic analysers, text profilers and full lexical simplifiers.

User Study Sentences Words Word Pairs Annotators Annotations
Complex Word Identification 9,200 87,244 - 400 158,624

Substitution Selection 2,554 25,540 - 400 31,940
Substitution Ranking 901 3,193 4,200 300 21,000

Total 12,655 115,977 4,200 1,100 211,564
Table 3.18 Summary of annotated data produced: number of unique sentences, words and
word pairs annotated, as well as the number of annotators who participated and annotations
produced.





Chapter 4

Joint Lexical Simplification

Pipelined Lexical Simplification approaches have changed a lot throughout the years. The
early approach of Devlin and Tait (1998) used very minimalistic techniques and resources:
an early version of WordNet to extract synonyms of complex words and the Brown corpus
for Kucera-Francis coefficients. As discussed in the survey of Chapter 2, these have evolved
into much more sophisticated strategies, which use complex-to-simple parallel corpora (Horn
et al., 2014), supervised ranking strategies (Paetzold, 2015b) and word embedding models
(Glavaš and Štajner, 2015). These modern strategies have led to substantial increases in
performance (Horn et al., 2014), and have been used in almost all research in the field.

However, work is still needed to find effective approaches that model all steps of the
LS pipeline jointly. Although there are some reasonably successful examples of joint Text
Simplification models that treat it as a Machine Translation problem (Specia, 2010; Wubben
et al., 2012), there are no joint models that focus strictly on LS.

Joint models have been successful in various Natural Language Processing tasks, specially
with the popularization of Recurrent Neural Networks (RNNs) (Goller and Kuchler, 1996). In
Text Generation, for example, early systems were composed by very elaborate pipelines with
steps such as “Planning” and “Realisation” (Reiter et al., 2000), which had to be modelled
individually. These have recently given space to much simpler strategies. Sutskever et al.
(2011) introduces Recurrent Neural Networks that require nothing but large corpora of text
to learn how to produce texts of a given topic. By simply providing the network with a
portions of text t and requiring for it to predict subsequent portions t +1, it learns how to
create original content of a certain type.

An even more notable example of task in which the shift towards joint models can be
noticed is Machine Translation. Statistical translation approaches, such as Hierarchical
Phrase-Based (Chiang, 2005) and Syntax-Based (Koehn et al., 2003) models, usually work
in a two-step process: calculating translation probabilities from large parallel corpora (or



92 Joint Lexical Simplification

“alignment”), and searching for the best translation for a given sentence (or “decoding”).
Although their effectiveness have attracted the attention of big companies such as Google
(Allauzen et al., 2014), these models are not very proficient in capturing long-distance de-
pendencies, mostly due to the fact that the steps of alignment and decoding are performed
independently Marcu and Wong (2002). The strategy described in (Bahdanau et al., 2014),
which is often referred to as “Neural Machine Translation”, offers an alternative: it uses
Recurrent Neural Networks to jointly model the entire translation process (alignment, de-
coding, etc.). The architecture they use is composed of an encoder and a decoder. While
the encoder is responsible for encoding the training sentences in the source language, the
decoder is responsible for decoding it into the target language. Their results show that this
simplistic take to translation can outperform even consolidated statistical models.

In this Chapter, we describe our efforts in creating joint LS models with Recurrent
Neural Networks. To accomplish so, we make use of Neural Language Models, which not
only jointly model Substitution Generation, Selection and Ranking, but also allow for its
parameters to be optimized over a validation corpus that represents the needs of non-native
English speakers.

4.1 Neural Language Models for Lexical Simplification

Word frequencies and statistical language models are the most frequently used resources in LS.
While single word frequencies have been shown to correlate well with the non-native English
speakers’ perception of simplicity (Specia et al., 2012), n-gram probabilities have been
incorporated in various context-aware ranking strategies that aim to capture grammaticality
and meaning preservation (Glavaš and Štajner, 2015; Horn et al., 2014; Paetzold, 2015b).

Language models suit the task of LS so well that, from a theoretical standpoint, they
could be a self-contained approach to joint Lexical Simplification. In simple terms, given
a sequence of words W =w1, ...,wm of any size, a language model calculates a probability
P(W ) that determines the relative likelihood of W pertaining to a certain language. To learn
a probability distribution, n-gram models, for example, rely on two assumptions:

1. The Markov assumption: The probability of a word in a sequence is conditioned
only on preceding words i.e. the sequence of words to its left.

2. The independence assumption: The probability of a word is conditioned only on the
n−1 words to its left (hence the name “n-gram” model).
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An n-gram model will extract counts of n-grams with size ≤ n from a given corpus and
calculate P(w1, ...,wm) using Equation 4.1, in which n is the order of the model (4-gram,
5-gram, etc) and count the number of times an n-gram has appeared in the training corpus.

P(w1, ...,wm)=
m

∏
i=1

P
(
wi | wi−(n−1), ...,wi−1

)
=

m

∏
i=1

count
(
wi−(n−1), ...,wi−1,wi

)
count

(
wi−(n−1), ...,wi−1

) (4.1)

Notice that probability P(w1, ...,wm) is decomposed into n-gram probabilities based on
the two aforementioned assumptions. This probability decomposition is used to make calcu-
lations tractable and reduce sparsity within the model. In order to calculate the probability
of partially unseen sequence of words, smoothing techniques, such as the one of Chen and
Goodman (1999), are used. These attempt to “predict” the n-gram probability of unseen
sequences.

Assuming that word and n-gram frequencies are sufficient indicators of grammaticality,
meaning preservation and word simplicity, if a certain n-gram language model somehow
perfectly captures the needs of a target audience, it could be used as an LS approach that
models the Substitution Generation, Selection and Ranking steps jointly. Given a target
complex word in a sentence S, one could replace it with every word in a vocabulary, then
simply use probability P(S) to determine which one of the vocabulary words is the most
likely to fit the context of the complex word. Notice that this approach would still require a
Complex Word Identification strategy to determine which words should be simplified.

Although elegant in its formulation, this strategy is not practical. Because n-gram models
are not parametrised, it becomes difficult to incorporate information about the needs of a
target audience during training. If an n-gram language model were to be trained over corpora
created specifically to assist readers who are unfamiliar with a language, such as Simple
Wikipedia (Kauchak, 2013), there would still be no guarantee that it would capture the
intricate needs of non-native English speakers. The experiments of Horn et al. (2014) and
Paetzold and Specia (2015) suggest so: although n-gram language model probabilities from
Simple Wikipedia can help in the creation of some of the most effective LS strategies to date,
they are outperformed by probabilities from larger corpora that do not contain simplified
content exclusively, such as the Google 1T corpus Evert (2010).

Recurrent Neural Networks have been successfully applied to language modelling in an
effort to address the limitations of n-gram models caused by the Markov and independence
assumptions, such as their ineffectiveness in capturing long-distance relationships between
words. As discussed in Sutskever et al. (2014), RNNs can receive as input sequences, such as
sentences or image pixels, learn from the entirety of the information contained in them, and
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either output a single label, in the case of “sequence-to-label” networks, or an entire sequence
of labels, in the case of “sequence-to-sequence” networks. The fact that RNNs can receive
an entire sequence as input has made it an extremely appealing for language modelling.

One of the first “Neural Language Models” (NLM), which is still very popular, was
introduced by Mikolov et al. (2010). It creates a language model by training an RNN that
learns how to predict the next word to appear after an input sequence of words. In simpler
terms, their RNN learns to answer the question “Which word comes next in this incomplete
sentence?”, which makes it a sequence-to-label network. The architecture used in their
approach is illustrated in Figure 4.1, which was extracted directly from Mikolov et al. (2010).

Fig. 4.1 Neural Network architecture for a language model

In Figure 4.1, t represents a time-step, and t−1 the time-step that came before it. In their
architecture, the input layer receives a one-hot representation of the word present at a certain
position in the input sequence. In this context, a one-hot representation is a sparse vector
with the same size as the vocabulary of the text over which the network is to be trained. All
its values are 0 except in the position that represents a given word, which has value 1. The
context layer, on the other hand, represents the output produced by a series of hidden layers
for a certain time-step. Finally, the output layer provides the probability of each word in the
vocabulary being the next one to follow. In order to calculate probability P using this model,
one can simply retrieve the highest probability observed in the output layer. Notice that, in
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order to propagate information through time, the context layer is concatenated to the input
layer after each time-step. In other words, the prediction made in time-step t uses as input
the output of the hidden layer in time-step t−1. The advantages of using this approach as
opposed to traditional n-gram models for LS come primarily because of two factors:

1. It does not rely on either the Markov or the independence assumptions.

2. Its training is an entirely parametrised learning procedure.

Factor number one allows the model to disregard the need to calculate the likelihood of
an arbitrarily sized sequence of words as the product of the likelihood of smaller preceding n-
grams, which consequently allows it to capture long-distance dependencies more effectively
(Arisoy et al., 2012). This is very important for LS because often times it is only possible
to determine which word best fits a context after assessing the entirety of the sentence in
question. Factor number two even more important. In a parametrised learning process, one
can maximise parameter values based on a validation corpus. This means that, unlike n-gram
models, Neural Language Models allow for parameters to be selected so that they maximise
the probabilities of sentences that represent the needs of a target audience.

With our language modelling strategy selected, we can formalise a joint Lexical Simplifi-
cation strategy that targets the needs of non-native English speakers. To joint model LS, we
first train a Neural Language Model through the following steps:

1. Acquire a large training corpus of text.

2. Acquire a validation corpus containing sentences that are generally understandable by
non-native English speakers.

3. Train an RNN over the training corpus, maximising parameter values over the valida-
tion dataset until convergence.

Once the RNN is trained, one can then move on to simplification. Given a target complex
word wt in a sentence S and a vocabulary V , perform the following steps:

1. For each candidate in c ∈V , create a new version of S by replacing wt with c.

2. Calculate the probability P(S) for all c ∈V .

3. Rank the candidates according to P.

4. Replace wt with the c that has produced the highest probability P.

Notice that, using this strategy, we discard the need for any explicit generation or selection
steps, and instead model the entire LS task as a ranking problem. In the Sections that follow,
we describe the various experiments conducted with our novel approach to LS.
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4.2 Experimental Settings

In our experiments, we compare the performance of our approach under various distinct
settings with other consolidated LS approaches in literature.

4.2.1 Validation Corpora

We train three Neural Language Models for our strategy, each with one of the following
validation corpora:

• LexMTurk: The LS evaluation dataset introduced by Horn et al. (2014). Each instance
in LexMTurk is composed of a sentence, a target complex word, and simpler candidate
substitutions suggested by English speakers from the U.S. In order to create a validation
corpus from LexMTurk, we transform its instances into a series of sentences. For each
instance, we create one sentence for each distinct candidate substitution suggested by
the annotators by replacing the target complex word with it. The LexMTurk validation
corpus is composed of 6,697 sentences.

• SSEval: The Substitution Selection datasets produced in the user study of Section 3.2.
The SSEval dataset is composed of the concatenation of all training and testing in-
stances in which the candidate word being judged was deemed both grammatical and
meaning preserving by at least one of the annotators. Given that the SSEval instances
are composed of a sentence, an original target complex word and candidate substitution,
we create validation sentences by replacing the target word with the substitution in
each instance. The resulting corpus is composed of 9,303 sentences.

• All: Composed by the concatenation of both aforementioned validation corpora. It
contains 16,000 sentences.

By using these different validation corpora, we hope to be able to outline if maximising
parameters over SSEval, which was created based on the needs of non-native speakers of
English, offers any advantages over using LexMTurk, which is a more general LS dataset.
All four NLMs use the same training corpus, which is composed of texts extracted from the
UMBC webbase1, News Crawl2, and the SUBTLEX (Brysbaert and New, 2009b) corpora, as
well as Wikipedia and Simple Wikipedia (Kauchak, 2013). The vocabulary used is composed
of all words which appear at least 10 times in the training corpus.

1http://ebiquity.umbc.edu/resource/html/id/351
2http://www.statmt.org/wmt11/translation-task.html
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4.2.2 Architecture

We determine the architecture of the NLMs through 5-fold cross validation over each valida-
tion corpus. The metric used is the average perplexity (Brown et al., 1992b) of all sentences
in the validation corpus. The perplexity of a sentence w1, ...,wm is calculated as described
in Equation 4.2, where P(w1, ...,wm) is the probability of sentence w1, ...,wm estimated by a
given NLM.

perplexity(w1, ...,wm) =
m

√
1

P(w1, ...,wm)
(4.2)

The NLM architecture parameters optimised are:

• Number of layers: From 1 to 5.

• Size of layers: From 64 to 256 in intervals of 64.

• Learning rate: From 0.1 to 0.00001 in intervals of one order of magnitude.

4.2.3 Pipelined Approaches

We compare our approach to three other simplifiers from literature:

• Devlin (Devlin and Tait, 1998): The first lexical simplifier Devlin and Tait (1998). Its
approaches to each step of the pipeline are:

– Substitution Generation: Extracts synonyms from WordNet.

– Substitution Selection: Does not perform Substitution Selection.

– Substitution Ranking: Uses frequencies from the Brown corpus Francis and
Kucera (1979).

• Kauchak (Horn et al., 2014): One of the most effective supervised lexical simplifiers
in literature. Its approaches to each step of the pipeline are:

– Substitution Generation: Extracts complex-to-simple word correspondences
from word alignments between Wikipedia and Simple Wikipedia.

– Substitution Selection: Does not perform Substitution Selection.

– Substitution Ranking: Learns a ranking model using Support Vector Machines
Joachims (2002) from the examples in the LexMTurk dataset.
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For training, we use the same parameters and resources used in the experiments of
Section 3.2.5.

• Glavas (Glavaš and Štajner, 2015): An entirely unsupervised system that performs
similarly to the Horn simplifier. Its approaches to each step of the pipeline are:

– Substitution Generation: Extracts the 10 words closest to a given target com-
plex word in a word embeddings model.

– Substitution Selection: Does not perform Substitution Selection.

– Substitution Ranking: Ranks candidates using the average ranking obtained for
various semantic and collocational metrics.

For training, we use the same parameters and resources used in the experiment of
Section 3.2.5. Notice that, like our NLM approach, none of the aforementioned
strategies perform a Complex Word Identification step.

4.2.4 Datasets

To evaluate our simplifier, we use the NNSeval dataset, described in Section 8.4. This is
the evaluation dataset created for the benchmarking experiment described in Chapter 8.5,
and accounts for the needs of non-native English speakers. It contains 239 instances, each
composed by a sentence, a word deemed complex by a non-native English speaker, and a set
of gold-standard candidate replacements.

4.2.5 Evaluation Metrics

The metrics used are the ones introduced by Horn et al. (2014), which are:

• Precision: The proportion of instances in which the target word was replaced with any
of the gold-standard candidates in the dataset, including the target word itself.

• Accuracy: The proportion of instances in which the target word was replaced with
any of the gold-standard candidates in the dataset, except for the target word itself.

• Changed Proportion: The proportion of times in which the target word was replaced
with any different word.



4.3 Joint vs. Pipelined 99

4.3 Joint vs. Pipelined

In our first experiment, we compare how our joint NLMs fair against consolidated pipelined
approaches. The performance scores obtained by them are illustrated in Table 4.1.

Simplifier Precision Accuracy Changed Proportion
Devlin 0.335 0.117 0.782
Kauchak 0.364 0.172 0.808
Glavas 0.590 0.163 0.573
NLM(LexMTurk) 0.016 0.013 0.996
NLM(SSEval) 0.017 0.014 0.996
NLM(All) 0.017 0.013 0.996

Table 4.1 Joint simplification versus pipelined LS performance comparison

The results suggest that joint models with NLMs are not a suitable approach to LS: under
all configurations, our NLMs were able to correctly simplify only 1.3% of the complex
words in NNSeval. Through F-tests, we found no statistically significant difference (p>0.05)
between the output produced by the different configurations of NLMs, which reveals that it
cannot effectively capture the needs of a target audience during training.

Inspecting the output, we were able to get a better insight on what the biggest limitations
of our approach are. The main reason for its poor performance seems to be the large amount
of spurious candidates that produce high probabilities P. Consider, for example, the instance
in NNSeval in which “tender” must be simplified in the sentence “The grilled octopus was
very tender.”. The highest ranking candidates produced by NLM (All) for this problem are
“good”, “important”, “nice”, “dangerous” and “smart”. One can notice that, although all of
these candidates fit the sentence grammaticaly, they do not capture the meaning of “tender”
accurately enough. We hypothesise this is caused by two main factors:

1. In order to avoid modelling Substitution Generation explicitly, our approach considers
all words in a very large vocabulary as a possible candidate, and hence allows for too
many spurious words to be ranked higher than other more useful alternatives.

2. By simply replacing the target complex word with each candidate, our approach entirely
discards any type of information pertaining to the semantic relationship between them,
hence making it impossible, in some cases, to correctly determine which candidates
would capture the meaning convened by the target.

Interestingly, both of these limitations can be addressed if we disregard our intent to joint
model the entire LS process and instead adapt our approach to fit the traditional pipeline. They
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could, for example, be solved if we were to pair our NLMs with a Substitution Generation
approach. The generator would significantly reduce the amount of spurious candidates to be
considered, which would consequently allow for our models to focus strictly in the task of
Substitution Ranking. The inverse could also help. Our models could serve as a Substitution
Generation approach by selecting, for example, the 10 highest ranked candidates, which
could then be re-ranked by a context-aware Substitution Ranking approach that takes into
consideration the relationship between the candidates and the target word. The following
experiments test these hypotheses.

4.4 Neural Networks for Substitution Ranking

In our second experiment, we test the hypothesis that if we take our NLMs as an approach
to Substitution Ranking and pair it with a Substitution Generation approach, we improve
its performance. To do so, instead of considering all words in the vocabulary to be a
possible candidate, we use the ones produced by each of the generators used by the baseline
simplifiers.

The results illustrated in Table 4.2 show the simplification performance scores from our
previous experiment, along with the scores for 12 other systems. Each of these systems
is composed by the generation approach used by either the Devlin, Kauchak or Glavas
simplifier, and one of our NLMs.

Simplifier Precision Accuracy Changed Proportion
Devlin 0.335 0.117 0.782
Kauchak 0.364 0.172 0.808
Glavas 0.590 0.163 0.573
NLM(LexMTurk) 0.017 0.013 0.996
NLM(SSEval) 0.017 0.013 0.996
NLM(All) 0.017 0.013 0.996
Devlin+NLM(LexMTurk) 0.314 0.130 0.816
Devlin+NLM(SSEval) 0.314 0.130 0.816
Devlin+NLM(All) 0.314 0.130 0.816
Kauchak+NLM(LexMTurk) 0.372 0.146 0.774
Kauchak+NLM(SSEval) 0.360 0.146 0.774
Kauchak+NLM(All) 0.372 0.146 0.774
Glavas+NLM(LexMTurk) 0.301 0.126 0.824
Glavas+NLM(SSEval) 0.293 0.130 0.824
Glavas+NLM(All) 0.301 0.126 0.824

Table 4.2 Performance of Neural Language Models as Substitution Ranking approaches
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Even though F-tests did not find any statistically significant difference (p>0.05) between
the output produced by different validation corpora, the results agree with our hypothesis:
combining NLMs with Substitution Generation strategies makes them a much more reliable
approach to LS. Nonetheless, our models were only able to outperform the much simpler
frequency-based ranker used by the Devlin simplifier in Accuracy, and have lead to noticeable
losses in performance in other settings.

4.5 Neural Networks for Substitution Generation

In our final experiment, we test the hypothesis that if we take our NLMs as an approach
to Substitution Generation and pair it with a different Substitution Ranking approach, we
improve its performance. To do so, instead of using our models to select only the word in the
vocabulary that yields the highest probability P, we use them to select the 10 best candidates,
then forward them to the rankers used by our baseline simplifiers for re-ranking.

Simplifier Precision Accuracy Changed Proportion
Devlin 0.335 0.117 0.782
Kauchak 0.364 0.172 0.808
Glavas 0.590 0.163 0.573
NLM(LexMTurk) 0.017 0.013 0.996
NLM(NNSeval) 0.017 0.013 0.996
NLM(SSEval) 0.017 0.013 0.996
NLM(All) 0.017 0.013 0.996
NLM(LexMTurk)+Devlin 0.000 0.000 1.000
NLM(NNSeval)+Devlin 0.000 0.000 1.000
NLM(SSEval)+Devlin 0.000 0.000 1.000
NLM(All)+Devlin 0.000 0.000 1.000
NLM(LexMTurk)+Kauchak 0.046 0.013 0.967
NLM(NNSeval)+Kauchak 0.050 0.013 0.962
NLM(SSEval)+Kauchak 0.046 0.013 0.967
NLM(All)+Kauchak 0.046 0.013 0.967
NLM(LexMTurk)+Glavas 0.172 0.008 0.837
NLM(NNSeval)+Glavas 0.180 0.008 0.828
NLM(SSEval)+Glavas 0.172 0.008 0.837
NLM(All)+Glavas 0.172 0.008 0.837

Table 4.3 Performance of Neural Language Models as Substitution Generation approaches

The results of Table 4.3 show the simplification performance scores from our first
experiment, along with the scores of 12 system combinations. Each of these systems is
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composed by our NLM generation approach and the Substitution Ranking strategy used by
either the Devlin, Kauchak or Glavas simplifier.

The results do not allow us to either conclusively confirm or refuse our hypothesis. By
pairing our generators with the Kauchak and Glavas rankers, we have managed to obtain a
small, yet statistically significant (p<0.05), improvement in Precision, but not Accuracy.
In contrast, the frequency-based Devlin ranker has led to 0% Precision and Accuracy,
given that it does not account for any type of context-related information during ranking.
Overall, replacing the baseline simplifiers’ generators with our NLM alternatives has led
to considerable losses in performance with respect to all metrics used. As in our previous
experiment, F-tests did not find any statistically significant difference (p>0.05) between the
validation corpora used.

4.6 Conclusions

In this Chapter, we introduced a Lexical Simplification approach that jointly models the
Substitution Generation, Selection and Ranking steps in the typical LS pipeline. Our joint
LS approach exploits Neural Language Models, which predict the probability of a sequence
of words without the need for decomposing it into n-grams.

In order to discard the need of modelling Substitution Generation and Selection explicitly,
we simply consider all words in the vocabulary to be a possible candidate, then rank them
according to the probability they yield when replacing a complex word in the sentence it was
found. This strategy allows us to address Lexical Simplification as a ranking problem. By
using Neural Language Models instead of n-gram models, we are also able to incorporate
validation data that represents the needs of a target audience during training.

Through experimentation, however, we found that NLMs do not work well for this
problem in practice. Our approach managed to correctly simplify complex words only 1.3%
of the time, which is over 13 times less than the best performing pipelined simplifier. It was
only by combining our approach with the traditional LS pipeline that we have managed to
improve its performance. By pairing NLMs with the Substitution Generation approaches
used by the baseline simplifiers, we managed to reduce the amount of spurious candidates
considered during ranking, and hence create a better simplifier. We found no statistically
significant difference between NLM variations validated over different corpora, which
suggests that, in the context of LS, these models cannot be effectively customised to the
needs of a target audience during training.

Overall, we found no evidence that joint modelling various steps in the LS pipeline with
NLMs is a sensible alternative to addressing each step of the pipeline individually. Unlike
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what was achieved already in many other Natural Language Processing tasks, we have yet to
find an effective way of employing RNNs in LS, specially when it comes to joint modelling
multiple steps in the pipeline. In what follows, we present our efforts in creating an effective
pipelined approach to Lexical Simplification.





Chapter 5

Substitution Generation with Word
Embeddings

Substitution Generation (SG) is the task of, given a set of n target complex words {t1, ..., tn},
generating a set of candidate substitutions Ci for each target word ti, such that every candidate
c j in Ci is a word, multi-word expression or phrase that can replace ti in one of the possible
contexts in which it may appear. In a typical pipelined LS approach, a given candidate ci

does not need to be able to replace ti in every possible context, nor it needs to be simpler than
ti, given that such judgments are to be performed by the steps of Substitution Selection and
Ranking. SG can also be performed in context-aware fashion. The generator can produce
different candidates for “roll” as a verb and as a noun, for example.

The main goal of SG is to facilitate the process of Substitution Selection by discarding
words and expressions that could not possibly replace a given complex word in any context.
In Table 5.1 we present some examples of valid candidate substitutions extracted from
WordNet’s synonyms for various words.

Target Word Generated Candidates
yield concede, grant, proceeds, production, payoff, succumb
pitch flip, toss, sky, tar, delivery, slake, rant, lurch
roll revolve, hustle, pluck, bun, peal, scroll, cast, coil
treat dainty, delicacy, goody, handle, process, cover, plow

Table 5.1 Examples of generated candidate substitutions from WordNet

One can notice that all target words in Table 5.1 are highly ambiguous and can assume
various grammatical forms, such as noun or verb, depending on the context. Words such
as these often have several distinct senses and synonyms, and would consequently require
a Substitution Selection approach to be very effective to prevent an LS system from per-
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forming erroneous substitutions. Such observation highlights the importance of Substitution
Generation in LS: even though fetching WordNet synonyms is a simple strategy, it would
still require much less effort for a selector to choose the appropriate substitutions from the
candidates in Table 5.1 than from the entirety of the English vocabulary.

As discussed in Chapter 2, most SG approaches extract candidate substitutions from
linguistic databases, such as WordNet, BabelNet1 and UMLS (Bodenreider, 2004), or from
corpora composed by documents in their original forms aligned to simpler versions, such
as Wikipedia and Simple Wikipedia (Kauchak, 2013). Such approaches rely, however, on
annotated data which is either scarce or non-existent for various languages. Although in
recent years there have been several efforts to create linguistic databases for languages other
than English, they are not numerous and still very expensive to produce.

In order to address the limitations of SG strategies in literature, we propose a novel
approach to the task, which generates candidate substitutions without using either linguistic
databases or parallel data. In our experiments, we compare the performance of our approach
to that of numerous others in not only SG alone (Section 5.6), but also in practice by pairing
it with various Substitution Selection and Ranking strategies in order to create a complete LS
system (Section 5.7).

5.1 Substitution Generation with Word Embeddings

In Natural Language Processing, one of the main reasons why Neural Networks have become
so frequently used is the popularisation of word embedding models, in which words are
represented as numerical vectors (or “word embeddings”). Such models can be trained in
various ways, and usually require only large corpora of text for training. Modern word
embedding models are also very flexible, and allow for the dimensionality of the numerical
vectors that represents words to be selected during training (Mikolov et al., 2013a).

Strategies that exploit word embedding models have been shown very effective in tasks
such as Machine Translation (Zou et al., 2013), Sentiment Analysis (Glorot et al., 2011),
Question Answering (Iyyer et al., 2014) and many others. Although the first mentions of
such models date back to 1986 (Rumelhart et al., 1988), researchers have only been able to
successfully exploit their use in the aforementioned tasks by employing the models recently
proposed by Mikolov et al. (2013a). They are:

• Continuous Bag-of-Words (CBOW): Attempts to estimate the best numerical vector
for each and every word in a vocabulary V , based on the words that surround them in

1http://babelnet.org
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the various contexts in the training corpus. The CBOW model is trained with the use of
a Neural Network composed of three layers: the input, the hidden, and the output layer.
Figure 5.1, extracted from (Rong, 2014), shows the architecture of a CBOW Neural
Network in its simplest form, in which numerical vectors are estimated without taking
into account the different contexts in which a given word is inserted. The components
in Figure 5.1 can be described as such:

Fig. 5.1 Neural Network used in the training of a CBOW model

– V : The size of the vocabulary present in the training corpus.

– N: The size of the embedding vectors.

– x: A one-hot vector representation of size V of a given input word.

– W: The matrix between the input and hidden layers that transforms the one-hot x
vector of an input word into its numerical vector representation h of size N.

– h: The numerical vector produced from the product between x and W.

– W′: The matrix between the hidden and output layers that transforms the numeri-
cal vector representation h of an input word back into an output vector of size
V .

– y: The output vector produced from the product between h and W′.

In order for the Neural Network to be able to produce meaningful numerical vectors h,
the values in W and W′ are updated iteratively with respect to a loss function. During
each iteration, the values in W are used to produce numerical vectors, while the values
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of W′ are used in the scoring function of Equation 5.1, which determines how the
weights of W and W′ are going to be updated.

u j = v′w j

T ·h (5.1)

In Equation 5.1, u j is the score of word w j, and v′w j
is the jth column of matrix

W′. Using this scoring function, one can produce the loss function described in
Equation 5.2, in which j∗ is the gold-standard output word expected.

E =−u j∗+ log
V

∑
j′=1

exp
(
u j′

)
(5.2)

By deriving the value of E with respect to u j, one is able to derive the update functions
for W′ and W, and hence obtain a Neural Network that produces meaningful numerical
vector representations for words. One can notice, however, that this architecture does
not take into account the context of the words in the training corpus. To accommo-
date the words’ context, Mikolov et al. (2013a) proposed the enhanced architecture
illustrated in Figure 5.2, extracted from (Rong, 2014).

In this enhanced architecture, the input layer contains multiple nodes that share the
same matrix W. To estimate the numerical vector h, the Neural Net averages the
vectors resulting from the product between the various one-hot vectors xi and matrix
W.

• Continuous Skip-Gram (Skip-Gram): Like the CBOW model, it also attempts to
estimate the best numerical vector for each and every word in a vocabulary V , based
on the various contexts in which they appear. The Skip-Gram model, however, uses
a “reversed” Neural Network architecture to estimate the numerical vectors: a word’s
context is incorporated in the output, as opposed to the input layer. During training,
while the Neural Network of the CBOW model is updated with respect to how proficient
it is in predicting a word based on its context, the Neural Network used by the Skip-
Gram model is updated with respect to its proficiency in predicting a word’s context
based on the word itself. Figure 5.3, extracted from (Rong, 2014), shows the Neural
Network architecture used in the training of a Skip-Gram model.

In Figure 5.3, each vector yi is a vector of dimension V that corresponds to a given
context word. Notice that all y vectors share the same matrix W′. In this setup, the
scoring function u is calculated through the same equation used for the CBOW model,
but the loss function, which described in Equation 5.3, is calculated differently. In
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Fig. 5.2 Neural Network used in the training of a context-aware CBOW model
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Fig. 5.3 Neural Network used in the training of the Skip-Gram model
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Equation 5.3, C is the number of context words to be predicted at the output layer, and
j∗c is the index of the actual output word expected for the cth position of the input’s
context.

E =−
C

∑
c=1

u j∗c +C · log
V

∑
j′=1

exp
(
u j′

)
(5.3)

Perhaps the most remarkable property of word embeddings are the complex relations
between words that they are able to capture. Mikolov et al. (2013b) shows that word
embeddings are an effective approach to problems that require analogical reasoning: if one
were to take the numerical vector that represents the word “Berlin”, deducted the value of
“Germany” and added the value of “France”, one would find that the word whose vector is
closest to the resulting numerical vector is “Paris”. Another example (introduced by Mikolov
et al. (2013c)) of analogical reasoning that can be inferred from word embeddings refers
to gender: if one were to deduct the numerical vector that represents “man” from “king”,
and then add to it the vector of “woman”, the resulting vector would be closest to that of
“queen”. Such examples serve as evidence that word embeddings are a reliable source for
the extraction of words with related meaning, and hence show that such models can be an
interesting resource to be used in Substitution Generation.

In order to explore the use of word embeddings in SG, we propose a new algorithm
for the extraction of candidate substitutions. Our approach is very simple, and requires
only a stemmer and a word embeddings model trained over large corpora. Given a set of
target words {t1, t2...tn−1, tn}, where each ti pertains to a sentence Si ∈ {S1,S2...Sn−1,Sn},
two selection limits l and m, and a model M, such that M(ti) returns the embedding vector of
ti, our algorithm extracts m substitution candidates for each target word ti by performing the
following steps:

1. For each target word ti ∈ {t1, t2...tn−1, tn}, extract the l candidates c j in model M which
have the shortest cosine distances between M(ti) and M

(
c j
)
.

2. Discard any candidate c j that has the same stem as ti. Discard any candidate c j of
which the stem is a sub-string of ti. Discard any candidate c j which is a sub-string of ti.
Discard any candidate c j which is a super-string of ti. Discard any candidate c j which
is a super-string of the stem of ti.

3. For the remaining candidates of each target word ti ∈ {t1, t2...tn−1, tn}, extract the m
candidates c j which have the shortest cosine distances between M(ti) and M

(
c j
)
.
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Notice that, while l limits the amount of words in the vocabulary that will be considered
for filtering, m determines how many candidates will be retrieved for each target word. The
first step of this algorithm avoids the need to stem all words in the vocabulary during the
second step, which could be very time consuming.

The algorithm above explores the hypothesis that words which have similar numeri-
cal vectors have a similar meaning, and hence may be synonyms, hypernyms, hyponyms,
antonyms or related in other ways (e.g. “cat” and “dog”, “black” and “white”, etc). The step
2 applies filters that attempt to avoid for redundant substitutions to be generated.

Typical word embedding models have, nevertheless, a limitation that may compromise
their application in SG: they do not account for the ambiguity of words. In such models,
every possible meaning of a word is represented by a single numerical vector, which in turn
makes it impossible for our algorithm to predict neither which of a target word’s possible
interpretations the generated candidates will refer to. To address this issue, we propose a new
strategy to enhance word embedding models for Lexical Simplification. We describe our
strategy in detail in the following Section.

5.2 Context-Aware Word Embedding Models

In order for a word embeddings model M to offer support for word ambiguity, it would
have to represent every single possible sense si of a target word t with an unique numerical
vector M(t,si). Perhaps the most minimalistic way to learn such a model would be, instead
of re-thinking the entirety of the mathematical formulation behind word embedding models,
to simply disambiguate each and every word in every sentence of the training corpus, and
then annotate them with their respective meanings. Table 5.2 illustrates some examples of
sentences of which the ambiguous words are annotated with synset identifiers from WordNet.

Its birthstone is_Synset(’be.v.12’) the diamond_Synset(’ball_field.n.01’).

It has_Synset(’have.v.11’) 31 days_Synset(’day.n.02’).

August is_Synset(’be.v.12’) named_Synset(’diagnose.v.01’) for Augustus Caesar.

They can rollback_Synset(’rollback.n.02’) changes_Synset(’change.n.08’).

What did_Synset(’do.v.08’) the artist_Synset(’artist.n.01’) value_Synset(’value.n.02’)?
Table 5.2 Sentences annotated with synset identifiers
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By training a model over the corpus produced by this process, one would learn an
embeddings model that distinguishes between all senses of a given word. Such strategy,
however, works under two very strong assumptions:

1. The number of senses of all words in a vocabulary can be reliably quantified.

2. The word sense disambiguator can proficiently distinguish between the senses of all
words in every sentence of the training corpus.

However, recent contributions in literature provide evidence that such assumptions are not
true. The statistics made available in WordNet’s website2 state that WordNet, which is one
of the largest ontologies currently available for the English language, have sense annotations
for only 155,287 out of the 291,500 words present in the Oxford Dictionary3. The results
reported in the work of Basile et al. (2014), which introduces a state-of-the-art approach
for Word Sense Disambiguation, show that even the most effective disambiguators make
mistakes almost 30% of the time.

Given the limitations of both disambiguators and the data over which they are trained,
we suggest a more robust strategy for the challenge of creating context-aware embedding
models. Our strategy addresses the aforementioned limitations by:

• Using Part-of-Speech tags instead of senses: Although they are not as informative
as senses in word disambiguation, POS tags offer some insight on the meaning of a
word: highly ambiguous words can often assume various grammatical roles, such as
that of a noun or a verb, depending on the context in which they are inserted. POS
tags are also much less sparse than word senses: while WordNet has a total of 117,659
registered word senses, the Penn Treebank tagset is composed of only 36 tags (Marcus
et al., 1993).

• Replacing disambiguators with Part-of-Speech taggers: While state-of-the-art dis-
ambiguators can achieve no more than 72% of accuracy in most datasets, the perfor-
mance of modern POS taggers is much more impressive, reaching upwards of 97%
accuracy in consolidated datasets (Manning, 2011).

By employing these two compromises, we impart more feasibility to our strategy, but
annotating the words in the training corpus with raw POS tags in Treebank format would also
impart some unnecessary sparsity in our model. Consider, for example, the words “pitching”
and “pitched” present in the sentences “The player is pitching fast balls at over 40mph”

2http://wordnet.princeton.edu/wordnet/man/wnstats.7WN.html
3http://public.oed.com/history-of-the-oed/dictionary-facts
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and “The fastest fast ball ever pitched in history reached 50mph”. Although “pitching” and
“pitched” are both verbs and share the same meaning, they would likely assume two distinct
POS tags if the aforementioned sentences were to be tagged: that of a verb in the gerund
(VBG), and the past tense (VBD). The same phenomena may also occur between nouns
in singular (NN) and plural (NNS) forms, adjectives and adverbs in their original (JJ/RB),
superlative (JJR/RBR) and comparative (JJS/RBS) forms, and many other grammatical
classes.

To prevent our model from recognising two word inflections with the same meaning
as two entirely separate entities, we use universal tags. In universal tags, all nouns, verbs,
adjectives, and adverbs are represented by the tags “N”, “V”, “A” and “R”, respectively.
Other words, such as connectives and prepositions receive the same tags as they would in the
Treebank format. Once the universal tags have been produced, one can simply concatenate
the words in the training corpus with their respective tags. Table 5.3 shows some examples
of sentences annotated with universal tags.

Its|||P birthstone|||N is|||V the|||DT diamond|||N .|||.

It|||P has|||V 31|||CD days|||N .|||.

August|||N is|||V named|||V for|||IN Augustus|||N Caesar|||N .|||.

They|||P can|||MD rollback|||V changes|||N .|||.

What|||WP did|||V the|||DT artist|||N value|||N ?|||.
Table 5.3 Sentences annotated with generalised tags

Our new model offers another advantage: the POS tags allow us to augment our Sub-
stitution Generation algorithm. By removing all candidates that do not share the same tag
as the target word, we prevent our generator from producing certain ungrammatical and/or
incoherent substitutions.

Given a set of target words {t1, t2...tn−1, tn}, where each ti pertains to a sentence Si {S1,S2...Sn−1,Sn},
selection limits l and m, and a context-aware embedding model M, the steps of our SG algo-
rithm are:

1. For each target word ti ∈ {t1, t2...tn−1, tn}, retrieve universal POS tag Pi by tagging
sentence Si and extracting the POS tag pertaining to ti.
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2. For each target word ti ∈{t1, t2...tn−1, tn} and universal POS tags Pi ∈{P1,P2...Pn−1,Pn},
extract the l candidates c j |||Pj from model M which have the shortest cosine distances
between M(ti|||Pi) and M

(
c j|||Pj

)
.

3. Discard any candidate c j that has the same stem as ti. Discard any candidate c j of
which the stem is a sub-string of ti. Discard any candidate c j which is a sub-string of ti.
Discard any candidate c j which is a super-string of ti. Discard any candidate c j which
is a super-string of the stem of ti. Discard any candidate c j of which Pj is not identical
to Pi.

4. For the remaining candidates of each target word ti ∈ {t1, t2...tn−1, tn}, extract the m can-
didates c j which have the shortest cosine distances between M(ti|||Pi) and M

(
c j|||Pj

)
.

5.3 Retrofitting Context-Aware Embedding Models

Mikolov et al. (2013c) shows that one of the linguistic regularities captured by embedding
models is synonymy. They noticed that words which have small cosine distances between
them are more likely to be equivalent in meaning, and could hence be replaceable in some
contexts. They also noticed, however, that antonyms of words are just as likely to have similar
embedding vectors. Table 5.4 illustrates this phenomenon. It shows the five words with the
highest cosine similarity to “good”, “large”, “thin”, “short” and “blonde”, as determined
by an embeddings model trained over 7 billion words, with the CBOW architecture and
500-dimension vectors.

Word Most Similar
good bad, decent, really, nice, better
large small, larger, smaller, sizeable, sizable
thin thick, slender, thinner, thicker, dense
short shorter, long, shortened, shortest, shorten

blonde blond, brunette, dark-haired, blondes, raven-haired
Table 5.4 Most similar words from traditional embedding models

It can be noticed that the antonym of each word is often the most similar in the feature
space. This happens because although antonyms have opposite meanings, the contexts in
which they are found are often very similar. Since both the CBOW and Skip-Gram models
estimate word vectors with respect to the contexts in which they appear in texts, it is expected
that these words will indeed have similar embeddings.
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This phenomenon can considerably reduce the potential of our SG strategy, since it is
very likely that one or more antonyms of a given complex word will be among the generated
candidates. Given that the most successful Substitution Selection (Paetzold and Specia,
2015) and Substitution Ranking (Glavaš and Štajner, 2015; Paetzold, 2015b) strategies all
rely on n-gram frequencies and embedding cosine distances, allowing for antonyms to be
among generated candidates could considerably increase the occurrence of incoherent word
replacements.

In order to address this limitation, Faruqui et al. (2015) proposes an algorithm that allows
embedding models to be retrofitted over manually created thesauri. Their algorithm modifies
the embeddings of words so that they have shorter Euclidean distances to other words with
which they share some semantic relation of interest, such as synonymy, hypernymy and
hyponymy.

To create such an algorithm, they first take an embeddings model as a matrix Q̂, where
each column q̂i ∈ Rd is a vector of size d that represents a word wi in a vocabulary V . In
sequence, given a graph (V,E), where each node

(
wi,w j

)
∈ E ⊆V ×V describes a semantic

relation between wi and w j, they establish an objective function Ψ to be minimised, which
illustrated in Equation 5.4.

Ψ(Q) =
n

∑
i=1

[
αi ∥qi− q̂i∥2

∑
(i, j)∈E

βi j
∥∥qi−q j

∥∥2

]
(5.4)

Algorithm 1 Embeddings Model Retrofitting

1: procedure RETROFIT(Q̂,E,niter)
2: Q← Q̂
3: for 0≤ k < niter do
4: for i ∈ Q do
5: related← j | (i, j)∈E
6: newvec← Q(i)∗∥related∥
7: for j ∈ related do
8: newvec← newvec+Q( j)
9: end for

10: Q(i)← newvec/ (2∗∥related∥)
11: end for
12: end for
13: return Q
14: end procedure
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In Equation 5.4, Q is an updated (or “retrofitted”) version of Q̂, and Ψ(Q) its loss. Taking
the derivative of Ψ with respect to qi, they arrive at the update function in Equation 5.5.

qi =
∑ j:(i, j)∈E βi jq j +αiq̂i

∑ j:(i, j)∈E βi j +αi
(5.5)

Finally, they translate the update function into Algorithm 1. Applying 100 iterations of
Algorithm 1 over the model from which the examples in Table 5.4 were extracted, using
the synonymy relations provided by WordNet, we obtain a retrofitted model that captures
synonymy more effectively. The five words which are closest to “good”, “large”, “thin”,
“short” and “blonde”, as determined by our retrofitted model, are presented in Table 5.5. One
can notice that, although the model is still incapable of perfectly capturing synonymy, most
antonyms now lie further apart from each other.

Word Most Similar
good goodness, beneficial, decent, salutary, honest
large small, huge, vast, sizeable, sizable
thin sparse, thick, slender, thinly, slim
short unawares, shortstop, long, shorter, suddenly

blonde blond, light-haired, dark-haired, blue-eyed, brown-haired
Table 5.5 Most similar words from retrofitted embedding models

In order for their algorithm to work, the words in model M must be in the same format as
the ones in thesaurus T . Consequently, if we were to perform retrofitting over context-aware
models, the words in both thesaurus and model would need to be annotated with the same set
of POS tags.

To create retrofitted context-aware models, we resort to WordNet. Each sense registered
in WordNet can be interpreted as an individual set of synonyms, and is annotated with one of
the following universal tags: noun (N), verb (V), adjective (A) or adverb (R), which are the
same as the universal tags for content words used by our context-aware models. This means
that, if a sense is annotated with the verb tag “V”, for example, all registered synonyms are
verbs or verbal expressions. To create a set of POS tag annotated synonym relations from
WordNet, we iterate through all registered words wi, and for each of its synonyms w j, we
create an entry

(
wi|||p,w j|||p

)
, where p is the POS tag of the sense under which wi and w j

are listed as synonyms. In Table 5.6 are shown some examples of entries.

