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Abstract 

As the stock market came to the attention of increasing numbers of physicists, an idea 

that has recently emerged is that it might be possible to develop a mathematical theory 

of stock market crashes. This thesis is primarily concerned with statistical aspects of such 

a theory. 

Chapters 1-5 discuss simple models for bubbles. Chapter 1 is an introduction. Chapter 2 

describes a skeleton exploratory analysis, before discussing some economic interpretations 

of crashes and a rational expectations model of financial crashes - a slightly simplified 

version of that in {52}. This model assumes that economic variables undergo a phase 

transition prior to a crash, and we give some empirical support of this idea in Chapters 4 

and 5. 

Chapter 3 discusses SDE models for bubbles. We describe maximum likelihood estimation 

of the model of {94} and refine previous estimation of this model in {2}. Further, we 

extend this model using a heavy-tailed hyperbolic process, {34}, to provide a robust 

statistical test for bubbles. In Chapter 4 we examine a range of volatility and liquidity 

precursors. We have some evidence that crashes occur on volatile illiquid markets and 

economic interpretation of our results appears interesting. Chapter 5 synthesises Chapters 

2-4. 

In Chapter 6 we develop calculations in {55}, to derive a generalised Pareto distribution for 

drawdowns. In addition, we review a method of using power-laws to distinguish between 

endogenous and exogenous origins of crises {100}. Despite some evidence to support the 

original approach, it appears that a better model is a stochastic volatility model where 

the log volatility is fractional Gaussian noise. 

{6} makes a distinction between insurance crisis and illiquidity crisis models. In Chapter 

7, focusing upon illiquidity crises, we apply the method of {71} to evaluate contagion 

in economics. Chapter 8 summarises the main findings and gives suggestions for further 

work. 
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Chapter 1 

Introduction 

The aim of this thesis is to build towards a mathematical theory of financial crashes. The 

first chapter is essentially a summary and a review of relevant aspects of statistical physics 

models in finance, particularly log-periodic models {93}. Chapter 2 will demonstrate 

that simpler models will suffice, before additional models are developed in Chapters 3-4. 

Statistical models and tests for bubbles are synthesised in Chapter 5. 

Chapters 6 and 7 are intended to provide further additions to such a theory. Chapter 6 

discusses power laws for drawdowns [55], and power laws for volatility decay associated 

with external/internal shocks {100]. In Chapter 7 we discuss, based primarily upon [71], 
Chapter 6, statistical approaches to evaluating contagion in economics. 

The particular aim of this chapter is to provide a general introduction to one of the main 

themes of this thesis - the application of ideas from physics and complex systems in 

economics and finance. We discuss this in more detail in the next section. Of particular 

interest are possible applications of statistical mechanics and self-organized criticality. We 

motivate these considerations further with an !sing-type model of financial crashes. For 

monograph treatments of statistical mechanics and self-organized criticality, we refer to 

{44] and (50]. 

Key to the application of physics techniques in finance have been a number of statistical 

physicists essentially using financial markets as a testing ground for a range of models 

describing a large number of independent units with nonlinear interactions [75]. It 

is largely considerations along these lines which have motivated the highly contentious 

subject of log-periodic precursors to financial crashes {98]. This was originally motivated 

by modelling of acoustic emissions - stress waves produced by the sudden internal stress 

redistribution of materials caused by changes in their internal structure - in relation to 

destructive testing of kevlar tanks (4]. The intuition here is that complex systems may 
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exhibit universal "fingerprints" prior to failure. This is due to an analogy with statistical 

mechanics, discrete scale invariance, and a hypothesised universal fibre-bundle mechanism. 

We discuss log-periodicity and log-periodic models in Section 3. In Section 4, we apply 

these models to real data. Section 5 is a summary. 

1.1 Introduction to physics and complexity in finance 

According to [38}, physics has traditionally been defined as the study of matter and 

energy and the interaction between these two complementary concepts. However, both 

the analytical tools and underlying empirical outlook can be applied to non-traditional 

areas. As a result the influence of physicists and physical ideas has gone beyond traditional 

boundaries. Consequently there has been a great deal of interest among physicists in 

economics and this has lead to the emergence of the so-called field of "econophysics" . For 

a monograph treatment see [22}. 

There are two major reasons for this development. One factor is the thawing of the 

cold war, leading to decreased funding opportunities for research into traditional areas of 

physics. However, another important reason is that the areas of finance and physics can be 

said to share broadly the same aims, namely, matching theory with empirical observation. 

This is in contrast to the purely empirical nature of some statistical models. [38} describes 

a process of cross-fertilization between economics and physics. One of the most prominent 

examples of this is Bachelier's famous doctoral thesis of 1900, which used Brownian motion 

as a model of the Paris stock exchange. It is also interesting to note that Fisher Black 

- of Black-Scholes fame - was originally a physicist [75}. However, there are some key 

differences between economics and physics. Much of physics is concerned with building a 

body of theory that is capable of being tested by observation or experimentation. However, 

this feature does not translate particularly well to economics as a whole. Firstly, [38} 
describes economics as typically being quite data poor, with finance a notable exception. 

Secondly, human beings are not inanimate and are immensely complicated. Describing this 

behaviour mathematically is challenging, and various approaches to tackling this problem 

are also discussed in [38]. 

This process of cross-fertilisation continued in the 1960s with the publication of a milestone 

paper by the French mathematician Benoit Mandelbrot [73]. Here, for the first time, the 

assumption of Gaussian distributed price variations was rejected - in favour of the heavier 

tailed a stable or Levy stable laws. Today there has been a proliferation of Levy type 

models in the mainstream financial literature, see for instance [31}, with these models 

not restricted to the stable processes originally considered. Meanwhile, continued work 

by Mandelbrot and others brought attention to possible features of scale invariance and 

3 



power-laws in price dynamics [72}. However, the comment is made in [12} that such 

apparent scaling in finance could simply be an artefact of naturally occurring semi-heavy 

tails. 

The late 1980s and early 1990s witnessed an immense growth in the world's financial 

markets, and also an increased level of automatisation. The result was vast amounts 

of readily available financial data. This attracted the increasing attention of statistical 

physicists, interested both in the empirical statistics of financial time series and also 

in applying novel nonlinear methods. These nonlinear models attempt to model 

large numbers of units, subject to (usually very simple) interactions. Alongside the 

application of these nonlinear models to markets, strong analogies became apparent 

between speculative markets and statistical physics, especially features such as universality, 

spin systems, self-organized criticality and complexity. For details and references we refer 

to the discussion in [75}. 

Unfortunately, it is not possible to give a rigorous mathematical definition of what exactly 

constitutes a complex system as no such definition is thought to exist. Typically, what is 

meant by a complex system is a system governed by relatively simple - usually nonlinear 

-equations. However, these equations can exhibit rich behaviour on temporal and spatial 

scales, that is not explicitly contained in the system's constituent parts nor their associated 

equations. Non-trivial collective phenomena can emerge from a series of seemingly trivial 

interactions between single components. 

According to [75} it is not difficult to identify indicators for nonlinearity - and hence the 

use of complex systems - in finance. These include incidence of speculative bubbles, 

financial crashes, panic, etc. Also apparent are signs of universal features, with the 

existence of a number of remarkably consistent stylized empirical facts about financial 

markets, which have been observed over a wide range of asset types and across different 

time scales Cont and Tankov, Chapter 7, page 210. With regard to bubbles and crashes, 

there is an important class of so-called autocatalytic processes, whereby small stimuli can 

be strongly amplified by means of the internal dynamics of the system. Also important 

here is the concept of self-organized criticality, whereby the nonlinear interactions of a 

system can place the system in an almost permanent critical state. 

1.2 The analogy with Statistical Physics 

Recall that we have defined a complex system, somewhat loosely, as a system whose 

macroscopic behaviour is governed by a multitude of microscopic (usually nonlinear) 

interactions. Further, recall that (roughly speaking) statistical mechanics is the study 
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of how macroscopic properties emerge from a series of microscopic interactions. There are 

some classical statistical mechanics systems in (thermal) equilibrium which can be solved 

exactly. A key example here is the 2-d !sing model in the presence of zero magnetic field 

[76}, [15]. However, this is very much the exception. It is more often the case that even 

when analyzing models in thermal equilibrium an exact solution cannot be found and 

practical analysis centres around more informal techniques like Monte-Carlo simulation, 

mean field theory and epsilon (series) expansions [107}. Useful introductory treatments 

of statistical mechanics are given by [44] and [107]. We explore the extension from these 

classical statistical models to complicated real world systems, like stock markets, which are 

far from equilibrium. We assume that these systems will share some general features, such 

as the emergence of power laws as an indication of co-operative phenomena for example. 

A mathematical exposition of these types of ideas is given by [48]. 

Two key features make the comparison between stock markets and some statistical 

mechanics models pertinent. Firstly, the notion from statistical mechanics of macroscopic 

behaviour emerging from the small-scale interactions. Secondly, phase transitions in 

statistical mechanics. In thermodynamics, a phase transition occurs when there is a 

singularity in the free energy or one of its derivatives in some thermodynamic system 

[107}, page 1. Typically, one sees a visibly sharp change in the properties of the system 

such as a transformation from liquid to gas. However, the notion of phase transitions is not 

restricted solely to change of state. Yeomans gives an example where the magnetization 

of beta-brass is affected by the ordering of zinc and copper atoms in a molecular lattice. 

Moreover, there are (applied probability rather than physics) papers on phase transitions 

in social networks [47} and computer information networks [74]. These articles are 

perhaps best viewed as describing the collective phenomena that emerge as the result of 

numerous and very complicated interactions between people. It is precisely this feature 

that we seek to model. An introduction to possible physical applications in social sciences 

is given by [9]. 

In this thesis, the key idea is to model a stock market crash as occurring when there is 

a disorder-order transition from a roughly equal mix of buyers and sellers to a situation 

whereby the number of sellers outweighs the number of buyers. Here there is a striking 

metaphor with the physical phenomenon of ferromagnetism. Ferromagnetic materials can 

exhibit spontaneous magnetisation in the absence of an applied external field. As the 

temperature is lowered past the (critical) Curie temperature Tc, magnetic spins which can 

take the values ±1 align in the same direction. The net result is magnetisation which 

occurs spontaneously, and in the absence of an applied field. Informally, if we imagine 

agents on a stock market taking the values + 1 meaning sell and -1 meaning buy, we can 

imagine a crash occurring when all the agent spins spontaneously co-ordinate themselves 

to align in a +1 position. Realising that the price cannot rise any further, agents place 
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sell orders at the same time, and the price plummets. 

Here, we discuss the Cont-Bouchaud percolation model {30}. Our aim is motivate 

physical models incorporating large numbers of microscopic interactions. The account 

here is also based on that in {85}, Chapter 5, and /22}, Chapter 20. According 

to Paul and Baschangel purely statistical fluctuations govern a stable market when 

supply and demand are well tempered. However, the situation is more complicated 

prior to a crash when an immense number of traders sell spontaneously. According to 

this interpretation, crashes are triggered by the spontaneous development of long-range 

correlations between market traders. Thus understanding crashes, and perhaps more 

general financial fluctuations, necessitates an understanding of traders' behaviour and 

leads naturally to models incorporating a large number of microscopic interactions. 

Let P(t) denote the price at timet. Consider a market of N microscopic traders of identical 

size. At time, t + 1, trader i can buy (</>i = 1), sell (<l>i = -1), or remain inactive (</>i = 0). 

In this model, the difference between supply and demand is given by the sum of all the 

<l>i· It is assumed that the price change is proportional to this difference between supply 

and demand: 

1 N 
ilP(t + 1) = ~L4>i(t + 1), 

i=l 

(1.1) 

where t:lP(t+1) = P(t+1)-P(t) and>. is a measure of how sensitive the market prices are 

to variations in supply and demand /85}, Chapter 6. Suppose all traders in the market can 

'communicate' with each other in some way. This communication may make two traders 

adopt a common market position - i.e. they both decide to buy, sell, or be inactive. If 

this happens, we say that a 'bond' is created between the traders. The creation of such a 

bond should happen with a small probability: 

b 
Pb= N' 

since any trader can bind to any other, and the average number of bonds per trader is 

(N - 1 )Pb· Thus, Pb is determined by a single parameter b, which characterises the rate 

at which traders comply with each other. Thus the N traders are divided at random 

into 'clusters' of inter-connected traders. These clusters in effect act as one large trader, 

linking as they do traders who trade identically. The decision of each cluster is assumed 

independent of its size, and also the decisions taken by other clusters so that Se and </>e in 

(1.2) are assumed to be independent. 

Let <l>e(t + 1) denote the state of cluster cat time t + 1. If there are Ne clusters in total, 
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and Se denotes the size of each cluster, then (1.1) can be re-written as 

1 
Ne 

AP(t + 1) = )."L SecPe(t + 1). 
c=l 

(1.2) 

Thus, we see from (1.2) that the distribution of AP(t+1) is determined by the distribution 

Pe(S) of the group sizes se. However, the distribution of the group size is well known in 

percolation theory as the cluster-size distribution of an infinite-range bond percolation 

model, a classical problem {101]: 

( ) 1 -(1-b2 )s 
Pc s I'V s1+3/2 e (1 << s << N), (1.3) 

if b $ 1. In this case the price changes axe approximately given by 

1 Ne 

AP(t + 1) = )." LPe(s)c/le(t + 1), 
c=l 

(1.4) 

where the Pe(s) in (1.4) refer to random draws from the distribution in (1.3) and the 

cPe(t + 1)'s are an i.i.d. sequence of random variables taking the values { -1, 0, 1} with 

probabilities {a, 1- 2a, a} independent of the Pe(s). (Here, we have assumed that 1- 2a 

is the probability that a given cluster is inactive at timet+ 1, and that each given cluster 

buys or sells with probability a). b = 1 corresponds to a so-called percolation threshold. In 

this case (1.3) becomes a power law with exponent 3/2 {pe(s)I'Vs-1- 312), and [22] states 

that in this case the central limit theorem for non-Normal random variables applies so 

that for large Ne the distribution of the price increment approaches a symmetric Stable 

distribution with index J.L = 3/2. If b < 1, (1.3) shows that the variance of the Pc(s) exists. 

So in this case, the usual central limit theorem applies and the distribution of the price 

increments approaches a Gaussian. If b > 1, increasing numbers of traders join a spanning 

cluster which dominates this system. This situation corresponds to a crash. Thus, this 

simple model is intended to provide a plausible and basic mechanism generating heavy­

tailed distributions and crashes in financial maxkets. 

According to {85] there is some suggestion of self-organized criticality, with some internal 

market dynamics permanently maintaining b around 1 meaning that the market is 

preserved at an almost critical state. This is the essence of self-organized criticality {50}. 
{22] make some criticisms of this model. Firstly, this model is static and cannot describe 

how the clustering of agents evolves over time. Secondly, there is a discrepancy between 

the derived power law with exponent J.L = 3/2, and the empirically observed J.LI'V3, There 

is a vast literature regaxding so-called agent-based models. Some useful introductory 

references are given at the end of Chapter 20 in {22}. 
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1.3 Log-periodic models in finance 

1.3.1 Log-periodicity 

Log-periodicity occurs in connection with the functional equation f(J..Ls) = f(s), where J..L is 

a real constant. Solutions to this equation are known variously as multiplicatively periodic 

or logarithmically periodic, the function f being periodic after a logarithmic change of 

argument. Letting g(x) = f(ex), we can see that 

g (logs) = g (log(J..Ls)) 

= g (log J..L + log s) , 

so g is periodic in the usual sense with period log(J..L). Log-periodicity occurs naturally 

within the context of fractals and branching processes, see for example {16}. Many fractals 

or approximate fractals in applied sciences are created by a recursive procedure. The 

passage from the nth stage to then+ 1 th stage of the approximating pre-fractal corresponds 

to the transition of the nth generation to the n + 1 th generation of a branching process. 

This also corresponds naturally, in a more concrete setting, to models with a hierarchical 

structure. In the context of finance, such a hierarchical structure might imply cascades of 

information from a global level to a local level, i.e. from the top downwards. 

The search for log-periodicity in real-world systems was motivated by the study of phase 

transitions {38}. The proto-typical example of a phase transition is the simple ferromagnet 

which consists of magnetic spins, each of which can take the value ±1. In most solids, these 

spins are disordered and cancel out in aggregate, so as to produce zero net magnetization. 

However, in a ferromagnet, the spins can spontaneously align to produce a nonzero 

aggregate magnetization. There is thus a phase transition to an ordered (magnetised) 

state from a disordered (not magnetised) state. 

The magnetic susceptibility of a magnetic system is defined as 

8M 
x=-8B 

B=O 

where M is the magnetisation and B is the magnitude of an external magnetic field. The 

susceptibility of the ferromagnet follows a power law for temperatures T > Tc: 

x(T) = (T- TcY:t, (1.5) 

where a < 0, and Tc is the critical (Curie) temperature which was briefly introduced in 

the previous section {38}. This power law can be attributed to the continuous scaling 
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symmetry of the underlying lattice. The spins can be grouped into blocks of spins, each 

of which corresponds to a composite spin equal to the sum of the spins in the block. 

Feigenbaum states that, according to renormalization group theory, we can find a model 

involving interactions between these composite spins that replicates properties of the true 

model {45}. Scaling symmetry and the power law behaviour in (1.5) emerge as a result 

of the fact that the macroscopic predictions of the block model do not depend on the 

size of the blocks. (Ignoring finite size effects of spins (atoms), we can rescale the blocks 

arbitrarily.) 

Feigenbaum states that similar considerations carry through in a magnetic system that 

exhibits a discrete scaling symmetry. The system remains unchanged only if we rescale by 

integer powers of some length scale. Feigenbaum gives the example of a Sierpinski gasket 

as an object with discrete scaling symmetry. Discrete scaling symmetry is less restrictive 

than continuous scaling symmetry, and the exponent of the power law is generalized and 

can now be complex: 

where a< 0 and(} is real. The magnetic susceptibility thus satisfies 

x(T) = (T- Tc) 0 [Re (exp(i8ln(T- Tc)))] 

= (T- Tc)0 [cos(8ln(T- Tc))]. 

(1.6) 

(1. 7) 

According to Feigenbaum, the recognition that discrete scale invariance could lead to 

log-periodicity led to a search for log-periodicity in the natural world. Rupture events, 

like earthquakes, were found to be a very fruitful source of log-periodic oscillations [90}. 
Stock market crashes have also been likened to a rupture event. There is an analogy here 

between the formation of microcracks and a spread of pessimism in the market place. A 

pessimistic trader going against the trend is like an isolated microcrack in a solid. When 

these microcracks reach a critical density, they combine, and the result is a catastrophic 

failure. As a result of the search for log-periodicity in the real world, possible indications 

of log-periodicity in finance were found independently by [41] and [98}. 

Continuing the discussion along physical lines, there is a suggestion of a seemingly universal 

structure behind these so-called rupture events. According to Feigenbaum, the hypothesis 

is that each of these systems exhibiting ruptures have a fibre-bundle-like structure with 

discrete scale invariance. The system contains N fibres, each of which contains N smaller 

fibres etc. Rupture may then be seen to correspond to a phase transition, from a connected 

to a disconnected state, and it is anticipated that certain variables may then display log­

periodic oscillations by analogy with the susceptibility in (1. 7). 
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We discuss log-periodic models used in finance in subsections 3 and 4. The advantage of 

these models is that they enable one to make predictions under what are anticipated to be 

rather general circumstances. This practical aspect should not be understated. However, 

one of the key themes of this thesis is that these log-periodic models actually prove to 

be rather ill-equipped as financial models which have to be estimated statistically, and it 

seems that somewhat simpler methods will suffice. 

1.3.2 Simple Power Law model 

In the canonical 2-d !sing model, as the temperature T approaches the critical point Tc, 

the magnetization M goes to zero as 

where /3=1/8. [70}, page 233, describes this kind of behaviour as being quite general for 

critical phenomena. Given this generality of power-law type behaviour, a reasonable first 

order approximation suggests fitting the following model to the log-price y(t): 

y(t) = A+ B(tc- t)a + ft, (1.8) 

where A and B are constants and ft is a zero-mean error term. This model simply predicts 

an explosive power law growth prior to the crash. 

1.3.3 Simple log-periodic fracture model 

The argument here follows that in [4}. Consider a mechanical system under strain. Let 

dE f dt be the instantaneous energy rate of mechanical waves in the system, as a function 

of the applied internal pressure p up to the rupture threshold Pr· Let x = (p - Pr ), 

and set F(x) = (dE(x)fdt)- 1. By the phase transition analogy, we anticipate that the 

instantaneous energy rate becomes infinite precisely when the system fails. Thus we are 

left with F(x) = 0 precisely when x = 0. By the analogy with a statistical mechanical 

system, we assume that we have a generic scaling relation 

JLF(x) = F(lj>(x)), (1.9) 

for some real constant IL and 4>( ·) a differentiable function known as the flow map. By 

(1.9) and the considerations above, we have that 4>(0) = 0. Expanding 4> up to first order 

in a Taylor series, we obtain if>(x) = >.x + O(x2). This approximation is made for the sake 

of tractability but, since we are concerned with x small corresponding to the region of 

the rupture threshold, this may be physically reasonable. Under the linear approximation 
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<f>(x) = .Xx we obtain the functional equation for log-periodicity: 

J.LF(x) = F(.Xx). (1.10) 

It can easily be verified that a solution to (1.10) is given by the simple power-law 

Fo(x) = x'", where a= log(J.L)/log(.X). The general solution to (1.10) is 

F(x) = Fo(x)p(log(Fo(x))), (1.11) 

where p(x) is a periodic function of x, with period log(J.L) [4}, and is also without any 

zeros since by assumption F(x) = 0 precisely when x = 0. Since p(x) is periodic, so is 

1/p(x), and this can be expanded in a Fourier series. Since we are only interested in x ~ 0, 

corresponding to the time up to and including rupture, it is sufficient to assume that both 

p(x) and 1/p(x) are even functions of x, and we can arrive at the series expansion 

1 f: ( 2mr log(x)) 
p(log(Fo(x))) = n=O an cos log( .X) , (1.12) 

since lo~Jl) = log(>.). Retaining only the first order term in (1.12), we obtain 

1 ( (211'log(x))) 
p(log(Fo(x))) = ao + a1cos log(.X) . (1.13) 

In order to find an expression for dEjdt(x), we invert our expression for F(x) in (1.11) to 

obtain 

(1.14) 

where B = a0 and C = atfao. The form taken by (1.14) is assumed to be very general 

and, in anticipation of a "universal" log-periodic acceleration, dE/ dt is identified with the 

derivative of the log-price y(t). In practice, as a pragmatic step, a phase constant </> is 

added to compensate for the change of units between x and tc [28}. This leaves us with 

dyjdt = B(tc- t)-o (1 + C cos (w log(tc- t) + </>)), (1.15) 

where w = 211'/log(.X). Now the function 

f(t) = H (tc- t) 1 -~'[1 + F2 cos(w ln(tc- t) + </>) + F3 sin(w ln(tc- t) + </> )], (1.16) 

has derivative 

/'(t) = -(1- "f)Fl(tc- t)-1' 

x [1 + F2cos(wln(tc- t) + </>) + F3sin(wln(tc- t) + </>)] 

+ wF1 (tc- t)-~'[F2 sin(w ln(tc- t) + </>)- F3 cos(w ln(tc- t) + </>)]. 
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Equating coefficients, we see that this can be rewritten in the form 

f'(t) = -F{ (tc- t)-1 [1 + F~ cos(w ln(tc- t) + <P) +Fa sin(w ln(tc - t) + <P)], 

where 

Fl 
1 = (1- 1)F1, 

F~ 
w 

= F2+ -
1
-F3, 
-I' 

p.l w 
= F3---F2. 3 1-1' 

These relations can be trivially inverted to give 

F1 = F{ 
1- /'' 

1 [ 1 W 1] 
F2 = (_.!!:!.__) 2 F2 - 1 - /' F3 ' 

1 + 1--y 

1 [ 1 W 1] 
F3 = (_.!!:!.__) 2 F3 + 1 - /' F2 . 

1 + 1-')' 

Thus, by setting F{ = -B,F~ = C,F3 = 0 we can see that the solution to (1.15) takes the 

form of (1.16) with F1 = 1-.!,F2 = 1+(~)2C,F3 = 1+(~)2 k~'aP]· This allows us to 
1-Q 1-Q 

write 

y(t) =A+ 1-_~ (tc- t)l-o [ 1 + F2 ( cos(w ln(tc- t) + <P) + 1 ~0 sin(w ln(tc- t) + <P)) J . 

We perform a trick used in {28} which enables some simplification. If we set () = 
tan-1 ( 1~0 ), the trigonometric terms in the round brackets can then be written as 

cos(O) cos(w ln(tc- t) + <P) + sin(O) sin(w ln(tc- t) + <P) 
cos(O) 

Rearranging, using the trigonometric formula cos( A- B) =cos( A) cos(B) +sin( A) sin( B), 

this can be seen to be equal to 

cos (w ln(tc- t) + <P- 8) 
cos(8) 

These considerations lead to the log-price being proportional to the functional form given 

in (1.16) with F3 = 0. Thus we are led to the following model for the log-price y(t): 

(1.17) 

where A, B, C, tc, </J, w, o are constants independent of timet with B = 1-_! and C = c:re). 

