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Covariance and Gramian matrices in control and systems theory 

K. V. FERNANOO 

SUMMARY 

Covariance and Gramian matrices in control and systems 

theory and pattern recognition are studied in the context of 

reduction of dimensionality and hence complexity of large-scale 

systems. This is achieved by the removal of redundant or 

'almost' redundant information contained in the covariance 

and Grarrdan matrices. The Karhunen-Loeve expansion (principal 

component analysis) and its extensions and the singular value 

decomposition of matrices provide the framework for the work 

presented in the thesis. The results given for linear dynamical 

systems are based on controllability and observability Gramians 

and some new developments in singular perturbational analysis 

are also presented. 
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PART 1 

Exordium 



- 2 -

CHAPTER 1 

Exordium 

1. The prelude 

The classical historian Edward Gibbon (1737-1794) noted in his 

autobiography that independence is the first of the earthly blessings. 

In an earthly subject such as mathematics, especially in linear 

analysis, 'independence' is often the first concept which has to be 

comprehended. 

The independence in linear analysis (see any standard text on 

linear algebra or matrix theory, M1rsky6, Gantmacher7) can be defined 

as follows. If i . 1 d f 1 h x , 1 - ,m enotes a set 0 rea n-vectors, t en 

this set {xi} is said to be linearly dependent if there are scalar 

values a. , i 
1 

= l,m (not all zeros) such that 

m i L a.x = 0 (1) 
i=l 1 

In the contrary case, that is equation (1) implies that a. • 0 for 
1 

all i, then the set {xi} is said to be independent. 

One of the important concepts associated with linear independence 

is rank. Let {x(i)} denote all possible permutations of indexing of 

i . 1 the vectors x , 1· ,m. 

integer r such that 

a.x 
1 

(i) 

The rank is then defined as the largest 

o 

for non-zero a., i - l,r. If r is equal to m, then the set {xi} 
1 

is said to be full rank. If the null vector does not belong to 

this set, then 

1 < r < n 
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According to the definition, verification of linear independence 

requires an uncountable infinite number of tests for all possible 

values of a., i = I,m which is obviously impractical. 
1 

Fortunately, 

there is a simple test for verification of independence which is due 

to J. P. Gram (1850-1916). Gram's monumental contributionl was 

submitted in the year 1881 and was published in 1883, and thus we 

are in the midst of important centennial anniversaries. 

2. The Gramian matrix 

i If the vector set {x } is considered as column vectors, then a 

matrix of n,m dimensions can be formed as follows. 

The matrix product defined by G
2 = XTX (XT is the transpose of X) 

is known as the Gram matrix or the GraDdan, and its determinant as 

the Gram deterDdnant. The Gramian G2 can also be written in the 

format, 

The following may be considered as the fundamental result in linear 

algebra. 

Theorem: The Gram determinant is zero if and only if the set {xi} 

is linearly dependent. 

Interesting variations of this result are available in most 

texts on linear algebra and matrix theory. Since the deterDdnant 

of a matrix is given by the product of its eigenvalues, then the 

linear independence is guaranteed if all the eigenvalues of the Gramian 

are non-zero. Equivalently, if the GraDdan G2 is positive definite, 
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then the set {xi} is linearly independent. The notation G2 is 

used to show the non-negative definiteness of the Gramian. This 

notation is used in this thesis whenever it is required to emphasise 

this property. 

If the spectral expansion of the Gramian G2 is written in the 

form, 

I = 2 2 diag (d l , ••• ,dm ) 

where U is an orthonormal matrix, I is the identity matrix and D2 

is a diagonal matrix, then the Gram determinant is given by 

2 det G - m 
IT 

i-l 

If the determinant is 'small' due to small eigenvalues, then this 

i determinant is 'almost' zero showing that the set {x }, although 

theoretically independent, is almost near to degeneration to a set 

of rank less than m. This theme is present throughout the thesis 

where almost dependent subspaces are removed to simplify theoretical 

or computational problems. 

Similarly, as in the problem of determining the linear 

independence of column vectors, if {yi} is a set of row vectors, 

then a matrix Y can be formed as 

Y -

1 
Y 

-2-
Y 

m 
y 

The Gram matrix ~n this case can be defined as 

-2 G = 
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This Gramian a2 can be used in exposing the linear independence 

i of the row vector set {y }. Gram matrices of the form, xTx and 

T XX appear in this thesis, especially in connection with the singular 

value decomposition of the matrix X (see section 4). 

3. Covariance matrices 

If M2 is a positive definite matrix of n,n dimensions and a is 

an n-vector, then a function p(x) can be defined as 

p(x) :0: 

1 -! (X-a) TM -2 (X-a) 
----;:---- e 
(2'11')n/2det M 

(2) 

which has the property 

f p(x)dx = 1 (3) 

where dx is the infinitesimal element 

dx = ~l •••• dxn' x = 

If x is a random vector with the probability density function 

p(x) then {x} is called a Gaussian (or normal) process8 • 

The following first- and second-order moments can be easily 

verified, 

E{x} - a 

T E { (x -a)( x-a) } 

where E{·} denotes the expectation operator. The vector ().. is 

called the 'average value' and the matrix M2 the covariance matrix 

of the process. 

If the spectral decomposition of the matrix M2 is of the form 

= = I -
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then equation (2) can be written in the form 

2 2 n I 
-l( Y • -8.) Id. 

p(y) .. IT 
(21f) I d. 2 

e 1. 1. 1. 

i=l 1. 

where y -[~:l = UTx S = [~:l .. lla 

If d. 2 is altmst zero then 
1. 

2 2 
1 

-(y.-8.) Id. 1. 1. 1. 
~ 0 except near y. -

(21f) I d. 2 e 
l. 

1. 

Thus, as in the case of Gramian matrices, we may ignore y. due to 1. 

'statistical' dependence. Such, removal of dependent data is a 

8. 
l. 

recurrent theme in this thesis. We also observe that the validity 

of equation (3) can be verified using this canonical transformation 

T y a U X. 

If there are a large number of observations of the process, 

then the first- and second-order moments can be estimated in the 

following manner 

a .. Limit 
m--

X . 1. 

I ~ i i T 
l (x -a) (x -a) 

m i=l 

h h . .2. G' . We observe t at t e covar1.ance matr1.X M 1.S a r~an matr1.X 

formed by the infinite set {xi-a}. 
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4. The singular value decomposition 

We have already indicated the form xT(h\2)x into its canonical 

form. A general quadratic form xTpx where P is a symmetric matrix 

can be simplified using the spectral decomposition 

p ,. 

Thus, T 
x Px = 

where 
T 

Y - U x. 

.. I D 

= 

.. 

2 d.y. 
1. 1. 

If the rank of the matrix P is r, then n-r number of the diagonal 

values of D will be zero. 

A natural extension of the above simplification is concerned 

w~ the bilinear form xTQw where x and ware n and m dimensional 

vectors respectively and Q is an n,m dimensional matrix. 

For the special case m - n, the problem was solved independently 

by three celebreties in the theory of matrices namely, Beltrami3 

4 2 (1813), Jordan (1874), and Sylvester (1889). 

If the spectral decomposition of the Gramian matrices (which 

2 share the same eigenvalue set D ) are written in the format 

- -
- I ... 

then the singular value decomposition of Q is given by 

Q -
where the diagonal matrix D can be chosen to have diagonal positive 

values (called the singular values). 
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The bilinear form xTQw in 

xTQw "" (UT.x) Tn(VTw) ... 

T 
Y = U x 

T z ... V z 

its 

n 
I 

i-I 

canonical form is given by 

d.y.z . 
111 

However, the discovery of the singular value decomposition should 

be attributed to Jacobi5 , one of the founders of matrix theory. In 

the year 1832, that is exactly 150 years ago, Jacobi derived this 

decomposition for the special case n = 3, which was used in the 

simplification of a double integral via the canonical form described 

earlier. We observe that the generalization of the singular value 

decomposition from the 3-dimensional to the n-dimensional case is 

obvious to us although at the time of Jacobi higher dimensional 

spaces above 3 were not generally considered as physically meaningful. 

The generalization of the decomposition for rectangular matrices 

is due to Eckart and young9 (1939). For the rectangular matrix 

e of rank r, the decomposition is given byll 

e OIl 

where 

[U I iiJ T (u I iiJ .. I [VlvJT{vlv] ... I n m 

UTU - VTV ... I r 

ee
T 

". [UluJ [:2 :] luliil
T .. un2uT 

eTe .. [D2 
lv l

vJ 0 :] [vlvJI = vn2vT 

where n is a diagonal r,r dimensional matrix. 
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5. Computation of Gramians and the singular value decomposition 

As shown in the previous section, the information present in 

the Gramian matrices eTe and eaT are explicitly present in the 

decomposition e = UDVT. Furthermore, the natural method of 

computation of the singular value decomposition is to form the 

.. T d T dh h 1 Gra~an matr1ces e a an ee an t en to compute t e spectra 

decompositions of those matrices. However, this approach has 

certain pitfalls if finite word length arithmetic is used in the 

computation as the following example indicates. 

Let a be the full rank matrix 

a = 
[

1.0 

1.0 

where E is a small real number such that the floating arithmetic 

unit can distinguish between 1.0 and E. That is 

1.0 ; fl(l.O + E) 

where fl(.) denotes floating point operations. 

However, we assume that the floating point arithmetic is 

2 'blind' to values of E • 

1.0 = 
2 

£1(1.0 + E ) 

The Gramian matrix eaT is of the form 

= 
[

1.0 

1.0 

Thus, the Gramian eeT is internally represented in the computer as 

the rank one matrix 

[

1.0 1.0] 

1.0 1.0 



- 10 -

if the above described floating point arithmetic unit is used, 

implying that the matrix e is not full rank. 

The above example clearly indicates that formation of Gramian 

matrices should be avoided in rank determination and in the 

computation of the singular value decomposition. 

Fortunately, there is a computational scheme for the decomposition 

which does not require the formation of the Gramian matrices which 

is due to Golub et al lO (1970) and which is based on an extended 

QR algorithm. Thus, the linear independence/dependence and the 

associated rank can be determined using the singular value decomposition 

without formation of the Gramian matrices. 

6. The objectives and the organization of the thesis 

The main aim of this thesis is to study the appearance of 

Gramian and canonical matrices in control and systems theory including 

pattern recognition and signal processing. More specifically, 

linearly dependent or 'almost' linearly dependent subspaces are 

removed so that more attention can be given to the more 'robust' 

linearly independent subspaces. Such removal of dependent data 

reduces the dimensionality and hence the complexity of such systems 

pertaining to that data. Thus data reduction is paramount in the 

analysis of large-scale systems. 

The thesis is in seven parts and this introductory chapter 

forms Part 1. 

Part 2 which consists of Chapters 2, 3 and 4 is about the 

Karhunen-Loeve expansion/transform, which is fundamental in the 

analysis of random processes. In Chapter 2, we study the 
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relationships between this expansion, the singular value 

decomposition and the technique of separation of variables. 

In Chapter 3, 2-dimensional data reduction is investigated in 

the context of the singular value decomposition. Finally, in 

Chapter 4, extrapolation or prediction of 'future' data using a 

random expansion which is structurally similar to the Karhunen-Loeve 

expansion, is described. 

Part 3 is concerned with model-order reduction of linear 

dynamical systems which is increasingly becoming more important 

in the context of large-scale systems theory. The traditional 

methods of model-order reduction are based on modal methods where 

the slow-time behaviour and the fast-time behaviour as characterized 

by the 'small' and 'large' eigenvalues respectively, of the system 

matrix are the criteria for order reduction. The more modern 

approach is to delete the least controllable and the least observable 

parts of the system. This'is achieved by means of 'balancing' 

transformations which transform the controllability and observability 

Gramians into their canonical diagonal forms. The theme in this 

part is to harmonize the singular perturbational approach with that 

of the balanced reduction. In Chapters 5 and 6, respectively, 

continuous-time and discrete-time systems are studied. In 

Chapter 7, the inter-relationships between continuous-time and 

discrete-time model-order reduction are investigated through the 

Cayley transformation. Finally ~n Chapter 8, the combined 

singular perturbational balanced method is exposed in the context 

of reciprocal transformations. 
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Part 4 of the thesis which encompasses Chapters 9, 10 and 11 

describes a new Gramian matrix called the cross-Gramian which has 

properties of a cross-covariance matrix. This matrix denoted by 

w contains information pertaining to both controllability and 
co 

observability of linear single-input sing1e-output systems. In 

Chapter 9, this matrix is studied in relation to balanced and other 

principal representations of linear systems. The minima1ity or 

joint controllability/observability is the subject of Chapter 10. 

In Chapter 11, we demonstrate that the matrix W contains information 
co 

about the Cauchy index of the system. 

Part 5 is concerned with the quantification of input and output 

behaviour of linear systems based on properties of the Gramian 

matrix. In Chapter 12, the use of a Mahalanobis distance measure 

is discussed in relation to the degree of controllability. Due to 

the well known duality between controllability and observability, 

this naturally extends to observability as well. In Chapter 13, 

measures for describing inter-relationships between inputs and 

outputs are proposed. In Chapter 14,which is the final Chapter 

in this part, a method based on the Mahalanobis distance is 

described which can be used to discriminate system inputs or 

outputs. 

The concluding Chapter 15 forms Part 6 of the thesis and Part 7 

contains the appendices. 
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7. Originality of the research and style of presentation 

The research work presented in this thesis is based on 

completely original work. All the Chapters and the four 

appendices are best described as 'essays' since they can be 

read and understood almost independently of other essays. 

This style is considered as the best way to present the broad 

range of research work undertaken in this thesis which ranges 

from control and systems theory to image processing, pattern 

recognition, time series analysis and signal processing. 

The material in Chapters 2 to 6 and q to 13 and the Appendices 

1 to 3 have been published or accepted for publication in the 

journals of the Institution of Electrical Engineering (lEE) 

London or the Institute of Electrical and Electronic Engineers 

(IEEE) New York. Chapters 7, 8, and 14 and Appendix 4 have 

been submitted for possible publication. 
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PART 2 

, 
The Karhunen-Loeve Expansion and Extensions 
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~~R2 

The Karhunen-Lo~ve expansion with reference to singular 

value decomposition and separation of variables 

Abstract The Karhunen-Lo~ve expansion for random processes, the 

method of principal component analysis, the singular value 

decomposition of rectangular matrices and the method of separation 

of variables used in mathematical physics and functional analysis, 

are shown to possess the same basic structure based on orthonorma1 

basis functions or vectors and associated eigenprob1ems. 

n 
1. Introduction The Karhune:Lo~ve expansion is one of the 

fundamental expansions used for describing random processes, and 

has been used widely in control, estimation and information theory 

and also in image processing and pattern recognition. The 

continuous expansion is based on orthogona1 functions derived from 

eigenfunction solutions of covariance functions. 

The continuous form of the expansion is well known and the 

associated optimal properties can be found in texts on probability 

and communication theory and pattern recognitionl - 9 However, it 

is difficult to obtain numerical solutions since it involves 

eigenfunction problems defined by Fredho1m integrals. 

The discrete form of the expansion leads to matrix eigenva1ue 

. 8-11 23 problems which are well suited for digital computatlon ' 

The extension from the continuous to the discrete case has been 
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motivated by these numerical considerations and, unfortunately. the 

full algebraic properties of the expansion have not been fully 

investigated or utilized in the published literature. The discrete 

case is also equivalent to the method of principal component analysis 

used in mathematical statistics, which has had extensive applications 

. . l' 12-14,23 1n the SOC1a SC1ences • 

The aim of this Chapter is to show that the discrete Karhunen-

Lo~ve expansion is algebraically equivalent to the singular value 

. 15 16 decomposition of a rectangular matr1x ' • For the continuous 

case, the expansion is equivalent to the classical technique of 

separation of variables using orthonormal basis functions (Bernoulli's 

separation method) which is a well recognized method of solution of 

. 17 24 partial differential equations in phys1cs ' • A more formal 

approach can be based on approximation theory, spectral theory and 

generalized functions in a Hilbert space setting. 

2. The singular value decomposition of a rectangular matrix15 ,16 

The singular value decomposition of an m,n dimensional matrix X is 

given by 

x 

or x .. 
1J - (l) 

where U and V are orthonormal matrices and C is a diagonal matrix. 

The rank of the matrix X is taken as r, and X~M ,C· diag{cl ••• c
r
), m,n 

C. >0, k - 1. .r, UeM , VeM , r < min{m,n}. 
K m,r n, r Also 
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m 
or r ~i~j .. t5 •• 

k-1 1J 

n 
or r vkivkj - t5 •• 

k-1 1J 

where 0 .. denotes the Kronecker delta function. 
1J 

(2) 

(3) 

The matrix U can be obtained as the eigenvector solution of the 

problem defined by 

m 
SU == UC or r s1'kQ 1'

1 
- u •. c. 

k=l k 111 11 

where or 

The matrix V is similarly given by 

RV .. VC or 

where or 
n 

r
J
.
k

.. r x.x. 
1-1 1J 1J 1 

i1 - 1 •• r 

(4) 

(5) 

(6) 

(7) 

The nonnegative matrices Sand R can also be written in the 

dyadic format 

r 
or s .. .. r ~~i~i1 111 k=l 

(8) 

r 
r .. .. r ~vk·vk· JJ 1 k-1 J J 1 

(9) or 
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3. The separation of variables of a function of two variables l7 ,l8,24,25 

The equivalent decomposition for a continuous function of two variables 

is given by the method of separation of variables. A function x(w,t) 

of two independent variables w and t, can be represented by 

r 
r - ~'1k~t L 1k<~' where the sets {uk } and {vk } 

k-l 
are orthonorma1 functions with 

-

(2*) 

(3*) 

The analogies between eqns (1), (2) and (1*), (2*), etc are obvious, 

where the summation has been replaced by integration. 

The orthonormal functions ~(w) can be obtained from the 

eigenproblem defined by the Fredho1m integral equation18 ,25 

• 

where the kernal function s(w,w1) is given by 

Similarly, for vk(t) 

f 
T 

where 

- f x(w, t) x(wl ' t) dt 

• 

T 

-
f x(w,t)x(w,tl)dw 
w 

(4*) 

(5*) 

(6*) 

(7*) 



- 21 -

By Mercer's theorem, the kerna1 functions s(w,wl ) and r(t,t1) can 

be written in the form 

r 
s (w,wl ) =- r ~~(w)~(wl) 

k-l 
(8*) 

r 
r(t,t

l
) - r ~ vk (t)vk (t l ) 

k-l 
(9*) 

4. Karhunen-Lo~ve expansions The continuous form of the Karhunen-

Lo~ve expansion is given by eqn (1*) if it is assumed that w is the 

probability space variable of a second order random process. 

Integration with respect to the variable w in eqns (2*) and (7*) can 

then be replaced by the expectation operator E [.] • Thus 

• (10*) 

(11*) 

and the kernal r can be identified as a covariance function. 

(Note - It is usual to suppress the variable w from x(w,t),~(w),etc). 

Similarly, for the discrete case, the Karhunen-Lo~ve expansion 

is given by eqn 1 with i denoting the discrete probability variable 

of a random process or of the 'experiments'. 

then be modified as 

r.. • 
JJ l 

• 

nE[X.X. ] 
J J1 

or 

or 

E[UTU] - I 

R • E[XTX] 

Equations 2 and 7 can 

(10) 

(11) 

A dual set of results can be obtained by assuming t to be the 

probability space variable instead of w. 
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5. Conclusions The role of the singular value decomposition of 

rectangular matrices in random signal analysis and, particularly, 

the relation to the discrete Karhunen-Loeve expansion has been 

highlighted. For the continuous case, the expansion is also 

equivalent to the method of separation of variables used in classical 

physics and functional analysis. 

In most engineering and other problems involving numerical 

values and large samples, the expectation operator can be suppressed, 

and the Karhunen-Lo~ve expansion and the singular value decomposition 

then become numerically identical. 

In applications concerned, for example with the forecasting 

11 of load data ,the signal matrix X is formed from load data at day 

(row) i and at hour (column) j. It is usual to consider that the 

rows of the matrix are due to different 'experiments', and to obtain 

the eigenvector matrix V which gives the modes of the system data 

in the row direction. This matrix will contain information pertaining 

to the variation of the load in a day due to industrial and domestic 

peaks, etc at each hour of the day. However, if the data in each 

column is taken as being due to different experiments, then the 

matrix U will show the weekly pattern, indicating the reduced demands 

at weekends. Hence, it is not always necessary to know which 

subscript refers to the probability space or the 'experiments' in 

practice. 

The problem can also be modified to include basis functions 

~(w) and vk(t) which are orthonormal with respect to weighting 

functions Pkt(w) and qkt(t), respectively. Then 
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-
and 

-
If w is the probability space variable, then Pkt(w) will correspond 

to the probability density. The results due to this extension are 

straightforward and hence omitted. For the discrete case, weighting 

matrices P and Q can be introduced accordingly. 

The singular value decomposition has been used in model-order 

reduction of systems within the framework of principal component 

. 19 22 analys1s ' (see Part 3 and 4 for details). 

The relationships between the various techniques are illustrated 

below. It is hoped that this exposition will further strengthen 

the links between different disciplines which can be studied within 

the general framework of systems theory. 

continuous 
KLE 

discrete 

continuous 

discrete 
KLE/peA 

random de te rmi ni s ti c random deterministic 

discrete ... 
SOV SVD 

• • cont1nuous 

KLE Karhunen-Lo~ve expansion 

SOV Separation of variables 

SVD Singular value decomposition 

PCA Principal component analysis 
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CHAPTER 3 

The discrete double-sided Karhunen-Loeve expansion 

Abstract. A new expansion for the representation of random data 

the double-sided Karhunen-Lo~ve expansion - is hypothesized, with 

application for data analysis, contraction and prediction in two-

dimensional processes. 

1. Introduction. The Karhunen-Lo~ve (K-L) expansion is one of the 

basic forms used for describing random signals and has had wide 

application in pattern recognition, feature selection, image processing, 

" d d"· 1-7 data compress10n an pre 1ct1on • The expansion is formed using a 

set of orthonormal basis functions which can be obtained as a set of 

eigenvectors of a data covariance matrix, and optimal properties are 

associated with the expansion which is closely related to the least-

8 23 squares estimation problem' • The truncated series minimizes the 

summated mean-square error and also the entropy function defined 

over the variance of the random coefficients of the expansion from 

the information theoretic point of view
2

• 

The pattern recognition or feature selection problem can be 

concerned with identifying the modes or the energy spectrum of the 

process. These properties can then be modified to emphasize or 

restrict certain aspects which may be required for data compression. 

Thus, an image can be enhanced by altering the corresponding energy 

values, and non-dominant terms of the expansion attributed to noise 

9 10 can be filtered or suppressed t • Data compression techniques also 
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have application in the analysis of biomedical data and in the 

coding and transmission of picture signals. Such data contraction 

can be considered as smoothing if the non-dominant neglected modes 

of the expansion are due to high-frequency components. From a 

statistical point of view and in geographical applications, this 

is also known as trend surface analysis. 

Prediction or forecasting of non-stationary random processes 

which cannot be modelled exactly is essentially a problem of 

extrapolation of past data using known patterns. The K-L expansion 

has been used successfully for this problem, and particularly for 

the forecasting of electrical power and water system demands, and 

" "d ff" f1 11-13,26 of a~r po11ut~on an tra ~c ows 

A double-sided form of the K-L expansion is now developed for 

1 " " "h" d" "115,25 / " " app ~cat~on ~t ~n two- ~mens~ona space t~me coord~nate systems, 

and is related to the double-sided least-squares prob1em14 • The 

double-sided form of the discrete K-L expansion is based on the 

singular value decomposition of matrices16 ,21. In numerical 

problems with large samples, the expectation operator can be suppressed 

and then the K-L expansion and the singular value decomposition 

" Od" 127 techn1que are ~ ent~ca The decomposition has been used in the 

f 1 " 28 1 22 d" " 29-31 study 0 g ass propert1es , meteoro ogy ,an 1mage process~ng 

The expansion can be used for the analysis of spatially-correlated 

patterns, for example in geographically-located data, and for time-

mapped data, which is becoming increasingly important in many fields 

of study including engineering, econometrics, ecology, meteorology, 

geology, planning and regional science. 
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2. The Karhunen-Loeve expansion. The one-dimensional K-L expansion 

is concerned with the representation of mn-data points obtained 

from m experiments each with n observations. The data are ordered 

as an mxn-dimensional random signal matrix of the form 

x = 
[

Xl (1) 

x (1) m 

x~ (~) .] 
x (n) 

m 

In the electrical load prediction problem, for example, the element 

x. (j) would represent the demand at time j hours (1. .n) on day i (1. .m) • 
1 

The K-L expansion is now defined by the row-problem representation8 

XE.M A '=M V~M m,n m,r n,r 

where A is a random coefficient matrix with expected value E[A] - O. 

Note - The notation M denotes a real matrix of dimension mxn, etc. m,n 

The matrix V represents a set of basis functions and contains the 

orthonormalized n eigenvectors of the positive semi-definite 

covariance matrix Rl , defined as 

R.. ~M 
-1 n,n Pl~M m,m 

where PI is the~priori probability matrix associated with the m 

experiments, with elements p .. , l<p •• <O, p .• • 0, i ~ j. In the 
1J - 11 1J 

load prediction problem, the probabilities would be assigned to each 

row depending on whether it is representative of demand for that 

particular day, which may include, for example, the effects of a 

freak weather condition. 

The system modes are then identified with the eigenvalue problem 

defined by 

- Al4!:M n,n 

where Al is the diagonal eigenvalue matrix which correlates the 

coefficient matrix A, with 

- A I 



- 30 -

If the series is truncated, to include only the first k 

eigenvectors (with the eigenvalues ordered in decreasing order of 

magnitude), then 

X "" AVT A c&M k m, V E:.M k n, 

where A denotes the truncated A-matrix with k columns, and X M m,n 

is the reconstructed data X-matrix obtained using the truncated 

series. The expansion contains the first k modes, with 

The error function is then given by 

J ,. trace E [(X-X) Tp 1 (X-X) ] 

- trace hI - trace hI 

representing the sum of the omitted eigenvalues. 

A similar problem could also be considered with m observations 

resulting from n experiments, with priori probabilities assigned to 

each column. In the load prediction problem, the probabilities 

could emphasize the probable occurrence of demand at a particular 

hour of each day, say for example, during periods of peak TV viewing. 

In this case, the K-L expansion could be represented by the column-

problem format 

X ... UB U6M m,r 

where U contains the orthonormalized set of m vectors, or eigen-

vectors of the covariance matrix R
2

, defined as 

R
2

6M m,m P2~M n,n 

where P2 is the~priori probability matrix associated with the n 

experiments. Then 

and 

where h2 cM is the diagonal eigenvalue matrix. m,m 
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3. The double-sided K-L expansion. The double-sided K-L expansion 

can now be formulated to introduce the possibility of correlation 

between both the row and column data associated with either m or n 

experiments containing either n or m observations respectively. 

The expansion will define this dual behaviour inherently, based on 

the properties of the two covariance matrices RI and R2 and the 

two spectra corresponding to row and column correlations respectively. 

