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S U H N A n Y 
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De spite the c on.':l i de.ro.b l c umount o f" r c:scn rcll on sheu r 

tr c?tns f. er me c hanism , a c le .::. .r u n<.lerst-uHling or the shear carri ~d 

b.y tl;e uncracl:::e t compression z one concrete o f T-b eo. Jns <l t 

ultimate load and the shear stre ss di s tribution ha s not ye t 

been achieved . This·· thesis presents t heol~cti c<\l .and expc ri-

mental s tudies o l. th e shea r carri e d uy the c ompre ss ion zone 

in T-b eams . 

In the theoretical study , n )-dimenf..:; ional :fin i tc 

el ement stress ana lys i s wa s app lied. .l:- laxi1: um str ess nncl 

oct a hedral fnilur e cri teria were u s ec.l. to predict c racl;: in,s of 

concrete in. tension nncl tens ion-compress:i.on 'zones rc.s Jcctively . 

Non-linea rity 'of c oncrete due to cracl;. ing '~a s t;:tc lc led 

throu ··l a 'va riable stiffness 1 techni que in conjunction with 

an incremental procedure . ~tenty no e hexahe dron i s o para -

metric elements and b a r clew e nts \·rer e u sed to moc~ el the con-

cr ete a nd rein forcement respe ctive ly. A comp uter pro g ral r! ,.1as 

written to includ e these asJects . 

The theor tical study 1vas su p plement e d by two series 

of tests on full scale l ab orntory be <:u:Js ' " ith preformed shear 

era c )o;: s. The ma in p arame ters inve s ti ~a ted were th e locat ion 

of the preformed craclc and the vari a ti on in the flan~:; e \· i t h 

and t hi c k n e ss. 

Load-deflection curve s , :n ilurc lo.o~d and erne]· p nt terns 

obt a ined from tl c t he o retica l analys is w e re co::1pu1 c d \vith 

the experimental result s . · Shcnr s tres s distribution in the 

flange 1\"as found to be conc eljtr .::decl over the we )S , re ucing 
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Equ 3.t ion s ~or ev.:tl u n -

ting un 1 c ':'f e c ti ve width 1 1vere dcvclol;e <J u .si 1..:::, n on-l:i. n ' <11' 

r e g r ession ana ly s i s . n c:.:pressi on H a s ulso ~ c.;vc.;lo_;:J c.: c: L'or 

predi c ti:ng the s ea r rr~::; i s tu n c e of t ll c co m1•r c.:~ s .s i on zon c 

u~ing the effe c tive d.d t h nn cJ an avc.;n:.tg c v a lu e o J. t h e s l J(~ c ll: 

stres s . From th ese e qua tion s , th e c ontrib ution o £ t1c fl~n~ c 

in r es i s ti n · s h ear :f.prccs a t ultima te loa d was r ound to be 

beth' een 50 ~·~ and 70% o f t he to tn l r;llc:nr s tr cn,sth o f T - bcc:u:Is . 
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I WI'RODUCTION 

1.1 Preamble 

In order to develop ultimate streng th theori es for 

design· purposes, a good knowled~ e of structural b ehaviour 

is ne.cessary. One of the sudden and dang erous failures of 

reinforc ed concrete beams is the so-called shear failure. 

This failure is characterised by the for ma tion of inclined 

shear cracks in the web a rea of the. shear s pa n of the bea ms . 

The internal shear transfer mechanism e x i s ting in the beam 

before failure is not fully known. In the ca s e of benms ,., i th-

out ~eb reinforcement, it has been suggested that , after the 

formation of shear cracks the external shear forces a re 

resisted by a ' combination of tlrree components : (1) Shear 

stresses in the concrete of the uncrack e d compression z one, 

(2) Interlock of aggre gate on the opposite faces of the shear 

crack, and (3) Dowel effect .. of main longitudinal r e inforce-

ment. 

Despite the v~st amount of research work carried out 

on shear in the past, this work ,.,as directed to investigate 

certain parameters affecting the shear strength of beams . 

Fe\'f attempts have be en made to assess the contribution of' 

each shear component in carrying its share of the total shear 

force. This is probably due to the diff'iculty in separating 

each com~oncnt in special tests. HO\'lever, the experimenta l 
.. 

investigations that have becn · carried out on rectangular 

beams to assess the relative magnitude of these shear 

components 1 have show·n that about l.J:O % of' the total shear 

- 1 -



can be carried by the compression zone , between 15- 25 % by 

dm·rel for c e s and between 33%-50% by aggregate interlock. 

Most of the available data h a s been obta ined from test 

beams having rectangular cross sections , although, in prac-

tice the ma jority of beams are built as T-beams . It i s 

expected that T-beams behave differently than rectangular 

beams. This is probably due to (1) The aggregate interlock . 

l;>eing le ss important in T-beams than rectan gular bea ms , due 

to the proportionately s ma ller h·idth of craclccd concrete, 

(2) Th e · greater contribution of the flange in resisti11 ~ shear 

forces b e cause of the stronger compress ion z one. 

So far, only limited experimental and theoretica l 

research work has been done on T-b eams . An analysis of the 

existing informati6n shows that the present pre diction 

equations for the· shear strength of the b e\\ms are not satis

factory. 

A rigorous investiga tion of the contribution of the 

flange in resi s ting shear forces and the distribution of 

shear stresses within the f'lange h a S · not yet been made e ith~r 

theoretically or experimentally . This is why the current 

code of practice gives npthing about the contribution of the 

flange in resisting shear forces and in fact considers the 

flanged section as rectangular 1'li th the '"idt h being that of 

the rib. With the develo pme nt of ultimate desi gn theories 

for shear in reinf orced concrete structures , the need for 

knowing the contribution of the flange in resisting shearing 

forces becomes necessary an d it should lead to more economical 

design ofT-beams. 
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1. 2 Pur p ose a n d Sc oye 

It is l;enerally be li eved t ha t a l arge par t o~ th e s h ear 

force res i s t e d by a r e inf orced conc r e t e T-bea n1 is c a rried b y 

the compress ion z one i n the f l ang e . 

Shear a n d compr css ive s t ress di s t ributions a c r o ss the 

width of the flange are not uniform an d th e r efore d i r e ct 

det e rmination of the s h ea r carr ied b y t he concre t e of the 

compression z one is di~ficult. In bending problems an 

'eff e ctive width ' ~oncept i s u se d in co n junct i on wi th a n 

assumed uni f orm str ess dis t r ibut ion. Thi s e n a b les the 

:flexural streng th to be a ssess d , .... i t hout com p li ca ted c a l c ula-

tions. 

The purpose of the pr esent proj e ct i s t o ' inves tiga t e 

the contribution o f t h e f l a n g e in c arrying sh e a r f orces and 

possibly arriving at an ' effe ctive widt h ' o f fl a n g e for u s e 

in the asse s swent of s h ear s trength . 

· Theoretical and e x p e rim e nta l inv es ti gat i ons have b een 

' carried out as follows: 

(1) Theoretical s tudy : The aim of t h e the oretical study 

i s to compute t h e shear s tr ess di s tribution in th e con-

crete o f the compr ess ion zone in t he prese nce o~ fle xural 

compression stres ses . The shear force re s i s ted by the c om-

pression zone at ultima te loa d c a n t he n be d e t e rmined . To 

achieve thi s for a flanged b eam a 3 - dimen s iona l stre s s a n a -

lysis- u sing non-line~ r fini te element ap pro a ch has been 

app lied. . Iat erial fa ilur e l a1'/s have be en incor p orat e d in 

the finite el ement model t o predic t t e be ha vi our of' th e 
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bea ms up to the ultimate stage . The deforma tions , failure 

load , crack pa tterns and siress distributi ons of t he b eams 

have been predicted . The proj e ct invo lves the preparation 

of a comput er prog r am l-.rhich has suf.fici c nt flexibility to 

e nab le the introduction of other mat e r ial pro _~ ert ie s l.:lws 

and for it to be u sed for further re sea rch \-.rork . 

( 2) Experimental study : The experime ntal part of the study 

was to verify the theoretical work and to investigate 

the effects of some of the major parameters on th e shear 

carried ' by the compress ion zone . Full size T-bea ms were 

cast and test e d . To a ss ess t he shear strength of the flange 

the beams were provided with preformed cra cks in the web a rea 

of the shea r spans . 1i-ro · s cries of bcnms '"ere tested : 

( 1 ) Series I included a beam without cr a clcs and four 

beams · with different locati ons of prefor111ed 

ora cle • . This series \ras carri e d out to inve s tigate the posi

tion of the preformed crack and its ef~ects on the streng th 

and behaviour of the beams. 

( 2 ) Series II included b eams with differ e nt flan g e 

widths and flan:2;e thicknesses to inves tigate the 

effects of these parar;1eters on the shearing force carried 

by the compress ion z one . 

1 . 3 Layout o f Thesis 

Cha p t er 2 r e vi ews the r esearch work on shear strength 

ofT-beams . A critica l study is presented in thi s chapter 

for the curren t prediction ec1uations for the strength of 

T - beams . 
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Cha pters 3, 4 and 5 de a l wit h th e Finite El ement 

appronch. In Chapter 3, the f'ormulution of the i sopar <"metri c 

elements and the incren ental non-linear method ar c described; 

in Chap ter 4, the material b e haviour and the dev e lo pment of 

f ailure lmv s are discusse d and in Cha pter 5, the organisa tion 

and structure of the computer program i s explained. 

The exper i•nen t a l prograi:mie is di s cu ss ed in Chap ter 6. 

The mix design and trial tests to det ermine the be s t loca

tion for the reformed crack are discusse d and details of 

the beams, instrumentation and method of testing are also 

given. 

Chapter 7 , describes the application of' the Finite 

Element Hethod which hns been developed to the analysis of' 

T-beams and then a comparison between the experimental and 

analytical data is presented. 

The inf'ormation obtained f'rom the theoretical analysis 

is used to develop equations to evaluate the 1 ef'fective 

width' and the shear stren.gth of' the flange in Chapter 8 . 

In this chapter a comparison be tw·een the shear strength 

of the flange and the total shear strength of beams is also 

made using experimental data of other authors • 

. Conclus ions are made from time to time ut the end of 

each chapter, but in Chapter 9 , the ma in conclusions derived 

from the project are presented . The limitations of: the w·orl{ 

presented and suggestions for future work are also made . 
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C H A P T E R 2 == ========= ======= 
PREVI OUS RESEARC H ON" T- 88/\NS 

2.1 Introduction 

In the last few decades research work on the shear 

strength of reinforced concrete beams has been largely 

directed to,.,ards an· empirical examination of the influence 

of the following parameters on .shear resistance: longitu-

dinal steel percentage, shear span , beam slenderness and ,..,eb 

reinforcement. Recently research work has concentrated on 

the contribution of the various components in resisting 

shear forces. This has led to a better understanding of the 

mechanism of shear failure, although this is still far :from 

belng . completely settled. 

The BS Code of Practice {CP 110, 1972) {1) and the 

recent design recommendations {2 ), {3) make no distinction 

betwec? rectangular and flanged beams. Their design rules 

were derived from the available experimental information, 

mainly on rectangular beams. However, experimental investi-

gations show that T-beams behave differently from rectangular 

beams, and the ultimate shear strength ofT-beams is found 

to be generally higher than that for comparable rectangular 

beams. Therefore the current recommended design methods 

under-estimate the shear strength ofT-beams. 

A review of shear theories and methods of analysis of 

the shear strength of reinforced concrete beams can be found 

in references (2) and ( 3 ). These methods were concerned 

mainly with rectangular beams , due to there being cxperi-

mental data on this type more than on a ny other. 
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This chapter i s divided into b ,r o pa rt s : 

(1) A review of the various me tho ds , e x p er i ment a l 

and analytical, used to a ssess th e b e h a viour 

and shear re s i s tance of T-beams . 

(2) A critical study of the exis ting ana lytica l 

methods used to predict the shear s trength of 

T-beams. 

2.2 Previous Exper i me ntal a nd Analy tica l Work 
on Reinf orce d Concrete T-beants 

De~pite the increased amount of r esearch wor k on T-

beams during recent years, only limite d e xperime nt a l infor ma-

tion is still availa ble for the s h ear r es i s tanc e ofT-beams . 

Those ·or Bra.une and Hyers ( 4:) ha d concrete of very 10\v cub e 

strength ( 12-15 N/mm 2 ) and are possibly irreleva nt in t erms 

of structural concrete strength used n01·1a da ys. The s e te s ts 

are therefore not di s cussed any further. 

2.2.1 Tests by Ferguso~ and Thomps on (5) 

They tested 24 beams uithout . web reinforceme nt. 

These tests had cylinde r compre s sive streng th and web area 

as variables. The cylinder strength va ri e d b e tween 17.5 

and . 45.4 N/mm2 • The beams were tested under tl'IO point loads 

with shear span/depth ratio (a/d) ranging betwee n 3.4 and 

6.22. They concluded that the diagonal tensile s trength 

increases very slowly as the compressive strength i~cr ea ses . 

An empirical formula was sugges ted to c a lculate the ultima te 

diagonal tensile strength as 

145 + .02 ft 
c 
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I 

where Vu= the ultima te shear stress is calculate·d from the 

standard relationship: 

V = V/(b jd) 
0 

! in imperi a l unit s ) 

and f
1 = the cylinder compressive strength. c 

( 2.2 ) 

Equation (2.1) neglects the contribution to strength of 

many parameters such as flange widtht flange thickness, 

shear span and longituainal reinforcement. 

Horeover the calculation of the ultimate s hear stress 

using equation (2. 2 ) is not applicable in the case of fl anged 

beams. 

Tests by Al-Alusi (6) 

Al-Alusi conducted tests on 25 simple span T-

beams to investigate the effect of shear span/depth ratio and 

variation of longitudinal reinforcement on cracking str ength, 

mode of :failure and ultimate strength. He also studied the 

effect of mesh reinforcement in the flange and of compres-

sion reinforcement. 

Al-Alusi drew the fo llo'lc-ring conclusions from his tests: 

(1) When the shear spanidepth ratio was between 4.0 and 

8.0, the ratios v /:f' and v / f ' were constant as er c ·u c . 

shown in Fig 2.1. These curves were expressed by the 

following equations: 

V /f 1 

er c = o.o46 ( in imperial unit s 
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V /f 1 

u c = 0.0625 - .002 ( a /d) (in imperi a l units} (2.ll:) 

Again these equations ignore the influence of the geometry 

of the flange and the main longitudinal reinforceme nt on 

the cracking and ultimate strength of the be a ms. 

(2) The variation in the percentage of longitudinal re-

inforcement did not affect the ultimate or Gracking 

strength. This is in contradiction to the result s of other 

investigators (7), (8)~ who have shown that with increasing 

amounts . of longitudinal tensile steel, the ultimate shear 

strengths of beams also increase. 

Tests hX Nevillc .and Lord (7) 

Tests were carried out on rectangular, L-beams 

and T-bearus with and without web reinforcement to study the 

shear strength and shear failure of these types of b eams . 

The beams were tested under two point loads with different 

shear span/depth ratios (a /d = 2 .37 to 3 .41). They reported 

only a small increase in the load at which t~e first diago-

nal crack formed in the T-beams over the corresponding load 

for rectangular beams, With the same reinforcement. 

However, at ultimate load the presence of the compression 

flange increased the strength of . T-beams by 7 to 61% 

compared with the corresponding rectangular beams and also 

changed the type of failure. They also sh0\>1ed , an increase 

in the shear strength with an increase in the tension 

reinforcement. 
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2.2.4 Study by Taub and Nevillc (8) 

Th~ influence of varioui factors on the 

behaviour and shear strength of rectangul a r, L- and T-

beams was described by Taub ~nd Neville in a comparative 

study. They criticised the present methods of design for 

taking the shear strength of T- or L-bearns as equal to the 

shear strength of rectangular beams having the same web 

width as T-beams. They also did not agree with the Code of 

Practice in calculating the shear stress in concrete by the 

standard formula 

v = V/(b jd) 
0 

I in imperial unit s l 

as this is not based on the correct factors influencing the 

shear strength of beams. 

Their conclusions '~ere similar to those found by Al-

Alusi fo~ the relationship between the ultimate shear capa-

city and shear span/depth ratio. Further, they reported 

that the a/d ratio has a considerable influence on the mode 

of failure in rectangular beams. \vith small a/d ratios, 

diagonal tension cracks are propagated from the point of 

application of load to the support in an almost straight 

line and shear compression failure usually takes place. 

W'ith larger a/d ratios, one diagonal tension crack forms 

and extends along the main tension steel causing failure by 

splitting of concrete in this area. Adequate anchorage at 

the support \rill prevent the latter mode of failure. The 

actual behaviour of T-beams differs from that of rectangular 

beams, since as the flange area increases, this provides a 
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stronger compression zone. Thus failure occurs · gcnerally 

in shear-tensiori and not shear compres s ion even for small 

a/d ratios. 

Taub and Neville conducted tests on pairs of rectangular 

and T-beams and observed that the ultimate shear strength of 

T-beams was between 13% and 61% higher than the ultimate 

shear strength of the corresponding rectangular beams with 

the same longitudinal reinforcement. Similar results were 

observed for the shear· cracking strength. This supported 

their views on the behaviour and shear strength ofT-beams. 

They also showed that a considerable increase in the 

shear capacity of a beam occurred when the amount of ma in 

tension steel was increased for a/d ratios between 3 and 5· 

They found that for a/d ratios les s than 2 the effect of 

increasing the main steel was negligible . 

Tests by Guralnick (9) 

Guralnick tested l12 T-beams to examine flexural 

and shear failures when using high strength steel for longi

tudinal reitiforcement. The bea ms had identical cross

section, the flange width was 58~mm and flange thickness 

was 102mrn, web width was 188mm, and total depth was 387mm. 

The a/d ratios ranged between 2.95 and 6.10. All beams 

were with web reinforcement ex~ e~t seven b eams which were 

with plain \~eb. Twenty-four b eams failed in diagonal ten

sion and 2 failed in shear compression. 

Guralnick concluded that: 
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(1) The use of high strength steel for beam 

·reinforcement in conne et ion with current 

code provisions for shear and diagonal tension re s ults in 

adequate safety with regard to shea~ failure. 

(2) The uncracked compression concrete and web 

reinforcement, each contribute to the total 

shear resistance of the beams. The relative contributions 

to the total shear resistance are influenced by a number of 

factors, such as beam section properties, loading pattern 

and physical properties of the concrete. 

(3) Stirrups in the immediate vicinity of con-

centrated loads or reactions carry a much 

smaller proportion of the total external shear than else

where, due to the presence at such locations of vertical com

pression stresses \\"hich reduce the diagonal tension cracking. 

Later Swamy and Quereshi (10) found that the first stirrups 

should be placed at 0.75x effective depth from the support, 

and in point loaded beams, the nearest stirr~p should be 

within a 0.75 x effective depth from the load point. 

2.2.6 Tests by Ramakrishnan (11) 

Ramakrishnan tested 110 beams under one 

or two point loads. He studied ~he mode of failure and ulti-

mate shearing strength of beams without web reinforcement 

and the effect of the addition of web reinforcement in the 

form of vertical or inclined stirrups. Major and secondary 

fa~tors influencing the shear str~ngth of beams were 

involved in the investigation, such as: effeci of concrete 
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properties, shear span-effective depth ratio, percenta g e .of 

longitudinal reinforcement, transverse :flange reinforce

ment, geometrical properties of the cross-section of the 

beams and effect of magnitude of defl e ction on the shearing 

strength. 

From deformation measurements he noticed abrupt changes 

in the deflections and strains after the formation of the 

major diagonal crack. A typical loa4-deflection curve he 

obtained for T-beams is shown in Figure 2.2. The compres-

sion strains at the top fibre of the beams in the shear 

span diminished with increasing load and eventually became 

tensile, The linearity of strain distribution through the 

depth was also disturbed in the shear span w~th concentrations 

of strains above the diagonal crack. The measuremen~also 

showed that for T-beams, the ultimate maximum concrete com

pression strains never reached the crushing strains of 

concrete which meant that no shear-compression failure was 

encountered forT-beams. 

Ramakrishnan observed that the actual ultimate strength 

was not affected by the increase in the width of the :flange from 

152mm to , 254mm (web width was 76mm). But the increase of the flange 

l_tidt~ from 76 mm to 152 mm increased the ultimate loads. 

This led him to suggest that there is a limit to the width 

of the flange beyond which it is not effective in increasing 

the ultimate shearing resistance of the beams, and this 

depends on the extent to which the redistribution of internal 

stresses is possible, Tests showed that beams with thicker 

flanges had higher shearing resistance. He referred that 
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to the tensile mode of failure in the flan ge, as the incr~ase 

in the flange thickness would de lay the tensile splitting of 

the compression zone and hence increase the ultimate 

strengt h of th e beams. 

Ramakrishnan criticised the nominal s hear stress cal-

culated by the equation, 

V = 
V 

ra b d 
0 

as it does not give re s ults which are independent of the 

shape and size of the cross-section, as ha s been assumed. 

He also reported that it is mislea ding to specify the allow-

able strength in shear for beams without web reinforcement 

to be proportional to the concrete crushing strength alone 

as has been customary. 

From his analysis of t~st results he describe d the 

following equations to predi~~ the ultima te shear strength 

for beams with shear spans equal to or greater than 6d. 

V :: 
u 

( 6 8 + • 36 3 f 't) ( 1 + ~) b d •• 
d3.o o 

( i n i m per i a I units J 

w·here f t = tensile strength of concrete from cylinder 

splitting test. 

The equation does not differentiate between rectangula r 

· and T-beams and Ramakrishnan applied it to 26 beams from his 

tests which included both types. 
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Tests by ~e o nhardt ( 12) 

Shea r tests were carrie d out at Stuttgart from 

1961 to 1963 to examine the mechanism of shear failure and 

the parameters influencing the ultimate shear load. The 

shear strength at the cracked stage was analysed by the 
I 

classical March truss analogy method. 

The tests shOl-re d that stirrups began to car.ry load 

after the shear cracks had entered the compression zone at 

a high level of loadin·g near the ultimate stage, and the 

stresses in the stirrups was increased by decreasing the l'leb 

thicltness. The measured tensile forces in the stirrups 

remained far below those calculated by the truss analogy even 

for thin webs. This confirmed that part of the shear force 

must be carried by the shear stresses in the compression 

zone and dO\"el effect o f the longitudinal reinforcement. 

The test results indicated tha t the inclination of 

shear cracks varies between 30° and 45° and depends mainly 

on the stiffness ratio b / B and to some extent on the amount 
0 

of web reinforcement. The inclination increase d with de-

creasing b / B and increasing web reinforcement. 
0 

Le onhardt concluded that in normal T-beams where B/b 
0 

was between 3 and 6, the web reinforcement carries less than 

half of the total shear force even at ultimate load condi-

tions. He suggested that the trusses considere d to simulate 

the actual mechanism of internal shear forces must have 

compression chords at different inclinations and diagonal 

web struts with angles less than ~5°. However., this method 

of repr esent ing the shear failure mechanism has been found 

- 15 -



to be inaccurate (2), (3). Thi s is mainly due to the fact 

that the compression members are much stiff er tha n the thin 

tensile members. 

2.2.8 Analyse s by Placas and "Regan ( 13) 1 ( 14) 

Placa s and R.egan used a semi-empirical approach 

in predicting equations for shear cracking and ultima te shea r 

strength of beams. For shear cracking they sugges ted: 

V 
_££_ 
b 0 d 

0 

= ..... ( 2.6) 

1 in imperial un i t s ) 

where V = shear force producing shear cracking er 

f' = cylinder compressive stre n g th 9f concrete 
c 

A = crdss-sectional area of ma in tensile 
s 

reinforcement 

This equation is based upon the assumption that failure occurs 

when the principal tens ile stress reaches some limiting value. 

This limiting value was taken according to the failure 

criteria developed by Cowan and verified by Reeves (15) 

where 

~t = 1.02 (f' )2/3 
c .... 1 in imperial unit s ) (2.7) 

and ft = princip_al: tensile stress of concrete. 

Reeves carried out tests on thin-,.,alled plain concrete 

hollow cylinders to investigate the properties of concrete 

under direct and shear stresses. For his limioted number of 

tests, he shol..,ed tha t failure in this c a se agreed more clos e ly 
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with the princ ip.;:t l stress criterion propo., e d by e qua ti on. 

Strictly speaking, equatio~ (2.6 ) was developed for 

cracl(ing in rectangular beams. \Vhen it is used for 1'-bcams 

there is a safety margin of between 15% to 20% due to the 

uncertainty of dowel action and ag gregate interlock. In 

' addition the limiting tensile value proposed by ~quation 

(2.7) is far below the tensile strength of concrete, 

(1.8 N/mm2 for f = 35· N/mm2 ). cu 

At ultimate load,failure in T-beams may result from a 

shearing action in the compression zone . Placas and Regan 

considered the vertical equilibrium of forces acting along 

an inclined. shear crack as shown in Fig 2.3. Then assuming 

that the longitudinal stresses at the level of the underside 

of the flange near the load are low, so that an almost pure 

shear condition exists there prior to failure. The prin-

cipal tensile stresses can be approximated to the nominal 

shear stresses ( VC ) 
~~;...__-. Failure occurs in a tensile 
t (b + x ) 

0 

manner \~hen this shear stress reaches the tensile strength 

of concrete "'l~hich is taken as 25(f~ )lh . The area of flange 

t (b + x) involved in resisting the shear forces was 
0 

determined from experimenta l tests as t (b + 6 11 ). The 
0 

equation forT-beams failing in shear is: 

V 
c = 25 (ft )lh c • t (b + 6 11 ) •••• 

0 

and forT-beam with web reinforcement: 
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V = 2 (d '- t) b r f 
u 0 yw 

(in imperial Lln~s)(2.9) 

A discussion on this equation is presented in Section 2.3. 

Tests by Khan (16) 

Khan conducted tests on 24 T-beams to inves ti-

gate the shear strength of T-beams using bent up bars as 

shear reinforcement. He concluded that bent up bars ar e a 

reliable and efficient . form of shear reinforcement. Never-

theless . the beams attained slightly lower ultimate shear 

loads than beams with nominal stirrups and the ir failure 

was expediated by the development of dm"el cracking along the 

longi~udinal steel at about 80% of the ultima te load. 

On his com~arison of test result s with other theories 

and design codes, he modified equation (2.ff) to include the 

effect of shear span/depth ratio as follows: 

V 
c = 

2.2.10 

36 (:f' )lh. 
c 

t (b + 6 11 ) (d/a)¥. 
0 

Study by Tan& (17) 

•••• 

(in imperial units 

(2.10) 

Tang carried out an investigation on the shear 

strength of large concrete box girders and suggested that the 

~ffective wi~th of flange to be used in shear calculation 

should be related to the flange thickness t as follows: 

(b
0 

+ 2t), because in large concrete box girders the flanges 

may be thicker than those used in normal buildings. 
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2.2.11 Tests by Swamy, Andriopoulos and · 
Adepe gba (18) 

Tests were carried out to examine arching 

action as applied to the mechanism of beams failing in 

shear. They showed that the tensile f'orce in the longi-

tudinal steel was far from uniform along the l ength of the 

bars, but this is essential for arch action to take place. 

2.2.12 Tests by Yunus (19) 

Thirty-eight T-beams were tested under two 

symmetrical concentrated loads . The parameters studied were 

the amount of web reinforcement, the shear span/depth ratio 

and the amount of longitudinal reinforcement. 

'The test results indicated the following: 

(1) There was an increase in the cracking load 

and the ultimate shear strength of beams with 

reducing a/d ratios. The ultimate shear strength for be ams 

with a/d ~ 3.5 was 63% of that with a/d = 2.0. 

(2) The web reinforcement cross ed by the diagonal 

crack became effective in r esis ting shear forces 

and yielded before failure of the beam took place. 

(3) The ultimate shear strength of the beams 

increased with increasing the percentage of 

longitudinal reinforcement particularly with small a/d 

~atios. The ultimate shear strength for beams with P = 2.96% 

was 76% of that 'vith p = 5.28%. 

(4) The failure of the beams with small a/d ratio~ 

was by crushing of the web , while for those 
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with larger a/d ratios, the . failure was by tensile splitting 

in the compression zone. 

2.2.13 ~s by Swa m;y:f Bandxo pa dhyay 
and Erik itola 20) · 

They r ep6rted t e sts on T-beams to investiga te 

the effect of flange width, longitudina l steel ratio and 

web reinforcement. 

The results confirmed that the ultimate strength in 

shear of T-beams is much higher than that of rectangular 

beams of the same web Width, effective depth, P/Pb <Pb = 

amount of steel required for balanced section ), concr ete 

strength and web reinforcem ent. For beams with P/Pb = 0.75 
increase of 

and flange widthhreb width r a tios from 2 to 7, the). ultima te 

shear strength ranged from 28% to 11J% of tha t of the rec-

tangular beams for beams without web reinforcement , while 

for beams with web reinforcement the increases range d from 

The shear cracking loa ds dep ended primarily upon the 

concrete strength, while the failure loads depended on the 

dimensions of the cross section, the amounts of the longi -

tudinal and web reinforcement, the s tr ength of the concrete 

and the shear span. 

The results showed tha t the shear strength increas e s 

as the amount of web reinforceme nt increases. However, the 

rate of increase in shear strength decreased as the amount 

of web steel was increased a nd heavy stirrups did not guaran-

tee the removal of the risk of. shear failure ·. This agrees 

with the findings of Taub and Nevi lle (8) on rectangular beams. 
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The results s u gge t that the flang e needs to b e stiff 

. enough, eithe1· through adequate thickness or suitable de-

ployruent o f steel, to prev ent horiz ontal splitting alon g the 

web fl ange junction. Thi s is r eln ted to the hori :;r,onta l 

shearing s tress along the root of the ~lunge and the insta-

bility of the flange outstands. 

Theory by S'"'amy and Quer eshi { 21 ) 

Hohr 1 s f a ilure theory was used to r pr sent 

the b iaxial state of shearing and compressiv e str esses in 

the compres sion zone of T-beams wit h long s h ar sp ns . 

A failure envelope for Mohr 1 s circle was developed to 

take into account the shear compr ess ion intersections as 

( f 1 / f" 1 - ~ 2 

+·2§~ - ) 
V 1 

1 
c c 2 (2.11) - = - i3 ) 2 v• (1 + c. 2 

(i n imperi al unit 

where 

f't 
~ = ~- f' ;;: 6 V f' I fll = .85 :ft 

t t c c t 

f" c 

c 

and 
f'l • :f' 

v• c t = f" c + £1 
c t 

A relation for interaction coefficie nt wa s found as : 

= 
v/v' c 
f /f'' c c 

. \ 
----------------~-------

= 
f" c -v' c 

1 - 0.5 K 

( 1,05 a/d
8

) 
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The depth of the compression zone at sheai failure · 

was relatid to that of flexural failure by: 

K = s 
( 2 . 13) 

where K d· 
s = depth of compression zone at shear failure 

= depth of compression zone at flexural failure 

The ultimate shear strength of the compression zone is: 

V = V • B • K d 
c s 

(in imperial units ) 

. A Uniform stress distribution was assumed for bending and 

shear stresses . in the flange. It was also assumed that the 

shear force at failure l'las resisted by the compression zone 

and dowel action. only. According to the observations by 

Taylor (22) and other investigators the dO'\'lel forces 

represent ' between 12% and 20% of the total shear force; it 

was therefore assumed that the dowel action ~arries only 

10% of the total shear as a conservative value. 

Mohr's failure theory doP.s not account for the ef'fect 

of the intermediate pr:i .. ncipa:l stress, whereas its importance 

for concrete has been shown by many authors ( 23), ( 24). 

Quereshi's theory does not evaluate the shear stress 

distribution across the flange width but instead uses a 

simplified rectangular stress block, which contradicts the 

idea of concentrating the shear stresses in the area of 

flange a round the web. 
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2. 3 Critical Stu<!x, · 

Introduction 

In the approaches used in the desi gn of flanged 

beams in flexure, the phenomenon of s hear lag has be en re cog -

nised and therefore elastic calcula tions are made on simpli-

fied stre s s systems ( 25), such as show·n in Fig 2. 4. This 

introduces the idea of using an ' effective width' of the flange 

for the flexural calculations. The same 'effective widt h' 

cannot be used for the design of reinforced concrete b eams in 

shear, mainly becaus~ it was obtained from considera tion of 

longitudinal stresses in the compression zone alone and neg-

lects the vertical shear stres s es. However , the concept of 

using an 'effective width' for shear calculations seems a 

convenient approach , and therefore will be considered later in 

Chapter 8 •. Experimental evidence sho,.,s that the vertical shear 

stresses resisted by the concrete in the compression z one play 

an important role on the shear failure mechanis m and the ulti-

mate shear strength of reinforced concrete T-beams . The actual 

shear st~ess distribution in a flanged beam is not yet known 

due to the difficulties involved in trying to measure it 

experimentally. This is why many re searcher s adopt a mor e 

empirical approach to estimate the shear strength ofT-beams . 

In the following section , the equations deve loped by 

Placas and Regan for the ultimate strength of T~beams are 

analysed with the test results availa ble. 

Analytica l Data 

The analysis was carried out using the existing 

experimental data from references (6), (9), (13) and (20). 

For the purpose of this analysis·, Placas • and Regan 's 
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equation (2.9) was modified qy replacing (b + 6'11 ) by a ne,., 
0 

effective width .(b + x). Thus: 
0 

= 2 ( d t .- t) b 
0 

. + 25 ( f t ) ~J. t ( b + 
c 0 

X) • • • • 

( 2 .15) 

The first part of equation (2.15) represents the shear resis-

tance of the web reinforcement, and the second part for the 

concrete resistance in the compression zone. For beams 

without web reinforcement only the second part of the equa-

tion was applied for the ultimate shear strength of the beam. 

Knowing the ultimate shearing load, the geometry of the 

beam, \-reb reinforcement and cylinder compressive strength for 

concrete, it ·is possible to calculate the term 'x', u sing 

equation (2.15), ,.,hich represents that par~ of the flange 

outstands involved in resisting the ultimate shear force. 

Discussion 

The values of the distance 'x' calculated 

using equation (2.15} for the range of tests available, were 

tabulated and plotted against the flange l-ridth/w·eb width 

ratio (bB ) , percentages of longitudinal reinf'or cement, "lv-eb 
0 

reinforcement and shear span/depth ratios (a/d). Thi s is 

to study the factors influencing. the 'effective ,.,idth' and 

to compare the value taken by Placas and Rega.n as (b + 6 11 ) 
0 

with the calculated values from the equation. 