Once the synonym entries have been produced, one can use Algorithm 1 to retrofit the
embeddings of any context-aware model, hence creating a retrofitted context-aware model.
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Word Synonyms
fawn|||V kowtow|||V, truckle|||V, grovel|||V, suck_up|||V
fawn|||N dun|||N, grayish_brown|||N, greyish_brown|||N
stern|||N tail_end|||N, buns|||N, hindquarters|||N, backside|||N
stern|||A exacting|||A, grim|||A, strict|||A, relentless|||A
travel|||V journey|||V, go|||V, locomote|||V, trip|||V
travel|||N travelling|||N, traveling|||N, change_of_location|||N

Table 5.6 POS-annotated lexicon entries

5.4 Experimental Settings

In this Section, we outline the resources and settings used in the experiments conducted with
our novel Substitution Generation approach, which employs retrofitted context-aware word
embeddings model. We compare our approach with various others, including the state-of-the-
art for the task, introduced by Horn et al. (2014). We also perform full pipeline experiments
by pairing our generator with various Substitution Selection and Ranking strategies. This
way, we evaluate its performance in practice.

5.4.1 Approaches

Substitution Generation

In our experiments, we evaluate the performance of our strategy in four ways: with a typical
word embeddings model (TEM), a typical retrofitted model (REM), a context-aware model
(CAEM), and a retrofitted context-aware model (RCAEM). All models were trained with the
word2vec toolkit4. The corpus used contains around 7 billion words, and is composed of all
texts extracted from the UMBC webbase, News Crawl, the SUBTLEX corpus, as well as
Wikipedia and Simple Wikipedia. The POS tags required for the training of the context-aware
model were produced through the use of the Stanford Parser (Klein and Manning, 2003).

We compare our strategy to the following generators:

• Devlin (Devlin and Tait, 1998): One of the most frequently used SG strategies, it
generates candidate substitutions by extracting all synonyms available in WordNet 3.0
for a target word.

• Biran (Biran et al., 2011): Generates candidate substitutions by filtering the cartesian
product between the words found in Wikipedia articles and the ones found in the Simple
Wikipedia. Their approach first produces all complex-to-simple word pairs between

4https://code.google.com/p/word2vec
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the Wikipedia and Simple Wikipedia vocabularies, and then applies the following
filtering steps over them:

1. Remove all pairs whose vectors in a co-occurrence model have a cosine distance
larger than 0.1.

2. Remove all pairs whose words have the same lemma.

3. Remove all pairs where one word is a prefix of the other and its suffix is either
“s”, “es”, “ed”, “ly”, “er” or “ing”.

4. Remove all pairs of which the words are not listed in WordNet as either synonyms
or hypernyms.

5. Estimate the complexity of the words in each pair, and then remove all pairs
in which the word from Simple Wikipedia is more complex than the one from
Wikipedia.

For this approach, we have trained a word co-occurrence model using the same settings
used by Biran et al. (2011). The corpora over which the model was trained are the same
used in the training of our word embedding models. The function used to determine
the complexity of words is also the same one employed by Biran et al. (2011), which
is illustrated in Equation 5.6, where F(w,C) is the frequency of word w in corpus C,
and ∥w∥ the length of candidate w.

M(w) =
F(w,Complex)
F(w,Simple)

×∥w∥ (5.6)

The “Complex” and “Simple” corpora used by them are Wikipedia and Simple
Wikipedia (Kauchak and Barzilay, 2006).

• Yamamoto (Kajiwara et al., 2013): Produces candidate substitutions by querying
dictionaries for target words, retrieving example and/or definition sentences, and then
extracting any words that share the same POS tag as the target word. For this approach,
we use the Merriam Dictionary and Thesaurus API 5. To tag the dictionary examples
and definitions, we use the Stanford Parser.

• Kauchak (Horn et al., 2014): Generates candidate substitutions from complex-to-
simple parallel corpora. Their approach first produces the word alignments from a
parallel corpus of sentences extracted from Wikipedia and Simple Wikipedia. It then

5http://www.merriam-webster.com
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produces a preliminary set of complex-to-simple correspondences by extracting any
pairs of aligned content words. Finally, the correspondences are filtered through the
following steps:

1. All pairs which do not share the same POS tag are removed.

2. All pairs in which the word from Wikipedia is a stop word are removed.

3. All pairs in which at least one of the words is a proper noun are removed.

The parallel corpus used is the one provided by Kauchak (2013), composed of 150,569
complex-to-simple parallel sentences from Wikipedia and Simple Wikipedia, parsed
by the Stanford Parser (Klein and Manning, 2003).

All approaches were replicated with the use of LEXenstein (Paetzold and Specia, 2015).
For a more detailed description of the aforementioned approaches, please refer to the literature
survey of Chapter 2.

Substitution Selection

In our full pipeline experiments, we pair the aforementioned generators with several Substi-
tution Selection approaches. They are:

• First Sense (First): Assumes that the sense of a given target word is the first one
registered in WordNet, and selects as suitable candidates only those words which are
listed as synonyms for such sense.

• Random Sense (Random): Selects a random sense from WordNet for a given target
word, and selects as suitable candidates only those words which are listed as synonyms
for such sense.

• Lesk Algorithm (Lesk): Uses the algorithm introduced by Lesk (1986), frequently
referred to in literature as the “Lesk algorithm”, to select the word sense in WordNet
that best describes a given target word with respect to its context. It does so by selecting
the sense with the highest number of overlapping words between the various examples
and definitions registered in WordNet for each sense and context of the target word
itself.

• Path Similarity (Path): Uses the algorithm introduced by Leacock and Chodorow
(1998), which consists on a more sophisticated interpretation of the Lesk algorithm.
It takes into account not only the overlap count between a target words’ context and
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sense examples in WordNet, but also the semantic similarity between the target word
and the words in such examples. The semantic similarity between two words a and b
is calculated as the distance between them in the WordNet’s taxonomy.

• Word Clustering (Belder): Uses a strategy similar to the one presented by De Belder
and Moens (2010), in which candidate substitutions are filtered with respect to the
classes learned by a latent-variable language model. In our interpretation, we use the
algorithm proposed by Brown et al. (1992a), which learns word clusters from large
corpora of text. Once the word clusters have been learned, it then finds the cluster in
which a given target word is present, and filters any candidates that are not included in
said cluster. The corpus used during training is the same one used in the training of the
word embedding models used by our SG approach. We have chosen to learn a total of
1,000 word clusters. We choose this amount of clusters because, to our knowledge, it
is the most widely used in literature (Koo et al., 2008; Ratinov and Roth, 2009; Turian
et al., 2010).

• Co-Occurrence Model Filtering (Biran): Uses the strategy introduced by Biran et al.
(2011), in which candidate substitutions are filtered with respect to the cosine distance
between the word co-occurrence vectors of a target word and a candidate substitution.
The co-occurrence vector of a target word is composed of the occurrence frequencies
of each word present in a 10-token window around it in a given context. The co-
occurrence vectors of candidates are learned from their occurrences in large corpora
of text. Once the vectors are produced, any candidates of which the cosine distance d
between the co-occurrence vector of the target word and its own is either smaller than
a lower-bound l or larger than a upper-bound u are filtered out. In our experiments,
we use a lower-bound of 0.01 and an upper-bound of 0.1, which are the same used
by Biran et al. (2011). The corpus used to obtain the co-occurrence model required
is the same one used in the training of the word embedding models used by our SG
approach.

Substitution Ranking

For the full pipeline evaluation, we have tested the performance of six SR approaches, which
rank candidates according to some metric related to simplicity. The metrics chosen are:

• Frequency: Candidates are ranked according to their frequency in the Simple Wikipedia
corpus (Kauchak, 2013). The more frequent the word, the simpler it is (Horn et al.,
2014).
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• Length: Candidates are ranked according to their length. We explore the hypothesis
that the less characters a candidate have, the simpler it is (Shardlow, 2014a).

• Senses: Candidates are ranked according to their number of senses in WordNet. We
explore the hypothesis that the more senses a word has, the simpler it is (Shardlow,
2014a).

• Synonyms: Candidates are ranked according to their number of synonyms in WordNet.
We explore the hypothesis that, much like senses, he more synonyms a word has, the
simpler it is Shardlow (2014a).

• Hypernyms: Candidates are ranked according to their number of hypernyms in Word-
Net. The more hypernyms a word has, the simpler it is.

• Hyponyms: Candidates are ranked according to their number of hyponyms in WordNet.
The more hyponyms a word has, the simpler it is.

We choose these metrics because, as discussed in the survey of Chapter 2, these are some
of the most widely used word simplicity metrics.

5.4.2 Datasets

To evaluate the systems, we use the LexMTurk corpus (Horn et al., 2014), which contains
500 instances. Each instance contains a sentence extracted from Wikipedia, a target complex
word, and 50 simpler alternatives suggested by turkers from the Amazon Mechanical Turk.
We take such suggestions as our gold-standard.

We use the LexMTurk as opposed to NNSeval because it is more than twice as large as
NNSeval in both the number of instances and gold candidates. Since we are not attempting
to incorporate the needs of non-native English speakers directly during SG, LexMTurk is the
most reliable option.

5.4.3 Evaluation Metrics

For the evaluation of Substitution Generation approaches, we use four metrics:

• Potential: The proportion of instances in which at least one of the substitutions
generated is present in the gold-standard.

• Precision: The proportion of generated substitutions that are present in the gold-
standard.



5.5 Comparing Word Embedding Models 123

• Recall: The proportion of gold-standard substitutions that are included in the generated
substitutions.

• F1: The harmonic mean between Precision and Recall.

The Potential allows for us to evaluate how well the generation approach would perform
in an idealised scenario, in which the Substitution Selection designated to filter the generated
substitutions is capable of discarding each and every spurious candidate. The Precision,
Recall and F1, however, evaluate the systems in a more realistic scenario, in which the results
produced by the Substitution Selection approach are not perfect, and hence the LS approach
would benefit from generated substitutions of higher quality.

For the full pipeline evaluation, in which various combination of SG, SS and SR ap-
proaches are compared, we use Accuracy, which measures the proportion of times in which
the candidate substitution ranked first by an SR system is present in the gold-standard and is
not the target word itself. This measure is designed to capture how reliable an LS strategy is
in replacing target complex words with alternatives that are simpler, yet still grammatical
and coherent.

5.5 Comparing Word Embedding Models

Before comparing the performance of our approach with that of other SG strategies, we
first conduct a performance assessment using several distinct word embedding models. The
models vary in the following aspects:

• Context-Awareness: We train both traditional embedding models over raw corpora,
and context-aware models over corpora annotated with universal POS tags.

• Retrofitting: We train models both with and without the use of retrofitting.

• Architecture: We train models with both the CBOW and the Skip-Gram architectures.

• Size: We train models with numerical vectors of 300, 500 and 700 dimensions.

By interpolating all possible combinations of settings, we have produced a total of 24
models. Since our approach allows to select how many substitutions to generate, we have
evaluated how well each model performs when selecting 5, 10, 15, 20 and 25 substitutions for
each target word. The F1 scores obtained by all models evaluated are illustrated in Tables 5.7
through Tables 5.10. The complete results for Potential, Precision and Recall are presented
in Tables B.1 through B.16 of Appendix B.
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CBOW Skip-Gram
# 300 500 700 300 500 700
5 0.111 0.122 0.125 0.099 0.104 0.106

10 0.122 0.138 0.140 0.104 0.115 0.115
15 0.122 0.132 0.136 0.101 0.107 0.109
20 0.114 0.124 0.129 0.095 0.100 0.099
25 0.105 0.117 0.120 0.087 0.091 0.092

Table 5.7 F1 results for traditional embedding models

CBOW Skip-Gram
# 300 500 700 300 500 700
5 0.121 0.129 0.132 0.115 0.123 0.127

10 0.137 0.150 0.152 0.128 0.138 0.141
15 0.134 0.145 0.148 0.125 0.134 0.134
20 0.125 0.137 0.140 0.117 0.123 0.125
25 0.119 0.131 0.133 0.109 0.114 0.115

Table 5.8 F1 results for retrofitted embedding models

CBOW Skip-Gram
# 300 500 700 300 500 700
5 0.127 0.140 0.146 0.113 0.125 0.128

10 0.141 0.156 0.164 0.129 0.138 0.140
15 0.142 0.153 0.159 0.128 0.138 0.138
20 0.135 0.144 0.151 0.123 0.132 0.134
25 0.127 0.138 0.143 0.120 0.128 0.128

Table 5.9 F1 results for context-aware embedding models

CBOW Skip-Gram
# 300 500 700 300 500 700
5 0.144 0.150 0.154 0.135 0.141 0.141

10 0.159 0.170 0.175 0.151 0.160 0.159
15 0.156 0.166 0.171 0.149 0.157 0.157
20 0.149 0.159 0.163 0.143 0.149 0.150
25 0.141 0.150 0.154 0.137 0.144 0.145

Table 5.10 F1 results for retrofitted context-aware embedding models
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Several conclusions can be drawn from the results obtained. The CBOW model is more
effective than the the Skip-Gram model for the task, and using larger numerical vectors can
considerably increase the performance of our approach. It can also be noticed that retrieving
more candidate substitutions increases Potential and Recall, but decreases Precision, which
consequently makes it challenging for the optimal amount of candidates retrieved to be
found.

Perhaps the most interesting phenomenon observed refers to the effectiveness of context-
aware embedding models for SG: they have outperformed traditional and retrofitted models in
Potential, Precision, Recall and F1 in every configuration evaluated. Combining retrofitting
with context-aware models yield even better results. Such observations highlight the potential
inherent to such models, and allow us to conclude that they, at least for the purposes of
Lexical Simplification, produce numerical vector representations more reliable than those of
a traditional embedding models.

We also assess the performance of our generator in its four configurations (TEM, REM,
CAEM and RCAEM) when using word vectors sizes that go beyond the 300, 500 and 700
dimensions featured in the previous assessment. Figure 5.4 illustrates the scores obtained
with vectors of 500 to 2,500 dimensions, in intervals of 200. All models use the CBOW
architecture, and select 10 candidates for each target word.

One can notice that the performance of all models grow in the same pattern, with
a noticeable drop at 1,500 dimensions and a steady increase thereafter. Assessing the
substitutions produced by the models, we found that the main reason for the performance
drop lies in the fact that the proposed models do not discern between the meanings of a word
within the same grammatical class. Take the target word “site” in its Noun form, for an
example. While among the candidates produced by the models with 1,300 dimensions were
words which referred “site” as both an outlined portion of terrain and a webpage, such as
“location” and “homepage”, the ones produced by the model with 1,500 dimensions referred
strictly to “site” as a webpage, which happened not to be the required sense in question.
This phenomena suggests that, although going beyond the usual 300 or 500 dimensions can
benefit the performance of our generators, using excessively high dimensions can lead the
model to approximate an ambiguous word to its most frequently used sense within a given
grammatical class, limiting its efficacy in SG.

5.6 Comparing Generation Approaches

In this experiment, we compare ours to several other approaches to SG. For the purpose
of analysis, we include all versions of our approach: when using a traditional embeddings
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Fig. 5.4 Vector size versus SG scores
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model (TEM), a retrofitted model (REM), a context-aware model (CAEM) and a retrofitted
context-aware model (RCAEM). All versions of our approach retrieve a total 10 candidate
substitutions for each target word. The models used by both versions were trained with the
CBOW architecture, and use numerical vectors with 1,300 dimensions. The results obtained
are shown in Table 5.11.

Approach Potential Precision Recall F1
Biran 0.630 0.153 0.098 0.119
Kauchak 0.784 0.290 0.115 0.164
Devlin 0.616 0.157 0.088 0.113
Yamamoto 0.510 0.056 0.079 0.065
TEM 0.804 0.169 0.136 0.151
REM 0.852 0.179 0.145 0.160
CAEM 0.848 0.197 0.157 0.175
RCAEM 0.882 0.210 0.168 0.187

Table 5.11 Performance scores for various SG approaches

When using a retrofitted context-aware model, our SG approach was able to outperform
all other strategies evaluated, achieving the highest scores for Potential, Recall and F1.
Although the Kauchak generator has managed to outperform our approach in Precision,
the strategy it uses obtains a noticeably lower Recall and F1, despite relying on manually
produced data. The performance obtained with a traditional embeddings model is nonetheless
quite impressive: it outperformed almost all baseline systems in Potential, Recall and F1,
even though it is a completely unsupervised SG approach.

Although our approach manages to obtain only a 2.3% improvement in F1 over the second
best generator evaluated, this difference could still imply in major gains in performance when
these generators are incorporated in an LS system. Evidence of that can be found in the
experiments of Horn et al. (2014), who compare the performance of their simplifier, which
uses the Kauchak generator, with that of Biran et al. (2011), which uses the Biran generator.
Even though the difference in F1 between these generators is only 4.5%, the simplifier of
Horn et al. (2014) is 42.7% more accurate than the simplifier of Biran et al. (2011) when
employed in practice.

Those results confirm the advantage of context-aware over typical embedding models in
producing meaningful numerical vector representations of words, and reveal that ours is a
state-of-the-art approach for Substitution Generation.
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5.7 Full Pipeline Performance Comparison

To evaluate how well our generators perform in practice, we assess their performance when
introduced in a complete LS pipeline. We first pair them with the various Substitution
Selection approaches described in Section 5.4.1. The results obtained are presented in
Tables 5.12 through 5.17.

Selector Potential Precision Recall F1
Biran 0.064 0.157 0.005 0.010
Kauchak 0.052 0.127 0.004 0.008
Devlin 0.098 0.141 0.010 0.018
Yamamoto 0.014 0.036 0.001 0.002
TEM 0.062 0.122 0.005 0.011
REM 0.084 0.181 0.009 0.017
CAEM 0.072 0.158 0.006 0.012
RCAEM 0.080 0.194 0.008 0.015

Table 5.12 Results obtained by pairing different generators with the Random Sense approach
(Random)

Selector Potential Precision Recall F1
Biran 0.116 0.239 0.011 0.021
Kauchak 0.072 0.176 0.006 0.012
Devlin 0.162 0.204 0.017 0.032
Yamamoto 0.038 0.079 0.003 0.006
TEM 0.122 0.197 0.011 0.022
REM 0.148 0.236 0.015 0.029
CAEM 0.132 0.256 0.012 0.024
RCAEM 0.152 0.278 0.015 0.029

Table 5.13 Results obtained by pairing different generators with the First Sense approach
(First)

Although the Devlin generator has obtained the highest scores when paired with First and
Random Sense selectors, these baselines performed very poorly overall, since they do not
perform any type of intelligent selection procedure. For the remaining selectors, however,
our SG approach has managed to outperform all other generators. Even though the highest
overall scores were obtained by the RCAEM generator, it can be noticed that the performance
of each type of embeddings model varies according to the selector used.

We have also evaluated the performance of each and every SG and SS combination when
paired with several metric-based Substitution Ranking approaches. The Accuracy scores
obtained are shown in Tables 5.18 through 5.23.
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Selector Potential Precision Recall F1
Biran 0.100 0.100 0.009 0.016
Kauchak 0.088 0.179 0.010 0.019
Devlin 0.140 0.096 0.014 0.024
Yamamoto 0.038 0.031 0.003 0.006
TEM 0.222 0.135 0.024 0.041
REM 0.236 0.148 0.028 0.047
CAEM 0.232 0.164 0.026 0.046
RCAEM 0.238 0.184 0.030 0.052

Table 5.14 Results obtained by pairing different generators with the Lesk Algorithm (Lesk)

Selector Potential Precision Recall F1
Biran 0.016 0.065 0.001 0.003
Kauchak 0.012 0.034 0.001 0.002
Devlin 0.026 0.093 0.003 0.006
Yamamoto 0.004 0.010 0.000 0.001
TEM 0.028 0.060 0.002 0.004
REM 0.032 0.116 0.003 0.007
CAEM 0.032 0.095 0.003 0.005
RCAEM 0.032 0.165 0.003 0.007

Table 5.15 Results obtained by pairing different generators with the Path Similarity approach
(Path)

Selector Potential Precision Recall F1
Biran 0.124 0.482 0.011 0.021
Kauchak 0.228 0.585 0.022 0.043
Devlin 0.120 0.447 0.011 0.022
Yamamoto 0.080 0.286 0.007 0.014
TEM 0.290 0.340 0.030 0.055
REM 0.280 0.352 0.029 0.053
CAEM 0.330 0.345 0.035 0.063
RCAEM 0.312 0.375 0.033 0.061

Table 5.16 Results obtained by pairing different generators with the Word Clustering approach
(Clusters)
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Selector Potential Precision Recall F1
Biran 0.366 0.112 0.057 0.075
Kauchak 0.450 0.298 0.066 0.108
Devlin 0.360 0.127 0.050 0.072
Yamamoto 0.318 0.061 0.047 0.053
TEM 0.480 0.175 0.079 0.109
REM 0.492 0.184 0.082 0.113
CAEM 0.502 0.200 0.088 0.122
RCAEM 0.520 0.217 0.096 0.133

Table 5.17 Results obtained by pairing different generators with the Co-Occurrence Model
Filtering approach (Biran)

First Random Path Lesk Clusters Biran
Biran 0.086 0.054 0.016 0.066 0.116 0.110
Kauchak 0.040 0.024 0.008 0.064 0.216 0.150
Devlin 0.112 0.078 0.026 0.086 0.114 0.124
Yamamoto 0.028 0.010 0.002 0.010 0.070 0.042
TEM 0.110 0.056 0.022 0.128 0.228 0.186
REM 0.116 0.072 0.030 0.124 0.224 0.180
CAEM 0.116 0.068 0.030 0.146 0.252 0.208
RCAEM 0.120 0.072 0.030 0.140 0.242 0.206

Table 5.18 Accuracy scores for candidate substitutions ranked by their length

First Random Path Lesk Clusters Biran
Biran 0.104 0.060 0.016 0.082 0.118 0.150
Kauchak 0.076 0.034 0.012 0.074 0.222 0.228
Devlin 0.150 0.092 0.024 0.110 0.114 0.196
Yamamoto 0.030 0.014 0.002 0.018 0.070 0.078
TEM 0.110 0.058 0.024 0.128 0.246 0.240
REM 0.136 0.078 0.026 0.138 0.234 0.254
CAEM 0.126 0.072 0.030 0.152 0.270 0.264
RCAEM 0.140 0.078 0.028 0.156 0.264 0.278

Table 5.19 Accuracy scores for candidate substitutions ranked by their frequency
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First Random Path Lesk Clusters Biran
Biran 0.102 0.060 0.016 0.080 0.122 0.144
Kauchak 0.076 0.034 0.012 0.076 0.214 0.276
Devlin 0.132 0.078 0.020 0.100 0.114 0.152
Yamamoto 0.036 0.014 0.002 0.020 0.068 0.068
TEM 0.102 0.050 0.022 0.120 0.230 0.184
REM 0.124 0.066 0.024 0.126 0.222 0.196
CAEM 0.110 0.072 0.030 0.146 0.256 0.206
RCAEM 0.126 0.070 0.026 0.146 0.250 0.232

Table 5.20 Accuracy scores for candidate substitutions ranked by their number of senses

First Random Path Lesk Clusters Biran
Biran 0.102 0.058 0.016 0.072 0.118 0.114
Kauchak 0.076 0.034 0.012 0.076 0.220 0.266
Devlin 0.136 0.076 0.020 0.094 0.112 0.130
Yamamoto 0.036 0.014 0.002 0.020 0.072 0.056
TEM 0.104 0.050 0.022 0.122 0.232 0.176
REM 0.122 0.064 0.024 0.114 0.218 0.182
CAEM 0.112 0.072 0.030 0.150 0.264 0.212
RCAEM 0.128 0.068 0.026 0.142 0.250 0.218

Table 5.21 Accuracy scores for candidate substitutions ranked by their number of synonyms

First Random Path Lesk Clusters Biran
Biran 0.100 0.058 0.016 0.070 0.118 0.108
Kauchak 0.072 0.034 0.012 0.072 0.210 0.258
Devlin 0.128 0.074 0.020 0.084 0.114 0.122
Yamamoto 0.036 0.014 0.002 0.016 0.068 0.062
TEM 0.092 0.044 0.016 0.114 0.218 0.162
REM 0.116 0.066 0.024 0.120 0.212 0.176
CAEM 0.102 0.064 0.024 0.136 0.238 0.190
RCAEM 0.124 0.066 0.026 0.136 0.234 0.208

Table 5.22 Accuracy scores for candidate substitutions ranked by their number of hypernyms
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First Random Path Lesk Clusters Biran
Biran 0.100 0.060 0.016 0.076 0.114 0.096
Kauchak 0.072 0.034 0.012 0.074 0.204 0.262
Devlin 0.130 0.076 0.020 0.096 0.112 0.128
Yamamoto 0.036 0.014 0.002 0.020 0.072 0.044
TEM 0.094 0.044 0.016 0.100 0.210 0.190
REM 0.116 0.064 0.024 0.108 0.206 0.188
CAEM 0.104 0.062 0.024 0.122 0.234 0.198
RCAEM 0.126 0.066 0.026 0.126 0.230 0.204

Table 5.23 Accuracy scores for candidate substitutions ranked by their number of hyponyms

An interesting phenomenon can be observed in the results: pairing the Kauchak generator
with Co-Occurrence Model Filtering proved to be effective when the SR approach used
ranks candidates with a metric related to ambiguity i.e. number of senses, synonyms and
hypernyms. This observation serves as evidence that, in a pipelined setup, it is difficult
to predict which configuration will yield the best results, and hence experimenting on a
development set with various combinations of strategies is very important if the performance
of an LS system is to be maximised. Nonetheless, pairing the RCAEM generator with
Co-Occurrence Model Filtering and frequency ranking yields the best Accuracy scores in
practice, which asserts the effectiveness of retrofitted context-aware models in SG.

5.8 Conclusions

In this Chapter we describe a new approach for Substitution Generation, which generates
candidate substitutions by using the semantic relations found in word embedding models.
We also introduce the concept of retrofitted context-aware embedding models, which not
only assign a distinct numerical vector to every grammatical form that the word may take,
but also exploit synonymy relations in manually created lexicons.

In the experiments conducted, our SG approach have managed to outperform several
other generators, not only in the task of Substitution Generation alone, but also when paired
with different SS and SR approaches to create complete LS strategies. We have found
that, although context-aware models are significantly more effective than typical models in
retrieving meaningful candidate substitutions, retrofitting them over WordNet can further
increase their reliability. We also found that selecting the appropriate size for the embeddings
used can greatly influence the performance of our SG approach.

Given the considerations made, we can conclude that ours is an effective approach to
Substitution Generation. It can outperform even generators that rely on scarce linguistic
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resources, and offers both flexibility and extensibility. It allows for one to choose how many
candidates to be retrieved, and hence control the balance between Precision and Recall, and
it can also be easily adapted to various languages. In the case of languages such as English,
for which resources are abundant, one can generate candidates with the more sophisticated
retrofitted context-aware models, which require both a reliable POS tagger and a thesaurus.
As for languages for which those resources are not available, one can still perform generation
by using traditional embedding models, which require only for large corpora of text.





Chapter 6

Supervised Models for Substitution
Ranking

As discussed in the survey of Chapter 2, Substitution Ranking (SR) is the task of, given a
set of substitution candidates for a complex word in a sentence, ranking them in order of
simplicity. The final goal of the task is to allow for an LS approach to select the simplest
candidate available for a given substitution.

Although easy to grasp, SR can be a very challenging task, since its very foundation
lies on attempting to model the abstract concept of “simplicity”. Simplicity is often defined
as a quality pertaining to content which is easy to understand, given the needs of a certain
target audience. For the aphasic, for example, simple sentences can be those which are short
and do not contain segments in passive voice (Devlin, 1999), while for non-native speakers,
sentences that contain familiar words tend to be simpler (Nation, 2001; Nation and Coady,
1988).

Due to the nature of the LS task and the target audience being addressed (non-native
speakers of English), we interpret simplicity as word familiarity i.e. the more familiar a
word is to the reader, the simpler it is. In this Section we report on our attempt to conceive a
new supervised strategy for Substitution Ranking that accounts for the needs of non-native
English speakers. Our approach, which we name Boundary Ranking, uses weighted linear
models trained over a binary classification setup to learn a ranking model from the needs of a
target audience.

Notice that, although Substitution Ranking is performed after Substitution Selection in
the typical LS pipeline, we address it first in this thesis. The reason for that lies in the fact
that our Substitution Selection approach employs the supervised ranking approach described
in this Chapter.
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6.1 Reinterpreting the Task: What Makes a Good Ranker?

In order to introduce a new approach to SR, it is important to first understand what the
intrinsic characteristics of an effective candidate ranker are in practice.

Through the literature survey described in Chapter 2, we were able to notice that the
evaluation metric most frequently used to measure the performance of SR approaches is
the Kappa agreement coefficient. This is one of the metrics used to compare the systems
submitted to the English Lexical Simplification task of SemEval 2012 (Specia et al., 2012),
and it measures the agreement proportion between the judgments made by a system and
those made by human annotators (Carletta, 1996). The Kappa agreement coefficient can be
calculated as described in Equation 6.1.

K =
P(A)−P(E)

1−P(E)
(6.1)

In Equation 6.1 P(A) represents the agreement proportion between a ranker and a gold-
standard, and P(E) the probability of them agreeing by chance. Note that, given the nature
of the task, P(A) and P(E) can be calculated in many different ways. In ranking tasks, the
pairwise Kappa variant is used: it estimates P(A) as the proportion of agreements between a
ranking system and the gold-standard with respect to a pair of candidates. In simpler terms, if
both ranker and gold-standard determine that the ranking position of a candidate ci is higher
(>), lower (<) or equal (=) to the one of candidate c j, the count of agreements is increased
by one. This verification is repeated to all possible pairs of ranked candidates

(
ci,c j

)
such

that i ̸= j.

This metric is the most popular choice among those who have published work on Sub-
stitution Ranking after SemEval 2012, such as in (Kauchak, 2013), (Shardlow, 2013b) and
(Glavaš and Štajner, 2015). The fact that most choose to use the Kappa coefficient to evaluate
the efficiency of their approaches serves as evidence that, within the LS research community,
it is generally accepted that the best SR approach available is the one capable of producing
a ranking most similar to a gold-standard. In other words, this metric reflects the ability of
systems to rank all candidate substitutions as a human would. We, however, believe that this
not the best way to assess the quality of Substitution Ranking systems in practice.

The reason why we disagree with that hypothesis is that, although the pairwise Kappa
coefficient is an interesting way to measure the similarity between two rankings, it does not
necessarily capture the potential of an SR approach to be successful in contributing to the
practical goal of an LS system, which is to replace a given complex word with a simpler
alternative. In other words, differences in the ranks of the words that are not ranked first are
not important in practice. Consider, for example, the task of replacing the word “endorsed”
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in sentence “Kowal suggested the name and the IAU endorsed it in 1975.”. Let’s suppose
tthat of the most effective supervised and unsupervised rankersat there are five candidate
substitutions available, ranked in order of simplicity, unanimously, by members of a certain
target audience in the following fashion:

1. approved

2. supported

3. adopted

4. okayed

5. backed

Now let’s consider two ranking systems S1 and S2, which rank the same candidates in
the following way:

• S1: 1: approved, 2: backed, 3: supported, 4: okayed, 5: adopted

• S2: 1: okayed, 2: approved, 3: supported, 4: adopted, 5: backed

At first glance, one may assume that S1 have made more mistakes than S2, since more
candidates seem to be “out of place” with respect to the gold-standard. When estimating the
value of P(A) of the pairwise Kappa agreement coefficient for both systems, we obtain a
score of 6 for S1 and 7 for S2, which is in accordance with our initial assumption, meaning
that that S2 is a better ranker than S1. In a practical context, however, an LS approach which
uses S1 will be considerably more effective than one which uses S2, since S1 was capable of
placing the candidate substitution deemed most simple in the first ranking position.

Based on this observation, we conclude that, in practice, it is more effective to evaluate a
Substitution Ranking system based on the quality of its highest ranking substitution, rather
than on the overall similarity between its ranking and a gold-standard. Intuitively, we can also
propose that it is more effective to train a ranker which maximises the likelihood of ranking
“good” candidates first, rather than one which maximises its correlation with a gold-standard.
The supervised SVM ranking approach of Joachims (2002) is, to our knowledge, the only
example of supervised ranker used in LS, and it happens to suffer from this limitation.
Although the results obtained by Jauhar and Specia (2012) and Horn et al. (2014) show that
this approach is promising for SR, these SVMs are trained with the goal of minimizing the
overall number of errors made by the ranker, which we believe could limit their potential
in LS. It is important to mention that, although supervised approaches require manually
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annotated data, they are the only ones that allow for a model of the needs of a target audience
to be learned automatically. Because of that, we believe they are the most suitable alternative
when it comes to addressing the needs of non-native English speakers.

In the Sections that follow, we describe a new supervised strategy for the task, which
explores the aforementioned hypothesis by proposing a new way of modelling Substitution
Ranking (Section 6.2) and conduct several experiments with it (Sections 6.4 through 6.6).

6.2 Boundary Ranking: A Supervised Approach

Based on the discussion in the previous Section we outline what best characterises an effective
Substitution Ranker: it is not its ability to order candidates with respect to their simplicity,
but its proficiency in placing simpler candidates in the highest ranking. In order to create
a novel strategy for Substitution Ranking that exploits this observation, we first propose a
binary classification setup for the task.

Suppose that we are given a set of ranking training examples in the format illustrated
in Equation 6.2, where Si is the ith sentence in a dataset, wi a target complex word in the
hith position of Si, c j

i a substitution candidate and r j
i its simplicity ranking. The LexMTurk

(Horn et al., 2014) and LSeval (De Belder and Moens, 2012b) corpora are some examples
of LS datasets that contain this type of information. Notice that these datasets are a way of
representing the simplification needs of a certain target audience, given that the substitution
candidates and their simplicity rankings can be produced by human annotators of said target
audience.


⟨S1⟩ ⟨w1⟩ ⟨h1⟩

〈
r1
1:c1

1
〉
· · ·

〈
rn
1:cn

1
〉

⟨S2⟩ ⟨w2⟩ ⟨h2⟩
〈
r1
2:c1

2
〉
· · ·

〈
rn
2:cn

2
〉

...
⟨Sm−1⟩ ⟨wm−1⟩ ⟨hm−1⟩

〈
r1
m−1:c1

m−1
〉
· · ·

〈
rn
m−1:cn

m−1
〉

⟨Sm⟩ ⟨wm⟩ ⟨hm⟩
〈
r1
m:c1

m
〉
· · ·⟨rn

m:cn
m⟩

 (6.2)

Over each instance of such data, we can propose a function x = f
(

c j
i

)
, which represents

a set of feature values that describe candidate c j
i with respect to target complex word wi and

sentence Si. We can also assign a binary label y to each candidate c j
i , which takes value 1 if

r j
i ≤ p, and 0 otherwise. The parameter p represents the maximum ranking position that a

candidate c j
i can have in order for it to be considered simple enough to replace a target word

wi. This parameter grants more flexibility to the setup: one can train more permissive ranking
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models that better fit the data of training sets that contain larger amounts of candidates, for
example.

Once a set of training feature values x and binary labels y are collected, we can then train
a linear or non-linear model over the data. To do so, we can use various learning methods to
train a model that separates candidates that are simple enough to simplify a target complex
word from those that are not. We can then use the model to predict if an unseen candidate is
simple enough to replace a target complex word. The predicted binary label however, would
not allow for us to decide which is the simplest candidate in the case that more than one
candidate from a given set receive label 1. To solve that problem, we can instead use the
confidence estimates produced by the model as a measure of how simple each candidate is,
which fulfills our setup’s final goal and allows us to rank all candidates by simplicity.

In order to produce confidence estimates, weighted linear models and Support Vector Ma-
chines, for example, estimate a hyperplane between the two classes in a binary classification
problem. Once the optimal hyperplane is found, these confidence estimates can be calculated
as the distance between the hyperplane and the feature values that represent a certain word
being ranked. The main intuition behind this approach is that the hyperplane learned by the
model will be perpendicular to the direction in which the properties being captured by the
features grow. In this scenario, the positive and negative binary classification instances used
for training would serve as the needle of a “compass” that determines the direction in which
the properties being targeted grow. Notice that, although this approach was conceived for
the purpose of word simplicity ranking, it could be adapted to different ranking tasks and
domains through the use of different datasets and features.

We name our approach Boundary Ranking, in reference to the “boundary” (or hyper-
plane) between positive and negative training samples that weighted linear and non-linear
models learn from the binary classification setup. With our supervised SR approach for-
malised, only one engineering step remains missing: deciding which settings and features
should be used so that our ranking model produces optimal results. In what follows, we
describe our efforts in finding the most suitable set of configurations for our ranking model.

6.3 Experimental Settings

In this Section, we outline the resources and settings used in the experiments conducted with
our novel Substitution Ranking approach. We compare our approach in various settings with
current state-of-the-art rankers.
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6.3.1 Datasets

In order for us to be able to compare our results with the state-of-the-art for the task, we have
chosen to train and test our approach in the dataset from the English Lexical Simplification
task of SemEval 2012, which contains 300 training instances and 1,710 test instances. Each
instance is composed of a sentence, a target word to be simplified, and a list of candidate
substitutions with a reference ranking determined by non-native speakers of the English
language. We choose this dataset because it was created by the target audience being
addressed in this thesis, and is the largest and most widely used SR dataset in literature.

6.3.2 Evaluation Metrics

In Section 6.1, we have discussed that the evaluation metric most frequently used to measure
the performance of Substitution Ranking approaches does not reliably represent the effective-
ness of a ranker in the context of LS. It consequently would not be sensible to conceive a
strategy that exploits a different criterion for training, but evaluate it with a metric that does
not capture said criterion.

In order to address this problem, we present more sensible evaluation metrics for SR. If the
effectiveness of a ranking approach is determined by its ability to place simpler substitutions
in the highest ranking position, then intuitively its performance should be measured with
respect to the simplicity of its highest ranking substitution. To represent that, we employ the
TRank-at-n metric, that, given a set of test instances with reference rankings, measures the
proportion of times in which a ranking approach places a substitution candidate of reference
rank r ≤ n in first place.

The TRank-at-1 measure was first introduced by Specia et al. (2012), where it is referred
to simply as TRank, and was used to evaluate the approaches submitted to SemEval 2012.
By introducing the n range, we allow more flexibility.

6.3.3 Features

We consider a set of 26 features to train our ranking strategy. They can be divided in four
categories:

• Lexicon-oriented: Features that exploit the occurrence of a given candidate in a
lexicon of words or collection of content. They can be discrete and estimate the
number of documents or sentences in which a candidate appears given a corpus, or
binary and receive value 1 if a candidate appears in a given vocabulary, and 0 otherwise.
We include four features of this category, two discrete and two binary. The discrete
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features calculate the number of documents in which a word appears, and considers
two document collections: the articles from Simple Wikipedia (Kauchak, 2013), and
the subtitles from the SubIMDB corpus, introduced in Section 8.1. The binary features
consider two vocabularies: one extracted from Simple Wikipedia articles, and another
from Ogden’s Basic English lexicon1.

• Morphological: Features that exploit morphological characteristics of candidate sub-
stitutions. We include two features of this category: word length and number of
syllables. To split words into syllables, we resort to Morph Adorner (Burns, 2013).

• Semantic: Features which are related to the meaning of a candidate substitution. We
include seven features of this category: number of senses, synonyms, hypernyms,
hyponyms and maximum and minimum distances between a word’s sense and the most
general sense in a thesaurus. We use WordNet to obtain these features.

• Collocational: N-gram probabilities of the form P
(

Sh−1
h−l c Sh+r

h+1

)
, where c is a candi-

date substitution replacing a target word in the hth position of sentence S, and Sh−1
h−l and

Sh+r
h+1 are n-grams of size l and r, respectively. We include 16 features of this category,

which are the frequency of each candidate alone, as well as all n-grams with windows
l≤3 and r≤3 to the left and right of each candidate substitution in position h of S. To
obtain n-gram probabilities, we train a 3-gram language model over SubIMDB using
SRILM (Stolcke, 2002).

6.3.4 Baselines

In the experiment of Section 6.6, we compare the performance of Boundary Ranking with
that of the most effective supervised and unsupervised rankers in literature:

• Google 1T: Ranks candidates according to their frequency in the Google 1T corpus.
Although simple, this approach obtained the second highest TRank-at-1 scores in the
English Lexical Simplification task of SemEval 2012.

• UOW-SHEF (Jauhar and Specia, 2012): Uses a linear weighted function over rank-
ings produced by various collocational, morphological and psycholinguistic features.
This approach obtained the highest TRank-at-1 scores in the English Lexical Simplifi-
cation task of SemEval 2012.

1http://ogden.basic-english.org
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• Glavas (Glavaš and Štajner, 2015): An unsupervised approach that ranks candidates
according to their average ranking positions, as determined by a given set of features.
The experiments of Glavaš and Štajner (2015) show that their approach achieves Kappa
correlation scores much higher than that of the best system submitted to the English
Lexical Simplification task of SemEval 2012.

• SVMRank (Joachims, 2002): Learns a supervised ranking model with Support Vector
Machines. This approach was used in the creation of a state-of-the-art LS system by
Horn et al. (2014). Unlike Boundary Ranking, this model does not prioritize the quality
of the candidate with the highest ranking position, but rather attempts to maximize the
correlation between predicted and gold-standard rankings. To our knowledge, this is
the only supervised ranking strategy available for LS apart from Boundary Ranking.

6.4 Training Settings Assessment

As discussed in Section 6.2, Boundary Ranking consists in estimating the simplicity of each
candidate in a set of substitutions by measuring how confident a model is that said candidate
is simple enough to replace a target complex word. In weighted linear and non-linear models,
this is calculated as the projected distance between a candidate’s feature vector and the
estimated hyperplane.

In linear models, estimating a hyperplane is usually done through learning algorithms
that minimise a loss function with respect to a regularisation term, and in non-linear models,
through Support Vector Machines with non-linear kernels. In this experiment, we evaluate
how these different settings influence the effectiveness of our Boundary Ranking approach.

6.4.1 Linear Models

One can find various examples of loss functions and regularisation terms for linear models in
literature. For our experiments, we have selected three of the most widely used loss functions
in literature:

• Hinge: A loss function commonly used for the training of soft-margin linear Support
Vector Machines, the Hinge loss l of a weight vector w with respect to a training set of
n examples, each represented by a label yi ε {1,−1}, can be simply defined as:

l (w) =
n

∑
i=1

max
(
0,1− yiwTxi

)
(6.3)
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• Squared Hinge: The Squared Hinge loss is a variation of the Hinge loss that penalises
errors quadratically. It can be defined as:

l (w) =
1
2

n

∑
i=1

max
(
0,1− yiwTxi

)2
(6.4)

• Modified Huber: It is an adaptation of the Huber loss (Huber, 1964) for classification
tasks. The Huber loss was designed to be less sensitive to outliers. It can be defined as:

l (w,xi,yi) =

{
max

(
0,1− yiwTxi

)
if yiwTxi ≥−1

−4yiwTxi otherwise
(6.5)

During learning, loss functions are often summed to a regularisation term. The goal of
using a regularisation term during learning is to prevent the model from overfitting the data
and hence generalising poorly for unseen examples. We have selected three of the most
widely used regularisation terms in literature to test with each loss function:

• L1: Represents the sum of the absolute values of all weights wi in weight vector w. It
is described in Equation 6.6, where α is a constant that scales the regularisation term
when summed to a loss function.

L1 (w) = α

m

∑
i=1
|wi| (6.6)

L1 regularisation has been shown to be more effective for scenarios where the data is
characterised by high sparsity (Shalev-Shwartz and Tewari, 2009).

• L2: It is similar to L1 regularisation, and represents the sum of the squared values of
all weights wi in weight vector w. It is illustrated in Equation 6.7.

L2 (w) = α

m

∑
i=1

(wi)
2 (6.7)

L2 regularisation has been shown to be more effective in scenarios where the data is
characterised by low sparsity (Moore and DeNero, 2011).

• Elastic Net: First introduced by Zou and Hastie (2005), the elastic net linearly com-
bines L1 and L2. It is illustrated in Equation 6.8, where λ1 is the scale of regularisation
term L1(w), and λ2 is the scale of regularisation term L2(w).

Le (w) = λ1L1(w)+λ2L2(w) (6.8)



144 Supervised Models for Substitution Ranking

Elastic Net regularisation was devised in an effort to address some limitations of L1
and L2, and have been shown to outperform both of them in scenarios where the
training data is high dimensional (Waldron et al., 2011).

There are also various algorithms that can be used to learn the model parameters over
the training data. Each learning algorithm has its own set of hyper-parameters, and some of
them do not support all the aforementioned loss functions and regularisation terms. We have
selected two of the most widely used learning algorithms in literature for our experiments:

• Stochastic Gradient Descent: An iterative gradient descent optimisation method used
for stochastic linear models, or in other words, linear models whose behavior cannot be
predicted in a deterministic fashion. It uses an iterative batch learning setup, where its
goal is to improve on the overall classification performance of the estimated hyperplane
after each iteration with respect to a regularised loss calculated over a random sample
(or “batch”) of training instances. Formally, each iteration of the Stochastic Gradient
Descent algorithm takes the form illustrated in Equation 6.9, where wt is the weight
vector produced in iteration t− 1, wt+1 the resulting incremented weight vector of
iteration t, ηt a learning rate, and ▽Q(wt) vector of partial derivatives (or gradient) of
Q(wt ,Xt ,Yt), which represents a regularised loss function calculated over the current
weight vector wt and a batch of training samples Xt with labels Yt .

wt+1 = wt−ηt ▽Q(wt ,Xt ,Yt) (6.9)

Stochastic Gradient Descent supports any differentiable convex loss function, and can
hence use all the aforementioned loss functions and regularisation terms.

