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Abstract 

The focus of this thesis is the techniques used in constructing a library of im­

proved parameters for the Tersoff bond-order potential energy model which is 

used in atomistic modelling applications. The parameters presented here are for 

the elemental type-IV diamond structure semiconductors and the binary III-As, 

III-P, III-Sb and the cubic III-N compound semiconductors. The parameters are 

fitted to a number of experimental and DFT predicted properties of the materials 

including the lattice parameter, the cohesive energy, the elastic constants and the 

lattice dynamical properties, including phonon frequency and mode-Griineisen 

parameters, for three pertinent locations in the Brillouin zone. 

The conclusions of this work demonstrate that the elastic and dynamical prop­

erties of a material cannot be simultaneously predicted with the Tersoff potential 

due to a lack of flexibility in the current functional form. The balance between 

the radial and angular force contributions available in the bond-order term can­

not replicate the delicate nature of the equilibrium in a real system and so two 

modifications to the Tersoff potential energy model have been proposed. The 

modifications include the addition of a second parameter and a linear contribu- " 

tion to the crystal anti-symmetry modelling term and the addition of a fourth 

parameter to the angular bonding term, which has been re-designed to be a more"" 

flexible summation of cosine terms. 

Also included in this work is: 1) a re-modelling of Keyes' relation which re­

lates the dimensionless elastic properties of the cubic III-V semiconductors to the 

lattice parameter of the material to include a second-order term for the mod­

elling of the III-N materials, 2) a simple method for the prediction of the effective 

ionic charge q* of the cubic III-V semiconductor materials based upon the X-point 

phonon energies and 3) the first Tersoff parameterisation of the materials GaP, 

InP, GaSb and InSb available in the literature. 
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Chapter 1 

Introduction 

The role of compound semiconductors 

Silicon is the cardinal example of a versatile multipurpose elemental semiconduc­

tor. Many applications exist for silicon; over the last 50 years it has been extremely 

well characterised and has provided an unparallelled technological advancement 

in fields including computing and telecommunications. However, silicon has a 

number of severe shortcomings in the sphere of semiconductor properties. Most 

notably silicon has an indirect bandgap, meaning that the carriers will not di­

rectly recombine to produce luminescence. To date there has been a failure to 

produce any high efficiency silicon optoelectronics, even with some of the more 

exotic strained silicon in oxide devices. Silicon will operate very efficiently at 

mid-range speeds but the current commercial Si technologies are hitting a pro­

cessing size and associated speed limit. This has become obvious recently from 

the plateau of commercial CPU clock frequencies (at rv 3GHz) which is a good 

benchmflrk of the state of the art of silicon devices. The miniaturisation of on-die 

track widths and the associated Ohmic resistance, the power consumption and 

the linked thermal issues seem to have pushed progress towards parallel pro­

cessing rather than research into a further increase in clock speeds. The thermal 

issues associated with silicon are further highlighted as commercial silicon de­

vices are usually considered to be effective in a room temperature friendly band 

from -20°C to 60°C, which has been found to be a major disappointment for mil­

itary and space applications. For optical purposes, high speed devices, temper­

ature tolerant utilisation or specialist applications it is common to look towards 

the compound semiconductors. 

The choices are many and the material properties are widely varied when 

considering which elements can be combined to make compound semiconduc­

tors. The section of the periodic table normally used to choose materials to make 
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CHAPTER 1. INTRODUCTION 

II III IV V VI 
B C N 0 

Al Si P 5 
Zn Ga Ge As Se 
Cd In Sn Sb Te 
Hd TI Pb Bi Po 

Table 1.1: The section of the periodic table commonly used for semiconductors 

semiconductor devices from is shown in Figure 1.1. Manufacturers frequently 

select III-V or II-VI binary compounds such as Gallium Arsenide (GaAs), Zinc 

Sulphide (ZnS) or Gallium Nitride (GaN) or may combine additional materials 

to make ternary compounds (which are actually alloys of two binary compounds 

with a common element) such as InxGal-xAs or quarternary compounds such as 

GaxAll-xAsyPl-y' 
Most III-V binary materials have a direct bandgap transition and are useful 

for optical devices such as LEDs and lasers[I]. A common characteristic of com­

pound semiconductors is the increased carrier mobility resulting in very high 

speed switching (speeds rv40GHz are achievable) and due to the material hard­

ness of the Nitride devices an opportunity is presented for high temperature op­

eration when compared to Silicon. Nitride based devices can be useful for pro­

cess control and measurement applications in extreme conditions. Compound 

semiconductors may be used to make devices which operate in the mid and far 

infra-red bands (,\ > 1.1~m) for military applications and for telecommunications 

at the important 1.3~n1 and 1.55~nl wavelengths. 

Figure 1.1 shows a plot of the bandgap energy of many common cubic phase 

III-V semiconductors against the lattice constant of the material. Using the rela­

tion'\ = he/ Eg [2] there is a broad spectrum of photonic emissions available from 

the binary compounds ranging from the near infrared wavelength (51-1111) of InSb 

through the red (CdSe at 729nn1), green (ZnTe at 549nln) and blue (ZnSe at 458nnl) 

to the near ultraviolet of ZnS at 337n111. 

As an example, a semiconductor may have its bandstructure modified for a 

large direct energy gap transition which could be useful in ultra-violet detec­

tion (,\ < O.5~ln) for counterfeit currency detection and skin health monitoring 

purposes[2]. An even more impressive feat is the ability to tune an individual 

semiconductor to achieve an exact emission frequency by incorporating other 

compound species during growth. As a simple example GaAs can have InGaAs 

grown upon it in a series of small strained layers to create a heterostructure su­
per/attice to produce a 1.31-1111 emission, which is very important for modern fibre 

optic telecommunications. The deposition of a thin film of one material upon an­

other that maintains the bulk substrate lattice parameter is called pseudo11lorphic 
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CHAPTER 1. INTRODUCTION 

4.0 
ZnS • III-V ZB Compounds 

• • II-VI ZB Compounds 
3.5 

3.0 
ZnSc 

;;- • CdS 
~ 

2.5 • ZnTc 
IJ,J" • 
ci. 2.0 

CdSe c;l 

0 GaAs • CdTe 
tn 1.5 InP • • • 'l) 

c 
IJ,J 1.0 GaSb • 

0.5 !nAs • TnSb • 0.0 
5.4 5.6 5.8 6.0 6.2 6.4 6.6 

Lattice Period, a (I x I (r'''m) 

Figure 1.1: A chart of the direct bandgap binary compounds available with the 
Zinc Blende structure 

growth and is of great importance to our ability to create semiconductor nanos­

tructures. 

N anostructures 

The strained superlattice briefly mentioned above is an example of a nanostructure 
[3]. Nanostructures have nanometre (1 x 10-91n) sized features of interest. A 

nanometre is roughly 4 semiconductor atom widths, or 1/50000th the width of a 

human hair. For nanostructures to operate correctly and to be useful to us they 

are usually embedded in a bulk semiconductor material to protect them against 

the atmosphere and allow for connectivity to the outside world. Semiconductor 

surfaces have non-radiative combination centres which stop the nanostructure 

from operating correctly and hence should be as far as possible from the active 

parts of the device. 
The first nanostructure we shall briefly consider is the quantum well [4]. A 

quantum well is constructed when a few layers of material B are grown onto a 

bulk substrate material A. This is typically then capped with material A to pro­

duce a region in the bulk semiconductor which has a different set of material 

properties to the main part of the crystal. This is illustrated in figure 1.2. The ma­

terial properties of the quantum well can be altered or tuned as described above 

by growing e.g. InGaAs on GaAs providing a region of quantum confinement 

in the semiconductor. This region can be considered to be a planar system or 2D 

nanostructure and the sheet of different material can act as a carrier trap until the 
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CHAPTER 1. INTRODUCTION 

system obtains a certain applied bias. This is very useful to make devices such 

as lasers which naturally require confinement to obtain population inversion by 

electrical pumping. The density of states in the planar system is altered, due 

to the material strain, to produce a series of step edges (compared to the smooth 

function of a 3D density of states) where the finite size of the lowest step provides 

an energy gain in systems such as quantum well lasers. 

A A AfB\ 
B V_8 
A A 

A 

Quantum Quantum Quantum 
Well Wire Dot 

Figure 1.2: Simple illustration of a quantum well, a quantum wire and a quantum 
dot 

A second type of nanostructure of note is the quantum wire [4]. This is formed 

when a V-shaped trench of material is etched away from a bulk matrix of material 

A and the bottom of the V is filled with material B. This feature is then capped 

with material A to produce a ID line of quantum confinement in the bulk material 

that allows free carrier movement only along the length of the wire. Figure 1.2 

has a simple illustration of this process. If we assume that material B is a semi­

conductor (instead of a traditional metal as the name wire would imply) then 

we can demonstrate that the system would have a series of singularities in the 

density of states, providing an opening of bandgaps and the ability to tune the 

semiconductor system for a desired energy output. 

The third type of nanostructure we consider here briefly is the quantum dot 

[4,5, 6]. An ideal quantum dot (a cube of material B embedded into the bulk of 

material A) would exhibit a three-dimensional confinement of the carriers and 

the associated OD density of states takes the form of a series of delta functions. 

A cubic dot produces a ground state involving a two-fold degeneracy (including 

spin) and a first excited state containing six-fold degeneracy - which is similar 

to an atom with a two-fold degenerate s state and a six-fold degenerate p state. 

Quantum dots are often referred to as artificial atoms due to these properties. 

The ideal cubic quantum dot is however very unlikely to be produced due to the 

currently available growth and manufacturing processes but what we are able 

to achieve is a pyramid or dome shaped growth on the planar surface of mate­

rial A by growing a few monolayers of material B, which is highly lattice mis-
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CHAPTER 1. INTRODUCTION 

matched with material A, until the critical thickness l [7, 8] is obtained and leads 

to a Stranski-Krastanow transition [9, 10] from a 2D planar growth to a 3D sur­

face feature growth. A 3D nanostructure pyramid is shown simply grown onto a 

lattice mismatched wetting layer in figure 1.2. 

A common feature of all of these semiconductor nanostructures is the fact 

that they all take advantage of pseudomorphic growth in III-V semiconductors. 

Pseudomorphic growth occurs when a material of a different lattice constant is 

grown onto a bulk substrate. If we are to take the growth of an InAs layer onto 

a GaAs bulk lattice as an example, from Figure 1.1 we can see that the lattice 

constants of GaAs (5.65325A) and InAs (6,05833A) do not match and we can find 

the level of mismatch in the system to be 7.165% from the simple equation 

at alayer - abulk 
IOmismatch = 100 x -"'-----

abulk 

This 7% lattice parameter mismatch must be accounted for by the pseudomor­

phic growth mode, where the growth material must be able to elastically deform 

to take account of the lattice mismatch and strain in the growth direction. If this 

process does not take place or if there is more than the critical thickness of growth 

material in the upper layer then the system will contain misfit dislocations (where 

the planes in the growth direction do not correctly align). This will degrade the 

device electrical and optical properties due to the reduction of free carrier mobil­

ity. Epitaxial growth is illustrated diagramatically in Figure 1.3. 

Mismatched 
Overlayer 

Em 
.... + .. ·+·+··l 

.. ! i I I 
-f- -or --j--t-H 

~··~·····r···ItJ 
Substrate 

······ .. ···· .. ·· ... ··f .. ·· ···· .. ···i····· 
................................... l .... 

: l 
............ _. ····f···· ......... ~ .... . 
.............. ·····f···· ..... ·····f···· 

Coherent Growth 

_._-t--.-f--

-- .- - f-- f-- c-. . 

. ............ + ..................... . 
···············t .. ···················· 

Incoherent Growth 

Epitaxial Sh-uctUl'es 

Figure 1.3: Strained layer epitaxy showing coherent (pseudomorphic) growth 
and incoherent growth due to misfit dislocations 

When grown without defects or dislocations the material upon the substrate 

IThe critical thickness occurs when the strained material being grown upon the bulk substrate 
can no longer accommodate the strain energy required and growth dislocations become probable. 
This is usually measured in monolayers of growth material. 
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CHAPTER 1. INTRODUCTION 

can have large levels of localised strain in the atomic lattice and this strain pro­

vides us with the ability to tailor the electrical properties and optical characteris­

tics of the nanostructure devices under consideration. Although we can typically 

grow only a few monolayers of highly strained material before we risk disloca­

tions appearing in the device, we can incorporate strain relief layers and begin to 

sandwich layers of quantum wells to create so called superlattices of material that 

exhibit very interesting and useful properties exploited in semiconductor laser 

technology. If we briefly consider using a high percentage of Indium (50% - 80%) 

in an InGaAs grown on GaAs device, the Stranski-Krastanow transition from 20 

planes to 3D surface features takes place due to the segregation of the unincorpo­

rated Indium onto the upper surfaces of the growth material layers and growing 

the material to obtain a critical surface concentration of In (calculated as 80% -

85% [10]) will cause the growth surface to bulge, creating small islands. These 

islands can be overgrown with material for a few monolayers and then capped to 

form quantum dots. This well controlled self assembly mechanism provides us 

with an excellent opportunity to exploit the properties of the artificial atoms in 

optical technology for detectors, lasers or even qubits (quantum bits) for quantum 

computing. 

These advances in thin film epitaxy methods, our understanding of pseudo­

morphic growth, electron microscopy and characterisation techniques have pro­

vided a means to experimentally explore the properties of sub-micron scale de­

vices. However, such devices are very expensive to manufacture, especially in 

a research laboratory where a 10% useful device yield is not unusual. More fi­

nancially acceptable is the computer modelling and prediction of the material 

properties of the semiconductors under consideration and the characteristics of 

the intended devices. 

Atomistic modelling 

Atomistic simulation is based upon the requirement to calculate the interatomic 

forces that underlie atomic bonding to investigate the properties of a piece of ma­

terial. The term atomistic modelling encompasses a variety of computerised tech­

niques for the simulation of condensed matter at atomic-level resolution which 

are widely used in materials research, engineering and physical science disci­

plines. The materials that we are specifically interested in here are the cubic lattice 

forms of the elemental type IV and the binary type III-V semiconductors. A cou­

ple of methods currently exist to provide us with the atomic force information we 

require about the materials of interest. Quantum mechanical simulations are con-
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CHAPTER 1. INTRODUCTION 

sidered to be highly accurate but due to the massive computational complexity 

inherent in the calculations they are limited to a few atoms per simulation. Classi­

cal methods are based upon Newtons Laws and can provide detailed information 

relating to large scale systems in a timely manner, however the simulations are 

considered less accurate due to the number of approximations involved in the 

calculations. Hence, we are faced with a classic engineering trade-off. 

Classical simulation is in the unique position to bridge the gap between theo­

retical predictions and experimental findings. Sometimes the modelling of phys­

ical phenomena is the only choice to simulate a system as a purely theoretical ab 

initio approach can be too computationally intensive. On the other hand it is also 

possible that we don't have enough computational power to model huge systems 

- even with the reduced computational complexity of the Molecular Dynamics 

(MD) approach. 

An atomistic simulation begins with a model of a system of roughly spherical 

objects that could represent atoms, molecules or defects in the system and a set 

of equations governing the energetics of the system with respect to the potential 

and kinetic energies. An important property of the energy equations is that they 

should be differentiable to provide calculation of the forces on the atoms (for 

studying atomic movements) and higher order derivatives for the investigation 

of elastic properties, vibrational modes and thermodynamic properties. 

A number of different atomic resolution modelling techniques exist and the 

ones considered in this work are Molecular Statics (MS) for the relaxation of 

molecular systems into a lowest energy configuration and MD to study lattice 

properties under changing pressure and temperature. MS works by considering 

the system energy at an individual atomic level and manipulating the positions 

of the atomic species to locate a global energy minimum. This is done using a 

conjugated gradient or similar total energy minimisation routine. Molecular dy­

namics is concerned with the forces on the individual atomic locations due to the 

local geometry. MD reduces the amount of energy in the structure in a systematic 

time-step process by solving Newton's second law (F = m,a) per atom. 

Currently it is common to use quantum mechanical methods to consider de­

tailed atomic information for models of up to 102 atoms in small clusters to solve 

specific small scale problems. Reduced scale simulations of this type can pro­

vide accurate and detailed structural information which can then be employed to 

improve the quality of the large scale (l08 atoms) classical atomistic simulations. 

As reasonably priced computing power increases with time, it will be possible 

to perform larger scale atomic simulations using quantum mechanical methods, 

but for now we are happy to combine the two methods for reasonable results in 
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CHAPTER 1. INTRODUCTION 

a reasonable amount of time. When atomistic modelling is combined with theo­

retical predictions and the results are compared to experimental data we have a 

valuable tool that allows us to predict atomic phenomena and physical processes 

in a timely, cost effective and reliable manner. Interestingly, with the advent of 

cheap multiprocessor computing and inexpensive computer memory devices we 

are now in a position where we can study whole nanostructure systems in a sin­

gle computer simulation and models comprising 108 atoms are not unusual for 

high performance computing (HPC) clusters. This work comprises research into 

providing a detailed transferable energy model for classical simulation methods 

and the problems surrounding the parameterisation of the energy function to in­

crease the accuracy of the classical simulation techniques. 

The modelling chain 

The classical atomistic simulation technique encompasses a group of operations 

that we label the modelling chain. To perform an investigation into the effects of the 

atomic composition in quantum dots on the piezoelectric field and the conduction 

band energy levels the modelling chain of Migliorato et al [5,6] was as follows: 

1. Experimental data: Initially a number of cross-sectional transmission electron 

microscope (TEM) samples were studied in detail to obtain the shape, size 

and composition of quantum dots in InXGal-X As grown on a GaAs sample. 

2. Construct model: A 800,000 atom computer model that would reproduce 

a quantum dot in bulk material complete with wetting layer and a good 

amount of capping material was produced that would correctly model the 

system to the correct scale. 

3. Structural relaxation: Although the computer model was subject to a coarse 

"plane bending" algorithm to allow for the ternary material present in the 

quantum dot, the positions of the atoms in the computer model needed to 

be refined to more accurately resemble the real device. A structural relax­

ation was performed via MD simulation that allowed the atoms to move 

around into local energy minima to provide a highly accurate model of a 

realistic quantum dot. 

4. Gridding: Once the quantum dot and the surrounding bulk material had 

been relaxed into a lowest energy state, the individual point energies of the 

atoms were passed through a "gridding" algorithm that provided a regular 

three-dimensional lattice of energy values so that the grid could be subject 

to calculus operations for investigations of the dot properties. 

8 



CHAPTER 1. INTRODUCTION 

5. Piezoelectric field calculation: Here the regular energy grid calculated in step 

4 was transformed into a piezoelectric field providing information about 

the local strain energy in the system based upon the concentration of the 

ternary atoms in the quantum dot system. 

6. Wavefunction calculation: From the energy grid provided in step 4, the quan­

tum wave functions of the system were calculated for the ground state and 

the first excited energy level using k· p theory. This is expained in some 

detail in Appendix B which deals with the quantum dot model and the 

computational techniques used to calculated the wavefunctions. Deriva­

tion of the analytic integrals used in the work and the system Hamiltonian 

(including the effective ~ass approximation for the varying local strain in 

the model) are presented alongside the core of the computer code. 

This work is mainly concerned with the operations involved in step 3 of the 

modelling chain, and specifically improving the quality of the potential energy 

function required to perform the structural relaxation of the atomic models. The 

structural relaxation step can be considered analogous to a molecular dynamics 

simulation. In a MD simulation Newton's 2nd Law is iteratively solved in a time­

step fashion for each atom in the system, moving each atom and re-calculating 

the atomic energies, until the whole structure has been reduced to its lowest en­

ergy level. We may calculate the acceleration experienced by each atomic site 

via the calculation of the force on each atom and dividing by the mass of that 

atom. The force on each atom is simply calculated as a first derivative of the 

energy on each atomic site and so we need a potential energy function (PEF) to 

relate the atoms in the system to their neighbours. The Tersoff semi-empirical 

potential energy model had already been chosen as the PEF of choice in the pre­

vious work of Migliorato et al[S, 6]. It allows for accurate and rapid simulation of 

multi-component systems and demands only an average computational burden 
in comparison to similar semi-empirical potentials. 

Goals 

Here we define the goals of this work as the following: 

• To investigate the nature of the Tersoff potential energy function that is used 

to provide highly detailed and accurate structural relaxation in the mod­

elling of large scale quantum nanostructure systems . 

• To investigate methods of parameterisation of the Tersoff potential for elas­

tic and vibrational properties. In particular, to investigate whether an in-
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CHAPTER 1. INTRODUCTION 

dividual parameterisation of the Tersoff potential (e.g. for the structural 

character of the material) can be transferred to provide accurate results for 

other material properties such as the phonon frequencies . 

• To provide detailed parameterisations of the Tersoff potential for a number 

of different semiconductor systems and to construct a library of parameters 

enabling simulation of a number of different compound semiconductors . 

• To attempt to reduce the computational time required to find a parameter 

fit of the Tersoff potential to an individual semiconductor system. 

To achieve the above goals a number of things are required and are listed 

below: 

1. A computer: The type of computer we choose for our atomic simulation is 

entirely based upon the amount of time we wish to wait for the simulation 

results and the amount of money we have available. The amount of time 

involved in an atomistic simulation is roughly proportional to the complex­

ity of the functions we are attempting to solve and the scale of the atomic 

model. This time can be reduced by exchanging simple desktop comput­

ers for expensive workstations, multi-processing cluster computers or even 

buying processing time from high-performance computing (HPC) facilities 

- if we can meet the associated increasing costs. 

2. An atomic model: In molecular dynamics simulations the atomic model typi­

cally comprises a vector of data per atom. This vector can consist of a triplet 

of real-valued data describing the position of the atom in three dimensional 

space on Cartesian axes and the atomic element at that location. It is com­

mon, however, to include more detailed information in the vector detailing 

the mass of the atom, the velocity of the atom (in a time stepped MD simu­

lation), a list of neighbouring atoms and the energy at the atomic location. 

3. A potential energy function: The PEF is an essential part of a classical simu­

lation as it allows us to calculate the atomic site and system energies. If the 

PEF is continuous and differentiable it can provide information about the 

force on the atomic site due to the local bonding neighbourhood. If the sec­

ond derivatives of the PEF are available we may calculate detailed material 

properties. 

4. Calculation of the material properties: In order to parameterise the potential 

we need to form accurate and robust methods of calculation of the ma­

terial properties of the semiconductor systems of interest. We also need 
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CHAPTER 1. INTRODUCTION 

a set of values to compare our calculated values against. A comparison 

database of material values can be formed from experimental observations, 

first-principles mathematics or highly accurate quantum mechanical simu­

lations. 

Detailed consideration of each of the above points is provided in chapter 2 

and is followed by a section about the theory of the material properties of the 

semiconductor, the elastic properties of the material, the vibrational frequencies 

and the phase stability of the simulated material. 

The computing platform 

Although it is not unusual to p·erform atomistic simulations on large-scale multi­

processor computing clusters, the parameterisation of the potential energy func­

tion can be performed on a much smaller system. The parameterisations listed 

in this work were all performed on a standard desktop machine running Fedora 

Core 4 Linux. The desktop machine contains a 3GHz Pentium 4 processor with 

2Gb 400MHz RAM and an nVidia GeForce 5800 graphics card. Code develop­

ment work was done on a laptop computer containing a 3GHz Pentium 4 proces­

sor with 512Mb 400MHz RAM and an ATI Radeon 7000 GPU. All computer code 

was written in ANSI standard C/C++ and the code was developed in Eclipse 

3.1.1 and compiled with gee 4.0.2 under Linux. Matrix diagonalisation for the so­

lutions to eigenvalue equations was provided via the BLAS 3.0.36 and LAPACK 

3.0.36 libraries. 

Scope of this work 

After this brief introduction to compound semiconductors, nanostructures and 

atomistic modelling there follows a chapter of background information. Details 

are given regarding the types of atomic lattices and the properties of the materials 

that are to be modelled. The material properties are defined and examined from 

a physical perspective and information about the elasticity theory of crystals and 

lattice dynamics is provided. 

Chapter 3 is an introduction to the Tersoff potential energy function and in­

cludes an exhaustive literature review of the work of other authors and groups 

around the world and their applications of the Tersoff potential energy model. 

Chapter 4 comprises the results of the energy and elasticity modelling for 13 

different semiconductor systems. Here results are provided for elemental type 

IV semiconductors, type III-arsenides, type Ill-phosphides, type III-antimonides 
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and cubic III-nitride crystals. A couple of different computation methods are dis­

cussed and all results are compared to other work wherever possible. 

Chapter 5 contains the details of the lattice dynamics modelling and includes 

predictions given by the Tersoff potential energy function for the phonon vibra­

tional frequencies and the associated mode-Griineisen parameters. These results 

are discussed in some detail and a conclusion leading to a modification of the 

functional form of the Tersoff potential is provided. Chapter 6 is a general re­

view of the work and includes a global discussion and conclusion. Future work 

is identified and a short plan of action is set out. 

Appendix A contains the first and second derivatives of the Tersoff potential 

which were analytically derived and are used extensively in the calculations of 

the results provided in chapterS. Appendix B contains a derivation of the Hamil­

tonian used to solve Schrodinger' s equation for a realistic quantum dot model 

and the analytic integrals used in the computer program to increase the accuracy 

and the speed of the results. 
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Chapter 2 

Background Theory 

2.1 The lattice model 

Before we can begin to model a semiconductor system with a computer we need 

an accurate method of representing the atomic positions and elements in com­

puter memory. To do this we will use a lattice model. A lattice is a regular ar­

rangement of points in three dimensional space and has the property that the 

units are arranged in a periodic array[l]. The internal structure of a crystal can be 

represented by a Bravais lattice which summarises the unit periodicity inside the 

structure and the points may be single atoms, groups of atoms or molecules. 

A three dimensional Bravais lattice consists of all points with position vectors 
R of the form 

(2.1) 

where aI, a2 and a3 represent the three shortest (or primitive) vectors not lying 

in a plane and nl, n2 and n3 cover all integer values. The Bravais lattice has the 

periodicity property that the array looks identical from any viewpoint. 

A crystal structure is composed of a unit cell, the smallest set of atoms that al­

lows periodic replication of the structure. The unit cell is described by the primi­

tive vectors and the basis set which is periodically repeated in three dimensions to 

form the lattice. In this work we consider only cubic lattices that have a lattice pa­

rameter a that describes the length of all three unit cell dimensions on the normal 

orthogonal Cartesian axes[2]. An unstrained cubic lattice has the property 

It is also useful sometimes to consider our lattice in reciprocal, Fourier, or k 
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space[3, 4]. Reciprocal space can be defined by the vector, G which is given by 

(2.2) 

As before, Tn is any integer value and the lattice is made up of b vectors which 

are related to the previous primitive a vectors by 

27r 
b 1 = T2 (a2 x a3) 

27r 
b2 = n (a3 x al) 

27r 
b3 = n (al x a2) 

. 
It can easily be shown that G . R = 27r N, where N is an integer. The primitive 

unit cell of the k-space lattice is formed by taking the Wigner-Seitz cell, called 

the central Brillouin Zone (BZ). The Wigner-Seitz cell displays the full symmetry 

of the crystal lattice and can be simply located by drawing lines from a central 

reciprocal point to all nearest neighbours, bisecting these lines and taking the 

smallest enclosed region of this construction to be the central Brillouin Zone. The 

BZ has the same point group symmetry as the reciprocal lattice and the direct 

lattice it is associated with and hence if a function f(k) exists for a vector k inside 

the BZ, then it will obey the crystallographic point symmetry of the direct lattice. 

Boundary conditions 

We should take note of periodic boundary conditions or the Born-von Karman[5] 

boundary conditions. A real crystal has finite size and will terminate with a sur­

face. Surfaces are very complex to model and we may reduce the complexity of 

our simulation by considering the crystal to be infinite in all directions. This is 

practical for modelling a small section of bulk semiconductor. To consider the 

system to be infinite we must impose cyclic or periodic boundaries on the system 

that implies that each surface of the crystal lattice is wrapped around and con­

nected back to the surface opposite to it. This is clearly unrealistic but it will aid 

computation and can be formalised 

i = (1,2,3) (2.3) 

where Ni are integer values and ai are the primitive translation vectors. We must 

be careful not to use a system that is too small inside our periodic boundaries 

as it becomes problematic for the simulation to consider a system that is linked 
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back and bonded to itself. We have effectively connected the edge of the simula­

tion box in each direction to an exact replica of the original box. Hence the bulk 

material simulation is considered to be repeated in all directions to infinity to 

avoid any edge effects such as surface energy modelling, which is typically more 

complex and can disturb bulk simulation results. 

Crystal lattices 

The simplest cubic crystal lattice is called "simple cubic" (sc) and is described by 

a single basis atom at Xl = [0,0,0] and the simplest primitive vectors 

at = [a, 0, 0] 

a2 = [O,a,O] 

a3 = [0,0, a] 

This implies that in each cubic cell that comprises the lattice system there is 

only one atom placed in the same origin corner of each cell. This is an elemental 

lattice as there is only one atom type in each cell and is labelled the Ah crys­

tal in Struktllrbericht notation[6]. Strukturbericht symbols are a partly systematic 

method for specifying the structure of a crystal. The A structures are monatomic 

elemental lattices and the B structures are diatomic lattices with equal numbers 

of atoms of each type. 

The Allattice is called face centred cubic (fcc) and comprises a basis set of one 

atom at Xl = [0,0,0] and three primitive vectors 

at = [0, a/2 , a/2] 

a2 = [a/2 , 0, a/2] 

a3 = [a/2 , a/2 ,0] 

Hence the fcc lattice has 4 atoms per periodic cubic unit cell. The A2lattice is 

also known as the the body centred cubic (bcc) lattice and has 2 atoms in the basis 

set at locations 

Xl = [0,0,0] 

X2 = [a/2 , a/2 , a/2] 
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and the primitive vectors 

al = [a, 0, 0] 

a2 = [0, a, 0] 

a3 = [O,O,a] 

The first B-type lattice we briefly consider is the sodium-chloride (NaCI) lat­

tice. This is also known as the Bllattice and is made up of 

Xl = [0,0,0] 

X2 = [a/2 , a/2 , a/2] 

and the primitive vectors 

al = [0, a/2 , a/2 ] 

a2 = [a/2 , 0, a/2] 

a3 = [a/2 , u/2 , 0] 

Species I 

Species II 

Hence the NaCI type lattice has 8 atoms in the cubic unit cell. The caesium 

chloride, CsCI, or B2 lattice has 2 atoms in the unit cell and is the diatomic ana­

logue of the bcc lattice. The basis set is described 

Xl = [0,0,0] 

X2 = [u/2 , u/2 , u/2] 

and the primitive vectors 

The diamond structure 

al = [a, 0, 0] 

a2 = [0, a, 0] 

a3 = [0,0, a] 

Species I 

Species II 

The diamond structure, also known as the A4lattice, can be considered to be two 

interpenetrating face centred cubic (fcc) substructures which have been displaced 

by (a/ 4, u/4 , a/4 ). The cubic unit cell has 8 atoms, four of which are from each sub­

structure. This system has a co-ordination number, Z, of 4 - meaning that each 

atom has 4 covalent bonds to nearest neighbours. It can be natural to think of 
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an atomic crystal matrix in terms of cubic units but for the modelling of semi­

conductor systems it is usually more convenient to consider the individual atoms 

and their immediate environment. Each atom in the diamond crystal structure 

has an identical local environment over an infinite mathematical lattice - and this 

can sometimes simplify our modelling procedure greatly. 

In a covalently bonded crystal, such as elemental silicon, the atoms share their 

electrons with the neighbouring atoms to complete the outer electron shells of the 

bonded atoms. Covalent bonds typically form between atoms of a similar outer 

electron shell structure such as the type IV atoms in a Si-Si bond or the type III-V 
atoms in a mildly ionic Ga-As bond. Because of the nature of the hybrid bonding, 

the atoms in a condensed solid have a preferred relaxed geometry (based upon 

an energy minimum in the struc:ture) which can be stated in terms of a favoured 

separation distance and preferred angles. Silicon has 4 outer shell electrons which 

can form four Sp3 bonds with 4 neighbouring atoms and by consideration of the 

lowest energy configuration of 4 spheres packed around a central atom, it is intu­

itive that the atoms will assemble into a regular tetrahedral shape. 

This diamond crystal is considered an open lattice as it is not in one of the 

closest packing configurations. The diamond lattice primitive vectors are 

al = [0, a/2 , a/2] 

a2 = [a/2 , 0, a/2] 

a3 = [Q/ 2 , a/2 ,0] 

and the atomic basis set is made up of a pair of atoms described 

Xl = [0,0,0] 

X2 = [a/4 , a/4 , a/4] 

The volume of the primitive unit cell is given by: n = lal . (a2 x a3)1 and the 
volume of the BZ is given by: nBZ = (2~)3. 

A simple x, y, z format file can also be used to enter the information for the 

primitive unit cell. This is shown in Figure 2.1 where we initially give the number 

of the atoms in the file, a comment line (or blank line) and then describe each 

of the 8 atoms with an element name and the x, y, and z Cartesian spatial co­

ordinates. In the file below we have described the atomic co-ordinates in cubic 
unit cells: 

Both of the above representations produce the same result shown in Figure 
2.2(a). 

17 



CHAPTER 2. BACKGROUND THEORY 

8 
### Comment ### Here is the pr imi tive un it c e ll of s ilicon 
Si 0 . 0 0 . 0 0.0 
Si 0 . 25 0 . 25 0 . 25 
Si 0 . 0 0 . 5 0 . 5 
Si 0 . 5 0 . 0 0 . 5 
Si 0 . 5 0 . 5 0 . 0 
Si 0 . 75 0 . 75 0 . 25 
Si 0 . 75 0 . 25 0 . 7 5 
Si 0 . 25 0 . 7 5 0 .7 5 

Figure 2.1: An example xyz input file for a cubic unit cell of diamond silicon 

(a) Diamond 5i primitive cell (b) Zinc B1ende GaAs supercell 

Figure 2.2: Examples of cubic crystal lattice structures both viewed along the 
[100] direction 

The zinc blende structure 

The Zinc Blende structure (a.k.a. the B3 structure) is the two component analogue 

of the diamond structure. The stacking of the planes in the [111] direction is AB­

CABC as seen in the diamond crystal. Where the silicon diamond structure can 

be considered as a combination of two fcc lattices, the Zinc Blende lattice can also 

be considered to be two interpenetrating fcc sublattices where one is made up of 

the Species I atoms and the other made up of the Species II element. Each Species 

I atom can be considered to lie at the centre of a regular tetrahedron formed by 

the four nearest neighbours (of Species II) and hence we can define the angle sub­

tended by each of the neighbouring atoms as cos-1(_ 1/ 3) = 109.47°. It is fully 

tetrahedrally bonded to 4 Species II atoms and these bonds are Sp3 hybrid co­

valent bondsl . Similarly, the Species II atoms are surrounded by 4 tetrahedrally 

] Sp3 simply indicates that due to the sp hybrid created by the linear combination of the 5 orbital 
and the p orbital we have an asymmetric probability distribution of atomic charge in the direc tion 
of the axis of the p orbital and that we are 3 times more likely to find an electron in the p state 
(excited state) than the 5 state (ground state). 
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bonded Species I neighbours, in an inverted tetrahedral shape. In a III-V sys­

tem such as gallium-arsenide (GaAs) the atoms will be predominantly covalently 

bonded but will also have a mild amount of ionic interaction energy. Further­

more, in a III-V system such as GaAs it is common to refer to the type III species 

as the metallic atom or the cation indicating a less positively charged ion and the 

type-V atom, the more positive ion, as the anion or semi-metal[7]. The system 

primitive vectors are described identically to the diamond lattice but the atomic 

basis set now contains two atomic types 

Xl = [0,0,0] 

X2 = [a/4 , a/4 , ald 
Species I 

Species II 

It would be typical to make a Gallium Arsenide (GaAs) lattice from this basis 

set by defining Species I as Gallium and Species II as Arsenic. By placing the ba­

sis set in the positions described by the system primitive vectors we can obtain 

an eight atom reduced unit cell of size [a, a, a] that we can use to model a bulk 

Zinc Blende lattice. A simple extension of this to a 2x2x2 primitive cell structure 

is shown in Figure 2.2(b). This 64-atom structure is usually referred to as a sim­

ulation supercell and is usually taken as the minimum number of atoms required 

to perform a simple simulation due to the periodic boundary conditions imposed 

upon the system and the potential cut-off function which limits the computation 

to the nearest neighbours of the atom under consideration. 

2.2 The potential energy function 

Potential energy modelling is of fundamental importance to atomistic simulation 

as it provides the ability to simulate the levels of energy provided in the semicon­

ductor model under investigation on a per atom basis. A good potential energy 

model should be able to balance both the radial forces in the system which resist 

a change in the bond lengths from the equlibrium value and the angular forces in 

the system which resist change in the shape of the preferred tetrahedral angles at 

the unstrained equlibrium state. The potential should be able to replicate both of 

these important bonding forces found in covalent and partly ionic semiconduc­

tor systems and should be differentiable to provide atomic resolution values for 

force which are required to solve Newtons second law for MD simulations. 
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A classical potential can take the form 

v = L Vi (ri) + L V2(ri, rj) + L V3(ri, rj, rk) + ... 
i i,j i,j,k 

Where: V is the total energy of the system under consideration. There are N 

atoms in the system and the atomic sum loop indices i, j, k = [1. .. N]. VI repre­

sents a single particle potential, V2 is a pair-potential (or two-body potential) and 

only depends upon the distance between the atoms 'i and j. V3 is the three-body 

interactions in the system and may contain angular dependence terms. Three­

body and higher order potentials are grouped into a category called many-body 

potentials and are typically computationally difficult and impractical to solve nu­

merically. 

It is also typical that potential energy functions of this form will count the 

contribution of each atom pair twice in the nature of the summation. Hence we 

will calculate the contribution from atom pair 'i - j and also j - i, so it is common 

to find the whole potential divided by a factor of 2. 

There are a number of ways to calculate the force lij acting upon atomi due 

to atomj. A common method is to take the first derivative of the energy function 

with respect to the atomic separation 

where rij :-:: ri - rj and \7 operates on position ri of atomi' This can be ignored 

for simple pair potentials. 

It is also common to include a cut-off function (with a radius r c) for a poten­

tial energy model to avoid massive computation of overly-complex long-range 

forces beyond the 1st nearest neighbour (first nn) shell. Hence V(rij) -., 0 for 

values rij > r c' However, this cut-off function will lead to a discontinuity in the 

second derivatives as the function jumps to zero at rij = r c and presents us with 

unphysical behaviour and a problem finding the derivatives of the potential. We 

can accommodate this by including a trigonometric smoothing function in the in­

terval r c < rij < (r c + ~r) which will make the potential and the force continuous. 

We shall now examine a few potential energy models and the pros and cons 

associated with them. 
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Two-body potentials 

The most simple example of a two-body potential (or pair-potential) is the Morse 
potential 

De-20:(r-ro) _ 2De-0:(r-ro) (2.4) 

This is based upon the three fitting parameters ro which shifts the energy min­

imum in the potential form to account for the equlibrium bonding distance, Q 

which scales the effect of the exponentials to model the change in energy as a 

function of the bonding distance and D which scales the whole potential form. 

The Morse potential has led to many other authors suggesting modifications 

based upon the physical properties of a number of close packed materials such 

as the Lennard-Jones potential (LJ), which is another classic example of a pair­

potential[8] 

where E represents the cohesive energy and a is the equilibrium atomic separation 

and are usually fitted from experimental data. The attractive 1/r6 term is also 

known as the Van Der Waals or fluctuating dipole potential[l] and is obtained 

from consideration of two atoms separated by a distance r .. Although there will 

be no net charge distribution, instantaneously we can consider an electric field 

ex: 1/r3 in one of the atoms, hence the two dipoles represented by the two-atom 

interaction can be multiplied together to form a lowering of the energy of the 

form ex: 1/r6
• The 1/r12 term is not necessarily physically motivated but comes 

from the idea that the repulsive term must be shorter-ranged than the attractive 

term and computationally (1/r6)2 is easily found. 

The LJ potential has performed well in the past for simulation of Noble gasses, 

but is severely limited for semiconductor systems. It performs very badly with 

open lattices like the diamond or zinc blende cystals as no angular bonding infor­

mation is taken into account. Furthermore, there is a lack of flexibility with the 

model parameters to consider the covalent though partially ionic bonds found in 

compound semiconductors. 

Many other pair-potentials have been proposed based upon the pioneering 

work of Morse but they all have the same shortcomings in terms of modelling 

open structures and ionic systems. It has been proposed that these potentials 

may be modified to only consider short-range interactions with the potential cut­

off functions and that the Coulombic interactions between ions may be modelled 
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via 

vtotal (rij) = Vshort-range pair (rij) + Vionic( rij) 

Zl Z2e2 
= Vs'wrt-range pair (rij) + -4--

7rEOrij 

Many-body potentials 

This group of potentials was called cluster potentials by Balamane[9] and contains 
an explicit angular bonding term. They generally take the form 

v = L V2(ril rj) + L V3(ril rjl rk) 

i,j • i,j,/': 

An example of a many-body potential is the Stillinger-Weber (SW)[10] poten­

tial which takes the form shown above and includes an explicit angular bonding 

term. It was suggested that the potential worked well to model silicon and the 

parameters of the potential were fitted to lattice constant, cohesive energy and 

melting point, but the authors made light of the fact that to obtain the correct 

melting point, the cohesive energy is 70/0 adrift. Other authors have reported suc­

cess in reproducing reasonable lattice constant data from the (SW) potential. 