Table 2.1 shows the scatter in the distance 'x' as the 

flange width, thickness and longitudinal r einforcement 

change. In S\.,amy 's tests the dis tance •x' ranged bet\'l een 
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125 mm and 400 mm for beams l'li thout web reinforcement, and 

between 100 mm and 375 nun for beams with ,.,cb reinforcement. 

In Al-Alusi 1 s tests the distance ' x' was smaller and even 

less than the value taken by Placas and Regan which was 

152. mm. This may be due ·to the thin flange used in the 

tests (31 mm). Guralniclc tests gave a range between 125 mm 

and 425 mm for the distance 'x' ,..,hich is similar to th t of 

Swamy's despite the difference in geometry and long itudinal 

reinforc ement between ~he tests. In Placas tests the dis-

tance ' x ' increased from 125 mm to 325 mm,which is more than 

twice the value 152 mm talcen in the equation (2.9). 

Fig 2.5 s~ows the relationship between the flange width/ 

rib width ratio and the distance 'x' for beams with different 

values of web reinforcement and longitudinal main steel. 

These data indicate a rapid increase in the effective dis-

tance 'x' as B/b increases from 2 to 3, then a smaller 
. 0 

increase as B/b increases from 3 to 7, and finally a nearly 
0 ··-

constant value for 'x' as B/b increases from 7 to 10. It 
0 

is clear that the constant value of 1 x 1 = 6 11 taken by Placas 

and Regan is a lower bound value. 
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Table 2 .1 Distanc e 1 x' of the Flange (Placas Equation) 

Distance Flange · Beam Fla_n~ 
Author X Thick ness DeEth ~" 1 dt: 

B mm mm mm mm -
Swamy et al 125- 400 37 127 150- 760 

(20) 

swamy et al 
(20) 100- 375 37 127 150- 760 

Al - Alusi 75 - 125 31 : 146 325 ( 6) 

Guralnick 125- 425 100 387 575 i (9) 

Placas 125- 325 76 305 600 (13) 

\oJ' eb Long. Shear 
\~ idth B/b Reinft . Re inft. 
b 

- o 
% N/ mm 2 mm 

0 

76 2-10 6.52-20.4 -

! 

76 2- 10 6 . 52..;.20 . 4 0.62- 2.6 I 

! 

. 
76 4 . 3 1.5 - 4 . 4 -

175 3.3 2 . 3- 4.3 -

150 4.0 1.3- 4.2 0.4 - 2.2 



For beams '~ithout '" eb reinforc eme nt Fig 2 ~6 shows that 

' x' increas es as B/b increases from 2 to 5 1 then a very 
0 

littl e change in 'x 1 as B/b increases from 5 to 10. 
0 

Again 

the distance ' x ' = 6 11 i s a lower bound value and clearly 

underestimates the cont ri bution of the flange. 

Figur es 2. 7-2.9 show the relations hips bet\veen the dis-

tance 'x' and percen tage of main longitudinal reinforcement. 

They indicat e that, for beams with web reinforcement, the 

distance 'x' increas es· 1~ith increase in the main reinforce-

ment and tha t the rate of increase is nearly constant. For 

beams without web reinforcement, there was a small increase 

in •x' as the longitu di nal steel percentage increased from 

6.52~ · to 10. 2~ a nd a s ha rp increas e in 'x ' as the pe rcen-

ta g e increased from 10. 2% to 20.4%. This is probably due to 

th e greater effects of dowel action in those beams with high 

percentages of main r e inf orcement. The Placas equation 

does not allm-1 for the effec_t of dowel action, but assumes 

tha t all the shear force is resisted by the compression 

zone in the flange. Ho,.,ever, in reality, dowel action , 

shear stresses in the compression zone and aggrega te inter-

lock all contribute to the shear strength. 

Figures 2.10 and 2.11 show the relationships between 

the distance 'x' and the percentage of shear reinforcement. 

Figure 2.10 indicates a decrease in the distance 1 x ' ~ith 

increasing the s hear reinforcement but Fig 2.11 indicates 

nearly no effect on the distance ' x ' with increasing web 

reinf orcement . 

Figure 2 .12 s hm\'s the relationship between the distance 
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1 x 1 and the ratio shear span/effective de pth which indicates 

a decrease of 'x·' as this ratio increases . 

Conclusions 

From the above investiga tion one c a n conclude 

the following: 

(1) The effective distance 'x' de pends mainly on the 

flange width, flange thickn ss and amount of 

longitudinal reinforcement and to a le sser extent on the '"eh 

reinforcement and shear span/depth ratio. 

' (2) The effective distance 'x' appears to be approxi-

mately constant when B/b > 5 for be a ms without 
0 

web reinforcetnent and B/b > 7 for be a ms w·ith \'leb reinforcea 

ment. 

(3) Excluding the tests by Swamy et al with hi g h 

perc~ntage of longitudinal r e inforceme nt 

<P > 10.4%), the distance 'x' increase d at a cons tant rate 

with increasing amounts of longitddinal r e inforcement. 

(4) The effective flan<r e width presented by Pla cas 

and Regan 1 s equation do es not include the 

influence of the above-mentioned factors, but rather pre-

diets the effective l'lidth by a cpns tant value (b + 152 mm) 
0 

Using the same equation this effective width vari es betwe en 
. . 

(b + 75 mm) and (b + 425 mm) :for the range of t es ts given 
0 0 

in Tab 1 e 2 • 1 • 

2.4 Concluding Re~ rks 

From the re vie'" presented in thi s chapt e r 1 it can be 
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seen tha t the contribution of the fl a n ge of T-bc ms in 

resis ting shear £orces has not be e n assessed . Experimental 

information proved that the shear strengt h o f reinf orc e d 

concrete T-b eams i s higher tha n that . of comparable rectang -

ula r beams. This is. attributed to the inclu s ion of a 

stronger compression zone in the flange . The re l ative 

contribution of the flange to the total s he a r r esis t an ce i s 

influenced by a numb er of f a ctors ou ch as flange ge ometry 

and amount of main long itudina l reinf orc ement . 

The discrepancy in the analytic a l me thods reviewed is 

due to the fact that the interna l mechanis m of th e shear 

failure is not completely under s tood. Nor e ovcr , it is diffi

cult to separate analytically the comp onents. involved in 

re s isting shear forces in b eams . The previous an lytic 1 

methods ignored the contribution of the dowel action a nd 

aggregate interlock on the ultimat e strength of the bea m a nd 

considered all the shear force to b e carried b y the flange . 

This results in the deficiency of these methods in r epresent

ing the true strength of the cornpr r~sion z one nd cons e 

que ntly the strength of the beams. 
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~=~=~=E=r=~=~====~ 
FINITE ELEHENT APPROACH 

3.1 General 

The Finite Element Hethod ( FEH ) is \~idely accepted no'"" 

for the analysis of structural members. For linear analysis , 

this method is well established and available in standard 

texts ( 26 ), (27). 

The basis of the method is to represent the structure 

by a finite number of 2ubregions ( called elements). These 

elements are interconnected at joints, called nodal points, 

existing on their boundaries. The variation of displacements 

over each element is approximated by unknown functions 

(call ed displacement :functions or dis}laccrnent models ), in 

such a way that continuity of the function ( or its derivative) 

is preserved across element boundaries . The unkno,in mag-

ni tudes 'of the displacement functions are the displacomeuts 

at the nodal points, Fig 3.( Hence, the final solution will 

yield the approximate displacements at the nodal points. 

The degree of approximation '"hich can be achieved will very 

much depend on the element shape and on the form of the 

displacement functions ( 26 ). Iolynomials are us e d to 

express the displacement model due to its ease in n~thematical 

manipulation. 

The total potential energy of the structure is repre

sented by the sum of the internal energy stored as a result 

of the deformations and the potential energy of the xternal 

loads. When the total potential energy is minimun then the 

structure is ·in a state of equilibrium. 
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Defining the to t al pot ent ial en ergy by IT i the internal 

stra in ener gy of the e lement by Ue and the pot entia l energy 

of t he ext e r na l loa d by P, then 

TI = ( 3. 1) 

The minimwn of IT can be obt a ined by differentia ting it 

with respect to the displacement s an d equating the result to 

zero: 

an: a Ue ap 
0 (3.2) 

a{o} = a {QJ 
+ a { 5} = 

where { 5 } = all nodal di s placeme nts 

{ Oe} = ·noda l displacement s of element e. 

Equation (3.2) can be l'fritten in the form 

[ K ] { 5 } = 0 

Where [ K] is the overall stiffn~ ss ma trix of the structure 

and { R } is the impos ed loading system. 

A typical eleme nt contribution c a n be given by: 

C>ue 
a{Be} 

= { 5e} + { F~ } 

\there = the element stiffne ss matrix 

= fictitious forces acting on the element 

nodes 
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Equation (3.3) is the equilibrium equation or load displa.ce-

. ment relation fo~ the loaded structure. 

The rules used in the assembly of equation (3. 2 ) are 

the same as the assembly of equilibrium equations for struc-

tural elements. The equilibrium equations for the structure 

are then obtained by combining the equations for the indivi-

dual elements . These equations arc modified for the given 

boundary constraints and then solved to obtain the unltnO\'In 

displacements. 

When the finite element analysis was first introduced, 

simple element shapes, with minimum number of de grees of 

freedom, were exclusively used. The simplest two-dimensional 

element \\"as . the 3-node triangle. Its equivalent in three 

dimensions was the tetrahedron element '"i th four nodal corners. 

HO"''Iever, during the evolution of the method, it has become 

apparent· that for a given total number of degrees of freedom 

in a structure, accuracy is increased for larger elements '"'i th 

a greater number of degrees of freedom. Furthermore, with 

reducing the number of elements, the cost of data prepara-

tion and equation solution would reduce drastically. To use 

a small number of elements to represent a complex geometrical 

outline of a real problem introduces a difficulty in the 

larger elements. This difficulty has been overcome by 

allo,'ling the elements to have curved sides. This step has 

been achieved by distorting the simple element forms into 

others of more arbitrary shape as shmrn in Fig 3.5. This led 

to the introduction of various ispparametric element 

families {28), (29). These elements have been u sed \'lith 



much success for ela sticity problems in two and three 

dim ensiona l cas~s. 

To date the majority of finite element applications to 

structural s ystems has been limited to two dimensional ele-

ments, such as plane stress systems , plates and shells. 

However, the method is equally applicable for the solution 

of practica l cases in three dimensions. In some .practical 

problems, two dimensional approximat:j.ons give an adequate 

and economic · .finite el~ment model. But, all practical cases 

o f the structural systems are in reality three dimensional 

problems. 

In many applications of FEM in structural mechanics, 

it is convenient to use linear formulations of problems to 

obtain engineering solutions . The solution in this case is 

unique and both the relationships of stress-strain and strain-

displacements are explicitly linear. However, many practical 

problems do not preserve such linearity and definitely require 

non-linear analysis if realistic results are .to be obtained. 

Examples of such problems are the load-def~ection behaviour 

of structures, plasticity problems in soil and rock mechanics, 

crack formation and propagation in reinforced concrete, etc. 

In the last decade, most r~search work has been 

directed to,fards the application of FEH to non-linear prob-

J.ems. In general the non-linearity in structural engineer-

ing is due to: 

(1) Large geometric deforma tions; in this case the strain-

displac ement relations are non-linear and it is out of the 

- 33 -

,· 
il 
!, 
:· 
'I 
1: 
,I 
I 

i\ 

I' 
!I 

li 
I 



scope of this s tudy. 

(2) Non -linear ma terial properties. 

The non-linea r b e ha v i oUr of concrete i s caused by 

eithe r t e n s ile cra ck ing or by int e r na l microcr acking in 

compression. As suming sma ll strains , ie linear strain -

displac em~ nt r e l a tionship, thus the non-linearity in concrete 

can be achieved through the formul a tion of appropriate 

constitutive laws. Small step, increme ntal approache s a re 

used in which the non-linear solution is achieved by r ea djus

ting the materi a l constant s in the linear problem s o tha t at 

the final stage the consti t utive l aw is sati s fied. So, the 

non-line ar technique is b as ed on the linea r elastic formula

tion of the FEH. 

1'\"o procedures are ,.,idely u s ed in the non-linea r analy-

sis: 

(1) Incremental procedure~· in which the non-line ar problem 

is approximated as a series of linear proble ms, Fig 3.2.1. 

Equilibrium is only approximately followed. 

(2} Iterative procedures in which successive corrections 

to the same ~lastic problem are performed until equilibrium 

is approached, Fig 3.2.2. 

For higher accuracy, a mixe d procedur e, ie a combina

tion of incremental and iterative schemes i s used. 

The basic formula t ion of the displace ment Finite Ele

ment model and th e non-l i n ea r proc e dures a re explaine d in 

many texts stich as (26) and (27). In this cha pt e r two 
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subjects are briefly covered: 

(1) Three dime nsiona l Finite Ele ment Analysis lrith parti

cular reference to the isoparametric elements used in this 

study. 

(2) Non-linear incremental solution adopted for the analysis 

of reinCorced concrete structures. 

3.2 Three Dimensional Finite Element 

Introduc·tion 

Three dimensional problems of stress analysis 

include all the practical cases in solid mechanics. The 

practical implementation of three dimensional stress analysis 

by finite elements encounters two main diffi.culties. These 

are the cost of data preparation and the excessive demand on 

computer storage (30). Improvements in element characteris-

tics allow the use of larger elements for a given accuracy 

and this automatically implies a reduction in data prepara

tion. The number o:f elements and the degrees of' freedom as 

compared with the two dimensional situations (assuming that 

similar subdivisions are needed for accuracy) increase 

rapidly and the band N'idth o:f the assembled equations 

increases the demand for computer storage and computation 

time. However, the recent development of larger, faster 

computers has increased the chances o:f obtaining solutions 

to many engineering problems in three dimensions. 

The first major application of finite element in .three 

dimensional stress analysis was by Argyris ( 3 1), {32 ), using 

a constant strain tetrahedron and the refined ten nodes 
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tetrahedron. The development of the isoparametric hexa -

hedron element family by Zienkiel"'icz ( 26) and his coll eagues 

(28) , (29), (33), introduced a significant advance in three 

d~1ensional finite element analysis • . The efficiency of 

these elements has b een proved in elastic solid analysis 

and recently in non-linear and plasticity problems ( 34 ). 

In reinforced concrete applications, Suidan and Schn6brich 

(35) used the 20-node hexahedron to evaluate cracking and 

crushing of concrete. 

Hexahedron IsoEarame tric Elements 

The basic formulation of the isoparametric 

elements can be found in references ( 26 ) and (29), but the 

formulation of the 20-node hexahedron used i~ this study is 

discussed briefly in the follo\dng sections. 

Shape Functions 

A shape function is a function which 

has unit value at one nodal point of the element and zero 

value at all other nodal points. The shape functions are 

expressed in polynomials and the orde~ of the polynomial 

(linear, quadratic or cubic) defines the unknow·n displace-

ments along element edges. Qua dratic shape functions for a 

rectangular element are s hol-rn in Fig 3. 3. The shape func-

tions are the basis for the di sp.la cem ent model. A shape 

function is required for each degree of' freedom at every 

nodal point. 

Shape functions are expressed conveniently in terms 
. . 

of the normalised local-co-ordinate system. rhis is a local 

system which ·permits the specification of a point within the 
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FIG. 3.3. SHAPE FUNCTIONS FOR QUADRATIC 

E LE MEN TS OF SERENDIPITY FAMILY 

(After Zienkiewicz, 26) 



element by a set of dimensionless numbers whose magnitudes 

never exceed uni~y. These systems are usually arranged so 

that some of the local co -ordinates have unit n~gnitude at 

primary externa l nodal points· as slloi·111 in Fig 3. 4:. Such 

normalised co-ordinate s , also, with its limits + 1 facilit a te 

the inte gration required to obtain the .element stiffness. 

The element in these - co-ordinates is known as the 'par ent 

element•. 

The parent elemeht used in this study is the parabolic 

20 node · hexahedron. The element has one node along each edge 

in addition to the corner nodes as shmrn in Fig 3.5. In the 

normalised co-ordinates, the element is a cubic, Fig 3.).a. 

The normalised co-ordinates ~ , ~ 

values +1 on cube sides. 

Defining = 

~ ar.e u se d with 

= 
then the shape functions .[N.), as given by (26), (29) and 

l.. 

(36), are: 

for corner nodes: 

Ni = % ( l + ~ o) ( 1 + 11 o) ( 1 + ~ o) (~ o + "t) o + ~ o - 2 ) 

(3.5) 

for midside nodes: 

~i = 0 l]i = .:!: 1 ' ~i = + 1 

(3.6) 
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~. = + 1 
l. 1'\i = 0 r = + 1 !:,i 

(3.7) 

~i = + 1 ' · = -t· 1 ' 0 

(3.8) 

where ( ~., 11., ~.) are the noda l value s of (~,ll ,~). 
l. l. l. . 

These shape functions are part of the so-called 1 seren-

dipi ty family' • 

The shape functions above satisfy the general properties 

of shape functions such as: 

( 1) N. = 1 at node i and equal to zero at all other 
l. 

nodes. 

(2) There is continuity of disp lacements along ele-

ment sides. As there are three ~odes along each 

edge of the element , the para bolic variation will ensure 

continuity between adjacent elements as the three points 

define the parabola uniquely. 

(3) The constant strain criterion. 

).2.2.2 Isoparamd tric Concept 

It has been mentioned earlier that 

.the isopararue tric elem ents can be distorted into arbitrary 

shapes to suit the complex boundaries existing in real 

problems, particularly '"hen th e behaviour of the structure 
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depends on a small number of such elements . The · parent 

element defined {n the l ast se ction can be distorted to a 

more genera l form. Thus the e l ement is mapped into dis-

torted form in the manner sho~n in Fig 3.5.b, in which all 

positions of the nodes are arbitrary ( 26 ). The topology of 

the cube is retained and ea ch edge of the cube is a quadratic 

curve in space, defined by the positions of the three nodes 

ftssociated wi th the edge, (36). A new local co-ordinate 

system is defined for the element with the same constants 

+ 1 on the element faces as in the undistorted element. Thus 

~ co-ordinates are distorted to a curvilinear set 

when plotted in Cartesian space. 

The mapping from the local co-ordinates to the curvi-

linear co-ordinat es in the Cartesian s ystem must be unique 

and a one-to-one correspondence b etween points in the two 

systems must be established. Such co-ordinate relationships 

are provided by the isoparametric concept where the same 

shape functions used to define the variation in the unknown 

displacements are used to establish the co-ordinate trans-

forma tion.s. 

ie 

X X. 
n ~ 

y = L [ N. ) y. ( 3 . 9) 
i=1 ~ ~ 

z z. 
~ 

t\fhere x., y., z. are nodal -co-ordinates in the Cartesian 
~ ~ ~ ' 

system and Ni = Ni ( g ' il' ~) trhich are the shape functions 

given in terms of the local co-ordinates . 
'· 
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It has been demonstrate.d ( 26 ), (29), that the compati-

bility of displacement has been satisfied on element inter-

f aces and any two adjacent distorted elements will be 

contiguous. 

Element Stresses and Strains 

Expressions for stresses and strains 

are required to substitute into the potential energy func-

tion (equation ( 3.1)); Horeover, the stresses and strains 

are important quantiti~s for de sign purposes. Six components 

~f stre~s or strain are relevant in tlrree dimensional analysis. 

Since when ·using isoparamctric el ements, the variation 

in displacements is expressed u sing the same shape functions 

as used to describe the geometry. Then by analogy with equation 

( 3 . 9), the displa cements can be given by: 

u u. 
11 

l. 

V = L: . [ N. J V. < 3 .1 o> 
i=1 l. l. 

w ,., . 
l. 

where u , v. and w. are the nodal displacements and 
i l. l. 

Differentiating equation (3d0) and following the 

standard notation of Timoshenko's elasticity text, the strain 

displacement relationship can be defined as: 
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Ex fu! 8 Ni 
0 -o 

a x a x 

Ov 8 N. 
E 0 ]. 

0 y aY a y 

E: (hi" 0 0 
8 Ni 

dz az u. z ]. 

= Ou a v - · 8N. 8N. 
Yxy 

]. ]. 
0 dY +dx aY (jX v. 

]. 

ov a w· a Ni a N 
Yyz 0 i 

az +- a z OY_ \~ i ay 

a ,., a u 8 Ni 8N. 
Yzx . 0 

]. 

ax a z a x a z ( 3.11 ) 

This can be written in the form, 

{ E } = ( 3.12 ) 

where { E } = the strain components at an arbitrary point in 

the element , 

( B] is the strain matrix and 

{ 5e} e l ement n odal disp l acements 

The stress-strain re l ationships in· three-dimensional 

condi t i ons are defined as 

o x 0 1 1 012 • • • • • 016 Ex 

oy 02 1 0
22 • • • • • 026 Ey 

a z • Ez 
{ a } = = 

'txy • Yxy 

1: yz • 
Yyz 

'tzx 061 062 • • • • • 066 Yzx 

I SH;'Fifl D ( 3.13 ) 
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or 

{ 0 } = 

where 0 x' 
x, y, z directions. 

are comporients of nor ma l stress e s 

1: xy, 1: yz, 1: zx are comp one nts of s hear stresses 

[ D ) is known a s the elas ticity ma t r ix. 

in 

Equation (3.13) constitutes the generalised Hook's 

law in the 3-dimens ional case , wher e e~ ch of the six stress 

components is expr e s s ed as a linea r function of the six c orn -

ponents o£ s tra ins. Thus equ a tion ( 3 .13) represents the 

constitutive l aw for a linear, elas tic, a ni s ptropic and homo-

geneous ma terial. The matrix [ D ] is sym111 c t ri c and con tains 

elastic const ants. This matrix in t e r ms of the usual elas tic 

constants E (elastic modulus ) and V {Poisson 1 s r a tio) ca n 

be written as: 

1-V V V 0 0 0 

V 1-V V 0 0 0 

E V V 1-V 0 0 0 
ID]= (1-tV)(1-2V) 

( 3. 15 ) 
0 0 0 1-2V 0 0 

--r-
0 0 0 0 

1-2V 
0 

2 

0 0 0 0 0 
· 1-2V 
~ 

Evalua tion of El e ment Ma trices 

!11 section 3. 2. 2.1, the . di s plac ements 

mode.l given by the shape functions u as expres se d in loca l 



curvilinear co-ordinates. In order to evalua te -the el ement 

properties such as the ( B ] matrix, stiffness matrix , etc , 

transformations are necessary. The [ I3 ) matrix of equation 

(:~.12) is expressed in Cartesian derivatives and must b e 

expre/sed in terms of local derivatives . 

The chain rules of pa rtial differentiation are applied 

as follo't"S: 

= 

8Ni -ax 
()Ni 

()y 

aN. 
l. 

az 

ax 
aNi 

= [J) - ay 
8Ni 

az 
(3.16) 

where [J] is known as the Jacobian matrix. As x, y, z are 

given in terms of ~' ~ 1 ~ -- by equation (3.9), [ J) can be 

found explicitly in terms of the local co-ordinates and can 

be expressed as : 

oN1 aN2 •••••• x1 y1 z1 

a~ ay 
aN.1 aN2 X y2 z2 

[ J ] •••• •• • 2 
= - - • • • 

a~ a11 • • • 
8N1 aN2 . • • • • • • • • • (3.17) -
()~ a~ 

The Cartesian derivatives can be found by inverting equation 

(3.16) as follows: 
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oN. oN. 
l. J. 

ox a~ 

aN. ON. 
J ] -1 l. l. (3.18) = 

811 ay 
oN. 

l. 
aN . 

l. 

az a~ 

where [ J J
-1 

is the invel'Se of [J ]. 

~lement Stiffness 

For displacement methods of analysis , 

the principle of minimum potential energy has be e n used as 

discusse d in Section 3 . 1. Thes e principle s are applied to th e 

structure- as a whole , ie to the as.sembla ge o.f el ements. In 

the finite el eme nt method the diaplacement models are assumed 

separately for each element of the structure , thus an integral 

can be used to operate on the sum of the various element 

displacements . But , because the integral of the summation 

is the same as· the sum of individual integrals , the minimum 

principles can be applied to the elements separately. Thus, 

in the principl e of minimum potential energy , to obtain the 

s t rain ene·rgy U , for a linear e las tic body , an integra l has 

to be performed as follows : 

1 
= 2 

n 
I . e:::l d 

V 

( 3 . 19 ) 

where e denote s an element, and n is the tota~ number of 

elements in the structure . · 
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Substituting equations ( 3 .12) and ( 3 .1 1±) in equation 

( 3.19 ), the foll6wing express ion can be obtained : 

u e 

where v is the element volume. e 

[D)( B ) dv e (3.20) 

The stiffness matrix [ K ] for the element is defined 
e 

' 
by the quantity under the integral 

ie [ 'K ) 
e 

::: [D]( B ) dv 
e 

As the strain matrix is expressed in natural eo-

( 3 . 21 ) 

ordinates, it is necessary to carry out th~ above integration 

in these co-ordinates too. A transforma tion has to be made 

in \'lhich the dete:r minant of [ J ] i s involved as follo\'/S: 

dv e = dx dy dz = det { J ] d g d ll d ~ ( 3 . 22 ) 

As the elemental volume is expressed in the norlllalised 

co-ordinates ~ , 1\ and S \-rhich h ave the limits of .:t,1, the 

evaluation of the element stiff ness can be reduced to that 

of finding the follol'ling integral: 

D 1 ( B 1 det [ J ) d ~ d 11 d h 
(3.23 ) 

As it can be seen , the integra tion is obta ined in norma lised 

co-or dinates which are based on the ri ght cub e and not on 

the complica ted distorted shape . 
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3.2.2.6 Numerical Inte~ration 

ivhile th e limits of' the integrat ion in 

equation (3.23) are simple, the explicit formulation of it 

is difficult from the mathematic a 1 point of vie,.,. .::tnd 

numeric a l inte gra tion becomes the only choice. This m.::ik es 

the evaluation of such element properties expr essed in curvi-

linear co-ordinates direct, and in non-linear analy s is it is 

easy to integr a te over elements containing elastic and 

inelasti c zones. 

To carry out thi s type of analysis, the argument of the 

integra l in equation (3.23) must b e evalua ted at a s pe cific 

set of values of ~ within the element. These 

values have to be determined according to'integration rules 

and their loc ations are ca lled sampling or integration points. 

Naking a l·reightcd summa tion of these values, the integral 

can be evaluated. In the 3-dimensional case the integral I 

of equation ( 3.23) can be written as: 

I = L:CL: 
m in 

= [ [ 
i=1 j=l 

f(~ , -~ ' ~ ) 

m 
[ c. c. cl 1=1 J. J 

f(a., a., _a
1

) 
l. J 

where q is the integration point at 

d~ dl) de 

f(a., a., a
1

) 
J. J 

a. , 
l. 

(3.24) 

1l = a j and 

~ = a 1 , kq = Ci• Cj· c1 which are the weighted co-efficients 

of the integral and m is the number of sampling points. 

Irons (37) has proved tha t Gauss -Legendre qua d.r a ture 
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rule s are the most efficient for the isoparam etr~c e l ements . 

Moreover, Gauss integration points are s uitable fo r direct 

stress calculations . 

So the e l ement stiffness of equation ( 3 . 23 ) can be 

evalua ted numer ically u s ing Gauss quadrature as: 

K ( B ) T [ D ) ( B ) de t ( J ] 
q q 

( 3 . 25 ) 

Tabl e 3 .1 show s the symmetrical posit ions of Gauss 

points aj and the corresponding weighting coeff i cients Cj 

for the 2 and 3 point integration rule s as giv en by Rc f ( 38 ). 

Table 3 . 1 

Gauss - Legendre Quadra ture Cons t ants 

+ a. c. 
J J 

m = .. 2 

0-577 35 0269 1 89626 1.00000 00000 00000 

m = .3 

0.77459 66692 41483 0.555 55 55555 555556 

o.ooooo 00000 00000 0.38888 88888 88889 

irons (39) also developed simpler int egra tion formulae to 

minimise computa tiona l ef f ort and has sho\vn them to be as 

exa ct as t he Gaussian type rules , 

It i s clea r that the c omputationa l time de pends on the 

number -of integration points sampled in any element , or in 



other words depends on the order of the int egrat~on rule {for 

example 2 x 2 x 2 int egration rul e means performing the 

integrat ion over 8 sampling points while 3 x 3 x 3 means 27 

points to be sampled in the {ntegral ). The type of integra

tion rules r equir e d for exact integra tion of the stiffness 

matrix depends on the order of the stiffness equations ( 40 ) 

(2 and 3 point int egration rules are required for linear and 

parabolic elements respectively). Ho'l'rever, as element size 

decreases it would be expected that lower order rules would 

be adequate. For the parabolic element it i s found that the 

2-point rule is the minimum required to satisfy the constant 

strain converg ence criterion. 

'Recently (41), reduced integrati on technique (which . 

uses the minimum ·rules) has been used successfully in linea r 

analysis and showed benefit related to computat ion time. It 

was also reported that the minimum integration rules produce 

more flexible elements with regards to the s tiffncsses and 

that the sampling points of the lower order rul es are the 

best points for stress c a lculations . 

Bar Elements 

Introduction 

To retain the efficiency that a 

relatively small number of isopararnetric e l ements are req-

uired to repres ent a structure, the reinforcing bars have to 

be idealised in a simple and accura te manner. As cra cking 

and other non-linear effects are permitte d in the concrete 

it is des irable to treat the reinforcement separately. Thus 

bar elements, simulating stee l reinfor cements , were allowed 
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to lie within the isoparametric elements ( 3 0), (40 ) an d (4 2 ) , 

as shown in Fig 3.6 . The bar e lements a re restricted to lie 

along lines of cons t ant ~ , ~ , t o f the ma in elements . 

The variation of displacements along · t.he bar will be af:fected 

by the displa c ements o f t~e ma in element . 

El ement Propert~ 

The shape functions and tb.c element 

matrices for the bar element are derived following Ergatoudis 

( 29 ). 

Conside r the element lying along a direction of con-

stant '1'\ t as shown in Fig 3 .6. 

2-node eleme nt are define d by: 

= = 
1 + ~ 

2 

Shape functions for a 

( 3.26) 

The interpolation formula for di sp laceme nts ~s given by: 

u u. 
l. 

n = 2 
V = L: [ N. ) v. (3. 27 ) i = 1 l. l. 

,"" w. 
l. 

This element' r epresents linea r v ariation of displ a cements 

and constant strain along the bar . 

For a 3-node el eme nt the shape functions are : 
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Bar element defined by 

11 = llc 

~= ~c 

FIG.3.6. TYPICAL BAR ELE.MENT IN CURVILINEAR 

DIRECTIONS WITHIN A HEXAHEDRON 

ELEMENT 



~ ~ - 1) 2 
N1 = N2 = 1 - ~ -

2 

N3 
~ ( ~ + lJ. = 2 ( 3 . 2B) 

and the interpola tion functio ns in t h is ca se a r e 

u u. 
1. 

n=3 
V = I: N. v. ( 3 . 29 ) 

i=1 1 1. 

w· W. 
1 

This element ha s pa rabolic variation o f di s pla c ement s and 

linear varia tion of strains . ~ i s the loca l dimc nsionl ess 

variable talcin~ the values +1 . 

When t~~ · elemcnt is situated in the 3-dime ns ioua l spa ce, 

the nodes are defined by three co-ordinates and three compo-

nents of di s placemE~ nts . For bars only one component of s train, 

E , contributes to the strain en ergy and is given by: s 

= J( dx + du} 2 + ( dy + dv ) 2 + ( dz + dt.,r )
2 

- · J d x
2 

+ dl
2 + dz

2 

J dx 2 + dy 2 + dz 2 
. 

( 3 .30) 

where dx, dy, dz are the element co -ordinates and du , dv, 

dw are the incrementa l dis1 lacements. 

Exp~nding equation ( 3.3 0) and n dgl e cting second order 

terms, then: 

+ 2 dx du + 2dy dv + 2 d z dw· _ 
1 

dx
2 

+ dy 2 + ctz
2 
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And this can be written in the following form a fter a bi-

nomial expa nsion: 

dx du + dy dv + dz dw 
2 2 2 

dx + dy + dz 

t;:: 2 Dividing the top and bottom by d b gives 

E =a (a x (b: oz 
s at a~ ~ 

l'lhere: 

a :: 

and 

1 

(~ ) 2 ·@.)·2 .i=lz ) 2 
ag + 0~ + (ag 

= x. etc 
l. 

Thus the stra ins can · be obtaine d in terms of the 

Cartesian deflections [ 5]. 

= { B ) [ 5 ) 

where [ B ] = ' . . . . } 
and l b ] 

The stiffness is given by 
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[ K .s) I-: T . ds d~ ( 3 .. 35) = [ B ] E5 [ B ] (are a ) 
d~ 

where 

ds .j (~) 2 + &x)2 az 2 

~ = a~ + . <a~> 

E = Young's modulus of the ba r 
s 

area = Cross sectional area of the bar 

3.2.1:1: As s embly and Solu tion 

The in dividua l stiffne s s matrices from the con-

crete and steel ele me nts are s uitably as s embl e d u s ing th e 

geometry of the structure to f orm the g loba l st iffness matrix 

[ K ). Any . externa l loads are also as s embled in a load v ect or 

{ R }. This leads to: 

[IcJ{o} = 

which re presents the assembly of the final equilibrium equa-

tions of the structure together \vi t.h the prescribed boundary 

conditions. 

The solution of the simulta ne ous equations (3. 36 ) gives 

the unknm'l'n displa cem ents { 5 } as: 

{ 5} = ( 3.37 ) 

This solution can be accomplished in many ways . The 

direct Gaussian elimination. pr oce dure is adopted for this 

analysis (see Cha p ter 5). 

After the eva luation of the displacements , strains and 

stresses at the integration points can be easily calculate d 
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by direct substitution in equations (3.1 2 ) and. (3.14) 

respectively. 

3.3 Non-linear Incremental Ana lysis 

3.3.1 Introduction 

It has been explained in Section 3.1 that non

linearity in concrete is due to changes in the materia l 

properties caused by tensile cracking ~r in~ern~ l micro

cracking in compr ession. Thus the non-linearity in this case 

is achieved by the use of a suitable constitutive law for 

the ma terial which is expressed ~y the elasticity matrix [D}. 

The non-linear solution can be approximated by solving 

a series of linear problems. At the end of each stage, the 

equilibriumt compa tibility and constitut i ve relations of the 

material must be satisfied. Compatibility requirement s '"ere 

met in the finite element formulation, so the non-linear 

soluti~n has to preserve the equilibrium conditions and 

satisfy the constitutive relationships of the material. 

Several methods have been suggested f6r the ma terial 

non-linearity and the problem is still unde r intensive 

research. The method of 'unbalanced' forces has be en used 

by Nayak (34) and Phillips (40), {42) to restore equilibrium 

at every load stage. An alterna tive is the 'varia ble elas

ticity' method proposed by Zienkiewicz (26). 