• Passive Aggressive Learning: An online algorithm first introduced by Crammer
et al. (2006), it iteratively increments vector w based on the classification error of a
training instance. Its goal is to improve on the overall classification performance of the
estimated hyperplane after each iteration, while ensuring that the knowledge acquired
in previous iterations is not lost. Formally, each iteration of the Passive Agressive
algorithm takes the form illustrated in Equation 6.10, where wt is the weight vector
produced in iteration t−1, wt+1 the resulting incremented weight vector of iteration
t, and τt a loss function over a single feature vector xt , its reference label yt and a
predicted label y′t .

wt+1 = wt + τtytxt (6.10)
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The algorithm’s name is a reference to its behavior given the result of an iteration: if
a loss is 0 at a given iteration t, then wt+1 = wt and its behavior is deemed passive,
otherwise, it performs an aggressive change to vector wt+1 so that it ensures that the
loss is 0. Unlike Stochastic Gradient Descent, the behavior of the Passive Aggressive
algorithm is already said to prevent overfitting, and hence the algorithm does not
require a regularisation term. Due to the nature of its weight vector update function, it
also supports only Hinge and Squared Hinge losses.

6.4.2 Non-Linear Models

For non-linear Support Vector Machines, we have chosen two of the most widely used kernels
in literature:

• Polynomial: Expands the feature space of a problem by applying a polynomial func-
tion of any degree to a pair of feature vectors. Equation 6.11 illustrates the generalised
form of a polynomial kernel of degree d and trade-off coefficient c being estimated
over two feature vectors x1 and x2.

K(x1,x2) = (x1·x2 + c)d (6.11)

In Equation 6.11, if c = 0, the kernel is called homogenous, and if c ̸= 0, it is called
heterogeneous. The parameter c determines a trade-off between higher and lower
order terms in the polynomial components. For our experiments, we use a quadratic
polynomial function i.e. d = 2.

• Radial Basis Function: Expands the feature space of a problem by applying a radial
function over a distance measure between a pair of feature vectors. Equation 6.12
illustrates the generalised form of a Gaussian Radial Basis Function over to the
Euclidean distance between two feature vectors x1 and x2, which is used in our
experiments.

K(x1,x2) = e(−γ∥x1−x2∥2) (6.12)

In Equation 6.12, the γ coefficient determines the degree of influence that a given
training example has in the learning process.

For linear models, we consider all possible combinations of supported loss functions,
regularisation terms and learning algorithms in our evaluation. For non-linear models, we
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consider the Polynomial and Radial Basis Function kernels. We evaluate the performance of
our approach when trained over all 26 features described in Section 6.3.3, and use TRank-at-
1:3 for evaluation. For the optimisation of hyper-parameters, including the maximum ranking
position p, we use 10-fold cross-validation. To train our models, we use the scikit-Learn
toolkit (Pedregosa et al., 2011).

The results obtained for the Stochastic Gradient Descent and Passive Agressive learning
algorithms are presented in Tables 6.1 and 6.2, respectively. In Table 6.3 are presented the
results obtained for the Support Vector Machines trained with the RBF and Polynomial
kernels.

L1 L2 Elastic Net
Loss Func. n=1 n=2 n=3 n=1 n=2 n=3 n=1 n=2 n=3
Hinge 0.588 0.818 0.920 0.583 0.817 0.919 0.583 0.817 0.919
Sq. Hinge 0.550 0.789 0.905 0.551 0.791 0.908 0.551 0.791 0.908
Mod. Huber 0.582 0.816 0.923 0.585 0.818 0.920 0.585 0.818 0.920

Table 6.1 TRank-at-n values for Stochastic Gradient Descent learning for all 26 features

Loss Func. n=1 n=2 n=3
Hinge 0.576 0.811 0.917
Sq. Hinge 0.587 0.819 0.919

Table 6.2 TRank-at-n values for Passive Agressive learning for all 26 features

Kernel n=1 n=2 n=3
RBF 0.584 0.817 0.915
Polynomial 0.538 0.778 0.888

Table 6.3 TRank-at-n values for non-linear kernel functions for all 26 features

Overall, the Squared Hinge loss pairs best with Passive Aggressive learning, while the
Hinge loss pairs best with Stochastic Gradient Descent. Regularisation terms do not seem
to greatly affect the performance of models trained with Stochastic Gradient Descent. For
SVMs, the RBF kernel is much more suitable than the Polynomial kernel in this scenario.
Nonetheless, the results reveal an absence of a statistically significant difference (p>0.05)
between the best performing settings of each learning algorithm.

We can conclude that both linear and non-linear models are suitable for Boundary
Ranking. For the subsequent experiments, we train linear Boundary Ranking models using
Stochastic Gradient Descent, Hinge loss function and L1 regularisation.
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6.5 Feature Selection Assessment

We also assess the performance of several feature configurations with our approach. Selecting
the appropriate features for a problem can greatly influence a model’s performance. We
consider 29 sets of features:

1. All Features: The set of all 26 features described in Section 6.3.3.

2. Collocational Features: A set of nine features that estimate the language model
probabilities P

(
Sh−1

h−l c Sh+r
h+1

)
of all n-grams with left (l) and right (r) window sizes

less or equal to two. As shown in the experiments of Jauhar and Specia (2012)
and Glavaš and Štajner (2015), such collocational features can be used to produce
state-of-the-art results for Substitution Ranking.

3. CW Features: The set of six features used in the experiments that compare several
Complex Word Identification approaches of Shardlow (2013a). They are: candidate
frequency with respect to the SUBTLEX corpus, the number of subtitles in the the
SUBTLEX corpus in which a candidate appears, word length, number of syllables,
and number of senses and synonyms as registered in WordNet.

4. Horn Features: A set of 15 features similar to the ones used in the Substitution
Ranking experiments of Horn et al. (2014). They are: the candidate’s alignment
probability with the target complex word, as estimated by an IBM model trained over
the parallel corpus of Wikipedia and Simple Wikipedia sentences, the candidate’s
frequency in Wikipedia and Simple Wikipedia, the language model probability of the
target sentence with its target complex word replaced by the candidate, as estimated by
language models trained over Wikipedia, Simple Wikipedia and the corpus described
in Section 6.3.3, and the frequencies f

(
Sh−1

h−l c Sh+r
h+1

)
of all n-grams with left and right

window sizes less or equal to two in Simple Wikipedia.

5. Best n Features: Using a feature selection technique, we select the best 1≤ n≤ 25
features from the total set of features described in Section 6.3.3.

In order to select the best n features from the original set of 26, we use univariate feature
selection through the ANOVA F-Test (Lomax, 2007). The F-Test was initially conceived as a
approach for the problem of deciding if there is a statistically significant difference between
the means of various populations, and it makes such a decision by evaluating the behavior of
variances between samples of the populations with the variances within them. It draws an F
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measure over the population samples, which is calculated as shown in Equation 6.13, and
then compares it to a critical F value determined over the distribution of sample values.

F =

(SST R
c−1

)( SSE
N−c

) (6.13)

In Equation 6.13, c is the number of samples for each population, N the total number
of samples, SST R the variation in the data samples between different populations, and SSE
the sum of the variation within the data samples of each population. SST R and SSE can be
calculated as shown in Equations 6.14 and 6.15, where Xi j is the value of the ith sample of
population j, r j is number of samples in population j, X j is the average of the samples in
population j, and X is the average of all samples.

SST R = ∑r j

(
X j−X

)2
(6.14)

SSE = ∑∑
(
Xi j−X j

)2 (6.15)

In statistics, the estimated F and the critical F values are compared: if the estimated F is
greater than the critical F, then the hypothesis that all (or at least two) populations have equal
means is discarded, otherwise, it is confirmed. In feature selection, however, we discard the
need for a critical F value, and instead quantify the F statistic as a metric that represents
the capability of a given feature to separate two or more classes in a classification problem.
In our binary classification setup for SR, the F statistic represents the capability of a given
feature to discern between candidates that are simple enough to simplify a target complex
word, and those that are not.

The TRank-at-1 : 3 scores obtained with each feature set are presented in Tables 6.4
and 6.5. The results show that feature selection can greatly improve on the performance
of our approach, but selecting an exceedingly small or large set of features can actually
compromise it. We have also found that collocational features extracted from SubIMDB are
very effective for SR, and can outperform almost all other sets of features. Such phenomenon
is in accordance with the findings of the user study in Section 3.3, where it is suggested that
word simplicity is context-dependent.

6.6 Performance Comparison

Here we compare the performance of Boundary Ranking with other ranking strategies. In this
experiment, we trained a linear model ranker with the same collocational features described
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Feature Set TRank-at-1 TRank-at-2 TRank-at-3
All 0.529 0.774 0.891
Colloc. 0.655 0.863 0.940
CW 0.494 0.742 0.880
Horn 0.635 0.854 0.932

Table 6.4 TRank-at-n values obtained with different feature sets

Features TRank-at-1 TRank-at-2 TRank-at-3
1 0.622 0.849 0.935
2 0.646 0.862 0.939
3 0.647 0.862 0.942
4 0.646 0.860 0.940
5 0.647 0.861 0.940
6 0.649 0.862 0.940
7 0.649 0.863 0.941
8 0.647 0.862 0.941
9 0.650 0.859 0.935
10 0.646 0.853 0.933
11 0.650 0.863 0.941
12 0.655 0.860 0.937
13 0.655 0.860 0.937
14 0.647 0.858 0.937
15 0.652 0.861 0.938
16 0.652 0.860 0.938
17 0.650 0.860 0.937
18 0.653 0.861 0.940
19 0.655 0.861 0.939
20 0.654 0.861 0.939
21 0.652 0.857 0.935
22 0.589 0.816 0.904
23 0.595 0.825 0.913
24 0.573 0.811 0.920
25 0.561 0.795 0.910

Table 6.5 TRank-at-n values obtained with different numbers of selected features
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in Section 6.3.3. Since the collocational features require a language model trained over some
type of corpus, we selected three of the most widely used corpora in LS to train them with:

• Simple Wikipedia: Composed of 9,132,292 words taken from Simple Wikipedia
articles.

• SUBTLEX: Composed of 62,498,097 words taken from assorted subtitles.

• SubIMDB: Composed of over 228,622,257 words extracted from movies and series
for family and childrem.

By using different corpora to extract features from, we can assess the quality of language
model probabilities from the SubIMDB corpus. Using these three sets of features, we
train three variants of not only our Boundary Ranking model, but also the Glavas and the
SVMRank rankers. This way, we can compare the performance of these approaches under
the same settings.

We include the SemEval 2012 systems UOW-SHEF and Google 1T described in Sec-
tion 6.3.4 in our performance comparison also. The TRank-at-1, 2 and 3 scores obtained are
presented in Table 6.6. Notice that the authors of the proceedings of SemEval 2012 do not
include values for TRank-at-2 and 3 for the systems submitted.

Approach TRank-at-1 TRank-at-2 TRank-at-3
Google1T 0.585 - -
Best Semeval 0.602 - -
Glavas (Simple Wiki) 0.587 0.814 0.919
Glavas (SUBTLEX) 0.609 0.820 0.913
Glavas (SubIMDB) 0.591 0.826 0.922
SVMRank (Simple Wiki) 0.599 0.820 0.927
SVMRank (SUBTLEX) 0.628 0.841 0.926
SVMRank (SubIMDB) 0.644 0.853 0.933
Boundary (Simple Wiki) 0.610 0.825 0.932
Boundary (SUBTLEX) 0.637 0.857 0.935
Boundary (SubIMDB) 0.654 0.858 0.936

Table 6.6 TRank-at-n values obtained in the performance comparison between Boundary
Ranking models and baselines

The results show that our Boundary Ranking approach outperforms not only the best
performing systems of SemEval 2012, but also both Glavas and SVMRank rankers in all
feature configurations. F-tests reveal that the differences between all rankers is statistically
significant (p<0.05).
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We can also notice from the results that, when trained with features extracted from the
SubIMDB corpus, both SVMRank and Boundary Ranking performs considerably better
than when trained with the Simple Wikipedia and SUBTLEX corpora. This suggests that
SubIMDB is a more reliable resource for the training of Lexical Simplification systems that
aim to address the needs of non-native English speakers.

6.7 Conclusions

In this Chapter, we have presented a novel supervised approach to the task of Substitution
Ranking. In Section 6.1 we discussed some of the misconceptions under which even modern
SR approaches are conceived and evaluated.

In an effort to address their limitations, we then proposed Boundary Ranking: a flexible
supervised strategy for the training of ranking models that exploits a binary classification
setup inferred from ranking examples found in most LS datasets available. A Boundary
Ranker attempts to produce a hyperplane over a feature space that separates candidate
substitutions that are simple enough to replace a complex target word from those that are
not. It then uses the projected distance between the feature values that describe an unseen
candidate and the hyperplane to determine how simple it is, which in turn allows us to rank
candidates according to their simplicity.

In order to evaluate our new strategy, we have conducted experiments which measure its
performance in various settings. We found that using distinct loss functions, regularisation
terms, learning algorithms and kernels can greatly influence the performance of our approach,
and that maximising those parameters during training plays a very important role in ensuring
that it performs well. We have also evaluated the performance of various feature combinations,
which revealed the potential of collocational features in estimating simplicity for non-native
English speakers. By comparing the performance of collocational features extracted from
different corpora, we reveal that SubIMDB, the corpus of subtitles described in Section 8.1,
is able to capture simplicity more effectively than all other corpora, given the needs of
non-native English speakers. Combining hyper-parameter optimisation and collocational
features estimated over SubIMDB, we were able to train a Boundary Ranker that outperforms
the most effective supervised and unsupervised rankers in literature.





Chapter 7

Ranking Models for Substitution
Selection

Substitution Selection (SS) is the task of, given a set of n substitution candidates {c1, ...,cn}
for a complex word t in sentence S, selecting which candidates ci can replace t while ensuring
that both the grammaticality and meaning of S will be preserved. The final goal of the task
is to prevent an LS approach from incorrectly replacing ambiguous complex words that
have two or more meanings or pertain to two or more grammatical classes. Consider, for
example, that a Complex Word Identification system judged that the word “yield” poses a
challenge, and the candidate substitutions produced by a Substitution Generation approach
are “proceeds”, “production”, “payoff ”, “concede”, “succumb” and “grant”. Now suppose
that the three sentences in Table 7.1, which portray the use of “yield” in three very distinct
contexts, must be simplified with the substitutions produced.

Sentence Form Meaning
The king will yield you a fortress. verb To forfeit something to a third party.
The average yield was about 10%. noun Income or profit from a transaction or sale.

He may yield to the pain soon. verb To be fatally overwhelmed by something.
Table 7.1 Sentences containing the word “yield”

One will notice that all three senses of “yield” are very distinct, and that some of the
candidate substitutions available do not share the same meaning as the complex word in each
context. The examples in Table 7.2 illustrate the results that would be expected from an
arguably ideal SS approach.

The examples in Table 7.2 highlight the importance of Substitution Selection: if a
substitution were to be selected at random for each of the aforementioned sentences, the
chance of “yield” being incorrectly replaced would be very high.
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Sentence Selected Candidates
The king will yield you a fortress. concede, grant
The average yield was about 10%. proceeds, production, payoff

He may yield to the pain soon. succumb
Table 7.2 Selected substitutions for “yield”

Considering this example, perhaps the most intuitive approach to the ambiguity problem
in LS would be to employ a state-of-the-art Word Sense Disambiguation approach during SS.
But as discussed in the survey of Chapter 2, although the precision of WSD systems have
been consistently increasing throughout the years Navigli (2009), even the most effective
approaches for the task are not reliable enough to be used in SS.

Yet the biggest downside inherent to the use of WSD systems in LS lies not the unsat-
isfactory performance of such systems, but rather in the fact that they address the problem
of SS as a sense label classification task. WSD systems resort to large linguistic databases
to determine the sense of a given word, a strategy that works under the premises that such
databases have high enough coverage of senses, and that they register each and every word
of a language’s vocabulary that can possibly be assigned to such senses.

In order to address the aforementioned problems, we propose a new setup for the task
of SS. Instead of deciding which words can be considered synonyms of a target word in a
sentence, we attempt to rank substitution candidates according to their likelihood of fitting
the context in which the target word is found. Once the candidates are ranked, the selector
can then discard the ones which are less likely to fit.

Our ranking setup has several advantages over using WSD systems:

• It allows for both supervised and unsupervised ranking techniques to be used. Some
examples of techniques that can be used are Machine Learning-based and metric-based
approaches.

• It allows for ranking techniques to exploit several types of features that represent the
relation between the substitution candidates and the target word’s context. N-gram
frequency counts, semantic similarity metrics and translation probability scores are
some examples.

• It allows for one to easily customise the behavior of the SS approach. Since each
and every candidate substitution will be have a certain likelihood of fitting a given
context, the user can create either an optimistic selector that keeps only the highest
ranked candidates, or a conservative selector which discards only the lowest ranked
candidates.
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As shown by the results discussed in Chapter 6, unsupervised metric-based ranking
strategies can offer competitive performance, but cannot outperform more sophisticated
supervised methods. Supervised ranking approaches, do, however, require annotated data for
models to be trained. This type of data is scarce in the domain of LS, and can be expensive
to produce.

In this Chapter, we introduce a novel, unsupervised approach for SS based on the
supervised Boundary Ranking strategy described in Chapter 6. We henceforth refer to
Substitution Selection systems that take the task as a ranking problem as “ranking-based
selectors”.

7.1 Unsupervised Boundary Ranking

Ranking substitution candidates can be done in multiple ways, both supervised and unsuper-
vised. As discussed in Chapter 2, in LS, unsupervised ranking approaches take the form of
simple metric-based rankers. Such rankers often order candidates according to a manually
crafted metric that combines a few features, such as n-gram frequencies in a corpus. Although
the results reported in the English Lexical Simplification task of SemEval 2012 show that
metric-based strategies can be quite effective in Substitution Ranking, they do not allow for
one to automatically learn patterns from unannotated data. In this Section, we introduce
the first unsupervised SS strategy capable of doing so. Before explaining how we create
an unsupervised ranking-based selector, we elaborate on how we could use the supervised
Boundary Ranking approach described in Section 6.2 in SS.

In Boundary Ranking, substitution candidates are ranked according to their distance from
a hyperplane (or “boundary”) learned over annotated ranking data. In order to learn the
hyperplane, a Boundary Ranker first infers a set of binary classification training instances
from the annotated data based on an optimisable parameter p, which determines the maximum
ranking position that receives label 1, and a function x = f (ci), which represents a set of
feature values that describe a candidate ci with respect to target complex word t and sentence
S.

As discussed in Section 6.2, Boundary Ranking could be used in any ranking task: one
would only need to use the appropriate dataset and features for training. If we take SS to
be a ranking problem, we can consequently use Boundary Ranking to train a supervised
ranking-based selector over features that capture grammaticality and meaning preservation.
Consider, for example, the candidate substitutions in Table 7.3 for target word “perched” in
sentence “The cat perched on the window”, ranked by how well they fit the context of the
target with respect to grammaticality and meaning preservation.
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Candidate Rank
sat 1
rested 2
roost 3
perch 4

Table 7.3 Candidate substitutions ranked by how well they fit the context of “perched”

For this training instance, if the parameter p of a Boundary Ranker is set to 2, then
“sat” and “rested” would receive label 1, while “roost” and “perch” would receive label 0.
Once the binary classification training instances are produced, the hyperplane that separates
candidates that are and are not good enough to replace the target word can be estimated
through the use of any learning technique capable of doing so.

This example, however, only illustrates how a Boundary Ranker could be trained in a
supervised fashion for SS, not unsupervised. In a supervised scenario, a Boundary Ranker
for SS would require a set of several training instances with candidate substitutions ranked
by human annotators by how likely they are of fitting the context of a target word. Without
annotated data, a Boundary Ranker can only be trained if we explore the Robbins-Sturgeon
hypothesis, which we propose.

In his book Jitterbug Perfume (Robbins, 2003), Tom Robbins presents his opinion on
semantic relations between words by stating that “There are no such things as synonyms!
He practically shouted. Deluge is not the same as flood”. A similar statement was made by
Theodore Sturgeon, author of several science fiction and horror stories such as Not Without
Sorcery (Sturgeon, 1948). In an interview conducted by David D. Duncan, Sturgeon said
“Here’s the point to be made - there are no synonyms. There are no two words that mean
exactly the same thing. I don’t care about the dictionaries of synonyms and antonyms. If
there were two words that meant exactly the same thing, there wouldn’t be two words. That
means that every word you use has a certain amount of semantic or psychological freight
that it carries that makes it different from other words”.

As a summary of the authors’ quotes, we introduce the Robbins-Sturgeon hypothesis. It
states that a word is irreplaceable in the context it was originally presented, implying that
no other word in a vocabulary can correctly convey the same information. Although the
progress made by modern LS approaches such as the ones of Horn et al. (2014) and Glavaš
and Štajner (2015) show that exploring synonymy relations between words is very useful in
making texts easier to read, it is still worth exploring the Robbins-Sturgeon hypothesis in
unsupervised Boundary Ranking for SS.
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If we take the Robbins-Sturgeon hypothesis to be correct, we can assume that a given
target complex word is the only word suitable to replace itself. In the binary classification
setup of a Boundary Ranker, this would mean that the only candidate substitution which
would receive label 1 would be target word itself, while any other candidates, regardless of
how well one may judge them to be able to replace the target word, would receive label 0.
With these settings, we would not require any annotated data: the substitution candidates
could be produced by an unsupervised approach. Notice that, in this case, the p value is
equal to one, and hence cannot be optimised like in a supervised setting.

Consider, for example, that the words “produce”, “give” and “destabilise” have been
generated as candidate substitutions for the target word “yield” in a certain sentence. Using
this information, we can produce four binary classification training instances, as illustrated
in Table 7.4.

By repeating this process for other complex words, one should produce enough training
instances for an unsupervised Boundary Ranker to be trained in reliable fashion. Once the
model is trained, one can then rank the candidates produced for an unseen simplification
problem, then finally select a proportion of them to be carried on to Substitution Ranking.

In order to evaluate the performance of our strategy, we have conducted several experi-
ments. We test the Robbins-Sturgeon hypothesis in practice (Section 7.3), benchmark various
ranking-based selectors (Section 7.4), investigate how the proportion of selected candidates
influence the performance of our approach (Section 7.5), and compare our approach to
current state-of-the-art SS strategies in a full pipeline evaluation that pairs selectors with
various SG and SR strategies (Section 7.6).

Candidate Label
yield 1
give 0
produce 0
destabilise 0

Table 7.4 Binary classification training instances for unsupervised Boundary Ranking
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7.2 Experimental Settings

7.2.1 Approaches

In our experiments, we compare the performance of several ranking approaches to SS, as
well as various other selectors from previous work. The ranking approaches included in our
experiments are:

• Boundary Ranking: Employs Boundary Ranking. It can be trained in both supervised
and unsupervised fashion. For supervised SS Boundary Rankers, the rankings in
datasets such as LexMTurk (Horn et al., 2014) or LSeval (De Belder and Moens, 2012b)
could be used. Given the results reported in Chapter 6, we choose a linear model
trained with Stochastic Gradient Descent, Hinge loss function and L1 regularisation
for both supervised and unsupervised settings. We optimise all hyper-parameters with
10-fold cross validation.

• Support Vector Machines: Employs the supervised ranking strategy proposed by
Joachims (2002), which uses Support Vector Machines in a setup that minimises a
loss function with respect to a ranking model. This strategy is the one used in the
Substitution Ranking approach of Horn et al. (2014). We optimise all hyper-parameters
with 10-fold cross validation.

• Metric-Based: Ranks candidate substitutions according to a certain metric that repre-
sents their likelihood of fitting in the same context of a target word. We use as metrics
each and every feature described in Section 7.2.2.

The SS systems from previous work that we include in our performance comparisons are:

• First Sense (First): Selects only those words which are listed as synonyms under the
first WordNet sense of the target word.

• Random Sense (Random): Selects only those words which are listed as synonyms
under a random WordNet sense of the target word.

• Lesk Algorithm (Lesk): Uses the algorithm introduced by Lesk (1986), described in
Section 5.4.

• Path Similarity (Path): Uses the algorithm introduced by Leacock and Chodorow
(1998), described in Section 5.4.
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• Word Clustering (Belder): Uses a strategy similar to the one presented by De Belder
and Moens (2010), described in Section 5.4.

• Co-Occurrence Model Filtering (Biran): Uses the strategy introduced by Biran et al.
(2011), described in Section 5.4.

Since SS is performed after candidates are generated, we evaluate the SS approaches
above when paired with four SG approaches:

• Paetzold: Employs the SG strategy described in Chapter 5, which extracts candidate
substitutions from retrofitted context-aware embedding models. We use a model trained
with the word2vec toolkit. The corpus used contains around 7 billion words, and is
composed of texts extracted from the UMBC webbase, News Crawl, the SUBTLEX
and SubIMDB corpora, as well as Wikipedia and Simple Wikipedia. The POS tags
required for the model were produced through the use of the Stanford Parser. We use
the CBOW architecture and 1,300 dimensions for the embeddings vector.

• Devlin (Devlin and Tait, 1998): Generates candidate substitutions by extracting syn-
onyms from WordNet, as described in Section 5.4.

• Kauchak (Horn et al., 2014): Generates candidate substitutions from complex-to-
simple parallel corpora, as described in Section 5.4.

• All: Combines the substitutions generated by all generators above.

7.2.2 Features

We use seven features for the training of all supervised ranking-based selectors:

• N-gram Probabilities: Language model log-probabilities of the following eight n-
grams: Si−1ci, ciSi+1, Si−1ciSi+1, Si−2Si−1ci, Si−2Si−1ciSi+1, ciSi+1Si+2, Si−1ciSi+1Si+2

and Si−2Si−1ciSi+1Si+2 where c is a candidate substitution, and i the position of the
target complex word in sentence S. We use a 5-gram language model trained over
SubIMDB corpus, described in Section 8.1, with the SRILM toolkit.

• Semantic Similarity: The word embeddings cosine similarity between the target
complex word and a candidate. We use the same retrofitted context-aware model used
by the Paetzold generator.
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• Part-of-Speech Conditional Probability: The conditional probability of the candi-
date substitution receiving the same POS tag as the target word. To calculate this
feature, we learn the word-to-tag probability distribution P(c|pt), described in Equa-
tion 7.1, of all words in the corpus used to train our retrofitted context-aware word
embeddings model.

P(c|ti) =
C(c, ti)

∑t∈T C(c, t)
(7.1)

In Equation 7.1, c is a candidate substitution, ti is the POS tag of the target word in a
given instance, C(c, t) the number of times c received tag t in the training corpus, and
T the set of all existing POS tags.

We choose these features because they have been frequently used in the creation of some
of the most effective LS systems to date.

7.2.3 Datasets

To evaluate the systems, we use the LexMTurk corpus, which is composed of 500 instances.
Each instance is composed of a sentence extracted from Wikipedia, a target complex word,
and 50 simpler alternatives suggested by turkers from the Amazon Mechanical Turk. We
take such suggestions as our gold-standard.

7.2.4 Evaluation Metrics

For the task of Substitution Selection alone, we use the same four distinct evaluation metrics
introduced in Chapter 5:

• Potential: The proportion of instances in which at least one of the substitutions
generated is present in the gold-standard.

• Precision: The proportion of generated substitutions that are present in the gold-
standard.

• Recall: The proportion of gold-standard substitutions that are included in the generated
substitutions.

• F1: The harmonic mean between Precision and Recall.

For the full pipeline evaluation, in which various combination of SG, SS and SR ap-
proaches are compared, we use the following three evaluation metrics:
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• Precision: The proportion of instances in which the target word was replaced with any
of the candidates in the dataset, including the target word itself.

• Accuracy: The proportion of instances in which the target word was replaced with
any of the candidates in the dataset, except for the target word itself.

• Changed Proportion: The proportion of times in which the target word was replaced
with a different word.

7.3 Testing the Robbins-Sturgeon Hypothesis

In our first experiment, we evaluate how well the Robbins-Sturgeon hypothesis works in
practice. We evaluate the performance of our unsupervised Boundary Ranker in selecting
substitutions generated by each and every SG approach described in Section 7.2.1. To train
our selector, we perform the following three steps:

1. For each instance of the LexMTurk dataset, create a positive binary classification
training instance by assigning label 1 to the target word itself.

2. For each instance of the LexMTurk dataset, run all SG approaches and create nega-
tive binary classification instances by assigning label 0 to all candidate substitutions
produced that are different from the target word itself.

3. Train the binary classifier over the instances produced.

We also explored using the Robbins-Sturgeon hypothesis in supervised ranking for SS.
To do so, we created two distinct versions of the LexMTurk dataset:

• Best-First: The candidate substitutions in the gold-standard for each instance are
ranked according to the number of times they have been suggested by human annotators.
The candidate suggested most frequently is ranked first, and is consequently deemed
the one that best fits the context in which the target complex word is inserted.

• Target-First: Identical to the original version, except the target complex word of each
instance is ranked first, and the ranking of the remaining candidates is increased by
one. This version of the dataset exploits the Robbins-Sturgeon hypothesis, deeming
the target word itself to be the its best candidate substitution.
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We then split both LexMTurk versions in a training and a test set, composed both of
250 instances each. Finally, we use these datasets to train four supervised ranking-based
selectors: two Boundary Rankers and two SVM rankers trained over the training portion of
the Best-First and Target-First datasets.

All aforementioned supervised and unsupervised rankers are evaluated in the test set of
the original (Best-First) version of LexMTurk. All rankers extract the same number of “gold
counts” for each instance of the test set. The gold count of a given instance is the number
of distinct candidate substitutions suggested by the annotators who created the LexMTurk
corpus. Consider, for example, the instance in LexMTurk that refers to target word “vital” in
sentence “Photosynthesis is vital for life on Earth”. The candidates substitutions suggested by
annotators are five: “important, “critical, “essential, “necessary and “needed. Consequently,
the gold count for this instance is five.

This strategy has the goal of evaluating how these ranking-based selectors would perform
in case the exact number of words that can replace a given target word is known. It is
important to mention that, in a realistic scenario, these gold-counts are not available. We
investigate how the proportion of candidates discarded influence the performance of our
ranking-based selectors in Section 7.5.

The results obtained for each and every Substitution Generation approach are illustrated
in Tables 7.5 to 7.8. The meaning of the identifiers in columns one and two are:

• BF: The ranker was trained over the Best-First version of LexMTurk, and hence did
not exploit the Robbins-Sturgeon hypothesis.

• TF: The ranker was trained over the Target-First version of LexMTurk, and hence have
exploited the Robbins-Sturgeon hypothesis.

• U: The ranker was trained in unsupervised fashion.

• S: The ranker was trained in supervised fashion.

For supervised rankers, using the target word itself as its best candidate substitution
did not translate to any statistically significant (p< 0.05) improvements in performance
compared to using the Best-First training set. For the majority of generators, training the
supervised rankers over the Target-First version of LexMTurk made their F1 scores either
equal or smaller than the ones obtained by rankers trained over the Best-First version.

In contrast, our unsupervised Boundary Ranker highlights the potential of the Robbins-
Sturgeon hypothesis in SS. Without the need for manually annotated data, our approach was
able to outperform all supervised rankers in almost all evaluation metrics for all generators.
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It even outperforms the SVM rankers, which use a much more sophisticated modelling
strategy than Boundary Ranking. These results are further evidence of the effectiveness of
Boundary Ranking in learning ranking models, and suggest that unannotated bodies of text
do carry valuable information about grammaticality and meaning preservation, which can be
harnessed with the help of a suitable learning strategy.

Training Dataset Approach Potential Precision Recall F1
S BF Boundary 0.608 0.194 0.085 0.118
S TF Boundary 0.604 0.192 0.085 0.118
S BF SVM Rank 0.592 0.190 0.084 0.116
S TF SVM Rank 0.596 0.189 0.083 0.116
U - Boundary 0.608 0.194 0.085 0.118

Table 7.5 Performance results for the Devlin generator

Training Dataset Approach Potential Precision Recall F1
S BF Boundary 0.820 0.229 0.124 0.161
S TF Boundary 0.800 0.230 0.125 0.162
S BF SVM Rank 0.808 0.229 0.124 0.161
S TF SVM Rank 0.800 0.225 0.123 0.159
U - Boundary 0.812 0.231 0.126 0.163

Table 7.6 Performance results for the Kauchak generator

Training Dataset Approach Potential Precision Recall F1
S BF Boundary 0.764 0.192 0.124 0.151
S TF Boundary 0.760 0.190 0.123 0.149
S BF SVM Rank 0.748 0.188 0.122 0.148
S TF SVM Rank 0.748 0.188 0.122 0.148
U - Boundary 0.768 0.192 0.124 0.151

Table 7.7 Performance results for the Paetzold generator

7.4 Benchmarking Ranking Strategies

Now that we have evidence that our unsupervised approach offers competitive performance
for SS, we assess how well it performs in comparison to several other supervised and
unsupervised ranking strategies for the task. For evaluation, we use the same settings used in
our last experiment: each ranker selects the number of “gold counts” of each instance in the
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Training Dataset Approach Potential Precision Recall F1
S BF Boundary 0.928 0.217 0.210 0.213
S TF Boundary 0.940 0.224 0.217 0.220
S BF SVM Rank 0.920 0.229 0.223 0.226
S TF SVM Rank 0.880 0.212 0.206 0.209
U - Boundary 0.944 0.247 0.240 0.244

Table 7.8 Performance results for all generators combined

test portion of the Best-First version of LexMTurk. In our second experiment, we compare
the performance of 13 distinct rankers:

• Unsupervised Boundary Ranker: The approach introduced in this Chapter, trained
in same way as in the previous experiment.

• Supervised Boundary Ranker: The same approach described in the previous experi-
ment, trained over the training portion of the Best-First version of LexMTurk.

• Supervised SVM Ranker: The same approach described in the previous experiment,
trained over the training portion of the Best-First version of LexMTurk.

• Metric-Based Rankers: A total of 10 unsupervised rankers, where each ranker uses
as a metric one of the features described in Section 7.2.2. The features are eight n-gram
frequencies under a (l,r) configuration, in which l and r are the number of tokens to
the left and right, respectively, the word vector similarity between target and candidate,
and target POS tag conditional probability.

We evaluate the performance of the ranking-based selectors over the candidate substi-
tutions produced by each and every generator described in Section 7.2.1. The results are
presented in Tables 7.9 through 7.12.

It can be observed from the results that n-gram frequency metric-based rankers can be
effective in SS, since, although simple in nature, they still offer very competitive results in
comparison to the supervised rankers. Nonetheless, none of the metric-based approaches
were able to outperform our unsupervised approach, which still offers the highest F1 scores
for all generators evaluated.

7.5 Selection Proportion Assessment

While the previous experiments revealed the potential of ranking-based selectors, they did
not include any comparisons between ranking models and other SS approaches. Different
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Training Approach Potential Precision Recall F1
U Boundary 0.608 0.194 0.085 0.118
S Boundary 0.608 0.194 0.085 0.118
S SVM Rank 0.592 0.190 0.084 0.116
U N-Gram (0, 1) 0.628 0.178 0.088 0.118
U N-Gram (0, 2) 0.624 0.177 0.088 0.117
U N-Gram (1, 0) 0.620 0.175 0.087 0.116
U N-Gram (1, 1) 0.624 0.177 0.088 0.117
U N-Gram (1, 2) 0.620 0.176 0.087 0.117
U N-Gram (2, 0) 0.620 0.175 0.087 0.116
U N-Gram (2, 1) 0.624 0.177 0.088 0.117
U N-Gram (2, 2) 0.620 0.176 0.087 0.117
U Embed. Sim. 0.608 0.169 0.084 0.112
U POS Prob. 0.596 0.168 0.083 0.112

Table 7.9 Performance results for the Devlin generator

Training Approach Potential Precision Recall F1
U Boundary 0.812 0.231 0.126 0.163
S Boundary 0.820 0.229 0.124 0.161
S SVM Rank 0.808 0.229 0.124 0.161
U N-Gram (0, 1) 0.820 0.205 0.120 0.152
U N-Gram (0, 2) 0.820 0.206 0.121 0.153
U N-Gram (1, 0) 0.812 0.202 0.119 0.150
U N-Gram (1, 1) 0.820 0.209 0.123 0.155
U N-Gram (1, 2) 0.820 0.209 0.123 0.155
U N-Gram (2, 0) 0.812 0.202 0.119 0.150
U N-Gram (2, 1) 0.820 0.209 0.123 0.155
U N-Gram (2, 2) 0.820 0.209 0.123 0.155
U Embed. Sim. 0.808 0.208 0.123 0.154
U POS Prob. 0.772 0.195 0.115 0.145
Table 7.10 Performance results for the Kauchak generator
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Training Approach Potential Precision Recall F1
U Boundary 0.768 0.192 0.124 0.151
S Boundary 0.764 0.192 0.124 0.151
S SVM Rank 0.748 0.188 0.122 0.148
U N-Gram (0, 1) 0.768 0.178 0.123 0.145
U N-Gram (0, 2) 0.768 0.178 0.123 0.146
U N-Gram (1, 0) 0.776 0.178 0.123 0.145
U N-Gram (1, 1) 0.772 0.178 0.123 0.146
U N-Gram (1, 2) 0.772 0.178 0.123 0.145
U N-Gram (2, 0) 0.776 0.178 0.123 0.145
U N-Gram (2, 1) 0.772 0.178 0.123 0.146
U N-Gram (2, 2) 0.772 0.178 0.123 0.146
U Embed. Sim. 0.748 0.171 0.119 0.140
U POS Prob. 0.728 0.168 0.117 0.138
Table 7.11 Performance results for the Paetzold generator

Training Approach Potential Precision Recall F1
U Boundary 0.944 0.247 0.240 0.244
S Boundary 0.928 0.217 0.210 0.213
S SVM Rank 0.920 0.229 0.223 0.226
U N-Gram (0, 1) 0.816 0.169 0.165 0.167
U N-Gram (0, 2) 0.828 0.171 0.167 0.169
U N-Gram (1, 0) 0.868 0.176 0.172 0.174
U N-Gram (1, 1) 0.892 0.198 0.193 0.195
U N-Gram (1, 2) 0.884 0.199 0.195 0.197
U N-Gram (2, 0) 0.868 0.177 0.172 0.174
U N-Gram (2, 1) 0.896 0.199 0.195 0.197
U N-Gram (2, 2) 0.884 0.201 0.196 0.199
U Embed. Sim. 0.816 0.176 0.172 0.174
U POS Prob. 0.748 0.160 0.156 0.158
Table 7.12 Performance results for all generators combined
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from rankers, other selectors perform a binary decision over each candidate substitution
generated: can it replace the target word without compromising the sentence’s grammaticality
nor changing its meaning, or not? Consequently, for a ranker and a classifier to be fairly
compared, the ranker would have to select a predetermined portion of candidate substitutions.

In our third experiment, we assess how the performance of a ranking selector is affected
by the proportion of candidate substitutions selected for each instance of a dataset based on
the gold-standard. The gold-standard used is the test portion of LexMTurk. We assess the
performance of four rankers:

• Unsupervised Boundary Ranker: The approach introduced in this Chapter, trained
in same way as in the experiment of Section 7.3.

• Supervised Boundary Ranker: The same approach described in the experiment of
Section 7.3, trained over the training portion of the Best-First version of LexMTurk.

• Supervised SVM Ranker: The same approach described the experiment of Sec-
tion 7.3, trained over the training portion of the Best-First version of LexMTurk.

• Metric-Based Ranker: The overall best performing metric ranker from the experiment
of Section 7.3. It ranks candidates according to the n-grams composed of two tokens
to the right and the left of the target word.

We test selection proportions that range from 10% to 90% of the candidate substitutions
generated, in intervals of 10%. The same proportion of candidates is selected for all instances
in the test set. The Potential, Precision, Recall and F1 scores obtained for each generator are
illustrated in Figures 7.1 through 7.4.

The score graphs reveal that, in most cases, the highest performing selector remains so
independently of the proportion of substitutions selected. This phenomenon grants consis-
tency to the previous two experiments, further highlighting the potential of our unsupervised
approach.

It can also be observed that the proportion that yields the highest F1 scores is not
consistent throughout the generators. If 80% of the candidates are selected, for example,
the selectors would perform very well for the Devlin generator, but very poorly for all
generators combined. In contrast, the opposite would happen if only 30% of candidates
were selected. We hypothesise that this phenomenon is linked to the average number of
candidates produced by each approach. While the Devlin generator, which takes synonyms
from WordNet, produces an average of 10 candidates per complex word, combining all
generators yields an average of 30. Since WordNet is a manually created lexicon, the Devlin
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Fig. 7.1 Percentage selection performance results for the Devlin generator

Fig. 7.2 Percentage selection performance results for the Kauchak generator
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Fig. 7.3 Percentage selection performance results for the Paetzold generator

Fig. 7.4 Percentage selection performance results for all generators combined
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generator produces a much smaller proportion of spurious candidates than all generators
combined. We believe that, because of this difference, the Devlin generator pairs better with
a ranking selector that discards only a small proportion of the worst candidates, while the
combination of all generators benefits from a selector that discards a much larger proportion
of them.

In order to test this hypothesis, we show the performance graphs that result from selecting
a fixed integer number of candidate substitutions, rather than a percentage of them. We select
from 1 to 15 candidates for each instance in the test set, in intervals of one.

The graphs depicted in Figures 7.5 through 7.8 are in accordance with our hypothesis, and
confirm that the ideal number of selected candidates is not identical for all SG approaches,
suggesting that the number or percentage of selected candidates should be decided based on
the number and type of generator used. While the Devlin, Kauchak and Paetzold generators
benefit from a more conservative selector that yield a higher Recall, the combination of all
generators requires for a more optimistic selector that yield a higher Precision.

In conclusion, it can be stated that although ranking-based selectors offer more flexibility
than disambiguators and classifiers, it is important to investigate the performance and intrica-
cies of the generator being used before determining the number of candidates to select, since
the proportion chosen can greatly affect the selector’s performance.

Fig. 7.5 Results for the Devlin generator with respect to fixed numbers of selected candidates
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Fig. 7.6 Results for the Kauchak generator with respect to fixed numbers of selected candi-
dates

Fig. 7.7 Results for the Paetzold generator with respect to fixed numbers of selected candidates
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Fig. 7.8 Results for all generators combined with respect to fixed numbers of selected
candidates

7.6 Comparing Rankers to Classifiers

Now that we have gathered insight on the relation between the type of generator used and how
many candidates should be selected, it is possible to compare the performance of ranking-
based selectors to other types of selectors. In this experiment, we compare the performance
of the First, Random, Lesk, Path, Biran and Belder selectors, described in Section 7.2.1,
and the same four ranking-based selectors from our previous experiment: the Unsupervised
Boundary Ranker, Supervised Boundary Ranker, Supervised SVM Ranker and Metric-Based
Ranker.

We evaluate the performance of all selectors over the entire Best-First version of LexM-
Turk. For the Devlin, Kauchak and Paetzold generators, we select 7 candidate substitutions
for each instance in the dataset, and for all generators combined, we select 14. These values
were selected based on the best performing selection settings from the graphs in Figures 7.5
through 7.8. The results obtained are illustrated in Tables 7.13 through 7.16.
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Selector Potential Precision Recall F1
First 0.162 0.204 0.017 0.032
Random 0.098 0.141 0.010 0.018
Path 0.140 0.096 0.014 0.024
Lesk 0.140 0.096 0.014 0.024
Biran 0.360 0.127 0.050 0.072
Belder 0.120 0.447 0.011 0.022
Metric-Based 0.614 0.197 0.080 0.114
SVM Ranker 0.604 0.229 0.081 0.120
Supervised Boundary 0.610 0.229 0.082 0.120
Unsupervised Boundary 0.610 0.235 0.084 0.123
No Selection 0.616 0.157 0.088 0.113

Table 7.13 Benchmarking SS results for substitutions generated by the Devlin generator

Selector Potential Precision Recall F1
First 0.076 0.065 0.007 0.012
Random 0.034 0.029 0.003 0.005
Path 0.096 0.076 0.010 0.018
Lesk 0.096 0.076 0.010 0.018
Biran 0.482 0.179 0.075 0.105
Belder 0.228 0.585 0.022 0.043
Metric-Based 0.820 0.257 0.114 0.158
SVM Ranker 0.820 0.302 0.123 0.175
Supervised Boundary 0.824 0.298 0.121 0.172
Unsupervised Boundary 0.828 0.307 0.125 0.177
No Selection 0.832 0.153 0.134 0.143

Table 7.14 Benchmarking SS results for substitutions generated by the Kauchak Generator

The scores reveal that the unsupervised boundary ranker is, as suggested in the previous
experiments, the current most effective approach for SS. In comparison to not performing
selection at all, our approach manages to consistently increase F1 scores while effectively
retaining most of the Potential of all generators.

