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Despite the considerable amount of rcscarch on shear
transfer mechanism, a clear unders tuhciin;; of the shear carricd
b} the uncracked compresﬁion zone concrete of T-beams at
ultimate load and the shear stress distribution has not yet
been achieved. This™ thesis presents theorctical and expcri-
mental studies of the shear carried by the compression zone
in T-beams.

.

In the theoretical study, a 5-dimensional finite
element stress analysis was applied. Maximum stress and
octahedral failure criteria were used to predict cracking of
concréte in tension and tension~comprossion'zones respectively.
Non~lincarity?of'concrete due to cracking was tackled
through a 'variable stiffness' technique in conjunction with
an incremental procedure. Twenty node hexahcdron isopara=
metric elements and bar elements were used to model the con-
crete and reinforcement respectively. A computer programw was

written to include these aspects.,

The theoretical study was supplemented by two scrics
of tests on full scale laboratory beams with preformed shear
cracks. The main parameters inyestigated were the location
éf the preformed crack and the variation in the flange width

and thickness.

Load-deflection curves, failure load and crack patterns
obtained from the theoretical analysis were comparcd with

the experimental results. Shecar stress distribution in the

flange was found to be concentrated over the webs, reducing



significantly towards the outer edges. Equations for evalua-
ting an 'effective width' weére developed using non-lincarnr
regression analysis. An expression was also developed {for
predicting the shear resistance of the compression zZone

using the effective width and an average value of the shearx
stress. From these cquations, the contribution ol the Lflange
in resisting shcar forccs at ultimate load was found to be

between 50% and 70% of the total shcar strength of T-bcaus.

- XVi =



CaHTATR T ' BER 1

INTRODUCTION

i.1 ' Preamble

In order to develop ultimate strength theories for
design purposes, a good knowledge of structural behaviour
is necessary. One of the sudden and dangerous failures of
reinforced concrete beams is the so-called shear failure.
This failure is characterised by the formation of inclined
shear cracks in the web arceca of the shear span of the bcams.
The infernal shear transfer mechanism existing in the beam
before failure is not fully known. In the case of beams with-
out web reinforcement, it has been suggested that, after the
formation of shear cracks the external shecar forces are
resisted by a'éombiﬁation of three components: (1) Shear
stresses in the concrete of the uncracked compression zone,
(2) Interlock of aggregate on the opposite faces of the shear
crack, and (3) Dowel effect-of main longitudinal reinforce-

ment.

Despite the vast amount of research work carried out
on shear in the past, this work was directed to investigate
certain parameters affecting the shear strength of beams.
Few attempts have been made to assess the contributian of
each shear component in carrying its share of the total shear
force. This is probvably due to the difficulty in separating
each component in special tests. However, the experimental
investigations that have been carried out on rectangular
béams to assess thé relative magnitude of these shear

components, have shown that about 400 of the total shear



can be carried by the compression zone, between 15-25% by

dowel forces and between 33%=50% by aggregate interlock.

Most of the available data has been obtained from test
beams having rectangular cross sections, although, iﬁ prac-
tice the majority of beams are built as T-beams. It is
expected that T-bheams behave differently than rectangular
beams. This is probably due to (1) The agzsregate interlocik.
being less important in T-beams than rectangular beams, due
to the proportionately smaller width of cracked concrete,

(2) The greater contribution of the flange in resisting shear

forces because of the stronger compression zone.

So far, only limited experimental and theoretical
research work has been done on T-beams. An analysis of the
existing information shows that the present prediction
eguations for the shear strength of the beams are not satis-

factory.

A rigorous investigation of the contribution of the
flange in resisting shear forces and the distribution of
shear stresses within the flange hag ' not yet been made either
theoretically or experimentally. This is why the current
code of practice gives nothing about the contribution of the
flange in resisting shear forces and in fact considers the
flanged section as rectangular with the width being that of
the rib. With the development of ultimate design thcories
for shear in reinforced concrete structures, the need for
knowing the contribution of the flange in resisting shearing
forces becomes necessary and it should lead to more economical

design of T-beams.



1.2 Purpose and Scope

It is generally believed that a large part of the shear
force resisted by a reinforced concrete T-beam is carried by

the compression zone in the flange.

Shear and compressive stress distributions across the
width of the flange are not uniform and therefore direct
determination of the shear carried by the concrete of the
compreséion zone is difficult. In bending problems an
‘effective width' concept is used in conjunction with an
assumed uniform stress distribution. This enables the
flexural strength to be assessed without complicated calcula-

tions.

The purpose of the present project is to investigate
the contribution of the flange in carrying shear forces and
possibly arriving at an 'effective width' of flange for use

in the assessment of shear strength.

~Theoretical and experimental investigations have been

carried'out as follows:

(1) Theoretical study: The aim of the theoretical study

is to compute the shear stress distribution in the con-
crete of the compression zone in the presence of flexural
compression stresses. The shear force resisted by the com-
pression zone at ultimate load can then be determined. To
achieve this for a flanged beam a 5-dimensional stress ana-
lysis using non-linear finite element apbroach has been
applied. DMaterial failure laws have becen incorporated in

the finite element model to predict the behaviour of the



beams up to the ultimate stage. The deformations, failurc
load, crack patterns and stress distributions of the beams
have been predicted. The project involves the preparation
of a cémputer prograﬁ which has sufficient flexibility to
enable the introduction of other material properties laws

and for it to be used for further research work.

(2) Experimental study: The experimental part of the study
| was to verify the theoretical work and to investigate

the effects of some of the major parameters on the shear

carried by the compression zone., Full size T-bhecams were

cast and tested. To assess the shear strength of the flange

the beams were provided with preformed cracks in the web arca

of the shear spans. Two sericecs of bcams were tested:

(1) Sefies‘I included a beam without cracks and four
beams with different locations of preformed
crack.: This series was carried out to investigate the posi-
tion of the preformed crack and its effects on the strength

and behaviour of the beams.

(2) Series ITI included beams with different flange
widths and flange thicknesses to investigate the
effects of these parameters on the shearing force carried

by the compression zone.

13 Layout of Thesis

Chapter 2 reviews the research work on shear strength
of T-beams. A critical study is presentcd in this chapter

for the current prediction equations for the strength of

T-beams .



Chapters 3, 4 and 5 deal with the Finite Elcment
approach. In Chapter 3, thé formulation of the isoparametric
elements and the incremental non-linear method are described;
in Chapter 4, the material behaviour and the development of
failure laws are discussed and in Chapter 5, the organisation

and structure of the computer program is explaincd.

The experimental programme is discussed in Chapter 6.
The mix design and trial tests to determine the best loca-
tion for the preformed crack are discussed and details of
the beaﬁs, instrumentation and method of testing are also

given.

Chaptér 7, describes the application of the Finite
Element Method which has been developed to the analysis of
T-beams and then a comparison between the experimental and

analytical data is presented.

The information obtained from the theoretical analysis
is used to develop equations to evaluate the 'effective
width!' and the shear strength of the flange in Chapter 8.

In this chapter a comparison between the shear strength
of the flange and the total shear strength of beams is also

made using experimental data of other authors.

Conclusions are made from time to time at the end of
each chapter, but in Chapter 9, the main conclusions derived
from the project are presented. The limitations of the work

presented and suggestions for future work are also made.



2.1 Introduction

In the last few decades research work on the shear
strength of reinforced concrete beams has been largely
directed towards an empirical examination of the influence
of the following parameters on shear resistance: longitu-
dinal steel percentage, shear span, beam slenderness and web
reinforcement. Recently research work has concentrated on
the contribution of the various components in resisting
shear forces. This has led to a better understanding of the
mechanism of shear failure, although this is still far from

being completely settled.

The BS Code of Practice (CP 110, 1972) (1) and the
recent design recommendations (2), (3) make no distinction
between rectangular and flanged beams. Their design rules
were Qerived from the available experimental information,
mainly on rectangular beams. However, experimental investi-
gations show that T-becams behave differently from rectangular
beams, and the ultimate shear strength of T-beams is found
to be generally higher than that for comparable rectangular
beams. Therefore the current recommended design methods

under-estimate the shear strength of T~beams.

A review of shear theories and methods of analysis of
the shear strength of reinforced concretq beams can be found
in references (2) and (3). These methods were concerned
mainly with rectangular beams, due to there being experi-

mental data on this type more than on any other.

e



This chapter is divided into two parts:

(1) A review of the various methods, experimental
and analytical, used to assess the behaviour
and shear resistance of T~beams.

(2) A critical study of the existing analytical
methods used to predict the shear strength of
T-beams.,

2.2 Previous Experimental and Analytical Work
on Reinforced Concrete T-beams

Despite the increased amount of research work on T-=
beams during recent years, only limited experimental informa-
tion is still available for the shear resistance of T-beams.
Those of Braune and Myers (4) had concrete of very low cube
strength (12-15 N/mmz) and are possibly irrelevant in terms
of structural concrete strength used nowadays. These tests

are therefore not discussed any further.

2.2.1 Tests by Ferguson and Thompson (5)

They tested 24 beams without web reinforcement.

" These tests had cylinder cémpressive strength and web area
as variables. The cylinder strength varied between 17.5
and 45.4 N/mmz. The beams were tested under two point loads
with shear span/depth ratio (a/g) ranging between 3.4 and
6.22. They concluded that the diagonal tensile strength
increases.very slowly as the compressive strength increases.

An empirical formula was suggested to calculate the ultimate

diagonal tensile strength as

v, = 145 + ,02 £ (in imperial units ) (2.1)



where vy;= the ultimate shear stress is calculated from the

standard relationship:

<
i

V/(bo jd) {in imperial units ) (2.2)

|}
and fc the cylinder compressive strength.

| Equation (2.1) neglects the contribution to strength of
many parameters such as flange width, flange thickness,

shear span and longitudinal reinforcement.

Moreover the calculation of the ultimate shear stress

using equation (2.2) is not applicable in the case of flanged

beams.

B Tests by Al=Alusi (6)

Al-Alusi conducted tests on 25 simple span T-
beams to investigate the effect of shear span/depth ratio and
variation of longitudinal rginforcement on cracking strength,
mode of failure and ultimate strength. He also studied the
effect of mesh reinforcement in the flange and of compres-

sion reinforcement.
Al-Alusi drew the following conclusions from his tests:

(1) When the shear span/depth ratio was between 4.0 and
8.0, the ratios v _/f' and v /f' were constant as
er’“c 0 S
shown in Fig 2.1. These curves were expressed by the

following equations:

vcr/fé - 0.046 A(inimpenalunﬁs) (2.3)
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gl/f; 0.0625 - ,002 (a/d) (in imperial units ) (2.4)
Again these equations ignore the influence of the geometry
of the flange and the main longitudinal reinforcement on

the cracking and ultimate strength of the beams.

(2) The variation in the percentage of longitudinal re=-
inforcement did not affect the ultimate or cracking
strength. This is in contradiction to the results of other
investigators (7), (8)y who have shown that with increasing
amounts . of longitudinal tensile steel, the ultimate shear

strengths of beams also increase.

2.2 Tests by Neville and Lord (7)

'-Tests were carried out on rectangular, L-beams
and T~beams with and without web reinforcement to study the
shear strength and shear failure of these types of becams.
The beamé were tested under two point loads with different
shear span/depth ratios (a/d”= 2,37 to 3.41). They reported
only a small increase in the load at which the first diago-
nal crack formed in the T-beams over the corresponding load
for rectangular beams, With the same reinforcement.
However, at ultimate load the presence of the compression
flange increased the strength éf'T-beams by 7 to 61%
cbmpared with the corresponding rectangular beams and also
changed the type of failure. They also showed, an increase
in the shear strength with an increase in the tension

reinforcement.



2.2.4 Study by Taub and Neville (8)

The influence of various factors on the
behaviour and shear strength of rectangular, L- and T-
beams was described by Taub and Neville in a comparative
study. They criticised the present methods of design for
taking the shear strength of T~ or L-beams as equal to the
shear strength of rectangular beams having the same web
width as T-beams. They also did not agree with the Code of
Practice in calculating the shear stress in concrete by the

standard formula
Vig= oV/(b Jjd) (in imperial units )

as this is not based on the correct factors influencing the

shear strength of beams.

Their conclusions were similar to those found by Al-
Alusi for the relationship between the ultimate shear capa-
city and shear span/depth ratio. Further, they reported
that the a/d ratio has a considerable influence on the mode
of failure in rectangular beams. With small a/d ratios,
diagonal tension cracks are propagated from the point of
application of load to the support in an almost straight
line and shear compression failure usually takes place.
With larger a/d ratios, one diag§nal tension crack forms
and extends along the main tensidn steel causing failure by
splitting of concrete in this area. Adequate anchorage at
the support will prevent the latter mode of failure. The
actual behaviour of T-beams differs from that of rectangular

beams, since as the flange area increases, this provides a
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stronger compression zone. Thus failurc occurs generally
in shear-tension and not shear compression even for small

a/d ratios.

Taub and Neville conducted testé on pairs of rectangular
and T-beams and obscrved‘that the ultimate shear strength of
T-beams was between 13% and 61% higher than the ultimate
shear strength of the corresponding rectangular beams with
the same longitudinal reinforcement. Similar results were
observed for the shear cracking strength. This supported

their views on the behaviour and shear strength of T-beams.

They also showed that a considerable increase in the
shear capacity of a beam occurred when the amount of main
tensién steel was increased for a/d ratios bétween 3 and 5.
They found that for a/d ratios less thaﬁ 2 the effect of

increasing the main steel was negligible.

2ol Tests by Guralnick (9)

Guralnick tested 42 T-beams to examine flexural
and shear failures when using high strength steel for longi-
tudinal reinforcement., The beams had identical cross-
section, the flange width was 584mm and flange thickness
was 102mm, web width was 188mm, and total depth was 387mm.
The a/d ratios ranged between 2,95 and 6.10., All beams
were with web reinforcement exvept seven beams which were
with plain web. Twenty-four beams failed in diagonal ten-

sion and 2 failed in shear compression.

Guralnick concluded thaf:



(1) The use of high strength steel for beam
reinforcement in connection with current
code provisions for shear and diagonal tension results in

adequate safety with regard to shear failure.

(2) The uncrﬁcked compression concrete and web
reinforcement, each contribute to the total
shear resistance of the beams. The relative contributions
to the total shear resistance are influenced by a number of
facéors, such as beam section properties, loading pattern

and physical properties of the concrete.

(3) Stirrups in the immediate vicinity of con-
centrated loads or reactions carry a much

smallér proportion of the total external shear than else-
where, due to thé presence at such locations of vertical com=
pression stresses which reduce the diagonal tension cracking.
Later Swamy and Quereshi (10) found that fhe first stirrups
should be placed at 0.75x effective depth from the support,
and in point ldaded beams, the nearest stirrup should be

within a 0.75 x effective depth from the load point,

2:246 Tests by Ramakrishnan (11)

Ramakrishnan tested 110 beams under one
or two point‘loads. He studied the mode of failure and ulti-
mate shearing strength of beams without web reinforcement
and the effect of the addition of web reinforcement in the
form of vertical or inclined stirrups. Major and secondary
factors influencing the shear strength of beams were

involved in the investigation, such as: effect of concrete



properties, shear span-effective depth ratio, percentage .of
longitudinal reinforcement, transverse flange reinforce-
ment, geometrical properties of the cross-scction of the

beams and effect of magnitude of deflection on the shearing

strength.

From deformation measurements he noticed abrupt changes
in the deflections and strains after the formation of the
ma jor diagonal crack. A typical load-deflection curve he
obtained for T~beams is shown in Figure 2.2. The compres-
sion strains at the top fibre of the beams in the shear
span diminished with increasing load and eventually became
tensile. The linearity of strain distribution through the
depth was also disturbed in the shear span with concentrations
of strains abéve the diagonal crack. The measurements also
showed that for T-beams, the ultimate maximum concrete com=-
pression strains never reached the crushing strains of
concrete'which meant that no shear-compression failure was

encountered for T=beams,

Ramak rishnan observed that the actual ultimate strength
was not affected by the increase in the width of the flange from

152mm to 254mm (web width was 76mm). But the increase of the flange
width from 76 mm to 152 mm increased the ultimate loads.

This led him to suggest that there is a limit to the width

: of the flange beyond which it is not effective in increcasing

the ultimate shearing resistance of the beams, and this

depends on the extent to which the redistribution of internal
stresses is possible. Tests showed that beams with thicker

flanges had higher shearing resistance. He réferred that
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to the tensile mode of failure in the flange, as the increase
in the flange thickness would delay the tensile splitting of
the compression zone and hence increase the ultimate

strength of the beams.

Ramakrishnan criticised the nominal shear stress cal-

culated by the equation,

as it dqes not give results which are independent of the
shape and size of the cross-section, as has been assumed.

He also reported that it is misleading to specify the allow-
able strength in shear for beams without web reinforcement
to be proportional to the concrete crushing étrength alone

as has been customary.

From his analysis of test results he described the
following equations to predict the ultimate shear strength
for beams with shear spans equal to or greater than 6d.

; 108
Vu = (68 + .363 fft) (1 + ;—3—?-8) bo d oo (2.5)

(in imperial units )

where f% = tensile strength of concrete from cylinder

splitting test.

The equation does not diffefentiate between rectangular
and T-beams and Ramakrishnan applied it to 26 beams from his

tests which included both types.

S



2.2.7 Tests by Leonhardt (12)

Shear tests were carried out at Stuttgart from
1961 to 1963 to examine the mechanism of shear failure and
the parameters influencing the ultimate shear load. The
shear strength at the cracked stage was analysed by the

classical Morch truss analogy method.

The tests showed that stirrups began to carry load
after the shear cracks had entered the compression zone at
a high level of loading near the ultimate stage, and the
stresses in the stirrups was increased by decreasing the web
thickness. The mecasured tensile forces in the stirrups
remained far below those calculated by the truss analogy even
for thin webs. This confirmed that part of the shear force
must be carfied by the shecar stresses in the compression

zone and dowel effect of the longitudinal reinforcement.

The test results indicated that the inclination of
shear cracks varies between 300 and 450 and depends mainly
on the stiffness ratio bo/B and to some extent on the amount
of web reinforcement. The inclination increcased with de-

creasing bo/B and increasing web reinforcement.

Leonhardt concluded that in normal T-beams where B/bo
was between 3 and 6, the web reinforcement carries less than
half of the total shear force even at ultimate load condi-
tions. He suggested that the trusses considered to simulate
the actual mechanism of internal shear forces must have
compression chords at different inclinations and diagonal
web struts with angles less than 450. However, this method

of representing the shear failure mechanism has been found



to be inaccurate (2), (3). This is mainly due to the fact
that the compreséion members are much stiffer than the thin

tensile members.

2.2:8 Analyses by Placas and Regan (13), (14)

Placas and Regan used a semi~empirical approach
in predicting equations for shear cracking and ultimate shecar

strength of beams. For shear cracking they suggested:

et ks lg-g—%i e 19011 (2.6)
“lin imperial units )
where Vcr = shear force producing shear cracking
~fé = cylinder compressive strength of concrete
As = cross=-sectional area of main tensile

reinforcement

This equation is based upon the assumption that failure occurs
when the principal tensile stress reaches some limiting value.
This limiting value was taken according to the failure

criteria developed by Cowan and verified by Reeves (15)

where
£, = 1.02 (1‘.“0)%’3 o8 ain (in imperial units ) (2.7)

and ft = principal tensile stréss of concrete.

Reeves carried out tests on thin-walled plain concrete
hollow cylinders to investigate the properties of concrete
under direct and shear stresses. For his limited number of

tests, he showed that failure in this case agreed more closely
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with the principal stress criterion proposed by equation

{2:7),

Strictly speaking, equatioh (2.6) was developed for
cracking in rectangular beams. When it is used for T-becams
there is a safety margin‘of between 15% to 20% due to the
uncertainty of dowel action and aggregate interlock. 1In
addition the limiting tensile value proboscd by equation
(2.7) is far below the tensile strength of concrete,

{150 N/mm2 for fcu= 35-N/mm2).

Ai ultimate load,failure in T-beams may result from a
shearing action in the compression zone. Placas and Regan
considered the vertical cquilibrium of forces acting along
an inélined_shear crack as shown in Fig 2.3. Then assuming
that the longitudinal stresses at the level of the underside
of the flange near the load are low, so that an almost pure
shear condition exists there prior to failure. The prin-
cipal tensile stresses can be approximated to the nominal

Vv H , i
shear stresses ( c ). Failure occurs in a tensile

ti (B 4. x)
o
manner when this shear stress reaches the tensile strength
1
of concrete which is taken as 25(fg)ﬁ. The area of flange
t (bo + x) involved in resisting the shear forces was
determined from experimental tests as t (bo + 6"), The

equation for T=beams failing in shear is:

Vc = 25 (f;)%. t (bo + 6") seee [in imperial units) (2.8)

and for T-beam with web reinforcément:



FIG. 2. 3. EQUILIBRIUM CONDITIONS AT AN

INCLINED PLANE - After Placas and Regan
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. §£3 ' ¥ ; 1
Vu 208 b t) bo r'%ﬂv + 25 (f;) o & (bo + 6M)

(in imperigl Units)(2.9)

A discussion on this equation is presented in Section 2.3%.

22,9 Tests by Khan (16)

Khan conducted tests on 24 T-beams to investi-
gate the shear strength of T-beams using bent up bars as
shear reinforcement. He concluded that bent up bars are a
reliable and efficient. form of shear reinforcement. Never-
theless the beams attained slightly lower ultimate shear
loads than beams with nominal stirrups and their failure
was expediated by the development of dowel cracking along the

longitudinal steel at about 80% of the ultimate load.

On his comparison of test results with other thecories
and design codes, he modified equation (2.8) to include the

effect of shear span/depth ratio as follows:

vc = 36 (f;)%. t (bo + 6") (d/a)% ceee (2.10)

(in imperial units )

2.2.10 Study by Tang (17)

Tang carried out an investigation on the shear
strength of large concrete box girders and suggested that the
effective width oﬁ flange to be used in shear calculation
should be related to the flange thickness t as follows:

(bo + 2t), because in large concrete box girders the flanges

may be thicker than those used in normal buildings.