In any of these methods the basic linear elastic equa

tions given by equation (3.36), 

ie, [ K ) { 5} 

have to be solved. The non-linearity occurs in the stiffness 
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matrix [ K ], which is a function of the material constitutive 

law given by equation (3.14). 

For this study, the variable s tiff ness method is used 

in conjunction with the non-linea r solution and this pro

c edure is explained in the next section. 

3.3.2 Method of Variabl e Stiffness 

The 'variable elasticity ' technique is based on 

the adjustment of the ~lasticity matrix [ D] according to the 

stress or strain leve l reached. 

The constitutive law for the n1aterial behaviour can be 

expressed in the form : 

f ( { 0 } { E } ) = 0 

If this .constitutive law is written in the form of equation 

(3.14), but with the elasticity matrix being a function of 

the stres s level reached, s~ch as: 

(D) = [D)({E }) ) = [ D ({ 0))) ( 3.39 ) 

then the variable stiffness method ca n be applied (26). 

As the final stifCness matrix is a function of the 

elasticity matrix , thus for equilibrium: 

l\><{5}> = K <{&}>J {6}- { R } = 0 ( 3 • /1 0 ) 

Equilibrium can be achieved by using simple iterative 
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procedures . For example , 

at displacement 

eva luating [ K ( { Q, } ) J 

0 , then solve for { 5 J 

{ 01 } = [ K o ) - 1 { R } 

= ( K . ) 
0 

( 3 • 1.1: 1 ) 

Then the problem is resolved for the same loa d with the new 

elast~c constants as : 

The pr o cess i s repeated until no further dis p lacement cha nges 

o ccur . This indicates that the solution i s accomplished and 

equilibrium is satisfied . 

If the so l ution in equation (3. 39 ) is used for small 

increments of stress and strains , then the solution has to 
I 

b e adopted for small l oad increments starting from previously 

arriv e d levels of stress and strain . 

·At the incremental l evel a number of c ycles o f analysis 

arc t o be performed for each load increment. In the fir s t 

c y c le , t he load increment { tJ Ri } is app l ied a nd t he tempo

rary displa c ement increment { /:J 5 i } is computed from 

•. {ll5 ~ } = 

.- 1 
lrhere ( Ki_ 1] is the inverse of' the stiffness matrix calculated 

at the end of t he previous load i ncr ement using modified 

e lasti c~ty matrix . The di splacement { 5].•. } at :this stage is 

c ompu ted : 
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( 3. IJJ±) 

,.,here { 5i-l} i s the displucements at the end of the previous 

increment . 

{ F..• } The stiffness matrix corresponding to ~ is 

evaluated and utilised to comput e an approxin~tion to another 

displacement increment for the same load incre-

The proc ess is repea ted until the difference in 

displa cements of the last t wo cycle s is sufficiently small . 

For each cycle the stiffness matrix [ K) is recalculated and 

a n ew solution of equations is obtained. 

3.3.3 Incr emental Proc edure 

·The basis of the increlllental procedure is the 

subdivision of the total ~ad into many small parti a l lo a ds 

or increment s . One load increm ent is a pplied a t a time on 

the stru~ture and load-deformation behaviour can be obtained 

at the corres p ond ing loadin~· stago. Increm ents of displace-

ments are obtained after the apllication of ea ch load incre-

ment. The displacement increments are accumulated to give 

the total displacement s at any stage of loading . 

The 'variab le elasticity' method explained in the last 

section is used with the incremental pr oc edure. Thi s mea n s 

that the load is a pplied incrementally, but for each loa d 

increment successive iterations or cycles are perforn1ed 

until no further changes in displac ements t ake place as 

shown in Fig 3.7. Thi s indicates tha t the structure is 

approa ching equi librium and the next increment can be applied . 

In o.ther words , for co ncrete structures Hhere the d e formations 
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are influenced by the cracking s tate r ea che d, the struc

ture is re-ana lysed under th e same incremen tal l o~d for any 

further formation of cra cks . Onc e crack propa ga tion is 

stopped, th en no more increase in displacements occur, and 

another loa d incr eme nt coul d be applied. This pro cedure i s 

analogous to loading a real b eam in the l aboratory and 

allowing it to reach a stable sta te b efore incr e~sing the 

external loa d. 

Thus, the 'incremental-variable ' elasticity procedure 

must analyse the structure, generate the stress sta te, check 

these against the pr oposed failure laws , make any n e cessary 

material property modifications, then re-analys e the struc

ture for crack stabilisation. 

The structural stiffness matrix is updated at each 

cycle after changing the mat eria l prop er ties according to the 

stress conditions prevailing in the previous cyc le . This 

process is rather expensive in computa tion time, but it has 

the advantage of decreas ing the number of cy6les in each 

increment considerably, particularly in the early stages of 

loading where 2 cycles were found to be enough . 

A flOl{ chart for the increm ent a l procedure is sho1vn in 

Fig 3. 8. The process contains t\ro ma in cyclic loops. The 

outer loop is performed for each · load increme nt. The inner 

loop repeats the di sp lacement solutionn for the same load 

increment until no more craclcs are formed and the increa se 

in displacements has stopped . This loop is terminated in 

step 7 if the limit on displa cem ent specified "by the input 
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is reached and the number of . cra cl(e d points remains the s·ame . 

Every element in the beam must go through thi s pro ce-

dure. · Element stresses and strains both incrementa l and 

total at each integra tion po int are computed from the incr e -

mental displacements . Then each point is subjected to the 

appropriate procedure for material changes according to the 

failure L:n-rs . 

The main steps d\lring a typic a l load incr ement can be 

summarised as follows : 

(1) A loa d incr e ment {~n } is applied and a first est i

mate o f the displa c ements { /J.O} (1 ) is obtained, from 

l'lhich 'elastic increments of strains { ~ £} ( 1 ) · and stress 

{ flo}(l) are calculated. 

( 2 ) These increments arc added to the exi sting values at 

th~ start of the increm ent and tota l vaiues are evaluated . 

= 

= 

= 

{ 0 } n-1 

{ E } n- 1 

{ 0 } n-1 

+ { ~5} ( 1) 

+ {!lt:}(1) 

+ { ~0} ( 1) 

(3) Cra ck conditions are checked and modifications in the 

elastic modulus matrix ( D] are carried out. 

(~) A new stiffness matrix is assembled . 

(5) A second e s tima te for displaccments {!J.5 }( 2 ) is 

obtained and {~£}( 2 ) + {!J.d} (:::! ) are calculated . 



( 6 ) Then 

{ 6} n = { 0 } n-1 + {~o}< 2 > 

{ £} n { £ } n-1 + {~ r::. }( 2 ) 

{ 0 } n = { 0 } n-1 + { .6 0 } ( 2 ) 

and the conditions in step ( 3 ) are satisfied. 

(7) The difference between the last tHo displacements, DF , 

i s calculated 

DF = { L\5 } ( 1 ) 

(8 ) Steps (4 ) to ( 7 ) are repeated u ntil DF is sufficiently 

small ( ie less than a prescribed v a lue ), or a maximum 

number o f cy c les exc eeded. 

3.4 Non- linearity a~d Isoparametric Elements 

It has been mentione d before tha t numerical integration 

'"as used in evaluating the stiffnesses of the isoparametric 

elements . The state of stress at each integi~ation point 

wi thin the e l ement is examined individually and the appro

pr i ate material property changes are performed accordingly . 

The element sti:f:fness matrix is then obtained by a suitable 

we i ghted summation of the individual integration points . This 

makes it possible to integrate over linear and non-linear 

regions inside one element . This mea ns that the element can 

con t ain elastic and inc lastic . zones u nder the sa!lle level of 

load. 

It has been repor te~ ( 43 ) that the sampling points of 
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Gauss- quad.rature rules are good positions for evnluc.tting 

stresses, and t,his lvill g ive more accurate prediction o:f 

non-linear behaviour. 

Finally, the u se of the high order displacem ent func

tions, yields a better approximation to the di sp lacements , 

and this results in a smooth spread of non-linear zones . 
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RErNF oncED CONCRETE BEHAVIOUH AND ITS 

FAILUHE LAH S 

4.1 Introduction 

The use of reinforced concrete in structural members 

requires a thorough unde r s tanding of its material behaviour 

under various stress combinations. Numerous experimental 

investi ga tions into the strength and deformation of concrete 

under uniaxial stress states have been conuucted in the past. 

Hm'lever, data on deformutional characteristics and strength 

to obtain stress-strain relations and failure laws for con-

creta under multiaxial tension-compression stress states 

are ina dequate. Furthermore, most tests have been limited 

to the cases of biaxial or triaxial compre ss ion, and only a 

few ha ve been carried out on coniliined tension and compres-

sion. This is the main obstac le to develo~ngcceptable fail-

ure criteria under combinations of tensile and compress ive 

stresses. 

This chapter describes the material behaviour and the 

recent developments in failure criteria under tensil e and 

compressive stresses. 

The behaviour of concrete and steel have b een treated 

individua lly, then they are comb~ned by placing the bars in 

their proper locat ions in the elements. 

4.2 Behaviour of concrete under Load 

4.2.1 Internal Beha viour 

Due to the heterogene ous nature .of concrete, 

its overall mechanical an d phy s ical · properties de pend upon 
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the volume fractions properties of the constituents and the 

m~chanism of int.eraction between the cons tituents. Due to 

the compaction process, hydration and shrinkage of fresh 

concrete , minor microcracks ~xist in. concrete even before 

loading. It is believed now that the formation of these 

irrecoverable microcracks affect the fracture and the shape 

of the stress-strain curve near ultimate LOad . Nelvman and 

Newman (24) discussed clearly the theoretical and experi

mental investi gation of this subject . The phenomena of 

microcracking and the internal behaviour under load until 

the final breakdown of the material are illustrated in 

Fig 4.1 and are described in . the following stages according 

to ref ( 24)' 

(1) As the load is applied , localis e d cracks are initiated 

at isolated points of largest tensile strain concentra

tion. Their formation relieves the strain concentration and 

equilibrium is rapidly restored, the accompanying energy 

changes and irrecoverable deformations are small. Thus these 

cracks are completely stable and do not propagate at this 

load stage. Up to 30-40% of the ultima te strength can be 

reached in this stage and the stress-strain curve slightly 

deviates from linearity. 

(2) With increasing load, these initial stable cracks 

begin to propagate and multiply in a slow stable 

manner. Crack initiation of stage 1 continues and overlaps 

with crack propagation of stage II (Gau ss ian distribution is 

assumed to represent the distributions of crack initiation 

and propagation in Fig 4.1~a), and there is a transition 
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phase from the fi rs t to the second which do es n6t occur at 

any sing le s tress . During this second stage , i f the s tress 

level is n~intained at a certain value, crack propagation 

cea ses. The extent of this ~table cra ck propagati on stage 

will depend ma r k edly upon the appli e d sta te of stress , b ein g 

very short for 'brittle' fracture un de r predominantly ten

sile stress states a nd longer for ' plastic ' fractur e und e r 

predominantly compress ive states of s tress. 

(3) The third and fihal Sta ge III occurs when the crack 

system reaches the unstable stage where the release of 

strain energy is sufficient to make the cracks self-propagating 

until comple te failure occurs. Thi s s t age occur s at 70-90% 

of the ultimate stress and has be en described as the 'cri tical 

stress or load~ and is signified by a reve r sa l in the volume 

change b eha vi our. 

From this interpretation it ca n be seen tha t: 

{a) The failure me chanism of concrete is due to the initia

tion, multip lica tion and propaga tion of microcra cks 

from before loading up to failure. 

(b) For states of stress, where the tensile s tresses are 

predominant, the stable crack propagation stage II is 

of short durati on since the cracks propa gate v ery rapidly 

through the mortar matrix and aro.und the aggre gate -paste 

interface. Thus for this type of stres s sta t e the uniaxial 

stress-strain curve for concr e te can be considered as linear 

without significant error. 
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4.2.2 Uniaxial Stress Behaviour 

Fi.gure l.1:.1.b shows the stress-strain curves 

for a typical concrete subjected to short-term monotonic 

loading up to failure in uniaxial compression. }!any 

investigators suggest tha·t up to 30-40% of the ultimate 

strength, the first part of the curves is r easonably 

straight with a slope equa l to the tangent modulus of elas

ticity at zero load. The end of the straig ht part, ' A 1 is 

called the 'proportional limit'. The pre-existing cracks 

and those initiated through the first stage increase and 

multiply after the limit, until they reach a stage where a 

breakdown of the internal structure occurs. The dcf'ormation 

increases rapidly with the applied stress at this stage 

until it levels out at peack C which is called the ultimate 

stress. After the ultima te load the stress-strain curve may 

exhibit a descending portion if a sufficiently stiff machine 

is used in testing. 

Many investigators (44) &(45) have given standard 

mathematical curves or complex formula:! from curve fitting 

to experimental data. 

The uniaxial stress-strain curve in tension, Fig· 4.2, 

is almost linear (46), (47) & (~8). This can be seen from 

the short duration of stable crack propagation stage as 

explained in the previous sectio~. 

Corupressive and Tensile Strength 

The uniaxia l compressive strength is generally 

used as a measure of the concrete quality. It . is expressed 
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as cube stren gth or cylinde r s tr e n g th a n d can be ob t a ine d 

by t esting cub e s or cylinder s with sta n da r d tes ting machines . 

The cylinder str en gth f' is a p prox imately 0.8 x the cub e 
c 

strength f • 
c u 

For normal arid g ood qua lity concr e te f' c 

ranges between 25 N/mm
2 

to 50 N/mm2 • For t his study the 

cube strength is taken to be around 35 N/ mm
2

• 

Compared to the compressive strength, the tens ile 

strength of concrete is small and ra~ges between .08 a nd 

.12 f'. c 
Its value ca n · be measured by direct tension tests, 

flexural strength tests or splitting te s ts. Different 

values may be obtaine d from thes e test s . The value of the 

flexural strength t a k en in this study is 7.5 Vf~ according 

to ACI-318, 1971. 

4.3 Failure Laws in Tension and 
Tension-Compress ion Zones 

Introduction 

The failure laliS are express ed in terms of 

principal stresses. Thus, in the finite element analysis, 

the concrete principal stresses a 1 t a 2 and a 
3 

are computed 

from the six components of stresses obtained at eacl1 integra-

tion point of each ele ment in the structure. The method of 

calculating the principal ~tres s es from the stress compo-

nents in x, y, & z co-ordinates ~s given in Appendix A. 

The princip:il stresses in the compres sion zone of three 

T-beams obtained from the theoretical a nalysis at ultimate 

load are shown in Tables 4.1, 4.2 and 4.3. The b eams 

named as TBX IV, TBX V and TBX VI~ These beams h a ve flange 

thickness of 70 mm and flange width of 350, 700 a nd 1050 mm 
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TABLE 4.1 
Principal Stresses in the Flange- Beam TBX IV 
(N/mm2) - Compression P ositive 

Element PrinciJ2al· Sampling Points 
Stress No No 1 2 3 4 5 

1 1 -. 335 - 1 . 664 -. oo6 -. 276 - .487 
2 -. 049 - . 792 . 49 5 . 419 . 067 
3 . 873 1.569 7 . 311 7 - 753 2.642 

2 1 - 1 . 763 - 1 . 966 -. 637 -. 69 - .52 
2 1 . 416 -. 452 • 5l.~2 .342 -975 
3 1 . 264 1. 846 £3.59 7 . 27 3.132 

3 1 -. 094 - .059 . 078 -. 176 - .022 
2 . 239 . 271 . 158 .004 . 708 
3 3 . 967 4.198 5 . 925 5.884 4 . 961 

4 1 - .203 - .6 18 -. 5L1: 5 - 1 .156 - . 222 
2 .15 1 -. 614 - . 204 - . 45 11: .759 
3 4 . 085 4 . 111 6 .123 5 . 864 4.465 

I 5 1 - 1 . 029 .034 -. 178 -. 15 .124 
2 . 24 7 1 . 992 . 178 . 385 . 211 
3 4 . 628 5.855 7 . 004 7-5 29 l1:.457 

6 1 - 1. 783 ' - 1 . 826 -. 302 -. 886 - 1 . 996 
2 -. 56 -. 431 ' . 505 -. 047 .219 
3 3 -944 4 . 3 6 . 875 7 . 528 5 - 292 

-- - -- - - ---- -- -~-- --- ---- - - - --

6 7 8 

-. 052 - .17 .058 
. 896 . 043 . 437 

3.173 6.514 6 . 409 

. 069 - .029 .265 
1 . 375 . 485 1.483 
3 . 162 6.148 5.686 

- 1.78 -. 225 -. 899 
- .068 . 112 - .2 LJ: 2 
4 . 1155 6.38 5.974 

. 006 -. 017 -. 739 
1.627 1.019 .367 
4 . 492 6.74 7 . 333 

- . 896 -. 084 - .395 i 
- . 191 . 42 7 .049 
5.201 7·776 3.14 

-. 633 - 1.417 - .668 
2 . 7 - .144 4 .14 
7 . 504 8 .299 11.534 
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TABLE 4 . 2: Principal Stresses in the Flange - Beam TBX V ( N/mm2 ) - Compression Positive 

Element PrinciEa~ Samp ling Points 
Stress No No 1 2 3 4 5 6 7 

1 1 -. 052 --575 -. 138 -. 235 -.121 -. 67 .005 
2 - 053 . 021 • 026 -. 119 -.053 . 087 • 163 
3 1. 054 1.17 5.235 5.672 1.283 2.041 5- 955 

2 1 -. 905 - 3 . 613 -. 624 -. 207 - 1 . 237 - 2.395 . 112 
2 . 086 -- 791 . 401 - 931 . 075 .183 . 314 
3 1.348 1 . 004 6.459 7-954 1.893 2 . 903 6.151 

3 1 - 3 . 197 - 2.97 -. 662 - 1.234 -. 91 7 -. 78 .1 22 
2 -- 2.294 - 2.343 1. 098 1.176 . 525 1 . 78L1- .271 
3 --576 - . 61 8 . 236 8 .76 7 2 . 627 1.904 6 . 095 

4 1 -. 163 -- 752 • 016 -. 251 -. 245 -. 512 -. 658 
2 . 124 -. 111-3 .184 . 244 . 283 . 867 -. 10 
3 1.896 2. 166 6 . 096 6 .05 2 . 097 2 . 194 6 .731 

5 1 - . 86 3 -1. 282 -. 238 -. 298 -. 336 -. 926 - .251 
2 -. 026 .5 42 . 141 .5 22 - .021 -. 375 -559 
3 2 .• 911 3.957 5. 8L.t5 5. 228 2.924 4 .564 6 . 367 

6 1 .031 -. 687 -. 825 -. 187 .233 . 112 -1. 84 
2 1.021 . 507 . 406 -.5 99 -. 364 1. 207 . 906 
3 3.459 4.089 .4 . 474 3. 889 4.254 3-795 4.834 

7 1 -. 351 -. 819 .139 - 1.336 - .341 -. 184 -. 54 4 
2 . 118 -. 061 .526 -.5 42 .01 .744 - .092 
3 1.466 2.636 8 . 38 6.436 1. 4 74 2.357 8.9 88 

8 1 -. 986 - .649 -. 315 -.3 99 --. 502 -- 978 -. 212 
2 -. 46 5 . 829 . 033 -5 5 . 219 - .303 .289 
3 2.753 5-198 7- 074 7 - 774 2.528 2.53 8.392 

9 1 -. 446 - 2.898 -. 815 - 3.149 - 2 . 4 15 -. 412 - 1.037 
2 -.334 -.544 • 161 - • 38L! ' . 239 2.963 I -. 075 
3 4 . 988 .) . 872 6.007 6.121 2.39 7. 8111- 10.026 

- -- ----

8 

-. 183 
. 071 

6-.1 83 

-. 426 
. 293 

5. 884 

. 476 
1. 6 1 
5.484 

. 482 
1. 16 
6.859 

- . 943 
. 099 

5-177 
- 1.071 

1.533 
5 -999 
-. 219 

.6 69 
8.195 I 

- 1.488 1 
- .5 8 1 
9-555 
-. 946 
4.485 

12.815 
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TABLE 4 .3 Pr inc ipal Stresses in the Flange at Ult i mate Load (N/ mm2 >- Beam TBX VI 
Compression Positive 

Princ iEa l 
\ 

Samplin~ Points Element Stres s No I No 1 2 3 4 5 6 7 

1 1 -. 058 -. 379 -. 289 -. 649 -. 064 - .952 -. 134 
2 . 072 -. 015 -. 052 -. 018 . 007 -. 021 . 044 
3 • 216 · 559 4 . 023 4 . 475 • 17ll .712 4 . 773 

2 1 - 1 . 343 - 3 - 754 - _1 . 266 -. 135 -1. 758 - 2 . 574 -. 33 7 
2 . 177 -. 767 . 266 .625 -. 086 - .306 • 156 
3" 1 . 121 . 895 5 . 21 7.5 85 1.169 2.21 4 5.385 

3 1 - 3 . 367 - 3 . 579 -. 88 1 - 1.18 - 2 . 036 - 1 . '=!:29 . 178 
2 - 2 . 269 - 2 . 715 1.168 1 . 064 -. 051 . 804 - 97 
3 -. 274 -. 894 6 . 84 7 . 271 1 . 136 1. 74 5 -752 

4 1 - .224 - 1.026 - .029 - .259 - .283 - .1L!6 - .002 
2 -. 1'! . 043 . 099 • 116 - .066 .382 .1 96 

' 3 . 016 . 744 5 . 347 5 • 11:9 5 • 17 -5 58 5- 932 
5 1 - 1 . 432 - 2 . 093 - .289 - .116 - 1. 096 - 1.777 - . 136 

2 . 087 . 34 .168 . 547 -. 128 - - 736 . 306 
3 1 .• 157 2.905 5. 4l.!: 1 4 . 648 -972 3. 435 5- 952 

6 1 - .06 - . 61±3 - 1 . 128 - 1. 651 - . 762 . 166 - . 888 
2 • tl.!:2 . 252 . 26 • 2l1: i l: . 918 1.378 . 84 
3 3.155 2 . 6 -3 . 668 3 . 033 4. 294 5.6 11: 1 4 . 558 

7 1 . 67 1 -. 66 5 -. 318 - . 292 - . 56 5 -. 848 . 208 
2 - .157 -. 136 -. 095 . 054 -. 042 - 339 .183 
3 . 0::::!7 . 585 I 6 .388 6 . 398 . 559 . 678 6 . 597 

8 1 - .899 - 1 . 475 - . 329 - .3 l1:8 -. 862 - 1.723 -. 393 
2 -. 174 1.085 . 138 . 802 - . 434 .089 .318 
3 -73 3. 005 . 6 .563 6 . 901 . 54 1. 313 6 . 896 

9 1 - 4 . 137 - 3.488 - 1 .3 26 - 1. 338 - 1.565 - . 9 - 2 . 173 
2 - 1.832 - 1 . 321 .723 1. 238 1. 684 . 709 . 065 
3 2.277 2.001 5.362 4 . 906 11: . 159 7-179 8 . 25 

8 

-. 341 
.056 

5"· 36 1 

- .426 
.527 

5.3 21 

. 65 
2 .274 
4.151 I 

.021 
-7 36 

5. 985 

- .5 97 
. 003 I 

I 

5.16 8 

1. 6 '± 3 
1.193 
4 . LJ: 74 

. 41 
• 7'l 

7- 871 
- 1.1 

- .35 2 
?. 962 

- . 89 5 
4 . 755 

12.056 



respectively, more details are given in Chapter· 6. The 

location of the elements in th e flange and the sampling 

points in each element are shown in Fig ~.3. 

It can be seen from the tables tha t a t lea s t one of 

the principal stresses in the compres s ion zone is tensile. 

Neither does the maximum compres s ive stre s s exceed 30% of 

the cube compressive stress for these bea ms (cub e strength 

was 37.9, 37.5 and 36.1-J: N/mm
2 

respective ly). Thus, the com

pression zone of a T-b~am failing in shear is under a state of 

tensile 'and compressive stresses. It was discussed before 

that for such stress states , where the tensile stresses are 

predominant, the linear brittle respons e for concr e te can be 

considered. And hence cracks occur as a result of the exis-

ting tension or tension-compression stresses . 

The failure laws used for this study are discussed in 

the following sections. The regions of failure are classi

fied as tension or tension-ciompression zones . 

Failure Laws in Tension Zone s 

Many l'lOrkers have proposed failure laws in 

multiaxial tensile stress states (49), (50). How ever , the 

most accepted failure theories for predicting cracking of 

concrete in tension is the maximum stress and maximum strain 

criterion. Concrete is assumed to behave linearly in tension 

with a limiting value equal to the tensile strength . These 

theories state that if a maximum principal tensile stress 

or strain in any direction reaches the tensile strength -of 

concrete then a crack is assumed to occur in a direction 

perpendicula~ to the offending principal direction. The 
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ma x imum t ens ile strength of' concrete is determined f'rom 

direct tensi le test s on concrete specimens. 

Failur e Law·s in Tens ion-Coml?res si on Zones 

The deter1i1ination of' a · universa l failure crite 

ria for predicting failure of concrete under triaxia l stresses 

is still uns olved. To fulf'il this r equirement, during the 

last decade, tests ha ve be en conducted to investigate the 

behaviour and strength of concrete subjected to short-t erm 

multiaxial stress systems. More attention has b een given to 

tests under biaxia l and triaxia l compression st ress states. 

Bresler and Pister ( 23 ), (51), Good and Helmy (5 2 ), 

Reeves (15), and Johnson and Lowe (5 3 ), carried out tests 

on hollow crlinders under axial "compressi on ~nd transverse 

torsion. Kupfer et al (48 ) te s ted square plntes unde r com

binations of biaxia l compres s ion, compres s ion-t ens ion and 

biaxial tens ion. They, also, measured multiaxial deforma

tions. Mah mood and Hannant( 54) carried out te s ts on cylinders 

for compre ss ion -compression-tension regions. • Launay 

and Gashon (55), (5 6 ) tested cubes under triaxial corn-

pression and two compression, and one tension. Based on 

the informa tion obtained failure envolopes '"ere produced 

in stress space as sho,in in Figs 4.4 and 4.5. 

From these tests it is difficult to obt a in a consis tent 

trend. This is due to the different shape and size of t es t 

specimens used and the conditions of loadings in each 

investigation. 

A fe'r :failure theori es have rec e ntly b ee'n presented for 
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concr ete :fracture under combined tens ion-compress ion stress 

states. These are ~scussed in the :following sections . 

Nahmoo·d and Hannant Failure 
Cr:i.t eria ( 54) 

F~om their t es t results they derived 

an equation :for failure under tension-compression-compress ion 

as follows: 

0 3 = 

where 03 = 

01 = 

ocy = 

.05 (..Q_! 
1.1 

the maximum 

the minimum 

= 

tensile stress 

compres.sive stress 

concrete cylinder . strength 

A failure envelope in stress space for the multiaxial stress 

system is shown in Fig ~.4. 

The equations for failure lines w·ere derived :from 

lolier bound curves based on the experimental . data. 

Equation (4.1) has been introduced in the present 

finite element model to predict the fracture o:f concrete in 

reinforced concrete T-beams. By tracing the load deflection 

cur~e of Fig 4.6, the criterion .considerably underestimates 

the beha viour and strength of the beam. 

The same experimental data (54) l'lere reanalysed in 

this study for the case o£ t ension-compression-compression 

stress state. TliO equations have been :fitt ed to these data, 

a linear equation and a quadratic equation as shmn1. in Fig 4.7.· 
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The linea r equation is: 

= Ot 
.0?38 <. 1±91 

and the quadratic equation is: 

= 

(/t.2) 

Each of thes e equations has been tried separately in 

the finite element analysis used for this study, but with 

little success. This may be attributed to the effect of 

neglecting the interme diate princip~l stress in the criteria. 

Hobbs~ ' Pomeroy and Newman (57), recently proposed simi-

lar equations for de sign stresses of concre t e subject to 

multiaxial stresses. They showed that the tensile stress at 

uhich cr·aclting ,.,..ill occur can be expressed as: 

0 > 

'~here is 

> 01 
20 f cu 

the tensile stres s at failure 

0 1 is the maximum compre ss ive stress 

Equation (LJ:.IJ:) is similar to equa tion U±.1) considering that 

0 = .67 f • When this equation was applied to the cy cu 

present theoretical model it gave results similar to those 

in Fig 4.6, l~hich underes timate both the deformation and 

strength. 
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Cedolin, Cr ut zen and 
Po li Failure Criteria (58) 

From a n ana lys i s of the e x isting 

experime ntal data on triaxial stre s s s t a t es , s tre ss - s tra in 

relationships were proposed for multiaxial compre s sive 

stresses and failur e criteria for the ultimate strength of 

concrete under combined stress es. The failure criterion 

was formulated in terms of o.ctahedral normal and -s hear 

stresses ( 0 t and 1 t respectively). This type of fa i l-cc oc 

ure criteria repres ent~ an improvem ent ove r the Mohr failure 

theory because it t a kes into account the interme diate 

principal stress. 

The failure r e lationship takes the form: 

:: 

or 

= 0 

where r
1 

and I 2 , the stress invaria nts are given by 

= 

::: 

t oct 

01 02 + 02 03 + 03 01 

= 

= 

In the o eta h e dral normal and shear stress plane the 
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failure law of equation (4.5) can be represented. by a linear 

or a quadratic equation according to the exp erimental infor-

mation avai l able and the application to structural elements. 

Using the results of Kupfcr ( l.1:8 ) and Launay and G.ashon 

(55), ( 56 ) a failure surface in the principal stress spa ce 

has be en dra,-rn ( 58 ), Fig 4.5 . ·curve B is chara cterised by 

> a3 and represents the Launay and Ga s h.on 

test data . \>Thile curve A corresponds to 0 1 > a 2 = 0 3 

and has been obtained by assuming the following hypothesis : 

(1) rigi d rotation of biaxia l curve (2) intersection of the 

tl'f O planes 0 -2 - a t ( 0 t = uniaxial tens ion ). 

Cedol in ·eta l r epresented these curves through the oct ahedra l 

shear and normal stresses Fig L1.8. Straight · lines ha ve been 

interpolated from this data for the limit conditions 

0 3 and a -1 - Cedolin et al fitted 

the following equations for these lines: 

"t / f ' = 1.07 0 / f: ' + .118 o 1 >a 2 = 0 3 oct c oct c 

01 > 0 
t /£. = 0.6 2 0 / f t + .068 01 = 0 2 > 0 3 oct c oct c 

"t / f . = 1.'* 1 a ; r ' + .141 01 > 0 2 = 03 oct c oc t c 

01 < 0 

t~ct/fd = .705 0 . / f t 
oct c + .0705 01 = 0 2 > 03 

Considering compression as posit ive , equations (4.11) repre-

sent the cases of on e compress ion and two tensions or two 

compressions and one tension while equations ( 4 .1 2 ) are 

adapted £or three axial tensions . 

- "(!-

(4. 11 ) 

(4.1 2 ) 
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Because these lines agree with th e availab~e experi

mental evidence J.i'ig L.1.8, from (4 8 ), (51± ), (5 5 ) & (56), the 

octahedral failure laws are used exclusively in. this study 

to examine the tension-compr~ssion stress states and predict 

the cracking failure of concrete accordin~ly . 

4.4 Crack Simulation 

Introduction 

Several 1~ays have been .used to simulate the 

effect of cracking in tinite element models. Ngo and 

Scordelis (59), (60), handled cracking by locating pre

existing cracks at points along a simple beam. The position 

and extent of the pre-existing cracks depend upon previous 

experimental observations. The cracks were considered as 

boundarie s for the elements and separate nodes were taken 

on both sides of the cracks with identical co-ordinates. 

Linkage elements were introduced beh<een the separated nodes 

to represent aggregate interlocking. 

Nilson(61) used a similar approach with an incremental 

solution of crack propagation . He considered a crack to 

occur betl~e en the edges of two elements if the ir average 

stress value exceeded the tensile strength of the concrete. 

The elements were then disconnected at their boundaries and 

renumbered by tliinning the nodal points. This technique 

is limited because cracks are aliowed to form only along 

the element boundaries. 

Loove (62), (63) used a similar method by using 

different topology in the region around the crack tip. He 

replaced the ·cracked element by four elements, and separate 
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nodes were redefined on both sides of the c rack .· These 

appro aches necessitate that cracks must follow element 

boundaries and for every crack, redefining of the topology 

and changing the FEH mesh is. ·required. This introduces dif

ficulties and increased ·costs in the computati onal process . 

Another method used for tackling the cracking problem 

is by failure crit eria . Cracks are initiated at ~ertain 

points of the element according to specified failure 

criteria. The material properties are then adjusted in the 

cracked ·area by modifyi ng the lnaterial matrix. In this ,..,ay, 

natural crack directions can be obtaine d and more than one 

type of crack pattern can be simulated . The average pro

perties of the cracl~ed r egi on are determined by this method, 

thus a high accuracy in the cracl< pattern can only be ob

tained by using fine meshes. Thi s method seems to be common 

now among researchers to predict cracking o f concrete. 

Zienkiewicz et al (30) u sed ·the maximum tensile strain 

criterion in a study for pressure ves se l s . Phillips ( 40 ), 

(42) applied maximum stress or strain criteria and acta-

hedral failur e l a \>'"S in his study . Cervenka ( 6 l.1: ) , ( 6 5 ) , 

Cedolin (66), Cope (67), Buyukozturl< (6 8 ), Hobins ( 69 ), 

Suidan {35) and }1irza (70) did lih:ewise in the ir studies. 

4.4.2 Crack Initiation 

In the present study, cracks are predicted 

by using t"\""o failure theories: 

(1) Naximum principal. tensile stress criteria, and 

(2) Octah~dral shear and normal stress criteria sug gested 

by Cedolin et al (58 ). 
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The maximum stress criterion is u sed to determine 

cracking in tension zones wher e the concrete b e h a v iour i s 

linear elastic and local failure occurs by cracking . The 

basic ass wnpt ions of the failure is ·that ,.1 h en il princi pa l 

tensile stress excee ds the limiting tensil e strength of 

concret e , the ma t erial is assumed to have cracked in a plane 

normal to the offending pr incipal direction. Thus for 

crack ing : 

:f' 
t 

The tens ile stress in thi s principal direction cannot 

be supported aft e r cra cking , s o the stress in this direction 

is reduced to a n eglig ible value as shown in Fig 4.9. Hml'" -

ever, in a dir e ction pa r a llel to the cra ck, the mat er i a l is 

assumed to, be capable of sust r~ ining stresses according to th e 

biaxial ·stress state exis ting after cra cking . 

fi'urther, it is assumed tha t no interaction occurs 

between the principa l directions . It is possible tha t new 

cracks will occur due to the principal t ens ile stresses in 

the plane of the initia l crack. The new cracks are assumed 

to be orthogonal to the first crack . 

cracking: 

0~ 
~ 

f' 
t 

So, for further 

The mat eria l is ass umed homo g eneous and isotropic 

( 4.14) 

before cracldng , but it has ortho tropic properties after craclc-

ing. 
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Fracture in tension-compression zones is predicted .by 

failure l aw·s obtaine d on the octahedral normal a nd s hear 

stress plane and which are ex pressed by the linear rela-

tions hips given by equa tions . (4.11) .as follows: 

l\"here 

1: /f' oct c 

= 

= 

1.07 

.62 

0 /f' oct 
c 

0 /f' oct c 

+ .118 = 

+ .o68 = 

0 t and 1: t are calculated f'rom the principal stresses oc oc 

according to equations (4.7)-(4.10). 