The expansion can be developed within a space(time)/space(time)-

or space/time-coordinate framework. For example, in contrast to the 

time/time-coordinate load prediction problem, the measurement of 

river-water quality (such as biochemical oxygen demand (BOO), dissolved 

oxygen (DO), etc) could form a data matrix with spatial-coordinate 

rows and time-coordinate columns. For each independent physical 

cause, both spatial and temporal variations will be present and 

these will be characterized by an eigenva1ue and corresponding row 

and column eigenvectors. 

3.1 Probability and weighting matrices and 'energy'. For the 

case withtpriori probability matrices PI = Im' P2 - In' representing 

absolute certainty of the experiments, the covariance matrices will 

be given by 

,. .. 
,. .. 

E [VAI vT
] 

E [UA2U
T

] 

, Al~M n,n 

A
2

6M m,m 

The eigenvalue matrices Al and A2 differ only by the number of zero 

eigenva1ues. If r is the rank of the matrix X (r!min (m,n», then 

the ranks of ~ and R2 also will be equal to r, and 
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Al - diag (Al,···,Ar,O, ••• O) 

A2 - diag (A l ,··· ,Ar,O, .......... 0) 

If the non-zero eigenvalues are contained in the diagonal matrix A 

defined as A - diag (Al, ••• ,A r ) 

then A -A@O 1 n-r,n-r 
, A -A(f)O 

2 ~r,m-r 

where ® denotes the direct sum and 0 is the null matrix of n-r,n-r 

order n-r. 

The traces of the covariance matrices are given by 

trace R1 - trace R2 - E (J ~ x .. 2) - trace E [A] 
1=1 j-l 1J 

This is equal to the sum of the eigenvalues and is a measure of the 

total 'energy' content of the system. 

For the probability matrices Pl and P2 considered as general 

positive definite weighting matrices, we have 

In general, the traces are not equal and can be considered as 

directional energies. The selection of the probability or weighting 

matrices P
1 

and P
2 

will be dictated by experience and the requirements 

of the problem. For example, in TV image processing, relative 

weighting could be used to increase the information content in the 

centre of the image compared to the edge regions. Also, row or 

• horizontal scanning will preserve continuity in that direction and 
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reduce the correlation in the vertical direction due to the discrete 

nature of scanning and time delays, and the resulting effects could 

be de-emphasized by assigning appropriate weighting values to the 

matrices PI and P2• 

Note - If PI and P2 are positive definite matrices, then rank RI -

rank R2 - rank X = r, and the number of non-zero eigenvalues will be 

equal to r, in each direction. 

Since the above energies are directional, it may be possible to 

define a combined non-directional energy term. A possible scalar 

candidate function which is balanced in each direction, is given by 

where * denotes the matrix inner product or sum of inner products 

of corresponding rows or columns. From the two-dimensional point 

of view, any 'energy' maximization should then be with respect to J
l

• 

In the least-squares formulation, maximization of 'energy' 

with respect to J 1 corresponds to the minimization of 'energy' due 

to the error terms. Minimization could then be attempted using 

the non-directional function defined as 

where error matrix E - x-x. 

3.2 The unweighted double-sided K-L expansion. The double-sided 

K-L expansion is now defined by 

(1) 
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or by the spectral decomposition 

x = 
T c .. U.V. 

11 1 1 

with dimensions X ~M ,U E::M ,C eM ,V E:M ,where X is a m,n m,r r,r n,r 

data matrix of rank rand U, C and V are full rank (-r) matrices. 

Note - If the expansion X - UCVT is used for a time/space system, 

then the eigenvector matrix U will contain time-series information 

and the matrix V will relate to a space-series. Similarly, for 

purely spatial or temporal systems, the matrices U and V will be 

of the same kind. If the time variable is t and the space variable 

s, then the signal matrix can be written in the forms U(t)CV(s)T, 

T T U(tl )CV(t2) or U(sl)CV(s2) for space/time, time/time or space/space 

systems respectively. 

If U and V are the orthonormal eigenvector matrices, formed 

from the non-zero eigenvalues of the matrices XXT, XTX respectively, 

then the decomposition of eqn 1 becomes the singular value 

decomposition of the rectangular matrix x16 ,21. 

and 

Now, since 

RI .. E [xTx] - E [VAVTJ 

R2 .. E [xxT] - E [UAU
T

] 

AGM 
r,r 

eqn 1 can be considered as the double-sided K-L expansion. It can 

also be shown that the matrix C is diagonal and equal to the square-

root of the eigenvalue matrix. Thus 

e 2 .. A e ... Ai eT 

The matrix C is also given by 

C - UTXV 
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Further, it can be shown that A - UC and B • CVT are also K-L 

expansions. 

If now the expansion is truncated to include only k (~r) modes, 

the matrix C can be solved in terms of the least-squares problem 

defined byl4 (see Appendix 1) 

X - UCV
T 

+ E 

where E is a residual error matrix. With an error function 

~ 

the truncated solution for C is then given by 

~ -T­
C == U XV , -

U~M m,k 
CloioM.. 

-It,k VE:M k n, 
, k < r 

assuming the orthogonality conditions UTU - I, VTV - I, and the 

-reconstructed X is given by 

Since C is a diagonal matrix, its least-squares solution is 
A 

equivalent to truncation, ie, eKe and 

A • UC 
- --T 
B - CV 

The reconstructed covariance matrices are given by 

~ - E [xTx] - E [vcTCV
T

] - E [VAvT] 

R2 - E [XiT] - E [ucCTU
T

] • E [uAu
T
] 

which contain only the first k modes. The minimized error function 

is then given by 

trace J • trace E [A - A] (2) 

which is equal to the sum of the omitted eigenvalues. Similarly, 

the maximized total energy is given by 

trace RI - trace R2 - trace E [A]. 
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3.3 The general double-sided K-L expansion. The least-squares 

problem with weighting matrices can be obtained by considering the 

truncated expansion 

1/1 eM m,r 

where 1/1, ~ and C are full rank (-r) matrices. 

With an error function 

C E::M 
r,r 

1 . -CA. h . b 14 the east-squares estimate lS t en given y 

Without loss of generality we can assume that 

H = P i~ 
1 

, , H cM m,r 

and the matrices H and G are orthogonal, wi th 

Then 

-T­
H H 

-T-
- G G - I r 

, 

and the reconstructed value of Y is 

Y 
-~-T 

- HCG 

Also ~ (Y> - E [yTY1 - E [cCTcc
T
] 

R2 (Y> - E [nT] - E [iiccTiiT] 

, GEM 
n,r 

Comparing these results with the un-weighted solution, the matrices 

G and H can now be identified as the eigenvector matrices of the 
~ ~ ~ 

covariance matrices R1(Y) and R2(Y) respectively. Then 

C - Xi 
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and the reconstructed data matrix is given by 

The minimized value of the error function is given similarly 

by eqn 2, which is equal to the sum of the neglected eigenvalues 

associated with Y, and the maximized energy value is given by 

4. Computational procedure. The procedure for determining the 

reconstructed data matrix from the original matrix X is developed 

with the following steps. 

5. 

(a) Y - P 1 ~ XP 2 ~ -+ RI' R2 -+ H ,G -+ H TYG (-C) 

(b) choose k to truncate H ,G ,C -+ B ,G ,C 

---T 
(c) Y .. BCG , X .. P -~yp -~ 

1 2 
T 

(d) trace (E PIE) 

(e) J .. P *(EP ET) 
1 2 

T 
trace(EP 2E ) 

.. P *(ETp E) .. trace(A-A) 
2 1 

Example. A data matrix (Table 1) representing the number of 

passengers (xlOOO) carried on scheduled international airlines for 

monthly periods from 1949 to 196019 ,24 is used to illustrate the 

application of the double-sided K-L expansion technique for data 

contraction. Fig. 1 illustrates the hyper-surface generated by 

the two-dimensional process. The data is cyclic with summer peaks 

and has a rising pattern or trend as the popularity of air travel 

increased. In classical time series analysis, such behaviour has 

been explained using complicated and empirical composite models. 
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Table 1 

J~----~.- ------~-~DEC 

1949 112 118 132 129 121 135 148 148 136 119 104 118 

1 
115 126 141 135 125 149 170 170 158 133 114 140 

145 150 178 163 172 178 199 199 184 162 146 166 

171 180 193 181 183 218 230 242 209 191 172 194 

196 196 236 235 229 243 264 272 237 211 180 201 

204 188 235 227 234 264 302 293 259 229 203 229 

242 233 267 269 270 315 364 347 312 274 237 278 

284 277 317 313 318 374 413 405 355 306 271 306 

315 301 356 348 355 422 465 467 404 347 305 336 

1 
340 318 362 348 363 435 491 505 404 359 310 337 

360 342 406 396 420 472 548 559 463 407 362 405 

1960 417 391 419 461 472 535 622 606 508 461 390 432 

'Steady states' were removed using the method described in the 

appendix. The steady part XS 
of the matrix Xd is found to be very 

dominant and it is given by 

where 

--T ab 

; - 10-1 (1.21 1.34 1.63 1.89 2.15 2.29 2.72 3.14 3.53 3.55 4.10 4.56)T 

- -1 T b • 10 (2.47 2.40 2.76 2.72 2.77 3.18 3.58 3.58 3.08 2.72 2.38 2.67) 

c - 3.652 103 
s 

-The average trend could be identified from the vector a and the cyclic 

pattern from the vector b. 

The signal matrix X after the removal of steady states is shown 

• in table 2. 
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The priori probability weighting matrices are selected as 

PI = diag (0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00) 

P
2 

= diag (0.60 0.70 0.80 0.90 1.00 1.00 1.00 1.00 0.90 0.80 0.70 0.60) 

with the elements of PI emphasizing the later data and the elements 

of P
2 

providing increased weighting for the summer months. 

The coefficient matrix is then given by 

C = diag (68.47 36.65 -30.69 23.65 19.55 -11.19 -9.21 6.10 -4.49 -1.82 

-0.30 0.00) 

and the reconstructed data matrix based on k - 5 modes is illustrated 

in Table 3. 

The optimized values of the error functions with the retention of 

different numbers of modes associated with the un-truncated signal 

and the corresponding maximized directional 'energy' functions are 

given in Table 4. 

It can be seen from the reconstructed matrix that the best fits 

to the original matrix X are near the centre-bottom of the matrix 

corresponding to the summer of 1960. The overall contraction could 

be judged from the ratio defined by, error energy/un-truncated signal 

energy 

-2 
- 3.31 10 for k • 5 

This ratio can be considered as the square of the noise/signal ratio 

and since it is very low, further truncation is possible within a 

slight increased penalty. 

trace 

trace 

ETplE/trace 

T EP
2
E /trace 

The direction ratios are given by 

3.39 10-2 

4.12 10-2 

and it is evident that the column direction is penalized more than 

the row direction. 
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Table 2 

2.S l1.S 9.9 8.3 -1.8 -5.8 -10.S -10.7 -3.7 -1.5 -1.2 -0.3 

-5.5 8.9 6.4 1.9 -10.4 -6.3 -5.1 -4.9 7.3 0.2 -2.0 9.5 

-1.8 7.3 14.0 0.9 7.0 -11.2 -14.3 -14.1 0.4 0.2 4.6 7.0 

1.1 14.8 3.1 -5.7 -8.1 -1.0 -15.9 -4.7 -3.5 3.6 8.4 10.0 

1.9 7.4 19.1 20.6 10.S -7.2 -18.0 -9.8 -5.8 -3.0 -5.9 -9.2 

-2.1 -12.3 4.7 -0.7 2.3 -1. 7 2.5 -6.3 1.2 1.S 4.5 5.8 
X = 

-2.9 -5.1 -6.7 -1.6 -5.4 -0.8 8.0 -8.7 5.6 3.9 1.1 12.7 

4.9 1.8 0.6 0.2 -0.3 9.0 1.5 -6.1 0.8 -6.2 -1. 7 -0.6 

-2.7 -7.9 0.9 -3.0 -2.3 12.4 3.2 5.5 6.5 -3.4 -1.0 -8.1 

11.4 -1.4 -5.2 -15.0 -6.5 11.4 13.4 27.8 -7.1 -3.4 -5.5 -18.9 

-5.4 -17.1 -6.9 -12.1 4.5 -4.3 11.1 22.5 0.9 -0.4 5.2 4.9 

6.3 -S.2 -40.0 7.3 10.2 5.5 25.2 9.6 -5.7 8.1 -5.5 -12.8 

Table 3 

2.3 11.2 9.3 7.4 -3.1 -3.6 -12.4 -11.0 -1. 7 -0.4 -1.1 0.5 

-1.8 6.3 5.8 -2.7 -6.2 -2.3 -7.2 -8.1 2.7 0.6 3.4 9.5 

-3.9 6.1 13.7 5.S 3.1 -11.2 -15.0 -11.5 0.0 0.5 3.5 8.9 

2.1 16.8 5.2 -5.2 -9.9 -5.4 -12.7 -4.7 -1.8 2.4 4.3 9.8 

2.S 8.4 19.1 18.8 12.2 -7.3 -17.7 -10.9 -5.4 -3.6 -5.5 -10.4 

-5.4 -9.1 3.0 4.9 2.6 -1.8 1.8 -4.2 4.9 -0.6 2.6 6.3 
X -

-4.5 -4.5 -8.3 -2.1 -3.9 1.0 5.2 -8.6 6.3 3.1 3.7 11.8 

1.5 4.2 1.4 1.8 -3.2 7.2 1.5 -5.4 2.9 -2.3 -2.8 -2.8 

-4.1 -7.8 3.1 -3.6 -2.9 14.5 5.5 4.4 4.0 -4.9 -2.9 -6.4 

8.9 -0.9 -6.9 -14.2 -6.0 13.0 11.4 28.8 -6.0 -3.9 -5.2 -19.0 

-7.7 -18.0 -6.4 -13.4 4.4 -4.9 11. 7 21. 7 0.4 1.0 5.2 4.1 

6.8 -8.3 -39.5 7.4 9.9 5.1 25.8 9.5 -6.2 8.0 -5.1 -12.4 

The reconstructed data process (including the steady states) is a1100st 

identical in form to the representation illustrated in Fig.l. 
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Table 4 - Optimized Values of Error Functions 

T 
J - P *(EP ET) T 

k trace E P1E 1 2 trace EP2E 

12 O. O. O. 

11 O. O. O. 

10 1.27 10-1 8.96 10-2 1.52 10-1 

9 4.58 3.40 6.40 

8 3.03 101 2.36 101 
3.69 101 

7 7.66 101 6.07 101 8.95 101 

6 1. 81 102 1.45 102 2.04 102 

5 3.23 10
2 2.71 102 

4.25 10
2 

4 7.78 10
2 6.53 102 

9.51 102 

3 1.41 103 1.21 103 
1. 72 103 

2 2.75 103 2.15 103 
2.95 103 

1 4.24 103 3.50 103 
4.43 103 

T 3 
trace X P1X - 9.52 10 

T 4 trace XP 2X - 1.03 10 

3 
- 8.19 10 = trace A 



- 42 -

6. Conclusion. A ~o-dimensional K-L-type expansion has been 

proposed assuming that there are two spectra or covariance matrices 

which can be associated with regression in horizontal (row) and 

vertical (column) directions. If the experiments in both 

directions are equally likely and certain, this expansion reduces 

to the singular value decomposition of a rectangular matrix. 

The technique will have application for the analysis of 

temporal and spatially-located data which exist in many disciplines. 

It is also being developed and extended for two-dimensional curve 

fitting and prediction
l7 

(see Chapter 3), which will have application 

for the forecasting of a wide range of industrial and socio-economic 

system data. Extensions to multidimensional processes are also 

under consideration. 
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8. Appendix 

Removal of the 'steady states' 

In row formulation of the expansion, it is required that the 

expected value of the row sums to be zero. 

n 

L 
j=l 

x. (j) 
~ - a. 

~ 
o for all i 

Similarly, in the column representation of the expansion, the column 

sums have to be zero. 

m 

L 
i-I 

x. (j) 
~ - b. 

J 
E [b.] 

J 
= o for all j 

If the signal matrix has large deviations from the expected values, 

then removal of steady states or the mean levels would be required. 

From the computational point of view, this would be desirable to 

avoid large numerical values. 

d . 32 
known as entropy re uct~on • 

Steady states removal is sometimes 

The following numerical scheme could be used to remove the 

. Sf h· 1 . d. . steady state matr~x X rom t e s~gna matr~x X to g~ve the matr~x X 

with required properties. 

The rank one matrix XS is defined as 

X
s ,.. ! abT 

d if d ; 0 

where a '" (a
l

, ... , a )T 
m 

b = (b. , 
~ 

... , b )T 
n 

m n 
d = L a. = L b. 

i-I ~ j-l J 
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The matrix XS can also be represented in the format 

"" 

-

c abT = 
s 

where a and b are normalized vectors of a and b, respectively, and 

c 
s 

A ~ 
s = 

Then A could be interpreted as the 'energy value' associated with 
s 

the steady states. 



- 48 -

Fig. 1. Number of passengers carried on scheduled 
international airlines 

196C 
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CHAPTER 4 

Two-dimensional curve-fitting and prediction 

using spectral analysis 

Abstract: A curve-fitting or prediction problem for two-dimensional 

or cyclic processes is defined and solved using spectral techniques. 

The assumed statistical model is structurally similar to the 

, . 
Karhunen-Loeve expans10n and the technique can be implemented 

using the singular value decomposition. Two examples using 

published data illustrate the feasibility of the method and the 

peculiarities associated with the problem. 
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1. Introduction 

One-dimensional techniques have often been used for the processing 

of data or signals which are essentially two-dimensional or cyclic. 

These include, for example, load demands on utilities, meteorological 

conditions, biological cycles, consumer demands and economic indicators. 

In one-dimensional methods, as in conventional ARHA time series analysis17 • 

which is generally not suitable for long-term prediction and for seasonal 

or cyclic processes15
• two-dimensional properties such as long-term trend 

and cyclic effects are removed or neglected, and thus such techniques do 

not utilize available information optimally. However, the two-dimensional 

1-3 and cyclic nature of processes has been appreciated recently • and is 

leading to new research activity in this area. 

Two-dimensional properties of data can be exploited using the 

Karhunen-Loeve expansion
20 

(KLE), which is a fundamental expansion for 

random processes. This is equivalent to the well-known teChnique of 

principal component analysis16 , and at an abstract level to separation 

of variables methods in functional analysis and mathematical physics4 

(Chapter 2). It is also known as the method of characteristicsll • 

Contraction and smoothing of data using the double-sided KLE based 

. 1 d .. 18 f . h b . on the s1ngular va ue ecompos1t10n 0 a matr1x ave een stud1ed 

previously3,4 (Chapters 2,3). Contraction and smoothing is a problem of inter-

polation and in this particular case it is equivalent to least-square inter-

polation in tensor product spaces. We now extend this to extrapolation using 

past data which can be viewed as either prediction or curve-fitting 

depending on the type of data being handled. 

The data or the signal matrix could consist of discretized values 

along temporal or spatial dimensions or a combination of the two. Causality 
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of data is not required or assumed and purely spatial two-dimensional 

processes can also be studied. If the data is cyclic then one of the 

dimensions could represent short-term behaviour within the cycle. The 

other dimension could then represent long-term aspects including any 

trends and other non-stationary effects. 

The technique of extrapolation of data using KLE has been used in 

7-11 the forecasting of load demands on power systems and water 

. . b . ~- 12 d f ff' fl 13. 1 d1str1 ut10n networ~s ,an 0 tra 1C ows ,1nterna pressure 

. . h 11 d' 11' 14 l' . dur1ng bra1n hemorr age an a1r po ut10n ,among other app 1cat10ns. 

The object of this cA .. 4~ is to develop a lOOdel to extrapolate data which 

can be considered as two-dimensional or cyclic. The structure of the 

model is similar to the KLE and can be implemented using the singular 

value decomposition technique. 

2. The problem 

It is assumed that the discretized data are in matrix form, with 

the two-dimensions of the data corresponding to the row and column 

di rec dons. Without loss of generality, the submatrix X
22 

is taken as 

the unknown data to be predicted which is imbedded in the m,n dimensional 

composite matrix X. Thus, 

X •• G: M 
1J m. ,no 

1 J 
, i,j • 1,2 

, 

The unknown matrix X22 could represent future data to be forecasted, 

as in load prediction problems, or it could correspond to inaccessible 

data in a hostile environment or to lost records due to instrumentation 

failure. 
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, 7-14 
3. The Karhunen-Loeve extrapolation method 

Forecasting of future data using the Karhunen-L~eve expansion is 

implemented usually in two stages. The first stage involves the formation 

of a covariance matrix, the spectral decomposition of that matrix to 

obtain the "modes" or the eigenvector structure and then contraction of 

the data to eliminate the "noise" or the insignificant modes of the 

system. This can be considered as the training or learning stage of 

the method. The actual extrapolation using the modes or basis "pattem" 

functions is represented by the second stage. 

We assume that the data matrix Yl - [X1l xl2] is formed using ~ 

experiments each with n discrete sampled values. The data record denoted 

by the row vector yi contains the information about the ith experiment 

and it is assumed that the expected value of yi is zero, and that this 

second-order process has a covariance matrix R , 
y 

• R Y 

where Er·] denotes the expectation operator. 

Y Ci= M 
1 ~,n 

If the covariance matrix R is already known (say, using analytical 
y 

modelling or experimental evaluation) then we proceed to the decomposition 

of that matrix. However, if it is not known, then it has to be 

estimated using the information in the matrix Y1 • This can be achieved 

using Bayesian or any other standard learning method
20

• The most simple 

me thod is gi ven by the asymptotic approximation, 

1 
~ 

(yi) T (yi) ly Ty R ~ - L = y ~ i-l ~ 1 1 

provided ml is large. 
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The spectral expansion of the covariance matrix R can be written 
y 

in the spectral format, 

R 
Y 

= 

where the matrix V contains the n orthogonal set of eigenvectors and D 2 
y 

is the diagonal eigenvalue matrix ordered with decreasing magnitude. 

The KLE for the process can then be expressed as, 

Al ~ M u;.,n 

where ~ is a random coefficient matrix, given by 

-
The most important property of this matrix is that (the expected value 

of) the columns of the matrix are orthogonal, with 

• D 2 
y 

Because of this diagonal form, the modes of the process can be decoupled 

indi vi dually • All the optimal properties ascribed to this expansion 

are due to this absence of off-diagonal terms. 

The diagonal values of the matrix D 2 may contain zero or near zero 
y 

entries and they can be neglected without loss of information. If the 

expansion is truncated using only k modes, then it can be written in the 

format, 

- -T Y
I 
~M Al 6 Mu;.,k Yl - AlV , 

u;.,n 

V €. M k n, D 2 l= ~ y ,k 

where Y
1 

denotes the data matrix reconstructed from the most significant 

k modes and Al and V are truncated matrices of Al and V, respectively, 

containing only the first k columns. 
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Prediction or extrapolation is based on the assumption that the 

remaining experiments as specified by the matrix Y2 - [X21 X22] has 

the same truncated eigenvector structure. The matrix Y2 can then be 

expressed using the KLE, as 

where A2 is the truncated coefficient matrix and E2 is a possible 

error matrix. The above expansion can be decomposed into two parts. 

- - T 
+ E21 X21 

... A2VI 

- - T 
+ E21 X22 

OIl A2V2 

where V - (::1 -

If nl is greater than the number of modes k, then the random 

coefficient matrix A2 can be obtained by solving the following least­

squares problem • 

. 
I. 

minimze trace .. 

The least-squares estimate A2 is then given by, 

-
... 

The estimate X22 of the unknown matrix X22 can be computed as, 
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Since the extrapolation was performed with the matrix X21 in the 

horizontal or row direction using the eigenvector structure of the 

covariance matrix R , it can be called the horizontal or row prediction 
y 

method (Fig.!). 

The assumption that the data matrix is due to m experiments each 

with n sampled values is quite arbitrary in most applications, and it 

could be conveniently assumed that the data is from n experiments each 

3 4 with m sampled data values' (Chapters 2,3). A vertical or column predictor 

(Fig.2) c,an then be obtained by extrapolating the matrix X
l2 

in the column 

direction by employing the eigenvector structure of the covariance matrix 

R , 
z 

R z 

and with analogous relationships as defined for the horizontal case. 

If zj is a column vector of Zl' where, 

then an estimate of R can be obtained ~ using the approximation, z 

R ~ z 
I 

n
l 

L 
j-l 

I 
'" -

4. A case for two-dimensional extrapolation 

As mentioned in the introduction, one-dimensional techniques have 

often been used for the processing of data or signals which are essentially 

two-dimensional or approximately cyclic. However, often the solution is 

then a series of continuous (SIOOOth) curves rather than a continuous 

surface, and such extrapolation methods do not utilize all available data 

optimally. Even if such methods provide very acceptable one-dimensional 
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fitting, it will be at the expense of the fitting in the complementary 

direction. Thus, true two-dimensional extrapolation has to be good 

in both directions and should not have a bias to one direction or the 

other (unless of course, such a bias is desired). 

In practical problems with limited data points, the assumption that 

the process has a zero mean (i.e. E[yi] - 0) is highly restrictive. 

Often, the experiments are not stationary and it is required to remove 

the trend or cyclic or other effec~from the data before the asymptotic 

covariance matrix is formed. The conventional practice is to remove 

the trend effects by differencing of data. However, differencing is 

akin to differentiation and such techniques are anathema to most engineers. 

It is also possible to use polynomial curve-fitting to remove the trend 

or similar effects. Such methods artificially introduce a secondary 

curve-fitting process. One of our objectives is to avoid such secondary 

methods and to use the trend and other similar terms to our own 

advantage. This is achieved by considering the process to be two-

dimensional and accepting such trend effects in the model. 

One possible way of devising a two-dimensional extrapolation method 

is to exploit the eigenstructure of the matrix V as well as that of the 

matrix U. If both these matrices are used, most of the information in 

the data matrix is abstracted, and thus it is reasonable to assume that 

the prediction will be more consistent than if only one matrix is used. 

Another objective is to avoid matrix inversion (or equivalently 

solution of linear matrix equations) by exploiting the orthogonal structure 

of the eigenvector matrices U and V. Such methods will also minimize 

the roundoff errors due to the reduced computational effort, and the 

technique will be numerically stable due to the inherently well-conditioned 

orthogonal matrices. 
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5. A two-dimensional statistical model 

The element x .. of the random matrix (field) is assumed to be of 
1J 

the form, 

x .. -1J 

where u
ik 

and vjk are random variables with the following second order 

properties. 

E [u. u. ] 1p 1q • IS pq , E Cv. v. ] 
JP Jq 

The function IS is the Kronecker delta. pq 

- ~pq 

For an integer pair p,q, the sum of the product x. x. , i - l,~ 
1p 1q J. 

is given by 

m
l 
l: x. x. 

i=l 1p 1q 

k k 
- l: l: v v d d 

r-l s-l pr q8 r q 
u. u. 1r 18 

If ~ is large, we may a88umethe asymptotic approximation, 

1 

~ 
u. u. ~ 1r 18 

which gives the result, 

x. x. ~ ~ 1p 1q J. 

E [u. u. J 1r 18 

v v pr qr 

-

d 2 
r 

~r8 

Equivalently, the above relation can be written in the matrix format, 

Similarly, by considering the column direction, the following 

approximation can be obtained. 