A bond order potential takes the form[ll] 

(2.5) 

and is so called because the bjik term weakens the attractive component of the 

potential based upon the local chemical bonding geometry notably as number of 

neighbours or coordination number z increases. Physically this seemes reason­

able: if an atom has N outer electrons as the system forms covalent bonds with 

other atoms it can share N electrons with one another single atomic neighbour or 

share N/2 electrons with two nearest neighbours, etc. Hence, as the number of 

neighbours increases the individual bond strength decreases. Hence the strength 
of the bond is a monotonically decreasing function of z[12] 

b -8 
jil.: ex: z 

and the scaling factor J has been successfully hypothesised (for example in a car­

bon system[13]) to take a fixed value of J = 1/2 providing us with 

1 
bjik ex: Vz 
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This type of potential hides the angular dependence in the bjik term of equa­

tion 2.5 and these potentials were named by Balamane[9] as cluster fU11ctio11als. 
The attractive and repulsive components of the potential provide a purely pair 

potential such as the Morse potential 2.4 and the many-body term, bjiJ..~ provides 

all scaling necessary to describe the bonding environment. It must also contain a 

hidden three body-loop of the form Li,j,J..:(rij, rik) to provide the angular depen­

dence information. 

The Tersoff empirical potential is an example of a bond-order potential and 

is the potential energy function of choice for this work. The empirically derived 

bjiJ..~ term in the Tersoff potential approximates the second-order moment of elec­

tronic density[14] and makes the functional form of the potential a very powerful 

and accurate tool for modelling covalent solids such as the bulk semiconductors. 

Chapter 3 is devoted to a comprehensive review of the Tersoff potential, its func­

tional form and the success of other workers using the Tersoff potential. 

2.3 Simulated properties 

By combining the lattice model and the potential energy model we hope to model 

bulk semiconductor systems. However, the potential energy function needs to be 

tuned to each semiconductor system of interest individually and to do this cor­

rectly we need to provide a number of measures, or metrics, that we can fit the 

potential to. A number of material properties that can be explicitly measured are 

required so that we can make the computer model replicate the behaviour of the 

bulk semiconductor. Two of the chosen material properties are the lattice param­

eter a and the cohesive energy Ecoh which may be found by simple hydrostatic 

relaxation of the lattice model with the potential energy function. Material prop­

erties that are more difficult to calculate from the lattice model are derived from 

the elastic constants Cll and C12 and are called the bulk modulus B and the shear 

modulus C'. The elastic property C44 and the Kleinman internal displacement pa­

rameter ( provide further material properties that we may attempt to fit our po­

tential energy model to. We will also consider the material dynamical properties 

in the form of the phonon frequencies Wn and the mode-Griineisen parameters "tn. 

Elastic properties 

General elasticity theory [5] begins with Hooke's law which tells us that, for a suf­

ficiently small extension of a material sample, the force F is proportional to the 

extension l:1l of the material and the initial length l. The force is also proportional 
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to the cross-sectional area of the material A. We can write and equation for the 

force 
F= Y·A· ~[ 

[ 

where Y is a property of the material and is called Young's modulus. 
We define stress as the force per unit area and strain as the stretch per unit 

length of the material, providing 

Y = stress 
strain 

(2.6) 

Another part of Hooke's law tells us that if we stretch a material sample in 

one direction, it will contract at right angles to the stretch[15]. If we define the 

sample width, HI and a height, h we can write 

~w ~h ~l 
-=-=-(5-

'W h l 

where (5 is a property of the material called Poisson's ratio. With the properties Y 

and (5 we can completely specify the elastic properties of a homogeneous isotropic 

(non-crystalline) material. 

The deformation of crystalline materials under small strain is more complex 

and must be described in terms of the local strain at every point in the elastic 

body [16, 17]. We now consider stress from the following definition: A body in 

which one part exerts a force on neighbouring parts is said to be in a state of 

stress. We consider a small volume element inside a body of material. The forces 

exerted on the surface of the element by the material surrounding it exert a force 

proportional to the surface area of the rna terial. 

It is convenient to formalise this in terms of tensor notation. To calculate the 

force at a point, P, inside a material we can consider an area, 88 that passes 

through P and a unit vector I perpendicular to 88. We can now label the force 

transmitted across the area as p88 and as 88 ~ 0 and the relation between the 

two vectors as 

Ih = (5U[1 + (512[2 + (513[3 

P2 = (521[1 + (522 l2 + (523[3 

P3 = (531[1 + (532[2 + (533[3 

where (511, (512, •.. , (533 forms a second rank tensor and is called the tensor of stress 
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given by 

[

0"11 0"12 0"13] 

O"ij = 0"21 0"22 0"23 

0"31 0"32 0"33 

We may write the above equations more conveniently as 

or as 

3 

pI = LO"lj lj 

j=l 

3 

p2 = L0"2j lj 

j=l 

3 

·p3 = L0"3jlj 

j=l 

3 

Pi = LO"ijlj 

j=1 

(i = 1,2,3) 

and finally we may use the Einstein summation convention which states: "When a 

letter suffix occurs twice in the same term, summation with respect to that suffix 

is to be automatically understood"[17] and write the tensor relations as 

where j is the dummy suffix and i is the free suffix. 

The components O"ij (i = j) are called the normal components of stress and the 

components O"ij(i -=I j) are called the shear components of stress. Positive values of 

O"ij (i = j) iInplya tensile stress and negative values are termed a compressive stress. 
Homogeneous stress occurs if the force acting upon the surface of an element of 

fixed shape and position is independent of the position of the element inside the 

body. And inhomogeneous stress occurs when the stress in the element varies from 

point to point internally. 

A number of special cases of the stress tensor exist and are listed below for 

convenience 

Uniaxial stress, [~ 
0 

~] 0 

0 

[aJ 0 

~] Biaxial stress, ~ 0"2 

0 
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[

a 1 

Triaxial stress, normal stress, ~ 

[

-p 

Hydrostatic pressure, p, ~ 

o 
-p 

o 

Pure shear stress, [~a ~ ~] == [~ ~ ~] 
o 0 0 0 0 0 

It should be noted here that aij is a symmetrical tensor in the absence of body 

torques - which will assist us in simplifying our notation later in the chapter. 

Previously we described strain as the stretch per unit length of material. We 

shall now formalise this and introduce some more tensor notation 

. increase in length ~ u 
stram = =-

original length ~x 

and we can define a tensor eij as: 

Element eij has 2 components 

where Eij is a symmetrical tensor which we call the tensor of strain 

and Wij is an antisymmetric tensor which represents rotation 

The strain tensor, Eij can be written 

e22 

1/2(e32 + e23) 
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The diagonal components of Eij are the tensile strains (stretches) and the other 

components represent shear strains. Homogeneous strain Occurs when the strains 

are referred to the principal axes and the shear components vanish leaving only 
the principal strains, El, E2, f3 

Principle strain, [::: ::: :::] --.of [~ f~ ~J 
E31 E32 E33 0 0 E3 

We can define dilation as the change in volume of a unit cube. The tensor that 

provides dilation, or hydrostatic strain, is 

It is common to find the strain tensor Eij written in terms of ,,/, the shear com­

ponents of strain (also called the engineering shear strains) 

(where: "/xy = 2E12) 

It should also be noted tha t when talking of engineering strains 

Returning to Hooke's Law we have defined (Eq 2.6) the following relation 

(J=c·e 

where c is the elastic stiffness, or Young's modulus of the material calculated from 

c = 1/ s. The s term is known as compliance. It is found that if a general stress (Jij 

is applied to a crystal then the resulting strain fij is such that each component is 
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linearly related thus 

and eight other similar equations exist for the other components of aij' We may 

write (using the Einstein notation) 

where Cijkl represents the 81 stiffness constants (called elastic constants) of the ma­

terial and forms a 4th rank tenso~. Due to symmetry properties of the crystal 

(CijJd = Cijlk and Cijkl = Cjikl) only 36 of the 81 components of Cijkl are indepen­

dent. Taking the symmetry properties into account we may achieve a simpler 

nota tion using a single suffix nota tion 

Hence Now we may write 

Tensor nota tion 
Matrix notation 

Cijkl = Cmn 

where i,j, k, I = [1,2,3]; m, n = [1,2,3,4,5, G] and 

Cll C12 C13 CIt CI5 C16 

C21 C22 C23 C2.t C25 C26 

C31 C32 C33 C3t C35 C36 
Cij = 

C41 C42 C43 C4.1 C45 C.t6 

C51 C52 C53 C54 C55 C56 

C61 C62 C63 C6.! C65 C66 

Nye[17] demonstrates that for a cubic crystal system we may, through sym-
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metry arguments, reduce the number of elastic constants Cij required to fully de­

scribe the elasticity of the crystal, to just 3 values 

The strain energy of the crystal must be positive otherwise the crystal would 

be unstable, hence for a cubic crystal we have the following relations which must 

be obeyed 

C44 > 0, Cll + 2C12 > 0 

The bulk modulus B and the shear modulus C' are the material properties we 

wish to calculate from our lattice simulation. Band C' can be calculated directly 

from the lattice model using the potential energy function and the stress/strain 

relations described above. These are related to the elastic properties of the mate­

rial via the following definitions[16] 

and the inverse transforms are 

B = (Cll + 2C12)/3 

C' = (Cll - C12)/2 

4 , 
Cll = B + 3C 

2 , 
C12 = B --C 

3 

which can provide us with the elastic constants Cu and C12 from the calculated 

values of Band C'. vVe may also calculate the elastic property C44 from our lattice 

model, an induced shear strain and the Tersoff potential. However, this calcula­

tion requires an energy relaxation step of the Species II internal sublattice. This 

method is covered fully in section 4.1 and includes an explanation of the Klein­

man internal displacement parameter which is a measure of the magnitude of the 

sublattice relaxation when calculating the C44 crystal property. 

Lattice dynamics 

We can consider the dynamics of a crystal by considering both the atom ion cores 

and the electrons in the outer shells separately[18]. At temperatures above abso­

lute zero (0 Kelvin) the atoms will be excited QY thermal energy that will cause 
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lattice vibrations as the atoms move about around their equilibrium positions. In 

a crystal a description of this motion may be made simpler by consideration that 

the system is periodically bounded and has translational periodicity, enabling us 

to split it into primitive unit cells as described in Equation 2.1. We may now con­

sider only the unit cell with n ion cores and the electrons associated with them. 

Even this small system is very complicated to describe so we shall make a couple 

of approximations to aid us: 

Adiabatic approximation We shall treat the motion of the ion cores of the atoms 

and the motion of the electrons separately. This is reasonable since the mass of 

the atom core is generally much larger than that of the electrons surrounding it 

and hence the electrons will have a small effect on the vibration of the atom core. 

The two caveats associated with this approximation are: 

1. When we are considering the motion of the electrons we shall assume that 

the atom cores are in their equilibrium positions. 

2. The motion of the atom cores will be considered due to a potential energy 

field genera ted by the av .. erage motion of the electrons. 

And a couple of other things we need to bear in mind are noted: 

1. It is important to note here that using a potential of the form shown below, 

we are also only considering the interaction of the nearest neighbours upon 

the atom of interest. 

2. We shall also assume in all of this work that the Born - von Karman periodic 

boundary conditions are met. This implies that a given function is periodic 

on a certain Bravais lattice. See eq 2.3. 

The harmonic approximation If we consider the potential energy function inside 

the crystal due to the atomic bonding, we may use an expansion of the potential 

energy models presented earlier (e.g. eq 2.5) in a Taylor series for powers of a 

small value h = rij - ro to consider the dynamics of the problem. We will consider 

a general potential energy function, V(rij), and make the assumption that close 

to the equilibrium interatomic lattice spacing, ro, the potential will be parabolic 

( DV ) 1 (D2V) 2 V(rij) = V(ro) + -. ,-" . h + - D' ~, . h + '" 
Drt ] 0 2 rt] 0 

(2.7) 

where the first term given above'is a constant and considered to go to zero in 

dynamical problems. The second term relates to a force on the system, and as 

we have already stated we are considering the system to be in an equilibrium 
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position and so this term will go to zero. Consideration of only the third term, 

the quadratic term, is called the harmonic approximation. We are considering 

each atom in the crystal to be a harmonic oscillator and hence the quadratic term 

represents an interatomic force constant. 

A monatomic linear chain 

Hooke's Law for spring force states 

F = -k·x 

where the force exerted by the spring, P, is related linearly to the extension of the 

spring, x, and a constant, k, known as the spring constant. If we now consider 

a series of 17, atoms placed in a line and equally spaced a distance a apart, as 

shown in Figure 2.3, and consider the small displacements Un of the atom nand 

the displacements of the neighbouring atoms n - 1 and n + 1, using Newton's 2nd 

. we can write an equation to follow Hooke 
,. 

m ~~n = A [(Un+l - un) + (Un-l - un)] (2.8) 

where m is the mass of the atom and A is the nearest neighbour force constant. 

_a ___ 
n-l n n+l 

0-"\/\/\/\~)-l\/\/\/~~\\/\;~"~}-f\/\/\/'--O 
m A: : : 

---..: ~ -----i i+- ----..::+-
U n.l Un U n+l 

Figure 2.3: A monatomic linear chain showing the small displacement Un of atom 
n 

We are looking for the normal modes of the crystal and the energies (or fre­

quencies) of the non-interacting vibrations as a function of their wave vectors(q). 

We can relate w, the angular velocity of the wave, and q with w = w(q) which 

portrays a dispersion relation. A dispersion relation describes how the energy is 

dispersed across the mass and spring chain of interest in terms of the waves. It 

is more convenient to express the displacement in terms of a wave so we try a 

solution 

Un = Aexp [i(qna - wt)] (2.9) 

where A indicates both the magnitude and the direction of the atomic motion of 

particle Un' Only one mode of vibration is allowed here since neither Un nor A is 

31 



CHAPTER 2. BACKGROUND THEORY 

a vector quantity. The vibration may be longitudinal where the atoms will vibrate 

along the chain or transverse where the atomic vibration will be perpendicular to 

the chain. If we incorporate 2.8 and 2.9 we obtain 

2A 
w2 A = -(1 - cos qa)A 

m 

=DA 

which is a dynamical equation providing an eigenvalue solution. In this case the 

D-matrix is a (1 x 1) matrix and for a non-trivial solution (A =1= 0) we have 

[AI' qal w = 2 V -:; SIn 2 

Due to the sinusoidal nature of the above expression, we can easily see that 

it will be periodic in q space with: w(q + Gn ) = w(q) where Gn = ±2n7r/a for 

integers n is the magnitude of a reciprocal lattice vector corresponding to the 

. chain. In fact, the region -a7r ~ q ~ ~ corresponds to the first Brillouin Zone in the 

lattice. 

A diatomic linear chain 

Further to the study of the method for solving the simple case of a monatomic 
linear chain we can study the more useful diatomic linear chain - which is be­

ginning to approximate our two atom primitive cell (assuming one-dimension 

again). Now we shall consider 2N atoms forming N unit cells in the system. The 

two basis atoms each have different masses, m and ]v! and we shall now consider 

the unit cell to have length 2a as shown in Figure 2.4. 

2n-l 2n 2n+l 

-------- 2a------__ 

" 1\ /\v'\J~." , 1\ /\ /\//\ vv \~;-v" 

M m 

u' 2n.1 U 2n u' 2n+1 

Figure 2.4: A diatomic linear chain showing the different masses in the system 
and the lattice spacing 2a 

As with the monatomic chain we may form the equations of motion for the 
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two atom types 

and try the wave solutions 

U2n = Al exp [i(2nqa - wt)] 

U;n+1 = A2 exp ['i ((217, + l)qa - wt)] 

, 

and combine the above to produce the coupled eigenvalue equations 

-w2mAl = A [A2eiqa + A2e-iqa 
- 2Al] 

-w21\1 A2 = A [A1e- iqa + AIeiqa 
- 2A2] 

(2.10) 

(2.11) 

The coupled eigenvalue equations (eq. 2.10) may be combined into a dynam­

icalequation 
,. 2 

w2 
Ai = L DijAi 

j=l 

i = [1,2] 

where D is the (2 x 2) dynamical matrix given by 

D = ( 2A/m -(2A/m) cos qa) 
-(2A/m) cosqa 2A/m 

The non-trivial solutions of the above equation are given by solution of 

which can be specifically solved 

{

I i=j=l 

6ij = 0 otherwise 

2 1 1 1 1 4,2 

[ 

2 ] 0.5 

W = A (- + -) ± A (- + -) - - SIll qa m,!vI m AI m1\I 

and from Equation 2.10 we can find that 

Al 2A COS qa 2A - 1\J w2 

A2 2A - w2m 2A COS qa 

This important result will be examined J:?1ore closely in terms of a three di-
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mensional model of a 2-atom basis set in a primitive unit cell next. Mathematical 

operations can be performed on a crystal Brillouin Zone and are usually referred 

to as being in k-space (or q-space) where k is the momentum vector. As we are 

only considering tetrahedrally bonded crystals, we can resolve our system into 

simple basis vectors and need only consider the primitive lattice wavenumbers for 

a unit cell of Zinc Blende, which restrict the vibrational modes to the Brillouin 

Zone: [111]27T-ja, [lII]27f/a and [II1]27f/a 

The non-linear diatomic chain 

Phonon dispersion curves can be measured experimentally from crystal samples 

using methods such as inelastic neutron scattering or Raman spectroscopy and 

provide valuable information about how the crystal behaves under strained con­

ditions. By fitting our potential energy model to the crystal phonon frequencies 

we hope to improve our computer model of the crystal lattice to make it more 

realistic so we can provide valuable predictions about how the crystal behaves 

under various conditions. 

If we consider a primitive "-lnit cell of crystal lattice with the harmonic approx­

imation then we can visualise N atoms connected together by harmonic springs. 

These springs have normal modes of vibration described as travelling waves of 

the form A exp [i( q . r - wt)] where q is the wave vector (direction of propagation), 

w is the angular frequency of the travelling wave and A is the amplitude of the 

oscillation. The normal modes in a crystal are quantised in q (which is now a 

three dimensional wave vector to relate to the fact that the atoms in the primitive 

unit cell are not connected as a linear chain) into energies[19, 18] 

Eq = (nq + D hw(q), nq = 0,1,2, ... 

and the quantum of energy associated with each of these normal lattice vibra­

tions is called a phonon. A phonon can be considered analogous to a photon, 

which is a quantised energy packet in an electromagnetic field. phonons are im­

portant to understand how energy is absorbed into the crystal lattice. One of the 

consequences of using the harmonic approximation is that we have a picture of 

non-interacting phonons in our crystal lattice. 

Each wave vector in the crystal has three possible modes of vibration, one 

longitudinal and two transverse. The longitudinal vibrations occur when the atoms 

are vibrating along the length of the atomic chain and the transverse vibrations 

occur in the two orthogonal planes normal to the longitudinal vibrations. Two 
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different frequency groups for any wave vector exist in the crystal due to the 

two different atomic elements now in the three-dimensional lattice. The acoustic 
or low-frequency phonon modes occurs when the two different species of atoms 

are vibrating in phase with each other. The optical mode of vibration occur at a 

higher frequency and are due to the two atomic species vibrating out of phase, 

causing a higher energy vibration. The phonon vibrational modes are illustrated 

simply in figure 2.5. Furthermore, for each atomic species we have in the unit cell 

basis set we can describe a separated branch of the so called phonon dispersion. 
The phonon dispersion describes how the atomic chain disperses energy with 

relation to the wave vector. The phonon dispersion is plotted in reciprocal space 

with the angular frequency plotted against the reduced wave vector. 