12 



1.3.4 Sornette-Johansen nonlinear log-periodic model 

This section deals mainly with the Sornette-Johansen nonlinear log-periodic formula 

which is fitted to log-prices. The method takes the view that the form of (1.17) is 

a reasonable approximation, but seeks a simple refinement to increase the accuracy 

of the original model. The intention is to build a model which, under generic but 

largely phenomenological considerations, better accounts for the underlying oscillations 

of financial and physical reality. The methodology is contained in (96}, and builds on an 

analogy with Landau expansions in second-order phase transitions in physics. This theory 

assumes analyticity in the vicinity of a critical point (see for example (66]). For instance, 

the thermodynamic potential <I> of a uniform sample of a pure substance at constant 

temperature is modelled by an analytic function of temperature T and the square T/ of the 

order of the sample1 , so that 

(1.18) 

where At(T)"" (T- Tc) as T--+Tc,A2 > O,a > 0 and Tc is the transition temperature of 

the substance. For discussion related to the appropriate physical context we must refer 

to (66}, Chapter XIV. It is the series expansion in (1.18), and the underlying assumption 

of analyticity in the vicinity of the critical point, that motivates the method considered 

here. The first model considered the functional equation 

J-LF(x) = F(>-.x), (1.19) 

which generates log-periodicity. A simple solution to this functional equation is the power 

law F(x) = xa, where a:= ~~~X· Such a power law relationship can also be generated from 

the equation 

dF(x) 
d(log(x)) = o:F(x). (1.20) 

In order to generalise (1.20), Sornette and Johnansen consider 

(1.21) 

which is assumed to constitute a second-order series expansion with (1.20) the 

corresponding first-order condition. In the sequel we identify x with tc - t. We write 

F(x) = B(x)eit/Jx, and consider the modulus and argument parts separately. We can 

1Thermodynamic potentials are parameters of a thermodynamic system which have the dimensions of 
energy, such as the internal energy or the Helmholtz free energy. The order of a sample takes the values 0 
and 1 corresponding to disordered and ordered states. 
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derive the following pair of differential equations 

8B 
8(log(x)) 

81/J 
8(log(x)) 

Sornette and Johansen give the solution to this set of differential equations as 

1/J = w log(x/xo) + B5 
2
: log(! + (xfxo) 20 ). 

(1.22) 

(1.23) 

(1.24) 

(1.25) 

Here Bo =o:/1} , and xo is an arbitrary constant. If we retain solely the real parts, the 

solution for F(x) is given by 

F(x) = Bo (x/xoYl: cos[wlog(x/xo) + B5
2

K- log(l + (x/xo)20)]. (1.26) J! + (x/xo)2a a 

This suggests the following pragmatic generalisation of ( 1.17) {96]: 

y(t) = A+B (tc- t)a [l+Ccos[wlog(tc-t)+ .£l
2

wlog(l + ((tc- t)/.llt)20 )+4>]], vfl + ((tc- t)j.£lt)2a 0: 

(1.27) 

with the trigonometric formula (1.25) correcting first-order behaviour of the form y(t) = 

A+ B tc-t a 
2 

• However, it appears that there may be a slight mistake in these 
l+((tc-t)/ ~t) 0 

calculations, which suggests a slightly different form for equation (1.27). 

1.3.5 Amendment to nonlinear log-periodic model 

We show in this subsection that the form of (1.27), should be slightly amended. We 

demonstrate the suggested form of modifications by a direct integration approach, but the 

result can be equivalently verified by performing the reverse differentiation. We start with 

the pairs of differential equations (1.22), (1.23). Let Y = B 2 • Then (1.22) becomes 

j y + ~/B~ = /(2o:d(log(x)), (1.28) 

where B~ = o:f1J. The integral on the left-hand side becomes 

Exponentiating the resulting integrals in (1.28), we obtain 

(y :B~) = (x/xo)2a, 
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where xo is an arbitrary constant. Rearranging, we finally obtain that 

(1.29) 

The form of (1.29) also means that we have a slightly different solution to (1.25). Writing 

things out in full, we have 
8tjJ 2 

8log(x) = w + KB . (1.30) 

Performing the integration directly, we can see that we have 

t/J = wlog(xfxo,2)- B!,
2
: log(l- (xfxo) 2a), (1.31) 

for some arbitrary constant xo,2· Working in the same vein as Sornette and Johansen, and 

retaining solely the real parts, the solution for F(x) is given by 

(xfxo)a 2 K 
F(x) = Bo cos[wlog(xfxo)- B00 -log(l- (xfxo) 2a)J. vi- (xfxo) 2a 2a 

(1.32) 

This suggests as a pragmatic generalization of (1.17) 

(tc- t)a ~w 
y(t) = A+B J 

2 
[l+Ccos[wlog(tc-t)--

2 
log(l- ((tc- t)/~t)2a)+c/>]]. 

1-((tc-t)j~t)a a 
(1.33) 

This form is almost identical to (1.27) except for two changes of sign from plus to minus. 

1.4 Data analysis 

We apply the models discussed here to three major indices; the S&P500 index prior to the 

crash of 1987, the Nasdaq index prior to the crash in prices observed in April 2000, and 

the Hong Kong Hang Seng index prior to a crash observed in early 1994. Thus we look at 

a variety of different crashes, in different markets, and at different times. We look at data 

from both four years and two years before the crash, and look for any differences between 

the two. Specifically, for the S&P 500 we look at daily data from both September 1st 1983 

and September 3rd 1985 to September 30th 1987. For the Nasdaq we look at data from 

March 1st 1996 and March 2nd 1998 to March 31st 2000, and for the Hang Seng from 

December 1st 1989 and December 2nd 1991 to December 31st 1993. 

Parameter estimation is not easy. Here no constraints were imposed on parameters, and 

estimation was performed by the method of least squares. Equations (1.8), (1.17), and 

(1.33) are"partially linear", with respect to A, B, and BC. In principle, these equations can 

be estimated using the Golub-Pereyra algorithm, for partially linear non-linear regression 

models, without the need to state starting values for the partially linear parameters A, B 
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and BC [104}, Chapter 9, Page 275. However, in practice we found that the easiest and 

most robust approach was to use the Nelder-Mead method whilst using the Golub-Pereya 

algorithm to provide choices of starting values. The Nelder-Mead method is a gradient 

search based method which can be used to solve complicated numerical optimisation 

problems without specifying derivatives. In using this method we took care to consider a 

range of randomly generated starting values for the algorithm as nonlinear problems with 

multiple local minima may be extremely sensitive to the choice of starting value. For a 

reference on optimisation see (87}. 

From simple exploratory plots, it becomes clear that it does indeed appear reasonable to 

fit the models discussed in Section 3. A fit of the logarithm of the Hang Seng index by a 

simple power law (1.8) and the iinear fracture model (1.17) both appear reasonable (see 

Figure 1.1). However, there may also be a rather subtle suggestion that the fit of the 

power law model is such that the log-periodic model may just be simply over-fitting noise. 
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Figure 1.1: Left panel: Plot ofLog(Hang Seng) from December 2nd 1991 to December 31st 
1993 and a fit by a power law model with estimated parameters tc = 1994.00, a = 0.38, A = 
9.44, B = -0.7 4. llight panel: Fit by the fracture model with estimated parameters 
tc = 1994.13,a = 0.2,w = 7.76,</> = 2.78,A = 10.32,B = -1.59,C = 0.07. 

The crash of 1987, infamously occurred on Black Monday, October 19th 1987 which 

corresponds to 1987.8. We take the time of the crash on the Hang Seng to be January 

1994, and the crash on the Nasdaq to be sometime in April 2000. Plots over the relevant 

time scales in question are shown in Figure 1.2. Reasonable estimates of the crash-time 

might be April 10th 2000 or 2000.276 for the Nasdaq crash, which is the seventh trading 

day shown. Similarly, a reasonable estimate for the Hang Seng crash appears to be the 

fifth trading day shown which corresponds to January 6th 1994 or 1994.016. 

16 



I 0 00 

~ 
0 

0 

~ 0 
0 

0 

~ 0 
0 0 

• 00 ~ 0 
0 0 0 

0 0 0 0 0 

f ~ l 0 0 0 

I ~ 
0 

~ 
0 

I 0 0 
0 

0 0 

0 0 oO 0 
0 0 

0 

I 
0 ~ 0 

8 
i'; 

0 0 

5 10 15 20 5 10 15 20 

T•ding Days - 30ih Man:h 2000 Tllding Days_, 30ih ~ 1993 

Figure 1.2: Plot of Nasdaq and Hang Seng indices over crash period 

Results for the linear fracture model ((1.17), lfm) and the amended nonlinear log-periodic 

model ((1.33), nlp) are shown in Table 1.1. At least superficially these models appear to 

fit the data well with large R2 values suggesting that these models explain a large degree 

of the variability in the data. The results also appear to give reasonable and interpretable 

estimates of the parameter tc, the time when the market is adjudged most likely to crash. 

The estimated standard errors for the estimates of tc are generally smaller for the more 

complicated nonlinear model. 

1.5 Conclusions 

Interpretable crash time estimates and a generally good fit to data suggest that the 

models considered here are capable of detecting genuine features in financial data. The 

generalisation proposed by Sornette and Johansen in (1.33) performs well and seems 

to provide better estimates of tc, than the linear fracture model {1.17). Moreover, the 

estimated standard errors are generally smaller for the more complicated nonlinear model. 

There is however some suggestion that despite such an apparently good fit the models 

considered here might be susceptible to over-fitting noise, with some suggestion from 

Figure 1.1 that a power law growth dominates any apparent log-periodic oscillations. In 
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Market Time Span Model R"' tc (e.s.e) 
S&P 500 4 years nip 98.24 1988.00 (0.030) 

4 years If m 97.59 1990.35 (0.148) 
2 years nip 98.23 1987.99 (0.007) 
2 years If m 97.87 1988.00 (0.043) 

Nasdaq 4 years nlp 97.95 2000.33 (0.007) 
4 years lfm 97.75 2000.87 (0.055) 
2 years nip 97.48 2000.40 (0.019) 
2 years lfm 97.34 2005.59 (0.974) 

Hang Seng 4 years nlp 97.88 1994.16 (0.329) 
4 years If m 97.56 1995.43 (0.299) 
2 years nlp 96.04 1994.00 (0.010) 
2 years lfm 95.06 1994.13 (0.011) 

Table 1.1: Results for log-periodic models 

Chapters 2 we consider a more simple expressions for the log-price in a non-linear regression 

formulation of the problem, before examining more realistic SDE models in Chapters 3-5. 
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Chapter 2 

Simple models for bubbles 

2.1 Motivation 

As discussed in Chapter 1.3.4-1.3.5, the Sornette-Johansen methodology entails fitting the 

following expressions to the log-price: 

y(t) =A+ B(tc- t) 1-
0 (1 + Ccos(</J + wlog(tc- t))) + €t, (2.1) 

and 

y(t) = A+ B (tc- t)a X 

J1 + ((tc- t)j~t)2a 

[ 1 + Ccos[wlog(tc- t) + ~: log(1 + ( (tc- t)/ ~t)20 ) + <PJ] + €t, (2.2) 

where the €t are i.i.d. zero-mean errors, y(t) is the log-price and the parameter tc represents 

the most likely time for the market to crash. Further details and methodology are given in 

{52} and {97}. For critical reviews see {99}, {40}, and (98}. {93}, Chapter 6, describes log­

periodic oscillations as enabling one to "lock in" on oscillations relevant to the critical data 

tc (the time when a crash is most likely). These oscillations represent periodic corrections 

to departures from plain power-law type behaviour. Plotting log-prices against time, what 

is arguably more noticeable is an approximate power-law growth with any apparent log­

periodic oscillations appearing somewhat secondary, see Figure 1.1. 

The Sornette-Johansen method has come under some criticism. {99} criticizes Sornette 

(see also {40}) essentially for a perceived continued lack of rigour. (65} makes three 

criticisms of Sornette's work. A criticism is made that (2.2) is not based on a convincing 

underlying theoretical model. A further criticism was made that the method requires 

estimation of a large number of parameters (in this case nine), and a further concern that 

these formula may simply be over-fitting noise. We have some sympathy with this point of 
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view. A plot of the logarithm of the S&P 500 index (Yi) together with the fitted values of 

the simple model Yi =A+ B(tc- ti)<:r + T/i, where the T/i follow an AR(2) process is shown 

in Figure 2.1. One might argue that this is not really a serious candidate model for the 

price process as many models for financial processes such as the random walk model are 

non-stationary unit root processes. However, this plot seems sufficient to argue that simple 

statistical fluctuations might be enough to generate an apparently log-periodic signal and 

we should perhaps look for a more simple model. By a simple exploratory analysis it 

seems that rather than log-periodicity, we should perhaps instead seek to model super­

exponential growth1. If the underlying model for the price is geometric Brownian motion, 

then the log-returns (first difference of the log-price) will be an i.i.d. sequence of normal 

random variables. Table 2.1 gives the empirical values ofthe mean and standard deviation 

of log-returns. Higher log-return means are observed in the two-years immediately prior 

to the crash. Higher standard deviations in the two years immediately before crashes also . 

seem to point to an increase in volatility prior to crashes. 
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Figure 2.1: Plot of Log(S&P500) and fit of power-law model with autocorrelated errors 

Financial crashes are often viewed along the lines of the title of Shiller's Irrational 

1For reference, the comment is made in [26}, Chapter 7, that to a reasonable approximation, most time 
series in economics tend to exhibit roughly exponential growth on average. 
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Index Time span Mean (standard deviation) 
S&P 500 Four years 0.000653 (0.00826) 

Two years 0.00102 (0.00916) 
Nasdaq Four years 0.00139 (0.0151) 

Two years 0.00181 (0.0184) 
Hang Seng Four years 0.00144 (0.013009) 

Two years 0.00205 (0.01408) 

Table 2.1: Means and standard deviations of log-returns 

Exuberance {89}. However, some recent work suggests that this might in fact not be 

the case, and there may be some mileage in regarding the process as obeying principles 

of rationality. An economic mechanism may exist whereby, as stated by {93}, Chapter 

5 page 137, sufficiently many traders behave in such a way that prices tend to reflect all 

available information. As this happens, the inherent risks are approximately fairly priced. 

The aim of this chapter is to produce a simple model without log-periodicity, but which 

is interpretable econometrically and is still able to account for super-exponential growth. 

In the second section we present, for illustration, an admittedly brief review of some of 

the theories of financial crashes that can be found in the economics literature. In the 

third section we describe the Johansen-Ledoit-Sornette (JLS) model of financial crashes, 

as presented in [52}. The authors' original intention was to produce a simple model 

where, at least in the regime leading to a financial crash, log-prices exhibit a power-law 

acceleration. Log-periodicity in finance is then motivated by analogy with a statistical 

mechanics model - solved by [32}- in which log-periodicity occurs and generalises the 

plain power-law. We present a simple extension to the original formulation. The rather 

striking conclusion is that, rather than exhibiting log-periodic oscillations before a crash, 

log-prices should be the sum of a linear trend and a super-exponential growth term. We 

are thus lead to an elegant nested model formulation of the problem. Section 4 describes 

backward predictions corresponding to observed crashes. Section 5 is a brief section on 

residual model checks. Section 6 is a conclusion. 

2.2 Some economic theories of financial crashes 

{84} disputes the idea of irrational roots of crises. According to {84}, investors may be 

drawn to the market at times of great uncertainty, by the possibility of large potential 

profits. Under this interpretation, there is thus no requirement for mass irrationality in 

order for a stock market to crash. The view of [84} is that since, at least to a reasonable 

approximation, traders can heed all available information and still participate in such 

dangerous markets, crashes in fact perform a vital house-cleaning function. Crashes are 

seen as allowing the market - somewhat brutally - to sort truly profitable investments 
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from merely illusory ones. 

{108] and {21] stress the importance of economic fundamentals. According to {108] the 

key economic mechanism is informational overshooting. Market fundamentals change over 

an unknown period of time, and the economy undergoes a boom. A crash finally occurs 

as information is processed when the boom comes to an end. Informational overshooting 

occurs when the market expands to a new capacity, which is unknown until this capacity 

is finally reached. This overshooting can occur in two ways, either increased productivity 

brought about by rapid technological progress, or by an influx of new investors into the 

stock market. {108] goes on to state that the fact that financialliberalisations (literally 

economic freedoms) are typically followed by booms and crashes, reflects that it is possible 

to identify an underlying economic process behind the mass panics and hysterias. 

{21] also focus on the role played by so-called economic fundamentals. However, in 

contrast to Zeira, they focus more on technology shocks - factors affecting production -

than on the nature of the flow of information. According to {21 ], when an old mode 

of production cannot be improved further, it is dismissed and progressively replaced 

by a newer one. The dismissal of the old technology and the introduction of new 

machines trigger recessions. These recessions may continue for a few periods while the 

new technology is being developed, but end before the development of the new machines is 

completed. According to {21 ], their model predicts large and sudden stock market crashes 

which follow periods of regular growth. These crashes are the result of fundamental factors 

and not the result of market inefficiencies, nor irrational behaviour of investors. According 

to {21], their model predicts market crashes of the order of 30%. However, the comment 

is made in {86], that a slight computational error occurs in this paper, and in fact the 

model can generate falls of the order of 25-50%. 

{67] takes a similar point of view to [108] and emphasises the role played by informational 

aggregation. However, in contrast to [108], [67] does not pay explicit attention to the 

role of economic fundamentals. According to {67], hidden information in the market may 

be released by a small trigger and in this model information aggregation can cause a crash, 

even when investors behave rationally. Irrationality of bubbles is also at odds with the 

rational bubble models considered by {60]. 

2.3 JLS Power-Law model 

[93], Chapter 5 page 137, assumes that sufficiently many traders behave in such a way that 

"prices tend to reflect available information and risk is adequately and approximately fairly 

remunerated". It is this economic mechanism - of inherent risks faithfully reflected by 
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prices- which we hope will prove insightful here. In this section we discuss the Johansen­

Ledoit-Sornette (JLS) power law model as presented in {52). In the original paper this 

model is simply used as a stepping stone to motivating a log-periodic model in finance. 

We consider a purely speculative asset that pays no dividends. This simple model assumes 

that only one crash can occur and so the effects of any past crashes are ignored. JLS assume 

for the sake of simplicity that in the case of a crash, the price drops by a fixed percentage 

~~:E(O, 1). We introduce the filtration :Ft, (t >to) to model the flow ofrelevant information. 

To model a crash we consider a jump-process j(t) which takes the values {0, 1}. We define 

a non-negative continuous random variable X which corresponds to the time of the crash 

so that X= inf{t: j(t):fO}. Johansen et al. start by ignoring the effects of the interest 

rate, risk aversion, information asymmetry and the market-clearing condition. Johansen 

et al. then state that in this dramatically simplified framework, rational expectations are 

simply equivalent to a martingale hypothesis for the price process: 

E[p(t')I:Ft] = p(t), (2.3) 

where t'>t and j(t) and p(t) are adapted to the filtration :Ft, (t > t0 ). Ignoring a zero­

mean noise term, the dynamics of the asset price up to and including the crash is given 

by 

dp(t) = J..L(t)p(t)dt- ~~:p(t)dj(t), (2.4) 

where J..L(t) is a time-dependent drift chosen in order to satisfy the martingale condition 

and the dj(t) term corresponds to the jump process j(t). Equation (2.4) states that the 

price exhibits a general growth trend, which is offset by the crash when it finally happens. 

(2.4) is a very simple separable stochastic differential equation, which can be solved exactly 

to give 

p(t) = p(to) exp {1: J..L(s)ds- ~~:j(t)}. (2.5) 

If we impose a martingale condition, this has implications for J..L(·) in (2.5) and helps to 

give the model empirically testable content. 

2.3.1 First-order martingale approximation 

Here, we introduce the hazard rate h(t) and consider the non-negative continuous random 

variable X which corresponds to the time of the crash. The hazard rate2 h(t) of X is 

2If F is the absolutely continuous cdf of a random variable X with density/, the hazard rate is simply 
given by h(t) = /(t)/(1- F(t)). 
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defined as 

This suggests that if the crash has not happened by time t, the conditional probability 

that the crash will occur within a small period of time [t, t + 8] is 8h(t) + o(8). Next we 

replace the continuous time dynamics in (2.4) with the discrete approximation 

p(t + 8)- p(t) = p(t)p(t)8- Kp(t)[j(t + 8)- j(t)j. (2.6) 

Suppose that the crash has not happened by time t. Invoking the martingale condition 

when taking conditional expectations in (2.6) we get 

E[p(t + 8)- p(t)lFt] = p(t)p(t)8- Kp(t)E[j(t + 8)- j(t)JFt], 

= 8p(t)[p(t)- Kh(t) + o(8)/8] 

= 0, (2.7) 

where we have used Pr(j(t + 8) - j(t) = lJj(t) = 0) = Pr(X E (t, t + 8)JX > 
t) = 8h(t) + o(8). Since the price p(t) is assumed to remain positive, we obtain 

p(t)- Kh(t) + o(8)/8 = 0, and on taking the limit 8l0 we get 

p(t) - Kh(t) = 0. (2.8) 

Thus with (2.8) in mind, it is probably equally valid to interpret K as some kind of 

coefficient of risk aversion, rather than its slightly artificial introduction as the pre­

determined size of a crash. The important economic intuition behind (2.8) is that as 

the probability of the crash increases, the price must increase on average in order to 

induce traders into holding the asset. Inserting (2.8) into (2.5) predicts that we have 

log(p(t)) = log(p(to)) + K [ h(u)du (2.9) 

as our pre-crash dynamics. JLS build on (2.9) by assuming that the stock market evolves 

- to a good approximation - according to a statistical mechanics model similar to the 

2-d !sing model. In models of this kind, there is a critical point Kc that determines the 

properties of the system. When K < Kc disorder dominates and sensitivity to a small 

global influence is small. Clusters of like spins are small in size and imitation of signs 

propagates only between close neighbours. Here the susceptibility x, defined in Chapter 

1, is finite. As K increases towards Kc, order starts to appear, and the system becomes 

extremely sensitive to a small global perturbation. Large clusters of spins with the same 

size occur, and imitation propagates over large distances. In this case the susceptibility 

x tends to infinity. This is one of the characteristics of critical phenomena. One of the 
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hallmarks of criticality is the power law increase of the susceptibility: 

(2.10) 

where A and a are positive constants. For the 2-d !sing model a= 7/4 {52}. We do not 

know the dynamics that drive the key parameter K of our toy model of the stock market. 

JLS are merely content to assume that the parameter K evolves as a sufficiently smooth 

function of time t, so that we have (Kc- K(t))~B(tc- t), where iJ is some constant 

independent oft. Using this approximation, JLS posit that the hazard function behaves 

in a manner comparable to the susceptibility as defined above. Thus we have 

(2.11) 

for some constant B = AiJ-cr. If we assume that this condition holds exactly, we note 

that integrating (2.11) would give 

-B 
-ln(1- F(t)) = -

1
-(tc- t)l-o + Const., 
-a 

(2.12) 

and (2.12) enables us to recover F(t). However, we note that a= 1 would also be a valid 

exponent. In this case integrating (2.11) leads to 

F(t) = 1- A(tc- t) 8
, 

where A is a constant determined by the initial conditions. Assuming equality in (2.11) 

and using (2.9) leaves us with the following prediction for the pre-crash dynamics: 

log(p(t)) = log(p(to)) + C(tc- t) 1- 0
, (2.13) 

where C = }~~, (a:;H). The model of {52} assumes that a is constrained to lie in the 

region (0, 1). Under the specification "'• B?::.O and 0 <a< 1, it follows that C is negative. 

The original JLS paper merely used these workings to motivate a log-periodic model 

in finance. In certain systems, as discussed in Chapter 1, log-periodicity and complex 

exponents occur and generalise power laws with purely real exponents. Based on this 

analogy, {52} insert a log-periodic hazard function h(t) into (2.9) in place of a plain power 

law hazard function. 

Here, we take the view that the original JLS power law model can be improved upon very 

simply without log-periodicity. We do this by introducing the interest rate. In particular, 

we assume that it is the discounted price process rather than the raw price process that 

satisfies the martingale condition. Thus we replace (2.3) by 

(2.14) 
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where r > 0 represents a constant interest rate. We claim that (2.14) is more realistic 

than {2.3) and allows us to incorporate a "baseline" exponential growth into the model. 

Upon taking conditional expectations, {2. 7) now becomes 

p(t)(1 + rfJ + o(fJ))- p(t), (2.15) 

since r is a constant interest rate. To see this we note that if q(t) = e-rtp(t), E(q(t + 
fJ)IFt) = q(t) = e-rtp(t). So E(p(t + fJ)IFt) = er6p(t). (2.15) leaves us with 

fJp(t)[r + o(fJ)jfJ] = fJp(t)[J.t(t)- Kh(t) + o(fl)/fl], 

which implies 

J.t(t)- Kh(t)- r + o(fJ)jfJ = 0, 

and taking the limit fJ~O gives 

J.t(t) - r- Kh(t) = 0. (2.16) 

(2.16) has been previously derived in the literature, see for instance {99}, although it does 

not seem to have been estimated statistically. (2.16) inserted into (2.5) now predicts as 

our pre-crash dynamics 

log(p(t)) =A+ rt + C(tc- t) 1-a, (2.17) 

where A is a constant determined by the unknown initial conditions. In practice when 

estimating (2.17) we find 1 -a ~ 0. This suggests logarithmic behaviour and that we may 

reasonably take a = 1 in (2 .11). In this case ( 2 .17) becomes 

log(p(t)) =A+ rt + C ln(tc- t), (2.18) 

where C = -KB. Equations (2.17) and (2.18) are interesting as they describe a 

hypothesised super-exponential growth associated with risky markets. We refer to (2.17) 

and (2.18) as the SEG model. The super-exponential growth acts as bait which enables 

rational investors to be attracted to risky markets. Note that in a 'fundamental' regime 

where h(t)~O, we have 

log(p(t)) =A+ rt. 