-2-T 
n

l 
UD U (2) 
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Equations (1) and (2) are very similar to the results obtained 

"-using the conventional Karhunen-Loeve extrapolation method, except that 

there are two equations corresponding to both row and column extra-

polation. To determine the "patterns" or the matrices ii and V. we 

again use asymptotic approximations. 

If n is large, the following asymptotic approximation is valid, 

n 

L v. v. 1 
n i=l 1.r 1.S 

which implies that 

-T-
V V ~ I 

Similarly, 

-T- I U U z 

~ E [v. v. ] 
l.r 1.S 

• cS rs 

(3) 

(4) 

Thus, the matrices U and V are approximately orthonormal matrices. This 

property can be used to obtain estimates of these matrices by considering 

them to be the orthonormal eigenvector matrices of ylTYl and zIZT, 

respectively. This is evident from equations (1) and (2). 

In the next sections, extrapolation schemes to obtain the unknown 

matrix X22 are developed. 

6. Extrapolation using the two-dimensional model 

Since the "pattern" matrices U and V can be calculated using 

equations (3) and (4), the problem of extrapolation reduces to estimating 

the matrix D. In the conventional approach, the actual extrapolation 

is achieved by considering the matrix X2l (the row method) or the matrix 

X
l2 

(the column method). However, in the two-dimensional approach, we 

~y use all three known matrices X12 , X2l , and Xll • 
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6.1 Extrapolation with three known matrices 

Using the assumed two-dimensional model, the matrices YI and Z2 can 

be written in the format, 

= 

• Y 
I 

= 

= 

where El and E2 are possible error matrices. Since, the matrices Y
1

, 

Zl' U, V, UI, and VI are known, the diagonal matrix D can be estimated 

by using a least-squares technique. 

If the quadratic error function for ~ni~zation is taken as, 

the least-squares estimate of the diagonal matrix D is given by6 (Appendix 2) 

where the elements of the vector c are given by 

c. 
1 

=-

i i u and v are the column vectors of the matrices U and V, respectively, 

and * denotes the Hadamard product or the Schur product defined as the 

element by element product of any two matrices of equal dimensions. 

Using orthogonality conditions to simplify the solution, the 
,. 

elements of the matrix D can be written in the form, 

d. 
1 

• 

Thus, inversion of matrices is not required in this method. 
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An estimate of the unknown matrix X22 can be computed as, 

- ~- T 
U

2
DV

2 = 

Since all three known matrices are used in the extrapolation, the estimate 

will be less sensitive to any unrepresentative values in the known 

matrices. In the conventional approach, only one known matrix (X
12 

or 

X2l ) is used, and such values tend to have large effects on the predicted 

values. In the context of load prediction in the power and water 

industries, such unexpected demands occur due to freak weather conditions 

and bank holiday weekends. 

6.2 Extrapolation using an arbitrary number of known matrices 

We have so far assumed that the unknown block is the matrix X
22 

and that there are only three known blocks. However, such assumptions 

are not necessary and we can extend this to any arbi trary number of 

blocks, and the unknown block does not have to be the corner block. 

The least-squares problem is then defined by 

minimize 

Then the 

r 
k 

r 
t 

trace 

estimate D is 

,. 
d • ( r r 

k Q, 

c. ,. r r 
1 k t 

k t t Eo known blocks 

given by 

- T-(U
k 

U
k

) - T- -1 * (Vg Vi») c 

i T i 
(~ ) ~QVQ, 

The estimate of the unknown block X is given by 
st 

- ~- T 
- U DV s t 

By judicious choice of the known blocks for extrapolation, inversion of 

matrices may be avoided. 



- 61 -

7. Formation of the data matrix for cyclic processes 

For a cyclic process of period N (e.g. N • 12 months or N • 52 weeks 

if the cycle is taken as a year; N - 24 hours if the cycle is a day), 

the data matrix X can be formed in the following way9. 

xl(N'+l) 

. . . . . . . . . . . . . . . . . . . . .................... 
X = ~(N') ~(N' +1) ~(N) 

\t+l (1) ••• ~+l (N') ~+l(N'+l) ••• ~+l(N) 

The suffix i in x. (j) refers to the cycle. 
1 

It is assumed that data upto 

and including the Mth cycle and the data points 1 to N'+l in the M+I cycle 

are known. The unknown data to be predicted are the data points N'+l to 

N in the M+I cycle. 

Using the above method, predictions can be made only of a fraction of 

a cycle. If however, full cycle ahead predictions are required, the 

following 'doubling up' procedure can be used. 

xl (1) xl (N) x2(1) x2(N) 

................... . ................. -[*.) X = ~-l (1) ~1(N) ~(l) \t(N) 
X2l X22 

\t(1) ~(N) ~+l (1) ••• ~+I(N) 

This method has the advantage of having the continuity preserved from 

data points N to N+l (e.g. December to January) in the row direction. 
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8. computational procedure 

Computation of covariance matrices ylTYI and zlzlT can be avoided 

if the singular value decomposition of Yl and Zl' respectively, are used 

in obtaining the spectral decompositions. The following procedure is 

used in implementing the prediction method. 

h • I Id"" 18 (a) Compute t e s~ngu ar va ue ecompos~t~ons 

... , • UD V T 
z z 

(b) Truncate the eigenvector matrices U and V to give U and V, 

respec ti vely. 

(c) Solve the least squares problems defined in section 6 to give 

the matrix D. 

(d) Compute the prediction submatrix X22 
... 

9. Example I 

To illustrate the method, one cycle ahead predictions equivalent 

to twelve months were attempted for data corresponding to the number of 

international airline passengers per month (entering and leaving the 

United States) in the years 1949 to 1960. This airline data is seasonal 

I " "h d d h b ·d lId" h I" 3,17 or cyc ~c w~t a tren an as een w~ e y ana yse ~n t e ~terature • 

Figure 3 shows the actual passenger levels and the predicted values. 

The predictions were obtained using five years of immediate past data 

(M • 5) and two modes (k - 2). We arrived at the following conclusions 

after extensive numerical experiments with this data. 

(a) Reasonable one-year ahead predictions can be obtained using this 

method as is obvious from Fig. 3. Efficiency of the method was 

gauged using the mean error and the mean squared error for each year. 
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(b) It was found that if lOOre than five years of past data were used, 

the errors marginally increased. This may be due to long-term 

nonstationary effects which cannot be taken into account. 

Similarly, if M was taken as less than five, predictions were poor 

which may be due to insufficient statistics. 

(c) Generally, acceptable predictions were obtained using only one mode 

(d) 

(k - 1). For k - 2, corresponding to two modes, slightly better 

(which might not be statistically significant) predictions can be 

made. It was found that the ratio of 'energy' in the first mode 
,. 2 ,. 2 

to the second mode dl /d
2 

is high, and this could explain the 

marginal differences between the predictions using one and two modes. 

T T 
The elements of the matrices Yl Yl and ZlZl are positive and thus, 

the first modes VI and uI correspond to Perron-Frobenius eigenvectors 

which have positive elements. The vector VI contained most of the 

Due to seasonal information and the vector ul ' the trend. 

orthogonality conditions, u2 ' v2 and other higher-order modes, 

contain both positive and negative elements and thus can be 

considered as completely oscillatory modes. 

(e) Since only past data is used, it is not possible to take into account 

other factors which ~ffect the number of passengers such as the high 

number of airline accidents
19 

in the United States in 1958. This 

might perhaps explain the large prediction errors for that year. 

10. Example 2 

As our second example, we have chosen the power demand on the 

Hydro-Quebec system from Monday 15 November to Sunday 21 November 1971 

as published by Srinivasan and Pronovost2l • We have attempted 12 hour 

predictions at hourly intervals at mid-day and mid-night. Since the 
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data is approximately cyclic with a period of 24 hours, the doubling 

up procedure detailed in section 7 is not required for 12 hour predictions. 

Figure 4 shows the actual realized load levels and the predictions 

using four days of past data (M = 4) and two modes (k - 2) • 

It can be seen from Figure 4 that the prediction errors are within 

reasonable limits except in the periods 1 to 12 hours on the Saturday 

. and the Sunday. This is due to the different patterns of load which 

exist in weekdays and weekends. Since, the "patterns" or the "modes" 

for prediction are based on the weekdays, such errors are to be expected. 

This indicates that power load data has three-dimensional properties 

rather than two-dimensional with hourly, daily, and weekly correlations, 

which has been well-recognized by power engineers for some time2l , 

although the significance of higher-dimensional data have not been fully 

'd . th I' 1-2 apprec1ate yet 1n e 1terature • 

11. Concl us ions 

A curve-fitting or prediction problem for two-dimensional or cyclic 

processes has been formulated and solved. The assumed statistical 

model is structurally similar to the Karhunen-Loive expansion, and is 

implemented using the singular value decomposition. 

The method can be used for temporal, spatial or mixed data in 

engineering, socio-economics, bio-medicine and other fields for general 

two-dimensional curve-fitting and long-term prediction. A typical 

application of this method could be in prediction of load demands in 

power and other utilities. In such problems, enough data is usually 

available for formation of the asymptotic covariances and the data is 

cyclic. Furthermore, it is reasonable to assume that such systems are 

excited by noise rather than by deterministic inputs which conforms to 

our strictly statistical model. 



- 65 -

11. References 

1. Willsky, A.S.: 'Digital signal processing and control and 

estimation theory - points of tangency, areas of intersection. 

and parallel directions', M.I.T. Press, Cambridge, MA, 1979. 

2. Strintzis, M.G.: 'Dynamic representation and recursive estimation 

of cyclic and two-dimensional processes', IEEE Trans. Automatic 

Control, 1978, AC-23, pp.BOl-B09. 

3. Femando, K.V.M., and Nicholson, H.: 'Discrete double-sided 

Karhunen-Lo~ve expansion', Proc.IEE, part D, 1980, 127, pp.155-l60. 

4. Fe man do , K.V.M., and Nicholson, H.: 
, . 

'Karhunen-Loeve expans10n 

with reference to singular-value decomposition and separation of 

variables', Proc.IEE, part D, 1980, 127, pp.204-206. 

5. Femando, K.V.M., and Nicholson, H.: 'Double-sided least-squares 

problem', Electronics Letters, 1979, 15, (20), pp.624-625. 

6. Fe m an do , K.V.M., and Nicholson, H.: 'Double-sided least-squares 

problem with diagonal constraints', Electronics Letters, 1980, 16, 

(3), pp.82-83. 

7. Farmer, E.D., and Potten, M.J.: 'Development of online load 

prediction techniques with results from trials in the south-west 

region of the CEGB', Proc.IEE, 1968, 115, pp.1549-l558. 

8. Matthewman, P.D., and Nicholson, H.: 'Techniques for load prediction 

in the electricity supply industry', Proc.IEE, 1968, 115, pp.145l-l457. 

9. Nicholson, H.: 'Structure of interconnected systems', Peter 

Peregrinus, London, 1978. 



- 66 -

10. Belik, D.D., Nelson, D.J., and Olive, D.W.: 
, 

'Use of Karhunen-Loeve 

expansion to analyse hourly load requirements for a power utility', 

Proc.IEEE PES Winter Meeting, New York, January 1978. 

11. Ivakhnenko, A.G., and Lapa, V.G.: 'Cybernetics and forecasting 

techniques', Elsevier, New York, 1967. 

12, Sterling, M.J.H., and Antcliffe, D.J.: 'A technique for the 

prediction of water demand from past consumption data only', Jl. 

Inst. of Water Engineers, 1974, 28, pp.4l3-420. 

13. Nicholson, H., and Swann, C.D.: 'The prediction of traffic flow 

volumes based on spectral analysis', Transpn. Res., 1974, 8, 

pp.533-538. 

14. Saito, 0., and Takeda, H.: 'Two-stage predictor of air pollution 

adapted to daily fluctuation', Proc.IEE, 1979, 126, pp.l07-ll2. 

15. Chatfield, C., and Prothero, D.L.: 'Box-Jenkins seasonal fore-

casting: problems in a case-study', J. R. Statist. Soc. A, 1973, 

136, pp.295-336. 

16. Brillinger, D.R.: 'Time series: data analysis and theory', 

Holt, Reinhart and Wins ton, New York, 1975. 

17. Box, G.E.P., and Jenkins, G.M.: 'Time series analysis, forecasting 

and control', Holden-Day, San Francisco, 1970. 

18. Garbow, B.S., Boyle, J.M., Dongarra, J.J., and Maler, C.B.: 

'Matrix eigensystem routines: EISPACK guide extensions', Lecture 

notes in computer science, vol-5l, Springer-Verlag, Berlin, 1977. 

19. Lombardo, T.G.: 'The federal aviation administration under 

scrutiny', IEEE Spectrum, 1980, 17, (11), pp.53-56. 

20. Fu, K.S.: 'Sequential methods in pattern recognition and machine 

learning', Academic Press, New York, 1968. 

21. Srinivasan, K., and Pronovost, R.: 'Short term load forecasting using 

multiple correlation models', IEEE Trans. Power Apparatus and Systems, 

1976, PAS-94, (5), pp.1854-l858. 



- 67 -

~I 
, 

Y
l 

.-

.. 
X2l ) 

X
22 

c:.- direction of e xtrapolation 

Fig. 1: Conventional horizontal (row) extrapolation 

Hatched area indicates the data required to form the covariance 
matrix 

Zl 12 

~r 

X22 

Fig. 2: Conventional vertical (column) extrapolation 



650 

600 actual :' 

predicted 

550 .-

500 .-

Cl) 450 ~ 

fJ 
Cl) 

::l 
0 

.t:: 400 ~ 

~ 
.,-4 

00 Cl) 

\0 \.0 350 Q) 
bO 
~ 
Q) 
Cl) 

Cl) 

1"<1 300 0. 

~ 
0 

\.0 
Q) 250 ..0 
E: 
::l 
~ 

200 

150 
_____ ..J 

1954 1955 1956 1957 1958 1959 1960 
year 

Fig. 3: The international ~assen~ers leavin~ and enterin~ the US~ ~er ~onth 



0'1 ~ \0 0 
.-4 

c: 
.~ 

,... 
QJ 
~ 
0 

p., 

( :- r) 
u J ~ r-

I 
I 

,,,":.",", I 
U..I'''/ 1-

! 

, \. 
/: ( 

;: '\ 
" r.:- /", ;' . ~ 

j-~//! \ \'" .. 
',- ,... 

\ 
\ 
\ 
\ 
\ ' , . 

\" 
,'''':"r) i 

1_ (..l -.i .f 

I 

(}j~:J 

! 

i 
I 
I 
I 

t:")~; I 
1'-
I 

i 
I 
j 
I 

f-- (', .'~j I ,--
i 
j 
I , 

.. -,.., ._----

Friday 
13-24 Hrs. 

\\ 
\. 

\. 
\1, ,. 

\. 
\. 

\ 

actual 
- - - - predicted 

\ 

\ 
\ // 

'or 

) 

, 

/ 
/ 

Saturday 
0-12 Hrs. 

I 

I 

/ 

r~ 
,/ \ 

/
\., 

\\ 

J 
\" 
\\"\ . , . . 

\ ,: \\ .... \ ,. , .\)\ \, 
'-- ......... / ; i. 

Saturday 
12-24 Hrs. 

"\ 
'\ '\ 

\ 
'-. 

\. 
\ 
\ 

, 
, , , 

r: . 
i"". 

/' ''\~'' \. 

.. \ 
/:" "\., 
f: ,', 

/ '\" ii / '. \ /. 

/\\-' ! 
/ 

ii 
r: , \ 

I, \, 

". \ 
", \ 

'. \ 

\. 
.. '\ : / 

" .' / 
'-"~"'<.~ 

Sunday 
0-12 Hrs. 

. 
,, __ . ___ ._-1 

Sunday 
12-24 Hrs. 

Fig. 4. Load on rhe Hydro-(Juebec Sysrem 



- 70 -

PART 3 

Singular Perturbational Model Order Reduction 

of Balanced Systems 
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CHAPTER 5 

Singular Perturbational Model Reduction 

of Continuous-time Balanced Systems 

Abstract: The balanced representations of linear systems due to 

Moore are shown to be natural and convenient mediQ for singular 

perturbational model reduction. 

1. Introduction 

The linear stable time-invariant system S(A,B,C) defined by 

i = Ax + Bu 

x~M 1 n, 

A€M n,n 

uf: M 1 m, 

B~M n,m 

y = Cx 

yeM 1 r, 

C6-M 
r,n 

is an input-output balanced system, if the controllability Gramian 

Wand the observability Gramian Ware diagonal and equa16- 8 . 
c 0 

In this case 

where 

W 
c 

W c 

W 
0 

-= W ~ W 
o 

W ,W W M 
c 0 n,n 

OD T 
... I eAtBBTeA tdt 

0 

OD T - f eA tcTCeAtdt 
0 

and A,B,C represent balanced system matrices. 
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A linear system can be balanced using similarity transformations6 

which is the basic ooeration used in principal component analysis 

(and is also equivalent to the Karhunen-Lo~ve expansion/transform 

4 6-8 
method (see Chapter 2» of linear systems • 

In the balanced system approach, the reduced order model is 

obtained by direct elimination of 'weak' subsystems whose 

contribution to the impulse response of the system is negligible. 

However, in the perturbational approach, a 'boundary layer' 

1 2 12 correction is used to account for the eliminated subsystem ' , 

Our aim is to show that such boundary layer corrections can be 

accommodated in balanced models and such models are natural 

representations for singular perturbational reduction. 

2. Model Reduction using Balanced Systems 

If the linear system S(A,B,C) is balanced6- a, then the diagonal 

Gramian matrix W satisfies the Lyapunov equations, 

= (1) 

:8 (2) 

Model reduction is achieved by considering a partition of the 

balanced system matrices of the form 

A B = [ -:~ 1 C .. 

where the matrices All and A22 are square. The two subsys tems 

seA .. ,B.,C.) are also input-output balanced and the Gramians for 
1.1. 1. 1 

the subsystems are given by 
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W.A .. T 
+ A .. W. - B.B. T .. 

1. 1.1. 1.1. 1. 1. 1. 

T T i 1,2 W.A .. + A .. W. - C. C. • 1. 1.1. 1.1. 1. 1. 1. 

where W = 

The diagonal Gramians also satisfy the following equations which 

relate the cross-coupling between the subsystems. 

T T W.A .. + A .. W. 0& - B.B. 
l. Jl. 1.J J 1. J 

T T i, j "" 1,2 W.A .. + A .. W. = C. C. 
1. 1.J J1. J 1. J 

If S(A
22

,B
2

,C
2
) is a weak subsystem, then the diagonal elements 

of the W
2 

Gramian will be small in comparison with that of W
l

• By 

eliminating the weaker subsystem S(A22 ,B2 ,C2), we obtain the reduced 

order model S(All,Bl,Cl ). 

3. Model Reduction using the Singular Perturbation Method 

• 1 b . methodl ,2, h 1· In the sl.ngu ar pertur at1.on t e l.near system 

defined by 

is approximated by 
.!. -x ,. Ax + Bu Y = Cx 

where A a 
-1 

All - A12A22 A2l 
- -1 
B - Bl - A12A22 B2 
- -1 
C a Cl - C2A22 A21 

The reduced-order state matrix A is the Schur complement of the matrix 

A. The Schur complement of a partitioned matrix is fundamental in 
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model reduction problems and also in data contractionlO , the Kron 

method of tearing3, and elsewhere
7

• 

The zeroth order perturbational approximation is exact for J..l = 0, 

and frequently used12 ,13 for the case J..l = 1. However, the 

perturbational parameter J..l does not explicitly appear in the 

approximation and such simplifications can be considered as 

. . 11 approx1mate aggregat10n 

4. Weak and Fast Subsystems 

The diagonal values of the state matrix A are related directly to 

the elements of the Gramian matrices. Thus, 

2w •• a .. 11 11 - 2 
b .. 

1J 

where the lower case letters indicate the elements of the respective 

matrices. The relatively small elements w .. in weak systems can 
11 

occur in two ways: 

(a) 

(b) 

with large values of a .. which will correspond to high damping 
11 

(real parts of the eigenvalues) which is a property of fast 

systems, 

with small values of b .. which means that the states x are 
1J i 

not strongly excited by impulses. 

We observe that not all systems are suitable for singular 

perturbational reduction particularly if mechanism (b) dominates. 

However, if the eigenvalues cluster into disjoint regions, singular 

perturbational reduction is possible and for such systems, mechanism 

(a) will prevail. Thus, fast subsystems and weak subsystems have 

common attributes in certain classes of systems. 
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5. Model Reduction of Balanced Systems using the Singular 

Perturbation Method 

The principal component approach is elegant from the point of 

6 
view of minimal realization, although, as pointed out by Moore , 

model reduction through subsystem elimination is not a well under-

stood operation. Model reduction using singular perturbational 

methods has achieved a certain amount of maturity, and thus, it is 

natural to investigate whether the singular perturbational approach 

is compatible with the balanced representation. The following 

proposition answers this affirm~t~vely. 

Proposition: If the system S(A,B,C) is balanced, then the singular 

perturbational approximation S(A,B,C) also defines a balanced system. 

Further, the diagonal Gramian for the reduced-order system is given 

by the matrix Wl · Thus, the Lyapunov equations for the reduced-

order system are of the form, 

WlAT 
+ AWl = BBT 

WlA + ATWl - - CTc 

(3) 

(4) 

Proof: The Lyapunov equation (3) can be obtained by premultiplying 

T 
and postmultiplying (1) by Tl and Tl ' respectively, where 

= 

Similarly, (4) can be obtained by premultiplying and postmultiplying 

(2) by T2 and T
2
T, respectively, where 

- I TT-I) 
: - A2l (A22 ) Tl ' T2~ M r,n 

Since the Gramian matrix Wl is diagonal, the reduced-order system is 

also balanced and this completes the proof. 
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In the subsystem elimination method using balanced systems, 

the retention of the dominant second-order modes (i.e. the diagonal 

elements of the Gramian) is considered as a criteri~for model 

reduction. Since we arrive at the same Gramian matrix W
l

, this 

condition is naturally satisfied in the perturbational approach. 

For single-input single-output systems, a shared Gramian Wl also 

signifies the fact that the two systems have a common first moment 

(i.e. the dc gain). This can be proved using results in reference 7. 

6. Numerical Procedure 

To obtain a reduced-order model for the system S(A,B,C) 

(a) 
. . f' 6 • use s1milar1ty trans ormat1ons to g1ve the balanced system 

S(A,B,C) 

(b) partition the system S(A,B,C) to give the strong subsystem 

S(All,BI,C
I
) and the weak subsystem S(A22 ,B2,C2) 

(c) check whether the weak subsystem is fast by calculating the 

eigenvalues of the matrices All and A22 

(d) if (c) is true, calculate the reduced-order representation 

7. Example 

To illustrate the procedure and the peculiarities of singular 

perturbational reduction of balanced systems, we have chosen the 

fourth-order model for the longitudinal dynamics of an F-8 aircraft 

without the wind disturbances
5

. 
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An internally balanced representation of that model 

by 

-6. 560xlO 
-3 

-2 
A 

7.577xlO = -4 
-9.l71xlO 

3.597xlO -3 

c = [ 5.530xlO-
4 

4.713 

-7.577xlO -2 7. 390xl0 -4 

-8. 383xlO -3 9.204x10 -4 

1.142xlO -3 -9.2l9xl0 -2 

-4.486xlO -3 3.136 

1.231xlO-3 -1.951xlO-1 

4.831 -2.653x10-1 

3.564xlO -3 

4.445xlO -3 

-3.086 

-1. 816 

-1] -1. 743x10 

-1.281 

is given 

-4.713 

4.831 , B = 
-3.293xlO 

1. 292 

with W = diag (1.693x103 1.392x103 5. 882xl0-1 4.S97xlO-l 

If the system is partitioned into 2x2 subsystems in the natural order, 

the eigenva1ues of the subsystems are given by 

-3 
j 

-2 
. )'(An) - -7.472x10 ± 7.577xlO 

). (A
22

) 
-1 j 2.989 • -9.543x10 ± 

Thus, the subsystem S(A22 ,B2,C2) is considerably weak and fast compared 

with the subsystem S(A11 ,B1 ,C1)· 

The balanced reduced-order model is then given by, 

-3 -2] [-40713] [-6 0 S62xlO -7.577x10 - B A III -2 -3 -
7.S77x10 -8. 380x10 4.831 

-4 -4] [SoSlOXIO 8.593x10 -
C - 4.713 4.831 

-1 
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8. Conclusions 

The singular perturbational model reduction technique is 

accommodated in the framework of internally balanced systems which 

gives a new unified technique which retains the advantages of both 

methods. 

In some physical systems, singular perturbational parameters 

can be explicitly identifiedl • However, in general, this may not 

be possible and difficulties can be encountered in identifying the 

subsystems to be eliminated. Usually, this requires solution of 

12 (quadratic) Riccati equations to determine the fast systems • 

By using balanced systems, we have avoided such difficulties and 

the balancing operation requires only solution of (linear) Lyapunov 

equations. The second order modes of the system (i.e. the diagonal 

elements of the matrix W) in someway act as the perturbational 

parameters. However, further research is necessary to investigate 

such aspects. 

In this Chapter, we have exploited the Schur complement in 

perturbational reduction. However, it appears in a wider context 

in aggregation and in the Kron method of tearing among other areas, 

and thus it is reasonable to speculate that the balanced approach 

of Moore is applicable in these areas as well. 
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Singular Perturbational Approximations for Discrete-time Balanced Systems 

Abstract: A new zero-order singular perturbational type approximation 

is developed for model reduction of discrete-time linear systems. 

This approximation is also suitable for model reduction of systems 

which have fast subsystems and which are represented in the internally 

balanced format. Subsystem elimination as suggested by Moore for 

continuous-time systems does not generalise for the discrete-time 

case and the singular perturbational approximation gives a particular 

solution to the discrete-time internally balanced model reduction 

problem. 

1. Introduction 

Principal axis realizations for discrete-time linear systems were 

first introduced by Mullis and Roberts
l

,2 in the synthesi~of minimum 

roundoff noise fixed-point digital filters. The problem under 

consideration was to find the optimum word length necessary in registers 

to optimize the storage and quantization efficiencies, simultaneously. 

These results were extended by Maore
3 

for continuous-time linear systems. 

The storage and quantization effects can be translated into controllability 

and observability properties, respectively, if the control systems 

terminology is used. The best trade-off between high controllability 

with low observability and low controllability with high observability 

is provided by internally balanced principal axis state-space representa­

tions, which contain equal amounts of information about controllability 

and observability. Such balanced representations are convenient media 

for model reduction since equal amounts of information about control la-

bility and observability can be neglected without causing any imbalance 

in controllability or observability properties. 
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3 
For continuous-time balanced systems. Moore proposed direct 

elimination of weak subsystems which are characterized by small second-

order modes as a first approximation in the model reduction problem. 

This is a convenient and a very acceptable technique since the resultant 

reduced-order model is also internally balanced and retains the dominant 

second-order modes of the original system. However, this technique does 

not generalize for the discrete-time case in the sense that the reduced-

order system is neither internally balanced nor contains the dominant 

second-order modes. The object of this Chapter is to demonstrate 

that if a zero-order singular perturbational approximation is used in 

model reduction of discrete-time systems which have fast subsystems. 

internally balanced reduced-order representations can be obtained which 

retain the dominant second-order modes. 