If the maximum principal tens ile stress has not reached 

the limiting tensile strength according to equation (4.13), 
. .... 

then the octahedral normal and shear stre s ses are calculated 

and substituted in the above equations according to the 

existing stress state. If 0 t and oc 1 satisfies the oct 

above equations (i e toct/f~ is greater or equal to the right 

hand side of the equations ), - then the failure is defined. 

No exp erimental evidence is availa ble on the pattern 

· of failure in multiax ial tension-compres s ion stress states 

(2 compressions + 1 tension or 1 compress ion + 2 tensions). 

In biaxial tension-compression stress states Newman (44) 

reported that under high tensi on. to compress ion ratios , the 

fracture is charact"erised by a single cleavage fracture 

ort hogonal to the principal tensile stress (Fi g 4.10). 

However, at lower tension to compression ratios, the fracture 

pattern take s the shape shown in Fig 4.10. Johnson and 

Lowe (53) have observed from their tests that .the single 

cleavage frac-ture occurred \'lhen the compression to tension 



Fracture pattern at higher 

ratios of tensile stress 

Fracture pattern at tower 

ratios of t ens il e st ress 

FIG.l..10. IDEALIZATION OF MACROSCOPIC FRACTURE 

PATTERNS IN TENSION- COMPR ESSION ZO NES 

(After Vile) 
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ratio was less than 11, crushing failure occurred when t .his 

ratio was over ·25, and an intermediate form of failure b e tween 

these values. 

Launay and Ga shon (55) have noti·ccd from the tests on 

2 compression + 1 tensicin that the strength of concrete was 

reduced considerably in this type of stress state. Thi s can 

be interpreted as that the failure \'las of the cleavage type 

ot: fracture which occurs at lower energy requirement, than 

that for crushing typ~ of failure. 

The above failure patterns were observed from experi

mental results obtained from sma ll element studies such as 

cubes, plates or cylinders. These results are influenced by 

testing conditions, size, geometry and curip.g conditions. 

Thus their application to real structures is not straight

forward, Realising this and noting that in actual T-b eams , 

crushing of concrete seldom occurs except in a few cases o f 

narrow and thin flange, crack patterns have been adopted f or 

the multiaxia l tension compression stress states as follows: 

(1) For high principal tensi le to compressive stress ratio, 

a single cleavage craclc is assumed as show·n in Table 

4.4, Case 5. 

(2) For lower principal tensile to compressive s tress 

ratios, a multiple cl eavage crack pattern of the type 

shol\"n in Table 4. 4, Case 6, is assume d. 

These two cases have been adopted after severa l trials 

in the finite element model by assuming different crack 

patterns and comparing the load-deflection 6urves for T

beams with ihe experimental ones. Fig 4.11 shows load 
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CRACK PATT •RNS 

Case Crack 
Description No Pattern -

6) 
Uncrilcked clement 

1 

GV 
Concrete crackc d in one direction 

2 due to max tensile principal stress 
(t ension zone ) 

® 
Concrete era clce d in two directions 

3 
due to max and intermediate tens ile 
principa l stresses 

Concrete cracked in three direc-

~ 
tions due to max , intermediate and 

4 minimum tensile principal stresses 

® 
Concrete cracl~ed in one direction 

5 
due to combined tension-compre s sion 
stresses 

@ 
Concrete cracked in t\\To directions 
due to combined tension-compression 

6 stresses . 
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deflection curve for beam Tn· V where 3 cases of assumed · 

crack patterns cire shown . 

Numerical values have been tried also to detern1ine 

the r ati o of the principal tensile stress to co1npress ive 

stress at which the transition from the single to multiple 

crack occurs . It was found tha t a ratio of 0.1 is the mo s t 

reasonable value for this purpose (Fi g 4.12 shows 3 cases 

when this ratio = 0.1, 0.3 & 1). This ratio agrees with 

that obtained by Johnsbn and Lowe (53) from tests on 

biaxial . tension-compression. 

Crack patterns adopted for the two failure criterion 

used are summarised in Table 4.4. Cases No 2, 3 & 4 are 

adopted for . the maxir urn principal tensile stress criteria 

while cases 4 & 5 are for the octahedral stress criteria. 

Int erlocking on Initiated Cracks 

From tests (71) & (72) it was found that part 

of the total shear force on a beam is carried across the 

cracks by aggregate interlock. Unfortunately inadequate 

experiment al information is available to describe and 

represent its behaviour. Roughness, irregularity and spall-

ing of concrete over the aggregate particles arc the fea-

tures of the surfaces of a cleav~ge crack. Thus, any 

parallel differential movement will cause the opposite faces 

to interlock and transmit forces across the crack, and 

therefore shear stresses in the direction of the crack will 

not be zero. In this study , interlocking is repres ented by 

a shear transfer factor F in the constitutive relation. 
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Thus, after cracking: 

( lf.15) 

where G is the material ·shear modulus before cracking and F 

is a constant , its value ranges between 0 a nd 1. 

Previou.s studies on planar problems (lJ:O), ·( 66 ) , showed 

that the analytical solution is insensitive to the value of 

F, provided that its value is not close to zero . In order 

to make some assessment, different numerical values have 

been tried in the present program , and it t\"as found that the 

value for. F = 0.2 gave satisfactory results with regard to 

the deformation and ultimate strength of the beams. 

Cons titutive Relations 

Before cracking, the material is assumed to be 

isotropic. A linear stress-strain relationship is assumed to 
.. 

be valid if the existing stress is tens ile and the incremen-

tal constitutive la\'1 in global directions for 3-D stress are : 

flax 1-V V V 0 0 0 !lE 
X 

flay 1-V V 0 0 0 flE y 

flaz 
E t.:..v 0 0 b.E = < 1+ v) ( 1-2 v) 0 

z 
/Sr xv 1-2V 0 0 b.yxy 

2 

6tyz .lSymm 1-2V 0 b.yyz ---r 
!J.tzx 1-2V b.yzx ~ 

( 1!.16) 

or { flo } = D J {ll E} ( lf.17 ) 
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lvhere E and V are concrete 111odulus of' elasticity and 

Poisson ratio res p ectively , and [ D ) i s the mat erial pro-

perties or elasticity matrix. 

After cracking, orthotropic con d:itiono are introduced 

and the material matrix I D] is applica ble in the princiral 

stress co-ordinate system. \vhen a single cleava g e crack 

occurs, the princiPal tensile stress orthogonal to the 

crack is reduced to zero . The corresponding terms in the 

material matrix are se·t to zero, w·hile a shear cons tant F 

is included to represent the aggregate interlocking. The 

material matrix [ D ] is then modified to: 

0 0 0 0 0 0 

2 
D13°12 

0 022 
~12 

0 23 
0 0 0 --- -011 D11 

0 31°21 
· 2 

0 032 0
33 

_ 0 13 
0 0 0 

[ D ]• = 0 11 D11 

0 0 0 F o,t-4 0 0 

0 0 0 0 0
55 

0 

0 0 0 0 0 F D66 

(/J:. 18) 

As the constitutive relationships are still linear-

elastic after cracking , the material matrix ( D) • represents 

·a sudden change from one elastic - state to another. This 

means that crack propagation is solved by a series of tran-

sitions from one instantaneous elastic stiffness to another . 

If no further cracking occurs during the cycling in which 

stiffnesses are updated, then converg ence in clisplacements 
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would result immediately. 

If' multicleavage cracking occurs in t'h'O perpendicular 

directions, or a second cleavage cra ck for ms orthogonal to 

the first crack, then the terms of [ D ] corresponding to 

these two principal tensile stresses are set to zero and 

[D)• takes the form: 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0
33 

0 0 0 
. ( D ) * = ( 4.19) 

0 0 0 FD44 0 0 

0 0 0 0 FD5.5 0 
,. 

. 0 · 0 0 0 0 FD66 

The zero values on the diagonals cause difficulties in 

t he numerical solutions, thus the corresponding diagonal 

term is set to a small positive value. 

The material matrix [ D)• is in co-ordinate directions 

coincident with the angle of' the crack , therefore it is 

essential to transform it back to the original global 

reference system for stiffness c a lculations. 

The constitutive relationship in the global system 

is given by 

{ ~0 } = ( D ) {fle: } 

and in the crack direction by 
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= D ) * {~t: } * (/±.21) 

By applying the transforma tion rule , the strains can be 

expressed as: 

{ ~ £ } * = '[ T ) . { ~ E } ( l.~; . 22 ) 

and [ T ] is defined by 

2 2 2 
8

11 a12 8
13 a 11a 12 a 12a 13 a 11a 13 

2 2 2 
a21 8

22 a23 a218 22 a22a23 a21a23 

2 2 2 
a31 a32 a33 a31a32 a )2a33 a;Ha33 

a11a22 a12a23 a11°2 3 
+ + + 

a 12a·21 8 13a22 a 1 38 21 

a21a32 a22a 33 a218 33 
+ + + 

8
22

8
31 a23a32 a23a31 

a 1 18 32 a 12a 33 a 11a 33 
+ + + 

a12a3 1 a13a32 8
13

8
31 

(1!.23 ) 

t~here aij are the terms :from the norma lised modal matrix ( A] , ( 73 ) 

where 

{ A] = (4.24 ) 

This matri x defines the cti·rection cosines of the principal 

stress axes from the reference axes . A method for calculating 

matrix ( A ] is gi·ven in Appendix A. 
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Assuming tha t work done is independent of the co--ordinate · 

system, then 

{ ~ 0} * = {~E}T {~o} 

and substituting equations (1;~; .20), ( l.J:.21 ) & (4. 22 ) into 

equation (4.25) gives 

[ D = _[T)T [D)* T 

4.5 Steel Behaviour 

Steel reinforceme nt is us ually used with concret e in 

the form of slender bars which can be assumed to be stresse d 

only uniaxia lly. 

The uniaxial stress-strain curve for different types 

of reinforcement st ee l are \'le ll lnlO\vn. A typic a l uniaxial 

stress-strain curve for high tensile steel is s hown in 

Fig 4.13. 

called the 

The curve is linear elastic until the point ' P ' 

' proportiona l limit' is r ea ched. After this point, 

increase in stress increases the strain but not in a linear 

relationship. The yield point knmvn for norma l types of 

· steel is not well defined for this type. Thus, it is u s ually 

taken at fixed value of strain such as .002 and the stress 

is defined as ' proof stress '. After this the strain increa ses 

rapidly with small increases in stress and the material i s 

defined to possess strain hardening. This continues until 

a maximum stress is reached 'V' and fracture occurs at 

point 'F' after a descending part on the curve. 
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For this s tudy , the behaviour of the longitudin.:tl 

steel i s approximated to be linearly e l astic . This is 

based on the fact that this study is concerned lvit h shear 

failure of beams in l'fhich the failure occur s in most cases 

before reaching the yield strength oC the ma in s t ee l, pro-

viding that the beam has the required flexural strength. 

This is noticed also in the tests carried out on the T-

beams for this study. 

is 3 2 
Young Is modulus of steel,< usually a bout 200 X 10 N/mm • 
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COl\lP UT ER P HOGTIAJ-1 

5.1 Introduction 

The main features of the computer program written and 

developed for thi s study are described in some detail in 

i:;his chapter. The program is designed to handle the in-

elastic incrementa l analysis of r einforced concrete T-

beams using the finite element three dime nsiona l .stress 

analysis described in the foregoing _chapt ers . The program 

consi st~ of a series of computer segments lfritten in 

Fortran IV for ICL 19065 computer. The main algorithm of 

the program in the form of flow charts and the consequence 

of computation process in each par t is presented in this 
·. 

chapter. 

5.2 Structur e o f the Pro gram 

A flm·r cha rt for th e ma in operations in the pro gram 

is shown in Fig 5.1 . In a ~tep-by-step non-linear 

finite .element analysis there are four basic operations that 

must follow in a logical sequence . These are (1) the assembly 

of the stiffness matrix and increment loa d vector for the 

entire structur e , ( 2 ) the solution of the incremental 

load-displacement equations , (3) the application of the 

obtained displacements to the elements to determine incre-

mental internal stresses, and (4) checking t he total stresses 

l~i th the given failure l aw and maldng the necessary modifi-

cations .in the material properties accordingly . The last 

operation is the key for any non-linear so lution as it 

controls the increment a l scheme and brings the final failure 
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of the structure . The incrementa l metilod used rc pc ts the 

whol e solution for ea ch load increment . Tllis is cha r nc t cr i scd 

by an outer loo p with the number of the individually spcci-

fi ed loa d incr ements ns ~ parameter . E11be ddc d in this loop 

is the crack propagation scheme oxplained b e fore . The 

previous operati ons are included in a group of subroutines , 

each performing one or part of these operations. 

I The first subroutines are for the data readings and 

generation : 

. (a) G DATA: Thi s s ubrout ine reads the general 

description of t he problem as the material pro-

perties information , e l ement loc a l co-or dina tes , 

inte$ration rules , element connec tions and 

boundary nodes . 

{b) DAT GEN: for a -given n umber and dime nsion of 

elements , thi s subroutine gen erates the X, Y & Z 

co-ordinates for each no d e in the ruesl1 . Then it 

lte eps these co-ordinates in dim ens ions block for 

l ater use . 

{c) LOAD: To r ead incremental load va lue and stor e 

it in one dimensional load vector. 

II The second group of subroutines are for the evalu ation 

o f the elastic stiffness matr ix for each element , then 
to 

transfer it/ the assemb l ed subroutine for the 'vhol e stiffness 

matrix . Five subroutines are incorporated in this block . 

{a ) ELSTG : This contains the main loop for the 
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(b) 

i ntegr at ion r u le . At e a ch i n t egration p oint th e 

following st eps a r e per f ormed: 

(1) In the fir s t load inc reme nt, t he ini t i a l 

mat eria l propert ies ma t r i x i s ass emb l ed 

from th e elas tic ma t e ria l constants given 

in the input data . In the s ubsequ ent 

increments i t t a k e s the pr evious lllodifie d 

ma trix if it e x ists. 

(2) The co e f f icients of the stra in ma tr i x a r e 

calcula t e d by ca lling s ubroutine s SFTI I, 

J ACOBI\N and FORN Band thes e a r e ,.,..ritt e n 

on a t ap e for l a ter use. 

(3) The co e fficients of the stre s s matrix are 

calculated from the ma t erial properties 

ma trix a nd the strain rna trix a nd a r e '"ri t 

ten on a t a pe for l a t e r u se . 

(4) Stiffne sses o f the u p p er ha lf of th e el e 

me nt s tif f ness ma trix ar e eva lua ted from 

the stre ss matrix , strain ma trix, wei ghing 

integra tion coefficie nt s a nd the det er

mina t e of the J a cobia n ma tri x. 'l'he lower 

ha lf i s then fill e d by symme try. 

(5) The stif fne s s es f rom e a ch inte gr a tion p o int 

are summed to g ive the element s tiff n e s s 

ma trix. 

SFRI: I n th i s subrout i ne th e parabolic s h ape 
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functions and its fir s t derivatives arc com·· 

puted for the corner und mids ide node s . Then it 

i s stored in dimensions blqck. 

(c) J A.COB I AN : Three operations a rc done in this 

subroutine: (1) The 3 x 3 Jaco bian matrix is 

evaluated from the first derivatives of the 

shape functions and X, Y, Z nodal co-ordinates. 

(d) 

( 2 ) The determin.ent of' this matrix is calcula ted. 

If this value is ne ga tive or v ery .n~ll, the 

program ,.,ill terminate and send an error mes-

sage. This indicates there is an error in the 

element connection data , the Cartesian co

ordinates or in the previous operations . 

( 3 ) The invers e of the J acobian matr ix is formu-

l ate d. This is used to evalua te the strain mntrL · . 

FORN B: Terms of the strain matrix arc calculated 

from the inverse· of the Jacob · an matrix and the 

first derivatives of the s hape functions. Then 

these terms are arranged in the 6 x 60 strain 

matrix and written on a tape for later use. 

( e ) STELEM : This subroutine evaluates the two or 

three node bar element . It enters the integra-

tion loop then it picks the appropriate shape 

functions, calculates the strain vector, the 

stress vector and writes them on a t ape for later 

use. The bar stif~nesses are calculated from 

the contribution of st iffnesses at each integra

tion point. 
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III The third group are for ns..::cmb l age and soluti.on . 

has been done in the follm~ing routines : 

This 

( a ) 

( b ) 

FCRN K: Assemb l es the tot.:\1 st i:ffness lHatrix 

for the structure. After every e l ement s tiffne ss 

matrix is evaluated , the indivi ·ua l co efficients 

are transferred into the total s tiffness ma trix 

node-by-no e. The three equations associated 

lofith the given no de are u sed from the proper 

storage loc a tion and the contribution o f the 

current element are s u perimpo se d to the present 

va lue s . The concr e te s tiffnes s es are s tor e d in 

a banded rectangular n1atrix form , then stee l 

stiffnesses are added to it. J3 oundnry condi-

tions arb inserted also after completing the 

a ssemblage . Each degree of free dom i s examin ed 

and if it is restrained the n a unity is i1serted 

on the diagonal and zeros on the corresponding 

rows and columns . 

SOLVE: The tota l load- displ acement equations are 

solved u s ing the d irect elimination technique , 

re s ulting in a displacement vector . Practi-

cally,the routine so lves, fo r any number of 

equations, ba ndwi.dth or loa d v e ctors, but ,.,i th 

increasing band\'l idth and number of u nl-..nO\'lns , the 

solution tirue increases . 

IV The f inal group is the subroutine~ for stresses , 

failur e law·s and updating stresses at the end of ea ch 

l oad increment.. 
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·, 

(a) STRb: SS : The stresses and stra ins are calculu t ·•d 

element-by-element at th e incremental load 1 vel 

then it is added to the previous ones to ob ta in 

the total stresses or s trains . The stress nnd 

strain matrices evaluated at the individua l inte

gration points, previously used during the c u lcu

lation of the element stiffness matrix are 

re-read from tape s ~nd us ed for the present 

evaluations of stresses and strains. The 

principal stresses are calculated at the 8 int e 

gration points of each eleme nt from the totc l 

stresses obtained at the load level consider d. 

(b) · FCRITERIA: The principal stresses are check e d 

'd th the failure laws for concrete as descr ibe d 

before at each individual sumpling point of each 

elemeht. According to the type of cra ck occurred , 

the program is directed to the aprropriatc 

stream to pick the corresponding factors r e quired 

to modify the elasticity ma trix. Terms fro m the 

previous elasticity matrix are re-arranged in a 

new 6 x 6 matrix after performing the necessa r y 

modifications on it. This matrix no,., i s in the 

directions of the pr~ncipal strcs . es and it h as 

to be tra nsformed into the g lobal directions . 

The direction cosines of the principa l s tre ss es 

relative to the Cartesian directions are c 1-

culated and stored in a 5-dimens ional array 

-(3x3x8x3 5x2). Coeffi c ients of the 6 x G tr us

forma tion m trix a re t hen arr ang ed !'rom the terms 
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(c) 

of the direction cosines matrix . Trans~orma -

tion of the modified elasticity matrix i s then 

performed u s ing thi s transf~rmed matrix a n d its 

transpose and the resulting terms are star d 

in a n ew· 5-dimensi ona l modulus m trix 

( 6x6x8x35x2) to use in the next cycl e or 

increment. 

UP DAT: This is the l ast step , at the end of 

each load increment , the stresses , strains a nd 

dire c tion cosines matr ic es are transferred nnd 

~ept ~n a similar dimensi onsbl ock s , so it c an be 

easily picked and u sed by the pro gram in the 

f _ollowii1g load i n c rement. 

5·3 Out put of the Pr o gr a m 

The displacements, stresses and cracked p oint s ~or the 

structure are the mos t important result s of any inelastic 

stress ana lys is . Accordingly, displacements at all node s , 

principal str esses at each indi vidua l int egration JOint arid 

cracked points wi th the crack dir e ctions reference to X , Y, Z 

axis, are printed out after each cycle. The six components 

of stresses at the eight int egration p oints are printed, also 

on the elemental leve l at the end of e a ch load stage . 

5.4 Concluding Remarks 

The developm nt of a three-dimens ional s tress ana lysis 

computer pro gram to include non-linear conditi ons and failure 

laws is a l engthy and complex task. The d ifficulties arise 

in s uch pr ograms with i ncreasing the core-stor e a nd computation 
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time. In any fini.te e l ement .ana lysis pr o g raut, und part i- · 

cularly for three dimen ;:; iona l stress systelils , the cor e-

store increases cons iderably due to : ( l) the use of dilll e n-

sions blocks with more than 2 -diruensions in the proce ss of 

mod.ifying the material properties , ( 2 ) the a u gmentation of 

the number o':f unk nmvns and bandwidth of the tot a l stiffness 

matrix of the structure . The dimen s ion blocks us ed in. the 

material modifications are minimised to the lowest level as 

a replac ement system 'ras used. The number of unlcnmrns and 

bandtvidi:h '\'lere limite d by using a reasonable number of cle-

ments in the meshes. The computation time increases accord-

ing to the number of increments and cycles performed in each 

increment . In each cycle a complet e r e formulation of' cle111ent 

stiffne ss arid solution.of system o£ equations ' s performed . 

Most of the time was consumed in the sti.ffnesses calculations 

due to multiplicutions of l arge matrices. The method u s ed 

in the program to multiply two matrices , for example , is to 

sa v e the rm.,rs of the first matrix in a separate array, th e n 

multiply it by the columns of the second matrix to obtain the 
compa red 

terms of the new ma trix. This method saved time to · the tra
/. 

di tioual way of multiplying matrices. 
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EXPZRI HSNTAL r £l G.TIAF lE 

6.1 Introduction 

In rec ent years re s ear ch workers h a v e shown gr ~~ ing 

inter est to tackle the prob l em o i' shear :fa ilw.- e s in 1'-bcam.s . 

The t ests that have been conduct ed until now arc not s uf -

ficient to g ive a cle.::\r under st·anding of the bas ic beha viour, 

failure mec hanism or the way that th e shear is re s isted in 

such bea ms • 

. Experimenta l data ( 7) , ( 8 ), ( 11 ) & ( 2 0) z hm., that the 

ultim.:1 te shear force resi s t e d. by a 'f-bean is much hi gher than 

tb:tt of: a c011parab le rectangular beam . Al though it i s bel-

ieved nmv thn t the shear force i s carried thro u g h a. ggre cra te 

interlock , dO\vel forces a nd concrete in the com Jres s ion zone , 
. . 

ther e i s little experimental information on the contri bution 

of ea ch shear COillponent. Experimental i nves tigations and 

shear t he ories on T-b eams agree tha t the m in part of the 

shea r force i s r es isted by shear s tr esses in the uncracked 

concrete of the compres s ion zone . Thus t he assessment o:r 

the shear force c arried by the compress ion zone in a T-be.:lm 

is essential. Therefore this pro gramll1e of' 'vork ha s been 

planned to conduct test s on large sca le reinforc e d concrete 

T-be ams to measure the s h ear :force carried by the compr es s ion 

zone . This would need the elimination of' the shear carried 

throug h aggregate int ex l ock and d owe l action . To ach i e ve 

t his , an i n clined piL-eformed crack vrithin the 'veb of' the sh ~ ar 

span has been used . 
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T\'I O ser i es of t ests he:< V C been cnrr:i.ed out . Th e :first 

series 1'/as desi zned to study the ef.fe ct on she a r beha viour 

of the l oc a tion o:f the preformed crack in the shear span . 

The second series was p l anned to assess the shear contri-

bution of the flange . The main pnr ·unetcrs to be st udi d 

in the se cond series are the fla nge wi dth and thiclcue~s . 

The r atio o:f the area o f st e e l in eac h b ect11 t o t he aree~. of 

steel r equir ed for th e b a lance d se ction '"as J- e pt co n s tant 

at 0. 3 , as it gives r eas ona ble anount o f longitudin.-..1 r e -

inforceme nt . A concre te mi x design. Has cnr r i e d out ancl the 

same mix was th en used i n all the b eams to give a cube 

2 
streng th of·about 35 N~um • The shear span to depth r a tio 

'"as t al-en a s 4 . 0 for a 11 the beat !S . 

The result s from the s e tests are used in the ne x t 

chapter for comparison ''' i th the analytica l str ess c omputa tions . 

6.2 Properties of Na t erials 

6.2.1 Concrete :i• l i x Design 

6. 2 .1.1 · Introduction 

A tria l mi x d es i gn was carr i ed out to 

give an early strength suit a ble f or the ne test members. 

Recently Pulve rised Fly-As h (P A) has b een incorporated in 

concre te as a fine material to obtain e conollli c and strength 

advant ages . In practice , PFA has been u sed in concr ete in 

different ways , eg as a cement r ep l a ce ment , ns an adui x ture , 

or as a re p l a c ement f or sand . 

S~ith (74 ) cons idere d the concrete c ont i ning fly-ash 

as a nriw ty e of concrete an ' d s i rned ac ordingly . J aclcs on 

and Goodridge .(75 ) achieved goo d e rly strengt h by combining 
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both sand and cement r ep l a c ement. They ~ound that j.n order 

to obt a in both economic and streng th advantages u s ing PI• A, 

it was best to r eplace u p to 20;~ of the cenw n t by ,.,ei g ht 

and incorporate the rest of the PFA by v olume replacement o:f 

sand. 

The aim of' this mix design 1'1as to obt a in a :Cly-ash 

concr et e mix to g ive the required early strength {cub e 

2 strength ) of about 35 N/mm at 28 days , together ,,.i tll good 

fle xural strength and degree o f ,., orlcabi lity ( s lump bctw en 

50- 75 mm). 

6 . 2 . 1 . 2 Materials 

6 . 2 .1. 2 . 1 Ag gregates 

The coarse ag gregate use d 

was 10 mm i rregular grave l. The fine aggregate \vas ,.;as llcd 

and dried river sand . The percentages pass ing thro u g h the 

various DS sieves for both the sa nd and coarse aggrega te ore 

shown in Ta b l e 6 .1. 

The sieve ana l ysis for sand indicates tha t it is a 

medium sand o :f zone 2 , according to BS 882 ( 76 ). 

The ratio of sand t o gravel in all mixes was t ake n 

1:1. 33 according to grading c urve 2 of Hoad Note No lJ: ( 77 ) . 

6 .2 . 1. 2 . 2 . Cet.10nt 

Or dinary Portland c etnent con-

sidered to c mply with BS 1 2 ~78 ) , was used throug hout the 

exper imen ta 1 lJrogr<'Hl!ne . 
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Table 6. 1 

Sieve Analysis of ,· v.::lilable h f,;f;rc g a t e 

DS Sieve Size ol 
/0 Pass in!£ 

1o 11 s-:on r s e A~$rc~c_t e 

~a" 88 

V· '' 25 

3/ 16 11 6.5 

Sand --

3/16 11 98.1 
' 

No. 7 82. L.1: 
~ 

No 1l.l: 66.6 

No 25 51.5 

No 52 31.4 
.. 

No 100 1.6 
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6.2.1.2.3 P FA 

The fly-ash u sed ,.,a s 

produced by the Fcrrybridg e Po,·.rer Stati'on. The t yp ica ]_ 

compo~it ion and s i eve ana lysis given by the sup pli e r is 

shovrn in Table 6.2, and 1-1as considered to contply ,v-ith 

BS 3892 (? 9 ). 

6.2.1.3 Mix Design Procedure 

In the design of this mix , the inten tion 

l'las to re p l a ce both cement and sand .by PFA. The re p laceme nt 

' 
of cement 'I'Tas by \ieight and for sand by volume . The PFA / 

sand volume rep·laceritent factor and the PFA/cement ru.tio can 

be determined experimentally according to the materia l s u s ed. 

The pr ocedur~ used in the · replace ment '...-as s imi l .::~r to tha t of' 

Jacks on and Goodridgc (75 ). 

The PFA/sand volume repl c ement factor c an be selected 

a.s a reasonable value 1 normally betFeen O.'J: to 0.6. As a 

guide in choos:i,.ng this f' a ctor, a sma ll mix. consist in ~ of 

aggre gates and cement in any d esired proportions i s fir s t 

made and the volume determined. A similar mix c omposed of the 

same materials in the sa~e weight pr o p ort ions but with only 

half the amount of the sand is the n made a nd sufficient PFA 

i s then added to yield the same volume as the PFA free ix. 

The PFA / sand volume replacement factor = 

= weight of PFA added 
lveight of sand replUC'ed 
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Table 6.2 

Sp e cif~ c a t ions o f F ly -~s h Us e d 

Che mic a l Ana lysis 

ol 
/0 Silica as Si02 

% Alurnin.a as Al
2 03 

% Iron a s Fe 
2 0 '± 

% Titenum as Ti 02 

% Phosphorous as p2· 0 5 

% Calcium as ea 0 

. 
% Magnesium as :t-1g 0 

% Sodium as Na
2 

0 

% Potassium as K2 0 

% Sulphur · as so
3 

Loss Oll Ignition 

Sieve Ana ly s is 

BS Sieve 

No 52 

100 

200 

300 

Specific Surface 

Density 

- 101 -

50.5 

26.9 

9.6 
0.9 

0.3 

2 .0 

1.1 

2.4: 

.3 ·5 

0.53 

1.8 

% Pa s s ing 

7lJ:. 34 

2 
3990 cm /g 

2 
2.17 gm/cm 

I 

I 
I 
I 

- I 
i 



To determine the PFA mix propor t ions the following 

steps c an be fol lowed : 

( 1 ) A. basic mix wi t h sui t a ble ~roport ions by wei h t o~ 

cemen t and aggregates should b e evaluated first . 

( 2 ) The PFA/ccment r at io r anges between 0 . 4 and 0 . 8 , s o 

a value shoul d be chos en w:Lthin t his ran,se fo r cuc l1 mix . 

It \vas suggested tha t the amount o f cc men t to b c re p l aced by 

weight should be u p to 20% . So choo s i ng a percentage for 

cement r ep l a c en;c nt , the a mount of c ement to he r eplnced and 

that remaining in th e mix c a n be de t e r mined . Then the amount 

of PFA can be c a lculat ed u s ing PFA/ c ement r a tio. The bal

ance o f PFA repla cing sand by volume c a n then be dcterminad 

usin:; PFA/ snnd volume rcplnccment fuctor determined earlier. 

( 3 ) The n ew mix proportions by wei ght c a n then be eva luated 

using the determined amounts o f c ement, PFA, sCind , 

ag grega te and water content . 

Severu l PFA mixes should be made in which PFA/c ement 

r atio and P:F.-\ /s and volume f a ctor a r e v aried , then the 

r equired ratios are those giving the highest early strength . 

For thi s s tudy , the a tount of c enent replaced by we ight 

was between 10% und 20 ~' · The PFA/san· volume r ep l a cement 

f a ctors were chosen to be between 0.4 to 0.6 . The total 

PFA/cement r a tio wa s between 0 . 4 to 0 . 6 . The bnsic mixes 

wer e designed a ccording to Roa d Not e No ~ ( 77 ). 

Six tria l mL·es w·cre carrie d out. The amount of 

c ement rep l aced and the di~fer ent factor s of rcp la c ~me nt 
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used in the mixes are summarised n Table 6.3 . 

The fina l proportions of' the mixes an d th e Height 

o f material per cubic me tre for ench mix uro sha>l"n in 

Table G.ll: . 

6.2.1.LJ: I1iixin.g and Cn s ting 

The mixing of the concrete l'l<-IS carri ed 

out in a hor i:L.ontal type ran mixer w·i th a c npa city o:f 

0. 1 m3. The aggregate , cement nnd PFA were :first mixed 

dry for . one ruinute , then the lvater \ras adde d and mixed f'or 

another two minutes. The concrete was then poured into the 

moulds in h l o layers and compacted by a 25 mm dia vibrator. 

The moulds '"ore co vered H·ith polythene sheeting .:u d demouldcd 

after one day . The specimens were then left under poly

the ne sheets under internal uncontrolled tempernture nnd 

humidity eoncii tions until the day oi' t esting . 

6.2.1.5 Tests and S:l:~e o:f Te s t S1ec:Lmcns 

For each mix the f'ol.loh· ing t es ts were 

carried out: 

(1) The slump and VD iest for fresh concrete. 

( 2 ) Cube and flexure s trength a t 1, 3 , 7 and 28 days. 

( 3 ) Shrinlca ge strains· up to 28 days . 

Tlve lve cubes 100 mm size •·1ere used to measure the cube 

strength (3 cubes were tested at each age ), while 8 prisms 

of siz e 100 mm x 100 mm x 500 mm lver e used :for the flexurnl 

strengths ( 2 at each age ). Tl·ro of th ese >vere instrumentcd 
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Tah l e 6 . 3 

~J. .::J. c emcnt Fa ct ors for l' l• A 

HL Amoun·t:._ o f Cem e nt ) F 1- / Ce ment ___!:_i~L? .:~ 11 (; _ Vo - - lwue 
No ~ep ln ccd bt .!ci:2ht lV-ttio Hcpl c_:ceJ w nt , 

J - ---- ;-;:1c tor 
- --

I 20% o . 6 o.6 

I I 10% 0 . L! 0 .6 

III 10% 0.4 0.6 

IV 20j~ 0.6 o.G 

V 10% 0 .LJ: 0.4 

VI ' 10% 0.4 0 .I± 

-

.. 
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~ 

0 
V1 

Mix 
No 

I 

II 

III 

IV 

V 

VI 

Table 6.4 Proportions of the Hixes and \ieight of Haterial per Cubic Hetre 

Basic Nix Mix with PFA 

loft of 
c : s . G : W Cem per C : PFA : s . G : \i 

(C+PFA) / 
\v/(C+PFA) . . Aggrega te 

cubic m 
Kg 

1 : 2.15 : 2.85 :0.53 352 1 : o.6 : 2.1 : 3-55 :0.65 1/}.6 0.405 

1 : 2.6 : 3.4 :0.61 300 1 : 0.4 : 2.4 . 3.8 :0.7 1/4.5 0.50 . 