2.2,11 Tests by Swamy, Andriopoulos and
Adepegba (18)

Tests were carried out to examine arching
action as applied to the mechanism of beams failing in
shear. They showed that the tensile-force in the longi-
tudinal steel was far from uniform along the length of the

bars, but this is essential for arch action to take place.

2.2:12 Tests by Yunus (19)

Thirty-eight T-beams were tested under two
symmetrical concentrated loads. The parameters studied were
the amount of web reinforcement, the shear span/depth ratio

and the amount of longitudinal reinforcement.
The test results indicated the following:

(1) There was an increase in the cracking load
and the ultimate shear strength of beams with
reducing a/d ratios. The ultimate shear strength for becams

with a/d = 3.5 was 63% of that with a/d = 2.0,

(2) The web reinforcement crossed by the diagonal
crack became effective in resisting shear forces

and yielded before failure of the beam took place.

(3) The ultimate shear strength of the beams
increased with increésing the percentage of
longitudinal reinfbrcement particularly with small a/d
ratios. The ultimate shear strength for beams with P = 2.96%

was 76% of that with P= 5.28%.

(4) The failure of the beams with small a/d ratios

was by crushing of the web, while for those

i b



with larger a/d ratios, the failure was by tensile splitting

in the compression zone.,

2.2.13 Tests by Swamy, Bandyopadhyay
; and prikitola (20)

They reported tests on T~beams to investigate
the effect of flange width, longitudinal steel ratio and

web reinforcement.

The results confirmed that the ultimate strength in
shear of T-beams is much higher than that of rectangular
beams of the same web width, effective depth, P/Pb (Pb =
amount of steel required for balanced section), concrete
strength and web reinforcement. For beams with P/Pb = 0,75
and flangevwidth/web width ratios from 2 to 7, théTi??T;g&e
shear strength ranged from 28% to 113% of that of the rec-
tangular beams for beams without web reinforcement, while

for beams with web reinforcement the increases ranged from

45% to 150%.

The shear cracking loads depended primarily upon the
concrete strength, while the failure loads depended on the
dimensions of the cross section, the amounts of the longi-

tudinal and web reinforcement, the strength of the concrete

and the shear span.

The results showed that the shear strength incrcases
as the amount of web reinforcement increases. However, the
rate of increase in shear strength decreased as the amount
of web steel was increased and heavy stirrups did not guaran-
fee the removal of the risk of shear failure. This agrees

with the findings of Taub and Neville (8) on rectangular beams.




The results suggest that the flange needs to be stiff
.enough, eitheirr through adequate thickness ox suitable de-
ployment of steel, to prevent horizontal splitting along the
web fiange junction. This is related to the horizontal
shearing stress along the root of the flange and the insta-

bility of the flange outstands.

-y P L Theory by Swamy and Quereshi (21)

Mohr's failure theory was used to represent
the biaxial state of shearing and compressive stresses in

the compression zone of T-beams with long shecar spans.

A failure envelope for Mohr's circle was developed to
take into account the shear compression intersections as

follows:

3 s r/ (£1/en - 1522
T @ e
c

= 2 159 P2 (2.11)
(40
(in imperial units )
wherxre
fi
e SN | RR ™ U gt '
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A relation for interaction coefficient was found as:

v/vé fg 1 - 0.5 Ks
Ki = ?:7?§ = ;Z ( 1.05 a/a ) (2.12)



The depth of the compression zone at shear failure -

was related to that of flexural failure by:

K, = (1.25 = A /A ) Ko = 0.5 Ko P t ... (2.13)

=
oy
o
N
o
=

/7]
(o)
1

depth of compression zone at shear failure

=
o
il

£ depth of compression zone at flexural failure

The ultimate shear strength of the compression zone is:
Ve e ey ST S K d (in imperial units ) (2.14)

A Uniform stress distributiog was assumed for bending and
shear stresses .in the flange. It was also assumed that the
shear force at failure was resisted by the compression zone
and dowel action only. According to the observations by
Taylor (22) and other investigators the dowel forces
represent between 12% and 26% of the total shear force; it
was therefore assumed that the dowel action carries only

10% of the total shear as a conservative value.

Mohr's failure theory does not account for the effect
of the intermediate principal stress, whereas its importance

for concrete has been shown by many authors (23), (24).

Quereshi's theory does not evaluate the shear stress
distribution across the flange width but instead uscs a
simplified rectangular stress block, which contradicts the
idea of concentrating the shear stresses in the area of

flange around the web.
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2.3 Critical Study °
2¢3.1 Introduction

In thé approaches used in the design of flanged
beams in fleiure, the phenomenon of shear lag has been recog-
nised and therefore elastic calculations are made on simpli-
fied stress systems (25), such as shown in Fig 2.4. This
introduces the idea of using an 'effective width' of the flange
for the flexural calculations. The same 'effective width'!
cannot be used for the design of reinforced conérete beams in
shear, mainly because it was obtainéd from consideration of
longitudinal stresses in the compression zone alone and neg-
lects the vertical shear stresses. However, the concept of
using an 'effective width' for shear calculations seems a
convenient approach, and therefore will be considered later in
Chapter 8. Experimental evidence shows thgt the vertical shear
stresses resistéd by the concrete in the compression zone play
an important role on the shear failure mechanism and the ulti-
mate shear strength of reinforced concrete T-beams., The actual
shear stress distribution in a flanged beam is not yet known
due to the difficulties involved in trying to measure it
experimentally. This is why many researchers adopt a more

empirical approach to estimate the shear strength of T-beams.

In the following section, the equations developed by
Placas and Regan for the ultimate strength of T~beams are
.analysed with the test results available.

23,2 Analytical Data

The analysis was carried out using the existing

experimental data from references (6), (9), (13) and (20).

For the purpose of this analysis, Placas'and Regan's
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equation (2.9) was modified by replacing (bo + 6") by a new

effective width (bo + x)e Thus:

2 gige. Rty 15
Vua = 2(d 3 bair fyw + 25 (fc) e (bo $. ) om

(2.15)

The first part of equation (2.15) represents the shear resis-
tance of the web reinforcement, and the second part for the
concrete resistance in the compression zone. For beams
without web reinforcement only the second part of the equa-

tion was applied for the ultimate shear strength of the beam.

Knowing the ultimate shearing load, the geometry of the
beam, web reinforcement and cylinder compressive strength for
concrete, it is possible to calculate the tc;m 'x', using
equation (2.15),.which represents that part of the flange

outstands involved in resisting the ultimate shear force.

2 T Discussion

The values of the distance 'x' calculated
using equation (2.15) for the range of tests'available, were
tabulated and plotted against the flange width/web width

ratio (ﬁl), percentages of longitudinal reinforcement, web

o
reinforcement and shear span/depth ratios (a/d). This is
to study the factors influencing the 'effective width' and

to compare the value taken by Placas and Regan as (bo + 6")

with the calculated values from.the equation.

Table 2.1 shows the scatter in the distance 'x' as the
flange width, thickness and longitudinal reinforcement

change. In Swamy's tests the distance 'x' ranged between

R



125 mm and 400 mm for beams without web reinforcement, and
between 100 mm ahd 5375 mm for beams with web reinforcement.,
In Al-Alusi's tests the distance 'x' was smaller and even
less than the value taken by'Placas and Regan which was

152 mm. This may be due to the thin flange used in the
tests (31 mm). Guralnick tests gave a range between 125 mm
and 425 mm for the distance 'x' which is similar to that of
Swamy's despite the difference in geometry and langitudinal
reinforcement between the tests. In‘Placas tests the dis-
tance 'x' increased from 125 mm to 325 mm,which is more than

twice the value 152 mm taken in the equation (2.9).

Fig 2.5 shows the relationship between the flange width/
rib width ratio and the distance 'x' for beams with different
values of web reinforcement and longitudinal main steecl.

These data indicate a rapid increase in the effective dis-
tance 'x' as B/bo increases from 2 to 3, then a smaller
increase as B/bo increases from 3 to 7, and finally a nearly
constant value for 'x' as B/bo increases from 7 to 10. It
is clear that the constant value of 'x' = 6".taken by Placas

and Regan is a lower bound value.
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Table 2.1 Distance 'x' of the Flange (Placas Egquation)
Distance Flange Beam Flance Web Long. Shear
Author x Thickness Depth Vidth Width Reinft. Reinft.
mm mm mm B mm b _mm % N/mm2
Swamy et al 125-400 57 127 150-760 76 6.52-20.4 -
(20) :
Swamy et al
(20) 100-375 37 127 150-760 76 6.52-20.4 | 0.62-2,6
Al"u‘(‘ﬁ 75-125 31" 146 325 76 1.5-4.4 5
) 120455 100 587 575 175 3.3 | 2.3-4.3 =
Placas 6 6 5 ;




For beams without web reinforcement Fig 2.6 shows that
'x! increases as B/bo increases from 2 to 5, then a very
little change in 'x' as B/b0 increases from 5 to 10. Again
the distance 'x' = 6" is a lower bound value and clearly

underestimates the contribution of the flange.

Figures 2.7-2.9 show the relationships between the dis-
tance 'x' and percentage of main longitudinal reinforcement.
They indicate that, for beams with web reinforcement, the
distance 'x' increases with increase in the main reinforce-
ment and that the rate of increase is nearly constant. For
beams without web reinforcement, there was a small increase
in 'x' as the longitudinal steel percentageAincreased from
6.52% to 10.2% and a sharp increase in 'x' as the percen-
tage increased from 10.2% to 20.4%. This is probably due to
the greater effects of dowel action in those beams with high
percentages of main reinforcement, The Placas equation
does not allow for the effect of dowel action, but assumes
that all the shear force is resisted by the compression
zone in the flange. However, in reality, doﬁel action,
shear stresses in the compression zone and aggregate inter-

lock all contribute to the shear strength.

Figures 2.10 and 2.11 show the relationships between
the distance 'x' and the percenfagc of shear reinforcement.
Figure 2.10 indicates a decrease in the distance 'x' with
increasing the shear reinforcement but Fig 2.11 indicates
necarly no effect on the distance 'x' with increasing web

reinforcement.

Figure 2.12 shows the relationship between the distance

Ty
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'x' and the ratio shear span/effective depth which indicates

a decrease of 'x' as this ratio increases.

2.3.4 Conclusions

From the above investigation one can conclude

the following:

(1) The effective distance 'x' depends mainly on the
flange width, flange thickness and amount of
longitudinal reinforcement and to a iesscr extent on the web

reinforcement and shear span/depth ratio.

(2) The effective distance 'x' appears to be approxi-
mately constant when B/b°:> 5 for beams without
web reinforcement and B/bo:> 7 for beams with web reinforce-

ment .

(3) Excluding the tests by Swamy et al with high
percentage of longitudinal reinforcement
(P > 10.4%), the distance 'x' increased at a constant rate

with increasing amounts of longitudinal reinforcement.

(4) The effective flange width presented by Placas
and Regan's equation does not include the
influence of the above-mentioned factors, but rather pre-
dicts the effective width by a constant value (bo + 152 mm)
Using the same equation this effective width varies between
(bo + 75 mm) and (bo + 425 mm) for the range of tests given

in Table 2.1,

2.4 Concluding Remarks

From the review presented in this chapter, it can be
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seen that the contribution of the flange.of T-bcams in
resisting shear forces has not been assessed. Experimental
information proved that the shear strength of reinforced
concrete T-beams is higher than that of comparable rectang-
ular beams. This is attributed to the inclusion of a
stronger compression zone in the flange. The relative
contribution of the flange to the total shear resistance is
influenced by a number of factors such as flange'geometry

and amount of main longitudinal reinforcement.

The discrepancy in the analytical methods revicwed is
due to the fact that the internal mechanism of the shear
failure is not completely understood. Moreover, it is diffi-
cult to separate analytically the components involved in
resisting shéar forces in beams. The previous analytical
methods ignored the contribution of the dowel action and
aggregate interlqck on the ultimate strength of the beam and
considefed all the shear force to be carried by the flange.
This results in the deficiency of these methods in represent-
ing the true strength of the compression zone and conse-

quently the strength of the beams.
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FINITE ELEMENT APPROACH

361 General

The Finite Elemcnt_Method (FEM) is widely accepted now
for the analysis of sgstructural members. For linear analysis,
this method is well established and available in standard

texts (26). (27,

The basis of the method is to fepresent the structure
by a fipite number of subregions (called elements). These
elements are interconnected at joints, called nodal points,
existing on their boundaries. The variation of displacements
over each element is approximated by unknown functions
(called displacement functions or displaccme#t models), in
such a way tha£ continuity of the function (or its derivative)
is preserved across element boundaries. The unknown mag-
nitudes of the displacement functions are the displacements
at the nodal points, Fig 3.1 Hence, the final solution will
yield the approximate displacements at the nodal points.
The degreelof approximation which can be achieved will very
much depend on the element shape and on the form of the
displacement functions (26). Polynomials are used to
express the displacement model due to its ease in mathematical

manipulation.

The total potential energy of the structure is fepre~
sented by the sum of the internal energy stored as a result
of the deformations and the potential energy of the external
lpads. When the total potential ?nergy is minimum then the

structure is in a state of equilibrium.
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FIG. 3.1. ISOMETRIC VIEW OF TRIANGULAR ELEMENT
WITH LINEAR DISPLACEMENT MODEL PLOTTED

IN THE THIRD DIRECTION - ( After Desai &
Abel, 27 )



Defining the total potential energy by Tl , the internal

strain energy of the element by Ug and the potential cnergy

of the external load by P, then
| GE 20 P (3.1)

The minimum of TJ[ can be obtained by differentiating it

with respect to the displacements and equating the result to

zZero:
AT dUe oP
—— + = ( 02)
polsie e el 97c) - ° g
where {0 } = all nodal displacements

‘nodal displacements of element e.

{6}
Equation (3.2) can be written in the form

P AR e o o e (3.3)

Where[ K] is the overall stiffness matrix of the structure

and {R }is the imposed loading system.

A typical element contribution can be given by:

w0 Ugia &2 fer | ¥ 3%
S R R :;

where | [ Ke ]
{ Fe }

the element stiffness matrix

fictitious forces acting on the element

nodes
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Equation (3.3) is the equilibrium equation or load displace=

ment relation for the loaded structure.,.

The rules used in the assembly of equation (3.2) are
the same as the assembly of equilibrium equations for struc-
tural elements. The equilibrium equations for the structure
are then obtained by combining the equations for the indivi-
dual elements. These equations are modified for the given
boundary constraints and then solved to obtain the unknown

displacements.

Wﬁen the finite element analysis was first introduced,
simple element shapes, with minimum number of degrees of
freedom, were exclusively used. The simplest two-dimensional
elemeﬁt was the 3-node triangle. Its equivaient in three
dimensions was-tﬁe tetrahedron element with four nodal corners.
However, during the evolution of the method, it has become
apparent that for a given total number of degrees of freedom
in a structure, accuracy is increcased for larger elements with
a greater number of degrees of freedom. Furthermore, with
reducing the number of elements, the cost of data prepara-
tion and equation solution would reduce drastically. To use
a small number of elements to represent a complex geometrical
outline of a real problem introduces a difficulty in the
larger elements. This difficulty has been overcome by
allowing the elements to have curved sides. This step has
been achieved by distorting the simple element forms into
others of more arbitrary shape as shown in Fig 3.5. This led
to the introduction of various isoparametric element

families (28), (29). These elements have been used with
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much success for elasticity problems in two and three

dimensional cases.

To date the majority of finite element applications to
structural systems has been limited fo two dimensional ele-
ments, such as plane stréss systems, plates and shells.
However, the method is equally applicable for the solution
of practical cases in three dimensions. In some .practical
problems, two dimensional approximations give an adequate
and economic- finite eleﬁent model, But, all practical cases
of the structural systems are in reality three dimensional

problems.

In many applications of FEM in structural mechanics,
it is’convenient to use linear formulations 6f problems to
obtain engineefiﬁg solutions. The solution in this case is
unique and both the relationships of stress-strain and strain-
displacements are explicitly linear. However, many practical
problems do not preserve such linearity and definitely require
non-linear analysis if realistic results are to be obtained.
Examples of such problems are the load-deflection behaviour
of structures, plasticity problems in soil and rock mechanics,

crack formation and propagation in reinforced concrete, etc.

In the last decade, most research work has been
directed towards the application of FEM to non-linear prob-

lems. In general the non-lincarity in structural engineer-

ing is due to:

(1) Large geometric deformations; in this case the strain-

displacement relations are non-linear and it is out of the




scope of this study.
(2) Non-linear material properties.

The non-linear behaviour of concrete is caused by
either tensile cracking or by internal microcracking in
compression. Assuming small strains, ie lincar strain -
displacement relationship, thus the non-lincarity in concrete
can be achieved through the formulation of approﬁriate
constitutive laws. Smgll step, incremental approaches are
used in which the non-linear solution is achieved by rcadjus-
ting the material constants in the linear problem so that at
the final stage the constitutive law is satisfied. So, the
non-linear technique is based on the linear elastic formula-

tion of the FEM,

Two procedures are widely used in the non-lincar analy-

(1) Incremental procedures in which the non-linecar problem
is approximated as a series of linear problems, Fig 3.2.1,

Equilibrium is only approximately followed.

(2) Iterative procedures in which successive corrections
to the same elastic problem are performed until equilibrium

is approached, Fig 3.2.2.

For higher accuracy, a mixed procedure, ie a combina=-

tion of incremental and iterative schemes is used.

The basic formulation of the displacement Finite Ele-
ment model and the non-linear procedures are explained in

many texts such as (26) and (27). In this chapter two

- 34 =



l— Incremental solution

R.
' AR; (EExact solution
R;i-
-1 / Ki—1
5 K
(@]
-
-1
8:Ro LERRY
Displacement
(1) Basic incremental procedure
Ry Ro9 R3
R At K
/ e e
\K1
g
o
(o}
~J

Displacement

(2) Iterative or Newton procedure

FIG.3.2. INCREMENTAL AND ITERATIVE PROCEDURES
( After Desai & Abel, 27)



subjects are briefly covered:

(1) Three dimensional Finite Element Analysis with parti-
cular reference to the isoparametric elements used in this

study.

(2) Non-linear incremental solution adopted for the analysis

of reinforced concrete structures.

Fe & Three Dimensional Finite [IFlement

De2el Introduction

Three dimensional problems of stress analysis
include all the practical cases in solid mechanics. The
practical implementation of three dimensional stresgss analysis
by finite elements encounters two main difficulties. These
are the cosf.of data preparation and the excessive demand on
computer storage (30). Improvements in element characteris-
tics allow the use of larger clements for a given accuracy
and thié automatically implies a reduction in data prepara-
tion. The number of elementé and the degrees of freedom as
compared with the two dimensional situations'(assuming that
similar subdivisions are needed for accuracy) increase
rapidly and the band width of the assembled equations
increases the demand for computer storage and computation
time. However, the recent development of larger, faster
éomputers has increased the chanqes of obtaining solutions

to many engineering problems in three dimensions.

The first major application of finite element in three
dimensional stress analysis was by Argyris (31), (32), using

a constant strain tetrahedron and the refined‘ten nodes
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tetrahedron, The development of the isoﬁarametric hexa=- |
hedron element family by Zienkiewicz (26) and his colleagues
(28), (29), (33), introduced a significant advance in three
dimensional finite element analysis. The efficiency of
these elements has been proved in elastic solid analysis

and recently in non-linear and plasticity problems (34%).

In reinforced concrete applications, Suidan and Schnobrich
(35) used the 20-node hexahedron to evaluate cracking and

crushing of concrete.

3v2.2 Hexahedron Isoparametric Elements

The basic formulation of the isoparametric
elements can be found in references (26) and (29), but the
formulation of the 20-node hexahedron used in this study is

discussed bfiefly in the following sections.,

3¢2¢2.1 Shape Functions

A shape function is a function which
has unit value at one nodal point of the element and zero
value at all other nodal points. The shape functions are
expressed in polynomials and the order of the polynomial
(linear, quadratic or cubic) defines the unknown displace-
ments along element edges. Quadratic shape functions for a
rectangular element are shown in Fig 3.3. The shape func-
tions are the basis for the displacement model. A shape
'function is required for each degree of freedom at every

nodal point.

Shape functions are expressed conveniently in terms
of the normalised local-co-ordinate system. This is a local

system which permits the specification of a point within the

ST
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FIG. 3.3. SHAPE FUNCTIONS FOR QUADRATIC
ELEMENTS OF SERENDIPITY FAMILY
( After Zienkiewicz,h 26)



element by a set of dimensionless numbers'whose magnitudes
never exceed unity. These systems are usually arranged so
that some of the local co-ordinates have unit magnitude at
primary external nodal points as shown in Fig 3.4. Such
normalised co-ordinates, also, with its limits + 1 facilitate
the integration required to obtain the .element stiffnesse.

The element in these co-ordinates is known as the 'parent

element!',

The parent element used in this study is the parabolic
20 node hexahedron. The element has one node along each edge
in addition to the corner nodes as shown in Fig 3.5. 1In the
normalised co=-ordinates, the element is a cubic, Fié 3.5
The normalised co-ordinates ¥ , ) » [ are used with

values +1 on cube sides.

Beriate B = P, 0 M- oMMy L, = LE

then the shape functions [Ni], as given by (206), (29) and

(36), are:

for corner nodes:

No= eltm B ) (1t LA+ L) (Bt +L, "~ 2)

(3.5)
for midside nodes:
§i=0' T]i=_tl,§l=_-tl
Noe K1 =F (1 +7.) (1 +0) (3.6)
x (o] (o]
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N,= KL+ ED) (1= 9% (1 [ (3.7)
gl = _-t 1 ’ ’ni = +: 1 ’ C]_ = 0
N,= % (1+E ) (1+ 001 = (3 (5.8)

where ( gi"ni’ gi) are the nodal values of (g;n,g).