Longitudinal Optical (LO) Mode 

~~~rn~~· 

Transverse Optical (TO) Mode 

t t 
()--e--o--e--c. }-__ H\'-~ 

.! 

Longitudinal Acoustic (LA) Mode 

O}-----«18ill1t---l l---E..3--4o-e-{)--Ct 
.... .... 

Transverse Acoustic (T A) Mode 

Figure 2.5: An illustration of the different phonon modes 

We may now describe the equations of motion of the atoms in our primitive 

unit cell (with a method similar to the diatomic chain shown earlier) and then 

find a Hamiltonian for the crystal to calculate the phonon dispersion for a given 

crystal lattice. We shall start by considering a crystal with p atom~ in a three di­

mensional unit cell. We shall let u(lb) represent the three dimensional displace­

ment, u of the b th atom in the lth unit cell. We shall continue our potential energy 

assumptions from previous chapters that the potential energy of the crystal, V, is 

an instantaneous function of the position of the atoms and their neighbours and 
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we can expand upon equation 2.7 thus 

v = Vo + L L DUD~b) u,,(lb) + ~ L L <I>"a(lb; l'b')u,,(lb)u~(l'b') + ... 
Ib a a a Ibl'b' a,(3 

V=Va+VI +V2+ ... 

where as previously stated terms Va and VI have no relevance in this particular 

problem so we shall concentrate on term 112 for the harmonic approximation of 

crystal lattice dynamics. Note that (x, f3 = [1,2,3] and the interatomic force con­

stant matrix <pap(lb; l'b') is 

which represents the negative of the linear force on atom (lb) along the (X direction 

due to a displacement of atom (l'b') along the f3 direction. Note the use of the 

,abbreviation[20] x(lb; l'b') = x(1b) - x(l'b'). 

Our harmonic approximation now becomes 

Vharm = ~ L L <I>,,~(lb; l'b')u,,(lb)u~(l'b') 
Ib,l'b' a,(3 

from which we may find the equations of motion extending Hooke (F = -k· x) 

to three dimensions 

mbua(1b) = - L <pa(3(lb; l'b')u(3(l'b') 
l'b'(3 

where mb is the mass of the bth atom. Using lattice translational symmetry we 

can rewrite this as 

mbila(1b) = - L <Pa(3(Ob; l'b')u(3(l'b') (2.12) 
l'b'(3 

We can solve this equation by trying a solution of the form 

Ua(1b) = ~ L Ua(q; b) exp [i(q· x(l) - wi)] 
ymb q 

(2.13) 

where x(l) is the equilibrium position vector of the lth unit cell and Ua ( q; b) is 

independent of 1. As with our diatomic chain described previously we can sub-
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stitute this into equation 2.12 to obtain 

w2Ua(q; b) = L Da,B(bb'lq)U~(q; b') 
b'~ 

of which we may find a non-trivial solution by solving the secular2 equation 

where the 6mn represent Kronecker Delta functions. The dynamical matrix ex­

pression is written 

D,,{3(bb'lq) = ~L <l>,,{3(Ob; l'b') exp [iq· x(l')] (2.14) 
mbrrLb' I' 

and can be solved practically by introducing the various components of the vi­

brational energy calculations into a 6x6 Hamiltonian matrix and diagonalising to 

provide the eigenvalues - which directly provide the phonon vibrational energies. 

By calculating this a number of times for different wave vectors at and between 

the BZ high symmetry positions of X which occurs at q = [0,0,1] = [1,1,0] and 

L which occurs at q = [1/2, 1/2, 1/2] along with the Brillouin Zone centre r at 

q = [0,0,0] we are provided with phonon frequencies which we may directly 

compare to experimental measurements and DFT predictions. Section 5 contains 

the computational details associated with including the phonon frequency pre­

dictions into the crystal lattice model. 

Mode Griineisen parameters 

Molecular dynamics approaches have found much success in handling the tem­

perature and pressure dependence of semiconducting materials but a good MD 

simulation is only as good as the potential energy function used to simulate the 

energetics of the material under test. The ability of a potential energy function 
" to predict the mode-Gruneisen parameters is a good indicator of its ability to 

correctly predict the anharmonic properties of the material[23] such as the tem­

perature dependence of the phonon frequencies. 

The mode-Gruneisen parameters per wave vector 1'( q) are expressed as 

1'( q) = 
D Inw( q) 

DlnO 
(2.15) 

2A secular equation takes the form \A - >.8\ = 0 and is sometimes called the characteristic 
equation of the matrix[21, 22]. For an n x n matrix, the solution is an nth order algebraic equation 
with up to n eigenvalues in the result. 
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where w( q) is the phonon frequency for a specified wave vector and n is the vol­

ume of the crystal unit cell. This can be decomposed for convenience as follows 

)'( q) = 
lnw(q)(xo + ~x) -lnw(q)(xo - ~x) 

In!l(xo + ~x) -In!l(xo - ~x) 

)'(q) = _ [In w(q)(xo + ~x)] / [In n(xo + ~x)] 
w(q)(xo - ~x !l(xo - ~x) 

where !l = !lo(1 ± 0.03) for a hydrostatic strain on a cubic system per axis of 

±0.01%. 

Work has been carried out recently using a tight-binding approximation to 

increase the ability of MD simulations to predict the correct mode-Griineisen pa­

rameters for the modelling of the dynamics of elemental crystal lattices under 

varied temperature conditions[24]. This work is cited in studies by Porter[25, 23], 

Eryigit[26] and Lazarenkova[27, 28] who have attempted to predict the mode­

Griineisen parameters using the Tersoff and VFF potential energy models. There 

is no evidence from the current literature that anyone has attempted to use the 

mode-Griineisen parameters as a measure of the anharmonicity of the crystallat­

tice as a fitting parameter for the Tersoff potential energy model. 

Phase stability 

The check of the crystal phase stability is essential for a useful potential energy 

model for MD simulations. It is possible for the PEF to provide the correct ma­

terial properties and yet the diamond or zinc blende configurations are not the 

lowest energy lattice model. This would cause massive problems in a MD sim­

ulation over time as if the crystal could break through the kinetic energy barrier 

required for a phase transformation in, for example, a high temperature simu­

lation then the crystal would undergo a phase transformation and provide very 

different results. 

It is intended to check the phase stability of the diamond crys,!al of the ele­

mental semiconductors against the minimum energy states of the simple cubic, 

fcc and bcc lattice types to ensure that the energy per u~it of atomic volume is in 

a minimum compared to the other structure polytypes. A similar calculation will 

be made for the zinc blende crystal against the other cubic structure polytypes 

types that III-V crystals form into including the NaCl and the CsCl structures. 

This checking of the phase stability appears common in the literature but no 

other authors appear to use the information directly as a fitting parameter in the 

design of the potential parameters. This is because the lattice parameter and the 
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associated energy of the materials in uncommon phases is not often known. 
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Chapter 3 

The Tersoff Potential 

3.1 Background 

An empirical interatomic potential energy function was originally suggested by 

J. Tersoff in 1986 and later refined to the form commonly used today for rapid 

and accurate semiconductor structure and molecular dynamics (MD) simulations 

[1, 2, 3]. The potential was originally proposed as a trade-off between accuracy 

and timing when performing a simulation to describe the material properties of 

solid Silicon. A comparison was made to the ab initio quantum mechanical lo­

cal Density Functional Theory (DFT) approach which considers each electron in 

a quantum mechanical ensemble to describe the system [4]. Although the Local 

DFT Approach (LDA) provides highly accurate levels of structural and electronic 

information about the system under consideration it requires a massive compu­

tational effort and can only replicate results for systems of the order of 102 atoms 

in a reasonable amount of time. Thus, an empirical PEF form was proposed that 

would provide a more timely solution for complex multi-atom simulations. It 
would also provide more accurate and meaningful results than the potential pro­

posed to simulate small distortions from the ground state in the diamond struc­

ture of Silicon by the Keating Valence Force Field (VFF) method [5, 6, 7]. 

Tersoff was originally more interested in the structural properties and ener­

getics of non-tetrahedral elemental Silicon (e.g. surfaces and point defects) and 

attempted to form a potential that would reproduce cohesion in a large range 

of coordination and bonding topologies. At that time a twO- and three-body 

empirical interaction potential had been proposed by Stillinger-Weber [8] which 

provided reasonable results for molten Silicon investigated with MD simulations 

although the system was designed to replicate a limited set of material proper­

ties. Also during that time the Keating method, which is analogous to a Taylor 
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CHAPTER 3. THE TERSOFF POTENTIAL 

series parabolic expansion of the energy around its minimum, was being used to 

simulate small strain elastic properties of the material and replicate phonon fre­

quencies. The VFF method could not accurately describe energy states differing 

from the tetrahedral ground state. This is due to the parabolic nature of the orig­

inal Keating potential and an associated inherent inability to replicate the anhar­

monic region of the atomic bonding behaviour accurately. Furthermore, a fit of 

the VFF potential is provided by only 3 material dependent parameters, suggest­

ing that only three experimental values can be included in a parameterisation of 

the potential. The Tersoff potential takes a form known as a many-body potential 

and includes 12 material dependent parameters to account for the local structural 

chemistry (the bond environment) of the covalent system under consideration. 

Tersoff has taken account of the fact that an atom with many neighbours forms 

weaker bonds than an atom with fewer neighbours and this is a large part of de­

scribing covalent systems in open lattice structures. The neighbour dependence 

in the Tersoff PEF stabilises structures with a smaller number of neighbours, de­

scribed by z the atomic coordination number. Furthermore, the dependence on z 

allows the local system to relax into an energy minimum based upon the neigh-
• bouring atomic geometry. The energy per bond must decrease rapidly with in-

creasing coordination to replicate this behaviour but contain enough repulsive 

energy to stop the system dropping into a close packed configuration by bal­

ancing the bond-order and the bond-count energies. His empirical potential is 

constructed to preserve the intuitive nature of the exponential Morse-like pair 

bonding (Equation 2.4) and to enhance this nature with the inclusion of a many­

body term to account for local neighbours (both in terms of the distance from the 

atom under consideration and the sub tended bonding angle). 

Originally the potential was designed for use with elemental type IV semicon­

ductors but has recently been proven to be very useful in characterising binary 

compounds of III-V [9, 10], II-VI [11, 12] and even I-VII [13, 14] semiconductor 

systems. In a system of elemental type IV atoms one set of material dependent 

parameters are required to describe the atomic interactions, for example: Si-Si. 

However, in a type III-V system 3 sets of material dependent parameters will be 

required to describe the 3 possible atomic interactions (e.g. Ga-As, Ga-Ga, As­

As). 

A final, very important rating of the PEF quality suggested by Tersoff is that it 

should have a high degree of transferability. He defines transferability as "appli­

cability to systems very different from the ones used to determine the potential". 

The original paper designating the Tersoff parameters for Silicon demonstrated 

that the Tersoff potential has a great level of tra~sferability and that the PEF seems 
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to capture some of the essential physics of covalent bonding in well-ordered type 

IV systems. Tersoff[3] fitted the potential parameters for Silicon to model the co­

hesive energy, the lattice constant and the bulk modulus. He also fitted to ensure 

that it correctly modelled the behaviour of the cohesive energy per bond against 

coordination number demonstrated by LDA calculations and the correct phase 

stability for a number of different structures to ensure correct behaviour in MD 

simulations. The results were found to estimate well the C11 and C12 elastic con­

stants of the system, which directly contribute to the bulk modulus B but the 

parameters did not fit C44 and Kleinman's ( very well. The model results were 

compared to LDA vacancy energies and found to be a reasonable match and a 

close match to interstitial defect energies. He also compared phonon frequencies 

at the r, )( and L Brillouin Zone (BZ) symmetry points and found a reasonable 

match. In other tests he attempted to model surface energies and dimer bond 

lengths of various Silicon surface reconstructions and the parameters were found 

to be in reasonable agreement with some cases and rather adrift for others. But, 

the degree of transferability of the potential was well illustrated. 

" Other work using the Tersoff potential 

Since the development of the potential and the initial work on the mixing of pa­

rameters to provide multi-component characterisations many studies have been 

performed using the Tersoff potential as a basis. The degree of transerability is 

evident by the wide range of work listed below. Motooka[15] is motivated by the 

prospect of low temperature solid phase epitaxy of amorphous silicon on crys­

talline silicon. He investigates ion bombardment of Si surfaces using the Tersoff 

potential with an interest in the amorphisation process in crystalline silicon and 

finds pleasing results via MD simulations. Yoon and Megusar[16] produced a 

molecular dynamics model of amorphous carbon and graphite from the Tersoff 

parameters of carbon and simulated crystal grain boundaries. De Brito Mota 

et a/[17] parameterised silicon nitride for a wide range of nitrogen ~ontents and 

demonstrated a good agreement with first principles calculations. He fitted to 

a database of values taken from ab initio calculations and experimental data in­

cluding the lattice parameter and binding energy. He performed MD simulations 

on amorphous silicon nitride to study the structural properties under a range 

of temperatures. Erkoc and Ozkaymak[18] used the Tersoff potential to inves­

tigate the properties of a number of different carbon nanotubes. They used the 

Tersoff parameters for carbon to calculate the total interaction energies for the 

nanotubes and the variation of the binding energy due to the extension of the 
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tube. Marcos et al[19] use the Tersoff PEF to simulate C20 and C60 clusters as a 

precursor to investigation of nanotubes. They use MD to simulate phase changes 

with temperature and pressure and characterise thermal behaviour well. They 

draw conclusions that agree with the literature about the melting behaviour of 

small carbon clusters. Carbon clusters appear to be a popular research topic for 

the Tersoff potential with further investigations by authors Garrido et al[20], Bal­

lone and Milani[21] and Lopez et al[22]. Hedstrom and Cheng[23] use the Tersoff 

potential and MD simulation techniques to characterise Si under low energy ion 

bombardment. Halac et al[24] model various SiC polytypes using the Tersoff PEF. 

They start with the original Tersoff parameters and modify them for a fit based 

upon the material properties, elastic properties and dynamical properties of the 

materials. Ishimaru et al[2S] have modelled the structure and dynamic properties 

of various Si-Ge alloys using the Tersoff potential. Using MD simulation tech­

niques they study amorphous Si and Ge under various conditions including a 

very clever simulation of the phonon density of states that allows direct compari­

son to Raman scattering spectroscopy. Montalenti et al[26] mix the Tersoff poten­

tial with ab initio calculations to demonstrate a theory about the pyramid to dome 

transition in SiGe quantum do'ts. A model was developed to demonstrate that 

the pyramid to dome transition occurs due to the increasing strain at the top of 

the pyramid dot and is irrespective of the size of the nanostructure. They do not, 

however, consider the full global thermodynamics of the system. Ivashchenko 

et al[27] have studied microcrystalline SiC and amorphous SiC using the Tersoff 

potential and MD simulation. They draw conclusions about the gaps in the con­

duction state due to the homopolar bonds formed by growth defects. Agrawal et 

al[28] offer a new parameterisation of silicon based upon melting behaviour. Af­

ter a number of tests they concluded that the addition of a long range force term 

did not significantly improve the original Tersoff parameters to model melting 

behaviour. The new parameterisation was performed by modifying only 3 of the 

parameters and considering the liquid behaviour. Wang et al[29] have produced 

a stu·dy based upon modelling single-walled carbon nanotubes using the Tersoff 

potential. They have looked at the mechanical properties of nanotubes under 

various conditions via MD simulations and concluded that the Tersoff potential 

accurately modelled the elastic properties and stiffness of the nanotubes. 

Smith[9] provided the first successful parameterisation of the Tersoff potential 

to 111-V semiconductors. He modelled GaAs based upon the dimer energies, bond 

lengths, Ecoh and a of the zinc blende formation and the bulk modulus. Slnith 

used his parameterisation to predict the structure of a GaAs surface reconstruc­

tion and the energetics of GaAs clusters. Sayed _and co-workers[10] employed the 
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Tersoff PEF successfully to demonstrate ion implantation and damage recovery 

in semiconductors. They parameterised GaAs and AlAs by modifying the Smith 

parameters to improve the level of angular dependence. Sayed demonstrated 

that ion implantation could be realistically modelled by the Tersoff model and 

MD simulation and found pleasing qualitative and quantitative results. Ashu et 

al[30] were motivated to use the Tersoff potential in MD simulations by the re­

quirement to investigate the critical thickness in pseudomorphic growth. They 

performed atomistic simulations to consider the strain relief in thin film growth 

and he modelled some dislocations and growth defects in InGaAs on GaAs. They 

parameterised InAs based upon the dimer energies, bond lengths, cohesive en­

ergy and elastic constants. Nakamura et al[31] were also interested in simulating 

epitaxial growth and parameterised AlAs, InAs and GaAs based upon the addi­

tion of a long range ionic energy consideration to the Tersoff model. They find 

pleasing results with respect to the growth geometry when combining the long 

range potential with the Tersoff PEF. Nordlund and co-workers[32] use the Ter­

soH potential to simulate ion implantation damage and recovery at various semi­

conductor interfaces including Si/Ge, AlAs/GaAs and InAs/GaAs. They pro­

duce results based upon a new' parameterisation of InAs and include the Klein­

man internal displacement parameter ( amongst the elastic properties in the fit­

ting procedure. Migliorato et al[33] found that a new parameterisation for InAs 

was produced by inclusion of the shear modulus to provide a more realistic lo­

cal relaxation process under static MD relaxation. This was used successfully by 

Migliorato and co-workers[34, 35] to simulate small scale atomic relaxation via 

MD in InGaAs/GaAs quantum dots and to model the strain induced piezoelec­

tric fields and the associated s- and p- wavefunctions. Murdick et al[36] assess a 

number of interatomic potentials including the Tersoff PEF and conclude that Ter­

soff provides the best agreement with experimental behaviour when considering 

thin-film GaAs. They also looked at the performance of the potentials when rep­

resenting the surface reconstructions in GaAs and concluded that further work 

was needed. 

Many authors have started to investigate Tersoff parameters for the type III­

nitride (III-N) materials, which are of great interest due to their high tempera­

ture, high power and high frequency operation. The hardness of the III-N mate­

rials makes them particularly attractive, as does the large band gap which makes 

many electroluminescent modes possible. Albe and Moller[37] use Tersoff to in­

vestigate cubic boron nitride (c-BN) growth via MD simulation and atomistic re­

laxation. They start with a conflict in the literature for 2 possible growth modes of 

c-BN (lithe stress model"[38] and lithe subplan~r model"[39]) and continue to in-
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vestigate after re-parameterising the Tersoff potential for c-BN. They demonstrate 

success with small scale growth simulations and surface atomic relaxations. The 

fitting procedure for the parameters is described elsewhere but the paper hints 

that the parameters were designed for the structure and energy of a number of 

BN polytypes. Benkabou et a/[40] have re-parameterised the III-N set of GaN, 

AIN and InN starting from the original Tersoff carbon fit[3]. They fitted their 

parameters to the cohesive energy, the bulk modulus and the lattice parameter 

of the materials they was simulating. To check for transferability they simulated 

the change in lattice parameter with temperature via MD simulation and also 

checked the mean displacement of the atomic sites at 300K, demonstrating rea­

sonable stability. Nord and co-workers[41] use the Tersoff PEF to simulate colli­

sion cascades in GaN. The potential was fitted to the zinc blende, wurtzite and 

simple dimer structures. They also considered the Bl and B2lattice types. Moon 

and Hwang[42] use the Tersoff potential to re-parameterise cubic GaN starting 

from the Benkabou parameters and find a more accurate parameterisation to the 

elastic properties. Goumri-Said et al[43] modelled and parameterised cubic alu­

minium nitride (c-AIN). The c-AIN structure was optimised to the material pa­

rameters taken from ab initio cafculations and they predicted the elastic constants 

and pressure of the phase transition from cubic to rocksalt structures with an MD 

simulation. They modelled the Debye temperature which they found in good 

agreement with experiment and found the thermal expansion coefficient, the spe­

cific heat and a melting temperature of the material (albeit with a large tolerance). 

Kang and Hwang[44] use the Tersoff potential to perform MD simulations on 

GaN nanotubes. They use the parameters designed by Benkabou and demon­

strate (although nanotubes have Sp2 hybridisation and the parameters were de­

signed for cubic III-N materials) a reasonable agreement with DFT simulations 

although they did draw attention to a problem with the C44 elastic constant. Zhou 

et a/[ 45] studied wurtzite thin-film GaN growth using the Tersoff potential and 

MD simulation. They looked at the effects of temperature, film orientation and 

flux on growth conditions and various atomic assembly mechanisms. 

Kirmse et a/[ll] produced multidisciplinary work studying CdSe/ZnSe quan­

tum dots using myriad methods including molecular dynamics simulation via 

the Tersoff potential. They performed a structural MD relaxation of a quantum 

dot structure to compare and contrast to TEM methods to investigate the relax­

ation processes and structure of the dots. Genrich and co-workers[46] investigate 

Fe using MD simulations and the Tersoff potential. They modify the potential 

to take account of the structural nature of iron and locate the correct cohesive en­

ergy for a number of formations. They calculate the elastic properties for the Bee 
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phase in good agreement with the experimental results. Sekkal et al[13, 14] inves­

tigate the copper and silver halides successfully using the Tersoff potential. They 

find new Tersoff parameters for a selection of II-VI compounds and use Monte 

Carlo and MD methods to predict a number of elastic properties, thermodynamic 

properties and the mode-Griineisen parameter. Lakshimi and Ramachandran[12] 

investigate the thermal expansion properties of CdS by MD simulation with the 

Tersoff PEF. They parameterise CdS based upon the thermal properties and the 

la ttice parameter. 

A number of authors have produced very stimulating discussions and results 

regarding the optimisation and speed-up of Tersoff potential calculations in dif­

ferent computing environments. Da Silva[47] included the Tersoff potential in 

a study to minimise computation time required to perform accurate MD simu­

lations via the Metropolis Monte Carlo method. He demonstrated excellent re­

sults in terms of efficiency and accuracy when coupling the Tersoff potential with 

Verlet neighbour schemes and linked cell methods. Stuart et al[ 48] describes a 

method to speed up Tersoff potential MD calculation by the splitting of the bond­

order properties of the potential across parallel machine boundaries both spa­

tially and temporally. They de~onstrate 900/0 parallel efficiency on 60+ machines 

for small and medium sized applications. Moloi and Ali[49] descibe a number of 

algorithms that are applied to the Tersoff potential to minimise the global energy 

of large scale atomic nanostructures. Their main motivation is the design and 

choice of algorithm but they provide numerical results to directly compare four 

different optimisation algorithms. 
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3.2 Functional form 

The functional form of the Tersoff potential used in this work is similar to the one 

reworked by Smith [9] and modified by Sayed et al[10] and is shown below 

Vij = Ie (rij) [VR (rij) - bijVA (rij)] 

{

I, r < (R - Reut ) 

Ie (r) = ~ [1 - sin [7ri~~~)]], R - Reut < r < R + Reut 

0, r > (R + Reut) 

VR (rijl = [S~ 1] exp (-flV2S (rij - rel) 

VA (rijl = [:~e1] exp ( -flfs (rij - rel) 
1 

hij = [1 + ("Y(ij) n] - 2n 

(ij = L Ie (rikj 9 (Bjik ) Wik 

k::j:i,j 

Wik = exp [A 3 
(rij - rik)3] 

( C)2 C
2 

9 (Bjik~) = 1 + - - 2 
d d2 + (h - cos Bjik ) 

Here we note the following: 

(3.1) 

E is the total energy of the system of interest. Ei is the site energy of the atom 

labelled i. The indices i, j and k run over all of the atoms in the system. 

Vij is the interaction energy (also known as the bond energy) and is based 

upon a combination of an exponential Morse-like pair potentials. Vij is a func­

tion of rij, the physical distance between atoms i and j. VA and Vn respectively 

provi,de the attractive and repulsive pair-potential parts of the interaction energy 

for the exponential Morse-like pair relating atom i and atom j. A plot of the 

Morse-like pair potential provided by the Tersoff potential for silicon[3] is shown 

in figure 3.1 where the two exponential functions VA and VR are shown combined 

to make Vij. The pair potential is tuned (scaled and shifted) with the four parame­

ters: De representing the energy, re for the separation (the energy and separation 

were modelled on a dimer of the particular material in free space [9]) and the 

fitting constants Sand (3. 

Ie(r) provides a smooth spherical cut-off function around atom i based upon 

the distance to the first nearest-neighbour (Inn) shell. Ie(r) has a continuous 
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Figure 3.1: The Tersoff model of the Morse-like pair energy. rij is specified in 
Angstroms. 

value and a derivative for all r and allows the computational complexity to be 

reduced to the Inn, vastly reducing the effort required to solve large systems. The 

smooth cut-off function is centr~d around the distance parameter R (measured in 

A) and is limited to 0 or I at a distance of Rcut on either side. The range of the cut­

off function may provide awkward molecular dynamics results, especially when 

considering increased temperature models in which the bonds lengthen or phase 

change simulations, especially condensed matter to liquid transitions. This effect 

can be limited by the use of the cut-off function during parameterisation only and 

allowing the molecular dynamics code to select the relevant atomic interactions 

during a simulation. A plot of !c(rij) using the Tersoff silicon parameters is shown 

in figure 3.2 and demonstrates the smooth continuous cut-off function that speeds 

up MD calculations and is differentiable. 

bij is designed to represent the bond-order of the potential. Tersoff originally 

prop?sed that bij should provide, for the pair i-j, a monotonicallyl decreasing 

function of the number of competing bonds, the strength of the competing bonds 

and the cosines of the angles of the competing bonds. To explain the relatively 

weak dependence on coordination number z in Silicon, Tersoff chose bij ex Z-1/2 

for a large z. I and n tune how rapidly the bond strength falls off with increasing 

effective coordination. 

(ij provides a weighted measure of the number of other bonds, labelled k, 

competing with the bond i-j. When only the first nn are present in the calcula-

1 monotonic: each member of a monotone decreasing sequence is less than or equal to the 
preceding member 
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Figure 3.2: The smooth cut-off function included in the Tersoff potential. R, Rcut 
and rij are specified in Angstroms. 

tions (ij ~ (z - 1). Two additional features are involved in (ij with the cut-off 

function on atom k labelled Wik and g(Bjik ). 

" 
Wik provides a measure influenced by the relative distance of different neigh-

bours when defining the effective coordination of the system. This is scaled with 

the parameter A which is designed to only provide an effect when comparing the 

bond-lengths i-j and i-k. If this effect is prevalent then the difference is of the 

order of 1/ A. This reduces the effect of distant neighbours on first nearest neigh­

bour (nn) bonds which would otherwise be unrealistically large. This was done 

to help preserve the phonon frequency characteristics. 

Finally 9 (Bjik ) provides a measure of dependence on the bonding angle Bjik 

sub tended at atom i by atoms j and k. This is included to stabilise the atomic 

geometry under shear operations and provides an effective coordination contri­

bution based upon the elastic energy of the current configuration. A sample plot 

. (using the Tersoff[3] silicon parameters) of the angular bonding function g( Bjik~) 

is shown in figure 3.3 and shows how the angular bonding coefficient is affected 

by the atomic bonding angle. The minimum at the covalent tetrahedral normal 

bond angle of 1090 is obvious from the plot. The function is made from three pa­

rameters to allow for a good level of tuning to a specific elasticity requirement: h 

which is formally the cosine of the energetically optimal bonding angle! d which 

determines how sharp the angular dependence is and c which provides tuning 

for the strength of the angular effect. 

The third form of the Tersoff potential [3] is specified in terms of the param­

eters Aij ! Bij ! Aij and J1ij which are reproducec! by many authors and generally 
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Figure 3.3: The Tersoff model of the angular bonding dependence parameter, 
g(()ijk) 

labelled T3[50]. The conversion factors used to produce the parameters of the 

form used here from the original Tersoff notation are 

8=~ 
J-L 

, 

A 
{3 = V2S 

In SA 
B r e = --;---~---:--

{3 (V2S - )2/8) 

De = A (8 - 1) exp [- {3 . r e • V2S] 
R _ 8ij - Rij 

cut - 2 

R = Rij + Rcut 

and to invert the parameters from this form back to the original Tersoff form we 
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A = S ~ 1 exp [!3' T e • v'2S] 

B = ;~el exp[!3' Te' v'2/S] 
A = v'2S 
Jl = }2/8 

8ij = R - Rcut 

Rij = R + Rcut 

Multicomponent systems 

The Tersoff potential was originally proposed for elemental silicon but it was 

quickly recognised that the potential would perform well if a different set of pa­

rameters were obtained to represent type IV compounds such as silicon-carbon 

or silicon-germanium[3]. The method that Tersoff suggested involved indepen­

dently parameterising silicon, carbon and germanium and then blending the pa-, 
rameters to form a new parameterisation for the binary compounds using the 

following averaging scheme 

Aij = (Ai + Aj) /2 
Jlij = (Jli + Jlj) /2 

1 

Aij = (Ai Aj)2 
1 

Bij = (Bi Bj)2 
1 

Rij = (RiRj)2 

Tersoff introduced a linear scaling factor to bij which he named Xij to assist 

in describing the heat of formation Ll.hJ [3, 51, 52], which is importallt when cal­

culating the energy of a surface or a surface reconstruction. It is yet to be tested 

whether this is entirely necessary when describing the Ll.hJ of a system or whether 

the scaling factor was introduced to compensate for such a simple parameter 

blending scheme instead of a full re-parameterisation. 

However, when dealing with partly ionic compounds such as the III-V semi­

conductors a more complex fitting method is required[9]. All twelve of the Ter­

soff parameters are usually allowed to vary in the fitting procedure as the dimer 

energy and dimer separation are not necessarily experimentally known for ma-
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terials under investigation. This fitting procedure is known as parameterisatiol1. 
Parameterisations have been provided by many authors and are usually based 

upon a table of material properties for a specific problem that the author is trying 

to solve. 

3.3 Parameterisation 

The so called parameterisatiol1 of the Tersoff potential is the process of fitting the 

twelve Tersoff parameters to provide a PEF that correctly reproduces a database 

of information related to the material under investigation. The usefulness of the 

potential critically depends upon the parameters selected for any particular ap­

plication. The twelve parameters that may be varied for any material are: De, S, 

/3, re, c, d, h, n, "'i, A, Rand R cut • Here it is noted that for any given material it is 

common to select Rand Rcut before the fitting procedure begins and maintain the 

values selected throughout the parameter search. This is because Rand Rcut are 

selected based upon the physical distance to the shell of the first nn in the crystal 

geometry under investigation. We are then left with a 10-dimensional parameter 

space to search to fit the potential energy function to correctly reproduce the table 

of values associated with the semiconductor. 

The value for R can be found by taking the vector distance to the nearest 

neighbour shell and the vector distance to the second nearest neighbour shell 

and averaging the result, hence: 

R = rlnn + r2nn 

2 

2 

In general the parameterisation coefficients have been found from other au­

thors work to vary wildly. For example, when modelling boron nitride (BN) the 

author Albe[37] found values of c and d to be 1093 and 12.38 respectively whereas 

the author Sekkal[13, 14] found the values of c and d to be 38049 and 4.38. These 

numbers provide values of c/ d of 88.28 and 8686.98 which have a two orders of 

magnitude difference between them, yet both results provide decent fits to the 

materials· properties database. The plots of the two angular dependence func­

tions resulting from the two parameter sets mentioned above are shown in figure 

3.4. It can be clearly seen that although the Sekkal parameters needed scaling 
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by 2 X 10-5 so that the function could be plotted on the same axes as the Albe 

parameters, the shape of the functions and the local minima values are the same 

and hence the derivatives should provide similar values. It is assumed that this 

phenomenon arises because the 10 dimensional parameter space that we need to 

search has a number of local minima and possibly more than one global mini­

mum. 
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Figure 3.4: Two possible angular dependence functions for boron nitride 

Material properties database 

The uncertainty in the values in the database represents a source of possible 

compound error in selecting the correct parameters during the fitting procedure. 

Uncertainty can be introduced by the complexity of obtaining accurate experi­

mental results from neutron scattering[53] or photoluminescence techniques[54]. 

Furthermore, it is common to use DFT values for parameter fits[3] but these are 

in themselves limited to structural information with the actual values for lattice 

constant and cohesive energy being reproduced with a limited tolerahce - 20/0 er­

ror is common due to the local density approximation (LDA) [51, 55, 56]. First 

principles calculations are commonly relied upon to build a materials property 

database for a parameter fit, but these again introduce a source of possible error 

from various approximations made to simplify the problems involved in mod­

elling semiconductor bonding[52, 57]. Physical intuition is required during the 

fitting process as it is not possible for the potential to reproduce all of the values 

in the database perfectly. It is practical and sometimes necessary to first have 

to decide how to weight the database fit based upon the application required. 
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The following values are commonly used by workers in the material properties 

database: lattice parameter a, cohesive energy Ecoh' bulk modulus B, shear modulus 
C f [9, 10, 34]. However this still only provides a 6-dimensional solution space 

to a 10-dimensional problem search space and it is common to find many values 

of Tersoff parameters that will provide the correct database values for a given 

situation. 

In this work we expand the bulk material properties database to provide more 

confidence in the Tersoff parameter fit by including the Kleinman internal displace­
ment parameter, (, which in the one-dimensional case is required to fit C44' We have 
also included the material f, X and L point phonons and the associated mode­

Gruneisen parameters. A simple example material property database is shown 

below in table 3.1. 

Property Exp./Calc. Units 
Ecoh -4.63 eV 

a 5.431 A 
B 0.9783 MBar 
Cf 0.509 MBar 
C44 0.796 MBar 
( 0.524 

Table 3.1: The material properties of silicon 

To locate the useful parameters some method of globally searching the pa­

rameter space to look for a minimum in the objective function, known here as the 

parameterisation rtzetric is required. 

Parameterisation metric 

The objective function to optimise was chosen to be a weighted average of the 

sum-of-squares of the error between the values that particular set of Tersoff pa­

rameters returned for the material properties and the values of the material prop­

erties in the database. The weights of the errors were chosen depending upon 

how that particular Tersoff parameterisation was to be used. For example if the 

parameterisation was to be used for a molecular statics relaxation of a strained 

semiconductor heterostructure, then the elastic properties of the material, partic­

ularly C44 and shear properties, were weighted more importantly than the phonon 
frequency fit. 

metric = Wl(Xl - d1)2 +- W2(X2 - d2 )2 + ... + wn(xn - dn)2 

= L wn(xn - dn,)2 
n 
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Where: dn is the nth element of the material property database, Xn is the as­

sociated material property returned from the search for a particular set of Tersoff 

parameters and 'Wn is the weighting for that particular property. 

By choosing a weighted sum-of-squares objective function our results may be 

tuned to a specific set of materials properties that are deemed more important for 

a specific case we are trying to solve. It is usual to weight the cohesive energy 

and lattice constant fits equally and as the most important fit in the process as 

they have to be correct for the PEF to be useful. However the small strain elastic 

properties may be required to have a better fit than the phonon frequencies in 

some cases (e.g. small structure relaxation) and so they may be weighted more 

importantly than the phonon frequencies in a specific case. This choice of objec­

tive function allows us to investigate the properties of the Tersoff potential with 

respect to fitting to different material properties without having to change the 

underlying machine code, only a simple input instruction file. 

The static testing of the potential to calculate the material properties can only 

be as successful as the parameter fit to the database. It is not possible to accurately 

predict the response of the potential under dynamic conditions using a finite set 

of static tests. However, by increasing the information in the database of material 

properties and the quality of the PEF fit to this data we may increase the level of 

confidence in the potential and thus increase the confidence that the function will 

perform as predicted under dynamic conditions. 

Iterative searching 

Iteratively searching a 10-dimensional parameter space is a daunting task. A 

naive and obvious way to perform this search would be to select, for each of 

the 10 parameters, a window of likely values. Then split each of these ranges 

into n parts to produce s steps in the parameter space to search. We now have 

s = (n+ 1)10 discrete points in the parameter space to evaluate. As we are dealing 

with non-integer values for the Tersoff parameters we might assume an infinite 
" 

precision but in practice we tend to find that most authors will reproduce 5 sig-

nificant figures per parameter in press and during this work we have found that 

this is indeed required to reproduce the desired results. Therefore we may as­

sume that n ~ 10, 000 which would produce an iterative parameter space search 

of s ~ 1040 steps. 

Some of the assumptions made here are that the Tersoff equation only needs 

to be evaluated once per step (generally it needs to be evaluated of the order 

102 times per search step to resolve the database values), that the "likely values" 
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chosen for the Tersoff parameter range can actually be predicted before run-time 

and that the resolution of the search will produce one obvious global minima. 

This is clearly ridiculous in terms of the computational effort required and 

the data storage needed to save each of the steps for later comparison. A further 

practicality is that when all of the data is produced for each step then this needs to 

be sorted and classified for both global and local minima in the parameter space. 

Some improved techniques for optimising this parameter search in terms of 

efficiency will be discussed in the relevant chapters later in this work. 

3.4 Conclusion 

It is evident from the large amount of previous work that has been done with the 

Tersoff PEF that is it highly suitable for myriad MD applications through stud­

ies of small scale structural bonding behaviour such as the carbon C60 clusters 

to the large scale simulations of entire quantum dots presented in the literature. 

The Tersoff potential shows a high degree of transferability to a number of appli­

cations such as surface reconstnjction modelling and ion-impact investigations. 

However, many authors are relying upon parameterisations provided a number 

of years ago that were fitted to a very limited set of data. This can be improved 

by fitting the Tersoff potential to a larger number of material properties such as 

the C44 elastic constant and the ( internal displacement parameter. 

The cyclic sinusoidal nature of the bonding terms in the PEF provides a pos­

sible source of confusion with respect to parameterising the angular bonding 

terms correctly - which possibly accounts for a number of authors work show­

ing promising results from vastly different parameterisations. Furthermore, the 

exponential and power terms involved in the PEF display a massive degree of 

sensitivity to the selected values of coefficient. It is thought that the number of 

minima in the lO-D parameter space can be reduced by inclusion of more materi­

als properties in the fitting procedure. 

To date the work presented in the literature using the Tersoff PEFhas mainly 

been focused on the elemental type IV semiconductors, arsenide based com­

pounds and the III-N semiconductor materials. No authors have presented work 

on the phosphide or antimonide semiconductor compounds. This will be recti­

fied in the next chapter. 
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Chapter 4 

Elastic Property Modelling 

The correct prediction of the material properties of semiconductor crystals with 

the Tersoff potential provides us with the ability to model large scale systems 

(106 atoms) in a reasonable amount of time. This is something that is not cur­

rently achieveable with first principles quantum mechanical calculations due to 

the computational complexity. But, before we can use the Tersoff potential to cor­

rectly model a semiconductor system, we must first parameterise the potential 
• 

to correctly model the material of interest. A correct modelling of the system pa-

rameters will provide us with a potential that is useful in molecular dynamics ap­

plications and for molecular system relaxation (aka. Molecular Statics). A num­

ber of metrics exist to measure the quality of the potential energy function (PEF) 

that provides a level of confidence in the quality of the current parameterisation. 

The modelling of the elastic properties is fundamentally linked to modelling of 

more complex properties such as the crystal dynamics which include phonon fre­

quencies and the mode-Gruneisen parameters. A correct parameterisation based 

upon the elastic properties of the material allows us to predict the behaviour of 

complicated strained systems such as superlattices and quantum dots - which is 

essential for providing useful models of real-world systems and applications. 

4.1 The lattice model 

Initially a simulation "supercell" of 64 atoms is created by assembling 2x2x2 eight 

atom reduced unit-cells of the diamond or zinc blende structure, illustrated in 

figure 4.1. This is the minimum number of reduced unit cells required to provide 

correct boundary conditions for the material and to meet the minimum image 

criteria for the lattice. The potential cut-off function provides a measure of the 

minimum image criteria and the lattice should be large enough so that no atoms 
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can be bonded back onto their neighbours. 
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Figure 4.1: A single conventional cubic unit cell of the Zinc Blende structure 

The lattice model is loaded into computer memory in reduced coordinates, so 

that each of the unit cells has unit length in each of the Cartesian axes. This is 

so that the computer program may automatically find the correct lattice constant 

for the system and scale the model accordingly. Each atom in the system has an 

associated position in 3D space·which is measured in Angstroms and is given 

a type number based upon the periodic table element it is representing and the 

associa ted atomic mass in AMU. 

The Tersoff parameters that are under test are loaded into the computer to tell 

the system how to relate each of the atoms in the neighbourhood of the others to 

each other and the testing begins. 

Searching for the cohesive energy 

A basic search for the lattice constant, a, that provides the energy minimum in the 

particular lattice system is performed. Ecoh' the cohesive energy of the system is the 

energy required to break the crystal from a bulk lattice solid into isolated atomic 

species 

Ecoh = E(b'lllk) - L E(isolated)n (4.1) 
n 

For each of the n isolated species. The computed values for cohesive energy 

are compared to the experimental ones which are obtained from measuring the 

latent heat of sublimation at various low temperatures and extrapolating this to 

zero Kelvin. The lattice constant in a cubic crystal, a, is the conventional unit cell 

length at equilibrium volume. This is obtained by computationally minimising 

the crystal energy as a function of cell volume. 
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Practically we need to incrementally scale the cubic lattice in computer mem­