The SS rankers were the only ones able to improve the F1 scores obtained by not
performing selection at all. All WSD strategies evaluated, along with any other SS classifiers,
have considerably decreased the Potential, Recall and F1 scores of all generators. Although
the Belder selector achieved very impressive Precision scores for all instances, this comes at
the cost of Potential and Recall.
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Selector Potential Precision Recall F1
First 0.124 0.145 0.012 0.022
Random 0.078 0.094 0.007 0.012
Path 0.224 0.122 0.025 0.041
Lesk 0.224 0.122 0.025 0.041
Biran 0.470 0.187 0.079 0.111
Belder 0.310 0.335 0.032 0.058
Metric-Based 0.794 0.220 0.123 0.158
SVM Ranker 0.776 0.296 0.117 0.168
Supervised Boundary 0.788 0.238 0.132 0.170
Unsupervised Boundary 0.790 0.235 0.131 0.168
No Selection 0.802 0.177 0.140 0.156

Table 7.15 Benchmarking SS results for substitutions generated by the Paetzold Generator

Selector Potential Precision Recall F1
First 0.194 0.052 0.020 0.029
Random 0.116 0.034 0.011 0.017
Path 0.334 0.051 0.043 0.046
Lesk 0.334 0.051 0.043 0.046
Biran 0.602 0.079 0.198 0.113
Belder 0.408 0.257 0.046 0.078
Metric-Based 0.934 0.186 0.210 0.197
SVM Ranker 0.952 0.223 0.252 0.237
Supervised Boundary 0.960 0.211 0.239 0.224
Unsupervised Boundary 0.972 0.231 0.261 0.245
No Selection 0.996 0.071 0.358 0.119

Table 7.16 Benchmarking SS results for substitutions generated by all generators combined
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7.7 Full Pipeline Evaluation

In our final experiment, we assess the performance of our approach as part of a complete
LS system. For that purpose, we combine all pairs of generators and selectors described in
Section 7.2.1 with three metric-based Substitution Ranking approaches. The metrics used
are:

• Word Length: The shorter a word is, the simpler it is.

• Word Frequency: The more frequently a word appears in Simple Wikipedia, the
simpler it is.

• Number of Senses: The more ambiguous a word is, the simpler it is.

To obtain the sense counts we resort to WordNet. The Accuracy scores obtained for all
combinations are shown in Tables 7.17 through 7.19.

The SVM ranker did not outperform our unsupervised approach in Substitution Selection
alone, but it did perform better in practice. But even though the scores obtained by the SVM
ranker are slightly higher than our unsupervised Boundary Ranker overall, F-tests reveal
the absence of a statistically significant difference (p<0.05) between them in the settings
illustrated in Tables 7.17 and 7.18. In Section 8.5.2 we discuss in more detail the factors we
believe to be responsible for the contrast between the results obtained in the Substitution
Selection benchmark of Section 7.6 and this full pipeline evaluation.

Nonetheless, all unsupervised and supervised ranking-based selectors have offered consis-
tent improvements over using another selector from literature, or not performing selection at
all. It can also be noticed that although supervised Boundary Ranking suffers in performance
for some combinations of generators and rankers, our unsupervised Boundary Ranker offers
Accuracy scores comparable to that of the SVM ranker in all instances, which is a great
achievement, considering that it does not need any manually annotated data to be trained.

7.8 Conclusions

In this Chapter we introduced the concept of ranking-based selectors. Instead of addressing
SS as a disambiguation or classification task, in which one must directly decide which
candidate substitutions can and cannot replace a given target word, we take it as a ranking
problem, in which each and every candidate has a likelihood of being able to correctly replace
a target word without compromising its integrity.
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Devlin Kauchak Paetzold All
First 0.112 0.040 0.116 0.048
Random 0.078 0.024 0.068 0.036
Lesk 0.086 0.064 0.146 0.062
Leacock 0.086 0.064 0.120 0.062
Biran 0.124 0.150 0.208 0.082
Brown 0.114 0.216 0.252 0.272
Metric-Based 0.270 0.284 0.348 0.170
Supervised Boundary 0.280 0.280 0.344 0.166
Unsupervised Boundary 0.296 0.328 0.362 0.328
SVM Ranker 0.300 0.336 0.382 0.352
No Selection 0.266 0.254 0.324 0.120

Table 7.17 Accuracy scores for candidate substitutions ranked by their length

Devlin Kauchak Paetzold All
First 0.150 0.076 0.126 0.124
Random 0.092 0.034 0.072 0.074
Lesk 0.110 0.074 0.152 0.118
Leacock 0.110 0.074 0.150 0.118
Biran 0.196 0.228 0.264 0.128
Brown 0.114 0.222 0.270 0.286
Metric-Based 0.332 0.396 0.398 0.220
Supervised Boundary 0.380 0.396 0.430 0.202
Unsupervised Boundary 0.390 0.428 0.436 0.362
SVM Ranker 0.398 0.442 0.434 0.372
No Selection 0.248 0.368 0.412 0.114

Table 7.18 Accuracy scores for candidate substitutions ranked by their frequency

Devlin Kauchak Paetzold All
First 0.132 0.076 0.110 0.124
Random 0.078 0.034 0.072 0.082
Lesk 0.100 0.076 0.146 0.100
Leacock 0.100 0.076 0.122 0.100
Biran 0.152 0.276 0.206 0.138
Brown 0.114 0.214 0.256 0.274
Metric-Based 0.294 0.462 0.322 0.240
Supervised Boundary 0.312 0.480 0.342 0.262
Unsupervised Boundary 0.322 0.480 0.348 0.332
SVM Ranker 0.330 0.488 0.382 0.380
No Selection 0.312 0.444 0.328 0.214

Table 7.19 Accuracy scores for candidate substitutions ranked by their number of senses
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By combining the Boundary Ranking strategy introduced in Chapter 6 and the Robbins-
Sturgeon hypothesis, we introduce a novel, unsupervised ranking approach for Substitution
Selection. It learns a model from automatically produced training data by assuming that a
target word is irreplaceable, and hence no other candidate substitutions can replace it without
compromising the grammaticality and/or changing the meaning of the sentence to some
extent.

In our experiments, we discovered that our unsupervised Boundary Ranker can be more
effective than various other metric-based and supervised rankers. It can considerably improve
the F1 obtained by several generators without compromising their Potential and Recall,
despite requiring no manually annotated data for training. We also found that the proportion
of candidates selected can greatly influence the performance of an SS ranker, and that it
should be determined based on the type of strategy used by the generator. In practice, the
ranking-based selectors proved much more effective than any other approaches in literature,
and our unsupervised Boundary Ranker obtained performance scores comparable to a much
more sophisticated supervised approach.

Given these considerations, we can conclude that ranking-based strategies are a viable
approach to Substitution Selection, and our unsupervised Boundary Ranking approach is a
flexible, extensible and effective strategy for the task.





Chapter 8

Resources, Tools and Evaluation

Our efforts towards creating more effective LS strategies for non-native English speakers
have led to the creation of various useful tools, datasets and corpora for the task. In this
Chapter, we describe these resources, as well as a benchmarking and an error analysis
experiment where we use them in performance comparisons that outline the main strengths
and weaknesses of numerous LS approaches.

More specifically, in what follows, we introduce a structured corpus of subtitles of
movies and series for family and children designed to produce frequency counts that better
correlate with word familiarity (Section 8.1), a regression bootstrapping algorithm designed
to automatically expand a resource with psycholinguistic features of words (Section 8.2),
a new framework that provides dozens of LS approaches, including the ones introduced in
this thesis (Section 8.3), and a new evaluation dataset for LS that represents the needs of
non-native English speakers (Section 8.4). Using our new framework and evaluation dataset,
we perform an extensive benchmark that compares the performance of 1,344 approaches to
LS (Section 8.5). We also introduce an automatic error categorisation framework that allows
for a more informative analysis of the simplifiers evaluated (Section 8.6).

8.1 SubIMDB: A Corpus of Subtitles

Large corpora of text are certainly one of the most fundamental resources in the field of
Computational Linguistics. In Psycholinguistics, it has been long established that word
frequencies from corpora play a very important role in cognitive processes. Brysbaert
and New (2009a) points out that frequently occurring words are often much more easily
perceived, recalled and associated than rare words (Balota and Chumbley, 1984; Rayner and
Duffy, 1986). In Text Simplification, researchers have found a strong relationship between
frequencies and word simplicity (Devlin and Tait, 1998).
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An inherent limitation of work based on word frequency analysis is that the type of
resource used as a corpus is often built for a specific communication purpose, such as news
(Burgess and Livesay, 1998). This is however not representative of everyday language
usage, particularly from a psycholinguistic perspective. The other extreme of the spectrum
features resources compiled from user-generated content, such as micro-blogs. However,
these resources often suffer from grammar errors and misspellings, excessive use of acronyms
and shortenings, partly due to the constrains of the publication means (e.g. limited number
of characters) (Pak and Paroubek, 2010).

This is particularly concerning given that previous research has shown that the source
from which a corpus was extracted is one of its most important defining traits. Brysbaert and
New (2009b), for example, shows that the raw frequencies extracted from a corpus of movie
subtitles capture word familiarity more effectively than the ones extracted from other larger
corpora. Their corpus corpus was also evaluated on the English Lexical Simplification task of
SemEval 2012 by Shardlow (2014b). It helped Shardlow (2014b) achieve scores comparable
to those obtained by Google 1T, although it is more than four orders of magnitude smaller.
These results are very encouraging for our purposes, since the gold-standard rankings used
in their experiments were also produced by non-native English speakers.

Although these findings greatly highlight the potential of spoken language text in LS
for non-native English speakers, there are very few examples of resources of this kind
available for English. SUBTLEX (Brysbaert and New, 2009b) is a notable exception: it
contains texts extracted from 8,388 subtitles of American movies, and is freely available for
download. The OpenSubtitles2016 corpus (Lison and Tiedemann, 2016) is another example,
featuring sentences extracted from numerous subtitle files aligned at sentence level across
60 languages. However, since the subtitles in these corpora are not restricted with respect
to genre or domain, their proficiency in capturing the everyday language that non-native
English speakers are familiar with can be limited. Movies and series span from lighthearted
productions for toddlers to historic dramas targeting older audiences, with very distinct
vocabulary used.

In an effort to address the lack of reliable everyday language corpora for English, we
create SubIMDB, the first structured corpus of subtitles in literature. SubIMDB is composed
of subtitles of movies and series written for the “average audience”, and can be downloaded in
multiple useful formats. In the Sections that follow, we describe the resources and procedures
used to build SubIMDB (Section 8.1.1), and evaluate its performance in predicting lexical
decision times (Section 8.1.2) and many other psycholinguistic features (Section 8.1.3).
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8.1.1 Building SubIMDB

Our goal in creating SubIMDB was to compile and provide freely a large, structured corpus
of everyday language that better represents the language which non-native English speakers
are familiar with. As a data type, we have chosen subtitles of movies and series, since they
are available for dozens of languages. Another advantage of using subtitles as opposed to, for
example, chat logs or podcast transcripts, is that movies and series are subject to production
standards, and hence the subtitles created for them tend to be composed of linguistically
correct constructs.

Acquiring Subtitles

To create a reliable corpus of subtitles one must take into account that movies and series
can be of many different genres, and may target very distinct audiences. The compilation of
SUBTLEX involved the download of 8,388 subtitles of U.S films and series released between
1900-2007, with no restriction with respect to genre. We took a different approach when
creating SubIMDB. We use OpenSubtitles1 as a data source. One can download subtitles
from their API by providing with a production’s unique IMDb2 identifier.

As the first step in creating SubIMDB, we query the IMDb platform searching for identi-
fiers of six types of content: family movies, family series, comedy movies, comedy series,
movies for children and series for children. We choose these genres because productions of
this kind tend to target viewers of either young or all ages, and hence tend to use accessible
language. Our hypothesis is that word usage statistics from this type of content correlate
better with psycholinguistic properties of words, such as lexical decision times and age of
acquisition.

To obtain the identifiers, we use the IMDb engine3 to search for and parse all pages under
the family and comedy feature film pages, as well as the ones under the family and comedy
series categories. Since IMDb does not contain a category specific for children movies and
series, we resorted to 15 movies and series lists created by IMDb users to obtain them. In
total, we obtained the IMDb identifiers of 9,709 family movies, 8,008 family series, 66,411
comedy movies, 24,776 comedy series, 745 children movies and 124 children series.

We then queried the online OpenSubtitles API for each of these 109,773 IMDb identifiers.
Surprisingly, we were only able to find subtitles for 12,618 movies and series. On the other
hand, since series are comprised of various episodes, we downloaded subtitles for each

1http://www.opensubtitles.org
2http://www.imdb.com
3http://www.imdb.com/search
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episode of every season available in OpenSubtitles. A total of 38,274 subtitles were collected
in this way.

Processing Subtitles

In order to make their content more easily accessible, we first tokenized all lines in the
subtitles and removed any HTML tags. A filtering algorithm was then applied to discard
subtitle lines which:

1. Refer to metadata or timing indicators: These lines do not contain meaningful
information.

2. Have more than 80 characters: In most cases, lines with close to or more than 80
characters are composed of sequences of random spurious characters.

3. Contain advertisement: These lines refer to credits attributed to the creators of the
subtitles in question. Some examples of expressions targeted are “synched by” and
“opensubtitles.org”.

The resulting corpus contains 228,622,257 words in 39,050,417 lines, which is 4.5
times bigger than SUBTLEX.

8.1.2 Predicting Lexical Decision Times

One of the most popular strategies for frequency norm quality assessment is to evaluate how
well they predict lexical decision times. A very popular task in the fields of Psychology and
Psycholinguistics, lexical decision, also known as lexical reaction time, refers to the process
of deciding whether or not a given sequence of characters is a real word of the language in
question (Balota et al., 2007). Previous work has measured the time taken by subjects to
make such a decision for certain words, then used correlation metrics to assess how well their
frequencies can predict them (Balota et al., 2004; Brysbaert and New, 2009a; Van Heuven
et al., 2014; Vega et al., 2011).

In this experiment we assess how well frequencies from different sets of SubIMDB subti-
tles fair against other well-known corpora in how they correlate with lexical decision times.
For this experiment, we extracted word frequencies from various SubIMDB subcorpora:

We compare ours to six frequency norms:

• KF: Oldest and most widely used frequency norms, calculated over the Brown corpus
(Francis and Kucera, 1979; Rudell, 1993).
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All SubIMDB (SubIMDB) Family movies (SubFAM-M)
All movies (SubMOV) Family series (SubFAM-S)
All series (SubSER) Comedy movies (SubCOM-M)
All Family content (SubFAM) Comedy series (SubCOM-S)
All Comedy content (SubCOM) Children movies (SubCHI-M)
All children content (SubCHI) Children series (SubCHI-S)

• HAL: Hyperspace Analogue to Language word frequency norm, calculated over the
HAL corpus, which contains over 131 million words from Usenet newsgroups (Burgess
and Livesay, 1998).

• Wiki: Word frequencies from Wikipedia, with 97 million words (Kauchak, 2013).

• SimpleWiki: Word frequencies from Simple Wikipedia, with 9 million words
(Kauchak, 2013).

• SUBTLEX: Word frequencies from SUBTLEX, with 51 million words (Brysbaert
and New, 2009a).

• Open2016: Word frequencies from OpenSubtitles2016, with 2 billion words (Lison
and Tiedemann, 2016).

We regularise all norms using Equation 8.1, in which f is the frequency norm value of
a word w. This transformation has shown to best represent the relationship between word
frequencies and lexical decision times (Balota et al., 2004).

norm( f (w)) = log10( f (w)+1) (8.1)

As our test set, we use the MRC psycholinguistic Database (Coltheart, 1981), which
provides lexical decision times for 40,468 words. Like in the experiments of Brysbaert and
New (2009a), we consider only the subset of 38,130 lowercase words in order to avoid most
abbreviations and proper nouns.

The correlation scores in Table 8.1 reveal that, while SubIMDB in its entirety yields the
highest Spearman (ρ) correlation scores, the SubMOV corpus, which contains only subtitles
of movies, yields the highest Pearson (r) correlation. F-tests show a statistically significant
difference between frequencies from SubIMDB and all other corpora.

Unlike what was reported in Brysbaert and New (2009a), the HAL norm achieved lower
correlation scores than the SUBTLEX norm, despite the fact that the HAL corpus is twice
as large as SUBTLEX. This contrast highlights the potential of spoken language corpora in
lexical decision prediction.
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Norm Size ρ r F-test
KF 1M −0.517 −0.486 •••
HAL 131M −0.641 −0.616 •••
Wiki 97M −0.531 −0.506 •••
SimpleWiki 9M −0.560 −0.530 •••
SUBTLEX 62M −0.653 −0.619 •••
Open2016 2B −0.657 −0.602 •••
SubIMDB 228M −0.659 −0.624 -
SubMOV 125M −0.657 −0.626 •••
SubSER 100M −0.652 −0.620 •••
SubFAM 34M −0.649 −0.614 •••
SubCOM 199M −0.657 −0.624 •••
SubCHI 17M −0.634 −0.592 •••
SubFAM-M 17M −0.640 −0.596 •••
SubFAM-S 17M −0.632 −0.590 •••
SubCOM-M 107M −0.655 −0.623 •••
SubCOM-S 91M −0.651 −0.618 •••
SubCHI-M 8M −0.625 −0.572 •••
SubCHI-S 8M −0.606 −0.556 •••

Table 8.1 Lexical decision prediction correlation scores. The last column indicates a statis-
tically significant difference with SubIMDB given p<0.1 (•), p<0.01 (••) or p<0.001
(•••) (F-test).

Our results also indicate a poor performance for the Kucera-Francis coefficient. Despite
its use in numerous previous contributions (Brysbaert and New, 2009a; Burgess and Livesay,
1998; Zevin and Seidenberg, 2002), more modern resources proved more effective.

8.1.3 Predicting Psycholinguistic Properties

In addition to lexical decision times, other psycholinguistic properties of words have been
studied in terms of their correlation with frequency norms (Paetzold and Specia, 2016c). In
this experiment, we evaluate how well the norms described in the previous Section correlate
with four psycholinguistic properties extracted from the MRC psycholinguistic Database:

• Familiarity: Available for 9,392 words – frequency with which a word is seen, heard
or used daily.

• Age of Acquisition: Available for 3,503 words – age at which a word is learned.

• Concreteness: Available for 8,228 words – how “palpable” the object the word refers
to is.
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• Imagery: Available for 9,240 words – intensity with which a word arouses images.

The results in Table 8.2 reveal that SubFAM-M (family movies) performs better than
all other norms in predicting Age of Acquisition and Concreteness, although it is 117 times
smaller than OpenSubtitles2016. F-tests reveal a statistically significant difference between
SubIMDB and all other corpora.

Age of Acq. Familiarity Concreteness Imagery
Size r F-test r F-test r F-test r F-test

KF 1M −0.447 ••• 0.669 ••• −0.180 ••• −0.045 •••
HAL 131M −0.511 ••• 0.732 ••• −0.064 ••• 0.086 •••
Wiki 97M −0.412 ••• 0.676 ••• −0.043 ••• 0.084 •••
SimpleWiki 9M −0.486 ••• 0.667 ••• 0.011 ••• 0.129 •••
SUBTLEX 62M −0.676 ••• 0.774 ••• 0.017 ••• 0.190 •••
Open2016 2B −0.666 ••• 0.799 ••• −0.003 ••• 0.185 •••
SubIMDB 228M −0.698 - 0.781 - 0.037 - 0.213 -
SubMOV 125M −0.705 ••• 0.777 ••• 0.031 ••• 0.212 •••
SubSER 100M −0.687 ••• 0.777 ••• 0.038 ••• 0.207 •••
SubFAM 34M −0.723 ••• 0.758 ••• 0.038 ••• 0.217 •••
SubCOM 199M −0.696 •• 0.781 ••• 0.037 ••• 0.211 •••
SubCHI 17M −0.709 ••• 0.735 ••• 0.028 ••• 0.201 •••
SubFAM-M 17M −0.746 ••• 0.742 ••• 0.043 ••• 0.220 •••
SubFAM-S 17M −0.685 ••• 0.743 ••• 0.007 ••• 0.178 •••
SubCOM-M 107M −0.698 ••• 0.777 ••• 0.027 ••• 0.207 •••
SubCOM-S 91M −0.690 ••• 0.777 ••• 0.042 ••• 0.209 •••
SubCHI-M 8M −0.728 ••• 0.723 ••• 0.026 ••• 0.191 •••
SubCHI-S 8M −0.670 ••• 0.704 ••• −0.006 ••• 0.158 •••

Table 8.2 Pearson correlation of norms with respect to psycholinguistic properties. Columns
following correlation scores indicate a statistically significant difference with SubIMDB
given p<0.1 (•), p<0.01 (••) or p<0.001 (•••) (F-test).

Perhaps most surprising is the performance of the SubIMDB subset of children movies
(SubCHI-M) in predicting Age of Acquisition. Despite its small size, its performance is still
much superior than almost all corpora, including OpenSubtitles2016, which is over 250 times
larger. Comparing word frequencies from SubCHI-M with the ones in OpenSubtitles2016,
we found interesting differences. Table 8.3 shows the most over and underrepresented words
in SubCHI-M based on percentages of variance with respect to OpenSubtitles2016.

It can be noticed that while overrepresented words (“turtles”, “hedgehog”, etc.) are
mostly innocent in nature, underrepresented words describe mostly sexual and/or thought-
provoking concepts (“vagina”, “abortion”, etc.). These differences reveal that, although
subtitle corpora may share traits in general, the domain from which the subtitles are extracted
plays an important role. This highlights the often disregarded advantages of a structured, raw
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text subtitle corpora like the one we collected here. By making subtitles available in their raw
form along with metadata about their source of origin, future research can explore different
ways of building the ideal corpus for a given task, e.g. by employing clever subtitle selection
and filtering techniques.

1 2 3 4 5 6 7
Over hoagy flintstone turtles potter fantasia hedgehog hiccup
Under vagina abortion cartel intercourse rapist overdose porn

Table 8.3 Representation contrast between the SubCHI-M and OpenSubtitles2016 corpora

In what follows, we describe an approach for the automatic inference of the psycholin-
guistic features studied in this Section.

8.2 Inferring Psycholinguistic Properties of Words

In the last three decades, much has been found on how the psycholinguistic properties of
words influence cognitive processes in the human brain when a subject is presented with
either written or spoken forms. A word’s Age of Acquisition is an example. The findings in
(Carroll and White, 1973) reveal that objects whose names are learned earlier in life can be
named faster in later stages of life. Zevin and Seidenberg (2002) show that words learned in
early ages are orthographically or phonologically very distinct from those learned in adult
life.

Other examples of psycholinguistic properties, such as Familiarity and Concreteness,
influence one’s proficiency in word recognition and text comprehension. The experiments
in (Connine et al., 1990; Morrel-Samuels and Krauss, 1992) show that words with high
Familiarity yield lower reaction times in both visual and auditory lexical decision, and require
less hand gesticulation in order to be described. Begg and Paivio (1969) found that humans
are less sensitive to changes in wording made to sentences with high Concreteness words.

When quantified, these aspects can be used as features for various NLP tasks. Se-
mantic Classification tasks have benefited from the use of such features: by combining
Concreteness with other features, Hill and Korhonen (2014) reached the state-of-the-art
performance in Semantic Composition (denotative/connotative) and Semantic Modification
(intersective/subsective) prediction. In LS, the approach of (Jauhar and Specia, 2012) is
the only example of approach that exploits such features that we know of. By combining
various collocational and psycholinguistic features extracted from the MRC Psycholinguistic
Database (Coltheart, 1981), they trained a ranker (Joachims, 2002) that reached first place in
the English Lexical Simplification task at SemEval 2012. Nonetheless, their approach could
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only explore these psycholinguistic features for a small set of words for which they were
available in the MRC database, which would be a problem in a realistic scenario where an
LS system is used to simplify thousands of different words from various sources.

Except for the two aforementioned contributions, we were not able to find any other
examples of NLP systems that exploit this type of feature. The lack of availability of such
resources and the cost inherent to manually estimating psycholinguistic properties are two
likely causes for this.

In order to address this problem, we propose a method to automatically infer them.
Following the approach of Yarowsky (1995), we train regressors by performing bootstrapping
over the MRC Psycholinguistic Database, which provides access to various psycholinguistic
properties. To do so, we exploit word embedding models and several other linguistic
resources. We compare our approach to various baselines (Section 8.2.3), and incorporate
the properties produced in the training of LS systems (Section 8.2.4).

8.2.1 The MRC Psycholinguistic Database

Introduced by Coltheart (1981), the MRC (Machine Readable Dictionary) Psycholinguistic
Database is a digital compilation of lexical, morphological and psycholinguistic properties
for 150,837 words. The 27 psycholinguistic properties in the resource range from simple
frequency measures (Rudell, 1993) to elaborate measures estimated by humans, such as Age
of Acquisition and Imagery (Gilhooly and Logie, 1980). However, despite various efforts
to populate the MRC Database, these properties are only available for small subsets of the
150,837 words.

We focus on the four manually estimated psycholinguistic properties in the MRC Database
described in Section 8.1.3, which are Familiarity, Age of Acquisition, Concreteness and
Imagery. We focus on these properties since they have been proven useful and are some
of the most scarce in the MRC Database. As we previously discussed, these properties
have been successfully used in various approaches for Lexical Simplification and Semantic
Classification, and yet are available for no more than 6% of the words in the MRC Database.

8.2.2 Regression Bootstrapping with Word Embeddings

In order to automatically estimate missing psycholinguistic properties in the MRC Database,
we resort to bootstrapping. We base our approach on that by Yarowsky (1995), a bootstrapping
algorithm which aims to learn a classifier over a reduced set of annotated training instances
(or “seeds”). It does so by performing the following five steps:

1. Initialise training set S with the seeds available.
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2. Train a classifier over S.

3. Predict values for a set of unlabelled instances U .

4. Add to S all instances from U for which the prediction confidence c is equal or greater
than ζ .

5. If at least one instance was added to S, go to step 2, otherwise, return the resulting
classifier.

One critical difference between this approach and ours is that our task requires regression
algorithms instead of classifiers. In classification, the prediction confidence c is often calcu-
lated as the maximum signed distance between an instance and the estimated hyperplanes.
There is, however, no analogous confidence estimation technique for regression problems.
We address this problem by using word embedding models.

Embedding models have been proved effective in capturing linguistic regularities of
words (Mikolov et al., 2013c). In order to exploit these regularities, we assume that the
quality of a regressor’s prediction on an instance is directly proportional to how similar
the instance is to the ones in the labelled set. Since the input for the regressors are words,
we compute the similarity between a test word and the words in the labelled dataset as the
maximum cosine similarity between the test word’s vector and the vectors in the labelled set.

Let M be an embeddings model trained over vocabulary V , S a set of training seeds, ζ a
minimum confidence threshold, sim(w,S,M) the maximum cosine similarity between word
w and S with respect to model M, R a regression model, and R(w) its prediction for word w.
Our bootstrapping algorithm is depicted in Algorithm 2.

Algorithm 2 Regression Bootstrapping

1: procedure BOOTSTRAPPING(M, V, S, ζ )
2: while ∥S∥has not converged do
3: Train R over S
4: for w∈V−S do
5: if sim(w,S,M)≥ζ then Add ⟨w,R(w)⟩ to S
6: end if
7: end for
8: end while
9: end procedure

We found that 64,895 out of the 150,837 words in the MRC database were not present
in either WordNet or our word embedding models. Since our bootstrappers use features
extracted from both these resources, we were only able to predict the Familiarity, Age of
Acquisition, Concreteness and Imagery values of the remaining 85,942 words in MRC.
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8.2.3 Performance Comparison

In this Section, we assess the performance of our bootstrapping approach in various settings.
Since we were not able to find previous work for this task, in these experiments, we compare
the performance of our bootstrapping strategy to various baselines. For training, we use the
Ridge regression algorithm (Tikhonov, 1963). As features, our regressor uses the word’s raw
embedding values, along with the following 15 lexical features:

• Word’s length and number of syllables, as determined by the Morph Adorner module
of LEXenstein (Paetzold and Specia, 2015).

• Word’s frequency in the Brown (Francis and Kucera, 1979), SUBTLEX, SubIMDB,
Wikipedia and Simple Wikipedia corpora.

• Number of senses, synonyms, hypernyms and hyponyms for word in WordNet.

• Minimum, maximum and average distance between the word’s senses in WordNet and
the thesaurus’ root sense.

• Number of images found for word in the Getty Images database4.

We train our embedding models using word2vec over a corpus of 7 billion words com-
posed by the SubIMDB corpus, UMBC webbase, News Crawl, SUBTLEX, Wikipedia and
Simple Wikipedia. We use 5-fold cross-validation to optimise parameters: ζ , embeddings
model architecture (CBOW or Skip-Gram), and word vector size (from 300 to 2,500 in
intervals of 200). We include four strong baseline systems in the comparison:

• Max. Similarity: Test word is assigned the property value of the closest word in the
training set, i.e. the word with the highest cosine similarity according to the word
embeddings model.

• Avg. Similarity: Test word is assigned the average property value of the n closest
words in the training set, i.e. the words with the highest cosine similarity according to
the word embeddings model. The value of n is decided through 5-fold cross validation.

• Simple SVM: Test word is assigned the property value as predicted by an SVM
regressor (Smola and Vapnik, 1997) with a polynomial kernel trained with the 15
aforementioned lexical features.

4http://developers.gettyimages.com
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• Simple Ridge: Test word is assigned the property value as predicted by a Ridge
regressor trained with the 15 aforementioned lexical features.

• Super Ridge: Identical to Simple Ridge, the only difference being that it also includes
the words embeddings in the feature set. We note that this baseline uses the exact same
features and regression algorithm as our bootstrapped regressors.

The parameters of all baseline systems are optimised following the same method as with
our approach. We also measure the correlation between each of the aforementioned lexical
features and the psycholinguistic properties. For each psycholinguistic property, we create a
training and a test set by splitting the labelled instances available in the MRC Database in two
equally sized portions. All training instances are used as seeds in our approach. As evaluation
metrics, we use Spearman’s (ρ) and Pearson’s (r) correlation. Pearson’s correlation is the
most important indicator of performance: an effective regressor would predict values that
change linearly with a given psycholinguistic property.

The results are illustrated in Table 8.4. While the similarity-based approaches tend to
perform well for Concreteness and Imagery, typical regressors capture Familiarity and Age
of Acquisition more effectively. Our approach, on the other hand, is consistently superior
for all psycholinguistic properties, with both Spearman’s and Pearson’s correlation scores
varying between 0.82 and 0.88. The difference in performance between the Super Ridge
baseline and our approach confirm that our bootstrapping algorithm can in fact improve on
the performance of a regressor.

The parameters used by our bootstrappers, which are reported below, highlight the
importance of parameter optimization in our bootstrapping strategy: its performance peaked
with very different configurations for most psycholinguistic properties:

• Familiarity: 300 word vector dimensions with a Skip-Gram model, and ζ =0.9.

• Age of Acquisition: 700 word vector dimensions with a CBOW model, and ζ =0.7.

• Concreteness: 1,100 word vector dimensions with a Skip-Gram model, and ζ =0.7.

• Imagery: 1,100 word vector dimensions with a Skip-Gram model, and ζ =0.7.

Interestingly, frequency in the SubIMDB corpus has good linear correlation with Famil-
iarity and Age of Acquisition, much higher than any other feature. For Concreteness and
Imagery, on the other hand, the results suggest something different: the further a word is
from the root of a thesaurus, the most likely it is to refer to a physical object or entity.
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Familiarity Age of Acquisition Concreteness Imagery
System ρ r ρ r ρ r ρ r
Word Length -0.238 -0.171 0.501 0.497 -0.170 -0.195 -0.190 -0.193
Syllables -0.168 -0.114 0.464 0.458 -0.207 -0.238 -0.218 -0.224
Freq: SubIMDB 0.798 0.725 -0.679 -0.699 0.048 0.003 0.208 0.170
Freq: SUBTLEX 0.827 0.462 -0.646 -0.251 0.028 0.137 0.187 0.265
Freq: SimpleWiki 0.725 0.488 -0.453 -0.306 0.015 0.145 0.119 0.247
Freq: Wikipedia 0.694 0.283 -0.349 -0.112 -0.076 0.081 0.027 0.134
Freq: Brown 0.706 0.608 -0.380 -0.395 -0.155 -0.214 -0.054 -0.107
Sense Count 0.471 0.363 -0.429 -0.391 0.020 -0.017 0.119 0.059
Synonym Count 0.411 0.336 -0.381 -0.357 -0.036 -0.047 0.070 0.035
Hypernym Count 0.307 0.295 -0.411 -0.387 0.167 0.088 0.268 0.160
Hyponym Count 0.379 0.245 -0.324 -0.196 0.120 0.002 0.196 0.023
Min. Sense Depth -0.347 -0.072 0.366 0.055 0.151 -0.185 0.127 -0.224
Max. Sense Depth -0.021 -0.008 -0.197 -0.196 0.447 0.455 0.415 0.414
Avg. Sense Depth -0.295 -0.256 0.215 0.183 0.400 0.428 0.345 0.347
Img. Search Count 0.544 0.145 -0.325 -0.033 -0.037 -0.073 0.117 -0.059
Max. Similarity 0.406 0.402 0.445 0.443 0.742 0.743 0.618 0.605
Avg. Similarity 0.528 0.527 0.536 0.535 0.826 0.819 0.733 0.707
Simple SVM 0.835 0.815 0.778 0.770 0.548 0.477 0.555 0.528
Simple Ridge 0.832 0.815 0.785 0.778 0.603 0.591 0.620 0.613
Super Ridge 0.847 0.833 0.827 0.820 0.859 0.852 0.813 0.800
Bootstrapping 0.863 0.846 0.871 0.862 0.876 0.869 0.835 0.823

Table 8.4 Regression correlation scores. In bold are the highest scores within a group
(features, baselines, proposed approach), and underlined the highest scores overall.

8.2.4 Extrinsic Evaluation

Here we assess the effectiveness of our bootstrappers in LS. As shown by Jauhar and Specia
(2012), psycholinguistic features can help supervised ranking algorithms capture word
simplicity. Using the parameters described in Section 8.2.3, we train bootstrappers for these
two properties using all instances in the MRC Database as seeds. We then train three rankers
with (W) and without (W/O) psycholinguistic features:

• Horn (Horn et al., 2014): Uses an SVM ranker trained on various n-gram probability
features, as described in Section 5.4.

• Glavas (Glavaš and Štajner, 2015): Ranks candidates using various collocational and
semantic metrics, as described in Section 5.4.

• Paetzold: Ranks words according to a supervised Boundary Ranking approach, with
the same best performing configurations used in the experiment of Section 6.6.
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We use data from the English Lexical Simplification task of SemEval 2012 to assess
systems’ performance. The goal of the task is to rank words in different contexts according
to their simplicity. The training and test sets contain 300 and 1,710 instances, respectively.
We use TRank-at-1, 2 and 3 as our metrics.

The results in Table 8.5 show that the addition of our features lead to performance
increases with all rankers. Performing F-tests over the rankings estimated for the simplest
candidate in each instance, we have found these differences to be statistically significant
(p<0.05). Using our features, the Paetzold Boundary Ranker reaches the best published
results for the dataset.

n=1 n=2 n=3
Ranker W/O W W/O W W/O W

Best SemEval - 0.602 - - - -
Glavas 0.623 0.636 0.837 0.849 0.929 0.935
Horn 0.625 0.635 0.843 0.853 0.933 0.942
Paetzold 0.654 0.657 0.858 0.859 0.936 0.939

Table 8.5 Results on SemEval 2012 LS task dataset

In the Section that follows, we introduce a framework for LS that includes all of the
features and approaches described in this experiment, as well as many others.

8.3 LEXenstein: a Framework for Lexical Simplification

Despite the growth in popularity of LS over the years, the absence of tools to support the
process of conceiving, creating and evaluating LS systems has been hampering progress in
the area. There are very few examples of repositories containing functional implementations
of LS systems found in literature. We were only able to find one tool for LS: a set of
scripts designed for the training and testing of ranking models provided by Jauhar and
Specia (2012)5. However, they cover only one step of the process. Because of the scarcity
of practical implementations made available, modern contributions that present entire LS
approaches, such as the ones of Biran et al. (2011), Bott et al. (2012) and Horn et al. (2014),
are often forced to compare their approaches with only simple baselines or at most one other
approach in literature.

In an effort to provide a solution for this problem, we developed a new resource for LS. In
this Chapter, we introduce LEXenstein: a framework for Lexical Simplification that provides
a wide array of resources and utilities for all steps of the LS pipeline. It includes all CWI,

5https://github.com/sjauhar/simplex



8.3 LEXenstein: a Framework for Lexical Simplification 193

SG, SS and SR approaches described in this thesis. LEXenstein provides a way for those
interested to more easily conceive and evaluate LS systems. We describe LEXenstein in the
Sections that follow.

8.3.1 Framework Architecture

LEXenstein is an open-source Python library that provides several approaches for all steps
in the Lexical Simplification pipeline. It is distributed under a permissive BSD license and
is freely available for download at http://ghpaetzold.github.io/LEXenstein. To increase its
flexibility and allow for new content to be more easily incorporated, the library is structured
in nine modules:

• Complex Word Identification: Contains methods for the identification of complex
words in sentences.

• Substitution Generation: Contains methods for the generation of substitution candi-
dates for complex words.

• Substitution Selection: Contains methods for the selection of which substitutions
available can replace an ambiguous complex word in a given sentence.

• Substitution Ranking: Contains methods for the ranking of selected candidate substi-
tutions according to their simplicity.

• Feature Estimation: Provides a wide range of functions to allow for the user to easily
estimate many simplification features for all modules above.

• Evaluation: Contains evaluation methods for all steps of the LS pipeline, both jointly
and separately.

• Text Adorning: Provides an interface for the simplified access of Morph Adorner
(Burns, 2013), which can be used for many tasks related to LS.

• Spelling Correction: Includes resources for the training of spelling correction models.

• Utilities: Offers a series of routines to help the user produce the resources required by
other modules.

In order for the input and output produced by the many classes included in LEXenstein
to be standardised, we conceived the VICTOR and CWICTOR file formats, which are an
elegant way of representing data for both the training and testing of Lexical Simplification

http://ghpaetzold.github.io/LEXenstein
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models and systems. They are a reference to Victor Frankenstein, the main character in the
Frankenstein novel (Shelley, 2007).

The VICTOR format was conceived to represent datasets for the tasks of Substitution
Generation, Selection and Ranking. Each line of a file in VICTOR format is structured as
illustrated in Example 8.2, where Si is the ith sentence in the dataset, wi a target complex
word in the hith position of Si, c j

i a substitution candidate and r j
i its simplicity ranking.

⟨Si⟩ ⟨wi⟩ ⟨hi⟩
〈
r1
i :c1

i
〉 〈

r2
i :c2

i
〉
· · ·

〈
rn−1
i :cn−1

i
〉
⟨rn

i :cn
i ⟩ (8.2)

Each bracketed component in the example above is separated by a tabulation mark.
The CWICTOR format was conceived to represent datasets for the task of Complex

Word Identification. Each line of a file in CWICTOR format is structured as illustrated in
Example 8.3, where Si is the ith sentence in the dataset, wi a the word in the hith position of
Si, and li a binary label, which must have value 1 if wi is complex, and value 0 otherwise.

⟨Si⟩ ⟨wi⟩ ⟨hi⟩ ⟨li⟩ (8.3)

Each bracketed component in the example above is separated by a tabulation mark.

8.3.2 Complex Word Identification

LEXenstein’s Complex Word Identification module supports five distinct approaches. All of
them require as input a dataset in CWICTOR format, and produce as output one label for
each instance in it. Each approach is represented by one of the following Python classes:

• SimplifyNoneIdentifier: Assumes that no words should be simplified, and conse-
quently predicts that none of the words are complex.

• SimplifyAllIdentifier: Assumes that all words should be simplified, and consequently
predicts that all words are complex.

• LexiconIdentifier: Employs a lexicon-based approach for CWI, as described in Sec-
tion 2.2.3. It assumes that if a given word w is present in lexicon V , then it is
complex/simple. This class takes as input a lexicon file along with a label, which must
have value “complex” if the lexicon refers to a list of complex words, or “simple” if it
refers to a lexicon of simple words.

• ThresholdIdentifier: Employs a threshold-based approach for CWI, as described in
Section 2.2.2. It assumes that, given a word w and a metric M(w), there exists an
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optimal threshold t which best separates complex and simple words. This class requires
for a set of training instances over which threshold t is to be estimated. By using a
brute force search algorithm, it estimates threshold t over the training set, and uses it it
to judge whether or not a given word is complex.

• MachineLearningIdentifier: Employs Machine Learning techniques in the learning
of CWI models, as described in Section 2.2.5. Given a set of training instances and
a specified learning technique, the class fits a model over the data, and then uses it
to classify new words into complex or simple. It supports seven Machine Learning
techniques:

1. Support Vector Machines

2. Passive Aggressive Learning

3. Perceptron

4. Decision Trees

5. Adaptive Boosting

6. Gradient Boosting

7. Random Forests

It allows also for one to combine multiple identifiers using Hard Voting, Soft Voting
and Performance-Oriented Soft Voting, as described in Section 3.1.5. This class resorts
to the scikit-learn library Pedregosa et al. (2011), which allows for one to easily add a
new Machine Learning technique to the LEXenstein framework if needed.

8.3.3 Substitution Generation

LEXenstein’s Substitution Generation module offers support for seven approaches. They
require as input a dataset in VICTOR format, and produce candidate substitutions for each
target word in the dataset. Each SG approach is represented by one of the following Python
classes:

• DevlinGenerator: Employs the strategy of Devlin and Tait (1998), that extracts
synonyms from WordNet as described in Section 5.4.

• KauchakGenerator: Employs the strategy of Horn et al. (2014), that uses complex-
to-simple parallel corpora as described in Section 5.4.
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• BiranGenerator: Employs the strategy of Biran et al. (2011), that uses cartesian
products between complex and simple data as described in Section 5.4.

• YamamotoGenerator: Employs the strategy of Kajiwara et al. (2013), that uses
dictionary definitions as described in Section 5.4.

• GlavasGenerator: Employs the strategy of Glavaš and Štajner (2015), that uses
traditional word embedding models as described in Section 5.4.

• MerriamGenerator: Extracts a dictionary linking words to their synonyms, as listed
in the Merriam Thesaurus.

• PaetzoldGenerator: Employs the strategy described in Chapter 5, which extracts
substitutions from a context-aware word embeddings model. It requires a context-aware
word embedding model in binary format, trained with word2vec over an annotated
corpus. It supports multiple POS tag annotation formats.

8.3.4 Substitution Selection

LEXenstein’s Substitution Selection module provides eight approaches. All of them require
as input a dataset in the VICTOR format, and either a dictionary of substitutions produced by
a class from the Substitution Generation module, or a list of selected substitutions produced
by another selector. This allows the user to combine multiple selectors in the pipeline. As
output, they produce a set of selected substitutions for each entry in the VICTOR dataset.

Each approach in the SS module is represented by one of the following Python classes:

• VoidSelector: Performs no filtering, selecting all generated substitutions for each
target word.

• BelderSelector: Employs the word clustering strategy of De Belder and Moens (2010),
as described in Section 5.4.

• BiranSelector: Employs the co-occurrence model filtering strategy of Biran et al.
(2011), as described in Section 5.4.

• WSDSelector: Allows for the user to use classic WSD approaches such as the Lesk
(Lesk, 1986) and Path Similarity Wu and Palmer (1994) algorithms, as described in
Section 5.4.
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• WordVectorSelector: Employs the strategy of Paetzold and Specia (2015), in which a
word vector model is used to determine which substitutions have the closest meaning to
that of the sentence being simplified. It requires a binary word vector model produced
by word2vec, and can be configured in many distinct ways. It retrieves a user-defined
percentage of the substitutions, which are ranked with respect to the cosine distance
between its word vector and the sum of some or all of the sentences’ words, depending
on the settings defined by the user.

• BoundarySelector: Employs the Boundary Ranking selection strategy described in
Chapter 7. It supports various linear models. This approach can be trained in both
supervised and unsupervised fashion.