These shape functions are part of the so-called 'seren-

dipity family'.

The shape functions above satisfy the general properties

of shape functions such as:

(1) N, = 1 at node i and equal to zero at all other

nodes.

(2) There is continuity of displacements along ele=
ment sides. As there are threce nodes along ecach
edge of the element, the parabolic variation will ensure
continuity between adjacenf elements as the threc points

define the parabola uniquely.
(3) The constant strain criterione.

Belee2 Isoparametric Concept

It has been mentioned earlier that
the isoparametric elements can be distorted into arbitrary
shapes to suit the complex boundaries existing in real

problems, particularly when thc¢ behaviour of éhe structure
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depends on a small number of such elcment;. The parent
element defined in the last section can be distorted to a
more general form. Thus the element is mapped into dis-
torted form in the manner shown in Fig 3.5.b, in which all
positions of the nodes are arbitrary (26). The topology of
the cube is retained and cach edge of the cube is a quadratic
curve in space, defined by the positions of the three nodes
associated with the edge, (36). A new local co-ordinate
system is defined for the clement with the same constants

+ 1 on the element faces as in the undistorted element. Thus
gL, g‘ co-ordinates are distorted to a curvilinear sct

when plotted in Cartesian space.

The mapping from the local co-ordinates to the curvi-
linear co-ofdinates in the Cartesian system must be unique
and a one-to-one correspondence between points in the two
systems must be established. Such co-ordinate relationships
are provided by the isoparametric concept where the same
shape functions used to define the variation in the unknown
displacements are used to establish the co-ordinate trans-

formations.

ie
» 4 X,
n 1
y = 151 [Ni] ¥ (3.9)
VA Zi i

where xi, yi, zi are nodal co=-ordinates in the Cartesian
system and Ni = Ni(g v Mo C) which are the shape functions

given in terms of the local co-ordinates.
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It has been demonstrated (26), (29), that the compati-
bility of displaéement has been satisfied on element inter-

faces and any two adjacent distorted elecments will be

contiguous.

B42:2e% Element Stresses and Strains

Expressions for stresses and strains

are required to substitute into the potential energy func-
tion (equation (3.1)): DMoreover, the stresses and strains
are important quantities for design purposes. Six components

of stress or strain are relevant in threec dimensional analysis.

Since when ‘using isoparametric elements, the variation
in displacements is expressed using the same shapce functions
as used to describe the geometry. Then by analogy with equation

(3.9), the displacements can be given by:

( )
u ui
n
et A F i) B {1 vt (3410)
et 1 1
w w
Sy

where u_, vi'and w, are the nodal displacements and
i

Ni - Ni (gs M C)'

Differentiating equation (3.10) and following the
standard notation of Timoshenko's elasticity text, the strain

. displacement relationship can be defined as:



( A g 4 [
£ du ?ﬁi 0 0 1
x ox ox
: ON.
€ Ov 0 —t 0
\ oy oy
ow aNi ( )
€2 5z 0 ¥ 5z uy
b = e
Y au i 8\7 aNi aNi 0 )
xy oy " Ix Jy Ox Vi [
y Qv , dw 5 ONy oNy
yz az ay = ay- WiJ
'Y a..}.i @.P_ a...._...Ni 0 a..__._.Ni,
zZX Lax oz ox ' 0z (3.11)
- J J L o
This can be written in the form,
e b e B (3.12)
where { E} =‘thé strain components at an arbitrary point in

the element,
[ B) is the strain matrix and
{ 53} element nodal displacements

The stresse=strain relationships in three-dimensional

conditions are defined as

Gy k | | |
o Dy Dyp s e oe e - Byg ©x
Oy. D,y Dzz LR Iy SR D26 Ey'
o, : =

{ 0 } = d 9 - “ y
- Yxy
= Vi
Tz bt o i S L T Bl




or

{o}= I[p)e} - (3.14)

where Ox’ Oy' oz are components of normal stresses in

Xy, Yy 2 directions.

o WL T X

y T are components of shear stregses

yz? zZX

[D] is known as the elasticity matrix.

Equation (3.13) constitutes the generalised Hook's
law in the 3-dimensional case, where each of the six stress
components is expressed as a linear function of the six com-
ponents of strains. Thus equation (5.13) represents the
constitutive lLaw for a lincar, elastic, anisotropic and homo-
geneous matérial. The matrix [ D] is symmetric and contains
elastic constants, This matrix in terms of the usual elastic
constants E (elastic modulus) and V (Poisson's ratio) can

be written as:

[ 5.

1-V V \Y 0 0 0

I BV 0 ) 0

: £ VOBV T JRT o 0 0
D]= (3.15)

(1+v)(1-2v) 0l 0 0 1=2V 0 0

2
ol oS o A
2
0 %0 0 0 0 A-2y
3
3¢2.2.4 Evaluation of Element Matrices

In section 3.2.2.1, the displacements

model given by the shape functions was expressed in local
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curvilinear co~ordinates. In order to evaluate the element
properties such as the [B] matrix, stiffness matrix, etc,
transformations are necessary. The [B] matrix of equation
(3.12) is expressed in Carteéian derivatives and must be

4]
~ expredséed in terms of local derivatives.

The chain rules of partial differentiation are applied

as follows:

on, ) Hiaema . Bl 5, oy, | o, |
O Ot 5t ot S 0 x
Il et ol bt (6 R VO AT G W |
oy o on o dy Oy
O R Ak Ay 5Lyt B e v B oNy
78T+ o4|19G¢ =< L C | |0 o

(3.16)
where [J) is known as the Jacobian matrix. As x, y, Z are
given in terms of £, M , [ by equation (3.9), [J] can be
found explicitly in terms of the local co-ordinates and can

be expressed as:

8N1 aNz secs s x1 yi Zl
oF o0F
aN1 aNz csess e x2 y2 2

]

(N o))
=
QO
e

e e o N

N1 ?-_—qu- ecove o . . (3.17)
0

T

The Cartesian derivatives can be found by inverting equation

(3.16) as follows:

Gl



( ) ]
ony ‘ Gl
O x 0
. ON,
SRl T | (5.18)
oy : om | -
o g
o=z ag

where [J]-1 is the inverse of[J].

Fe2e255 Element Stiffness

For displacement methods of analysis,
the principle of minimum potential energy has been used as
discussed in Section 3.1. These principles are applied to the
structure as a whole, ie to the assemblage of elcments. In
the finite ﬁlemcnt method the displacement models are assumcd
separately for ceach element of the structure, thus an integral
can be used to operate on the sum of the various elcment
displacements. DBut, becausg the integral of the summation
is the same as the sum of individual integralg, the minimum
principles can be applied to the elements se?arately. Thus,
in the principle of minimum potential energy, to obtain the
strain energy U, for a lincar elastic body, an integral has

to be performed as follows:

c
it

I, tertoya -4l & (e (oo
1JH"e {Ee}T{OeqrdVe (3.19)

where e denotes an element, and n is the total number of

]
of
(¢}
nMs

elements in the structure.
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Substituting equations (3.12) and (3.14) in equation

(3.19), the following expression can be obtained:

U, = % { ﬁe}T v, [ B]T [ D])] B ] av (3.20)

where ve is the eclement volume.

The stiffness matrix [Ke] for the element is defined

by the\quantity under the integral
. : 8 T 2
ie SRR [iB:l%¢ [«D ] [B ] dv_ (3.21)

As the strain matrix is expressed in natural co-
ordinates, it is necessary to carry out the above integration
in these co=-ordinates too. A transformation has to be made

in which the determinant of [J ] is involved as follows:
dv, = dx dy dz = det [3: ) aE dn dal (3.22)

As the elemental volume is expressed in the normalised
co-ordinates g » 1] and g which have the limits of +1, the
evaluation of the element stiffness can be reduced to that

of finding the following integral:

s B Ll | " ’
RS J [fn jsllen ] 8] det [0 ] dF ay 4L
e :
~1)~1 J~1
(3.23)
As it can be seen, the integration is obtained in normalised
co-ordinates which are based on the right cube and not on

the complicated distorted shape.
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32.2.6 Numerical Integration

While the limits of the integration in
equation (3.235) are simple, the explicit formulation of it
is difficult from the mathematical point of view and
numerical integration becomes the only choice. This mdkes
the evaluation of such element properties expressed in curvi-
linear co-ordinates direct, and in non-lincar analysis it is
easy to integrate over elements containing elastic and

inelastic zones.

To carry out this type of analysis, the argument of the
integral in equation (3%.23) must be evaluated at a specific
set of valﬁcs of ¥ , 1 » [ within the element. These
values have to be determined according to integration rules
and their 1§cations are called sampling or integration points.
Making a weighted summation of these values, the integral
can be evaluated. 1In the 3-dimensional case the integral I

of equation (3.23) can be written as:

Tiite 1[f-L1 giFtane ) 4k Tay dl

-1 )-1 )-1
m n m

R b )

BCoaElgsaay G Cjulis flagaiag, ay)
e

= §=1 kq f(ai, aj, al) (3.24)

where q is the integration point at g =a,y M= aj and

g =a,, k =C.. C.e C, which are the weighted co-efficients
1 q i J 1

of the integral and m is the number of sampling points.

Irons (37) has proved that Gauss-Legendre quadrature



rules are the most efficient for the isoparametric elements.
Moreover, Gauss integration points are suitable for direct

stress calculations.

So the element stiffness of equation (3.2%) can be

evaluated numerically using Gauss quadrature as:

m
[fr e -ses g ]t p [ ] get T3 ), . (3.25)
e a q

g=1
Table 3.1 shows the symmetrical positions of Gauss
points aj and the corresponding weighting coefficicnts C,

for the 2 and 3 point integration rules as given by Ref (38).

Table 3.1 ; -

Gauss-Legendre Quadrature Constants

Faed S
ms= 2
0.57735 02691 89626 1.00000 00000 00000
m=3 .
0.77459 66692 41483 0555555 ' 155555 555556
0.00000 00000 00000 0.88888 888838 68889

Irons (39) also developed simpler integration formulae to
minimise computational effort and has shown them to be as

" exact as the Gaussian type rules,

It is clear that the computational time depends on the

number of integration points sampled in any element, or in

a- Ay =



other words depends on the order of the integration rule {for
example 2 x 2 X 2 integration rule means pcrformihg the
integration over 8 sampiing points while 3 x 3 x 3 means 27
points to be sampled in the integral). The type of integra-
tion rules required for exact integration of the stiffness
matrix depends on the order of the stiffness equations (40)
(2 and 5 point integration rules are required for linear and
parabolic elements respectively). However, as elément size
decreases it would be expected that iowcr order rules would
be adequate. For the parabolic element it is found that the
2=point rule is the minimum required to satisfy the constant

strain convergence criterion.

‘Recently (41), reduced integration technique (which.
uses the miﬁimum-rules) has been used successfully in linear
analysis and showed benefit related to computation time. It
was also.reported that the minimum integration rules produce
more flexible elements with regards to the s;iffncsscs and

that the sampling points of the lower order rules are the

best points for stress calculations.

B s Die Bar Elements

3¢e2¢3.1s, Introduction

To retain the efficiency that a
relatively small number of isopafametric clements are req-
uired to represent a structure, the reinforcing bars have to
- be idealised in a simple and accurate manner. As cracking
and other non-linear effects are permitted in the concrete
it is desirable to treat the reinforcement separately. Thus

bar elements, simulating steel reinforcements, were allowed

A TR,



to lie within the isoparametric elements (30), (40) and (42),
as shown in Fig 5.6. The bar elements are restricted to 1lie
along lines of constant g R g of the main elements.
The variation of displacemenfs along the bar will be affected

by the displacements of the main element.

3¢2¢3.2, Element Propertics

The shape functions and the element
matrices for the bar element are derived following Ergatoudis

(29).

Consider the element lying along a direction of con-
stant N > g as shown in Fig 3.6. Shape functions for a

2-node element are defined by:

1 2 ) Nz = ’—2—"‘—' (3026)

¢ T r 3\
u u,
i
n==2
oy By et O Sh [N s N R
el o1 i (3.27)
w vy
Uit ) L ]

This element represents linear variation of displacements

and constant strain along the bar.

For a 3-node element the shape functions are:
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Bar element defined by
T|=.qc
C= gc,

FIG.3.6. TYPICAL BAR ELEMENT IN CURVILINEAR
DIRECTIONS WITHIN A HEXAHEDRON
ELEMENT



N =

Bt ' 2
e

Nt P B R

ECE 1)
2

(3.28)

and the interpolation functions in this case are

o ( 3
u u.
4:
n=3
{ vt = [eNes e (3.29)
=1 :
w : w.
i
\ J L /

This element has parabolic variation of displacements and
linear variation of strains. g is the local dimensionless

variable taking the values +1.

When the element is situated in the 3-dimensional space,
the nodes are defined by three co-ordinates and three compo-
nents of displacements. For bars only one component of strain,

Es' contributes to the strain energy and is given by:

9 2 5}

- :
5 ’\/(dx + du)2 + (dy + dv)® + (dz + dw)2 —\[dx“ + dy© + adz”

0 3
N/&xz + dy“ + dzd

g

=]

where dx, dy, dz are the element co-ordinates and du, dv,

dw are the incremental displacements.

Expanding equation (3.30) and neéglecting second order

terms, then:

Rt V& , 2dx du + 2dy dv + 2dz dw

1 (3.31)
s o ;

“

dx  + dyz + daz
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And this can be written in the following form after a bi-

nomial expansion:

: dy d dz d
gy dx ag + y2 v + zz W (3.32)
2 dx + dy + dz

Dividing the top and bottom by d E 2 gives

st 2
du
L0 Ox étg Oz éf—
Bl ey * Qi i (3.33)
og
Ow
ot
. J
where:
1
a =
0x,2 " Oy,2 02,2 '
&+ Gh* (gg’
and
Ox & VK aNl x etc

Thus the strains can be obtained in terms of the

Cartesian deflections [D].

€9 (1B][6] o L3:3%)

S

. oN, ON,
where [B]= a [b] 'E—E—',[b] -a——-g—-,....

[Q_x.fiz
ot 9t 9d

(@)
ol
—

and | b ]

The stiffness is given by

vy



=
1]
—

1}

L T ds '
I [B]" Eg[B ] (area) =% dE ' (3.35)
-1

ds _  [@©x)2 , @yy2 , Q@z)2
% fag’*‘gg) §p

Young's modulus of the bar

=
1

area = Cross sectional area of the bar

3.2.4 Assembly and Solution

The individual stiffness matrices from the con-
crete and steel elements are suitably assembled using the
geometry of the structure to form the global stiffness matrix

[K]. Any external loads are also assembled in a load vector

{Il}. This lcads to:

[K]{G} ai fur.} . (3.36)

which represents the assembly of the final equilibrium equa-

tions of the structure together with the prescribed boundary

conditions.

The solution of the simultancous equations (3.36) gives

the unknown displacements {6} as:

T bgeler] ten {n} - (5.37)

This solution can be accomplished iﬂ many ways. The
direct Gaussian elimination procedurec is adopted for this

analysis (see Chapter 5).

After the evaluation of the displacements, strains and

stresses at the integration points can be easily calculated



by direct substitution in equations (3.12) and (3.14)

respectively.

33 Non-linecar Incremental Analysis

3.361 Introduction

It has been explained in Section 3.1 that non-
linearity in concrete is due to changes in the material
properties caused by tensile cracking or internal micro-
cracking in compression. Thus the pon-linearity in this case
is achieved by the use of a suitable constitutive law for

the material which is expressed by the elasticity matrix [D]}.

The non-linear solution can be approximated by solving
a seriles of linear problems. At the end of each stage, the
equiiibrium, compatibility and constitutive relations of the
material must be satisfied. Compatibility requirements were
met in the finite element formulation, so the non-linear
solution has to preserve the equilibrium conditions and

satisfy the constitutive relationships of the material.

Several methods have been suggested for the material
non-linearity and the problem is still under intensive
research. The method of 'unbalanced' forces has been used
by Nayak (34) and Phillips (40), (42) to restore equilibrium
at every load stage. An alternative is the 'variable elas-

ticity' method proposed by Zienkiewicz (26).

In any of these methods the basic linecar elastic equa-

tions given by equation (3.36),
ie, 13 < [E vy SR {R} = o
have to be solved. The non-lincarity occurs in the stiffness
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matrix [K], which is a function of the material constitutive

law given by equation (3.14).

For this study, the variable stiffmness method is used
in conjunction with the non-lincar solution and this pro-

cedure is explained in the next section.

3¢3¢2 Method of Variable Stiffness

The 'variable elasticity' technique is based on
the adjustment of the elasticity matrix [ D] according to the

gtress or strain level reached.

The constitutive law for the material behaviour can be

expressed in the form:

Lot LeY ) a0 (3.38)

’

If this constitutive law is written in the form of equation
(3.14), but with the elasticity matrix being a function of

the stress level reached, such as:
ol e [oltle ) bn [ DL{67])] (3.39)

then the variable stiffness method can be applied (206).

As the final stiffness matrix is a function of the

elasticity matrix, thus for equilibrium:
P {6 1) =efmeGd 6:} 0 1 {8}~ {R} = 0. (3.40)
Equilibrium can be AChieved by using simple diterative
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procedures. For example, evaluating [ K ( { & 1)1 = | K, ]

at displacement A { 60} = O, then solve for { 61}
b=t (a7 (5.01)

Then the problem is resolved for the same load with the new

elastic constants as;

{ Bn} = [1:];_1_1 { r} ' (3.42)

The process is repeated until no further displacement changes
occur, This indicates that the solution is accomplished and

cquilibrium is satisfied.

If the solution in equation (35.39) is used for small
increments of stress and strains, then the solution has to
be adopted for small load increments starting from ﬁreviously

arrived levels of stress and strain.

At the incremental level a number of cycles of analysis
are to be performed for each load increment. In the first
cycle, the load increment {[xRi} is applied and the tempo-

rary displacement increment {Ab;_ } is computed from

s * % R | '
{A5i} =[x {Ar} (3.43)
-1
where [K1-1] is the inverse of the stiffness matrix calculated
at the end of the previous load increment using modified
elasticity matrix. The displacemént'{5; } at this stage is

computed:
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{ 6;} 2 _{61-1} + {AG;} | ' (3 hh)

where'{ﬁi_1} is the displacements at the end of the previous

increment.

The stiffness matrix corresponding to '{6; } is
evaluated and utilised to compute an approximation to another
displacement increment {.6;+1} for the same load incre-
ment {[H?i} The process is repeated until the difference in
displacements of the last two cycles is sufficiently small.
For each cycle the stiffness matrix [K] is recalculated and

a new solution of equations is obtained.

%3¢3¢3 Incremental Procedure

- ‘The basis of the incremental précedure is the
subdivision of the total Jrad into many small partial loads
or increments. One load increment is applied at a time on
the structure and load-deformation behaviour can be obtained
at the corresponding loading stage. Increments of displace-
ments are obtained after the application of cach load incre-

ment. The displacement increments are accumulated to give

the total displacements at any stage of loading.

The Wariable elasticity' method explained in the last
section is used with the incremental procedure. This means
that the load is applied incrementally, but for each load
increment successive iterations or cycles are performed
until no further changes in displacements take place as
shown in Fig 3.7. This indicates that the structure is
approaching equilibriuwm and the néxt increment can be applied.

In other words, for concrete structures where the deformations
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are influenced by the cracking state rcached, tﬁc struc-
ture is re-analysed under the same incremental load for any
further formation of cracks. Once crack propagation is
stopped, then no more increase in diéplaccments occur, and
another load increment cduld be applied. This procedure is
analogous to loading a rcal beam in tﬁe laboratory and

allowing it to reach a stable state before increcasing the

external load.

Thus, the 'incrcﬁental-variable' elasticity procedurec
must anélyse the structure, generate the stress state, check
these against the proposed failure laws, make any necessary
material property mocdifications, then re-analyse the struc-

ture for crack stabilisation.

The structural stiffness matrix is updated at each
cycle after changing the material propertieg according to the
stress éonditions prevailing in the previous cycle. This
process is rather expcnsivcrin computation time, but it has
the advantage of decreasing the number of cycles in each
increment considerably, particularly in the early stages of

loading where 2 cycles were found to be enough.

A flow chart for the incremental procedure is shown in
Fig 3.8. The process contains two main cyclic loops. The
outer loop is performed for each load increment. The inner
loop repeats the displacement solutions for the same load
increment until no more cracks are formed and the increase
in displacements has stopped. This loop is terminated in

step 7 if the limit on displacement specified by the input
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is reached and the number of cracked points remains the same.

Every celement in the beam must go through this proce-
dure. Element stresses and strains both incremental and
total at each integration point are computed from the incre-
mental displacements. Then each point is subjected to the
appropriate procedure for material changes according to the

failure laws.

The main steps during a typical load increment can be

summarised as follows:

(1) A load increment {AR} is applied and a first esti-
mate of the displacements {A()}(l) is obtained, from

which elastic increments of strains {[SE}(l)'and stress

{Ao}(l)

are calculated.

(2) These increments arc added to the existing values at

the start of the increcment and total values are evaluated.

{Aﬁ}(l)
{AE}“)
,{Ao}(l)

10 Foren
{e} {icmte;
{O}n { O}n-l

(%) Crack conditions are checked and modifications in the

+

]

Lol

<+

5

elastic modulus matrix [ D] are carried out.
(&) A new stiffness matrix is assemblede.

(5) A second estimate for displaccuments {136}(2) is

L) . o
obtained and {AE}(“) + {AO}(“) are calculated.

G



(6) Then

o
{eha

1 Ol

(65 s e} )

{E}n-—], i {AE}(z)

{ o}n—-l * {AO }(2)

i

and the conditions in step (3) are satisfied.