Thus, if (2.17) and (2.18) are to be associated with bubbles, then the fits obtained should 

show clear deviations from a straight line. 
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2.4 Backward predictions 

In this section we fit the SEG model (2.18) against the price series prior to the observed 

crashes that we examined in the previous chapter, using ordinary least squares. The fit of 

the SEG model is generally good and explains around 98% of the variation in the log-price 

series. A plot of the fit obtained is shown in Figure 5.3. It seems that looking at four 

years of data may be preferable to looking at two years of data, as looking at four years 

of data it appears easier to visually identify the super-exponential growth that our simple 

model predicts. We discuss results for each of the markets in detail. 
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Figure 2.2: The SEG model as fitted to S&P500. Left panel: 1983 to 1987. Right panel: 
1985 to 1987 

2.4.1 S&P 500 

The results for the S&P 500 index are shown in Table 2.2. The values of tc correspond 

to January 1989 and early November 1987 respectively. The numbers in brackets denote 

estimated standard errors. However, note that the estimated standard error for the C 

parameter suggests that for the final two years the SEG terms are non-significant. These 

results reinforce the impression from Figure 2.2 that when testing for bubbles, four years of 

data may be preferable to two years of data. Note also from changing parameter estimates 

that there is some inherent non-stationarity that our simple model is unable to account 

for. These results also suggest that it would be reasonable to consider models for changing 

expectations in order to describe crashes. However, this is not something we pursue further 

here. Models for change-point deteCtion in financial data are discussed in {60]. 
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Parameter Four years Two years 
A 8.941 (0.129) 4.860 (0.103) 
r 0.000 (0.000) 9.589 * 10-4(4.469 * 10-5) 
c -0.546 (0.017) -0.015 (0.012) 
tc 1325.097 (19.604) 1061.816 (41.319) 

Table 2.2: Results for SEG model on S&P 500 

2.4.2 Nasdaq 

The results for the Nasdaq index are shown below in Table 2.3. Here estimated standard 

errors suggest that the SEG term is significant for both time periods. The estimates of tc 

correspond to early May 2000 and early June 2000. Combined with associated estimated 

standard errors of around 5.583 days and 6.904 days, these results seem reasonable. 

Changing parameter estimates again suggest some inherent non-stationarity that our 

simple model is unable to account for. A plot of the fit obtained is shown in Figure 

2.3 and appears reasonable in both cases. Note also that in both cases the fit obtained 

shows a clear departure from a straight line. Thus whilst this model is unable to handle 

some of the inherent non-stationarity, it is nonetheless interesting as a phenomenological 

description of the super-exponential growth prior to the crash. 

Parameter Four years Two years 
A 9.522 (0.150) 10.680 (0.120) 
r 3.546 * 10-4(3.454 * 10-5) 0.000 (0.000) 
c -0.360 (0.021) -0.510 (0.037) 
tc 1068.853 (5.583) 1093.634 (6.904) 

Table 2.3: Results for SEG model on Nasdaq 

2.4.3 Hang Seng 

The results for the Hang Seng index are shown below in Table 2.4. This time we seem to 

have rather less evidence for non-stationarity as the results obtained appear to be similar 

for both periods. The predicted crash times correspond to early January 1994 which seems 

reasonable. From the estimated standard errors all terms in the model appear significant 

and we seem to have strong evidence for super-exponential growth prior to the crash. A 

plot of the fit obtained is shown in Figure 2.4 and appears reasonable. 

2.5 Brief model checks 

The SEG model is primarily of interest as it is a simple theoretical model which describes 

the phenomenology of super-exponential growth prior to financial crashes. The regression 
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Figure 2.3: The SEG model as fitted to the Nasdaq. Left panel: 1996 to 2000. Right 
panel: 1998 to 2000 

Parameter Four years Two years 
A 8.580 (0.050) 8.923 (0.108) 
r 9.009 * 10-4 (1.902 * 10-5) 6.375 * 10-4 (5.818 * 10-5 ) 

c -0.102 (0.007) -0.126 (0.012) 
ic 1016.050 (1.270) 1017.226 (1.731) 

Table 2.4: Results for SEG model on Hang Seng 

-.: ... 

N 
oi 

I C! ... 

l "' 
~ 

.; 

"' .; 

-.: .. 
0 200 400 600 800 1000 500 600 700 800 900 1000 

Time (trading day) Time (trading day) 

Figure 2.4: The SEG model as fitted to the Hang Seng. Left panel: 1989 to 1993. Right 
panel: 1991 to 1993 
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analysis in Section 4 assume that the residuals ei = Yi -A- rti + Cln(tc - ti) should 

constitute an i.i.d. sequence from N(O, a 2 ). There are two key ways in which these model 

assumptions are violated. A normal plot of the residuals, see Figure 2.5, appears reasonable 

but does suggest some deviation from Normality in the tails. Most importantly, an ACF 

plot in Figure 2.6 shows that the residuals appear to be very highly correlated. (We can 

also detect signs that the residuals may be correlated by looking at the plots of best fit in 

Section 4.) One might consider trying to model the residuals as a low-order autoregressive 

process, see for instance /88}, Chapter 6, /29}. However, in practice, this method suffers 

from the fact that the estimated autoregressive models are close to non-stationary unit 

root processes. 
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Figure 2.5: Sample normal probability plot for residuals of the SEG model 

Both these problems can be rectified by considering stochastic differential equation models 

for financial bubbles. See Chapter 3. As a consequence of this, we can develop a formal 

statistical test for bubbles which can then be used in out-of-sample applications. For the 

prediction problem, which we discuss in Chapter 5, we propose to combine the SDE models 

in Chapter 3 with the simple SEG model in this chapter. 

2.6 Conclusions 

A very brief exploratory analysis suggested that very simple stochastic behaviour might 

produce an apparent log-periodic signal. Thus despite encouraging results in the previous 

chapter there is some suggestion that the log-periodic formulae may be susceptible to over-

30 



~ -
0 

<'! -
0 

~-
0 

~-
0 

0 
ci 

Series res1 

---------------------------
I 

0 

I 

5 
I I I I I 

10 15 20 25 30 

Lag 

Figure 2.6: Sample ACF plot for residuals of the SEG model 

fitting noise when applied to financial time series. Looking for something more simple, a 

very basic exploratory analysis suggested that rather than log-periodicity we could seek 

to model super-exponential growth. Some economic interpretations of financial crashes 

were discussed. In particular, the most interesting concept was that a crash might have a 

rational root, with investors induced into holding risky assets if the potential rewards were 

sufficiently high {84]. The JLS power-law model introduced in Section 3, is an interesting 

piece of applied mathematics and was intended to illustrate this feature. 

A simple extension of the first-order martingale approximation in the JLS model was 

discussed. A slight modification of the original approach suggests that the log-price 

experiences a logarithmic singularity of the form oc ln(tc - t) prior to a crash. Further, 

the model leads to a possible framework for both nested models comparisons and simple 

graphical tests for bubbles. We find evidence of super-exponential growth prior to observed 

crashes on the S&P 500, Nasdaq and the Hang Seng. However, the super-exponential 

growth terms were non-significant for the S&P 500 when restricting the analysis to just two 

years of data and hence it appears that in order to detect bubbles and super-exponential 

growth, four years of data rather than just two years might be appropriate. The model was 

used to provide interesting back-testing results prior to observed crashes on the S&P500, 

the Nasdaq and the Hang Seng. However, changing parameter estimates suggest some 

inherent non-stationarity that our simple model is unable to account for. There are also 

two ways in which model assumptions appear to be violated. A normal probability plot 

gives some suggestion of non-normality of residuals. Further, it appears that residuals 
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for this model are very highly correlated. We note that both of these problems can be 

rectified by the SDE models in the next chapter. 

For completeness, the exact definition of the hazard rate is given in Appendix A. It might 

be of interest to incorporate this directly into the model. One way to do this might involve 

a Bayesian formulation of the problem (see [28/). 
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Chapter 3 

SDE models for bubbles 

3.1 Motivation 

In this chapter we begin to consider tests for out-of-sample application of the SEG 

model. Hence, we are naturally drawn to consider stochastic differential equation (SDE) 

models for bubbles as we try to avoid spuriously regressing a random walk. We use 

the model developed in practical applications in later chapters. In Chapter 4 we use a 

novel application of the Sornette-Andersen model, [94], to gauge which factors remain 

significant once we take into account super-exponential growth. In Chapter 5 we suggest 

use of an SDE model, formulated in this chapter, alongside material developed in Chapter 

2 for out-of-sample work. 

In addition to practical considerations, there are also interesting theoretical considerations 

which motivate material in this chapter. The discussion in [2] suggests that it might be 

possible to have a hierarchy of models for bubbles, see also {94]. There is a proposed 

division between fearless and fearful bubbles. In the JLS power law model, a crash is 

preceded by super-exponential growth only. This corresponds to a fearless bubble regime. 

In the model of {94], super-exponential growth can be accompanied by an increase in 

volatility - a fearful bubble regime. 

Initially, in Section 1, we restrict attention to the case where the background noise is 

Brownian motion. We have three competing models; geometric Brownian motion as a 

proxy for the absence of bubbles, an SDE formulation of the JLS power law model, and 

the model of [94]. We reject the proposed fearless bubble formulation, and instead the 

main point of interest appears to be that the Sornette-Andersen model represents an 

empirically reasonable SDE extension of earlier ODE models for bubbles. We discuss the 

solution of the Sornette-Andersen model [94] which constitutes a nonlinear generalisation 

of the Black-Scholes model of a financial market. By discussing the solution to this model, 
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we show how two identifiability constraints can be made which reduce the apparently 

six-dimensional estimation problem into a four-dimensional problem. In [2], where an 

attempt was made to estimate the Sornette-Andersen model statistically, the authors 

erroneously claim that the likelihood-ratio test cannot be used to reliably choose the 

correct model for a given time series. However, as we demonstrate, the likelihood function 

for the Sornette-Andersen model can be written down exactly. Moreover, the first-order 

maximum likelihood condition further reduces the four dimensional problem to a two­

dimensional parameter search, which can be easily solved numerically. 

One of the so-called stylised empirical facts of financial markets, see for example [31}, 

Chapter 7 page 210, is that financial data, particularly on short time-scales, is seen to 

exhibit heavy-tailed non-Gaussian behaviour. In Section 2, we consider a reformulation of 

the Sornette-Andersen model using a heavy-tailed hyperbolic process as the background 

driving noise. We are thus able to further refine SDE models and empirical tests for 

bubbles. Section 3 is a brief conclusion. 

3.2 No bubble vs. Fearless bubble vs. Fearful bubble 

3.2.1 No bubble model: Geometric Brownian Motion 

Neglecting heavy-tailed non-Gaussian effects, one might use geometric Brownian as a 

reasonable non-bubble proxy model of a financial market. This model assumes the 

following SDE for the price Xt: 

(3.1) 

where (Wt, t > 0) is standard Brownian motion, J.L E 1R and u > 0. Using !to's formula, 

it follows that Yt = log(Xt) has the stochastic differential 

dYt = (J.L- u 2 /2)dt + udWt, 

= adt + udWt, (3.2) 

where a = J.L - u2 /2. We can recognise (3.2) as the equation for Brownian motion with 

drift. If we observe Yi from Yt at time i, the product of these transition densities for Yt 
can then be written as 
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Using the rule for transformations of univariate random variables, we can write the 

likelihood for the observed prices Xi as 

n 1 (log(x;)-o-log(x; 1 ))2 IJ e- 2a 

i=2 v'2-rraxi 

so that the log-likelihood function becomes 

n- 11 (2 ) ( 1) 1 ( ) Ln 1 ( ) Ln (log(xi)- a:- log(Xi-1))2 --- og 1r - n- og a - og x· -
2 ' 2 2 ' 

i=2 i=2 (1 

This leads to the maximum likelihood estimates 

& = 

where ll.yi = Yi+l - Yi· 

3.2.2 Fearless bubble model 

"'n-1 A 
L...i= 1 1-J. Yi 

n-1 
"'n-1(" ")2 L...i=l t..J.Yi - a: 

n-1 

(3.3) 

If one assumes that the noise added on the end of the log-price in the JLS power-law 

model is Brownian motion, this model can be formulated as 

(3.4) 

where the dj term corresponds to a jump term which occurs with fixed amplitude ""· 

Before a crash, so that the dj term remains zero, a first-order martingale argument given 

in Chapter 2 necessitates that J.L(t) = r + ,..h(t), where h(t) is the hazard function of the 

non-negative continuous random variable X which determines the time of the crash. These 

considerations suggest that the pre-crash dynalnics of the fearless bubble model in (3.4) 

should be 

(3.5) 

where we have assumed that h(t) = B(tc- t)-a. We may solve this model as follows. Let 
B(t t)l-o 

yt = log(Xt)- rt + ~-=_a, . It follows from !to's formula that 

-(12 

dyt = -
2
-dt + adWt. (3.6) 
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It follows from (3.6) that if we observe Yi from yt at time i, the product of these transition 

densities for Yi can then be written as 

Using the rule for transformations of univariate random variables, we can write the 

likelihood for the observed prices Xi as 

(3.7) 

where 1 = r- a 2 /2. From (3. 7), the log-likelihood function is 

l(8IX) = n21 log(2rr)- (n- 1) log( a)- L:~=2 log(xi) 

1 "n (log{x·)-"' -log{x· ) + B(tc-i)l-o- B(tc-i+l)l-o)2 (3.8) 
2(T2" L.n=2 t ' t-1 l-et l-et · 

Note that (3.8) contains five parameters, and has to be maximised numerically. 

3.2.3 Fearful bubble model 

This model is discussed in [94} and [2}. Not only is the model an SDE alternative to the 

ostensibly ODE-based JLS power-law model, it is intended to account for the possibility 

that prior to a crash we may have both super-exponential growth and an increase in 

volatility. The starting point is to choose a nonlinear SDE for the bubble price Bt to 

generalise (3.4): 

(3.9) 

where the dj(t) term corresponds to a jump process as before and "' is assumed to be 

an observation from some distribution with finite mean which determines the size of the 

crash. Suppose that the bubble process obeys the martingale property and let B(t) and 

j(t) be adapted to the filtration Ft, t > 0. A simple linearisation argument suggests that 

if a crash has not happened by time t 

E[Bt+6- BtlFt] ~ 8J.L(Bt)Bt- Bt(E("'(j(t + 8)- j(t))IFt), 

= dJ.L(Bt)Bt- Bt <"' > (ah(t) + o(a)), 

= 8Bt [J.L(Bt)- < "'> (h(t) + o(8)/8)], 

= 0, 

36 



where we have assumed that K is independent of the filtration Ft. If Bt is non-zero, we 

must have JL(Bt)- < K > h(t) + o(8)/8 = 0, and taking the limit 8!0 leaves us with 

h(t) = JL(Bt) . 
<K> 

(3.10) 

(3.10) is intended to illustrate the risk-return interplay inherent within the bubble process. 

However, in contrast to the JLS power law model, [52}, it is the price which drives the 

hazard rate rather than the reverse. In {94} (3.10) is referred to as the variable hazard­

rate and gives a possible way of applying the model to summarise risk levels in financial 

applications. (3.9) suggests that prior to a crash the bubble dynamics should be 

[94} use 

J.L(Bt)Bt = 2~t [Bta(BtW + JLo[Bt/ Bo]m, 

a(Bt)Bt = ao[Btf Bo]m, 

(3.11) 

(3.12) 

(3.13) 

where m, Bo, ao, J.LO are all positive constants. The exact form of (3.12) is chosen 

as a convenient device to simplify the solution of the stochastic differential equations 

when applying Ita's formula. (3.12) and (3.13) are intended to represent a nonlinear 

generalisation of geometric Brownian motion which is recovered for m = 1. The power 

laws in (3.12) and (3.13) are assumed to be a simple and meaningful way of incorporating 

nonlinearity. As we discuss later, this nonlinearity creates a singularity in finite time 

which becomes stochastic in this SDE framework. This nonlinearity is also interesting 

as a phenomenological description of an explosive bubble phase that continues to feed on 

itself. We note that the power B? can be decomposed as B? = B;n-1 xBt so that B;n.-1 , 

which plays the role of a growth rate, is a function of the bubble itself. This is intended to 

capture a positive feedback effect whereby a larger bubble Bt feeds a larger growth rate, 

which in turn leads to a larger bubble, and so on. 

As a statistical formulation of the model, [2} use 

P(t) = Fert B(t), (3.14) 

where F denotes a constant fundamental value and r denotes a constant interest rate. 

Direct application of the model in (3.14) then requires estimation of six parameters 

(F, r, m, Bo, a0, J.LO) and a seventh if one estimates the unknown constant determined by 

the initial conditions in (3.11). Here we choose the identifiability constraint F = 1, 

since it follows from (3.11-3.13) that Y1(t) = ertB(t) and Y2(t) = >.ertB(t) satisfy the 

same stochastic differential equation. In the sequel we show how to solve this model and 
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demonstrate how a further identifiability constraint can be made. Let P(t) = ert B(t). It 

follows from !to's formula that 

dP(t) = (J.L(B(t)) + r)P(t)dt + a(B(t)))P(t)dWt. 

Next, define Y(t) = P(t)1-mer(m-1)t. Using lto's formula, it follows that 

dY(t) = (1- m)P(t)-mer(m-1)t[J.L(B(t))P(t)dt + a(B(t))P(t)dWt] 

{1 -
2
m)m P(t)-m-1er(m-1)ta2(B(t))P(t)2dt. (3.15) 

In order to solve (3.15), we note that from (3.12) and (3.13) 

J.L(B(t)) = ; (a(B(t)))2 + J.LoB~~m-1' 
0 

a(B(t)) = aoB(t)m-1 

B[f 

Plugging these expressions into (3.15) leaves us with 

dY(t) 

Next, using B(t) = e-rt P(t), (3.17) simplifies to give 

dY(t) = J.Lo(1- m) dt + (1- m)ao dW 
Bm Bm t· 

0 0 

{3.16) 

(3.17) 

(3.18) 

From {3.18) it appears that we may impose the identifiability constraint Bo = 1, as 

including this parameter in the model does not provide any additional information. 

Further, we can recognise {3.18) as the equation for Brownian motion with drift, which 

implies the solution 

Y(t) = Yo + J.Lo(1- m)t + (1- m)aoWt. 

1 1 
Finally, using P(t) = [Y(t)er(1-m)t]r=;;; = ert[Y(t)]r=;;;, we can solve for the price P(t) as 

(3.19) 

where A = (m- 1)J.Lo and tc = !-'oU~m)" As in [94}, equation (8), (3.19) is intended 

to illustrate that in the deterministic case ao = 0 we have a finite-time singularity at a 

critical time tc determined by the initial conditions. Two further observations are also 

made by [94}. Firstly, they state that as the term in square brackets in (3.19) goes to 

zero the bubble price explodes and as a consequence of (3.10), so does the hazard rate. 
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Thus, as this happens a crash becomes more and more likely and the price is unable to 

grow without check. Secondly, under the dynamics given by (3.19), a crash is not a certain 

event and the price can also deflate spontaneously due to the random realisation of W(t) 

which can bring the term in the square brackets in (3.19) towards zero. 

Here, it is the form of (3.18) which allows us to construct the exact likelihood function. If 

we observe Yi from Y(t) at time i, the product of these transition densities for Y(t) can 

then be written as 

where P, = (1- m)J.Lo and a = 1(1 - m)lao. Using the transformation rule, we can write 

down the equation for the transition density of the observed prices Pi: 

(3.20) 

From (3.20}, the log-likelihood function for m> 1 can be written as 

n-1 ~ 
l(8IX) = --log(27r)- (n- 1) log( a)-m~ log(pi) + (n- 1) log( m- 1) 

2 i=2 
n 1 n . . 2 

+r(m- 1) L i- 2-2 L (Pier(m-1)t- P,- Pi-Ier(m-I)(t-1)) . (3.21) 
i=2 0' i=2 

As it stands maximising (3.21) represents a four-dimensional problem. However, the form 

of the log-likelihood function is such that maximum likelihood estimates m and f are 

sufficient to determine the maximum likelihood estimates of P, and a and (3.21) reduces to 

a simple two-dimensional parameter search for m and f. Differentiating the log-likelihood 

in (3.21) with respect toP, and equating to zero, we see that 

n L (Pier(m-1)i- p,- Pi-1e"(m-I)(i-1)) = 0. 
i=2 

Similarly, differentiating with respect to a leaves us with 

leading to the nontrivial solution 

-2 _ 1 ~ ( . r(m-l)i _ - _ . r(m-l)(i-1)) 2 
a - ( ) ~ p,e J.L Pt-Ie . 

n -1 . 
2 t= 
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In conclusion, the major contribution of this subsection is the imposition of two 

identifiability constraints and a further reduction of the maximum likelihood problem 

to a two-dimensional parameter search. The combined effect is to allow practical and 

efficient calibration of the Sornette-Andersen model to empirical data and a refinement 

of the analysis in [2}. Further, (3.19) and the decomposition P(t) = B(t)ert suggest 

intersting ways of extending the original model (See Chapter 3.3). 

3.2.4 Data Analysis 

Here, we choose our data analysis to coincide with [2}. We look at six markets which 

have previously been thought by analysts to incorporate bubbles. Data is from US$:DEM 

3/1/1983 to 8/3/1985, Nasdaq 18/6/1999 to 27/3/2000, S&P 500 1/7/1985 to 31/8/1987 

and 2/1/1991 to 4/9/1997 and the Hang Seng index (HSI) 2/1/1992 to 6/1/1994 and 

3/1/1995 to 3/10/1997. 

Suppose that we wish to conduct likelihood inference for nested hypotheses regarding a 

parameter 0. Suppose O' = (0~, 0~) where Ot has dimension p and fh has dimension p- q. 

We wish to test the hypothesis Ho : Ot = lh,o against the alternative H1 : 81 :f:Ot,O· Under 

appropriate regularity conditions, we have the following asymptotic result for n --+ oo: 

(3.22) 

where n denotes the number of the sample, l the log-likelihood function, and the hats 

denote maximum likelihood estimates. The fearless bubble model reduces to the Black­

Scholes model when B = 0. Thus we see that under the null hypothesis of the Black-Scholes 

model the likelihood ratio statistic in (3.22) should be approximately x§. Results for these 

tests are shown in Table 3.1. In each case we conclude that the fearless bubble does not 

offer a significant improvement over the Black-Scholes model and the SDE formulation 

(3.5) is rejected. 

Geometric Brownian Motion SEG diffusion X p-value 
US$:DEM 2213.137 2213.976 1.678 0.642 

Nasdaq -1077.357 -1077.045 0.624 0.891 
S&P 500 '87 -1189.802 -1189.535 0.534 0.919 

HSI '97 -4326.728 -4326.702 0.052 0.997 
HSI '94 -2985.627 -2984.016 3.222 0.359 

S&P 500 '97 -4539.082 -4537.959 2.246 0.523 

Table 3.1: Likelihood ratio tests: Geometric Brownian Motion vs. SEG diffusion 

In contrast, the fearful bubble model can be seen to provide a significant improvement over 

the Black-Scholes model (see Table 3.2). The Black-Scholes model is seen to reduce to the 

case that r = 0 and m = 1. We see that under the null hypothesis of the Black-SchoJ.es 
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model, the likelihood ratio statistic in {3.22) should be approximately X~· These results 

suggest that we have bubbles on all these markets with the exception of the Hang Seng 

between 1995 and 1997. After the rejecting the proposed fearless bubble model, we see 

that the main point of interest appears to be that the Sornette-Andersen is useful in its 

own right both as an empirically reasonable SDE model for financial bubbles and as an 

alternative to the ostensibly ODE approach of the JLS power-law model. 

Geometric Brownian Motion Sornette-Andersen X p-value 
US$:DEM 2213.137 2228.119 29.964 0.000*** 

Nasdaq -1077.357 -1073.183 8.348 0.015* 
S&P 500 '87 -1189.802 -1182.958 13.688 0.001 ** 

HSI '97 -4326.728 -4326.644 0.168 0.919 
HSI '94 -2985.627 -2978.439 14.376 0.0001 *** 

S&P 500 '97 -4539.082 -4502.044 74.076 0.000*** 

Table 3.2: Likelihood ratio tests: Geometric Brownian motion vs. Sornette-Andersen 
model 

3.3 Heavy-tailed extension of Sornette-Andersen model 

One of the key stylised empirical facts regarding financial markets, is the prevalence of 

heavy-tailed non-Gaussian phenomena, particularly, over short time scales. To illustrate 

this, Figure 3.1 is a plot of the log-densities of the log-returns on the S&P 500. We see that 

the tails of the Gaussian density are far too thin with respect to the non-parametric kernel 

density estimate, and we cannot justify empirically the choice of the normal distribution 

to. model the log-returns. In contrast, the fit of the symmetric hyperbolic distribution is 

seen to better replicate the empirically observed tail behaviour. 

The symmetric hyperbolic distribution h(a, &, JL) has density given by 

(3.23) 

where Kv is the Bessel function of the third kind defined by the formula 

( {5], Chapter 5, {106]). The distribution given by {3.23) has mean JL, and variance 

~ [~~~~~n. Instead of Brownian motion in the Sornette-Andersen model, we replace aWt 

by the Levy process Zt whose one-step transition densities are given by a symmetric 

hyperbolic distribution with zero mean {34]. Thus we are able to improve upon the 

Gaussian model by taking into account kurtosis (heavy-tails), although we retain the 

simplifying assumption of symmetry. In the· original Sornette-Andersen model, the 
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Figure 3.1: Plot of log-densities of log-returns on S&P 500. Solid line: non-parametric kde; 
dashed line: normal distribution; thin dashed line: symmetric hyperbolic distribution. 

equation for a "fundamental" regime corresponding to random variation about a simple 

geometric trend (m = 1, r = 0) is 

log(P(t)) = Const. + ji,t + uWt, (3.24) 

where P(t) denotes the price. In a bubble regime, the equation for the price becomes 

P(t) = ert (Const. + jlt + uWt)m~l . (3.25) 

Inserting a hyperbolic noise process, the model for fundamental "geometric" behaviour 

becomes 

log(P(t)) = Const. + jlt + Zt, (3.26) 

with uWt replaced by Zt. Similarly, we change the equation for a bubble to 

P(t) = ert (Const. + jlt + zt)-;;6. (3.27) 

(3.27) thus becomes our model for a bubble, with power-law behaviour emerging as a result 

of collective phenomena characterising a 'bubble regime' and generalising the more regular, 

approximately geometric, behaviour (3.26). From (3.23) the log-likelihood function for the 

geometric model (3.26) becomes 

n n 

-(n- 1) log(2&K1(8a))- L log(pi)- a L (&2 + (log(pi) -log(pi_1)- JL) 2
) 
1
/
2

. (3.28) 
i=2 i=2 
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Similarly, the log-likelihood for the model (3.27) becomes 

n 

l(8IX) = -(n- 1) log(2oK1(oa)) + (n- 1) log( m- 1)- m L log(pi) 
i=2 

where Pi denotes the observed price at time i. Here, (3.28) and (3.29) have to be maximised 

numerically. We test between the geometric behaviour (3.26) and the bubble model (3.27), 

by using the x2 test for nested models. 