• SVMBoundarySelector: Employs an adapted version of the Boundary Ranking se-
lection strategy described in Chapter 7 which allows for non-linear ranking models to
be used. This approach can be trained in both supervised and unsupervised fashion.

• SVMRankSelector: Employs the supervised SVM ranking selection strategy de-
scribed in Section 7.3.

8.3.5 Substitution Ranking

LEXenstein’s Substitution Ranking module provides eight approaches. All of them receive
as input datasets in the VICTOR format, which can be either training/testing datasets already
containing only valid substitutions in context, or datasets generated with (potentially noisy)
substitutions by a given SS approach. Each approach in the SR module is represented by one
of the following Python classes:

• MetricRanker: Employs a simple strategy based on the values of a single feature
provided by the user, extracted as described in Section 8.3.6.

• BiranRanker: Employs the metric-based strategy introduced by Biran et al. (2011),
described in the Section 2.5.2. It ranks candidates according to the metric illustrated in
Equation 8.4, in which F(c,C) is the frequency of candidate c in corpus C, and ∥c∥
the length of candidate c.

M(c) =
F(c,Complex)
F(c,Simple)

×∥c∥ (8.4)

• YamamotoRanker: Employs the elaborate metric-based strategy introduced by Kaji-
wara et al. (2013), described in Section 2.5.2. Their metric is described in Equation 8.5,
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and models simplicity as the combination of features such as n-gram frequencies, word
co-occurrence model similarity measures and semantic distance.

M(S,wt ,wc) =α1Fcorpus (wc)+

α2Sense(wc,wt)+

α3Cooc(wc,S)+

α4Log(wc,S)+

α5Trigram(wc,S)+

α6Sim(wc,wt)

(8.5)

More details about this strategy can be found in (Kajiwara et al., 2013).

• BottRanker: Employs the metric-based strategy introduced by Bott et al. (2012),
described in the Section 2.5.2. It ranks candidates according to their length and
frequency in a corpus. Their metric is described in Equations 8.7 and 8.6, where wc is
a substitution candidate for a target complex word, and Fsimple (wc) its frequency in a
corpus of simple text.

scorewl (wc) =

{√
∥wc∥−4 if ∥wc∥ ≥ 5

0 otherwise
(8.6)

score f req (wc) = log
(
Fsimple (wc)

)
(8.7)

• SVMRanker: Use the SVMRank approach of Joachims (2002), described in Sec-
tion 6.3.4.

• GlavasRanker: Employs the rank averaging strategy of Glavaš and Štajner (2015),
described in Section 6.3.4.

• BoundaryRanker: Employs the supervised Boundary Ranking strategy with linear
models presented in Chapter 6.

• SVMBoundaryRanker: Employs the same Boundary Ranking approach, but allows
for non-linear models with SVMs.
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8.3.6 Feature Estimation

LEXenstein’s Feature Estimation module allows the calculation of several features for LS-
related tasks. Its class FeatureEstimator allows the user to select and configure many features
commonly used by the aforementioned strategies for CWI, SG, SS and SR.

The FeatureEstimator object can be used either for the creation of LEXenstein’s gen-
erators, selectors and rankers, or in stand-alone setups. For the latter, the class provides
a function called calculateFeatures, which produces a matrix M×N containing M feature
values for each of the N substitution candidates listed in the dataset. Each of the current 43
features supported must be configured individually. They can be grouped in eight categories:

• Lexicon-oriented: A binary feature that receives value 1 if a candidate appears in a
given vocabulary, and 0 otherwise.

• Morphological: Features that exploit morphological characteristics of substitutions.
They include:

1. The length of a candidate.

2. The number of syllables of a candidate.

• Collocational: Comprised of several raw frequency counts and language model prob-
abilities of the form P

(
Sh−1

h−l c Sh+r
h+1

)
, where c is a candidate substitution in the hth

position in sentence S, and Sh−1
h−l and Sh+r

h+1 are n-grams of size l and r, respectively. The
features in this category are:

1. The language model probability of the entire sentence S with the target word
replace by a candidate.

2. The language model probability of an n-gram.

3. The raw frequency count of an n-gram in a corpus.

4. A binary feature that receives value 1 if an n-gram is in a corpus, and 0 otherwise.

• Pop-Collocational: Comprised of several raw frequency counts and language model
probabilities of the “pop” n-grams introduced by Jauhar and Specia (2012). They differ
from typical collocational features in the sense that, instead of retrieving the frequency
of the n-gram itself, it retrieves the highest frequency between three variants of an
n-gram: its original form, Sh−1

h−l c Sh+r
h+1, its leftmost “popped” version, Sh−2

h−l c Sh+r
h+1, its

rightmost “popped” version, Sh−1
h−l c Sh+r

h+2, and its double “popped” version, Sh−2
h−l c Sh+r

h+2.
The features in this category are:
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1. The language model probability of a pop n-gram.

2. The raw frequency count of a pop n-gram in a corpus.

• Tagged-Collocational: Comprised of several raw frequency counts of “tagged” n-
grams. They differ from typical collocational features in the sense that instead of
retrieving the frequency of an n-gram in its original form, Sh−1

h−l c Sh+r
h+1, it retrieves the

frequency of a candidate surrounded by the neighbor words’ POS tags, Ph−1
h−l c Ph+r

h+1 ,
given that P is the set of POS tags that describe sentence S. The features in this category
are:

1. The raw frequency count of a tagged n-gram in a corpus.

2. A binary feature that receives value 1 if a tagged n-gram is in a corpus, and 0
otherwise.

• Sense-oriented: Comprised of features that describe the semantic information of a
candidate substitution. They are:

1. The number of senses of a candidate.

2. The number of synonyms of a candidate.

3. The number of hypernyms of a candidate.

4. The number of hyponyms of a candidate.

5. The maximum semantic distance between all of a candidate’s senses in a the-
saurus.

6. The minimum semantic distance between all of a candidate’s senses in a the-
saurus.

7. A binary feature that receives value 1 if the candidate is a synonym of the target
word, and 0 otherwise.

8. A binary feature that receives value 1 if the candidate is a hypernym of the target
word, and 0 otherwise.

9. A binary feature that receives value 1 if the candidate is a hyponym of the target
word, and 0 otherwise.

• Syntactic: Comprised of features that measure how likely a candidate substitution is
of assuming the syntactic role of the target word. We describe the syntactic role of
a target word t in sentence S as its POS tag and its set of subject dependency links,
(t→ Si), and object dependency links, (t← Si). The features in this category are:
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1. The conditional probability of the candidate assuming the POS tag of the target
word, as described in Section 7.2.2.

2. The average probability of the candidate assuming the subject dependency links
of the target word.

3. The average raw occurrence counts in which the candidate assumes the subject
dependency links of the target word.

4. A binary feature that receives value 1 if the candidate assumes all subject depen-
dency links of the target word at least once in a corpus.

5. The average probability of the candidate assuming the object dependency links
of the target word.

6. The average raw occurrence counts in which the candidate assumes the object
dependency links of the target word.

7. A binary feature that receives value 1 if the candidate assumes all object depen-
dency links of the target word at least once in a corpus.

8. The average probability of the candidate assuming all dependency links of the
target word.

9. The average raw occurrence counts in which the candidate assumes all depen-
dency links of the target word.

10. A binary feature that receives value 1 if the candidate assumes all dependency
links of the target word at least once in a corpus.

• Semantic: Comprised of features that describe not only the semantic content pertaining
to a candidate individually, but also its semantic similarity with the target word and the
sentence in question. The features in this category are:

1. The probability of the target word being translated into a given candidate.

2. The candidate’s word embedding values, as determined by a word embeddings
model.

3. The cosine similarity between the candidate’s and the target word’s embedding
vectors.

4. The average cosine similarity between the candidate’s embeddings vector, and
those of all content words in the sentence.

5. The candidate’s word embedding values, as determined by a context-aware word
embeddings model, as described in Section 5.2.
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6. The cosine similarity between the candidate’s and the target word’s a context-
aware embedding vectors.

7. The average cosine similarity between the candidate’s a context-aware embed-
dings vector, and those of all content words in the sentence.

• Psycholinguistic: Comprised of the bootstrapped psycholinguistic features described
in Section 8.1.3. The features in this category are:

1. Familiarity

2. Age of Acquisition

3. Concreteness

4. Imagery

Notice that each of these features require different resources, such as language models, n-
gram count tables, vocabularies, word embedding models, etc. Information such as synonyms
and hypernyms are extracted from WordNet.

8.3.7 Evaluation

Since one of the goals of LEXenstein is to facilitate the benchmarking LS approaches, it is
crucial that it provides evaluation methods. This module includes methods for the evaluation
of all pipeline steps, both individually and in combination. These are the same methods used
in the experiments of Chapters 3, 5, 6, and 7. It contains four classes:

• IdentifierEvaluator: Provides the evaluation metrics for CWI methods described
in Section 3.1.4. It requires a gold-standard in the CWICTOR format and a set of
predicted binary labels. It returns the Accuracy, Precision, Recall, F-score and G-score:

– Accuracy: The proportion of correctly predicted labels.

– Precision: The proportion of correctly predicted positive labels.

– Recall: The proportion of gold-standard positive labels that were correctly pre-
dicted.

– F-score: The harmonic mean between Precision and Recall.

– G-score: The harmonic mean between Accuracy and Recall, as described in
Section 3.1.4.
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• GeneratorEvaluator: Provides the evaluation metrics for SG methods described in
Section 5.4. It requires a gold-standard in the VICTOR format and a set of generated
substitutions. It returns the Potential, Precision, Recall and F1:

– Potential: The proportion of instances in which at least one of the substitutions
generated is present in the gold-standard.

– Precision: The proportion of generated substitutions that are present in the
gold-standard.

– Recall: The proportion of gold-standard substitutions that are included in the
generated substitutions.

– F1: The harmonic mean between Precision and Recall.

• SelectorEvaluator: Provides the evaluation metrics for SS methods described in
Section 5.4. It requires a gold-standard in the VICTOR format and a set of selected
substitutions. It returns the Potential, Precision, Recall and F1 of the SS approach, as
defined above.

• RankerEvaluator: Provides evaluation metrics for SR methods. It requires a gold-
standard in the VICTOR format and a set of ranked substitutions. It returns TRank-at-
1:3, described in Section 6, and Recall-at-1:3, described in (Specia et al., 2012):

– Trank-at-n: The proportion of instances in which a candidate of gold-rank r ≤ n
was ranked first.

– Recall-at-n: The proportion of candidates of gold-rank r ≤ n that are ranked in
positions p≤ n.

• PipelineEvaluator: Provides the evaluation metrics for the entire LS pipeline de-
scribed in Section 5.4. It requires as input a gold-standard in the VICTOR format and
a set of ranked substitutions which have been generated and selected by a given set of
approaches. It returns the approaches’ Precision, Accuracy and Change Proportion:

– Precision: The proportion of instances in which the highest ranking substitution
is either the target complex word itself or is in the gold-standard.

– Accuracy: The proportion of instances in which the highest ranking substitution
is not the target complex word itself and is in the gold-standard.

– Changed Proportion: The proportion of instances in which the highest ranking
substitution is not the target complex word itself.
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• PLUMBErr: Performs an error identification analysis of a simplifier. It uses the
strategy described in Chapter 8.6 to identify and categorize the errors made by a
simplifier. The error categories identified are, as described in Section 8.6.1:

– Type 1: No error. The system did not commit any mistakes while simplifying
the target word.

– Type 2A: The system mistook the target complex word for simple.

– Type 2B: The system mistook the target simple word for complex.

– Type 3A: The system did not produce any candidate substitutions for the target
word.

– Type 3B: The system did not produce any simpler candidate substitutions for the
target word.

– Type 4: The system replaced the target word with a candidate that compromises
the integrity of the sentence.

– Type 5: The system replaced the target word with a candidate that does not
simplify the sentence.

8.3.8 Utilities

LEXenstein also provides various modules with useful tools that can be used not only in LS,
but also in many other NLP tasks.

The Text Adorning module provides a Python interface to the Morph Adorner Toolkit
(Paetzold, 2015a), a set of Java tools that facilitates the access to several of Morph Adorner’s
functionalities, such as:

• Word lemmatisation

• Word stemming

• Syllable splitting

• Noun inflection

• Verb tensing

• Verb conjugation
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It also includes a functionality not supported by Morph Adorner: adjective and adverb
inflection. It allows one to inflect an adjective or adverb to its superlative or comparative
tense.

The Spelling Correction module includes a class that allows for one to both train and use
the spelling correction model proposed by Norvig6. The user can train the model over any
corpus of text, save it in binary format, and then use it to correct words whenever necessary.

LEXenstein also includes a dedicated Utilities module that offers several functions that
help the user produce files and resources required by identifiers, generators, selectors and
rankers. Among those functions are:

• Dependency parsing

• Tag generalisation

• Tagged n-grams file creation

• N-grams file filtering

• Vocabulary extraction

• Translation probabilities file creation

• POS tag conditional probability model training

In the following Section, we introduce a new evaluation dataset for LS and showcase the
potential of LEXenstein by conducting a benchmarking of LS systems.

8.4 NNSeval: A New Dataset for Lexical Simplification

To facilitate the evaluation of LS systems, the works of De Belder and Moens (2012a) and
Horn et al. (2014) introduce two resources for the task: the LSeval and LexMTurk datasets.
The instances in both datasets, 930 in total, are composed of a sentence, a target word, and
candidate substitutions ranked by simplicity. Using different metrics, one is able to evaluate
each step of the LS pipeline over these datasets, both individually and jointly.

There is, however, no way of knowing the profile of the annotators who produced these
datasets. In both datasets, the candidate substitutions were suggested and ranked by English
speakers from the U.S, who are unlikely to be non-native speakers of English in their majority.
This limitation renders these datasets unsuitable for the evaluation of our approach because

6http://norvig.com/spell-correct.html
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i) the target words used may not be considered complex by non-native speakers of English
ii) the candidate substitutions suggested may be deemed complex by non-native speakers of
English. In order to reuse these resources and create a more reliable dataset, we have filtered
them according to the data acquired in the CWI user study described in Section 3.1.

To create our dataset, we have first pre-processed the instances of both datasets. Inspecting
LSeval, we were able to notice that most candidate substitutions for verbs and nouns did
not share the same inflection as the target word. Table 8.6 illustrates some examples of such
instances. We solve this problem by using the Text Adorning module of LEXenstein to
inflect all candidate verbs and nouns in the LSeval dataset to the same morphological stance
as the target word. Table 8.7 shows the corrected version of the instances in Table 8.6.

Sentence Target Candidates
There are different types of managed care

systems.
managed

control, manage,
coordinate, administer

The GARCH model is an infinite order arch
model with a geometrically declining set of

weights.
declining

fall, reduce, decline,
decrease

Even galls that formed on their trunks were
eaten.

galls
abnormal growth, gall,

pustule, grub
But he could feel the whale was sensing him

with sound pulses.
pulses

wave, vibration, beat,
throb, pulse

That said, the best foundations are focused on
accomplishing programmatic missions.

missions
aim, task, project,

operation
Table 8.6 Incorrectly inflected candidate substitutions from the LSeval dataset

Sentence Target Candidates

There are different types of managed care
systems.

managed
controled, managed,

coordinated,
administered

The GARCH model is an infinite order arch
model with a geometrically declining set of

weights.
declining

falling, reducing,
declining, decreasing

Even galls that formed on their trunks were
eaten.

galls
abnormal growth, galls,

pustules, grubs
But he could feel the whale was sensing him

with sound pulses.
pulses

waves, vibrations, beats,
throbs, pulses

That said, the best foundations are focused on
accomplishing programmatic missions.

missions
aims, tasks, projects,

operations
Table 8.7 Correctly inflected candidate substitutions from the LSeval dataset
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We have also noticed that some of the candidates in the LexMTurk dataset had spelling
errors. Table 8.8 illustrates some examples. To address this, we used the Spelling Correction
module of LEXenstein. The spelling-corrected versions of the instances in Table 8.8 are
illustrated in Table 8.9.

Sentence Target Candidates
It has an attached tag with a unique “Secret

Code” printed on it.
unique sepcial, seperate

Hurricane-force wind gusts were reported in
New England.

hurricane-
force

very stong, stong

Simon Phillip Cowell is an English music
executive, television producer and entrepreneur.

entrepreneur buiness, businesman

Techno is a form of electronic dance music that
emerged in Detroit.

emerged came frome, noticable

It is also known as a clothes iron, flat iron, or
smoothing iron.

smoothing levelling, flatning

Table 8.8 Incorrectly spelled candidate substitutions from the LexMTurk dataset

Sentence Target Candidates
It has an attached tag with a unique “Secret

Code” printed on it.
unique special, separate

Hurricane-force wind gusts were reported in
New England.

hurricane-
force

very strong, strong

Simon Phillip Cowell is an English music
executive, television producer and entrepreneur.

entrepreneur business, businessman

Techno is a form of electronic dance music that
emerged in Detroit.

emerged came from, noticeable

It is also known as a clothes iron, flat iron, or
smoothing iron.

smoothing leveling, flattening

Table 8.9 Correctly spelled candidate substitutions from the LexMTurk dataset

In sequence, we removed all candidates which were deemed complex by at least one
annotator in our user study. Finally, we have discarded all instances in which the target word
was not deemed complex by any of the annotators. As a result, we have compiled a dataset
of 239 instances, which we name NNSeval. In what follows, we use NNSeval to benchmark
hundreds of LS approaches.
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8.5 Benchmarking Lexical Simplification Systems for Non-
Native Speakers

Although there are literature surveys on Text Simplification that describe the most effective
LS approaches (Shardlow, 2014b; Siddharthan, 2014), they do not provide performance
comparisons between them. We believe that the reason for this is the absence of software
made available by the creators of LS systems.

The only examples of performance comparisons in Lexical Simplification literature are
the ones conducted by Specia et al. (2012), Shardlow (2013a) and (Paetzold and Specia,
2016f). Specia et al. (2012) report the findings of the English Lexical Simplification task of
SemEval 2012, one of the most frequently cited contributions to LS, in which several rankers
were evaluated over a Substitution Ranking dataset annotated by non-native English speakers.
The work of Shardlow (2013a) focuses on the task of Complex Word Identification. They
introduce a new automatically generated dataset for the task, and compare a threshold-based
approach that separates complex words with respect to their word frequencies, an SVM
approach trained with six features related to word complexity, and a “simplify everything”
approach. The Complex Word Identification task of SemEval 2016 (Paetzold and Specia,
2016f), described in Section 3.1.5, also focuses on CWI, but includes a much more substantial
benchmark of 42 systems submitted by participants along with various baselines.

Performance comparisons allow a better understanding of the current state-of-the-art
of a task and the information they provide can influence how researchers approach a given
task in order to find more effective approaches for it. In this Section we present the first
benchmarking of LS approaches in literature. Using the previously introduced NNSeval
dataset as a gold-standard, we conduct performance comparisons for various steps of LS
pipeline, both individually, and jointly. The entire benchmark was conducted using the
methods and classes provided by the LEXenstein framework.

8.5.1 Performance Comparisons

In this Section, we present the results obtained in our benchmarks. We evaluate all steps of
the pipeline except CWI, for which a benchmark has already been provided in Sections 3.1.4
and 3.1.5. CWI is also excluded from our full pipeline evaluation because there are no
datasets available that allow us to jointly evaluate all steps of the pipeline. We choose instead
to use the usual full pipeline evaluation method employed in the performance comparisons of
Chapters 5 and 7, which is a consolidated technique that combines Substitution Generation,
Selection and Ranking (Glavaš and Štajner, 2015; Horn et al., 2014). In Chapter 8.6 we



8.5 Benchmarking Lexical Simplification Systems for Non-Native Speakers 209

introduce a new evaluation method for LS systems that addresses this limitation and allows
for CWI to be jointly benchmarked along with the remaining steps of the pipeline.

Substitution Generation

In this benchmark we evaluate the performance of various Substitution Generation strategies
in LEXenstein. We also evaluate the performance of all generators combined, by creating a
super set of the output produced by all of them.

Settings We configure the generators of LEXenstein as follows:

• Devlin: Uses the same configuration described in Section 5.4.1.

• Kauchak: Uses the same configuration described in Section 5.4.1.

• Biran: Uses the same configuration described in Section 5.4.1.

• Yamamoto: Uses the same configuration described in Section 5.4.1.

• Merriam: Uses the Merriam Thesaurus7 as a source for synonyms.

• Glavas: Selects 10 candidates for each target word. We use the word2vec toolkit to
train the word embeddings model used. The corpus used contains 7 billion words, and
includes the SubIMDB corpus, UMBC webbase, News Crawl, SUBTLEX, Wikipedia
and Simple Wikipedia. As training parameters, we use the bag-of-words model
(CBOW), and 1,300 dimensions for the embedding vectors.

• Paetzold: Selects 10 candidates for each target word. Uses the same tools, and re-
sources used by the Glavas generator except for the retrofitted context-aware word
embeddings model, which is trained over a corpus annotated with universal tags pro-
duced by the Stanford Parser, and retrofitted over WordNet 3.0. As training parameters,
we use the bag-of-words model (CBOW), and 1,300 dimensions for the word vectors.

Datasets For testing, we use the NNSeval dataset, described in Section 8.4.

7http://www.dictionaryapi.com/products/api-collegiate-thesaurus.htm
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Evaluation Metrics For evaluation, we use the metrics described in Section 8.3.7, which
are:

• Potential: The proportion of instances in which at least one of the substitutions
generated is present in the gold-standard.

• Precision: The proportion of generated substitutions that are present in the gold-
standard.

• Recall: The proportion of gold-standard substitutions that are included in the generated
substitutions.

• F1: The harmonic mean between Precision and Recall.

Results The performance results obtained for all generators are presented in Table 8.10.

Generator Potential Precision Recall F1
Yamamoto 0.314 0.026 0.061 0.037
Merriam 0.473 0.046 0.106 0.065
Biran 0.414 0.084 0.079 0.081
Kauchak 0.506 0.078 0.103 0.089
WordNet 0.485 0.092 0.093 0.092
Glavas 0.661 0.105 0.141 0.121
Paetzold 0.791 0.144 0.198 0.167
All 0.962 0.043 0.356 0.076
Table 8.10 Benchmarking results for SG approaches

The results in Table 8.10 show that the method described in Chapter 5, which employs
retrofitted context-aware word embedding models, yields the best Precision and F1 scores,
and combining the output of all generation methods yields the highest Potential and Recall.
The high Potential and Recall obtained by the combination of all generators shows that it
would be the most appropriate strategy to compose an LS system in a scenario where the
performance of both its Substitution Selection and Ranking approaches is perfect. The high
Potential would allow the selector to find a simpler substitution for most complex words,
and the high Recall would allow the ranker to select between a wider array of candidate
substitutions, which should consequently result in simpler output.

Substitution Selection is, as discussed in Chapter 7, one of the most challenging tasks in
the LS pipeline, which leads us to conclude that, in a realistic scenario, the most appropriate
choice of Substitution Generation approach to compose an LS system would be the Paetzold
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Generator, since its higher Precision would facilitate the selection process, and hence prevent
ungrammatical and meaningless substitutions more effectively.

Substitution Selection

In this experiment, we benchmark the Substitution Selection systems in LEXenstein. As a
baseline, we also include a “No Selection” strategy in the evaluation, which does not filter
the candidate substitutions generated in any way. Since Substitution Selection requires a
generated set of substitutions, we evaluate the performance of all combinations of SS and SG
approaches.

Settings We configure the selectors of LEXenstein as follows:

• First Sense: Uses the same configuration described in Section 5.4.1.

• Lesk Algorithm: Uses the same configuration described in Section 5.4.1.

• Path Similarity: Uses the same configuration described in Section 5.4.1.

• Belder Selector: Uses the same configuration described in Section 5.4.1.

• Biran Selector: Uses the same configuration described in Section 5.4.1.

• Unsupervised Boundary Ranker: Uses the same features described in Section 7.2.2.
The selector is trained over the candidates produced by all generators combined. We
select seven candidates for each generator except the combination of all generators,
for which we select 14 candidates. Hyper-parameters are maximised through 10-fold
cross validation.

Datasets For a gold-standard, we use the NNSeval dataset.

Evaluation Metrics For evaluation, we use the same metrics described in the previous
benchmarking of Substitution Generation approaches, which are Potential, Precision, Recall
and F1.

Results The results obtained by all SS approaches are presented in Tables 8.11 through
8.18, respectively. The performance scores reported show that, while combining our Un-
supervised Boundary Selector with all generators together produces the highest F1 values,
combining the Belder Selector with the Devlin Generator yields the highest Precision. How-
ever, while the Belder Selector severely compromises the Potential and Recall of generators,
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Selector Potential Precision Recall F1
First Sense 0.033 0.020 0.005 0.008
Lesk Algorithm 0.109 0.030 0.018 0.022
Path Similarity 0.013 0.012 0.002 0.004
Biran Selector 0.201 0.052 0.044 0.047
Belder Selector 0.126 0.167 0.018 0.033
Unsupervised Boundary Selector 0.427 0.118 0.088 0.101
No Selection 0.473 0.046 0.106 0.065

Table 8.11 Benchmarking results for SS approaches with respect to substitutions generated
by the Merriam generator

Selector Potential Precision Recall F1
First Sense 0.004 0.009 0.001 0.001
Lesk Algorithm 0.021 0.021 0.003 0.006
Path Similarity 0.000 0.000 0.000 0.000
Biran Selector 0.146 0.028 0.027 0.027
Belder Selector 0.038 0.205 0.005 0.010
Unsupervised Boundary Selector 0.285 0.088 0.051 0.065
No Selection 0.314 0.026 0.061 0.037

Table 8.12 Benchmarking results for SS approaches with respect to substitutions generated
by the Yamamoto generator

Selector Potential Precision Recall F1
First Sense 0.059 0.078 0.009 0.017
Lesk Algorithm 0.109 0.061 0.016 0.026
Path Similarity 0.008 0.042 0.002 0.003
Biran Selector 0.226 0.113 0.042 0.062
Belder Selector 0.130 0.318 0.019 0.036
Unsupervised Boundary Selector 0.473 0.144 0.089 0.110
No Selection 0.485 0.092 0.093 0.092

Table 8.13 Benchmarking results for SS approaches with respect to substitutions generated
by the Devlin generator
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Selector Potential Precision Recall F1
First Sense 0.042 0.078 0.006 0.010
Lesk Algorithm 0.084 0.090 0.012 0.022
Path Similarity 0.004 0.018 0.001 0.001
Biran Selector 0.226 0.109 0.039 0.057
Belder Selector 0.063 0.283 0.008 0.016
Unsupervised Boundary Selector 0.406 0.144 0.076 0.099
No Selection 0.414 0.084 0.079 0.081

Table 8.14 Benchmarking results for SS approaches with respect to substitutions generated
by the Biran generator

Selector Potential Precision Recall F1
First Sense 0.025 0.019 0.003 0.006
Lesk Algorithm 0.050 0.033 0.008 0.013
Path Similarity 0.004 0.004 0.001 0.001
Biran Selector 0.251 0.103 0.049 0.067
Belder Selector 0.130 0.276 0.019 0.036
Unsupervised Boundary Selector 0.464 0.151 0.088 0.117
No Selection 0.494 0.134 0.095 0.106

Table 8.15 Benchmarking results for SS approaches with respect to substitutions generated
by the Kauchak generator

Selector Potential Precision Recall F1
First Sense 0.042 0.027 0.006 0.010
Lesk Algorithm 0.151 0.049 0.023 0.032
Path Similarity 0.013 0.008 0.002 0.003
Biran Selector 0.289 0.114 0.059 0.078
Belder Selector 0.234 0.225 0.035 0.060
Unsupervised Boundary Selector 0.615 0.127 0.119 0.123
No Selection 0.661 0.105 0.141 0.121

Table 8.16 Benchmarking results for SS approaches with respect to substitutions generated
by the Glavas generator
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our Unsupervised Boundary Ranker does not. It has been shown to provide considerable
increases in Precision and F1 for almost all generators at little cost of Recall, which, in the
LS pipeline, would reduce the chances of a ranker placing an ungrammatical or incorrect
substitution first.

Selector Potential Precision Recall F1
First Sense 0.054 0.043 0.008 0.013
Lesk Algorithm 0.176 0.060 0.026 0.037
Path Similarity 0.013 0.011 0.002 0.003
Biran Selector 0.322 0.122 0.068 0.087
Belder Selector 0.247 0.201 0.034 0.058
Unsupervised Boundary Selector 0.644 0.192 0.131 0.156
No Selection 0.791 0.144 0.198 0.167

Table 8.17 Benchmarking results for SS approaches with respect to substitutions generated
by the Paetzold generator

Selector Potential Precision Recall F1
First Sense 0.075 0.015 0.013 0.014
Lesk Algorithm 0.285 0.028 0.050 0.036
Path Similarity 0.021 0.005 0.003 0.004
Biran Selector 0.502 0.051 0.161 0.077
Belder Selector 0.339 0.183 0.054 0.083
Unsupervised Boundary Selector 0.912 0.142 0.266 0.185
No Selection 0.962 0.043 0.356 0.076

Table 8.18 Benchmarking results for SS approaches with respect to substitutions generated
by all generators combined

The remaining approaches have been shown less reliable. Although the Biran Selector
was able to outperform the Precision of the No Selection method for almost all sets of
generated substitutions, it also consistently caused very noticeable decreases in Potential
and Recall in all scenarios. All WSD approaches performed very poorly, yielding very
unsatisfactory performance regardless of the generator used.

Substitution Ranking

In this experiment we benchmark the Substitution Ranking approaches in LEXenstein. We
also compare their performance with the baseline of SemEval 2012, as well as the former
state-of-the-art approach for SR (Jauhar and Specia, 2012). The SemEval 2012 baseline
ranks candidates according to their frequencies in the Google 1T corpus, composed of over 1
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trillion words. The approach of Jauhar and Specia (2012) uses a linear weighted model over
the rankings produced by various metrics to determine the ranking of substitution candidates.

Settings We configure the rankers of LEXenstein as follows:

• Metric Ranker: We train rankers over the following 18 distinct metrics:

1. The candidate’s length.

2. The candidate’s number of syllables.

3. The candidate’s number of senses in WordNet.

4. The candidate’s number of synonyms in WordNet.

5. The candidate’s number of hypernyms in WordNet.

6. The candidate’s number of hyponyms in WordNet.

7. The candidate’s 3-gram language model probability in Simple Wikipedia.

8. The candidate’s 3-gram language model probability in the Brown corpus.

9. The candidate’s 3-gram language model probability in the SUBTLEX corpus.

10. The candidate’s 3-gram language model probability in the SubIMDB corpus.

11. The candidate’s n-gram language model probability with two words to the left
and right in Simple Wikipedia.

12. The candidate’s n-gram language model probability with two words to the left
and right in the Brown corpus.

13. The candidate’s n-gram language model probability with two words to the left
and right in the SUBTLEX corpus.

14. The candidate’s n-gram language model probability with two words to the left
and right in the SubIMDB corpus.

15. The candidate’s Age of Acquisition, as determined by the features produced by
the bootstrapping algorithm introduced in Section 8.2.

16. The candidate’s Familiarity, as determined by the features produced by the
bootstrapping algorithm introduced in Section 8.2.

17. The candidate’s Concreteness, as determined by the features produced by the
bootstrapping algorithm introduced in Section 8.2.

18. The candidate’s Imagery, as determined by the features produced by the boot-
strapping algorithm introduced in Section 8.2.
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• Biran Ranker: The language model of complex and simple data required are trained
over the Wikipedia and Simple Wikipedia corpora Kauchak (2013), respectively.

• Bott Ranker: The language model of simple data required is trained over the Simple
Wikipedia corpus.

• Yamamoto Ranker: The word co-occurrence model required is trained over the same
7 billion word corpus used in the training of the word embedding models used by the
Glavas and Paetzold generators in Section 8.5.1. The language model of simple data
required is trained over the Simple Wikipedia corpus (Kauchak, 2013).

• Horn Ranker: Uses the same features used by Horn et al. (2014), which include the
translation probability between a candidate and the target word, and n-gram frequencies
from Wikipedia and Simple Wikipedia. We learn the translation probability model from
the complex-to-simple parallel corpus of Wikipedia and Simple Wikipedia sentences
introduced by Kauchak (2013). Hyper-parameters are maximised through 10-fold
cross validation.

• Glavas Ranker: Uses the same features used in Glavaš and Štajner (2015), which
include n-gram frequencies, the cosine similarity between the target word and a
candidate, as well as the average cosine similarity between the candidate and all
content words in the target word’s sentence. The word embeddings model required is
the same one used by the Glavas Generator in the experiment of Section 8.5.1.

• Boundary Ranker: We use the same collocational and psycholinguistic features
used in the extrinsic evaluation of Section 8.2, which consist on the language model
probabilities of all n-grams with windows from zero to two tokens to the left and
right of the target word, as well as Age of Acquisition and Word Familiarity. 3-gram
language models are trained over the SubIMDB corpus with SRILM. Hyper-parameters
are maximised through 10-fold cross validation.

Datasets The dataset selected for training and testing is the one used in the English Lexical
Simplification task of SemEval 2012, which contain 300 and 1,710 instances, respectively.
Each instance is composed of a sentence, a target complex word, and a series of candidate
substitutions ranked in order of simplicity by non-native speakers of the English language.
We chose the SemEval 2012 datasets in order for the ranking results obtained to be compared
with the previous state-of-the-art approach for Substitution Ranking.
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Evaluation Metrics For evaluation, we use the metrics described in Section 6.3.2, which
are: TRank-at-1, TRank-at-2 and TRank-at-3.

Ranker TRank-at-1 TRank-at-2 TRank-at-3
Word Length 0.474 0.685 0.818
Syllable Count 0.400 0.635 0.773
Senses 0.394 0.646 0.811
Synonyms 0.363 0.618 0.791
Hypernyms 0.338 0.594 0.773
Hyponyms 0.336 0.576 0.763
Probability: Simple Wiki 0.570 0.806 0.915
Probability: Brown 0.596 0.818 0.921
Probability: SUBTLEX 0.618 0.854 0.936
Probability: SubIMDB 0.630 0.850 0.934
N-gram: Simple Wiki 0.612 0.827 0.921
N-gram: Brown 0.602 0.813 0.906
N-gram: SUBTLEX 0.622 0.830 0.919
N-gram: SubIMDB 0.630 0.850 0.934
Age Of Acquisition 0.564 0.792 0.895
Familiarity 0.574 0.811 0.915
Concreteness 0.243 0.462 0.643
Imagery 0.296 0.529 0.701
Biran Ranker 0.513 0.731 0.856
Bott Ranker 0.574 0.806 0.913
Yamamoto Ranker 0.517 0.766 0.891
Horn Ranker 0.624 0.843 0.933
Glavas Ranker 0.632 0.848 0.934
Boundary Ranker 0.657 0.860 0.939
SemEval 0.602 - -
Google1T 0.585 - -

Table 8.19 Evaluation results for SR approaches

Results The performance scores obtained by all ranking approaches are presented in
Table 8.19. The results show that the Boundary Ranker outperforms all other approaches,
including the former state-of-the-art. Another interesting conclusion that can be drawn
from the results says respect with the effectiveness of language models trained over spoken
text corpora. The SubIMDB metric rankers have outperformed the former state-of-the-art
by a considerable margin, showing that the language model probabilities extracted from
SubIMDB are much more effective in capturing word simplicity than the ones from any other
corpus.
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Full Pipeline Evaluation

In this experiment, we evaluate the performance of all combinations of SG, SS and SR
approaches in a practical scenario. With this experiment, we hope to be able to get a better
understanding on how these strategies perform when combined, and hopefully determine
what the most effective approach for LS is. In total, we evaluate the performance of 1,344
distinct combinations of 8 generators, 7 selectors and 24 rankers.

Settings The SG, SS and SR approaches are all configured in the same way as they were
in the experiments of Sections 8.5.1, 8.5.1 and 8.5.1.

Datasets As a gold-standard, we use the NNSeval dataset. Supervised rankers were trained
over the training portion of the SemEval 2012 dataset.

Evaluation Metrics For evaluation, we use the metrics described in Section 8.3.7, which
are:

• Precision: The proportion of instances in which the highest ranking substitution is
either the target complex word itself or is in the gold-standard.

• Accuracy: The proportion of instances in which the highest ranking substitution is not
the target complex word itself and is in the gold-standard.

• Changed Proportion: The proportion of instances in which the highest ranking
substitution is not the target complex word itself.

Results The performance scores obtained for each ranker with respect to a set of substitu-
tions produced by a substitution generator and selected by a substitution selector are shown
in Tables C.1 through C.56, which are given in this thesis’ appendix.

If one’s goal is to create a simplifier that makes as little inappropriate replacements as
possible, using the Belder Selector seems to be the most appropriate choice. As shown in
Table 8.20, it allows rankers to obtain Precision scores much higher than they do when paired
with other selectors. That does, however, comes at the cost of Accuracy.

In Table 8.21 we show the performance of the system which combines our SG, SS and
SR approaches described in Chapters 5, Chapters 6 and 7. Its Accuracy score is one of
the highest among the system combinations evaluated. Nonetheless, the highest Accuracy
scores among all 1,344 systems evaluated is obtained by a less sophisticated system. It
combines our SG and SS strategies, but instead of using our supervised Boundary Ranker,
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Ranker Precision Accuracy Changed Proportion
Word Length 0.695 0.126 0.431
Syllable Count 0.724 0.142 0.418
Senses 0.699 0.134 0.435
Synonyms 0.674 0.138 0.464
Hypernyms 0.603 0.134 0.531
Hyponyms 0.682 0.126 0.444
Frequency: Simple Wiki 0.498 0.084 0.586
Frequency: Brown 0.674 0.121 0.448
Frequency: SUBTLEX 0.611 0.130 0.519
Frequency: SubIMDB 0.649 0.130 0.481
N-gram: Simple Wiki 0.749 0.142 0.393
N-gram: Brown 0.728 0.121 0.393
N-gram: SUBTLEX 0.703 0.130 0.427
N-gram: SubIMDB 0.736 0.121 0.385
Age of Acquisition 0.644 0.117 0.473
Familiarity 0.661 0.126 0.464
Concreteness 0.674 0.096 0.423
Imagery 0.636 0.117 0.481
Biran Ranker 0.703 0.155 0.452
Bott Ranker 0.715 0.134 0.418
Yamamoto Ranker 0.820 0.109 0.289
Horn Ranker 0.820 0.134 0.314
Glavas Ranker 0.870 0.105 0.234
Boundary Ranker 0.707 0.138 0.431

Table 8.20 Full pipeline scores with respect to substitutions generated by all generators
combined, as selected by the Belder Selector
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which obtained the highest performance scores in our Substitution Ranking benchmarking, it
ranks candidates according to single word frequencies from the SubIMDB corpus.

Ranker Precision Accuracy Changed Proportion
Word Length 0.272 0.272 1.000
Syllable Count 0.218 0.218 1.000
Senses 0.255 0.255 1.000
Synonyms 0.218 0.218 1.000
Hypernyms 0.226 0.226 1.000
Hyponyms 0.205 0.205 1.000
Frequency: Simple Wiki 0.109 0.109 1.000
Frequency: Brown 0.280 0.280 1.000
Frequency: SUBTLEX 0.079 0.079 1.000
Frequency: SubIMDB 0.310 0.310 1.000
N-gram: Simple Wiki 0.285 0.285 1.000
N-gram: Brown 0.276 0.276 1.000
N-gram: SUBTLEX 0.285 0.285 1.000
N-gram: SubIMDB 0.272 0.272 1.000
Age of Acquisition 0.109 0.109 1.000
Familiarity 0.309 0.309 1.000
Concreteness 0.159 0.159 1.000
Imagery 0.247 0.247 1.000
Biran Ranker 0.272 0.272 1.000
Bott Ranker 0.276 0.276 1.000
Yamamoto Ranker 0.280 0.280 1.000
Horn Ranker 0.490 0.218 0.728
Glavas Ranker 0.485 0.238 0.753
Boundary Ranker 0.297 0.297 1.000

Table 8.21 Full pipeline scores with respect to substitutions generated by the Paetzold
generator, as selected by the Unsupervised Boundary Ranking Selector

We can learn a lot from the results about the rankers themselves. The performance of
the Horn ranker, which uses a very sophisticated supervised ranking strategy, varied a lot
with respect to Precision and Accuracy scores. The Boundary Ranker, on the other hand,
shows more consistent performance, specially when paired with generators that use word
embedding models. This phenomenon suggests that the Boundary Ranking strategy suffers
less from poor generalisation than the SVM Ranker, and is hence a more reliable approach
for supervised Substitution Ranking.

But new questions arise along with these interesting findings. There is a clear inconsis-
tency in our results: the winning system of the full pipeline evaluation is not composed by
the combination of winning Substitution Generation, Selection and Ranking strategies from
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the benchmarks for each step of the pipeline. Although it is expected that two evaluation
methods could find different winners, in this case, inconsistencies such as this one makes
it difficult to decide which system one should choose in order to obtain the most reliable
simplifier. Should it be the combination of systems which obtained the highest performance
in each step of the pipeline individually? Or should it be the winning system from the full
pipeline evaluation? And how do the winning systems of other benchmarks fair against
them?

To answer these questions, we conducted a human evaluation of our winning lexical
simplifiers, as described in Section 8.5.2.

8.5.2 Human Evaluation

In this study, we attempt to find the most effective lexical simplifier in practice, given the
needs of non-native English speakers. To do so, gathered non-native feedback on the quality
of various simplifiers, each of which is the highest performing simplifier over a distinct
evaluation strategy. By doing so, we are able not only to determine which simplifier non-
native speakers of English prefer, but also to find evidence of which evaluation strategy is the
most reliable.

Evaluation Strategies and Best Systems

We compared three evaluation strategies:

• Pipeline: Determines the best simplifier based on the performance of its approaches
to Substitution Generation, Selection and Ranking individually. In other words, the
simplifier is the combination of the best performing generator, selector and ranker,
as determined by our pipeline step benchmarks in Sections 8.5.1, 8.5.1 and 8.5.1.
According to our results, the best performing system under this evaluation strategy is
composed by:

– The generator described in Chapter 5, which uses retrofitted context-aware word
embedding models.

– The selector described in Chapter 7, which employs unsupervised Boundary
Ranking.

– The ranker described in Chapter 6, which employs supervised Boundary Ranking.

We hereon address this system as the Pipeline simplifier.
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• NNSeval: Determines the best simplifier based on the Accuracy obtained in a full
pipeline evaluation conducted over the NNSeval dataset, described in the previous
Section. According to our benchmarking results, the best performing system under
this evaluation strategy is composed by:

– The generator described in Chapter 5, which uses retrofitted context-aware word
embedding models.

– The selector described in Chapter 7, which employs unsupervised Boundary
Ranking.

– A simple frequency-based ranker, which ranks candidates according to their
language model probability in the SubIMDB corpus.

We hereon address this system as the NNSeval simplifier.

• LexMTurk: Determines the best simplifier based on the Accuracy obtained in a full
pipeline evaluation conducted over the LexMTurk dataset. According to the results
obtained by Glavaš and Štajner (2015), the best performing system under this evaluation
strategy is composed by:

– The Glavas generator, introduced by Glavaš and Štajner (2015), which uses
typical word embedding models.

– The Glavas ranker, introduced by Glavaš and Štajner (2015), which ranks candi-
dates according to the average ranking obtained over various collocational and
semantic features.

Notice that this simplifier does not employ any explicit Substitution Selection strategy.
We hereon address this system as the LexMTurk simplifier.

All simplifiers were configured in the same way described in the full pipeline evaluation
of Section 8.5.1.

Methodology

We first randomly collected 1,200 sentences from Wikipedia that contained at least one target
content word (verb, noun, adjective or adverb) deemed complex by at least one non-native
English speaker in the user study described in Section 3.1 with at least one synonym in
WordNet, and which was not a color, proper name, number or stop-word. We did not consider
synonyms which were either morphological variants of the target itself, or had a Levenshtein
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distance (Levenshtein, 1966) to the target that was smaller than three characters. We then
employed each of the previously mentioned systems in producing a simpler alternative to the
target content word of each sentence. Notice that Wikipedia is the same source from which
the sentences in LexMTurk and NNSeval were extracted.

For each sentence we created a “candidate pool”, containing all three simpler alternatives
produced by the systems (one produced by each system), as well as the target content word
itself. One annotation instance was created for each sentence. Instances were composed by
the candidate pool and a modified version of the sentence in which the target content word is
replaced by a “gap” marker.

Through an online interface, annotators were asked to rank the candidates in a pool
according to “how well they fit the gap in the sentence”. A screenshot of the interface used is
shown in Figure 8.1.

Fig. 8.1 Human evaluation interface

A total of 300 non-native English speakers participated, all university students and staff.
Each annotator was presented with 20 instances, and each instance was annotated by 5 distinct
annotators. Annotators were allowed to give the same ranking to two or more candidates.