1 : 2.6 . 3.4 :0.6 1 300 1 : o.4· : 2.4 : 3.8 :0.72 1/4.5 0.515 . 

1 : 2.6 : 3.4 : 0 •. 61 300 1 : 0. 6 : 2. 6 6 : 4 . 25 : 0. 76 1/4.3 0.475 

1 : 2.6 : 3.8 :0.66 270 1 : 0.4 : 2.4 : 4.2 :0.74 1/4.72 0.525 

1 : 2. 8 . : 3.6 : 0.66 277 1 : 0.4 : 2.4 : 4.0 ;0.74 1/4.58 0.515 

Wt per Cubic m 

Cement PFA Water 
K_g KR: K.ll: 

285 171 185 

272 109 190 

270 108 194 

243 166 185 

257-5 10.3 190.5 

263.5 105.5 195 



by Deme c discs to measure tbc shrinl'-o:;c strc:,ins . 

All the strength tes ts l'lere c a rried out in u com

pression t est ma c hine suppli ed \'li th i':ca:JJe s :for compr ess i on 

and f'lexural testing , and 1vith a di 0 it a l cont rol co nso l e 

with a display unit for test results . The flexural and 

compression tests were c a rried out accor di n g to BS 188 ( 8 0 ). 

6. 2 .1.6 Dis c ussi o n of Res ults 

Ta bles 6 .5, 6.6 a n d F igs 6.1-6 . 3 

summarise the resul ts fr om the s i x mi x es. Adequa to ' "orlc-

ability and c ompa ction of concre te are the mo s t i m]Jort<:\nt 

properti es for fre s h concr e te. The s lum) and VD t es t s 'verc 

u sed to measure the chara ct eri s tic s of the fresh conc rete . 

From table 6~ 4 it c a p be seen tha t mix II I gave the hi g hest 

slump , but this rnLr \l"as b l eed in~~ after cast ing . .1:--i i xes I and 

IV gave lowe r s lump and higher VD v a lues, and it '•rn.s notice d 

that th e y ,.,ere le s s Horkab l e and needed mo r e tim e in co mp ·

action. Hixes . V and VI ha ve the sn.u1e degl;"'ee o1~ v:orlcabi lity. 

"From Table 6.5 ~nd F i gs 6 .1 and 6.2 it c a n be se e n th.:1 t the 

cub e a nd flexura l strengths increase witl1 decrea se of 

w/(c + PFA ) r atio and (~ + PFA )/Aggre ga te r a tio . Fi g 6.3 

sho,vs the r ap i d increase in strength in the early days. Nix 

I gave hi g h e r cube strength t han requir ed . The increase in 

water percentage in mixes II; III a nd IV de cr e a s ed the c ube 

streng th nnd i mproved the flexura l strGngth , b ut the cube 

streng th was s lig htly hi~her than re quired . The c ube strengt h 

i n mi x V was lo1 er due t o the increase of w·ntcr c ontent and 

the aggregate r atios . This mix ga ve hi ghe r f lexural streng th 

at 1, 3 and 7 dnys as mor e snnd Has repla ce d by P FA . JI.Jix VI 
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Table 6.5 

Slump and VB for the :C1ixes 

Nix No I 

Slump 
mm 37 

V B 
l.l . 5 

S ec 

' 

II 

56 

3 . 5 

III .· 1 IV. 

68 43 

3 lt: 

V VI 

62 62 

3 3 

/0 
l 

I 

I 

I 

I 
I 

I 
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Table 6.6 

!r1ix 
No 

. Comp 

I 12.3 

II 10.6 

III 9.8 

IV 10.3 

V 8.5 

vt .10.2 

Compressive and Flexural Strength 

Compressive & Flexural Strength of PFA Mixes N/mm 2 

1 Day 3 Days 7 Days -28 Days Shrinkage 
!>1icro-

Flex Fle x Comp Flex Fl ex Comp Flex Flex Comp Flex Flex Strain -- ( 28 Days ) Comp Comp Cornp Comp 

1.56 .127 26.3 2.78 .105 38.1 3.~6 .08 49 5·3 .108 291 

1.15 .11 23.1 2.51 .109 29.7 2.88 ·97 38.7 4.2 .109 292 

1.3 .133 21.7 3·5 .161 30.9 3.44 .111 37.·2 4 .72 . 127 292 
I 

1.5 .14 20.7 3.6 .174 30.9 2.72 .88 37.2 4.64 .125 290 

1.55 . 182 18.1 3.4 .187 26.9 3.76 .14 33.8 4.22 .125 267 

1.4 .137 20.3 3.4 .168 27.9 3.66 .131 35.8 . 4.7 .131 293 
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gave nearly the required ear l y cube a nd f loxuru. l s tr~ngth 

and W3S considered to be su£ficiently workab le a s it gave a 

s lump of about 62 m 1 and a VB titlle of a l.)out 3 se co nds . 

6 . 2 .1.7 Conclusions 

From the l imited trial mi.es r eported , 

the following can be concluded : 

( 1) Using PF as repla cement £or c c i:Jent and sand , 'vorlcab l c 

structural concrete mixes c an be a ch ieved . 

( 2 ) The strength of £ly - ash concrete depends on the rela-

.~ive su~stituti ons of c ement and sand . 

( 3 ) From thi s trial mi x a PFA/c ement rati o = 0. 4 and PFA / 

sand volume r ep l a c ement factor == o. t! were ob taine d 

while Jacks on and Goo dr idg c ( 7 5 ) obt a ined a va l u e o£ 0 . 6 f." or 

the se f a c t or s . This emphas i ses that these fa ctors depend on 

the ty p e o f f ly-ash and a ggr egates use d a n d it i s neces s ary , 

t h erefore , to determi ne th ese f a ctor s e x per i me nt a lly . 

6. 2 . 2 Ten·s i l e Hein£orce ment 

The main longi tu dina l reinfo rcement u se d in a ll 

test beams was c ol d worked hi gh yield streng t h ribbed bars 

(Tor steel) . Four sizes were u sed , 12 mQ dia , 16 mm dia, 

20 nun dia , an d 25 mm dia bars . The yield strength ( a t 

0. 2% proof stress ) for bars 16 mm din and less i s 460 N/mm
2

, 

while f or bars over 16 mro , the yield strengt h is 
2 

l1 25 N/mm • 

The ultima te tensile strength is 10/ h i 6her t han the yield 

strength . 
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6.3 Desi.;n of I3ea,J!:; 

stant. 

In all the bec:tm tests , t he 1·r e b 11" i d t h ( lJ ) , t ll e e :f f e c -
0 

(d) , an the O\r rall depth (h) u e r e lcevt con-

The a r ea of lon~ i tu dina l s teel in the tension z on e was 

t aken as a per centage o the s teel required for a balanced 

section. 

The de p th of th~ neutral a xis ,.,as calculated according 

to the strc:tin profi l e show·n in Fig 6 .L.t, l...rhich ussumos that 

the s~eel is just yielding when the concr e te crushes • 

ie d 
n 

• 0035 d 
= • 0035 + 1), / E

5 

2 
:::: lJ:25 N / mm , E s 

2 = 200 1 N /mm 

The force in t he compression zone was ca lculated 

according to the as w11ptions of ultimate strength analysi s 

( 81 ). 

K K
3 

are the coefficients re lat~ d to the magnitude of the 
.1 

internal compressive force in the co ncrete stress block. 

From Ho gncstad et al results ( 82 ), the v a lue of K K was 
1 3 

taken as 0.74 for f ' = 28 N/m1
2

• Thus, c 

= 
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A = Area o f' steel for ba l a nced s e c tion 
sb 

T = Tensile f -orce in the main reinforcement 

= The calculate d compres s:Lve for c e c 

fy = yield strength of the main s teel 

The are a of steel requ ired for the balanced se ction 

was then calculat ed for ea ch beam . Diff'erent per c ent ages 

for the actua l long itudinal steel {A ) were c al culat e d from 
s 

Asb ( eg A
5

/A
5
b = 0.2, 0.3, 0.4), it 'vas then decided to 

choose . As/A
5
b :: 0.3 in all the b eams as it gave a reasonabl e 

reinforcement pe rcentage base d on the web area ( A ~b d). s 0 

The amount o f s teel in each beam i s shown in Table 6 .7. 

The b eams were extended by 300 mm b e yond th e supports 

0 and 9 0 bend s were u sed at the ends o f the long itudinal 

r ein:forccment to provi de adequat e anchora g e . Fig 6. 5 sh01vs 

a longitudinal section in the beam . 

6.4 Descri p tion of Tes t Series 

The t es t s were divide d int o two ser i es . Since the 

tests l'lere conducted to measure the contribution o f the 

flan g e, diagonal preformed cra cks ~nd notches ~round the 

ste e l bars were used in both shear spans to eliminate the 

effects of aggr ega te interlock and dowel action as shown i n 

Howe ver, a ft e r carrying out tes t s on the first 

series of beams , only one preforme d crack in one shear s pan 

l'Ta s u sed . This \'fas to simulate the nctua ·l p lane o f failure 

and for failure to oc cur on on e s i e of the beam only. 

Series I cons isted o £ five b~ams to inve s tiga te the eff~ ct 
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Tnble 6. 7 

Details of' Be ams 

-
]\To ,. 

l .: Si z e 

Beam No 
o f' Bars p ' t 

Cross Section --~ -
o;o 

b h 
0 

TlB I 700 2 rp 20 
50 1 u __ r~o II , II-

III + 1. 78 '* 
. 16 '1 

IV 1 cp 12 

175 

Ti3'-I 350 2 cp 16 SOUJ . 
••• -- 260 

+ 1. 16 2 .167 

. 1 et> 12 
175 

TBX-II 700 2 et> 2. 0 
50 1 I u + 1. 78 lJ: • 16 7 

1 cp 12 

1050 cp 2 0 6 • 167 TBX-III 50 1 I 3 2.25 u 
-

TB ' -IV 350 3 et> 16 1. 32 2 . 233 70u 
TBX-V 700 2 cp 20 

70 1 I u + 1. 92 IJ: . 233 

1 et> 16 

ru. -vr 10 50 2 cp 25 
70 1 I 

- u + 2 .9 6 . 233 

1 et> 20 

T!3X-VII 350 
et> 20 901] 2 1. 5 2 . 3 
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Tabl e 6.7 (Continued ) 

--
. No e~ Size 

of: JJurs p ... t Beam No Cross Section D 

( 111111 ) 
- -

o/o 
b h 

0 

TBX-VIII 700 .3 cp 20 :~ . 25 11: . _3 go! I u 
Tll.'C-IX ·10 50 .3 cp 25 3 . 25 6 . 3 

9o l I u ' 

. . . 
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o"L t he position o:f the diu rena l prefo rmed era cl( on the 

b eha viour .:1n d ultimate strength o :f the beam. Seri es II 

cons i sted o f n ine be.a ms to study t he in.~lucnce o f t:. o f' l an.s;c 

width ·nd f l a n g e t hic~ness on the ultima te shcu~ strength 

o f the b e a m a n d the contributi on o f the flang e i n re D i ~ tiug 

shear forc es . 

i' eb reinf orc eme nt e qua l to r' f . yr.., 
2 = 0. 7 2 N / mm 'I'WS 

provided in all be a, s in the area between the p reform ed 

crack and the sup ort. The reas on for this was to d e crease 

the poss ibility of the b eam f a iling by splitting along the 

main r einfor c ement and to assess the shear ~orce c arried by 

the dolvel a ction in this area . 

All tests h a ve the sa11e span 1 shear span 1 l-reb \vi d th and 

total d epth. 

6.5 Ins trumenta tion 

.Fig 6.6 shmvs the details of the instrumentation :for 

each b eam. Four e lectric resistance strain ( EllS ) g a u g e 

o f leng th 12 nun l-rere fixed on the middle bar of the main 

reinforc ement . Tlvo were fi ;.~ ed on t op and bottom of the bar 

at mi dspan and the other t\-r o at a distance of 50 mm from the 

end o:f the notch of the p reformed crack towa r ds the suApor t. 

Six EH.S were fixed on the firs t -h .r o linl( S immediately ad ja-

cent to the pr cfor r.1 e d era ck . A strain gauge recorder of 10 

channels l"fa s us ed to rend the ERS . Strains u p to 30,000 ll 

strain;. c an be recorded with sensitivity up to 5 ~ strains . 

Demec discs o f 1 00 mm gauge length \•rcre fixed on the 

top, side , and underside surfaces o.f the fl a n g e at :four 
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adjacent se ctions in the area between the h ead of th e lJre-

f'ormed cru el~ and t he load l.>locl~ • 

rows acro gs t he flange width. . f or fl .::tn £~es '"' it l1 \l' idt h o f 

350 l llll , four rows ~.,r e re fi xed on top of the :flung e at 5 0 um1 

a part and one rol'r 1'f'a s fixe cl on the u nc..i.ers i de . •' or f'la nges 

of 7 00 mm \'idth , fou r roh'·s wer e also fixe d on the t op sur-

fa cc \'l"i th 100 r.11. be twc en , and thrc e rows >'I" e r e on the u n der-

' side surface 75 m1 apart . For fl ang e s of 1050 mm ' v- idtll, s ix 

rows \•rerc fixed on the tCap surfa c e nt disto.ncc 100 mm in 

betwe e n , an d four ro rs were on the tin dcrs ide o.t 100 mm 

apart . The Demec dis cs were fixed one do.y before te s t:L 1g . 

Dial gaug es wer e used to measure deflections at se v eral 

points at the flan~e underside and on both sides of the pre -

formed crack • . Dial gauges of 25 mm lilax imum tra vel and with 

0.01 mm divis ions w·ere used . 

6.6 Manufacturin~ of Beams 

Steel mo ul ds :fabricated from standard c hannels, ang les 

and pl~tes were used · to ca s t the te~t s p ecimens. Three 

moulds were used in the te s t rogram, one moul d for each 

flange \vi dth . The moulds had to be ad j u s ted for ea ch b eam 

o f series II a s the flan g e thickness change d. 

The reinf orcing steel \v·as cleane cl by rc Jloving lo o se 

rust from the surface . The p l a c es of the el ectric stra in 

gauges were ground smooth, nnd t horoug hly cleaned before 

installing the gauges nnd water proo£ins them . The steel 

was the~ assemb led into ca g e s . The effective depth was ept 

constant :for all beams , so steel chairs with i :fferent 

heights were used in each ben~ . 
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Th e stee l c r a ck for ers , Fig 6 . 7 l'lere c over e d '·rith 

1 olystyrene shee t s on both faces u sing wall pa per p as te . 

o~ys tyren e sheet s of 50 m thiclo lC s.s 'vi th thr ee hole s to 

allow· tl e stee l to go throu ,<; h ,.,.ere u s ed for the prcfo r llle cl 

crack around the bars . 

The reinforcem e nt c age was pla c e d f irst in the mould , 

t hen t he e ra c lc formers were fixed w·i t h s cr e1vs to . the si c.Jes of 

the mould. The 50 mm thick polystyrene s h e et s w·er e stucl\. 

to th e mould u s ing st{cking tape. 

,Casting was carried out in layers with b a tche s of 

concret e . Bcb\"een four and six ba tchcs 1·.•o r e required to fill 

the mould accor d ing to the size ot' the bea ms . 

uas compact·ed u sing 25 mm int e rna l vibra tor. 

Each l a y e r 

Care wa s t a J...:e n 

in placing and vibra ting the firs t l a y e r to ensure the 

renetrntion of concr e te between the steel bars and to fill 

the reqdired cover un d erne a th. Specia l attention was tak en 

in the areas of the electica·l stra in ·g au g es to prevent any 

_harm or damage being done to them throur;hout . the c as ting 

process . The top surfa ce of the con crete lvas s moothe d aft e r 

the co mp letion of compaction. Cub es and prisms for control 

test s wore c ast and compacted at the s ame time . After c as t-

ing the beam and its control specime n s l'lere covered 1vi th 

polythene sheets . 

After thre e d a ys, t he side scre,'l s fixi ng the stee l 

crack for11ers "'·rcre tal-;: en o ff and t hen the b eam ,.,as stripped 

from the mould. The cra ck formers vere t aken out and the 

preformed crack was cl eaned by r emoving the p olys tyrene in 
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the inclined cra ck and a round the st e el bar s . The b e~~ and 

t .he control specirncnts ( three 150 mm cubes , three 100 mm 

cubes and trree 100 x 100 x 500 mm ~risms) were then 

re-covered with polyt h ene sheeting and store d for curing in 

the l aboratory un er uncontrolled interna l condi tions u n til 

tested at 28 ys . 

A diagramati c layout of the test rig u sed i s sh o\vTl in 

Fig 6.8. The rig i s stiff enoug h for al l loading s t ages and 

it prov ides enough room f or the d if:fcrent :fl nnge widths used 

in the test pr ogram . Loads ' ere ap p l ied by means o f a 5 0 0 kN 

loading ma c h ine t hr ough a hydraulic system conne ct ed to a 

50 ton j a ck stroking dowmv- ards . The j ack i s connec ted to a 

count erh"eight to compensa t e for the weight o f the pi s ton. 

The applied · load was c he cked by a 500 k N e lectrica l load 

cell p l aced immediately above the spreader beam • The c el l 

' 'las pm'lered by a stabilised p oHer s u pply unit type E30/1 . 

The supply volt age was n~inta ine d at 9.3 v during th e t est . 

The out put voltage was meaGured using a so l atron digital 

voltme t er c apab l e o f reading to . 01 mv . A c hange o f 0 . 3 

mv in voltag e ,.1as equivalent to a c ell load o f about 10 lCN . 

The cell was c a libra ted using a compression ma c h ine . 

The loa d was transmitted through a spreader beam to 

two point loads applied over the entire width of the web . 

Ea ch point load consisted of a roll er and beaxing block. 

Under each block a 16 x 75 x 175 mm stee l plate ll"as p laced to 

distribute the pressure evenly . 

- 11 7 -



2 C ro ss be a m s 
I 620x310 

p---p-- ---- -
1 , r=--~---~---~----~=~= 
I I 
I 

. I I c 
1 

1 onnected::========:Jtf:D 
1 : to loading 
: ! machine =~ !I 

Counter- 1 - • {:!;, :: 

50 Ton jack 

-- J!i: U'' weights \ ! 
I 

~
: I ' ' ' .tc ~~::ie:QS cell 

2 Upriahts..l E:::J 
r 52o-:J10l a Test specimen t=o=i 

300 104__0_ _7'20_ ""-'1' 

_a-Roller·in groove 
421 5~ 280 0 

~steel blocks 

;==; 

---.IL 
1' 

~spreader beam 

10t.o -- --~:mu 

1' 

Free rotEtCS] 
I ..!- L. J 5 

2 Cross be a m s 
I 620 X 310 

~Upri ghts 
11 620x310 

, ------ l 
_j___ -- L -----L 

-----

SC HEMATIC LAYOUT OF TEST RIG - Fl G. 6.8. 



The benms \ver e supp orted on an irulllova ble h:nife-cdgc 

on one side and a roll er Hh:Lch can nave free ly i n the hor:i.-

zont a l direction on the other side . A "' t e e l p l '\ t e ( 1 7 5 x 

75 x 10 mm ) lvas u sed over the knife-ed _s e and the roller in 

order to dis tribute the pre ssure on th e underside of ·the 

beam a nd prev ent local crushing . 

6 . 8 Te sting Procedure 

Before t es ting , one side o f th e beam w·us pninted lvith 

a thin coa t of whit ewash to locate and study the propa~ntion 

of the 6ra cks clenr~y . 

Load was applied in incrc l Jents of 5 or 10 1-c~T , dep e nding 

on the ultima te c apa city of t he b eam t ested . At l a t e r s t a~ es 

the increments lr ere reduced gra dually to 5 and then 3 l~N . 

The reas ons for using lowe r increments was to observe and 

record clo s ely the behaviour o f the beams befor e fa ilure . 

Aft er each load increment , the developed cr a ck pa tt~..:rns 

were marked carefully with a pen on th e painted s urface o f 

the beam and the load level lias w·ri t ten next to ea eh er a cl~ . 

This Has fo ..Llml"ed u p to failure. 

Concrete stra in readings were t aken on both halve s of 

the beam in series I , but in seri e s II it was t aken on one 

side as only one preformed cra ck was provided in one shear 

span. This also reduced the duration o f testing . 

Before reaching the f ailure load , all diaL gtluge s 

were ta~en out and no r eading was r ecor de d from other gauges . 

Loading was then continued u nt il failure ~ccurr ed , and 

the ultima te l9ad recorded . 
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The beams were photograp hed aft e r failure ~nJ t hen · 

altcn out. 

Control specimens ".'/ere a l s o tested on the concrete com-

pression machine until failure. 

6.9 Investiga ti on for the Location of 
the PrcforDed Cra ck 

Introduction 

It is very difficult to predetermine the failure 

plane in a bea m failing in shear . Placas ( 14) noticed tha t 

there is more than one shear crack in the shear span and 

usually t wo or more lvill widen more than the others \'ri th 

increa s ing load depending on the shear span length. Previous 

test results shmv that the main din;:~ona l cra·ck s appear l·rit hin 

the middle third · of' the shear spun . Dahia ( 03 ) related the 

loc at ion of the failure plane to tbe mode of i'ai lure . He 

reported tha t beams failing in diagonal tension failed at 

planes away from the loading block , l·rhile be ams failin8 in 

s hear or shear COllpress ion failed at planes v ery close to the 

loading block. Ho,V"ever , in his t ests , there were bcants 

whi ch failed in sheur or shear co mpression a n d their p lanes 

lrere a lvay from the loading blocks and the location of the 

preformed cra ck he used . 

Having reco gn is ed this , it was felt ne c essary to invc-

stigate the location of the preforme d cracJc and its influence 

on the shear strength and beha viour of the be am . 

Details of Tests 

Five beams were cast and tested in this series . 

Beam A \'las ca st lvithout pr eformed cracl nnd referred to as 

- 1 19 -



TRD I in the t ests . I3ca lli s AI ( TH.D II ) and DI ( TTID II - ) h cl d 

r)rcforr.te d c r a c lc a t loca tion ( 1 ) a nd bcums BI I ( Trm Ill) ;1ncl 

BIII (THB IV) h a d p r e for me d c racl..:s e1t lo c a t ions ( 2 ) and ( 3 ) 

res p ectiv ely as shown i n F i g 6.9 . Th e se lo c~tions w•rc 

c hosen 11i t h in the ni dtl l e t h i rd o f th e shear s •a n \vhere 

t he ma in fail ur e planes t ake v l a c e . T~e i n cl ina tion of 

0 the se cra cks wa s t ak en a t a b out 27 • The porccn·age of 

longitudina l reinf orc e me nt in each b e am was p = 1.78% 

( A / A = o. 3 ). The flan g e l'l' idth "'as "?0 0 mm a nd fl ang e thick -
s Sb 

ne s s wa s 50 mm. 

6.9.3 Dis cuss ion of Result s 

6 . 9.3 .1 Load- def l e c t ion R e la t i o ns 

Loa d- d e f l e ct i o n cur v e.; f"or th e f ul l 

bea m a nd the b'e<.lms · v.ri t ll di:f:fcrent loc a tion :f or t he pro :forti1 e d 

crack are shmn1 in F i g 6 .10. At lmv loa d s t .nges bea ms A, 

AI , BI and DII shm·.r ed little diff erence in d e flection , 

while b eam BIII gave hi g her ·defl e ctions . The differ e nc e in 

defl e ctions increase d 1vi th the increa s e in l .o a d leve l und in 

particula r in beam DIII. The curves a r e lin e ar until the 

ap p e a ra n ce o f the fir s t flc x ural cra cks , the n th e y con t inue 

approximately as linear but \'l ith differe nt i nc lina tion u n t i l 

about 80~ - 90% of the ulti m t e loa d where t he y dcvi u t e f rom 

linearity. The e x ces s ive i n creas e i n d efl e ct i o ns b e f ore 
\ 

failur e is probably due to the r ap i d de c re as e in stiffn e ss 

of the b eams aft e r the for rua ti6n o f she ar c ra cks . Bean BI I I 

sus t a ine d h igh e r d efl e ctions and f ai l e d u t a hi g h e r load t ha n 

AI , BI and DI I . T h e s t i f f ncss_ o f th e b eams de c r e as c d as the 

preformed er clc moves tm~ards t he l o ud p oints as shown from 
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the dcrlccti on of beam BIII. 

6 .9. 3.2 Concrete stra ins in tllc Shc<1 r Sp[ n 

Longitu din~l c oncrete strains were 

mea sured on the to p , unders i de and edge of the flange i n 

three adjacent s ctions i n t he shear s p a n . The strains at 

the unders ide o f t he flange a r e not r ep o r te d due to the 

i n cons istency iD. the r cs ul t s ob·t.:1inc d. This ma y be ouc to 

the location of th e tensile cra cks initiate d at thi s f ace 

within the ga u g e length or adja c e nt .to it. Little cha n e· e 

in th e .stra ins a t the edg e o f the flang e o c curred , so tl liS 

da ta ·is als o not report e d her e . 

'fhe di s tril>utionsof the concr e te strnins across the 

fl.:1nge width 'for be ms BI , BII and Dil l arc plotted in Fig 

6.11. At early stages of load ing , th e g r aph s shm~ th <l t the 

location o f the preformed crack had little sir;nificance on 

the concrete strains , e x cept for s e cti on 2 o:f b ea m GIII 

which shm·red hi .s; her strain values than the o thers . They are 

·higher ·by 67% at the centre of th e flang e at a load of 40 k~ . 

The distribution of strains at tha t load l eve l i s more or 

l ess u niform a cross the ·rlang e width. As the loa d incr eases 

the distribution becomes non-uniforlll a nd a te ndency to c h.::1.11.g e 

the compressive stra ins to tensile i s observe d. The s e t en -

sile stra ins were recorded first in section 
3 ' the 

nearest section to the h ea d of th e pre · orrncd cr.:1ck , at load 

50kN in b eam BI , 58 kN in b eam BI I and 60 k N in beam BIII . 

It 'vu s a.ls o noti cc d thn t thes c tens ile s trc:lins appea re d whe n 

th e dia g ona l crack reached the u nderside of the flange . 

Higher t Ems ile s t roins \'/ere recorded be:fore failure but th ey 
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arc not plotted on the graph~ n s it \1as notic c tl 'th.Jt ton-· 

silo cracl-;:s a Jp oa red within the [.;n u g c lc n:; tll s . The u n x i nn un 

comprcssive stra ins observed 1\· e r e in section 1 i n th e tlu·c e 

b eams and r a n g ed bcbvecn 611:0 . ~ s tra ·i ns in bc nnt BI at loa d 

82 kN a nd 7 8 0 ~ stra i ns · i n b e nr.t l3 I l at loa d 7;; l{N . 

6 .9. 3 . 3 St e el S trains 

Tensile steel strains were mea s ured on 

the top and bottom surfa ces of: the middle bar at mids pan. 

Shear forces versus sieel strains arc p lot ted in Fig 6.12 

f'or the ' five beams . The r elationshi ps arc linc~n~ until the 

first flcxural crack , then the rela tion·ships take another 

linea r form u p to failure . These rela tionshi p s indicC\tc th:< t 

no yielding of t he s t ee l takes place boJ:orc ·failur e . The 

steel strains of: ' th e beams \d.th pre:lorlllcd cracl-;:s are in 

general smaller compared with tho se of the f uLL beam . Com-

paring the steel strains of beams AI, BI 1 BII , BIII , the 

location of the preformed crack in the shear span h.:1s little 

or no effect on the midspan steel strains . 

6.9.3.1.1: Cracl~in~ and r.;odes of Failure 

The first flexural crack appe a red in the 

f'lexural z one o f: the full beam at a load o f 30 kN , while in 

t he beams with preformed c rack , this occurred at 20 k N. The 

first shear crack appeared in the shear span in b eam A at 

a load of 35 k N , while in b eams ~I , DI and DII this crn ck 

appeared at 30 k N and in beam BIIi a t 20 k N. The main 

diagona ;t craclc appe ared in the fuil beam at load 100 kN 

with nn inclination of about 40° with the horizontal a x is 

of' the beam. Then propa gated up ld th le s s inclination 
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( about 30°) and dm·rn al ong tlJC n1ain r cinforcclllcnt . Tllc top 

e nd of the diag onal cra ck e x t e n ded along the web/flang e junc -

tion then turned u p i nto t he :flange initiating the i'inal 

break dovrn of the beam . For b e ams AI , BI and BII the top 

end of the pre fo r med cra ck s tarted to p ro paga te at a load of 

4:0 kN and reache d the flange underside a t a loa d of abou t 

55 kN 1 then ran along the fl a n g e/\'l'e b junction before turning 

up into the flange and causing failure of the b eam. The same 

mode o:f failure ha ppened in beam BIII except that the to p e nd 

of the preformed cra ck started to pr opa gate at an earlier 

loa d , ·75 kN , and reached the underside of the flange at 

L.1:5 kN. Another crack appear e d at failure a long the flange / 

l 'lC 1) root in the zone bet,,reen the two point lo.:~ ds of thi s bc nm . 

It is clear tha t the mode o f f a ilure in the four beams i s 

shearing of the flang e accompanies by splitting along the 

main steel reinforc ement . 

6 . 9 . 3.5 Streng th Chara cteris tic s 

The failure loads i'or the five be n111s 

are shown in the f ollowing· t ab le : 

Beam No A AI BI l3II BII I 

Ultima te loa d kN 119.0 6?.6 Bh . o 85 .5 106 

Cub e S trength 36 . 3 36 . 7 26 .7 38 . l.l- 3 7 •1J: N/ mrn2 

Fle-'ural s treng th 
IJ: • 6 3 -9 3 . 0 3 -7 · N/mm2 -
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Sinc e be am A i s a full beam , t he tot a l s he a r fo r c e a. t 

any stage o f loa ding i s a co :nb j.n cd c ontri lJuti.oll of' c omprc s -

sion z one , a ;-;gre ga te int erlocl~ and d m,re J: a ction . The r e s t 

o r t h e · b e ams h a ve pre f' orr:JC u cra cl~s in the she a r Sflnn 1 ::>o t h e 

tot a l shea r :force i s a c o mb ine d co:nt r:i.. lJu tlon o f compr e::>sion 

zone and p o. rtially o f' the dowel f orce s . 

Th e stre n g th and mod es of f a i lure of th e b cc. Ias 

l'lith pre.formed c racl;:s ha v e be e n co mp ared h' i th th e full b enm . 

Fig 6 .13 sho,.,rs the three locations of tl1e p r c:fo rme d e ra c k 

and the ma in. failure plane o f ben m A . It \'/a s de c id c d to 

adopt location ( 2 ) o f b eam BII for t he next t e st s of the p ro

gramme. The reas ons f'or thi s ' ~'e re : 

(1) This cra ck is at the same loca tion as the ma in cra cl\: 

in beam A a s shown in Fig 6 .1 3 . 

( 2 ) For loca tion ( 1 ) o f beams AI and DI , _thc di s tance 

b et;.,een th e cra ck and t he support i s a mi nimum ie 1 a t 

the edge o f the mi dd l e third o f th e shenr spa n. Not 

many b eams fail in this position. 

( 3 ) Location ( 3 ) of beam BIII , the fail ·ure p l a ne extend e d 

to t he point load and the area a round t he lond block 

l·ras era e ked . Another cra ck a p p e ared a t failur e a lon g the 

fl ange / w·eb root in the flexur a l zone . The beam JJ i g ht f'ni l 

in a shear-flcxural mode o f failure ra t~ er tha n the r e qu i r e d 

s hear failure. 

Th e inclina tion of the prefo~m e d crack in the s e beo.ms 
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0 
was t aken as abou·t 2 7 <lccording to Al-"\lus i ( 6 ) .::1n d P l a c·as 

( 1h ) H'ho poin-ted out that the ma in di n~;onal cr ct c ks ge n e ral ly 

ap peared at lower i n clina tion tha n 30° . Hmgc v cr , a s a r esult 

o f the test o n benm A t he incl ination was moc.lif'ied to about 

1.1:0° r•'1' <r 6 1/J 
1 ~· 0 • r o The ma in ·d i.:l g ou.?ll crack in this b e am wa s 

i ncline d a t ab out l10° 1 a.nd in b eams DI 1 II and III 1 the 

propa gations of the pre formed cra cks ·He re als o u.t steerJcr 

0 
inclin.:l tions than 27 • 

. . 
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COI·iP.<\ H I SON O!i' C O:-JPU'l'2 ~·< ;\J.-1 ,\LYSIS i~..i:SULTS 

\v' ITil E: ~Prmn ;.~Wl'AL DATA 

7.1 Intra 'uction 

In Chavters 3, IJ: and 5, u 3 -dimen.si on;:tl :finite cle ment 

model Has develope to analyse th e probl em of' in c .L:ls tic 

behaviour of r einfor c ed concret ~ T-b en ms fnilin~ in shear . 

In this c hapter a compar ison of' the re sults fro~ the ana l y s i s 

wit h the a ctu a l b elJa viour fro m tests i s c a rr i ed out. In 

spite o:f the vast amount of ex r:cr imenta 1 work v.rhicll has l.l e en 

c a rried out on beam s failing i n shear , tlH~ beha vi our a ncl 

failure me c hanism for this type of failure i s s till not 

comp letely underst o od. The air:r o:f this study i s to inv est:i. -

gate t he accura cy o .f the so luti on in r eflecting- the be am 

beha viour . Howe v er , it must b e reweruberecl tha t the t!1eor e -

tica l s olution neglects some aspects 1 ~ich are t hou ~ht to 

ini'luen c e the ultima te beha vi our oi' th <.: b e am , s uc h as bond 

bet>l"een stee l and concrete , doHel effe ct of main r e inf orce

ment , etc. 

Results from test s on reinforc ed concrete T-beams are 

co mpa r ed with t h ose from t he analys i s i n the following 

sections. Two series of b eams a.re used fo r thi s s tudy . 

The test series are des cribed in Sectiom6 . 3 a nd G.4. The 

results are co :;Jpared with those f1~om the ana ly s i s . in Section 

7. 2 . All th e b aws are tested until failure unde r t wo point 

loads with constan shea r span/depth rati o = 4 an d 

;.\/Agb = 0 . 3 . 
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7 • 2 C o m 1) a r i s o n 

7. 2 .1 1.: e t ll o d o :[ An a 1 )r s :i_ s ---------- - ------'---

spa n s . I3 e n ms o f seri c >;; o n e lwd L\ p r c f' o r111 e d crn cl..: i n e a c h 

she a r sp a n, exc ep t b e am T LU3 -:r ·wllicb l nd n o 1:; r c:for :l e d cra c h· . 