2. Internally Balanced Discrete-time Systems 

For the asymptotically stable. controllable and observable discrete-

time linear system S(A.B.C) described in the format, 

x(k+l) - Ax(k) + Bu(k) y(k) - Cx(k) 

the controllability Gramian matrix W (p) and the observability Gramian c 

matrix W (p) are defined by 
o 

W (p) 
c 

w~ o 

-

-
If the system S(A,B,C) is a principal axis representation, then the 

controllability and the observability Gramians are diagonal. If a system 

{s represented by some other canonical form, then it can be brought into 
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.' . b . "1' . 1,2 a princ1pal aX1S representat10n y uS1ng S1m1 ar1ty transformat1ons 

If a similarity transformation is used to bring them to be equal 

and diagonal, then the system is said to be internally balanced3,4,9. 

For the infinite time definition with p~, the Gramian matrices 

W ~ W (~) and W ~ W (~) may be computed by solving the discrete-time 
c coo 

equivalents of the Lyapunov equations, 

W - AW AT -c c 

= 

For the internally balanced system S(A,B,C), the matrix equations are 

given by 

(1) 

(2) 

where W is a diagonal matrix. The assumed asymptotic stability, 

controllability and observability properties ensure that the diagonal 

values of W which are called the second-order modes are positive. We 

assume, without loss of generality, that these are ordered in the 

decreasing order of magnitude, and that they are distinct. 

If the diagonal element w .. of the Gramian matrix W is small in 11 

comparison with other elements, then the state x. of the controllable 
1 

system 

x(k+l) = Ax(k) + Bu(k) 

contributes marginally to the impulse response. Similarly, the 

contribution towards the impulse response of the observable system 

d x (k+l) -
d 

by the dual state Xi is small. 
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If the Gramian matrix W of dimension n,n, is partitioned in the 

format, 

where W
1 

and W
2 

are diagonal matrices of dimensions r,r and n-r,n-r 

respectively, then the system S(A,B,C) can be partitioned to conform to 

the above as, 
- l-

A -t !11 -: -~12-1 
A21 I A22 

, 

We assume that the diagonal elements of W2 are appreciably smaller 

than those of W
l 

and following Maore
3

, we call the subsystem S(~1.B1,C1) 

the strong subsystem and the subsystem S(A22 ,B2,C2) the weak subsystem. 

However, we emphasise that the subsystems S(A .. ,B.,C.), i - 1,2 are not 
11 1 1 

internally balanced as in the case of the continuous-time equivalent and 

the submatrices W., i - 1,2 are not balanced Gramians of the subsystems. 
1 

These conditions preclude direct extension of the continuous-time results of 

3 Moo re to discrete-time systems. 

3. Singular Perturbationa1 Reduction of Discrete-time Systems 

5 
In a survey of large-scale systems , it was pointed out that 

singular perturbationa1 results for discrete-time systems are not widely 

available. This situation has been remedied to some extent in the 

literature (see for example references 6-8). However. the published 

results are not directly suitable for our problem. 

For continuous-time systems. a subsystem is said to be fast if the 

eigenva1ues of the subsystem are large (i.e. s 4 -m) in the complex plane, 

and a subsystem is said to be slow if its eigenvalues are near the origin 
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(Le. s:c? 0). We carry this definition to the discrete-time case where 

a subsystem is said to be fast if the eigenvalues are near the origin 

(Le. z ~ 0) and slow if they are near z = 1 in the complex plane. 

This extension is consistent with the well known sampled-data approximation 

sT . h l' . z = e where T 1S t e samp 1ng t1me. 

It is usually assumed in models of singular perturbation that 

the fast states rapidly approach a linear combination of the slow 

states. However, in references 6-8, it has been assumed that the 

slow states can be approximated using the fast states which is the 

converse of the usual assumption. Such a hypothesis leads to 

approximations in fast-time rather than in slow-time. 

In this section, we develop a slow-time approximation for discrete-

time sys tems. We recall that a continuous-time system S (F,G,H) can 
lJ 

be written in the singular perturbational format, 

(s low-time) 

(fas t-time) 

where lJ is a positive small perturbational parameter. By considering 

the approximation x{t) ~ [x{k+l)-x(k)] /T, we propose the analogous 

singular perturbational discrete-time model SlJ{A,B,C) in the format, 

As in the continuous-time case, we assume that the matrices Al2 and 

A2l are small and that the subsys tem matrix A22 is fas t. With lJ -+ 0, 

we obtain the approximation 
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Xl (k+l) 

(slow-time) 

= 

Similarly, by considering the observable system, the reduced-

order approximation in slow-time can be obtained as S(A,B,C), with 

A 

B = 

We observe that the inverse of the matrix (I-A22) always exists under 

our assumptions. The above approximation can be derived independently 

without considering the controllable and the observable systems 

separately 11 (see Appendix 3). To our knowledge, these reduced-order 

approximations have not appeared in the control systems literature. 

structurally similar "aggregations" have been used by Leontief in 

12 
econometric problems • 

However, 
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4. Weak and Fast Subsystems 

If fast subsystems are present in the system, then the transients 

associated with these subsystems will vanish quickly and thus the overall 

contribution towards the impulse response of the system will be small. 

Thus, fast subsystems will be characterized by relatively small diagonal 

elements of the matrix W corresponding to weak subsystems. However, we 

do not imply that all weak subsystems are fast and thus, this property 

should be checked at each instant of application of the proposed method 

of reduction. 

Numerical experience
lO 

(see Chapter 5) with continuous-time systems 

which are suitable for perturbational reduction indicates that fast 

subsystems are substantially weak and this property also can be expected 

in discrete-time systems. 

5. Singular Perturbational Reduction of Balanced Systems 

If the weak subsystem is also a fast subsystem, then it can be removed 

using singular perturbational approximations. The following proposition 

shows a means of achieving this. 

Proposition: If the system S(A,B,C) is internally balanced, then the 

singular perturbational approximation S(A,B,C) also defines an internally 

balanced system. Further, the diagonal Gramian for the reduced-order 

system is given by the matrix Wl • Thus, the matrix equations which 

describe the Gramian are of the form, 

-~~ 
AAT 

(3) Wl 
• BB 

1 

~WA 
ATA 

(4) W - - C C 
1 1 

Proof: Equation (3) can be obtained by premultiplying and postmultiplying 

T 
(1) by Tl and Tl ' respectively, where 
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= [I 

Similarly, (4) can be obtained by premultip1ying and postmu1tip1ying 

T 
(2) by T2 and T2 ' respectively, where 

.. [I I - T - T -lJ 
I A21 (I-A22 ) 

Since the Gramian matrix W1 is diagonal, the reduce~-order system ~s 

also internally balanced and this completes the proof. 

The next proposition indicates that the reduced model has very 

desired properties. 

Proposition: The reduced-order model S(A,B,C) is asymptotically stable, 

controllable, and observable. 

Proof: The positive definiteness of the diagonal matrix W1 guarantees 

. 4 
these propert~es • 

We observe that the results given in this section are algebraically 

correct whether the system conforms to the perturbational model 

developed in Section III or not. However, the reduced-order model 

S(A,B,C) cannot be considered as a good approximation of the original 

system S(A,B,C) due to retention of the dominant singular values alone. 

Thus, the supporting evidence from the singular perturbationa1 model 

is required to justify our approximation. 

6. Numerical Procedure 

To obtain a reduced-order model for the system S(A,B,C) 

(a) 
... f' 4,9 . h b 1 d use s~~lar~ty trans ormat~ons to g~ve tea ance system 

S(A,B,C) 

(b) partition the system S(A,B,C) to give the strong subsystem 

the diagonal values of the Gramian matrix W 
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(c) check whether the weak subsystem is fast by calculating the 

eigenvalues of the matrix A22 and check the smallness of A12 

and A2l 

(d) if (c) is true, calculate the first-order singular perturbational 

approximation 

A = 
- -1-

All + A12 (I-A22) A2l B 

- -1-
Cl + C2(I-A22) A2l C = 

7. Conclusions 

We have demonstrated the feasibility of singular perturbational 

model reduction of systems which are represented in internally balanced 

formats. This is particularly significant, since the subsystem 

3 
elimination method proposed by Moore breaks down for the discrete 

case. However, the perturbational approximations are valid for 

the discrete case as well as for the continuous case10 (Chapter 5). 

Due to this inherent consistency of perturbational reduction in 

internally balanced systems, it may be possible to use other techniques 

available in the singular perturbational approach for the design and 

analysis of balanced systems. Since the internally balanced 

representations are well-conditioned with respect to controllability 

and observability, which are fundamental in control and other systems 

studies, balanced representations could be used to give a more format 

structure with respect to controllability and observability in 

singular perturbation analysis. 
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On Balanced Model-Order Reduction of Discrete-Time 

Systems and their Continuous-Time Equivalents 

Abstract: The model-order reduction method for continuous-time 

systems based on subsystem elimination as proposed by Moore does 

not generalise to the discrete-time case. In this Chapter, we 

develop the discrete-time equivalent of the continuous-time technique 

using the Cayley transformation between discrete-time and continuous-

time equivalents. The new reduced-order approximations based on 

this method are exactly balanced and retain the dominant modes of 

the system. The suitability of this result is verified using a 

singular perturbationa1 model. 

1. Introduction 

The balanced model-order reduction method of Moorel is based 

on removal of 'modes' which are weak corresponding to joint contro1-

1ability and observability (i.e. the minima1ity) as characterised 

by the controllability Gramian matrix Wand the observability c 

Gramian matrix W . o 
The technique can be implemented by realization 

of the system in the balanced format, in which case the two Gramian 

matrices are equal and diagonal. The diagonal values are called 

the second order modes of the system. The robust part of the system 

is represented by relatively high second-order modes and the weak 

part (if any) by low values. The direct removal of the weak sub-

system gives a robust approximation of the original system. Such 

approximate representations retain the dominant second-order modes 

of the original system and are balanced. 
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Direct generalization of this technique to the discrete-time 

case is not possible. If subsystem elimination is used for 

discrete-time systems, the resultant approximation neither retains 

the dominant second-order modes nor is it balanced2,3. 

In this Chapter, we develop the discrete-time equivalent of 

the continuous-time balanced technique of Moore using the Cayley 

transformation. This method gives reduced-order balanced 

representations which retain the dominant modes of the original 

system. The suitability of the approximation is investigated using 

a singular perturbational model. Furthermore, it is shown that 

this approximation can be considered as a 'generalized singular 

perturbational' technique
6 

(Appendix 3). This solution is also 

complementary to the singular perturbational approximation for 

balanced discrete-time systems
S 

(Chapter 6). For completeness, 

we summarize the balanced approximations for discrete-time systems 

and their equivalents for continuous-time systems. 

2. Preliminaries 

For the continuous-time asymptotically stable time-invariant 

system S(A,B,C) 

x(t) - Ax(t) + Bu(t) y(t) = Cx(t) 

the controllability Gramian matrix Wand the observability Gramian c 

matrix W can be obtained as the solution of the Lyapunov equations 
o 

given by 

w~+~ = 
c c 
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If the system S(A,B,C) is a balanced representationl , then the 

Gramian matrices are diagonal and equal. 

W 
c 

= W o 
t:. = W 

The diagonal values of the Gramian matrix Ware called the second-

order modes, and we assume that they are ordered in the non-increasing 

order of magnitude. We may partition the matrix W in the format, 

where the diagonal matrix Wl contains the dominant modes of the 

system and the matrix W2 contains the non-dominant values. Conforming 

to the above partition, the system S(A,B,C) can be decomposed in 

the format 

A 1 · B C = 

By elimination of the weak subsystem S(A22 ,B2 ,C2), we may obtain 

the reduced-order approximation of the original system as the sub-

system S(A
l1

,B
l

,C
l
), which is a balanced representation with the 

Gramian matrix Wl • 

For the discrete-time asymptotically stable time-invariant 

system S(F,G,H) 

x(k+l) = Fx(k) + Gu(k) y(k) = Hx(k) 

the Gramian matrices can be obtained as the solution of the matrix 

equations given by 

W - FW FT = GGT 
c c 

W - FTW F = HTH 
0 0 
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If the system is balanced, then 

W = W "" W c 0 

where W is a diagonal matrix ordered in the non-increasing order of 

magnitude. As in the continuous-time case, we may partition the 

discrete-time system in the format 

F = ] . G H 

2 3 The subsystem S(Fl1 ,G1 ,H1) has been suggested' as a reduced-

order approximation of the original system. However, this sub-

system is not a balanced representation and does not retain the 

dominant second-order modes of Wl" Thus, this approximation method 

cannot be considered as the generalization of the balanced method 

1 of Moore . 

3. Balanced Model Order Reduction 

It is well known7 that the Gramian matrices are identically 

equal if the continuous-time system S(A,B,C) and the discrete-time 

system S(F,G,H) are related by the Cay1ey transformation defined by 

A 

B 

C 

-
"" 

-

-(I+F)-l(I-F) 

± 12 (I+F) -lG 

± 12 H(I+F)-l 

This also corresponds to transformations between immittance matrix 

and scattering matrix descriptions in network theory7,10. 

If the weak subsystem S(A22 ,B2,C2) corresponding to the balanced 

Gramian matrix W
2 

is removed, then the balanced approximation 
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S(A11 ,B1,C1) is given by 

All - -(I+F)-l(I-F) 

B1 = ± 12 (I+F)-lG 

Cl = ± 12 H(I+F)-l 

-1 
where F - F11 - F12 (I+F22) F21 

- -1 
G = G1 

- F12 (I+F22) G2 

-1 
H - Hl - H2(I+F22) F21 

This result may be verified using the well known matrix 1emmalO for 

inversion of partitioned matrices. The reduced-order system 

S(A
l

,B
l

,C
1

) has the balanced Gra~an matrix Wl and the equivalent 

discrete-time system S(F,G,H) also has the same balanced Gramian 

matrix. 

Thus, the required approximation corresponding to subsystem 

elimination in continuous-time is given by the discrete-time sub-

system S(F,G,H) if the Cayley transformation is assumed as the 

criterion of equivalence between continuous-time and discrete-time 

systems. 

4. The Singular Perturbational Interpretation 

d . 1 4,5 ( h 6 It has been demonstrate prevlous y C apters 5, and 

Appendix 3) that balanced model-order reduction is consistent with 

the singular perturbational technique. We now describe the derived 

reduced-order model S(F,G,H) using a singular perturbationa1 argument. 

To obtain this approximation, we define the singular perturbational 
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model S (F,G,H) in the form, 
~ 

xl(k+l) + xl(k) = (Fll+I)xl (k) + Fl2x2 (k) + Glu(k) (fast-time) 

~(x2(k+l) + x2(k)l = Fllx1(k) + (F22+I)x2(k)+G2u(k) (slow-time) 

where fL denotes a small perturbational parameter. As usual, we assume 

that the matrices Fll and F21 which define the interaction between 

subsystems are small. Then, with~:O, we may obtain the required 

approximations as 

FX1(k) + GU(k) (fast-time) 

-1 -1 
-(I+F22) F2lx1(k) - (I+F l2) G

2
u(k) = (slow-time) 

It is obvious that the approximation is valid only if the 

eigenva1ues of the matrix sum (I+F22) are large. This is equivalent 

to the requirement that the eigenvalues of the matrix F22 are near 

z = 1 in the complex plane. In addition, we assume that the eigen-

values of the matrix Fll are away from z = 1 and thus the subsystem 

S(Fll,Gl,H
l

) is a 'fast' subsystem. 

Similarly, by considering the observable system, it is possible 

to derive the complete singular perturbational approximation in 

'fast-time' as S(F,G,H). 

5. Generalized Singular Perturbational Balanced Approximations 

Fernando and Nicholson
6 

(Appendix 3) demonstrated that balanced 

approximations are special cases of 'generalized singular perturbational' 

approximations. There are two possible balanced approximations for 

continuous-time systems with equivalent results in discrete-time. 

For completeness, we review these results and indicate the applica-

bility and suitability of each reduced-order representation. 
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The generalized approximation SeA ,B ,C ) for continuous-time g g g 

systems are of the form, 

Ag (sO) 
-1 = All + A12(sOI-A22) A21 

Bg(SO) 
-1 = B1 + A12(sOI-A22) B2 

Cg(sO) Cl 
-1 

+ C2(sOI-A22) A21 

where So is the dominant frequency of the robust subsystem S(All,Bl,CI ) 

and the non-dominant frequency of the weak subsystem S(A22 ,B2,S2)' 

Similarly, for discrete-time systems, they are given by 

F g (zo) 

Gg(zo) 

Hg(zo) 

If the frequency So is negative infinite corresponding to a 

'fast' subsystem S(A1I,BI,Cl ) and a 'slow' subsystem S(A22 ,B2,C2), 

then the result obtained by Moore through subsystem elimination can 

be derived. 

= SeA (~), B (~), C (~» 
g g g 

The corresponding discrete-time equivalent with Zo = -1 is given by 

S(F ,G,ii) - S(F (-1), G (-1), H (-1» 
g g g 

If the frequency So is zero, corresponding to a 'slow' subsystem 

S(A
l1

,B
1

,C
1

) and a fast subsystem S(A22 ,B2,C2), then the result 

obtained by Fernando and Nicho1son
4 

(Chapter 5) manifests, 

= SeA (0), B (0), C (0» g g g 
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which is the traditional singular perturbationa1 approximation 

given by the Schur complement. The corresponding approximation 

in discrete-time with Zo = 1 is then given by 

= S(F (1), G (1), H (1» g g g 

which was derived by Fernando and Nicho1son
S 

(Chapter 6). 

Thus, it is possible to present a unified approach for balanced 

model-order reduction using the generalized singular perturbationa1 

approach. 

6. Conclusions 

We have developed the equivalent of the subsystem elimination 

method of Moore in discrete-time and have shown that it does not 

generalise in the manner suggested by Moore. Instead, balanced 

model-order reduction which retains the dominant second-order modes 

is best explained using singular perturbational arguments. 

For completeness, we have demonstrated that there are two 

continuous-time generalized approximations which can give balanced 

reduced-order models. The 'fast' and 'slow' approximations have 

equivalent counterparts in discrete-time systems through the Cayley 

transformation. In network theory, this relationship can be 

considered as the equivalence between immittance matrix and 

scattering matrix descriptions. 

Perhaps the feasibility of singular perturbationa1 model-order 

approximations in the framework of balanced systems was first 
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suggested by Verriest and Kai1ath
9 

but was not elaborated by those 

authors. We have demonstrated conclusively that the singular 

perturbational technique is the central theme in balanced model­

order reduction in both continuous-time and discrete-time systems. 
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CHAPTER 8 

Reciprocal Transformations in Balanced 

Model-Order Reduction 

Abstract: Direct elimination of weak subsystems and singular 

perturbationa1 approximations given by the Schur complement have 

been suggested for model-order reduction of balanced linear systems. 

These two approaches are dual to each other and such reciprocal 

approximations are well known in other model-order reduction 

techniques. A standard example is used to illustrate the two 

reciprocal approaches. 

1. Introduction 

1 bl· . I . . Moore was a e to 1nterpret 1n an e egant manner, the m1n1ma1 

realization problem and the model-order reduction problem in linear 

systems theory from the point of view of 'signal injection'. 

Instead of relying on the classical parameters of the system, which 

may be susceptible to structural instabilities, Moore based the 

realization on second-order averages of the controllable part of 

the system and the observable part which are excited by impulse 

inputs. These averages, given by the controllable Gramian matrix 

and the observable Gramian matrix are central to the realization of 

internally balanced models. Using this approach, Moore was able 

to show that 'nearly optimal' reduced-order representations which 

have approximately the same impulse responses as the original system 

can exist. This is achieved by removing the 'weak' subsystems and 
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retaining the robust part of the system corresponding to the 'strong' 

second-order modes. These second-order modes are given by Gramian 

matrices which are diagonal and equal for balanced realizations. 

Fernando and Nicholson4 (Chapter 5) considered the special case 

where the weak subsystem corresponds to fast dynamics and the strong 

subsystem to slow dynamics of the system. Most physical systems 

behave in this manner, and the concept has been exploited in modal 

methods of model-order reduction. Singular perturbational 

approximations are feasible for this case and a low-frequency 

approximation at s = 0 is given by the usual Schur complement result. 

Fernando and Nicholson5 (Appendix 3) also demonstrated that if the 

weak subsystem and the strong subsystem are due to slow and fast 

dynamics, respectively, then a 'generalized singular perturbational' 

approximation is possible at s • -m. This result is given by direct 

elimination of the weak subsystem which was first proposed by Moore 

as a 'balanced model-order reduction'. However, Moore derived this 

result using reasonable but heuristic arguments and no conventional 

explanation was given. In both these approaches, the resultant 

reduced-order representations are balanced and retain the dominant 

second-order modes of the original system. 

The object of this Chapter is to show that the direct elimination 

method of Moore and the usual perturbational result are related by 

a reciprocal transformation. Similar transformations are well known 

. 2 3 10 
in other model-order reduction techn~ques " (Appendix 4). We 

demonstrate the viability of the two approaches and compare the 

results using a standard example. 
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2. Internally Balanced Models and their Reciprocals 

For the time-invariant, asymptotically stable linear system 

S(A,B,C) described by 

x(t) .: Ax(t) + Bu(t) yet) .. Cx(t) 

the controllability Gramian matrix W 2 and the observability Gramian c 

matrix W 2 may be defined in the infinite interval by 
o 

CD 

W 2 OK f (eAtB) (eAtB)T dt 
c 

0 

CD T T 
W 2 = f (eA tcT) (eA tCT)T dt 

0 
0 

These Gramian matrices can also be obtained as the solution of the 

following Lyapunov equations 

The state-space representation S(A,B,C) is said to be internally 

balanced if the Gramian matrices W 2 and W 2 are equal and diagonal1
. c 0 

W 2 
c 

... W 2 
o 

.. 

Internally balanced representations can be obtained using similarity 

transformations1 and without loss of generality, we assume that the 

system S(A,B,C) is internally balanced with the diagonal Gramian 

. W2 
matr1x • The diagonal elements of the Gramian matrix W2 are 

called the second-order modes of the system and we assume that they 

are ordered as a non-increasing sequence. 
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We define the 'reciprocal system' S(F,G,H) of S(A,B,C) by 

F = A-I G .. H - -1 
CA 

The system S(F,G,H) is also asymptotically stable and the Lyapunov 

equations are given by 

_ GGT 

-
The reciprocal system S(F,G,H) is also controllable and observable 

and has the same diagonal Gramian • W2 matr1x • 

It is easily seen that the reciprocal system S(F,G,H) 1S given 

by the system S(A,B,C) and thus these two systems are dual to each 

other. This dual relationship is also reflected in the Markov 

parameters and the moments of the system. The k th momen t of the 

system S(A,B,C) is equal to the (k+3)rd Markov parameter of the 

system S(F,G,H) 

- k > 1 

Similarly, the kth moment of the system S(F,G,H) is given by the 

(k-l)th Markov parameter of the system S(A,B,C) 

- k-l-l CA B 

These relations indicate that a reciprocal system has reciprocal 

properties to the original system. We observe particularly that 

if a system has dominant high-frequency behaviour, then the reciprocal 

system will have dominant low-frequency behaviour and vice-versa. 

Similar reciprocal relationships are well known in the model-

reduction literature and have been widely used to eliminate inherent 

2 3 10 
frequency biases in the Routh approximation method' and elsewhere • 
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3. Model-Order Reduction of Balanced Systems and their Reciprocals 

The nth order internally balanced system S(A,B,C) can be 

partitioned in the format, 

A • (::: I :::). B - (::) 

subsystems, respectively. If the diagonal Gramian matrix W2 is 

partitioned in the format 

= 

2 
the diagonal Gramians Wi ' i - 1,2 can be associated with the internally 

balanced subsystems S(A .. ,B.,C.), i = 1,2. 
11 1 1 

Without loss of generality, 

we assume that the diagonal values of the matrix wl
2 are large in 

comparison with the elements of W22. Following Moorel , the sub­

system S(All,Bl,Cl ) is called the 'strong' subsystem and the subsystem 

S(A
22

,B
2

,C
2
), the 'weak' subsystem. 

Moore advocated, as a first approximation, direct elimination of 

the weak subsystem and thus, the reduced-order model is simply given 

by the strong subsystem S(All,Bl,Cl )· 

We now investigate the structure of the model if reciprocal 

transformations are used in this model-order reduction process. 

Instead of eliminating the weak subsystem of the system S(A,B,C), 

it is first transformed into the reciprocal format S(F,G,H) and the 

weak subsystem of S(F,G,H) is eliminated to give S(Fll ,Gl ,H1). The 
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A 

reduced-order model S(All,Bl,Cl ) is obtained by computing the 

S(A,B,C) 
reciprocal 
-----..., .. ~ S(F,G,H) 

Thus, 

eliminate weak reciprocal 
------.... S(Fll ,Gl ,Hl ) ... S(All ,Bl ,Cl> 

subsystem 

Again, we point out that similar intermediate reciprocal transformations 

are common in the model-order reduction literature2,3,lO. 

If this procedure is followed, then the reduced-order model 
A A A 

S(All,Bl,c
l
) is given by the usual singular perturbational approximation, 

= -
= 

It can be shown4 that reduced-order model S(AII,BI,Cl ) is also an 

internally balanced system with the balanced Gramian matrix W12. 

The above low-frequency singular perturbational approximation 

can be derived by considering the inverse of the matrix A in the 

format of the well known lemma for inversion of partitioned matrices 

'l 'k hK" d' 8 which 1S a so somet1mes nown as t e -part1t10ne 1nverse. 

with -
Thus. a direct duality exists between direct and reciprocal elimination 

of subsystems through the reciprocal transformation. 
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We recall that for low-frequency singular perturbational 

approximation to be valid, the weak subsystem S(A22 ,B2 ,C2) has 

to be a fast subsystem. However, the high-frequency approximation 

given by S(All,Bl,Cl ) is valid only if the weak subsystem S(A22 ,B2,C2) 

is slowS. Thus, these two methods are complementary to each other. 

4. An Illustrative Example 

To illustrate the two different approaches in the balanced 

model-order reduction problem, consider the system described by the 

transfer-function, 

(s+4) 
(s+l) (s+3) (s+5) (s+lO) 

, . 1 d' d b M' d 6. 7 wh1ch has been prev10us y stu 1e y e1er an Luenberger , W1lson , 

and recently by Moore1 and Fernando and Nicho1son9 (Chapter 11). 

1 The system can be realized in the internally balanced format , 

-0.4378 1.168 0.4143 0.05098 -0.1181 

-1.168 -3.135 -2.835 -0.3289 -0.1307 
A = , B -0.4143 2.835 -12.48 -3.249 o ~O5634 

-0.05098 -0.3289 3.249 -2.952 -0.006875 

C = [-0.1181 0.1307 I 0.05634 0.006875) 

and the balanced Gramian matrix W
2 

is given by, 

W2 _ diag[0.01954 0.272xlO-2 I 0.1272xlO-3 O. 8006x10 -5 ) 

The system can be decomposed into 2x2 subsystems,in the natural order, 

as shown. The subsystem S(A11 ,Bl ,Cl ) is the strong subsystem and it 

is the reduced-order balanced approximation of Moore. 
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If the reciprocal method of reduction is used, the perturbational 

result is given by 

[ -0.4249 1.257 ] [ -0.1164] 
An - , BI -

-1.257 -3.735 -0.1427 

... [-0.1164 0.1427) 

We observe that the perturbationa1 correction is not very prominent 

for this example. The eigenvalues of the subsystem matrices All 

and A22 are given by 

A(A
ll

) = -1.113 -2.460 

A(A
22

) - -11.20, -4.232 

Thus, the weak subsystem is faster than the strong subsystem, although 

the effect is not very pronounced. 