ory and calculate the energy associated with that scaling. As we are dealing with 

a cubic lattice type we may scale the model equally in all three dimensions us­

ing an Affine transform[l, 2]. Affine transforms are generalisations of standard 

Euclidean geometric transforms but do not have the property that they must pre­

serve lengths and angles of the object being transformed. Affine transforms can 

change the shape and size of an object by providing scaling and shear transforms. 

The object lattice may be scaled up or down (stretch and shrink operations) 

using the scaling coefficients 

and the matrix equation: 

(4.2) 

The inverse scaling can be performed using the scaling coefficients 

In general, to preserve accuracy in the system it is better to take a copy of the 

uniformly scaled atomic lattice in memory and scale it up to the desired lattice 

constant and then discard it, rather than scaling the original lattice model up and 

down repeatedly and introducing compound errors into the system. 

A routine that simply takes a set of possible lattice constants (units of A), say 

a = [2 ... 7] and a grain level of say ag = le-6 will have to perform 5 million iter­

ations of the scaling operation, recording the energy result at each position and 

then performing a search over the numerical data to locate the minimum. The 

energy result at each position is found by calling the Tersoff energy evaluation 

routine with the current lattice model and a set of Tersoff parameters stored in 

memory. It returns a single double precision value that represents the lattice sys­

tem energy. This is highly inefficient and has been improved by a granular search 
technique as follows: 

1. Provide 2 search limits o,min and a max and from these calculate the search 

width, Swid = a max - amin and the search pivot, Spiv = ~ + amino 

2. Split the search width region into n segments (typicallyn = 10) and calcu­

late the energy at each location, Xn and label it en' 
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3. From the vector of n values, identify the minimum energy emin at location 

Xmin' This is the new search pivot S~iv = Xmin. 

4. Redefine the search width as a tenth of the previous width, S~id = 8nd and 

d f· h h 1" b' , 1" , 1, re e Ine t e searc Imlts to e: amin = Spiv - '2 Swid' amax = Spiv + '2Swid' 

5. Loop back to step 2 a number of times to iterate the process. The number of 

loops provides the search depth, Sdep (typically Sdep = 6). 

Intuitively the above algorithm provides the same level of accuracy as the pre­

vious iterative search description, but completes a search at a granular accuracy 

of ag = le-6 in just 66 "moves" compared to a previous 5 million. This provides 

a massive level of computational speed up. 

It should be noted that although this method provides a fast and simple gran­

ular search, it is only useful if the system has one global minimum to locate. In 

this case we are searching for the minimum energy with respect to lattice con­

stant. This situation has only one global minimum provided the Tersoff parame­

ters used are reliable and so the routine will always locate the energy minimum 
efficiently. ,. 

Bulk modulus B and shear modulus G' 

Here we use rather standard means to predict the bulk and shear moduli of the 

materials under investigation. 

Bulk modulus, B, relates how the volume of a piece of material changes when 

exposed to a uniform change in pressure and we can rewrite this in a more con­

venient form to relate an atomic distortion of the simulation box to a change in 

energy 

B = _V
dP 
dV 

1 d2E 
n dv2 

(4.3) 

(4.4) 

where n represents the atomic volume (simply the volume per atom) which is 

defined as (a3 /8) in terms of the lattice constant a of the reduced unit cell used in 

the zinc blende or diamond simulation which contains 8 atoms. This is a measure 

of the curvature of the energy versus volume around the equilibrium volume. 1) 

is defined as the following uniform deformation on the system 

R' = 1)1/3. R (4.5) 
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As we are performing a uniform deformation x will vary at the same rate as y 

and z so we may rewrite this in terms of a, the lattice constant 

x = V 1/ 3 • a or: (~) 2 = V-2/3 (4.6) 

Equation (4.4) requires the second derivative of v which would be simpler to 

deal with in terms of the box length x so we may use the following 

which we may simply square for 

This allows us to rewrite (4.4) as 

a6 d2E 
B=----

9x4n dx2 

a6 d2E 

9a4(a3/8) dx2 

8a6 d2E 

=--
9a dx2 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

Dimensional analysis of (4.15) gives a result in 1030 eV per m-3. It is usual 

to represent the elastic properties in MBar which requires (4.15) to be multiplied 

by a conversion factor of 1.602. We note here that some authors publish figures 

for bulk modulus and shear modulus in dimensions of dynlcm2, and provide the 
following conversion factor 

1,Al Bar = 1 . 1012dynl cm2 (4.16) 

Practically, the atomic lattice in memory is copied three times with labels: m,o, 

m,_ and m+ then the la ttices are scaled: 

mo has the uniform Affine transform scaling vector S = [a, a, a] applied to it 
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and an associated energy eo is calculated from the Tersoff energy subroutine. 

m,_ has the uniform Affine transform scaling vector S = [a - dx, a - dx, a - dx] 

applied to it and an associated energy e_ is calculated from the Tersoff energy 

subroutine. 

m+ has the uniform Affine transform scaling vector S = [a + dx, a + dx, a + dx] 

applied to it and an associated energy e+ is calculated from the Tersoff energy 

subroutine. 

These operations are followed by a standard Euler numerical derivative and 

the coefficients named above are applied to calculate the bulk modulus 

(4.17) 

Obviously the quality of the calculated bulk modulus has an error term as we 

are using a Euler approximation. The error is O(dX2) in "big 0" notation and in 

general means we should assume that the answer is an approximation which is 

based upon the choice of dx. In the main calculation routines the values of dx are 

fixed at 1e-5 which is well within the machine precision and will provide a small 

enough error to be insignificant. .. 

Many other authors use the Murnaghan equation of state [3] or the more so­

phisticated third-order Birch-Murnaghan equation of state [4] to calculate the 

bulk modulus of materials. The method described above, using an Euler approx­

imation, may seem a little naive in comparison but the results were thoroughly 

tested in comparison to the analytic derivatives obtained later in the code devel­

opment cycle as an artifact of the phonon calculations and proved reliable. 

The shear modulus, C' can also be calculated from the second derivative of the 

Energy with a different sim ula tion box transformation 

where E is provided by the system deformation 

x = a· (1 + E) 
a 

z=a 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

We may now rework (4.18) using our deformation for x and the first derivative 
ofx 

dx = a·dE (4.22) 

66 



CHAPTER 4. ELASTIC PROPERTY MODELLING 

C' = ~ d
2

EI 
40 dE2 E=Ecoh 

a
2 

d
2EI 

= 40 dx2 x=a 

a2 d2E 

4(a3 /8) dx2 

2d2 E 

a dx2 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

As with the bulk modulus, the shear modulus must be multiplied by the co­

efficient 1.602 to convert the figure into MBar. 

To calculate the shear modulus practically, a similar method to the one above 

is used. The atomic lattice in memory is copied three times with labelling m,o, m_ 

and m+. And then the lattices are scaled: 

mo has the uniform Affine transform scaling vector S = [a, a, a] applied to it 

and an associated energy eo is calculated from the Tersoff energy subroutine. 

m_ has the uniform Affine transform scaling vector S = [a(l - E), a/(l - E), a] 
applied to it and an associated energy e_ is calculated from the Tersoff energy 

subroutine. 

m+ has the uniform Affine transform scaling vector S = [a(l + E), a/(l + E), a] 

applied to it and an associated energy e+ is calculated from the Tersoff energy 

subroutine. 

These operations are followed by a standard Euler numerical derivative and 

the coefficients named above are applied to calculate the bulk modulus 

dx = aE 

C = 1.602 x ~ x e+ + e_ - 2eo 
a dx2 

(4.27) 

(4.28) 

The value calculated for the shear modulus C' will have the same numerical 

derivative issues as the bulk modulus due to the Euler approximation used in the 

calcula tion. 

Simulation of C4.! and ( 

Simulation of the C~4 elastic constant and from that number, the C44 elastic con­

stant, requires a different type of Affine transformation - the shear transform. A 

shear transform has the effect of transforming the coordinates in one direction 

as a function of another whilst maintaining the coordinates in the third axis di­

rection. When performing a C~4 simulation we talk about the engineering shear 
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factor, "(xY' with which we transform the system. Consider the following matrix 

(4.29) 

Here we are transforming the x-direction coordinates of the system as a func­

tion of the y-direction coordinates, whilst preserving the z-direction coordinates. 

The matrix produces the following distortion 

x' = x + ("( xy • y) 

y' = y 

z' = z 

After we have performed the shear transformation on the system we can then 

directly calculate a measure called C~4 from the following 

(4.30) 

(4.31) 

Again with the bulk and shear moduli, the C~4 elastic constant must be multi­

plied by the coefficient 1.602 to convert the figure into MBar. 

Practically we perform the following operations: 

The atomic lattice in memory is copied three times with labels m,o, m_ and 

m+. And then the lattices are scaled: 

mo has the uniform Affine transform scaling vector S = [a, a, a] applied to it 

and then an associated energy eo is calculated from the Tersoff energy subroutine. 

m_ has the uniform Affine transform scaling vector S = [a, a, a] applied to 

it, then an engineering strain of -"(xy is applied to the system and an associated 

energy e_ is calculated from the Tersoff energy subroutine. 

m+ has the uniform Affine transform scaling vector S = [a, a, a] applied to 

it, then an engineering strain of +/"xy is applied to the system and an associated 

energy e+ is calculated from the Tersoff energy subroutine. 

These operations are followed by a standard Euler numerical derivative and 

the coefficients named above are applied to calculate the value of C~4 

o _ 1 602 ~ e+ + e_ - 2eo 
C44 -. X 3 X d 2 

a "(xy 
(4.32) 
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The previously documented issues related to a numerical derivative approxi­

mation will still be present in the system, but with a well chosen value of ,xy we 

can remain in the region between the computational limit and a value that is too 

large and will adversely affect our result. 

To acquire the actual C44 elastic constant we need to perform an energy min­

imisation step between the shear strain transform and the numerical derivative 

calculation. Kleinman[5] had observed this effect and produced a paper suggest­

ing an equation based upon the Affine shear transform and proposed an "internal 

displacement parameter" he labelled (. The energy minimisation step is due to 

a change in the 1 nn atomic bonding environment as an effect of the shear trans­

formation. Due to this transform 2 of the atomic bonds have become lengthened 

and 2 of the atomic bonds have become shortened, at this point ( = O. If the cen­

tral atom was moved to a position where all of the atomic bonds have the same 

length then ( = 1. With a simple shear transformation, we find that the energy 

minimisation step produces a value of ( somewhere between 0 and 1. 

. To obtain the correct value for the C44 elastic transform and the value of ( we 

need to perform an energy minimisation. Using the shear transform above and 

,xy, the type V sublattice inside the III-V crystal needs to be moved in a positive 

z-direction. Again we are faced with a situation where we need to calculate the 

minimum energy of the atomic system in an iterative process. We could calcu­

late this stepwise, as suggested before, but there are more efficient algorithms 

available. 

We use the following simple algorithm to calculate the position of the energy 
minimisa tion: 

1. Begin with the C~4 shear transformed lattice and calculate the initial energy, 

and make this the best energy value calculated thus far ebest with the Tersoff 

potential and the provided parameters. 

2. ?et two parameters Zdir = 1.0 and depth = 3. 

3. Set Zscale = Ie-depth. Move the atomic sublattice in the z-direCtion by an 

amount Zm.ove where Zmove = Zdir • Zscale' 

4. Calculate the energy at the new location enew ' 

5. If enew < ebest then set ebest = enew and go to step 3. 

6. If e new >= ebest then set Zdir ~. -1· Zdir and depth = depth + 1. 

7. If depth> 7 then end, else loop to step 3. 

69 



CHAPTER 4. ELASTIC PROPERTY MODELLING 

The values of depth can obviously be modified in the above system but under 

system testing the algorithm has been empirically observed to require an average 

of 23 "moves" to calculate the value of the sublattice displacement, 8z to the near­

est of le-7 A which is excellent efficiency compared to a similar iterative algorithm 

which may require up to 1 million system "moves". 

Once the sublattice is in a relaxed state the C44 parameter can be calculated as 

described for the C~4 elastic property above. The value of the Kleinman internal 

displacement parameter ( is directly calculated from the 8z displacement as 

4·8z 
(=-

"(xy . a 

The cohesive energies of other phases 

(4.33) 

The cohesive energies and the lattice constants of the other cubic polytypes of the 

elemental type IV lattice and the zinc blende type III-V lattice were also checked 

to ensure that the Tersoff parameters were providing the lowest energy configu­

ration for the desired lattice stoichiometry. This was done by building a lattice, as 

before, and using the lattice constant/cohesive energy search routine described 

above. 

For the diamond structure semiconductors the simple cubic (sc) Ah structure, 

the face centred cubic (fcc) Al structure and the body centred cubic A2 structure 

were checked against the diamond A3 structure type. For each of these struc­

ture types, a system containing the reduced uniform coordinates of the unit cell 

was entered into computer memory, along with the atomic type data. The lattices 

were then allowed to scale up according to the algorithm above and the cohesive 

energies and lattice parameters were recorded. The atomic volume, n was calcu­

lated per atomic system as the number of atoms per unit cell. In the case of the 

simple cubic lattice this is 1, for fcc it is 4, for bcc it is 2 and for diamond it is 8 

a toms per unit cell. 

A similar situation exists for the compound zinc blende structure semiconduc­

tors, the sodium-chloride (NaCI) Bl structure and the caesium-chloride (CsCI) 

B2 structure types were checked against the zinc blende B3 structure. For each 

of these structure types, a system containing the reduced uniform coordinates of 

the unit cell was entered into computer memory, along with the atomic type data. 

The lattices were then allowed to scale up according to the algorithm above and 

the cohesive energies and lattice parameters were recorded. The atomic volume, 

n was calculated per atomic systern as the number of atoms per unit cell. In the 

case of the NaCI Bl structure this is 8, for CsCI B2 structure it is 2 and for B3 zinc 
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blende it is 8 atoms per unit cell. 

Once the lattice constants of all of the above structure had been found to 

within the search depth tolerance, the program was then instructed to provide 

an output file with a 100 point energy curve for plotting purposes, as can be seen 

on the next few pages in the results section for each system. The data collection 

routine to evaluate the other cubic lattices takes 1.32 seconds to run on the laptop 

computing platform. 

4.2 Parameterisation Method 

A few of parameterisation methods have been developed with the aim of locating 

a set of Tersoff parameters that will satisfy the material properties and elastic 

cons tents database. In general this is quite a simple task - we have to choose 

between methods that involve locally searching the parameter space around a 

provided set of results (from e.g. another author) with the aim of improving them 

to a more refined set of properties. Or, we can globally search an entire parameter 

space hoping to locate a new set of Tersoff parameters. ,. 

Granular radial searching 

Here we a start the search with a known search position and allow the system to 

do a steepest descent optimisation in a number of different directions, refining the 

search tolerance as we go. We call this a "radial" search as the system is limited to 

searching the radius defined by the granularity of the search immediately around 

the current position. The initial position in parameter space is generally provided 

by another author and it is our intention to improve upon their results. 

The weighting method from the previous chapter was employed to provide 

a balanced search method and the weights were distributed uniformly 'Wn = 1 

using the following parameterisation metric 

m = L 'Wn(xn - dn )2 (4.34) 
n 

Where the vector of sought material properties is described as 

Xn = [ecoh' a, B, e', C4,t, (] (4.35) 

And the dn database values were taken from a mixture of DFT predictions and 
experimental results. 
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The algorithm for the granular radial search is as follows: 

1. Start with the current parameter vector, v. 

2. Calculate the current parameter metric, m curr ' 

3. Start with an initial "grain size", g, e.g. 0.1. 

4. Select one of the ten Tersoff parameters from the vector at random, 'On' 

5. Create a "parameter tweak", t, from: Obtain a random number in the range 

[0,1), subtract 0.5 from this number to provide a random number in the 

range [-0.5,0.5) and multiply it by the grain size and the selected param­

eter to provide a tweak that is proportional to the original parameter, t = 
[-0.5,0.5) . g . 'On' 

6. Add the parameter tweak to the parameter value, v~. = 'On + t. 

7. And form a new parameter vector, v' from the nine previous values and the 

one new parameter. 

8. Calculate the new parameter metric, m new ' 

9. If m new < mcurr accept the move and make v = v' and mcurr = m new, else 

discard mnew and v*. 

10. Maintain the statistical count of how many tweaks per 100 have been ac­

cepted as "good moves". If this number falls below 5% then shorten the 

grain size, e.g. make 9 = g/10. 

11. Loop to Step 4 until the maximum number of iterations have been reached 

(typically 10,000) or until the grain size has become insignificant (typically 

10-6). 

This algorithm is an improvement (in terms of program run timing) on the 

common Simplex Algorithm which, for a q dimensional search space, needs to 

construct a Simplex of q + 1 "moves" before a decision would be made regard­

ing whether the current direction of "move" was correct. The Simplex Algorithm 

demands a theoretical maximum of 2q+1 possible "moves" to find a minimum 

energy movement in the search space, whereas the algorithm described above re­

quires a maximum of only 21 moves before a movement direction has been identi­

fied as an improvement on the previous position. This is because it searches only 

one parameter dimension at once, which although it seems intuitively a possible 
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source of descent into a local minimum, the granular nature of the program pro­

vides an escape mechanism from this phenomenon. Furthermore, due to the high 

speed at which the program executes, there is no reason not to run it again if the 

results are not favourable. It has been empirically observed that the program will 

locate the same minimum from a given starting point 95% of the time - this is due 

to the granular nature of the stochastic search and a search space filled with local 

minima. 

An average program run of this search (about 6500 iterations) will typically 

take 184.92 seconds (about 3 minutes) and will provide a Tersoff parameterisa­

tion with all parameters within 1-2% of the desired values. It has been found 

that an improvement in the quality of the set can be made if the program is then 

run again. It is generally observed in the second run that the program will im­

mediately jump over the first one or two search depths and then begin further 

refinement at a smaller grain size. The random number generator is essential in a 

stochastic system such as this and the one chosen for this work is the "Mersenne 

Twister" which provides a random number generator that is 4 times faster then 

the machine supplied randO function and has a periodicity of 219937 - 1 - which 

is more than adequate for this application[6]. 
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Figure 4.2: Granular radial search output showing the overall fitness metric of 
the silicon parameterisation and the "hit ratio" of the system 

Figure 4.2 shows a sample data collection output of the program described 

above and it can be clearly seen when the grain size is reduced based on the tri­

angular trend appearing in the "accepted moves" field. When the grain size is 

reduced the program is able to produce more "moves" in parameter space due to 
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the nature of the random search pattern to improve the metric. This correct move 

effect will fall-off until a prescribed limit (typically a 5% successful hit ratio) and 

then the grain size is reduced further. Stochastically speaking, the algorithm will 

initally avearage a 50% hit ratio as the grain size is first reduced and this will 

lower as the system becomes more refined towards the goals. This is due to the 

search space having already been searched via the 10 parameters and the 2 de­

grees of freedom per parameter. The solid line in the figure shows the fitness 

metric which can be seen to be asymptotic towards zero. The spikes in the fit­

ness metric generally correlate with a reduction in the grain size. This is a very 

effective alogrithm and will generally produce an improved new set of Tersoff 

parameters in under 5 minutes on the laptop computing platform described pre­

viously. 

Granular random searching 

The granular radial search method described above is an example of a local pa­

rameter space search technique. It can be combined with a more complex algo­

rithm to make it a global search iechnique over the whole unknown parameter 

space landscape. The algorithm begins with a random vector of Tersoff parame­

ters and then proceeds to test each one, first to see if it will even evaluate (against 

the error trapping routine which looks for negative number under roots etc.) and 

then the surviving members of the vector are passed to the local granular search 

algorithm to be refined. The random vector of Tersoff parameters are generated 

be applying a random number in the range [-0.5 ... 0.5) to a set of predefined lim­

its that will produce groups of Tersoff parameters that will probably evaluate. 

The values Rand Rcut were predetermined before the program run to provide 

the first nn cut-off function correctly. The limits are highlighted in table 4.1 below 

Parameter Min. Max. 
De 1.0 5.0 
S 0.5 2.5 
j3 0.5 2.5 
re 1.0 5.0 
c 1 1000 
d 1 1000 
h -0.0001 -7 
n 0.0001 15.0 
'Y 0.0001 10.0 
A 1.0 3.0 

Table 4.1: The ran~om Tersoff parameters ranges 

1. Create a random vector of Tersoff parameters, Tn. 
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2. Loop from l. .. n 

3. Will Tn evaluate? If not go back to step 2. 

4. Pass Tn to the local granular search twice to improve the quality of the re­

sults. 

5. Store and result and go to step 2. 

An evaluation of the random search of the 10 dimensional space took 188336 

seconds (over 52 hours) on the desktop computing platform. 5000 starting points 

were used, but ones which did not provide an evaluation or provided a Ecoh = a, 
(which is an artifact of the error trapping routine) were immediately discarded, 

leaving 513 possible points in the search space to explore with the local routine 

described above. Of the resulting 513 parameter sets that could be improved, only 

61 of them had a small enough metric to be considered as "reasonable" results. 

The data collection from the program is displayed below in a series of figures. 

Figure 4.3 shows the spread of the fitness metrics as final figures from the dou­

ble evaluation with the local search routine for each of the surviving 513 Tersoff ,. 
parameter sets. It can be clearly seen that most of these results became stuck in 

local minima that provided results which did not provide a fitness metric m < 1 

(equation 4.34). A metric of m < le-3 is considered a good result and as can be 

seen, only 61 of these results provided a metric in that range. 
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Figure 4.3: Granular random search output for silicon showing the spread of the 
fitness metrics' of all 513 successful runs 
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Figures 4.4(a) to 4.4(f) show the spread of the material properties obtained 

for silicon. The experimental and DFT values that the program was searching 

for are: Ecoh = -4.63 eV, a = 5.431 Angstroms, B = 0.9783 MBar, G' = 0.509 

MBar, C.u = 0.796 MBar and ( = 0.524 (dimensionless) and as can be seen from 

the graphs the program had little difficulty in generally identifying a reasonable 

value for Ecolu a and B. However, the correct prediction of G', C44 and the coupled 

value of (were more problematic. This is evidently reflected in the large error in 
the majority of the search metrics. 

On average the majority of large resultant metrics (m = [1. .. 10]) from the pro­

gram run reflected the likelihood of local search minima to produce good values 

of the lattice parameter, cohesive energy and bulk modulus and an inability to 

couple these good results with correct material properties that correctly predict 

the local strain effects with the shear modulus and other strain dependent elastic 

properties. The single best output from the above run was evaluated against the 

results provided in the next section and was found to be functionally equivalent. 
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Figure 4.4: Granular random search output for silicon showing the spread of the 
material properties of all 513 successful runs 

77 



CHAPTER 4. ELASTIC PROPERTY MODELLING 

4.3 Results 

The results of the above algorithms are described below for 13 different semicon­

ductor systems. The local granular search program was used in each case due 

to the guarantee of finding reasonable results in a small amount of time, and all 

results are very pleasing. The global random searching routine has not been used 

to collect data on any other systems due to the massive amount of simulation 

time required and the inconsistent quality of the results. 

All results have been fitted to the experimental values of lattice constant and 

cohesive energy and the DFT predictions of the elastic properties and (. This is 

because the DFT values of a and Ecoh tend to be within a 2% tolerance and are not 

totally reliable. But the DFT predicitons for the elastic properties of the materials 

under deformation are not dependent upon the value of lattice parameter and 

are not subject to experimental measurement errors and hence are thought to be 

more accurate. 

~xperimentally, techniques such as Brillouin spectroscopy are used to mea­

sure the elastic properties of materials. Brillouin light scattering is generally re­

ferred to as inelastic scattering oLan incident optical wave field by thermally ex­

cited elastic waves in a sample. In the case of a transparent solid, most of the 

scattered light emanates from the refracted beam in a region well away from the 

surface and the kinematic conditions relating wave vector and frequency shift of 

the light pertain to bulk acoustic wave scattering. The phonons present inside a 

solid move in thermal equilibrium with very small amplitudes creating fluctua­

tions in the dielectric constant, which is viewed as a moving diffraction grating 

by an incident light wave. Therefore Brillouin scattering can be explained by the 

two concepts of Braggs reflection and Doppler shift. This technique is widely 

used for characterising the elastic properties of crystal samples and more details 

can be found in [7, 8,9]. 

4.3.1 . Silicon 

Silicon is the principal component of most semiconductor devices. Silicon forms 

covalent bonds with neighbours in a tetrahedral pattern and in standard con­

ditions it takes on the diamond phase. Silicon is widely used in semiconduc­

tor devices because it has a lower reverse leakage current than germanium (the 

material first used for semiconducting devices) and because its native oxide is 

easily grown in furnaces to form semiconductor/dielectric interfaces. In crys­

talline form pure silicon takes on a grey colour and is relatively inert in the at-
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mosphere. Silicon has a negative temperature coefficient of resistance and can be 

easily doped to make the pn junctions required for active devices such as diodes 
and transistors. 

Parameter Tersoff (T3) Powell (PI) 
De 2.666029 2.36291 
S 1.431648 1.48565 
f3 1.465552 1.46405 
re 2.295161 2.34358 
R 2.85 2.85 

Rcut 0.15 0.15 
C 100390 113031 
d 16.217 14.248 
h -0.59825 -0.423876 
n 0.78734 0.938777 
I 1.le-06 1. 2467e-06 
A 1.51 1.4606 

Table 4.2: The Tersoff parameters for diamond Silicon 

Even though elemental silicon is being somewhat superseded in some fields 

of electronics, it still has a number of notable advantages over III-V materials 

such as GaAs. Firstly, silicon dioxide is an excellent insulator and can easily be 

formed in elemental silicon devit:es to provide dielectrics and patterned tracks 

in solid state devices. Furthermore, silicon is abundant and cheap to process 

with a good physical strength and so large scale wafers can be made more easily. 

Finally, silicon has a higher hole mobility than many III-V materials, providing an 

excellent basis for high speed p-channel FET devices for low-power, high-speed 

CMOS logic based electronics. 

Property (units) Exp.lCalc. Tersoff (T3) Powell (PI) 
Ecoh(eV) -4.6Jl -4.629 -4.6305 

a (A) 5.4314 5.432 5.431 
B (MBar) 0.97833 0.977 0.976 
C' (MBar) 0.5093 0.336 0.511 
Cll (MBar) 1.6573 1.425 1.657 
C12 (MBar) 0.6393 0.754 0.635 
C44 (MBar) 0.7963 0.690 0.797 

( 0.5242 0.674 0.519 

Table 4.3: The material properties of Si 

Silicon has been widely studied in the past 50 years and the experimental data 

regarding the lattice constant, energy states and elastic properties for silicon are 

very well known. 

1 Tersoff does not use the A parameter in his fit so it is set to 1.5 here 
2from Harrison[10] 
3See [11] 
4Ref. [12] 
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Phase Tersoff (T3) Powell (P1) 
Ecoh (eV) a (A) Ecoh eV a (A) 

se -4.504 2.527 -4.622 2.513 
fcc -3.989 4.038 -3.094 4.167 
bee -4.197 3.085 -3.590 3.149 

diamond -4.630 5.432 -4.630 5.431 
Table 4.4: Crystal phase data for Silicon 

We started with the Tersoff (T3) [12] parameterisation of Silicon and provide 

below another parameterisation of silicon for the Tersoff PEF (see table 4.2). The 

results obtained from the above parameters are shown in table 4.3 and as can be 

clearly seen, the error in the Tersoff values in the elastic properties were originally 

34% and 13% respectively for the shear modulus and C44 value and these have 

been improved to less than 1% error in all metrics tested. The energy vs. lattice 

parameter plots shown in graph 4.5 and graph 4.7 both show that the material 

has a cohesive energy minimum of -4.63eV at a lattice parameter of 5.431A. 
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Figure 4.5: Cohesive energy of silicon from Tersoff (T3) parameters 

The phase of the Tersoff parameterisations shown above was tested to demon­

strate the transferability of the potential to high temperature or high pressure MD 

simulations and the results are shown in table 4.4. Here it can be noted that al­

though the parameters have been changed to reflect a more accurate small scale 

strain model, the material phase plots (shown in graph 4.6 for the Tersoff (T3) 

parameters and graph 4.8 for the Powell (PI) parameters) are both stable with the 

diamond form of the material being the preferred state. 

The fcc and bcc phases of the material have been translated further up the plot 

in the case of the Powell parameters which would provide a simulation that was 
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Figure 4.6: Energy vs. atomic volume for silicon with Tersoff (T3) parameters 

more likely to prefer the natural diamond state of the material. The energetics 

of the simple cubic (sc) phase of the material have been moved closer to the dia­

mond phase with the Powell parameters, but for the system to take on a simple 
1# 

cubic phase under MD conditions would require a significant change of atomic 

geometry and is unlikely. 
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Figure 4.7: Cohesive energy of silicon from Powell (PI) parameters 

Figure 4.8 may be directly compared to ab initio results obtained by Yin and 

Cohen [13]. In comparison it beco~es clear that, although the Powell parameters 

provide an energy minimum for the diamond phase, the simple cubic (sc) energy 

is too low in the Powell parameterisation. This effect is due to the Tersoff model 
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being designed for an atomic coordination, Z, of 4 and penalising any crystal 

systems that do not form 4 neighbour bonds. It is very difficult for the Tersoff 

model to replicate the simple cubic phase accurately due to the 6 neighbour bonds 

in the simple cubic structure. The work of Yin and Cohen also considers the ,B-tin 

phase (AS) of the type IV material and hexagonal systems including hexagonal 

close packed (hcp) and hexagonal diamond (aka. Lonsdaleite) which have not 

been considered in this work. 
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Figure 4.8: Energy vs. atomic volume for silicon with Powell (PI) parameters 
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4.3.2 Diamond Structure Carbon 

Diamond carbon is an extremely hard material exhibiting extraordinary proper­

ties and potential for nanotechnology applications. Diamond has very short bond 

lengths, a high lattice thermal conductivity and a very wide band gap. Diamond 

carbon has already found myriad application in high pressure optical applica­

tions (as a hardened window) due to its natural high dispersion of light and in 

coating and hardening applications due to a very small lattice constant and high 

thermal conductivity. Diamond is considered to be the hardest naturally occur­

ring material in the world (the hardest are mined from the New England area 

in Australia) and has many industrial applications for cutting, grinding and pol­

ishing. Diamond carbon is regularly synthesised for industrial applications but 

the quality of the material is not as good as the naturally occurring mined dia­

mond. Some forms of diamond (blue diamond) have been found to be natural 

semiconductors whilst others are natural insulators. This makes diamond a very 

interesting proposition as a semiconductor material. 

Parameter Tersoff (T3) Powell 
De 5.164533 5.03634 
S • 1.576879 2.18415 
j3 1.964037 1.99468 
Te 1.447206 1.46388 
R 1.95 1.95 

Rcut. 0.15 0.15 
C 38049 40064 
d 4.384 4.37865 
It -0.57058 -0.545985 
n 0.72751 0.619052 

'Y 1.5724e-07 1.61144e-07 
A 1.51 1.65768 

Table 4.5: The Tersoff parameters for diamond Carbon 

Although diamond carbon is not as stable as the rhomboidal graphite form 

as a material and diamond is considered metastable, it would take possibly the 

length. of time that the universe has been in existence for the material to decay 

into graphite due to a extremely high kinetic barrier. 

Property (units) Exp.lCalc. Tersoff (T3) Powell 
Ecoh(eV) -7.37-+ -7.422 -7.370 

a (A) 3.5674 3.561 3.564 
B (MBar) 4.425 4.294 4.408 
C' (MBar) 4.7555 4.819 4.755 
Cll (MBar) 10.765 10.72 10.748 
C12 (MBar) 1.255 1.08 1.238 
C44 (MBar) ,5.775 6.407 5.778 

( 0.2672 0.229 0.309 

Table 4.6: The material properties of diamond Carbon 
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Diamond carbon is currently being investigated thoroughly for nanotubes 

and related applications due to the proposition that diamond nanotubes may be 

even harder than mined diamond and furthermore as a substrate material for the 

growth of III-N electroluminescent devices due to the favourable lattice matching 

properties. A number of different carbon nanotubes can be formed by consider­

ing the bisection of a C60 molecule by a number of different planes[15]. 

Phase Tersoff (T3) Powell 
Ecoh (eV) a (A) Ecoh eV a (A) 

se -4.919 1.776 -5.859 1.691 
fcc -3.246 2.961 -5.437 2.652 
bee -3.839 2.228 -5.325 2.059 

diamond -7.422 3.561 -7.370 3.553 

Table 4.7: Crystal phase data for Carbon 

We started with the Tersoff (T3) [16, 12] parameterisation of carbon and pro­

ceeded to attempt to improve on the original parameter set provided by looking 

at the elastic properties and the small scale strain effects predicted by the internal 

displacement parameter (. The new parameters are provided in table 4.5. 

2 

0 

-1 

> 
(I) -2 
>. 
~ -3 
c: 
W 

-4 E 

~ -5 

-6 

-7 

-8 
2 3 4 5 6 

Lattice Constant, A 

Figure 4.9: Cohesive energy of diamond carbon from Tersoff (T3) parameters 

The results obtained from the above parameters are shown in table 4.6 and 

it can be seen that the Tersoff parameter set has been improved upon. Cohesive 

energy is now correctly identified as -7.37eV and the the lattice parameter is cor­

rect to less than 10
/ 0 • The bulk modulus has been inproved from 3% error to less 

than 1 % and although the shear modulus originally only had a 1% error - this has 

5See [14] 
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been brought closer to the measured value. The C44 parameter value has been im­

proved from 110/0 error to less than 10/0 error. The Kleinman internal displacement 

parameter still shows about a 150/0 error in the value. 
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Figure 4.10: Energy vs. atomic volume for diamond carbon with Tersoff (T3) 
.. parameters 

The energy vs. lattice parameter plots shown in figure 4.9 and figure 4.11 pro­

vide almost identical data, showing that minimum energy for the pair bonding 

between the atoms in the correct diamond crystal geometry occurs at -7.37eV and 
3.567A. 
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Figure 4.11: Cohesive energy of diamond carbon from Powell parameters 

The material phase data given in table 4.7, figure 4.10 and figure 4.12 clearly 
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demonstrates that the parameters given above for both the Tersoff and the Pow­

ell fits will provide excellent phase stability for diamond under MD simulation 

conditions. The shortening of the simple cubic phase (sc) line is due to a cut-off of 

the simulation software at just under 2A to stop the system testing unnecessary 

data under most conditions and to speed up the software run times. Although 

the Powell parameters bring the fcc and bcc plots closer to the diamond phase, 

the actual energy difference between the phases is still over 2e V. 
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Figure 4.12: Energy vs. atomic volume for diamond carbon with Powell param­
eters 
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4.3.3 Germanium 

Germanium is element number 32 in the periodic table and is a hard silver-white 

metalloid similar in chemical properties to tin. Under normal conditions germa­

nium takes on the diamond lattice form and is a semiconductor material. The 

development of the germanium transistor in the 1950s provided a major solid 

state technological advancement and was the material of choice for electronic ap­

plications until the high quality refinement of silicon in the early 1970s. Demand 

for germanium devices is still high and a large number of applications still re­

quire germanium based semiconductors including fibre optic communications 

systems and night vision applications due to the small band gap and ability to ef­

ficiently respond to infrared light. Germanium devices are still favoured by some 

musicians who claim that the transistors provide a vintage "fuzz" tone in their 

amplifiers and effects equipment. 

Parameter Tersoff (T3) Powell 
De 2.010567 2.06459 
S 1.434329 1.35835 
j1 1.443634 1.43283 

re 2.431721 2.42024 
R • 2.95 2.95 

Rcut 0.15 0.15 
C 106430 113656 
d 15.652 15.3874 
h -0.43884 -0.483616 
n 0.75627 0.834411 , 9.0166e-07 1.0068ge-06 
). 1.51 0.933196 

Table 4.8: The Tersoff parameters for Germanium 

The silicon-germanide alloy (usually just called silicon-germanium or SiGe) is 

being used increasingly in solid state devices due to the rapid switching charac­

teristics and high speed operation of SiGe transistors. 

Property (units) Exp.lCalc. Tersoff (T3) Powell 
Ecoh(eV) -3.85-1 -3.851 -3.850 

a (A) 5.6584 5.657 5.658 
B (MBar) 0.75166 0.758 0.746 
C' (MBar) 0.4036 0.471 0.411 
Cll (MBar) 1.28896 1.385 1.293 
C12 (MBar) 0.48296 0.444 0.472 
C44 (MBar) 0.6716 0.668 0.671 

( 0.5212 0.504 0.519 

Table 4.9: The Inaterial properties of GermanIum 

6Ref. [17] 
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The Tersoff (T3) parameters for Germanium were used as a starting point for 

the parameterisation and we attempted to improve upon the materials and elastic 

properties. The parameterisations are shown in table 4.8. 

Phase Tersoff (T3) Powell 
Ecoh (eV) a (A) Ecoh eV a (A) 

se -3.943 2.606 -3.539 2.657 
fcc -3.427 4.167 -2.416 4.402 
bee -3.496 3.201 -2.845 3.316 

diamond -3.851 5.657 -3.850 5.658 

Table 4.10: Crystal phase data for Germanium 

The results obtained from the above parameters show a good agreement with 

the experimentally measured data for germanium (table 4.9). Both parameter­

isations correctly predict the cohesive energy, the lattice constant and the bulk 

modulus to about 0.1 % accuracy. The shear modulus and C44 parameters are pre­

dicted by Tersoff to be in error by 17% and 1% respectively. These errors have 

been reduced to 2% and 0.1 % respectively. The Tersoff parameters provide a 3% 

error in the prediction of the Kleinman internal displacement parameter, where 

the Powell parameterisation reduces this to below 1 %. ,. 
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Figure 4.13: Cohesive energy of germanium from Tersoff (T3) parameters 

The graphics shown in figures 4.13 and 4.15 show that both parameterisations 

correctly reproduce the cohesive energy of the material under minimum energy 

bonding conditions to be -3.85eV at 5.658A. 
Table 4.10 shows the data form !he material phase tests. Here it can be seen 

that the Tersoff parameterisation shows a slightly lower energy state for the sim­

ple cubic (sc) phase of the material. This has been rectified in the Powell pa-
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Figure 4.14: Energy vs. atomic volume for germanium with Tersoff (T3) param­
eters 

rameterisation and the diamond phase of the material is now the lowest energy 

state by around OAeV. The phase plots of germanium for the Tersoff and Powell 

parameterisations are shown in figures 4.14 and 4.16 respectively. 
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Figure 4.15: Cohesive energy of germanium from Powell parameters 
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4.3.4 Galli urn Arsenide 

Gallium arsenide (GaAs) is a type III-V compound semiconductor that naturally 

forms in the zinc blende structure configuration. The bonds that are formed in 

the material (as with all III-V semiconductors) are mainly covalent with a small 

amount of ionic bonding. GaAs has a direct band gap that allows the material 

to be used in optoelectronic devices and the material has a number of other ad­

vantages over silicon. GaAs has a higher electron mobility than silicon and it 

has been predicted that the material could provide high speed switching at up 

to 250GHz. GaAs devices produce less noise when operated at high speed than 

silicon devices and due to a higher breakdown voltage than silicon GaAs may be 

operated at higher power levels. It is common to find GaAs based devices in LED 

and optoelectronic applications and also as the RF modulator in mobile phones 

and satellite communications equipment. 

Parameter Smith Sayed Powell 
De 2.180 2.180 2.12673 
S 1.5351119 1.641366 1.60228 
jj 1.614 1.560903 1.56295 
Te .. 2.345 2.345 2.35218 
R 3.5 3.5 3.5 

Rcut 0.1 0.1 0.1 
c 0.07837998 1.226302 1.20595 
d 4.5049412 0.790396 0.800338 
h -3.4109679 -0.518489 -0.442817 
n 5.5039372 6.317410 5.43647 

'Y 0.38090204 0.357192 0.363585 
A 1.57 1.723 1.83057 

Table 4.11: The Tersoff parameters for Gallium Arsenide 

GaAs is a very important material for forming heterostructure devices. It is 

very well characterised and can be grown reliably with the Bridgeman technique 

to form substrate layers for the pseudomorphic growth of quantum nanostruc­
tures. 

Property (units) Exp.lCalc. DFT~ Smith Sayed Powell 
Ecoh(eV) -3.252 - -3.251 -3.251 -3.250-' 

a (A) 5.653252 - 5.655 5.655 5.654 
B (MBar) 0.7539 0.757 0.800 0.748 0.750 
C' (MBar) 0.32859 0.364 -2.00656e-05 0.326 0.368 
Cl1 (MBar) 1.1919 1.242 0.799 1.182 1.240 
C12 (MBar) 0.5349 0.514 0.799 0.530 0.505 
C44 (MBar) 0.5969 0.634 -3. 16694e-05 0.687 0.639 

( 0.5812 0.506 0.999 0.536 0.516 

Table 4.12: The mater~~l properties of Gallium Arsenide 

7The A parameter is not included in the parameter fit of this author. It is arbitrarily set to 1.5 
here. 
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The parameterisation was started with the Smith[21] and Sayed et al[22] pa­

rameterisations of Gallium Arsenide and the Sayed parameters were chosen to be 

refined due to their ability to better reproduce the elastic properties of the mate­

rial. Here, the Powell parameters were chosen to fit to the DFT data provided by 

Wang[lS] as this was thought to be a more reliable value of the elastic properties 

of the material than the data provided by older measurement techniques. The 

parameters used in the tests are shown in table 4.11. 

Phase Smith Sayed Powell 
Ecoh (eV) a (A) Ecoh eV a (A) Ecoh eV a (A) 

NaCl -2.776 5.187 -1.705 5.532 -1.704 5.538 
CsCl -2.133 3.283 -1.368 3.464 -1.319 3.485 

zinc blende -3.251 5.655 -3.251 5.655 -3.250 5.654 

Table 4.13: Crystal phase data for Gallium Arsenide 

The results obtained from the parameters are shown in table 4.12. Here it can 

be seen that all 3 parameterisations have been able to reliably replicate the ma­

terial cohesive energy and lattice constant. The predicted bulk modulus value 

is 6% high for the Smith parameters and within good tolerance for the other pa­

rameterisations. The Smith parameters cannot replicate the shear modulus or C44 

elasticity of the material, but the Sayed and Powell parameters are in reasonable 

agreement with the tolerances improved from 10% and SOlo respectively to 1 % and 

0.1 %. The internal displacement parameter predicted by the Powell parameters 

has been improved to only a 2% error providing more confidence in the parame­

ters for use in small strain structural relaxations. 

Graphs 4.17, 4.19 and 4.21 show the material lattice parameter plotted with 

the energy of the bonding. All graphs show that the parameters correctly predict 

the short-range bonding behaviour of the material and produce cohesive energies 

at -3.2SeV at lattice constants of s.6sA. 

Table 4.13 shows the phase data calculated for the Smith, Sayed and Powell 

parameters. This data is plotted in figures 4.1S, 4.20 and 4.22 and clearly demon­

strates that all three parameterisations will provide a system that is most stable in 

the zinc blende formation. The Sayed and Powell parameterisations ptovide very 

similar results, both improve on the separation from the CsCI and NaCI structure 

types (by up to 1.55eV) when compared to the Smith parameters which predicts 

a separation of only O.5eV. 