Bea ms o:f serie s t u o h a d on l y one pre:Cor ;n ecl c r.:1 c lc i n o n e .e> lll!.c~r 

span. Due to s y mme tr y one qu a r t e r o :[ the b e a l!l i1.:1 s be e n 

solved an a lytica lly. Thi s qun r te r i s f'o r ;ucd by the tHo 

symmetrical p l a ne s 1 na me ly, t:b c micls pa n p l n ne an d t "lC 

long it u dinal p l an e as s h own i n F i g 7.1 . 

. 
All bound a ry nod es locnt cd on th e ni <l s pan p l<U l a r e 

co n s tra ined hori z ont a l l y in d :i.r 0 ction X 1 <:~nd free to mov e 

in di re ctions Y and Z , while bound a ry node s located on the 

lon ·itudinal pla ne .ar c cons tra i 1ed in Z-dir c ction an d :free 

in X and Y dire ct ions. The nodes a t th e s up p ort ar c con-

strained in Y a nd Z dire ctions a nd fr e e in ~-direction . 

The a c tu a 1 s h e .:1r i n g force I /2 acting on c a eh sl1 ea r 

span is simula ted by a n equival ent noda l load P/Ll: in the ann-

lytica l soiution. 

The idea lisation o f the di :f :fere nt fl ang e wi d th s :for 

finit e clement ana lys i .s is s h oi 'n in Fig 7.2. The ma in 

r ein:forcemcnt is ap pro x i mate d b y b a r eleme nts lying on the 

bottom surfac e of the beam . 

30 

The initi a l ela s t ic mo dulus E for concrete i s t a ken 
c 

. 2 
N/m~ and Poiss o n ' s r a tio V i s taken 0.15. The modulus 

of ela s ticity f or steel i s t a k en 20 0 k N/11m2 • 
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In the early stage s or ana.ly .::;i s , t wo c y cl :'.:l for e c.,clJ 

load incre1i1c nt were found to be suff'i cic nt to b r in g t he cl is -

placements in close agreement with t he e xperime ntal ones an d 

stabili sa ti on of crack ~ropagation • . In the l ater stages , 

when the c racks entered the f' l unge , it Ha s notic e d that 

cra cks propagated f aster , so the number o f cycle s was 

incr eased to fo u r anci the value o "f the load inc relllcn t v,r.:,s 

r educ ed . The stage a t whi c h t he number of cycles was 

increased is defined in terms o f the principal c ompre ss ive 

stress . vhen the valu e oi' the pr incipal coa p r es s ive stress 

r ea ches 30% o :( th e comp r ess i v e cube s t 1· en g th , the n tlJ e numb er 

of cycl es was increased to four . The cycling o p eration 

could be termin ate d i f' the differ e nce of the midspan dis-

pl a ce ment in · two s uccess ive c yc l es >H\s l ess tllan a prescribed 

v a lue of 0.1 mm . An economic advanta g e 1vas gairwd l>y 

inr p lying these limit s into the so lution . 

7. 2 . 2 Beams '"i th Different 
Preforn ed Cra ck i>ositions 

Thi s s eries cons i s t s of four beams , an unc racked 

b eam , THB-I, and t hree beallls , T - B-II, THB- III a nd TfU3-IV , 

with pre£ormed cra cks at different position s . The fl ange 

width , thickness -and a rea o f long itudina l stee l vrcre J.c ep t 

the same i n a ll the beams ( see Table 6 .7). The f i n it e ele-

n1 ent idenl i sa tion f o r these beams w·as as . s hm·m in Fi g 7 . 2a . 

Thirty-five e l ements were u sed to r ep-re .:i ent the quarter o :f 

the beam shOIV' n. The load was applied in 7 increments an d 

t he num~er of c y cles used f or ea ch incr nlent was two, u n til 

approaching the ulti mat e loc":ld. when the number 1-r.:.'s increas ,d 

to four . 
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L oad- ef lec t ion c urve s ut the m i-.~ s .1anr; o f t h e bc ~I! J; s 

are plotted in Fig 7 . 3 . The ann l ytic r.t l solu.ti ons [<re in 

good a~_,reeuJCnt , ,r itb the e xpe:r i men t <..t l c ur ve s , but the sti i ':f ·

n esses w·erc ovcre s ti .1a tcd in the early stnbe s o f l oa d iJJ _s 

:for b eam T .H3 - I and in t he later stages i~or benms T HB-I I a nd 

TRB- III. This i s proba bly due to t h e sti:ffenin~ ef:fe c t 

b e t ,,· e '11 stee l and con cr e t e 1·1hi c h i s ne g lcctc u i n t h e nn .:\lysis . 

The ult ima t e streng t h pre dicted from t he nu.:t l ysir; u n der

e s ti ma te s t h e e xperime nt a l v a lu es f or beams TRJ3 -I and THlJ - IV 

by 3 7~ and 6% r espec tive ly , nnd ovcres t i mn t es t he v n lucs :for 

b eams n : J3 - II a nd TH;3 - II I by 12 % a nd 5 ~:. r esp e c tive l y . This 

s h oF s t h a t the ultimate s t r eng t hsfor t he :f our beams 1·: e r e 

reas onab ly pr edict ed b y the ana l ys i s . IlO\-.r e v er , th e d i:f fcrcn c e 

i n streng th shown betwe en th e ana lytica l u nd e xperime ntal 

c ould be r e lated to th e prc f ormed era c lc lo c a tion ,,-hi eh 

c h a n g e s the elem e nt s ize i n the me s h :for n c h c as e . This 

c a n be o b s erved fro m the mes h s i z e in th e a r ea be t1·;eon t he 

pre:forme d era cl a n d th e l o a d p oint v,rber e th e f'ai lur e oc curs 

i n thi s ar ea . In b eam TRD-II , the me s h divi s ion in this 

area wa s 1 8 0 mm ( Fi g 7. 2a ) w hich i s the coarses t mes h si~ c 

in the three c a s es with pr e formed cra ch: , and h ence the ul t i

ma te stre n g th of the b eam was over e ~d:imated by 1. 2 % tha n t he 

e xperime n t a l valu e . In beam TRB·- rr r t he 1ne s h divi sio n i n 

the same a r ea was reduced to i':t 6 . 6? mm , the stren g th \vas 

overes tima t e d by 5 ~~ tha n t he e xperiment 1 one . In the l as t 

b eam TID- I V , the mesh divi s ion in the snnw a r ea was the 

s ma ll e st t o b e 11 3 . )3 mm , a n d th e st ren g t h o f t h is b eam Fas 

undere s tima t ed by 6% ~ - ~ t he e xperim ~ uta l v a lue . H OH e v er , 
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t h i s d i s c ussi o n i s onl y on t hr e e b ca!lls , but i t s hows to som e 

e x t e n t the effe c t o f mes h s i z e o n pro d :Lctin.:; t l1c u .l t i mntc 

s t r cng t h o :r the b eam, pa rt i c u l n rly in tt1c areas \vhcr e f' o i l -· 

1.1r e occur s . 

Fig 7. 11.1:~. , b , c and d , s hm-vs the c rack pat t e r ns obt a i ned 

fro m the a n a lys i s fo r b eams Tn l - I , TH.B - II , TE H-I II and T HU -IV 

r eslJe ctivel y , ' ·rhil e F i .g ? . 5 a , b , c and d, shm vs the a ctu a l 

failur e modes f or t h e f our b ea ms re s p ec tiv ely. Tl1e cr<l c k 

p a tt e r ns fro m the ana lysi s a r e plott ed Gt intert11Cdiate l oa d 

stag e ( 60kN ) and at ultima te load . As it h as been di scuss ed 

in Chapte r 4, ' the str e s se s \v e r c c a lcula t ed a t the samplin g 

point s o f the integra tion rule , h e nc e crn c h:i ng occur s a t 

t hes e point s aft e r ch e cl-~ ing th e s t resse s ' 'fith t he f ai lur e 

1.:1\'l s • T h us e a eh s am p ling p oint re pres ents a ern c l~ e d r c0i on 

of the e l e mc n t . The crack s we re a ss u med to be 110r p e nd i c u l a r 

to th e v rincipa l t ens ile stre ss . A crack a t the sa111 p ling 

poin t i s r ern-esented i n the dra ,vi ng "by p a i'n llel lines \\ 

in the direction of the cra c k a n d r epre s enta tio n f or the 

loc a tion of the s a mp ling p oint s a nd the cracl-s a r c s h ou n in 

Fi g ? . 4 n for one cl e ment in the 2 -dimens iorw l c a s e . 

In t h e e xperime nt t h e cra cks f i r s t appear e~ in the f our 

beams at the ten sion side o f t he web a n d ~ opa ga te d vc~ t ica lly 

tmva r ds the flang e ' ' ith incr e as ing loa d. Cr nclcs a l s o 

a p p e a r e d a t the h ead of the pre~orme c ra c k a n d p r o pa ga t ed 

diagona lly towa r ds t le under s ide o f t he f l ang e u nt il it 

rea ched th e f l a n g e - we b junction a n d c xLcnded a l on g it ns th e 

lo a d increase d. Be f 'or e r en c hin0· th e u l tima t e s t a g e t he 

£lang e "b e an to c racl a n d f a ilur e oc c u r re d b y th e r a p id 
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devel o pment of the cra cks in t h e ar ea o£ f lan~e - b e tw e cn t h e 

loud nn d tll0 prc f or me d c r a ck. In the full be a m th e main 

d i a g onal ern ck up p c a re d a t 100 1-cN , prop n g a t e d u p11.::t r ds until 

it reached t he f l an g e , then it turned u p in the :fla n g e 

caus ing t he failure . IIorizont u l nplitting acro s .s the 

flange '"i dth occurred a t the i nst a nt o f f a i lur e . Thi s 

s p littin g was due to t he u pward bend i n g of t h e p u r t of tllc 

flang e ov er the pr e fon fe d era cl • 

The cra cJ.;: pa tt e r n:; re s ulting from the analysis 

(Fi g 7./J:) f'or the four b eams inuicates thut crack ing a t e.::trly 

stag es· of lo.:1uing was in the t ensi on side of th e •-.reb , th en 

extended u pwards . As di s cusse d above , cra cks arc defined 

to be at cert a in sail Jl ing p oint .s of the clement 1 thus the 

di s tribution o.f era clcs in th e tens ion :c. one is re gular . The 

cra ch':s al s o, in this cont ext, ha ve an average mean ing due 

to ea ch sampling point re presenting the average materia l 

pro perties for a pa rt of the element . In the actual b oa~ 

the distribution of cracks i s irregular Liue to the :fnct 

tha t the concrete is a non-honogene ous mat eri a l and the 

appear a nc e o:f the s urface cra ck s de pe n ds on the internal 

microcra ck s . He me mb ering the assumptions in the a 11a ly s is 

and the f a ctors governing the appearance of cracking in the 

actua l b eam , it is difficult to _compa r e t he numbe r and 

spacing o f cr a clc s bet1.,reen bot h the analysis and e x perimen t . 

The d i re ctions and shape o r t he c ra ck pa t terns in the 

'veb resulting from th e analysis is in g oo d agr eement wi tll 

those fro m tho expe x i11ents . Inclined cracks also appeared 

around the head of the pre f ormed crack in th e a nalysis and 
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t hi s s imula tcs the propaGa tion o f' ern Cl \ s uiu g ona lly nl ou:~ t h e 

prefer Jed c ra cks i n the actual beams . .J ith incrc::asing the 

loa d, ern. cl ·s u p pc arc d in the urea of th e l-veb betlve en t ltc 

h ead of' the preformed crack a nd th e loa d point with inclination 

very close to the horizontal and th es e are ana log ou s to the 

ext ensi on of th e cracks along the web flange j unct ion in the 

tests. At the same time cracl(s start to o ccur in the fl a nge 

with inclinat ion in the area over the pr e formed crack and tend 

to be in hori z ont a l direction in the areas near the load 

point. Thes e cracks continue d in the flange re s ulting i n 

increase d displacements until the solution dive rges indi ca 

ting the f ai lure of the beam. The horizonta l sp litting 

across the flange width appeare d a t f a ilure in the te s t s , 

has not been ' predicted explicitly in the analys is. Thi s s plit

ting could be a local ef'fect of the failure of thi s part of 

'the beam due to ·the separation and bending up of this part 

of tha flnn-:; e from the web . Another rcuson could be that the 

cracks in the flan g e are predicted by the failure crit eria 

based on octahedral normal and shear stress e s '·rhich do not 

dei'ine a c ertain direction for the fracture pattern and it is 

adopted in the a na lysis by a s suming th e cra cks to be per pen

di~ular to the direction of' the principal tensile stresses 

as discussed in . Chapter 4 . In the full b ea w , the cra ck 

pattern from the a na lysis showed incl ined crfl cks r epresent ing 

the actua l diagonal crac4 . The s e cracks appeared, in th e 

analysis at load 110 kN , while in the test , the dia:;ona 1 

era ck appea red at 100 lcN · 
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7 . 2 . 3 J3ea ms ,.,i th Uif:Ccrent F l .:1 : ~ e 

didth ~\nU. Tlliclulc ss 

Th i s series of be ams h as be en clas .s i..fietl in t o 

t hree groups . Ea ch ~roup contu i ns tlu c c b cnms with the 

sam e :f l unge >Vidth but o :f dif:Cc rent t hi c1 -ncs s e!J . The :[ini t e 

elemen t idea li s tion :Cor the se groups i s show n i n ?i~ '? . 2 . h 

an d 7 . 2c . 

Group 1 

The flan g e wi·d th for the !> e b cums 1'/"as 

350 n11n ( B/ b
0

= 2 ), a nd the thicl-:ncss ·r u n ge d from 50 to 9 0 l llll 

( t/h =."167 - . ::)) . The b eams are re fe renced n .v I , T !JX I V 

and T nX VI I .. Tw·enty-ei g ht c l eme n t s '" ere u se d in the finit e 

c l ement mode l o.f the qua rter beum . Six loa d incr eme nt s w e re 

a pplied in th e ana l y s is 1'i'"ith hro c y cles in ea ch , until the 

l ast two incrc1nents , where the number of' cycles incrc nse d to 

fou1· . 

The c om parison of the ex e ritnent a l and ar.a l ytic a l load-

deflection curves i s shown in Fi g 7 . 6 , wher e i t c a n be s een 

that sati s fa c tory agr eeme n t va s achieved . In the c ase of 

beam TB~ VII , the a nalyti c a l solution u nderestima ted the 

experime n tal re s u l ts . The discre p ancy i n de:flection und 

streng th before failure is believed to b e due b th e e:Cfect 

o f dowel a c tion which was i gnored in th e ana lys i s . This i s 

e spe cially true for be ams '"i th s tiffer r .:i.n f o r c CIHm t b a r s 

such as bea m T BX. VI I of this n-roup ( y 20 ) . 

The crack patterns a nd the spread of the crack zo n es 

res u lting fro m the anulys is at interm e diate load s t ngc and 

at ultimate load are shown in Fig 7 . 7 . Tt1c actua l cra c k ing 
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and 111odes of i'ailurc are .sho ·•n in Fig 7 . [\ . At 1 O .:l d 1 e V<.! l . 0 f 

50 kN, the craclcs obtained :Crom the a~1.u ly s i s Dnd observed 

in the test s are c ha r ac t er i sed b y v er tical f l cxurnl cracks 

start ed a ~ the bottom s i e o f th e w~b ~ nd vropu~utcd 

verti c a lly to rea ch a l eve l belo~ the undersid e of fl ange . 

At that stage also , the t es t s showed tha t craclcs J>rO }J.:.lga t ed 

diagona lly along the preformed cra ck and r ea c hed the u nder

side of fl a n ge , then it turne d hori z ontally and r an a lo ng 

the f l ange -w e b junction for a s hort di s t ance with incr ea s ing 

load . ~efore a pproa c hing the ultim· t e l oad these c racks 

turned up into the flan g e . At i'a i lurc shear crad;:s in the 

flange begin an d e x t end t o join th e u ppe r end o f the pre 

formed crack a n d the top surface of the f la~ge n ear the 

l o tl ding bloclc ( Fig 7 . B) . In the case of bcllm TB"r I , a 

br eakdo,vn f o r the concrete of the flnnge loc a ted beh1 een the 

pref'ormcd crack and the lollding bloch: occurr e d , .. Jith littl e 

destruction a t the t o p s urface o f the fl a n g e near the loa d . 

Thi s is prob.:tbly due to the severe condition of s h earing 

.and com pres sive stresses r ea ched in this area lvith short .:tnd 

thin fl a n ge . In beams TBX IV and Ta VII , an inclin ed c ra ck 

opened in the thickness of the fl n n ge and a ccompanie d by a 

hori ~ont a l s p litting across the fl ange Hidth ( Fi g ?. 8 ). 

The crack pa tternsfrom the ana lysis shown in Fi g 7 . 7 

i ndicate the initiat ion of cra cli:s in th e fl a n g e separa t e ly 

of the c ra cks e x isting before in the web . The s e cra c ks t end 

to be in hori z ont a l leve l ne a r the top s urf:1ce a nd slightly 

inclined near the bottoo s urfa ce of the fl a n ge . Craclcs 

are s pread in the area of t h e flange between the pre£ormed 

cr a clc a nd the load point . The fo r ma tion of thes e cracks 
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in the la s t l o <1 d incr CEte nt sho\ls th.:t t ~a ilurc oc c urred in 

the i"l a n ::; e du e to tl e i r appea r nn cc . 

Th e me as u r ed steel s t ra i n s f rom ~he te a t s an d tho se 

c a lculated in th e a n a lysis showed that th e ma in te ns ile 

rein~or c c t. ent l n d not yie lded. 

A p lot for the she ar stre ss dis t ri b utions obt a ined :from 

the ana lysis b e f or e failure i s s h own in Fig 7 . 9. T h e s hen r 

s tr e ss es are plotte d n t three sections ncross the h~tlf fl a n r. e 

Ki dt h i.n t he shen r span . Section 1 , at a d:i.stnnce o f' 550 mm 

f'ro r.1 th e support 1 ie locat e d ov er t h e h e .:~.d o f' th o prcf' ormed 

e ra eh. Section 2 wns at B6 o mm f' rom the .s up p ort and Sect i on 

3 1·rn s . nt 1 8 10 mm from the s up p ort , ic v ery n e a r to the loud 

point . The full line r epresents the sheur s tresses n ear the 

bottou1 s urface o f th e fl ang e and t he dotted line n eai th e to p 

sluAface of tb e :flange . The shearing f orce rc~ sis t ed by the 

f'ln11 ge lvas c alcul:.ttcd by integratin,s th e s h ea r stres ses at 

sec 1 a cross t he i"lang e width and t ak ing an overa~e s tr es s 

va lue through th e fl a n ge thickness . T u. ble 7 .1 shoh'S th e 

shear in~ f orc e s for the three beams c a lculate d frot11 th e 

analytical r es ult s a nd the shearing forc e s estimated fro11 the 

exper i ment s . The exp erimental values are the actt~ l shear 

forces o n the beams r educed b y ~he forc es c arr ie d b y t h e 

s hear links e xis ti ng in the area between the pre~orme d 

crack and the s u p p o r t. }lore d etai l s '"i ll be g iven in 

Chapter 8 a bout calculating th es e for ce s . 

- 135 -



1D 

• Sampling 
points 

• • • • 
• • • • 

Cross sec. 

. I 

Sec.1 at 550 mm from the 

support 

Sec. 2 at 860 mm from the 

support 

Sec. 3 at 1010 mm from the 

support 

The values shown on the graphs 

are shear stresses in N /mm2 

• • 
• • 

Elevation view 

FIG.7.9 . a. SHEAR STRESS DISTRIBUTION BEF OR E 

FAILURE - BEAM TBX - I 



• • • • 

• • • • 

Cross sec . 

Sec. 1 

Sec. 2 

Sec. 3 

Shear s t ress di s tribution 

near the undersid e of the 

f lange 

Shear stress distribution 

near the top surface of 

the flange 

FIG.7.9.b . SHEAR STRESS DISTR IBUTIONS 

BEFORE FAILURE - BEAM TBX- IV 



Sec. 1 

Sec. 2 

Sec. 3 . 

• • • • 

• • • • 

Cross sec. 

FIG.7.9. c . SHEAR STRESS DISTRI BUTIONS 

BEFORE FAILURE- BEAM TBX- VII 



Ta bl e 7.1 

Shea r forc es c a rri e d ~the Flan~ 

--
l3eam No TDX-I Tl3X-IV T JJX- VI I 

Cu1 e str eng th 36 .1 3 7·9 311:. 8 N/mm2 

Shea r i n g Ana l y s i s 1 9 .7 28 .8 3G. 2 

F o r ce I -- - -
kN Bxp 27.5 29.8 38.1 

From the above Tuble it can be s een thDt the s h ea r 

forces obt a ine d fro m the ana lys i s a nJ the t e s t s a re in g ood 

agreement f or be a ms 'fBX IV and T D/ VII . The dis p a rit y b e t-

,., een the experim e ntal and analytical v a lues f or b e am TIJ . I 

may be referr e d to : (1) The a s sume d line ar s tre s s di s triuution 

beb,r e .J n the two sampling 1 oints tllroug h tllc f lang e thick n ess • 

( 2 ) The location of t h e samp ling poin ts i ns ide the cl ement 

bounda rie s and not a t the hea d of the p re f or me d cra c Jc a s 

shohT n in li'ig 7.9a. This a llmvs a p a rt o i ' the shear f or ce to 

be re s i s t e d by th e concrete of the F e b b e t\ve e n the u n d e r s ide 

o f fl a n g e a nd the p re f or me d cra c lc , n oting tha t t h i s b i3 ulll 

h a s n a rrm'l and t h in :fl a n ge . 

7. 2 . 3 . 2 C':tr. u p 2 

Thi s g roup containe d th e b eams TH:.C II, 

T BX V And TD..~( VIII . The :fla n g e v~ i dth f o r t h e se b eams ~..,ras 

700 mm ( B/b
0 

·= lJ:) a nd th e fl a n g e t hi cJ<: n es s r ange d f rom 5 0 mm 

to 90 mrri (t/h = . 167 - . 3 ). Th e :f i n it e e l c!llent mes h u se d 

f"or thi s g roup i s si1 o1-rn in F ig 7. 2 c, in F hic h 3 5 el eme n t s 

were u s ed. Six loa d increme nt s >'l" c r e p er f o rm e d f or 'a clt b eum 
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l·lith two iteration c y c les for ench incr ement c "· c ept in the 

l ust t••o where four c yc l es uere u sed . 

F i g 7 .10 shows th e 1 idspan lo C~.d -cle f l cction curves on d , 

also , the vertic a l displa ce ment at the u nderside o:L the 

flange n ea r the heetd of the pre:Lormed cruel: , a :;u in5 t the 

sheurin.:; forc e . The ana lytica l resul t s ngrce cl osely with 

th e exp erimental curves . The difference in s t rength between 

the exp erimental and analytical so luti on in b ooms T BX V a nd 

T BJ. VIII i s mainly due to the dO\,..e l action of the 2 0 mm dia -

me ter r~ inforc e1 e nt bars . 

Th e cra c k patt erns r esulted f ro m th e ana lysis at 

intermediate loa d s t ag e ( 60 kN for beams TD"'' II and TB.X: V, 

80 kN f or beam TB"'. VIII) an d at ul t imnte load a re s h om1. in 
.· 

Fig 7. 11. The modes of f a ilure o bta ined from th e c"·pcr imcnts 

are s hown in Fig 7.12. The cracks appeared fir s t in th e 

lower s ide of the l~e b in both the experiment and analysis , 

then spre a d v ertica lly towa~ds the underside of the flang e. 

In the tests cracks extended diagonally fro m the h ea d or ·the 

preforme d crack towards the underside of flange and conti-

nued along the web - flange junct ion . At failure th ose cracke 

turned u p i nto the flan ge , pr o pagated to th e loadin:; a r ea 

and lift ed up the part o f' fl ange betw·een the prefonaed 

track a nd the loading block . In the c ase o f beam TDX II, the 

f a ilure "\'las a cc ompanied by trans v erse splitting o n the to p o:f 

flange over 'the h ead o f pre formed cra c k , then extencled longi-

tudina l~y para llel to th e fl a n ge->vcb junction u ntil it 

re a ched t he loading block . I n b enw s TDX V and T B ... · VIII 1 

th e fai lure wa s ac companied also by t r ansverse sp l itting on 
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top o f the f l n n g e <:l.lld lO l),S itu d i n.::l l splittin~ s p Ll ra J.J. c l t o 

the f l a n g e-w e jun ction . T11 C"' C lon .:; itu <.l i n~ l s p li ttin .::; s 

ext en d e d aroun d the: lou.<.l i r.g block a nu. tb e n. t o tl1<~ i' l. exural 

zone of the fl .:1 n r;e betv:een the t 1·1o loc1uin~ b lock s c i'lu.-:; in~ 

destruction of p nrt of f l a n g e in t h i s a r ea , Fig 7 . 12 . 

The crack pa tt e rns obt a ined :from th e ana ly s is , Fi g 7 . 11, 

at f'Llilure , shm., the init i ation and spr e a d of cracl~ s in the 

f lange ne a r the top and bo ttom surfa c es i n the area b e tv,r ecn 

the preformed c rack and the l oad point a n d in the fle x ura l 

z o ne . This shO\'ls a g reement betl'lecn t h e prc l~ ic t ed er <=~ c l-. 

pattern and the actua l one . 

1he shear stress d i s t r i bu tions acros s the flange 

uiclth are p l otted in Fig 7 . 1 3 , f'or the three be a ms at tllree 

diff'er e nt se ct ions in the s b ear s p an . Ta 1; l e 7 .2 sllO\v ... the 

c a l culated and the a c tual shcarin \~ forces re s ist e d by the 

fl ange . 

Tabl e 7 .2 

Shear For c es c arri e d by the F lan~ 

l3eam 1T 0 TJ3,C II T BX V T BX VIII 

Cube Strenr·th 38 . 6 :) 7. 5 36 . 1 ? '"" 
N/mm~ 

Ana l ysis 28 . 9 44 .1 50 . 0 
Shea r ing 

F or c e 
Exp 35 • l1:. LJJJ:. • 2 50 . 2 

.k N 

The experiment a l and ana l ytical value s f o r the shear 

st r ength of t he flanges of bcam.s TD, r V an TB~ - VIII are 
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coincident.. The diff'erence sh own in beams 'l'B~~ II i s due 

to the reasons discussed be f'orc a:.; it has o. thin :CL:.tn:::;c . 

7;2. 3 . 3 Group 3 

The benms o f this group are Tm~ II I 1 

TBX VI and TBX IX. The flange width is 1. 050 tmn ( D/b = 6) 
0 

and the flan e thickness varies from 50 1 111>~ and 90 nu,J 

( t/h =.167 - . 3). Thirty-five finit e elements were u s ed in 

the model of the quarter beam as shown in Fig 7.2c . Six 

load increments were used in the analysis with t wo it cra -

tion cjcles for each increment until the l ast two increment s 

where · four iterati on cycles were performed. 

Fig 7 . 14 shows the load-displacement curve~ ~or the 

three b eams . · The total load on the b ca 111 i s p lotted ver s u s 

the midspan-deflection . The shear for c e is p lott ed agninst 

the v ertica l displ a cement of the underside of flan~e near 

the h ead of' the preformed era cl( . The di sp l a cer:1ent s obt a ined 

from the ana lysis are i n good agreement Hith the eX11erimentnl 

curves . The divergeric e of the analytic a l value s from the 

experimenta l at f ailure in bcnms 'I' D~·· VI nncl Tl3X IX is r:1ainly 

due to the dowel effect . of the m~in reinforc ement as ba rs of 

20 and 25 mm dianet er were used in these bea ms . 

Whjch 
The crack patterns resulted from the analysis for two 

f. 
load stnc;es arc shOll'n in Fig 7 . 15 1 lvhile the e xperimc;ntnl 

modes of failure are shml"n in Fig 7. 16 . \t the intermediate 

loa d sta r;e , the crack locations and directions fro m the 

e xperiment and the analysis are in good agreement . U to 

that lo d level the crnc.ks arc v ertical and distributed :i.n 

the web. iith increasing load in the test s , cracks r a n 
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a long th e flan:.;e-Heb root and · tur ne:cl to e nter the uud cr ::; idc 

o f' f l a n n· e • In the case of be am TUX III , (with thin flon~e ), 

Nhen the failure load 1·1n s appronch c d, a crac]( propn~ated 

from tlJc 1·:eb-flan.; c junction near t he head o f t he preformed 

oracl-e a nd pene t rated through the f' lanr; e t h icJn t c ss . In thi s 

bea11 1 a trans v erse splitting across th e flan _s e 1-v idth at the 

top surfn ce occurred n t f n ilurc , nnd thi s ' l'as accotn p aniecl by 

lon.r; i tudina l s p lit t ing of the 1·reb/ fl'ange root behre e n the 

transver s e crack and the loa d block . In the ca ses o:f beams 

TDX VI nnd TBX I X , long itudinal a nd trans ver s e cra~cs a 1pearc d 

i1~ the un derside of fl ang e in the area bet1re cn preform e d 

crn c k and loading block . At failure long itu d i na l and tra ns -

verse s1)li ttin tr s took place at tll c top of fl.:t_n g e in th e s h en r 

s p an . This was accompanied by long itud in.:tl S Jlitting a long 

the ' "'cb - .flange root uhich extended to the fle ~· tu~al z one . 

Fa i lure of these beams was accompanied , also , by seconda ry 

diagonal craclcs which a ppeared in the 1r eb ne.:::~r the p re f ormed 

cra ck in beam T Bj ' VI , and in the othe~ shear spa n in b c Lim 

TBX I . • Thes c era cJ · s pr o pagated UJJ\'lwrd to the flange and 

do1nn"'urd alons the main reinfor c cme n.t en using the br cnlcdown 

of bond between concr e te und steel . 

The ana l ytica l crack pa tterns at failur e for the s e 

beams, Fig 7 . 15 , show the cracked re gi ons in th e flan g e near 

the top and bottom surfaces and long itudinally along the 

flange-web junction. However , there is a difference bet 4ecn 

the two me chanisms of failure obtained from th e a nal y s is and 

the e xperiments, in the cwses of bea ms T BX VI and 1' : · L~ . 

While in the experiments a p lane of failure iriit iat ed in the 



H c b by a se c o n d a r y clin.gona l c ra c l , the analysi s shm·.r s cr ~tcJ - -

ing of f l .::tn ,:j e i s the n.::t i n c au..:; e or f,:~i lure . The dcf.'ici ul'!. cy 

of t he fini t e clement i.u p r c d i ct in.:; t hes e seconuar y c racl:: s 

i s p robab l y ( u e t o the a v e r age mean i ng f or c rach: ing d i s -

cuss e cl Le :for e and t he l a r g e :;c, ones of era c .. eel u.r c a s r e pr c -

s e nted by one clement. l !ore r e f'i n cd meshe s may h e l p t o 

de :fine close ly the z one s of' crack ing . Ncvc r t lJ e le ss , fo ll oH -

ing the order o:f for ma tion o:[ cracks i n the l us t uns t ab l e 

load increme nt of the analy s i s and t h e obs erva t i ons of crac~ -

ing in ~ he t e st s , s hows tha t failur e was p rec ip it a t e d by the 

crack . pr o paga tion in the flange . 

The she ar st r e ss distr ibutior~a cross the fl a n g e width 

within the shear s p an , for ·the three b a ms i s s hown in 

Fig 7.1 7. The she a ring force resist e d by the :flang e c a l-

c,ulated for S ection 1 , is compa red h'i th the e x perimental 

v a lue s in Table 7. ·3. 

Table 7 • 3 

She a r Forc~s c a rri e d bX the Flange 

Be a m No TBX III TBX VI T BX IX 

Cube Strength 
N/nlln2 38 . 9 36.q 37.0 

Analysis 33 . 3 50 .l.t: 62.1 
Shear 
Force 
lt N Exp 38.2 l!9. 7 6 2 . 7 

-
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Sec. 1 at 550 mm from the support 

.1 .1 

Sec. 2 at 860 mm from the support · 
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Th e above Table shm~s good agreement between the 

ana lyt i e a 1 and ex per i mc ntal va lue ::; par t i cul<A rly f or bcalli S 

Ta VI and T DX I X. In the case of beam.TBX III, the <Anuly-

t iea l value undere s tima tes the experittcn t a l. Tlli s b car:1 has 

a thin fl<Ange a nd pr obably part of the s hear force i s rc5i~ -

ted by the web as discussed before . 

7.3 Conclus ions 

The actual shear beha viour of beams is co mplex and 

involves many phenome na. The aspects thnt h a ve been intro -

duced i~ this theoretical analys is enable d to predi ct the 

' 
history of def'ormation and the cr.Acl-: 1)rop.:1gution for b eams 

failing in shear with enoug h accuracy. A complete p icture 

o f the stress distribution in any par t o.f the b e am at any 

loa d level can. be given by the solution . 

From tests failure modes were effectively shearing in 

the flan:;e. From analysis failure 1H:lS in fact rlrccipi t a ted 

by cracks spr ea d n ea r the td~ s urfac e of the flange . In 

general quanti t a tive-correlation between craclc zones arc 

satisfactory. The number and spacing o cracl~s are not corn-

pared in this study. This i s because the cra cks in the 

actual beam.:; depend on certain factor s such as the exi s t en ce 

of pre-microcra cks and the internal structure of toncicte . 

In fact, there is no proposed theory u p -to-date to predict 

the mechanisn of craclcing as it ha ppens in the e.·periments . 

Better crack patterns could be obt a ine d fror:l fin i te elem ent 

a1w lysi~ using fine meshes but it is rather e xpens ive in 

c omputation time, p~r ticularly in the 3-dirucnsional ca se , 

In some beams crnclcs propagated :from the preformed 
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crack to\·Jaru.s th e sup.l.;or t p oint a t u l oHcr lo .:1d l eve l in 

the ana l ys i s th::J.n the experiment, This tnay ll u v e ·iJc en due 

to the liru~s provided in t his a r~.~a in the t estfJ an d h av e 

not been introduced in the anolyais . · 

In sot~le be ams , the c a lculate d load-displaccl~Jcn t curves 

over es tima te the obser v ed ones . This may be du e to some 

extent to the assumed ma t e rial cons t a nts. Al s o :L:t c ould bo 

due to the l nrge va lues of the load :ln.cr.:::mcnts and the 

coa r seness o f the mesh u se d . 

·By inves ti .:;ating the shear stress di s tributions in the 

area of the flang e bctNeen the prc f orl!lcd oracle a n d the loud 

p o i n t, it 1va s notic ed th<lt some v a l ues u. re not cons i s tent 

( ie they h a ve o p~) o s ite signs to \ll' hat they should be ) . 