The transfer functions associated with the reduced models, 

together with their error ratios are given in Table 1. If the 

scalar het) denotes the impulse response of the original system and 

het) is a reduced-order representation, then the error ratio is 

defined as, 

where h (t) - het) - het) e 

For comparison purposes, the optimal solution with respect to 

. . 6,7 
the least-squares cr1ter10n , 
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h 2(t) dt 
e 

is also included in Table 1. This was obtained by direct numerical 

optimization. 

It can be seen from Table 1 that the reduced-order models 

obtained through direct elimination and reciprocal elimination 

(singular perturbational result) are nearly optimal. If the 

optimality is paramount, the direct eliudnation result is the 

preferred solution for this problem. However, the near optimality 

has been achieved by having a badly positioned numerator zero. In 

the result based on the reciprocal approach, the zero is most 

favourably positioned. This can be an advantage in certain 

applications and design procedures. 

Figure 1 gives the frequency response of the systems. Both 

reduced-order models represent the original transfer-function 

adequately. As expected, at high frequencies, the direct solution 

is marginally better than the reciprocal approach. 

Figure 2 gives the phase behaviour of the original system and 

the reduced-order representations. Even at high frequencies, the 

phase behaviour of the reduced-order representation obtained through 

reciprocal transformations is better than the direct approach. 
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5. Conclusions 

We have demonstrated that a duality exists between direct 

elimination of subsystems as proposed by Moore and the low-frequency 

singular perturbational-type approximation as given by the Schur 

complement, and the two approximations are reciprocal to each other. 

A standard numerical example is used to illustrate the form of 

the reduced-order solutions. There are certain minor advantages 

and disadvantages in these two approaches and we have compared 

these with the optimal solution. 

If the system under consideration has a clearly defined weak 

subsystem which is fast (as in the example in reference 4), then 

the singular perturbational approach seems to give the best solution. 

Alternatively, if the weak subsystem is slow then the direct 

elimination method would be preferred. However, if the weak sub-

system is either marginally fast or slow, then both these approaches 

should be investigated to determine the appropriate approximation 

which can be based on optimality, frequency response or other 

criteria. 



- 112 -

Table 1: The reduced-order models and their error ratios 

method 

direct elimination 
1 

(after Moore ) 

reciprocal 
elimination 

'optimal' 

transfer function 

-o.003127(s-23.14) 
(s+1.113)(s+2.460) 

-0.006808(s-12.29) 
(s+1.003) (s+3.158) 

-0.003222(8-22.66) 
(s+1.099) (s+2.511) 

error ratio 

0.03938 

0.06931 

0.03929 
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a - reciprocal elimination 
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c - original system b 
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a - reciprocal elimination 
b - direct elimination 
c - original system 
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Fig. 1. Frequency Response: magnitude of H(jw) 



- 116 -

PART 4 

The Cross-Gramian Matrix W in 
co--

Linear Systems Theory 
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CHAPTER 9 

On the Structure of Balanced and Other Principal 

Representations of SISO Systems 

Abstract: A new matrix W which can be considered as a cross-Gramian co 

matrix which contains information about both controllability and 

observability is defined for single-input, single-output linear 

systems. Using this matrix, the structural properties of linear 

systems are studied in the context of principal component analysis. 

The matrix W can be used in obtaining balanced and other principal 
co 

representations without computation of the controllability and the 

observability Gramians. The importance of this matrix in model-order 

reduction is highlighted. 

1. Introduction 

1 Moore used concepts from the principal component analysis of 

Rotelling to investigate the controllability and observability of 

linear systems and also as a tool for model-order reduction. The 

technique is based essentially on simultaneous diagonalization of the 

controllability Gramian W 2 and the observability Gramian W 2 using 
c 0 

appropriate similarity transformations. It was shown by Moore that 

it is somewhat inadequate and sometimes misleading to study control-

lability or observability, individually, and combined investigations 

are required. 

In this Chapter, we define a new matrix W which can be considered co 

as a cross-Gramian matrix and which carries information pertaining to 

controllability and observability, and which is directly connected to 

both controllability and observability Gramians. Thus, this new 
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matrix is a natural candidate for the study of combined investigations 

of controllability and observability and is used to expound the 

structure of 5150 linear systems in the framework of principal 

component analysis. 

Our main results are based on the absolute value symmetry of 

the state matrix under balanced conditions. However, the analysis 

could be carried out using more general principal (axis) representations3 

in which more specific balanced representations also belong. The 

role of principal representations in model-order reduction is also 

investigated. 

The spectral structure of the matrix W is paramount in our co 

analysis and in fact the absolute values of the spectrum are given by 

the singular values of the system. We also show the relationship 

between the singular values and the dc gain of the system and the 

importance of that result as an alternative criterion for model-order 

reduction. 

2. Preliminaries 

For the linear nth order single-input, single-output asymptotically 

stable time-invariant system 5(A,b,c) described by 

the 

x(t) - Ax(t) + bu(t) y(t) - cx(t) 

controllability Gramian matrix W 2 is defined as 
c 

T 
W 2 _ f (eAtb) (eAtb)T dt 

c 0 

where the term eAtb represents the impulse response of the states of 

the system. We assume that the system is controllable and thus, W 2 
c 

is a positive 
• 2 

matrix W can o 

dual system. 

definite matrix. Similarly, the observability Gramian 

be defined by considering the impulse response of the 



with W 2 
o = f 

o 
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T 

We also assume that the system is observable, resulting in a positive 

defini te observab l1t1Gramian ° 

If the time interval of interest (O,T) is taken as infinite, 

then the Gramian matrices can be obtained by solving the following 

Lyapunov equationso 

W 2AT + AW 2 
c c 

= 

- T 
- c c 

(1) 

(2) 

In the principal component analysis approach of Moore l , the 

system S(A,b,c) is transformed into normalized and balanced forms 

which have one of the following constraints. 

Input normal form W 2(p) = I 
c 

Output normal form 

Internally balanced 

, 

W 2(p) _ I 
o 

The matrix P denotes the similarity transformation 

S (A,b ,c) 
-1 -1 

+ S(P AP,P b,cP) 

required to bring the Gramian matrices to normal or the balanced 

( bl 1) Tb ° ~2 ° dO 1 formats see ta e ° e matr~x ~ 1S ~agona and the diagonal 

positive elements are called the singular values of the system. 
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Table 1 

The system under the similarity transformation P 

original transformed 

A p-1AP 

b P-1b 

c cP 

W 2 p-lw 2(p-1)T 
c c 

W 2 pTW 2p 
0 0 

W 2W 2 p-lW 2w 2p 
c 0 c 0 

W p-lW p 
co co 

We assume that they are ordered in the non-increasing order of 

magnitude. 

We observe that the normal and the internally balanced forms 

differ only by a diagonal similarity transformation. A more general 

format which encompasses the normal and the balanced forms can be 

defined in the following manner, which is called a principal axis 

. 3 
representat10n • 

Principal (axis) representation W 2(p) = 1: 2 
c c 

2 2 where I: and I: are positive diagonal matrices. 
c 0 

We note that one of the diagonal matrices E 2 or I: 2 is arbitrary 
C 0 

but not both. We denote internally balanced and principal 

representations by S(A,b,c) and S(A,b,c), respectively. 
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3. The Symmetry in Internally Balanced Systems 

1 Moore referred to the absolute value symmetry of the state 

matrix A in single-input, single-output internally balanced systems. 

We present that property as a lemma. 

Lemma 1: If the system S(A,b,c) is internally balanced, then 

(a) 

(b) 

(c) 

(d) 

b. = ±c. 
l. l. 

2 2 A A 
either a .. :z a .. or a. ::11 a. if b.b. -c.c. ;. 0 

1.J J1. 1. J 1. J 1. J 
A A 

a .. s -a .. if b.b. = -c.c. ; 0 
1.J J1. 1. J 1. J 

2 2 
either a .. = -a .. and a. ,. a. or a .. • a .. - 0 if b.b. ::11 c.c. - 0 

1.J J1. 1. J 1.J J1. 1. J 1. J 

where a .. denotes the i,jth element of the matrix A. 
1.J 

Proof: Since the Gramian matrices W 2(p), W 2(p) are diagonal and 
c 0 

equal to ~2 the diagonal elements of (1) and (2) are of the form, 
A 2 A 2 A 2 

2a .. a. • -b. - -c. for i - l,n 1.1. 1. 1. 1. 

and part (a) of the lemma is true. 

The i,jth elements of (1) and (2) are given by 
2A 2 - b.b. (3) a. a .. + a . . a. • 1. J1. 1.J J 1. J 
2A 2 

(4) a. a .. + a . . a. • - c.c . 
1. 1.J J1. J 1. J 

and the difference and the sum of (3) and (4) are of the form, 

2 2 A A 
(a. a. ){a .. - a .. ) .. - b.b. + c.c . (5) 

J 1. 1.J J1. 1. J 1. J 

2 2 .- .-

(a. + a. ){a .. + a .. ) - - b.b. - c.c. (6) 
J 1. 1.J J1. 1. J 1. J 

A A 

If b.b. = c.c. ;. 0, then from (5), the element a .. appears symmetrically 
1. J 1. J 1.J 



2 
in the matrix A or a. 

1 

2 
- a .• 

J 
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If the second possibility 

b.b. = -c.c. ~ 0 is satisfied, then from (6), the element a .. appears 
1 J 1 J 1J 

skew-symmetrically. 

If the remaining possibility, b.b. 
1. J 

• e.c. • 0 is true, then from 
1. J 

(4) 'b'l" 2 A 2 (3) and one POSS1 1 1ty 1.S a.. - a .•• 
1.J J1 

H . 2 owever, S1.nce a. and 
1. 

a. 2 are positive, the condition a .. - a .. is not admissible and hence 
J 1.J J1. 

2 2 A 

a .. - -a .. and a. - a.. The other possibility is a .. - a .. - O. 
1.J J1. 1. J . 1.J J1. 

The appearance of non-symmetrical or non-skewsymmetrical elements 

according to part (b) of lemma 1 is non-generic. The following result 

indicates that internally balanced formats can be found with absolute 

value symme try. 

Lemma 2: Let S(A,b,c) be a balanced representation with non-distinct 

singular values of multiplicity two. If the state matrix A is not 

absolute value symmetric, then an orthogonal transformation can be 

found which transforms the representation to another balanced format 

with absolute value symmetry. 

Proof: Without loss of generality assume that the first two singular 

values of the system S(A,b,c) are non-distinct and thus, the two 

elements a
12 

and a2l do not appear symmetrically or skew-symmetrically. 

NoW consider the orthogonal transformation Q where 

Q - M • I n-2 
, 

The symol • denotes the direct sum. 

M -
1 

1m2 
+ 1 

Under the orthogonal transformation the representation becomes, 

S(A,b,c) 
"TA TA" 

~ S(Q AQ,Q b,cQ) 

D 
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It is easily seen that S(A,b,~) is still internally balanced since 

the diagonal Gramian matrices are invariant under this transformation. 

Again, lemma 1 guarantees the absolute value symmetry of the matrix 

A except the elements a12 and a21 • These elements are given by 

2 -
(l+m ) a 12 

2 -
(l+m )a2l 

.. 
-

2 a12 - (a22-all)m - a21m 

2 a
21 

- (a22-a
ll

)m - a
12

m 

If we constrain these two elements to be skewsymmetric, then m should 

satisfy the quadratic equation given by 

A real solution for m always exists for the above equation and the 

existence of a real orthogonal transformation with required properties 

is proved. 0 

Remark 1: Since, a21 - -a12 , then from (3) and (4) 

This shows that non-absolute value symmetry as considered in lemma 1 

part (b) can be considered in part (d) of lemma 1, after the 

orthogona1 transformation. a 

Remark 2: According to part (b) of lemma 1, either a12 - a21 or 

2 2 . a
l 

- a
2

• However, a patho1og~ca1 case can occur where a12 - a2l 

Then, under the orthogona1 transformation, 

and ei ther or is zero. 

If the system is second order, then it is not an asymptotically stable 

system which contradicts our assumption about stability. 

seems to be correct even for higher order systems. 

This argument 

D 



- 124 -

In the remainder of thiscL"r~, we assume that the internally 

balanced representation possesses the absolute value symmetry and 

that the system is not pathological (as defined in remark 2). 

4. The Cross Gramian Matrix W co 

Using the impulse responses of the controllable system and the 

observable system, we define a matrix W as co 

W co 

Cl) 

I Atb Atd - e ce t 
o 

which we call the cross-Gramian matrix of the system. 

(7) 

To our knowledge, 

this matrix W has not appeared previously in the control literature. 
co 

Perhaps the closest analog is the cross-covariances in statistical 

analysis where the usual Gr~an matrices could be considered as 

auto-covariances under appropriate white noise inputs instead of the 

usual impulse inputs. 

It is easily seen that the matrix W can be computed by solving co 

the linear matrix equation, 

W A + AW = - bc co co 
(8) 

Since the state matrix A is assumed to be stable, a unique solution 

matrix W exists. co 
. 2 

this solut1on • 

Standard algorithms are available for Obtaining 

It is intuitively clear that the matrix W carries information co 

about both controllability and observability. This contrasts with 

the Gramian W 2 which contains controllability data only and the 
c 

Gramian W 2 which contains observability data only. 
o 
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h bM 1 h ··· d d . It was s own y oore t at ~t 1S ~na equate an somet~mes 

mis leading to study controllability and observability, individually, 

and a combined approach is required in the analysis of dynamical 

systems. We will demonstrate that this cross-Gramian matrix W 
co 

is consistent with the philosophy advocated by Moore and also 

fundamental to it. 

It is easily seen from table 1 that the eigenva1ues of the matrix 

Ware invariant under similarity transformations of the system. 
co 

We denote these eigenva1ues by A., i - 1,n and form the diagonal 
~ 

eigenvalue matrix A as 

The following result shows the importance of the matrix W in 
co 

the principal component analysis of SISO linear systems. 

Theorem 1: If the system S(A,b,c) is internally balanced with absolute 

value symmetry in the state matrix A, then 

(a) the corresponding cross-Gramian matrix W (P) for the balanced co 

system is diagonal and the diagonal elements are given by 

(b) 

A. 
2 if - b. ; 0 o. c. 

~ ~ ~ ~ 

A. 
2 if - b. = - o. c. .. 

~ ~ ~ ~ 

the square of the matrix W (P) is equal to the product co 

W 2(p)W 2(p) under any arbitrary similarity transformation P. 
c 0 

W co 
2 ... 

Proof: Form the diagonal signature matrix U such that 

u. 
~ 

1 

u. - -1 
~ 

if 

if 

c. 
~ 

a b. 
~ 

c. - - b. 
~ ~ 

; 0 

That is, 
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If the system is internally balanced, (2) can be written in the form, 

2A AT 2 ATA 
L A + A L = - c c 

and by premultiplying the above by U, we obtain 

2 A 

(UATu) (UL2) - bc (UL )A + ,. (9) 

i,j th element of the 
. AT 

is equal The matnx UA U to u.u.a .. and we 
1. J J1. 

consider all four possibil i ties. 

c. - b. c. - b~ 1 1. 1. J = a .. a •• u.u.a .. • a .. 
= -b. c. = -b. 1.J J1. 1. J J1. 1.J c. 1. 1. J J 

c. = -b. c. - b. 

~ 1. 1. J J a .. = -a .. u.u.a .. - a .. - b. c. - -b. 1.J J1. 1. J J1. 1.J c. 
1. 1. J J 

Thus, UATU - A, and by comparing (9) with (8), we obtain the required 

result (part a) 

W (P) 
co - = (10) 

To prove part b, from (10) W 2(p) = L4. co 
However, W 2(p)W 2(p) _ E4 

c 0 

and hence 

= W 2(p) 
co 

It is easily seen that this result is true even under any arbitrary 

similarity transformation F, which completes the proof. 
a 

The following result e~tends the above theorem concerning balanced 

systems to more general principal representations. 

Corollary 1: If the system S(A,b,c) 1.S a principal representation, 

then the corresponding matrix W (P) is diagonal and the diagonal co 

• elements are given by 



= 
2 

if o. 
1 

2 if -0. 
1 
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-
sign(c. ) 

1 -sign(c.) 
1 

-
= 

sign(b. ) 
1 

sign(-b. ) 
1 

, b. - C. ~ 0 
1 1 

Proof: We observe that any principal representation differs from the 

internally balanced format by a diagonal similarity transformation. 

However, the matrix W (P) is equal to h when the system is internally co 

balanced and it does not vary under diagonal similarity transformations. 

The rule for obtaining the signatures are obvious. o 

The following result confirms the validity of the converse of 

the theorem 1 for principal representations. 

Corollary 2: If the matrix Wco<P) is diagonal, then the corresponding 

- - - --1 - --1 -system S(A,b,c) - S(P .AP,P b.cP) is a principal representation. 

Proof: If the matrix W (P) is diagonal, then it is equal to the co 

eigenvalue matrix (assuming that the diagonal elements are ordered 

in the non-increasing order of absolute value magnitude). It can be 

shown by substitution that 

W 2(p) - diag( .•• , - 2 -- b. /2a .. , ••• ) 
c 1 11 

W 2(p) - diag( •••• , 
- 2 -

"" c. / 2a ..•••• ) for a .. ;. 0 
0 1 11 11 

thus satisfying the conditions for principal representations. a 

The following result indicates that the matrix W is well­co 

conditioned even when there are non-distinct singular values. 

corollary 3: The eigenva1ues of the matrix Ware always distinct co 

provided the multiplicity of singular values are at most two. 

2 2 Proof: If o. and o. are equal, then due to lemma 2, 
1 J 

a.. "" - a .. 
1J J1 

However, due to theorem 1, A. 
1 

- o. 
1 

2 
A. - -
J 

o. 
1 

2 

(or vice versa) and thus, the eigenvalues are distinct. 
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5. Model-order Reduction using Principal Representations 

1 Moore used internally balanced representations in model-order 

reduction based on subsystem elimination. However, as the following 

result indicates, we may use principal representations instead of 

internally balanced representations in model-order reduction and 

obtain the same reduced-order model. 

Theorem 2: Let S(A,b,c) be the internally balanced representation and 

S(A,b,c) be a principal representation with 

S(A,b,c) 
-1 - -1--

s S(D AD,D b,cD) 

where D is an arbitrary diagonal matrix which defines all possible 

principal representations for that system (assuming that the matrix A 

is ordered in the non-increasing order of absolute value magnitude). 

If the internally balanced representation and the principal 

representation are partitioned in the format, 

A ( All A12 

1 
b - ( ~: 1 c = [ ] - , Cl c2 

AZl AZ2 

A (~ll A12 

1 
b - ( ~: 1 -( ~z ] = c Cl 

AZl A22 

with order of All - order of All etc, then the balanced representation 
A A A ~ -

S(All,bl,cl ) and the principal representation S(All,b1,c l ) describe 

the same reduced-order model. 

Proof: If the matrix D is partitioned in the same format as, 

then -
which completes the proof. a 
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If we decompose the matrices E2 and A conforming to the 

partitions in theorem 2, then 

= , 

Moorel used the trace of the diagonal Gramian matrix E22 as a 

measure of error in model reduction. The trace of the matrix E2, 

which is equal to the sum of the singular values, can be considered 

as the total "energy" of the system and relative error ratios can be 

computed in conjunction with this value. 

The following result indicates that the trace of the matrix is 

related to the dc gain of the system. 

Theorem 3: The sum of the eigenvalues Ai' i = l,n gives half the dc 

gain of the system. 

Proof: 

trace A 

w co -
trace W co 

That is 

= 

- = 

Since, trace W = trace A, the result follows. 
co 

D 

An alternative criterion for model reduction can be stated using 

the above theorem. Instead of the requirement that the trace of the 

matrix E2 is "small", we may specify that the dc gain of the subsystem 

S(A
22

,b
2

,c
2

) given by twice the trace of the matrix A2 should be small. 

The smallness of the singular values guarantees low dc gains, however 

the converse is not necessarily true. 

This is a significant result since in most established model-order 

reduction methods, the dc gain is one of the criteria for obtaining 
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reduced order models. Often, it is specified that the reduced order 

model and the original model should have the same dc gain and due to 

the direct relationship between the singular values and the dc gain, 

it may be possible to take such contraints into account in this approach. 

6. Computation of Principal Representations 

Since principal representations are equally useful as the balanced 

representation in model-order reduction, we may use principal instead 

of balanced representations. Computation of balanced representations 

. 1 h 1· f L . (1) ( normally requ1re t e so ut10n 0 yapunov equat10ns and 2) 

and a series of spectral decompositions and similarity transformations. 

However, for SISO systems we suggest the following numerical procedure 

which requires less computational effort. 

(a) 

(b) 

Compute the matrix W as the solution of (8) using any standard co 
. 2 

algonthm 

Compute the real spectral decomposition of the matrix W ,to 
co 

give 

W co 
.. 

where V is an eigenvector matrix and A is the diagonal eigenvalue 

matrix. 

(c) Compute the principal representation S(A,b,c) given by 

S(A.b,c) 
-1 -1 

- S(V AV, V b.cV) 

This step is obvious from corollary 2. 

(d) (Optional step) If a balanced representation is required, we 

may use the diagonal similarity transformation P, defined by, 

-P - diag( ••• , p., ... ) 
1. 
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- - ~ if ~ 0 where p. - (u.b./c.) c. 
1 111 1 

1 if 0 
0 

p. - c. -1 1 

We have used the above numerical procedure on a number of problems 

1 
including the examples described by Moore and identical results 

were obtained. 

In references 3 and 4 and elsewhere, computation of principal 

representations is based on diagonalization of the matrix product W 2w 2 c 0 

which is equal to W 2. co 
2 However, W can have non-distinct eigen-co 

values while the eigenvalues of the matrix Ware distinct (corollary 3). co 

Thus, the spectral decomposition problem associated with W is always co 

well-conditioned, which may not be the case with W 2. Also, our co 

approach avoids formation of the product Wc
2
Wo

2 
and is well-conditioned 

with respect to round-off errors. 

7. Conclusions 

We have defined a new matrix W which can be considered as a co 

cross-Gramian matrix and which contains information pertaining to both 

controllability and observability. Using this matrix, the structure 

of SISO linear systems in the context of principal component analysis 

has been studied. It was shown that its properties can be used in 

model-order reduction in the framework of more general principal 

representations without computing the more specific balanced 

representations. However, both principal and balanced representations 

give the same reduced-order model. 
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Due to inherent signatures, the cross-Gramian matrix W contains 
co 

more information than the controllability and observability Gramian 

matrices. In fact, it can be shown that Wand the Hankel matrix co 

associated with the same system, share common properties including 

the Cauchy index5 (Chapter 11). 

We have also proved the relationship between the singular values 

of the system and the dc gain. It was explained how this property 

can be used as an alternative criterion in model-order reduction. 
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CHAPTER 10 

Minimality of SISO Linear Systems 

Abstract: A new test for minimality of single-input single-output 

state-space realizations is proposed based on rank conditions of a 

cross-Gramian type matrix without computing the controllability 

and observability Gramian matrices. 

1. Introduction 

The problem of determining minimality of state-space representations 

of linear systems is of fundamental importance in modern control and 

general systems theory. Much effort (see for example Kailath2) has 

gone into investigations of minima1ity since the pioneering work of 

Kalman et all and other workers. If a system representation is 

minimal, then the system is jointly controllable and observable and 

hence minimality tests are based on controllability and observability 

criteria. 

Fernando and Nicholson
3 

(see Chapter 9) defined a cross-Gramian 

matrix W which contains information pertaining to both controllability 
co 

and observability. It was shown that this matrix W can be used in 
co 

deriving internally balanced and other principal axis realizations 

of 5150 systems without computing the controllability Gramian matrix 

Wand the observability Gramian 
c 

matrix W . 
o 

The object of 

this Chapter is to show that if the matrix W is of full rank, then co 

the realization is minimal. 
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2. Preliminaries 

For the asymptotically stable 5150 time-invariant system 

S(A,b,c) defined by 

x(t) - Ax(t) + bu(t) yet) - cx(t) 

the controllability and observability Gramian matricesl ,2 can 

be defined in the infinite-time interval as, 

CD 

(eA~) (eAtb) T dt W co f c 0 
(1) 

CD 

(ceAt) T (ceAt) dt W .. f 0 0 
(2) 

These Gramian matrices can be also obtained by solution of the 

Lyapunov equations given by, 

W AT + AW 
c c 

. - (3) 

T 
- - c c (4) 

If (3) and (4) are used as definitions of the Gr~an matrices, 

instead of (1) and (2), then the assumptions regarding the asymptotic 

stability is not required provided that there are no eigenvalues 

of the state matrix A such that, 

A. (A) + A. (A) - 0 
1 J 

for i = l,n, j = l,n 

where n is the order of the system. The above condition also 

guarantees the uniqueness of the solutions Wc and Wo of (3) and (4). 

Fernando and Nicholson
3 

(see Chapter 9) defined the cross-Gramian 

matrix W as co 

w co 

Cl) 

- f o 
At. At 

(e b) (ce ) dt 
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This matrix can be obtained as the solution of the matrix equation 

given by 

W A + AW = - bc co co 
(5) 

which can be considered as an equivalent and a more general 

defini tion. We observe that there are standard algorithms4 

for solution of (5). 

3. The results 

We present the following result which re lates the three Gramian 

matrices. 

Proposition 1: WW 
c 0 

.. W 
co 

2 

Proof: For asymptotically stable systems, an indirect proof was 

provided in Chapter 9. However, a simple proof is possible 

provided the state matrix A is semi-simple. Using the eigenvector 

matrix U of the matrix A as a similarity transformation, we may 

obtain the equivalent system S(A,b,c) where A is diagonal. 

S(A,b,c) 
-1 -1 

- S(U AU,U b,cU) 

The representation S(A,b,c) is in general complex. 

For the transformed system, the i,jth elements of the Gramian 

matrices are given by, 

(W ).. -
c ~J 

(W ).. -
o 1.J 

b.b. 
1. ] 

a .. + a .. 
1.1. J J 

c.c. 
1. ] 

a .. + a .. 
1.1. J J 
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b.c. 
(W ) •• = ~ J 

co 1J a .. + a .. 
~1 JJ 

and thus, W W W 
2 -c 0 co 

which provides the required result through the si~larity 

trans forma tion. 

If the controllability Gra~an matrix W is of full rank, then c 
1 2 

it is well known that the system is completely controllable ' • 

Similarly, if the observability Gramian matrix W is of full rank, o 

then it guarantees complete observability. The following result 

is about joint controllability and observability. 

Propos i don 2: If the cross-Gra~an matrix W is of full rank, co 

then the system is completely controllable and observable, and hence 

a ndnimal realization. This condition is both necessary and 

sufficient. 

Proof: This results as a direct consequence of the relationship 

between Gramian matrices as indicated in proposition 1. 