Figure 4.22 can be compared to the ab initio modelling of the structural prop­

erties of III-V materials performed by Froyen and Cohen [23]. There is a good 

match between the phase separations and energies of the NaCI (Rocksalt) phase 

8fram first-principles study by Wang and Ye[18] 
9Ref. [19,20] 
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Figure 4.17: Cohesive energy of gallium arsenide from Smith parameters 

O~----~,~-. ----------------------~ 

> -1 
Q) 

>. 
e' 
Q) 
c::: 
W 

~ -2 
(/) 
u 
'E 
o « 

-3 

5 10 

, : , . 
\ ..... 
\ . 
\ . 
\ '. 
\ '. 
\ . 
\ '. 
\ '. 
\ '. CSCl ......... ,. ... 

~,--.,.."...",. 

.. ' • • .. • • • Zinc Blende 

15 20 25 30 

Atomic Volume, A 
35 

Figure 4.18: Energy vs. atomic volume for gallium arsenide with Smith parame­
ters 

and the CsCI phase when compared to the Powell parameters. The"Sayed pa­

rameters also compare well to the Froyen and Cohen work, but the parameters 

of Smith provide predictions of the other phases that are very close to the zinc 

blende phase. This could provide a source of an incorrect phase transition under 
molecular dynamics simulations. 
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Figure 4.19: Cohesive energy of gallium arsenide from Sayed parameters 
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Figure 4.20: Energy vs. atomic volume for gallium arsenide with Sayed parame­
ters 
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Figure 4.21: Cohesive energy of gallium arsenide from Powell parameters 
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Figure 4.22: Energy vs. atomic volume for gallium arsenide with Powell param­
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4.3.5 Indium Arsenide 

Indium arsenide (InAs) has a natural phase stability of zinc blende under stan­

dard temperature and pressure. It forms as a grey coloured type III-V crystalline 
semiconductor and has a melting point at 942°C. InAs crystals have a effective 

ionic charge q* ~ 0.45e compared to q* ~ O.35e for GaAs but the material is still 

mainly composed of covalently bonded atoms[10]. It has similar properties and 

uses to GaAs and is regularly alloyed with GaAs to form InGaAs which is used 

in optoelectronic applications such as LEDs and solid state lasers. The bandgap 

of InGaAs devices is dependent on the In/ Ga ratio and is easily tuned under 

MBE or MOCVD growth conditions when producing heterostructures such as 

quantum dots of quantum well laser devices. InAs is used in the construction 

of infrared detectors in the range 1-3.8J.lill which are usually photodiodes. Cryo­

genically cooled InAs detectors produce less noise and are used extensively in 

military applications but InAs is also commonly used at room temperature with 

commercial laser diode devices. 

Parameter Ashu Nordlund Migliorato Powell 
De 2.39804 5.17318 2.1643 2.13123 
S 1.51406 1.826141 1.5 1.47058 
f3 1.45409 1.359198 1.45372 1.49807 
re 2.44121 2.21379 2.4908 2.49936 
R 3.7 3.7 3.7 3.7 

RC'u.t 0.1 0.1 0.1 0.1 
c 0.9989 5.162421 0.9989 1.00904 
d 0.82608 1.665967 0.82608 0.82355 
h -0.5145 -0.5413316 -0.5145 -0.462045 
n 7.141472 0.7561694 7.141472 7.03876 

I 0.3779 0.3186402 0.3779 0.379623 
A 1.57 1.57 1.5 1.4331 

Table 4.14: The Tersoff parameters for Indium Arsenide 

The parameterisation started by considering the Ashu et al[24], Nordlund et 

al[25] and Migliorato et al[26] parameterisations of Indium Arsenide. The param­
eters for all authors are shown in table 4.14 along with the new parameterisation. 

A further set of parameters were devised based upon the DFT results 'presented 

in table 4.15 as these elastic properties were thought to be more accurate than the 

experimental data. The other authors fit their results to the experimental data 

also included in the table. 

The results obtained from the above parameters indicate that Ashu and Nord­

lund may have attempted to fit the parameters to an incorrect value of the co­

hesive energy. Migliorato and the new parametrisation provide the Ecoh value 

lOSee [27] 
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Property (units) Exp.lCalc. DFTlS Ashu Nordlund Migliorato Powell 
Ecoh(eV) -3.102 - -3.456 -3.566 -3.101 -3.100 

a (A) 6.058310 - 5.937 6.060 6.058 6.058 
B (MBar) 0.58010 0.6173 0.657 0.581 0.577 0.613 
C' (MBar) 0.19010 0.2285 0.219 0.191 0.189 0.232 
Cll (MBar) 0.833310 0.9219 0.950 0.835 0.823 0.922 
C12 (MBar) 0.453310 0.465 0.511 0.453 0.452 0.458 
C44 (MBar) 0.39510 0.444 0.481 0.395 0.416 0.447 

( 0.6662 0.598 0.632 0.651 0.641 0.605 

Table 4.15: The material properties of Indium Arsenide 

correctly. The Ashu parameters reproduce the lattice constant incorrectly but the 

other parameters appear to predict this correctly. The bulk modulus provided by 

Ashu is too high, even when compared to the DFT value which is predicting a 

value of B higher than the measured value. Authors Nordlund and Migliorato 

have fitted to the experimental values and provide a reasonable agreement. The 

new parameterisation provides an excellent value of B when compared to the 

DFTvalue. 

Phase Ashu Nordlund 
Ecoh (eV) a (A) Ecoh eV a (A) 

NaCl -1.~27 5.802 -2.678 5.662 
CsCl -1.389 3.701 -2.580 3.482 

zinc blende -3.456 5.937 . -3.566 6.059 
Phase Migliorato Powell 

Ecoh (eV) a (A) Ecoh eV a (A) 

NaCl -1.702 5.923 -1.616 5.949 
CsCl -1.210 3.779 -1.107 3.804 
ZnS -3.101 6.0583 -3.100 6.058 

Table 4.16: Crystal phase data for Indium Arsenide 

The value for the shear modulus Cf provided by the DFT calculations is again 

higher than the experimental value and is well reproduced by Ashu and Powell. 

The experimental value of C f was fitted by Nordlund and Migliorato and is in 

agreement by 1 %. Author Nordlund has accurately reproduced the experimental 

C44 ela~tic property of InAs with his parameterisation but the values for Ashu and 

Migliorato are wrong by 20% and 3% respectively. The new parameterisation is 

accurate to within 1% of the DFT value it was fitted to. Nordlund provides the 

most accurate fit to the experimental value of internal strain displacement and 

the Powell parameters correctly predict the DFT value of ( to within 1%
• 

Figures 4.23, 4.25, 4.27 and 4.29 show the short-range energy properties of the 

material bonding as a function of lattice parameter. As can be seen, the graphs 

for Ashu and Nordlund reflect the..fact that they had incorrectly predicted the 

cohesive energy of the material and in the case of Ashu - also the lattice constant. 

The graphs for Migliorato and Powell are identic~l, as would be expected for such 
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Figure 4.23: Cohesive energy of indium arsenide from Ashu parameters 

similar values of Ecoh at -3.1eV and a at 6.05833A . 
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Figure 4.24: Energy vs. atomic volume for indium arsenide with Ashu parame­
ters 

Table 4.16 shows the crystal phase data for InAs as predicted by the 4 param­

eterisations available. These values are plotted in graphs 4.24, 4.26, 4.28 and 4.30 

and demonstrate that the material is, in all cases, most stable in the zinc blende 

formation. In the Nordlund case the NaCl and CsCI crystal lattice types are clos­

est to the zinc blende formation, but the energy difference is still about leV. The 

other parameters demonstrate a preferred energy state of zinc blende by about 

l.5eV. 
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Figure 4.25: Cohesive energy of indium arsenide from Nordlund parameters 
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Figure 4.26: Energy vs. atomic volume for indium arsenide with Nordlund pa­
rameters 
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Figure 4.27: Cohesive energy of indium arsenide from Migliorato parameters 
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Figure 4.28: Energy vs. atomic volume for indium arsenide with Migliorato pa­
rameters 
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Figure 4.29: Cohesive energy of indium arsenide from Powell parameters 
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Figure 4.30: Energy vs. atomic volume for indium arsenide with Powell param­
eters 
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4.3.6 Gallium Phosphide 

Gallium phosphide (GaP) is a compound III-V semiconductor material with an 

indirect bandgap of 2.26eV that forms in the zinc blende lattice configuration 

at normal conditions. GaP has the appearance of a pale orange crystal and is 

odourless and insoluble in water. Gallium phosphide has found great commer­

cial success in the field of LED and optoelectronics manufacture since the 1960s. 

Low and standard brightness LEDs are now commonplace using GaP and alloys: 

pure GaP LEDs emit green light at 555nm whilst GaP doped with nitrogen emits 

yellow-green at 565nm and ZnO doped GaP emits red at 700nlll. GaP is trans­

parent to yellow and red light and therefore GaAsP / GaP LEDs are much more 

efficient than GaAsP / GaAs LEDs. 

Parameter Powell 
De 2.20178 
S 1.59411 
(3 1.62365 
Te 2.28675 
R 3.1 

Rcut 0.1 
• C 1.26417 

d 0.799535 
h -0.433247 
n 5.42195 

'Y 0.339811 
A 1.81771 

Table 4.17: The Tersoff parameters for Gallium Phosphide 

No previous Tersoff parameterisations for GaP have been found in the litera­

ture so a parameterisation was started from an arbitrary point in parameter space 

and is shown in table 4.17. 

Property (units) Exp.lCalc. DFT~ Powell 
Ecoh(eV) -3.56.! - -3.560 

a (A) 5.450511 - 5.450 
B (MBar) 0.88211 0.921 0.919 
C' (MBar) 0.39211 0.439 0.443 
Cll (MBar) 1.404611 1.507 1.509 
C12 (MBar) 0.620711 0.628 0.624 
C44 (MBar) 0.70311 0.763 0.763 

( 0.5742 0.516 0.521 

Table 4.18: The material properties of Gallium Phosphide 

The results obtained from the GaP parameterisation as shown in table 4.18 and 

are in excellent agreement with the DFT properties for cubic gallium-phosphide. 

All properties are predicted to within 10/0 of the reported values. This is a great 

11 Ref. [28, 29] 

102 



CHAPTER 4. ELASTIC PROPERTY MODELLING 

result for a first parameterisation. Figure 4.31 shows the cohesive energy of the 

material to be -3.56eV at a lattice constant of S.4S0SA which is in excellent agree­

ment with the experimental data. 

Phase Powell 
Ecoh (eV) a (A) 

NaCl -1.83173 5.35209 
CsCl -1.40743 3.37088 

zinc blende -3.55997 5.45053 
Table 4.19: Crystal phase data for Gallium Phosphide 

The material phase properties were checked and are tabulated in table 4.19. 

From this data and figure 4.32 it is apparent that, when using the Powell param­

eters, the lowest energy configuration is the zinc blende crystal with a gap of 2eV 

to the NaCl and CsCl structure formations. 
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Figure 4.31: Cohesive energy of gallium phosphide from Powell parameters 
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4.3.7 Indium Phosphide 

Indium phosphide (InP) is a binary III-V compound semiconductor with superior 

properties to silicon and GaAs due to a higher electron velocity. InP forms natu­

rally as a black coloured cubic crystal in the zinc blende lattice stoichiometry and 

has a direct bandgap which makes it suitable for high power and high frequency 

optoelectronics devices like solid state lasers and LEDs. InP is used as a substrate 

for InGaAs devices and has one of the longest optical phonon lifetimes of all III-V 

zinc blende materials. 

Parameter Powell 
De 2.17758 
S 1.5811 

fJ 1.52761 
Te 2.45854 
R 3.3 

Rcut 0.1 
C 1.2179 
d 0.831026 
h -0.461576 
n 5.3449 
')' 0.338811 

• A 1.89106 

Table 4.20: The Tersoff parameters for Indium Phosphide 

No previous Tersoff PEF parameterisation for InP could be found in the liter­

ature so an arbitrary starting point was selected in parameter space and the local 

refinement search program was run on the parameters a number of times until a 

suitable set was found that predicted the properties of the DFT elastic data. The 

successful set of parameters are shown in table 4.20 and the results are shown in 

table 4.21. 

Property (units) Exp. DFTts Powell 
Ecoh(eV) -3.48~ - -3.479 

a (A) 5.868712 - 5.869 
B (MBar) 0.71112 0.736 0.739 
C' (MBar) 0.22512 0.269 0.267 
CII (MBar) 1.01112 1.095 1.095 
Cl2 (MBar) 0.56112 0.556 0.561 
C44 (MBar) 0.45612 0.526 0.524 

( 0.6722 0.615 0.610 

Table 4.21: The material properties of Indium Phosphide 

The results clearly demonstrate that the parameterisation is an excellent match 

to the material properties of InP. A~ shown in graph 4.33 the cohesive energy of 

-3.48 and the lattice parameter, of 5.8687 A is correctly predicted and all elastic 

12See [30] 
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properties are within 10/0 of the specified DFT values. The internal displacement 

parameter is also within 1 % of the predicted DFT value. 

Phase Powell 
Ecoh (eV) a (A) 

NaCl -1.93817 5.69815 
CsCl -1.47917 3.59244 

zinc blende -3.4794 5.86863 

Table 4.22: Crystal phase data for Indium Phosphide 

Table 4.22 shows the different cubic phases of the material and the computed 
minimum energies. It is shown (also using figure 4.34) that the material is stable 

in the zinc blende configuration with the NaCllattice type being 1.5eV above. 

This demonstrates that the Powell parameters are very suitable for MD simula­

tions using the Tersoff PEF and InP. 
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Figure 4.33: Cohesive energy of indium phosphide from Powell parameters 

106 



CHAPTER 4. ELASTIC PROPERTY MODELLING 

o~~~----------------------------~ 

> Q) 

>. 
e> 
Q) 

-1 

iTI -2 
Q) 

C75 
o 
"E 
o < -3 

10 15 20 

• _ . • • • • Zinc Blende 

25 30 35 

Atomic Volume, A 
40 45 50 

Figure 4.34: Energy vs. atomic volume for indium phosphide with Powell pa­
rameters 
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4.3.8 Gallium Antimonide 

Gallium antimonide (GaSb) is a III-V semiconductor which exhibits excellent 

electron mobility and saturation velocity. GaSb has the zincblende cubic crystal 

structure and a bandgap energy of O.73eV. GaSb is used in high power mid/far 

range infrared detectors, infrared LEDs and lasers and in HEMT field effect tran­

sistors. GaSb is grown with the Czochralski method and commercial samples of 

up to 3" are readily available. The electrical properties of GaSb and various lat­

ticed matched alloys could allow HEMT devices operating in the THz range to be 
achieved. 

Parameter Powell 
De 2.17013 
S 1.41256 
f3 1.47705 
Te 2.48549 
R 3.5 

Rcut 0.1 
C 1.17945 
d 0.842774 
h -0.429907 

.n 4.61625 

"Y 0.36953 
A 1.8244 

Table 4.23: The Tersoff parameters for Gallium Antimonide 

No parameterisation of GaSb was available in the literature, so an arbitrary 

point in the search space was chosen to begin the granular search program from. 

The parameterisation is shown in table 4.23 and the results appear in table 4.24 

alongside experimental measurements and predicted DFT values. 

Property (units) Exp.lCalc. OFT!; Powell 
Ecoh(eV) -2.962 - -2.96 

a (A) 6.0959313 - 6.096 
B (MBar) 0.56313 0.567 0.566 
C' (MBar) 0.24013 0.270 0.272 
Cll (MBar) 0.88313 0.927 0.928 
C12 (MBar) 0.40313 0.378 0.384 
C44 (MBar) 0.43213 0.462 0.463 

( 0.5942 0.530 0.532 

Table 4.24: The material properties of Gallium Antimonide 

The results show an excellent agreement with the experimental lattice con­

stant and cohesive energy which is plotted in figure 4.35. The elastic properties 

of the material are correctly reprod,uced to within 10/0 of all DFT values and the 

internal displacement parameter is correct to within a 10/0 tolerance of the DFT 

13See [31] 
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predicted value. This suggests that these parameters would be an excellent choice 

for structural MD relaxation of low strain systems. 

Phase Powell 
Ecoh (eV) a (A) 

NaCl -1.382 6.095 
CsCI -0.874 3.938 

zinc blende -2.960 6.096 

Table 4.25: Crystal phase data for Gallium Antimonide 

The phase stability of the material using the above parameters is excellent. 

The zinc blende phase is the lowest energy configuration by 1.5eV and this is 

shown in the energy vs. atomic volume plot in figure 4.36 where it can be clearly 

seen that GaSb prefers the zinc blende lattice type when these parameters are 

used in MD simulations at room temperature and standard pressure. 
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Figure 4.35: Cohesive energy of gallium antimonide from Powell parameters 
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Figure 4.36: Energy vs. atomic volume for gallium antimonide with Powell pa­
rameters 
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4.3.9 Indium Antimonide 

As with GaSb, indium-antimonide (InSb) is a high mobility direct bandgap III-V 

semiconductor. It has the appearance of a dark grey I silver metal and forms in 

the zinc blende cubic structure geometry. InSb based infrared detectors are com­

mon (sensitive to 1-5\.!ffi wavelengths) and commercial and military applications 

range from thermal imaging, missile guidance detectors and astronomical mea­

surement systems. InSb has been used commonly in the past as an infrared de­

tector in mechanical line-scanned array systems for the military, prompting much 

work in early characterisation and experimental studies. InSb detectors tend to 

be very complicated as they require cryogenically cooling to 80K to achieve good 

performance. Although they have excellent quantum efficiency (typ. 80-90%) 

they need frequent calibration and have fallen out of favour to more modem ma­

terials such as HgCdTe. 

Parameter Powell 
De 2.1872 
S 1.40689 
f3 1.43604 

• Te 2.62026 
R 3.7 

Rcut 0.1 
C 1.21528 
d 0.90126 
h -0.443878 
n 4.49087 
"Y 0.386354 
A 1.75633 

Table 4.26: The Tersoff parameters for Indium Antimonide 

Recent results in high speed switching applications by Intel and QinetiQ have 

demonstrated bipolar transistors based upon InSb at up to 85GHz and FET tech­

nology based upon indium-antimonide switching at 200GHz suggesting that InSb 

may be making a comeback as a compound semiconductor material. 

Property (units) Exp./Calc. DFTts Powell 
Ecoh(eV) -2.80L - -2.780 

a (A) 6.47914 - 6.479 
B (MBar) 0.47014 0.476 0.476 
G' (MBar) 0.151 14 0.183 0.185 
Cll (MBar) 0.67114 0.720 0.722 
C12 (MBar) 0.36914 0.354 0.353 
C44 (MBar) 0.30214 0.341 0.340 

( 0.6642 0.603 0.603 

. Table 4.27: The material properties of Indium Antimonide 

14Ref. [32] 
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No parameterisations for InSb for the Tersoff potential exist in the literature 

so an arbitrary starting point was chosen in parameter space and the refinement 

program was run. The parameters chosen are shown in table 4.26 and the results 

are compared to DFT predictions and experimental measurements in table 4.27. 

Phase Powell 
Ecoh (eV) a (A) 

NaCl -1.375 6.410 
CsCl -0.858 4.139 

zinc blende -2.800 6.479 
Table 4.28: Crystal phase data for Indium Antimonide 

The results are excellent. The parameterisation predicts all elastic properties 

to within 10/0 of the DFT values. The cohesive energy of -2.80eV and the lattice 

parameter of 6.479A is correctly predicted by the parameters and shown in figure 

4.37. The internal displacement parameter is almost parfectly reproduced which 

suggest an excellent application of the parameters in small strain structural relax­

ation MD simulations. 

> Q) 

o 

>. -1 
~ 
Q) 
c: 
UJ 
E 
~ -2 

-3 

4 5 6 7 8 

Lattice Constant, A 

Figure 4.37: Cohesive energy of indium antimonide from Powell parameters 
" 

InSb phase properties were predicted using the Tersoff PEF and the above 

parameters and the results are shown in figure 4.38 and table 4.28. It is clear that 

the material is at a lowest energy configuration in the zinc blende structure and 

the NaCI and CsCI cubic structure types are at least l.4eV above the zinc blende 

curve. This suggest excellent stability for the parameters in MD simulations. 
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Figure 4.38: Energy vs. atomic volume for indium antimonide with Powell pa­
rameters 
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4.3.10 Boron Nitride 

Boron Nitride (BN) in the cubic Zinc Blende phase is metastable under normal 

conditions. It appears as a white coloured solid hexagonal crystal at room tem­

perature and standard pressure and was first synthesised in 1957 using a high 

pressure technique similar to synthesised diamond formation from graphite. It 

is currently commercially available in crystals of a few millimetres size and is of 

great interest as a material with similar properties to diamond. Cubic BN (c-BN) 

has outstanding physical properties, extreme hardness and chemical inertness. 

The wide band gap, high melting temperature and low dielectric constant of BN 

provides excellent potential for microelectronic devices, nanostructure applica­

tions and protective coating materials[33]. BN is commonly used as a boundary 

layer when growing GaN on SiC and it is of great interest as a material for grow­

ing nanotubes because it has recently been discovered that BN nanotubes have 

homogeneous electronic behaviour: the nanotube shape and size does not affect 

the bandgap. 

Parameter Albe Sekkal Powell 
De .. 6.36 4.750 3.40327 
S 1.0796 1.56216 2.45545 

!3 2.043057 1.96201 1.99278 
Te 1.33 1.47217 1.5658 
R 2.0 1.95 1.95 

Rcut 0.1 0.15 0.15 
C 1092.9287 38049 6.55459 
d 12.38 4.384 1.17872 
h -0.5413 -0.57085 -0.396692 
n 0.364153367 0.72751 8.7359 

'Y 0.000011134 1.5724e-07 0.256813 
A 1.9925 1.57 1.06665 

Table 4.29: The Tersoff parameters for Boron Nitride 

The starting point for the BN parameterisation was provided by the Albe and 

Moller[33] and the Sekkal et al[34, 35] parameters for Boron Nitride. A further 

parameter set was achieved by improving upon the Sekkal parameters and the 

three sets are shown in table 4.29. 

Property (units) Exp.lCalc. DFTts Albe Sekkal Powell 
Ecoh(eV) -6.68l - -6.607 -6.785 -6.679 

a (A) 3.615715 - 3.575 3.624 3.626 
B (MBar) 4.0015 3.92 4.120 3.849 3.906 
G' (MBar) 3.1515 3.191 4.084 4.246 3.201 

CII (MBar) 8.2015 8.174 9.560 9.510 8.174 

Cl2 (MBar) 1.9015 1.792 1.400 1.018 1.771 

C44 (MBar) 4.8015 4.699 5.724 5.713 4.704 

( - 0.117 0.316 0.238 0.233 

Table 4.30: The material properties of Boron NItnde 
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The results obtained from the above parameters are displayed in table 4.30 

alongside the experimental and DFT predicted results. The cohesive energies 

predicted by the Albe and Sekkal parameters are both 1% in error compared to 

the experimental value and the Powell value. The Albe lattice parameter is also 

in error by 1% but the Sekkal and Powell values are correct to 0.2%. The bulk and 

shear moduli predicted by Albe are 3% and 29% in error and the ones by Sekkal 

are 4% and 350/0 from the experimental values, whereas the values perdicted by 

the Powell parameters are within 1% of the DFT predictions that the potential 

was fit to. 

Phase Albe Sekkal Powell 
Ecoh (eV) a (A) Ecoh (eV) a (A) Ecoh eV a (A) 

NaCl -4.54869 3.51261 -3.92843 3.59849 -2.1442 3.76861 
CsCl -4.68565 2.18653 -3.4322 2.26961 -1.93225 2.31849 

zinc blende -6.60741 3.57545 -6.78527 3.62385 -6.67925 3.62583 

Table 4.31: Crystal phase data for cubic Boron Nitride 

. The predictions made by Albe and Sekkal for the C44 value are both 19% adrift 

but the Powell parameter is successfully fit to the DFT value. The internal dis­

placement value is double the vtllue it should be using the Powell parameters. 

But this is the closest value of all three parameter sets. 
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Figure 4.39: Cohesive energy of cubic boron nitride from Albe parameters 

Figures 4.39, 4.41 and 4.43 show that all three authors can predict the mate­

rial lattice constant and cohesive energy to within 1% percent tolerance of the 

experimental data. 

15See [36, 37] 
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Figure 4.40: Energy vs. atomic volume for cubic boron nitride with Albe param­
eters 

° The crystal phase data is shown in table 4.31 and figures 4.40, 4.42, 4.44 and 

demonstrates that all three parameter sets can correctly reproduce the zinc blende 

phase as the preferred minimu~ energy phase. The Albe parameters have the 

closest phase relation with an energy of 1.geV required to move from the zinc 

blende phase to the CsCI form. The Sekkal and Powell parameters require about 

3eV to perform the same phase transformation indicating that they would be 

better choices for a hard material like BN in a MD simulation. 
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Figure 4.41: Cohesive energy of cubic boron nitride from Sekkal parameters 
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Figure 4.42: Energy vs. atomic volume for cubic boron nitride with Sekkal pa­
rameters 
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Figure 4.43: Cohesive energy of cubic boron nitride from Powell parameters 
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Figure 4.44: Energy vs. atomic volume for cubic boron nitride with Powell pa­
rameters 
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4.3.11 Gallium Nitride 

Gallium nitride has outstanding physical and chemical properties[38]. It pro­

vides a short wavelength range, high temperature of operation and we can fabri­

cate high power, high frequency devices from it - which make it a very attractive 

prospect for electroluminescent devices. GaN exhibits strong bonding properties 

(mixed covalent and ionic) and is the basic material for LEDs, blue lasers and 

UV optoelectronic devices, optical pumping structures and photodetectors[39, 

40, 41]. GaN is stable in the wurtzite hexagonal lattice form under ambient con­

ditions but the cubic zinc blende form has been successfully epitaxially grown on 

cubic substrates such as MgO and j3-SiC. The cubic formation of GaN has techno­

logical advantages as it is able to produce cleaved laser cavities and can be doped 

easily. Cubic GaN can also be synthesised but there are problems with poor layer 

quality from planar defects and a tendency to transform to the wurtzite phase. 

Parameter Moon Benkabou Powell 
De 2.77484 3.078133 2.38972 
S 1.925 1.518829 1.85196 
f3 1.88503 1.93460 1.97764 
re 1 .. 92667 1.84401 1.93005 
R 2.5 2.5 2.5 

RC11t 0.1 0.1 0.1 
c 7.2239 38049 1.09984 
d 10.018 4.384 0.666512 
h -0.518 -0.57085 -0.488761 
n 0.78734 0.72751 11.5642 

"Y 1.0ge-06 1.572410e-06 0.295653 
A 1.57 1.57 1.60024 

Table 4.32: The Tersoff parameters for cubic Gallium Nitride 

Two other authors have attempted to parameterise cubic gallium nitride (e­

GaN). We could not reproduce the results reported in Benkabou et aI[ 42] or Moon 

and Hwang[43] from the parameters provided but the results we have obtained 

have been included here for completeness. It is not clear whether this was a prob­

lem with the software they were using, the elastic properties transform methods 

provided in the literature (they used the same model) or an error in the reproduc­

tion of the Tersoff parameters printed in the article. 

The Benkabou parameters were fitted to Ecolu Band a. He has checked his pa­

rameters against the elastic constants Cll, C12 and C4t and reports a reasonable fit. 

Benkabou reports a good agreement with the change in the lattice parameter with 

increasing temperature via MD simulation and looks at the mean displacement 

of the atomic positions in the lattice at room temperature, 300K. 

16See [44] 
17See [45] 
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Property (units) Exp. DFTlS Moon Benkabou Powell 
Ecoh(eV) -4.452 -5.549 -1.483 -4.449 

a (A) 4.516 4.450 5.233 4.501 
B (MBar) 2.03717 2.06 2.366 0.566 2.064 
Of (MBar) 0.6717 0.824 1.7e-04 1.019 0.824 
Cll (MBar) 2.9317 3.1593 2.366 1.920 3.162 
C12 (MBar) 1.5917 1.510 2.366 -0.110 1.514 
C44 (MBar) 1.5517 1.976 3.4e-04 1.148 1.972 

( 0.6117 0.477 0.999 0.041 0.464 

Table 4.33: The material properties of cubic Gallium Nitride 

Phase Moon Benkabou Powell 
Ecoh (eV) a (A) Ecoh eV a (A) Ecoh eV a (A) 

NaCl -7.135 3.853 -0.278 5.673 -2.356 4.364 
CsCl -11.098 2.225 -0.157 3.623 -2.148 2.682 

zinc blende -5.549 4.449 -1.483 5.233 -4.449 4.501 

Table 4.34: Crystal phase data for cubic Gallium Nitride 

The Moon parameters were fit to the cohesive energy, the lattice parameter 

and the bulk modulus starting from the Benkabou parameters. The Ga-Ga and 

~-N interaction used in the paper was taken from Nakamura et al[46]. The Naka­

mura work checks the energy of the zinc blende material against the phase of 

the rocksalt lattice, but not other simple lattice types. Moon has investigated the 

thermodynamic properties of his parameters using MD simulation, although the 

tolerance given for the predicted melting temperature is ±300I{. 
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Figure 4.45: Cohesive energy of cubic gallium nitride from Moon parameters 

The three parameterisations of cubic GaN are shown in table 4.32 and the 

associated results in table 4.33 alongside the DFT predictions and the measured 

experimental values. As can be seen from the predicted values in the table there 
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seems to be some serious discrepancies with the Benkabou parameters. Moon 

finds a reasonable fit for the lattice constant and a leV error in the cohesive energy 

but it was impossible to reproduce the cited Benkabou results. The Moon data 

for the elastic properties shows promise for the bulk modulus but completely 

fails to reproduce the shear and C44 behaviour. The Powell parameters are seen 

to be within 10/0 tolerance for all materials properties when compared to the DFT 

predicted values. 
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Figure 4.46: Energy vs. atomic volume for cubic gallium nitride with Moon 
parameters 

The energy vs. lattice constant graphs in figures 4.45,4.47 and 4.49 tell a simi­

lar story. There is a complete failure to reproduce any cited data for the cohesive 

energy and lattice parameter with the Benkabou parameters. The Moon parame­

ters produce a better result but the cohesive energy is in error by leV. The Pow­

ell parameterisation reproduces the cohesive energy and lattice parameter of the 

system correctly. 

Table 4.34 and figures 4.46, 4.48 and 4.50 shows the phase data for the cubic 

crystal polytypes possible with GaN. As can be seen there is a failure of the Benk­

abou parameters to give reasonable energies. The Moon parameters describe a 

system that prefers the CsCI polytype and then NaCl phase with lower energies 

per atom than the zinc blende formation, which would probably prompt a phase 

transformation, or at least unpredictable results, from an MD simulation. The 

Powell parameters look stable with a 2e V gap from the zinc blende phase to the 

nearest phase transformation. 
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Figure 4.47: Cohesive energy of cubic gallium nitride from Benkabou parameters 
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Figure 4.48: Energy vs. atomic volume for cubic gallium nitride with Benkabou 
parameters 
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Figure 4.49: Cohesive energy of cubic gallium nitride from Powell parameters 
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Figure 4.50: Energy vs. atomic volume for cubic gallium nitride with Powell 
parameters 
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4.3.12 Indium Nitride 

Cubic Indium Nitride (c-InN) exhibits mixed bonding properties (partially co­

valent and ionic) and is predicted to have excellent material properties. As a 

member of the III-N family it exhibits great hardness, short bond lengths and a 

wide band gap making it an excellent choice for optoelectronic applications and 

high temperature, high frequency, high energy devices[38]. Although c-InN has 

been studied via first principles methods[47, 48, 49] there is little experimental 

data available due to the lack of good quality bulk crystals of a sufficient size. 

c-InN is stable under normal conditions in the wurtzite phase which has been 

used to some success to measure the elastic constants and transform them for a 

estimate of the zinc blende parameters[50]. InN is expected to be a successor to 

GaN for high temperature and high frequency electronics providing millimetre 

and \.lmeter wavelength applications devices. It is predicted to have a higher sat­

uration velocity than GaN which will provide higher frequency power amplifier 

devices and due to the higher carrier mobility when compared to GaN it should 

provide less noise during high frequency high power operation. 

Parameoter Benkabou Powell 
De 690.2616 2.20268 
S 1.780896 1.69411 
j3 1.748556 1.89216 
Te 0.398836 2.11896 
R 2.65 2.65 

Rcut 0.1 0.1 
c 10039 1.07074 
d 16.217 0.725308 
h -0.598 -0.533599 
n 0.72 9.74096 
"I 1.11e-06 0.30813 
A 1.57 1.59607 

Table 4.35: The Tersoff parameters for cubic Indium Nitride 

Benkabou et al[42] has parameterised c-InN and the parameters were fitted 

to E.coh, Band a. Elastic constants Cll, C12 and C44 were checked and he reports 

a reasonable fit. A test was made via MD simulation to check the fhange in the 

lattice parameter with increasing temperature and Benkabou looks at the mean 

displacement of the atomic positions in the lattice at room temperature, 300K. We 

cannot reproduce the results given in the Benkabou paper using our software. It 

is unclear whether this is due to an incorrect calculation or poor reproduction of 

the Tersoff parameters used. 

The two parameter sets for cubic InN are provided in table 4.35 and the as­

sociated results, tabulated alongside DFT predictions and experimental measure­

ments, are shown in table 4.36. 
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Property (units) Exp.lCa1c. DFTts Benkabou Powell 
Ecoh(eV) -3.86.! -1373.550 -3.858 

a (A) 4.981S 0.925 4.981 
B (MBar) 1.45717 1.476 2424.620 1.481 
Cf (MBar) 0.3117 0.424 678.779 0.419 
Cll (MBar) 1.8717 2.040 3341.659 
C12 (MBar) 1.2517 1.190 1966.101 
C44 (MBar) 0.8617 1.141 1297.470 1.136 

( 0.817 0.639 0.665 0.620 

Table 4.36: The material properties of cubic Indium Nitride 

From the material properties it is immediately obvious that the Benkabou 

parameters cannot even nearly replicate the experimental or DFT results. The 

cohesive energy is subject to a massive error and the lattice constant is tending 

towards the lower computational limit. The elastic properties are massively in­

correct, but incredibly the Kleinman ( parameter is close to the DFT value. The 

Powell parameters reproduce the elastic properties, cohesive energy and lattice 

parameter to within an excellent tolerance. The largest error is in the prediction 

of ( which is in error by 3%. 

Phase Benkabou Powell 
Itcoh (eV) a (A) Ecoh eV a (A) 

NaCl -1700.17 1.00032 -2.141 4.797 
CsCl -1853.37 1.00032 -1.796 2.974 

zinc blende -1369.28 1.00032 -3.858 4.981 
Table 4.37: Crystal phase data for cubic Indium Nitride 

Graphs 4.51 and 4.53 show the cohesive energy plots. It is obvious that the 

Benkabou data is massively in error. The Powell parameters correctly reproduce 

the cohesive energy of -3.86eV and the lattice parameter of 4.98A. 

The phase stability of the parameter sets is shown in table 4.37 and graphs 4.52 

and 4.54. The Powell parameters show excellent promise for MD applications as 

the minimum energy formation is the zinc blende phase with a 2eV gap until the 

phase transformation into CsCl or NaCl. 

ISSee [38] 
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Figure 4.51: Cohesive energy of cubic indium nitride from Benkabou parameters 
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Figure 4.52: Energy vs. atomic volume for cubic indium nitride with Benkabou 
parameters 
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Figure 4.53: Cohesive energy of cubic indium nitride from Powell parameters 
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Figure 4.54: Energy vs. atomic volume for cubic indium nitride with Powell 
parameters 
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4.3.13 Aluminium Nitride 

Aluminium nitride usually forms in the wurtzite phase at standard temperature 

and pressure but can be grown epitaxially on a cubic substrate (such as j1-SiC) into 

a cubic zinc blende structure for a small number of layers[51, 38, 52]. Great inter­

est has been shown in cubic aluminium nitride (c-AIN) due to the excellent optical 

and material properties available. Unfortunately c-AIN is very difficult to man­

ufacture due to the extremely reactive nature of AIN[53]. Fabrication is difficult 

and requires high-purity source material and an oxygen free environment which 

has seen researchers using c-GaN as the III-N of choice. Due to complex epitaxial 

growth methods resulting in growth defects and spoiled samples c-AIN has been 

studied extensively with first principles calculations and there seems to be a good 

general agreement on the lattice properties and elastic constants[47, 54, 48, 49]. 

Parameter Benkabou Goumri-Said Powell 
De 3.340698 3.026364718 3.19655 
S 1.726929 1.765299132 1.48636 

f3 1.721859 1.878941653 1.70916 
re 1.853366 1.878365524 1.86255 
R 2.35 2.335 2.335 

Rcut "0.1 0.15 0.1 
C 10039 20312 20673.3 
d 16.217 16.5103 16.1559 
h -0.598 -0.58239 -0.659096 
n 0.72 1.33041 1.55299 
"( 1. lle-06 1.1566e-04 0.000122132 
A 1.57 1.57 1.45221 

Table 4.38: The Tersoff parameters for cubic Aluminium Nitride 

A parametrisation of c-AIN is available in Benkabou et al[42] and they demon­

strate a fit to the elastic properties cu, C12 and C44 from their parameters which 

were designed with the lattice parameter a, the cohesive energy Ecoh and the bulk 
modulus B in mind. The material properties that Benkabou reports cannot be re­

produced correctly here. It is unclear if this is due to a incorrect parameterisation 

or poorly reproduced data in the original report. 

Property (units) Exp.lCalc. DFTIS Benkabou Goumri-Said Powell 
Ecoh(eV) -5.762 -6.646 -5.757 -5.759 

a (A) 4.3819 4.284 4.371 4.383 
B (MBar) 2.0817 2.03 2.457 2.483 2.049 
Cf (MBar) 0.7217 0.698 0.0342 0.544 0.750 
Cll (MBar) 3.0417 2.96 2.500 3.207 3.049 
C12 (MBar) 1.6017 1.564 2.430 2.119 1.549 
C44 (MBar) 1.9317 2.004 0.0823 1.409 1.967 

( 0.5517 0.55 0.984 0.704 0.511 

Table 4.39: The material properties of cubic Aluminium Nitride 
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Goumri-Said et al[53] has also attempted a Tersoff parameterisation for c-A1N. 

He finds parameters that are correctly reproduced here with our software and has 

performed his fit using the lattice constant, bulk modulus and cohesive energy 

of c-A1N. He further demonstrates a reasonable fit for the phase change to the 

rocksalt lattice formation and demonstrates a reasonable fit with the elastic prop­

erties of both materials. The Tersoff parameters are used in an MD simulation to 

predict the thermodynamic properties of c-A1N including the lattice parameter 
change and the atom site energy variation with a change in temperature. 

Phase Benkabou Goumri-Said Powell 
Ecoh (eV) a (A) Ecoh (eV) a (A) Ecoh eV a (A) 

NaCl -8.42183 3.71916 -4.73208 4.03857 -3.65341 4.27549 
CsCl -12.9037 2.15279 -4.3513 2.50362 -2.4412 2.79953 

zinc blende -6.64624 4.28387 -5.75721 4.37056 -5.7591 4.38324 
Table 4.40: Crystal phase data for cubic Aluminium Nitride 

A parameterisation was attempted using the Goumri-Said set as a starting 

point. All three parameter sets are shown in table 4.38 and the results, experi­

mental values and DFT predictions are in table 4.39. Here it can be seen that the 

Benkabou parameters once agClin fail to reproduce the properties of the material 

correctly. The Goumri-Said values provide reasonable results for the cohesive en­

ergy and the lattice parameter. The Powell parameters are also correct to a very 

small error. 

2 3 4 5 6 7 8 

Lattice Constant, A 

Figure 4.55: Cohesive energy of cubic aluminium nitride from Benkabou param­
eters 

The Goumri-Said values cannot correctly reproduce the bulk modulus, the 

19See [50] 
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shear modulus of the C4-t elastic parameter, producing errors of 19%, 24% and 

27% respectively and a ( in error by 28%. The Powell parameters reproduce B 

and C44 to within 1% tolerance and shear modulus to 7% error. The value for 

Kleinmans internal displacement parameter is also predicted to be in error by 7% 

when using the Powell parameters. 
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Figure 4.56: Energy vs. atomic volume for cubic aluminium nitride with Benk­
abou parameters 

Figures 4.55, 4.57 and 4.59 show the energy vs. lattice parameter plots for 

the three AIN parameter sets. It is immediately obvious that the Benkabou set is 

massively in error. The Goumri-Said and Powell parameters produce very similar 

results demonstrating -5.75eV cohesive energy at 4.38A which is correct to the 

experimental values. 

The phase plots for the three parameterisations are shown in figures 4.56, 4.58 

and 4.60 where it is again evident that the Benkabou parameters are completely 

wrong predicting CsCI as the lowest energy configuration. This is completely 

unsuitable for MD simulation. The Goumri-Said parameters produce a phase 

stability for zinc blende which demonstrates a leV gap until the ~sCl and NaCl 

forms of the crystal. The Powell parameters provide zincblende as the lowest 

energy configuration and a phase change after 2eV to the NaCl crystal type. 

130 



CHAPTER 4, ELASTIC PROPERTY MODELLING 

0 

-1 

> 
Q.) 

>: -2 
e> 
Q.) 
c: 
w -3 
E 
0 

~ -4 

-5 

-6 
2 3 4 5 6 7 8 

Lattice Constant, A 

Figure 4.57: Cohesive energy of cubic aluminium nitride from Goumri-Said pa­
rameters 
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Figure 4.58: Energy vs. atomic volume for cubic aluminium nitride with 
Goumri-Said parameters 
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Figure 4.59: Cohesive energy of cubic aluminium nitride from Powell parameters 
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Figure 4.60: Energy vs. atomic volume for cubic aluminium nitride with Powell 
parameters 
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4.4 Elastic constants and Keyes' relation 

Keyes[55] proposed a simple empirical relationship to link the elastic constant of 

the III-V materials to their lattice constant by studying the measured values avail­

able at the time. He reduced the elastic constants, through dimensional analysis, 

to dimensionless forms which are almost independent of the material. Keyes sim­

ply suggested that the elastic constants of the cubic crystals Cll, C12 and C44 could 

be reduced to cij by dividing by a normalising factor Co comprised of powers of 

the electronic charge e and the nearest neighbour bonding distance b 

C;j = Cij/CO 

Co = e2 /b4 

e = 1.60217646 x 10-19 

(4.36) 

(4.37) 

(4.38) 

(4.39) 

This work was improved upon by Azuhata et al[56] who had access to a 
greater range of results and who proposed the following relations to predict the 

elastic properties of III-V zinc"blende semiconductors 

Ct1 = 1.333 + 2.998/ a 

ct2 = 0.1521a 

c:4 = 0.01235a + 0.1609 + 3.777/a 

(4.40) 

(4.41) 

(4.42) 

Figure 4.61 shows the experimental data for the III-V compounds studied 

above and the trend lines suggested in equations 4.40. As can be clearly seen, 

the line suggested for the Ci2 data provided a reasonable fit, but the Cil line and 

the c12line are high compared to the data points. 

Motivated by a desire to predict the elastic properties of the popular cubic 

aluminium-V (AlAs, AlP, AISb) materials it was decided to inve'stigate this result 

further. The DFT results from above (mainly provided by Wang apd Ye[18]) were 

also plotted against the equations that were proposed as a modification of Keyes' 

relation and a similar situation was found with the experimental data. This is 

shown in figure 4.62 and demonstrates a closer fit to the modified Keyes relation. 

Furthermore, the Tersoff fits from the Powell parameters for each of the semicon­

ductors above was also plotted against the Azuhata relations. Although these 

Tersoff PEF results are mainlyJitted to the DFT results they do vary in places and 

are included for completeness. As can be seen from figure 4.63 the results bear a 
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Figure 4.61: The experimental data from above and the trend provided by 
Azuhata. Symbol key: open square = CII values, open circle = C12 values, open 
triangle = C44 values, dashed line = CII relation, dotted line = C12 relation, full line = 

similar failure. 

C44 relation. 
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Figure 4.62: The DFT data from the previous subsections and the trend provided 
by Azuhata. Symbol key: open square = Cll values, open circle = C12 values, open 
triangle = C44 values, dashed line = C11 relation, dotted line = C12 relation, full line = 

C44 relation. 

Using the information available for the DFT results and the experimental data 

for allof the III-V semicondu~tors listed above it was deemed interesting to see if 

the empirical relations suggested by Keyes could be improved upon and used to 

predict further elastic properties. 
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Figure 4.63: The Powell parameters Tersoff PEF data from above and the trend 
provided by Azuhata. Symbol key: open square = Cu values, open circle = C12 

values, open triangle = C44 values, dashed line = Cll relation, dotted line = C12 relation, 
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Using a 2nd order polynomial fit to the lattice constant a, the following empir-
• 

ical relations have been developed as a fit to the experimental data 

(EXP)ctl = 0.0764a2 - 0.8313a + 3.8525 

(EXP)ct2 = -0.1191a2 + 1.2865a - 2.5738 

(EXP)C~4 = 0.0564a2 - 0.6893a + 2.8679 

(4.43) 

(4.44) 

(4.45) 

Which has provided the trend lines shown in figure 4.64. Here it is clear to see 

that the data is a much better fit for all of the points available, even though the 

Ci2 data varies in quite an exaggerated fashion. 

A further set of polynomial trend lines were acquired using a standard poly­

nomial regression for the DFT data associated with each of the semiconductor 

compound above and are shown below 

(DFT)ctl = 0.0504a2 - 0.5211a + 3.0524 

(DFT)ct2 = -0.1206a2 + 1.3079a- 2.6653 

(DFT)c~4 = -0.0054a2 - 0.0562a + 1.3893 

(4.46) 

(4.47) 

(4.48) 

These trend lines are plotted against the DFT data and shown in figure 4.65 

and furthermore the Tersoff PEF results from the Powell parameterisations are 

shown in figure 4.66. here it can clearly be seen that the trend lines much more 
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Figure 4.64: The experimental data from the previous subsections and the trend 
provided by Powell for the experimental data. Symbol key: open square = CII 

values, open circle = Cl2 values, open triangle = C4..t values, dashed line = Cll relation, 
dotted line = Cl2 relation, full line = C44 relation. 

accurately represent the data available, although there is still the issue with the 
.-

wide variance of the Ci2 parameter. 
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C44 relation. 
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Figure 4.66: The Tersoff PEF data from above using the Powell parameterisations 
and the trend provided by Powell for the DFT results fit. Symbol key: open square 
= Cll values, open circle = C12 values, open triangle = C44 values, dashed line = Cll 

relation, dotted line = C12 relation, full line = C44 relation. 

Predicting the aluminipm-V elastic constants 

By using the relations above (equation 4.43 for the experimental data and 4.46 for 

the DFT data) a fit for the AlAs, AlP and AISb has been attempted. The results 

are shown in the tables below: 

Aluminium Arsenide 
I a I CII I Cl2 C44 

EXp.2U 5.66172 1.199 0.575 0.566 

Powell 
Predict 1.1333 0.6340 0.594 
Error 11% 10% 3% 

Azuhata 
Predict 1.32 0.611 0.638 
Error 10% 6% 11% 
DFT21 1.131 0.555 0.574 

Powell 
Predict 1.2205 0.6209 0.6381 
Error 8% 11% 16% 

Table 4.41: Predictions for the elastic constants of AlAs 

" 
Table 4.41 shows the predicted values for the AlAs and it is highlighted that 

the new relations for the experimental data fit perform only slightly better than 

the results given by the Azuhata relations. The results fitted to the DFT data 

perform slightly worse than expected but still, all results are in the range 30/0-160/0 

and can predict, the elasic properties of the material with a general trend. 

20See ref. [57] 
21 See Wang[18] 
22See ref. [58] 
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Aluminium Phosphide 
I a I Cll I C12 C44 

Exp.lL 5.463 