We hypothesise that, when judging the “fitness” of candidates, non-native English speak-
ers account for various contextual aspects, such as the sentences’ grammaticality, meaning
preservation and simplicity. This way, we simplify the annotation process, consequently



224 Resources, Tools and Evaluation

avoiding the costs inherent to training annotators to correctly judge these individual linguistic
properties.

Results

We have found an average of 0.425 Spearman correlation between the five annotators’
rankings, which reveals a considerable heterogeneity in their judgment. We must point out
that despite the subjective nature of the task, annotators in this experiment have achieved
a higher agreement than those who have produced the datasets for the English Lexical
Simplification task of SemEval 2012 (0.398), which are also composed by rankings produced
by non-native English speakers.

Table 8.22 shows the average ranking obtained for the simplifications produced by each
system, as well as the target content word itself. It reveals substantial differences between
the target word and the simplifications. The histogram in Figure 8.2 sheds light on this
phenomenon: the target word is the one to best fit the gap in the sentence two times out of
three, and rarely ever is at the bottom of the ranking.

System Average
Pipeline 2.40±0.85
NNSeval 2.49±0.89
LexMTurk 2.50±0.91
Target 1.48±0.76

Table 8.22 Average rankings obtained by the candidates of each system evaluated

Fig. 8.2 Proportion over ranks per system

However, when it comes to the simplifiers themselves, one can notice a small, yet
consistent preference from the annotators for the alternatives produced by the Pipeline
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simplifier. Its average rank is 0.1 smaller than that of other simplifiers, and its variance is
0.05% smaller also. It was also ranked second an average of 3.92% times more frequently
than the other simplifiers, and ranked last an average of 4.08% less. The F-test results
depicted in Table 8.23, in which � indicates p<0.05 and ♦ otherwise, determine that this
difference is statistically significant. F-tests were performed over the systems’ ranking
distributions.

In contrast, there is not a significant difference between the LexMTurk and NNSeval
simplifiers, meaning that the quality of their simplifications is very similar. This phenomenon
is rather surprising, since, as pointed out in Section 8.4, NNSeval was created with the intent
of better capturing the needs non-native English speakers, and the target words selected for
this experiment were deemed complex by non-native English speakers themselves.

Pipeline NNSeval LexMTurk
NNSeval �
LexMTurk � ♦
Target � � �

Table 8.23 Results of F-tests performed over the distributions of rankings

These results raise, consequently, two important questions about the systems being
evaluated:

1. Why do human evaluators prefer the simplifications produced by the Pipeline as
opposed to the NNSeval simplifier?

2. If the NNSeval and LexMTurk simplifiers use such distinct strategies, then what makes
their simplifications so similar?

We believe that the answer to the first question lies in the only difference that the Pipeline
and NNSeval simplifiers have between them: the Substitution Ranking approach used. Both
of them use the same generator and selector, but while the NNSeval simplifier employs a
very simple frequency-based ranker, the Pipeline ranker uses a Boundary Ranker trained over
manually annotated data.

Table 8.24 shows the percentage of simplification problems for which each pair of
simplifiers have produced identical simplifications. Analysing the results, the first thing
we were able to notice is that, due to the fact that they share most of their architecture, the
simplifications produced by the Pipeline and NNSeval simplifiers are the same almost 60%
of the time. These findings greatly contrast with the statistical significance tests depicted
in Table 8.23: while we found no statistically significant difference (p>0.05) between the
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NNSeval and LexMTurk simplifiers, which have produced identical simplifications for barely
more than 4% of instances, there is a statistically significant difference between the Pipeline
and NNSeval simplifiers, of which the output is identical almost two out of three times.

Pipeline NNSeval LexMTurk
Pipeline 100%
NNSeval 59% 100%
LexMTurk 3.5% 4.2% 100%

Table 8.24 Percentage of identical simplifications produced

By taking a closer look at the simplifications produced by the systems, the preference
of non-native speakers of English for the Pipeline simplifier and the similarities between
the NNSeval and LexMTurk simplifier become much more clear. Table 8.25 shows several
examples of simplification problems from our experiment along with the simplifications
produced by each system.

The first three examples represent a recurring phenomenon that highlights why the
Pipeline simplifier is preferred by non-native English speakers. In all of them, the simplifica-
tions produced by the Pipeline simplifier are grammatical, and are the only one to resemble
the meaning of the original target word in context. Consequently, in all of these examples, the
Pipeline simplifications were ranked either first or second, while the NNSeval and LexMTurk
ones were in third or fourth.

We have also noticed that the LexMTurk simplifier tends to produce spurious simpli-
fications, such as the one in the second example, much more frequently than the other
systems. Some other examples of ungrammatical and/or incoherent simplifications are
“movement–the”, “www.manolocaracol.net” and “600-502-33”. We believe that the lack
of a context-aware strategy for Substitution Generation and the absence of a Substitution
Selection step are the main causes for this.

But more importantly yet, our qualitative analysis provides a better outline of the merits
inherent to using a supervised Boundary Ranker as opposed to a simple frequency-based
alternative. The three last examples of Table 8.25 represent another recurring phenomenon in
our human evaluation: the NNSeval simplifier often fails to preserve the grammaticality of
the sentence by replacing verbs, nouns and adjectives with morphologically incompatible
alternatives. The error most frequently made by the NNSeval simplifier is replacing a verb
with another in a different tense, such as it has done in the fourth and fifth examples.

In the following Section, we introduce an error analysis framework that allows a better
outline of the strengths and weaknesses of the approaches evaluated in this benchmark.



8.5 Benchmarking Lexical Simplification Systems for Non-Native Speakers 227

It also reacts violently with water, spewing _____ liquid all over.
Target NNSeval LexMTurk Pipeline

corrosive bitter dangerous acid

A medical abortion is a type of non-surgical abortion in which
abortifacient pharmaceutical drugs are used to induce _____.
Target NNSeval LexMTurk Pipeline

abortion pregnancy controvserial miscarriage

In other cases, they are used to model a more abstract process, and are
the theoretical _____ of an algorithm.

Target NNSeval LexMTurk Pipeline
underpinning understanding framework basis

In 1978 “action office II” was renamed simply “action office”, and by
2005 had _____ sales totalling $5 billion.

Target NNSeval LexMTurk Pipeline
attained achieve achieved accomplished

The committee directs corporate management, approves major capital
expenditures, establishes broad policy and monitors management’s
performance in _____ the business and affairs of the corporation.

Target NNSeval LexMTurk Pipeline
conducting assist monitoring directing

Trajan’s wife and his friend licinius sura were _____ towards hadrian,
and he may well have owed his succession to them.

Target NNSeval LexMTurk Pipeline
well-disposed kindly good-nature sympathetic

Table 8.25 Simplification examples produced by the systems evaluated
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8.6 PLUMBErr: An Error Identification Framework

In order to assess and compare the performance of different LS strategies, previous work
has used both manual and automatic evaluation methods. The most widely used is human
evaluation. Biran et al. (2011), Paetzold and Specia (2013) and Glavaš and Štajner (2015)
all use a very similar approach: they present human subjects with various simplifications
produced by their systems and ask them to make judgments with respect to grammaticality,
meaning preservation and simplicity, either individually or jointly. The methodology used
in their work resembles that used in the human evaluation described in Section 8.5.2, in
which we compare the performance of three LS approaches. Although human evaluation
is a good way of assessing the effectiveness of an approach with respect to the needs of a
target audience, it has limitations. Besides being a costly process that prevents one from
performing large benchmarks, human evaluations tend to lead to inconclusive results due
to the disagreement between judges. As discussed in Section 3.2, human annotators tend to
have very unique definitions and standards with respect to complex linguistic properties such
as grammaticality and meaning preservation. Yet another limitation of the human evaluation
methodologies used in literature is the fact that they do not incorporate the step of Complex
Word Identification. Because most authors choose to neglect CWI (Biran et al., 2011; Glavaš
and Štajner, 2015; Horn et al., 2014; Paetzold and Specia, 2013), they randomly select the
target words which are to be simplified by their systems and then judged by the subjects,
which consequently ignores to the needs of the target audience being addressed.

Automatic evaluation approaches are much different. The most widely used method is
the one introduced by Horn et al. (2014), in which the simplifications produced by a system
for a set of problems are compared to a gold-standard produced by hundreds of humans
through various metrics. But as demonstrated in the benchmarks of Section 8.5, even though
this evaluation method is much less costly to perform, it is difficult to determine conclusively
which of the systems compared best suits the needs of a target audience without the results
from a human evaluation experiment, since distinct metrics and datasets tend to lead to
different results. And as discussed in Section 8.5.1, typical full pipeline evaluation methods
do not accommodate CWI, which is a crucial step in ensuring that a simplifier will fit the
needs of a target audience.

Another limitation of typical human and automatic evaluation methods is the fact that
they do not provide detailed insight on what are the strengths and limitations of the simplifier.
Although a human evaluation in which subjects are asked to individually judge different
aspects of a simplification can highlight the problem of a simplifier that makes frequent
ungrammatical replacements, for example, it is not able to outline the reason why the
simplifier does so.
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Shardlow (2014a) introduces a solution to the aforementioned problems. Their approach
uses human evaluation not to assess the quality of simplifications, but rather to verify the
correctness of each decision made by a simplifier with respect to the usual pipeline. Although
innovative, their error categorisation approach is subject to the same limitation of other
human evaluation strategies: humans judgments are costly to acquire. Such costs make the
evaluation much harder, and can oblige those with limited resources to restrict themselves
to evaluating only one or two systems with the judgments of just a few subjects, which can
compromise the reliability of the results.

In this Section, we introduce PLUMBErr: an error analysis framework for LS that
provides an accessible automatic approach for error identification. In what follows, we
discuss the approach of Shardlow (2014a) in more detail (Section 8.6.1), describe the
resources and methods used in PLUMBerr (Section 8.6.2), and present various experiments
(Sections 8.6.4 through 8.6.6).

8.6.1 Error Analysis in Lexical Simplification

Shardlow (2014a) describes a pioneer effort in LS evaluation. Their study introduces an
error analysis methodology that allows one to outline in detail the intricacies of a simplifier.
Taking the usual LS pipeline as a basis, they first outline all possible types of errors that a
system can make when simplifying a target word in a sentence:

• Type 1: No error. The system did not make any mistakes while simplifying this target
word.

• Type 2A: The system mistook a target complex word for simple.

• Type 2B: The system mistook a target simple word for complex.

• Type 3A: The system did not produce any candidate substitutions for the target word.

• Type 3B: The system did not produce any simpler candidate substitutions for the target
word.

• Type 4: The system replaced the target word with a candidate that compromises the
integrity of the sentence.

• Type 5: The system replaced the target word with a candidate that does not simplify
the sentence.
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Finally, they establish a methodology for error identification that uses human assessments
to judge the output produced by the simplifier after each step of the pipeline. Their methodol-
ogy, which is illustrated in Figure 8.3, is very sensible, and unlike previous human evaluation
strategies, it incorporates the step of Complex Word Identification.

But as previously discussed, acquiring human judgments is often costly, which can
consequently limit the amount of systems which could be compared in a benchmark. In their
work (Shardlow, 2014a) they are only able to assess the performance of one simplifier based
on the judgments made by one annotator. Although they do learn interesting things about
which errors are more frequently made by a basic simplifier, their analysis does not allow
strengths and weaknesses of various Complex Word Identification, Substitution Generation,
Selection and Ranking to be compared. PLUMBErr offers a solution to this problem.

8.6.2 An Automatic Alternative

PLUMBErr is a framework for the automatic identification of errors made by pipelined
Lexical Simplification systems. To produce a full report on the types of errors made by a
lexical simplifier, PLUMBerr employs the same overall error categorisation methodology
introduced by Shardlow (2014a), but in order to avoid the need for human judgments, it
resorts to a set of pre-computed gold-standards and a list of complex words produced by
non-native English speakers.

The LS system being evaluated by PLUMBErr is first required to solve a series of pre-
determined simplification problems present in the BenchLS dataset (Section 8.6.2). Through
the PLUMBErr workflow, the judgments and resources produced by the system after each
step of the pipeline are then compared to the gold-standards present in BenchLS, as well as
the set of complex words present in NNSVocab (Section 8.6.2), which then allow errors to be
found and categorised.

BenchLS

BenchLS is a dataset composed of 929 instances. Each instance contains a sentence, a target
word, and various gold replacements suggested by English speakers from the U.S with a
variety of backgrounds. Although these replacements are not guaranteed to make the sentence
simpler, they do ensure that the sentence’s grammaticality and meaning are preserved.

The instances of BenchLS are automatically corrected versions of the instances in two
other datasets from literature:

• LexMTurk: Composed of 500 instances with sentences extracted from Wikipedia.
The target word of each instance was selected based on word alignments between
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Fig. 8.3 Error categorisation methodology of Shardlow (2014a)
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the sentence in Wikipedia and its equivalent simplified version in Simple Wikipedia.
Candidate substitutions were produced by English speakers through the Amazon
Mechanical Turk8. Each instance contains 50 candidate substitutions for the target
word, each produced by a single annotator.

• LSeval: Composed of 439 instances with sentences extracted from the English Internet
Corpus of English9. The target word of each instance was selected at random. Candi-
date substitutions were produced by English speakers through the Amazon Mechanical
Turk, and then validated by PhD students.

The automatic correction steps used for BenchLS are two: spelling and inflection correc-
tion. For spelling, we use the algorithm introduced by Norvig10 to fix any words with typos
in them. For inflection, they resort to the Text Adorning module of LEXenstein to inflect any
substitution candidates that are verbs, nouns, adjectives and adverbs to the same tense as the
target word.

NNSVocab

NNSVocab is a vocabulary of 3,854 words deemed complex by non-native English speakers.
The words in NNSVocab were extracted from the data produced in the Complex Word
Identification user study described in Section 3.1, in which 400 annotators judged 158,624
words with respect to their complexity.

Each word in NNSVocab was deemed complex by at least one non-native English speaker
in the user study, and is hence used as a representation of the simplification needs of this
target audience.

Workflow

The workflow of PLUMBErr, which is illustrated in Figure 8.4, combines BenchLS and
NNSVocab in a manner that allows for all error types described in Section 8.6.1 to be
identified.

In its workflow, the system being evaluated first takes as input the target word from a
simplification problem in BenchLS. The target word is then checked for complexity: is it in
NNSVocab? i.e. has it been deemed complex by a non-native English speaker? If not, then it
does not need to be simplified, otherwise, it does. The system then predicts the complexity
of the word, which is again cross-checked in NNSVocab. If there is a disagreement between

8https://www.mturk.com
9http://corpus.leeds.ac.uk/internet.html

10http://norvig.com/spell-correct.html
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Fig. 8.4 The PLUMBErr methodology
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the system’s prediction and the judgment of non-native speakers of English, then an error of
type 2 is identified. Otherwise, the system goes through the steps of Substitution Generation
and Selection, and produces a set of candidate substitutions for the target complex word.

The candidates produced are then checked for errors of type 3. If there is at least one
candidate available, and it is not a complex word in NNSVocab, then no errors are identified
and the system moves on to ranking the candidates. After ranking, the best candidate among
all is checked for errors of types 4 and 5: if the best candidate is among the replacements
suggested by annotators in BenchLS, and it is not in NNSVocab, then it has successfully
simplified the sentence.

At the end of the process, PLUMBErr produces a full report of the errors made in each of
the problems present in BenchLS with respect to the needs of non-native English speakers
represented in NNSVocab.

8.6.3 Experimental Settings

As previously mentioned, the work of Shardlow (2014a) features the error analysis of only
one simplifier which does not perform any type form of Complex Word Identification or
Substitution Selection. In order to showcase the potential of PLUMBErr, we have conducted
an error categorisation benchmark with several LS systems with respect to all steps of the
pipeline.

The systems chosen for our benchmark are four:

1. The Devlin Simplifier: The first lexical simplifier (Devlin and Tait, 1998). We choose
it because it was featured in the error categorisation of Shardlow (2014a), and hence
allows us to compare their manual error categorisation approach to our automatic
strategy. Its approaches to each step of the pipeline are:

• Substitution Generation: Extracts synonyms from WordNet.

• Substitution Selection: Does not perform Substitution Selection.

• Substitution Ranking: Uses Kucera-Francis coefficients.

2. The Horn Simplifier: We choose it because it is considered the current most effective
supervised lexical simplifier, according to the experiments of Horn et al. (2014) and
Glavaš and Štajner (2015). Its approaches to each step of the pipeline are:

• Substitution Generation: Extracts complex-to-simple word correspondences
from word alignments between Wikipedia and Simple Wikipedia.
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• Substitution Selection: Does not perform Substitution Selection.

• Substitution Ranking: Learns a ranking model using Support Vector Machines
from the examples in the LexMTurk dataset.

We use the same resources and parameters described in Section 8.5.1.

3. The Glavas Simplifier: We choose it because it is considered the current most effective
unsupervised lexical simplifier, according to the experiments of Glavaš and Štajner
(2015). Its approaches to each step of the pipeline are:

• Substitution Generation: Extracts the 10 words closest to a given target com-
plex word in a word embeddings model.

• Substitution Selection: Does not perform Substitution Selection.

• Substitution Ranking: Uses rank averaging over various semantic, lexical and
collocational features.

We use the same resources and parameters described in Section 8.5.1.

4. The Paetzold Simplifier: Our own simplifier, and the system that has performed best
in the human evaluation experiment of Section 8.5.2. Its approaches to each step of the
pipeline are:

• Substitution Generation: Employs the generation strategy described in Chap-
ter 5.

• Substitution Selection: Employs the unsupervised Boundary Ranking strategy
described in Chapter 7.

• Substitution Ranking: Employs the supervised Boundary Ranking strategy
described in Chapter 6.

We use the same resources, features and configurations described in Section 8.5.1.

Notice that all aforementioned simplifiers have one thing in common: they do not employ
a explicit Complex Word Identification step i.e. they simplify all words in a sentence. In
order to make our experiments more meaningful and informative, we have decided to pair
the lexical simplifiers selected with various CWI strategies:

1. Simplify Everything (SE): Deems all words to be complex. We include this approach
in our evaluation as a baseline.
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2. Support Vector Machines (SVM): Learns a word complexity model from training
data using Support Vector Machines. As features, it uses the words’ frequency and
movie count in SUBTLEX, length, syllable, sense and synonym count. Syllables were
obtained with the help of Morph Adorner. Sense and synonym counts were extracted
from WordNet. We choose this approach because it is the first English language Com-
plex Word Identification approach in literature that uses Machine Learning (Shardlow,
2013a).

3. Threshold-Based (TB): Through brute force search, learns the threshold t from train-
ing data that best separates complex from simple words. For a metric, it uses raw
word frequencies from Simple Wikipedia. We choose this strategy because it has
achieved the highest F-score in the Complex Word Identification task of SemEval 2016,
described in Section 3.1.5.

4. Performance-Oriented Soft Voting (POSV): Combines several CWI strategies by
weighting their predictions according to their overall performance in a validation
dataset. This strategy is the one described in Section 3.1.5. We choose this approach
because it has obtained the highest G-score (harmonic mean between Accuracy and
Recall) in the Complex Word Identification task of SemEval 2016.

To train the supervised identifiers, we use the optimistic training set provided described
in Section 3.1.4, which is the one used in the SemEval 2016 task. It contains 2,237 instances,
each composed of a target word in context and a binary label that receives value 1 if the word
was judged complex by at least one non-native English speaker, or 0 otherwise.

8.6.4 Cumulative Analysis

In our cumulative analysis, we use the same error propagation technique of Shardlow (2014a),
in which the errors made in a given step are carried onto to the next. If a simplifier makes a
mistake in 90% of the instances during Complex Word Identification, for example, then it
will only work over the 10% of instances left in the next pipeline step.

Table 8.26 shows raw count and proportion of instances in which errors of type 2A and
2B were made by each CWI approach. The fourth column of Table 8.26 features the sum of
errors of type 2 (either 2A or 2B) made by each identifier. In analogous fashion, Table 8.27
shows the errors of type 3 made by each combination of CWI approach and simplifier.
Table 8.28 shows the errors of type 4, 5 and 1 (no error) made by each combination.

The results in Table 8.26 reveal that Machine Learning approaches are much more reliable
than the other two alternatives. Our Performance-Oriented System Voting method makes
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Error
System 2A 2B 2
SE 0 (0%) 689 (74%) 689 (74%)
SVM 79 (9%) 268 (29%) 347 (37%)
TB 29 (3%) 645 (69%) 674 (73%)
POSV 104 (11%) 229 (25%) 333 (36%)

Table 8.26 Cumulative analysis results for errors of Type 2

the least amount of Type 2 errors. When it comes to the rest of the pipeline, Tables 8.27
and 8.28 show that the Paetzold simplifier is the clear winner. It performs the smallest total
amount of Type 3 errors during Substitution Generation and Selection, and offers the smallest
total proportion of Type 4 and 5 Substitution Ranking errors. It is also the most consistent:
the errors of type 1 in Table 8.28 show that the Paetzold simplifier correctly simplifies the
largest amount of instances across all CWI strategies. In practice, the combination between
Performance-Oriented System Voting for CWI and the Paetzold simplifier yields the highest
proportion of correctly simplified problems, which is in line with the previous observations.

Error
System 3A 3B 3

SE Devlin 86 (36%) 34 (14%) 120 (50%)
SE Horn 76 (32%) 43 (18%) 119 (50%)
SE Glavas 70 (29%) 23 (10%) 93 (39%)
SE Paetzold 59 (25%) 21 (9%) 80 (33%)
SVM Devlin 140 (58%) 25 (10%) 165 (69%)
SVM Horn 115 (48%) 30 (12%) 145 (60%)
SVM Glavas 122 (51%) 17 (7%) 139 (58%)
SVM Paetzold 120 (50%) 11 (5%) 131 (55%)
TB Devlin 108 (45%) 23 (10%) 131 (55%)
TB Horn 104 (43%) 36 (15%) 140 (58%)
TB Glavas 91 (38%) 17 (7%) 108 (45%)
TB Paetzold 80 (33%) 12 (5%) 92 (38%)
POSV Devlin 165 (69%) 7 (3%) 172 (72%)
POSV Horn 149 (62%) 17 (7%) 166 (69%)
POSV Glavas 155 (65%) 8 (3%) 163 (68%)
POSV Paetzold 149 (62%) 9 (4%) 158 (66%)

Table 8.27 Cumulative analysis results for errors of Type 3
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Error
System 4 5 1

SE Devlin 60 (50%) 17 (14%) 43 (36%)
SE Horn 74 (61%) 15 (12%) 32 (26%)
SE Glavas 81 (55%) 20 (14%) 46 (31%)
SE Paetzold 68 (42%) 28 (18%) 64 (40%)
SVM Devlin 36 (48%) 9 (12%) 30 (40%)
SVM Horn 56 (59%) 13 (14%) 26 (27%)
SVM Glavas 47 (47%) 17 (17%) 37 (37%)
SVM Paetzold 41 (38%) 15 (14%) 53 (49%)
TB Devlin 56 (51%) 15 (14%) 38 (35%)
TB Horn 59 (59%) 11 (11%) 30 (30%)
TB Glavas 68 (52%) 19 (14%) 45 (34%)
TB Paetzold 60 (41%) 26 (18%) 62 (42%)
POSV Devlin 36 (53%) 5 (7%) 27 (40%)
POSV Horn 42 (57%) 10 (14%) 22 (30%)
POSV Glavas 37 (48%) 5 (6%) 35 (45%)
POSV Paetzold 30 (37%) 7 (9%) 45 (55%)

Table 8.28 Cumulative analysis results for errors of Type 4, 5 and 1 (no error)

8.6.5 Non-Cumulative Analysis

To complement the results from Section 8.6.4, we run a non-cumulative analysis of our
simplifiers. In this analysis, the errors from the first pipeline step are not carried onto the
next, i.e. it pairs each simplifier with a CWI system with 100% Accuracy. This setup allows
us to evaluate the simplifiers in a scenario where the target words to be simplified are known,
such as in the case of interactive user-driven LS approaches that allow for the user to select
which words they find challenging (Azab et al., 2015; Devlin and Unthank, 2006; Rello et al.,
2013a).

The results in Tables 8.29 and 8.30 emphasise the effectiveness of the LS approaches
introduced in this thesis. Our generator and selector are the ones to make the smallest amount
of Type 3 errors, and our ranker provides a noticeable 8% increase in the proportion of
correctly simplified words (type 1 errors) over the second best simplifier.

8.6.6 Manual vs. Automatic

In order to trust the results obtained in our previous error analyses, we must assess the
reliability of PLUMBErr. To do so, we compare our results with the ones reported by
Shardlow (2014a), who also analyze the performance of the Devlin simplifier when paired
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Error
System 3A 3B 3
Devlin 86 (36%) 34 (14%) 120 (50%)
Horn 76 (32%) 43 (18%) 119 (50%)
Glavas 70 (29%) 23 (10%) 93 (39%)
Paetzold 59 (25%) 21 (9%) 80 (33%)

Table 8.29 Non-cumulative analysis results for errors of Type 3

Error
System 4 5 1
Devlin 156 (65%) 41 (17%) 43 (18%)
Horn 176 (73%) 32 (13%) 32 (13%)
Glavas 164 (68%) 30 (12%) 46 (19%)
Paetzold 137 (57%) 39 (16%) 64 (27%)

Table 8.30 Non-cumulative analysis results for errors of Type 4, 5 and 1 (no error)

with a Simplify Everything identifier. The proportion of errors reported in the manual
approach of Shardlow (2014a) and the automatic approach of PLUMBErr are reported in
Figure 8.5.

While errors of Type 2 and 3 have very similar proportions, an interesting contrast was
found for errors that occur during Substitution Ranking: the gold replacements present in
BenchLS are more restrictive than the human judgments of Shardlow (2014a). Nonetheless,
this phenomenon is expected, given that annotators of BenchLS were able to suggest only a
single candidate substitution for each instance, without having access to other annotators’
suggestions. This annotation approach compels them to suggest what they believe to be most
appropriate replacement for the target word in question, consequently leading to a lot of
repeated suggestions, and hence lower coverage.

8.7 Conclusions

In this Chapter, we presented various new resources and tools for LS, as well as a benchmark
LS approaches and an error categorisation analysis of the best simplifiers available.

We introduced SubIMDB: a large structured corpus of subtitles of movies and series for
the average audience, which aims at representing the everyday language to which non-native
English speakers are accustomed. We found that word frequencies from SubIMDB capture
lexical decision times more effectively than various other frequency norms. Additionally, we
found that using only certain types of subtitles can yield noticeable increases in performance.
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Fig. 8.5 Error proportion comparison

The same was observed for the prediction of other psycholinguistic properties, such as
Familiarity, which, as demonstrated by Jauhar and Specia (2012), can be used in the creation
of state-of-the-art LS strategies.

Exploiting word frequencies from SubIMDB as well as many other features, we created
a bootstrapping algorithm for regression. It elaborates on early bootstrapping strategies for
classification, and uses word embedding models in order to determine the confidence of a
given prediction. We use our algorithm to train regressors that estimate four psycholinguistic
properties included in the MRC Psycholinguistic Database: Familiarity, Age of Acquisition,
Concreteness and Imagery. In our experiments, we compare our approach to various other
baselines. The results reveal that our bootstrapped regressors are capable of estimating
psycholinguistic properties much more effectively than all other approaches, offering upwards
of 87% correlation with human-produced features.

In order to make our new resources and approaches available to the public, we developed
LEXenstein, an open-source Python framework for LS. LEXenstein offers facilitated access
not only to various approaches for all steps in the LS pipeline, but also to utilities often used
in modern LS approaches, such as feature estimators, text adorners and spelling correctors.

By exploiting the great utility offered by LEXenstein and the aforementioned resources,
we were able to present a performance comparison involving 8 Substitution Generators, 7
Substitution Selectors and 24 Substitution Rankers. As a gold-standard, we use NNSeval: a
dataset for LS that accounts for the needs of non-native English speakers.
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By evaluating each step in the LS pipeline individually, we found that, while extracting
substitutions from the retrofitted context-aware word embeddings model introduced in
Chapter 5 produces the least amount of spurious candidates, combining multiple generators
allows for a much higher coverage, and could hence, in practice, increase the simplicity of
the output produced by an LS approach. We have also found that, although Substitution
Selection is a very challenging task, our unsupervised Boundary Ranking approach described
in Chapter 7 is a more effective alternative to using standard classification and Word Sense
Disambiguation strategies. In our comparison of Substitution Ranking systems, we found
that our supervised Boundary Ranking approach described in Chapter 6 outperforms even
modern ranking strategies, and is hence the current state-of-the-art approach for the task.

Our full pipeline evaluation, which compared 1,344 distinct LS strategies, suggests
that the current most effective approach for LS targeting non-native English speakers is
entirely unsupervised, combining the SG strategy of Chapter 5, the unsupervised Boundary
Ranker of Chapter 7 and single-word frequencies from the SubIMDB corpus. In our human
evaluation, however, we have found that a full pipeline evaluation might not be the most
reliable automatic evaluation approach for LS: it is more effective to create a simplifier by
combining the highest performing approaches for each step of the pipeline individually.

In order to address the limitations of the automatic evaluation strategies used in our
benchmark and provide with a more informative way of assessing the performance of lexical
simplifiers, we introduced PLUMBErr: an automatic error categorisation framework for LS.
PLUMBErr uses the same workflow for error identification proposed by Shardlow (2014a),
but replaces on-demand human judgments with the data from two pre-annotated datasets:
BenchLS and NNSVocab.

To showcase its utility, we used PLUMBErr to analyze the performance of 16 combina-
tions of the most effective Complex Word Identification strategies and LS systems available.
The results reveal that our Performance-Oriented Soft Voting identifier, which has obtained
the highest G-score in the Complex Word Identification task of SemEval 2016, is the most
reliable alternative among the ones evaluated. This observation supports the claim made in
Section 3.1.4 that the G-score is a better indicator of an identifier’s quality in practice than
the traditional F-score. Our approaches to Substitution Generation, Selection and Ranking
described in Chapters 5, 6 and 7 were also the ones to offer the most consistent results,
obtaining the best overall performance for the remaining steps of the pipeline.

We released the SubIMDB corpus in both raw form, containing subtitles individually
annotated with metadata, and in compiled form. Both versions are freely available for
download at http://ghpaetzold.github.io/subimdb. The LEXenstein framework along with
its documentation can be found at http://ghpaetzold.github.io/LEXenstein. The remaining

http://ghpaetzold.github.io/subimdb
http://ghpaetzold.github.io/LEXenstein
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resources introduced in this Chapter, such as NNSeval and our bootstrapped psycholinguistic
features can be downloaded at https://gustavopaetzold.wordpress.com/resources.

https://gustavopaetzold.wordpress.com/resources


Chapter 9

Final Remarks

In this thesis, we presented our efforts towards understanding and addressing the Lexical
Simplification needs of non-native English speakers. Through an extensive literature survey,
we found that the intricacies of how non-native speakers of the English language communicate
affect not only the effectiveness with which they can convey information in English, but also
the way they are perceived by native speakers in academic settings. The literature review also
revealed that, despite the fact that non-native English speakers number in millions, there have
been barely any efforts in addressing their needs from a Lexical Simplification standpoint.
The scarcity of such efforts led to a scarcity of tools and resources, which hampered progress
in the area. We took this problem as the main motivation behind the contributions in this
thesis.

We first conducted user studies with a total of 1,000 non-native speakers of English.
Words which pose challenges to them were found to be less ambiguous than simpler coun-
terparts, and to occur less frequently in large corpora of text. No significant relationship
between word complexity and its length or number of syllables was found. The number
of words deemed complex by non-native speakers of English correlates with their level of
proficiency, and seem to decrease with age. Our first results also revealed that automatically
identifying complex words for non-native speakers of English is feasible. By combining
the output of various Complex Word Identification strategies with a Performance-Oriented
Soft Voting ensemble technique, we were able to create a strategy that captures 77% of
complex words while still managing to correctly predict complexity 78% of the time. From
our studies we also discovered that word embedding models provide useful insights on which
alternatives can correctly replace complex words, and that the simplicity of such alternatives
is, contrary to what early work claimed, strongly dependent on the context where they are
found. Through these findings, we fulfilled two of our goals in this thesis, which are to
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model and provide a better understanding of the simplification needs of non-native speakers
of English.

Our survey allowed a clear outline of the state-of-the-art in Lexical Simplification to be
drawn. Almost all previous work adheres to the traditional pipeline for the task. There are
no simplifiers that attempt to jointly model all generation, selection and ranking processes
inherent to Lexical Simplification. Using language models based on Recurrent Neural
Networks, we were able to address this gap. Our Neural Language Models avoid the need
for any annotated data or explicit generation, selection or ranking steps by simply learning to
answer the question: which word from the vocabulary can best fill the gap left by a potentially
complex word? Although promising in nature, our strategy was only able to perform
competitively to other state-of-the-art simplifiers when incorporated as a step in the traditional
Lexical Simplification pipeline. Following the success of previous work, we conceived an
alternative pipelined Lexical Simplification approach. For Substitution Generation, we
employ word embedding models . We bring novelty to the field by proposing retrofitted
context-aware embedding models, which exploit both the complex words’ grammatical
form and their synonymy information to offer a state-of-the-art approach to Substitution
Generation. To accompany our generator, we conceived a novel supervised Substitution
Ranking strategy called Boundary Ranking, which learns how to rank candidate substitutions
from a binary classification setup inferred from ranking examples that represent the needs
of non-native English speakers. By exploiting n-gram language model probabilities from
subtitles of movies and series for family and children, it becomes the state-of-the-art for
the task. Its performance is further enhanced when psycholinguistic features, which we
infer using a novel bootstrapping approach, are incorporated during training. To further
improve our pipelined simplifier, we created a state-of-the-art Substitution Selection strategy.
It treats Substitution Selection as a ranking problem, and exploits the counter-intuitive, and
yet useful hypothesis that words are irreplaceable in order to train an unsupervised Boundary
Ranker, which was shown to outperform all other selectors from previous work. With
these contributions, we fulfill the third, fourth and fifth goals set for the completion of this
thesis, which were to conceive novel, more effective approaches for each step of the Lexical
Simplification pipeline.

Through our efforts in finding the most appropriate way to assess the effectiveness of
simplifiers, we were able to offer new insight on which methodology should be used in Lexical
Simplification evaluation. Using the information produced in our user studies, we introduce
NNSeval: a new evaluation dataset that accounts for the needs of non-native speakers of
English. NNSeval was created through the correction and filtering of two evaluation datasets
introduced in past contributions. It allows for the components of pipelined simplifiers to be
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assessed both individually and jointly. Using NNSeval and the datasets from the English
Lexical Simplification task of SemEval 2012, we have conducted the largest benchmarking of
Lexical Simplification systems to date. We compared the performance of 1,344 simplifiers in
two ways: through evaluations for each individual step of the pipeline, and through a joint full
pipeline evaluation of Substitution Generation, Selection and Ranking. Both methodologies
suggest that our approaches to LS are the most effective available for non-native speakers of
English. Nonetheless, our two evaluation methodologies have not led to the same winner,
raising questions as to which one of them is the most reliable, and should hence be used in
future work. We answer these questions through a human evaluation experiment, in which
we highlight the importance of supervised Substitution Ranking strategies and discover
that combining the winning approaches for each step of the pipeline individually is a more
sensible option than adopting the winner of a full pipeline evaluation. Although our evaluation
methodology may help one decide which simplifier to use for a given target audience, it does
not accommodate the task of Complex Word Identification, nor does it allow for one to assess
the simplifier’s strengths and weaknesses in detail. Our automatic error analysis framework
PLUMBErr offers a solution to this problem. By combining the data collected from our
user studies with other consolidated LS datasets created in previous work, PLUMBErr
automatically identifies and categorises errors made by pipelined simplifiers, and avoids any
need of human annotation. In our experiments with PLUMBErr, we find more evidence of the
effectiveness of our proposed approaches to the Lexical Simplification pipeline. Combining
our Performance-Oriented Soft Voting approach to Complex Word Identification, retrofitted
context-aware word embedding models for Substitution Generation, unsupervised Boundary
Ranker for Substitution Selection, and supervised Boundary Ranker for Substitution Ranking,
we create a complete approach that correctly identifies and simplifies complex words up
to 25% more reliably than previous state-of-the-art simplifiers. These contributions fulfill
the sixth and final established goal for this thesis, which was to find more informative and
reliable evaluation strategies for Lexical Simplification.

In addition to these contributions, we have also created and released a wide array of
new resources. The most significant among them is LEXenstein, a framework for Lexical
Simplification. LEXenstein is a modular and easy-to-use Python library that provides dozens
of approaches from previous work and our own to the various steps of the usual Lexical
Simplification pipeline. It also provides functions commonly used by simplifiers, such
as text adorning, spelling correction and others. Aditionally, we have contributed with a
number of resources as a result of our user studies with non-native English speakers. The
datasets comprise 211,564 human annotations, and are freely available. Using this data,
we launched and organised the Complex Word Identification shared task of SemEval 2016,
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in which 21 teams participated. Through this event, researchers from various institutions
were able to familiarise with some of the challenges in Lexical Simplification and had the
opportunity to present their approaches to Complex Word Identification. A total of 42 CWI
systems were submitted, ranging from simple threshold-based to elaborate Machine Learning
ensembles. The success of this shared task has granted more appeal and visibility to Lexical
Simplification.

Despite our efforts and the positive outcome in their majority, our work reveals that
Lexical Simplification, regardless of the target audience addressed, is still a challenging
task. Modern simplifiers have not yet reached a point at which they can be reliably used to
modify texts in practice, since their proficiency in capturing grammaticality and meaning
preservation remain faint. Nevertheless, we believe our contributions will serve as a platform
for future work which will be able to succeed in finding even more effective approaches to
Lexical Simplification. In what follows, we suggest some possible directions towards this
goal.

9.1 Future Work

• New user studies: There is no doubt that there is still much to be discovered about
the needs of non-native English speakers from a Text Simplification standpoint. Our
user studies highlight, in multiple occasions, the heterogeneity that characterises
non-native speakers of English. We believe it would be very much revealing to
conduct complementary user studies which focus strictly in the relationship between
the difficulties faced by non-native English speakers and the intricacies of their native
language. We hypothesise that the speakers of different native languages do have
significantly distinct needs with respect to Lexical Simplification, and that a larger user
study would bring light to these differences.

• New shared tasks: The Complex Word Identification task of SemEval 2016 was
successful in bringing more visibility to Lexical Simplification and its challenges: the
entry-level setup used for the task allowed for dozens of teams to participate. In the
future, researchers should organise similar shared tasks that introduce other steps in
the Lexical Simplification pipeline, such as Substitution Generation and Selection.

• Incorporating phrases: In this thesis, we focused on the challenges behind single-
word replacements in Lexical Simplification. Nonetheless, it has long been established
that, in numerous contexts, phrases are interchangeable with words, and can conse-
quently be useful resources in Lexical Simplification. Certain types of phrases, such as
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multi-word expressions, can also be deemed complex by the members of various target
audiences. Future work should focus on the challenges inherent to phrase-to-phrase,
phrase-to-word and word-to-phrase replacements.

• Syntactic Simplification: Syntactic Simplification can be helpful to those affected by
conditions such as Aphasia, which can severely compromise one’s capability of com-
prehending complex syntactic constructs. Although lexical and syntactic simplification
are very distinct, it would be helpful to conduct analyses on the relationship between
them. We hypothesise that Lexical Simplification can help Syntactic Simplification
systems to more effectively prioritise certain portions of text, and hence avoid compro-
mising its integrity. Searching for effective lexico-syntactic simplification strategies
that joint model both tasks is a promising prospect to be explored.
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Appendix A

Binary Classifiers in Lexical
Simplification

In this experiment, we evaluate how well the most successful binary classification approaches
in the experiments of Section 3.2 perform as part of an LS system.

A.1 Approaches

We include three binary classifiers in our evaluation:

• Grammaticality Identifier (Grammaticality): Selects only those candidates that are
classified as grammatical by a Decision Tree binary classifier.

• Meaning Preservation Identifier (Meaning Preservation): Selects only those can-
didates that are classified as meaning preserving by a Decision Tree binary classifier.

• Appropriateness Identifier (Appropriateness): Selects only those candidates that
are classified to be both grammatical and meaning preserving by a Decision Tree
binary classifier.

All three identifiers were trained over the concatenation of the optimistic training set and
the test set of their respective word replacement properties. The hyper-parameters of each
identifier are maximised through 10-fold cross-validation. We compare their performance
with that of six baselines:

• First Sense (First): Selects words which are listed as synonyms under the first Word-
Net sense of the target word.
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• Random Sense (Random): Selects words which are listed as synonyms under a
random WordNet sense of the target word.

• Lesk Algorithm (Lesk): Uses the algorithm introduced by Lesk (1986), described in
Section 5.4.

• Path Similarity (Path): Uses the algorithm introduced by Leacock and Chodorow
(1998), described in Section 5.4.

• Word Clustering (Belder): Uses a strategy similar to the one presented by De Belder
and Moens (2010), described in Section 5.4.

• Co-Occurrence Model Filtering (Biran): Uses the strategy introduced by Biran et al.
(2011), described in Section 5.4.

In order to evaluate their performance in practice, we employ the aforementioned strate-
gies in selecting candidate substitutions produced by various Substitution Generation systems.
The generators included in this experiment are:

• Devlin (Devlin and Tait, 1998): Generates candidate substitutions by extracting syn-
onyms from WordNet, as described in Section 5.4.

• Kauchak (Horn et al., 2014): Generates candidate substitutions from complex-to-
simple parallel corpora, as described in Section 5.4.

• Yamamoto (Kajiwara et al., 2013): Produces candidate substitutions by querying
dictionaries for target words, retrieving example and/or definition sentences, and then
extracting any words that share the same POS tag as the target word. For this approach,
we use the Merriam Dictionary and Thesaurus API1. To tag the dictionary examples
and definitions, we use the Stanford Parser (Klein and Manning, 2003).

• All: Combines the substitutions generated by all other generators.

In our full pipeline evaluation, we pair our selectors with various metric-based Substitu-
tion Ranking approaches. They metrics used by them are:

• Frequency: Candidates are ranked according to their frequency in the Simple Wikipedia
corpus (Kauchak, 2013). The more frequent the word, the simpler it is.

1http://www.merriam-webster.com
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• Length: Candidates are ranked according to their length. The less characters a
candidate have, the simpler it is.

• Senses: Candidates are ranked according to their number of senses in WordNet. The
more senses a word has, the simpler it is.

• Synonyms: Candidates are ranked according to their number of synonyms in WordNet.
The more synonyms a word has, the simpler it is.

• Hypernyms: Candidates are ranked according to their number of hypernyms in Word-
Net. The more hypernyms a word has, the simpler it is.

• Hyponyms: Candidates are ranked according to their number of hyponyms in WordNet.
The more hyponyms a word has, the simpler it is.

A.2 Datasets

As a gold-standard for our selectors, we use the NNSeval dataset, described in Section 8.4.

A.3 Metrics

To assess the performance of our identifiers in Substitution Selection alone, we use the
metrics proposed by Paetzold (2015b), which are:

• Potential: The proportion of instances in which at least one of the substitutions selected
is present in the gold-standard.

• Precision: The proportion of selected substitutions that are present in the gold-
standard.

• Recall: The proportion of gold-standard substitutions that are included in the selected
substitutions.

• F1: The harmonic mean between Precision and Recall.

For our full pipeline evaluation, in which our identifiers are paired with substitution
generators and rankers to compose full LS systems, we use the metrics proposed by Horn
et al. (2014), which are:
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• Precision: The proportion of instances in which the target word was replaced with any
of the candidates in the dataset, including the target word itself.

• Accuracy: The proportion of instances in which the target word was replaced with
any of the candidates in the dataset, except for the target word itself.

• Changed Proportion: The proportion of times in which the target word was replaced
with a different word.

A.4 Substitution Selection Evaluation

The performance obtained by all identifiers and selectors with respect to each generator is
illustrated in Tables A.1 through A.4. The Grammaticality Identifier is the one to perform
best across all scenarios evaluated. Nonetheless, our identifiers are not very effective. Even
though they were able to obtain higher F1 scores than other selectors in most scenarios, they
are often less effective than not performing selection at all. The fact that the highest F1
score overall is lower than 0.1 further highlight the need for better SG and SS approaches for
non-native speakers of English.