Thus, proposition 2 provides a direct method of determining 

ndnimality of SISO realizations by checking the rank of the matrix 

W There is considerable savings in computation since we have 
co 

to solve only one matrix equation for W rather than two matrix co 

equations for Wc and Wo' Furthermore, we have to check only one 

matrix for rank rather than two. 
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4. The Discrete-time Problem 

The results in section 3, can be extended to the discrete-

time system 5d(A,b,c) defined by 

a Ax + bu 
t t -

Instead of equations (3), (4), and (5), the Gramian matrices are 

defined by equations (6), (7), and (8), respectively. 

W - AW AT - bb
T 

(6) 
c c 

- ATW A T 
(7) W = c c 

0 0 

W - AW A - bc (8) 
co co 

We also assume that there are no eigenvalues of the state matrix A 

such that 

A. (A) A. (A) 
~ J 

- 1 for i = l,n , J - l,n 

It can be shown easily that propositions 1 and 2 are also true 

for the discrete-time case. 

5. Conclusions 

We have developed a simple test for minimality of 5150 

realizations based on joint controllability and observability 

as characterized by the cross-Gramian matrix W which can be obtained co 

as the solution of single matrix equations. 
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CHAPTER 11 

On the Cauchy Index of Linear Systems 

Abstract: The Cauchy index for linear S1S0 systems is given by the 

signature of the cross-Gramian matrix W defined by Fernando and co 

Nicho1sonl . This index is useful in the qualitative understanding 

of systems and the importance of this index in internally balanced 

model reduction is illustrated. 

1. Introduction 

The Cauchy index is one of the fundamental parameters available 

~n the study of rational functions and thus naturally important in 

studies involving transfer functions of both continuous-time and 

235 
discrete-time linear systems ' , • This index is given by the 

signature of the associated Hanke1 matrix of the rational function 

and is especially useful in the characterisation of systems with 

respect to the structure of poles and zeros. For a system with 

distinct poles, the Cauchy index is equal to the number of real poles 

with positive residues minus the number of poles with negative 

residues. 

Fernando and Nicho1son
l 

(Chapter 9) defined a cross-Gramian 

matrix W which contains information about both controllability and 
co 

observability. Due to this property, information contained in the 

controllability Gramian W 2 and the observability Gramian W 2 become 
c 0 

redundant if the matrix W is known. co 
The object of this Chapter 

is to show that the Cauchy index is given by the signature of the 
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cross-Gramian matrix W • co We also demonstrate the similarities 

between the Hankel matrix and the cross-Gramian matrix. 

The Cauchy index is particularly useful in system identification2 

and in model-order reduction. Structural changes occur in the 

model-order reduction process, and by knowing the Cauchy index at 

each level, the structural changes which accompany the reduction 

process can be predicted. A numerical example is included to 

illustrate the importance of the Cauchy index in internally balanced 

d 
. 4 

model-order re uct10n • 

2. The Gramian and Hankel Matrices 

For the linear nth order time-invariant asymptotically stable 

continuous-time system 5 (A,b,c), c 

x(t) = Ax(t) + bu(t) y(t) ~ cx(t) 

the controllability Gramian matrix W 2 and the observability Gramian c 

matrix W 2 are defined as, 
o 

W 2(T) 
T 

(eAtb) (eAtb)Tdt - f c 0 

W 2(T) 
T 

(ceAt)T(ceAt)dt - f 0 0 

, T > T 
0 

(1) 

T > T 
0 

(2) 

Fernando and Nicholsonl (Chapter 9) demonstrated that the information 

in the controllability Gramian and the observability Gramian are 

essentially contained in the cross-Gramian matrix W defined by co 

W (T) co 
T > T 

o 
(3) 
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In a stochastic formulation of the problem, this matrix can be 

considered as a cross-covariance between the controllable states 

and the observable states. while the controllable and the observable 

Gramians can be considered as auto-eovariances. 

For the discrete-time system Sd(A,b,e) , 

- Ax + Bu 
t t 

the Gramian matrices are defined by, 

• 

p > n (4) 

(5) 

In an analogous manner to the continuous-time case, we may 

define the W matrix as, co 

W (p) 
co 

= (6) 

The Gramian matrices are directly related to the controllability and 

observability matrices of Kalman, thus 

-
-

and W (p) 
co -

where 

T Qo (p)Qo(p) 

T 
Qc(p)Qc (p) 

Qc(p)Qo(p) 

.. 
T [eT Qo (p) -

Ab 

(cA)T 

(7) 

(8) 

(9) 
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The (symmetric) Hankel matrix H(p) can be defined using these 

controllability and observability matrices, and is given by 

H(p) = (10) 

The similarity between the Hankel matrix H(p) and the cross-

Gramian matrix W (p) is obvious. 
co 

The Hankel matrix may be 

considered as an "outer product" of the observability and the 

controllability matrices while the cross-Gramian matrix manifests 

as an "inner product". This suggests that there is a direct 

duality between the Hankel matrix and the cross-Gramian matrix. 

We observe that the definitions used in the discrete-time case 

are also valid in the continuous-time case and provide alternative 

but equivalent definitions for Gramians. 

3. The Cauchy Index 

For the proper rational transfer function 

g(s) - l 
k=1 

-k s 

the associated Hankel matrix is defined as, 

hI h2 h 
P 

H(p) - h2 h3 h 
p+l 

h h p+l h 
P 2p-l 

If this transfer function is of the dynamical system, Sc or Sd' then 

the Markov parameters ~ are given by, 

= 
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We reproduce the fundamental theorem of Hermite and Hurwitz2 ,3 

which relates the Cauchy index with the signature of the Hanke1 

matrix. (The signature of a matrix ~s the number of positive real 

eigenva1ues minus the number of real negative eigenva1ues). 

Theorem 1: The Cauchy index of g(s) is equal to the signature of 

the associated Hanke1 matrix. 

2 A simple "control theoretic" proof was provided by Brockett 

which illuminates the essentials of the theorem. 

The following result which is often quoted in minimal realization 

theory and circuit analysis is due to AndersonS
• 

Theorem 2: For the system Sc or Sd' there exists a unique symmetric 

matrix R satisfying 

RA • Rb T 
c 

and the signature of R is equal to the Cauchy index of the system. 0 

4. The Cauchy Index and the Cross-Gra~an Matrices 

We propose the following two results which relate the Cauchy 

index to the signature of the cross-Gramian matrices. 

Proposition 1: The Cauchy index of the system Sc or Sd is given by 

the signature of the cross-Gramian matrix W (p). co 

Proof: It is obvious from (9) and (10) that all non-zero eigenva1ues 

of the Hanke1 matrix H(p) are given by the eigenvalues of the cross-

Gramian matrix W (p). co 
Thus, the signatures of these matrices are 

equal and hence the result. 

Proposition 2: The Cauchy index of the system S is given by the 
c 

signature of the cross-Gramian matrix W (T). co 

a 
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Proof: From theorem 2 (see 5 for details), 

R Q (n) 
C 

= 

As a direct consequence of the Cayley-Hamilton theorem 

ATt T 
= e c 

t 
Post-multiplying the above by bTeA t and integrating in the 

interval (O,T), we obtain 

R W 2(T) 
c 

= W T(T) 
co 

Since, W 2(T) is positive definite, the result is obvious. 
c 

We have included the cross-Gramian matrices W (p) and W (T) co co 

in the list of matrices which contain information about the Cauchy 

index. We now proceed to study the Cauchy index in relation to 

internally balanced representations. 

5. The Cauchy Index and Balanced Representations 

If the controllability Gramian matrix W 2(T) and the observability c 
- 2 Gramian matrix Wo (T) of the system Sc(A,b,c) are diagonal and equal, 

then the system S (A,b,c) is said to be an internally balanced 
c 

. 4 
representat10n • Such balanced representations can be obtained 

by using similarity transformations on any equivalent realization 

S (A,b,c). The following result is due to Fernando and Nicholsonl 
c 

(Chapter 9). 
..., .., 'Y 

Theorem 3: For the system S (A,b,c), a balanced representation S (A,b,c) 
c c 

(with T~) exists such that 
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(a) the elements of the vectors b and c are equal in magnitude, 

(b) 

(c) 

(d) 

that is 

b. - c. or b. - - C. 
1 1 1 1 

for all i. 

the cross-Gramian matrix W (Cl» 
/::; 

A diagonal. = 1S co 

2 
If b. "I- 0 then A. = c. ::z a. 

1 1 1 1 

If b. 
1 

where 

then A. 2 
- c. = - a. 

1 1 1 

W (CI»" A = diag ( .•••• , A. , ••••• ) 
co 1 

= E2 = diag( •.••• , a. 2 
1 

, ..... ) 

If b.b. = c.c. ; 0 
1 J 1 J 

then a .... a .. 
1J J1 

If b.b. "-c.C. 
1 J 1 J 

then a .. '" - a .. 
1J J1 

Il 

The following result gives an explicit solution for the matrix R 

(defined in Theorem 2) for balanced representations. 

Proposition 3: For the system Sc(A,b,c), the matrix R is diagonal 

and the diagonal elements are given by 

r. = 1 
1 

r ... -1 
1 

if 

if 

h. = C. 
1 1 

b ... - C. 
1 1 

Proof: Obvious from Theorem 3. a 

Proposition 3 provides a convenient way of determining the Cauchy 

index of balanced representations by inspection. The validi ty of 

Proposition 2 is also obvious from the above result. 
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6. Application in Model Reduction: An Example 

The following transfer function is used by Moore4 in internally 

balanced model-order reduction. 

g(s) = 
(5+4) 

(5+1)(8+3)(5+5)(8+10) 

1 1 1 + _~2_..,--",,"" 
40(5+5) 105(s+10) = 24(5+1) 28(s+3) 

Thus, the Cauchy index for this system is zero which is one of the 

five possible values (±4, ±2, 0) for a fourth-order system. 

If the system is realized in the internally balanced format, 

the controllability and the observability Gramians are diagonal, and 

equal, and given by4 (for the infinite-time definition of Gramians) 

- 2 
W c 

= W 2 = r2 = diag(0.0159, 0.272x10-2 , 0.126xlO-3, O.SxlO-S) 
o 

The cross-Gramian matrix W is also diagonal and equal to the balanced co 

Gramians except for the signature (Theorem 3). 

W = A = diag(0.0159, -o.272xlO-2 , 0.127xlO-3, -O.SxlO-S) 
co 

Since the signature of the matrix W is zero, from Proposition 2, we co 

know that the Cauchy index is zero. 

In internally balanced model-order reduction, the reduced model 

is obtained by subsystem elimination and the dominant diagonal values 

(the second-order modes) are retained in the reduction process. Thus, 

by inspecting the diagonal values of W ,the Cauchy indices of the co 

reduced-order models can be inferred. Thus, 

order 4 3 2 1 

Cauchy index o 1 o 1 
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We now consider the transfer function 

g(s) = I + I + I + 2 
24(s+1) 28(s+3) 40(s+5) ~10~5~(~s~+~1-0~) 

which is equal to the transfer function g(s) except for the positions 

of the zeros. 

The Cauchy index for this transfer function is four, and thus 

the signature of the cross-Gramian matrix W is also four. The co 

Cauchy indices for the reduced-order models of the transfer function 

g(s) are given by, 

order 4 3 2 1 

Cauchy index 4 3 2 I 

We observe that if the absolute value of the Cauchy number is 

2 
equal to the system order 

(a) the system has real poles only 

(b) the system is not non-minimal phase. 

Thus, the reduced-order models of g(s) are not non-minimal phase. 

However, such inference cannot be used for the transfer function g(s), 

since the Cauchy index is zero. Thus, the occurrence of right-hand 

plane zeros (in the reduction process) cannot be overruled, although 

the transfer function g(s) is minimal phase. In fact, the second-

and third-order reduced models obtained by Moore have right-hand plane 

zeros. However, if the second-order approximation is obtained by 

eliminating the second and the fourth states (instead of the third 

and fourth), the reduced model will not have right-hand plane zeros. 

We have deduced this information by inspecting the partial fraction 

expansion of the transfer function g(s). However, in large-scale 

system studies, it is much more convenient to compute the matrix W co 

and then by inspecting the signature of the matrix W we may obtain co 

the same results. 
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7. Conclusions 

We have related the Cauchy index to the cross-Gramian matrices 

and shown the important structural information given by the Cauchy 

index. The Cauchy index is classically associated with the Hanke1 

matrix and we have proved that the information contained in the Hanke1 

matrix is essentially present in the cross-Gramian matrices. 

The wealth of structural information provided by the Cauchy 

index in the context of internally balanced model-order reduction 

has been amply demonstrated using a standard example. 
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PART 5 

Measures for Quantification of 

Controllability, and Observability, and 

Input-output Behaviour 
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CHAPTER 12 

The Degree of Controllability due to 

Individual Inputs 

Abstract: Mahalanobis distance, which is an information theoretic 

metric measure, can be used as an index to investigate the 

effectiveness of individual inputs in multivariable control systems. 

1. Introduction 

Since the introduction of the concept of controllability for 

linear dynamical systems by Kalman two decades ago, much effort has 

been devoted to quantifying controllability. The natural candidate 

for such an index has been the controllability Gramian matrix 

(W-matrix) , 

= 

for the linear time-invariant dynamical system defined by 

x(t) .. A.X(t) + Bu(t) 

xtM 1 n, u,"M 1 m, 
A~M n,n BEM n,m 

1 Kalman et al suggested that scalar functions of the W-matrix, 

namely the determinant and the trace of the inverse of the W-matrix, 

are suitable for identifying the degree of controllability. These 

functions are related to the minimal energy problem and physical 

interpretations are possible
2

. 
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Ka1man et al also realized the importance of the W-matrix as 

an information theoretic measure and related it to the Shannon 

definition of information and the Fisher information matrix. Later, 

Mitra3 investigated the W-matrix using information quantifiers due 

to Kolmogorov and Shannon in the context of model order reduction. 

However, the basic weakness of this approach is that" the W-matrix 

is not invariant under similarity transformations of the system (A,B). 

This was overcome by Friedland
4 

by defining the degree of control-

1abi1ity as the condition number of the W-matrix given by 

k(W) = 

If 11 • 11 is taken as the spectral norm of W, the condition number 

is then given by 

where ~ and ~. are the eigenvalues of W having the largest, and 
max m1n 

the smallest magnitudes, respectively. The basic notion for this 

definition comes from numerical algebra, however a physical inter-

pretation can be given using a1~eigh quotients
5

,6 Recently, Denham7 

used angles between subspaces, which is a non-metric information 

measure, for inter-relating inputs and outputs of large scale systems. 

The objective of this Chapter is to develop measures to quantify 

the degree of controllability of individual inputs in multi-input 

linear systems. This is achieved by using a metric information 

measure known as the Kahalanobis distanceS,9. 



- 152 -

2. The Mahalanobis distance8 ,9 

It is well known that for a Gaussian vector z, the probability 

density function is given by 

p(z) = 

where a = 

z = E(zJ E [(z-z) (z-z) T) 

EI.I denotes the expectation operator. If we take the logarithm 

of the function, ignoring the constant scalar, we may define a new 

function 

which is still a measure of probability associated with the random 

vector z. This measure is sometimes known as the Mahalanobis distance 

from the mean. 

i For a particular class of random vectors denoted by z , belonging 

i to the class S , which is a subset of the general class S, 

, z~s i = I,m 

the Mahalanobis distance M(zi,ii) defined by 

-
is a measure of 'oscillatory energy' of the vector 

i 
z • The loci of 

points of constant energy defines a hyper-ellipsoid with the principal 

axes in the directions of the eigenvectors of the covariance matrix $. 
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The lengths of the semi-axes are given by square roots of the 

eigenvalues. Th h 1 f h . A. -1 . d . h us, t e ro e 0 t e matr1x ~ 1S to e-we1g t 

heavily the eigenvector 'modes' which are powerfully represented 

in the set S, and lightly the 'modes' which are not. 

value of this measure is given by 

-1 i 
'" trace 4> $ 

The expected 

where the matrix $i is the covariance of the vector zi, thus 

-
Although, this is a distance measure, due to the form of 

weighting by the matrix $-1, it is independent of the unit of 

measurement (i.e. dimensionless). Thus, it can be considered as 

the fraction of energy in the subset Si with respect to the set S. 

3. The degree of controllability due to individual inputs 

We assume that the linear system (A,B) is asymptotically stable 

and fully controllable. These may be relaxed in a more formal study. 

The W-matrix can be considered as the Gramian matrix 

• 
T 

f x(t)xT(t)dt 
o 

for deterministic unit impulses at the inputs. For stochastic 

inputs of the form 

we can take the W-matrix as the covariance 

W = limit W(t) = limit E(X(t)XT(t)] 
t-+ao t-+ao 
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Without loss of generality, it is assumed that T~, and thus the 

results for deterministic and stochastic approaches technically 

coincide. If there is a~ ",,-,u.lu. signal at the i' th input wi th 

all other inputs being held zero, the response of the system is 

given by 

1 x (t) = 1 x (t) 

where b1 is the i'th column of the matrix B. 

Now we can compare the energy in the controllability subspace 

due to the i'th input only using the Mahalanobis distance. This is 

a measure of the degree of controllability of the state-space and 

we define this index by 

= 

where .. limit E [i (t) (xi (t» T] 
t~ 

-= fm eAtbi(bi)TeATtdt 
o 

4. Properties of the degree of controllability index 

(a) 

(b) 

The scalar d.
2 

is invariant under similarity transformations of 
1 

the linear system (A,B). Under the similarity transformation T, 

the system becomes (TAT-l,TB) and the distance measure is given 

by 

= 

The result follows due to the invariancy of the trace under 

similarity transformations. 
m 

f h . d 1 to un1·ty, \ d. 2 1 The sum 0 t e 1n exes are equa L =. 
i=l 1 
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The matrix W
i 

is given by the solution of the Lyapunov equation, 

= 

m 
The result is due to the fact that, W = L w. 

. 1 L La 

(c) The indexes are always positive, and less than unity (equality 

holds for the case m = 1), 

2 
1 > d. > 0 

- L 
, i = I,m 

Since the system LS asymptotically stable, the matrix wi is 

. . . d f· . 5,11 d h pos1t1ve sem1- e 1n1te ,an ence the result. 

5. Extension 

The definitions given for controllability for linear continuous 

systems can be extended to unstable systems, to systems having 

uncontrollable subspaces, and can be used to study the importance 

of various outputs using the concept of observability. They can 

also be extended to discrete systems and to include input signal 

statistics of the form Elu(t)UT(T)] = N6(t-T) where N is a positive 

diagonal matrix. 

6. Conclusions 

We have defined measures to quantify the degree of controllability 

of individual inputs based on the Mahalanobis distance. These 

measures, in some ways, are similar to the information theoretic 

1 
measures proposed by Kalman et al , and can also be used to investigate 

14 
the dissimilarity between controllable subspaces • 
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We believe that the definitions based on the Maha1anobis 

distance are very appropriate for linear systems analysis due to 

the direct connection with Gaussian processes. However, the 

Maha1anobis distance is not the only measure available from the 

fields of information theory and pattern recognition, and other 

8-10,12,13 b h . d . ( 1 measures ot metr~c an nonmetr~c e.g. ang es between 

subspaces7) are important in linear systems analysis and design. 
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CHAPTER 13 

The Coherence Between System Inputs and Outputs 

Abstract: Some measures, based on Gramian matrices and signal 

processing practice, are defined to quantify the inter-relationship 

between a particular system input and an output. Such quantifiers 

are useful in the analysis and design of linear multi-input mu1ti­

output mu1tivariab1e systems. This approach is particularly 

significant for preliminary studies involving the input-output 

behaviour of large-scale or complex systems. 

1. Introduction 

The analysis of interaction between system inputs and outputs 

and the implications of such interacting behaviour constitutes an 

important branch in systems theory, especially in the context of 1arge­

scale systems. Although the ultimate aim of such analysis is usually 

to design a 'controller' for the system. the study of interaction 

itself poses a non-trivial problem to the system analyst. As an 

example, for a system with ten inputs and ten outputs (which is not 

an unusual situation in process control or econometrics), there could 

be up to a hundred possible forms of interaction. In such situations, 

physical considerations and intuitive reasoning may break down due to 

the dimensionality of the problem. Although most multivariable 

techniques utilise interaction effects in the design of controllers, 

such refined methods are usually not feasible in large-scale problems. 

In process control, interactions between inputs and outputs are 

. usually quantified using the relative gain array which is an extension 
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15 16 22 
of the Bristol measure ' , based on the conditioning number 

related to the gain of the system. Since the steady behaviour is 

paramount in process control, this measure is usually based on the 

dc gain of the system. The Bristol measure has been used widely in 

the design of controllers for distillation columns and similar 

processes. 

The study of interaction between inputs and outputs is also an 

important branch of econometrics. Input-output tables are widely used 

. f11 I· f . I . d h . . in the Leont1e ana YS1S 0 nat10na econo~es an ot er SOC10-econo~c 

behaviour. Using these tables, Leontief was able to disprove some 

popular but erroneous beliefs in econom1CS. 

From the control-theoretic point of view, the input and output 

behaviour is usually studied in the context of controllability and 

observability, respectively. Recently, there has been a resurgence 

of interest in quantifying controllability and observability. Friedland4 

defined an index to quantify the 'goodness' of controllability (and 

observability) using the conditioning number of the controllability 

Gra~an matrix, which led Moore
l 

to define balanced and other principal 

realizations. Moore has shown the advantages of working directly on 

signals and their statistics rather than on secondary objects such as 

model parameters. The principal component analysis of Moore led 

Denham et a1
2 

to define some measures to quantify the relationship 

between a particular input and an output. These measures can be 

determined by measuring the angles between some controllable and 

observable subspaces, and also by computing the second-order modes 

of the system. 
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In these different but related disciplines, namely econometrics, 

and control theory, the analysis of interaction between inputs and 

outputs has been considered as an important part of system analysis. 

Although these approaches differ conceptually, the underlying theme 

has been the problem of scaling the system to exemplify the inter­

actions. As pointed out by Brockett et a1
2l

, a unified scaling theory 

does not exist for the analysis of control systems. In other 

scientific disciplines, scaling is achieved using non-dimensional 

quantities, the well known Reynolds number in fluid mechanics being 

a typical example. 

In estimation and other stochastic problems, cross-correlations 

and cross-covariances between signals, through which coherence 

functions can be defined, signify the presence or absence of 

relationships between these signals. Such coherence measures have 

been exploited fully in the literature, especially in input-output 

identification. Paradoxically, the applicability and the suitability 

of such measures for the analysis and design of mu1tivariab1e systems 

have not been fully recognised. 

The aim of this Chapter is to define similar measures for 

relating inputs to outputs based on concepts from signal processing 

practice and least-squares theory. These complement the measures 

already defined to quantify the degree of controllability/observability3 

(Chapter 12). 

In common with the references 1-6, these measures are defined 

using Gramian matrices (W-matrices) which can be considered as (auto) 

covariances or second-order moments in a stochastic formulation of 

• the problem, thus giving a direct link with least-squares theory. 
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However, the controllability Gramian Wand the observability Gramian 
c 

Ware inadequate to compute coherence functions, since they do not 
o 

give any information about the cross-effects between inputs and 

outputs, explicitly. 

To account for such input-output interactions, a matrix W has 
co 

been defined by Fernando and Nicholson5 ,18,19 (Chapters 9-11), which 

is again a second-order statistical average and contains information 

about both the controllability and observability properties. The 

coherence measures are specified using scalar functions of these 

matrices. 

2. The controllability and observability Gramians and extensions 

For the nth order linear time-invariant, stable, controllable and 

observable system S(A,B,C), 

i(t) a Ax(t) + Bu(t) yet) = Cx(t) 

the controllability Gramian matrix WcL with respect to the input u
i 

in the infinite interval is defined by 

w i 
c 

6 = 
~ 

f (eAtbi ) (eAtbi)T dt 
o 

The vector bi denotes the ith column of the matrix B and ~(t) is 

the kth input. 

i In a statistical formulation, the matrix W can be considered 
c 

i as the (auto) covariance of the states x (t), under the white noise 

input u.(t) with statistical averages of the form, 
1 

Elu.(t)1 - 0 
L 
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where E (. J denotes the expectation operator, and 15(·) 1S the Dir~c 
. . T 

= W 1 delta. That is, E(x
1
(t»(x

1
(t» J c 

Similarly, the observability Gramian matrix W j is defined by 
0 

where c. denotes the jth row of the matrix C. The dual system is 
J 

characterized by, 

= 
T 

B xd (t) 

for k ~ j and all t 

.. W j 
o 

In studies involving inputs, the controllability Gramians W i, 
c 

i s l,n are paramount, and similarly, the observability Gramians 

W j, j • l,n with respect to the outputs. 
o 

However, these Gramians 

do not convey any direct information about the relationships between 

the inputs and the outputs of the system. It is well known that in 

i similar problems, the cross effects between the two processes x (t) 

and xdj(t) are analysed using cross-covariances of the formS ,18,l9 

(Chapters 9-11), 

= W co 
ij 

With the same white noise input in the controllable and the observable 

systems , 
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u. (t) z: v. (t) 
~ J 

the matrix W co 
~J is given by 

00 

Atbi j At 
W ~J = f e c e dt 

co 
0 

The matrix W ij can be computed by solving the following Lyapunov 
co 

. 5 18 19 type equat~on' , (Chapters 9-11) 

W ~JA + AW ij 
co co -

The fundamental relationship between the cross-Gramian matrix W ij 
co 

and the controllability and observability Gramians W i and W j is 
c 0 

. byS,lS,19 
g~ven 

3. Input-output relationships 

For the system S(A,B,C), driven by white noise inputs of the form, 

E [u(t)] = 0 

the cross-covariance between the jth output and the ith input is given 

by 

,. f 
o 

... 
j Atbid c e t ,. 

which is the negative of the first moment of the system or the dc gain. 

The moments are invariant under similarity transformations and do not 

depend on the particular state-space realization. 

Information about the first moment is also contained in the cross-

. . W ij d f 11 f h l' covar~ance matr~x ,an 0 ows rom t e re at~on, co 

-
-

00 

2 f j At Atbi/t ce e 4= 

o 

2 trace W 
co 

ij 

00 

2 trace f eAtbicjeAtdt 
o 



- 164 -

Thus, the matrix W co 
ij carries information about the ith input and 

i 
the jth output, which is not present in the Gra~an matrices Wand 

c 

W J, individually. 
o 

The matrix W ij may thus be considered as the co 

carrier of information from the ith input to the jth output. 

The dc gain is one of the fundamental measures in systems studies 

and its computation is almost routine in any design method. If the 

dc gain is zero in a system, then step-wise changes in the output 

cannot be obtained using step-wise inputs. If the dc gain is non-zero 

and if the transient response of the system is of no consequence, the 

long-range (infinite-time) objective of step-wise output control can 

be achieved by knowing the dc gain alone. This is also true for the 

multivariable case where all possible dc gains from each input to all 

the outputs will be required. 

In fact, this is the type of control envisaged by LeontieflO,ll in 

the study of input-output economic and other models. The essentials 

of our argument are present in Leontie£ models, although the terminology 

is obviously different. 

In practice, however, control of econo~c systems are based on 

heuristic and fuzzy rules which have been determined through past input-

output correlations. Instead of using all the possible inputs to 

control all outputs (which ~ght be required for the 'optimal' strategy) 

simplified laws are used to control a particular output (or a group 

of outputs) using a particular input (or a group of inputs). Such 

input-output pairings are well known and perhaps the control of 

inflation through control of money supply is a good typical example. 
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4. possible measures for quantification of input-output relationships 

We have shown the importance of the dc gain in control, and without 

any reservation it can be considered as the most important measure in 

relating inputs to outputs. For multivariable systems, we may predict 

the behaviour of the system by inspecting tabulated values of the de 

gain. 