The results using this test are shown in Table 3.3. This time we reject evidence of a bubble 

in the US$:DEM series. Moreover, the results in Table 3.3 are generally less significant 

than those shown in Table 3.2. This suggests that extending the original formulation by 

accounting for heavy-tailed non-Gaussian effects is successful in obtaining a more robust 

test for detecting bubbles in financial markets. 

Geometric Hyperbolic Model Sornette-Andersen X p-value 
US$:DEM 2369.954 2371.791 3.674 0.159 

Nasdaq -1077.152 -1073.184 7.936 0.019* 
S&P 500 '87 -1167.754 -1163.987 7.534 0.023* 

HSI '97 -4280.854 -4280.854 0.000 1.000 
HSI '94 -2954.711 -2948.239 12.944 0.002** 

S&P 500 '97 -4468.12 -4441.845 52.55 0.000*** 

Table 3.3: Likelihood ratio tests: Geometric Hyperbolic model vs. Hyperbolic Sornette­
Andersen model 

3.4 Conclusions 

In this chapter we tested a proposed hierarchy; no bubble vs. fearful bubble vs. fearless 

bubble. The formulation of the fearful bubble model was rejected, but we were successful 

in refining the analysis of {2}, to provide maximum likelihood tests for a nonlinear SDE 

model of bubbles. In sum, rather than the proposed hierarchical structure, the main 

feature of interest appears to be the maximum likelihood estimation and tests for this 

nonlinear SDE model of bubbles. 

However, the original formulation of the model makes the assumption that the background 

driving noise is Gaussian, which is difficult to justify empirically (Figure 3.1). In Section 2 

we re-formulated the model using a hyperbolic process, {34}, in order to take into account 

heavy-tailed non-Gaussian effects in financial markets. Results for the Sornette-Andersen 
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model using the original Gaussian formulation and the new hyperbolic formulation are 

both interesting, but the hyperbolic formulation appears to be an improvement and seems 

more robust. In sum, using the results obtained in Section 3, we conclude in favour of 

bubbles on the Nasdaq 18/6/1999 to 27/3/2000, S&P 500 1/7/1985 to 31/8/1987 and 

2/1/1991 to 4/9/1997, and the HSI 2/1/1992 to 6/1/1994. We suggest the absence 

of bubbles in the US$:DEM series 3/1/1983 to 8/3/1985 and in the HSI 3/1/1995 to 

3/10/1997. 
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Chapter 4 

Volatility and liquidity precursors 

The aim of this chapter is to examine to what extent volatility and liquidity measures may 

help to predict financial crashes, and attempt to use these measures to draw meaningful 

economic conclusions. Volatility is a statistical measure of the fluctuations prevalent 

in a stock price, and is taken here to be equal to the empirical standard deviation of 

the log-returns. Liquidity is a rather general concept from economics. Market liquidity 

corresponds to the ability to quickly buy and sell assets, without causing a significant 

movement in price. In liquid markets cash flows freely, and options and other financial 

instruments are relatively easy to price. In contrast, in illiquid markets the flow of money 

is more constricted and single trades may move the price significantly. Illiquid markets 

might correspond to markets under strain and about to crash. In this chapter we consider 

various measures of liquidity. 

The structure of this chapter is as follows. Section 1 is an introduction, giving a brief 

review of the literature and describing the various liquidity measures used. Section 2 is 

an exploratory data analysis. Of direct interest here is the analogy between stock market 

crashes and complex systems. Section 3 tests for the significance of precursors, using a 

novel regression application of the Sornette-Andersen model introduced in the previous 

chapter. Results are seen to offer an improvement over a nonlinear regression application 

of the SEG model in Chapter 2. Section 4 explores possible evidence of phase transitions 

in trading volume and liquidity. Section 5 is a conclusion. 

4.1 Introduction 

4.1.1 Literature review 

The comment is made in {64] that some kind of volatility-based method may produce a 

more econometrically interpretable way of predicting crashes than the log-periodic method 
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of Sornette and Johansen. With this aim at least partially in mind, [39] includes a graph 

of the standard deviation of the log-returns of the S&P 500 over a moving window of fifty 

trading days from January 1980 to October 1987. Somewhat disappointingly, the results 

seem to show little more than periodic variation. The comment is made in [102] that 

volatility is a purely statistical measure of market fluctuations and hence does not possess a 

meaningful economic interpretation. Moreover, given the apparent long-range dependence 

in volatility, [102] makes the point that volatility tends to lag behind price. Thus, using 

volatility measures, there might be a delay while information signifying that a crash may 

be imminent is incorporated. Hence volatility may not even be the right thing to look 

at. The relevant concept would then seem to be liquidity rather than volatility. This 

point seems to be echoed somewhat by [22]. Here, rather than discussing volatility, the 

comment is made (Chapter 7, page 126) that crashes are known to correspond to illiquid 

markets where the bid-ask spread increases and the trading volume becomes depleted. 

4.1.2 Liquidity measures 

Given the above comments by [22], there are two relatively straightforward measures of 

liquidity. In particular, we use the logarithm of the trading volume and the relative daily 

spread (RDS). The RDS is defined by 

ln(Pmax) -ln(Pmin), 

where Pmax and Pmin denote the day's maximum price, and the day's minimum price 

respectively. There are two further liquidity proxies that we introduce. [102] makes 

the comment that [1] and [63} measure market liquidity using the coefficient >. in the 

regression 

Pt = Pt-1 + >.Qt + tt, (4.1) 

where Pt denotes the price, Qt the trading volume at time t and tt is a zero mean error 

term. Since the notion of a negative liquidity does not seem economically reasonable, (4.1) 

motivates the following linear liquidity proxy: 

, _ IPt- Pt-1l 
1\t- Qt . (4.2) 

Now (4.2) measures daily liquidity as the number of trades it takes to shift the price by 

one unit. High values should thus correspond to illiquid markets, as single trades thus 

cause a greater movement in the underlying price. However, [102] makes the comment 

that (4.1) and hence (4.2) are essentially measured in an arbitrary scale as price differences 

tend to be nominally larger for higher stock prices. What arguably makes more sense is a 
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measure of relative change. As such, Tsuji replaces (4.1) by 

(4.3) 

where rt denotes the log-return at time t, rt = log(Pt+d - log(Pt), and ft is again a 

zero-mean error term. ( 4.3) then suggests the following logarithmic measure of liquidity: 

(4.4) 

4.2 Exploratory Data Analysis 

4.2.1 Volatility 

Here we define volatility as the standard deviation of the log-returns calculated over a 

moving time window of 50 days. The results are shown in Figure 4.1. There is some 

suggestion that volatility might be increasing as the crash time approaches. This is quite 

clear cut for the Nasdaq, but is less obvious for the S&P 500 and the Hang Seng, where 

results do seem subject to quite considerable cyclic variations. Further, the scales on the 

Y-axes in Figure 4.1 suggest that the Nasdaq is a more volatile market than the S&P 500. 

This is perhaps to be expected since the Nasdaq consists of more 'new economy' stocks, 

which are usually thought to be more volatile. 

1984 1985 1986 1987 1997 1998 1999 2000 

Time Time 

Figure 4.1: Historical volatilities for the S&P 500 (left panel) and for the Nasdaq (right 
panel). 
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4.2.2 Trading volume 

Unfortunately, trading volume figures were available only for the S&P 500 and the Nasdaq. 

As one might expect, the trading volume decreases as the crash time approaches. The 

picture obtained is qualitatively similar for both the S&P 500 and the Nasdaq. It seems 

reasonable to try to fit a simple power-law model to the logarithm of the trading volume. 

However, some level of cyclic behaviour in the trading volumes is also apparent (see Figure 

4.2). 
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Figure 4.2: Plot of Log(Trading Volume) for S&P 500 and OLS fit by simple power-law 
model 

4.2.3 Relative Daily Spread 

The RDS values seem to be generally decreasing as the crash time approaches. This 

feature seems quite clear for the Nasdaq, though somewhat less clear for both the S&P500 

and Hang Seng indices (see Figure 4.3). 

4.2.4 Linear liquidity measure 

In this section we examine the linear liquidity proxy given by (4.2). In the absence of 

available trading volume data for the Hang Seng index, we concentrate attention on the 

Nasdaq and S&P 500 indices. It seems rather less obvious to identify a smooth underlying 

trend for the S&P 500, although generally increasing values do suggest some enhanced 

illiquidity as the crash time approaches. However, when we look at the Nasdaq we have 

48 



0 

c::i 8 
~ 2' 

c::i 

i 0 
~ ~ "5l ~ 2' c::i ., 

c::i z ., 
.§ J: ~ 
:g ~ ~ c::i 

0 
Cl) a:: N 0 N 

0 a:: 0 
c::i c::i 

8 8 
c::i c::i 

1997 1998 1999 2000 1990 1991 1992 1993 1994 

Time Time 

Figure 4.3: RDS from 4th March to 31st March 2000 for the Nasdaq and from 1st December 
1989 to 31st December 1993 for the Hang Seng 

a clear suggestion of approximate power-law behaviour. This illustrates a substantial 

increase in illiquidity prior to the crash, and the approximate power-law behaviour 

highlights the analogy between complex systems and financial markets (see Figure 4.4). 
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Figure 4.4: Plot of linear liquidity measures for S&P 500 and Nasdaq 

4.2.5 Logarithmic liquidity measure 

The results for the logarithmic liquidity measures seem a little harder to interpret than was 

the case for the linear liquidity measures (Figure 4.5). There seems to be some evidence 

of increased illiquidity on the Nasdaq as the crash time approaches, but it appears less 

easy to identify a smooth underlying trend. In contrast, it is not clear that these values 

are generally increasing for the S&P 500 index. 
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Figure 4.5: Plot of logarithmic liquidity measures for S&P 500 and Nasdaq 

4.3 Significance of precursors 

In the Gaussian formulation of the Sornette-Andersen model we have that y(t) = 

p(t)1-mer(m-1)t is Brownian motion with drift. We can use this result to produce a 

regression test to determine which factors are significant once we take into account super­

exponential growth. This approach is seen to avoid problems with a nonlinear regression 

approach using the SEG model in Chapter 2, which is too sensitive to the effects of 

correlated random error terms. 

Consider a series Xt. Let y(t) = p(t) 1-mer(m-l)t and D.y(t) = Yt - Yt-1· Under the 

Sornette-Andersen model we have 

t 

Yt = A + J..d + L €i' 

i=1 

(4.5) 

where A is a constant independent of time and the €i are an i.i.d. sequence from N(O, a 2 ). 

Suppose we build on (4.5) and consider the model 

t 

Yt = A + J..d + L €i + "fXt. 
i=l 

The corresponding condition at time t - 1 is 

t-1 

Yt-1 =A+ J.L(t- 1) + L €i + "fXt-1· 
i=1 
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Subtracting (4.7) from (4.6), we obtain 

(4.8) 

( 4.8) suggests that we may test the hypothesis 'Y = 0 by fitting a simple OLS regression 

of Ayt against Axt. We report results for each of the three markets before we present a 

brief comparison with a nonlinear regression formulation using the SEG model of Chapter 

2. In addition to considering the instantaneous-effects model of ( 4.6), we also consider a 

lag-1 version of this model whereby variables influence the price one day in advance. The 

condition ( 4.6) becomes 

t 

Yt =A+ J.t(t) + L ii + 'YXt-1, 

i=2 

and the regression equation (4.8) is replaced by 

Extensions to other lagged regression are possible but seem less relevant. 

4.3.1 S&P 500 

(4.9) 

Here we fit the models using data from September 4th 1984 to September 30th 1987. The 

results are shown in Table 4.1. In addition to the super-exponential growth (SEG) model 

shown in (4.10), regressors used are volatility (vol.), log trading volume (LTV), relative 

daily spread (RDS), linear liquidity measure (linliq.), and logarithmic liquidity measure 

{logliq.). Once we take into account super-exponential growth the only factors that remain 

significant are historical volatility and the logarithmic liquidity measure. Thus, we have 

some evidence to support the hypothesis that crashes occur on volatile, illiquid markets. 

Further, the logarithmic liquidity measure seems useful in generalising the purely linear 

measure of liquidity, which is found to be non-significant for both the contemporaneous 

regression (4.8) and the lag-1 regression (4.9). The results for the Nasdaq are shown in 

the next subsection. 

Variable Contemporaneous p-value lag-1 p-value 
Historical volatility 0.000*** 0.009** 
Log trading volume 0.134 0.936 
Relative daily spread 0.128 0.867 
Linear liquidity measure 0.361 0.189 
Logarithmic liquidity measure 0.002** 0.051 (·) 

Table 4.1: Results for the S&P 500 
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4.3.2 Nasdaq 

Here we fit the models using data from 3rd March 1997 to 31st March 2000. The results 

for the N asdaq index are shown in Table 4.2. We have some suggestion that crashes occur 

on volatile, illiquid markets, as volatility and the logarithmic and linear liquidity measures 

are significant under the instant-effects model ( 4.8) and volatility and logarithmic liquidity 

remain significant or borderline significant under the lag-1 model (4.9). We also have some 

evidence that the nature of the illiquidity on the N asdaq prior to the 2000 crash is different 

in nature to the illiquidity present on the S&P 500 prior to the 1987 crash, as different 

variables are significant once we account for super-exponential growth. 

Variable Contemporaneous p-value lag-1 p-value 
Historical volatility 0.000*** 0.001** 
Log trading volume 0.668 0.471 
Relative daily spread 0.822 0.524 
Linear liquidity measure 0.011* 0.573 
Logarithmic liquidity measure 0.002*** 0.079 (·) 

Table 4.2: Results for the Nasdaq 

4.3.3 Hang Seng 

Here we fit the models using data from 4th December 1990 to 31st December 1993. The 

results for the Hang Seng index are shown in Table 4.3. Here, once we account for super­

exponential growth and using the instant effects model (4.8), the historical volatility is 

found to be significant whilst the relative daily spread is found to be non-significant. In 

contrast, using the lag-1 model (4.9), neither term is found to be significant. This result 

leads us to conclude that the nature of the illiquidity present on the Hang Seng index 

prior to the 1994 crash is different in nature to that present on the Nasdaq,prior to the 

crash in April 2000 and on the S&P 500 prior to the crash in 1987. 

Variable Contemporaneous p-value lag-1 p-value 
Historical volatility 0.000*** 0.472 
Relative daily spread 0.170 0.804 

Table 4.3: Results for the Hang Seng 

4.3.4 Comparison with a simple nonlinear regression approach 

In Chapter 2 we introduced the SEG model, which stated that in the regime prior to a 

financial crash, the log-price y should satisfy 

(4.10) 
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where the fi is a zero mean error term. We now test for the significance of each of the 

precursors x by fitting the model 

(4.11) 

estimating (4.10) and (4.11) using ordinary least squares. We might test for the significance 

of possible crash precursors by using approximate F-tests based on the extra sum-of­

squares principle for nested models (see for example Chapter 3 in [13/). There is some 

similarity between this approach and the simple regression analysis contained in [109}. 

However, we note from Figure 2.6 in Chapter 2 that the residuals for this model are 

highly correlated. We obtain different results for this simple approach assuming ordinary 

least squares and our novel eo-integration approach given by (4.8). We conclude that 

model violation, namely serially correlated residuals, mean that the results suggested by 

this simple approach are not valid. Tables 4.4-4.6 summarise the results. The results for 

the Hang Seng return the same conclusions as the previous section, but we note some 

differences for the S&P 500 and the Nasdaq. In particular, the simple ordinary least 

squares approach seems to overlook the impact of volatility and logarithmic liquidity for 

the S&P 500, and seems to exaggerate the significance of RDS for the Nasdaq. 

Model SEG +vol. SEG + LTV SEG + RDS SEG + linliq. SEG + logliq. 
RSS 1.129 1.110 1.129 1.127 1.128 

SEG RSS 1.129 1.129 1.129 1.129 1.129 
Extra SS 0.001 0.020 0.001 0.002 0.001 

RMS 0.001 0.001 0.001 0.001 0.001 
F-value 0.363 13.742 0.391 1.656 0.794 
P-value 0.547 0.000*** 0.531 0.198 0.373 

Table 4.4: SEG nested models comparisons for S&P 500 

Model SEG +vol. SEG + LTV SEG + RDS SEG + linliq. SEG + logliq. 
RSS 4.005 4.458 4.432 4.217 4.250 

SEG RSS 4.463 4.463 4.463 4.463 4.463 
Extra SS 0.458 0.006 0.031 0.247 0.213 

RMS 0.005 0.006 0.006 0.006 0.005 
F-value 88.499 1.001 5.429 45.253 38.857 
P-value 0.000*** 0.317 0.020* 0.000*** 0.000*** 

Table 4.5: SEG nested models comparisons for Nasdaq 
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Model SEG + volatility SEG + RDS 
RSS 2.996 3.214 

SEG RSS 3.219 3.219 
Extra SS 0.222 0.004 

RMS 0.004 0.004 
F-value 55.046 1.014 
P-value 0.000*** 0.314 

Table 4.6: SEG nested models comparisons for Hang Seng 

4.4 Crash prediction using method of critical points 

In this section we fit the simple power-law model, 

y(t) =A+ B(tc- t)a, (4.12) 

by ordinary least squares to time series of log trading volume and the linear liquidity 

measure. Our aim is to see whether this admittedly simple-minded approximation seems 

able to predict the time of the crashes studied. Here we are trying to link the tc parameter 

-the time when the market is deemed most susceptible to a crash- to meaningful economic 

variables. In so doing we are exploring, quantitatively, the analogy between market crashes 

and phase transitions in statistical mechanics (as discussed in earlier chapters). 

4.4.1 Log trading volume 

For ease of computation we fit ( 4.12) to the logarithm of the trading volume for the S&P 

500. Here, we fit the model using simple ordinary least squares. The fit of the power-law 

seems reasonable, see Figure 4.2, and gives an R2 value of 60.8%. However there are 

clear suggestions that there appear to be roughly cyclic fluctuations in the logarithm of 

the trading volume series that this simple model is unable to account for. Results are 

sufficient to suggest there may be at least some similarities between stock market crashes 

and phase transitions in complex systems although estimated standard errors, obtained 

using a bootstrap test based on 10,000 simulated values, are rather large. Here, since the 

the estimate of tc is so close to the sampled dates, a near singularity occurs in the observed 

Fisher's Information matrix. Nonetheless, the bootstrap test leads to a p-value of 0.00 that 

B is non-zero. An F-test based on the extra sum of squares principle gives a p-value of 

0.000, suggesting a significant improvement over the simple model y(t) = A+ ft. The 

predicted crash time corresponds to the beginning of October 1987, though the estimated 

standard error associated with this estimate is rather large. The regression results in Table 

4.1, suggest that log trading volume is non-significant once we take into account super­

exponential growth. However, the analogy between phase transitions and market crashes 

is brought out rather better by results for the Nasdaq index in the next subsection. 
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Parameter Estimate ( e.s.e) 
A 18.248 (0.085) 
B 1.844 * w-5 (1.287 * w-5 ) 

tc 1031.0 (437.302) 
a 1.548 (0.446) 

Table 4.7: Results for power-law model fitted to the logarithm of the trading volume for 
S&P 500 

4.4.2 Linear liquidity measure 

On the basis of Figure 4.4, we fit the simple power law model to the time series of linear 

liquidity measures for the Nasdaq index only. In line with the plot obtained, the fit of this 

model is good. This time the fit of the model is improved, estimated standard errors are 

much reduced and the analogy with phase transitions in statistical mechanics is brought 

out more clearly. Further, from Table 4.2 we see that the linear liquidity measure is 

also seen to remain significant once we take into account super exponential growth. The 

predicted crash time corresponds to early May 2000, with an estimated standard error of 

around 4 trading days. Results obtained are shown in Table 4.8. The negative a exponent 

indicates explosive growth, with the market becoming increasingly illiquid as the crash 

approaches. 

Parameter Estimate (e.s.e.) 
A -4.610 * 10 -5 (4.546 * w-ti) 
B 6.469 * w-5 (4.374 * w-6

) 

tc 1058.237 (3. 733) 
a -0.047 (0.004) 

Table 4.8: Results for power-law model for linear liquidity measure for Nasdaq 

4.5 Conclusions 

From the statistical analysis in Section 4 we have at least some evidence to support the 

hypothesis that crashes occur on volatile, illiquid markets. This feature holds for all three 

markets examined even after we take into account super-exponential growth (SEG). The 

analysis in Section 4 also suggests differences in the precise form of illiquidity on these 

markets. This might be anticipated from the general context, although it is interesting 

that our novel eo-integrated regression approach can nonetheless return this interpretation. 

This approach, based on the Sornette-Andersen model, is also seen to offer an improvement 

over a simple F-tests based on the extra sum of squares principle under the assumption 

of ordinary least squares. 
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In addition to a purely statistical analysis, we have also explored the analogy between 

stock markets and complex systems. In particular, the simple power-law model of Section 

4 produces interesting results when applied to (a) the S&P 500 crash of 1987 and (b) the 

Nasdaq crash of 2000 when 

(a) applied to the log-trading volume, 

(b) applied to the linear liquidity measure introduced in Section 2. 

The suggestion is that there is at least some evidence for phase transition behaviour in real 

economic variables prior to crashes and scope for an economically meaningful prediction 

mechanism, though the evidence in support of this is much stronger for the Nasdaq than 

for the S&P 500. 

One of the key themes of [102} is that using liquidity measures, risk-management may 

switch focus from the purely statistical notion of volatility to measures with a more 

meaningful economic interpretation. Here, our statistical analysis reinforces the view 

that liquidity is indeed an important notion, with results suggesting interesting ways to 

incorporate the notion of liquidity into our modelling. 

Based upon the results of this chapter, we may extend the conclusions of the previous 

chapter slightly. In order to predict a crash we anticipate super-exponential growth, 

accompanied by some additional signals of illiquidity. The various liquidity measures 

considered here suggest close analogies between market crashes and complex systems, 

with liquidity measures seen to remain significant even after taking into account super­

exponential growth. We discuss prediction and detection methodologies using these results 

in Chapter 5. 
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Chapter 5 

Simple models for bubbles: a 

synthesis 

In this chapter, we attempt to synthesise Chapters 2-4 and provide a robust mechanism 

for detecting bubbles in financial markets. In particular, we use the previous chapter's 

hyperbolic re-formulation of the Sornette-Andersen model to test for bubbles. If the 

Sornette-Andersen model is found to be significant we can then use the SEG model of 

Chapter 2, and the empirical power-laws of Chapter 3 to predict the most likely time of a 

crash. In sum, our methodology follows the heuristic shown in Figure 5.1. See Section 4. 

The outline of this chapter is as follows. In Section 1, based on original analysis in 

{93} Chapter 7, we discuss tests for super-exponential bubbles in foreign exchange (FX) 

markets. In Section 2 we discuss two historically observed log-periodic "false-alarms" as 

identified in {93}, Chapter 9. For comparison with the analysis in Section 2, we discuss a 

regime-switching regression model presented in [103}, and find some degree of agreement 

between interpretation of results in Section 2 and this regime-switching regression model. 

Finally, in Section 4 we discuss a case study to illustrate the approach suggested by Figure 

5.1 in order to predict crashes. Section 5 is a brief conclusion. 

5.1 SEG bubbles in FX markets 

The use of log-periodic predictions is mentioned in [93}, Chapter 7, in relation to detecting 

speculative bubbles in the world's FX markets. {93} concludes that there is evidence of 

two speculative bubbles in the US$. The first one ending in March 1985 and the second 

one in August 1998, both after periods of strong growth in the preceding years. Closely 

following the methodology in {93} we look at two sets of data, one immediately preceding 

March 1985 and one immediately preceding August 1998. We take the price of the US$ as 

y(t)=US$ expressed in Deutchmarks (DEM) for the first period and y(t)=US$ expressed 
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Figure 5.1: Suggested crash prediction methodology 

in Canadian dollars (CAD) in the second period. Based on the results for the SEG model 

in Chapter 2 Section 4 we restrict attention to a single four-year period before the crash, 

stopping roughly a month prior to the observed crash. We analyse data from February 

1st 1981 to February 28th 1985 and from July 1st 1994 to July 31st 1998. Results using 

the x2 test for SEG bubbles are shown in Table 5.1. We have evidence for a bubble prior 

to 1985, but we reject the presence of a bubble prior to 1998. The results for the fitted 

SEG model are shown in Table 5.2. The estimated crash time corresponds to mid-August 

1985, with an estimated standard error of 17 days. A plot of the fit obtained is shown in 

Figure 5.2, and appears reasonable. 