(7) The difference between the last two displacements, DF,

is calculated

i liAp L2 s LA L (1)

(8) Steps (4) to (7) are repeated until DF is sufficiently
small (ie less than a prescribed value), or a maximum

number of cycles'exceeded.

3.4 Non-lincarity and Isoparametric Elements

It has been mentioned before that numerical integration
was used in evaluating the éfiffnesses of the isoparanetric
clements. The state of stress at cach integration point
within the element is examined individually and the appro-
priate material property changes are periformed accordingly.
The element stiffness matrix is then obtained by a suitable
weighted summation of the individual integration points. This
makes it possible to integrate over linear and non-linear
regions inside one element. Thié meang that the element can
contain elastic and inclastic zones under the same level of

load.

It has been reported (43) that the sampling points of
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Gauss-quadrature rules are good positions for evaluating
stresses, and this will give more accurate prediction of

non-linear bechaviour.

Finally, the use of the high ofder displacement func-
tions, yields a better approximation to the displacements,

and this results in a smooth spread of non-lincar zones.
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CaHA P T E R 4

- REINFORCED CONCRETE BEHAVIOUR AND ITS
FATLURE LAWS

4,1 Introduction

The use of reinforced concrete in structural members
requires a thorough understanding of its material behaviour
under various stress combinations. Numerous experimental
investigations into the strength and deformation of concrete
under uniaxial stress states have been conducted in the paste.
However, data on deformational characteristics and strength
to obtain stress-strain relations and failure laws for con-
crete under multiaxial tension-compression stress states
are inadequate. Furthermore, most tests have been limited
to thé caseg of biaxial or triaxial compressiOn, and only a
few have been cafried out on combined tension and compres-—
sion., This is the main obstacle to develoﬁngcceptable fail-
ure criteria under combinations of tensile and compressive

stresses.

This chapter describes the material behaviour and the
recent developments in failure criteria under tensile and

compressive stresses.

The behaviour of concrete and steel have been treated
individually, then they are combined by placing the bars in

their proper locations in the eleéments,

4,2 Behaviour of concrete under Load

4,21 Internal Behaviour

Due to the heterogencous nature of concrete,

its overall mechanical and physical properties depend upon
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the volume fractions properties of the c&nstituents and the
mechanism of interaction between the constituents. Due to
the compaction process, hydration and shrinkage of fresh
concrete, minor microcracks exist in. concrete even before
loading. It is believed mow that the formation of these
irrecoverable microcracks affect the fracture and the shape
of the stress-strain curve near ultimate load. Newman and
Newman (24) discussed clearly the theoretical and experi-
mental investigation of this subject; The phenomena of
microcracking and the internal behaviour under load until
the final breakdown of the material are illustrated in

Fig 4.1 and are described in the following stages according

to ref (24);

(1) As théAload is applied, localised cracks are initiated
at isolated points of largest tensile strain concentra-

tion. Their formation relieves the strain concentration and

equilibrium iﬁ rapidly resto;ed, the accompanying encergy

changes and irrecoverable deformations are small. Thus these

cracks are completely stable and do not propdgate at this

load stage. Up to 30-40% of the ultimate strength can be

reached in this stage and the stress-strain curve slightly

deviates from linearity.

(2) With ihcreasing load, these initial stable cracks
begin to propagate and multiply in a slow stable

- manner. Crack initiation of stage 1 continues and overlaps

with crack propagation of stage II (Gaussian distribution is

assumed to represent the distributions of crack initiatién

and propagation in Fig %4.1.a), and there is a transition

o



- e - —— - 1001

Unstable crack )
ropagation I1I m
p p g S . S s B et <, e nagll o oo | B = i, 80-
e
Stable crack S o
propagtion II o ac,
e .
w240
Stable crack I o
initiation v oo
o E
&
wn D
No. of cracks Strain
' (a) (b)
Distribution of crack Stress-strain relationship
initiation and propagation uniaxial compression

FIG.41. THE STAGES OF CRACKING IN CONCRETE
( After Newman, 24 )

G'p =295 N/mmz

10

Gt 1 0p

.05r

| 1 1

04 .08 12
€ mm/m

FIG.4.2. STRESS-STRAIN RELATIONSHIP OF CONCRETE
~ UNDER UNIAXIAL TENSION - ( After KUPFER, 48 )




phase from the first to the second which does not occur at
any single stress. During this second stage, if the stress
level is maintained at a certain value, crack propagation
cecases. The extent of this stable crack propagation stage
will depend markedly upon the applied state of stress, being
very short for 'brittle' fracture under predominantly ten-
sile stress states and longer for 'plastic' fracture under

predominantly compressive states of stress.

(3) The third and final Stage III occurs when the crack
system reaches the unstable stage wherec the release of

strain encrgyvis sufficient to make the cracks self-propagating

until complete failure occurs. This stage occurs at 70-90%

of the ultimate stress and has been described as the 'critical

stress or lbéd' and is signified by a reversal in the volume

change behaviour.
From this interpretation it can be seen that:

(a) The failure mechanism of concrete is due to the initia-
tion, multiplication and propagation of microcracks

from before loading up to failure.

(b) For states of stress, where the tensile stresses are
predominant, the stable crack propagation stage II is
of short duration since the cracks propagate very rapidly
through the mortar matrix and around the aggregate-paste
-interface. Thus for this type of stress state the uniaxial
stress~-strain curve for concrete can be considered as linear

without significant error.
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h.2,.2 Uniaxial Stress Behaviour

Ficure 4.1.b shows the stress-strain curves
for a typical concrete subjected to short-term monotonic
loading up to failure in uniaxial compression. Many
investigators suggest that up to 30-40% of the ultimate
strength, the first part of the curves is reasonably
straight with a slope equal to the tangent modulus of elas-
ticity at zero load. The end of the straight part, 'A' is
called the 'proportional limit'. The pre-existing cracks
and those initiated through the first stage increase and
multipl& after the limit, until they reach a stage where a
breakdown of the internal structure occurs. The deformation
increases rapidly with the appliecd stress at this stage
until'it levels out at peack C which is calléd the ultimate
stress. After tﬁe ultimate load the stress-strain curve may
exhibit a descending portion if a sufficiently stiff machine

is used in testing.

Many investigators (44) & (45) have given standard
mathematical curves or complex formula from curve fitting

to experimental data.

The uniaxial stress-strain curve in tension, Fig 4.2,
is almost linear (46), (47) & (48). This can be seen from
the short duration of stable crack propagation stage as

explained in the previous section.

4.2.3 Compressive and Tensile Strength

The uniaxial compressive strength is generally

used as a measure of the concretevquality. It is expressed
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as cube strength or cylinder strength and can he obtained

by testing cubes or cylinders with standard testing machines.
The cylinder strength fé is approximately 0.8 x the cube
strength fc a’ For normal and good guality concrete fé
ranges between 25 N/mm2 to 50 N/mmz. For this study the

cube strength is taken to be around 35 N/mmz.

Compared to the compressive strength, the tensile
strength of concrete is small and ranges between .08 and
.12 fé. Its value can be measured by direct tension tests,
flexural strength tests or splitting tests. Different
values may be obtained from these tests. The value of the
flexural strength taken in this study is 7.5 Jfé according
to ACI-318, 1971.

4,3 Failure Laws in Tension and
Tension~Compression Zones

e o | Introduction
| The failure laws are expressed in terms of
principal stresses. Thus, iﬁ-the finite element analysis,
the concrete principal stresscs 01, ()2 and 03 are computed
from the six components of stresses obtained at each integra-
tion point of each element in the structure. The method of
calculating the principal stresses from the stress compo-

nents in x, y, & z co-ordinates is given in Appendix A.

The principal stresses in the compression zone of three
- T-beams obtained from the theoretical analysis at ultimate
load are shown in Tables 4.1, 4.2 and 4.3. The beams

named as TBX IV, TBX V and TBX VI, These beams have flange

thickness of 70 mm and flange width of 350, 760 and 1050 mm
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TABLE 4.1

Principal Stresses in the Flange-Beam TBX IV
(N/mm2)~- Compression Positive

Sl oment Principal Sampling Points
-—35;——- Stress -
— No 1 2 3 4 5 6 7

1 1 -.335 -1.664 -.006 -.276 -.487 -.052 -.17
2 -.049 L7092 495 19 .067 . 896 L0473
3 T R 1.569 75519 14755 2.642 3.173 6.514

2 1 -1.763 -1.966 -.637 -.69 -.52 . 069 -.029
2 1.416 -.4k52 «542 342 975 1.375 485
3 1.264 1.846 8.59 P 27 3.132 3.162 6.148

3 1 -.094 -.059 .078 -.176 -.022 -1.78 -.225
2 239 271 .158 . 004 .708 -.068 «112
3 5.967 4.198 | 5.925 5.864 | 4.961 4,455 6.38

& 1 ~,203 -.618 -.545 -1.156 -, 202 .006 =, 017
2 1571 -.614 -.204 - 454 «759 1.627 1.019
3 4.085 4,111 6.1253 5.864 4 465 4,b92 6.74

5 1 -1.029 .034 -.178 -.15 .124 -.896 -.084
2 .347 1.992 .178 .385 + 211 -.191 JA27
3 4,628 5.855 7.004 7.529 4 457 5.201 2«776

6 1 LA P8 -1.826 -.302 -.886 | -1.996 -.633 -1.417
2 -.56 -.431 .505 -.047 .219 2.7 - 144
3 3.944 4.3 6.875 7.528 | 5.292 7.+504 8.299




(N/mmz) - Compression Positive

- L9

TABLE 4.2: Principal Stresses in the Flange-~Beam TBX V
Principal Sampling Points
El%EEEE Stress
XNo No 1 g 3 4 5 6 7 8
1 1 -.052 -.575 -.138 -.235 -.121 -.67 . 005 -.183
2 -053 .021 .026 -.119 -.053 .087 .163 .071
3 1.054  Y'es By 5.235 5.672 1.283 2.041 5.955 6.183
2 1 A Yo Ly s 0 S b ] P S Yy I B R & ~2.395 T -.426
2 . 086 -.791 .401 .931 .075 .183 314 293
3 1.348 1.004% 6.459 7.954 1.893 2.903 6.151 5,684
5 1 -3.197 -2.97 -.662 -1.234 -.917 -.78 2122 476
2 ‘-2,294 -2.343 1.098 1.176 .525 1.784 <271 1.61
> -.576 -.61 8.236 8.767 2:627 1.904 6.095 5.484
lt 1 -.163 ~5752 .016 =25y -.245 -.512 -.658 482
2 1254 -.143 . 184 244 .283 .867 -.10 1.16
3 1.896 2.166 6.096 6.05 2.097 2.194 6.731 6.859
X 1 -.863 ~-1.282 -.238 -.298 -.336 -.926 -.251 -.943
- -.026 542 <141 .522 -.021 -.375 <559 .099
3 2.911 3.957 5.845 5.228 2,924 4,504 6.367 5.177
6 1 .031 -.687 -.825 -.187 233 1312 -1.84 -1,071
2 1.021 507 L4056 -.599 -.304 1.207 .906 1.533
5 3.459 4,089 4474 3.889 4,254 3.795 4,834 5.999
7 1 -.351 -.819 .139 -1.336 -.341 -.184 -.544 -.219
2 0118 "0061 .526 -05[*2 001 0744 °0092 .6()9
5, 1.466 2.636 8.38 6.436 1.474 2.357 8.988 8.195
8 B -.986 -.649 -.315 =399 -.502 -.978 -.212 | -1.488
2 -. 455 .829 .033 .55 . 219 -.303 .28¢ -.581
3 2.753 5.198 7.074 277k 2.528 2.53 8.392 9.555
9 1 -.h46 -2.898 -.815 -3.149 -2.%15 -.412 -1.037 -.546
2 -.334 -.544 «161 -.384 239 2.963 -.075 4,485
3 4,988 3:872 65.007 6+121 2.359 7.814 10.026 12.815




TABLE 4.3 Principal Stresses in the Flange at Ultimate Load (N/mmz)- Beam TBX VI
Compression Positive
Blamehit Principal Sampling Points
NN Stress

e “NO 1 2 3 b 5 6 7 8
2 .072 -.015 -.052 -.018 . 007 -.021 .04l .056
3 e 216 «559 4,023 4 475 174 712 4,773 5.361
2 .177 -.767 .266 .625 -.086 =.306 .156 .527
3 131273 .895 5.21 7.585 1.169 2,214 5+385 5.321

3 1 =3.367 -3.579 -.5881 -1.18 -2.086 -1.429 « 178 .65
- -2.269 | =-2.715 1.168 1.064 -.051 .804 «97 2.274
3 -.274 -.894 6.8%4 A ) 1.136 1.74 5.752 . 15%

4 1 -.224 -1.026 -.029 -.259 -.283 -.746 -.002 .021
2 -.14 .043 .099 .116 -.066 .282 .196 «736
3 .016 . 744 5.347 5.495 117 «558 5.932 5.985

5 1 -1.432 | -2,093 -.289 -.116 -1.096 -1.777 -.136 -.597
2 .087 .34 .168 547 -.128 -.736 <506 .0053
o 1.157 2.905 5.441 4,648 972 3.435 5.952 5.168

6 1 -.06 -.043 -1.128 -1.651 -.762 .166 -.888 1.643
2 . 142 Z258 «20 <24l .918 1.378 .84 1.193
= 3.155 2.6 3.668 3.033 4,294 5.641 4,558 L, 474

7 1 671 -.665 -.318 ~.292 -.565 -.848 .208 ci1
- -.157 -.156 -.095 054 -.04%2 «339 .183 o 74

8 1 -.899 -1.475 -.329 -.348 -.862 -1.723 -.3938 -1.1
2 -.174 1.085 138 .802 - 434 089 .318 -.352
3 73 3.005 6.563 6.901 .54 1,313 6.896 7.962

9 1 -4,137 -3.4838 -1.326 -1.338 -1.565 -.9 -2.173 -.895
- -1.832 | -1.321 «723 1.238 1.60% .70 .0065 4.755
3 2.277 2.001 5.362 4,906 4.159 7.179 8.25 12,056




respectively, more details are given in Chapter 6. The
location of the élemcnts in the flange and the sampling

points in each element are shown in Fig 4.3.

It can be seen from the tablesvthat at least one of
the principal stresses in the compression zone is tensile.
Neither does the maximum compressive stress exceed 30% of
the cube compressive stress for these beams (cube strength
was 37.9, 37.5 and 36.4 N/mm_2 respectively). Thus, the com=-
pression zone of a T-beam failing in shear is under a state of
tensile and compressive stresses. It was discusscd before
that for such stress states, where the tensile stresses are
predominant, the linear brittle responsec for concrete can be
considered. 'And hence cracks occur as a result of the exis-

ting tension or tension-compression stresses.

The failure laws used for this study are discussed in
the following sections. The regions of failure are classi-

fied as tension or tension-compression zones.

4.%.2 Failure Laws in Tension Zones

Many workers have proposed failure laws in
multiaxial tensile stress states (49), (50). However, the
most accepted failure theories for predicting cracking of
concrete in tension is the maximum stress and maximum strain
criterion. Concrete is assumed to behave linearly in tension
with a limiting value equal to the tensile strength. These
theories state that if a maximum principal tensile stress
or strain in any direction reaches the tensile strength of
concrete then a crack is assumed.to occur in a direction

perpendicular to the offending principal direction. The
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maximum tensile strength of concrete is determinced from

direct tensile tests on concrete specimens.

4.3.3 Failure Laws in Tension-Compression Zones
The determination of a'univefsal failure crite-
ria for predicting failure of concrete under triaxial stresses
is still unsolved. To fulfil this requirement, during the
last decade, tests have been conducted to investigate the
behaviour and strength of concrete subjected to short-term
multiaxial stress systems. More attention has been given to

tests under biaxial and triaxial compression stress states.

Bresler and Pister (23), (51), Good and Helmy (52),
Reeves (15), and Johnson and Lowe (53), carried out tests
on hoilow cylinders under axial compression and transverse
torsion. Kupfer et al (48) tested square plates under com-
binations of biaxial compression, compression-tension and
biaxial tension. They, also, measured multiaxial deforma-
tions. Mahmood and Hannant(54) carried out tests on cylinders
for compression =—compression-tension regions._' Launay
and Gashon (55), (56) tested cubes under triaxial com=
pression and two compression, and one tension. Based on
the information obtained failure envolopes were produced

in stress space as shown in Figs 4.4 and 4.5.

From these tests it is difficult to obtain a consistent
trend. This is due to the different shape and size of test
specimens used and the conditions of loadings in each

investigation.

A few failure theories have recently been presented for
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concrete fracture under combined tension-compression stress

states. These are discussed in the following sections.

he3e3el Mahmood and Hannant Failure
Criteria (54)

From their test results they derived
an equation for failure under tension~compression-compression

as follows:

Q-1 '
03 = .05 (m— - 0] ) 01 = 02 (ke1)

the maximum tensile stress

Q
1l

where
gy = the minimum compressive stress

o = concrete cylinder strength

A failure envolope in stress space for the multiaxial stress

system is shown in Fig 4.4.

The equations for failure lines were derived from

lower bound curves based on the experimental. data.

Equation (4.1) has been introduced in the present
finite element model to predict the fracture of concrecte in
reinforced concrete T-beams. By tracing the load deflection
curve of Fig 4.6, the criterion considerably underestimates

the behaviour and strength of the beam.,

The same experimental data (54) were reanalysed in
this study for the case of tension~compression-compression
stress state. Two equations have been fitted to these data,

a linear equation and a quadratic equation as shown in Fig %4.7.-
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The linear equation is:

o 7z 0 1 = /
03 = 150738 (TE§T Ocy) (h.2)

and the quadratic equation is:

BTl kg eRd  (sok

Yy cy

067 (91

oy [ o, ) - 07217 ]

(4.3)

Each of these equations has been tried separately in
the finite element analysis used for this study, but with
little success, This may be attributed to the effect of

neglecting the intermediate principal stress in the criteria.

Hobbs, Pomeroy and Newman (57), recently proposed simi-
lar equations for design stresses of concrete subject to
multiaxial stresses. They showed that the tensile stress at

which cracking will occur can be expressed as:

7 01 067 I
e S R T S T it A ' Lkt
where O3f is the tensile stress at failure

0 1 is the maximum compressive stress

Equation (4.%4) is similar to equation (4.1) considering that
Ocy = 67 fcu' When this equation was applied to the
present theoretical model it gave results similar to those

in Fig 4.6, which underestimate both the deformation and

strength.
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ke3.3.2 Cedolin, Crutzen and
Poli Failure Criteria (58)

From an analysis of the existing
experimental data on triaxial stress states, stress-strain
relationships were proposed for multiaxial compressive
stresses and failure criteria for the ultimate strength of
concrete under combined stresses. The failure criterion
was formulated in terms of octahedral normal and shear
stresses ( 0 FiiandmiTs | respectively). This type of fail-
ure criteria represents an improvement over the Mohr failure
theory because it takes into account the intermediate

principal stress.

The failure relationship takes the form:

of sictiie i ) (4.5)

or

EE(T AT ) s O (4.6)

where 11 and 12, the stress invariants are given by

S Uy s 0 08 00, (5.7)
I, = 0, 0, + 0, 04 +_ O, 04 (&.8)
Ooct = 11/3 | ' (4.9)
b ocang” [2 (Ii 0 Iz):)%/3 (4.10)

In the octahedral normal and shear stress plane the
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failure law of equation (4.5) can be represented by a linear

or a quadratic equation according to the experimental infor-

mation available and the application to structural clements.

Using the results of Kupfer (48) and Launay and Gashon

(55),

has been drawn (58), Fig 4.5,

Ogi=a00s

test data.

While curve A corresponds to

(56) a failure surface in the principal stress space
‘Curve B is characterised by

o 03 and represents the Launay and Gashon

Oy 2 0p = Oy

and has been obtained by assuming the following hypothesis:

(1) rigid rotation of biaxial curve (2) intersection of the

two planes 02 =

otO

05 =

Ot'( 0t = uniaxial tension).

Cedolin et al represented these curves through the octahedral

shear and normal stresses Fig 4.8,

interpolated from this data

Oufi> g, =0

and .0, =

1

the following equations for

toct

01:>()*
1

oct

L

4

toct

01<< 0 <

toct

Considering compression as positive, equations (4.11) repre-

1.07

0.62

1.41

« 705

Straight - lines have been

for the limit conditions

O2 o 03.

these lines:

'
Ooct/fc + .118

o /fé + +008

oct

]
oct/fc + o141

+

: 1
Ooct/fc

0705

1 0,>05

sent the cases of one compression and two tensions or two

compressions and one tension while equations (4.12) are

adapted for three axial tensions.

- H-

Cedolin et al fitted

P (4.11)

r(4.12)
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Because these lines agree with the available experi~
mental evidence Fig 4.8, from (48), (54), (55) & (56), the
octahedral failure laws are used exclusively in this study
to examine the tension-compression stress states and predict

the cracking failure of concrete accordingly.

L 4 Crack Simulation

b Introduction

Several ways have been.used to simulate the
effect of cracking in finite element models. Ngo and
Scordelis (59), (60), handled cracking by locating pre-
existing cracks at points along a simple beam. The position
and extent of the pre-existing cracks depend upon previous
experimental observations. The cracks were considered as
boundaries for the elements and separate nodes were taken
on both sides of the cracks with identical co~ordinates.
Linkage elements were introduced between the separated nodes

to represent aggregate interlocking.

Nilson(61) used a similar approach with an incremental
solution of crack propagation. He considered a crack to
occur between the edges of two elements if their average
stress value excecded the tensile strength of the concrete.
The elements were then disconnected at their boundaries and
renumbered by twinning the nodai points. This technique
is limited because cracks are allowed to form only along

the element boundaries.

Loove (62), (63) used a similar method by using
different topology in the region around the crack tip. He

replaced the cracked element by four elements, and separate

i



nodes were redefined on both sides of the crack. These
approaches necessitate that cracks must follow clement
boundaries and for every crack, redefining of the topology
and changing the FEM mesh is required. This introduces dif-

ficulties and dincreased costs in the computational process.