Selector Potential Precision Recall F1
First 0.033 0.020 0.005 0.008
Lesk 0.109 0.030 0.018 0.022
Path 0.013 0.012 0.002 0.004
Biran 0.201 0.052 0.044 0.047
Belder 0.126 0.167 0.018 0.033
Grammaticality 0.368 0.062 0.075 0.068
Meaning Preservation 0.322 0.064 0.055 0.059
Appropriateness 0.251 0.070 0.039 0.050
No Selection 0.473 0.046 0.106 0.065

Table A.1 Evaluation results for SS approaches with respect to substitutions generated by the
Merriam generator
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Selector Potential Precision Recall F1
First 0.004 0.009 0.001 0.001
Lesk 0.021 0.021 0.003 0.006
Path 0.000 0.000 0.000 0.000
Biran 0.146 0.028 0.027 0.027
Belder 0.038 0.205 0.005 0.010
Grammaticality 0.255 0.038 0.040 0.039
Meaning Preservation 0.184 0.034 0.028 0.031
Appropriateness 0.126 0.036 0.018 0.024
No Selection 0.314 0.026 0.061 0.037

Table A.2 Evaluation results for SS approaches with respect to substitutions generated by the
Yamamoto generator

Selector Potential Precision Recall F1
First 0.059 0.078 0.009 0.017
Lesk 0.109 0.061 0.016 0.026
Path 0.008 0.042 0.002 0.003
Biran 0.226 0.113 0.042 0.062
Belder 0.130 0.318 0.019 0.036
Grammaticality 0.356 0.111 0.065 0.082
Meaning Preservation 0.268 0.119 0.046 0.066
Appropriateness 0.209 0.125 0.036 0.056
No Selection 0.485 0.092 0.093 0.092

Table A.3 Evaluation results for SS approaches with respect to substitutions generated by the
Devlin generator

Selector Potential Precision Recall F1
First 0.042 0.078 0.006 0.010
Lesk 0.084 0.090 0.012 0.022
Path 0.004 0.018 0.001 0.001
Biran 0.226 0.109 0.039 0.057
Belder 0.063 0.283 0.008 0.016
Grammaticality 0.339 0.120 0.059 0.079
Meaning Preservation 0.247 0.115 0.040 0.060
Appropriateness 0.192 0.124 0.030 0.049
No Selection 0.414 0.084 0.079 0.081

Table A.4 Evaluation results for SS approaches with respect to substitutions generated by the
Biran generator
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Selector Potential Precision Recall F1
First 0.025 0.019 0.003 0.006
Lesk 0.050 0.033 0.008 0.013
Path 0.004 0.004 0.001 0.001
Biran 0.251 0.103 0.049 0.067
Belder 0.130 0.276 0.019 0.036
Grammaticality 0.381 0.094 0.070 0.080
Meaning Preservation 0.276 0.094 0.044 0.060
Appropriateness 0.238 0.114 0.038 0.057
No Selection 0.464 0.134 0.088 0.106

Table A.5 Evaluation results for SS approaches with respect to substitutions generated by the
Kauchak generator

Selector Potential Precision Recall F1
First 0.042 0.027 0.006 0.010
Lesk 0.151 0.049 0.023 0.032
Path 0.013 0.008 0.002 0.003
Biran 0.289 0.114 0.059 0.078
Belder 0.234 0.225 0.035 0.060
Grammaticality 0.498 0.112 0.094 0.103
Meaning Preservation 0.364 0.116 0.062 0.081
Appropriateness 0.339 0.129 0.055 0.077
No Selection 0.661 0.105 0.141 0.121

Table A.6 Evaluation results for SS approaches with respect to substitutions generated by the
Glavas generator

Selector Potential Precision Recall F1
First 0.054 0.043 0.008 0.013
Lesk 0.176 0.060 0.026 0.037
Path 0.013 0.011 0.002 0.003
Biran 0.322 0.122 0.068 0.087
Belder 0.247 0.201 0.034 0.058
Grammaticality 0.590 0.125 0.112 0.118
Meaning Preservation 0.431 0.139 0.078 0.100
Appropriateness 0.402 0.162 0.070 0.098
No Selection 0.699 0.118 0.161 0.136

Table A.7 Evaluation results for SS approaches with respect to substitutions generated by the
Paetzold generator
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Selector Potential Precision Recall F1
First 0.075 0.015 0.013 0.014
Lesk 0.285 0.028 0.050 0.036
Path 0.021 0.005 0.003 0.004
Biran 0.502 0.051 0.161 0.077
Belder 0.339 0.183 0.054 0.083
Grammaticality 0.854 0.054 0.238 0.089
Meaning Preservation 0.736 0.054 0.168 0.082
Appropriateness 0.653 0.063 0.137 0.086
No Selection 0.962 0.043 0.356 0.076

Table A.8 Evaluation results for SS approaches with respect to substitutions generated by all
generators combined

A.5 Full Pipeline Evaluation

For completion, we also evaluated how our identifiers perform when part of a full LS system.
Tables A.9 through A.17 report on the results obtained when pairing all selectors assessed
in our previous experiment with the metric-based rankers described in Section A.1. Given
their high Potential and competitive F1, we use the candidates produced by all previously
mentioned generators combined.

Ranker Precision Accuracy Changed Proportion
Frequency 0.017 0.013 0.996
Word Length 0.050 0.050 1.000
Senses 0.059 0.059 1.000
Synonyms 0.038 0.038 1.000
Hypernyms 0.050 0.050 1.000
Hyponyms 0.038 0.038 1.000

Table A.9 Full pipeline scores with respect to substitutions generated by all generators
combined, without any selection

Although in practice our identifiers have shown to be a better alternative than not per-
forming selection at all, the Belder selector, which employs an unsupervised strategy, have
outperformed all of them in Precision and Accuracy.

Given the results, we can conclude that our Grammaticality, Meaning Preservation and
Appropriateness identifiers are not reliable Substitution Selection approaches. Considering
the performance obtained by the Belder selector, the cost inherent to producing annotated
data, and the fact that annotators tend to have different perceptions and standards for linguistic
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Ranker Precision Accuracy Changed Proportion
Frequency 0.004 0.004 1.000
Word Length 0.021 0.017 0.996
Senses 0.201 0.042 0.841
Synonyms 0.197 0.046 0.849
Hypernyms 0.163 0.050 0.887
Hyponyms 0.172 0.054 0.883

Table A.10 Full pipeline scores with respect to substitutions generated by all generators
combined, as selected by the First Selector

Ranker Precision Accuracy Changed Proportion
Frequency 0.008 0.008 1.000
Word Length 0.050 0.050 1.000
Senses 0.159 0.067 0.908
Synonyms 0.138 0.054 0.916
Hypernyms 0.109 0.038 0.929
Hyponyms 0.096 0.033 0.937

Table A.11 Full pipeline scores with respect to substitutions generated by all generators
combined, as selected by the Lesk Selector

Ranker Precision Accuracy Changed Proportion
Frequency 0.004 0.004 1.000
Word Length 0.029 0.004 0.975
Senses 0.230 0.013 0.782
Synonyms 0.230 0.013 0.782
Hypernyms 0.226 0.013 0.787
Hyponyms 0.213 0.013 0.799

Table A.12 Full pipeline scores with respect to substitutions generated by all generators
combined, as selected by the Path Selector

Ranker Precision Accuracy Changed Proportion
Frequency 0.013 0.013 1.000
Word Length 0.046 0.046 1.000
Senses 0.050 0.050 1.000
Synonyms 0.054 0.050 0.996
Hypernyms 0.042 0.042 1.000
Hyponyms 0.025 0.021 0.996

Table A.13 Full pipeline scores with respect to substitutions generated by all generators
combined, as selected by the Biran Selector
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Ranker Precision Accuracy Changed Proportion
Frequency 0.289 0.142 0.854
Word Length 0.314 0.197 0.883
Senses 0.326 0.218 0.891
Synonyms 0.314 0.184 0.870
Hypernyms 0.297 0.192 0.895
Hyponyms 0.339 0.201 0.862

Table A.14 Full pipeline scores with respect to substitutions generated by all generators
combined, as selected by the Belder Selector

Ranker Precision Accuracy Changed Proportion
Frequency 0.013 0.013 1.000
Word Length 0.059 0.059 1.000
Senses 0.096 0.096 1.000
Synonyms 0.109 0.109 1.000
Hypernyms 0.079 0.079 1.000
Hyponyms 0.079 0.079 1.000

Table A.15 Full pipeline scores with respect to substitutions generated by all generators
combined, as selected by the Grammaticality Selector

Ranker Precision Accuracy Changed Proportion
Frequency 0.038 0.038 1.000
Word Length 0.046 0.046 1.000
Senses 0.079 0.079 1.000
Synonyms 0.071 0.071 1.000
Hypernyms 0.075 0.075 1.000
Hyponyms 0.084 0.084 1.000

Table A.16 Full pipeline scores with respect to substitutions generated by all generators
combined, as selected by the Meaning Preservation Selector

Ranker Precision Accuracy Changed Proportion
Frequency 0.042 0.042 1.000
Word Length 0.054 0.054 1.000
Senses 0.092 0.088 0.996
Synonyms 0.096 0.084 0.987
Hypernyms 0.100 0.092 0.992
Hyponyms 0.092 0.088 0.996

Table A.17 Full pipeline scores with respect to substitutions generated by all generators
combined, as selected by the Appropriateness Selector
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conventions, we hypothesise that further exploring unsupervised approaches for SS may be
more promising than investing in supervised binary classifiers.



Appendix B

Performance Comparison of Word
Embedding Models in Substitution
Generation

We present all results obtained in the performance comparison presented in Section 5.5. The
scores are illustrated in Tables B.1 through B.16.

CBOW Skip-Gram
# 300 500 700 300 500 700
5 0.610 0.654 0.668 0.548 0.570 0.590

10 0.730 0.768 0.784 0.634 0.690 0.660
15 0.788 0.812 0.818 0.702 0.710 0.696
20 0.812 0.836 0.842 0.714 0.728 0.716
25 0.824 0.854 0.862 0.732 0.738 0.726

Table B.1 Potential results for traditional embedding models

CBOW Skip-Gram
# 300 500 700 300 500 700
5 0.672 0.710 0.716 0.630 0.660 0.668

10 0.796 0.830 0.834 0.722 0.756 0.758
15 0.834 0.858 0.872 0.772 0.806 0.806
20 0.862 0.884 0.882 0.792 0.820 0.824
25 0.868 0.906 0.908 0.812 0.834 0.826

Table B.2 Potential results for retrofitted embedding models
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CBOW Skip-Gram
# 300 500 700 300 500 700
5 0.672 0.708 0.728 0.596 0.626 0.628

10 0.778 0.802 0.828 0.682 0.690 0.686
15 0.824 0.850 0.862 0.708 0.724 0.714
20 0.844 0.866 0.876 0.726 0.746 0.740
25 0.858 0.880 0.892 0.732 0.754 0.742

Table B.3 Potential results for context-aware embedding models

CBOW Skip-Gram
# 300 500 700 300 500 700
5 0.736 0.754 0.766 0.702 0.726 0.720

10 0.836 0.852 0.862 0.778 0.798 0.796
15 0.870 0.884 0.890 0.804 0.826 0.822
20 0.890 0.902 0.912 0.824 0.836 0.830
25 0.896 0.906 0.920 0.828 0.846 0.836

Table B.4 Potential results for retrofitted context-aware embedding models

CBOW Skip-Gram
# 300 500 700 300 500 700
5 0.194 0.212 0.218 0.172 0.182 0.185

10 0.136 0.155 0.157 0.117 0.129 0.129
15 0.112 0.121 0.124 0.093 0.098 0.099
20 0.092 0.101 0.104 0.077 0.081 0.080
25 0.079 0.087 0.090 0.065 0.068 0.069

Table B.5 Precision results for traditional embedding models

CBOW Skip-Gram
# 300 500 700 300 500 700
5 0.210 0.225 0.230 0.200 0.213 0.221

10 0.154 0.168 0.170 0.144 0.154 0.157
15 0.122 0.132 0.135 0.114 0.122 0.122
20 0.101 0.111 0.114 0.095 0.100 0.102
25 0.089 0.098 0.100 0.082 0.086 0.086

Table B.6 Precision results for retrofitted embedding models
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CBOW Skip-Gram
# 300 500 700 300 500 700
5 0.222 0.245 0.256 0.201 0.222 0.227

10 0.159 0.177 0.185 0.149 0.161 0.164
15 0.131 0.142 0.147 0.123 0.134 0.135
20 0.110 0.118 0.124 0.107 0.116 0.119
25 0.096 0.105 0.109 0.098 0.106 0.107

Table B.7 Precision results for context-aware embedding models

CBOW Skip-Gram
# 300 500 700 300 500 700
5 0.253 0.263 0.269 0.238 0.249 0.249

10 0.179 0.192 0.197 0.172 0.183 0.183
15 0.143 0.153 0.157 0.141 0.149 0.149
20 0.122 0.129 0.133 0.120 0.127 0.128
25 0.106 0.113 0.117 0.108 0.114 0.115

Table B.8 Precision results for retrofitted context-aware embedding models

CBOW Skip-Gram
# 300 500 700 300 500 700
5 0.078 0.085 0.088 0.070 0.073 0.075

10 0.110 0.125 0.126 0.094 0.104 0.104
15 0.135 0.146 0.150 0.112 0.118 0.120
20 0.149 0.163 0.168 0.125 0.131 0.130
25 0.159 0.176 0.181 0.132 0.138 0.138

Table B.9 Recall results for traditional embedding models

CBOW Skip-Gram
# 300 500 700 300 500 700
5 0.085 0.091 0.093 0.081 0.086 0.089

10 0.124 0.135 0.137 0.116 0.124 0.127
15 0.148 0.160 0.164 0.138 0.148 0.148
20 0.164 0.178 0.183 0.152 0.161 0.164
25 0.179 0.197 0.201 0.165 0.173 0.173

Table B.10 Recall results for retrofitted embedding models



278 Performance Comparison of Word Embedding Models in Substitution Generation

CBOW Skip-Gram
# 300 500 700 300 500 700
5 0.089 0.098 0.102 0.079 0.087 0.089

10 0.127 0.140 0.147 0.113 0.121 0.122
15 0.156 0.168 0.174 0.133 0.142 0.141
20 0.172 0.184 0.193 0.145 0.153 0.154
25 0.185 0.201 0.209 0.153 0.161 0.159

Table B.11 Recall results for context-aware embedding models

CBOW Skip-Gram
# 300 500 700 300 500 700
5 0.101 0.105 0.107 0.094 0.098 0.098

10 0.143 0.153 0.157 0.134 0.141 0.140
15 0.171 0.182 0.187 0.159 0.166 0.166
20 0.192 0.205 0.210 0.175 0.182 0.182
25 0.208 0.221 0.229 0.188 0.196 0.195

Table B.12 Recall results for retrofitted context-aware embedding models

CBOW Skip-Gram
# 300 500 700 300 500 700
5 0.111 0.122 0.125 0.099 0.104 0.106

10 0.122 0.138 0.140 0.104 0.115 0.115
15 0.122 0.132 0.136 0.101 0.107 0.109
20 0.114 0.124 0.129 0.095 0.100 0.099
25 0.105 0.117 0.120 0.087 0.091 0.092

Table B.13 F1 results for traditional embedding models

CBOW Skip-Gram
# 300 500 700 300 500 700
5 0.121 0.129 0.132 0.115 0.123 0.127

10 0.137 0.150 0.152 0.128 0.138 0.141
15 0.134 0.145 0.148 0.125 0.134 0.134
20 0.125 0.137 0.140 0.117 0.123 0.125
25 0.119 0.131 0.133 0.109 0.114 0.115

Table B.14 F1 results for retrofitted embedding models
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CBOW Skip-Gram
# 300 500 700 300 500 700
5 0.127 0.140 0.146 0.113 0.125 0.128

10 0.141 0.156 0.164 0.129 0.138 0.140
15 0.142 0.153 0.159 0.128 0.138 0.138
20 0.135 0.144 0.151 0.123 0.132 0.134
25 0.127 0.138 0.143 0.120 0.128 0.128

Table B.15 F1 results for context-aware embedding models

CBOW Skip-Gram
# 300 500 700 300 500 700
5 0.144 0.150 0.154 0.135 0.141 0.141

10 0.159 0.170 0.175 0.151 0.160 0.159
15 0.156 0.166 0.171 0.149 0.157 0.157
20 0.149 0.159 0.163 0.143 0.149 0.150
25 0.141 0.150 0.154 0.137 0.144 0.145

Table B.16 F1 results for retrofitted context-aware embedding models
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Benchmarking Results

The complete results of the full pipeline benchmark described in Section 8.5.1 are illustrated
in Tables C.1 through C.56.

Ranker Precision Accuracy Changed Proportion
Word Length 0.046 0.042 0.996
Syllable Count 0.067 0.063 0.996
Senses 0.059 0.059 1.000
Synonyms 0.042 0.038 0.996
Hypernyms 0.050 0.050 1.000
Hyponyms 0.038 0.038 1.000
Frequency: Simple Wiki 0.017 0.013 0.996
Frequency: Brown 0.079 0.079 1.000
Frequency: SUBTLEX 0.008 0.004 0.996
Frequency: SubIMDB 0.054 0.054 1.000
N-gram: Simple Wiki 0.339 0.222 0.883
N-gram: Brown 0.209 0.130 0.921
N-gram: SUBTLEX 0.226 0.151 0.925
N-gram: SubIMDB 0.285 0.197 0.912
Age of Acquisition 0.021 0.021 1.000
Familiarity 0.054 0.054 1.000
Concreteness 0.038 0.038 1.000
Imagery 0.029 0.029 1.000
Biran Ranker 0.046 0.042 0.996
Bott Ranker 0.067 0.067 1.000
Yamamoto Ranker 0.109 0.059 0.950
Horn Ranker 0.180 0.172 0.992
Glavas Ranker 0.310 0.121 0.812
Boundary Ranker 0.130 0.100 0.971

Table C.1 Full pipeline scores with respect to substitutions generated by all generators
combined, without any selection
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Ranker Precision Accuracy Changed Proportion
Word Length 0.226 0.013 0.787
Syllable Count 0.259 0.013 0.753
Senses 0.753 0.029 0.276
Synonyms 0.753 0.038 0.285
Hypernyms 0.552 0.042 0.490
Hyponyms 0.485 0.042 0.556
Frequency: Simple Wiki 0.021 0.004 0.983
Frequency: Brown 0.510 0.025 0.515
Frequency: SUBTLEX 0.025 0.004 0.979
Frequency: SubIMDB 0.314 0.033 0.720
N-gram: Simple Wiki 0.816 0.033 0.218
N-gram: Brown 0.561 0.025 0.464
N-gram: SUBTLEX 0.674 0.033 0.360
N-gram: SubIMDB 0.582 0.025 0.444
Age of Acquisition 0.025 0.008 0.983
Familiarity 0.741 0.029 0.289
Concreteness 0.720 0.046 0.326
Imagery 0.787 0.046 0.259
Biran Ranker 0.226 0.008 0.782
Bott Ranker 0.561 0.029 0.469
Yamamoto Ranker 0.686 0.033 0.347
Horn Ranker 0.736 0.017 0.280
Glavas Ranker 0.724 0.025 0.301
Boundary Ranker 0.435 0.033 0.598

Table C.2 Full pipeline scores with respect to substitutions generated by all generators
combined, as selected by the First Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.201 0.046 0.845
Syllable Count 0.226 0.038 0.812
Senses 0.490 0.050 0.561
Synonyms 0.444 0.046 0.603
Hypernyms 0.377 0.038 0.661
Hyponyms 0.331 0.033 0.703
Frequency: Simple Wiki 0.025 0.008 0.983
Frequency: Brown 0.368 0.063 0.695
Frequency: SUBTLEX 0.013 0.004 0.992
Frequency: SubIMDB 0.201 0.054 0.854
N-gram: Simple Wiki 0.632 0.071 0.439
N-gram: Brown 0.485 0.054 0.569
N-gram: SUBTLEX 0.456 0.067 0.611
N-gram: SubIMDB 0.473 0.046 0.573
Age of Acquisition 0.021 0.013 0.992
Familiarity 0.368 0.067 0.699
Concreteness 0.280 0.046 0.766
Imagery 0.318 0.046 0.728
Biran Ranker 0.167 0.033 0.866
Bott Ranker 0.381 0.059 0.678
Yamamoto Ranker 0.506 0.042 0.536
Horn Ranker 0.594 0.054 0.460
Glavas Ranker 0.632 0.063 0.431
Boundary Ranker 0.331 0.054 0.724

Table C.3 Full pipeline scores with respect to substitutions generated by all generators
combined, as selected by the Lesk Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.310 0.000 0.690
Syllable Count 0.335 0.000 0.665
Senses 0.904 0.000 0.096
Synonyms 0.904 0.000 0.096
Hypernyms 0.678 0.000 0.322
Hyponyms 0.598 0.000 0.402
Frequency: Simple Wiki 0.029 0.004 0.975
Frequency: Brown 0.536 0.004 0.469
Frequency: SUBTLEX 0.029 0.004 0.975
Frequency: SubIMDB 0.356 0.004 0.649
N-gram: Simple Wiki 0.849 0.004 0.155
N-gram: Brown 0.619 0.004 0.385
N-gram: SUBTLEX 0.715 0.013 0.297
N-gram: SubIMDB 0.619 0.000 0.381
Age of Acquisition 0.029 0.000 0.971
Familiarity 0.837 0.004 0.167
Concreteness 0.824 0.004 0.180
Imagery 0.879 0.004 0.126
Biran Ranker 0.259 0.000 0.741
Bott Ranker 0.649 0.008 0.360
Yamamoto Ranker 0.736 0.004 0.268
Horn Ranker 0.787 0.008 0.222
Glavas Ranker 0.720 0.000 0.280
Boundary Ranker 0.473 0.004 0.531

Table C.4 Full pipeline scores with respect to substitutions generated by all generators
combined, as selected by the Path Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.469 0.042 0.573
Syllable Count 0.485 0.050 0.565
Senses 0.481 0.050 0.569
Synonyms 0.481 0.050 0.569
Hypernyms 0.464 0.042 0.577
Hyponyms 0.444 0.021 0.577
Frequency: Simple Wiki 0.427 0.017 0.590
Frequency: Brown 0.485 0.063 0.577
Frequency: SUBTLEX 0.427 0.013 0.586
Frequency: SubIMDB 0.473 0.063 0.590
N-gram: Simple Wiki 0.649 0.146 0.498
N-gram: Brown 0.565 0.088 0.523
N-gram: SUBTLEX 0.586 0.096 0.510
N-gram: SubIMDB 0.615 0.126 0.510
Age of Acquisition 0.431 0.025 0.594
Familiarity 0.490 0.059 0.569
Concreteness 0.448 0.021 0.573
Imagery 0.452 0.025 0.573
Biran Ranker 0.460 0.038 0.577
Bott Ranker 0.473 0.050 0.577
Yamamoto Ranker 0.527 0.050 0.523
Horn Ranker 0.565 0.096 0.531
Glavas Ranker 0.628 0.088 0.460
Boundary Ranker 0.523 0.088 0.565

Table C.5 Full pipeline scores with respect to substitutions generated by all generators
combined, as selected by the Biran Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.695 0.126 0.431
Syllable Count 0.724 0.142 0.418
Senses 0.699 0.134 0.435
Synonyms 0.674 0.138 0.464
Hypernyms 0.603 0.134 0.531
Hyponyms 0.682 0.126 0.444
Frequency: Simple Wiki 0.498 0.084 0.586
Frequency: Brown 0.674 0.121 0.448
Frequency: SUBTLEX 0.611 0.130 0.519
Frequency: SubIMDB 0.649 0.130 0.481
N-gram: Simple Wiki 0.749 0.142 0.393
N-gram: Brown 0.728 0.121 0.393
N-gram: SUBTLEX 0.703 0.130 0.427
N-gram: SubIMDB 0.736 0.121 0.385
Age of Acquisition 0.644 0.117 0.473
Familiarity 0.661 0.126 0.464
Concreteness 0.674 0.096 0.423
Imagery 0.636 0.117 0.481
Biran Ranker 0.703 0.155 0.452
Bott Ranker 0.715 0.134 0.418
Yamamoto Ranker 0.820 0.109 0.289
Horn Ranker 0.820 0.134 0.314
Glavas Ranker 0.870 0.105 0.234
Boundary Ranker 0.707 0.138 0.431

Table C.6 Full pipeline scores with respect to substitutions generated by all generators
combined, as selected by the Belder Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.109 0.105 0.996
Syllable Count 0.163 0.138 0.975
Senses 0.105 0.096 0.992
Synonyms 0.105 0.096 0.992
Hypernyms 0.105 0.092 0.987
Hyponyms 0.100 0.079 0.979
Frequency: Simple Wiki 0.075 0.046 0.971
Frequency: Brown 0.088 0.088 1.000
Frequency: SUBTLEX 0.113 0.054 0.941
Frequency: SubIMDB 0.096 0.096 1.000
N-gram: Simple Wiki 0.339 0.222 0.883
N-gram: Brown 0.251 0.167 0.916
N-gram: SUBTLEX 0.243 0.155 0.912
N-gram: SubIMDB 0.293 0.201 0.908
Age of Acquisition 0.038 0.038 1.000
Familiarity 0.079 0.079 1.000
Concreteness 0.130 0.096 0.967
Imagery 0.138 0.130 0.992
Biran Ranker 0.113 0.092 0.979
Bott Ranker 0.113 0.096 0.983
Yamamoto Ranker 0.234 0.079 0.845
Horn Ranker 0.201 0.142 0.941
Glavas Ranker 0.351 0.134 0.782
Boundary Ranker 0.163 0.134 0.971

Table C.7 Full pipeline scores with respect to substitutions generated by all generators
combined, as selected by the Unsupervised Boundary Ranking Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.226 0.226 1.000
Syllable Count 0.134 0.134 1.000
Senses 0.138 0.138 1.000
Synonyms 0.159 0.159 1.000
Hypernyms 0.163 0.163 1.000
Hyponyms 0.146 0.146 1.000
Frequency: Simple Wiki 0.029 0.029 1.000
Frequency: Brown 0.259 0.259 1.000
Frequency: SUBTLEX 0.021 0.021 1.000
Frequency: SubIMDB 0.305 0.305 1.000
N-gram: Simple Wiki 0.272 0.272 1.000
N-gram: Brown 0.276 0.276 1.000
N-gram: SUBTLEX 0.285 0.285 1.000
N-gram: SubIMDB 0.272 0.272 1.000
Age of Acquisition 0.079 0.079 1.000
Familiarity 0.309 0.309 1.000
Concreteness 0.146 0.146 1.000
Imagery 0.222 0.222 1.000
Biran Ranker 0.230 0.230 1.000
Bott Ranker 0.280 0.280 1.000
Yamamoto Ranker 0.255 0.255 1.000
Horn Ranker 0.498 0.230 0.732
Glavas Ranker 0.506 0.251 0.745
Boundary Ranker 0.297 0.297 1.000

Table C.8 Full pipeline scores with respect to substitutions generated by the Paetzold genera-
tor, without any selection
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Ranker Precision Accuracy Changed Proportion
Word Length 0.046 0.046 1.000
Syllable Count 0.042 0.042 1.000
Senses 0.046 0.046 1.000
Synonyms 0.046 0.046 1.000
Hypernyms 0.042 0.042 1.000
Hyponyms 0.042 0.042 1.000
Frequency: Simple Wiki 0.025 0.025 1.000
Frequency: Brown 0.042 0.042 1.000
Frequency: SUBTLEX 0.025 0.025 1.000
Frequency: SubIMDB 0.042 0.042 1.000
N-gram: Simple Wiki 0.046 0.046 1.000
N-gram: Brown 0.046 0.046 1.000
N-gram: SUBTLEX 0.046 0.046 1.000
N-gram: SubIMDB 0.042 0.042 1.000
Age of Acquisition 0.038 0.038 1.000
Familiarity 0.046 0.046 1.000
Concreteness 0.046 0.046 1.000
Imagery 0.046 0.046 1.000
Biran Ranker 0.042 0.042 1.000
Bott Ranker 0.046 0.046 1.000
Yamamoto Ranker 0.046 0.046 1.000
Horn Ranker 0.971 0.008 0.038
Glavas Ranker 0.933 0.021 0.088
Boundary Ranker 0.042 0.042 1.000

Table C.9 Full pipeline scores with respect to substitutions generated by the Paetzold genera-
tor, as selected by the First Selector



290 Benchmarking Results

Ranker Precision Accuracy Changed Proportion
Word Length 0.067 0.067 1.000
Syllable Count 0.063 0.063 1.000
Senses 0.059 0.059 1.000
Synonyms 0.059 0.059 1.000
Hypernyms 0.050 0.050 1.000
Hyponyms 0.054 0.054 1.000
Frequency: Simple Wiki 0.033 0.033 1.000
Frequency: Brown 0.100 0.100 1.000
Frequency: SUBTLEX 0.029 0.029 1.000
Frequency: SubIMDB 0.088 0.088 1.000
N-gram: Simple Wiki 0.100 0.100 1.000
N-gram: Brown 0.084 0.084 1.000
N-gram: SUBTLEX 0.105 0.105 1.000
N-gram: SubIMDB 0.088 0.088 1.000
Age of Acquisition 0.059 0.059 1.000
Familiarity 0.084 0.084 1.000
Concreteness 0.075 0.075 1.000
Imagery 0.075 0.075 1.000
Biran Ranker 0.067 0.067 1.000
Bott Ranker 0.092 0.092 1.000
Yamamoto Ranker 0.084 0.084 1.000
Horn Ranker 0.849 0.038 0.188
Glavas Ranker 0.707 0.059 0.351
Boundary Ranker 0.100 0.100 1.000

Table C.10 Full pipeline scores with respect to substitutions generated by the Paetzold
generator, as selected by the Lesk Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.013 0.013 1.000
Syllable Count 0.013 0.013 1.000
Senses 0.013 0.013 1.000
Synonyms 0.013 0.013 1.000
Hypernyms 0.013 0.013 1.000
Hyponyms 0.013 0.013 1.000
Frequency: Simple Wiki 0.008 0.008 1.000
Frequency: Brown 0.013 0.013 1.000
Frequency: SUBTLEX 0.008 0.008 1.000
Frequency: SubIMDB 0.013 0.013 1.000
N-gram: Simple Wiki 0.008 0.008 1.000
N-gram: Brown 0.013 0.013 1.000
N-gram: SUBTLEX 0.008 0.008 1.000
N-gram: SubIMDB 0.013 0.013 1.000
Age of Acquisition 0.004 0.004 1.000
Familiarity 0.013 0.013 1.000
Concreteness 0.013 0.013 1.000
Imagery 0.013 0.013 1.000
Biran Ranker 0.008 0.008 1.000
Bott Ranker 0.008 0.008 1.000
Yamamoto Ranker 0.008 0.008 1.000
Horn Ranker 0.987 0.000 0.013
Glavas Ranker 0.950 0.000 0.050
Boundary Ranker 0.013 0.013 1.000

Table C.11 Full pipeline scores with respect to substitutions generated by the Paetzold
generator, as selected by the Path Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.100 0.100 1.000
Syllable Count 0.084 0.084 1.000
Senses 0.084 0.084 1.000
Synonyms 0.088 0.088 1.000
Hypernyms 0.088 0.088 1.000
Hyponyms 0.075 0.075 1.000
Frequency: Simple Wiki 0.029 0.029 1.000
Frequency: Brown 0.113 0.113 1.000
Frequency: SUBTLEX 0.025 0.025 1.000
Frequency: SubIMDB 0.167 0.167 1.000
N-gram: Simple Wiki 0.142 0.142 1.000
N-gram: Brown 0.130 0.130 1.000
N-gram: SUBTLEX 0.155 0.155 1.000
N-gram: SubIMDB 0.142 0.142 1.000
Age of Acquisition 0.075 0.075 1.000
Familiarity 0.155 0.155 1.000
Concreteness 0.088 0.088 1.000
Imagery 0.113 0.113 1.000
Biran Ranker 0.100 0.100 1.000
Bott Ranker 0.126 0.126 1.000
Yamamoto Ranker 0.134 0.134 1.000
Horn Ranker 0.732 0.105 0.372
Glavas Ranker 0.741 0.113 0.372
Boundary Ranker 0.163 0.163 1.000

Table C.12 Full pipeline scores with respect to substitutions generated by the Paetzold
generator, as selected by the Biran Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.126 0.126 1.000
Syllable Count 0.130 0.130 1.000
Senses 0.155 0.155 1.000
Synonyms 0.151 0.151 1.000
Hypernyms 0.151 0.151 1.000
Hyponyms 0.151 0.151 1.000
Frequency: Simple Wiki 0.134 0.134 1.000
Frequency: Brown 0.134 0.134 1.000
Frequency: SUBTLEX 0.130 0.130 1.000
Frequency: SubIMDB 0.138 0.138 1.000
N-gram: Simple Wiki 0.142 0.142 1.000
N-gram: Brown 0.146 0.146 1.000
N-gram: SUBTLEX 0.151 0.151 1.000
N-gram: SubIMDB 0.134 0.134 1.000
Age of Acquisition 0.126 0.126 1.000
Familiarity 0.138 0.138 1.000
Concreteness 0.121 0.121 1.000
Imagery 0.172 0.172 1.000
Biran Ranker 0.126 0.126 1.000
Bott Ranker 0.130 0.130 1.000
Yamamoto Ranker 0.134 0.134 1.000
Horn Ranker 0.874 0.084 0.209
Glavas Ranker 0.799 0.096 0.297
Boundary Ranker 0.138 0.138 1.000

Table C.13 Full pipeline scores with respect to substitutions generated by the Paetzold
generator, as selected by the Belder Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.272 0.272 1.000
Syllable Count 0.218 0.218 1.000
Senses 0.255 0.255 1.000
Synonyms 0.218 0.218 1.000
Hypernyms 0.226 0.226 1.000
Hyponyms 0.205 0.205 1.000
Frequency: Simple Wiki 0.109 0.109 1.000
Frequency: Brown 0.280 0.280 1.000
Frequency: SUBTLEX 0.079 0.079 1.000
Frequency: SubIMDB 0.310 0.310 1.000
N-gram: Simple Wiki 0.285 0.285 1.000
N-gram: Brown 0.276 0.276 1.000
N-gram: SUBTLEX 0.285 0.285 1.000
N-gram: SubIMDB 0.272 0.272 1.000
Age of Acquisition 0.109 0.109 1.000
Familiarity 0.309 0.309 1.000
Concreteness 0.159 0.159 1.000
Imagery 0.247 0.247 1.000
Biran Ranker 0.272 0.272 1.000
Bott Ranker 0.276 0.276 1.000
Yamamoto Ranker 0.280 0.280 1.000
Horn Ranker 0.490 0.218 0.728
Glavas Ranker 0.485 0.238 0.753
Boundary Ranker 0.297 0.297 1.000

Table C.14 Full pipeline scores with respect to substitutions generated by the Paetzold
generator, as selected by the Unsupervised Boundary Ranking Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.259 0.088 0.828
Syllable Count 0.293 0.109 0.816
Senses 0.289 0.071 0.782
Synonyms 0.209 0.075 0.866
Hypernyms 0.192 0.088 0.895
Hyponyms 0.213 0.079 0.866
Frequency: Simple Wiki 0.176 0.021 0.845
Frequency: Brown 0.272 0.075 0.803
Frequency: SUBTLEX 0.192 0.013 0.820
Frequency: SubIMDB 0.226 0.063 0.837
N-gram: Simple Wiki 0.573 0.100 0.527
N-gram: Brown 0.452 0.071 0.619
N-gram: SUBTLEX 0.460 0.105 0.644
N-gram: SubIMDB 0.469 0.109 0.640
Age of Acquisition 0.063 0.063 1.000
Familiarity 0.084 0.084 1.000
Concreteness 0.063 0.054 0.992
Imagery 0.067 0.067 1.000
Biran Ranker 0.226 0.075 0.849
Bott Ranker 0.289 0.067 0.778
Yamamoto Ranker 0.418 0.067 0.649
Horn Ranker 0.544 0.096 0.552
Glavas Ranker 0.552 0.088 0.536
Boundary Ranker 0.318 0.067 0.749

Table C.15 Full pipeline scores with respect to substitutions generated by the Merriam
generator, without any selection
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Ranker Precision Accuracy Changed Proportion
Word Length 0.544 0.013 0.469
Syllable Count 0.577 0.013 0.435
Senses 0.833 0.008 0.176
Synonyms 0.833 0.013 0.180
Hypernyms 0.707 0.008 0.301
Hyponyms 0.649 0.008 0.360
Frequency: Simple Wiki 0.444 0.000 0.556
Frequency: Brown 0.766 0.013 0.247
Frequency: SUBTLEX 0.485 0.000 0.515
Frequency: SubIMDB 0.690 0.013 0.322
N-gram: Simple Wiki 0.912 0.004 0.092
N-gram: Brown 0.778 0.008 0.230
N-gram: SUBTLEX 0.833 0.013 0.180
N-gram: SubIMDB 0.778 0.004 0.226
Age of Acquisition 0.456 0.013 0.556
Familiarity 0.799 0.013 0.213
Concreteness 0.858 0.021 0.163
Imagery 0.833 0.021 0.188
Biran Ranker 0.603 0.021 0.418
Bott Ranker 0.778 0.013 0.234
Yamamoto Ranker 0.849 0.013 0.163
Horn Ranker 0.883 0.004 0.121
Glavas Ranker 0.900 0.004 0.105
Boundary Ranker 0.757 0.013 0.255

Table C.16 Full pipeline scores with respect to substitutions generated by the Merriam
generator, as selected by the First Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.435 0.042 0.607
Syllable Count 0.485 0.038 0.552
Senses 0.678 0.025 0.347
Synonyms 0.686 0.025 0.339
Hypernyms 0.565 0.021 0.456
Hyponyms 0.548 0.025 0.477
Frequency: Simple Wiki 0.318 0.025 0.707
Frequency: Brown 0.686 0.025 0.339
Frequency: SUBTLEX 0.343 0.021 0.678
Frequency: SubIMDB 0.565 0.038 0.473
N-gram: Simple Wiki 0.824 0.017 0.192
N-gram: Brown 0.724 0.033 0.310
N-gram: SUBTLEX 0.732 0.038 0.305
N-gram: SubIMDB 0.749 0.033 0.285
Age of Acquisition 0.322 0.029 0.707
Familiarity 0.661 0.025 0.364
Concreteness 0.623 0.038 0.414
Imagery 0.661 0.025 0.364
Biran Ranker 0.456 0.050 0.594
Bott Ranker 0.669 0.025 0.356
Yamamoto Ranker 0.803 0.017 0.213
Horn Ranker 0.841 0.013 0.172
Glavas Ranker 0.845 0.025 0.180
Boundary Ranker 0.682 0.033 0.351

Table C.17 Full pipeline scores with respect to substitutions generated by the Merriam
generator, as selected by the Lesk Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.657 0.004 0.347
Syllable Count 0.686 0.004 0.318
Senses 0.916 0.000 0.084
Synonyms 0.916 0.000 0.084
Hypernyms 0.837 0.000 0.163
Hyponyms 0.774 0.000 0.226
Frequency: Simple Wiki 0.498 0.000 0.502
Frequency: Brown 0.787 0.004 0.218
Frequency: SUBTLEX 0.540 0.000 0.460
Frequency: SubIMDB 0.736 0.004 0.268
N-gram: Simple Wiki 0.933 0.000 0.067
N-gram: Brown 0.820 0.004 0.184
N-gram: SUBTLEX 0.887 0.008 0.121
N-gram: SubIMDB 0.833 0.000 0.167
Age of Acquisition 0.506 0.004 0.498
Familiarity 0.849 0.004 0.155
Concreteness 0.912 0.004 0.092
Imagery 0.887 0.004 0.117
Biran Ranker 0.703 0.008 0.305
Bott Ranker 0.879 0.004 0.126
Yamamoto Ranker 0.891 0.004 0.113
Horn Ranker 0.921 0.004 0.084
Glavas Ranker 0.916 0.000 0.084
Boundary Ranker 0.808 0.004 0.197

Table C.18 Full pipeline scores with respect to substitutions generated by the Merriam
generator, as selected by the Path Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.619 0.046 0.427
Syllable Count 0.640 0.054 0.414
Senses 0.628 0.029 0.402
Synonyms 0.603 0.042 0.439
Hypernyms 0.582 0.042 0.460
Hyponyms 0.598 0.042 0.444
Frequency: Simple Wiki 0.577 0.029 0.452
Frequency: Brown 0.611 0.025 0.414
Frequency: SUBTLEX 0.582 0.013 0.431
Frequency: SubIMDB 0.603 0.025 0.423
N-gram: Simple Wiki 0.791 0.046 0.255
N-gram: Brown 0.720 0.029 0.310
N-gram: SUBTLEX 0.728 0.059 0.331
N-gram: SubIMDB 0.736 0.054 0.318
Age of Acquisition 0.565 0.046 0.481
Familiarity 0.598 0.029 0.431
Concreteness 0.590 0.013 0.423
Imagery 0.590 0.025 0.435
Biran Ranker 0.611 0.046 0.435
Bott Ranker 0.644 0.033 0.389
Yamamoto Ranker 0.720 0.029 0.310
Horn Ranker 0.774 0.025 0.251
Glavas Ranker 0.766 0.038 0.272
Boundary Ranker 0.649 0.025 0.377

Table C.19 Full pipeline scores with respect to substitutions generated by the Merriam
generator, as selected by the Biran Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.833 0.033 0.201
Syllable Count 0.854 0.042 0.188
Senses 0.858 0.029 0.172
Synonyms 0.874 0.046 0.172
Hypernyms 0.854 0.025 0.172
Hyponyms 0.854 0.025 0.172
Frequency: Simple Wiki 0.816 0.084 0.268
Frequency: Brown 0.921 0.008 0.088
Frequency: SUBTLEX 0.862 0.079 0.218
Frequency: SubIMDB 0.858 0.029 0.172
N-gram: Simple Wiki 0.904 0.025 0.121
N-gram: Brown 0.883 0.021 0.138
N-gram: SUBTLEX 0.912 0.025 0.113
N-gram: SubIMDB 0.912 0.021 0.109
Age of Acquisition 0.833 0.025 0.192
Familiarity 0.912 0.017 0.105
Concreteness 0.870 0.017 0.146
Imagery 0.908 0.050 0.142
Biran Ranker 0.828 0.033 0.205
Bott Ranker 0.858 0.025 0.167
Yamamoto Ranker 0.946 0.017 0.071
Horn Ranker 0.933 0.008 0.075
Glavas Ranker 0.946 0.021 0.075
Boundary Ranker 0.908 0.021 0.113

Table C.20 Full pipeline scores with respect to substitutions generated by the Merriam
generator, as selected by the Belder Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.285 0.109 0.824
Syllable Count 0.339 0.130 0.791
Senses 0.297 0.075 0.778
Synonyms 0.230 0.084 0.854
Hypernyms 0.255 0.096 0.841
Hyponyms 0.222 0.084 0.862
Frequency: Simple Wiki 0.259 0.067 0.808
Frequency: Brown 0.285 0.084 0.799
Frequency: SUBTLEX 0.326 0.079 0.753
Frequency: SubIMDB 0.247 0.084 0.837
N-gram: Simple Wiki 0.577 0.100 0.523
N-gram: Brown 0.456 0.075 0.619
N-gram: SUBTLEX 0.469 0.113 0.644
N-gram: SubIMDB 0.477 0.113 0.636
Age of Acquisition 0.088 0.088 1.000
Familiarity 0.092 0.092 1.000
Concreteness 0.096 0.075 0.979
Imagery 0.105 0.092 0.987
Biran Ranker 0.280 0.121 0.841
Bott Ranker 0.331 0.100 0.770
Yamamoto Ranker 0.469 0.084 0.615
Horn Ranker 0.561 0.096 0.536
Glavas Ranker 0.552 0.088 0.536
Boundary Ranker 0.343 0.079 0.736

Table C.21 Full pipeline scores with respect to substitutions generated by the Merriam
generator, as selected by the Unsupervised Boundary Ranking Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.410 0.134 0.724
Syllable Count 0.469 0.126 0.657
Senses 0.423 0.163 0.741
Synonyms 0.389 0.172 0.782
Hypernyms 0.381 0.138 0.757
Hyponyms 0.385 0.159 0.774
Frequency: Simple Wiki 0.393 0.025 0.632
Frequency: Brown 0.397 0.146 0.749
Frequency: SUBTLEX 0.431 0.021 0.590
Frequency: SubIMDB 0.322 0.172 0.849
N-gram: Simple Wiki 0.536 0.201 0.665
N-gram: Brown 0.523 0.188 0.665
N-gram: SUBTLEX 0.523 0.213 0.690
N-gram: SubIMDB 0.506 0.218 0.711
Age of Acquisition 0.151 0.151 1.000
Familiarity 0.155 0.155 1.000
Concreteness 0.121 0.121 1.000
Imagery 0.138 0.138 1.000
Biran Ranker 0.393 0.142 0.749
Bott Ranker 0.377 0.138 0.762
Yamamoto Ranker 0.510 0.109 0.598
Horn Ranker 0.364 0.172 0.808
Glavas Ranker 0.544 0.197 0.653
Boundary Ranker 0.377 0.192 0.816