Geometric Hyperbolic Model Sornette-Andersen X p-value 
US$:DEM 4375.153 4385.677 21.048 0.000*** 
US$:CAD 6855.384 6857.438 4.108 0.128 

Table 5.1: Likelihood ratio tests: Geometric Hyperbolic model vs. Hyperbolic Sornette­
Andersen model 
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Parameter Estimate (e.s.e) 
A 2.051 (0.040) 
r 0.000 (0.000) 
c -0.167 (0.005) 
tc 1656.534 (17.076) 

Table 5.2: Results for SEG model on US$:DEM series 
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Figure 5.2: Plot of Log(US$:DEM) and best fit of SEG model 

5.2 Log-periodic false predictions 

Two log-periodic false predictions are listed in {93]. Firstly, after using data from the S&P 

500 up to Friday, November 21st, 1997, {93], Chapter 9 Page 342, describes a prediction 

of "a decrease in the price in approximately mid-December 1997". Similarly, later on in 

the same chapter and using data to the end of September 1999, a prediction is made of 

a bubble on the Nasdaq due to end in October 1999. {93] goes on to describe this as 

"an aborted event, which turned into a precursor of the large crash in April 2000". x2 

tests are highly significant, indicating the presence of a bubble in both cases. See Table 

5.3. Results for the SEG model of Chapter 2 are shown in Table 5.4. The predicted 
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crash-time for the S&P 500 corresponds to mid-July 1999, roughly 9 months in advance of 

the April2000 crash on the Nasdaq and some way after the initial prediction of December 

1997. For the Nasdaq index, the predicted crash-time corresponds to early April 2000, 

very close to the actual timing of the crash. We might suggest that although some level 

of unstable price acceleration is present, the bubble has not yet reached its most explosive 

phase when a crash is imminent. We are able to obtain a similar picture by considering 

a simple regime-switching model in the next section. A plot of the fit obtained from the 

SEG model is shown in Figure 5.3 and appears reasonable. 

Geometric Hyperbolic Model Sornette-Andersen X p-value 
S&P 500 -2954.055 -2911.215 85.68 0.000*** 
Nasdaq -4580.372 -4552.742 55.26 0.000*** 

Table 5.3: Likelihood ratio tests: Geometric Hyperbolic model vs. Hyperbolic Sornette­
Andersen model 

Parameter S&P 500 Nasdaq 
A 11.152 (0.172) 8.934 (0.466) 
r 0.000 (0.000) 4.751 * 10-4 (6.498 * 10-5) 
c -0.699 (0.022) -0.286 (0.064) 
tc 1456.178 (25.082) 1182.665 ( 46.910) 

Table 5.4: Results for SEG model on S&P 500 and N asdaq 
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Figure 5.3: Fit of SEG model. Left panel: S&P 500. Right panel: Nasdaq. 
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5.3 Comparison with a regime-switching regression model 

Regime-switching regression models are a valuable tool in providing a simple statistical 

approach to answer questions like "To what extent does the stock market appear to deviate 

from a fundamental price?", and "What is the probability of a stock market crash next 

month?" These models, as formulated in {103] and {23], require a decomposition of 

the price of a dividend paying stock into a bubble component and a fundamental price 

component. Here, we take "fundamental value" to mean price levels that would appear 

reasonable given observed dividend payments Dt at time t. Thus, we have 

(5.1) 

where Bt denotes the bubble price at time t, Pt denotes the observed price at time t, 
and Pt is the fundamental price at time t. We define the relative bubble size bt = Btf Pt 

and the returns Rt+l = (Pt+l + Dt+I)/ Pt. The simplest way to construct fundamental 

values is to use Pt = pDt, for some constant p. In empirical work p is estimated by the 

mean price-dividend ratio. This approach is considered by both {103] and [23]. Both 

papers also consider a more complicated vector autoregressive method, described in {25], 
to achieve this fundamental value-bubble decomposition. However, both [103] and [23] 
report that results seem to be similar for the two methods. 

Both [103] and [23] apply regime-switching regression models to financial markets, with 

modelling of stock market crashes in mind. Essentially the message of these papers is 

some suggestion of predictability in stock market returns. Here, we focus on the simpler 

van Norden-Schaller model {103]. We have two regimes, a speculative regime S, and a 

collapsing bubble regime C. The transition from the speculative bubble regime to the 

collapsing bubble regime corresponds to a crash, with expected returns higher in regime 

S. The model of Brooks and Katsaris {23] is more complicated as it includes a third 

'dormant' regime D, within which the bubble is expected to grow at a constant rate 

rather than simply at an explosive rate. {23] also allow the probability of switching 

between these three regimes to depend on abnormal trading volume, rather than in {103] 
where the switching probabilities depend only on the absolute relative size of the bubble. 

Here, we refer to {103], particularly the calculations given in the appendix, for details of 

the derivation both of the simple method used to construct fundamental prices and the 

original formulation of their switching regression model. For the sake of completeness we 

provide details of both derivations in Appendix B. 

As a purely statistical formulation of the model, {103] use 
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Rt+liC = f3co + f3cbbt + EC,t+l• 

qt+l = 4_)(f3qO + /3qblbti), (5.2) 

where 4_)(-) denotes the standard normal CDF. Given that we are in the speculative stateS 

at time t, qt+ 1 ( ·) denotes the probability of remaining in S at time t + 1. This formulation 

of the model ensures that the estimated q-probabilities lie in the range [0, 1]. /3qb is 

constrained to be negative so that as bt increases, the probability of a crash becomes 

more likely. Further, we see that in this simple model the probability of a market crash 

depends solely on the relative bubble size bt. We have the additional constraint f3sb > f3cb, 

which is intuitive as this suggests higher average returns when in the speculative phase. 

The ES,t and EC,t terms are assumed to be independent sequences of normal white noise 

errors. Here, since the data analysed was low-frequency monthly data, there was very 

little suggestion of heavy-tailed non-Gaussian behaviour. Given the normality of the £, 

the likelihood function can be calculated as 

l(8lX) = il [ 4_)(f3qo + /3qblbtl)4> ( Rt+l - ~:- f3sbbt) u:Sl 

+ 4_)( -/3qo- /3qblbtl)4> ( Rt+l - /3:; - f3cbbt) uc:l], (5.3) 

where 4> denotes the density of a N(O, 1) random variable. One of the attractive features 

of the van Norden-Schaller model is that it enables one to construct one-step-ahead 

probabilities of stock market crashes or stock market rallies. For a given K we can calculate 

For K = ILRt±2uRt (5.4) is given the interpretation by van Norden and Schaller as the 

probability of a market rally or the probability of a market crash. The data analysed 

are from R. J. Shiller's webpage http:jjwww.econ.yalej"'shillerjdata.html and constitute 

monthly values for the S&P 500 index and the associated dividend component from 

January 1980 to June 2007, standardised using the consumer price index. Maximum 

likelihood estimates, obtained using the Nelder-Mead method, are shown in Table 5.5, 

and seem broadly consistent with those given in Tables 1 and 2 of {103}. Estimated 

standard errors are also given and were calculated from the square root of the diagonal 

entries of the observed Fisher's information matrix. Here the observed Fisher's information 

matrix was calculated numerically using a finite difference method- the function fdHess 

in R. 

Using (5.4) and K = ILRt - 2uRt we can calculate the one-step ahead probabilities of a 

market crash as shown in Figure 5.4. According to this interpretation, the probability of a 
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Parameter Estimate Estimated Standard Error 

J3so 1.032 0.002 

J3sb -0.023 0.004 
J3co 1.011 0.014 
J3cb -0.027 0.014 
/3qo 1.517 0.350 
/3qb -1.110 0.444 
us 0.026 0.002 
uc 0.061 0.009 

Table 5.5: Results for Regime-Switching Regression Model 

market crash has increased from 1995 onwards as stock prices seem to have diverged from 

values which would appear reasonable given the dividend. These results fail to predict the 

crash of 1987, but peak sharply from 1995 until the crash in internet stocks in early 2000. 

The probability of a market crash seems to have generally decreased from initial highs in 

the early 2000's, despite an increase in 2003. However, the probability of a market crash 

remains higher than pre-1995 levels . 
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Figure 5.4: One-step-ahead probability of a market crash using monthly data for the 
S&P500. 

5.3.1 Comparison with SEG models/log-periodicity 

From Figure 5.4 the probability of a market crash is seen to increase from 1995 until 

2000, around the time of the crash in internet stocks. Thus, under this interpretation, it 
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is perhaps to be expected that we may find empirical evidence for SEG or log-periodic 

precursors from 1995 onwards as the probability of a market crash increases. However, 

it does appear that the inherent risks peak around April 2000, and not at the earlier 

times indicated in {99]. This coincides with the interpretation from the previous section 

that there is some suggestion of a bubble from around 1998, but that the probability of a 

market crash peaks in 2000. 

5.4 Case study: How to predict crashes if you really must 

In this section we give a rough guide on how one might try to predict crashes. For the 

~uggested methodology we refer to Figure 5.1. The key advantage over the raw log-periodic 

methodology is that here we are trying to base predictions both on a formal statistical 

hypothesis test, and also on more interpretable econometric features, namely measures of 

liquidity closely associated with the trading volume. 

In order to provide greater clarity and as an accompaniment to Figure 5.1, pseudocode 

for the proposed prediction methodology is shown below: 

1. Test for bubble using the hyperbolic formulation of the Sornette-Andersen model. If 

non-significant stop. 

2. If the test in 1. is significant, test for super exponential growth using the JLS power 

law model and (2.18). If non-significant stop. 

3. If 1-2 significant search for empirical power laws in liquidity measures, particularly 

those linked to trading volume. 

4. If the fit in 3. is significant, use the estimate and estimated standard error for tc found 

in 3. Else, the optimal predictions are those found in step 2. 

5.4.1 Case study 

In this section we look at the Dow Jones Industrial Average index prior to the 1987 crash 

and the Nasdaq 100 index prior to the April2000 crash on the Nasdaq. For both indices we 

find strong evidence for super-exponential growth (see Table 5.6). However, for the DJIA 

we do not find any power law type behaviour in any of the liquidity measures introduced 

in Chapter 3. Thus, we are constrained to a prediction of tc = 1215.295 (towards the 

end of June 1988) based on the fit obtained by the SEG model (Table 5.7). A plot of 

the fit obtained is shown in Figure 5.5, and appears reasonable. For the Nasdaq 100 

index, we also have some evidence of power law behaviour in the logarithm of trading 

volume. A power law fit, as shown by Figure 5.6, seems reasonable. This model has 

an R2 value of 77.8% and an F-test based on the extra sum of squares principle gives a 
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p-value of 0.000, suggesting a significant improvement on the simple model y(y) =A+ £t. 

Further, the cointegrated regression tests of Chapter 4 give p-values of 0.089 and 0.957. 

This borderline significant p-value of 0.089 for the contemporaneous regression gives at 

least some suggestion that log trading volume remains significant even after we take into 

account super exponential growth. Further, the fit of the empirical power law to the log 

trading volume leads us to a prediction of tc = 1053.575 corresponding to early May 2000. 

Tabulated results for the Nasdaq 100 index are shown in Table 5.8. The best fit of the 

SEG model seems reasonable (Figure 5.6). However, the SEG model leads to an estimate 

of tc = 1095.195 corresponding to the end of June 2000, roughly two months behind the 

prediction of the empirical power law. 

Geometric Hyperbolic Model Sornette-Andersen X p-value 
DJIA -4097.661 -4089.944 15.434 0.000*** 

Nasdaq -4787.48 -4757.429 60.102 0.000*** 

Table 5.6: Likelihood ratio tests: Geometric Hyperbolic model vs. Hyperbolic Sornette­
Andersen model 

Parameter Estimate (e.s.e) 
A 10.600 (0.102) 
r 0.000 (0.000) 
c -0.507 (0.014) 
tc 1215.295 (12.940) 

Table 5.7: Results for SEG model on DJIA 

Model SEG Empirical (log trading volume) 
A 9.738 (0.271) 23.067 (1.048) 
r 6.855 * 10-4 (5.184 * w-5 ) 

c -0.4 71 (0.038) -0.981 (0.763) 
tc 1095.195 (10.403) 1053.575 (11.316) 
a 0.160 (0.062) 

Table 5.8: Results for power-law models for the Nasdaq 100 index 

5.5 Conclusions 

In this chapter we have used a formal statistical hypothesis test, based on the hyperbolic 

Sornette-Andersen model of Chapter 3, to refine the statistical analysis of cited instances 

of log-periodic precursors previously discussed in {93]. In Section 1, we found strong 

evidence of a bubble in the US$:DEM series, but found no evidence for a bubble in the 

US$:CAD series. In Section 2 we analysed two log-periodic false predictions in {93]. We 

found strong evidence for a bubble in each of these two cases, but found that the original 
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Figure 5.5: Fit of SEG model to DJIA 
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Figure 5.6: Left panel: Fit of SEG model to Nasdaq 100. Right panel: Fit of empirical 
power-law to log trading volume 
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crash-time estimates given in [93} are too early. In contrast, both our SEG model and 

the regime-switching regression model of {103} suggest that the level of risk appears to 

peak around the time of the actual crash on the Nasdaq- April 2000. In Section 4 we 

discussed a prediction methodology, and as a case study discussed the DJIA prior to Black 

Monday, October 19th 1987, and the Nasdaq 100 index prior to the crash in internet stocks 

in April 2000. x2 tests were highly significant, suggesting strong evidence of a bubble in 

both cases. The method led to predictions of June 1988 ± 26 days (Oct. 1987 crash) and 

early May 2000 ± 30 days (April 2000 crash), which seem reasonable. In addition, we 

found further evidence to support the analogy with phase transitions in complex systems 

and stock market crashes, with an empirical power-law providing a reasonable fit to a 

log-trading volume series. 
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Chapter 6 

A universal power-law for 

drawdowns and models for 

external/internal origins of crises 

In Section 1 we discuss drawdowns {55]. Expanding on the original calculations in 

the appendix of this paper, we are able to derive a generalised Pareto distribution for 

drawdowns. Thus we are able to show that contrary to the title of {55], rather than being 

outliers large drawdowns in fact obey a universal power law. In Section 2 we introduce 

a model of exogenous and endogenous shocks in complex systems (95]. In Section 3 we 

discuss the multifractal random walk model {79], {8]. Our particular interest is the 

approach taken by {100}, which attempts to relate volatility decay following a particular 

crises to an endogenous or exogenous cause. The hypothesis of {100} is that it should 

be possible to indicate an endogenous/exogenous root to a crisis by the exponent of the 

observed power-law decay of volatility. In Section 4 we provide an empirical investigation 

of this model. It is found that there is at least some evidence to support the hypothesis 

of {100}. However, it seems the observed power law exponents violate the predictions 

of this model. In Section 5 we show that the empirical results are more consistent with 

a fractional Gaussian noise model presented in {95]. Under this model not only can we 

derive exponents corresponding to an exogenous shock, but we are able to extend the 

original approach and derive the power law exponent corresponding to an endogenous 

shocks. Results for the fractional Gaussian noise model are seen to show a reasonable 

agreement with the empirical data. Finally, Section 6 is a brief conclusion. 
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6.1 Universal power law for drawdowns in an exponential 

Levy market 

Drawdowns are a measure of the percentage fall in the underlying price from one local 

maximum t1 to the local minimum t2, where t2 is the lowest value the price takes before 

rising again. Drawdowns are of interest because they are more informative than simply 

recording the values of a price at fixed time scales, e.g. daily log-returns, and give an 

added sense of scale and cumulative market loss. Here we look at drawdowns calculated 

from daily prices. The concept of drawdowns has been advocated in [55} and {53} as 

an appropriate quantitative measure of large price drops. In {56} the authors have also 

advocated the concept of E-drawdowns, where the cumulative loss is recorded until a price 

rise in excess of E occurs, so that small rises in the underlying price cannot mask the 

true scale of the accumulated losses. This inevitably relies upon a subjective choice of E. 

However, the authors in [56} seem to obtain reasonable results with the choice E = u /4, for 

some estimate of the standard deviation u. The results here suggest that the E-drawdowns 

should obey a similar scaling property for reasonable choices of E. 

First we recall and expand upon the calculations in the Appendix of {55}. Using Laplace 

transforms we derive an asymptotic power law for drawdowns which is derived from a 

first-order approximation. The observed fit to drawdowns corresponding to the DJIA is 

impressive, and potential applications are briefly discussed. 

6.1.1 Drawdowns in an exponential-Levy market 

Let P*(t) denote the price of a stock at time t. We assume that P*(t) is given by the 

exponential of a Levy process. Here, we consider drawdowns calculated from time series 

of daily prices. A drawdown is a measure of the relative price drop from a local maximum 

at P*(tm) to a local minimum at P*(tmin), so that the price rises again immediately after 

time tmin· The drawdown Dtm,tmin is given by 

D _ (P*(tm)- P*(tmin)) _ l _ P*(tmin) 
tm,tmin - P*(tm) - P*(tm) • 

Let X(t) = log(P*(t)) and let dtm,tmin = X(tm)- X(tmin) be the corresponding difference 

in the log-price. By construction, we have that 

( 
P*(tm) ) 

dtm,tmin =log P*(tmin) ' 

or equivalently, that 

Dt t . = 1- e-dtm,tmin. 
m, mtn 
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Next, we consider increments x1, .. . , Xn of X(t) corresponding to regularly spaced times 

t1, .. . , tn+l so that XI = X(t2) - X(t1), ... , Xn = X(tn+d - X(tn)· In our empirical 

work we use drawdowns calculated from time series of daily returns, so that we imagine 

that the Xj correspond to daily increments or first-differences of the log-price recorded on 

consecutive days. By the assumption that P*(t) is given by the exponential of a Levy 

process, the Xj constitute an i.i.d. sample from some common distribution F. We assume 

further that F has density p(x). Starting with a local maximum X(tm), the probability 

density of dtm,tmin is given by 

fd(W) = p~ f rXJ p(x1) ... JO p(xn)8 (-W- t Xj) dx1 ... dXn, (6.1) 
P n=1 Jo -oo j=l 

where 

P+ = 1- P- =loo p(x)dx 

is the probability of observing a positive increment [55}, equation (9). The Dirac function 

8 ( -w- :Ej=1 Xj) ensures that the summation in (6.1) is over all possible run lengths of 

length n which sum tow. The equation for the density in (6.1) can be written as 

(6.2) 

where p(•n) denotes then-fold convolution of left tail of the probability density of the x3. 

Related formulae, with a focus upon random walks and ladder heights, are discussed in 

[42], Chapter 12. The~ is a normalization constant which results from the sum of a G.P. 

and ensures that the density in (6.2) is proper. 

To be precise, we note that d is constructed by sampling initially from the left tail of p(x). 

We continue to add samples from the left tail of p(x) stopping when we sample from the 

right tail. Note that since d is constructed in this way, the probability density of d is always 

proper and this is contrast to the similar-in-spirit ladder height variables, [42} Chapter 12, 

where the mean I.L of the incremental distribution of the random walk determines whether 

or not the distribution of ladder heights is proper1 . To further illustrate the construction 

of d, we show how to construct the Laplace transform of (6.2) by summing over run 

lengths r. Since we have already assumed starting at an initial local maximum X(tm), a 

run length of one occurs with probability P+• since P+ is the probability of observing a 

positive increment. This run length distribution is clearly geometric, so that p:._-IP+ gives 

1The ascending and descending ladder heights are defined as the cumulative maxima and minima of a 
random walk starting at the origin. The descending ladder height distribution is only proper for J.t~O, and 
likewise the ascending ladder height distribution is proper only for J.t~O. Additional discussion is contained 
in {42} Chapter 12. Figure 2.1 in Chapter 7 in {7/ shows pictorially how these ladder height variables are 
defined. 
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the probability of a run length of length r. Proceeding, we see that the Laplace transform 

of (6.2) is 

P(s) = (
P(s)) (P(s)) 2 

(P(s))r r-l 
~ P++ ~ P-P++ ... + ~ P-P++ ... , 

( P~))P+ tP(st, 
p r=O 

= 

P+ P(s) 
= 

p_1- P(s)' 
(6.3) 

by the geometric sum formula and using 

P(s) = fooo p(-x)e-sxdx. 

In order to proceed, we note that (6.3) can be re-written as 

A 1 
P( S) = 

1 
_ _l P(s}s-P(O) ' 

P+ (s) 

(6.4) 

with P(O) = P-· In the sequel we assume that the moment generating function of X(t) 

exists. This assumption is satisfied by both the generalized hyperbolic distribution /33} 

and the NIG distribution /11}, which provide two of the most tractable Levy models 

in financial applications. This assumption also guarantees that the Laplace transforms 

considered are holomorphic functions of s and can thus be expanded in Taylor series of 

powers of s. Equivalently this means that the moment generating function exists in a 

neighbourhood of the origin. 

6.1.2 A relevant model for market dynamics 

In this subsection, we show how a simple first-order approximation suggests an exponential 

approximation for the density of dtm,tmin. We show that an exact exponential left tail of 

p(x) leads to an exact exponential distribution for dtm,tm;n· An analogous result for the 

descending ladder height distribution is given in /42}. A heuristic argument suggests that 

if the left tail of p(x) is approximately exponential then the distribution of dtm,tmin should 

also be exponential. Further, it is shown that an exponential distribution for dtm,tmin leads 

to a generalised Pareto distribution for drawdowns on real markets. In the sequel, and for 

the sake of simplicity, we suppress the tm,tmin subscript. 

For small s, corresponding to d large, we can expand ~f~~ up to first order in a Taylor 

series: 

P(O) (P'(O)) 
P(s) = 1- P(O) s + o(s). (6.5) 
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Plugging the expansion in (6.5) into the equation for the Laplace transform in (6.4) leaves 

us with 

which reduces to 

with 

A 1 
P(s) ~ _ (~) ..!...' 

1 P(O} P+ 

A 1 
P(s) ~ ( ) , 

1+ ~ s 
P-P+ 

< x >-= -1-oo xp(-x)dx. 

(6.6) 

Finally, we note that (6.6) is the Laplace transform of an exponential density with mean 

J.L = - ;~;; . Suppressing subscripts, the implication is that 

(6.7) 

where exp().) denotes the usual exponential density on [0, oo), with ). = ~'X-.J!. (6.7) 

was originally stated in (55}, albeit subject to a minor mistake in the algebra. However, 

in (55} (6.7) was assumed to hold for the relative price drop D rather than the drop d 

in log-price. For the moment, the main point of interest is that it appears reasonable to 

consider the case where the distribution of d is approximately exponential. 

Suppose the exponential approximation (6.6) holds exactly. Equating Laplace transforms 

gives 

leading to the solution 

P+ P(s) 1 
P-1-P(s) = 1+sJ.L' 

P(s) = P- = P-
1 + P+SJ.L 1 - s<x>- ' 

P-

(6.8) 

where we have defined J.L = -P~:;.-. We can see that (6.8) corresponds to an exponential 

.left tail: 

-p2 2=-=. 
p(x) = - e<x>_, (x < 0). 

<X>-
(6.9) 

We note that (6.9) is satisfied by the Laplace distribution with non-negative mean J.L and 
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variance 2b2 : 

1 l:r-pl 
f(x) =-e--r 

2b 
0 (6010) 

Since we are considering a candidate model for financial log-returns, the condition J-L?.O is 

reasonable and corresponds to generic exponential growth behaviour 0 In the notation of 

(6o6), we have that 

(6011) 

Similarly, it follows that 

e-~ jo :r e-~ 
P-=- e"bdx=-, 

2b _
00 

2 
(6012) 

with P+ = 1- P- = 1- e~i o Inserting (6011-6012) into (6o9), it follows that (6o9) holds 

for x:$0 in (6010) since 

and 

(e-~) ( 2 ) 1 
<X>- = -2- be-~ = bo 

A related result given in [42], page 387, is that the distribution of the first weak descending 

ladder height is proportional to ef3x, x < 0, if the incremental distribution F has an 

exponential left tail F(x) = qe11x for x < Oo If we suppose that empirical distributions for 

log-returns approximately satisfy (6o9), we suggest 

I 
1 ...!.::::_. A 1 

p(x) :::::: e<:r>_ =}P(s)~--, 
x:5;0 < X >- 1 + SJ-L 

(6013) 

in the sense that if P(s)- l+ts~-' = o(s) then F(s)- 1)sl-' = o(s), since 

P+ P(s) 1 P(s)[1 + P+SJ-L]- P---- = 
P- 1- P(s) 1 + SJ-L (1- P(s))(1 + sJ-L) ' 

= 
(1 + P+SJ-L) [P(s)- l+tsp] 

(1- P(s))(1 + SJ-L) 

= a(s)b(s), (6014) 
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where a(s) = (l-(M~}(t1s~) and b(s) = [P(s)- l+~~siL]. It follows that 

l' 1 [P+ P(s) 1 ] 
s~-; P- 1- P(s) - 1 + SJ.L 

= lima(s)limb(s)ls, 
s--+0 s--+0 

0, 

since lims--+0 = liP+ and b(s) = o(s) by assumption. In sum, an exact exponential left 

tail (6.9) leads to an exact exponential distribution for d (6.6-6.7). We suggest that, 

for real markets, (6.6-6.7) should remain approximately true if (6.9) remains a good 

approximation. 

In the sequel, we assume that the result in (6.7) holds exactly. In this case, it follows that 

the distribution of dtm,tmin is exp(.X), where exp(.X) is the usual exponential distribution 

on [0, oo). In {55], the authors supposed that it was the difference in the raw prices rather 

than in the log-prices that satisfied (6.6). Since this corresponded to a very simple model 

for prices, the authors went beyond this theoretically derived result to consider a more 

general Weibull or stretched-exponential model for drawdowns. Johansen and Sornette 

then classified drawdowns that violated this Weibull model as 'outliers'. However, in the 

exponential-Levy market considered here, the result in (6. 7) is seen to lead naturally to a 

generalised Pareto distribution for drawdowns, suggesting a power-law tail probability for 

drawdowns on the original (non-logarithmic) scale. 