As mentioned earlier, the dc gains are invariant under similarity 

transformations and in that sense they are absolute measures. However, 

the dc gains are not invariant under input or output scaling. Thus, if 

a particular input is measured in metres per second instead of kilometres 

per second, it will be reflected in the dc gain table as a thousand 

fold increase. If the physical knowledge of the system is limited, this 

may convey the false impression that the particular input is important 

because of the high gain path. Thus, for unbiased understanding of 

systems, we require measures which are also invariant under input and 

output scaling. We call such measures, structural measures. 

2 One of the measures advocated by Denham et al depends on the sum 

of the singular values of the system S(A,bi,c j ). According to our 

criterion, this quantity is not a structural measure, since it is not 

invariant under input and output scaling. However, Denham et al avoided 

some of the difficulties by using lateral arguments involving ratios. 

.. . 11 L . f lO ,11 . , Such analys1s 1S essent1a y eont1e 1n nature. 

Another possible quantifier could be based on the concept of output 

controllability7 by using the value cjw i(cj)T which is also equal to 
c 

Again, this is not a structural measure. 

Denham et al also defined quantifiers based on angles between 

observable subspaces and controllable subspaces. Such a measure is 

intuitively very appealing and is a true structural property. However, 

a firm control theoretic interpretation has not yet been found. 
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5. The coherence between inputs and outputs 

It is well known that a coherence measure y to relate two scalar pq 

stochastic processes p and q can be defined by 

= f2 / f f 
pq pp qq o < y < 1 - pq 

where the scalar values f ,f and f are some second-order statistical pp qq pq 

averages of the processes. If the processes p and q are directly related 

to each other then the coherence measure tends to unity. If these are 

unrelated then the measure approaches zero. 

Similarly, the coherence between the input i and the output j can 

i 
be measured by considering the states x (t) of the controllable system 

and the dual states Xdj(t) of the observable system. By using scalar 

functions of the auto-covariance matrices W i and W j and the cross-
c 0 

covariance matrix W ij, we may define scalar coherence measures for co 

vector processes. One possible definition for such a measure is 

given by 

•. 2 . . " 2 .. 2 
y .. _ (trace W ~J) / trace (W ~W J) = (trace W 1J) /trace(W 1J) 
~J co c 0 co co 

where both the denominator and the numerator, and hence the measure, 

are invariant under similarity transformations of the form, 

It is also seen that the measure is invariant under input and output 

scaling of the form, 

bi -.. a b
i 

c
j -.. B c

j 

i 1 i yj 
1 . 

u -.. -u , -.. _ yJ 
a B 

where a and B are non-zero scalar values. Thus, this measure is completely 

independent of scaling and can be considered as a 'non-dimensional' quantity 

as used in other scientific disciplines. Also, this quantifier is a true 

structural measure according to our criterion. 
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We also observe that the term in the numerator is directly 

related to the dc gain of the system, showing again the importance 

of this quantity in input-output studies. 

An explanation of the term in the denominator of the measure y .. , 
1J 

namely trace(wciwo~. is required. In the analysis of roundoff noise 

in digital filters, Mullis and Roberts
6 

demonstrated that (for 

discrete-time systems) trace(wciwoj)can be considered as the 'storage 

energy capacity' of the system. If we drive the system S(A,bi,cj ) 

with unity variance white noise in the input ui(t) from t = -~, then 

as t -+ 0 E - w c 
i 

+ i From, t - 0 onwards, if the system is unexcited with u (t) = 0, then 

m 

E [f (yj(t»2 dt] ,.. trace(w/wo
j

) 
o 

As the term 'storage energy capacity' implies, the response yj(t) is 

dictated by the amount of storage energy at t - o. Thus, the quantity 

trace(W iw j)will be determined essentially by dynamic elements (such 
c 0 

as capacitors and inductors in electrical networks) rather than static 

elements (such as resistors). It can be shown (using integration by 

parts) that the storage energy is also given by 

~ 

I t(hij (t»2 dt 
o 

where hij(t) denotes the impulse response of the system. 

Now the coherence measure can be described as the ratio between 

the 'static effects' of the system to the 'dynamic effects' of the 

system, since the numerator is related to the dc gain and the 

denominator to the storage energy capacity. 
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It should now be obvious that the coherence measure defined 

through signal processing practice has an uncanny analogue in electrical 

engineering, namely to the power factor or the inverse of the Q-factor. 

20 In robust control of systems (especially in process control and 

econometrics ll ), it is usually desired that static (low-frequency) 

behaviour is dominant and the dynamic (transient or high-frequency) 

effects are minimal (although, at the level of 'fine tuning', dynamic 

effects such as slight 'overshoots' are desirable in servomechanisms 

after compensation). The use of the coherence measure in this respect 

is self-evident since it is based on the ratio between static and 

dynamic energies. 

For a particular input-output pair. if the coherence measure is 

very low, then it is best described as a 'tuned-circuit'. 

Alternatively, if the measure is high, then due to the relatively 

. b d· f 11· . bl 13 high dc ga1n, a ro ust eS1gn 0 contro er 18 P08S1 e • 

We wish to point out that the Bristol measure, which is essentially 

based on the dc gain of the system. is a quantifier of the static 

behaviour of the system while the measure proposed by Denham et al 

is essentially dynamic. In contrast, the coherence measure defined 

above depends on both the static and the dynamic behaviour of the 

system. 

6. The coherence measure for internally balanced representations 

The system S(A,bi,~j) is said to be internally balanced if the 

controllability Gramian matrix W i and the observability Gramian matrix . c 

W j are diagonal and equal
l 

If a system S(A,bi,c
j

) is not internally 
o 

balanced, this can be achieved by similarity transformations, and 
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hence the coherence measure will also be invariant. 

balanced Gramian matrix as wij
, that is 

= - i 
W 

c - - j 
W 

o 

We denote the 

Since, (W ij)2 = W iW J it is seen5 tha't the cross-Gramian 
co c 0 

matrix W ij is diagonal for balanced representations, and we denote 
co 

this diagonal matrix as Vij
• 

- iJ· iJ· 
That is, W - V • co It is easy to 

verify that the diagonal values of the matrix Vij denoted by v
k
ij , 

k = l,n are the eigenvalues of the cross-Gramian matrix W 
co 

ij 

In fact, these diagonal values are the singular values (second-

order modes) of the system except for possible sign variations. If 

we denote the singular values of the system by w
k
ij , k = l,n, which 

. 1 f h . ij are the d~agonal va ues 0 t e matr~x W , then 

= k = l,n 

The following relationships are then obvious, 

trace W co 
ij 

trace W iW j 
c 0 

.. 

( 
• ·1~2 

.. trace Wcol. J) 

The coherence measure is then given by 

y .. 
1J - (1) 
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7. A modified coherence measure 

It is well known that it is difficult to control systems which 

have both positively and negatively decaying exponentials in their 

impulse responses. This is a major problem in process control 

15-17,22 h . 1 11 f d systems were S1mp e contro ers are pre erre • The intrinsic 

reason for non-minimum phase behaviour of systems is also due to these 

mixed exponentials. 

Since the signature of the exponentials are determined by the 

residues at the poles of the system, these signatures are given by 

the Cauchy index18 (Chapter 11) (assuming that the poles are distinct). 

For an nth order system with all positively decaying exponentials, the 

Cauchy index is given by n. Similarly, if they are negatively decaying, 

then it is equal to -no Such systems are always minimal phase. 

However, if the Cauchy index lies between these extremes, then non-

minimal phase behaviour can occur, depending on the parameters of the 

system, and with increasing possibility if the magnitude of the index 

is low. Thus, the Cauchy index is an indicator which can be used 

in identifying 'troublesome' input-output pairs. 

The main difficulty with the Cauchy index is that, like the 

rank of a matrix4 , it is essentially a non-robust measure which can 

vary under a small perturbation of the system parameters. Thus, to 

properly quantify the information in the Cauchy index, we have to 

qualify it by using a condition number. In this respect, the cross­

Gramian matrix W ij is valuable. 
co 

Fernando and Nicholson
18 

(Chapter 11) have shown that the signature 

of the matrix W ij is equal to the Cauchy index of the system. 
co Since 

1 
• the robust part of the system is dictated by the dominant second-order 
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modes (as given by the unsigned eigenvalues of the matrix W ij) 
co ' 

the signature of these values 1S more important than the signature 

of the non-dominant values. One way of accounting for the magnitudes 

of the second-order modes in the definition of the 'condition number' 

is to weight them proportionally. Such a measure can be defined 

using the eigenvalues of the cross-Gramian matrix W co 
n 

ij) 2 ( L vk 

ij 

k=l 
BoO = (2) 

n 1J I v
k 
ij 1)2 ( L 

k=l 

as 

The numerator of this measure, as 1n the case of y •. , is based 
1J 

on the dc gain of the system. The denominator depends on the dc 

gain of an hypothetical system with a cross-Gramian matrix which has 

.. . I . b I ij I pos1t1ve e1genva ues g1ven y vk • That is, 

B •. 
1J 

(dc gain of the original system S(A,bi ,c j »2 
(dc gain of the hypothetical system)2 

Since B •. is similar to the coherence measure y •. , we call this 
1J 1J 

new measure a .. the modified coherence measure. 
1J 

It is easily verified 

that this measure always takes values between zero and one, 

o < BoO < 1 
- 1J-

Furthermore, for first-order systems, it is always equal to unity and 

for non-proper systems it is equal to zero. 

If the magnitude of the Cauchy index of the dominant part of the 

system is high, then the measure will take values near unity. If 

it is low, then the measure S .. will take low values. 1J 
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8. The numerical procedure 

To compute the coherence measures between the input i and the 

output j, 

(~ 

(b) 

(c) 

Solve the equation W ijA + AW 
co co 

ij 
= b i j . hI· h - c us~ng tea gor~t m 

given in reference 12 or an equivalent algorithm. 

h · 1 f th t· W ij wh;ch d d Compute t e e~genva ues 0 e ma r~x ~ are enote co 
ij by v

k 
,k = 1,n. 

Compute the coherence measure y .. us~ng equation (1) and/or the 
~J 

modified measure B .. using equation (2). 
~J 

Since eigenvector calculations are avoided, the computation of 

the measures can be accomplished using orthogona1 transformations. 

Thus, the procedure is numerically well-conditioned. 

As described in Section 6, the 'obvious' computational scheme 

would be to compute the balanced realizations for each input and output. 

However, this obvious approach is undesirable due to the following 

reasons. 

(1) Computation of balanced realizations is numerically expensive 

and such realizations are unnecessary as far as the computation 

of the second-order modes and the measures are concerned. 

(2) All published numerical procedures for computation of balanced 

realizations are based on the eigen-structure of the matrix 

product W W , which is equal to the square of the matrix W 
c 0 co 

Since the matrix product is not formed in our approach, it is 

a 'square-root' method and thus well-conditioned with respect to 

roundoff errors. 
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However, if balanced realizations are required, then they can 

be obtainedS (Chapter 9) by computing the eigenvectors of the matrix 

w co 

9. The experimental procedure 

The coherence measure y .. can be computed using experimental 
1.J 

results without knowing the model of the process. The procedure 

is, 

(a) Determine the dc ga1.n from input i to output J using step 

responses. 

(b) Determine the impulse response from input i to output J 

denoted by hij(t) and compute the integral, 

00 

f t(hij (t»2dt 
o 

= trace W co 
2 - trace W W 

c 0 

(c) Compute the coherence measure using the formula, 

y •• 
1.J 

= 
(0.5 x dc gain of the system S(A,bi ,c j »2 

trace W W 
c 0 
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10. Illustrative examples 

Example 1: The single-input single-output system as defined by the 

transfer function, 

R(s) = s 
(s+2) (s+l) 

was considered by Wang and Davison13 to illustrate the difficulties in 

designing a robust controller. Because of the zero at the origin, the 

first moment of the system is zero and thus the system cannot track a 

step input. 

The coherence measures are obviously equal to zero, 

y.. = S.. • 0 
1J 1J 

due to the zero at the origin. Thus, our measures also indicate that 

the system is somewhat ill-conditioned. However, further research is 

required to compare ill-conditioning in robust controller problems with 

that of balanced systems. 

The diagonal V matrix for the system is given by, 

VII • diag (1/36, -1/36) 

and the singular values (second-order modes) are of the form, 

Wll _ diag (1/36, 1/36) 

One of the reasons for the ill-conditioned nature of the system is 

5 14 
due to the non-distinct singular values' ,which is reflected directly 

in the coherence measures. 

This example also indicates that if the first and the higher 

derivatives of the input are dominant in the impulse response, then 

the coherence measures are low, tending towards zero. Alternatively, 

if the derivatives are not dominant, then we may expect high coherence 

values. 
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Example 2: To illustrate some of the properties of the measures, we 

consider the transfer function, 

s + z 
(s + l)(s + 3) 

where z is a real number. If z lies between 1 and 3, then the 

residues at the poles are positive (Cauchy index of 2) and thus the 

exponentials will be positively decaying. Such systems are relatively 

easy to control. If z lies outside this domain, then the Cauchy 

index is zero and the exponentials will have opposite signatures. 

Due to the form of the measures we would expect large values for them 

if z lies between 1 and 3. 

We now consider a transfer-function matrix of the form, 

1 - (s + l)(s + 3) 

where k .. , i,j = 1,2 are real scalar constants. 
1.J 

Denham et al used the storage energy capacity of the system (sum 

of the singular values) as the criterion for choosing input-output 

pairs for control. If kll is large enough, then the combination 

(u ,y ) can be obtained as the 'optimal' result which is obviously 
1 1 

a bad choice since the subsystem 1,1 is non-proper. 

If we use the dc gain as the deciding criterion (assuming all 

k .. are equal) then the combination (u2 'Y2) is the first choice. 
1.J 

This is inappropriate due to the badly positioned numerator zero. 

Table 1 gives the coherence measures (which are invariant of k •. ) 
1.J 

for this problem. It is seen that the best combinations for control 

are given by 
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Table 1: The measure for example 2 

O. 1.10345 

0.86487 0.48251 

1 (a) : 

O. 

The coherence measure y .. 
1J 

1.0 

0.76191 0.48251 

1 (b): The modified coherence measure S .. 
1J 
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Example 3: To illustrate the measures we have defined for physical 

systems, we have considered the state-space model of an oil-fired 

.1 8 bOL er • This is a ninth order model which has an asymptotically 

stable 8th order subsystem which can be obtained by directly decoupling 

the ninth state. There are three main inputs and three significant 

states in this subsystem. They are, 

ul 
mass flow of the steam at the superheater 

u2 
mass flow of fuel 

u3 
mass flow of water at the economiser 

xl steam density 

x2 
superheater steam temperature 

x6 steam drum pressure 

Tables 2(a) and 2(b) show half the dc gain and the sum of the 

singular values, respectively, which are required in the calculation 

of the coherence measures. It is obvious from these tables that, even 

for a three-input three-output system, the relationships between inputs 

and outputs are difficult to assess. 

However, from tables 2(c) and 2(d) which give the coherence measures, 

the inter-relationships between inputs and outputs are quite explicit. 

These tables indicate that the three inputs are directly related to 

all the three outputs except that u3 is almost completely unrelated to 

This tabular evidence is in agreement with physical reasoning. 

If one-to-one input-output pairing is required, we may obtain the 

following combinations by observing the highest values in table 2(c) or 

2(d) and avoiding the unrelated pair (u3,x2) in the combination. One 

possible combination is given by, 

which is a reasonable choice. However, this is not the only possible 

solution. 
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Table 2: The measures for example 3 

xl x2 x6 
-2 -4.807 3 

ul 
-1.02lxlO -1.248xlO 

-1 1 4 
u2 

2.098x10 8.470xlO 2.700x10 

-3 -6 2 
u3 

-4. 764xlO -6. 335x10 -4.645x10 

2 Ca) : Half the dc gain 

Xl x
2 x6 

-3 4.698 3 
ul 

8.483xlO 1.l79x10 

-1 1 4 
u2 

2.088xlO 8.491x10 2.695x10 

-3 -2 2 
u3 

5.093xlO 2.794xlO 4. 956x10 

2 Cb) : Sum of the singular values 

Xl x2 x6 

ul 
1.450 1.047 1.120 

u2 
1.009 0.995 1.010 

-8 
0.878 u3 

0.875 5.lx10 

2 Cc) : The coherence measure y •• 
1) 

Xl x
2 x6 

u1 
0.958 0.976 0.964 

u2 
0.891 0.988 0.924 

-8 
u3 

0.775 2.4xlO 0.781 

2 Cd) : The modified coherence measure B •• 
1) 
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Example 4: As the final example, we have chosen to study the 16th 

9 order model of an F100 turbofan jet engine which was also considered 

2 
by Denham et al . This model also has three main inputs and three 

ma~n outputs, where 

main burner fuel flow 

nozzle jet area 

inlet guide vane position 

engine net thrust level 

total engine airflow 

turbine inlet temperature 

Tables 3a and 3b give half the dc gain and the sum of the singular 

values, respectively, and we observe that the values in table 3b are 

marginally different from those of Denham et a1
2

• As mentioned 

earlier, Denham et al used some lateral arguments to choose input-

output pairings for this problem. However, if we consider table 3c 

or 3d, the conclusions are quite explicit and are given by 

2 
and these combinations agree with those of Denham et al • However, 

our measure y .. is fundamentally different from that of Denham et al 
~J 

since the sum of the singular values used by them appears in the 

denominators of eqns 1 and 2. 
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Table 3: The measures for example 4 

Y1 Y2 Y3 
-1 -3 -2 

ul 
5.000x10 2.610x10 6.063xlO 

2 8.627 2 
u2 

-4.8l9xlO l.4l2x10 

-7.075 -1 
-1.072 u3 

-1. 973xlO 

3(a) : Half the dc gain 

Y1 Y2 Y3 
-1 -3 -2 

u1 
4.339x10 2.528x10 5.864x10 

3 9.594 2 
u2 

1.069x10 1.508x10 

1 -1 
1.500 u3 

l.048x10 l.938xlO 

3(b) : Sum of the singular values 

Y1 Y2 Y3 

u1 
1.328 1.066 1.069 

u2 
0.203 0.809 0.877 

u3 
0.456 1.036 0.511 

3(c) : The coherence measure y .. 
~J 

Y1 Y2 Y3 

ul 
0.9086 0.7932 0.7732 

u2 
0.0962 0.5860 0.5891 

u3 
0.2296 0.8953 0.2758 

3(d) : The modified coherence measure B •• 
lJ 
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10. Conclusion 

We have defined coherence measures using fundamental data related 

to controllability and observability which are consistent with signal 

processing practice and least-squares theory. The first coherence 

measure may be interpreted as the ratio between static and dynamic 

energy. The modified measure is directly related to the Cauchy index 

of the system. We have illustrated the usefulness and the importance 

of these measures using non-trivial examples. 

The coherence measures can be evaluated for very large-scale 

systems because of the availability of efficient numerical algorithms 

required for computation. 

experimentally. 

Alternatively, they may be determined 

We have also highlighted the relationships between our approach 

and that of input-output Leontief models. In such economic and other 

social systems, dc gain is paramount and the transient behaviour is 

secondary. Since, the second-order modes (singular values) are 

available in the intermediate calculations, the controllability and 

observability properties of the system are also available which is a 

definite advantage in these studies. 

We have also established the importance of the coherence measures 

in determining possible non-minimum phase behaviour and the occurrence 

of exponentials of mixed signatures in impulse responses. 

information is especially valuable in process control. 

Such 

We do not claim that the measures defined in this paper are the 

best or that there are no other alternatives in large-scale system 

analysis. However, our approach seems to be reasonable and applicable. 

Furthermore, they are consistent with the requirements in a variety of 

disciplines. 
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We have not discussed the possible application of these measures 

in the control of large or complex systems. However, the coherence 

measures together with other measures which characterise dynamic and 

static behaviour can have applications in 'structure free' modelling 

f . d b B' 120 d h and control 0 systems as env1sage y r1sto an ot ers. These 

measures can also have application in the design of fuzzy controllers. 
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CHAPTER 14 

On Discrimination of Inputs in Multi-input Systems 

Abstract: A metric information measure known as the Mahalanobis 

distance is used to quantify the dissimilarity between controllable 

subspaces due to any two inputs in mUlti-input linear systems. 

1. Introduction 

Recently, a metric information measure known as the Mahalanobis 

2-4 distance was used to quantify the effectiveness of inputs in multi-

. 1 
input l1near systems • However, for proper understanding of a 

control system, this measure of effectiveness alone is not sufficient 

and a measure for similarity or dissimilarity of controllable sub-

spaces due to individual inputs is required. The object of this 

Chapter is to define such a measure for linear systems using the 

Mahalanobis distance. 

Apart from the theoretical importance, such measures can be used 

to analyse complex systems. With some control problems, the designer 

will have discretion in choosing the system inputs based on physical 

reasoning and engineering judgement. However, with complex problems 

such qualitative reasoning might be difficult or absent and more 

quantitative measures are required. 

Quantitative measures for discrimination of inputs are important 

for system operation, and under emergency operatine conditions an 

alternative control strategy with loss of an input (eg. actuator 



- 186 -

failure) can be devised if the similarity or dissimilarity of 

controllable subspaces due to individual inputs is known. Thus. 

quantifiers for the discrimination of inputs together with an 

effectiveness measure l (Chapter 12) are crucial in the design and 

operation of complex systems. 

2. 
2-4 The Mahalanobis distance for discrimination of vectors 

For two classes of random vectors of dimension n, denoted by 

zi and zj which belong to the classes Si and sj, respectively, and 

which are subsets of the general class S, 

Z~ S , i = I,m 

the Mahalanobis distance between the vectors is defined by 

-1 , = ( i j)T~-l( i j) Z -z 'I' z-z 

The square n,n matrix, is the covariance of vectors z, 

= r, - - TJ E L(z-z) (z-z) = z 

and E(') denotes the expectation operator. 

The expected value of the measure is given by, 

= 

where • 

It is a measure of dissimilarity between the classes Si and sj, 

and gives high values if they are orthogonal and low values when 

they are similar. 
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3. Discrimination of inputs 

We assume that the linear system (A,B) is asymptotically stable 

and fully controllable. The controllability Gramian for the system, 

le = Ax + Bu 

is given by 

WeT) .. 

for deterministic unit impulses at the inputs. For stochastic inputs 

of the form 

we can take the W-matrix as the covariance, 

W ,.. limit Wet) 
t-+<D 

"" limit E(X(t)XT(t)J 
t-+<D 

If there is an impulse at the ith input, with all other inputs to 

the system being held zero, the response of the system is given by 

i x (t) ,.. i x (t) , i 
bG-M 1 n, 

where the vector bi is the ith column of the matrix B. 

We assume that the columns of the matrix B are normal which 

can be achieved by scaling the inputs. That ' (bi)Tbi 1 1.S, - for 

all i. This normalisation is required to avoid discrimination of 

two inputs which are identical except for their amplitudes. 

The degree of dissimilarity between the controllable subspaces 

due to ith and jth inputs can be measured using the Mahalanobis 

distance measure for discrimination of vectors. We define this 

measure as, 
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2 1 .. . . 
(Wij + Wji)} d ., - trace W- {(W~~ + WJJ ) -

1.J 

00 

eAtbi(bj)TeATtdt where W .. = f 
~J 

0 

co T 
W = f eAtBBTeA tdt 

0 

The matrix wij can be computed by solving the Lyapunov equation, 

= 

Obviously, high magnitudes of d .. 2 indicate dissimilarity of 
1.J 

controllable subspaces due to inputs i and j. 

4. Properties of the discrimination index 

(a) Under similarity transformations of the form, 

-1 
(A,B) + (TAT ,B) 

d 
2.. . 

the scalar ., 1.S 1.nvar1.ant. 
~J 

(b) The discrimination index is nonnegative 

2 
d.. > 0 

1.J 
5 (c) For input normal systems , the Gramian matrix W is equal to 

unity, and thus the index can be written in the simplified form, 

2 
d. . :a 

1.J 
(1) 

5. A modified measure 

We assume, without loss of generality, that the system is input 

normalizedS • The distance measure for discrimination is then g1.ven 

by eqn 1. If the ith column of matrix B is equal to the jth column, 
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then the distance between them is zero. 

2 
d.. = 0 

1J 

However, if b j differs only with respect to sign, then the distance 

is given by 

2 
d .. 

1J 
". 4 trace Wii 

In most applications, discrimination with respect to sign variations 

is not required. Thus, we define a modified measure which is 

insensitive to sign variations as, 

- 2 
d .. 

1J 
.. 

where tr is defined as 

tr W = Iw··1 LL 

where w .. are the diagonal elements of the matrix W. 
LL 

Thus, for 

column vectors bi and b
j 

which differ with respect to sign only, the 

modified distant measure is given by, 

- 2 
d.. .. 0 

LJ 

6. Conclusions 

A measure for discrimination of controllable subspaces due to 

any two inputs in a multi input system has been defined using the 

Mahalanobis distance. A modified measure was also defined which is 

insensitive to sign variations. These measures, together with that 

for controllability, provide meaningful measures for quantifying 

the effectiveness of individual inputs. By using observability 



- 190 -

Gramians instead of controllability Gramians, these measures can 

also be used to analyse outputs in multiple-output systems. 
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PART 6 

Closure 
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CHAPTER 15 

Closure 

1. Some percepts (and heresies) 

Importance of the Gramian and covariance matrices and their 

spectral decompositions in control and systems theory including 

pattern recognition has been highlighted in this thesis. In all 

the problems studied, removal of redundant or 'almost' redundant 

information was the recurrent theme. Such superfluous data (often 

due to noise, uncontrollable/unobservable modes, unreliable high 

frequency effects, modelling errors etc.) unnecessarily complicates 

the understanding of underlying mechanisms which govern the process. 

Thus, removal of redundant data is prerequisite in the analysis of 

complex or large-scale systems. In any case, the predicted 

information explosL~ due to advances in microelectronics, fibre 

optics, satellite communication and intelligent computers can be 

deflated by efficient methods of information contraction. 
, 

In Part 2 of the thesis, where the Karhunen-Loeve expansion 

and its extensions are studied, the models assumed for data reduction 

and extrapolation were rather subtle or non-existent. However, in 

Parts 3 and 4, formal state-space representations were used in the 

analysis. It is well known that a large class of systems can be 

modelled via state-space representations (or equivalently by transfer 

functions) and thus model-order reduction methods and related 

problems are paramount in system theory. However it is well known 

that there are non-trivial problems in parameter identification even 

with linear representations (for example, see reference 1 for 
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different results given by different techniques of identification 

for a second-order scalar system). An alternative for identification 

is mathematical modelling. However, except for systems which are 

governed by well-behaved physical laws (such as electromagnetic 

phenomena) modelling is no easy task and this leaves out most of 

the social phenomena. Thus, state-space and other formal representa-

tions, although elegant from a mathematical point of view cannot be 

considered as universal. Due to these difficulties in formal 

representations, the author believes that more effort should be 

spent on investigating the feasibility of using simple, subtle and 

implicit models in representing dynamical systems. This is the 

motivation for Part 5 where non-orthodox ways of characterization 

of dynamical systems are studied. 