Another method used for tackling the cracking problem
is by failure criteria. Cracks are initiated at .certain
points of the element according to specified failure
criteria. The material properties are then adjusted in the
cracked area by modifying the material matrix. In this way,
natural crack directions can be obtained and more than one
type of crack pattern can be simulated., The average pro-
perties of the cracked region are determined by this method,
thus a high.5ccuracy in the crack pattern can only be ob-
tained by using fine meshes. This method seems to be common
now among researchers to predict cracking of concrete.
Zienkiewicz et al (30) used @he maximum tensile strain
criterion in a study for pressure vessels. Phillips (40),
(42) applied maximum stress or strain criteria and acta=
hedral failure laws in his study. Cervenka (64), (65),
Cedolin (66), Cope (67), Buyukozturk (68), Robins (69),

Suidan (35) and Mirza (70) did likewise in their studies.

4.4.2 Crack Initiation

In the present study, cracks are predicted

by using two failure theories:

(1) Maximum principal tensile stress criteria, and
(2) Octahedral shear and normal stress criteria suggested

by Cedolin et al (58).
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The maximum stress criterion is used to determine
cracking in tenéion zones where the concrete behaviour is
linecar elastic and local failure occurs by cracking. The
basic assumptions of the failure is ‘that when a principal
tensile stress exceeds the limiting tensile strength of
concrete, the material is assumed to have cracked in a plane
normal to the offending principal direction. Thus for
cracking:

Uiz et (4.13)

The tensile stress in this principal direction cannot
be supported after crqcking, so the stress in this direcction
is reduced to a negligible value as shown in Fig 4.9. How-
ever, in a diréction parallel to the crack, the material is
assumed to be capable of sustaining stresses according to the

biaxial stress state existing after cracking.

Further, it is assumed that no interaction occurs
between the principal directions. It is possible that new
cracks will occur duc to the principal tensile stresses in
the plane of the initial crack. The new cracks are assumed
to be orthogonal to the first crack. So, for further
qracking:

> ft' (h.14)

P‘-

The material is assumed homogeneous and isotropic
before cracking, but it has orthotropic properties after crack-

ing.
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Fracture in tension-compression zones is predicted by
failure laws obtained on the octahedral normal and shear
stress plane and which are expressed by the lincar rela-

tionships given by equations (4.11) as follows:

' - ~ 1t =
Toct/fc = 1.07 Ooct/fc + .118 01:> 02 O3
' = . ° = >0
Toct/fc 62 Ooct/fé + .068 01 i e o 3
; - ~ . . 1 s
where Ooct and Toct are calculated from the principal stresses

according to equations (4.7)-(4.10).

If the maximum principal tensile stress has not reached
the limiting tensile strength according to equation (4.13),
then ﬁhe octahedral normal and shear stresseé are calculated
and substituted in the above equations according to the

existing stress state. If (O

and T satisfies the
ocC

oct t
above equations (ie Ioct/fé is greater or equal to the right

hand side of the equations), then the failure is defined.

No experimental evidence is available on the pattern
of failure in multiaxial tension-compression stress states
(2 compressions + 1 tension or 1 compression + 2 tensions).
In biaxial tension-compression stress states Newman (44)
reported that under high tension to compression ratios, the
ffacture is characterised by a single cleavage fracture
orthogonal to the principal tensile stress (Fig 4.10).
However, at lower tension to compression ratios, the fracture
pattern takes the shape shown in Fig 4.10. Johnson and
Lowe (53) have observed from their tests that the single
cleavage fracture occurred when the compression to tension

28 =
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ratio was less than 11, crushing failure occurred when this
ratio was over 25, and an intermediate form of failure between

these values.

Launay and Gashon (55) have noticed from the tests on
2 compression + 1 tension that the strength of concrete was
reduced considerably in this type of stress state. This can
be interpreted as that the failure was of the cleavage type
of fracture which occurs at lower eonergy requirément, than

that for crushing type of failure.,

The above failure patterns were observed from experi-
mental results obtained from small element studies such as
cubes, plates or cylinders. These results are influenced by
testing conditions, size, geometry and curing conditions.
Thus theirvépplication to real structures is not straight-
forward, Realising this and noting that in actual T-beams,
crushing of concrete seldom occurs except in a few cases of
narrow And thin flange, crack patterns have been adopted for

the multiaxial tension compression stress states as follows:

(1) For high principal tensile to compressive stress ratio,
a single cleavage crack is assumed as shown in Table

4.4, Case 5.

(2) For lower principal tensile to compressive stress
ratios, a multiple cleavage crack pattern of the type

shown in Table 4.4, Case 6, is assumed.

These two cases have been adopted after several trials
in the finite element model by assuming different crack
patterns and comparing the load-deflection curves for T~

beams with the experimental ones. Fig 4.11 shows load
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TABLE

CRACK

b4

PATTERNS

Case Crack Nes erint 1o
No Pattern R st Ak
Uncracked clement
1
Concrete cracked in one direction
2 due to max tensile principal stress
(tension zone)
Rl Concrete cracked in two directions
3 due to max and intermediate tensile
principal stresses
Concrete cracked in three direc-
tions due to max, intermediate and
4 E%Eij%% minimum tensile principal stresses
Concrete cracked in one direction
5 due to combined tension=-compression
stresses
Concrete cracked in two directions
due to combined tension-compression
6 stresses
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deflection curve for beam TBX V where 3 cases of assumed-

crack patterns are shown.

Numerical values have been tried also to determine
the ratio of the principal tensile étress to compressive
stress at which the tranéition from the single to multiple
crack occurs. It was found that a ratio of 0.1 is the most
reasonable value for this purpose (Fig 4.12 shows 3 cases
when this ratio = 0.1, 0.3 & 1). This ratio agrees with
that obtained by Johnson and Lowe (53%) from tests on

biaxial. tension-compression.

Crack patterns adopted for the two failure criterion
used are summarised in Table 4.4. Cases No 2, 3 & &4 are
adopted for the maximum principal tensile stress criteria

while cases 4 & 5 are for the octahedral stress criteria.

bob,3 Interlocking on Initiated Cracks

- From tests (71) & (72) it was found that part
of the total shear force on a beam is carried across the
cracks by aggregate interlock. Unfortunatelj inadequate
experimental information is available to describe and
represent its behaviour. Roughness, irregularity and spall-
ing of concrete over the aggregate particles arce the fea-
tures of the surfaces of a cleavage crack. Thus, any
pérallel differential movement will cause the opposite faces
to interlock and transmit forces across the crack, and
therefore shear stresses in the direction of the crack will
not be zero. In this study, interlocking is represented by

a shear transfer factor F in the constitutive relation.
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Thus, after cracking: .

T* = FG VY * (5.15)

where G is the material shear modulus before cracking and F

is a constant, its value ranges between 0 and 1,

Previous studies on pianar problems (40), (66), showed
that the analytical solution is insensitive to the value of
F, provided that its §alue is not close to zero., In order
to make some assessment, different numerical values have
been tried in the present program, and it was found that the
value for F = 0,2 gave satisfactory results with regard to

the deformation and ultimate strength of the beams.

b4,k Constitutive Relations

Before cracking, the material is assumed to be
isotropic. A linear stress-strain relationship is assumed to
be valid if the existing stress is tensile and the incremen-

tal constitutive law in global directions for 3-D stiress are:

¢ W e 5 ek , N
Ao, o Ry AL Y RSl B o 0 Ae
X
Ao 1-v VvV 0 o0 0 Ae
y Y
E _
A (1+V) (1-2V) Bl Y605z O < i Aez ,
AT ' 128V "0
xy 1 0 AV&Y
At ; Symm 1-2V o
Yz y ', 5 Asz
1A ; 1-2V
{ sz‘ L 2 - LA.YZX J
(4,.16)
or { Ag } = [ D ]{A€g} (i
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where E and V

Poisson ratio respectively, and

perties or elasticity matrix.

are concrete modulus of elasticity and

is the material pro-

After cracking, orthotropic conditions are introduccd

and the material matrix [D] is applicable in the princiml

stress co-ordinate system.
occurs,

crack is reduced to zero.

When a single cleavage crack
the principl tensile stress orthogonal to the

The corresponding terms in the

material matrix are set to zero, while a shear constant F

is included to represent the aggregate interlocking. The

material matrix [D ] is then modified to:

[D]*

0 0
Dy
0 D, ~="% D, -
22 D11 23
D,.D
0 Dy —22l
= 32 Dyq 20
0 0
0 0
0 0
L

-
0 0
0 0
0 0
0 0
0
55
0 ot Dig
(4.18)

As the constitutive relationships are still linear-

elastic after cracking, the material matrix [D]* represents

a sudden change from one elastic state to another. This

means that crack propagation is solved by a scries of tran=-

sitions from one instantaneous elastic stiffness to another.

If no further cracking occurs during the cycling in which

stiffnesses are updated, then convergence in displacements
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would result immediately.

If multicleavage cracking occurs in two perpendicular
directions, or a second cleavage crgck forms orthogonal to
the first crack, themn the terms of [D] corresponding to
these two principal tensile stresses are set to zero and

[D]* takes the form:

0 0 0 0 0 o
0 0 0 0 0 0
0 0 D 0 0 0
[D]* = 33 (4.19)
0 0 0. FD,, 0 0
0 0 0 0 D 0
it
0 0 0 0 0 FDg

The zero values on the diagonals cause difficulties in
the numerical solutions, thus the corresponding diagonal

term is set to a small positive value.

The material matrix [D]* is in co-ordinate directions
coincident with the angle of the crack, therefore it is
essential to transform it back to the original global

reference system for stiffness calculations.

The constitutive relationship in the global system

is given by

{h0} =ici s py{Ae} (4.20)

and in the crack direction by
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{Ao}* =

By applying the transformation rule, the strains can be

expressed as:

{ Ae}* =

and [T] is defined by

[T]

where aij

where

[A] =

-

-

a2
11

2
21

2
a

o &

a

=8 %o
2

851231

2a11a31

(D]

42
a2

a2
22

2
32

a
23 19295
2a22a32

2a12a32

{Ae}~

§ o BAE E,V

o

W

o

o)
VN DN =D
A

i

2a13a23

2a23a33

2a13a33

251232
+
852%31
841%32
+

842%31

842713

850203

230733
a412%23
+
843%22
i
+
a23a32
ol
+
a13a32

(&.21)

(h.22)

211733
+

8.135131
.

(4.23)

are the terms from the normalised modal matrix [A], (73)

L.

241

891

a

31

(h.24)

This matrix defines the direction cosines of the principal

stress axes from the reference axes.

matrix [A] is given in Appendix A,

85 -
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Assuming that work done is independent of the co-ordinate:

system, then
{ae}T {ao}e - . {Ae}T{Ao} (.25

and substituting equations (4.20), (4.21) & (4.22) into

equation (4.25) gives
P o e R e A RS (4.26)

4,5 Steel Behaviour

Steel reinforcement is usually used with concrete in
the form of slender bars which can be assumed to be stressed

only uniaxially.

The uniaxial stress~strain curve for different types
of reinforcement steel are well known. A typical uniaxial
stress-strain curve for high tensile steel is shown in
Fig 4.13. The curve is linear elastic until the point 'P!
called the 'proportional limit' is reached. vAfter this point,
increase in stress increases the strain but not in a linear
relationshipe. The yield point known for normal types of
"steel is not well defined for this type. Thus, it is usually
taken at fixed value of strain such as .,002 and the stress
is defined as 'proof stress'. After this the strain increases
rapidly with small increases in stress and the material is
defined to possess strain hardening. 7This continues until
a maximum stress is reached 'V' and fracture occurs at

point 'F!' after a descending part on the curve.
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For this study, the behaviour of the longitudinal
steel is approximated to be linearly elastic. This is
based on the fact that this study is concerned with shear
failure of beams in which the failure occurs in most cases
before reaching the yield strength of the main steel, pro-
viding that the beam has the required flexural strength.
This is noticed also in the tests carried out on the T~

beams for this study.

is
Young's modulus of steellusually about 200 x 103 N/mmz.



CHAPTER 5

COMPUTER PROGRAM

541 Introduction

‘ The main features of the computexr program written and
developed for this study are described in some detail in
this chapter. The program is designed to handle the in-
elastic incremental analysis of reinforced concrete T-
beams using the finite element three dimensional stress
analysis described in the foregoing chapters. The program
consists of a series of computer segments written in
Fortran IV fof ICL 1906S computer. The main algorithm of
the brogram in the form of flow charts and the consequence
of computation process in each part is prescented in this

chapter. '

52 Structure of the Program

A flow chart for the main operations in the program
is shown in Fig 5.1. In a step-by-step non-linear
finite element analysis there are four basic operations that
must follow in a logical sequence. These are (1) the assembly
of the stiffness matrix and increment load vector for the
entire structure, (2) the solution of the incremental
load-displacement equations, (3) the application of the
obtained displacements to the elements to determine incre-
mental internal stresses, and (4) checking the total stresses
with the given failure law and making the necessary modifi-
cations in the material properties accordingly. The last
opération is the key for any non-linear solution as it

controls the incremental scheme and brings the final failure
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of the structure. The incremental metinod usedvrcpcats the
whole solﬁtion for each load increment. This is characteriscd
by an outer loop with the number of the individually speci-
fied load increments as a’pafameter{ Embedded in this loop

is the crack propagation-scheme explained before. The
previous operations are included in a group of subroutines,

each performing one or part of these operations.

I The first subroutines are for the data readings and

genecration:

‘

(a) G DATA: This subroutine reads the gencral
description of the problem as the material pro-
perties information, element locgl co-ordinates,

'integration rules, element conncctions and

boundary nodes.

(b) DAT GEN: for a given number and dimension of
elements, this subroutine generates the X, Y & 4
co-ordinates for each node in thg mesh. Then it
keeps these co-ordinates in dimensions block for

later use.

(c) LOAD: To read incremental load value and store

it in one dimensional load vector.

IT The second group of subroutines are for the evaluation
of the elastic stiffness matrix for each element, then

to
transfer it/ the assembled subroutine for the whole stiffness

matrix. Five subroutines are incorporated in this block.

(a) ELSTG: This contains the main loop for the
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(b)

integration rule. At each integration point the

following steps are performed:

{1)

(2)

(5)

(4)

(5)

SFRI:

In the first load increment, the initial
material properties matrix is assembled
from the elastic material constants given
in the input data. In the subsequent
increments it takes the previous modified

matrix if it exists.

The cocfficients of the strain matrix are
calculated by calling subroutines SIFRI,
JACOBIAN and I'ORM B and these are written

on a tape for later use.

The coefficients of the stress matrix are
calculated from the material properties
matrix and the strain matrix and are writ-

ten on a tape for later use.

Stiffnesses of the upper half of the ele-
ment stiffness matrix are evaluated from
the stress matrix, strain matrix, weighing'
integration coefficients and the deter-
minate of the Jacobian matrix. ‘‘he lower

half is then filled by symmetry.

The stiffnesses from each integration point
are summed to give the element stiffness

matrixe.

In this subroutine the parabolic shape
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functions and its first derivatives are com-
puted for the corner and midside nodes. Then it

is stored in dimensions block.

(c) JACOBIAN: Three operations arc done in this
subroutine: (1) The 3 x 3 Jacobian matrix is
evaluated from the first derivatives of the
shape functions and X, Y, Z nodal co-ordinates.
(2) The determinent bf this matrix is calculated.
If this value is negative or very small, the

. program will terminate and send an error mes-
sage., This indicates there is an error in the
‘element connection data, the Cartesian co-
ordinates or in the previous operations.
i3) The inverse of the Jacobian matrix is formu-

lated. This is used to evaluate the strain matrix.

(d) FORM B: Terms of the strain matrix arc calculated
from the inverse of the Jacobian matrix and the
first derivatives of the shapé functions. Then
these terms are arranged in the 6 x 60 strain

matrix and written on a tape for later use.

(e) STELEM: This subroutine evaluates the two or
three node bar element. It enters the integra=-
tion loop then it picks the appropriate shape
functions, calculates the strain vector, the
stress vector and writes them on a tape for later
use. The bar stiffnesses are calculated from
the contribution of stiffnesses at each integra-

tiqn point.
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IITX The third group are for assemblage and solution. This

has becn done in the following routines:

(a) FORM K: Assembles the totai stiffness matrix

. for the structure. After every element stiffness
matrix is evaluated, the individual coefficients
are transferred into the total stiffness matrix
node~by-node. The three equations associated
with the given node are used from the proper
storage lccation and the contribution of the
current element are superimposed to the present
vélues. The concrete stiffnesses are stored in
a banded rectangular matrix form, then steel
stiffnesses are added to it. Boundary condi-
tions are inserted also after completing the
assemblage. Each degree of freedom is examined
and if it is restrained then a unity is inserted
on the dingonal_and zcros on the corresponding

rows and columns.

(b) SOLVE: The total load~displacement equations are
solved using the direct elimination technique,
resulting in a displacement vector. Practi-
cally, the routine solves, for any number of
equations, bandwidth or load vectors, but with
increasing bandwidth and number of unknowns, the

solution time incrcases.

v The final group isg the subroutines for stresses,
failure laws and updating stresses at the end of each

load increment.
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(a)

‘(b)

STRiESS: The stresses and strains are calculated
element-by-element at the incremental load level
then it is added to the previous ones to obtain
the total stresses or strains. The stress and
strain matrices evaluated at the individual inte-
gration points, previously used during the calcu-
lation of the element stiffness matrix are
re-read from tapes and used for the present
evaluations of stresses and strains. The
principal stresses are calculated at the 8 inte-
gration points of each element from the total

\

stresses obtained at the load level considered.

"FCRITERIA: The principal stresses are checked

with the failure laws for concrete as described
before'at each individual sampling point of each
element. According to the type of crack occurred,
the program is directed to the appropriate

stream to pick the corresponding factors required
to modify the elasticity matrix. Terms from the
previous elasticity matrix are re-arranged in a
new 6 x 6 matrix after performing the necessary
modifications on it. This matrix now is in the
directions of the principal stresses and it has
to be transformed into the global directions.

The direction cosines of the principal stresses
relative to the Cartesian directions are cal-
culated and stored in a S—diménsional array
-(3x3x8x3%5x2)., Coefficients of the 6 x 6 trans-

formation matrix are then arranged from the terms
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of the direction cosines matrix. Transforma-
tion of the modified elasticity matrix is then
performed using this transformed matrix and its
transpose and the resulting terms are stored
in a new 5-dimensional modulus matrix
(6x6x8x35x2) to use in the next cycle or

increment.,

(c) UPDAT: This is the last step, at the end of
each load increment, the stresses, strains and
direction cosines matrices arc transferred and
kept in a similar dimensionsblocks, so it can be

casily picked and used by the program in the

following load increment.

Bl 5 Output of the Program

The displacements, stresses and cracked points for the
structure are the most important results of any inelastic
stress analysis. Accordinglf; displacements at all nodes,
principal stresses at'each individual integration point.and
cracked points with the crack directions reference to X, Y, 2%
axis, are printed out after each cycle. The six components
of stresses at the eight integration points are printed, also

.on the elemental level at the end of each load stage.

5.4 Concluding Remarks

The development of a three-dimensional stress analysis
computer program to include non-linear conditions and failure
laws is a lengthy and complex task. The difficulties arise

in such programs with increasing the core-store and computation
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time. ITn any finite element analysis program, and parti-’
cularly for threé dimensional stress systems, the core-
store increases considerably due to: (1) the use of dimen-—
sions blocks with more than 2-dimcnsions in the process of
modifying the material properties, (2) the augmentation of
the number of unknowns and bandwidth of the total stiffness
matrix of the structure. The dimension blocks used in the
material modifications are minimised to the lowest level as
a replacement system was used., The number of unknowns and
bandwidth were limited by using a reasonable number of ele-
ments in the meshes. The computation time increases accord-
ing to the number of increments and cycles performed in ecach
increment. In cach cycle a complete reformulation of clement
stiffness and solution'of system of.equations is performed.
Most of the time was consumed in the stiffnesses calculations
due to multiplications of large matrices. The method used
in the ﬁrogram to multiply two matrices, for example, is to
save the rows of the first matrix in a geparate array, then
multiply it by the columns of the second matrix to obtain the
compared
terms of the new matrix. This method saved time to the tra-

ditional way of multiplying matrices.
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EXPERIMENTAL PROGRAMNME

6.1 Introduction

In recent years resecarch workers have shown growing
interest to tackle the problem of shear failures in T-bcams.
The tests that have been conducted until now are not suf-
ficient to give a clear understanding of the basic behaviour,
failure mechanism or the way that the shecar is resisted in

such beams.

‘

.Experimental data (7), (8), (11) & (20) show that the
ultimate shear force resisted by a T-beam is much higher than
tbat of a comparable rectangular beam. Although it is bel-
ieved now that the shear force is carried through aggregate
interlock, dowel férces and concrete in the conpression zone,
there is little experimental information on the contribution
of each shear component. Experimental investigations and
shear theories on T-beams aéfce that the main part of the
shear force is resisted by.shear stresses in the uncracked
concrete of the compression zone. Thus the assessment of
the shear force carried by the compression zone in a T-beam
is essential. Therefore this programmne of work has been
planned to conduct tests on large scale reinforced concrete
T-beams to measure the shear force carried by the compression
zone., This would need the elimination of the shear carried
through aggregate interlock and dowel action. To achiecve
this, an inclined preformed crack within.thc web of the shear

span has been used,
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Two series of tests have been carried out. The first
series.was designed to study the effect on shear behaviour
of the location of the preformed crack din the shear span.
The second seriecs was planned tovasscss the shear contri-
bution of the flange. The main parameters to be studied
in the second series are the flange width and thickness.
The ratio of the area of steel in each beam to the arca of
steel required for the balanced section was kept constant
at 0.3, as it gives reasonable amount of longitudinal re-
inforcement. A concrete mix design was carried out and the
same mix was then used in all the beams to give a cube
strenéth of "about 35 N/mmz. The shear span to depth ratio

was taken as 4.0 for all the beams.