By construction, the drawdown Dtm,tmin is given by 

(6.15) 

From (6.15) the distribution of Dtm,tmin follows a generalized Pareto distribution, with 

parameters ( = -1 I). and /3 = 1 I). ( {77], Chapter 7), since if X is exp( .X) then it follows 

that the distribution function of Y = 1- e-X is given by 

Fy(x) = Pr(Y~x), 

= Pr(X~ -ln(l- x)), 

= 1-(1-x)\ (6.16) 

using Fx(x) = 1- e->.x. The log-likelihood function can readily be calculated from (6.16) 

as 

n 

l(.XJx) = nlog(.X) +(.X- 1) L log(l- xi), 
i=l 
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leading to the maximum likelihood estimate 

A -n 
). = "'n ( . L..Ji=llog 1 - Xi) 

(6.17) 

As an application we looked at the sequence of drawdowns from the DJIA using daily 

data covering the period October 1st 1928 to 22nd May 2006. Results are shown in 

Figure 6.1, and show an extremely close correspondence between the empirical CDF and 

the theoretical CDF predicted by (6.16). Finally, we mention possible applications for 
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Figure 6.1: Plot of fitted GPD (.X= 66.13597) for drawdowns on the DJIA and empirical 
CDF (dots) 

options pricing, risk management and capital allocation for banks. In terms of generic 

risk management and options pricing, we may calibrate a Levy model for daily log-returns 

to historically observed sequences of drawdowns by equating the maximum likelihood 

estimate in (6.17) to the value of>. by ensuring 

1 -<X>-
(6.18) -::-=----

,\ P-P+ 

where < x >- denotes the mean of the negative log-returns and P+ and P- denote the 

probabilities of observing positive and negative log-returns. Another interesting possibility 

deals with setting capital levels for banks. For some 0 < a << 1, the problem is to 

find a capital amount C so that the losses L relating to a stock market portfolio satisfy 

Pr(L >C)= a. Suppose we have holdings c/J1, ... , cPn in a portfolio of stocks X1, ... , Xn, 

for some large n. Let }i(t) = L:~1 c/JiXi(t) denote a time series of historical values of the 

portfolio. If we assume that }i(t) corresponds to an exponential-Levy market (at least 

approximately), we can use (6.18) to estimate >.. Let I denote the level of investment 

in the stock market, C the level of capital reserves and LP denote a percentage loss 

75 



corresponding to a drawdown sequence. For a given non-exceedance probability o:, set 

1 - o: = 1 - (1 - LP)>.. 

The capital levels C and investment levels I can then be chosen to satisfy 

C?.l.LP. 

so that with probability 1-o: the capital levels C are not exceeded by the aggregate losses. 

Risk management studies, as described for example in the guidelines of the Base! Commitee 

of Banking Supervision, have previously advocated calculating capital levels from analysis 

of daily risk levels. However, results here suggest that such an analysis should be possible 

- and may even be more natural - for runs of consecutive losses. For background on 

risk management issues and mathematical modelling we refer to [77]. Finally, methods 

in this section can easily be extended to incorporate Sornette and Johansen's concept of 

e-drawdowns by setting P+ = Pr(xj >e) and P- = Pr(xj <e). 

6.2 Sornette-Helmsetter method for complex systems 

We consider a simple model of the activity level A(t) of a system at timet, viewed as the 

noisy response to all past perturbations: 

A(t) =]_too TJ(t)K(t- r)dr, (6.19) 

where TJ(t) denotes standardized Gaussian white noise, and K(·) is referred to variously as 

the memory kernel, propagator, Green function, or response function {95]. Further, we 

assume that K(t) is a causal function ensuring that the system is not anticipative2 • One 

of the most interesting choices of K ( ·) described by Sornette and Helmsetter in {95] is 

fractional Gaussian noise which corresponds to the kernel 

1 1 
K(t- r) = (l + t- r)3/2-H = (l + t- r)l-0' (6.20) 

where H = 1/2 +()and lis a small constant whose inclusion avoids blow-up at the origin. 

In (6.20) 0 < () < 1/2 corresponds to persistence where successive variations are positively 

correlated, -1/2 < () < 0 anti persistence, where positive variations are preferentially 

followed by negative ones ( {105]). The comment is made in {95] that it is the case 

0 < 0 < 1/2 that seems to be of practical interest, and further that (6.20) appears able to 

2A function g(t) is called a causal function if is zero when t < 0. This constraint arises naturally in 
many physical systems, due to the fact that observed effects cannot precede cause and the restrictions that 
this then places on functions describing the system. 
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explain some of the phenomenology associated with Omori's power-law for earthquakes3. 

6.2.1 A simple model for exogenous shocks 

Suppose an external shock occurs at t = 0, which we model as Ao6(r), where 6(·) denotes 

Dirac's delta function. From (6.19) we see that the response of the system becomes 

A(t) = AoK(t) + [oo ry(t)K(t- r)dr, 

leading to the expected response 

E(A(t)) = AoK(t). 

In the case of a fractional Gaussian noise kernel, we obtain 

E(A(t)) = A0t8- 1, t >> l. (6.21) 

6.2.2 A simple model for endogenous shocks 

Suppose there is a large "internal" shock Ao at time 0. From the integral representation 

(6.19), we see that {A(t): tEIR.} is a Gaussian process. Thus for a given t > 0, (A(t), A(O)) 

is a bivariate normal pair. For an arbitrary bivariate normal pair X, Y we know that 

Ylx N ( 
Cav(X, Y)(X- J.Lx) 2 (Cov(X, Y))2 ) 

"' Jl.Y + 2 'l1y - 2 ' 
l1x l1x 

(6.22) 

( [46}, Chapter 4). Also, from the integral representation (6.19) we see that 

Cov(A(t), A(O)) = 1: K(t- r)K( -r)dr. (6.23) 

Using the substitution v = -T, it follows that the expected value of the system at timet 

obeys 

E(A(t)) ex Ao fooo K(t + v)K(v)dv. (6.24) 

Consider the fractional Gaussian noise kernel (6.20) and take the Laplace transform of 

(6.24), where the Laplace transform is defined as 

L(f(t)) = fooo f(t)e-stdt. 

3 n(t) = (c.~t)P, where n denotes the number of aftershocks, K is the magnitude of the initial quake, c 
is a time offset and pE(0.7, 1.5). 
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We note that the RHS of (6.24) is the convolution of K(t) with itself. We note that we 

have we have L(t8- 1 = r(9)s-8 , [61}, Chapter 5, where r(·) denotes the gamma function 

given by 

Since K(t)rvt8- 1 , t >> l, it follows that L(K(s))""Const.s-8 . Hence, the Laplace 

transform of (6.24) is of the form Const.s-28 , suggesting 

t >> l. (6.26) 

The predictions (6.21) and (6.26) are intended to represent generic behaviour of complex 

systems, with "endogenous" shocks exhibiting a significantly slower power law decay than 

"exogenous" shocks, for 9>0. 

6.3 The multifractal random walk (MRW) model 

The aim here is to demonstrate how and under what circumstances approximate power­

law decay of volatility is predicted by {100}. The discussion in this section is intended only 

as a very brief guide. For further details see for example [79} and [Bj. The multifractal 

random walk model is the continuous time limit of a stochastic volatility model with the 

log-volatility possessing logarithmically decaying correlations. In the version of this model 

considered by [100}, for each time scale Llts;t, the returns at scale Llt, r~t(t), can be 

described as a stochastic volatility model 

T~t(t) = t(t)·O'~t(t) = t(t)eW~t(t), (6.27) 

where t(t) is a standardized Gaussian white noise independent of W~t, and W~t is a 

Gaussian process with mean and covariance: 

J.l~t = 1/2ln(a2L:l.t)- C~t(O), 

C~t := Cov(W~t(t), W~t(t + r)) = .\
2

ln err+ z)' (6.28) 

where u 2 Llt is the return variance at scale L:l.t, l is a small constant to avoid blow-up at the 

origin and T represents the time scale over which volatility is correlated. [22}, Chapter 7 

Section 3, state that the MRW model is attractive as it suggests both log-normal volatility 

fluctuations and logarithmic decay in the correlation function of the log-volatility, both of 

which can be verified empirically. According to [100} the MRW model can be written in 
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a more accessible form in which the log-volatility W~t(t) obeys an autoregressive equation 

W~t(t) =/_too ?J(r)K~t(t- r)dr, (6.29) 

where 17(t) denotes a standardized Gaussian white noise and the memory kernel K~t(·) 

is a causal function ensuring that the system is not anticipative. The process 17(t) can 

be interpreted as the information flow, with w(t) representing the response of the market 

to the incoming information up to time t. Rather than multifractality, it is the kernel 

representation shown in (6.29), see also (6.19), which is the key mathematical feature 

of interest here. At time t the distribution of W~t(t) is Gaussian with mean 1-L~t and 

variance V~t = j 0
00 K!t(r)dr = >.2log(f), consistent with (6.28). The covariance- which 

in conjunction with the mean completely specifies the random process - is given by 

(6.30) 

Performing a Fourier analysis we obtain 

6~tU) = 2 fooo fooo K~t(r)Kt:J.t(r + t)e-ift drdt, 

= 2 fooo fooo K~t(r)Kt:J.t(v)e-ifveifT dvdr, 

= 2 I i<~tU) 1
2

, (6.31) 

where f< denotes the Fourier transform of K. Using (6.28), we thus see that 

C~t(f) = 2>.2 loT ln ( t ~ l) cos(ft) dt, 

~ 2;' [ H t ~I) sin(/{+ { si;~:) •+ (6.32) 

where the second line. follows from integration by parts. The first term in (6.32) is 

approximately zero - it corresponds to a logarithmically decaying covariance function 

which tends to zero as it approaches T- and is equal to 

ln ( 1 - T ~ l) sin(JT). (6.33) 

Turning to the second term and using the change of variable v = tf, we can see that 

[T sin(ft) dt = [Tf sin(v) dv. 
} 0 t + l lo v + fl (6.34) 

79 



Further, we have that 

[Tf (sin(v) _ sin(v)) dv <fl [Tf sin(v) dv . 
Jo v v + fl - Jo v(v + fl) 

From (6.35) we also have 

1Tf sin(v) 
---'--'--dv 

o v(v+fl) 
< [Tf I sin(v) Id 

Jo v(v + fl) v, 

< {Tf 1 

lo v + fl' 
= ln(T/l + 1). 

= O(ln(1/ fl)), 

(6.35) 

(6.36) 

under the assumption that 1/ fl > T + fl. (6.36) follows from the fact that sin;x) :::;1 for 

all x. From the above (6.32) reduces to 

• 2>.2 
[ {Tf sin(v) ] 

CI::.t(/)=f Jo -v-dv+O(flln(1/fl)) . (6.37) 

For large Tf, the integral in ( 6.37) approximates J0
00 sin;x)dx = ~. and then (6.37) is 

approximately given by 

(6.38) 

Assuming that (6.38) holds with equality, we have that 

(6.39) 

By (6.28) and (6.30) we see that KI::.t(·) must be a decreasing function oft, and it then 

follows from (6.39) that 

T >> l, (6.40) 

for Ko =~since 

and 1 £- 1/ 2 I= ..fiif-112
• According to [100], this slow power law decay of the memory 

memory kernel in (6.40) ensures the long-range dependence and multifractality of the 

MRW. 
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6.3.1 Linear response to an external shock 

The transfer function formalism introduced in (6.29) gives us an interesting insight here. 

Assume that a new piece of information T/(t) = wo<S(t) impacts on the market (taken 

without loss of generality to bet = 0 since the system is stationary). Using the transfer 

function formalism, the response to the shock is 

w(t) = J.L +/_too (wob(T) + 'f/(T))K(t- T)dT 

= J.L + woK(t) + [
00 

'f/(T))K(t- T)dT, 

where for convenience the reference to the scale !:::.t has been omitted. Given the causal 

representation of the MRW, the expected volatility conditional on this new incoming 

information is given by 

E[<72(t)lw(t)] = e2t~+2woK(t) E[e2f~oo !J(T)K(t-T)dT] 

= 0"2(t)e24.1oK(t) 

<72(t)e2woKoJT, 

for !:::.t << t << T, where <72(t) = e2t~E[e2f~oo'1(T)K(t-T)dT] is the unconditional average 

of the stochastic process 0"2(t). Following the shock, the volatility relaxes back down to 

its unconditional average <72(t). This means that under a linear approximation we are left 

with behaviour of the form 

(6.41) 

with a = 0.5. The prediction made by (6.41) can then be used as the focus of empirical 

work. 

6.3.2 "Conditional response" to an endogeneous shock 

We consider the evolution of the system, which despite the absence of a large external 

shock nonetheless exhibits a large volatility burst wo at time 0. Now w(t) is a Gaussian 

process, and using the fact that the moment generating function of a N(J.L, <72) is et~t+172 t2 12 

and that 2w(t)"'N(2J.L(t),4<72(t)) we see that 

E[<72(t)lwo] = E[e24.1(t)lwo] 

= exp(2E[w(t)lwo] + 2Var[w(t)iwo]). 
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Further, since w(t) is a Gaussian process we can use the relation (6.22) to see that 

E[w(t)iwo] 

and also 

Cov[w(t), woJ2 
Var[w(t)iwo] = Var[w(t)]- V [ ] 

ar wo 

Set e2wo = e28112 (t). Hence s provides a measure of the "size" of w0 , with 112(t) = e20(0)+2~-L 

equal to the ("unconditional") expectation E(112(t)) = e2C(0)+2~-'. Equating exponentials, 

we can see that we have wo- J.L = s + C(O). By substituting into the above formula we 

can see that we obtain 

where 

---2--- [ C(t) C2(t)] E[11
2
(t)lwo] = 11 (t) exp 2(wo - J.L)· C(O) - 2 C(O) 

---2--- [ . C(t) C2 (t)] 
= 11 (t) exp 2(s + C(O))· C(O) - 2 C(O) 

__ ( T ) o(s)+i3(t) 
= 112 (t) -

t + l ' 

o(s) 

f3(t) 

2s 
= 

In (f)' 
= 2A2 ln(t/l + 1) 

ln(T /l) ' 

(6.42) 

using the form for C(t) in (6.28) and in agreement with the result stated in [100]. If 

l << t << leW we have that f3(t) << o(s) and (6.42) can be seen to lead to an 

approximate power-law decay in the volatility: 

Thus, even in the case of an endogenous crisis we may expect to find approximate power­

law decay of the volatility provided the condition l < < t < < le W holds. Thus, we may 

test the model of [100} by testing for a power-law C 0 decay in the historical volatility 

with o = 0.5. Values less than 0.5 suggest a slower decay and an endogenous aspect, by 

analogy with the fractional Gaussian noise model in Section 2. 
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6.4 Data analysis 

Given the stochastic representation (6.27), we use the squared log-returns as the 

appropriate volatility proxy for u2 . As a candidate model, we consider 

(6.43) 

For the results to be consistent with the model of {100}, we should have B > 0 and 

a= -1/2 in (6.43), at least for exogenous shocks. In order to estimate the model (6.43) we 

employ the pragmatic estimation technique commonly employed in the physics literature 

(see for instance /100}, {54]) by "integrating" (6.43) and fitting the model 

Btl+o: 
Vn(t) = At+ -

1
-- + ft, 
+a (6.44) 

where Vn(t) = L:~=l u~. This is a commonly used technique to estimate power law 

exponents in models of the form (6.43). This method is intended to ensure that the 

estimates obtained are more robust with respect to the presence of background noise, 

model mis-specification etc. We estimate (6.44) by least squares, using 100 values of 

daily log-returns. The resulting regressions typically return R2 values of around 90%. We 

compare and contrast market responses to the 1987 crash with responses to the terrorist 

attacks of September 11th 2001, the attempted coup against President Gorbachev on 

August 19th 1991, Black Monday October 19th 1987 and the Nasdaq crash taken to be 

April lOth 2000. We describe the results obtained in the next subsection. 

6.4.1 Empirical results 

When examining markets in the aftermath of the attempted coup against President 

Gorbachev, one of the surprising features that we find is that much of the volatility occurs 

towards the end of the sample period. As a result, the model (6.43) seems inappropriate 

for this data and the estimated a values obtained are positive, reflecting the enhanced 

volatility towards the end of the sample (see Table 6.1). 

Market a 
Nasdaq 1.973 (0.600) 
CAC 40 6.682 (0.020) 
FTSE 6.349 (0.037) 
Nikkei 7.936 (0.014) 

S&P 500 3.697 (30.040) 

Table 6.1: Results based on 100 trading days after August 19th 1991 

In contrast, there are a number of markets in which the model (6.43) appears more 
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reasonable. In particular, we obtain estimates of a~ - 0.5, suggestive of an exogenous 

root under the MRW model of (100}, see Table 6.2. Note, however, that the estimated 

exponents are seen to vary significantly from -0.5, and the model of (100} systematically 

fails to correctly estimate the empirically observed power-law exponent of the volatility 

decay. A better estimate would appear to be a:::::0.7±0.15, although non-overlapping 

confidence intervals do suggest some differences between the various markets. 

Market a 95% C. I 
Nasdaq Oct. 19th 1987 -0.691 (0.016) ( -0. 72, -0.66) 
FTSE Oct. 19th 1987 -0.742 (0.006) (-0.75, -0.73) 
Nikkei Oct. 19th 1987 -0.852 (0.009) (-0.87, -0.84) 
Nikkei Sept. 11th 2001 -0.718 (0.031) (-0.78, -0.66) 

S&P 500 Oct. 19th 1987 -0.624 (0.033) (-0.69, -0.56) 
DJIA Oct. 24th 1929 -0.535 (0.021) ( -0.58, -0.49) 

Table 6.2: Selected results (a < -0.5) 

Finally, on some markets we find some suggestion of an exogenous crises, with observed 

volatilities decaying slower than the value -0.5 predicted by the model of (100}. The 

results are interesting in that proposed bubbles such as the Nasdaq 2000 and the Hang 

Seng in 1994 are seen to lead to a depressed volatility decay in line with the interpretation 

of crashes as endogenous events. However, the model of {100} is unable to predict the 

exponent of the power law corresponding to an endogenous cause. In addition, we have the 

suggestion of slow logarithmic volatility decay on the FTSE and the CAC 40 on April lOth 

2000 in response to the crash in internet stocks. The events of September 11th are also 

seen to lead to a volatility decay that this simple approach would more readily associate 

with an exogenous cause. The results are shown in Table 6.3. 

Market a 95% C. I 
Nasdaq April 10th 2000 -0.177 (0.007) ( -0.19, -0.16) 
Nasdaq Sept. 11th 2001 -0.071 (0.015) (-0.10, -0.04) 
CAC 40 April lOth 2000 -0.01 (0.000) (-0.01, -0.01) 
FTSE April lOth 2000 -0.01 (0.000) (-0.01, -0.01) 
FTSE Sept. 11th 2001 -0.220 (0.022) (-0.26, -0.17) 
Nikkei April lOth 2000 -0.274 (0.054) (-0.38, -0.17) 

S&P 500 April lOth 2000 -0.298 (0.034) (-0.36, -0.23) 
S&P 500 Sept. 11th 2001 -0.391 (0.048) ( -0.49, -0.3) 
Hang Seng Jan. 6th 1994 -0.174 (0.101) (-0.38, 0.03) 

Table 6.3: Selected results (a > -0.5) 
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6.5 Synthesis 

In this section we detail briefly how the model of {100] can be modified to obtain a better 

fit with the empirical results. The comment is made in {95] that the multifractal random 

walk model corresponds, at least approximately, to the fractional Gaussian noise kernel 

(6.20) with () = 1/2. Suppose that we retain the integral equation for the log-volatility 

(6.29), but that K(t) takes the form (6.20) for() =F 1/2 in general. By the same reasoning, 

the formula for the linear response to an external shock (6.41) follows through, with the 

cl/2 replaced by a more general t 1- 8 dependence. The estimated values obtained in 

Table 6.2 would then be consistent with the choice()= 0.3 ± 0.15. Similar considerations 

also enable one to predict the exponents of the power-law decay in volatility that should 

accompany an endogenous shock. 

Suppose F(t) = At8- 1 , for() > 0, A constant. We have the integral formulae 

fooo cos(Jt)F(t)dt 

fooo sin(Jt)F(t)dt 

A f(()) (()1r) 
= ycos 2 , 

A f(()) . (()1r) = ysm 2 , 

(6.45) 

( {61], Chapter 10), where f(·) denotes the gamma function given by (6.25). Thus, we 

have 

Hence, since K(t)rvt8- 1 , t >> l, and using (6.31), it follows that 

and hence, from (6.45), that 

t >> l, (6.46) 

for () < 1/2. Inserting (6.46) into (6.42) then gives 

---2--- [ C7(t) (72(t)] 
u (t) exp 2(s + C7(0))· C7(0) - 2 C(O) . 

After a sufficiently long time, the volatility relaxes down to its unconditional average u2(t). 

Since 

- [ C7(t) C7
2 (t)] -u2(t) exp 2(s + C7(0))·-- 2-- - u2(t) 

C7(0) C(O) 
Const.t26- 1 , 

this predicts an approximate t28- 1 power-law decay associated with an endogenous crisis. 
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8 E (0.3, 0.45) predicts a C 0 volatility decay with exponent a in the range (0.1, 0.4), in 

reasonable agreement with most of the values in Table 6.3. 

6.6 Conclusions 

In this chapter we have explored the possible applications of power laws to a mathematical 

theory of financial crashes. In the first section we derived results building on original work 

in [55}. In particular, we derived a generalized Pareto distribution for drawdowns on an 

exponential-Levy market. This approximate result was seen to fit well to an historical 

series of drawdowns corresponding to the DJIA. Potential applications include calibration 

of Levy process models to financial data and capital allocation problems in banks. 

In Sections 2-4 we examined the method of [ 1 00} for determining endogenous or exogenous 

causes of crises. We found at least some evidence to support the analogy between stock 

market crashes and simple models for endogenous and exogenous perturbations of complex 

systems. However, stock markets are complicated and we have two notable observations. 

Following the attempted coup against President Gorbachev in August 1991, much of the 

observed volatility is seen to occur towards the end of the sample period and not in the 

immediate aftermath. In addition, the volatility decay corresponding to September 11th 

appears more like that associated with "endogenous" events such as the crash of internet 

stocks in April 2000, and the bubble on the Hang Seng. 

However, we do seem to have at least some evidence to support the hypothesis that 

endogenous crises lead to a slower volatility decay than exogenous crises. However, 

the model of [100} systematically fails to recreate the empirically observed exponents 

corresponding to exogenous shocks, and is unable to predict the exponent corresponding 

to an endogenous shock. A better match with empirical data is found when the log­

volatility is assumed to obey a fractional Gaussian noise process. Under this model, we 

are also able to extend the original formulation and predict the exponent of the power law 

of the volatility associated with endogenous crises, to a reasonable degree of agreement 

with the empirical data in Table 6.2 and Table 6.3. 
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Chapter 7 

Evaluating contagion in economics 

According to {6} the economic literature on currency and banking crises can be usefully 

divided into insurance crisis and illiquidity crisis models. Chapters 1-5, see also Appendix 

Con market-value models, essentially constitute insurance crisis models and deal with how 

the inherent risks are priced by markets. With illiquidity crisis models the main feature of 

interest is the transfer of shocks between different countries and sectors. It is this second 

theme which motivates material in this chapter. In particular, how we might seek to 

define and measure contagion in a manner that can give practical answers to important 

real questions? The layout of this chapter is as follows. In Section 1 we motivate our 

discussion with a brief survey of the relevant economic literature. In Section 2 we describe 

the relevant mathematical and statistical background. In Section 3 we give a statistical 

solution to the problem of evaluating contagion in economics, with an application to the 

Latin American currency crisis of the 1990s. Section 4 summarises. 

7.1 Contagion 

According to [57} contagion has been defined in various different ways in the literature. 

To some degree of generality the term contagion relates to the transfer of economic shocks 

across countries or sectors, although this definition is not complete in itself. {58} defines 

contagion as the situation where the knowledge of crisis in one country increases the risk of 

crisis in another country. Alternatively, some authors restrict the definition of contagion 

to situations where the magnitude of a shock exceeds that which might be expected purely 

on the basis of economic fundamentals. 

According to Jokipii and Lacey, much of the theoretical work on contagion and propagation 

of crises can be categorized into three main areas: aggregate shocks which affect the 

economic fundamentals of more than country; country-specific shocks which affect the 

economic fundamentals of other countries; and shocks which are not explained by economic 
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fundamentals and are classified as pure contagion. Interesting empirical issues are then 

connected to testing for the existence of contagion and also quantifying how shocks are 

transmitted through the financial system. 

Among the most widely used procedures used to test for contagion are simple OLS 

regressions [3}, principal component analysis {59}, and analysis of correlation coefficients 

{36}. Tests based on correlation assume that any changes in coefficient estimates obtained 

reflect material changes. However, it is important to recognise a possible bias brought 

about by the estimates obtained being conditional on extreme market movements over 

the period in question. [43} recognises a distinction between genuine contagion and 

interdependence. Markets may just be interdependent and may naturally respond 

similarly to a common shock. Contagion in this context then reflects genuine changes 

in the relationship between two different markets over and above naturally occurring 

interdependence. According to Jokipii and Lacey, much work in the literature fails to 

make an adequate distinction between the two. 

A second question associated with the issue of contagion is evaluating the different channels 

through which shocks can be propagated across countries. According to Jokipii and Lacey, 

much work has focussed on a small array of simple techniques. These include regression 

-both OLS and logit/probit models- and principal components analysis. A few studies 

have also tried to use news as the identifying condition for the propagation of shocks [37}. 

Eichengreen et al. study the collapse of fixed exchange rates in the ERM in 1993, with 

one county's collapse taken to be the external news event. 

7. 2 Statistical background 

This section is concerned with the question of contagion in economics and statistical 

methods which can be used to provide insight. In particular the focus here is on methods 

proposed in Chapter 6 of (71}, with some of the background discussion taken from 

[77}, Chapter 5. In terms of the economic applications, the salient point is as follows. 

Contagion relates to the transfer of economic shocks across countries or sectors. However, 

the major complication is the need to distinguish between genuine contagion and simple 

interdependence. The following two sections describe how we may proceed to answer this 

question statistically. This is primarily an empirical question and one should not read too 

much into the fact that the theoretical model we use is the simple random walk model. 