This may be d ue to (1) The irr egular changes in the mat c riu l 

properties in tha t area of fla n ~ e due to the spreading of 

c racking in it . ( 2 ) The shear ret e ntion fa ctor ( 0 . 2 ) thnt 

h as been u sed , a more accurate study s hould be ma de to inves

tig ute its effect on the sh ea r s tress di s tribution. 

( 3 ) The crude me sh that has been used . ( 1-J: ) 'r110 reduced 

integLat ion rule used in evaluating the stiffne ss cs . 



EFFE CT I VE tvi DTH AN D S IIEAH 
l ESISTAN CE OF THE FLANGE 

8.1 Introduc tion 

It has b e en stated in Cha pter 2 that the st r u gt h a nd 

beha viour of' T-beams de pend on a numb er of' factor s . The 

exact analysis of' T-beams subject to shear is too time-

consuming for the practising engineer and therefore the u s e 

of' an ~f'fective width ' concept in the calculation of the 

shear ~trength of' the flang e would have distinct adva ntage s . 

Several research workers h a ve prese n ted solutions for 

the effective widths of T-beams for use in bending problems 

(84) -(91 ). These studies defined the 'e ff'e ctive ,., idth ' 

as a function of the longitudinal stress at the top s urface 

pr the middle surface of the slab. However, althoug h ther e 

are several studies on the shear strength ofT-beams, very 

little work has been done on the concept of using an ' eff'ec-

tive width ' in the assessment of the she a r force carried by 

the flange of' T-beams. Placas and Regan (1 3 ) predicted the 

effective area of the flange resisting shear as t (b + 6 11 ), . 
0 

but in the discussion in Section· 2.3 , it was shown that this 

value was rather conservative in many cases. Swamy and 

Quereshi (21) have taken the full width of' the flange 

(B/b in t·heir tests was 3), but reduced the neutral axis depth 
0 

to fall within the flange thickness. 

Experimental results (7), (8), (11), (1 4) and ( 20 ) 

indicate that there is an increase in the s hear strength of 

T-beam s with an increase in the flange width, flange thickn e s s 
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and p e rcentage of main longitudinal re inforc me nt . 

In this chapter an inves tigation of the 1 ffcctive 

width ' to be used in shear , together with the fa ctors 

influencing the shea r strength of t he fl a n ge , i s re ported. 

The Finit e Element Analysis describ ed in Chapters 3, ~ a11 d 

5 was u s ed to d e t ermine the the oretica l s tress distr i bution 

in the fl a nge. This was u sed exclusively in thi s study in 

an attempt to obtain a satisfactory assessment for the 

'effective width' and the contribut ion of the flange in 

resisting shear forces. 

8.2 Effedtive Wi dth of the Flang e 

8.2.1 Shear St resses in the Fla n ge 

In genera l the shear stres s distribution in an 

isolated flanged beam is not constant, but vari e s across the 

lvidth of the flan ge with higher values over the rib and lolver 

values at the edges as shO\'t"n in Fig 8.1. The stx·ess al o 

varies through the thicltness of the flange with hi gher 

values. n ea r the underside. 

The shear stress distribution in the flange was 

obtained from the non-linear Finite Element stress Ana lys is 

discussed in Chapters 3, ~. and 5. In this Finite Element 

model, the analysis of reinforced concrete structure in 

3-dimensiona l stress state 'vas pres ente d. The brick-type 

h e xahedron i soparametric elements ( 20 nodes) were used 

throughout to represent the concrete and b a r e l ements were 

also used to simulate the tensile r einforceme nt. 

The progre ssive cracking of concrete in t en sion and 
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tension compression zones were studies. Multia xin l f ai lure 

criteria based on experimental data obtained els where 

( 5l1) a nd ( 58), w·ere discussed and u s ed in predic t :l ng the 

cracking . 
jmum 

Na~ stress criteria were us e d to prcdi~t cracking 

i n the tension zones , arid f a ilure crit eria based on octahe dral 

normal and shea r stres s es were used :f'or tension compress ion 

zones. The cracking has been taken into account in the non-

linear solution by modifying the material propertie s at the 

cracked points of the . element. The load '"as applied in 

increme nt s and the crack propagation t<~as followed up through 

an iterative procedure in conjunct ion with a vari able stiff-

ness approach. 

Results obtained from this Finite Eleme nt approach 

were compnred with a set of experiments on reinforce d con-

crete T-beams with different flange widths and thickness. 

The load deflection curves, crack patterns and fa'lure loa ds 

were checked an d ~howed . the . suit~bility of the method to 

predict the history and behaviour of reinforced concre te 

structures under different load levels. 

The exp erimental tests carried out included reinforced 

concrete T-beams with B/b varied bet\~een 2 and 6 , and t/h 
0 

range d from .167 to 0 .3 as shov;n in Table 8.1. The aim of 

the tests was to study the shear strength of th flange. 

An inclined preformed crack was u sed in the '"'e b area to 

eliminate the s hear forces resisted by aggregate interlock 

and doN:e l action. The tests were conducted on l a rge scale 

beams of tot a l length 3.4 metre ~nd with shear span/depth ratio 

ot: 4.0. 



Fr6m t he non- l inear 3-dimens iona l Fini t e Element 

.Stress Analy s is , six compone nt s of stresses were obta:Lned 

at e a ch o f th e ei ght samp l ing points in e v ery cl ewcnt o 'f the 

beam (thr ee normal s t resses and t hree s h ear s t resses ) as 

shown in Fig 8. 2. The vertical s h ear stress component \vO.s 

t aken at these individual point s to form the shear s tr ess 

di stribution in the fl a ng e. The s hear stress distribution 

obtaine d at ultimate load for th e beams with diffe r ent 

fla nge widths and thicknesses wer e used to evalua te 'e ffec

tive widths 1 • The shear stres ses in the :flange were t a ken 

at the nearest s ampling points to the head o f the preformed 

crack , as thi s represents the ma x imum shear stresse s in the 

flange. In the meantime these shear s tresses are similar to 

the on es in actual beam when a di a gonal crack forms in the 

rib width and extends into the fl a nge underside . Moreover, 

the major part of the shear force is resisted by the fl ange 

alone . in this section of the beam . The sampling point s a re 

located near the top and bottom surfaces of the fl a nge, s o 

the values of the shear stresses at the middle surface of 

the flange were obtained as the mean value between the shear 

stresses at these points. The shear stresses acros s the 

flange width for the different beams are plotted in Fig. 8.3. 

8.2.2 Definition of the ' ' Effective \ii dth' 

The 'effective width' is assumed to be that 

width of the flange which, when acting at a constant avera~e 

shear stress, would sustain a shear force equal to that 

obtained by integrating the shear stresses across the 

middle surface of the flange, 
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ie 2 b 
e 

where 2 b = the effective width 
e 

~ xy = shear stress at the middle surface 

= the average shear stress at the iddle 

surface 

(13.1) 

(t xy )av is taken as 2/3 of the maximum shear value at 

the centre of the flange, ie 2/3 (t xy )max . This value is 

chosen as it 'takes into account mout of the width of the 

flange where the shear stress is distributed according to 

Fig 8.3. 

8.2.3 Factors Influencing the 
1 EC£ectiv e Widt h' 

Tabl e 8.1 shm<Ts the calculated 1 c ff ctive 

widths' for the differen~ flange width and thickne ss nccor-

ding to equation 8.1. It c an be seen from this Tab l that £or 

flange ·,vidth/o;veb width ratio, B/b
0 

= 2, the evaluated effec

tive width is between 9~% to 98% of the tot a l flange width 

ie, the effective width is nearly equal to the flange width 

in this case, particularly with thicker flanges. For 

B/b = ~' the evaluated effective width ranges between 52% 
0 

and 63% of the total flange width. For B/b = 6, the 
0 

effective width varies between 43% and ~9% of the total 

flange width. The s e percentages als o increase with the 

increa~e in the flange thickness and amount of main longi-

tudinal reinforceme nt. 
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Table 8.1 Evaluated 'Effective Width', Equation (8.1) 

Flange Evaluated 
Beam Ratio Ratio Ratio Effective 

\·li dth Thick B t 100A 
No 

B t b h 
s Width 

mm mm 
b d 0 -

0 

TBX-I 350 50 2 .167 1.16 328 

TBX- I I 700 50 4 .167 1.78 367 

TBX-III 1050 50 6 .167 2.25 454 

TBX- IV 350 70 2 ·• 233 1 .32 342 

TBX- V 700 70 4 .233 1.92 393 

TBX- VI 1050 70 6 .233 2. 90 459 
' 

TBX-VII 350 90 2 . 30 1.5 344 

TBX- VIII 700 90 4 .30 2 .25 44 0 

TBX- IX 1050 90 6 · .30 3.25 518 
- - ~----~-~ - - ------ - ---- ----- -- ----- L____ - - - ------~-- - --- -- - -----

Evaluated E ~1 

Flange width 

.94 

.52 

. 43 

. 98 

.56 

. 44 

. 98 
I 

.63 

.49 
- ---



Curve s are plotted f or the v ariation o f th e eva lua t e d 

·effe ctive width a t ultima t e load , 2 b , with change in the 
e 

rat ios o f flange width to web width, B/b , flange thickness 
0 

to b eam depth, t/h, and a r ea o f main longit u dinal reinforce-

ment p , as shown in Fig 8.'* • The se curves indici'\te that 

there is an increase in the effective width with increasing 

flan ge widt h, flange thickness . and perce ntage o f m· in 

long itudina l reinfor c ement. Fig. 8.'*b, shov1s al s o that when 

B/b
0 

> 4, there is a higher rate of increase in the ~ffec

tive width ' wit h increasing flange thickness . 

Also the ratios of the resulting ca lculat ed 1 ef£ectivc 

widths ' to . the fl ange widths, 2 b / B, web width, 2 b /b e e o 

and flange thickness , 2 b
8
/t, are plott ed a gains t the r atios 

B/b , t/h and 
0 

p· in Figs 8.5, 8.6 a nd 8. 7. Fig 8.5a and c 

indicate that 2 b / B de creases non-linearly with incre sing e 

D/b · or 
0 . 

p • Fig 8.5b shows the increase in 2 b / B with 
e 

increas ing t/h. 2 b /b increase d with the increase in e o 

B/b , t/h and P as shown in Fig 8.6 and the r a t e of incr ase 
0 

was n early cons t ant parti6ularly in Fig 8.6a. In Fig 8.7, 

2 b / t increase d with increasing B/b or 
e o 

creas ed with increasing t/h. 

8.2.4 Prediction of the 
' Effective ~idt h' 

p , while it d e-

Examining the data plotted in Figs 8.4 - 8.7, a 

non-linear regression analysis was c arried out to tale into 

account the parameters influencin g the ~ffe ctive flange 

width. This non-linear procedure gives he coeffi cients of 

a non-linear relationship between a set of independent 

var iable s and one de endent varia ble. Relationships were 
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fi rst suggested between 2b /b , 2b /B or 2b / t as de pendent 
e o e e 

variu bles and B/b , t / h and p as i ndep endent variables . 
0 

Th e valu es of 2b / b , 2b / B , 2b / t , B/b , t/h a nd p £ or e o e . e o 

the nine cases shown i n Ta ble 8 . 1 wer e fed to the non-linear 

regression program to ob t ain the r egress i on coef~icients 

r e quired f or ea ch r e l ations hip. The r esulting equations 

were in the form : 

2b 
[ 1 .09 + (.!L) e . 135 = + b b 

0 0 

2b 
[ 1.11 (lL) e . 175 - = - -B b 

0 

2b = b + .198 B + 1.296 e 0 

2b 
e 

= t + .188 B + .673 h 

2b e = 

2b = b + .31 B e o 

2b 
[ 8.47 + e .89 = t 

(.!L) 
b 

0 

1.429 ci > 
h + • 172 p ] 

.045 (i) 
h + .1 28 p ] 

t 

t 1 . 04 p ] 16.58 (- )-
h 

2b 
[ 8.985 + 5.11 (lL ) (1 ) e - 21. 31 ] -:t = b h 

0 

2b 
[ 1 + .981 (lL) ( ! ) ] e 

+ 3.508 -:r = b h 
0 

2b = b + .0015 B.t. p e 0 
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2b 
e = b 

0 
+ . 0268 B.t• 69 . · ( 8.1 2 ) 

The ca lculat d values from these equations are compa r ed w·ith 

the evaluated effective widt h fro m equation 8.1 in Ta ble 8 . 2. 

The values obtain ed by equations 8.2t 8.4, 8.5 and 8.12 arc 

more close to the one s obtained f r om equation 8.1. Equat ion 

8.3 gave inconsistent values for cases II, III, V and VIII. 

Excluding the effec t of flange width and amount of main steel 

r einforcement in equa.tion 8.6, the obtained va lues arc not 

in satisfa ctor y agr eement. Equation 8.7 gave conservative 

values in short flanges • Equation 8.10 gave lO\'l'Cr v a lues 

with thin flanges while wi th thick flanges the valu es we r e 

overe s timated. Equation 8.11 al s o ga ve lower va lues except 

for wide and thick flanges. 

In s ome case s of short flanges the ' effective wi dth ' 

predict ed by the ab ove equations was exceeding the actual 

flange uidth, so it must b~ emphas ised that in thi s cas e 

the ' eff e ctive width' should be t ake n equal to the flange 

l·ddth. 

8.3 Shear Resistance of the Flanges 

8.3.1 Introdu ct ion 

It was noti ced during the tests thnt failure 

occurred by propagati on of the diagonal cra cl<s into the com

pression zone of the fl ange initiat ing t ens ile cracking in 

this area \'lhich precipitated the fina l. break do,,rn of the 

beam. .Failure was also accompanied by splitting along the 

main longitudinal r einforcement ~ 

In this section the contribution o f the compression 
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Table 8.2 'Effective Width' of the Flange 

Flange Evaluated ' Effe c tive Width' 

Beam \Vidth Th:i.ckness Integ Eq Eq Eq Eq Eq Eq 
No Bmm t mm Eq 8 . 1 8 .2 8.3 8.4 8.5 8 .. 6 8.7 

TBX- I 350 50 328 315 315 309 318 .334 283 

TBX- II 700 50 367 380 442 .379 383 .334 392 

TBX-III 1050 50 454 442 360 44:8 4:49 3.34: 499 

TBX- IV 350 70 342 336 322 335 338 398 283 

TBX- V 700 70 393 401 450 405 4:04 398 392 

TB:X- VI 1050 .70 459 478 445 474 470 398 499 

TBX- VII 350 90 34:4 358 330 361 357 461 283 

TBX- YIII 700 90 440 428 480 431 423 461 392 

TBX-IX . 1050 90 518 505 4:90 500 489 461 499 
·- - ----- - -------------

mm 

Eq Eq 
8.8 8.9 

314 322 

371 374 

436 425 

351 353 

433 424 

387 496 

355 325 

426 417 

493 509 

Eq Eq 
8. 10 8 .11 

177 205 

276 268 

374 352 

265 223 

4: 02 316 

539 495 

361 246 

537 387 

715 635 

Eq 
8.12 

305 

379 

443 

328 

422 

466 

344 

444 

501 I 

I' ,, 



zone of the f'lange in resisting shear forces is e xamin e d. 

Comparison is then made between the shear force c · r · led by 

the flange and the total shear force supp orted by the b am 

at ultimate load. 

8.3.2 Prediction of Shear Resistance 
of the Flange 

In order to predict the shear force carri ed by 

the f'lange of a T-beam, one needs to knor; the effective 

area of the flange involve d in resisting shear forc es , and 

the average shear stresses acting 011 it at failur • The 

effective area of flange is talccn as the 1 ef.foctivc width ' 

evaluated by the equations above, times the thickness of 

the flange. 

Taylor (92) comput ed the shear stresses in th e corn-

pression zone of rectangular beams from longitudina l strains 

measured on the side of the beams . The computationa l method 

used lras derived f'rom th e differential equations defining 

stresses in the beam. Fig 8.8 shows the ' distribution of the 

shear stress in the compression zone. The maximum shear 

2 
stress value obtained at ultimate load was about 1.7 N/mm 

for concrete strength 60 N/mm2 • Regan (93) took the 

average shear stress for the critical condition with .re spe ct 

to shea r to be 0.2 (f')~. 
c 

In this study, .the average shear stress value is taken 

as f~/20. This value was chosen as an average v a lue for th e 

shear ~tresses computed by finite element analysis across 

the flange width at ultimate load . This valu e al o agrees 

with the shear stresses given by CP 110, 1972• ( 1 ), 
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cons ide r i n g t he s h ea r str es ses in th e code are "d i vi de d by 

a factor of sa f ety of 1.6. 

The shea r s trength of the fl a n g e can ther £or e b e 

expr es se d as: 

V = 2b • t • f '/20 c e c ( 3. 13) 

Table 8. 3 shows the shear forces calcula ted by cqua-

tion ( 8.13 ) using 'effect i ve widths ' evaluated from e qua tions 

8.2 to · 8.t2 . The shear forces are compared with the v a lues 

integrated from the stress distribu tion shown in Fig 8.3 a nd 

the expe rimental values. 

The experimental values are the appli e d shear £orces 

acting on the beam reduced by th e forces carried by the liru{s 

in the area between the preformed crack and the support. 

These f ·orces are calculated as follows: 

( 1) For a liru{ that has yielded , the force carried is 

= (8.1 '* ) 

uhcre vl = shear force carried by the linlt 

f yield strength of. the steel 25 0 N/mm 2 
= = y 

A sl = cross se c tional area of the link 

(2) For n link that has not yre lde d 

= (8.15) 
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Table 8.:; 

Beam 
No 

. 
TBX-I 

TBX- II 

TBX- III 

TBX- IV 

TBX-V 

TBX-VI 

TBX- VII 

TBX- VIII 

TBX-IX 

Shear Stren&th of the Flange 

Integrated 
Flange 

V exp V V 
Width Thickness c c 

kN kN V 
mm mm _ exp 

350 50 28.9 19.7 0.72 

700 50 35.4 28.9 0.82 

1050 50 38.2 33.3 0.87 

350 70 31.2 28.8 0.97 

700 70 44.2 44.1 1.0 

1050 70 49.7 50.4 1.01 

350 90 :;8.1 36.2 0.95 

700 90 50.2 50.2 1.0 

1050 90 62.7 62.1 0. 99 

E W Eq (8.2) E W Eq (8.3) E W Eq (8.4) E \1 

V . v V V V V V 
c c c c c ~ c -

kN V kN V kN V kN exP exp exp 

23.6 0. 8 2 22.7 0.79 22.3 0.77 22.96 

29.3 0.83 34.1 0.96 29.26 0.83 29.57 

34.4 0 . 90 27.8 0.73 34.85 0.92 34.9 

35.6 1.14 34.2 1.10 35.6 1.14 35.87 

42 .1 0.95 4 7.3 1.07 lx2 .53 0.96 42 . 42 

48.7 0.98 45.4 0.91 48.31 0.97 47.9 
I 

4.3.8 1.15 41.3 1.08 43.85 1.15 4 3.95 

55.6 1.10 . 62.4 1.24 56. 1.12 . 54.97 

67.2 1.08 65 • .3 1.04 66.6 1.06 65.13 
I 



,..,. 
\J1 
~ 

Table 8.3 (Continued) 

Eq(8. 5) EWEq (8.6) E ~.; Eq (8. 7) 

V V V V V 
c ·c c c c 

y-V kN V kN exp exp exp 

0 .79 24.12 0.83 20 . 4 3 0.71 

0.84 25.78 0.73 30.26 0.85 

0.92 25.99 0.68 38 . 82 1.02 

1.15 37.14 1.19 30.03 0.96 

0.96 41.79 0 . 95 41 .16 0.93 

0.96 40 . 56 0.82 50.86 1.02 

1.15 43 . 85 1.15 35 . 4 5 0.93 

1.10 59.91 1 . 19 50.9 1. 01 

1.04 61 . 4 0 . 98 6 6 . 4 7 1 . 06 

E W Eq (8 . 8) 

V V 
c c 

kN V exp 

22.67 0.78 

28.64 0 . 81 

33 . 92 0 .89 

37.25 1 . 19 

45.47 1.03 

49.64 1.0 

41.36 1 .1 

55.36 1 . 1 

65.67 1 . 05 

E W Eq (8.9) E \i E q ( 8 • 11 ) E W Eq ( 8.12) ! 
I 

V V V V V V 

' 
I c c c c c c - -

kN V kN V kN V 
' exp exp exp 

23 .25 0.8 14.8 0.51 22.02 0.76 

28 . 87 0.82 20.69 0.58 29.26 0. 83 

33 . 06 0.87 27 .39 0.72 34 . 47 0.90 

37.14 1. 19 23 .6 6 o. 76 34.8 1. 12 
' 

44 .52 1.01 33.18 0.75 44.3 1.0 ' 
. I 
I 

50.55 1.02 50.45 1 . 02 47 . 49 0.96 ' 

! 

40 .71 1.07 30.81 0.81 43.1 1.13 

54.19 1.08 50.29 1.0 57 .7 1.15 
I 
I 

67.8 1.08 84 .58 1 .35 66.73 1.06 I 

I 



Young 1 s modulus o:f ste el ::: 200 x :1.03 N · nun
2 

= re corded stra in i n the link 

There were :five linh::s in· thi s area , but t he str<d.ns 

were only measure d on the tl~o n eares t to the preforme d 

era ck. In some b eams these two linlcs h ad bo t h yi e l de d b e:f o re 

the ultimate loa d was r ea che d. In this c as e an additiona l 

value of 50% of the f'orce carr ied by the sec ond l in t was 

added to the force computed for t~e other two links . 1 h i s 

approac h was bas e d on the obscrva ttons of the meas u re d 

strain's in the links where it l..ras noticed tha t the second 

J.ink · started to record strains after the first ono h a d 

yielded. 

For the r ange of fl.ange widths and thicknes ses con-

sidered in Table 8. 3, the comput ed s hear forces shotf s a ti s-

factory agreement with the experimental r esult e xcep t those. 

calcul.a t e d u sing the ' effective l'lidths' from ec1uations 8. 3 , 

8.6, and 8.11. Using equat.ion 8.3, the predict d s hear 

strength of the fla~gc was 0.73~ o f the exp rime ntal value 

in beam TBX III and 1. 2 l.r% in TBX VI II. \•lith equati o n 8 .6, 

the correlation between the calcula ted and experimenta l 

values showed low val.ues as in TBX II and TBX III (0.78% 

and 0.68%). Using equation 8.1 1, the compar i s on s h owed 

lower and higher values as TBX I ( 0.51%) and T s:· I X (1. 35%). 

Des pite the exclus ion o f the effe ct of the amoun t o f main 

ste e l and th~ flange thickness in c a lcula ting the ' •ffcct i e 

width' .by equation 8.7, the predi cted she<lr force s a re in 

good agreeme nt with the experimental v a lues except in b eam 

TBX I (0 . 71 %) which h as shor t a nd thin flang e . 
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It can be cotlcluded now· tha t qu at ion ( 8 .. 13 ) predicts 

the shea r .strength of the flange rea s onably '" e ll. Among th e 

pre dic ·t e d equo. tion.s f'or the 1 effect ive 1--ri d ths 1 , quat ionn 

( 8.2), ( 8.4) and (8.7) are the simplest and r as onn bl 

equations for evaluatin~ the ' effective width' of the 

compression zone. 

8.3.3 Shea r Strengt.h_of th e Fl, ge ld. t~ 
Re spe ct to Results of F 1 Deam Te ts 

Equation . (8.13) has be en applied to te st 

results of other. investigators ( 5), ( 6 ) , ( 9), (10), ( 11 ), 

( 13 ) , ( 20) and ( 9l.l:). '£he 1 eff'ective widths 1 ha ve b een ca l-

culated us ing equations ( 8.2 ), ( 8.4 ) and ( 8 .. 7 ) . These 

tests had different B/b , t/h and a rea of longit udinal 
0 

steel. The ·results are presente ct in Tables 8 .'!-B. 8. It 
.· . 

should be notic e d that these test s represent the ul timate 

shear strength o f th e beam and hence include dowel and 

aggregate interlock forces, while the comput e d values obtained 

from equation (8.13 ) represent the shear streng th of th e 

compression zone alone. 

The tests carried out by Placas ( 13 ) were on T-beams 

with shear reinforcement , so the value v
1 

in 1'a blc 8.5 is 

calculat ed as the shear forc e resist e d by the stirrLps an d 

tbis has been subtracted from the ultimate s hear fo r c e to 

obtain V • 
u 

From Table 8.L1, B/ b
0 

1-ras 4.3 3 , t/h ,..,a s 0 .217 n d p 

varied .between 1.48% and 4.'i %. Th shear strength o f the 

flange predicted by equation (8.1 3 ) and using aquation (8. 2 ) 

for the ' effective width' ranges between 5S% and 71% of the 
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Al Alusi Tests (6 ) 

----
2b 2b V V ut V c ( l ) 2b 2b V 

V c ( 2_L ~ 2b V V 
Beam . t B t r f f ' e c e e c e c c ( 3 ) 

B P% ( 1 ) 
e ( 1 ) ( 2 ) ( 2 ) V ut ( 3 ) b- ( 3 ) -----

No 
yw c - V - vut nun mm b h N/mm 2 N/ mm 2 b kN k N ut b 0 

0 mm 0 mm 0 kN 

11 330 32 '*. 33 .217 2 .63 - 28.6 186 2 .'± 3 8.44 17 • 1± 
0 .49 1.83 2 .4 8.37 0 ,48 179 2 . 34 8 . 19 o ., J1: 7 

10 330 32 4. 33 .217 2 . 7 - 28.6 187 2.45 8 . 45 14. 75 
0 . 58 183 2 . LJ: 8 . 37 0 .57 179 2 . 34 8 . 19 Oo56 

lJ: 330 32 4.33 .217 1.5 - 26.5 3 171 2.24 7 . 2 13. 88 
183 2 .4 7.77 0. 56 179 2.34 7. 6 0 .55 0 . 52 

5 330 32 4. 33 .217 1.1.~;8 - 27.3 2 171 2 .. 24 7·39 14.2 
2 .4 0. 56 179 2. 34 ?. 8 0. 55 0 . 5 2 183 7.97 

1 330 32 4.3 3 .217 1 . 48 - 27.00 171 2.24 7 - 35 12.6 
0.58 183 2 . 4 7.9 2 o. 6 3 179 2.3 4 7. 71! 0. 61 

28.6 2.24 7 · 76 13.02 -

22 330 32 '*. 33 .217 1. 119 - 171 0. 60 183 2.4 8.37 0. 611 179 2.34 8, 1) o.6 3 

7 330 32 11: • 33 . 217 2. 71 - 25 . 42 187 2.45 7· 55 13.55 
0 .56 183 2. 4 7oli lJ. . 0 .55 179 2. ) lJ: 7- 2~ 0. 54 

8 330 32 4.33 ,217 2.71 - 26. 25 187 2 . 115 7 · 8 13 .Ll 
0 . 58 183 2. J* 7. 67 0. 57 179 2. 3'* 7· 5 9 0. 56 

19 330 32 '*. 33 . 217 4.21 - 30 .6 206 2 .7 10 . 14 . 0? 
183 2. 4 8 .96 0. 64 179 2 . 3l! 8. 76 o . 6 3 0.71 

9 330 32 4 .33 .217 2. 71 - 31.7 187 2 . 45 9 . 41 14. 15 
0 ~ 66 18:? 2 ·'* 9. 28 o.6 6 179 2 . 34 9 . 00 0 .6l! 

20 330 32 4.33 . 217 '*. 21 - 27 .25 206 2 . 7 9 · 15. 0" 
o .6o 183 2.4 7·98 0. 53 179 2 . 34 7 . 8 0 .52 

14 330 32 4.33 .217 2. 7 - 27 . 0 187 2 ·'*5 8. 02 12.6 [ 
0.6 3 183 2.4 7.92 o.6 2 179 2 . 3'* 7. 7:. o.6 t 

23 330 32 4.33 .217 4 . 4 - 28 .1 8 209 2 .74 9 ·35 14 . 17 
Oo66 183 2 . 4 8. 25 o. 58 179 2 . 31± 8 . 07 0 .5 7 

-
'V 

u t = Ultima t e s t rength from tests 

2b e ( 1 ) V c ( 1 )' 
E W Calculated by Equati on (8.2 ) 

2b e (2 ) & V 
•.C ( 2) 1 E W Ca lcula t e d by Equa tion ( 8 . 1.1: ) 

2b e(3 ) & V " C ( ) }' E ~v ca lculated 'by Equa tion (8.7 ) 
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total shear forc es carried by the beams. For beam No 1i, 

a lm"er value was obtained about (1:1:9 %). This beam ha d a 

lower a/d ratio (a /d '~as 3.32) than the others. When us i n~ 

equation (8.~} to calculate the ' effective lddth' the she<'lr 

strength of the fl a nge range d betlveen 53% and 66% of the 

ultimate shear strength, except for beam 11 (LJ:8% ). The 

effect of neglecting the amount of main steel can be noti ced 

in beams with high percentages of reinforcement, for exampl e 

in beam 19 with p = 4. 2 :1% , the shear strength of the 

:flange. decreased :from 71% to 64%. The same occurred in 

beam 20 ''~ here the s hear strength decreased from 60% to 53% and 

in beam 23 the decrease was from ()6 % to 50%. Using equa-

tion (8.7), the shear strength of the flan~o was betwe en 

52% and 64:A and nearly the same decrease as occurred in beams 

with high percentages of longitudinal reinforcement. 

For tests in Table 8. 5, B/b lofas 4 ( except 2 beams "'ti th 
. 0 

B/b of 2 and 7), t/h was 0.25 (one beam t/h was 0.5) and 
0 

p was between 1.25% and 4.16%. By using equation (8 .2 ), 

the shear strength of the flange ranges between 52% and 67% 

of the experimental ultimate shear strength except for beams 

T 1 (4 8% ) and T 35 (77%). \vhon using equation (8 .4 ) the 

shear strength of the flange was between 50% and 70% except 

. T 2 (73%) and T 35 (75 %). Again with beams of hi gher per-

cent age of main reinforcement, the equation yields low er 

strength :for the flange as in beams T 6, T 18 and T 34 

( P = I± .16 %). The decrease in be am T 6 was from 62% to 56%, 

in beam T 18 was from 60% to 54% and in beam T 34: was from 

63% to 52%. Using equation (8.7), the shear · strength of 
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Table 8.2 Placas Tests ( ~ 3) 

2b 2b vut 
V V ) V .cj_J.I V V c ( 3 ) 

Beaw· B t B t p% rt: f' e v1 V .c ~c ( 1 

yw2 c ( 1) e u ( l) V V c (2) 
__ .. __ 

No b h 2 - Vu c(3) V 
mm mm N/mm N/mm b u 

0 mm 0 IcN kN kN kN kN kN u 

-
T1 610 76 l!: o. 25 1.25 .58 27.9 336 2.2 35.67 109.9 711. • 2 35.7 o.LJ:B 39 • l.J:LJ: 0.5 3 36.22 0 · '! 9 

T2 610 76 4 o. 25 t.46 - 28.04 341 2.24 - 54.74 54.7 36.4 o.67 39~75 0.73 36 .LJ: 0.67 

T3 610 76 4 o. 25 . 1.46 .58 27·5 341 2 .2l! 35.67 104.58 68.91 35·7 0.52 38~98 0 .56 35.7 0.5 2 
' 

T4 610 76 4 o. 25 1.95 .58 32 ·'*5 354 2.32 35.67 109.47 73.8 43.77 0.59 L16 . 0 o.62 lt2.12 0. 57 

T5 610 76 4 o. 25 1.L16 1.15 33·7 341 2.24 71.34 139.73 68.39 LJ: 3 • 77 0.64 47.79 0.70 43.75 0. 64 

T6 610 76 '* o. 25 4 . 16 2.25 25.77 4:12 2.70 139.17 20l!. 7 65.43 '*0.44 0.62 36. 53 0. 56 33·'*5 0.51 

35.67 
I 

T7 610 76 4 o. 25 3.0 .ss 27.35 382 2.51 109~47 73.8 39.81 0.54 38. 77 0.53 35.5 0 .Lt 8 

T8 610 76 4 o. 25 4.16 • 58 31.2 LJ:t2 2.70 35.67 124.6 88.93 48.99 0.55 l!ll:o22 o.so 1:t O .5 0 .LJ:5 

T10 610 76 4: o. 25 1.46 .38 28.18 3ft 1 2.24: 23.8 86.78 62.98 36.61 o.58 39·94 0.63 36 . 58 o.s8 

Tl8 11 4:. 16 28.39 412 2.70 - 74.76 74.76 'J:4. 56 o.6o lJ:O. 24 0.5'-i 36.85 
610 76 o . 25 - 0 .Ll-9 

T34 305 76 2 o . 25 4.16 .58 33 · 9 305 2 .0 35.67 112.14 76.47 47.79 o.63 40.22 0.52 31.82 o.t.1:2 

T35 1067 76 7 o. 25 4.16 .58 33. 62 4.73 3 . 1 35.67 114.8 . 79.14 60.59 0.77 59.20 0.75 61. ?4 0.78 

T38 610 152 4 o.s 4 . 16 2.25 30 . 18 466 3. 06 139·2 239. 1!1 100.14 53-95 0.54 54.45 o.54 .39.18 0 • .39 

V ( 1 ) ' E.\tl. calculated by Equation ( 8 .2) 
c 

V ( 2 ) ' E. \v . calculated by Equation (8.4 ) 
c 

V ( .3 ) ' E • \J • calculated by Equation (8.7 ) 
.c 
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the flange vari ed between 51 % and 67~ . But there arc b ea mn 

with highe r and lo ~ er values than this. Neglect ing the amount 

of main steel and thicl,nes s of the :flange reduce s the s he a r 

strength o f the flange from 54% to ~8~ in b am T 7, from 55 % 

to 45% in beam T 8 and from 60% to 49 % in b enm T 18. In 

beam T 34 with short flange width ( B/b = 2), the deer u s e 
0 

was :from 6 3% to 42% and in beam T 38 with thick :flange 

(t/h = 0~5) the decrease was from 54% to 39% . The gr outer 

decrease in the la tte~ two cases show that in beams with 

thicker flanges the effect of i'lnnge thickness should be 

included when calculating the ' effective width '. 

In Table 8.6, the tests by Erikitola bad B/b from 
0 

2 to 10, t / h of 0.3 and p of 2.5'.1:%1 6.52%,- and 10.2%. 