Table C.22 Full pipeline scores with respect to substitutions generated by the Kauchak
generator, without any selection



303

Ranker Precision Accuracy Changed Proportion
Word Length 0.640 0.013 0.372
Syllable Count 0.661 0.008 0.347
Senses 0.971 0.013 0.042
Synonyms 0.971 0.013 0.042
Hypernyms 0.849 0.013 0.163
Hyponyms 0.787 0.013 0.226
Frequency: Simple Wiki 0.460 0.004 0.544
Frequency: Brown 0.891 0.013 0.121
Frequency: SUBTLEX 0.460 0.004 0.544
Frequency: SubIMDB 0.770 0.013 0.243
N-gram: Simple Wiki 0.954 0.013 0.059
N-gram: Brown 0.891 0.008 0.117
N-gram: SUBTLEX 0.929 0.017 0.088
N-gram: SubIMDB 0.862 0.013 0.151
Age of Acquisition 0.490 0.004 0.515
Familiarity 0.946 0.013 0.067
Concreteness 0.870 0.013 0.142
Imagery 0.962 0.017 0.054
Biran Ranker 0.640 0.004 0.364
Bott Ranker 0.849 0.017 0.167
Yamamoto Ranker 0.929 0.013 0.084
Horn Ranker 0.912 0.013 0.100
Glavas Ranker 0.958 0.013 0.054
Boundary Ranker 0.812 0.013 0.201

Table C.23 Full pipeline scores with respect to substitutions generated by the Kauchak
generator, as selected by the First Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.586 0.021 0.435
Syllable Count 0.619 0.013 0.393
Senses 0.874 0.033 0.159
Synonyms 0.895 0.029 0.134
Hypernyms 0.828 0.021 0.192
Hyponyms 0.762 0.017 0.255
Frequency: Simple Wiki 0.418 0.008 0.590
Frequency: Brown 0.791 0.013 0.222
Frequency: SUBTLEX 0.423 0.004 0.582
Frequency: SubIMDB 0.665 0.013 0.347
N-gram: Simple Wiki 0.858 0.021 0.163
N-gram: Brown 0.841 0.017 0.176
N-gram: SUBTLEX 0.816 0.025 0.209
N-gram: SubIMDB 0.778 0.017 0.238
Age of Acquisition 0.435 0.013 0.577
Familiarity 0.837 0.008 0.172
Concreteness 0.757 0.021 0.264
Imagery 0.795 0.025 0.230
Biran Ranker 0.569 0.013 0.444
Bott Ranker 0.745 0.013 0.268
Yamamoto Ranker 0.854 0.008 0.155
Horn Ranker 0.803 0.021 0.218
Glavas Ranker 0.858 0.008 0.151
Boundary Ranker 0.732 0.017 0.285

Table C.24 Full pipeline scores with respect to substitutions generated by the Kauchak
generator, as selected by the Lesk Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.661 0.000 0.339
Syllable Count 0.678 0.000 0.322
Senses 1.000 0.000 0.000
Synonyms 1.000 0.000 0.000
Hypernyms 0.887 0.000 0.113
Hyponyms 0.824 0.000 0.176
Frequency: Simple Wiki 0.423 0.004 0.582
Frequency: Brown 0.887 0.000 0.113
Frequency: SUBTLEX 0.423 0.004 0.582
Frequency: SubIMDB 0.795 0.000 0.205
N-gram: Simple Wiki 0.983 0.000 0.017
N-gram: Brown 0.891 0.000 0.109
N-gram: SUBTLEX 0.946 0.004 0.059
N-gram: SubIMDB 0.900 0.000 0.100
Age of Acquisition 0.519 0.000 0.481
Familiarity 1.000 0.000 0.000
Concreteness 0.904 0.000 0.096
Imagery 0.992 0.000 0.008
Biran Ranker 0.628 0.000 0.372
Bott Ranker 0.891 0.000 0.109
Yamamoto Ranker 0.971 0.000 0.029
Horn Ranker 0.954 0.000 0.046
Glavas Ranker 0.962 0.000 0.038
Boundary Ranker 0.858 0.000 0.142

Table C.25 Full pipeline scores with respect to substitutions generated by the Kauchak
generator, as selected by the Path Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.682 0.067 0.385
Syllable Count 0.695 0.067 0.372
Senses 0.703 0.105 0.402
Synonyms 0.695 0.117 0.423
Hypernyms 0.686 0.084 0.397
Hyponyms 0.657 0.075 0.418
Frequency: Simple Wiki 0.695 0.029 0.335
Frequency: Brown 0.690 0.079 0.389
Frequency: SUBTLEX 0.690 0.013 0.322
Frequency: SubIMDB 0.632 0.088 0.456
N-gram: Simple Wiki 0.766 0.109 0.343
N-gram: Brown 0.741 0.092 0.351
N-gram: SUBTLEX 0.757 0.100 0.343
N-gram: SubIMDB 0.749 0.096 0.347
Age of Acquisition 0.611 0.059 0.448
Familiarity 0.674 0.079 0.406
Concreteness 0.644 0.050 0.406
Imagery 0.607 0.059 0.452
Biran Ranker 0.674 0.071 0.397
Bott Ranker 0.682 0.079 0.397
Yamamoto Ranker 0.745 0.054 0.310
Horn Ranker 0.690 0.092 0.402
Glavas Ranker 0.753 0.096 0.343
Boundary Ranker 0.678 0.092 0.414

Table C.26 Full pipeline scores with respect to substitutions generated by the Kauchak
generator, as selected by the Biran Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.879 0.075 0.197
Syllable Count 0.866 0.059 0.192
Senses 0.900 0.075 0.176
Synonyms 0.908 0.088 0.180
Hypernyms 0.887 0.054 0.167
Hyponyms 0.887 0.050 0.163
Frequency: Simple Wiki 0.937 0.029 0.092
Frequency: Brown 0.858 0.092 0.234
Frequency: SUBTLEX 0.900 0.013 0.113
Frequency: SubIMDB 0.845 0.113 0.268
N-gram: Simple Wiki 0.887 0.105 0.218
N-gram: Brown 0.912 0.071 0.159
N-gram: SUBTLEX 0.862 0.105 0.243
N-gram: SubIMDB 0.891 0.100 0.209
Age of Acquisition 0.862 0.100 0.238
Familiarity 0.858 0.100 0.243
Concreteness 0.929 0.063 0.134
Imagery 0.837 0.100 0.264
Biran Ranker 0.879 0.092 0.213
Bott Ranker 0.883 0.100 0.218
Yamamoto Ranker 0.933 0.092 0.159
Horn Ranker 0.883 0.109 0.226
Glavas Ranker 0.916 0.079 0.163
Boundary Ranker 0.870 0.113 0.243

Table C.27 Full pipeline scores with respect to substitutions generated by the Kauchak
generator, as selected by the Belder Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.343 0.109 0.766
Syllable Count 0.414 0.121 0.707
Senses 0.389 0.146 0.757
Synonyms 0.347 0.159 0.812
Hypernyms 0.351 0.130 0.778
Hyponyms 0.318 0.130 0.812
Frequency: Simple Wiki 0.427 0.050 0.623
Frequency: Brown 0.343 0.117 0.774
Frequency: SUBTLEX 0.460 0.063 0.603
Frequency: SubIMDB 0.255 0.130 0.874
N-gram: Simple Wiki 0.498 0.188 0.690
N-gram: Brown 0.444 0.151 0.707
N-gram: SUBTLEX 0.460 0.188 0.728
N-gram: SubIMDB 0.435 0.184 0.749
Age of Acquisition 0.105 0.100 0.996
Familiarity 0.126 0.126 1.000
Concreteness 0.126 0.126 1.000
Imagery 0.142 0.138 0.996
Biran Ranker 0.318 0.105 0.787
Bott Ranker 0.326 0.113 0.787
Yamamoto Ranker 0.435 0.071 0.636
Horn Ranker 0.335 0.155 0.820
Glavas Ranker 0.473 0.159 0.686
Boundary Ranker 0.318 0.151 0.833

Table C.28 Full pipeline scores with respect to substitutions generated by the Kauchak
generator, as selected by the Unsupervised Boundary Ranking Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.314 0.126 0.812
Syllable Count 0.297 0.134 0.837
Senses 0.310 0.105 0.795
Synonyms 0.255 0.113 0.858
Hypernyms 0.351 0.121 0.770
Hyponyms 0.335 0.146 0.812
Frequency: Simple Wiki 0.197 0.063 0.866
Frequency: Brown 0.335 0.117 0.782
Frequency: SUBTLEX 0.247 0.067 0.820
Frequency: SubIMDB 0.276 0.151 0.874
N-gram: Simple Wiki 0.569 0.151 0.582
N-gram: Brown 0.456 0.142 0.686
N-gram: SUBTLEX 0.498 0.146 0.649
N-gram: SubIMDB 0.490 0.146 0.657
Age of Acquisition 0.067 0.067 1.000
Familiarity 0.172 0.172 1.000
Concreteness 0.134 0.134 1.000
Imagery 0.146 0.146 1.000
Biran Ranker 0.314 0.126 0.812
Bott Ranker 0.360 0.126 0.766
Yamamoto Ranker 0.519 0.100 0.582
Horn Ranker 0.552 0.146 0.594
Glavas Ranker 0.594 0.126 0.531
Boundary Ranker 0.381 0.159 0.778

Table C.29 Full pipeline scores with respect to substitutions generated by the WordNet
generator, without any selection
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Ranker Precision Accuracy Changed Proportion
Word Length 0.699 0.025 0.326
Syllable Count 0.741 0.025 0.285
Senses 0.837 0.029 0.192
Synonyms 0.833 0.038 0.205
Hypernyms 0.791 0.033 0.243
Hyponyms 0.782 0.033 0.251
Frequency: Simple Wiki 0.540 0.000 0.460
Frequency: Brown 0.849 0.025 0.176
Frequency: SUBTLEX 0.594 0.000 0.406
Frequency: SubIMDB 0.803 0.029 0.226
N-gram: Simple Wiki 0.941 0.029 0.088
N-gram: Brown 0.841 0.021 0.180
N-gram: SUBTLEX 0.916 0.033 0.117
N-gram: SubIMDB 0.858 0.029 0.172
Age of Acquisition 0.594 0.025 0.431
Familiarity 0.891 0.029 0.138
Concreteness 0.854 0.042 0.188
Imagery 0.858 0.042 0.184
Biran Ranker 0.728 0.029 0.301
Bott Ranker 0.849 0.029 0.180
Yamamoto Ranker 0.912 0.029 0.117
Horn Ranker 0.937 0.013 0.075
Glavas Ranker 0.946 0.025 0.079
Boundary Ranker 0.841 0.029 0.188

Table C.30 Full pipeline scores with respect to substitutions generated by the WordNet
generator, as selected by the First Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.611 0.038 0.427
Syllable Count 0.644 0.038 0.393
Senses 0.782 0.029 0.247
Synonyms 0.749 0.033 0.285
Hypernyms 0.749 0.029 0.280
Hyponyms 0.724 0.033 0.310
Frequency: Simple Wiki 0.372 0.021 0.649
Frequency: Brown 0.745 0.029 0.285
Frequency: SUBTLEX 0.431 0.025 0.594
Frequency: SubIMDB 0.686 0.042 0.356
N-gram: Simple Wiki 0.874 0.025 0.151
N-gram: Brown 0.736 0.025 0.289
N-gram: SUBTLEX 0.837 0.050 0.213
N-gram: SubIMDB 0.791 0.042 0.251
Age of Acquisition 0.460 0.017 0.556
Familiarity 0.782 0.042 0.259
Concreteness 0.695 0.033 0.339
Imagery 0.745 0.033 0.289
Biran Ranker 0.636 0.038 0.402
Bott Ranker 0.787 0.038 0.251
Yamamoto Ranker 0.904 0.021 0.117
Horn Ranker 0.895 0.017 0.121
Glavas Ranker 0.887 0.029 0.142
Boundary Ranker 0.774 0.046 0.272

Table C.31 Full pipeline scores with respect to substitutions generated by the WordNet
generator, as selected by the Lesk Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.866 0.004 0.138
Syllable Count 0.900 0.004 0.105
Senses 0.975 0.000 0.025
Synonyms 0.975 0.000 0.025
Hypernyms 0.975 0.000 0.025
Hyponyms 0.967 0.000 0.033
Frequency: Simple Wiki 0.803 0.000 0.197
Frequency: Brown 0.941 0.000 0.059
Frequency: SUBTLEX 0.812 0.000 0.188
Frequency: SubIMDB 0.904 0.000 0.096
N-gram: Simple Wiki 0.987 0.000 0.013
N-gram: Brown 0.946 0.000 0.054
N-gram: SUBTLEX 0.987 0.004 0.017
N-gram: SubIMDB 0.929 0.000 0.071
Age of Acquisition 0.812 0.000 0.188
Familiarity 1.000 0.000 0.000
Concreteness 0.992 0.000 0.008
Imagery 0.996 0.000 0.004
Biran Ranker 0.879 0.004 0.126
Bott Ranker 0.975 0.000 0.025
Yamamoto Ranker 0.987 0.000 0.013
Horn Ranker 0.987 0.000 0.013
Glavas Ranker 0.971 0.000 0.029
Boundary Ranker 0.925 0.000 0.075

Table C.32 Full pipeline scores with respect to substitutions generated by the WordNet
generator, as selected by the Path Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.682 0.079 0.397
Syllable Count 0.674 0.088 0.414
Senses 0.669 0.063 0.393
Synonyms 0.636 0.071 0.435
Hypernyms 0.690 0.067 0.377
Hyponyms 0.669 0.088 0.418
Frequency: Simple Wiki 0.590 0.042 0.452
Frequency: Brown 0.690 0.071 0.381
Frequency: SUBTLEX 0.644 0.033 0.389
Frequency: SubIMDB 0.653 0.084 0.431
N-gram: Simple Wiki 0.778 0.059 0.280
N-gram: Brown 0.732 0.084 0.351
N-gram: SUBTLEX 0.753 0.084 0.331
N-gram: SubIMDB 0.757 0.071 0.314
Age of Acquisition 0.615 0.054 0.439
Familiarity 0.665 0.079 0.414
Concreteness 0.678 0.054 0.377
Imagery 0.686 0.059 0.372
Biran Ranker 0.661 0.067 0.406
Bott Ranker 0.690 0.067 0.377
Yamamoto Ranker 0.770 0.042 0.272
Horn Ranker 0.770 0.071 0.301
Glavas Ranker 0.820 0.059 0.238
Boundary Ranker 0.715 0.084 0.368

Table C.33 Full pipeline scores with respect to substitutions generated by the WordNet
generator, as selected by the Biran Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.879 0.050 0.172
Syllable Count 0.891 0.050 0.159
Senses 0.891 0.046 0.155
Synonyms 0.900 0.050 0.151
Hypernyms 0.866 0.067 0.201
Hyponyms 0.900 0.075 0.176
Frequency: Simple Wiki 0.904 0.067 0.163
Frequency: Brown 0.900 0.050 0.151
Frequency: SUBTLEX 0.912 0.063 0.151
Frequency: SubIMDB 0.883 0.059 0.176
N-gram: Simple Wiki 0.891 0.046 0.155
N-gram: Brown 0.904 0.046 0.142
N-gram: SUBTLEX 0.916 0.063 0.146
N-gram: SubIMDB 0.916 0.050 0.134
Age of Acquisition 0.874 0.050 0.176
Familiarity 0.887 0.050 0.163
Concreteness 0.891 0.042 0.151
Imagery 0.883 0.042 0.159
Biran Ranker 0.879 0.054 0.176
Bott Ranker 0.895 0.050 0.155
Yamamoto Ranker 0.912 0.038 0.126
Horn Ranker 0.925 0.046 0.121
Glavas Ranker 0.954 0.038 0.084
Boundary Ranker 0.908 0.054 0.146

Table C.34 Full pipeline scores with respect to substitutions generated by the WordNet
generator, as selected by the Belder Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.318 0.130 0.812
Syllable Count 0.310 0.142 0.833
Senses 0.339 0.109 0.770
Synonyms 0.280 0.117 0.837
Hypernyms 0.381 0.134 0.753
Hyponyms 0.368 0.163 0.795
Frequency: Simple Wiki 0.247 0.092 0.845
Frequency: Brown 0.347 0.126 0.778
Frequency: SUBTLEX 0.289 0.088 0.799
Frequency: SubIMDB 0.289 0.159 0.870
N-gram: Simple Wiki 0.569 0.151 0.582
N-gram: Brown 0.456 0.142 0.686
N-gram: SUBTLEX 0.498 0.146 0.649
N-gram: SubIMDB 0.494 0.151 0.657
Age of Acquisition 0.092 0.092 1.000
Familiarity 0.176 0.176 1.000
Concreteness 0.159 0.159 1.000
Imagery 0.159 0.159 1.000
Biran Ranker 0.326 0.138 0.812
Bott Ranker 0.377 0.142 0.766
Yamamoto Ranker 0.531 0.105 0.573
Horn Ranker 0.561 0.142 0.582
Glavas Ranker 0.598 0.126 0.527
Boundary Ranker 0.389 0.163 0.774

Table C.35 Full pipeline scores with respect to substitutions generated by the WordNet
generator, as selected by the Unsupervised Boundary Ranking Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.293 0.021 0.728
Syllable Count 0.301 0.029 0.728
Senses 0.343 0.033 0.690
Synonyms 0.339 0.025 0.686
Hypernyms 0.293 0.033 0.741
Hyponyms 0.276 0.013 0.736
Frequency: Simple Wiki 0.423 0.017 0.594
Frequency: Brown 0.339 0.029 0.690
Frequency: SUBTLEX 0.435 0.000 0.565
Frequency: SubIMDB 0.276 0.017 0.741
N-gram: Simple Wiki 0.556 0.079 0.523
N-gram: Brown 0.418 0.067 0.649
N-gram: SUBTLEX 0.431 0.038 0.607
N-gram: SubIMDB 0.481 0.050 0.569
Age of Acquisition 0.017 0.017 1.000
Familiarity 0.021 0.021 1.000
Concreteness 0.046 0.046 1.000
Imagery 0.033 0.033 1.000
Biran Ranker 0.289 0.025 0.736
Bott Ranker 0.301 0.038 0.736
Yamamoto Ranker 0.444 0.025 0.582
Horn Ranker 0.435 0.046 0.611
Glavas Ranker 0.515 0.059 0.544
Boundary Ranker 0.326 0.038 0.711

Table C.36 Full pipeline scores with respect to substitutions generated by the Yamamoto
generator, without any selection
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Ranker Precision Accuracy Changed Proportion
Word Length 0.866 0.000 0.134
Syllable Count 0.874 0.000 0.126
Senses 0.954 0.000 0.046
Synonyms 0.958 0.000 0.042
Hypernyms 0.950 0.000 0.050
Hyponyms 0.946 0.000 0.054
Frequency: Simple Wiki 0.862 0.000 0.138
Frequency: Brown 0.820 0.000 0.180
Frequency: SUBTLEX 0.900 0.000 0.100
Frequency: SubIMDB 0.795 0.000 0.205
N-gram: Simple Wiki 0.921 0.000 0.079
N-gram: Brown 0.862 0.000 0.138
N-gram: SUBTLEX 0.891 0.000 0.109
N-gram: SubIMDB 0.895 0.000 0.105
Age of Acquisition 0.795 0.000 0.205
Familiarity 0.921 0.000 0.079
Concreteness 0.950 0.004 0.054
Imagery 0.954 0.004 0.050
Biran Ranker 0.870 0.000 0.130
Bott Ranker 0.862 0.000 0.138
Yamamoto Ranker 0.849 0.000 0.151
Horn Ranker 0.908 0.000 0.092
Glavas Ranker 0.883 0.000 0.117
Boundary Ranker 0.824 0.000 0.176

Table C.37 Full pipeline scores with respect to substitutions generated by the Yamamoto
generator, as selected by the First Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.799 0.000 0.201
Syllable Count 0.808 0.000 0.192
Senses 0.929 0.000 0.071
Synonyms 0.916 0.000 0.084
Hypernyms 0.895 0.000 0.105
Hyponyms 0.849 0.000 0.151
Frequency: Simple Wiki 0.762 0.004 0.243
Frequency: Brown 0.774 0.000 0.226
Frequency: SUBTLEX 0.808 0.000 0.192
Frequency: SubIMDB 0.736 0.000 0.264
N-gram: Simple Wiki 0.874 0.004 0.130
N-gram: Brown 0.808 0.004 0.197
N-gram: SUBTLEX 0.837 0.000 0.163
N-gram: SubIMDB 0.841 0.000 0.159
Age of Acquisition 0.715 0.000 0.285
Familiarity 0.849 0.008 0.159
Concreteness 0.824 0.004 0.180
Imagery 0.820 0.000 0.180
Biran Ranker 0.795 0.000 0.205
Bott Ranker 0.816 0.000 0.184
Yamamoto Ranker 0.837 0.000 0.163
Horn Ranker 0.895 0.004 0.109
Glavas Ranker 0.828 0.000 0.172
Boundary Ranker 0.770 0.000 0.230

Table C.38 Full pipeline scores with respect to substitutions generated by the Yamamoto
generator, as selected by the Lesk Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.900 0.000 0.100
Syllable Count 0.904 0.000 0.096
Senses 0.987 0.000 0.013
Synonyms 0.987 0.000 0.013
Hypernyms 0.975 0.000 0.025
Hyponyms 0.971 0.000 0.029
Frequency: Simple Wiki 0.900 0.000 0.100
Frequency: Brown 0.837 0.000 0.163
Frequency: SUBTLEX 0.916 0.000 0.084
Frequency: SubIMDB 0.816 0.000 0.184
N-gram: Simple Wiki 0.933 0.000 0.067
N-gram: Brown 0.874 0.000 0.126
N-gram: SUBTLEX 0.904 0.000 0.096
N-gram: SubIMDB 0.912 0.000 0.088
Age of Acquisition 0.812 0.000 0.188
Familiarity 0.971 0.000 0.029
Concreteness 0.979 0.000 0.021
Imagery 0.983 0.000 0.017
Biran Ranker 0.891 0.000 0.109
Bott Ranker 0.874 0.000 0.126
Yamamoto Ranker 0.866 0.000 0.134
Horn Ranker 0.937 0.000 0.063
Glavas Ranker 0.874 0.000 0.126
Boundary Ranker 0.837 0.000 0.163

Table C.39 Full pipeline scores with respect to substitutions generated by the Yamamoto
generator, as selected by the Path Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.611 0.017 0.406
Syllable Count 0.615 0.021 0.406
Senses 0.632 0.033 0.402
Synonyms 0.632 0.029 0.397
Hypernyms 0.611 0.033 0.423
Hyponyms 0.598 0.021 0.423
Frequency: Simple Wiki 0.715 0.008 0.293
Frequency: Brown 0.619 0.025 0.406
Frequency: SUBTLEX 0.720 0.000 0.280
Frequency: SubIMDB 0.594 0.017 0.423
N-gram: Simple Wiki 0.762 0.046 0.285
N-gram: Brown 0.678 0.038 0.360
N-gram: SUBTLEX 0.707 0.033 0.326
N-gram: SubIMDB 0.753 0.033 0.280
Age of Acquisition 0.594 0.017 0.423
Familiarity 0.619 0.021 0.402
Concreteness 0.640 0.025 0.385
Imagery 0.632 0.025 0.393
Biran Ranker 0.611 0.017 0.406
Bott Ranker 0.607 0.029 0.423
Yamamoto Ranker 0.707 0.017 0.310
Horn Ranker 0.711 0.038 0.326
Glavas Ranker 0.728 0.038 0.310
Boundary Ranker 0.623 0.033 0.410

Table C.40 Full pipeline scores with respect to substitutions generated by the Yamamoto
generator, as selected by the Biran Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.946 0.021 0.075
Syllable Count 0.946 0.029 0.084
Senses 0.979 0.029 0.050
Synonyms 0.983 0.033 0.050
Hypernyms 0.971 0.029 0.059
Hyponyms 0.958 0.033 0.075
Frequency: Simple Wiki 0.946 0.008 0.063
Frequency: Brown 0.958 0.021 0.063
Frequency: SUBTLEX 0.958 0.004 0.046
Frequency: SubIMDB 0.950 0.029 0.079
N-gram: Simple Wiki 0.979 0.029 0.050
N-gram: Brown 0.962 0.025 0.063
N-gram: SUBTLEX 0.962 0.029 0.067
N-gram: SubIMDB 0.962 0.025 0.063
Age of Acquisition 0.937 0.021 0.084
Familiarity 0.937 0.029 0.092
Concreteness 0.941 0.021 0.079
Imagery 0.941 0.025 0.084
Biran Ranker 0.941 0.025 0.084
Bott Ranker 0.950 0.021 0.071
Yamamoto Ranker 0.992 0.004 0.013
Horn Ranker 0.979 0.021 0.042
Glavas Ranker 0.971 0.021 0.050
Boundary Ranker 0.954 0.029 0.075

Table C.41 Full pipeline scores with respect to substitutions generated by the Yamamoto
generator, as selected by the Belder Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.305 0.025 0.720
Syllable Count 0.335 0.046 0.711
Senses 0.356 0.033 0.678
Synonyms 0.360 0.025 0.665
Hypernyms 0.297 0.033 0.736
Hyponyms 0.297 0.029 0.732
Frequency: Simple Wiki 0.582 0.046 0.464
Frequency: Brown 0.351 0.042 0.690
Frequency: SUBTLEX 0.653 0.025 0.372
Frequency: SubIMDB 0.289 0.029 0.741
N-gram: Simple Wiki 0.561 0.079 0.519
N-gram: Brown 0.435 0.084 0.649
N-gram: SUBTLEX 0.444 0.046 0.603
N-gram: SubIMDB 0.485 0.050 0.565
Age of Acquisition 0.029 0.029 1.000
Familiarity 0.033 0.033 1.000
Concreteness 0.075 0.075 1.000
Imagery 0.079 0.075 0.996
Biran Ranker 0.289 0.025 0.736
Bott Ranker 0.301 0.038 0.736
Yamamoto Ranker 0.506 0.025 0.519
Horn Ranker 0.452 0.050 0.598
Glavas Ranker 0.544 0.059 0.515
Boundary Ranker 0.339 0.050 0.711

Table C.42 Full pipeline scores with respect to substitutions generated by the Yamamoto
generator, as selected by the Unsupervised Boundary Ranking Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.209 0.126 0.916
Syllable Count 0.180 0.117 0.937
Senses 0.280 0.130 0.849
Synonyms 0.372 0.138 0.766
Hypernyms 0.264 0.142 0.879
Hyponyms 0.293 0.142 0.849
Frequency: Simple Wiki 0.042 0.029 0.987
Frequency: Brown 0.293 0.192 0.900
Frequency: SUBTLEX 0.017 0.008 0.992
Frequency: SubIMDB 0.310 0.230 0.921
N-gram: Simple Wiki 0.494 0.192 0.699
N-gram: Brown 0.414 0.172 0.757
N-gram: SUBTLEX 0.481 0.201 0.720
N-gram: SubIMDB 0.494 0.213 0.720
Age of Acquisition 0.050 0.050 1.000
Familiarity 0.230 0.230 1.000
Concreteness 0.218 0.218 1.000
Imagery 0.247 0.247 1.000
Biran Ranker 0.259 0.155 0.895
Bott Ranker 0.393 0.163 0.770
Yamamoto Ranker 0.510 0.134 0.623
Horn Ranker 0.552 0.192 0.640
Glavas Ranker 0.590 0.163 0.573
Boundary Ranker 0.418 0.218 0.799

Table C.43 Full pipeline scores with respect to substitutions generated by the Glavas generator,
without any selection



324 Benchmarking Results

Ranker Precision Accuracy Changed Proportion
Word Length 0.770 0.029 0.259
Syllable Count 0.657 0.029 0.372
Senses 0.933 0.017 0.084
Synonyms 0.929 0.017 0.088
Hypernyms 0.787 0.021 0.234
Hyponyms 0.770 0.021 0.251
Frequency: Simple Wiki 0.356 0.008 0.653
Frequency: Brown 0.833 0.021 0.188
Frequency: SUBTLEX 0.360 0.013 0.653
Frequency: SubIMDB 0.753 0.021 0.268
N-gram: Simple Wiki 0.950 0.025 0.075
N-gram: Brown 0.803 0.013 0.209
N-gram: SUBTLEX 0.925 0.025 0.100
N-gram: SubIMDB 0.854 0.017 0.163
Age of Acquisition 0.377 0.029 0.653
Familiarity 0.967 0.017 0.050
Concreteness 0.975 0.025 0.050
Imagery 0.979 0.025 0.046
Biran Ranker 0.774 0.033 0.259
Bott Ranker 0.891 0.029 0.138
Yamamoto Ranker 0.950 0.021 0.071
Horn Ranker 0.954 0.013 0.059
Glavas Ranker 0.941 0.021 0.079
Boundary Ranker 0.808 0.021 0.213

Table C.44 Full pipeline scores with respect to substitutions generated by the Glavas generator,
as selected by the First Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.603 0.046 0.444
Syllable Count 0.510 0.050 0.540
Senses 0.707 0.029 0.322
Synonyms 0.732 0.025 0.293
Hypernyms 0.636 0.042 0.406
Hyponyms 0.623 0.063 0.439
Frequency: Simple Wiki 0.126 0.017 0.891
Frequency: Brown 0.649 0.050 0.402
Frequency: SUBTLEX 0.121 0.017 0.895
Frequency: SubIMDB 0.548 0.063 0.515
N-gram: Simple Wiki 0.816 0.046 0.230
N-gram: Brown 0.657 0.038 0.381
N-gram: SUBTLEX 0.762 0.054 0.293
N-gram: SubIMDB 0.703 0.042 0.339
Age of Acquisition 0.222 0.046 0.824
Familiarity 0.766 0.050 0.285
Concreteness 0.674 0.054 0.381
Imagery 0.699 0.050 0.351
Biran Ranker 0.577 0.046 0.469
Bott Ranker 0.724 0.054 0.331
Yamamoto Ranker 0.837 0.033 0.197
Horn Ranker 0.837 0.042 0.205
Glavas Ranker 0.824 0.038 0.213
Boundary Ranker 0.653 0.059 0.406

Table C.45 Full pipeline scores with respect to substitutions generated by the Glavas generator,
as selected by the Lesk Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.837 0.000 0.163
Syllable Count 0.728 0.004 0.276
Senses 0.992 0.000 0.008
Synonyms 0.992 0.000 0.008
Hypernyms 0.854 0.000 0.146
Hyponyms 0.837 0.000 0.163
Frequency: Simple Wiki 0.439 0.004 0.565
Frequency: Brown 0.833 0.000 0.167
Frequency: SUBTLEX 0.435 0.004 0.569
Frequency: SubIMDB 0.778 0.000 0.222
N-gram: Simple Wiki 0.971 0.004 0.033
N-gram: Brown 0.828 0.000 0.172
N-gram: SUBTLEX 0.925 0.008 0.084
N-gram: SubIMDB 0.866 0.000 0.134
Age of Acquisition 0.448 0.004 0.556
Familiarity 0.987 0.000 0.013
Concreteness 1.000 0.000 0.000
Imagery 1.000 0.000 0.000
Biran Ranker 0.799 0.004 0.205
Bott Ranker 0.954 0.004 0.050
Yamamoto Ranker 0.967 0.000 0.033
Horn Ranker 0.967 0.004 0.038
Glavas Ranker 0.941 0.000 0.059
Boundary Ranker 0.828 0.000 0.172

Table C.46 Full pipeline scores with respect to substitutions generated by the Glavas generator,
as selected by the Path Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.669 0.067 0.397
Syllable Count 0.674 0.067 0.393
Senses 0.665 0.071 0.406
Synonyms 0.707 0.075 0.368
Hypernyms 0.653 0.079 0.427
Hyponyms 0.665 0.075 0.410
Frequency: Simple Wiki 0.469 0.017 0.548
Frequency: Brown 0.669 0.113 0.444
Frequency: SUBTLEX 0.477 0.017 0.540
Frequency: SubIMDB 0.690 0.146 0.456
N-gram: Simple Wiki 0.778 0.084 0.305
N-gram: Brown 0.720 0.088 0.368
N-gram: SUBTLEX 0.766 0.100 0.335
N-gram: SubIMDB 0.778 0.134 0.356
Age of Acquisition 0.527 0.067 0.540
Familiarity 0.695 0.138 0.444
Concreteness 0.653 0.088 0.435
Imagery 0.682 0.092 0.410
Biran Ranker 0.695 0.084 0.389
Bott Ranker 0.728 0.113 0.385
Yamamoto Ranker 0.799 0.084 0.285
Horn Ranker 0.816 0.109 0.293
Glavas Ranker 0.854 0.096 0.243
Boundary Ranker 0.745 0.126 0.381

Table C.47 Full pipeline scores with respect to substitutions generated by the Glavas generator,
as selected by the Biran Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.812 0.059 0.247
Syllable Count 0.816 0.088 0.272
Senses 0.774 0.079 0.305
Synonyms 0.736 0.050 0.314
Hypernyms 0.703 0.079 0.377
Hyponyms 0.757 0.071 0.314
Frequency: Simple Wiki 0.678 0.096 0.418
Frequency: Brown 0.820 0.059 0.238
Frequency: SUBTLEX 0.715 0.130 0.414
Frequency: SubIMDB 0.762 0.071 0.310
N-gram: Simple Wiki 0.808 0.067 0.259
N-gram: Brown 0.841 0.071 0.230
N-gram: SUBTLEX 0.791 0.071 0.280
N-gram: SubIMDB 0.808 0.059 0.251
Age of Acquisition 0.732 0.067 0.335
Familiarity 0.812 0.071 0.259
Concreteness 0.816 0.067 0.251
Imagery 0.816 0.071 0.255
Biran Ranker 0.812 0.071 0.259
Bott Ranker 0.787 0.079 0.293
Yamamoto Ranker 0.874 0.067 0.192
Horn Ranker 0.858 0.075 0.218
Glavas Ranker 0.866 0.046 0.180
Boundary Ranker 0.787 0.067 0.280

Table C.48 Full pipeline scores with respect to substitutions generated by the Glavas generator,
as selected by the Belder Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.385 0.184 0.799
Syllable Count 0.322 0.126 0.803
Senses 0.335 0.113 0.778
Synonyms 0.427 0.142 0.715
Hypernyms 0.377 0.184 0.808
Hyponyms 0.343 0.138 0.795
Frequency: Simple Wiki 0.063 0.033 0.971
Frequency: Brown 0.364 0.234 0.870
Frequency: SUBTLEX 0.067 0.042 0.975
Frequency: SubIMDB 0.339 0.255 0.916
N-gram: Simple Wiki 0.510 0.176 0.665
N-gram: Brown 0.464 0.176 0.711
N-gram: SUBTLEX 0.498 0.192 0.695
N-gram: SubIMDB 0.519 0.226 0.707
Age of Acquisition 0.088 0.088 1.000
Familiarity 0.255 0.255 1.000
Concreteness 0.159 0.159 1.000
Imagery 0.276 0.276 1.000
Biran Ranker 0.389 0.180 0.791
Bott Ranker 0.444 0.213 0.770
Yamamoto Ranker 0.598 0.167 0.569
Horn Ranker 0.590 0.209 0.619
Glavas Ranker 0.640 0.176 0.536
Boundary Ranker 0.456 0.234 0.778

Table C.49 Full pipeline scores with respect to substitutions generated by the Glavas generator,
as selected by the Unsupervised Boundary Ranking Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.234 0.100 0.866
Syllable Count 0.326 0.142 0.816
Senses 0.259 0.088 0.828
Synonyms 0.259 0.092 0.833
Hypernyms 0.234 0.088 0.854
Hyponyms 0.243 0.092 0.849
Frequency: Simple Wiki 0.247 0.059 0.812
Frequency: Brown 0.243 0.059 0.816
Frequency: SUBTLEX 0.414 0.054 0.640
Frequency: SubIMDB 0.218 0.063 0.845
N-gram: Simple Wiki 0.527 0.121 0.594
N-gram: Brown 0.372 0.096 0.724
N-gram: SUBTLEX 0.456 0.117 0.661
N-gram: SubIMDB 0.477 0.138 0.661
Age of Acquisition 0.113 0.113 1.000
Familiarity 0.100 0.100 1.000
Concreteness 0.113 0.113 1.000
Imagery 0.113 0.113 1.000
Biran Ranker 0.234 0.084 0.849
Bott Ranker 0.247 0.084 0.837
Yamamoto Ranker 0.452 0.054 0.603
Horn Ranker 0.448 0.105 0.657
Glavas Ranker 0.523 0.092 0.569
Boundary Ranker 0.305 0.092 0.787

Table C.50 Full pipeline scores with respect to substitutions generated by the Biran generator,
without any selection
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Ranker Precision Accuracy Changed Proportion
Word Length 0.686 0.025 0.339
Syllable Count 0.749 0.038 0.289
Senses 0.883 0.025 0.142
Synonyms 0.879 0.029 0.151
Hypernyms 0.879 0.025 0.146
Hyponyms 0.866 0.025 0.159
Frequency: Simple Wiki 0.682 0.013 0.331
Frequency: Brown 0.904 0.021 0.117
Frequency: SUBTLEX 0.728 0.013 0.285
Frequency: SubIMDB 0.870 0.025 0.155
N-gram: Simple Wiki 0.958 0.021 0.063
N-gram: Brown 0.912 0.013 0.100
N-gram: SUBTLEX 0.937 0.025 0.088
N-gram: SubIMDB 0.891 0.025 0.134
Age of Acquisition 0.695 0.025 0.331
Familiarity 0.921 0.025 0.105
Concreteness 0.916 0.033 0.117
Imagery 0.925 0.033 0.109
Biran Ranker 0.720 0.025 0.305
Bott Ranker 0.854 0.025 0.172
Yamamoto Ranker 0.933 0.025 0.092
Horn Ranker 0.954 0.013 0.059
Glavas Ranker 0.967 0.021 0.054
Boundary Ranker 0.891 0.025 0.134

Table C.51 Full pipeline scores with respect to substitutions generated by the Biran generator,
as selected by the First Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.582 0.038 0.456
Syllable Count 0.699 0.054 0.356
Senses 0.837 0.025 0.188
Synonyms 0.820 0.021 0.201
Hypernyms 0.849 0.017 0.167
Hyponyms 0.824 0.017 0.192
Frequency: Simple Wiki 0.640 0.033 0.393
Frequency: Brown 0.841 0.033 0.192
Frequency: SUBTLEX 0.669 0.029 0.360
Frequency: SubIMDB 0.812 0.042 0.230
N-gram: Simple Wiki 0.904 0.029 0.126
N-gram: Brown 0.874 0.038 0.163
N-gram: SUBTLEX 0.904 0.054 0.151
N-gram: SubIMDB 0.874 0.042 0.167
Age of Acquisition 0.615 0.042 0.427
Familiarity 0.841 0.029 0.188
Concreteness 0.799 0.033 0.234
Imagery 0.808 0.029 0.222
Biran Ranker 0.619 0.042 0.423
Bott Ranker 0.787 0.038 0.251
Yamamoto Ranker 0.916 0.013 0.096
Horn Ranker 0.921 0.013 0.092
Glavas Ranker 0.921 0.013 0.092
Boundary Ranker 0.854 0.038 0.184

Table C.52 Full pipeline scores with respect to substitutions generated by the Biran generator,
as selected by the Lesk Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.833 0.004 0.172
Syllable Count 0.866 0.004 0.138
Senses 0.987 0.000 0.013
Synonyms 0.987 0.000 0.013
Hypernyms 0.987 0.000 0.013
Hyponyms 0.975 0.000 0.025
Frequency: Simple Wiki 0.828 0.004 0.176
Frequency: Brown 0.958 0.000 0.042
Frequency: SUBTLEX 0.837 0.004 0.167
Frequency: SubIMDB 0.950 0.000 0.050
N-gram: Simple Wiki 0.996 0.000 0.004
N-gram: Brown 0.971 0.000 0.029
N-gram: SUBTLEX 0.992 0.000 0.008
N-gram: SubIMDB 0.958 0.000 0.042
Age of Acquisition 0.833 0.004 0.172
Familiarity 1.000 0.000 0.000
Concreteness 1.000 0.000 0.000
Imagery 1.000 0.000 0.000
Biran Ranker 0.858 0.004 0.146
Bott Ranker 0.971 0.000 0.029
Yamamoto Ranker 0.992 0.000 0.008
Horn Ranker 0.996 0.000 0.004
Glavas Ranker 0.987 0.000 0.013
Boundary Ranker 0.962 0.000 0.038

Table C.53 Full pipeline scores with respect to substitutions generated by the Biran generator,
as selected by the Path Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.628 0.071 0.444
Syllable Count 0.690 0.088 0.397
Senses 0.644 0.063 0.418
Synonyms 0.649 0.071 0.423
Hypernyms 0.653 0.071 0.418
Hyponyms 0.628 0.059 0.431
Frequency: Simple Wiki 0.678 0.038 0.360
Frequency: Brown 0.628 0.050 0.423
Frequency: SUBTLEX 0.757 0.025 0.268
Frequency: SubIMDB 0.628 0.059 0.431
N-gram: Simple Wiki 0.766 0.059 0.293
N-gram: Brown 0.703 0.071 0.368
N-gram: SUBTLEX 0.757 0.079 0.322
N-gram: SubIMDB 0.770 0.071 0.301
Age of Acquisition 0.632 0.071 0.439
Familiarity 0.632 0.054 0.423
Concreteness 0.674 0.046 0.372
Imagery 0.653 0.050 0.397
Biran Ranker 0.644 0.079 0.435
Bott Ranker 0.632 0.063 0.431
Yamamoto Ranker 0.736 0.029 0.293
Horn Ranker 0.724 0.059 0.335
Glavas Ranker 0.791 0.054 0.264
Boundary Ranker 0.665 0.067 0.402

Table C.54 Full pipeline scores with respect to substitutions generated by the Biran generator,
as selected by the Biran Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.870 0.063 0.192
Syllable Count 0.895 0.063 0.167
Senses 0.916 0.059 0.142
Synonyms 0.908 0.059 0.151
Hypernyms 0.891 0.059 0.167
Hyponyms 0.925 0.063 0.138
Frequency: Simple Wiki 0.925 0.013 0.088
Frequency: Brown 0.941 0.050 0.109
Frequency: SUBTLEX 0.925 0.000 0.075
Frequency: SubIMDB 0.929 0.063 0.134
N-gram: Simple Wiki 0.921 0.046 0.126
N-gram: Brown 0.933 0.042 0.109
N-gram: SUBTLEX 0.958 0.054 0.096
N-gram: SubIMDB 0.946 0.050 0.105
Age of Acquisition 0.887 0.054 0.167
Familiarity 0.929 0.050 0.121
Concreteness 0.887 0.038 0.151
Imagery 0.937 0.046 0.109
Biran Ranker 0.866 0.059 0.192
Bott Ranker 0.891 0.050 0.159
Yamamoto Ranker 0.912 0.029 0.117
Horn Ranker 0.950 0.033 0.084
Glavas Ranker 0.967 0.046 0.079
Boundary Ranker 0.937 0.059 0.121

Table C.55 Full pipeline scores with respect to substitutions generated by the Biran generator,
as selected by the Belder Selector
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Ranker Precision Accuracy Changed Proportion
Word Length 0.259 0.126 0.866
Syllable Count 0.339 0.155 0.816
Senses 0.272 0.088 0.816
Synonyms 0.272 0.096 0.824
Hypernyms 0.243 0.088 0.845
Hyponyms 0.259 0.100 0.841
Frequency: Simple Wiki 0.310 0.079 0.770
Frequency: Brown 0.259 0.071 0.812
Frequency: SUBTLEX 0.531 0.071 0.540
Frequency: SubIMDB 0.234 0.079 0.845
N-gram: Simple Wiki 0.527 0.121 0.594
N-gram: Brown 0.377 0.096 0.720
N-gram: SUBTLEX 0.460 0.117 0.657
N-gram: SubIMDB 0.481 0.138 0.657
Age of Acquisition 0.130 0.130 1.000
Familiarity 0.109 0.109 1.000
Concreteness 0.121 0.121 1.000
Imagery 0.121 0.121 1.000
Biran Ranker 0.255 0.105 0.849
Bott Ranker 0.259 0.096 0.837
Yamamoto Ranker 0.473 0.063 0.590
Horn Ranker 0.456 0.109 0.653
Glavas Ranker 0.527 0.092 0.565
Boundary Ranker 0.318 0.100 0.782

Table C.56 Full pipeline scores with respect to substitutions generated by the Biran generator,
as selected by the Unsupervised Boundary Ranking Selector
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