However, even with this choice of very simple model, there are some theoretical aspects 

which we need to clarify. The next three subsections provide a brief description of the 

relevant mathematical and statistical background. 
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7 .2.1 Copulae 

The subject of copulae is one of the important underlying themes here. Intuitively, the 

copula plays the key role in multivariate distribution theory by literally 'coupling' (linking) 

the various univariate marginal densities with one unique multivariate density. Consider 

two continuous random variables X and Y with joint distribution function H so that 

H(x,y) = Pr[X:::;x;Y:::;yj. 

Let F and G denote the marginal distributions of X and Y respectively. Then, a bivariate 

copula would be a function C satisfying 

H(x, y) = C(F(x), G(y)), (7.1) 

so that the copula couples the univariate marginals to a multivariate distribution. If the 

marginals are continuous then this representation is unique (See Sklar's theorem overleaf). 

Thus the copula fully describes the probabilistic eo-dependence of X and Y, and there 

is a sense whereby one can talk of a "copula property" of X and Y as a true feature of 

the probabilistic eo-dependence of X and Y. Several concordance or correlation measures, 

such as Spearman's rho, can be constructed as direct functionals of the underlying copula. 

One is thus not restricted to the simple linear correlation coefficient, which depends on 

both the underlying copula and the univariate marginals, as a sometimes flawed measure 

of eo-dependence. Several examples exist whereby variables which are completely eo­

dependent nonetheless have a linear correlation of zero. In addition, there are interesting 

theoretical considerations, such as the Invariance Theorem, which motivate the use of 

copulae in the study of eo-dependent random variables. 

We consider the situation with n > 2 random variables. Let G be a continuous univariate 

distribution function. It is shown in [77], Chapter 5 Section 1 that 

G(Y)"'U(O, 1). (7.2) 

(7.2) is known as the probability transform. We follow the presentation in [71}, Chapter 

3. First we need the following useful definition. A function C : [0, 1] 2-R is described as 

being 2-increasing if 

(7.3) 

for any u1:::;u2, v1:::;v2. One can go a step further if we take (7.3) to be the appropriate 

notion of a "C-volume" in [0, If This notion of a volume measure in two-dimensions 

can then be extended ton-dimensions. For a function C : [0, 1]n-R this measure can be 
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defined as 

(7.4) 

where Ujl and Uj2 denote the end-points of the lh box in [0, 1]n. Using (7.4) one also 

has a notion of n-positivity if this sum is positive. These considerations allow us to give 

a mathematical definition of copulae inn-dimensions. We also have Sklar's theorem (see 

theorem 8.2.3 below), which describes copulae as a multivariate generalisation of (7.2). 

Finally we also give the result of an invariance theorem. This Invariance Theorem is a 

very powerful result, demonstrating that the copula is an intrinsic measure of dependence 

as it is invariant under increasing nonlinear transformations. 

Definition 7.2.1 A function C: [0, 1]n-+[O, 1] is an-copula if (i)-(iii) hold: 

(i) For all uE[O, 1], C(1, ... , 1, u, 1...1) = u. 

(ii) C(ub .. , un) = 0 if at least one of the Ui equals zero. 

(iii) C is n-increasing which means that the sum in (7.4) is positive. 

Here, with econometric applications in mind, it is natural to restrict attention to the case 

of a random vector X with continuous marginals. In this case we can say quite a lot more: 

Definition 7.2.2 (Continuous case) If the random vector X has joint distribution 

function F with continuous marginal distributions F1, ... Fn, then the copula ofF is the 

distribution function C of (F1 (XI), ... , Fn(Xn)). 

In this continuous case, it becomes clear that the copula is simply a multivariate 

distribution function with U(O, 1) marginals. Moreover, this representation is unique: 

Theorem 7.2.3 (Sklar's Theorem) Given a n-dimensional distribution function F 

with continuous marginal distributions F11 ... , Fn, there exists a unique n-copula C : 

[0, 1r-[o, 1] such that 

For a proof of Sklar's theorem as stated above, see (77], Chapter 5. A more general result 

is given in (82], page 18. Here, we define a scalar function h to be strictly increasing if 

x 1 > x2=>h(xl) > h(x2). We have the following: 

Theorem 7.2.4 (Invariance Theorem) Let X11 ... , Xn be continuous random variables 

with copula C. Then, if h1(Xl), ... hn(Xn) are strictly increasing on the ranges of X1, ... Xn, 

then the random variables Y1 = h1(X1), ... , Yn = hn(Xn) have exactly the same copula, C. 

For a proof see (77}, Chapter 5 Section 1. As an illustration we can use the invariance 

theorem to provide an expression for the Gaussian copula - the copula for a multivariate 
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normal distribution. Suppose X "'Nn(J..L, "2:.). Since the operation of standardising by 

subtracting the mean and dividing by the standard deviation amounts to applying a series 

of strictly increasing transformations1, we can see by applying the Invariance theorem 

inductively that X must have the same copula as Nn(O, P), where P is the correlation 

matrix of X. From the definition of copulae in the continuous case, we can read off 

Cp,x(ui, ... , Un) = Pr(~(XI):5ul, ... ~(Xn):5Un), 

= ~p(~- 1 (u1), ... ~- 1 (un)), 

where ~P denotes the distribution function of a Nn(O,P) variate. 

7.2.2 Dependence measures 

The prototypical measure of dependence is linear correlation, defined by 

(X X ) _ Cov(X1, X2) 
P 

11 2 
- JVar(X)Var(Y) 

(7.5) 

The linear correlation does satisfy p(X1, X2) = 0 when X1 and X2 are independent, but 

the converse does not hold in general. Moreover, the linear correlation is invariant under 

linear transformations in that 

(7.6) 

Trivially (7.6) holds in the case of strictly increasing linear transformations with (31 and 

(32 positive. However, correlation is not invariant under nonlinear strictly increasing 

transformations, so that in general we have 

(7.7) 

for a strictly increasing nonlinear function T. In contrast, we see from the Invariance 

Theorem that (T(X1), T(X2)) share the same copula as (X1, X2). Hence, if p can be 

expressed as a functional of the underlying copula of (X1, X2), we would have equality in 

(7.7). Moreover, we can construct simple examples where two random variables X and Y 

are completely eo-dependent but have zero linear correlation 0. [Suppose w is U[O, 27r] and 

consider (X, Y) = (sin(w),cos(w)).] Finally, linear correlation is only defined for variables 

with a finite variance. According to {71 }, Chapter 4 Section 3, there are also cases when 

the correlation coefficient is defined but the usual sample estimator has as its asymptotic 

distribution a fat-tailed Levy stable distribution. Thus sample estimates obtained may 

deviate quite considerably from their true underlying values. 
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As a remedy to the various deficiencies of linear correlation, [77] mention rank correlations. 

These provide simple scalar measures of dependence which depend solely on the copula 

of a bivariate distribution - in contrast to the linear correlation coefficient which depends 

on both. There are two practical reasons for looking at rank correlations. Theoretically, 

these statistics are attractive as they can be calculated as direct functionals of the copula. 

In practical terms, they enable calibration of copulae to empirical data, and since they 

are calculated by looking solely at the ranks of data- rather than the actual data values 

- they are also more robust with respect to outliers and extreme values. One example of 

the rank correlation statistics discussed by McNeil et al. is Spearman's rho. Spearman's 

rho is given by the linear correlation of the probability-transformed random variables: 

Definition 7.2.5 (Spearman's rho) For random variables X1 and X2 with marginal 

distribution functions FI and F2. Spearman's rho is given by ps(XI, X2) = 

p(H(XI), F2(X2)). 

For n > 2, we may speak of a Spearman's rho matrix S for the random vector X, where 

Sij = p8 (Xi, Xj)· The following lemma motivates our discussion, and enables us to show 

that Spearman's rho can be constructed as a functional of the underlying copula only. 

Lemma 7.2.6 (Hoffding formula) If (XI,X2) has joint distribution function F and 

marginal distribution functions FI and F2, then the covariance of XI and X2 when finite 

is given by 

A proof can be found in [77], Chapter 5 Section 2. We have the following. 

Proposition 7.2. 7 Suppose XI and X2 have continuous marginal distributions and 

unique copula C. Then Spearman's rho is given by 

ps(XI,X2) = 121I1I (C(u1.u2)- UIU2) duidu2, 

= 121I 1I C(ui,u2) duidu2- 3. (7.9) 

Proof. The factor of 12 appears because Ui = Fi(Xi) is U(O, 1) with variance 1/12. The 

full formula follows by straightforward application of Hoffding's formula (7.8). (7.9) shows 

that Spearman's rho can be constructed as a functional which depends directly on the 

underlying copula. 
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7 .2.3 Conditional dependence measures 

We now motivate a statistical treatment of contagion more directly, by introducing the 

concepts of conditional dependence measures and conditional correlation. {71], Chapter 

6, introduces the concept of conditional correlation. Let X, and Y denote two real random 

variables. If A is a subset of .IR, the conditional correlation coefficient PA is defined by 

Cov(X, YIYEA) 
P A = -.Jr.:=V::=a=r (:;:::X;:;:I Y:;:::::E A=::)#V::=a=r (;:::Y::;=;I Y:::::;E=A=.=) (7.10) 

There are two versions of (7.10) which are of key interest to us here. These are the two cases 

where returns are conditioned upon exceedance of given positive and negative thresholds. 

We define p1; to correspond with the case that the conditioning set A is [v, +oo), and p;; 
when the conditioning set A is (-oo, v]. Though the conditional correlation is a slightly 

more sophisticated notion of linear dependence than the usual linear correlation coefficient, 

it remains a purely linear notion of dependence. In particular, there remains a two-fold 

dependence both on the marginal distributions and the joint distributions. To counter 

this, Malevergne and Sornette (Chapter 6, Section 4) introduce the notion of a conditional 

Spearman's rho statistic, which is intended to better reflect properties of the underlying 

copula and may be a more robust method to consider in practice. 

Recall that if U = Fx(X) and V = Fy(Y) then Spearman's rho was simply the linear 

correlation between U and V. It is this insight which is used to motivate the notion of a 

conditional Spearman's rho statistic. There are two conditional Spearman statistics that 

are of interest here: 

p;(v) = 

Cov(U, VIV2:=v) 

y'Var(UIV2:=v)Var(VIV2:=v)' 
Cov(U, VIV~v) 

y'Var(UIV~v)Var(VIV~v) · 

As shown in Malevergne and Sornette Chapter 6, it is possible to obtain analytical 

expressions for the conditional correlation coefficient in the case of the bivariate Normal 

and bivariate t-distributions. However, the conditional Spearman's rho statistic is much 

harder to deal with theoretically and usually has to be calculated numerically. 

7.3 A statistical approach to evaluating contagion in 

economics 

The methodology introduced in {71 j directly uses the conditional correlation coefficient 

and conditional Spearman's rho to evaluate contagion in economics. One can conclude 

in favour of a contagion from X to Y if the empirical conditional correlation measure of 
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YIX exceeds the confidence interval obtained under a suitable null hypothesis. We assume 

that the log-price follows a symmetric random walk. Thus we restrict attention under the 

null hypothesis to a constant correlation structure. This may be criticised as unrealistic, 

but the empirical convenience of the method is attractive. As an empirical question we 

may reasonably seek to define contagion as that observed over and above what we would 

expect if we were sampling from a simple symmetric random walk. {71] consider both 

bivariate normal and bivariate Student-t models, concluding in favour of the Student-t 

distribution as this copula allows for asymptotic dependence and is not restricted to the 

case of asymptotic independence as is the Gauss copula ( [77], Chapter 5, Section 3). 

Implicit here, is financial modelling using heavy-tailed non-Gaussian elliptically-contoured 

distributions {18]. Elliptically contoured distributions form a natural generalisation of 

the family of multivariate normal distributions, sharing many of the familiar properties 

of the normal distribution such as stability under conditional expectations and linear 

transformations. Where Malevergne and Sornette consider the bivariate t distribution, 

we consider the symmetric generalised hyperbolic distribution. Let XLr and YLr denote 

log-returns corresponding to X and Y respectively. As a solution to the economic question 

of evaluating contagion from X and Y, our proposed method follows the heuristic: 

1. Look at daily log-returns, and assume a simple symmetric random walk. 

2. For each XLr = XLr calculate the conditional distribution of YLriXLr· 

3. For each XLr = XLr simulate YLr from YLriXLr, and calculate the conditional correlation 

measure for this pseudosample. Repeat this process. 

4. There is evidence in favour of contagion if the sample conditional correlation measures 

lie outside the Monte Carlo confidence regions constructed in this way. 

Note that as presented here the method does not require numerical integration to calculate 

the exact conditional concordance measures for the assumed null distribution. The main 

point of interest is whether or not the observed sample values lie outside the Monte Carlo 

confidence intervals generated using steps 1-4. 

7.3.1 The generalized hyperbolic distribution 

Both the generalized hyperbolic distribution and Student's t distribution are regularly 

used in finance as more realistic and heavier tailed alternatives to the normal distribution. 

A comparison of the two is made in [77], Chapter 3 Section 2. The generalized hyperbolic 

distribution was introduced in {10] and popularised as a financial model by {34] and 

{35]. The theoretical background helps to provide context. So-called normal variance­

mean mixtures [18] are among the simplest ways of generating multivariate distributions 

with both heavy tails and asymmetry. If U is a random variable with law F on [0, oo) and 
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X is an d x 1 random vector, then X is a normal variance-mean mixture if 

(7.11) 

where .6 is a symmetric positive definite ('covariance') dxd matrix satisfying a determinant 

one identifiability constraint, J.L and {3 are d vectors. J.L is called the position and {3 is called 

the drift and models asymmetry. Now financial time series- such as log-returns calculated 

over intervals of one day or longer - tend to be only very slightly asymmetric. Thus it is 

common practice to model financial time series using distributions which retain symmetry 

but have heavy non-Gaussian tails. This can be achieved by considering nonnal variance 

mixtures, corresponding to the case where the drift parameter {3 in (7.11) is zero. Both the 

generalized hyperbolic and Student t distributions can be considered as normal variance­

mean mixture models. In this case, the generalized hyperbolic distribution corresponds to 

the case where U in (7.11) is generalized inverse Gaussian (GIG(>.., x, t/I)).The Student tv 

distribution is the case where U is inverse gamma (IG(v/2, v/2)). 

There are further theoretical reasons for considering the generalized hyperbolic distribution 

and the Student t distribution as suitable candidate models in finance. Firstly, if we restrict 

attention to the symmetric normal variance mixture case, then both of these distributions 

belong to the class of elliptically contoured distributions. This family constitutes a natural 

semi-parametric generalisation of the multivariate normal family. In the regular case where 

the density exists and the covariance matrix :E is of full rank, the density of a elliptically 

contoured random variable can be written as 

( {19}, equation (EC)). The multivariate normal distribution is the special case g(x) = 
(27r)-d/2e-x12 . Further, in a dynamic setting, the generalized hyperbolic and Student t 
distributions are also of interest in building heavy-tailed Levy process generalisations of 

the geometric Brownian motion model of the stock market. Note that both the generalized 

hyperbolic and Student t distributions are infinitely divisible. So that if for example we 

were looking at daily prices, there would be a Levy process whose daily increments were 

generalized hyperbolic (with the same parameters) and also a Levy process whose daily 

increments were Student t. 

In the general asymmetric normal variance-mean mixture case, the density of the 

generalized hyperbolic distribution is given by 

95 



where a:2 = '1/J + f3'l:l. -l /3. If X has a generalized hyperbolic distribution, we use the short­

hand ghd(>.., a, /3, x, J.L, tl.), where d denotes the dimension of the random vector X. We 

restrict attention here to the symmetric normal variance mixture case. In this case the 

density of a generalized hyperbolic random variable simplifies considerably, and is given 

by 

x->./2'1/Jd/2->./2 K>.-d/2 ( J(x + (x- J.t)'l:l. t (x- J.t) )'1/J) 

f(x) = (27r)df2K>.(v'Xifi) (x+(x-J.t)'tl.-1(x-J.t)'I/J)d/4->.f2 ' 
(7.12) 

where K>. is a modified Bessel function of the third kind satisfying the integral 

representation 

1 100 

>.-1 { 1 ( 1 ) } K>.(x) = 2 -oo u exp 2 u +:;;: du (x > 0). 

We employ the pragmatic estimation method used by {14]- which is applicable for the 

symmetric elliptically contoured case considered here. We estimate J.t by the empirical 

mean vector and l:l. by the empirical variance scaled to have determinant one. Then we 

base estimation of the other parameters upon maximization of the likelihood suggested by 

the formula given in (7.12). We perform the optimisation using the Nelder-Mead method 

( {81]). 

There are further reasons why the generalized hyperbolic distribution might be of interest 

for use in financial modelling. Namely tractability, as this class of distributions remains 

closed under linear transformations and forming conditional distributions. The full results 

are given in {20]. Quoting the result for conditional distributions we have 

Theorem 7.3.1 Suppose that X is a d-dimensional variate distributed according to the 

generalized hyperbolic distribution ghd(>..,a,/3,x,J.L,tl.). Let (Xt,X2) be a partitioning of 

X, and let r and k denote the dimensions of X1 and X2 respectively. Let (/31,;32) and 

(J.L1, J.L2 ) be the corresponding partitions of /3 and J.t. Let 

be a partition of tl. such that l:l.n is a rxr matrix. Then the conditional distribution of 

x2 given x1 =X} is ghk(J.., a., (3, x., p,, 3.) where 

>.. = ).. - r/2, 
1 a. = a:ll:l.ul2k, 

(3 = /32, 

X. = 
-1 1 

ltl.niT(x + (x1- J.Lt)'tl.ii (x1- J.L1)), 
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Here we are simply interested in the symmetric 2-dimensional case, which allows for 

considerable simplification. As a simple corollary we have: 

Corollary 7.3.2 Let (X1.X2) be generalized hyperbolic gh2(>.,J.L,tl.,x.,'I/J). Then the 

conditional distribution of x2 given xl is ghl (>.- 1/2, jL, 1, x, ti;) where 

a12 
J.L = J.L2 +(xi- J.LI)x-, 

11 

x X. (xi - J.L1? 
x- + f12 ' 11 11 

'1/J = '1/Jtl.u. 

Finally, we remark that the formulation of the hyperbolic distribution as a normal variance 

mixture allows for an easy way to simulate from ghd(>., J.L, tl., x., '1/J). Let E = utl.. The 

simulation algorithm is as follows: 

1. Generate u from GIG(>.,x.,'I/J). 

2. Return Y = J.L + A'v, 

where A' A = E via Cholesky decomposition and v is Nd(O, Id) independent of u. 

Thus the problem effectively reduces to a one-dimensional problem, namely that 

of simulating from a generalized inverse Gaussian random variable. Here this is 

achieved by using the R function rgig downloaded from Professor David Scott 's website 

(http:/ Jwww.stat.auckland.ac.nz/ "'dscottj). 

7.3.2 Financial application 

·As a financial application we consider the contagion problem associated with Latin 

America. In particular, the period encapsulates the Mexican crisis in 1994 and a crisis 

in Argentina that started in 2001. {71}, Chapter 6, look at daily log-returns from 

four national stock markets: Argentina (Merval index), Brazil (IBOV index), Chile 

(IPSA index) and Mexico (Mexbol index). The sample period covers January 15th 

1992 to 15th June 2002, and thus includes both crisis periods. Malevergne and Sornette 

conclude in favour of an asymmetric contagion effect, whereby Mexico and Chile can be 

potential sources of contagion towards Argentina and Brazil, but the reverse does not hold. 

According to Malevergne and Sornette this offers an attractive economic interpretation 

in terms of market-oriented and state-intervention oriented countries. The hypothesis 

is that currency floating regimes are able to adapt to important manufacturing sectors 

and deliver more competitive real exchange rates (Chile and Mexico) than fixed exchange 

rates (Argentina before the 2001 crisis, and Brazil). In short, a more flexible exchange 
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rate might be seen to provide a safety net and allow a decoupling between the national 

stock market and external influences. 

Here, we look at daily log-returns from the Mexican IPC index and the Brazilian Bovespa 

index, from May 3rd 1993 to April 30th 2003. Whilst Malevergne and Sornette use a 

bivariate student-t distribution, we use the bivariate generalized hyperbolic distribution. 

For our results to be consistent with the analysis of Malevergne and Sornette we should 

see that the IPC affects the Bovespa but the Bovespa does not affect the IPC. Here we 

measure "affect" in terms of deviation from the sampling distribution of the correlation 

measures under the null hypothesis that the log price follows a symmetric 2-d generalized 

hyperbolic random walk. The results are shown in Figures 7.1 and 7.2. In the sequel 

the graphs have the following structure. The X axis denotes x-values, standardised 

by subtracting the mean and dividing by the standard deviation. The Y -values denote 

conditional correlation or conditional Spearman's p values. For X-values less than zero we 

calculate p-(v) or p;(v). Thus we are conditioning on values of y when the X takes values 

less than or equal to x. For X-values greater than zero we calculate p+(v) or Pt(v). Thus 

we are conditioning on values of y when the X takes values greater than or equal to x. 

The dashed lines indicate 95% confidence regions- obtained by Monte Carlo simulation 

- under the null hypothesis that the log-prices follow a symmetric bivariate generalized 

hyperbolic random walk. 

Further details of the Monte Carlo algorithm are as follows. Note that under the null 

hypothesis of a random walk, the log-returns constitute a random sample from a bivariate 

generalized hyperbolic distribution. Let X and Y refer to the two time series of log­

returns. First we consider the observed values Xi of X, and simulate Yi,s from the 

distribution of YiiXi = Xi using Corollary 7.3.2 for the conditional distributions of the 

2-d symmetric generalized hyperbolic distribution. From this (xi, Yi,s)pseudosample, we 

calculate p- (xi) and p;(xi) or p+(xi) and Pt(xi) for each Xi, depending on whether 

or not Xi > f.lX· We repeat this procedure 10,000 times to generate pointwise 95% 

confidence intervals. 

7 .3.3 Empirical results 

The results for the Mexican IPC conditional on the Brazilian Bovespa are shown in Figure 

7.1. The results for the Brazilian Bovespa conditional on the Mexican IPC are shown in 

Figure 7.2. In Figure 7.1 the observed sample conditional correlation coefficient lies within 

confidence limits. The conditional Spearman's rho shows some minor deviation from this 

null hypothesis, although it seems rather grand to label this contagion. Thus, we seem to 

have some suggestion of really quite minor contamination from Brazil to Mexico. 

98 



In contrast, we seem to have stronger evidence for a contagion effect from Mexico affecting 

Brazil. This is shown most strongly by the conditional Spearman's rho statistic, although 

this is also highlighted by the conditional linear correlation coefficient in the left panel. We 

note from the scale of the x-axis in the plots that we appear to have roughly twice as much 

contagion from Mexico to Brazil using the conditional correlation measure as from Brazil 

to Mexico using the conditional Spearman's rho statistic. The conditional Spearman's 

rho statistic then shows an added degree of contamination from Mexico to Brazil than 

that measured by the conditional correlation measure. The results thus appear to be in 

agreement with Malevergne and Sornette's analysis. There seems to be an asymmetric 

contagion effect whereby Mexico affects Brazil but there is a comparatively minor influence 

in the opposite direction. 
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Figure 7.1: Left panel: Values of p±(v) Right panel: Values of Pt'(v) 

7.4 Conclusions 

This chapter has discussed a statistical approach to evaluating contagion in economics 

based on conditional concordance measures and the null hypothesis of a heavy-tailed 

random walk. Here we used a 2-d symmetric generalized hyperbolic random walk. 

Appropriate mathematical and statistical background was discussed and, in particular, 

copulae were introduced as the appropriate way to describe the probabilistic eo-evolution 

ofmultivariate random variables. Further, as an alternative to the simple linear correlation 

coefficient, Spearman's rho was introduced and, as presented in {77} and {71}, was shown 

to be a direct functional of the underlying copula. Two conditional concordance measures 

were discussed, the conditional correlation coefficient and the conditional Spearman's 

rho. The conditional Spearman 's rho appears to be the more sensitive measure of eo-
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Figure 7.2: Left panel: Values of p±(v) Right panel: Values of p:;(v) 

dependence, with results using this measure showing greater deviation from the null 

hypothesis of a random walk. However, results using both measures showed some 

similarities. In terms of the financial application, we have evidence for contagion from 

Mexico to Brazil but a relatively minor influence in the opposite direction. These results 

coincide with the interpretation of {71} and may admit the economic interpretation that 

currency floating regimes provide greater protection from external influences than fixed 

exchange rate regimes. 
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Chapter 8 

Conclusions and further work 

8.1 Conclusions 

We can summarise the main conclusions of this thesis as follows. In Chapters 1-3 we 

analysed financial data corresponding to the S&P 500, the N asdaq and the Hang Seng prior 

to observed crashes. In Chapter 1 we reviewed the log-periodic method of Sornette and 

Johansen. In Chapter 2 we were able to show that simple random variation can generate 

an apparent log-periodic signal. Further, rather than log-periodicity, it appears sufficient 

to model super-exponential growth. A definite precursor of crashes appears to be super­

exponential growth, with the price continuing to accelerate before the observed crashes. In 

Chapter 2 we combined these simple observations with the interpretation of [84}, namely 

that bubble episodes may involve rational investors appropriately compensated for added 

levels of risk. Mathematically, we use a slightly simplified version of the JLS power-law 

with interest rate [52}. The resulting formulae are intuitive and lead to bubbles exhibiting 

super-exponential growth. We call this model the SEG model. We then use this model to 

obtain interesting backward predictions for these historically observed crashes. 