The airline data which is prondnent in Part 2 has been analysed 

in the literature using a wide variety of complicated time-series 

techniques. However as indicated in Chapter 4, a simple model based 

on the Karhunen-Loeve expansion/singular value decomposition can give 

superior results to that of time-series methods. This is due to 

the non-conformity of data to man-made assumptions. For example 

it is often assumed that the data is stationary, does not have trends, 

is asymptotically stable, etc, which are at odds with reality. 

The author believes that by reducing the number of assumptions and 

by using more simple models some of these problems can be avoided. 

What are the alternatives if formal models are too complex or 

non existent, which is the case for most of the phenomena observed 

in real life? 
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This is a difficult question to answer. However, one approach 

could be to decompose the data into their orthogona1 (perpendicular) 

components so that each component can be studied as independent 

scalar systems. In this way, it may be possible to understand 

the underlying mechanics (if any) of the process without problems 

associated with dimensiona1ity. This is the main reason for 

diagona1ization of covariance/Gramian matrices. 

One may argue that orthogona1ization procedure is an abstract 

mathematical technique without any importance in reality. This is 

not true and there are many situations where orthogona1ity has been 

used in practice. There are a non-countable infinite number of 

co1~ in the visible spectrum. However, we need only three 

primary (independent) co1~. to represent the wide spectrum. 
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PART 7 

Appendices 
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APPENDIX 1 

The double-sided least-squares problem 

Abstract. The double-sided least-squares problem is formulated under 

a separability condition, using the properties of the Kronecker 

product to obtain the overall solution based on two standard sub-

problems. 

1. Introduction. The standard matrix least-squares probleml is 

concerned with obtaining a solution for the 'n' column elements of 

the unknown state or parameter matrix X which are related to the 'n' 

column elements of the observed matrix Y by the equation 

Y - HX+E , YE-M m,n 
, H eM 

m,p 
XE:M 

p,n 

where H is a known matrix and E is a matrix of residual errors. 

(1) 

If H is of maximal rank p, the least-squares estimate, obtained 

by minimizing the error matrix 

, 

is given by 

P E: M m,m 

The solution corresponds to a linear transformation of Y of the 

form 

giving the observed error matrix 
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y_y = (I-NP)Y ~ P-1LY , L • P-PNP 

and 

In terms of the matrix elements, the relationship of eqn 1 

is given by 

y •. 
l.J 

The column j of the matrix Y correlates the column j of the matrix X 

and no interactions are assumed to exist between the columns. 

A similar least-squares problem can also be formed in terms 

of observed and state row vectors, with the matrix representation 

Y .. XG
T + E Y eM ,X ~M m,n m,q 

, G (: M 
n,q 

where G is the known coefficient matrix. The least-squares 

solution obtained by minimizing J - EQET is then given by 

The elements of eqn 2 are given by 

• 

(2) 

In this case, row i of the matrix Y correlates the same row of the 

matrix X and no interactions exist between rows. 

The problems represented by eqns I and 2 are equivalent since 

the ordering of rows and columns are not generic properties. The 

correlations or the 'flows' are in different directions but are, 

however, uni-directional. Such relationships have very wide 

application in classical least-squares estimation, but are 

. inadequate for the representation of two-dimensional processes 
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involving two-directional flows. These require a more general 

transformation between two matrices which will correlate both row 

and column elements. 

Such a relationship exists between the m,n dimensional 

matrix Y and a p,q dimensional matrix Z with the Kronecker product 

. 2 mapp1ng 

vec(Y) - F vec(Z) FE-M mn,pq Y6.M 1 mn, 
(3) 

or y - (G ® H) z G E:. M 
n,q HE:M ,z~M 1 m,p pq, 

where vec(·) is the operator which stacks columns of a matrix into a 

column vector and F is the Kronecker product of the matrices G and H. 

Cross-correlations then exist between rows and columns with the 

expansion 

y •• 
1J - Zk,t 

Each element y .. of the matrix Y now depends on all the elements of 
1J 

the matrix Z instead of on one particular row or column. The 

matrix equivalent of eqn 3 is given by 

This includes a composition of two linear transformations, and the 

equivalent vector map is formed using the tensor or Kronecker 

product of two linear transformations. 

3 
was known to Sy1vester • 

This form of representation 
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2. The double-sided least-squares problem. We now consider the 

double-sided least-squares formulation with the equation 

y T 
• HZG + E (4) 

relating the measurement or observed matrix Y and the parameter or 

state matrix Z, where Hand G are known maximal rank matrices and 

E is the residual error matrix. The vector form of eqn 4 is 

y • Fz + e 

where e = vec(E) • In a statistical framework, we may also introduce 

the properties 

E[eJ - 0 , - R 

where E[·] is the expectation operator and R is the error covariance 

matrix of the random noise vector e. 

With a minimizing function 

J 
T 

• e Se S E: M 
mn,mn 

and with F of maximal rank (pq) , the least-squares solution is 

given by 

z -

The problem dimension can now be reduced if the error criterion 

matrix S is assumed to be separable, of the form 

S - Q ® P 

The least-squares solution vector is then given by 

z -
-
-

[(G®H) T (Q®P) (GeJ H)] -l(G®H) T (Q(j9 P)y 

(GTQG) -l® (HTpH) -1 [(GTQ) ® (HTp)] y 

[(GTQG) -lGTQ] ® [(HTpH) -lHTp]y 

(5) 
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and the corresponding least-squares solution matrix is 

Z - (HTpH)-lHTpYQG(GTQG)-l (6) 

= Z + (HTpH)-lHTpEQG(GTQG)-l 

The measurement estimate then introduces a composition of two linear 

transformations of Y of the form 

where 

The observed error matrix is given by 

Y-Y • Y-NPYQM 

The error function of eqn 5 can also be written in the form 

or 

where the operation * represents the bi1inear scalar product of 

two similar dimension matrices defined by 

m n 
A * B - B * A - L L 

i-I j=l 
a .. b .• 

l.J l.J 

I * B - trace B 

Alternatively, 

J - yT[s - S(M®N)S]y 

_ yT[s - (QMQ)®(PNP)]y 

_ Q * (yTpy) _ (QMQ) * (yTpNPY) 

A,B c M 
m,n 
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If the error covariance matrix R is assumed to be a separable 

process, of the form 

R - U®V U~M n,n 
V~M 

m,m 

and if the weighting matrices P and Q are set equal to the inverses 

of the error covariance matrices respectively, then the error 

covariance matrix for the least squares vector estimate z is given 

by 

[
AA TJ E (z-z)(z-z) -

2.1 The equivalent decomposed problem. The double-sided least-

squares problem represented by eqn 3 can be decomposed into two 

standard least-squares sub-problems. These are equivalent to 

column and row 'scanning' and the estimate of the state matrix Z 

or the 'image' can be formed from a combined solution of the sub-

problems. 

The overall problem is then represented by the column problem 

y - HX + E J -
with the estimate X used as an 'observed' matrix in the row problem 

x - , -
which will give the unknown state matrix Z, corresponding to eqn 6. 

3. Conclusion. A solution has been given for the least-squares 

estimate of the double-sided composite problem. If the error 

criterion is separable, then the solution can be decomposed into 

. two sub-problems which can be solved sequentially. 
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The double-sided problem has application in two-dimensional 

curve fitting and prediction problems4 ,5.. It can also be used 

for the solution of the inverse output feedback problem6 , which 

requires solution for the unknown matrix P in the equation 

A - A - BPC 

where A and A are the open- and closed-loop system matrices respectively for 

the linear dynamical system S(A,B,C). 
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APPENDIX 2 

The double-sided least-squares problem with diagonal constraints 

Abstract The double-sided least-squares problem with a constrained 

parameter matrix is formulated and solved using muitilinear products. 

1. Introduction The double-sided least-squares problem has been 

. 1 . h' 1 defined w1th the re at10ns 1p 

Y .. HZG
T 

+ E (1) 

with YE:M ,H<i: M k' Z E:.K n' G=-M n' where Y is the observed m,n m, -K,... n, ... 

data matrix, Z is the state or parameter matrix, Hand G are known 

maximal rank matrices and E is the residual error matrix. 

The quadratic error function for minimization is taken as 

J .. eT(Q~P)e T .. e Se 

.. Q * ETpE .. 
2 3 

where @ is the Kronecker product' and e .. vec(E) , where vec(o) is 

the operator which stacks columns of a matrix into a column vector. 

The operation * denotes the matrix inner product defined by 

A*B 
m n 

.. B * A" I I a .. b •• 
i-I j-l 1J 1J 

A,B£M m,n 

The least-squares formulation is now extended to consider 

the case with Z constrained to be a diagonal matrix. The importance 

of such constrained expressions are due to the form of spectral 

expansions of matrices. For example, any square symmetrical matrix 

W with distinct eigenvalues can be represented by 



W • 
T d .• u.u. 1.1. 1. 1. 
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- , W,D,U~M 
m~ 

where U = [u.] and D = diag[d •. 1 can be identified as eigenvector 
1. 1.1. 

and eigenvalue matrices respectively. Alternatively, U could be 

a triangular matrix with diagonal elements equal to unity. Such 

decompositions are useful in Gaussian elimination techniques and 

5 related problems • If the matrix W is rectangular, then it can be 

represented . 1 1 d . . 4,5 by the Sl.ngu ar va ue ecompos1.t1.on 

W d •. u.v. 
1.J 1. 1. 

T - , r - rank (W) 

wi th dimensions W E:M ,U 6-M , D E::M ,V ~M ,where U and V m,n m,r r,r n,r , 

are eigenvector matrices of WWT and WTW, respectively, and D is the 

square-root of the eigenvalue matrix A(WWT
). Thus 

.. , 

D • , 

-
A,DeM 

r,r 

This spectral decomposition is now proposed for the representation 

of another matrix Y which is assumed to have approximately the same 

eigenvector matrices U and V as the matrix W. The matrices Wand 

Y could, for example, contain the observed outputs from a plant and 

its model or the outputs from a system model and its reduced order 

form. A diagonal eigenvalue matrix can be found by assuming that 

the modes or eigenvectors of the original matrix W exist in the 

matrix Y. 

Y 

The measurement equation is then written in the format 

UZvT 
+ E -

where Z2 will give the eigenvalues or 'energy' values of the spectrum 

of (yTy) with respect to the spectrum of (WTW). 
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2. The diagonal problem If the matrix Z is diagonal, then eqn 1 

can be written in the form 

where 

Y = HZe
T 

+ E 

• 

F. = 
1 

z .. F. 

T h.g. 
1 1 

11 1 

, ZG~,k 

+ E (2) 

, F. E:M 
1 m,n 

If the matrix set F., i - l •• k, is arbitrary, then the least-squares 
1 

problem is similar to that posed in reference 7. 

The Kronecker product can be used in the expansion of eqn 2 

instead of the dyadic product h.g. T - both are tensor products and 
1 1 

hence equivalent. Then 

y -
• 

z •• g.®h. + e 
11 1 1. 

FZd + e 

where y • vec(Y), e - vec(E), F€.Mmn,k and zd is the column vector 

formed from diagonal elements of the matrix Z, 

• 

The unbiassed least-squares estimate of the vector zd is then 

given by 

• 

and the matrix estimate Z can be formed using the above definition. 

The symmetrical matrix FTSF is of the form 
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and the ij element can be reduced to the form 

T 
(F SF) .. 

1J 
T T 

- (g. Qg.)(h. Ph.) 
1 J 1 J 

. FT h b d d • . 1 The matr1x SF can t en e ecompose 1nto two symmetr1ca 

matrices, with 

3 4 8 2 
where 0 denotes the Hadamard product ' , or the Schur product , which 

is formed from element-by-element multiplication of the matrices A 

and B. Thus 

T 
(F SF).. - a .. b •. 

1J 1J 1J 
, 

Since the matrices A and B are positive definite, with H,G,P and Q 

of maximal rank, then by Schur's lemma
3
,4,8, the matrix FTSF is also 

positive definite and thus nonsingular. The occurrence of the 

Hadamard product A 0 B is not unexpected since it is a principal 

submatrix of the Kronecker product matrix A~B3. 

The vector FTSY is similarly given by 

T T 
F Sy - (hI PYQgI 

T T T 
hi PYQgi ••• hk PYQ~) 

3. Conclusions The diagonally constrained double-sided 1east-

squares problem has been formulated and methods of solution 

indicated. An applicatipn in two-dimensional curve fitting and 

• •• • d6 
prediction 1S be1ng 1nvest1gate • 
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APPENDIX 3 

Singular Perturbational Model Reduction in the Frequency Domain 

Abstract: Singular perturbational approximations for linear 

continuous-time and discrete-time systems are developed in the 

frequency domain. It is shown that the familiar singular 

perturbational result is an approximation at the origin in the 

complex plane. However, if the system has multiple time-scale 

effects, other approximations can be obtained at different locations 

on the negative real axis to emphasize such behaviour. The 

relationship between singular perturbational approximations and 

direct subsystem elimination is also investigated. 

1. Introduction 

The singular perturbational method has become one of the best 

popular methods for obtaining reduced-order representations of 

2 3 
linear systems ' • Some of the advantages of this technique are 

due to its simplicity, the consistency with mathematical models of 

some physical systems, and the relationship with other established 

methods such as aggregation
4

, the "dominant mode" methods 7, and 

. . 8 
the Routh approxlmatlon However, the development of this method 

has been mostly on an ad hoc basis and all theoretic implications 

of the method have not been fully explained or understood. 

The object of this note is to develop singular perturbational 

approximations for continuous-time and discrete-time systems in the 

neighbourhood of the negative real axis in the complex plane. The 

negative real axis is paramount in singular perturbational studies, since 
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"fast" and "slow" phenomena depend on the real parts of the poles of the 

system. It is shown that the usual perturbational result is an 

approximation at the origin. However, for systems with mUltiple 

time-scale effects, the origin need not be the most desired position 

for approximation. Thus, we may generalize the singular perturbational 

results by considering approximations in other positions of the negative 

real axis. 

2. The generalized approximation 

We consider the linear stable system S(A,B,C) defined by 

i:(t) • Ax(t) + Bu(t) , y(t) - Cx(t) 

which has the transfer function 

H(s) - C(sI - A)-lB 

where s - a+jw is the complex frequency. 

The system can be partitioned in the format, 

B - [::1 

where we assume that all submatrices conform to the orders of their sub-

systems • The transfer function can be written in the form, 

-1 

H(s) • [Cl -A
12

] [BB12] 
sI-A

22 

If we use the well known lemma for inverse of partitioned matrices 

(sometimes known as K-partitioning
l

, then the transfer function 

can be expressed as 
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H(s) - H
1

(S) + H2(s) 

where H1 (s) .. C(s) [sI-A(s) J -lB (s) 

A(s) 
-1 - All + A12 (sI-A22) Az1 

B(s) B1 
-1 - + A12 (sI-A22) B2 

C(s) Cl 
-1 - + C2(sI-A22) A21 

H2 (s) 
-1 - C2 (sI-A22) B2 

If the subsystem S(A22 ,B2,C2) is stable and is not dominant in the 

neighbourhood of the frequency s = a , then the system S(A,B,C) can be o 

approximated by the reduced order representation S(A(6),B(a ),C(a » 
000 

which has the transfer function 

H(s) 

We call this resu1 t the "generalized singular perturbationa1 approximation" 

at s • a • o 

In large-scale system studies, we may approximate the system at 

different frequencies s = a to study the behaviour on different time-scales, o 

provided such mUltiple time-scale effects are present in the system. 

However, the subsystem being eliminated (generically denoted by S(A22 ,B2,C2) 

in this study) does not have to be the same subsystem at different 

frequency approximations. 

If the point of approximation is the origin, then we obtain the 

familiar zeroth order singular perturbationa1 result, 

-1 
• All - A12A22 A21 

-1 
BI - A12A22 B2 B(O) -

C(O) 
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provided that the first moment (dc gain) of the second subsystem which 

-1 is given by C2A22 B2 is "small" or singular compared wi th tha t of the 

approximation. This seems to be more general than the conventional 

assumption that the second subsystem S(A
ZZ

,B
2

,C
2

) is "fast". 

The non-dominance of the subsystem S(A2Z ,BZ'CZ) at a nominal 

frequency s - a can be due to the pole structure as in "fas tIt subsystems. 
o 

However, this is not the only possibility and it could be due to the 

numerator dynamics of the transfer function including any non-minimal 

phase properties. 

3. Direct subsystem elimination 

In this section, we study the approximation at the other extreme of 

the re a1 axi s wi th a -+-co. o 

non-dominant at negative infinity, then the generalized approximation 

is given by 

as a ... -o 

Thus, the generalized singular perturbationa1 approximation at negative 

infinity can be obtained by direct elimination of the second subsystem. 

S Direct elimination of subsystems and the singular perturbational 

approximation at the origin
6 

have been suggested for model reduction 

of internally balanced systems. It is interesting to note that both 

these methods are generalized singular perturbationa1 approximations. 
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4. Approximations for discrete time systems 

For the discrete-time systems Sd(A,B,C) defined by 

- -
the transfer function can be written in the form, 

H(z) - C(zI-A)-lB 

As in the continuous-time case, generalized singular perturbationa1 

approximations can be obtained in a similar manner. However, as pointed 

out by B1ankenship9, the usual approximation at the origin with 

z = 0, corresponds to characterization of "fast" behaviour in the 
o 

discrete-time case rather than "slow" behaviour as in the continuous-

time problem. 

If the second subsystem Sd(A22 ,B2,C2) is stable and is non-dominant 

around the neighbourhood of z = 1, then the system can be approximated 

A(l) 
-1 

where - All + A12 (I-A22) A21 

a(1) 
-1 - B1 + A12 (I-A22) B2 

e(1) 
-1 .. Cl + C2(I-A22) A21 

which characterise slow behaviour. However, this is not the only 

approximation possible and any point on the real axis, but within the 

unit circle, is a possible candidate frequency for obtaining a reduced-

order rode!. 
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5. Conclusions 

We have shown the feasibility of singular perturbational 

approximations in the frequency domain and defined generalized 

singular perturbational approximations valid in the neighbourhood 

of the real axis in the complex plane. The results developed in 

this note give an alternative, and a more refined insight into the 

singular perturbational model reduction problem. 

6. References 

1. Nicholson, Ho: 'Structure of Interconnected Systems', 

Peregrinus, London, 1978. 

2. Kokotovic, P.Vo, O'Malley, R.E., and Sannuti, P.: 'Singular 

perturbations and order reduction in control theory - An 

overview', Automatica, 1976, 12, pp.123-l32. 
~ 

3. Sandell, Jr., N.R., Varjya, Po, Athans, M., Safonov, M.G.: 

'Survey of decentralized control methods for large-scale systems', 

IEEE Trans. Automatic Control, 1978, vol. AC-23, (1), pp.108-l28. 

4. Aoki, M.: 'Control of large-scale dynamical systems by 

aggregation', 1968, IEEE Trans. Automatic Control, AC-13, (3), 

pp.246-253. 

5. Moore, B.C.: 'Principal component analysis in linear systems: 

Controllability, observability, and model reduction', IEEE Trans. 

Automatic Control, 1981, AC-26, (1), pp.17-32. 

6. Fernando, K.V., and Nicholson, H.: 'Singular perturbational 

model reduction of balanced systems', IEEE Trans. Automatic 

Control, 1982, AC-27, (2), pp.466-468. 



- 214 -

7. Nicho1son, H.: 'Dynamic optimization of a boiler', Proc.IEE, 

1964, 111, pp.1479-1499. 

8. Hutton, M.F., and Friedland, B.: 'Routh approximations for 

reducing order of linear systems', IEEE Trans. Automatic Control, 

1975, AC-20, pp.329-337. 

9. B1ankenship, G.: 'Singularly perturbed difference equations 

in optimal control', IEEE Trans. Automatic Control, 1981, AC-26, 

(4), pp.911-917. 



- 215 -

APPENDIX 4 

On the Applicability of Routh Approximations 

and Allied Hethods in Model-order Reduction 

Abstract: Routh approximations used in model-order reduction tend 

to preserve high-frequency behaviour while low-frequency 

approximations are usually required in control design. This 

high-frequency bias can be remedied using reciprocal transformations. 

We demonstrate that if low frequencies are not dominant or unimportant, 

then reciprocal transformations should be avoided. We also show 

that some of the disadvantages of the Routh method recently 

reported in the literature are avoidable. 

1. Introduction 

The Routh approximation method of Hutton and Friedlandl and 

similar techniques known variously as Hurwitz approximations and 

. . 4,5,6. . 
Routh-Hurwitz approx1mat10ns prov1de a conven1ent and simple 

procedure to obtain reduced-order representations of linear systems 

described by transfer functions. The resultant reduced-order 

models are always stable provided the original systems are stable. 

The main peculiarity of this method is the tendency to preserve 

high-frequency behaviour of the system at the expense of the low 

frequencies. However, most model-order reduction methods are 

geared to give low-frequency approximations rather than high-frequency 

approximations, a tradition initiated in references 7 and g following 

Rosenbrock's original work on modal control. This practice is 
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due to the importance of slow-time behaviour in control systems 

design. Furthermore, in most physical systems low-frequency 

effects dominate and thus low-frequency approximations are paramount 

in design procedures. In Routh approximation methods, the high-

frequency bias is avoided by using a reciprocal transformation, 

before and after model-order reductionl • This reciprocal trans-

formation, essentially changes low-frequency effects into high-

frequency effects and vice versa. Reciprocal transformations are 

easy to implement and are of the form given by 
.. 

H(s) H(s) - lIs H(l/s) 
.. 

where the transfer functions H(s) and H(s) denote the original system 

and the transformed system, respectively. If the transfer 

function is of the form, 

+ ••••• + b 
H(s) .. n 

+ ••••• + a 
n 

then the transformed system is given by 

.. 
H(s) • 

n-l bns + ••••• + bl 
n 

ans + ••••• + aO 

which only involves reordering of the coefficients of the original 

transfer function. The use of reciprocal transformations has 

become the standard (or rather the orthodox) practice in Routh 

approximations, and often the application of this transformation 

is not explicitly acknowledged. 
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The main objective of this Appendix is to indicate the 

frequent misuse of reciprocal transformations in the literature. 

It is obvious that if the high frequencies dominate in a system, 

reciprocal transformations should be avoided and the Routh 

approximation technique should be used directly. Otherwise, 

the dominant high frequencies will be attenuated and the resultant 

reduced-order model will represent the non-dominant low-frequency 

effects. Similarly, if the high-frequency behaviour is important 

(say, in understanding the transient response) and a high-frequency 

approximation is desired (perhaps, in addition to a low-frequency 

reduced-order representation) then reciprocal transformations should 

not be used. 

2 3 
Recently, Shamash' used two examples to discredit the Routh 

approximation and allied techniques. We investigate these two 

examples in the context of the use of reciprocal transformations 

and show that the defects pointed out by Shamash can be easily 

rectified. 

To avoid ambiguities, we call the technique the Direct Routh 

Approximation (DRA) if reciprocal transformations are not used. 

Otherwise, we call it the Reciprocal Routh Approximation (RRA). 

2. Illustrative Examples 

Example 1: Shamash3 used the following problem as a counter-example 

for the Routh approximation method. The transfer function is of 

the form, 
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H(s) ... 10052 + 11005 + 1000 • 100(5+1)(5+10) 
3 2 s + 1115 + 11105 + 1000 (8+1)(5+10)(5+100) 

where two of the numerator zeros cancel out two of the poles. These 

additional poles representing low-frequency effects were introduced 

to 'confuse' those model-order reduction methods which are based on 

truncation of high-frequency behaviour. Obviously, the preferred 

first-order reduced model should be of the form, 

100 
(s + 100) 

which is, in fact, the first-order Pade' approximation of H(s)3. 

The first-order RRA is of the form, 

= 0.9009 
(RRA) (5 + 0.9009) 

which is clearly, a bad approximation as pointed out by Shamash. 

However, in model-order reduction of large-scale systems, this will 

not be evident and the validity has to be checked by accounting for 

the impulse energy of the system. 

co 

IIhl! 2 ... f h
2
(t) dt 

o 

The impulse energy, defined by 

where h(t) is the impulse response of the system H(s), is given by 

1 the a and B parameters of the system in the form, 

11 h 11 2 
n 

- I 
i=l 
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These parameters occur in Alpha and Beta tables which have to be 

1 computed in the Routh approximation method • 

The value of the impulse energy of the original system R(s) 

~s given by Ilhl\ 2 .. 50 while the value for R1 (s) is IIhl112 .. 50/111. 

This conclusively indicates that the reduced-order result R
1

(S) is 

a bad approximation. In this case, energy loss is due to high-

frequency 'leakage' if signal processing terminology is used. 

To investigate the high-frequency behaviour, we have computed 

the DRA as, 

... 100 
(DRA) 

s + 111 

Although, this approximation is not as good as the Pade' solution, 

the result is reasonable. The impulse energy of the approximation 

is given by IIg1 1\ 2 = 50(100/111) which is near the value of the 

original sys tem. Thus, by comparing energy values, we may conclude 

that high frequencies dominate in this system and that the DRA 

gives the best overall approximation. By computing the RRA as 

well as the DRA and their impulse energies, we have avoided the 

disadvantages pointed out by Shama5h. 

Example 2: The following transfer function 

R(s) = 

= 

8169.135 3 + 50664.97s
2 

+ 9984.325 + 500 

100s4 + 10520s
3 

+ 321015 2 
+ 101055 + 500 

81.6913(5 + 6.004)(s + 0.1009 + jO.0025)(s + 0.1009-jO.OO25) 

(s + 100)(s + 5)(s + 0.1)2 
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2 3 
was also investigated by Shamash ' • Approximate cancellation of 

the poles at -0.1 is possible and the preferred second-order 

approximation should be of the form 

H(s) 
81.6913(5 + 6.004) 

(5 + 100) (5 + 5) 

Clearly, the high-frequency effects are dominant in this system. 

The RRA is of the form 

0.1936s + 0.009694 
= 

(52 + 0.19595 + 0.009694) 
(RRA) 

0.1936(5 + 0.05007) 
= (s + 0.09796 + jO.009921)(s + 0.09796 - jO.OO9921) 

and obviously, it represents the low-frequency effects. The impulse 

energy for this representation is given by IIh211 2 • 0.1204 which 

indicates high leakage when compared with Ilhl! 2 • 34.07 for the 

original system. 

The DRA is given by 

- 81.69s + 506.6 (DRA) 2 
(s + 105.2s + 520.0) 

- 81.69(5 + 6.201) 
(s + 5.201)(5 + 100.0) 

which is a high-frequency approximation. The validity of the DRA 

as an overall approximation is evident from the impulse energy 

11 g2 11 2 :a 34.06 which is near the original value. 

These results demonstrate that Routh approximations can give 

reasonable results even when high-frequency effects are dominant. 
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3. Conclusions 

We have demonstrated that reciprocal transformations should 

not always be used in obtaining reduced-order models if the high­

frequency behaviour of the system is dominant or important. This 

result, in retrospect, is very obvious. By methodically computing 

the Reciprocal Routh Approximations and the Direct Routh Approximations 

and their impulse energy values, the pitfalls reported in the 

literature concerning Routh approximations can be avoided. 
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