The results from these tests are used in the next

chapter for comparison with the analytical stress computations.

B2 Properties of lMaterials

6.2.1 Concrecte Mix Design

6.2.1.,1 Introduction

A trial mix design was carricd out to
give an early strength suitable for the RC test members.
Recently Pulverised Fly-Ash (PFA) has been incorporated in
concrete as a fine material to obtain economic and strength
advantages. In practice, PFA has been used in concrete in
different ways, eg as a cement replacement, as an admixture,

or as a replacement for sand.

Smith (74) considercd the concrete containing fly-ash
as a new type of concrete and designed accordingly. Jackson

and Goodridge (75) achieved good carly strength by combining
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both sand and cement replacement. They found that in order
to obtain both cconomic and strength advantages using PFA,
it was best to replace up to 20j% of the cement by weight

and incorporate the rest of the PFA by volume replacecment of

sande.

The aim of this mix design was to obtain a fly-ash
concrete mix to give the required early strength (cube
strength) of about 35 N/mm2 at 28 days, together with good
flexural strength and aegree of workability (slump between

50-75 mﬁ).

6.2.1.2,1 Aggregates
The coarse aggregate used
was 10 mm irregular gravel. The fine aggregate was washed
and dried river sand. The percentages passing through the
various.BS sieves for both the sand and coarse ag

cregate are

shown in Table 6.1,

The sieve analysis for sand indicates that it is a

medium sand of zone 2, according to BS 882 (76).

The ratio of sand to gravel in all mixes was talken

1:1.33 according to grading curve 2 of Road Note No & (77).

6.2.1.2.2 . Cement

Ordinary Portland cement con-
sidered to comply with BS 12 (78), was used throughout the

experimental programmee.
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Tabl e bl

Sieve Analysis of Available Aggregate

BS Sieve Size % Passing
78" Coarse Aggrecate

EAl 88

AL 25

. 3/16" 6.5
Sand

3/16" 98.1

No. 7 2.k

No 14 66.6

No 25 51.5

No 52 31,4

No 100 ; 1.6
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6.2,1.2.3 P F A
The fly-ash uscd was
produced by the Ferrybridge Power Station. The typical
composition and sieve analysis given by the supplier is
shown in Table 6.2, and was considered to comply with

BS 3892 (79).

6.2.1.3 Mix Design Procedure

In the design of this mix, the intention
was to replace both cement and sand.by PFA. The replacement
of cement was by weight and for sand by volwne. The PFA/
sand Qolume.réplacement factor and the PFA/cement ratio can
be determined experimentally according to the materials used.
The procedurc used in the replacement was similar to that of

Jackson and Goodridge (75).

The PFA/sand volume replacement factor can be selccted

as a reasonable value, normally between 0.4 to 0.6, As a
guide in choosing this factoé, a small mix consisting of
aggregates and cemenf in any desired proportions is first

made and the volume determined. A similar mix composed of the
same materials in the same weight proportions but with only
half the amount of the sand is then made and sufficient PFA

is then added to yield the same volume as the PFA free'mix.

The PFA/sand volume replacement factor =

weight of PIA added
weight of sand replaced
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Table 6.2

Specificationsof Fly-Ash U

sed

Chemical Analysis

% Silica as §i0,

% Alumina as Al, O
% Iron as Fe, O
% Titenum as Ti 0O,
% Phosphorous as P2'05
% Calcium as Ca O
% Magnesium as Mg O
% Sodium as Na2 0
% Potassium as K, 0

% Sulphuf -as SO3

LLoss on Ignition

B5 Sieve

No 52

100

200

300
Specific Surface

Density

1

\e}

Sieve Analysis

101

% Passing
99.98
96.90
860,54
7h .50

3990 cm”/g

2]
2.17 gm/cm”



To determine the PFA mix proportions the following

steps can be followed:

(1) A basic mix with suitable proportions by weight of

cement and aggregates should be evaluated first.

(2) The PFA/cement ratio ranges between 0.4 and 0.8, so

a value should be chosen within this range for ecach mix.
It was suggested that the amounf of cement Lo be replaced by
weight should be up to 20%. So choosing a percentage for
cement replacement, the amount of cement to be replaced and
that remaining in the mix can be determined. Then the amount
of PFA can be calculated using PFA/cement ratio., The bal-
ance of PFA replacing sand by volume can then be determined

using PFA/sand volume replacement factor determined earlier.

(%) The new mix proportions by weight can then be evaluated
using the determined amounts of cement, PrA, sand,

aggregate and water content.

Several PFA mixes should be made in which PFA/cement

ratio and PFA/sand volume factor are varied, then the

required ratios are those giving the highest carly strength.

For this study, the amount of cement replaced by weight
was between 10%.and 20%. The PPA/sand volume replacement
factors were chosen to be between 0.4 to 0.6. The total
PFA/cement ratio was between 0.4 to 0.6, The basic mixes

were designed according to Road Note No 4 (77).

Six trial mixes were carried out. The amount of

cement replaced and the different factors of replacement
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used in the mixes are summarised in Table 6.3.

The final proportions of the mixes and the weight
of material per cubic metre for each mix are shown in

Table G.k4.

6.2.1.4 Mixing and Casting

The mixing of the concrete was carried
out in a horizontal type pan mixer with a capacity of
0.1 m3. The aggregate, cement and.PFA were first mixed
dry for. one minute, then the water Qas added and mixed for
another two minutes. The concrete was then poured into the
moulds in tﬁo layers and compacted by a 25 mm dia vibrator.
The moulds were covered with polythene sheeting and demoulded
after one da&t The specimens were then left undecr poly=-
thene sheets under internal uncontrolled temperature and

humidity conditions until the day of testing.

6.2.1.5 Tests and Sive of Test Specimens
For each mix the following tests were

carried out:

(1) The slump and VB test for fresh concrete.

(2) Cube and flexure strength at 1, 3, 7 and 28 days.
o0

(3) Shrinkage strains up to 26 days.

Twelve cubes 100 mm size were used to measurce the cube
strength (3 cubes were tested at each age), while 8 prisms
of size 100 mm x 100 mm x 500 mm were used for the flexural

strengths (2 at each age). Two of these were instrumented
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Table 6.5

-

Replacement [Factors for PFA

MixX Amount of Cement 1’&".-?\/(,‘(:1:1‘01-11; PFA/Sand Volume
No Replaced by Jcight Ratio Replacement [Factor
X 20% 0.6 0.6
LI 10% O.h 0.6
TLT 10% 0.4 0.6
Iv 20% 0.6 0.6
\% 10% O 0.4
VI 10% 0.4 0.4
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Table 6.4

Proportions of the Mixes and Weight of Material per Cubic Metre

Mix

Basic Mix

Mix with PFA

Wt of &2 Wt per Cubic m
0 Gt S i 2 : W Cem per ¢ PFA : S $nG : W §C+Pz«A3é W/ (C+PFA)

cubicm gsrogace Cement | PFA | Water

Kg Ko Ke Ke

T s 2 15 288 cc 053 352 T 0.0 'y 2210 4.3:55:::0,65191/5.6 0.405 285 171 185
I 012,06 3.4 :0,61 300 . 0h- o 2.4 v 3,8 1:0,7 1/4 .5 0.50 272 109 190
TIN5 2:6 34 2:0.61 300 Ok 128 3 3.8 "0,72151/5,.5 0.515 270 108 194
IV 1s1 2256 =3 20,6115 300 0.6 : 2.66 : 4.25 :0,76} 1/4.3 0.475 243 166 185
Vit 3 :2.0% 3. 5.8 20,66 270 e 0k - 2.8+ 432 O ?hC1/5.72 0.525 257.5{ 103 | 190.5
VIt 2.8 -4 3.6 10.66 277 » Och #2484 - 4,0 30,741:1/4.58 0.515 263.5{105.5! 195




by Demec discs to measure the shrinkage strains.

All the strength tests were carripd out in a com-
pression test machine supplied with frames for compression
and flexural testing, and with a digital control console
with a display unit for test results. The flexural and

compression tests were carried out according to BS 188 (80).

6.2.1.6 Discussion of Results

Tables 6.5,.6.6 and Figs 6.1-6.3
summarise the results from the six ﬁixes. Adequate work-
ability and compaction of concrete are the most important
properties for fresh concrete. The slump and VDB tests were
used to measurc the characteristics of the fresh concrete.
From table 6.4 it can be seen that mix III gave the highest
slump, but this mix was bleeding after casting. Mixes I and
IV gave lower slump and higher VB values, and it was noticed
that they were less workable and needed more time in comp-
action. Mixes V and VI havévthe same degree of‘workability.
From Table 6.5 and Figs 6.1 and 6.2 it can be scen that the
cube and flexural strengths incrcase with decrease of
w/(c + PFA) ratio and (c + PFA)/Aggregate ratio. Fig 6.3
shows the rapid increase in strength in the early days. Mix
I gave higher cube strength than required. The increése (5 91
water percentage in mixes II, III and IV decreascd the cube
strength and improved the flexural strength, but the cube
strength was slightly higher than required. The cube strength
in mix V was lower due to the increase of water content and
the aggregate ratios. This mix gave higher flexural strength

at 1, 5 and 7 days as more sand was replaced by PFA., Mix VI
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Table 6 05

Slump and VB for the }Mixes

Mix No I FRIE L L Iv. v VI

Slump 39 56 68 43 62 62
mm .

vV B P 3 z 3
dag 1.5 3¢5 3 £ 3 3
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Table 6.6

Compressive and Flexural Strength

Compressive & Flexural Strength of PFA Mixes N/mm2

Mix 1 Day 3 Days ‘ 7 Days 28 Dpays Shrinkage

No Micro=-

Comp | Flex ﬁizi Comp | Flex zi;§ Comp Flex %%%% Comp | Flex %%%% (zgtgi;:)
I 12,3 11,561 1127 126.3 12,78 | <105 | 38.1.] 3.36.] <08 bo 53] 4108 291
II 10.6 {1.15 | .11 23.1:12.51 1 .109 | 29.7 | 2.88 }-.97 |38.7] 4.2 ] .109 292
IIX 9.8 {1.3 «133°1:21.7. 1 35 161 | 30.9 | 3.44 | 111 | 37.2 4;72 J127 292
Iv 10.3 | 1.5 .14 20.7 | 3.6 S178°1°30,9 12,72 BB | 37.2 1 4.64 | .125 290
v 8.5 |11.55:] <1825 1851 | 3.4 «187.126.9 {3.76 | .14 33.8 | 4.22 } ,125 267
VI 1062 | 1.4 .137 20.3 | 3.4 «16071°27.,9 1 3.66°| $131 135481 4.7 | «131 293




5.5¢
“»
>
— O
G
> O5) o
o o
s 0
- HOn
N N
> £
e L5t =
5
z 3
o
I
o L 5t
35¢
25 L 1 & LO ! ! -
A A4S .5 .93 A .45 .- .53
W/(C+PFA) RATIO W/(C+PFA) RATIO
[ A) {B)

FIG. 6.1. INFLUENCE OF WATER/FINE MATERIAL RATIO ON CUBE AND FLEXURE STRENGTH



2

fcu N/ mm

{28 day e )

%53‘
55F ©
©
T
5.0F
~
&=
L5} &
=
o
S
4.5}
35¢
25 1 ) ] 1 LO L 1 L
3.5 4.0 L5 L8 35 4.0 L5 4.8
(C+PFA)/AGG. RATIO (C+PFA)/AGG. RATIO
{ A} ( B )

FI1G.6.2. INFLUENCE OF FINE MATERIAL/ AGGREGATE RATIO ON CUBE AND FLEXURE
STRENGTH |



T

50

N/mm2

|

o Mix 1
A Il
% » I11,1V
X Vv
o . VI
Ol 1 1 L
O:la3 7 28
AGE days
( A)

N/mm

gcu

0.0l

-
-
—

AGE days
( B)

FIG.6.3. CUBE AND FLEXURE STRENGTH vs. AGE



gave nearly the required early cube and flexural strength
and was considered to be sufficiently workable as it gave a

slump of about 62 mm and a VB time of about 3 secconds.

6.2.1.7 Conclusions

From the limited trial mixes reported,

the following can be concluded:

(1) Using PFA as replacement for cement and sand, workable

structural concrete mixes can be achieved.

(2) The strength of fly-ash concrete depends on the rela-

tive substitutions of cement and sand.

(3) From this trial mix a PFA/cement ratio = 0.4 and PFA/
vsand volume replacement factor = 0.4 were obtained
while Jackson and Goédridsc (75) obtained a value of 0.6 for
these factorse. This emphasises that these factors depend on
the type of fly-ash and aggrecgates used and it is necessary,

therefore, to determine these factors experimentally.

6.2.2 Tensile Reinforcement

The main longitudinal reinforcement used in all
test Dbeams was cold worked high yield strength ribbed bars
(Tor steel). Four sizes were used, 12 mm dia, 16 mm dia,

20 mm dia, and 25 mm dia bars. The yield strength (at

0.2% proof-stress) for bars 16 mm dia and less is 460 N/mmz,
while for bars over 16 mm, the yield strength is 425 N/mmz.
The ultimate tensile strength is 10% higher than the yield

strength.
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6.3 Design of Beams

In all the beam tests, the web width (bo), the effec-
tive depth (d), and the overall depth (h) were kept con-

stant.

The area of longzitudinal steel in the tension zone was
taken as a perccntage of the steel required for a balanced

section.

The depth of the neutral axis was calculated according
to the strain profile shown in Fig 6.4, which assumes that

the steel is just yielding when the concrete crushes.

. ,0035 d o
n. 200351+ gf/Es .

2 2
ie d 25 N/mm"™, Es = 200 kN/mm
The force in the compression zone was calculated

according to the assumptions of ultimate strength analysis

(81).

Ll '
C1 = hl K3 fc bo dn

(@]
!

K, K £! (B - bo) t

3

K, K., are the coefficients related to the magnitude of the

f i |
internal compressive force in the concrete stress block.
From Hognestad et al results (82), the value of K1 K3 was
o
taken as 0.74 for £y = 28 N/mm“., Thus,

Asb = T/fy
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Asb = Area of steel for balanced section

T = Tensile force in the main reinforcement

= The calculated compressive force C

: = yield strength of the main steel

The area of steel required for the balanced section
was then calculated for cach beam. Different percentages
for the actual longitudinal steel (As) were calculated from
A (eg A /A 2 042, 0.3, 0.4), it was then decided to

Sy s’ 'sb
choose As/Asb = 0.3 in all the beams as it gave a reasonable

reinforcement percentage based on the web arca (qubo d).

The‘amount of steel in each beam is shown in Table 6.7

The beams were extended by 300 mm beyond the supports
and 90o bends were used at the ends of the longitudinal
reinforcement to provide adequate anchorage. Fig 6.5 shows

a longitudinal section in the beam.

6.4 Description of Test Series

The tests were divided into two series. Since the
tests were conducted to measure the contribution of the
flange, diagonal preformed cracks and notches around the
steel bars were used in both shear spans to eliminate the
effects of aggregate interlock aﬁd dowel action as shown in
Fig 6.5. However, after carrying out tests on the first
series of beams, only one preformed crack in one shear span
was used. This was to simulate the actual plane of failure
and for failure to occur on one side of the heam only.

Series I consisted of fiwe beams to investigate the effect
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Table 6.

7

Details of Beans
No & S ize
Beam No Cross Section (_‘“; P ;’:
%
TRB 700 2 ¢ 20
R s i - 1578 16,
4 0 i 260 <7 167
IV LK ] - -[— 1 ¢ 12
175
260 + 1.16 2 .167
1 ¢12
175
BX - 700 2 20
TBX-II SOt J ¢ |
1.78 .167
i ¢ 12
1050 ,
TBX-IITI |50 3 ¢ 20 2.25 .167
TBX-IV e 330 5 ¢ 16 1,32 2 |.233
» * 700 n
E )\-V ~ 2 [
s 70| ] ¢
1.92 '233
L3N B ) 1 ¢ 16
2 1050
PBX-V 2 25
i=-VI 70 ¢ 25 |
+ 2.9 «2%7%
oo o 1 ¢ 20
TBX-VII a5 i ¢ 20 1.5 o3
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Table 6.7 (Continucd)

. No & Size
Beam No Cross Section of Bars P = ]
AR (mm b h
% ©
TBX-VIII 700 3 ¢ 20 2.25| 4 3
90| |

® @ o

TBX-IX 1050 3 ¢ 25 3.25| 6 3
90|
e & o
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of the position of the diagonal preformed crack on the
pehaviour and ultimate strength of the beam. Seriecs I
consisted of nine becams to study the influcence of the flange
width and flange thickness on the ultimate shcar strength

of the beam and the contribution of the flange in resisting

shear forces,.

Web reinforcement equal to r‘%ﬂv = 0.72 N/mm2 vas
provided in all becams in the area between the preformed
crack and the support. The reason for this was to decrease
the possibility of the beam failing by splitting along the
main reinforcement and to assess the shear force carried by

the dowel action in this areca.

All tests have the same span, shear span, web width and

total depth.

»

6.5 Instrumentation

Fig 6.6 shows the details of the instrumentation for
each beam. Four electric resistance strain (ERS) gauge
of length 12 mm were fixed on the middle bar of the main
reinforcement. Two were fixed on top and bottom of the bar
at midspan and the other two at a distance of 50 mm from the
end.of the notch of the preformed crack towards the support.
Six ERS were fixed on the first two links immediately adja-
cent to the preformed crack. A strain gauge recorder of 10
channels was used to read the ERS. Strains up to 30,000 U

straims can be recorded with sensitivity up to 5 | strains,

Demec discs of 100 mm gauge length were fixed on the

top, side, and underside surfaces of the flange at four
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adjacent sections in the area between the ﬁead of the pre=
formed crack and the load block. These were arranged in
rows across the flange width. For flanges with width of

350 mm, four rows were fixed on top of the flange at 50 um
apart and one row was fixed on the underside. [or flanges
of 700 mm width, four rows were also fixed on the top sur-
face with 100 mia betwecn, and three rows were on the under-
‘side surface 75 mm apart. For flangcs of 1050 mm width, six
rows were fixed on the éﬁp surface at distance 100 mm in
between, and four rows were on the underside at 100 nm

apart. The Demec discs were fixed one day before testing.

Dial gauges were used to measurc deflcctions at secveral
points at the flange underside and on both sides of the pre-
formed crack. , Dial gauges of 25 mm maximum travel and with

0,01 mm divisions were used.

6.6 Manufacturing of Beams

Steel moulds fabricated from standard channels, angles
and plates were used to cast the test speéimens. Three
moulds were used in the test program, one mould for cach
flange width. The moulds had to be adjusted for each beam

of series JII as the flange thickness changed.

The reinforcing steel was cleaned by removing loose
rust from the surface. The places of the clectric strain
gauges were ground smooth, and thoroughly cleaned before
installing the gauges and water proofing them. The stcel
was then assembled into cages. The effective depth was kept

constant for all beams, so steel chairs with different

heights were used in each beam.

S



The steel crack formers, Fig 6.7 were covered with -
polystyrene shects on both faces using wall paper paste.
Polystyrene shects of 50 mm thickness with three holes to
allow the steel to go through were used for the preformed

crack around the bars.

The reinforcement cage was placed first in the mould,
then the crack formers were fixed with screws to.the sides of
the mould. The 50 mm thick polystyrene shecets were stuck

to the mould using sticking tape.

Casting was carried out in layers with batches of
concrete. Between four and six batches were required to fill
the mould according to the size of the beams., FEFach layer
was compacted using 25 mm internal vibrator; Care was taken
in placing andﬁvibrating the first layer to ensure the
penetration of concrete between the stecel bars and to fill
the required cover underncath. Special attention was taken
in the areas of the electical strain gauges to prevent any
harm or damage being done to them throughout. the casting
process. The top surface of the concrete was smoothed after
the completion of compaction. Cubes and prisms for control
tests were cast and compacted at the same time. After cast-
ing the beam and its control specimens were covered with

polythene sheets.

After three days, the side screws fixing the stecel
crack formers were taken off and then the becam was stripped
from the mould, The crack formers were talken out and the

preformed crack was cleaned by removing the polystyrene in
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the inclined crack and around the steel bars. The becam and
the control speciments (three 150 mm cubes, threce 100 mm
cubes and three 100 x 100 x 500 mm prisms) were then
re-covcfed with polythene sheeting and stored for curing in
the laboratory under uncontrolled internal conditions until

tested at 28 days.

8.7 Testing Apparatus

A diagramatic layout of the test rig used is shown in
Fig 6.8. The rig is stiff enough for all loading stages and
it provides enough room for the different flange widths used
in the test pfogram. Loads were applied by means of a 500 kN
loading machine through a hydraulic system connected to a

50 ton jack stroking downwards. The jack is connected to a

counterweight to compensate for the weight of the piston.

The applied load was checked by a 500 kN electrical load
cell placed immediately above the spreader beam . The cell
was powered by_a'stabilised power supply unit type E30/1.,

The supply voltage was maintained at 9.3 v during the test.
The output voltage was meaéured using a solatron digital
voltmeter capable of readipg to .01 mv. A change of 0,3
mv in voltage was equivalent to a cell load of about 10 k.

The cell was calibrated using a compression machine.

The load was transmitted through a spreader beam to
two point loads applied over the entire width of the web,
Each point load consisted of a roller and bearing block.

Under each block a 16 x 75 x 175 mm steel plate was placed to

distribute the pressure evenly,

LT B O
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The beams were supported on an immovable knife-cdge
on one side and a roller which can move freely in the hori-
zontal direction on the other side. A steel plate (175 x
75 x 10 mm) was used over the knife-edge and the roller in
order to distribute the pressure on the underside of the

beam and prevent local crushing.