Azuhata 
Predict 1.5426 0.6812 0.754 
Error 16% 2% 20% 
DFTll 1.325 0.667 0.627 

Powell 
Predict 1.401 0.721 0.7551 
Error 5% 8% 20% 

Table 4.42: Predictions for the elastic constants of AlP 

Table 4.42 shows the results for predictions of the AlP elastic properties. No 

experimental results could be found in the literature for measurements of AlP. 

This is probably because it is a highly reactive material and very difficult to work 

with. It has been simulated with DFT and the results are compared. Using the 

Powell DFT prediction trend the results for Cll and C12 are pleasing but both mod­

els can only predict the value of C44 to within 20%. 

Aluminium Antimonide 

Exp.23 6.1355 0.8769 0.4341 0.4076 

Powell 
Predict 0.83887 0.4308 0.3925 
qror 4% 1% 3% 

Azuhata 
Predict 0.9386 0.4808 0.4391 
Error 7% 11% 8% 
DFTll 0.855 0.414 0.399 

Powell 
Predict 0.9029 0.4222 0.4334 
Error 5% 2% 8% 

Table 4.43: Predictions for the elastic constants of AISb 

The predictions shown in table 4.43 for AISb are good. The Powell model 

predicts the experimental results to within a good tolerance (less than 4%) and 

the Azuhata model shows results that are correct to within 11%
• The Powell DFT 

model provides results that are within 8% of the predicted DFT values. 

Finally, the original Keyes data points are shown in figure 4.67 plotted along 

with the trend lines provided by both Azuhata and Powell in equation 4.46 desig­

nated by (A) and (P) respectively. Both sets of lines appear to provide reasonable 

fits to the data provided by Keyes, hence not significantly altering his original re­

sult. But the added degrees of freedom provided by the equations provided here 

appear to have improved the quality of the data fit and the ability to predict the 

elastic constants for other materials. 

23See [59] 

138 



CHAPTER 4. ELASTIC PROPERTY MODELLING 

2.5......-----------------, 

C 2.0 
ro 
iii 
t: 
o 
.~ 1.5 
iii 
ro 
Q) 
III 
~ 1.0 
C 
o 
'iii 
t: 

~ 0.5 
is 

JA2C
" -- - .... - - _ _ _ _ GaAs GaSb InSb 

J~~,~ - - - -cJ- - : ~= ::: ~ --------------

(A)C 44 

~ 
(P)C 44 ........ : : e . ~ ... 0 

I' .,.... .. -::¢. 
(P)C'2 •.• ::::::: •••••••• 

., ... 
::'. (A)C'2 

0.0 -+-~....,...__r ___ --,--,.......,__.,........,_--__r--__.--t 
3.5 4.0 4.5 5.0 5.5 6.0 6.5 

Lattice constant, A 

Figure 4.67: The original Keyes data points are plotted with the (P) Powell and 
(A) Azuhata data trend lines 

4.5 Conclusions 

The algorithm that provide~ the granular local search is a real tour de force. The 

original attempt to model the Tersoff parameters used a program that took 3 

weeks to run and did not optimise the C44 or (material properties[26]. This timing 

has been brought down to 3 minutes per program run which allows the systems 

to be investigated very thoroughly, as is shown in the examination of the global 

search space with the global Tersoff parameters search routine. The high speed 

of execution of the computer program is based upon intelligent algorithm design 

coupled with high-speed scientific programming techniques including the use 

of binary arithmetic operators instead of decision-branch logic to avoid pipeline 

flushing and branch prediction faults and the use of a cache prefetching scheme 

to avoid costly page-faulting. 

The global random search algorithm has provided a first look at the Tersoff 

ten-dimensional parameter landscape. It has been seen that for a given set of 

starting values, only a tenth of the randomly generated Tersoff parameter sets 

will evaluate and that only about 100/0 of these sets will provide a result that is 

noteworthy. This searching of the Tersoff parameter space is considered to be a 

topic for further investigation. An attempt to correlate the Tersoff parameter sets 

that evaluate with the material parameters would show interesting results and 

may produce methods that will guarantee success at a much higher rate. 

The results that are provided by the local parameter search are all excellent. 

In all 13 cases the Tersoff parameters have been improved to under 1% tolerance 
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of the sought values of lattice parameter, cohesive energy and elastic constants. 

The inclusion of the Kleinman internal displacement parameter in the search met­

ric has raised confidence that MD simulations of small scale strain relaxation in 

heterostructures and semiconductor systems can be successfully completed and 

will provide results on a large scale that tally with ab initio quantum mechanical 

methods. 
The first results for the modelling of GaP, InP, GaSb and InSb have been suc-

cessfully provided and the III-N materials have been re-parameterised to correct 

errors in the literature. 
In terms of remodelling Keyes' relations and improving on the model pro-

posed by Azuhata, the Powell relations appear to work at least as well as the 

Azuhata model and in the case of AlSb they work much better. The original 

Keyes data points have been maintained and hence the model has not signifi­

cantly changed the results offered by Keyes, but the modelling of the smaller 

lattice constant materials appears to have been improved upon. 
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Chapter 5 

Vibrational Frequency Modelling 

The usefulness of the Tersoff PEF for modelling the first-order elastic properties 

and small-scale strain effects accurately has been demonstrated in the previous 

chapter. By modelling the dynamical properties of the crystal lattices under in­

vestigation we can hopefully demonstrate the transferability of the Tersoff poten­

tial to higher-order crystal effects. We shall show here tha t the Tersoff PEF can be 

used to predict phonon energies and mode-Gruneisen parameters and hence is 

useful for modelling crystal 8ynamical properties. 

5.1 Assembling the dynamical matrix 

Section 2.3 contains the mathematical reasoning underpinning the modelling of 

the lattice phonon frequencies using the harmonic approximation. Practically, ap­

plying this to the lattice model and the Tersoff empirical potential energy model 

is quite an involved task and requires some explanation. 

Ua(lb) = ~ L Ua(q; b) exp [i(q· x(l) - wt)] (5.1) 
yrnb q 

DaJl(bb'lq) = ~ L <I>aa(Ob; l'b') exp [iq . x(l')] (5.2) 
rnbrr~b' I' " 

Equation 5.2 for the Dynamical Matrix in three dimensional q space is known 

as the Fourier transformed 'D-type' matrix[l]. By choosing our equations of mo­

tion of the form shown in Equation 5.1 and by considering lattice periodicity we 

have reduced an infinite set of linear simultaneous equations to a set of 3d linear 

homogeneous equations in 3d unknowns: UQ(q; b) where d represents the num­

ber of atoms in the atomic basis set. For a type III-V zinc blende structure d = 2 

and we have to solve a 6x6 Hamiltonian containing the summed contributions of 
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i 
j 

X 1.:1 
k2 
1.:3 
i 
j 

Y 1.:1 
1.:2 
1.:3 
i 
j 

Z 1.:1 X 
1.:2 
k3 

Table 5.1: The 15x15 matrix required for the partial second derivatives of the 
Tersoff potential 

the force constant matrix based upon the second derivatives of the potential. 

The second derivatives of the Tersoff potential are analytically derived and 

shown in Appendix A. The analytical partial second derivatives are split into 

individual components of tht=! form 

D2 l!ij(x, y, z) 
DnqDmp 

where rn, n = [x, y, z] represents the direction of the component and the subscripts 

p, q = [i,j, kl' k2' k3] represent the atomic neighbours. For example if we wanted 

the second derivative of the energy of the y component of the i atom with respect 

to the z component of the kl atom we would take the partial derivative 

D2\1ij(x, y, z) 
UZk/)Yi 

(5.3) 

It can be seen that for any atom under consideration as an i atom there will 

be a matrix of 15x15 components required to describe all of the individual partial 

second derivative contributions that will appear as demonstrated in table 5.1. The 

position of the example component in Eq 5.3 is shown in the table with an X. 

To approximate the lattice dynamics of a three dimensional diatomic system 

we must consider all possible interactions between the two atoms in the basis set 

and their neighbouring atoms. Figure 5.1 shows the two central atoms in the basis 

set of species band b' which ~re labelled 1 and 2 respectively. These 2 atoms are 

in the central basis set cell called l = 0 in the D-matrix notation. All of the first nn 

of the central pair are shown in the diagram, l =1= O. Using the Tersoff notation, if 
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atomj atomj atomj atomj 
atomi = 1 2 3 4 5 
atom i = 2 1 6 7 8 
atom i = 3 1 3nnl 3nn2 3nn3 
atom i = 4 1 4nnl 4nn2 4nn3 
atomi = 5 1 5nnl 5nn2 5nn3 
atomi = 6 2 6nnl 6nn2 6nn3 
atom i = 7 2 7nnl 7nn2 7nn3 
atomi = 8 2 Bnnl Bnn2 Bnn3 

Table 5.2: The 4x8 interaction grid required to provide all possible atomic inter­
actions for the central 2 atoms 

we consider atom 1 to be the i atom then the following combinations are possible 

4 7 

b' b 

Figure 5.1: A diatomic chain and all correctly bonded first nearest neighbours 

Atom i = 1: atoms j = 2, kl = 3, k2 = 4, k3 = 5 

Atom i = 1: atoms j = 3, kl = 2, k2 = 4, k3 = 5 

Atom i = 1: atoms j = 4, kl = 2, k2 = 3, k3 = 5 

Atom i = 1: atoms j = 5, kl = 2, k2 = 3, k3 = 4 

providing four possible combinations per choice of i atom. All 8 atoms in 

figure 5.1 are required to be considered as i atoms so that the l = 0 cell has all 

possible interactions with the neighbouring cells taken into account. To take all 

of these possible interactions into consideration requires us to produce a grid of 

data of size 4x8 that contains at each location the 15x15 second derivatives matrix. 

The interactions comprising this grid are shown in table 5.2 where the notation 

3nnl indicates that the j atom should be taken as the first neighbour of atom 3 

and 4nn2 indicates that the j atoms should be the second neighbour of atom 4. 

The subroutine called calcSecondDerivsAnalytic in the program is called with 

the lattice reference number of the i atom and performs an operation that returns 

with a 4x1 vector of 15x15 matrices containing the analytically calculated second 
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l=i 
[1 = i; 1 - 2(p = i, q = i) [1 = i; 1 - 3 (p = i, q = i) 
[1 = i; 1 - 4(p = i, q = i) [1 = i; 1 - 5(p = i, q = i) 
[1 = jj 2 - l(p = j, q = j) [1 = jj 3 - l(p = j, q = j) 

l=j 
[1 = jj 4 - l(p = j, q = j) [1 = jj 5 - l(p = j, q = j) 
[1 = jj 2 - l(p = j, q = kn) [1 = jj 3 - l(p = j, q = kn) 
[1 = jj 4 - l(p = j, q = kn) [1 = jj 5 - l(p = j, q = kn ) 
[1 = knj 2 - 6(p = kn, q = j) [1 = kn j 2 - 7 (p = kn, q = j) 
[1 = kn; 2 - 8(p = kn, q = j) [1 = kn; 2 - 6(p = kn, q = kn) 

1 = kn 
[1 = kn; 2 - 7(p = kn, q = kn ) [1 = kn ;2 - 8(p = kn,q = kn) 
[1 = "~n;3 - nn(p = kn,q = j) [1 = kn ;4 - nn(p = kn,q = j) 
[1 = kn; 5 - nn(p = kn, q = j) [1 = kn; 3 - nn(p = kn, q = kn ) 
[1 = kn ;4 - nn(p = kn,q = kn ) [1 = knj 5 - nn{p = kn , q = kn) 

Table 5.3: The interactions to be summed when considering the case b - b 

derivatives for the case when each of the 4 neighbours is a j atom. This routine 

was debugged initially with the numerical second derivatives equivalent routine 

called calcSecondDerivsNumerical and the results were found to match (within the 

second order error introduced by the Euler approximation). The calcSecondDerivs­
Analytic subroutine is called 8 times for each of the possible i atoms and the j 

atoms in table 5.2. Once the 4x8 grid of partial derivatives has been returned, the 

data then goes to what we termed a "pick and place" routine to select and sum 

all of the individual contributions of the second derivatives for all possible cases 

into the smaller 3p x 3p force constant matrix which is of the form 

(5.4) 

The pick and place routine selects all possible atomic combinations that have 

an effect on either of the central two atoms in the l = 0 cell and sums them into 

the force constants matrix. The interactions are described below for each of the 4 

cases of the second derivatives that need considering: b - b, b - b', b' - band b' - b'. 

To consider a single case, the interaction between the b - b atoms: When atom 

1 is the i atom we have interaction contributions between atoms 1-2 so we choose 

this interaction grid and we need to select the case when p = i, q = i and so we 

select these interactions from the second derivatives table. We will write this in 
" 

shorthand as [1 = i; 1 - 2(p = i, q = i)]. Another interaction exists between atoms 

1-3 when p = i, q = i which we will write in shorthand as [1 = i; 1-3(p = i, q = i)] 
and so on. All of the possible interactions, which must be summed for all m, n = 

[x, y, z] cases, are tabulated in the shorthand in tables 5.3 - 5.6. 

We are ultimately interested in constructing the D-matrix which is shown di­

agrammatically in figure 5.2~. It can be seen from the diagram that the summed 

elements of the force constants matrix need to be multiplied by the complex expo-
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2=i 
[2 = i; 2 - 1(p = i, q = i) [2 = i; 2 - 6(p = i, q = i) 
[2 = i; 2 - 7(p = i, q = i) [2 = i; 2 - 8(p = i, q = i) 
[2 = j; 1 - 2(p = j, q = j) [2 = j; 6 - 2(p = j, q = j) 

2=j 
[2 = j; 7 - 2(p = j, q = j) [2 = j; 8 - 2(p = j, q = j) 
[2 = j; 1 - 2(p = j, q = kn) [2 = j; 6 - 2(p = j, q = kn) 
[2 = j; 7 - 2(p = j, q = kn) [2 = j; 8 - 2(p = j, q = kn) 
[2 = kn; 1 - 3(p = kn, q = j) [2 = kn; 1 - 4(p = kn, q = j) 
[2 = kn; 1 - 5(p = kn, q = j) [2 = kn; 1 - 3(p = kn, q = kn) 

2 = kn 
[2 = kn; 1 - 4(p = kn, q = kn) [2 = kn; 1 - 5(p = kn, q = kn) 
[2 = kn; 6 - nn(p = kn, q = j) [2 = kn; 7 - nn(p = kn, q = j) 
[2 = kn;8 - nn(p = kn,q = j) [2 = kn; 6 - nn(p = kn, q = kn) 
[2 = kn; 7 - nn(p = kn,q = kn) [2 = kn; 8 - nn(p = kn, q = kn) 

Table 5.4: The interactions to be summed when considering the case b' - b' 

[1 = i; 1 - 2(p = i, q = j) [1 = i; 1 - 3(p = i, q = j) 

1=i 
[1 = i; 1 - 4(p = i, q = j) [1 = i; 1 - 5(p = i, q = j) 
[1 = i; 1 - 2(p = i, q = kn) [1 = i; 1 - 3 (p = i, q = kn) 
[1 = i; 1 - 4(p = i, q = kn) [1 = i; 1 - 5(p = i, q = kn) 

1=j 
[1 = j; 2 - 1(p = j, q = i) [1 = j; 3 - 1(p = j, q = i) 
[1 = j; 4 - 1(p = j, q = i) [1 = j; 5 - 1(p = j, q = i) 
[1 = kn; 2 - 6(p = kn, q = i) [1 = kn; 2 - 7(p = kn, q = i) 

1 = kn [1 = kn; 2 - 8(p = kn, q = i) [1 = kn;3 - nn(p = kn,q = i) 
[1 = kn; 4 - nn(p = kn, q = i) [1 = kn; 5 - nn(p = kn, q = i) 

Table 5.5: The interactions to be summed when considering the case b - b' 

[2 = i; 2 - 1~p = i, q = j) [2 = i; 2 - 6(p = i, q = j) 
2=i 

[2 = i; 2 - 7 (p = i, q = j) [2 = i; 2 - 8(p = i, q = j) 
[2 = i; 2 - l(p = i, q = kn) [2 = i; 2 - 6(p = i, q = kn) 
[2 = i; 2 - 7(p = i, q = kn) [2 = i; 2 - 8(p = i, q = kn) 

2=j 
[2 = j; 1 - 2(p = j, q = i) [2 = j; 6 - 2(p = j, q = i) 
[2 = j; 7 - 2(p = j, q = i) [2 = j; 8 - 2(p = j, q = i) 
[2 = kn; 1 - 3(p = kn, q = i) [2 = kn; 1 - 4(p = kn, q = i) 

2 = kn [2 = kn; 1 - 5(p = kn, q = i) [2 = kn; 6 - nn(p = kn, q = i) 
[2 = kn; 7 - nn(p = kn, q = i) [2 = kn; 8 - nn(p = kn, q = i) 

Table 5.6: The interactions to be summed when considering the case b' - b 

nent of the dot product of the Bravais vector between cells containing the two in­

teracting atoms x(l') and the wave vector associated with the location in k-space 

that we are attempting to characterise q before they are added into the D-matrix 

representation. This value is a complex number and will produce a complex D­

matrix. Furthermore, to assemble the final form of he D-matrix each of the values 

must be multiplied by the a factor of (mb' mb l )-1/2 to account for the masses of 

the different atoms. The units of mass used in this calculation are taken in atomic 

mass units (AMU). 

Once all of these operations have been performed and the D-matrix is assem­

bled, the computer program then calls the LAPACK zheev diagonalisation rou­

tine with the 6x6 complex matrix which returns a 6x1 vector of eigenvalues. We 

can compute the system phonon values directly from these eigenvalues and it is 

simple to produce set of phonon dispersion curves from repeatedly performing 

148 



CHAPTER 5. VIBRATIONAL FREQUENCY MODELLING 
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e.g. 

Figure 5.2: A visualisation to help understand the D-Matrix of a zinc blende 
crystal of a 111-V material, e.g. b = Ga, b' = As 

the above operations with it~rative values of q-space vector between the two BZ 

symmetry points of interest (e.g. r and X). 

The eigenvalues that are returned from the diagonalisation routine are in the 

form 
1 D2E 

w2 = -.--
m [);rDx 

where w is the angular frequency, E is the energy in e V, m is the mass in AMU 

and x is a length in A. By dimensional analysis we can see that this equation is 

equivalent to the frequency squared 

F=m·a 

x m·x2 

E= F·x = m·a·x = m·-·x =--
8 2 8 2 

f2=~=~ 
82 m. x2 

w2 = (27r)2 f2 

Next we must convert the values from the dimensions eF/(AAfU· A2) into 

MKS units. This is done with the following scaling factor 

x 1.602 X 10-
19 

= 9.647476 X 1027 

1.660 X 10-27 • 1 X 10-20 

where 1.602 x 10-19 converts Joules into eV, there are 1.660 x 10-27 kg in an AMU 
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and there are 1 x 10-10 m in an Angstrom, which is then further multiplied by 

1 x 10-24 as it is common to quote phonon frequencies in values of THz. Overall 

the scaling factor may be written 

x9.647476 X 1027 ·1 X 10-24 = 9647.4756 

Once this scaling has been applied to the 6 eigenvalues they are subject to a 

square root operation to obtain the individual angular frequencies wand simply 

divided by a factor of 27f to produce the individual phonon values in THz. 

Many authors provide phonon frequencies in THz (1012 Hz), however some 

prefer the units em -1. The conversion factor is shown below 

leV = 2.41796 x 1014Hz = 8.0655 x 103cm-1 

1 x 1012Hz = 8.0655 x 10
3
cm-

1 

241.796 
= 33.3566cm-1 

• 
Plotting phonon dispersion curves 

As was mentioned briefly above, the phonon dispersion curves are plotted by 

simply splitting the Brillouin zone region that we are interested in into a number 

of points and computing the phonon frequencies at these points. The BZ for a 

zinc blende (and diamond) structure can be considered as a regular octahedron 

that has been truncated. The r -point is in the BZ centre, which is the centre of 

the polyhedron, the X-point occurs at the centre of the square face provided by 

truncating the octahedron on its six polyhedron vertices. The L-point occurs at 

the centre of the hexagonal faces that are formed by the truncation of the octahe­

dron. This truncated octahedron shape is shown diagrammatically in figure 5.3 

along with a number of common BZ points of high symmetry. This diagram was 

taken from the experimental study of phonon dispersion in Ga~,s by Strauch and 

Dorner[2]. 

The phonon dispersion curves that are shown in the results section are split 

into three regions. Region 1 shows the phonon dispersion from the central BZ 

r -point at wave vector q = [0,0,0] to the BZ high symmetry X-point at wave 

vector q = [1,0, OJ. This region divided into 10 equal parts and so the eigenvalues 

were calculated 11 times at equal spacing. Region 2 shows the phonon dispersion 

from the a point with wave vector q = [0,1,1] which due to lattice symmetries 

in the zinc blende crystal has the same properties as the X-point. This dispersion 
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Figure 5.3: Two neighbouring Brillouin Zones for a zinc blende crystal and com­
monly considered points of high symmetry, copied from Strauch 

is plotted back to the central r-point at wave vector q = [0,0,0] and is again 

graphed over 11 points to split the region into 10 equal spacings. Region 3 of 

the phonon dispersion curves shows the BZ r -point phonons plotted to another 

high symmetry BZ point at the wave vector q = [1/2, 1/2, 1/2] which is labelled 

the L-point. Again this phonon dispersion was graphed over 11 points, splitting 
the region into 10 parts. 

The plots shown in the results section are produced by a piece of commercial 
software called Origin and the lines representing the phonon dispersions have 

been subject to an automated spline fitting routine. 

The mode-Griineisen parameters 

Calculation of the mode-Griineisen parameters depends directly upon the calcu­

lation of the phonon frequencies which is shown in Eq 2.15. There are 6 mode­

Gruneisen parameters, corresponding to each of the phonon values, for each 

point in the phonon dispersion spectra we are interested in. As with the phonons 

we have chosen the BZ high-symmetry points r, X and L for the calculations. 

Practically the mode-Gruneisen parameters are calculated using a simple Euler 
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derivative approximation as follows: 

The atomic lattice in memory is copied twice for each BZ point of interest and 

are labelled m_ and m+. An amount of hydrostatic strain, h, is chosen and then 

m_ has the uniform Affine transform scaling vector S = [-h, -h, -h] applied to it 

and m+ has the uniform Affine transform scaling vector S = [h, h, h] applied be­
fore the lattices are then sent to the calcPhonons routine with the appropriate wave 

vector which then performs the building and diagonalising of the D-matrix oper­

ations listed above. h is typically 10/0. This produces a set of phonon frequencies 

for the hydrostatically transformed lattices w_ and w+. 

A common divisor d is calculated form the hydrostatic strain using the follow­
ing operation 

d = log ([a(l + h)]3) 
[a(l - h))3 

and the mode-Griineisen parameters are found from the simple calculation 

As can be clearly seen from the above equations the mode-Griineisen param­

eters provide a measure of the anisotropy of the potential by predicting the de­

pendence of the phonons on hydrostatic strain. 

Computing the dynamical properties numerically 

As mentioned earlier the analytic derivatives were checked against a simple sec­

ond order Euler central differences approximation during the debugging process 

of the program. It is interesting to consider both the level of compound errors 

introduced into the final D-matrix and the timing involved in the computation of 

the second derivatives numerically. 

The total process described above to calculate the phonon dispersion curves (a 

total of 33 phonon frequency calculations) and the mode-Griineisen parameters 

at the three points of high symmetry (another 6 phonon frequehcy calculations) 

for the two atoms in the central Bravais lattice in the simulation takes 0.04 seconds 

on the laptop computing platform. 

To perform the same number of operations by calculating the derivatives in 

three dimensions numerically using a standard second-order central differences 

routine takes 3.82 seconds. This demonstrates that it requires nearly 100 times 

more computational power to perform the simulation numerically. 

Calculating the parameters numerically using 0.00001 A for dx, dy and dz in 
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the central differences routine produced compound errors due to the summation 

of a great number of terms in the building of the force constants matrix. This is 

demonstrated with the Tersoff (T3) silicon parameters [3] below in table 5.7 which 

shows the experimentally measured values of the phonon frequencies against the 

analytic calculations and the numerical central differences calculations. 

Phonon (THz) Exp. Tersoff Analytic Tersoff Numerical 
WLTA(I') 0.0 0.0 1.10251 
WLTO(r) 15.5 16.0683 16.0002 
WTA(X) 4.5 6.89672 6.48499 

WLAO(X) 12.3 12.1921 11.7386 
WTO(X) 13.9 14.8908 14.8252 
WTA(L) 3.45 4.66893 4.72781 
WLA(L) 11.3 11.3122 10.2703 
wLo(L) 12.6 13.1545 12.7378 
wTo(L) 14.7 15.4265 15.2812 

Table 5.7: The Tersoff phonon frequencies of silicon from analytic and numerical 
computation methods 

Figures 5.4 and 5.5 show the phonon dispersion curves produced from the 

analytic and numerical methods respectively. The most obvious problem is that 

as the phonon frequencies go to zero at the r point, the numerical derivatives 

cannot predict a zero result as this would introduce divide-by-zero faults in the 

code and the machine tolerance would tend towards the hardware limit. Also 

there is an obvious splitting of the phonon branches in the wrong place due to 

compound errors being introduced and magnified by large scale summations. 

The experimental data are shown on the plots with open circle markers at the 

zone boundaries for comparison. 

This data has demonstrated a clear need to calculate the second order partial 

derivatives analytically as provided in Appendix A. 
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Figure 5.4: The silicon phonon dispersion predicted by the Tersoff (T3) parame­
ters and the analytic derivatives code 
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Figure 5.5: The silicon phonon dispersion curves characterised by the Tersoff 
(T3) parameters and the numerical derivatives code 
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5.2 Results 

All of the results provided below (with the exception of the second set of silicon 

parameters) were calculated using the analytic derivatives code and the method 

presented above. All of the results are based upon the Tersoff potential parame­

ters tabula ted in the previous section on elastic property modelling. The average 

time required for the laptop computing platform to produce the numerical data 

for the phonon frequencies and mode-Griineisen parameters and a phonon dis­

persion curve was 0.038 seconds. 

The resultant data is compared, wherever possible, to experimentally mea­

sured results. The principle technique used in the cited papers for the measure­

ment of phonon frequencies and the associated mode-Gruneisen parameters is 

Raman spectroscopy. Raman spectroscopy is a spectroscopic technique used in 

condensed matter physics and chemistry to study vibrational, rotational, and 

other low-frequency modes in a system. It relies on inelastic scattering, or Ra­

man scattering of monochromatic light, usually from a laser in the visible, near 

infrared, or near ultraviolet range. Phonons or other excitations in the system are 

absorbed or emitted by the laser light, resulting in the energy of the laser pho­

tons being shifted up or down. The shift in energy gives information about the 

phonon modes in the system. Infrared spectroscopy yields similar, but comple­

mentary information. Typically, a sample is illuminated with a laser beam. Light 

from the illuminated spot is collected with a lens and sent through a monochro­

mator. Wavelengths close to the laser line (due to elastic Rayleigh scattering) are 

filtered out and those in a certain spectral window away from the laser line are 

dispersed onto a detector. More information about Raman spectroscopy can be 

found in references [4, 5]. 

5.2.1 Silicon 

Here we. compare the phonon dispersion curves and mode-Griineisen parame­

ters from the literature with the values calculated for the Tersoft (T3) parameters 

and the improved Powell parameters provided in the elastic property modelling 

chapter. Table 5.8 shows the phonon frequencies and table 5.9 contains the mode­

Gruneisen parameters for silicon. 

With the exception of W LO (L) all of the Powell phonon frequencies are in 

greater error than the phonon frequencies predicted using the Tersoff parameters, 

which have an order of +5% error. It is not immediately obvious why this effect 

lSee [6, 7] 
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Phonon (THz) Experiment1 Tersoff (T3) Powell (PI) 
WLTO(r) 15.5 16.07 17.81 
WTA(X) 4.5 6.90 8.08 

WLAO(X) 12.3 12.19 13.31 
WTO(X) 13.9 14.89 15.18 
WTA(L) 3.45 4.67 5.60 
WLA(L) 11.3 11.31 12.90 
wLo(L) 12.6 13.15 13.14 
wTo(L) 14.7 15.43 16.51 

Table 5.8: The phonon frequencies of Si 

has occured. The WLTO(f) phonon energy is commonly used as a benchmark fig­

ure when describing the quality of phonon data and as can be clearly seen from 

the above table it is 15% too high. The reasons for this will be discussed fully in 

the results section of this chapter. The mode-Griineisen parameters presented by 

the Tersoff parameterisation are further away from the measured values than the 

Powell parameters, except the Tersoff predictions for the "iT A values at the X-point 

and L-point in the Brilluin Zone. Here the Tersoff (T3) silicon parameters manage 

to replicate the negative values correctly whereas the Powell parameters do not. 

As the mode-Griineisen parameters are a measure of the change in phonon en­

ergies when the system is subject to a hydrostatic strain this is indicates that the 

current parameters cannot model the phonon dispersion correctly for strained 

semiconductor systems. This will be explored fully in the results section. 

Griineisen Param Experiment Tersoff (T3) Powell (PI) 
I'LTO(r) 0.982 1.32 1.25 
I'TA(X) -1.4 -0.20 0.12 

I'LAO(X) 0.9 1.27 1.22 
I'TO(X) 1.5 1.60 1.58 
I'TA(L) -1.34 -0.31 0.08 
I'LA(L) 0.72 0.91 
I'Lo(L) 1.65 1.52 
I'To(L) 1.3 1.46 1.39 

Table 5.9: The mode-Griineisen parameters of Si 

Figure 5.6 shows the phonon frequencies of silicon measured experimentally, 

copied from Dolling[6]. Figure 5.7 shows the phonon frequenc~~s calculated an­

alytically from the Tersoff (T3) parameters and figure 5.8 shows the new Pow­

ell (PI) parameterisation of silicon which was fit to the elastic properties from 

the previous section. Both of these graphs use open circle markers at the zone 

boundaries to represent the experimentally measured values from table 5.8. 

The Tersoff (T3) phonon dispersion plot shows that although the reproduction 

of the shape of the phonon,branches looks reasonably accurate there is a less 

2from Porter et al[8] 
4See [9] 
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Figure 5.6: The experimentally measured phonon dispersion of silicon 
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Figure 5.7: The silicon phonon dispersion predicted by the Tersoff (T3) parame­
ters 

defined effect in the TA branch splitting and the dip in the LO branch appears to 

have a smaller magnitude than was experimentally measured in the [Oqq] region 

of the plot. The Tersoff parameters fail to reproduce the TA braikh magnitude at 

the X and L-point boundaries. 

The Powell parameter phonon dispersion for silicon appears similar to the 

Tersoff (T3) parameters phonon dispersion. There is a higher level of energy in 

the optical branch phonons as described in the table of results and the TA branch 

splitting is of a decreased magnitude as with the Tersoff results. The Powell pa­

rameterisation also fails to reproduce the magnitude of the TA branch phonons 

correctly. 
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Figure 5.8: The silicon phonon dispersion curves predicted by the Powell (PI) 
parameters 
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5.2.2 Diamond Carbon 

Here the phonon frequencies and the mode-Griineisen parameters predicted by 
the Tersoff parameterisation of diamond carbon[3] are compared to the Powell 

parameters found in the previous chapter by fitting to the elastic properties. Table 

5.10 contains the phonon frequencies and table 5.11 contains the mode-Griineisen 

parameters. 

Phonon (THz) Experimenti Tersoff (T3) Powell 
WLTO(r) 39.9 47.11 47.75 
WTA(X) 24.2 30.17 28.17 

WLAO(X) 35.5 37.64 38.72 
WTO(X) 32.1 39.05 39.25 
v..,'TA(L) 16.9 21.11 20.32 
WLA(L) 30.2 34.14 34.55 
wLo(L) 37.6 42.05 40.35 
wTo(L) 36.2 42.53 43.66 

Table 5.10: The phonon frequencies of diamond carbon 

It is clear from the table of phonon frequencies that the Tersoff parameters 

have up to a +18% error in the phonon frequencies in the case of the LTO phonon 

energy. The LTO phonon i~ so called as the LO and TO branches meet at the 

same frequency in the dispersion. The Powell parameters have not performed 

much better than the Tersoff parameters but there is a slight improvement in the 

accuracy of the prediction of the TA(X), TA(L)and LO(L) frequencies. 

Griineisen Param Experiment~ Tersoff (T3) Powell 
ILTO(I') 0.98 1.13 1.16 
ITA(X) 0.4 0.47 0.32 

ILAO(X) 1.46 1.52 
ITO(X) 2.0 1.04 1.06 
ITA(L) 0.47 0.34 
ILA(L) 1.47 1.56 
ILo(L) 0.82 0.69 
ITo(L) 1.4 1.19 1.30 

Table 5.11: The mode-Griineisen parameters of diamond carbon 

The table of mode-Griineisen parameters shows, for the few experimentally 

measured values, that both the Tersoff and Powell predictions for the r value 

have about a 16% error. The TO(X) mode-Griineisen parameters are both about 

half of the value they should be but the Powell parameterisation has more success 

than the Tersoff parameters in predicting the TO(L) mode-Griineisen parameter. 

Figure 5.9 shows the experimental phonon values of diamond carbon, mea­

sured . from the Oppenheim~r diamond by Solin and Ramdas[10]. The central 

3See [10] 
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Figure 5.9: The phonon dispersion of diamond carbon measured experimentally, 
copied from Solin 

[1(0] panel should be ignored as that part of the phonon dispersion is not re­

lated to this work. Figure 5.10 shows phonon energies plotted for the Tersoff (T3) 

diamond carbon parameters and figure 5.11 shows the phonon dispersion as pre­

dicted by the Powell parameters fitted to the elastic constants. As can be clearly 

seen both the Tersoff and Powell dispersions fail to replicate the high levels of 

phonon splitting away from the zone boundaries in the degenerate transverse 

branches. It is evident that both sets of parameters have overestimated the op­

tical mode phonon frequencies and the LA branch phonon frequencies at the X 

points. The separation between the L point optical branches is correctly more 

pronounced in the Powell parameters than in the Tersoff parameters. 
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Figure 5.10: The phonon dispersion curves of diamond carbon characterised by 
the Tersoff (T3) parameters 
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Figure 5.11: The diamond carbon phonon dispersion predicted by the Powell 
parameters 

161 



CHAPTER 5. VIBRATIONAL FREQUENCY MODELLING 

5.2.3 Germanium 

Here the phonon frequencies and the mode-Griineisen parameters predicted by 

the Tersoff[3] parameters for diamond lattice germanium are compared to the 

work in the previous chapter where a parameterisation was formed based upon 

fitting to the elastic properties of the material. Table 5.12 contains the experimen­

tal measurements compared to the two parameterisations and it is clear that in 

all cases the Powell parameters perform better then the Tersoff parameters. The 

largest error in the Powell parameters is 93% for the TA(X) phonon and the small­

est error is less than 1 % in the predicted LO(L) branch phonon. The closest Tersoff 

prediction is in the LO(L) branch phonon which is 1% in error. 

Phonon (THz) Experiment') Tersoff (T3) Powell 
WLTO(r) 9.02 9.89 9.59 
WTA(X) 2.385 4.68 4.61 

WLAO(X) 7.14 7.57 7.33 
WTO(X) 8.17 8.43 8.31 
WTA(L) 1.87 3.33 3.19 
WLA(L) 6.63 7.32 7.16 
wLo(L) 7.27 7.35 7.29 
wTo(L) 8.55 9.20 8.95 

Table 5.12: 'fhe phonon frequencies of germanium 

Table 5.13 shows the predicted mode-Griineisen parameters against the exper­

imental data. Only 2 points were available in the literature for germanium and 

both points were difficult to predict using the parameterisations available. The 

Tersoff parameters show a 15% and 59% error in the LTO(r) and TO(L) respec­

tively while the errors predicted with the Powell parameters are 16% and 60% 

respectively. 

GrUneisen Param Experiment~ Tersoff (T3) Powell 
/'LTO(r) 1.12 1.30 1.30 
/,TA(X) 0.21 0.21 

/,LAO(X) 1.25 1.25 
/,TO(X) 1.63 1.62 
/'TA(L) 0.22 0.17 
/'LA(L) 1.21 0.96 
/'Lo(L) 1.30 1.53 " 
/'To(L) 0.9 1.43 1.44 

Table 5.13: The mode-Griineisen parameters of germanium 

Figure 5.12 shows the phonon dispersion plotted by Nilsson and Nelin[ll]. 

Figure 5.13 shows the phonon dispersion predicted from the Tersoff (T3) param­

eters. It is clear that although the shape of the dispersion is roughly correct the 

Tersoff parameters cannot predict the optical branch phonon frequencies at the 

5See [11] 
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X and L zone boundaries. Figure 5.14 shows the phonon dispersion as predicted 

by the Powell parameterisation. Here we can see that although the transverse 

acoustic branch phonons are too high, the rest of the dispersion appears to have 

the correct shape compared to the experimental data. Again, neither parameteri­

sation could correctly reproduce the magnitude of the transverse branch splitting 
that is evident in the experimental data. 

r r A 
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L 

~8 

o 0.2 0.4 0.6 0.8 1.0 1.0 0.8 0.6 0.4 0.2 0 0 0.1 0.2 OJ 0.4 0.5 
Reduced (dimensionless) wave vector q 

Figure 5.12: The phonon dispersion of germanium measured experimentally, 
copied from Nilsson and Nelin 
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Figure 5.13: The phonon frequencies of germanium predicted by the Tersoff (T3) 
parameters 
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Figure 5.14: The germanium phonon dispersion characterised by the Powell pa­
rameters 
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5.2.4 Galli urn Arsenide 

Here we compare the phonon frequency predictions given by the Smith[12] and 

Sayed et al[13] parameters to the re-parameterisation of Gallium Arsenide found 

in the previous chapter fitted to the elastic properties. As can be seen in table 5.14, 

none of the parameterisations have managed to correctly predict the splitting of 

the optical branch phonons at the BZ centre. Although the phonon energies for 

Smith appear, on average, to be closer to the experimental values - the prediction 

shows that the transverse acoustic branch has zero frequency over the whole dis­

persion, which is incorrect. The Sayed and Powell parameters both predict TA 

branch phonons at the points of high symmetry to have twice as much energy as 

measured experimentally, but the Sayed parameters show reasonable agreement 

in the LO branch phonons at the X and L-points in the BZ. The lack of splitting 

between the r -point LO and TO branches is very obvious upon a first inspection 

of the data. This is clearly expected in an ionic zinc blende crystal and is not avail­

able using the current method of modelling due to the lack of consideration of the 

ionicity of the crystal. This will be explored further in the discussion section. 

Phonon (THz) Exp.u DFT? Smith Sayed Powell 
WLO(r) 8.55 8.68 8.74 9.41 9.85 
WTO(r) 8.02 8.11 8.74 9.41 9.85 
WTA(X) 2.36 0.03 4.60 4.57 
WLA(X) 6.80 6.07 6.97 7.21 
WLO(X) 7.22 6.29 7.23 7.47 
WTO(X) 7.56 8.74 8.29 8.43 
WTA(L) 1.86 0.02 3.03 3.10 
WLA(L) 6.26 4.37 7.04 7.13 
wLo(L) 7.15 7.57 7.38 7.42 
wTo(L) 7.84 8.74 8.79 9.12 

Table 5.14: The phonon frequencies of gallium arsenide 

A comparison with the few available mode-Gruneisen parameters are avail­

able in table 5.15 and it is evident that none of the parameterisations available 

can predict the negative value for the TA(X) mode-Gruneisen parameter. How­

ever, the TO(X) mode-Griineisen parameter is predicted well by both the Smith 

and Sayed parameters and improved upon to a tolerance of 30/0 by the Powell 

parameters. 
Figure 5.15 shows an experimentally measured GaAs phonon dispersion by 

Waugh and Dolling[14] which may be directly compared to the phonon disper­

sion plots given in figures 5.16, 5.17 and 5.18 which show the predicted disper­

sions by the parameters from Smith, Sayed and Powell respectively. The effect of 

llSee [14] 
7In [15] 

12See [16] 
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Griineisen Param EXp.1L DFT' Smith Sayed Powell 
"'iLO(r) 1.23 0.99 1.57 1.47 1.42 
"'iTO(r) 0.9 1.09 1.57 1.47 1.42 
"'iTA (X) -1.62 1.13 0.19 0.19 
"'iLA(X) 1.57 1.40 1.37 
"'iLO(X) 1.57 1.40 1.37 
"'iTO (X) 1.73 1.82 1.82 1.78 
rTA(L) 1.13 0.06 0.11 
rLA(L) 0.57 1.08 1.22 
"'iLo(L) 1.91 1.65 1.51 
"'iTo(L) 1.70 1.63 1.58 

Table 5.15: The mode-Griineisen parameters of GaAs 

predicting the TA branch phonons as zero by Smith is immediately obvious as is 

the lack of curvature in the TO branch phonons. The elastic properties predicted 

by the Smith parameters have the same values for CII and Cl2 which in turn lead to 

B = CII and C' = C44 = O. Smith is the only author to have predicted zero for the 

shear elastic properties which is provided by a very small c/ d ratio in his parame­

terisation, effectively removing the angular bonding term g(Ojik) from the Tersoff 

equations. The Sayed parameters predict the longitudinal branch phonons quite 

well but the TA and TO branch phonons all have values that are too high com­

pared to the experimental data, which is shown at the zone boundaries by open 

circle markers. The optical branches of the Powell parameters have a greater er­

ror than the Sayed parameters and neither dispersion can correctly reproduce the 

transverse branch splitting observed in the experimental dispersion in the centre 

of the [Oqq] plots. It should be noted that none of the parameterisations can re­

produce the energy gap between the optical branch phonons at the BZ centre and 

the crossing of the optical branch frequencies observed in the experimental plot 

in the centre of the [qOO] region. 
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Figure 5.15: The phonon dispersion of gallium arsenide measured experimen­

tally, copied from Waugh and Dolling 
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Figure 5.16: The GaAs phonon frequencies predicted by the Smith parameters 
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Figure 5.17: The phonon dispersion characterised by the Sayed parameters 
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Figure 5.18: The phonon dispersion predicted by the Powell parameters 
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5.2.5 Indium Arsenide 

The parameters presented by Ashu et al[17], Nordlund et al[18], Migliorato et 

al[19, 20] and the Powell (PI) parameters from the previous chapter are com­

pared to experimental measurements for the phonon frequencies in table 5.16. 

Here we can see that there is no difference in the optical branch r -point phonon 

frequencies for any of the parameterisations and that all of the values are pre­

dicting phonon frequencies that are too high. Again, we can clearly note that all 

parameterisations are predicting transverse acoustic branch phonons that are too 

high at the X and L-points and that the Powell parameters produce values for 

the optical branch phonons that are too high when correctly fitted to the elastic 

properties. 

Phonon (THz) EXp.lS OFT1 Ashu Nordlund Migliorato Powell 
WLO(r) 7.01 7.13 7.89 7.49 7.44 7.89 
WTO(r) 6.44 6.56 7.89 7.49 7.44 7.89 
WTA(X) 1.70 3.32 3.04 3.11 3.30 
WLA(X) 4.94 5.22 4.95 4.93 5.21 
WLO(X) 6.20 6.46 6.13 6.10 6.45 
WTO(X) 6.47 7.19 6.84 6.80 7.06 
WTA(L) 1.50 2.21 2.04 2.07 2.24 
WLA(L) 4.46 5.18 4.85 4.88 5.14 
wLo(L) 6.26 6.61 6.25 6.25 6.49 
wTo(L) 6.44 7.49 7.14 7.08 7.45 

Table 5.16: The phonon frequencies of InAs 

Table 5.17 shows the performance of the various parameterisations against the 

few measured and DFT predicted values of the mode-Griineisen parameters. It 

can be seen that all of the parameterisations predict values for the r-point that 

are too high by about 50%. Furthermore, the other three parameterisations pre­

dict values for the TA(X) value that are negative and the Powell parameters are 

positive, but with no further information in the available literature it is difficult 

to say which value this should be. 
Figure 5.19 shows a copy of the experimental phonon dispersion of InAs as 

measured by Carles et a1[22]. Figures 5.20 and 5.21 show the Ashu and Nordlund 

phonon dispersion curves. Figures 5.22 and 5.23 show the Migliorato and Powell 

phonon dispersion graphics. It is obvious from all of these these graphs that none 

of the parameterisation can correctly reproduce the different phonon frequencies 

at the r point in the dispersion. Furthermore, there is no optical band crossing 

in evidence as there is in the [qOO] portion of the experimental dispersion. All of 

the parameterisations fail tO,reproduce the magnitude of the transverse branch 

8See [21,9] 
71n [15] 
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Griineisen Param EXp.12 DFT' Smith Sayed Migliorato Powell 
"YLO(r) 1.06 1.43 1.38 1.47 1.49 
"YTO(r) 0.85 1.16 1.43 1.38 1.47 1.49 
"YTA(X) -0.04 -0.23 -0.05 0.04 
"YLA(X) 1.38 1.32 1.41 1.44 
"YLO(X) 1.38 1.32 1.41 1.44 
"YTO(X) 1.72 1.67 1.75 1.79 
"YTA(L) -0.23 -0.39 -0.24 -0.09 
"YLA(L) 1.07 0.97 1.09 1.18 
"YLo(L) 1.55 1.52 1.59 1.59 
"YTo(L) 1.57 1.52 1.61 1.63 

Table 5.17: The mode-Griineisen parameters of indium arsenide 

splitting in the [Oqq] region of the graph and all of the dispersion show enlarged 

values of the TA branch phonons. The most accurate parameterisations are the 

Nordlund and Migliorato parameters which were fit to the experimental value 

of C'. The DFT prediction of C' and C44 was used for the parameterisation of 
the Powell parameters which predict higher optical phonon frequencies than the 

Migliorato and Nordlund parameters. 

REDUCED WAVE VECTOR 
Figure 5.19: The phonon dispersion of indium arsenide measured experimen­

tally, copied from Carles et al 
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Figure 5.20: The phonon frequencies predicted by the Ashu parameters 
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Figure 5.21: The phonon dispersion predicted by the Nordlund parameters 
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Figure 5.22: The phonon dispersion characterised by the Migliorato parameters 
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Figure 5.23: The phonon dispersion predicted by the Powell parameters 
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5.2.6 Gallium Phosphide 

Table 5.18 compares the phonon frequencies taken from a number of experimen­

tal sources and the DFT predicted values to the parameterisation found in the 

previous chapter for zinc blende gallium phosphide. The prediction from the 

parameters shows reasonable agreement with the phonon energies but fails to re­

produce either of the experimentally measured frequencies of the TA(X) phonon. 

The model based upon the Tersoff PEF used in this study again appears to have 

difficulty in predicting that the LO and TO f-point phonons which experimen­

tally do not converge at the zone boundary. Table 5.19 shows the predicted mode­

Griineisen parameters against the experimental and DFT predicted values. Here 

we can see that negative transverse acoustic branch phonons are incorrectly pre­

dicted as positive values, but the TO parameters seem to be in reasonable agree­
ment. 

Phonon (THz) Experiment6 DFf! Powell 
WLO(r) 12.11 13.60 13.93 
WTO(r) 10.97 12.77 13.93 
WTA(X) 1.91,3.16 5.73 
WLA(X) 6.35,7.65 8.11 
WLO(X~ 11.72, 11.30 12.17 
WTO(X) 11.03, 10.96 12.24 
WTA(L) 3.08 3.96 
WLA(L) 5.15 8.03 
wLo(L) 11.36 12.05 
wTo(L) 10.73 13.02 

Table 5.18: The phonon frequencies of gallium phosphide 

Griineisen Param Experiment/S DFT6 Powell 
I'LO(r) 0.95 0.95 1.41 
I'TO(r) 1.09 1.10 1.41 
I'TA(X) -0.72 0.28 
I'LA (X) 1.37 
I'LO(X) 1.44 
I'TO(X) 1.31 1.60 
"'/TA(L) -0.81 0.13 
"'/LA(L) 1.34 
"'/Lo(L) 1.39 
"'/To(L) 1.50 1.55 

Table 5.19: The mode-Griineisen parameters of GaP 

Figure 5.24 shows the experimentally measure phonon dispersion for GaP by 

Borcherds et al[26]. The second panel should be ignored as that part of the phonon 

dispersion is not included in this study. Figure 5.25 shows the phonon dispersion 

predicted by the Powell parameters. Although the predicted phonon values at the 

6See [23, 24, 25] 
7In [15] 
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zone boundaries are too high, the general shape of the dispersion shows promise. 

The parameters have again failed to reproduce the magnitude of the transverse 

branch splitting away form the points of high symmetry in the Brillouin Zone. 

Figure 5.24: The phonon dispersion of gallium phosphide measured experimen­
tally, copied from Borcherds et al 
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Figure 5.25: The phonon dispersion predicted by the Powell parameters 
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5.2.7 Indium Phosphide 

Here we show the predicted values of the phonon frequencies and the mode-
Griineisen parameters for indium phosphide based upon the Powell parameters 
that were fit to the values of the elastic properties. Table 5.20 contains the exper-

imental values of the phonons and a couple of DFT predictions for comparison. 