The test s by Adepegba had B/b of 2.5, t/h of . 33 and P 
0 

of 2.54 %. The shear strength of the flange was between 36% 

and 49% of the ultimate shear . The lower va lues obta ine d 

in this group of tests were probably due to the hi g h p r-

centage o f longitudinal reinforcement used in these b e ams , 

which would increase the dowel effect. This was al s o noticed 

in the tests of Adepegba s hoN·n in the same ta le , where t'"'o 

rows of steel r e inforcement l~ere used. Two b aws of th se 

tests gave rather lower strength of the flange, beam 152 

T-16 ( 28%) and beam T 6 ( 23%). · The 1 effective '"'idth 1 of 

these hlo beams was higher than . the flange width and this 

may be due to the high percentage of the lnD.in stee l ,.,ith 

respect to a small flange ( B/b = 2). The e~~ective widt h 
0 

was, therefore, taken equal to the flange width in these 

two beams , and this probably was the reason for tho low 

strength of the flange. For the beam 152 T-10 with low r 
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Tabl e 8.6 Erikitola Tests (20 ) 

r-------~~----~----~----~----~------~-----~----~----~~----·--r----~--------~-----~----~-------~~-----~---------

Beam 
No 

15 2T-10 

152T-16 

228T 

380T 

532T 

9T30 

T6 

1'9 

1'15 

1'21 

B 
mm 

152 

152 

228 

380 

53 2 

760 

152 

228 

380 

532 . 

760 

t 
. mm 

~depc~ba tests (94 ) 

1'04: 

Tos 

1'06 

1'07 
....... 

381 

381 

381 

381 

B -b 
0 

2 

2 

3 

5 

7 

10 

2 

3 

5 

7 • 

10 

t 
ii p % 

. • 3 6.5 2 

.3 6.52 

.3 6 . 52 

.3 10.2 

• 3 10.2 

.3 10.2 

.33 
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rf 
y\'1 

2 N/mm 

2b 
0 

mm 

2b e 
b 

0 

V 
c 

( 1 ) 
kN kN 

V c(1) 

Vu test 

V 

( 3 ) 
~--£S 3 > 

V ut 
V c 
( 2 ) 

37.12 152 2.0 10~72 16.7 o.64 10. 72 o.GL.t 8.7 0.52 

27.68 152 2.0 8.0 28.8 0 .28 8.0 0.28 6.49 0.23 

27.68 228 3.0 12.1 32o2 0.38 8.97 0928 7.73 Oo24 

27.68 252 3.32 13.25 36.7 o.36 10 .55 o.29 10.2 0. 28 

27.68 272 3.58 t4. 3 35.5 o.4o 12.15 0.34 12.68 0.36 

28.16 303 3.98 16.2 39.9 o.41 14.76 0 .37 16e68 0.4 2 

27.6 15 2 2.0 7o97 35•0 0 .23 7• 97 0.23 6 .lJ:9 0 .. 19 

27.6 228 3.0 11.96 32.3 0.37 8.97 0.28 7.73 o .24 

27.6 300 3.94 15.78 32.3 o.49 10.55 0.33 10.2 0 .32 

27.6 321 4. 22 16.88 :;6 . 1- o. 47 12.15 o.34 12.68 0. 35 

:;1 . 52 351 4.6 21.02 48.9 o.4 3 t6.47 0.37 18.67 0. 38 

357 0.37 

0. 33 

2. 34 41.98 91.6 3 o.46 38 .29 o. 42 31 .66 0 .35 



steel r a tio {2.54 %), , the strength of the flan~ e wa s 64 % 

which wa s higher than that for any other bea m of this group. 

When usin g equation (8.~), the shear strength of the f lnnge 

ranged b e tween 23 % and 37% in Erikitola test s . It can 

be noticed that the decrease in the str ength of the fl ang e 

is greater than tha t for be a ms in Ta bles 8.4 and 8.5. In 

Adepegbn tests the ~ange was between 39% and ~7% . By U9 ing 

cqua tion ( 8. 7) the strength of the flange was bct>-recn 19% 

and 38%. In beam 152 T-10, the p~rcentage decreased from 

64% to 52%. This shows the effect of flange thickness 

( t/h was 0.3). Also with Adepegba tests ( t/h = 0.3 3 ) the 

decrease in the pcrcentage:> '\ias greater with equation (8.7). 

In Table 8.7, the tests given by Ferguson had B/b 
0 

4. 25, t/h = .162 and P = 4. 79%. Tests of Qucreshi h a d 

B/b = 3, t/h = .22 and 
0 

P = 3.1t9%. The tests by Guralnick 

had B/ b = 3.3, t/h = 0.26 and P o f 2.37% & '!.19 %• Us ing 
0 

equation ( 8 . 2 ), the strength of the flanges given by the 

tests of Fe.rguson were betvreen 53% and 57% except beam A 5 

(70%). Those by Quereshi were b etl'leei"'l 50% and 57% except 

beam Sl-3 ( 38%), this b eam had a / d ratio of 3.0. Those of 

Guralnick \\'ere bct\'ieen 52% and 78% except beam 1A-IM ( '* 1%, 

a /d = 2.8:).: The range of the flange strength of the~c benms 

coincides with that of Tables 8.LJ: and 8.5. ''Then using 

equation ( 8. LJ:), the strength of the flange of Fe.rgus on tests 

ranged between 45% and 49% except beam A 5 (6 0% ). Those of 

Que .reshi were bet\ie en 41% and 48% except beam S1-3 ( 32%). The 

greater decrease in these t'~o groups of tests when u s ing 

equation {8. 4 ) is due to the higher percentage of longitu-

dinal reinforcement used (4.29% and 3.49%). The tests by 
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Tabl e 8.7 Fe r~uson Tests (5~ 

- ---
rf f' 

2b 2b V 

Beam B t B t 
e .c 

P% )'1~ c ( 1 ) e ( 1) - ·- -
No b h 2 2 b 

0 N/rnm N/nun mm 0 kN 

V V c(1) V V . c ( 2) V 
V c{ 3 ) 

ut - c c 
V u t (2 ) V ( 3 ) ~---

ut V 
kN lcN 1 N 

u· 

mm mm --
A1 432 38 4.25 .162 4.79 - 29.7 276 2.72 15a 63 

A2 432 38 4.25 . 162 /.1:. 79 - 27.28 276 2.72 14.36 

A3 1!3 2 38 4 25 .162 4.79 - 35.07 276 2.72 18.L16 

A4 432 38 4. 25 .162 4.79 - 34".93 276 2.72 18.38 

A5 432 38 4.25 .162 4.79 - 45.33 276 2.72 23.86 

A6 '*32 38 ll: .• 25 .162 4.79 - 38.65 276 2.72 20. 3'! 

29.32 0.53 13.55 0.46 13. 29 0 . 11 5 

27.2 0.53 12.25 0.45 12.21 0 .11:) 

33.9 0.54 15.76 0 .L!7 15.69 Oo46 

31.9 0.58 15 .7 0 , IJ. 9 15 .G 3 0 ~ /1. 9 

3l.l:. 17 0.70 20e)7 o. 6 20.28 0.59 

35.9 0.57 17.37 0. '±8 17.3 0 ,IJ: 8 

Quereshi Tes ts (10) 

st-3 229 25 .L! 3 .22 3-49 - 30.87 18'* 2.41 7.2 1 

S1-4 229 25.4 3 .22 3.49 - 30.87 1£VJ. 2 .1.11. 7.21 

S1-6 229 25.4 3 .22 3.49 - 30.87 184 2.41 7. 21 

SH-8 229 25.4 3 . 22 3.49 - 27. 8ll: 184 2 . 41 6.5 

53-4 229 25 .L! 3 .22 3 . 49 - 31.97 184 2 ·'! 1 7 .LJ: 7 

S3-6 229 25 . 4 3 .22 3.49 - 30. Off 184 2 . 41 '?.02 

S3-8 229 25 •11 3 .22 3.49 - 31.L17 18l! 2 .li 1 7- 36 

19.24 0.38 6.06 0. 32 5 77 0.3 
13.8 0.52 6 .o6 0,44 5 - 77 0 , 1.1- 2 

14.1!6 · 0. 50 6.06 0.42 5-77 0 .li 

11.79 0 .55 5.46 0 ,ll:6 ) . 2 0. /! ll 

15.56 0.48 6. 27 0.41 5.98 0. 38 

12.37 0.57 5·89 0 ,LJ-8 5.62 0 lJ.5 

13.91 0.5 3 6.17 0 0 l.tl.J: 5.88 0 ,l12 

Gura lnik Tests ( 9) 

IA-I i 584 102 3·3 • 26 2.37 - 26.86 LJ; 11 2 . 31 56.07 

IC-IN 584 102 3.3 • 26 4 .19 - 33·5 46 7 2.63 79 • 117 

IIC-lll 584 102 3-3 .26 2.37 - 26.86 411 2.31 56.07 

IIC-IM 584 102 3-3 .26 4.19 - 33 -5 467 2 .63 79-47 

139.73 0 , LJ: 1 58.3 0.,42 49.05 0.35 

155-31 0.5 2 72.72 0. 47 61.17 0.39 

84.99 0.66 58.3 0.69 49.05 0.58 

101.02 0.78 72 .72 0.72 61.17 0.61 

--
V c(1)' E \.J calculated by Equation (8.2 ) 

V c ( 2 )' E 'v Calculated by Equation (8.4 ) 

V 
.C ( 3 ) ' 

E \.Y Ca lculated by Equation (8. 7 ) 
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Guralnick were be tw e9n 42% and 72 %. Wh on u s ing cqua t ~on 

(8.7), there is a littl e difference in the strength of the 

flange of Fe rgus on and Quereshi 1 s tests than those pre"· 

dieted using equation (8.4)~ This ~s duo to the . thin fl anges 

u sed in these t es ts~ ~hile the difference is notic ~uble in 

Guralnick tests, where thicker flange was u s ed ( t /h = 0.26). 

In Table 8.8,'the tests had B/b between 2.57 nnd 3-54, 
0 

t/h between .203 and .223 and P between 2.36% and 5.5%. 

By using equation (8.-2) 1 the shear strength of the flange 

variod ' between 48% and 72%. This range agrees with the 

percentages from Tables 8.4, 8.5 and 8.7. Using equa tion 

(8. ~), the percentages ranged between 38% and 62%. The 

beams with higher percentages of main steeL had higher de-

crease than the · othors. By using equation (8.7), the per-

centnges were between 35% and 60%. 

The discussion; above shm"" that equation (8. 2 ) eva-

luates the 'effective width' of the compression zone in T-

beams reasonably well. The effects of flange width, flange 

thickness and amount of main steel are all taken into 

consideration in this equation. When excluding the pcrcen-

tage of main reinforcement in equation (8.4· ), the ' ei~fedtive 

width' decreases with higher percentages of steel and con-

sequently, a decrease in the flan ;;e strength occurs . Thus 

equation (8.4) can be used within a limited percentage of 

main steel. From the tests shown in this discussion this 

limit can be suggested as 3% , ie equation (8. 4 ) can he u s ed 

for P not greater than 3~• \V.hen n eg lecting the amount of 

main steel. and flange thickness in equation (8 .7 ), higher 
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0\ 
CP 

Table 8.8 Ramakrishnan Tests (11) 

Beam 
. Flange 

No 
B t p % 

B t b h . 0 
mm mm 

S5 256 32 3-35 .208 5-5 

S3 256 33 3.35 .218 5·5 
51 254 31 3-33 .203 5-5 
52 256 33 3.35 .213 5-5 

1 391 40 3.62 .223 3.8 
2 391 40 3.62 .223 2.36 

3 394 40 3.54 • 223 . 3.8 
4 394 40 3.54 .223 3.8 

s6 256 33 3-35 .218 5-5 
S7 256 33 3-35 .218 5·5 
s8 256 33 3.32 .213 5-5 
S9 256 32 3-39 .208 5-5 

12 256 32 3.35 . 208 5-5 
:HlA 251 32 2.59 .208 5-5 
M1B 251 32 2.59 .208 4 . 34 

H2B 251 32 2.59 .208 4 .34 

M3A 251 32 2.57 .208 4 .34 

.H3B 251 32 2.57 .208 4.34 

f' 2b c e 

N/mm 
2 

mm 

33.9 . 213 
I 

35.39 213 

36.38 211 

53.64 213 

34.84 275 

33.35 249 

34.33 282 

35.28 282 

29 .99 213 

29.99 213 

30.87 215 

30.87 211 

30.87 213 

31.25 240 

31.25 240 

31.25 240 

31.5 8 240 

31.58 240 

.v ~c(1) V VC (2) V vc(3) 2b V ut ..... .c c 
e ( 1 ) V ut vut V ut b ( 2) (3) 

0 kN kN 

2.79 24.2 11.l.t:6 .48 9.13 0.38 8. 45 0.35 

2.8 24.58 12.56 .5 1 10.03 0.41 9.1 0.3·7 

2.78 24.92 11.87 .48 9.4 0.38 8.78 0.35 
' 

2.8 30.79 18.57 .60 14.42 o. L.i 7 13.79 0.45 

2.55 26.38 19.0 .72 16.38 0.62 15 .97 o.61 
I 

2.3 26.64 16.48 .6 2 15.68 0.59 15.28 0.57 

2.54 30.15 19.22 .64 16.14 0 .5L! 16.03 0.53 

2.54 27.47 19.75 .72 16-59 o.6 16.47 0.6 

2.8 16.97 10.64 .63 8. 49 0.5 7. 71 0 .45 

2.8 15.93 10.64 .67 8.49 0.53 7o71 o. 48 

2.8 17.7 10.69 .6 8.65 o. 49 7-93 o. 45 

2.8 16.55 10.34 .6 2 8.39 0.5 1 7. 69 0. 46 

2.3 20.47 10.36 .5 1 8.39 0.41 7 o69 Oo38 , 

2.48 20.22 11.91 · 59 9.4 0. 47 8.74 0. 43 

2.48 24.75 11.91 .48 9.4 0.38 8.74 0.33 

2.48 21.35 11.08 .5 2 9.4 0. 44 8.74 0 .. 41 

2.48 19.25 12.03 . 63 9-5 0 .. 491 8.83 0., 46 

2.48 22.3 12.03 .54 9-5 0.431 8 . 83 0. 40 



decrease in the 'effective width' and shcnr strength of the 

flange was obtained in particular \vi th ben1 1.'3 of high per-

centage of main steel and thicker fl a nges . 

Excluding the beams of Table 8.6 for the reasons dis-

cussed above, it c an be estimated that the s h ellr r esis t a nce 

of the flange repr esents between 50% and 70% of the total 

ultimate shear strength ofT-beams. Bahia ( 83 ) predicted 

from his tests on fibre reinf orc e d concrete T-b cams th~t 

the contribution of the compression zone to shear resistance 

was between 55% and 60% of the total shear strength. It must 

be noted however, that Bahia 1 s percenta ges were ba se d on the 

assumptions that the thr ee components contributing to the 

shear resistance are additive at the ultima te stage, and th..:'1t 

the contributions of the dowel action and aggregate interlock 

are interdependent and constant tl~ougbout the full load 

range. 

8.4 Conclus ions 

From the analytical re s ult s for shear resis tance of 

the flange of T-bean!D present e d in this chap ter the following 

c onclus ions can be drawn: 

(1) The shear stres s distribution at the middle surface of 

the flange takes the form shown in Fig 8.3 with higher 

values near the centre of the flange. The max:i.mum shear 

stress value s ranged between 1. 75 N/mm 2 a nd 2. LJ: N/mm2 • 

( 2 ) ~ith increasing flange width, the shear stresses are 

concentrated .in a limited area of the flange adj acent 

to the web and reduced significantly towards the edges . 
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(3) The ' effective' width' lras found to b : for small 

flanges , B/b = 2, between 9~% and 98% of the tot a l 
0 

flange l'lidth, for medium flanges , B/ b = 1-t:, behTcen 52% 
0 

and 63%, and for wide flanges , B/b · = 6, betlvee n ~3% and 
0 

( ~) Different forms of' equat·i ons were fo und to be satis -

factory in evaluating the ' effective width • o f the 

flange. These equations included the fac t or s B/b , t/h a nd 
0 

p. Equation of t he form of (8.2 ) was u sed in this study. 

Equation (8 .4 ) was a l so u s ed whic h involved only fl ange 
dimensions 

cross sectionJ. as parame t ers . This equa t i on \-ra s found to ·be 

used in beams with medium percentages of main reinforc ement 
Which 

<P les s than 3%). Equati on (8.7),
1

express.es the 1 of'f'ec -

tive width ' in terms of B/b only was found to give rather 
0 

conservative values for the 'effe ct ive width'. 

(5) From the evaluated 'effe ctive width' and the average 

value of the comput ed shear stresses ( f '/20), an c 

equation i s predicted to estimate the s hear strengt h of the 

flange . The calculated v a lues from this equation compare 

satisfac tor ily ~ ith the corresponding ones obtaine d from 

the t ests carrie d out • 

. (6) The comparis on made betw~en the shear forc e carried 

by the flange and the tota l s hear fo r c e s u pported by 

the be am at ultimate load, showed tha t b etlveen 50% and 

70% of the ultima te s h ear force li'as r esisted by the com-

pression zone in the flange. 

- 170 -



C H A P T E R 2 
============~==== -

~Oi';"C LUS IOX S , LH:I'l' ATIC 1J~___::'· i·T D 
FLTU t:;~ '.1 UlUC --------------------------

9 . 1 Conclusions 

The 1najor p urp os e of thi£: study was to inv e .sti.s;n t e the 

cont r ibution of t he fl an " e of a reinforce d co n cr ete T -b oa n1 

in r es isting shear fDrc c s at ultima te loud. The study in-

eluded t he or e tic n l o.nalyses and expe rime nta l investi gi'lt:i.ons . 

The t h coreticul study ' 'la!.' c a rried out by using a ) -dimen[l ionnl 

Finite E le ment Stre ss Ana lys i s . The expe rim e nt ed _ worlc wns 

c onducte<.l on T-bcams provid e d ,,,ith preforwc t.1 cra cks in th e 

webs o £ the shear s Jans . 

The ma jor conclusi ons that c a n be 'r a,vn fro m thi s s tuuy 

arc as follO\vs : 

I Theoret i c n l Study : 

. ( 1 ) The 1 el a viour and shear str e gth o £ r einforc e d 

concrete T - beams is wel l predi cted by t he non-

l inea r f init e element me t hod u sed in this investi ga tion . 

The com ut er prog ram 'vhich was dev e loped ca n be ap pli e d to 

predict the load- deflection curv e , the failur e loa d and the 

tre nd o f the crac t ing pa ttern of reinforc d co ncrete bea ms . 

( 2 ) Ten sile crack ing is the mos t i mport a nt n on-

iinear effe ct of reinf orc ed c oncrete T-bcams 

failing in shear. 1 t failure t h e com prc .ss i v e concret e stres ses 

did not exceed l.t0 -505~ o f' the 28 d<-ly cub e· er Ushin, stren "' th in 

any o f the proble11s -~ · a lysed . Therefor e shear fnilnrcs c a n 

be adequately p r edicted by the study of t h e crncJc pr opa~;a tion 

alone . 
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( 3 ) The 1:mxindl.t 1 tcnsil~:. s tr ess c ri t crion and the 

multiaxia l stre s s cr iterion in t crJLS o l: oc tn-

hedral norl!~a l and she.:n- s tr esses pre<li c 't od the bchn. v :i.our o:f 

t he bcn~s satisfa ct orily . The rorrner prccl:Lct s the t e:ns.i.lc 

crac] ing i n the tens ion z ones , whil e the lntt er r ~r edi ct s th' 

crac·i.c ing in t he t ens ion-compressi on zones . 

( lJ- ) l~orma 1, sheu r and p riJ LCi pa l s tre ss c:s cn n be 

o bta ined in any lH.>. rt o f t he be nn and n t any load 

level . This made it p o ss ibl e to obtuin the shea r stre~ s dis-

tr ibutions a cioss t1.e flang e , .., i dth v;h ich ,~· ere u se d in c n l-

c u l ating t llq shear s tre n rt h o f tlle flC~ng e at ult:i. m:.:~. te lo ·1d • 

. ( 5 ) Brick -type i s oparamctric e l eme nt s with pu.robo lic 

dis p l a c q1e nt function s p roved to lJe efficient 
.. . 

in non-linea r appl i ca tions . Th cracked :.-: ones wcro spread 

smooth ly i n the be am . The numeri c a l inte g r.:lt ion u s ed vri t h 

these elements ma de it p o ssible to hanul e inelasti c mt c.l cla s ti c 

areas ui t hin the same clement. 

II E: p crim cntal Hork : 

( 1 ) A l<T orkablc structural c oncrete mi x Has a clli. !Ved 

using Pfr as a replacene nt for cement ·u'ld ·':ln • 

At 28 days , the co ncrete mix crave a cub e strcn ~·th o f ab out 

35 N/ mm
2 

and fle xural tensile strengt h of about 4 . 2 N/mm
2

• 

( 2 ) The te sts of beams '"i th d:if:fercnt lo ca tions of 

prefornted cracks s llO\'led that the s ti1'fncss of 

t he beams de crcas e d as the location lllovc d t Q\·:ards the lon d 

p oin t. 
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( 3 ) 'lhc location o.f the pre~ormed crn clc u , cd in 

the be ams 'vith di :f.f~rent :flan :=; c ~t.r:idthti and 

tbiclcnesses p roduced n shcari D',!; 110de o :r failure in the fl;t 1~c . 

(4 ) The distribution o f t1e coucr e te strains acros s 

the to p surfn C C O:f the flan rr e Has uni f orm and 

c onpressive in the curly stages of loudi. n :"· . Tbcse s trains 

became non - uniform and c hanged to t ensile when ~prronching 

th e ultimate l oad part i cula rly neLir ·the head o f tl1e prc -

:forme <1 era c k . 

III ' E:f:fective 
Hesist ct nce 

( 1) The equations developeu for the 1 c f'fective Hi dt ll ' 

and shear res i s tnnc o of the :flai1 ~ e nr e based u pon 

da ta obt a ined · from t c ore tic a l a .J a lyses of' be ams w i t ll fl an re 

,~· idths r angi ng beh,reen 35 0 mr.1 and 105 0 nun and fl an~ · th:i..cl --

ness es r anging i'rom 50 mm to 90 mm . 

( 2 ) Th e shear s tre ss di s tri butions i n the :flanges ilre 

conc entrated in the area above t ·he Heb and ure 

r educed s i gni:ficnn tly towards the out e r edg es . 

( 3 ) The ' ef':fe ctive width ' a nd s llenr strengt h o f the 

flange increase with the increase o f :flang 

width , f l ange t hi ckness and nr ea of 111ain long i tut i n al rein-

:forcemeat. Differ ent equa tions were predi ct ed to evaluate 

the ' effe c ti ve width 1
p The equat ions i ncluded ~he paramcte s 

B/b , t / h and p • The best e quntion to e v n lua t e tll e ' ~ff'cc o 
. . 

ti ve vv idth ' sa tisfa ct orily was found to be in th e form : 
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Simpler equa tions '" er~ predicted including only 13/b or 
0 

t / h, but they gave conservative values for the ' e f fective 

'-lidth I • 

( l!) The shear strength of the flange at uliim"tc 

load is expressed in an equation including the 

evaluated 'effective width ' and an ave r age v a lue for the 

·shear stress ( f ' /20 )' as follows : 
c 

V = 2 b • t . f '/20 
c e c 

The values obtained fr om this equation for the shear strength 

o f the fliln g e agree closely \'{i th the expe rimental values . 

( 5 ) The contribution of the flange in r esis ting shear 

fO'r c es . at ultimate load c a lculn.ted by the ab ove 

equations is between 50% and 70% of the tot a l shear force 

tha t the beam c an support. 

9. 2 Limitations and Su$ g c s tions 
for fi'utnre ;J orl< 

In the foll o1'ling , some phen.omen ·~ noticed :from the 

analysi s arc discuss ed and suggestions are m~de for further 

study : 

( 1 ) Due to the l acl< of e ·p erimental information and bec.·:\Usc 

o f the fact that the compre ssive stresses vcr o below· 

50% of the ultim te cube strength oi' concrete , the uni-

axial stress-strain re l ationship wts adopted in the Finite 

Element'Analy is . In ·eneral , stress-str a in relationships 

for concrete unclc r diffe r ent mul tinxial stress st •1t es re 

neede d . This dc p cn ls on t l e avuilt\blc ex· eriment a l inf orHw tion 
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and in p a rticu l a r t he -du i.'o n lnt:i.on c~1.:-t rn c tcr i .s "Lic s o f c ollcrctc 

unuer c ombine d s tr e s ses . vork. in this .f i o l u wil l b e :Crui t-

ful. 

( 2 ) ~ s d is c usse d in Chap t e r 7 , t he r e were ui:C f cr e n c c s i n 

ultim.::1 te strcn ~ t ll be t~·rcen t h e p r e · :L c t cd u ncl t he a ct n .:t l 

loads in some b ea ms . An improve me nt in th e fa iluro hnvs is 

requi r ed to p redict the f a ilure a nd t h e cr a cl r. p att r ns :Ln the 

tension-compre s s ion z one . I'1 oreove 1~ 1 e x p er :im e ntal worl\: mu s t 

be dir e ct e d to obtain a universa l f a ilur e cr i teri on for 

concr et e unde r combin e d stres s e s . 

( 3 ) The v.ir:La b lc s tif f n ess t e chnique u s ed in co ~1j unct i on 

. with the incrc mcnt e< l me t hod proved to be a n c .f.fi c i cnt 

techn ique in ' non-lincar ana l y s i s de spite it bein <r e 'pcns :i.vc 

re g , r dins; computation tirolC . })ore study in re qu:L r e d to bring 

down the c ost of colllputation . Other techni q u es c o uld b e 

incorpora t ed in the p ro -ra1n such n "' the r es idu:tl forc e s 

method or modified 1ev• ton-i.<a p h s on techni 1ues . 

(li) The use of the 2 p oint integra tion rule '"ith the p. r<-'1. 

bolic briclc-type el ement ' va s :found to be t h e che , pes t 

in c om p utat i on time an d yielded rea s o nub l c loud-d e flecti on 

curves and e r eking patt e rns . It \vas notice d hmvevc r , f ro1-.1 

the shear stress di s tribution at diff' ere 1t lo a. d inc r e lT.ents , 

tha t some p oints were not cons i s tent . This coul d be d ue to 

the re duced integrati o n rul e s . Nore 'vork is de s ira b le o n 

this point to verify the u s e of' the re duced integr r-t t i on rul es 

in non-lineur a n alysis a n d the consist e n cy of stress d i otri

bution '" ithin the elements . 
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( ::; ) Nc. t e ri a l lH'O l)e r 'ties l a ws c an be c.· t e n ded t include 

othe r as ) e ct s o f t he be~ Ll. Viour o.f concret e snci1 .:1 · : 

( a ) No n - line a r cons tit u tive l .:1w in nn lt:i. axi :.t 1 

comrJre ss ion s t re ss s ta t es . : n i nve s ti ga t i o n 

coul d <A l s o be tri e d to p r e cict t he c omv r c s s:L v c f a ilur e of' 

con c re t e i n r e l ati o n to int e rna l ni c;r ocr<A c k in ··· . 

( b ) Ag g r e g a t e i nt c r l ocl whi c h i s o f' f' u n cJ. a l!len t a l 

i mp or t an c e i n shc.::l r fai l u re s 1 1e c ds t horout; h 

i nve st i g a ti o n . I t might be w o r th t r y ing to de v e lo p n rc l n -

tions h :i. p e. 'pres s ing a ggr e g a t e i nt e rl o c l· i n t e r n1s o f' t i 1c cra c J· 

wi dth . 

( c ) .00\vCl a cti on ha s an i lll}J Or t ant r o l e i n sho.:1 r 

f .:i :Llur e s 1 t hus it shoul d be i n v o lv etl i n t ll 

a na lysi s a nd a cons tit u tiv e l a '" ha s to be d e ve loped t. o t a cl( l e 

this pi c nomcna . 

( d ) Non-linea r bon d - s li p r e l a t i o nships de.fi ni n g 

t h e b e ha viour be t Hccn c oncr e t e n·n ct s t eel h ns to 

be int ro uc ed into the a n a l y s i s . T h is mi :;h t n eed r f' o r mu l .:l-

tion f'or th e b a r ele t e nt us e d in t h i s s tu dy . 'fhi s c o u l d 

a l so be inves ti,sated t h roug h the u s e of l i nlcar; e e l e me n t s . 

( e ) Ot he r p he n o mena su ch as r e p e a t ed load i n g an d 

temp era ture ef'fe ct s c a n n l w 

t he finite eleme n t mo d e l. 

be inc or p ora ted in 

( 6 ) T he e q u a tions r edicted for tlle 1 e ff'e ctive ,,r idth 1 and 

shear r e s i s t a n c e o f' f l a n g e · n re b a ed o n a linite d number 

o f b e ams anal yse d by the ·initc E l e m •nt mo de l . Jlmv' v cr 1 
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the~e equations sLoucp. consistency \•Tl1cn opplicd Lo other 

9::...porimontnl c.latu . It could be vrortJ1 o.nalysin2: di ( fcrcnt 

c ases o.f be.:.tlll:'S Hl1CrC the shear sr.nn I flan::;e ~OUi lC Ll'Y unu main 

rcinfo~cemcnt arc varied . i"oclific<'lt.ions in the constunts 

o f the equations could then be lllcHle • 

. . 
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A· P PEN D I X A ==== ============= === 

I Deterrr.ination of Pr inci~ul Stressc ~ 

To de termine the principa l stres c s 0
1

, 0 2 a nd 0 
3 

from the Cartes ian s tre s s com~onents Ox' 

1yz and 1zx ' the f ollowing cubic equa tion 

oz_' t xy' 
mus t be s olv e d. 

0 3 - (O x + 0 + 0 ) 02 + (Ox a y + ay o z + 0 o z 12 
y z X yz 

2 2 -
(Ox Oy + 2 1 xy 1 xz 1xy ) 0 - o z tyz 1 xz -

o x 12 - 0 12 o z 12 ) ::: 0 ( A. 1) 
yz y xz xy 

The three roots o f this equation give the values of the three 

princi pa l stresses o2 and 

The ab ove equation c a n be expressed i n terms of t he 

stress ·variants I 1 , I 2 and r
3

, (73 ) as : 

where Il = 

12 = 

13 = 

Defining O' 

Then equation 

- I = 0 3 

ox + oY + o z 

o x oY + oY o z + oz ox 

21 . o x oy o z + 1 xz 1 x y yz 

- 0 z 
2 

1 xy 

0 
11 

ie 0 O' = - 3 = + 

(A~ 2 ) becomes : 
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(A.2) 

2 2 2 - tyz - 1 xz - 1 xy 

2 2 - ox Tyz - ay t xz 

!1 
(A. 3 ) 

3 



or 

' 3 I' 0 I I!. 0 - -
2 

:; 

I2 
1 where I ' =: - I2 and 2 3 

0 I -

=: 

I I 
3 

=: 

? I3 
~ 1 

(--
27 

0 

0 I3 
" 1 -2 

(A. 5 ) 

Il I 2 
I ~ + 

) ) 

If o' is p t equa l tor cos 9 , then equ at ion ( A .5) b comes 

or 

3 3 r . cos 9 - I2 r cos 9 - I 3 

3 I2 
cos g -

2 
r 

I ' 
cos 9 - _2 

1'3 
= 

= 0 (A.6) 

0 ( A. 7) 

which i s identi c a l to the standar d trigonometrica l e xpressi on 

·cos 3 9 - ~ cos Q - ~ cos 3 9 = 0 (A. 8) 

\vh en I2 I ' 
3 g 

1~ and 2 cos 
2 =: = 

r 3 :l; 
r 

ie 

= Jlf~I2 
I± I' 

r and cos 3 Q =: __]_ ( A. 9 ) 
r 

) 

from which thr e e values fo r Q can be obtained and ac cordingly 

three v alues for O' can be c lculated . Then substituting 

in e nation (A. 3 ) , three values for the pri1ciplll s tress s 

can be obta ine ' . 
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II Calcul ation o f · the Princip~l Directions 

To det er111ine the rotation of the principal stress 

a xes from the reference axes x, ;:,r , z t·he normalise d moda l 

matr i x ( A ] must be obt a ined (7 3), where 

[ A) = 

Each eigenvector of this matrix will give the direction 

cosines of'one of the principal stresses relative to the 

re ference axis, ie: 

= 

= 

= 

directi on co sine of angle b etween the 

major principal stress axis and ox 

direction cosine of angle between the 

major principal stress axis and oy 

direction cosine of angle between the 

major principal stress axis and oz 

{A.10) 

Knmi'ing that the principal stresses are perpendicular 

to the planes on whi eh they a et, then the e quilibriun.t e qua

tions for the stress components in the directions of the 

reference axes can be found and from these the direction 

cosines can be calculated. For example, the direction eo-

sines for the major principal stress are [ a
11 

and these can be calculated from: 
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( 0 
X 

0 1 ) a 11 + 1: xy a 2 1 + · 1: xz a 3 1 ::: 0 ( A. 11 ) 

1: xy a 11 + ( 0 y - 0 1) a 2 1 + 1: y z a 31 = 0 (A.12 ) 

:txz a 11 + 1: a2 1 + ( 0 -z y z = 0 ( A. 13 ) 

Thes e equations can ~c written in the form : 

ox - 0 1 1 xy T x:z a 1 1 

1 xy aY - 01 1: yz <:\21 = 0 ( A . 11:1: ) 

1: xz t zy 0 - 0 a31 z 1 

From ( A. 11 ) 

a l l :::; 1: xz a21 1: xz a3 1 
o x - 01 o x - 01 

( A . 1. 5 ) 

Substit u ting ( A. 1. 5 ) into ( A.1 2 ), then 

[ 1: xy t xz - "t yz ( ox - a t ) ] 
a21 = 0:31 

[ ( 0 y Ol)(O x - 0 1) - 1 X~ ) 
( A . 16 ) 

and 

1; xy [ 1 xy 1: x:;:; - t yz ( 0 X - 0 1 )) 

a 1 1 = X a31 o x - 0 1 [ ( 2 
0 a 1) < a x a 1) 1 xy ) 

y 

"t xz 
a31 ( i\ .17 ) 

o x - 01 

Putting a
31 

= 1 . 0 , then the values a
11 

a nd a 21 can be 

calcula te d a nd the cige n ector of equati on ( A~i 't) becomes : 
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1.0 (A.1 8 ) 

The length o~ this vector , A is g iven by: 

The normalised vector is th en given by: 

a11/ A 

· a21 / A 

i.O/A 

( A.19) 

(A.20 ) 

which represents the direction co s ines of the major princi

pal stress or the 1st eigenvector of equa tion (A. l~ ). The 

second and third eigenvect ors o:r equation ( A .lh) c."ln be 

ob tained in the same way but using o
2 

a nd o
3 

re spe ct ively 

in equations ( A.11) to (A.13 ). 

- 189 -