6.8 Testing Procedure

Before testing, one side of the beam was painted with
a thin coat of whitewash to locate and study the propagation

of the ¢racks clearly.

'Load was applied in increments of 5 or 10 kN, depcending
on the ultimate capacity of the beam tested. At later stages
the increments were reduced gradually to 5 and then 3 kN,

The reasons fo; using lower increcments was to observe and

record closely the behaviour of the beams before failure.

After cach load increment, the developed crack patterns
were marked carefully with a pen on the painted surface of
the beam and the load level was written next to cach crack.

This was followed up to failure.

Concrete strain readings were taken on both halves of
the beam in series I, but in series IJ it was taken on one
side as only one preformed crack was provided in one shear

span. This also reduced the duration of testing.

Before reaching the failure load, all dial gauges
were taken out and no reading was recorded from other gauges.
Loading was then continued until failure occurred, and

the ultimate load recorded.
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The beams were photographed after failurc and then

taken out.

Control specimens were also tested on the concrete com-

pression machine until failure.

6.9 Investigation for the Location of
the Preformned Crack

6.9.1 Introduction

It is very difficult to.predetermine the failure
plane in a beam failing in shear. Placas (14) noticed that
there is more than onc shear crack in the shear span and
usualiy two o; more will widen more than the others with
increasing load depending on the shear span length. ¥Previous
test rcsults‘show that the main diagonal cracks appear within
the middle third of the shecar span. Bahia (83) related the
location of the failure plane to the mode of failure. He
reported that beams failing in diagonal tension failed at
planes away from the loading block, while bcams failing in
shear or shear compression failed at planes very close to the
loading block. However, in his tests, thero-werc beans
which failed in shear or shear compression and their planes
were away from the loading blocks and the location of the

preformed crack he used.

Having recognised this, it was felt necessary to inve-
stigate the location of the preformed crack and its influence

on the shear strength and behaviour of the beam.

.

6.9.2 Details of Tests

Five beams were cast and tested in thisseries.

Beam A was cast without preformed crack and referrecd to as
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TRB I in the tests. Beams AI (TRBIX ) and BI (TRB II-) had
preformed crack at location.(l) and beams DBIYX (PRBIXI) and
BIII (TRB IV) had preformed cracks at locations (2) and (%)
respectively as shown in Fig 6.9. These locations were

chosen within the middle third of the shear span where

the main failure planes take place. The inclination of

these cracks was taken at about 270. The percentage of
longitudinal reinforcement in each beam was p = 1.78%

(AS/AS = 0.3). The flange width was 700 mm and flange thiclk-

b
ness was 50 mm.

6.9.3 Discussion of Results

6.9.3.1 Load-deflection Relations

Load=-deflection curves for the full
beam and the Béams'with different location for the preformed
crack are shown in Fig 6.10. At low load stages beams A,

AI, BI and BII showed little difference in deflection,

while beam BIII_gave higher -deflections. The difference in
deflections inﬁreased with the increase in load level and in
particular in beam BIII. The curves are linear until the
appearance of the first flexural cracks, then they continue
approximately as linear but with different inclination until
about 80% - 90% of the ultimate load where they deviate from
linearity. The excessive increése in deflections before
‘failure is probably due to the rapid decrease in stiffness
of the beams after the formation of shear cracks. Jeam BIIT
sustain?d higher deflections and failed at a higher load than
AIl, BI and BII, The stiffness of the becams decreased as the

preformed crack moves towards the load points as shown from
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the deflection of beam BIII.

6.9.3.2 Concrete strains in the Shear Span
Longitudinal concrete strains were
measured on the top, underside and edge of the flange in
three adjacent sections in the shcar span. The strains at
the underside of the flange are not reported due to the
inconsistency in the results obtained. This may be due to
the location of the tensile cracks initiated at this face
within the gauge length or adjacent .to it, Little change
in the.étrains at the edge of the flange occurrecd, so this

data 'is also not reported here.

The distributionsof the concrete strains across the
flange width for beams BI, BII and BI1I are plotted in Fig
6.11. At early stages of loading, the graphs show that the
location of the preformed crack had little significance on
the concrete strains, except for scction 2 of beam DLIIT
which showed higher strain values than the others. They are
‘higher by 67% at the.centre of the flange at a load of 40 kN.
The distribution of strains at that load level is morc or
less uniform across the flange width. As the load increases
the distribution becomes non-uniform and a tendency to change
the compressive strains to tehsile is observed. Thesé ten=-
sile strains were recorded first in section 3, the
nearest section to the head of the preformed crack, at load
50kN in beam BI, 56kN in beam BII and 60 kN in beam BIII.

It was also noticed that these tensile strains appcared when
the diagonal crack recached the underside of the flange.

Higher tensile strains were recorded before failure but they
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are not plotted on the graphs as it was noticed that ten-—

sile cracks appc’ared within the gauge lengths. The maximum
compressive strains observed were in section 1 in the three
beams and ranged between 640 M strains in beam BI at load

82 kN and 780 M strains in beam BII at load 73 kN.

609.303 St(:cl Str(’ljns

Tensile steel strains were measured on
the top and bottom surfaces of the middle bar at midspan.
Shear forces versus steel strains are plotted in Fig 6.12
for the five beams. The relationships arc lincar until the
first’fIGXurai crack, then the relationships take another
linecar form up to failure. These rclationships indicate that
no yielding of the steel takes place before -failure. The
steel strainé of the beams with preformed cracks are in
general smaller compared with those of the full beam., Com-
paring the steel strains of beams AX, BI, BILI, BIII, the
location of the preformed crack in the shear span has little

or no effect on the midspan stecl strains.

6.9.3.4 Cracking and liodes of Failure

The first flexural crack appecarcd in the
flexural zone of the full beam at a load of 50 kN, whilc in
the beams with preformed crack, this occurred at 20 kN. The
first shear crack appeared in tﬁc shear span in beam A at
a load of 35 kN, while in beams AI, BI and BII this crack
appeared at 30 kN and in beam BIII at 20 kKN. The main
diagonal crack appeared in the full beam at load 100 kN
with an inclination of about 40° with the horizontal axis

of the beam. Then propagated up with less inclination
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(about 300) and down along the main reinforcement. The top
end of the diagonal craclk ei;tcnded along the web/flange junc-
tion thon turned up into the flange initiating the final
break down of the beam. For beams AI, BI and BII the top

end of the preformed crack started to propagate at a load of
40 kKN and reached the flange underside at a load of about

55 kKN, then ran along the flangg/web junction before turning
up into the flange and causing failure of the beam. The same
mode of failure happened in beam BIII except that the top end
of the preformed crack started to propagate at an carlier
load, 75 kN, and reached the underside of the flange at

45 kKN, Another crack appeared at failure along the flange/
weh root in the zone between the two point loads of this beam.
It is clear that the mode of failurc in the four beams is

shearing of the flange accompanies by splitting along the

main steel reinforcement.

Strength Characteristics

6.9.3.5

The failure loads for the five beams

are shown in the following table:

Beam No A AT BI BII DIXIT
Ultimate load kN 119.0 69.6 &h.0 85.5 106
Cube Strength - o oL =0 1

N/mm2 56.5 56.7 20.7 584 571
Flexural strength ] . ! X
; N/mma t.6 39 2.0 ) 37
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Since beam A is a full beam, the total shecar force at
any stage of loading is a combined contribution of compres-
sion zone, aggregate interloclk and dowel action. The rest
of the beams have preformed cracks in the shear span, so the
total shear force is a combincd contribution of compression
zone and partially of the dowel forces.

6.9.4 Location of the Preformed
Crack for the Next Tests

The strength and modes'of failure of the beams
with preformed cracks have been compéred with the full beam.
Fig 6.;3 shows the three locations of the preformed crack
and the main failure planc of beam A, It was decided to
adopt location (2) of beam BIL for the next tests of the pro-

gramme, The recasons for this were:

»

(1) This crack is at the same location as the main crack

in beam A as shown in Fig 6.13.

(2) For location (1) of beams AI and BI, the distance
between the craﬁk and the support is a minimum ie, at
the cecdge of the middle third of the shear span. Not

many beams fail in this position.

(3) Location (3) of beam BIII, the failure plane extended
to the point load and the area around the load block
was cracked. Another crack appeared at failure along the
flange/web root in the flexural zone. The beam might fail
in a shear-flexural mode of failure rather than the required

shear failure.

The inclination of the preformed crack in these beams

wloks
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was taken as about 2 according to Al-Alusi (6) and Ilacas

(14) who pointed out that the main diagonal cracks gencrally
. T . 3 zn®

appeared at lower inclination than 30 . However, as a result

of the test on beam A the inclination was modified to aboutl

4,0°

y Eig 614 The main -diagonal crack in this beam was
. A o) ; g N
inclined at about 40, and in beams BI, IL and IIX, the

propagations of the preformed cracks were also at steeper

inclinations than 2?0.
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AP TER 7

COMPARISON OF COMPUTER ANALYSIS RESULTS

WITH EXPERIMINTAL DATA

71 Introduction

-

In Chapters 3, 4 and 5, a 3-dimensional finite clemcﬁt
model was developed to analyse the problemn of inelustic‘
behaviour of reinforced concrete T-bcams failing in shear.
In this chapter a comparison of the results from the analysis
with the actual behaviour from tests is carried out. In
spite of the vast amount of experimental work which has been
carried out on beams failing in shear, the behaviour and
failure mechanism for this type of failure is still not
completely understood. The aim of this study is to investi-
gate the accuracy of the solution in reflecting the beam
behaviour. However, it must be remembered that the theore-
tical §olution neglcéts some aspects which are thought to
influence the ultimate behaviour of thc beam, such as bond
between steel and concrete, dowel effect of main recinforce-

ment, etc.

Results from tests on reinforce d concrete T~beams are
comﬁared with those from the analysis in the following
sections. Two series of beams are used for this study.

The test series are described in Sections 6.3 and 6.4. The
results are compared with those from the analysis in Section
7.2. All the beams are tested until failure under two point

loads with constant shear span/depth ratio = 4 and

A /Ay = 0.3,
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72 Comparison

72.1 lethod of Analysis

BEach beam had two syusetrically loaded shear
spans.' Beams of series one had a preformed crack in cach
shear span, except beam TRB-I which had no preformed cracke.
Beams of series two had only one preforied crack in one shear
span. Due to symmetry one guarter of the beam has been
solved analytically. This quarfcr is formed by the two
symmetrical planes, namely, the midspan plane and the

~
t

longitudinal plane as shown in I'ig 7.1.

'

All bouﬁdary nodes located on the midspan plane are
constrained horizontally in direction X, and free to move
in directions Y and Z, while boundary nodes located on the
longitudinal plane are constrained in Z-direction and free
ip X and Y directions, The nodes at the support are con-

strained in Y and 2 directions and free in A-direction.

The actual shearing force P/2 acting on each shear
span is simulated by an equivalent nodal load P/4 in the ana-

lytical solution.

The idealisation of the different flange widths for
finite element analysis is shown in Fig 7.2. The main
reinforcement is approximated by bar elements lying on the

bottom surface of the beam.

The initial elastic modulus Ec for concrete is taken
=i ; ; ! : :
30 N/mm"~ and Poisson's ratio V is taken 0.15. The modulus

of elasticity for steel is taken BOOIgN/mmg.
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In the early stages of analysis, two cycles for cach
load increiment were found to be sufficicnt to bring the dis-
pPlacements in close agreement with the experimental ones and
stabilisation of crack propagation. -In the later stages,
when the cracks entered the flange, it was noticed that
cracks propagated faster, so the number of cycles was
increased to four and the value of the load increment was
reduced. The stage at which the number of CYClCS.WnS
increased is defined ip terms of the.principal compressive
stress. When the value of the principal cowpressive stress
reaches 30% of the compressive cube strength, then the number
of cycles was increased to four. The cycling opcration
could be terminated if the diffcerence of the midspan ais-
placement in two successive cycles was less £han a prescribed
value of 0.1 m&. An economic advantage was gaincd by
implying these limits into the solution.

7¢2.2 -Beams with Different
Preformed Craclk rositions

This serics consists of four beams, an uncracked
beam, TRB-I, and thrce beams, TRB-II, TRB-III and TRB—IV,
with preformed cracks at different positions. The flange
width, thickness and area of longitudinal steel were kept
the same in all the beams (see Table 6.7). The finite ele-
nent idealisation for these bcaﬁs was as .shown in Fig 7.2a.
Thirty-five elements were used to represent the guarter of
the beam shown. The load was applied in 7 increments and
the number of cycles used for each increment was two, until
approaching the ultimate load when the number was increased

to four.
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Load~deflection curves at the midspans of the beaws
are plotted in Fig 7.3. The analytical solutions arc in
good agreement with the experimcntdl curves, bult the stiffl-
nesses were overestimated in the early stages of loading
for bcam TRB-I and in the later stages for beams TRB-II and
TRB-III. This is probably due to the stiffening effect

between steel and concrete which is negleccted in the analysis.

The ultimate strength predicted from the analysis under-
estimates the experimental values for beams TRB-I and TRB-IV
by 3/ and 6% rcspectively, and overestimates the values for
beams TRB-IIL And TRB-III by 12% and 5% respectively. This
shows that ﬁhe ultimate strengths for the four bcams were
rcasonably p;edicted by the analysis. Ilowever, the difference
in strength shown between the analytical and experimental
could be related #o the preformed crack location which
changes the element size in the mesh for each case. This
can be observed from the mesh size in the area between the
preformed crack and the load point where the failure occurs
in this area. In beam TRB=II, the mesh division in this
area was 180 mm (Fig 7.2a) which is the coarsest mesh size
in the three cases with preformed crack, and hence the ulti-
mate strength of the beam was overestimated by 12% than the
experimental value., In beam TRB=-IXI the mesh division in
the same area was reduced to 146.67 mm, the strength was
overestimated by 5% than the experimental one. In the last
beam TRB~IV, the mesh division in the same area was the
smallcst.to be 113.33 mm, and the strength of this beam was

underestimated by 6% of . © the experimental value. However,
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this discussion is only on three bcecams, but it shows to some
extent the effect of mesh size on predicting the ultimate
strength of the beam, particularly in the arcas where fail-

ure occurs.

Fig 7.4a, b, ¢ and d, shows the crack patterns obtained
from the analysis for beams TRB-I, TRB~IL, TRB-IIX and TRB-1V
respectively, while Fig 7.5a, b, ¢ and d, shows the actual
failure modes for the four beams respectively. The crack
patterns from the analysis are plotted at intermcdiate load
stage (60KkKN ) and at ultimate load. As it has been discussed
in Chapter 4, the stresses werc calculated at the sawpling
points of tge integration rule, hence cracking occurs at
these points after checking the stresses with the failure
laws. Thus éach sampling point represents a cracked region
of the element. The cracks were assumed to be perpendicular
to the principal tensile stress. A crack at the sampling
point is represented in the drawing by parallcl lines “
in the direction of the crack and representation for the
location of the sampling points and the cracls are shown in

Fig 7.4a for one element in the 2-dimensional casc.

In the experiment the cracks first appeared in the four
beams at the tension side of the web and jpropagated vertically
towards the flange with increasing load. Cracks also
appcared at the head of the preformed crack and propagated
diagonally towards the underside of the flange until it
reached the flange-web Jjunction and exlended along it as the

load increcased. Before recaching the ultimate stage the

flange began to crack and failure occurred by the rapid
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development of the cracké in the areca of.flnngc between the
load and the precformed crack. In the full beam the main
diagonal crack appeared at 100kN , propagated upwards until
it reached the flange, then it turned up in the flange
causing the failure. Horizontal splitting across the
flange width occurred at the instant of failurc. This
splitting was due to the upward bending of the part of the

flange over the preformed cracke.

The crack pattermns resulting from the analysis
(Fig 7.%) for the four beams indicates that cracking at early
stages of loading was in the tension side of the web, then
extended upwards. As discussed above, cracks are defined
to be at certain sampling points of the clement, thus the
distributidn‘qf cracks in the tension zone is rcgular. The
cracks also, in this context, have an average meaning due
to each sampling point representing the average material
properties for a part of the element. In the actual bcam
the distribution of cracks is irregular due to the fact
that fhc concrete is a non-homogeneous material and the
appearance of the surface cracks depends on the internal
microcraclks. Remembering the assumptions in the analysis

and the factors governing the appearance of cracking in the

actual beam, it is difficult to compare the number and

spacing of cracks between both the analysis and experiment.

The directions and shape of the crack patterns in the
web resulting from the analysis is in good agreement with

those from the experiments. Inclined cracks also appeared

around the head of the preformed crack in the énalysis and
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this simulates the propagation of cracks diagonally along the

preformed cracks in the actual beams. With increasing the
load, cracks appeared in the arca of the web between the

head of the preformed crack and the load point with inclination
very close to the horizontal and these are analogous to the
extension of the cracks along the web flange junction in the
tests. At the same time cracks start to occur in the flange
with inclination in the area over the preformed crack and tend
to be in horizontal direction in the arceas near the load
point. 'Thesc cracks continued in the flange resulting in
increased displacements until the solution diverges indica-
ting the failure of the becam. The horizontal splitting

acrvoss the flange width appeared at failure in the tests,

has not been predicted explicitly in the analysis. This split-
ting could be'a 1oéa1 effect of the failure of this part of
the beam due to the separation and bending up of this part

of the flange from the web. Another rcason could be that the
cracks in the flange are prédicted by the failure criteria
based on octahedral normal and shecar stresses which do not
define a certain direction for the fracture pattern and it is
adopted in the analysis by assuming the cracks to be perpcn~'
dicular to the direction of the principal tensile stresses

as discussed in Chapter 4. 1In the full beam, the crack
pattern from the analysis showed inclined cracks representing
the actual diagonal crack. These cracks appeared in the
analysis at load 110 kN, while in the test, the diagonal

crack appearcd at 100 kN’



7¢2.3 Beams with Different Flangse
width ana Thickness

This scries of beams has been classified into
three groups. Each group containsg threc beams with the
same flange width but of differcnt thicknesses. The (finite

element idecalisation for these groups is shown in Figs 7.2.Db

and 7.2c.

7+2.3.1 Group 1
The flange width for these bcams was
550 mm (B/b°= 2), and the thickness ranged from 50 to 90 mm
(t/h =.i67 - +«3). The beams are referenced TBX I, T3X IV
and TBX VII. Twenty-eight elements were used in the finite
clement model of the quarter beam. Six load increincnts were
applied in the analysis with two cycles in cach, until the

last two increments, where the number of cycles incrcased to

four.

The comparison of the experimental and analytical load-
deflection curves is shown in Fig 7.6, where it can be scen
that satisfactory agrecment was achieved. In the case of
beam TBX VII, the analytical solution underestimated the
experimental results. The discrepancy in deilection and
strength before failure is believed to be due t the effect
of dowel action which was ignored in the aualysis. This is
especially true for beams with stiffer reinforcement bars

such as beam TBX VII of this group (y 20).

The crack patterns and the spread of the crack zones

resulting from the analysis at intermediate load stage and

at ultimate load are shown in Fig 7.7. The actual cracking
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and modes of failure are shown in Fig 7.8. At 16&d level of
50 kN, the cracgs obtained from the analysis and obscrved

in the tests are characterised by vertical flexural cracks
started at the bottom side of the web and propagated
vertically to reach a level below the underside of flange.
At that stage also, the tests showed that craciks propagated
diagonally along the preformed crack and rcached.the under-
side of flange, then it turned horizontally and ran along
the flange-web junction for a short distance with incrcasing
load. Before approaching the ultimate load these cracks
turned up into the flange. At failure shear cracks in the
flange begin and extend to join the upper end of the pre-
formed crack and the top surface of the flange mnear the
loading block (Fig 7.8). In the case of beam TBX I, a
breakdown for the concrete of the flange located betlween the
preformed crack and the loading block occurred with little
destruction at the top surface of the flange near the load.
This is probably aue to the“severc condition of shecaring
.and compressive stresses reached in this area with short and
thin flange. In beams TBX IV and TBX VII, an inclined crack
opened in the thickness of the flange and accompanied by a

horizontal splitting across the flange width (Fig 7.8).

The crack patterns from the analysis shown in Fig 7.7
indicate the initiation of cracks in the flange separately
of the cracks existing before in the web. These cracks tend
to be in horizontal level ncar the top surface and slightly
inclineé near the bottom surfacerf the flange. Cracks
are spread in the area of the flange between the preformed

crack and the load point. The formation of these cracks
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in the last load increment shows that failure occurred in

the flange due to their appearance.

The measured steel strains from the tests and those
calculated in the analysis showed that the main tensile

reinforcement had not yielded.

A plot for the shear stress distributioms obtained {from
the analysis before failure is shown in Fig 7.9. The shear
stresses are plotted at three sections across the half f(lange
widthh in the shcar span, Section 1, at a distance of 550 mm
from the support, ie located over the head of the preformed
crack. Section 2 was at 0660 mm from the support and Section
3 was at 1010 mm from the support, ie very ncar to the load
point. The full line represents the shear stresses ncar the
bottowm surface of the flange and the dotted line near the top
Qurface of the fiange. The shearing force resisted by the
flange was calculated by integrating the shcar stresses at
sec 1 across the flange widéh and taking an average stress
value through the flange thickness. Table 7.1 shows the
shearing forces for the three beams calculated from the

analytical results and the shearing forces estimated frowm thc'
cxberiments. The experimental values are the actual shear
forces on the beams reduced by the forces carried by the
shear links existing in the area between the preformed

crack and the support. More details will be given in

Chapter 8 about calculating these forces.
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Table 7 .1

Shear Forces carried by the Flange

Beam No TBX~T TRX-TV TRDX=-VIL
Cube strength o . & &
N/mm20 36.1 B 5.8
A Analysis 1947 28+ 8 56 02
“ S
Force |
kN Bxp 27.5 59,8 38,1

From the above Table it can be scen that the shear
forceé obtained from the analysis and the tests are in good
agreement for beams TBX IV and TBX VII. The disparity bet-
ween the experimental and analytical values for beam TBX I
may be referred to: kl) The assumed lincar stress distribution
between the two sampling points through the flange thickness.
(2) The location of the sampling points inside the clement
boundaries and not at the head of the preformed crack as
shown in IFig 7.9a. This allows a part of.thc shear force to
be resisted by the concrete of the web between the underside
of flange and the preformed crack, noting that this beam

has narrow and thin flange.