Once again there is no evidence of a split in the energy levels of the optical branch 
phonons at the r -point and the TA branch phonons are above the expected value 

in the X and L-points of the BZ. Although the magnitude of the optical branch 
phonons is above the experimental values, the LA branch phonons have a small 
error and are pleasing. 

Phonon (THz) Experiment6 DFT7 Powell 
WLO(r) 10.3 10.43 11.65 
WTO(r) 9.20 9.32 11.65 
WTA(X) 2.05 3.87 
WLA(X) 5.80 5.61 
WLO(X) 9.95 10.79 
WTO(X) 9.70 10.80 
WTA(L) 1.65 2.67 
WLA(L) 5.00 5.56 
wLo(L~ 10.20 10.81 
wTo(L) 9.50 11.14 

Table 5.20: The phonon frequencies of InP 

The mode-Griineisen parameters are shown in table 5.21 and are compared to 

experimentally measure values and the parameters predicted by first-principles 

methods. The TO(r) value is very close to the experimentally measured value 

and the TA(L) value correctly reproduces the sign of the negative experimental 
value, but the situation is not repeated for the TA(X) negative mode-Griineisen 

parameter. The values for the transverse optical branch parameters are within a 

pleasing tolerance. 

Griineisen Param ExperimentO DFT7 Powell 

/'LO(r) 1.24 1.02 1.47 

/'To(f) 1.44 1.19 1.47 
T'TA(X) -2.08 0.12 
T'LA(.X) 1.42 
T'LO(X) 1.55 
T'TO(X) 1.42 1.64 
T'TA(L) -2.00 -0.11 

T'LA(L) 1.28 

/'Lo(L) 1.46 

/'To(L) 1.42 1.57 

Table 5.21: The mode-Gruneisen parameters of indIum phosphide 

Adachi[27] has measured the phonon dispersion of indium phosphide and 

this is copied and displayed in figure 5.~6 for comparison. Figure 5.27 shows 
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the phonon dispersion predicted by the Powell parameters and as can be seen 

there is again no evidence of the energy splitting at the r -point optical phonon 

dispersion. Both optical branches are predicted to be too high compared to the 

experimental values. The magnitude of the transverse branch splitting is low 

compared to the experimental dispersion curves. 
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Figure 5.26: The phonon dispersion of indium phosphide measured experimen­
tally, copied from Adachi 
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Figure 5.27: The phonon dispersion predicted by the Powell parameters 
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5.2.8 Gallium Antimonide 

The parameterisation that was performed to fit to the elastic properties of the 

material are compared here in table 5.22 to the experimental values for gallium 

antimonide. The phonon frequencies predicted for the optical branches at the r 

points both have the same value and there is no split in the frequency values as is 

shown in the experimental data. The TA branch phonon values have the largest 

discrepancy with the experimental data with the X-point phonon begin 100% too 
high. The LO(L) branch phonon is closest to the experimental data being only 8% 

too high. 

Phonon (THz) ExperimentY Powell 
WLO(r) 6.97 7.98 
WTO(r) 6.70 7.98 
WTA(X) 1.70 3.45 
WLA(X) 4.99 5.08 
WLO(X) 6.35 6.71 
WTO(X) 6.36 6.96 
WTA(L) 1.37 2.38 
WLA(L) 4.60 5.01 
wLo(L) 6.15 6.63 
wTo(L) 6.48 7.45 .. 

Table 5.22: The phonon frequencIes of gallIum-antimonide 

The mode-Gri1neisen parameters are displayed in table 5.23 against the few 

experimentally measured points. The values predicted by the parameters are 
17% high. 

Griineisen Param Experiment-l Powell 
I'LO(1') 1.21 1.44 
I'TO(r) 1.23 1.44 
I'TA(X) 0.26 
I'LA (X) 1.40 
I'LO(X) 1.40 
I'TO(X) 1.74 
I'TA(L) 0.16 
I'LA(L) 1.34 
I'Lo(L) 1.44 
I'To(L) 1.58 

Table 5.23: The mode-Gri.ineisen parameters of zinc blende GaSb 

Figure 5.28 shows the experimental phonon dispersion curves of gallium an­

timonide, measured by Farr et aZ[30]. Figure 5.29 shows the predicted phonon 

dispersion by the Powell parameters for gallium antimonide and as can clearly 

be seen the splitting of the optical branch phonon energies at the r-point and the 

convergence at the X-point ca~ not be correctly replicated. The crossing of the op­

tical branches in the experimental [qqq] region is not predicted by the dispersion 

9See [28, 29] 
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and the magnitude of the splitting of the transverse branches in the [Oqq] region 

is not as large as it should be. However, the TA branch phonons show a good 

match with the experimental data. 
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REOUCED WA.V~ VECTOR 

Figure 5.28: The phonon dispersion of gallium antimonide measured experimen­
tplly, copied from Farr et al 
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Figure 5.29: The phonon dispersion of gallium antimonide predicted by the Pow­
ell parameters 
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5.2.9 Indium Antimonide 

Table 5.24 shows the results of the indium antimonide crystal dynamical calcula­

tions from the Powell parameters found in the previous chapter. The experimen­

tal phonons are compared to the frequencies found from the D-matrix algorithms 

described above and it can be seen that the predictions are all too high. The pre­

dicted values cannot replicate the energy level splitting observed in the r-point 

phonons and the TA branch phonon frequencies are twice as large as they should 

be. The LO branch phonons show good agreement with the experimental data. 

Phonon (THz) Experiment lU Powell 
WLO(I') 5.90 6.33 
WTO(r) 5.54 6.33 
WTA(X) 1.12 2.70 
WLA(X) 4.30 4.63 
WLO(X) 4.75 4.77 
WTO(X) 5.38 5.61 
WTA(L) 0.98 1.83 
WLA(L) 3.81 4.43 
wLo(L) 4.82 4.90 
wTo(L) 5.31 5.96 

Table 5.24: The phonon frequencies of InSb 
" 

The mode-Griineisen parameters predicted by the potential parameterisation 

are shown in the table 5.25. No experimental data or DFT predictions were avail­

able in the literature for this material. It has been common with other materials to 

expect experimental values of the mode-Griineisen parameters to be negative for 

the TA branch. The TA(L) mode-Griineisen parameter has a negative value but it 

is difficult to say if this trend is correct in the case of indium antimonide without 

any experimental data to compare to. 

Griineisen Param Experiment Powell 
"ILO(1') 1.52 
"ITO (1') 1.52 
"ITA (X) 0.04 
"ILA (X) 1.47 
"ILO(X) 1.47 
"ITO (X) 1.86 
"ITA(L) -0.05 
"ILA(L) 0.95 
"ILo(L) 1.90 
"ITo(L) 1.67 

Table 5.25: The mode-Gruneisen parameters of ZInc blende Indium antimonide 

Figure 5.30 shows a copy of the measured indium antimonide phonon dis­

persion from Borcherds and Kunc[32] for comparison with the predicted values. 

lOSee [31] 
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Also displayed below in figure 5.31 is the phonon dispersion predicted by the 

Powell parameters. The experimental data shows a large splitting in the trans­

verse acoustic branch of the dispersion in the [Oqq] region and a crossing of the 

optical branch phonons in the [qqq] region that are not well replicated. The val­

ues predicted for the LO branch phonons are in reasonable agreement with the 

experimental data but the TA branch phonon energies appear to be too high by a 

factor of 2. 
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Figure 5.30: The phonon frequencies of indium antimonide measured experi­
mentally, copied from Boreherds and Kune. Note that for comparison purposes: 

1 THz = 33.3()'em-I, for example: 6 THz = 200 em-I. 
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Figure 5.31: The phonon dispersion predicted by the Powell parameters 
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5.2.10 Boron Nitride 

Albe and Moller[33] and Sekkal et al[34, 35] have presented a parameterisation 

for Boron Nitride which are compared in table 5.26 to the phonon values found 

from the Powell parameters, the experimental data and DFT predictions. It is im­

mediately obvious that the Tersoff parameters from all authors predict phonons 

that are much higher than the experimental and DFT predictions. The Powell 

parameters have performed particularly poorly in the optical nl0de phonon fre­

quencies and the closest value to the experimental data available from the Powell 

parameters is the TA(L) mode phonon which is 29% larger than the experimental 

value. 

Phonon (THz) Exp.u DFTl.l Albe Sekkal Powell 
WLO(I') 38.22 38.37 43.68 44.32 52.47 
WTO(r) 30.72 31.80 43.68 44.32 52.47 
WTA(X) 20.98 21.16 26.63 27.74 28.30 
WLA(X) 26.98 30.51 34.07 34.33 35.29 
WLO(X) 33.72 34.59 36.92 36.10 38.78 
WTO(X) 30.72 28.15 38.78 39.08 40.17 
WTA(L) 14.39 15.00 18.94 19.61 18.60 
WLA(L) 29.23 29.43 32.26 31.60 31.96 
wLo(L) ~ 33.59 34.44 39.01 40.12 42.86 
wTo(L) 29.23 30.24 40.36 40.21 45.37 

Table 5.26: The phonon frequencies of c-BN 

Table 5.27 contains the mode-Griineisen parameters predicted by the Tersoff 

parameters against a couple of experimental and DFT values. From the limited 

data available it appears that the Sekkal parameters performed well compared to 

the DFT predicted values of mode-Griineisen parameter whilst the Albe param­

eters performed well compared to the experimental data. The prediction of the 

Powell parameters was too low in both cases. 

Griineisen Param Exp.u DFTH Albe Sekkal Powell 

"YLO(r) 1.5 1.2 1.21 1.16 1.06 

"YTO(r) 1.5 1.2 1.21 1.16 1.06 
"YTA(X) 0.59 0.54 0.43 
"YLA(X) 1.14 1.06 1.Q5 
"YLO(X) 1.44 1.42 1.47 
"YTO(X) 1.14 1.42 1.05 

"YTA(L) 0.55 0.48 0.31 

"YLA(L) 1.41 1.43 1.58 

"YLo(L) 0.94 ·1.02 0.75 

"YTo(L) 1.31 1.28 1.23 

Table 5.27: The mode-Grilneisen parameters of cubIC boron nItnde 

llRead from graph in [36], compared to results from [21] 
12See [37] 
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Displayed in figure 5.32 is a copy of the DFT predicted phonon dispersion 

by Bechstedt et al[37] of c-BN for comparison with figures 5.33, 5.34 and 5.35 

which show the predicted phonon dispersions by the Albe, Sekkal and Powell 

parameters respectively. It should be noted here that the layout of the DFT graph 

in the f-X-f region is mirrored compared to the phonon dispersions provided 

by the method used here for the Tersoff potential dispersion. The experimental 

data points are shown on the predicted dispersions with open circle markers and 

it is clear that none of the calculated dispersions have the correct magnitude. 

The frequency splitting in the transverse acoustic branch that can be seen in the 

DFT graph is not well replicated by the Tersoff parameters of any author, but 

the magnitude of splitting is largest with the Powell parameters. Furthermore, 

the level of energy separation between the two optical mode phonon dispersions 

in the DFT graph is also incorrectly reproduced by the Tersoff parameterisations 

presented here. 
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Figure 5.32: The phonon dispersion of cubic boron nitride calculated from first­
principles, copied from Bechstedt et ale Note that for comparison purposes: 1 

THz = 33.36 em-I, for example: 39 THz = 1300 em-I. 

13See [21] 
14See [38] 
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Figure 5.33: The phonon dispersion predicted by the Albe parameters 
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Figure 5.34: The phonon dispersion characterised by the Sekkal parameters 
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Figure 5.35: The phonon frequencies predicted by the Powell parameters 
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5.2.11 Gallium Nitride 

Gallium nitride has been re-parameterised in the previous chapter and those pa­

rameters are used here along with the Benkabou et al parameters [39] to predict 

the values of the phonon frequencies (see table 5.28) and the mode-Griineisen pa­

rameters (see table 5.29) of the material. The phonon frequencies are compared 

to experimental measurements and DFT predicted values and as can be seen; the 

error predicted by the Benkabou parameters is very large for all cases except the 

TA mode phonons. The Powell parameters produce respectable results for the LA 

mode phonons but overestimate the other phonon modes. The mode-Griineisen 

parameters predicted by the Powell parameters overestimate the r-point mode­

Griineisen parameters but are generally within a better tolerance than the Benk­

abou parameters. 

Phonon (THz) EXp.lS DFTl6 Benkabou Powell 
WLO(1') 22.27 22.36,21.93 10.88 26.03 
WTO(r) 16.57 16.99, 15.76 10.88 26.03 
WTA(X) 5.90 6.02 8.82 
WLA(X) 10.52 7.35 10.91 
WLO(X) 20.83 13.43 23.79 
WTO(X) • 18.67 16.39 24.34 
WTA(L) 4.13 5.16 5.88 
WLA(L) 10.46 6.77 11.22 
wLo(L) 21.22 12.55 24.34 
wTo(L) 17.59 15.53 25.06 

Table 5.28: The phonon frequencies of c-GaN 

Griineisen Param Exp.l:> DFTHl Benkabou Powell 
')'LO(1') 1.2 1.8,1.02 2.29 1.43 
')'TO(r) 1.4 1.8, 1.19 2.29 1.43 
')'TA(X) 1.61 0.55 
')'LA(X) 1.52 1.40 
')'LO(X) 1.66 1.56 
')'TO(X) 1.52 1.40 
1TA(L) -0.49 1.24 0.16 
1LA(L) 0.92 1.76 1.42 
1LO(L) 1.05 1.91 1.54 
')'To(L) 1.23 1.49 1.37 

" 
Table 5.29: The mode-Griineisen parameters of CUbIC gallIum nItride 

Figure 5.36 shows a predicted phonon dispersion of cubic gallium nitride from 

ab initio techniques by Bechstedt et al[37]. Figure 5.37 shows the phonon disper­

sion predicted by the Benkabou parameters and it can be seen that the TA mode 

phonons appear to have a reasonable fit to the DFT predicted values. However, 

15See [40] 
16See [37, 15] 
IBSee [38,41] 
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the general shape of the optical mode phonons appears to be reversed. The Pow­

ell phonon dispersion (see figure 5.38) shows a reasonable fit to the LA mode 

phonons but the other modes appear to have an overestimated magnitude. The 

splitting between the transverse mode phonons in the centre of the [Oqq] region 

is too small and no separation of the r point branch energies is in evidence. 
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Figure 5.36: The phonon dispersion of cubic gallium nitride calculated from first­
principles, copied from Bechstedt et ale Note that for comparison purposes: 1 

THz = 33.36 em-I, for example: 22.5 THz = 750 em-I. 
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Figure 5.37: The phonon dispersion characterised by the Benkabou parameters 
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Figure 5.38: The phonon dispersion predicted by the Powell parameters 

187 



CHAPTER 5. VIBRATIONAL FREQUENCY MODELLING 

5.2.12 Indium Nitride 

In this section the Benkabou et al[39] parameters are compared to the Powell fit 

to the elastic constants in the previous chapter. Table 5.30 shows the phonon 

frequency values predicted for InN by the parameterisations compared to DFT 

predictions. It is immediately obvious that the Benkabou parameterisation is 

completely wrong, being in error by over 2 orders of magnitude. The Powell 

parameters, again, show reasonable agreement in the LA branch phonons but 

fail to reproduce the r-point energy split that is evident in the DFT values. Fur­

thermore, the optical branch phonons and the TA frequencies are overestimated. 

Phonon (THz) DFTlb Benkabou Powell 
WLO(r) 17.86, 18.63 372.24 20.66 
WTO(r) 14.00, 14.41 372.24 20.66 
WTA(X) 3.47 80.53 5.31 
WLA(X) 6.93 125.35 7.09 
WLO(X) 17.00 350.33 20.13 
WTO(X) 15.53 358.90 20.29 
WTA(L) 2.33 56.12 3.53 
WLA(L) 6.80 122.23 7.25 
wLo(L) 17.18 355.86 20.02 
wTo(L) • 14.63 359.35 20.91 

Table 5.30: The phonon frequencies of cubic InN 

Table 5.31 shows the mode-Griineisen parameters predicted by the parameter­

isations against a couple of DFT predicted values. Here the Benkabou parameters 

are again in error by at least an order of magnitude whilst the Powell parameters 

make a reasonable prediction. 

Griineisen Param DFTH Benkabou Powell 
rLO(r) 1.5 0.108652 1.60046 
rTO(r) 1.5 0.108652 1.60046 
rTA(X) -0.889342 0.295557 
rLA(X) 0.120705 1.54504 
rLO(X) 0.130628 1.65616 
rTO(X) 0.120705 1.54504 

rTA(L) -1.10731 -0.147744 

rLA(L) 0.0115528 1.38441 

rLo(L) 0.124424 1.65904 

rTo(L) 0.119328 1.5258 

Table 5.31: The mode-Gruneisen parameters of cubic InN 

Only a DFT prediction of the phonon dispersion· of cubic indium nitride is 

available in the literature. This was done by Bechstedt et al[37] and is shown 

in figure 5.39. Figure 5.40 shows the Benkabou phonon dispersion and the DFT 

values are marked on the plot with open circle marks. There is obviously a mas­

sive over estimation of all phonon frequencies in this figure but the shape of the 
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acoustic branch phonons appears correctly. The dispersion predicted by the Pow­

ell parameters is shown in figure 5.41 and shows a reasonable accuracy for the LA 

branch phonon dispersion. There is no evidence of the energy level split at the 

r -point and the magnitude of the splitting of the TA branch phonons in the [Oqq] 

region appears underestimated. 
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Figure 5.39: The phonon frequencies of cubic indium nitride calculated from 
first-principles, copied from Bechstedt et ale Note that for comparison purposes: 

1 THz = 33.36 em-I, for example: 18 THz = 600 em-I. 
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Figure 5.40: The phonon dispersion characterised by the Benkabou parameters 
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Figure 5.41: The phonon dispersion predicted by the Powell parameters 
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5.2.13 Aluminium Nitride 

Table 5.32 shows the phonon frequencies predicted by the Goumri-Said et al[42], 

the Benkabou et al[39] and the Powell parameters from the previous chapter 

alongside the DFT predictions for the phonon values. As can be seen from the 

table, the Benkabou parameters for the LO mode phonons are nearly all correct. 

The Goumri-Said parameters predict the values of the acoustic branch phonons 

very well and the Powell parameters can reproduce the r-point LO phonon and 

the LA branch within reasonable accuracy. 

Phonon (THz) DFTl6 Benkabou Goumri-Said Powell 
WLO(r) 26.68, 27.42 26.48 28.86 27.37 
WTO(r) 19.93,20.12 26.48 28.86 27.37 
WTA(X) 10.22 2.30 10.29 12.69 
WLA(X) 17.63 15.52 17.34 16.71 
WLO(X) 21.46 21.55 24.07 23.19 
WTO(X) 20.02 26.39 26.85 24.43 
WTA(L) 6.77 1.55 6.66 8.11 
WLA(L) 17.53 12.53 16.99 17.37 
wLo(L) 22.03 23.42 24.86 24.11 
wTo(L) 19.63 26.43 27.65 25.47 

Table 5.32: The phonon frequencies of cubic AIN 
" 

A comparison of the various predictions made for the mode-Griineisen pa­

rameters against the experimental and DFT values has been made in table 5.33. 

Only 2 values for the experimental r -point mode-Griineisen parameters are avail­

able in the literature and the Powell and Benkabou parameters both predict val­

ues that are 22% in error. The Goumri-Said parameters are 37% higher than the 

experimental values. 

GrUneisen Param Exp.13 DFTl9 Benkabou Goumri-Said Powell 
"YLO(r) 1.00 0.89 1.23 1.37 1.21 
"YTO(r) 1.60 1.14 1.23 1.37 1.21 
"YTA(X) -9.62 -0.49 0.25 
"YLA(X) 1.23 1.34 1.17 
"YLO(X) 1.23 1.34 1.17 
"YTO(X) 1.45 1.63 1.43 
"YTA(L) -0.29 -8.49 -0.83 -0.02 
"YLA(L) 0.85 0.35 0.96 1.13 
"YLo(L) 1.31 1.47 1.49 1.16 
"YTo(L) 0.96 1.34 1.50 1.33 

Table 5.33: The mode-Griineisen parameters of cubic AIN 

Aluminium nitride is notoriously difficult to manufacture in high quality sam­

ples and very difficult to work with due to its reactive nature. No experimental 

data is available for a phonon dispersion curve, but a DFT prediction is shown 

19Ref. [41] 
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in figure 5.42 for comparison. This data was copied from Bechstedt et al[37]. The 

phonon dispersion shown in 5.43 is predicted by the Benkabou parameters and 

although the LO branch phonons appear correct there is a failure to predict the 

curvature of the TO mode phonons and the vales of the acoustic branches. The 

Goumri-Said phonon dispersion, which is shown in figure 5.44 makes a very ac­

curate prediction of the acoustic branch phonons (apart form the level of split­

ting between the degenerate transverse phonons in the [Oqq] region). The optical 

branch phonons are however overestimated. The Powell dispersion (figure 5.45) 

appears to show a good agreement with the general shape of the curves and the 

magnitude of the LO branch phonons, although the optical branch and TA branch 

phonons have the wrong scaling. All of the parameters fail to predict the splitting 

of the r point frequencies in the optical branches and none of the parameters can 

reproduce the level of splitting in the transverse mode frequencies in the [Oqq] 

region. 
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Figure 5.42: The phonon frequencies of cubic aluminium nitride calculated from 
first-principles, copied from Bechstedt et al. Note that for comparison purposes: 

1 THz = 33.36 em-I, for example: 27 THz = 900 ern-I. 
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Figure 5.43: The phonon frequencies predicted by the Benkabou parameters 
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Figure 5.44: The phonon dispersion characterised by the Goumri-Said parame­
ters 
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Figure 5.45: The phonon dispersion predicted by the Powell parameters 
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5.2.14 Re-parameterisation of silicon for a phonon frequency fit 

The program code described in Chapter 4 for a global granular search against a 

calculated materials property metric was modified to fit the Tersoff potential to 

the phonon frequencies and to be less concerned with the elastic constants. The 

program code was run 20 times and the best set of results (named the Powell 

(P2) parameter set) are produced here for comparison against the Powell (PI) pa­

rameters, which were fit to just the elastic properties of the material. The results 
demonstrate that although the parameters can be designed to fit the phonon fre­

quencies reasonably well, the elastic properties of the material suffer as a result 
of the fitting procedure. 

Parameter Tersoff (T3) Powell (PI) Powell (P2) 
De 2.666029 2.36291 2.31633 
S 1.431648 1.48565 2.39078 
Ii 1.465552 1.46405 1.35209 
Te 2.295161 2.34358 2.32496 
R 2.85 2.85 2.85 

Rcut 0.15 0.15 0.15 
c 100390 113031 83780.9 
d 16.217 14.248 19.8881 
h • -0.59825 -0.423876 -0.356865 
n 0.78734 0.938777 0.736002 
'Y 1.1e-06 1.2467e-06 6.87108e-07 
A 1.5 1.4606 1.5004 

Table 5.34: The modified Tersoff parameters for diamond silicon 

Property (units) Exp.lCalc. Tersoff (T3) Powell (P1) Powell (P2) 
Ecoh(eV) -4.632 -4.630 -4.630 -4.629 

a (A) 5.4314 5.432 5.431 5.370 
B (MBar) 0.97833 0.977 0.976 0.842 
C' (MBar) 0.5093 0.336 0.511 0.242 

C44 (MBar) 0.7963 0.690 0.797 0.347 
( 0.5242 0.674 0.519 0.734 .. 
Table 5.35: The material propertIes of dIamond SIlIcon 

Table 5.35 clearly shows that the Powell (P2) parameters for silicon which have 

been fitted to the phonon frequencies can not replicate the correct material prop­

erties. Although the cohesive energy of the material is in close agreement, the 
lattice parameter is 1% low, the bulk modulus and shear modulus are 14% and 

52% low respectively and the C44 elastic property is in error by 56%. 
Figure 5.46 shows the material phase plot for silicon using the Powell (P2) 

parameter set. As can be clearly seen the diamond phase is no longer the lowest 

energy configuration for silicon using these parameters: in fact it is the highest 

of the phases tested. The material would prefer the face centred cubic (fcc) lattice 
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Figure 5.46: Energy vs. atomic volume for silicon with Powell (P2) parameters 

configuration under the conditions of a high temperature MD simulation and 
would possibly phase transform providing incorrect results. 

Phonon (THz) Experimentl Tersoff (T3) Powell (PI) Powell (P2) 
WLTO(r) 15.5 16.07 17.82 15.41 
WTA(X) 4.5 6.90 8.08 4.94 

WLAO(X) 12.3 12.19 13.31 11.28 
WTO(X) 13.9 14.89 15.18 14.09 
WTA(L) 3.45 4.67 5.60 3.63 
WLA(L) 11.3 11.31 12.90 9.59 
wLo(L) 12.6 13.15 13.14 12.14 
wTo(L) 14.7 15.43 16.51 14.79 

Table 5.36: The phonon frequencies of Si including a phonon fit 

The phonon frequencies calculated with the analytic derivatives method are 

shown in table 5.36. These are very pleasing with the largest error occurring at the 
L symmetry point in the BZ where the longitudinal acoustic branch phonon fre­

quency is 15.20/0 low. The replication of the other phonons are quite accurate and 

the phonon plot is shown in figure 5.48 under the experimental curves plotted by 

Dolling[6] in figure 5.47. As can be seen from the graphs, although the mid-range 

transverse acoustic branch phonon splitting is too low in the [Oqq] plot, the rest of 

the reults are more accurate than the Tersoff and Powell (PI) parameter sets. 

Table 5.37 shows the new Powell (P2) calculated mode-Griineisen parameters 

against those calculated from the Tersoff (T3) and the Powell (PI) parameters. 

There are still some errors PTesent in the data (compared to the experimental 

data) with the largest being the 18.5% error in the L point transverse acoustic 

branch but these are reduced when compared to the other parameter sets. 
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Figure 5.47: The experimentally measured phonon dispersion of silicon 
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Figure 5.48: The silicon phonon frequencies dispersion by the Powell (P2) pa­
rameters 

Griineisen Param Experiment Tersoff (T3) Powell (PI) Powell (P2) 
')'LTO(r) 0.9~F 1.32 1.25 1.21 
')'TA(X) -1.4 -0.20 0.12 -1.21 

')'LAO(X) 0.9 1.26 1.22 1.18 
')'TO(X) 1.5 1.60 1.58 1.53 
')'TA(L) -1.34 -0.31 0.08 -1.06 
')'LA(L) 0.72 0.91 0.54 
')'Lo(L) 1.65 1.52 1.63 
')'To(L) 1.3 1.46 1.39 1.36 

Table 5.37: The mode-Griineisen parameters of sihcon IncludIng a phonon fit 
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5.3 The effects of ionicity 

The Tersoff bond-order PEF is a short-range potential function. It was designed 

for modelling the cohesive properties between semiconductor nearest neighbour 

atoms whilst preserving the open tetrahedral structure observed in type IV semi­

conductors. The long range effects of ionicity combined with the covalent bond­

ing observed in the type III-V materials due to the two different atomic species in 

the basis set were never taken into account by Tersoff. The functional form of the 

Tersoff potential used in the above work is the one originally proposed by Tersoff 
to model the covalent bonding of type IV species. 

Keyes[43] proposed that the difference in the masses of the two atomic species 

and the effects of ionicity in zinc blende semiconductors could account for the 

splitting between the optical and acoustic phonon branches and the crossing of 
the LO and TO branches in the region between the BZ points of high symme­

try. This theory was based upon consideration of the equations of motion in the 

dynamical equations and the empirical observation of a small number of III-V 

systems. This theory was given further weight by Mitra[28] who considered the 

experimental measurement~ taken for a larger number of semiconductors and 

the effective ionic charges. Figure 5.49 summarises the main point of both au­

thors work: the effective ionic charge q* can be used to directly predict the level 

of splitting between the r -point optical phonon branches. As can be seen; when 

q* = 0 as in the case of non-ionic type IV semiconductors we expect the optical 

phonon branches to coincide at the zone centre. As the effective ionic charge in­

creases, so does the splitting in energy between the LO and TO branches of the 

r -point phonon frequencies. Keyes predicted that a value of q* = 0.7 was an 
"intermediate" value where the LO and TO phonons would coincide at the BZ 

X-point boundary. 
This effect can account for some of the errors involved in the above results for 

the predicted phonon frequencies of the different III-V crystal systems. None of 

the partly ionic systems described in the above results chapter predict a phonon 

energy split at the r point in the BZ, which is clearly evident in the experimental 

and DFT predictions. 
The effective ionic charge of a material, called q*, e* or Z* by a number of au-

thors, is very complicated to calculate. A review by Catlow and Stoneham[44] 

highlighted some of the complex issues and common misunderstandings that 

are found when attempting to describe materials such as the polar semiconduc­

tors. The review paper suggests that many authors attempting to model the ionic 

charges of a polar crystal based upon the lattice dynamics of the material are over-
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Figure 5.49: An illustration of the effect of ionicity on phonon frequencies 

simplifying the problem. A number of different schemes that have been used to 

calculate the ionicity of a III-V crystal and the varied results is highlighted in ta­

ble 5.38 which contains a number of values of effective ionic charge from various 

sources. As can be seen the predicted values from one method to the next vary 

greatly with little agreement on a value of preferred method. 

Material q* 
AlP 0.87":1 

AlAs 0.512°,0.7421 

AISb 0.312°, 1.2421 
GaP 0.432°,0.9421 

GaAs 0.332°, 0.8721 

GaSb 0.142°,0.7121 

InP 0.572°, 1.2121 
InAs 0.472°, 1.0321 

InSb 0.9021 

BN 0.7121,2.022,0.8624,0.9125 
AIN 3.222,1.1624,1.2125 

GaN 2.522, 2.652..\ 1.1124, 1.1425 

InN 3.122, 1.0324 

Table 5.38: The effective ionic charges of zinc blende lattices combined from var­
ious authors 

The rigid ion model is the choice of Szigeti[47] who devised a scheme to link 

the polarisability Q of a zinc bIen de structure with the normal vibrations of the 

2oRef. [45] 
21 Ref. [46] 
22Ref. [38] 
23 Ref. [40] 
24Ref. [37] 
25Ref. [36] 
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crystal- devised from the same lattice dynamical harmonic approxmation that is 

used here. The method has been used with success by many authors to predict 

material properties including, for example, Hambleton et al[48] who correctly 

predicted the high frequency (optical) dielectric constant of GaAs. The Szigeti 

model is based upon the phonon frequencies, the reduced mass and volume of 

the material and requires calculation of an effective transverse and longitudinal 

charge of the material, er and ei, 

e~ = [(wIo - W~o)coo(1\Jn/47r] 1/2 

e£ = [(wIo - W~o)c~1(1\ln/47r] 1/2 

(5.5) 

(5.6) 

"" 

where W is the phonon frequency, Coo is the high frequency (optical) dielectric 

constant of the material, 1\1 is the reduced mass and n is the cell volume. From 

the above two equations Szigeti formed a relation for the effective ionic charge es 
of the material 

* 3 * 3coo * (5 7) es = eT = eL . 
Coo + 2 Coo + 2 

The above procedure is reasonably complicated and requires values for the 

phonon frequencies and the high frequency dielectric constant of the material 

which are difficult to measure and prone to errors. Furthermore, due to the num­

ber of proposed models and techniques provided for the calculation of the effec­

tive ionic charge, it is difficult to find reliable data to compare predicted values 

to. 

A "rule of thumb" is proposed here, based upon empirical observation of the 

experimental and DFT predictions from the previous section. By comparing the 

relations found by Keyes[43] which are summarised in figure 5.49 above and the 

experimental phonon dispersion, we can make an estimate of the value of the 

effective ionic charge of the material. 

For example: looking at the experimental phonon dispersion of GaAs (figure 

5.15) we can see that the energy gap between the r-point optical phonons and 

the X-point optical phonons appears roughly equal and we cCin estimate that q* = 

0.35. Upon inspection of the GaSb phonon dispersion (figure 5.28) the optical 

phonon frequency gap at the X-point is tending towards zero. Here we can make 

a guess that q* = 0.7. And from inspection of the phonon dispersion in figure 5.30 

for InSb we can see that the energy gap between the optical frequency phonons 

at the r-point is very small. So we could guess that q* = 0.1 in this case. 

A simple rule is proposed: for the calculation of the effective ionic charge 

of type III-V zinc blende semiconductors ep we just add 0.7 to the value of the 
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separation of the X-point phonon frequencies (measured in THz). 

e~ = 0.7+ [WLO(X) - wTO(X)] (5.8) 

The estimates for the effective ionic charges and the values calculated based 

upon the above simple rule are shown in table 5.39. As can be seen, the "rule of 

thumb" makes an excellent estimate of the values of effective ionic charge com­

pared to the estimates from the experimental and DFT graphs seen previously. 

This is an entirely empirical relationship based upon observations made from the 

experimental graphs and it is not based upon physical considerations. However, 

as can be seen - it works rather well for the zinc blende III-V lattice semiconduc­

tors. The cubic III-N semiconductors are predicted to have very high values for 

ionicity from this particular simple model, but it is not possible to tell from the re·­

lation suggested by Keyes what values of q* to give them - the magnitude of the 

splitting of the X-point optical phonons is certainly much larger than the other 

semiconductors. The values provided from the mathematical models given by 

Harrison[ 46, 49] which are shown in table 5.38 for the cubic nitrides have values 

between 2.0 and 3.2 but a predicted value of 7.14 for Boron Nitride seems very ,. 
high. 

Material Estimate e; 
GaP 1 1.04 

GaAs 0.35 0.36 
GaSb 0.7 0.69 
InP 1 0.95 

InAs 0.4 0.43 
InSb 0.1 0.07 
BN »1 7.14 
AIN »1 2.14 
GaN »1 2.41 
InN »1 2.17 

Table 5.39: The estimated effective ionic charges of zinc blende crystals from 
by comparing the relation proposed in figure 5.49 and the experimental phonon 
dispersions for individual materials. Also shown is the value of ep* calculated 

with eq. 5.8. 

" 
In the available literature only one other paper from Nakamura et al[50], has 

attempted to combine long range ionic effects with the Tersoff model to predict 

bonding behaviour at semiconductor surfaces during growth kinetics simula­

tions. They modified the Tersoff potential to add a Coulombic term to account for 

the long-range ionic bonding effects in type III-V crystal lattices. This is shown 

below in equation 5.9 where Z is the atomic charge and e is the elementary elec­

tronic charge. 
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(5.9) 

It is suggested that if the Tersoff potential is to be able to model the correct 

energy splitting at the BZ boundaries and the crossing of the optical branches 

in the intrazone regions of the III-V materials, then the dynamical model used 

to calculate the phonon dispersions for the Tersoff PEF must take account of the 
ionici ty of the material. 

5.4 Modifications to the Tersoff potential 

In the above work we have demonstrated a fast and accurate method of provid­

ing predictions of the dynamical properties of cubic crystal structures using the 

Tersoff potential. We have compared the analytic form of the second derivatives 

to standard numerical methods in terms of time and accuracy and proved that 

the analytic method is 100 times faster and can reproduce all of the dynamical 

information, whereas the numerical methods have problems at the zone centre 

due to divide-by-zero fattlts. The method presented above is for modelling a sin­

gle atomic dimer pair held in an unstrained bulk matrix which may be simply 

extended to more complex models of strained solids or semiconductor interfaces 

by iterating the method across each of the bravis basis sets in a lattice descriptor 
or extending the size of the D-matrix. 

The results for the phonon dispersion curves, mode-Griineisen parameters 

and phonon energy value·s that were predicted by the Tersoff parameters in this 

section were unexpected. We have demonstrated a fast and accurate method of 

dynamical modelling of the Tersoff PEF, however, it is clearly unsuitable for pre­

dicting the phonon frequencies and the associated parameters in its current form. 

This leads to the questions: What are the limitations of the model? What can be 

done to improve the model? 

If we return to the results that were predicted for the parameters that were 

fit to the elastic properties of the material there are trends that appear in the pre­

dicted results that can be used to identify the source of the problem: 

1. The optical branch phonons are predicted to be too high at the zone centre 

and the zone boundaries for the IV and III -V materials. 

2. The TA branch phonons are predicted to be too high at the zone boundaries 

for the IV and III-V materials. 
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3. The level of splitting between the degenerate TA branch phonons is too 

small for the IV and 111-V materials. 

4. The level of splitting between the degenerate TO branch phonons is too 

small for the IV and III -V materials. 

5. The energy split between the optical branch phonons at the f-point cannot 

be predicted for the III-V materials. 

6. The crossing of the optical branch phonons between the points of high sym­

metry and the BZ centre cannot be replicated for the III-V materials. 

Of the above effects, numbers 5 and 6 appear to be due to the lack of long 

range ionicity modelling in the Tersoff potential and was therefore expected. 

However, although the effects of ionicity need to be taken into account for the 

III-V materials modelling, the other 4 trends also exist with the type IV diamond 

latices which have purely covalent bonding and no ionicity. 
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Figure 5.50: The energy functions of the Powell(Pl) [solid line] and Powell(P2) 
[dashed line] parameters for silicon with a parabola for comparison 

Initially we consider the harmonic approximation D-matrix for the lattice dy­

namics as a source of possible errors. Under the harmonic approximation we 

make the assumption that the cohesive energy curve can be approximated to a 

parabola. Figures 5.50 and 5.51 show the total site energy of the atoms in the 

lattice as a function of bond distance against a parabola for both the Powell (PI) 

elastic property fit and the Powell (P2) parameters for the phonon frequency fit. 
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Figure 5.51: A close-up of the energy functions of the Powell(Pl) [solid line] and 
Powell(P2) [dashed line] parameters for silicon 

During the calculation of the D-matrix we take the analytic second derivatives 

of this form and assume that Dx --+ O. As can be seen from the close-up of the co­

hesive energy curve both-functional forms of the potential appear to approximate 

the parabola at the energy minima. Furthermore, although we understand the 

limitations of using a rigid-ion model, the DFT method uses a similar dynamical 

model and so we should be able to reproduce results of a similar quality to the 

ones shown for the III-N materials if the Tersoff potential is flexible enough to 

model the lattice dynamics and the elastic properties of the material. 

The modelling of the diamond silicon properties demonstrated that, although 

the bulk modulus can be predicted, it is difficult to predict the elastic properties 
of the material that are related to shear strain operations when fitting the Tersoff 

parameters to the phonon frequencies. Figure 5.52 shows a plot of the shear factor 

E against the lattice energy under a shear deformation for the two sets of Tersoff 

parameters for silicon: PI for the elastic property fit and P2 for the phonon fre­

quency fit. The shear modulus is calculated from the second derivative of this 

relation and it is immediately clear that the PI parameters are flexible enough 

produce a much higher value of curvature for the energy than the P2 parameters. 

By consideration of the functional form of the Tersoff potential we can iden­

tify which components of the Tersoff potential (equation 3.1) lack the flexibility 

required to model both the dynamic and the elastic properties of a material. The 

exponential Morse-like bonding terms are responsible for modelling the radial re­

pulsive and attractive forces between atom i and neighbour atom j. These terms 
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Figure 5.52: The energy of the Powell(Pl) and Powell(P2) parameters for silicon 
plotted against the shear parameter € 

are only dependent upon the bonding distance rij and although they contribute 

to the hydrostatic strain energy and the cohesive energy, they have only a par­

tial effect on the shear energy which is related to both the bond lengths and the 

angles sub tended by the i - j and the i - k bonds. 

Tersoff based the modelling of the bond-order term bij upon the empirically 
observed relation that bij ex: Z-1/2 and demonstrated that the term produced cor­

rect results for open lattice shapes. However, the value of the shear modulus 

is very strongly dependent on the angular bonding function g(Bjik ) which mod­

els the bonding angles. Furthermore, the value of C44 is based upon the angu­

lar bonding function and the crystal anti-symmetry term Wik which models the 

lengths of the atomic bonds compared to the neighbouring bonds and these terms 

are both contained in the bond-order term bij • 

Figure 5.53 highlights the massive difference between the the angular bond­

ing term g(Bjik ) for the two silicon parameterisations, where PI is fit to the elastic 

properties and P2 is fit to the phonon frequencies. The nature of the parameter­

isation routine implies that although the Tersoff parameters that were fit to the 

phonon frequencies have a reduced angular bonding effect, the other parameters 

will be adjusted to compensate for this effect, producing a correct cohesive energy 

and lattice parameter. 

This appears to be the source of the unexpected results. The balance between 

the radial and angular forces in the Tersoff model is very subtle and requires 

fme tuning by the parameterisation routine to predict the elastic properties of the 
material. Currently when the parameters are modified to fit to the dynamical 
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Figure 5.53: The angular functions of the Powell(Pl) and Powell(P2) parameters 
for silicon 

properties of the material, the lack of flexibility available to balance the two con­

tributing factors, the radial and angular forces, is causing a trade-off in the ability 

to model both sets of rna [!erial properties. 

A change in the angular bonding term g(Bjik ) is recommended to provide a 

more flexible form of the potential. The current form employs 3 parameters that 

are independent from the rest of the model c, d and h and takes the form: 

(5.10) 

Conrad and Scheerschmidt[51] provided a recommendation for a modifica­

tion of the Tersoff angular bonding function ga(Bjik ) that was numerically very 

similar to the Tersoff form which we extend here with another parameter and a 

further term to provide more flexibility in the Tersoff potential: 

Figure 5.54 shows the Wik term of the potential that is balancing the bonding 

energy of the k atoms with the angular bonding energy: 

(5.12) 

This is the only term in the potential that takes account of unbalanced bond 
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Figure 5.54: A graphic of the Wik function from eq. 5.12. The units of rij - rik are 
Angstroms. 

lengths in the tetrahedral bond. Although the form can be modified with the 

parameter A the functional form has a symmetric region of the equation around 

zero - which is not physically correct. The change in energy when moving two 

atoms closer together is greater than when moving two atoms away from each 

other and this is not modelled by the current form of Wik, A change of the func­

tional form of the Tersoff potential and the addition of a new parameter to the 

parameter space p is recommended based upon this reasoning. The new form of 

the anti-symmetric bonding term is labelled wfk and includes a simple linear term 

to add a slope to the current functional form to account for the different energies 

as the atom moves positively and negatively form the equilibrium location and 

is shown below: 
(5.13) 

The form of Wfk is plotted in figure 5.55 and demonstrates the modification to 

the functional form to provide more flexibility and another parameter to improve 

the modelling of both the elastic and the dynamical properti~s of a material with 

a single set of Tersoff parameters[52]. 

5.5 Conclusions 

In conclusion, the current form of the Tersoff PEF has been shown to be unsuitable 

to replicate both the elastic properties and the dynamical effects of diamond and 
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Figure 5.55: The modified wfk function 

zinc blende solids. The source of this problem has been identified and a solution 

has been recommended based upon two simple modifications to the functional 

form of the Tersoff potential and the addition of 2 more Tersoff parameters bring-
• 

ing the total number of fitting parameters to 12. 

Furthermore, a simple "rule of thumb" has been found to allow us to approxi­

mate the effective ionic charge of a lattice using only the optical X-point phonons. 

The rule appears to approximate the ionicity of polar semiconductors of type 111-

As, III-P and III-Sb with an amazing degree of accuracy compared to complicated 

models based upon physical reasoning. 

A thorough investigation of the analytical form of the Tersoff potential has 

taken place and resulted in a modification to the functional form of the potential. 

A modified form of the Tersoff potential has been proposed that will address the 

issue of finding a single set of parameters to model both the elastic and dynamical 

properties whilst perserving the important bond-order properties. 

There is plenty of scope for further work provided in the above investigation. 

The new form of the Tersoff potential needs to be thoroughly}nvestigated and pa­

rameterised for the elastic and dynamical properties of the materials above. The 

limitations of the new form of the Tersoff potential need to be investigated and 

reported upon and finally the results from the investigation need to be published 

within the scientific community. 
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Chapter 6 

Conclusions & Further Work 

6.1 Discussion & Conclusions 

Modelling with the Tersoff empirical potential provides a fast and an accurate 

method of calculation of the interatomic forces in open cubic lattice structures. 

The literature review highlighted that, although the model is in use by many 

research groups around the world, many authors are relying upon the parame­

terisations of others whi~h can be somewhat inaccurate. Many authors are still 

relying upon the original type IV elemental parameterisations by Tersoff in 1989 

which have been demonstrated to provide reasonable results that are compara­

ble to Keating's VFF method. However, the Tersoff potential provides a much 

larger parameter space and due to the bond-order nature of the functional form 

can approximate the second moment of electronic density - which is essential for 

modelling the higher order properties of semiconducting materials such as elas­

ticity and lattice dynamics. 

A local and a global parameterisation algorithm have been described and have 

been demonstrated to work extremely efficiently. However, the time required to 

search a 10 dimensional parameter space globally using stochastic methods (with 

5000 starting points) was three orders of magnitude larger than the time required 

to search locally with a single known starting point provided by another author. 

The local search algorithm has been demonstrated as fast, efficient and accurate 

for minimising a multidimensional search space for a single objective function. 

X-ray crystallography, inelastic neutron scattering and Raman spectroscopy 

data from the literature have been combined with the ab initio DFT predictions 

of elastic and small strain effects from various authors to produce a materials 

properties database for 13 different semiconductor systems. This materials prop­

erties database has been used to develop Tersoff parameterisations for each of the 
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different semiconductor systems and result in a library of Tersoff parameters of 

unparallelled accuracy. The work presented here improves upon the work of all 

previous authors in terms of the modelling of elastic properties of materials and 

predicting small strain effects (e.g. Kleinman's internal displacement parameter). 

The method of searching for parameters and testing them against the materials 

property databases has been refined both in terms of accuracy and speed and it 