In Chapter 3 we studied SDE models for bubbles. First we examined a proposed hierarchy, 

{2}, of no bubbles vs. fearless bubbles vs. fearful bubbles. However, the proposed fearless 

bubble model, an SDE formulation of the JLS power-law model, is not seen to offer 

a significant improvement over geometric Brownian motion. In contrast, the proposed 

fearful bubble model is seen to offer a significant improvement. We made two identifiability 

constraints and derived maximum likelihood equations for the Sornette-Andersen model 

[94} to refine the statistical analysis of [2} with a likelihood-ratio test for the presence of 

bubbles. These results are also interesting as they demonstrate that SDEs a flexible and 

natural tool to use in this context and form the natural and meaningful generalisation of 

the super-exponential growth ODE models considered previously. 
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Further, the original formulation of the Sornette-Andersen model can be improved by 

using a heavy-tailed hyperbolic Levy process, {34}, in order to take into account non­

Gaussian behaviour in financial markets ( {31}, Chapter 7 page 210). The likelihood ratio 

test still applies and gives us a more robust test for bubbles in financial markets. The 

results using the hyperbolic re-formulation are seen to be generally less significant than 

when the background driving noise process is assumed to be Brownian motion. We use 

this test to repeat the analysis of {2] and also in out-of-sample analysis in Chapter 5 as 

we compare our model with some of the analysis in {93}. 

In Chapter 4 we discuss volatility and liquidity precursors. Liquidity is a general concept 

from economics, it refers to the unrestricted flow of money in "healthy" markets and 

generalises the purely statistical notion of volatility. We developed a simple test, based on 

the Sornette-Andersen model, to gauge which factors were significant once we account for 

super-exponential growth. Results are seen to offer an improvement over a simple nonlinear 

regression approach using ordinary least squares, since in this case the error terms appear 

to be very highly correlated. We have some evidence to support the interpretation of [22} 
that crashes occur on volatile, illiquid markets. Further, the economic interpretation of 

these results seems interesting, with different features seen to be significant on each of 

the three markets. The JLS power-law model makes explicit the analogy between stock 

market crashes and complex systems. In particular, this model assumes that economic 

variables display power-laws and approximate phase-transition behaviour prior to crashes. 

Our statistical analysis in Chapter 4 and Chapter 5 gives some evidence in support of this 

and liquidity measures closely linked to the trading volume seem particularly important. 

Hence, we also find some additional evidence to support the analogy between stock market 

crashes and complex systems. 

In Chapter 5 we synthesise material in Chapters 2-4. In particular, our method follows the 

heuristic given by Figure 5.1, using the likelihood ratio test of the hyperbolic Sornette­

Andersen model as a formal statistical test for super-exponential growth. We test for 

bubbles using four-years of data as suggested by the results of our backwards predictions 

using the SEG model in Chapter 2. In Section 1 we find evidence of a bubble in the 

US$:DEM series from February 1981- February 1985 but reject the hypothesis of a bubble 

in the US$:CAD series July 1994-July 1998. Both are cited as bubbles in {93}. In Section 

2 we discuss log-periodic false predictions as discussed in {93}. In both cases we find strong 

evidence for bubbles, but find that the original method seems to over-state the extent to 

which a crash is imminent. The second prediction is of a crash on the Nasdaq in Oct. 1999 

based on data up to the end of Sept. 1999. Using both our SEG model of Chapter 2 and 

theregime-switching regression model of {103} we conclude that in actual fact, the level of 

risk seems to peak around 2000, the actual time of the crash and around six months later 

than the original prediction. Section 4 illustrates the prediction heuristic Figure 5.1, and 
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we are able to obtain interesting results corresponding to historical crashes using data for 

the Dow Jones Industrial Average Sept. 1983-Sept. 1987 and for the Nasdaq 100 index 

from March 1996-March 2000. 

In Chapter 6 we extended the approach taken in [55} to derive an approximate generalised 

Pareto distribution for drawdowns on an exponential-Levy market. This result refutes the 

previous suggestion in [55} that large drawdowns are outliers. The result obtained appears 

to have possible applications for calibrating Levy process models of financial markets and 

capital allocation problems in banks. Also in Chapter 6 we discussed the method of [100} 

for determining the origin of crises. The theory states that crises with an exogenous 

origin should involve a faster volatility decay than crises with a more involved endogenous 

origin, with an approximate power-law decay in volatility in both cases. This is based 

on an analogy between stock markets and simple models for exogenous and endogenous 

shocks in complex systems [95}. From the results obtained we observed at least some 

empirical results to support the intuition of [100}. However, it appears that this method 

is flawed in that it systematically fails to estimate the empirically observed exponents for 

"endogenous" shocks, and also is not able to predict values for the exponent corresponding 

to endogenous shocks. It appears that rather than the multifractal random walk, a better 

match with empirical data can be found with a stochastic volatility model where the log­

volatility obeys a fractional Gaussian noise process. FUrther, this simple model is able 

to predict the exponent of the power law decay corresponding to an "endogenous" shock, 

with a reasonable correspondence with the empirical data. 

According to the economic literature on currency and banking crises there is a subtle 

distinction between insurance crisis and illiquidity crisis models [6}. The class of illiquidity 

crises models motivates the question of evaluating contagion in economics. Following 

the approach of [71}, we formulate this question as "Is there any evidence of contagion 

over and above that which we might expect under the null hypothesis of a symmetric 

generalized hyperbolic random walk?". The financial application was with regard to the 

Latin American currency crises of the 1990s and Brazil and Mexico in particular. The 

results obtained were consistent with the conclusions of [71}, Chapter 6, and appear to 

show an asymmetric contagion effect whereby Mexico infects Brazil but not vice-versa. It 

has been suggested that this is consistent with the economic interpretation that currency 

floating regimes provide greater protection from external influences than fixed exchange 

rate regimes. 
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8.2 Further work 

There are rich potential avenues for empirical application of ideas expressed in this thesis. 

This includes use of the SEG bubble models in Chapters 2-5, the empirical power-Jaws in 

Chapters 4 and 5, and the work in evaluating contagion in economics in Chapter 7. In 

particular, the empirical power-laws in Chapter 4 and 5 are of interest as they highlight, 

quantitatively, the analogy between stock markets crashes and complex systems. The 

implicit assumption is that this feature should be very general and not a specific artefact 

of the limited number of markets examined in this thesis. Possible avenue for further 

investigation include models for time-varying expectations and models for change-points 

in financial series. Change-point models are discussed in [60}. 

There are also a number of possible ways in which one might consider improvements to 

models considered here. One might consider extending the SEG model of Chapter 2 using 

a regime-switching framework or by a Bayesian formulation of the problem. {28] consider 

a Bayesian formulation of log-periodic models using the exact definition of the hazard rate 

(see Appendix A). 

Chapter 3 suggests ways in which theoretical models may be developed. For the Sornette­

Andersen model we may not only wish to consider option pricing problems but also 

extensions to the model itself. Here, we replaced the background noise process with a non­

Gaussian hyperbolic Levy process. However, the Sornette-Andersen model was initially 

constructed as a nonlinear generalisation of the Black-Scholes model and one might equally 

consider nonlinear generalisations of simple stochastic volatility models. 

The derived formula for drawdowns suggest possible applications for calibration of Levy 

models and risk management. It might be of interest to develop a more rigorous 

mathematical analysis and investigate ways in which similar power-law behaviour might 

emerge in complex systems. Tail behaviour under random stopping is briefly discussed 

in [17], Chapter 8. The method of {100} is interesting and probably has a very broad 

potential application to a wide range of areas. However, in Chapter 6 it appears that 

rather than the multifractal random walk a better description of the empirical data is 

given by a stochastic volatility model where the log-volaility obeys a fractional Gaussian 

noise process [95}. Analysis and estimation of this model would be interesting. Further, 

the causal integral representation {6.29) is a key feature of interest here. In particular, 

one might examine the subject of volatility precursors of financial crashes if it is assumed, 

as in the JLS model, that markets price risks of the form B(tc- t)-a prior to crashes. 

It may also be of interest to consider valuation models and ways of constructing 

104 



fundamental prices. Simple valuation models include the constant fundamental price­

dividend ratio model described in the appendix of {103] and vector autoregressive 

techniques, for example [25]. One particular problem is that in the first case the price­

dividend ratio is assumed constant, and in the second case is assumed constant subject 

to short term variations regarding future dividend payments. Empirical results using 

both these methods are seen to be broadly similar {23], {103]. However, are these 

modelling assumptions realistic when the price dividend ratio is seen to increase over time, 

particularly in recent years? Some simple present value models are discussed in Chapter 

7 of [26]. One suggestion is that markets might be adjusting to high anticipated earnings 

associated with new technologies which are yet to deliver. A paper discussing some of 

these issues is {91]. Another possibility might be a Bayesian formulation of the pricing 

problem, where the price-dividend ratio p and other model parameters are considered to 

be unknown random variables which have to be estimated by a representative market 

agent. For an application of these ideas to a slightly different context see [51}. 

There are also a number of less obvious ways in which one might consider extending this 

thesis. Given the close analogies between stock markets and complex systems described 

in Chapters 1-5 one might consider other ways in which this could be explicitly accounted 

for in the modelling. In Chapter 7, it may be of interest to extend our purely statistical 

approach by considering stochastic epidemic models. However, it is not obvious how this 

may be achieved in a manner which retains the practical nature of the existing method. 
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Appendix A 

Exact definition of the hazard rate 

Chapter 2 discussed the hazard-rate in relation to a first-order martingale approximation 

in the JLS power-law model. Here, for the sake of completeness we list the exact 

interpretation of the hazard rate as discussed in the appendix of [28}. Suppose that 

a crash has not occurred by time t1. The conditional probability that X will occur at or 

before time t2, (t2 > ti), is given by 

(A.1) 

where F denotes the cdf of X. The hazard rate is obtained by taking 

h(ti) = (d~2 Pr(X$t2IX > ti)) . 
t2=tl 

Let S(t) = 1 - F(t). Then S'(t) = - f(t) and we have that 

-S'(t) -d 
h(t) = S(i) = dt ln{S(t)), 

and S(O) = 1. Continuing, we see that S(t) = exp{- J~ h(u)du} and {A.1) reduces to 

= 
S(ti) - S(t2) 

S(ti) 

= 1 _ S(t2) 
S(ti)' 

1- exp{-1t
2 

h(u)du}. 
tl 

{A.2) 

Thus (A.2) is the exact conditional probability statement corresponding to the hazard rate 

h(t). 
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Appendix B 

Derivation of the van 
Norden-Schaller model 

This model requires a decomposition of a stock price into a bubble component and a 

fundamental price component. We now describe a very simple way how this approximate 

decomposition might be achieved before we give a full derivation of the model. 

B.O.l Constructing fundamental values 

This subsection describes a simple model to estimate fundamental values. This approach 

is considered by both [103} and {23}, and is the simplest way to construct fundamental 

values. Here, we interpret fundamental values as price levels that would appear reasonable 

given observed dividend payments. Both papers also consider a more complicated vector 

autoregressive method, described in [25}, to achieve this fundamental value-bubble 

decomposition. However, both these papers report that results seem to be similar for these 

two methods. According to the appendix in [103}, the starting point is the equilibrium 

condition in the [69} model for economy-wide market prices and quantities: 

(B.l) 

where U' ( ·) denotes the derivative of a utility function relating to consumption of dividends 

and Pt, Dt are the price at timet and Et corresponds to the conditional expectation with 

respect to some filtration Ft. /3 denotes a subjective discount factor 0 < /3 < 1. Next, this 

simple model assumes, for sake of tractability, a constant relative risk aversion utility: 

{B.2) 

where 'Y is the coefficient ofrelative risk aversion. Substituting (B.2) into (B.l) gives us 

{B.3) 
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This model then assumes, for sake of tractability, that log dividends are a random walk 

with drift, so that letting dt = log(Dt) we have 

dt = ao + dt-1 + £t, (B.4) 

where ao is a drift parameter, and €t is an i.i.d. sequence of N(O, a 2) random variables. 

To solve this model, we propose a solution of the form 

(B.5) 

Plugging (B.5) into (B.3), we obtain 

(B.6) 

2 2 
From (B.4) and using the fact that the moment generating function of N(j.L, a2 ) is eJJt+T 

we have that 

(B.7) 

which follows from the fact that dt+lldt is N(ao + dt, a 2). Plugging (B.7) into (B.6) we 

are left with 

i.e. p = 
j3eao(1+-y)+ (l+·r:t"'2 

2 2 • 
1 - /1eao(1+-r)+ (l+J} " 

(B.8) 

Hence, it follows that (B.5) holds with p given by (B.8). The implications are that under 

this simple model, the fundamental value Pt' is simply tied to the dividend as: 

Pt = pDt. 

In empirical work, p is estimated by the mean price-dividend ratio. 

B.0.2 A Regime-Switching Regression model 

We use the simple model of the previous subsection to construct fundamental prices. Let 

Pt denote the stock market price at time t, and Bt be the deviation from fundamental 

price defined as Bt = Pt- Pt', where Pt is the fundamental price Pt' = pDt. We have 

two states S a speculative regime with a bubble and C a collapsing bubble regime. The 

transition between the state S and the state C corresponds to a crash. Assuming that Bt 
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is statistically independent of Dt, we have that if the equilibrium condition is satisfied 

(B.9) 

This can be seen as follows. The equilibrium condition in (B.l) is 

(B.lO) 

The LHS in (B.10) becomes 

using Bt = Pt - Pt. Similarly, the RHS in (B.10) becomes 

/3Et(Dl+t (Bt+l + pDt+t + Dt+t)) = /3Et(DJ+IBt+t) + /3Et((1 + p)DJtl), 

= /3Et(DJ+1Bt+t) + pD:+-r, 

from (B.6). Finally, (B.9) follows from the assumption that the Bt and the Dt are 

independent. If we retain the assumption that dt = log(Dt) = o:o + dt-1 + tt, where 

the t:t are i.i.d. N(O, u2), then (B.9) can be re-written as 

Et[Bt+I] D-r 
= t 

Bt !3Et!DJ+l]' 

= /3-1 e --y(ao+-ra2 /2}, 

= M, (B.ll) 

for some constant M say, using the fact that the moment generating function of N (J.L, u2 ) 

is e~'t+a2t2 12 • Let bt = Bt/ Pt be the relative bubble size at time t and consider the state 

S. If we are in state S at timet, the probability of being in Sat time t + 1 is given by 

q = q(bt), so that the probability of remaining in state S at time t + 1 depends on the 

relative bubble size. Further q( ·) is assumed to satisfy 

dq(bt) 0 
dlbt I < ' (B.12) 

so that as the relative bubble size increases, a collapse becomes more likely. Consider the 

state C. In the collapsing regime C, bt+l is expected to increase less than proportionately 

with bt. To incorporate this van Norden and Schaller define 

(B.13) 
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where u(·) is a continuous and everywhere differentiable function satisfying u(O) = 0 and 

O~u'~l. This means that 

< 1. 

In order to retain (B.ll), we must have 

(B.l4) 

Let Rt+l denote the returns given by Rt+l = PttlttDttl = Pt±1 +Dttl ~~Ptti-Pt+ 1 ). It follows 

that 

Using the definition of fundamental price, it follows that 

= 

From (B.15), it follows that 

Et[(l + p)Dt+l] 
Pt 

Dt ( 1 + P )eato+u2 /2 

Pt 
(B.15) 

(B.16) 

since bt = *· Now Pt- Bt = Pt = pDt. So~= l~bt. Inserting this into (B.16) gives 

E [R IS]= (1 + p) ato+u2f2(1 _b)+ Mbt _ (1- q(bt))u(bt) 
t t+l p e t q(bt) q(bt) . (B.17) 

Similarly, E[Rt+liCJ now becomes 

= (1 + P) eato+u2f2(I _ bt) + E[Bt+1ICJ 
P Pt ' 

= (1 + p) eato+u2f2(I- bt) + u(bt). 
p 

(B.18) 
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Since the previous expressions are all differentiable functions of bt, a first-order linear 

approximation 1 enables us to write 

E(Rt+liS) = f3so + f3sbbt, 

E(Rt+dC) = f3co + f3cbbt, 

qt+l = {3qO + f3qblbtl· (B.I9) 

This simple linear approximation enables us to say something about the coefficients in the 

model (B.I9). We have 

dEt[Rt+tiC] _ -(I+ p) O<o+o-2/2 '(b) 
db 

- e +u t. 
t p 

(B.20) 

Since, by assumption, u'(bt):::;I, in the financially reasonable case that a 0 > 0 

(corresponding to dividends that tend to grow over time), it follows that (B.20) must 

be negative, and hence that the coefficient f3cb < 0 in (B.I9). By construction, we must 

also have {3qb < 0. We also have 

bt=bo 

= -(I+ p) e0<o+u2;2 + _!!__ _ Mbtq'(bo) _ u'(bo) (I- q(bo)) + q'(bo)u(bo) 
P q(bo) q(bo)2 q(bo) q2(bo) ' 

= dEt[Rt+liC] +_I_ [M_ u'(b )) + q'(bo) [ (bo) _ Mbo] 
dbt q(bo) 0 q2(bo) u ' 

bt=bo 

I 1 i(bo) 
= f3cb + q(bo) [M-u (bo)] + q(bo)2 [u(bo)- Mbo]. 

Under the financially reasonable assumption that M > I, so that the rate of return on 

the fundamental is positive, the second term in (B.2I) must be positive since u'(bo) < I 

by assumption. Next we consider the third term in (B.2I). By assumption, q'(bt) < 0 for 

bt > 0 and q'(bt) > 0 for bt < 0. We also have that [u(bt)- Mbt]' = [u'(bt)- M], which is 

negative by the above, and in this case means that [u(bt)- Mbt] is a strictly decreasing 

function of bt. We also have u(O) = 0 (by assumption), meaning that [u(bt) - Mbt] is 

positive for bt < 0, and negative for bt > 0. These considerations imply that the final term 

in (B.2I) is also non-negative, and we are left with f3sb > f3cb, which is intuitive as this 

suggests higher returns when in the speculative phase. As a purely statistical formulation 

of the model, {103} use 

Rt+1IS = f3so + f3sbbt + ES,t+l. 

Rt+ tiC f3co + f3cbbt + EC,t+l, 

Qt+1 = 4?({3qO + {3qblbtl), 

1corresponding to f(bt)-;::J(bo) + /'(bo)(bt- bo) 

Ill 

(B.22) 

(B.2I) 



where 4>(·) denotes the standard normal CDF. This specification then ensures that the 

estimated q-values lie in [0, 1]. The tS,t+l and tC,t+l are assumed to be independent 

sequences of normal white-noise errors with variances u~ and ub respectively. 
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Appendix C 

Market-value models for banking 
• crises 

Models in this section make the fundamental assumption that the health of banking 

sectors (and of companies more generally) can be distilled from publicly available market 

prices. Typically, fairly general tools from mathematical finance are used with the aim 

of producing estimates of either distance to default or probability of default. These are 

used as suitable proxies which may be used to measure or predict crises. For illustration, 

we describe two approaches here. The first model used by {27} uses an option pricing 

approach, close in spirit to the seminal paper of {78}, to estimate distance to default. A 

second method, based on the Capital Asset Pricing Model, is used by {24} to construct 

estimates of the probability of default. 

C.l Merton 's model 

The asset value of the firm V is assumed to follow a geometric Brownian motion with drift 

equal to the risk-free interest rate r and volatility u: 

dVi = Vi(rdt + udWt), (C.l) 

where W is a standard Brownian motion. The firm defaults when its asset value at 

maturity Vr is less than or equal to its debt at maturity D. We introduce the distance to 

default d as a measure of default risk. From !to's rule, we have 

u2 
d = log(Vr) -log( D)= log(Vo) + (r- 2T + uWr -log( D)), 

using the fact that in the Black-Scholes modellog(Vr )"'N (log(Vo) + ( r- ~
2 

)T, u2T) with 

Wr-N(O, T). The normalized distance-to-default DD- which is more commonly used in 
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practice - is defined as 

2 

DD = _d _ _ _ W_r = _lo..;;...g..:....(Vr_;o/:..._D_;):..._+-::::::-( r--~~.....,;)_T 
u..JT ..JT u..JT 

This renormalised distance to default DD is given by~ (where /1-d and rJd denote the mean 

and standard deviation of d) and is thus a measure of the number of standard deviations 

a firm is from default. Calculating the distance-to-default requires knowledge of the asset 

value and the asset volatility of the firm. However, if the face value of debt D and the 

maturity T are known, then the two unobservable variables can be calculated from the 

firm's equity value E and its volatility U£. These latter two variables can be measured 

empirically as functions of the asset value of the firm. Under Merton's model, the distance 

to default DD can be estimated from a series of nonlinear equations. 

The value of the firm's equity at maturity T is given by 

Er = max(Vr- D, 0). 

From this we see that the equity is equivalent to a European call option on the price with 

maturity T and strike D. Thus, starting at time t and maturing T periods later, the 

European call option formula gives 

(C.2) 

vt and Dt denote the company value and the value of debt at timet, ~(·) is the N(O, 1) 

c.d.f. and d1 and d2 are defined as 

log (-H;) + (r + ~)T 
d1 = u..JT 
d2 = d1- uvT. 

(C.3) 

(C.4) 

Now equity is a function of asset value. Thus we can use !to's lemma to calculate the 

instantaneous equity volatility UE,t· Suppose that Xt follows an Ito process of the form 

with instantaneous volatility given by u(Xt, t). It follows from Ito's formula that the 

process yt = G(Xt, t) has an instantaneous volatility defined by Ytu(yt, t) = Rf;Xtu(Xt. t). 

From this result we can see from (C.2) that we must have 

(C.5) 

where UE t denotes the instantaneous equity volatility. This result can be seen as follows. 
' 
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From (C.2) we have that 

Completing the square, we can see that 

We have from (C.3-C.4) that 

= 
2 (log (-b;) + rT) 

av'T 
= aVT. 

Combining, we see that 

from which it follows that 

Chan-Lau et al. use T = 1 year, the 1-year U.S. treasury yield as the proxy for the risk­

free interest rate, and calculate equity volatility from the three-month moving average 

from daily equity data. The value of debt Dt at time t is interpolated from annual stock 

debt estimates. The set of nonlinear equations (C.2-C.5) can then be used to estimate the 

distance to default DD. 

C.2 CAPM-based modelling approach 

The model here is that given in used originally in [49} for individual banks, and by {24} 
to represent a particular country's banking sector. A representative bank has both assets 

and liabilities, and if we assume that these claims are all priced efficiently by the market, 

then the stock price St of the bank is given by 

where N is the number of stocks, Pit is the price of the bank's asset or liability i at time 

t, and Xit is the amount of the asset/liability at time t. We assume that the expected 

value of the stock in the future in conjunction with the variability of the underlying 
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value around this expectation is informative about the probability of the bank actually 

defaulting. Conditional upon information available up to and including time t - 1, the 

CAPM expresses the expected return of a stock, Et-l(Rt), as the the sum of a risk-free 

return RFt (for example a treasury bill) plus a time-varying risk premium RPt: 

(C.6) 

The risk premium can be thought of as representing the amount of risk that an investor 

has to be compensated for multiplied by the market price of this risk At. According to 

the CAPM not all risk can be compensated for, and in equilibrium only non-diversifiable 

risk is priced. Thus, only non-diversifiable risk should be compensated for in the market 

by a higher return than the risk free return. If we denote the amount of expected non­

diversifiable risk by Et-I(NDt) we can write 

(C.7) 

where the €t is a zero-mean stochastic error term. From (C.6) and (C.7) we can see that 

the value of the bank capital at time t can be calculated as 

(C.8) 

(C.8) can be decomposed into the sum of a deterministic average and a stochastic error 

term: 

(C.9) 

where the conditional mean is given by the sum of the first three terms in (C.8). The 

conditional variance is given by (St-1N)2u~t' where uEt denotes the time-varying standard 

deviation of the innovations €t· Under the assumption of market efficiency, so that the 

time series StN is a martingale, we can divide the the value of the bank St-lN by the 

conditional standard deviation Bt-1 N r7 Et to obtain 

(C.lO) 

We see from (C.9) that (C.lO) as a ratio of a conditional mean and a conditional standard 

deviation is a distance to default measure, giving the number of standard deviations that 

the bank is away from default (if we assume that default occurs when the value of the bank 

becomes negative). (C.lO) can also be used to directly calculate probabilities of default 

under the assumption that €t is normal. In this case the probability of default at time t 

can be calculated as 
(C.ll) 
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which is the probability that (C.9) becomes negative. We return to the definition of the 

CAPM model in order to show how we may obtain estimates of <Jw According to CAPM, 

see for example [24}, the expected returns can be written as 

where RMt is the return on the market portfolio and f3t is the expected conditional CAPM 

coefficient defined as 

where <JRt,RMt = Cov(Rt, RMt) and <7hMt = Var(RMt). Since the variance of the market 

portfolio corresponds to the amount of non-diversifiable risk, it follows from (C. 7) that 

We can rearrange this formula to provide an expression for the market price of risk: 

since the risk free return RFt is regarded as non-stochastic. Rewriting (C.7) for the market 

portfolio we see that 

(C.12) 

where Vt is a zero-mean random error term. Finally using the definition of the CAPM 

coefficient f3t we can see that the returns of the representative bank are given by 

Rt 
= RF. Et-1 (<JRt,RMt)Et-1 (RMt - RFt) 

t + E ( 2 ) + ft 
t-1 qRMt 

= RFt + AtEt-1(<7Rt,RMt) + ft, 

= RFt + AtEt-1(qEt,vt) + ft. (C.13) 

In sum, (C.12) and (C.13) give equations for time-varying expectations of variances and 

covariances which depend the time series behaviour of ft and Vt· For parsimony Bystrom 

uses a bivariate Garch-M (1, 1) process which allows for changes in the conditional mean 

to occur alongside changes in conditional variances and co-variances. [24] uses FTSE-All­

World banking sector indices and FTSE-ALL World country indices to represent Rt and 

RMt respectively, before using (C.ll) to estimate default probabilities. We refer to [24] 
for full details. 
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