is now possible to parameterise a new semiconductor system to match the elastic 
properties and small strain effects in under 5 minutes. 

Inspection of the large database of materials properties showed trends in the 

experimental results and provided an excellent opportunity to examine Keyes' 

relations for a simple prediction of the elastic constants of 111-V materials using 

only the lattice parameter. The work of another author was considered and im­

proved upon and the elastic properties of the Aluminium-V materials were pre­

dicted with reasonable accuracy considering the complex relationships between 

the elastic properties of the materials and their constituent atomic components. 

Second derivatives of the Tersoff potential have been calculated analytically 

and presented in Appendix A. The inclusion of these derivatives into a dynami­

cal matrix computation has provided an opportunity to examine in detail the er­

rors introduced into a computer program by the inclusion of numerical derivative 

methods. The form of the dynamical calculations, which includes a large num­

ber of summations, has demonstrated that the compound errors introduced by 

the use of numerical derivatives in D-matrix calculations is completely unaccept­
able. Furthermore, the numerical form of the second derivatives takes 2 orders of 

magnitude longer to compute than the analytical functional form. Although the 

numerical second derivatives routine has large errors at the zero energy points 

of the phonon dispersion, the errors in the higher frequency phonon values are 

smaller and provided a good method of debugging and testing the analytical 

routine. 
A comparison of the numerical and analytical forms of the derivatives has 

allowed a computer program to be developed that will approximate the lattice 

dynamics of unstrained bulk semiconductor materials using a rigid-ion harmonic 

model. The program can predict the phonon dispersion curves between the BZ 

centre and 2 points of high symmetry including the associated mode-Griineisen 

parameters for a single semiconductor system in 0.04 seconds on a laptop. This 
is quite a remarkable feat when compared to similar calculations using ab initio 
methods. This method is scaleable both in terms of the size of the model we can 

work with and the computing hardware it will run on. This provides an excellent 

opportunity to predict the phonon frequencies across a large-scale semiconductor 
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system (e.g. a 1,000,000 atom quantum dot model) in a reasonable amount of 

time. 

Dynamical properties of 13 elemental type-IV diamond and III-V zinc blende 

compound semiconductor systems were calculated. Although the results were 

unexpected, a thorough investigation has taken place and the trends leading to 

the unpredicted results have been identified. A clear case has been made for 

the inclusion of an ionicity approximation which would improve the dynamical 

studies of III-V compound semiconductors to correctly model the optical phonon 

branch crossing and the energy splitting at the Brillouin Zone centre. 

Included in the conclusions of the dynamical calculations are improvements 

to the functional form of the Tersoff potential to allow for flexibility when mod­

elling both the elastic properties and the dynamical properties of semiconductor 

systems. The inclusion of two extra parameters and a slight modification to the 

functional form of the Tersoff potential will provide a model that can replicate the 

shear strain effects of the bulk lattice correctly and provide accurate predictions 

for the dynamical system properties using a rigid-ion calculation[l]. 

Combining the experimental and DFT predicted data for the phonon disper­

sion curved provided an ()pportunity to briefly examine the relationship between 

effective ionic charge and the X-point phonon frequencies. A very simple model 

has been suggested for the approximation of the effective ionic charge in a bulk 
unstrained solid that produced remarkable results. When compared to the vastly 

complicated calculations offered by a number of other authors, the simple calcu­

lation offers highly accurate predictions based upon a simple observation made 

by Keyes and clearly links together the phonon frequencies and the effective ionic 

charge of a III -V com pound material. 

Key to the usefulness of this thesis and future work has been the develop­

ment of the library of Tersoff parameters for use in Molecular Dynamics code 

for the simulation of small-strain bulk semiconductors. The parameters for sili­

con, diamond carbon and germanium originally proposed by Tersoff have been 

vastly improved upon. The parameters for GaAs and InAs have been fit to DFT 

predictions and are more accurate than a number of other previous parameteri­

sations. The first parameterisations of the materials Gap, Inp, GaSb and InSb are 

now available and are can predict the elastic properties of the materials with an 

extremely low tolerance. A new set of parameters for each of the cubic III-N ma­

terials have been suggested here including Boron Nitride. These new parameters 

correct errors in previous work available in the literature and provide a more ac­

curate method of calculation of the elastic properties of these important materials. 
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6.2 Recommendations for Future Work 

Modifying the Tersoff Potential 

A clear case has been made for the modification of the Tersoff potential to take ac­

count of the lack of flexibility when modelling both the elastic properties and the 

dynamical properties of the material. The proposed modifications are currently 

a theoretical prediction based upon observations of the functional behaviour of 

the potential and have not been included in the computer code. To include the 

proposed modifications in the computer code completely to test the quality of the 

modification and perform new parameterisations, a number of subroutines need 

to be modified and tested: 

• Include the modification in the energy calculation routines. 

• Calculate the analytical form of the second derivatives of the modifications. 

• Include the modifications in the second derivative calculation routines. 

• Increase the size ot the parameter search space from 10 dimensions to 12 

dimensions to account for the modified Tersoff potential. 

Once the modifications to the Tersoff routine have been thoroughly tested to 

ensure error free operation of the computer code then the parameterisations can 

begin. The size of the search space has been increased by another 2 dimensions 

which is estimated to increase the time required to search the parameter space 

by global methods by another 2 orders of magnitude. It is recommended that the 

local search routine is used with the current parameters as starting points and that 

only type-IV cubic materials are parameterised to investigate the performance of 

the modified form of the Tersoff potential with respect to correcting the phonon 

dispersion trends seen in the previous chapter. 
If the modifications to the Tersoff potential have the predicted effect and the 

materials can be parameterised correctly for both the elast~,c properties and the 

dynamical characteristics then it is recommended that a correction be made to the 

energy function to take account of the long range ionic bonding in the material. 

A simple Ewald summation of the form shown in equation 5.9 has been demon­

strated by Nakamura[2] to work well for III-V growth simulations. A number of 

techniques exist but due to the long range nature of the forces to be considered, 

computational speed can be an issue with a simple long-range summation. A 

technique suggested by Greengard[3] called the Fast Multipole Method (FMM) 
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is popular as it is equivalent to the Ewald summation and has an O(N) per­

formance. The FMM can be parallelised as demonstrated by Nakano[4] which 

allows for spatial decomposition across cell boundaries - which is essential for 

high speed parallel calculations. Another popular method in the literature is the 

Smooth Particle Mesh Ewald technique[5] which uses a combination of B-spline 

techniques and fast Fourier transformations to increase the calculation speed of 

the particle contributions to the ionic energy in k-space. Any further investiga­

tions into the dynamical properties of the III-V semiconductors must include an 

ionicity correction to allow for the prediction of the correct phonon behaviour. 

Further Modifications to the Software 

The software developed for this thesis does not include the hexagonal phases of 

the materials such as simple hexagonal (sh) and wurtzite. This is because it is not 

possible for the current or the modified Tersoff potential to take account of the 

spontaneous polarisation effects observed in the III-V wurtzite lattice structures. 

The spontaneous polarisation, which is an effect caused by a small movement of 

the cation sublattice cOlllpared to the anion sublattice in the relaxed hexagonal 

structure, is essential in atomistic scale modelling and is not a strain effect but 

rather a second order effect based upon the charge and location of the second 

nearest neighbours. Recent reports[6] have investigated use of the Berry-phase 

approach[7] to polarisation in solids for the DFT prediction of spontaneous polar­

isation in III-N wurtzite lattices. The Berry-phase is defined in crystalline solids 

by the reciprocal space bandstructure which requires a complex calculation of 

Born charge based upon the wavefunction values with respect to a phonon per­

turbation. This is clearly beyond the scope of this work and demands first prin­

ciples computational methods, which are not in keeping with the essence of an 

empirical potential. However, work could be carried out to investigate increas­

ing the bond-order term in the Tersoff potential to account for the second nearest 

neighbours in wurtzite geometry and provide a spontaneous unstrained lattice 

movement. 
The global parameterisation routine included in this work is not very efficient 

and relies very heavily upon dumb stochastic search methods. The search tech­

nique could be vastly improved by the use of Evolutionary Algorithms such as 

Genetic Algorithm[8] or the more modern Particle Swarm Optimisation[9] tech­

nique which add an element of artificial intelligence to the search routines. There 

is a clear case for a thorough investigation into the searching of such a large and 

undefined parameter landscape provided by the Tersoff parameterisation. The 
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task could easily be decomposed into a Multiobjective Optimisation[10] given 

the nature of the 2 clear objective functions (minimise the error in both the elas­

tic properties and the dynamical properties) and a search for the optimal Pareto 

Front[ll] for a given Tersoff parameter set could be combined with an Evolution­

ary Algorithm. The information gleaned from this investigation could provide 

the ability to link together the materials properties and the Tersoff parameters in 

a way that could locate a Pareto optimal parameter set and circumvent the re­

quirements to search the global parameter space when adding a new material to 

the parameter library. This is a very interesting problem and could make for an 

excellent body of work. 

Due to time restrictions the software used in this work has only been subject to 

simple algorithmic and compiler-level optimisations. There is still much room for 

improvement in the speed of calculation of the Tersoff potential energy and the 

partial second derivatives analytically based upon techniques such as loop jam­

ming, inline assembly coding maths functions such as the square root and power 

series evaluations and replacement of the trigonometric functions with look-up 

tables. A thorough investigation is recommended into the effects of these high­

speed approximations upon the timing and accuracy of the final results compared 

to the methods based upon algorithmic optimisations. Due to the iterative nature 

of the calculations involved in MD software, every cycle that can be saved in an 

evaluation has a massive impact on the overall timing of the software. 

The second derivatives of the Tersoff potential were added into the software 

after the elastic property calculations were written. The elastic property calcula­

tions are based upon numerical evaluation of the second derivatives of the Tersoff 

potential, which are now fully available in the code. By re-designing the code to 

take advantage of the analytic derivatives to evaluate the elastic properties we 

should be able to speed-up the code further and to remove any possible source of 

errors from the Euler approximations involved in the simple numerical deriva­

tives. Although this is considered to have a minimal effect on the accuracy of the 

current parameters, it will add further impact to the accuracy of the technique as 

a large-scale competitor to first-principles DFT calculations. " 

Currently, the software written for this investigation is based upon high speed 

Tersoff parameterisation techniques and does not include any Molecular Dynam­

ics or structural relaxation code. Modification of the Tersoff potential as described 

above will require Molecular DynamiCs code that can take advantage of the the 

new functional form and the associated parameter library. The modification of 

existing open source Molecular Dynamics code is highly recommended as this 

will allow large-scale models to be constructed and studied under varying condi-
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tions. This is essential to make a case for the modifications of the Tersoff potential 

and wide-spread adoption of the method as the definitive high-speed structural 

simulation technique for semiconductor modelling. The MD code should be fully 

portable, free of charge and easy to modify. The modified potential energy eval­

uation routines should be optimised for high speed operation and the MD code 

should be designed for parallel architecture use. All of this should be made avail­

able to as many people as possible to ensure the global recognition of the modi­

fied Tersoff potential. 
In future there should be time to investigate novel methods of elastic property 

modelling such as the model proposed by Elder[12]) which describes the statics 

and dynamics of a conserved field. This is applied to the hexagonal ring structure 

demonstrated in lattice modelling and promises simulations that are many orders 

of magnitude faster then conventional relaxation. 

The transferability of the Tersoff potential to modelling semiconductor sur­

faces and surface reconstructions has been briefly mentioned by a number of 

other authors in the literature. This has not been included in this work due to time 

and space restrictions, but a thorough investigation into the modelling of surface 

reconstructions using th~ Tersoff potential and the prediction of the relaxed en­

ergy states of the surface atoms compared to DFT modelling would make for an 

interesting piece of work. The modelling of the surface reconstructions could be 

also introduced into the objective functions for the locating the minima in the 12 

dimensional parameter space offered by the modified Tersoff potential suggested 

here and this would lead to a three dimensional Pareto front. It is conjectured 

that the modified Tersoff potential will be able to better model the positions and 

energies of surface atoms due to the more flexible nature of the bonding angle 

terms and the modified bond anti-symmetry modelling. 

Publication Strategy 

The library of Tersoff parameters presented here include the type-IV elemen­

tal semiconductors and a large number of the cubic III-V systems. This library 

should be extended to include the Aluminium-V materials and the library should 

then be published with all of the associated results to demonstrate the usefulness 
of the parameters for MD relaxation and simulation of low-strain systems and to 

demonstrate that we have achieved the definitive library of Tersoff parameters 

for cubic 111-V semiconductors. In addition, it would not require much work to 

extend the library to include the II-VI semiconductor systems such as ZnS and 

CdS and it is recommended that this follows the III-V library paper as soon as 
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possible. 

Once the modified Tersoff potential has been proven to be able to accurately 
model the elasticity and the dynamical properties of the materials this should im­

mediately be introduced to the scientific community. The impact of a publication 

that demonstrates the transferability of the Tersoff potential to dynamical mod­

elling is anticipated to be large. Publications based upon the expansion of the 

dynamical modelling from a simple bulk dimer to large-scale models that pre­

dict the experimental phonon modes in strained semiconductor systems such as 

quantum dots would be well received and generate interest for the modified Ter­

soff potential. Obviously libraries of parameterisations for the modified Tersoff 

potential would be required for the type-IV elemental semiconductors, the III-V 

semiconductors and possibly II-VI componds. 

A "how-to" style publication based upon the computational techniques in­

volved in numerically computing the Tersoff potential and speeding up the Ter­

soff calculation routines and the second derivative calculations in a journal con­

cerned with computational physics would draw more attention to the Tersoff po­

tential and ensure that it is included in as many molecular dynamics codes as 

possible. This would have an obvious knock-on effect for the visibility of the 

Tersoff parameter libraries. 

The development of code for an investigation into the Evolutionary Algo­

rithms and the Pareto Front associated with the Tersoff potential would draw 

much interest in solving the potential as a test bench algorithm for the develop­

ment of Genetic Algorithms and Particle Swarm Optimisation routines. When 

investigating the efficiency of an Evolutionary Algorithm it is common to test it 

against a number of as-yet unsolved problems in a multidimensional parame­

ter space to measure the speed and efficiency of the solution convergence. The 

parameterisation of the Tersoff potential is ideal for this task and if the function 

could be demonstrated as a useful test bench for such purposes, this would fur­

ther raise the visibility of the potential and the parameter library developed in 

this work. 
An investigation into pseudomorphic growth strain and, Kleinman's internal 

displacement parameter is proceeding based upon this work and the comparison 

of the Tersoff potential and DFT calculations for the prediction of the internal sub­

lattice displacement in low-strain growth of InAs on GaAs. This was not included 

due to time and space restrictions, but it is anticipated that this will raise the pro­

file and awareness of the Tersoff potential as an alternative to DFT simulation in 

situations that require large-scale simulations. 
Finally, this entire work has been based upon parameterising the Tersoff po-
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tential. There is a clear advantage available here as the library is fully available 

now and investigations into performing MD simulations in-house should begin 

at once. This will prove that the parameters offered here are more accurate for 

large-scale modelling such as quantum wells, wires and dots and for modelling 

nanotubes and carbon polytypes such as the C60 molecule. The publication of 

simulation papers using the Tersoff potential library will add weight to the im­

portance of the parameters and demonstrate the usefulness of the parameters and 

the transferability of the potential to multiple large-scale models. 
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Appendix A 

Derivatives of the Tersoff Empirical 

Potential 

Here we manually calculate the first and second derivatives of the Tersoff po­

tential with respect to the individual cartesian axes. This work is necessary to 

provide a computation for the atomic forces associated with the Tersoff poten­

tial (first derivatives) and the phonon frequencies (computed from the dynamical 

matrix of second deivatives). 

Notation 

Initially we shall define out loop iterators m, n, p and q to allow for simplified 

notation in this document. Here m = n = [x, y, z) and p = q = [i, j, k). Where x, 
y and z represent the standard Cartesian orthogonal axes and i, j and k represent 

the atoms under investigation. 
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Cartesian vector components: Xij, Yij, Zij 

mij = mj - mi 

Dmij = 0 
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Dmij = 1 
8mj 

8mij Dmij 
Drni = - 8mj 
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Cartesian vector components: Xik, Yik, Zik 
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Cartesian vector length: rij 
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mp p 

Dr ij mij Dmij 

Dmp= rij Dmp 
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Hence: 

Drij = 0 
umk 
Urij mij 

omj 

Drij 

omi 

Cartesian vector length: rik 

[ 
2 2 2 ] 0.5 

rik = Xik + Yik + Zik 

Hence: 
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Drik mik 

Dmk rik 

orik = 0 
Dmj 

Drik 

Dmi 

D2rik D [xrk + Y;k + Z;J..r
O

.
5 

Dmik 
---= mik--
Dnqomp Dnq Dmp 

[ 
2 2 2 ] -0.5 Dmik D.mik 

+ Xik + Yik + Zik D D nq mp 

[ 
2 2 2 ] -0.5 D2mik 

+ Xik + Yik + Zik m ik
D D 

nq mp 

D2rik 1 miknik 

DnqDmp rik rrk 

D2rik _ ~ + miJ.:nik 
• - 3 

DnqDmp rik .. r ik 
D2rik miknik 

onqDmp rrk 

{)2rik rniknik 

DnqDmp rrk 

D2rik = 0 
onqDmp 

Cut-off function: Ie (rij) 

[m=n;p=q] 

[m = n;p =I- q] 

[m =I- niP = q] 

[m =I- n; p =I- q] 

[p, q = j] 

,rij>(R+D) 

Ir·· -RI < D '1) -

r·· < (R - D) , 1) 

The only differentiable component is the part occuring iI} the region 

(R - D) ~ rij ~ (R + D), hence: 
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afe (rij) = -~~eos [7f (rij - R)] a (rij - R) 
Dmp 2 2D 2D Dmp 

Dfe (rij) = -~cos [7f (rij - R)] Drij 
Dmp 4D 2D Dmp 

Dfc (rij) = -~cos [7f (rij - R)] mij Dmij 
Dmp 4D 2D rij Dmp 

Dfe(rij) = 0 
Dmk 

Cut-off function: fe (rik) 

{ 

0 ,rik > (R + D) 

fe (rik) = ~ [1 - sin 1[ 1r(T~~R)]] ,Irik - RI ~ D 

,rik < (R - D) 

The only differentiable component is the part occuring in the region 

(R - D) ~ rik ~ (R + D), hence: 
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Die (rik) = -~~eos [7f (rik - R)] a (ril.~ - R) 
Dmp 2 2D 2D Dmp 

Dfe (rik~) = -..!!...-eos [7f (rik - R)] Drik 
Dmp 4D 2D Dmp 

Dfe (rik) = -..!!...-eos [7f (rik - R)] mik Dmik 
Dmp 4D 2D rik Dmp 

Dfe(rik) = 0 
Dmj 

Bonding angle: cos (()ijk) 

This function contains components in i, j and k so must be explicitly written: 

Deos (Bijk ) _ D (XijXik) + (YijYik) + (ZijZik) 1 
ax j - DXj rijrU, " 

(XijXik) + (YijYik) + (ZijZik) Dr;/ 
+~~----~~--~~ 

rik DXj 

Deos (Bijk ) _ XiI.: (XijXik) + (YijYik) + (ZijZik) -~2Xij ---.:.--.::.........;... - -- + ~~~~....::.....:...--.:....--.,;,.~-..,;...---=~..;... 
Dx j rijrik rik rt 

Therefore, we may write: 
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The second derivatives are obtained: 

Hence, we may write: 

Angular dependence function: 9 (()ijk) 

c2 c? 
9 (Bijk ) = 1 + 2" - 2 

d d2 + (h - cos (Bijk )) 

The first derivatives are obtained: 
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Dg(eijk ) 2 1 u(h-cOS(eijk))2 

UXj =c (d2+ (h-cOS(eijk))2)2 UXj 

Og (eijk ) _ 2 1 2 (h _ (e .. )) 0 - cos (eijk ) 
D - c 2 2 cos t]k D 

Xj (d2+(h-coS(eijk))) Xj 

Dg (eijk ) 2c2 (h - cos (eijk )) Dcos (eijk ) 

UXj (d2+(h-cOS(eijk))2)2 UXj 

Note that: 

2c2 (h - cos (eijk )) Ocos (eijk ) 

(d2 + (h - cos (eijk ) )2) 2 Dm,p 

And the second derivative can be written: 

To make our lives easier: 

a = (h - cos (eijk )) 

(3 = [d2 + (h - cos (eijk ))2] 
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And extracting common terms: 

D2g (Bijk ) = -2c2a [.!. Dcos (Bijk ) {)cos (Bijk ) 

{)nq{)mp f32 a {)nq Dmp 

_ 4a {)cos(Bijk ) {)cos (BijAJ _ {)2COS,(Bijk)] 

f3 Dnq {)mp Dnqum,p 

Crystal anti-symmetry scaling: Wij 

The first derivatives are simply obtained: 

We may simplify the above with previous results and write: 
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The second derivatives may now be obtained, simplified with the use of pre­

vious results and grouped: 
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Components of the many-body term: (ij 

(ij = L !c(rik)g((}ijk)Wij 
k¥=i,j 

The first derivatives are simply available: 

And the second derivatives can be obtained with similar simplicity: 
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\ 
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Many body term: bij 

First derivatives: 
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Dbij = -~ [1 + (j3(io)n]-2~-1 ~ [1 + (j3(io)n] 
Dmp 2n J Dmp J 

Dbij = -! bij [1 + (j3(i o)n]-l n (j3(i o)n-l 13 D(ij 
Dmp 2 n J J Dmp 

Dbij 1 bij j3n(Ij-l D(ij 

Dmp = 2 [1 + (j3(ij)n] Dmp 

Before we calculate the second derivatives, we may make a substitution to 

make our lives easier: 

Let: 
1 j3n(Ij-l j3n 

- 2 [1 + (j3(ij)n] = - 2 ((i~-n + j3n(ij) 

Repulsive exponential: VR 

VR = (sD~ 1) exp [-,6V2S (rij - re)l 
First derivatives: 

Let: 

DVR = (-Dej3V2S) exp [-13m (rij - re)J' ~rij 
om S -1 ump p 

A = -13m 
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Second derivatives: 

Attractive exponential: VA 

VA = (:~el) exp [- f3fs (Tij - Te)] 

First derivatives: 

Let: 

Second derivatives: 

The energy function: Vi) 

First derivatives: 
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Second derivatives: 

(A.I) 
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AppendixB 

Schrodinger Wavefunction Solver 

Presented here is a brief description of the design and coding of the Schrodinger 

wavefunction solver used in the singleband k· p code. The modelling chain of 

section 1 describes a specific set of operations used to characterise an InXGal-X As 
quantum dot grown on a GaAs sample which were published by Migliorato et 
al[l, 2]. 

Initially a computer model of the quantum dot (including wetting layer and 

capping material) was c~nstructed and comprised some 800,000 atoms to provide 

a simulation of a realistically scaled atomic system. The quantum dot model was 

then subject to a structural relaxation using the Tersoff potential and the poten­

tial energy at each location in a regularly spaced grid was obtained. The level 

of strain at each atomic location was calculated and from this information the 
piezoelectric potential was calculated. For a full treatment of the strain calcula­

tions, the calculation of the piezoelectric potential, the gridding of the potential 

energy and the construction of the large scale quantum dot model the reader is 

referred to the thesis of Dr. Migliorato[3]. The potential energy and the piezoelec­

tric potential calculated from the quantum dot model were used as input data for 
the Schrodinger solver code which is outlined below. 

Solving Schrodingers Equation 

To calculate the wavefunctions in the system we need to solve Schrodingers equa­

tion in three dimensions which is given by the eigenvalue problem 

(B.l) 

where 'ljJ represents the wavefunctions, E is the system energy, i is the energy 

level index and H is the Hamiltonian which can be considered to be the sum of 
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the kinetic and potential energies is described by 

H = _l£-.V. (_1_. v) + V(r) 
2mo m'ell 

(B.2) 

where mo represents the mass of the atom, mel I is the effective mass tensor and 

V is the confining potential. 
A planewave expansion of the wavefunction is required with a basis that sat­

isfies the condition of having a zero value at the boundaries of the system. A 

normalised sinusoidal wave function is a natural choice for this basis and for a 

three dimensional system and a box of size Lx x Ly x Lz we choose 

(B3) 

Wavefunctions that satisfy the eigenvalue problem in eq. B.1 can now be writ-
ten as nx,ny,nz 

'lj)i(r) = L at,ky,k/Pkx,ky,kz(r) (B.4) 

.. 
where ai are the coefficients to be found as the solutions of the eigenvalue prob­

lem, n indicates the number of plane waves used in the expansion and the k 

values are provided by ki = (7r / Li)mi where m is a non-zero integer that ensures 
correct boundary conditions. 

The solution of the eigenvalue problem can now be found by diagonalising 

the matrix whose elements are given 

H(k., ky, k" k~, k~, k~) = J J J dxdydz· <I>k:'.k~.k: (x, y, z)H(x, y, Z)<I>k%.k •• d x, y, z) 

(B.5) 

The value of n chosen equates to the number of plane waves selected to solve 

the problem. It is not possible to know in advance which value of n to select 

for a particular problem but by iterating the solution of the Hamiltonian with in­
creasing values of nx , ny, nz and comparing the values of the,previous and current 

solutions - the eigenvalue error can be brought to within a user defined tolerance. 

Equation B.4 can be seen as a three dimensional Fourier transform of the func­

tion in real-space with the a values as the Fourier coefficients and the Hamilto­

nian matrix elements given above in eq. B.5 is the equivalent of calculating the 

Hamiltonian in k-space. To ensure the fast and accurate computation of the wave­

functions we have dismissed methods involving numerical computation of the 

3D integrals in eq. B.5 and a more sophisticated Fourier transform approach has 
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been used to allow the analytic integrals to be inserted into the code. This requires 

the Fourier transform of the spatially gridded potential to be obtained so we may 

reduce our operations to a set of integrals on k-space values. We use the notation 

k3 to indicate the k-space values of the confining potential and distinguish from 

the k' and k values of the wavefunctions in eq. B.4. 

Initially we split the Hamiltonian in 2 separate parts to represent the kinetic 

and the potential energy contributions to the Hamiltonian 

H = Hkin + Hpot (B.6) 

and consider the discrete Fourier transform[4] denoted IF and the inverse discrete 

Fourier transform denoted IF-1 which are given by the following relations 

1 (1/2)N-l . 

IF = N L f(x) . exp-z27T'(k/N)x (B.7) 
x=-(1/2)N 

(1/2)N-l 

]F-l = L f(k) . expi27T'(k/N)x (B.8) 
k=-(1/2)N ,. 

where f(x) is the spatial function and f(k) is the function of k-space. Using the 

knowledge that exp-iO = cos (J + i sin (J, we can then break the Hamiltonian into 2 

components and operate on them individually. 

Potential energy contribution 

First the potential energy contribution to the Hamiltonian is considered 

Hpot(kx, ky, kz, k~, k~, k~) 

= J J J dxdydz· <I>k~,ky,k, (x, y, z) . V(x, y, z) . <I>k"ky,k, (x, y, z) 

= J J J d;x 1 dX2dX3 • <I>k>,k"k,(Xb X2, X3) 

[ 
1 N

x 
Ny N

z 
( • ") 

. NxNyNz ~ ~ ~ aj1,h,j3 cos 27r. L ~i Xi 
J1 J2 J3 t=1,2,3 

(B.9) 

+ N ~ N t"i: t bjlJ2J, sin (27r L ~ X;)] 
x y z j1 i2 j3 i=1,2,3 t 

• <Pkx,ky,kz (Xl, X2, X3) 
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where xi(i = 1,2,3) has been substituted for x, y, z to compact the expressions 

and N is the number of sampling points. We will make the assumption that it is 

understood that the b coefficient terms of the sinusoidal components of the pre­

vious equation and the equations that follow are multiplied by the complex vari­

able i = sqrt( -1). This is done for convenience as we are grouping the real and 

imaginary components separately. We can further work this equation to bring the 

summations outside of the integrals as follows 

= Nx~ Nz ttt 111 dXldx2dx3 
y J1 J2 J3 

[aj 1,h,j3 • <I>k~,ky,ki (Xl, X2, X3) . cos (271" .2:= ~i Xi) . <I>kx,ky,kz (XI, X2, X3) 
t=1,2,3 

+ bj1 ,h,j3 • <I>k~,k~,ki (XI, X2, X3) . sin (271" .2:= ~i Xi) . <I>kx,ky,kz (Xl, X2, X3)] 
t=1,2,3 

(B.10) 

We can now use the following important trigonometric relations to separate 

the variables of the potential energy contribution into manageable parts. We now 

replace xi(i = 1,2,3) with x, y, z and obtain for the cosine contribution 

111 dXldx2dx3' ipk~,k~.k; (Xi> X2, X3) . cos (271" .2:= ~i Xi) . <I>kx,ky,kz (Xl, X2, X3) 
t=1,2,3 

= Lx:yLz . 111 dxdydz 

. [sin(k~x) sin(kxx) cos(k;x). sin(k~y) sin(kyY) cos(k~y) . sin(k~z) sin(kzz) cos(k;z) 

- sin(k~x) sin(kxx) cos(k;x) . sin(k~y) sin(kyY) sin(k~y) . sin(k~z) sin(kzz) sin(k;z) 

- sin(k~x) sin(kxx) sin(k~x)· sin(k~y) sin(kyY) cos(k~y). sin(k~z) sin(kzz) sin(k~z) 

- sin(k~x) sin(kxx) cos(k~x) . sin(k~y) sin(kyY) sin(k~y) . sin(k:z) sin(kzz) cos(k~z)] 
(B.11) 
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and for the sine component contribution 

J J J dXldx2dx3' <l>k.,!.~,k; (Xl, X2, X3) , sin (27r . L ~i Xi) . <Pkx,ky,kz (Xl, X2, X3) 
t=1,2,3 

= 8 . jf' {{ dxdydz 
LxLyLz } } 

. [sin(k~x) sin(kxx) sin(k~x). sin(k~y) sin(kyY) cos(k~y). sin(k~z) sin(kzz) cos(k~z) 

+ sin(k~x) sin(kxx) cos(k~x) . sin(k~y) sin(kyY) sin(k~y) . sin(k~z) sin(kzz) cos(k~z) 

+ sin(k~x) sin(kxx) cos(k~x) . sin(k~y) sin(kyY) cos(k~y) . sin(k~z) sin(kzz) sin(k;z) 

- sin(k~x) sin(kxx) sin(k~x)· sin(k~y) sin(kyY) sin(k~y) . sin(k~z) sin(kzz) sin(k~z)] 

(B.12) 

Kinetic energy contribution 

The kinetic energy contribution to the Hamiltonian from the strained quantum 

dot model has a varying effective mass associated with the different locations 

on the three dimensional energy grid and so the kinetic part of the Hamiltonian 

ceases to be diagonal. Th~ kinetic part needs to be split into two parts 

(B.13) 

(B.14) 

The first component of eq. B.13 which we will label Hkin1 can be decomposed 

using the Fourier transform technique from before to 

(B. IS) 

• <Pk k k x, y, z 
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where IF indicates the Fourier transform to obtain 

(B.16) 

As a check on the above derivation, we make the effective masses constant 

and equal to 1 and reduce the expression in B.16 to 

(B.17) 

and obtain the usual diagonal form of the kinetic energy for a three dimensional 
system[5]. 

The second component of eq. B.13 is labelled H kin2 and is the product of two 

summations. The first one Hkin2a is the gradient of the mass tensor and the second 

HJiin2b is the gradient of the wavefunction: 

(B.18) 
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Hkin2b = ViPkx,ky,k z 

2V2 (COS(kXX) . sin(kyY)' S~n(kzZ)) 
= . sin(kxx). cos(kyY)' sln(kzz) 

JLxLyLz 
sin(kxx)· sin(kyY) . cos(kzz) 

(B.19) 

Finally, by combining eq. B.18 and eq. B.18 we can find the kinetic contribu-

tion to the Hamiltonian from the effective masses to be 

Hme" (kx, ky, kz, k~, k~, k~) 

= ;,2. 2V2 . j~ fJ dXldx2dX3 
m,O J LxLyLz J" 

· {t -G: jx) . cos{kxx). sin{kyY)' sin{kzz) 

· [aj:. cos (2~ t t/i) -bj:' sin (2~ t t/i)] 
3 

+ 8 - (~:jy) . sin{kxx)· cos{kyY)' sin{kzz) 
(B.20) 

· [aJ~.c;S(2~ttixi) -bJ~.Sin(2~tt/i)] 
3 

+ 8 - (~:jz) . sin{kxx)· sin{kyY)' cos{kzz) 

· [aj:. cos (2~ t t/i) -bj:' sin (2~ t t/i)]} 
As with the case of potential energy contribution to the Hamiltonian in eq. 

B.10 the kinetic energy contribution in eq. B.20 has now become a series of ana­

lytic integrals which may be solved with the aid of eq. B.11 and B.12. The C/C++ 

code used to calculate the analytic integrals of the triple sin/cos functions are 

shown at the end of this section. 

Practical evaluation of the Schrodinger wavefunctions 

The Schrodinger wave function solver code can be considered to be a "black box" 

system where the inputs are the confining potential calculated for the three di­

mensional computer model on an evenly spaced grid and the piezoelectric po­

tential in the system due to the local strain effects observed in the compound 

semiconductor quantum dot model. 

Initially the files containing the P?tential energy grid resulting from the Ter-
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soff calculations and the piezoelectric potential grid from the strain calculations 

are read into the computer program. The first step of the algorithm is to calcu­

late the kinetic energy contribution to the Hamiltonian and the effective masses 

as described above using the analytic integral code. The potential part of the 

Hamiltonian is then calculated from the confining potential data and the analytic 

integral code and the 2 Hamiltonian contributions are combined. The code then 

diagonalises the Hamiltonian to obtain the eigenvalues of the secular equation 

using the LAPACK numerical library. This process is repeated for increasing val­

ues of n (eq. BA) until the energy difference between the previous and current 

values of the ground s and double degenerate p state wavefunctions has been 

reduced to within a reasonable tolerance (e.g. O.5meV). This iterative solution is 

generally found within 6 steps. 

A typical run of the Schrodinger solver software for an 800,000 atom model of 

a strained quantum dot model takes 40 hours on a single processor 1GHz desktop 

Pentium III processor with 1.5Gb of 200MHz RAM. The code uses the Fastest 

Fourier Transform in the West (FFTW) library code and the BLAS and LAPACK 

libraries for the diagonalisation of complex matrices. 

Analytic triple integrals 

The analytic triple integrals of the sine and cosine components described above 

can be found in standard integral tables and have been included in the computer 

code. The computer code has been designed with the if ... else statements stacked 

to "fall through" in order of likelihood of execution. This makes for a moderate 

time saving compared to writing the execution in an arbitrary order. They are 

simplified by taking into account the various cases of when k' = k, k3 = 0, etc. 

Four computer sub routines were devised and named integrateSinSinCos, in­
tegrateSinCosSin, integrateSinCosCos and integrateSinSinSin which are called with 

the values k', k, k3, Land r. The value r represents the resolution and the evalua­

tions performed by the subroutines are described in the incl?ded computer code 

below. 

Conclusions 

The above derivations and the code listings below have been used to success­

fully study the effect of the atomic composition and the piezoelectric field ob­

served locally for an InXGal_xAs/GaAs quantum dot[l]. The predictions from 
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the quantum dot model identified a splitting of the doubly degenerate p-state 

wavefunctions by upto 7meVand a spatial anisotropy of the wavefunctions con­
fined within the quantum dot. These predictions mirrored experimental findings 

from photoluminescence and intersubband absorbtion experiments which have 

identified a 7.9meV splitting between the excited states[21. The analytic nature 

of the calculations and the secure and timely execution of the code due to good 

algorithm design and memory management techniques has aIIowed for the the­

oretical prediction of experimental observations. These results have provided an 

exceIIent level of confidence in both the experimental findings and the modeIIing 

techniques used here. 

Code 

The first section of code shown below is the C/C++ code for the calculation of the 

analytical integral of the term sin(k') sin(k) cos(k3): 

II ********************************************************* 
II Analytic Integration of Sin (k-prime) * Sin(k) * Cos(k3) 
double 
IntegrateSinSinCos (double k_prime, double k, double k3, 

double L, int res) 

double sum = 0.0; 
res--; II To correct for the Fourier transform limits 

if (k3 == 0.0) { 
if (k_prime == k) 

return «double) L I (double) 2); 
else 

return 0.0; 

else { 
if (k_prime == k) { 

if «2 * k_prime) == k3) { 

else 

else { 

sum -= sin (k3 * (res» I (double) (2 * k3); 
sum *= (L I (res»; 
sum += 0.25 * L; 
return «double) sum); 

sum += sin (k3 * (res» I (double) (2 * k3); 
sum -= 0.25 * sin « (2 * k_prime) + k3) * (res» 

I (double) «2 * k_prime) + k3); 
sum -= 0.25 * sin « (2 * k_prime) - k3) * (res» 

I (double) «2 * k_prime) - k3); 
return «double) L * sum) I (res); 

if «k_prime - k3) == k) { 
sum += 0.25 * sin «k_prime - k + k3) * (res» 

I (double) (k_prime - k + k3); 
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sum -= 0.25 * sin ((k_prime + k + k3) * (res) ) 
I (double) (k_prime + k + k3) ; 

sum *= (L I (res) ); 
sum += 0.25 * L; 
return ( (double) sum) ; 

else if ( (k_prime - k3) == -k) { 
sum += 0.25 * sin ( (k-prime - k + k3) * (res) ) 

I (double) (k_prime - k + k3) ; 
sum -= 0.25 * sin ( (k_prime + k + k3) * (res) ) 

I (double) (k_prime + k + k3) ; 
sum *= (L I (res)); 
sum += 0.25 * L; 
return ( (double) sum) ; 

else if ( (k_prime + k3) == k) { 

sum += 0.25 * sin ( (k_prime - k - k3) * (res) ) 
I (double) (k_prime - k - k3); 

sum -= 0.25 * sin ( (k_prime + k - k3) * (res) ) 
/ (double) (k_prime + k - k3); 

sum *= (L I (res)) ; 
sum += 0.25 * L; 
return ( (double) sum) ; 

else if ( (k_prime + k3) == -k) { 
sum += 0.25 * sin ( (k_prime - k - k3) * (res) ) 

I (double) (k_prime - k - k3) ; 
sum -= 0.25 * sin ( (k_prime + k - k3) * (res) ) 

I • (double) (k_prime + k - k3) ; 
sum *= (L / (res) ) ; 
sum -= 0.25 * L; 
return ( (double) sum) ; 

else 
sum += 0.25 * sin ( (k_prime - k + k3) * (res) ) 

I (double) (k_prime - k + k3) ; 
sum += 0.25 * sin ( (k_prime - k - k3) * (res) ) 

I (double) (k_prime - k - k3) ; 
sum -= 0.25 * sin ( (k_prime + k + k3) * (res) ) 

I (double) (k_prime + k + k3) ; 
sum -= 0.25 * sin ( (k_prime + k - k3) * (res) ) 

I (double) (k_prime + k - k3) ; 
return ( (double) L * sum) I (res) ; 

return 0.0; 

The next section of code shown is for the analytical integration of the term 
sin(k') cos(k) cos(k3 ): 

II ********************************************************* 
II Analytic Integration of Sin (k-prime) * Cos(k) * Cos(k3) 
double 
IntegrateSinCosCos (double k_prime, double k, double k3, 

double L, int res) 
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double sum = 0.0; 
res--; II To correct for the Fourier transform limits 

if (k3 0.0) { 
if (k_prime == k) 

return 0.0; 
else { 

sum 0.5 * (cos «k-prime + k) * (res» - 1) 

else 

I (double) (k_prime + k); 
sum += 0.5 * (cos «k - k_prime) * (res» - 1) 

I (double) (k - k_prime); 
return «double) L * sum) I (res); 

if (k_prime == k) { 
if «2 * k_prime) == k3) 

return 0.0; 
else { 

sum -= 0.25 * (cos 
I (double) ( (2 * 

( ( (2 * k-prime ) + 
k_prime) + k3) ; 

k3) * (res) ) -

sum -= 0.25 * (cos ( «2 * k-prime ) - k3) * (res) ) -
I (double) ( (2 * k_prime) - k3) ; 

return ( (double) L * sum) I (res) ; 

else { 
if «k_prime - k) == k3) { 

sum.-= 0.25 * (cos «k_prime + k + k3) * (res» - 1) 
I (double) (k_prime + k + k3); 

sum += 0.25 * (cos «k-prime - k + k3) * (res» - 1) 
I (double) (k_prime - k + k3); 

sum += 0.25; 
return «double) L * sum) I (res); 

else if «k_prime - k) == -k3) { 
sum -= 0.25 * (cos «k-prime + k + k3) * (res» - 1) 

I (double) (k_prime + k + k3); 
sum += 0.25 * (cos «k-prime - k + k3) * (res» - 1) 

I (double) (k_prime - k + k3); 
sum 0.25; 
return «double) L * sum) I (res); 

else if «k-prime + k) == k3) { 
sum -= 0.25 * (cos «k-prime + k - k3) * (res» - 1) 

I (double) (k_prime + k - k3); 
sum += 0.25 * (cos «k-prime - k - k3) * (res» - 1) 

I (double) (k_prime - k - k3); 
sum += 0.25; 
return «double) L * sum) I (res); 

else if «k-prime + k) == -k3) { 

else 

sum -= 0.25 * (cos «k-prime + k - k3) * (res» - 1) 
I (double) (k_prime + k - k3); 

sum += 0.25 * (cos «k_prime - k - k3) * (res» - 1) 
I (double) (k_prime - k - k3); 

sum 0.25; 
return ((double) L * sum) I (res); 

sum -= 0.25 * (cos {(k_prime - k + k3) * (res» 1) 
I (double) (k_prime - k + k3); 

sum -= 0.25 * (cos «k-prime - k - k3) * (res» - 1) 
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I (double) (k_prime - k - k3); 
sum -= 0.25 * (cos «k-prime + k + k3) * (res» - 1) 

I (double) (k_prime + k + k3); 
sum -= 0.25 * (cos «k-prime + k - k3) * (res» - 1) 

I (double) (k_prime + k - k3); 
return «double) L * sum) I (res); 

return 0.0; 

The third code section shown below performs the analytical integration of the 

term sin(k') cos(k) sin(k3): 

II ********************************************************* 
II Analytic Integration of Sin(k-prime) * Cos(k) * Sin(k3) 
double 
IntegrateSinCosSin (double k_prime, double k, double k3, 

double L, int res) 

double sum; 
res--; II To correct for the Fourier transform limits 

if (k3 == 0.0) 
return 0.0; 

} 

else { 

,. 

if (k_prime k) { 
if «2 * k_prime) == k3) { 

sum += 0.25; 
return «double) L * sum) I (res); 

else 
sum = 0.0; 
sum -= 0.25 * (sin ( «2 * k-p rime ) 

I (double) ( (2 * k_prime) + k3); 
sum += 0.25 * (sin « (2 * k_prime) 

I (double) ( (2 * k_prime) - k3); 
return ( (double) L * sum) I (res) ; 

else { 
if «k_prime - k3) == k) { 

+ k3) 

- k3) 

* 

* 

(res» ) 

(res» ) 

sum += 0.25 * (sin «k-prime - k + k3) * (res») 
I (double) (k_prime - k + k3); 

sum -= 0.25 * (sin «k-prime + k + k3) * (res») 
I (double) (k-prime + k + k3); 

sum 0.25; 
return «double) L * sum) I (res); 

else if «k-prime - k3) == -k) { 
sum += 0.25 * (sin «k-prime - k + k3) * (res») 

I (double) (k_prime - k + k3); 
sum -= 0.25 * (sin «k_prime + k + k3) * (res») 

I (double) (k_prime + k + k3); 
sum += 0.25; 
return «double) L * sum) I (res); 

else if «k_prime + k3) k) { 
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sum -= 0.25 * (sin «k-prime - k - k3) * (res)) ) 
I (double) (k_prime - k - k3); 

sum += 0.25 * (sin «k_prime + k - k3) * (res)) ) 
I (double) (k_prime + k - k3); 

sum += 0.25; 
return ( (double) L * sum) I (res) ; 

else if ( (k-prime + k3) == -k) { 
sum -= 0.25 * (sin «k-prime - k - k3) * (res)) ) 

I (double) (k_prime - k - k3); 
sum += 0.25 * (sin ( (k_prime + k - k3) * (res)) ) 

I (double) (k_prime + k - k3); 
sum 0.25; 
return «double) L * sum) I (res) ; 

else 
sum -= 0.25 * (sin «k_prime - k + k3) * (res)) ) 

/ (double) (k_prime - k + k3); 
sum += 0.25 * (sin «k-prime - k - k3) * (res)) ) 

I (double) (k_prime - k - k3); 
sum -= 0.25 * (sin «k-prime + k + k3) * (res)) ) 

I (double) (k_prime + k + k3); 
sum += 0.25 * (sin «k-prime + k - k3) * (res)) ) 

I (double) (k_prime + k - k3); 
return ( (double) L * sum) I (res) ; 

return 0.0; 

The final section of code shown below is for the analytical integral of the term 
sin(k') sin(k) sin(k3 ): 

II ********************************************************* 
II Analytic Integration of Sin (k-prime) * Sin(k) * Sin(k3) 
double 
IntegrateSinSinSin (double k_prime, double k, double k3, 

double L, int res) 

double sum; 
res--; II To correct for the Fourier transform limits 

if (k3 0.0) 
return 0.0; 

else { 
if (k_prime == k) { 

if «2 * k_prime) == k3) { 

else 

sum (cos (k3 * (res)) - 1) I (double) (2 * k3); 
sum *= (L I (res)); 
sum -= 0.25 * L; 
return «double) sum); 

sum -= (cos (k3 * (res)) - 1) I (double) (2 * k3); 
sum += 0.25 * (cos «(2 * k-prime) + k3) * (res)) - 1) 

I (double) «2 * k_prime) + k3); 
sum -= 0.25 * (cos « (2 * k_prime) - k3) * (res)) - 1) 

I (double) «2.* k_prime) - k3); 
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return ( (double) L * sum) / (res) ; 

else { 
if ( (k-prime - k3) == k) { 

sum -= 0.25 * (cos ( (k-p rime - k + k3) * (res) ) - 1) 
/ (double) (k_prime - k + k3); 

sum += 0.25 * (cos ( (k-prime + k + k3) * (res) ) - 1) 
/ (double) (k_prime + k + k3); 

sum *= (L / (res» ; 
sum -= 0.25 * L; 
return ( (double) sum) ; 

else if ( (k-prime - k3) == -k) { 
sum -= 0.25 * (cos ( (k-prime - k + k3) * (res) ) - 1 ) 

/ (double) (k_prime - k + k3) ; 
sum += 0.25 * (cos ( (k_prime + k + k3) * (res) ) - 1 ) 

/ (double) (k_prime + k + k3) ; 
sum *= (L / (res» ; 
sum += 0.25 * L; 
return ( (double) sum) ; 

else if ( (k-prime + k3) == k) { 
sum -= 0.25 * (cos ( (k-p rime - k k3 ) * (res) ) - 1) 

/ (double) (k_prime - k - k3) ; 
sum += 0.25 * (cos ( (k-p rime + k k3) * (res) ) - 1 ) 

/ (double) (k_prime + k - k3); 
sum *= (L / (res) ); 
sum -= 0.25 * L; 
return «double) sum) ; 

else if ( (k-prime + k3) == -k) { 
sum -= 0.25 * (cos ( (k-prime - k k3) * (res) ) - 1) 

/ (double) (k_prime - k - k3); 
sum += 0.25 * (cos ( (k_prime + k k3) * (res) ) - 1 ) 

/ (double) (k_prime + k - k3); 
sum *= (L / (res» ; 
sum += 0.25 * L· , 
return ( (double) sum) ; 

else 
sum -= 0.25 * (cos «k-prime - k + k3) * . (res» - 1) 

/ (double) (k_prime - k + k3); 
sum += 0.25 * (cos «k-prime - k - k3) * (res) ) - 1) 

/ (double) (k_prime - k - k3) ; 
sum += 0.25 * (cos ( (k-prime + k + k3) * (res) ) - 1) 

/ (double) (k_prime + k + k3); 
sum -= 0.25 * (cos (,,(k-p rime + k k3) * (res) ) - 1 ) 

/ (double) (k-prime + k - k3); 
return ( (double) L * sum) / (res) ; 

return 0.0; 
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