7.2.3.2 Group 2
This gfoup contained the beams THBX II,
TBX V And TBX VIII. The flange width for these becams was
700 mm (B/bo'= 4) and the flange thickness ranged from 50 mm
to 90 mn (t/h = .16? - +3). The finite element mesh used
for this group is shown in Fig 7.2c, in which 35 elements

were used., Six load increments were performed for cach beam
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with two iteration cycles for cach increment except in the

last two where four cycles were used.

F'ig 7.10 shows the midspan load-deflection curves and,
also, the vertical displaccmcnt at the underside of the
flange near the head of the preformed craclt, against the
shearing force. The analytical results agree closcly with
the experimental curves. The difference in strength between
the experimental and analytical solution in beams TBX V and
TBX VIII is mainly due to the dowel action of the 20 mm dia-

meter reinforcement bars.

The crack patterns resulted from the analysis at
intermediate load stage (60 kN for beams TBX II and TBX V,
80 kKN for bcam TBX VIII) and at ultimate lo%d are shown in
Fig 7.11. Thé‘modes of failure obtained Lrom the ecxperiments
are shown in Fig 7.12. The cracks appeared firét in the
lower side of the web in both the experiment and analysis,
then spread vertically towards the underside of the flange.
In the tests cracks extended diagonally from the hcad of the
preformed crack towards the underside of flange and conti-
nued along the web-flange junction. At failure these cracks
turned up into the flange, propagated to the loading arca
and lifted up the part of flange between the preformed
¢rack and the loading block. Ih the case of beam TDBX II, the
failure was accompanied by transverse splitting on the top of
flange over the head of preformed crack, then extended longi-
tudinally parallel to the flange-web junction until it
reached the loading block. In beams TBX V and TBX VIII,

the failure was accompanied also by transverse splitting on
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top of the flange and longitudinal splittings parallcel to
the flange-web junction. These longitudinal splittings
extended around the loading block and then to the Llexural

zone of the flange between the two loading blocks causing

destruction of part of flange in this arca, IFig 7.12.

The crack patterns obtained from the analysis, Fig 7.11,
at failure, show the initiation and sprcad of cracks in the
flange near the top and bottom surfaces in the arca betwecen
the preformed crack and the load point and in the fLflexural
zone. This shows agreement between the precdicted crack

pattern and the actual one.

The shear stress distributions across the flange
width are plotted in Fig 7.13, for the three beams at three
different secfions'in the shear span. Table 7.2 shows the
calculated and the actual shearing forces resisted by the

flange.

Table 7.2

Shear Forces carried by the Flange

Beam No TBX II TRV TBX VIII
st ;j;;gsth 38.6 37.5 36.1
Analysis 28.9 b1 50,0
Shearing
0
‘3§§e Exp 35 .4 Ly, 2 50,2

The experimental and analytical values for the shear

strength of the flanges of beams TBX V and TBX VILI are
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coincident. The difference shown in beams T3X IT is due

-

to the reasons discussed before as it has a thin flange.

V1233 Group 3

The beams of this group are TDBX IITI,
TBX VI and TBX IX. The flange width is 1050 mm (B/ho = 6)
and the flange thickness varies from 50 mm and 90 mm
(t/h =.167 - .3). Thirty-five finite elemcnts were used in
the model of the quarter beam as shown in Fig 7.2c. 5ix
load increments were used in the analysis with two itera-
tion cycles for cach increment until the last two increments

where four iteration cycles were performed.

Fig 7.14 shows the load-displacement curves for the
three becams. The total load on the beam is plotted versus
the midspan—déflcction. The shear force is plotted against
the vertical displacement of the underside of flange near
the head of the preformed crack. The displacements obtained
from the analysis are in good agreement with the experimental
curves. The divergence of the analytical values from the
experimental at failure in beams TBX VI and TBX IX is mainly
due to the dowel effect of the main reiﬁforccmcnt as bars of
20 and 25 mm diameter were used in these¢ becams.

which
The crack patternsﬁresulted from the analysis for two

load stages are shown in Fig 7.15, while the experimental
modes of failure are shown in Fig 7.16. At the intermediate
load stage, the crack locations and directions from the
experimbnt and the analysis are in good agreement. Up to
that load level the cracks are vertical and distributed in

the web. With increasing load in the tests, cracks ran
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along the flange-web root and turncd to enter the underside
of flange.' In the case of beam TBX LII, (with thin flange),
when the failure load was approached, a crack propagated

from the web-flange junction near the head of the preformed
crack and penetrated throﬁgh the flange thickness. In this
beam, a transverse splitting across the flange width at the
top surface occurred at failure, and this was accqmpanied by
longitudinal splitting of the web/flagge root bhetween the
transversce crack and the load block. In the cases of beams
TBX VI and TBX IX, longitudinal and transverse cracks appeared
in the underside of flange in the area between preformed
crack and loading block. At failure longitudinal and trans-
verse splittings took place at the top of flange in the shear
span. This wﬁg accompanied by longitudinal splitting along
the web-flange root which extended to the flexuwral zone.
Failure of these beams was accompanied, also, by secondary
diagonal‘cracks which appeared in the web near the preformed
crack in beam TBX VI, and innthe other shear span in beam

TBX IX. These cracks propagated upward to the flange and
downward along the main reinforcement causing the brcecakdown

of bond between concrete and steel.

The analytical crack patterns at failure for these
beams, Fig 7.15, show the cracked regions in the flange near
the top and bottom surfaces and longitudinally along the
. flange-web junction. However, there is a difference between
the two mechanisms of failure obtained from the analysis and

the experiments, in the cases of beams TBX VI and TDX IX.

While in the experiments a plane of failure initiated in the
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web by a secondary diagonal crack, the analysis shows crack-
ing of flange is the main cause of failure. The deficicncy
of the i‘in.ite element in prodictin_fj these secondary cracls

is probably due to the average meaning for cracking dis-
cussed before and the large zones of cracked areas reprec-
sented by one clemecnt. DMore refincd meshes may help to
define closely the zones of cracking. Nevertheless, follow-
ing the order of formation of cracks in the last unstable
load increment of the analysis and the observations of crack-
ing in the tests, shows that failure was precipitated by the

crack propagation in the flange.

The shear stress distributiomsacross the flange width
within the shear span, for the three beams is shown in
Fig 7.17. The shearing force resisted by the flange cal-
culated for Section 1, is compared with the experimental

values in Table 7.3.

Table 103

Shear Forces carried by the [I'lance

Beam No TBX IIX TBX:- VI TBX IX
Cube Strength
N i 2 38.9 364 37.0
Analysis 2353 50.4 62.1
Shear
Force
kN Exp 38,2 Lbo,7 62.7
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The above Table shows good agrecment between the
analytical and experimental values particularly for bcams
TBX VI and TBX IX. In the case of beam. TB{ III, the analy-
tical value underestimates the experimcntal. This beam has
a thin flange and probably part of the shear force is resis-

ted by the web as discussed before.

A Conclusions

The actual shear behaviour of beams is complex and
involves many phenomena. The aspecﬁs that have been intro-
duced in this thcoretical analysis enabled to predict the
history of deformation and the crack propagation for beams
failing in shear with enough accuracy. A complete picture
of the stress distribution in any part of the becam at any

load level can, be given by the solution.

From tests failure modes were effcctively shearing in
the flange. From analysis failure was in fact precipitated
by cracks spread ncar the top surface of the flange. In
general guantitative correlation betwecen crack zones are
satisfactory. The number and spacing of cracks are not com-
pared in this study. This is because the cracks in the
actual beams depend on certain f&ctors such as the existence
of pre-microcracks and the internal structure of concrecte.
In fact, there is no proposed theory up-to-date to predict
the mechanism of cracking as it happens in the experiments.
Better crack patterns could be obtained from finite element

analysis using fine meshes but it is rather expensive in

computation time, particularly in the 3-dimensional casc,

In some beams cracks propagated from the preformed
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craclk towarus the support point at a lower load level in
the analysis than the experiment. This may have been due

to the links provided in this area in the tests and have

®)

not been introduced in the analysis.’

In some becams, the calculated load~displacement curves
overcstimate the observed ones. This may be due to some
extent to the assumed material constants. Also it could be
due to the large values of the load increments and the

coarseness of the mesh used.

il

By investigating the shear stress distributions in the
areca of the flange between the preformed crack and the load
point, it was noticed that somec values are not consistent
(ie they have opposite signs to what they should be).

This may be due to (1) The irregular changes in the material
properties in that area of flange due to the spreading of

cracking in it. (2) The shear retention factor (0.2) that

has been used, a more accurate study should be made to inves-

tigate its effect on the shear stress distribution.
(%3) The crude mesh that has been used. (4) The reduced

integration rule used in evaluating the stiffnesses.
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PR e s i tu i S g ittty

EFFECTIVE WIDTH AND SHEAR
RESISTANCE OF THEL FLANGE

8.1 Introduction

It has been stated in Chapter 2 that the strength and
behaviour of T-beams depend o6n a number of factors. The
exact analysis of T-beams subject to shear is too time-
consuming for the practising engineer and therefore the use
of an 'effective width' concept in the calculation of the

shear strength of the flange would have distinct advantages.

Several research workers have presented solutions for
the effective widths of T-beams for usc in bending problems
(84)~(91). These studies defined the 'effective width!
as a function of the longitudinal stress at the top surface
or the middle surface of the slab. However, although there
are several studies on the shear strength of T-beams, very
little work has been done on the concept of using an ‘'effec-
tive width' in the assessment of the shear force. carrisd by
the flange of T-beams. Placas and Regan (13) predicted the
effective area of the flange resisting shear as t (b  + 6n),
but in the discussion in Section 2.3, it was shown that this
value was rather conservative in many cases. Swamy and
Quereshi (21) have taken the full width of the flange
(B/b0 in their tests was 3),.but reduced the neutral axis depth

to fall within the flange thickness.

Experimental results (7), (8), (11), (14) and (20)
indicate that there is an increase in the shear strength of

T-beams with an increase in the flange width, flange thickness
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and percentage of main longitudinal reinfoxrcement.

" In this chapter an investigation of the ‘effective
width' to be used in shear, together #ith the factors
influencing the shear strength of the flange, is reported.
The Finite Element Analysis described in Chapters 3, % and
5 was used to determine the theoretical stress distribution
in the flange. This was used exclusively in this study in
an attempt to obtain a satisfactory assessment for the
teffective width' and the contribution of the flange in

resisting shear forces.

8.2 Effective Width of the Flange

8.2.1 Shear Stresses in the Flange

"In general the shear stress distribution in an
isolated flanéed beam is not constant, but varies across the
width of the flange with higher values over the rib and lower
values at the edges as shown in Fig 8.1. The stress also
varies through the thickness of the flange with higher

values necar the underside.

The shear stress distribution in the flange was
obtained from the non-linear Finite Element Stress Analysis
discussed in Chapters 3, 4, and 5. In this Finite Element
model, the analysis of reinforced concrete structure in
3-dimensional stress state was presented. The brick-type
hexahedron isoparametric elements (20 nodes) were used
throughout to represent the concrete and bar elements were

also uéed to simulate the tensile reinforcement.

The progressive cracking of concrete in tension and
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tension compression zones were studies. Multiaxial failure
criteria based bn experimental data obtained elsewhere
(54) and (58), were discussed and used in predicting the
imum
cracking. Max stress criteria were used to predict cracking
in the tension zones, and failure criteria based on octahedral
normal and shear stresses were used for tension compression
zones. The cracking has been taken into account in the non-
linecar solution by modifying the material properties at the
cracked points of the. element. The.load was applied in
increments and the crack propagation was followed up through

an iterative procedure in conjunction with a variable stiff-

ness approach.

Resu;ts obtained from this Finite Element approach
were compared with a set of experiments on reinforced con-
crete T-beams with different flange widths and thickness.
The load deflection curves, crack patterns and failure loads
were checked and showed the suitability of the method to
predict the history and behaviour of reinforced concrete

structures under different load levels.

The experimental tests carried out included reinforced
concrete T-beams with B/b° varied between 2 and 6, and t/h
ranged from .167 to 0.3 as shown in Table 8.1. The aim of
the tests was to study the sheér strength of the flange.

An inclined preformed crack was used in the web area to
eliminate the shear forces resisted by aggregate interlock
and dowel action. The tests were conducted on large scale

beams of total length 3.4 metre and with shear span/depth ratio

of 4.0.
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From the non-linear 3-dimensional Finite Element
Stress Analysis, six components of gtresses were cobtailned
at each of the eight sampling points in cvery eclement of the
beam (fhree normal stresses and three shear stresses) as
shown in Fig 8.2. The vertical shear stress component was
taken at these individual points to form the shear stress
distribution in the flange., The shear stress distribution
obtained at ultimate load for fhe beams with different
flange widths and thicknesses were used to evaluate 'effec-
tive widths'. The shear stresses in the flange were taken
at the nearest sampling points to the head of the preformed
crack, as this represents the maximum shear stresses in the
flange. In the meantime these shear stresses are similar to
the ones in actual beam when a diagonal crack forms in the
rib width andvexténds into the flange underside. Moreover,
the major part of the shear force is resisted by the flange
alone. in this section of the beam. The sampling points are
located near the top and bottom surfaces of the flange, so
the values of the shear stresses at the middle surface of
the flange were obtained &s the mean value between the shear
stresses at these points. The shear stresses across the

flange width for the different beams are plotted in Fig. 8.3.

8.2.2 Definition of the 'Effective Width'

The 'effective width' is assumed to be that
width of the flange which, when acting at a constant average
shear stress, would sustain a shear force equal to that
obtained by integrating the shear stresses across the

middle surface of the flange,
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the average shear

surface

(Txy)av is taken as 2/3 of

the centre of the flange, ie 2/

the effective width

(8.1)

middle surface

stress at the middle

the maximum shear value at

3 (Txy)max. This value is

chosen as it takes into account most of the width of the

flange where the shear stress is

Fig 8.30

8.2,3 Factors Influencing

distributed according to

the

tEffective Width!

Table 8.1 shows the
widths' for the different flange

ding to eguation 8.1. It can be

flange width/web width ratio, B/b

tive width is between 94% to 98%

calculated 'effective

width and thickness accor-
gseen from this Table that for
= 2, the evaluated effec~-

of the total flange width

ie, the effective width is nearly equal to the flange width

in this case, particularly with thicker flanges. For

B/bo = 4, the evaluated effective width ranges between 52%

and 63% of the total flange width. For B/bo = 6, the

effective width varies between 4
flange width. These percentages
increase in the flange thickness

tudinal reinforcement.

3% and 49% of the total
also increase with the

and amount of main longi-



Table 8.1 Evaluated 'Effective Width', Equation (8.1)

-.6;1';..

Flange : . -

0 Ratio Ratio Ratio ffziuz?id gzaluatiédih“
mem Width | Thick B © 100A e R - e

No — - s width
B mm t mm b h e
[o] b d
(o]

TBX~-I 350 50 2 167 116 328 .94
TBX-II 700 50 4 <167 1.78 367 , 52
TBX-III 1050 50 6 «167 2.25 454 JA3
TBX-IV 350 70 2 «233 1.32 342 .98
TBX-V 700 1= 70 & «233 1.92 295 .56
TBX-VI 1050 70 6 +233 2.90 459 Al
TBX-VII 350 90 2 .30 1.5 344 .98
TBX-VIII 700 90 4 «30 2,25 440 .63
TBX-IX 1050 90 6 30 3425 518 +49




Curves are plotted for the variation of the evaluated
‘effective width at ultimaté load, 2 be’ with change in the
ratios of flange width to web width, B/bo’ flange thickness
to beam depth, t/h, and area of main longitudinal recinforcc-
ment P , as shown in Fig 8.4. These curves indicate that
there is an increase in the effective width with increasing
flange width, flange thickness and percentage of main
longitudinal reinforcement. Fig. 8.4b, shows also that when
B/bo > 4, there is a higher rate of increase in the ‘effec-

tive width!' with increasing flange thickness.

Also the ratios of the resulting calculated 'effective
widths!' to the flange widths, 2 be/B, web width, 2 be/bo
and flange thickness, 2 be/t, are plotted against the ratios
B/b0 y t/h and P in Figs 8.5, 8.6 and 8.7. Fig 8.5a and c
indicate that 2 be/B decreases non-linearly with increasing
B/bé pri-pDiin i Pig 8.5b shows the increase in 2 be/B with
increasing t/h. 2 be/bo increased with the increase in
B/b t/h and P as shown in Fig 8.6 and the rate of increase
was nearly constant particularly in Fig 8.6a. In Fig 8.7,

2 be/t increased with increasing B/boior P , while it de-
creased with increasing t/h.

8.2.4 Prediction of the .
tEffective wWidth!

Examining the data plotted in Figs 8.4-8.7, a
non-linear regression analysis was carried out to take into
account the parameters influeﬁcing the effective flange
width, This non-linear procedure gives the coefficients of
a non-linecar relationship between a set of independent

variables and one dependent variable. Relationships wecre
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first suggested between 2be/bo’ Zbe/B or 2b /t as dependent
e

variables and B/bo, t/h and P as independent variables.

The values of Zbc/bo’ 2be/B' 2be/t, B/bo, t/h and

p for

the nine cases shown in Table 8.1 were fed to the non-linear

regression program to obtain the regression coefficients

required for each relationship.

were in the form:

2b
e

2b

2b
e

[1.09 + «135 (%—) + 1.429 (%) + 172 P]

o

[1.11 =36195 (§~) b Ok S (%) + .128P ]
(o]

bo + ,198 B + 1,296 ¢

t + 0188 B + 0673 h

b0 + %18t

bo + «31 B

[8.47 + .89 R-) - 16.58(%)- 1.04p ]
o

[8.985 + 5.11 (B = 21.31 (&) ]
o

[1+ .981 (%—) + 3.508 (%) ]
(o]

- bO + .0015 B.t. p
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The resulting equations

(8.2

(8.3)

(8.4)

(8.5)

(8.6)

(8.7)

(8.8)

(6.9)

(8.10)

(8,11)



2b = b+ .0268 B.t'69. p"'57 ’ (8.12)

The calculated values from these equations are compared with
the evaluated effective width from ‘equation 8.1 in Table 8 .2.
The values obtained by equations 8.2, 8.4, 8.5 and 8.12 are
more close to the ones obtained from equation 8.1. Equation
8.3 gave inconsistent values for cases II, IIX, V and VIII.
Excluding the effect of flange width and amount.of main stecel
reinforcement in equation 8.6, the ébtainod values arc not

in satisfactory agreement. Equation 8.7 gave conservative
values in short flanges. Equation 8.10 gave lower valucs
with thin flanges while with thick flanges the values were
overestimated. Eqguation 8.11 also gave lower values cxcept

for wide and thick flanges.

In some cases of short flanges the 'effective width'
predicted by the above equations was exceeding the actual
flange width, so it must be emphasised that in this case
the 'effective width' should be taken equal to the flange

widthe.

8.3 Shear Resistance of the Flanges

8.3.1 Introduction

It was noticed during the tests that failure
‘occurred by propagation of the-diagonal cracks into the com-
pression zone of the flange inifiating tensile cracking in
this area which precipitated the final break down of the
beam., .Failure was also accompanied by splitting along the

main longitudinal reinforcement.

In this section the contribution of the compression

- Be
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Table 8.2 ‘!'Effective Width' of the Flange
Flange Evaluated 'Effective Width'! min
Ptom | Wwidth| Thickness | Integ | Ea | Eqa | Ba | Eq | Bq | Ea | Eq | Ea éq Eq | Eq
B mm t mm | Eq 8.1 8.2:'1 8.3 8.4 8.5 8.6:| 8.7%4 8.8} 8.9 | 8.,10}:8.11} 8.12
TBX-I 350 50 328 Big L3156 =09 318 B%ae ] 2851 314 13223 10 177 | 205 | 305
TBX-II 700 50 367 380 | 442 | 379 | 383 | 334 | 392 | 371| 374 | 276 | 268 | 379
TBEX-III 1050 50 454 442 | 360 | 448 | 449 334 koo | 436 425 374 352 443
TBX-IV 350 70 342 336 522 335 338 398 283 351 353 265 223 328
TBX-V 700 70 393 401 | 450 | 405 | 404 | 398 | 392 | 433 424 | 402 | 316 | 422
TBX-VI 1050 .70 459 478 | 445 | 474 | 470 | 398 | 499 | 387| 496 | 539 | 495 | 466
TBX-VII 350 90 344 358 1..330 561 5571 261 283 355 325 361 246 344
TBX-VIII 700 90 440 428 | 480 | 431 423 bé61 392 | 426 171 537 387 Lhl
TBX-IX © 1050 90 518 505 490 500 489 461 499 493 509 715 635 501




zone of the flange in resisting shear forces is examined.
Comparison is then made between the shear force carried by
the flange and the total shear force supported by the beam
at ultimate load. |

8.3.2 Prediction of Shear Resistance
of the Flange

In order to predict the shear force carried by
the flange of a T-beam, one needs to know; the effecctive
area of the flange involved in resisting shear forces, and
the average shear stresses acting on it at failure. The
effective areca of flange is taken as the 'effective width'
evalﬁated by the equations above, times the thickness of

the flange.

Taylor (92) computed the shear stresses in the com=-
pression zone of rectangular beams from longitudinal strains
measured on the side of the beams. The computational method
used was derived from the differential equations defining
stresses in the beam. Fig 8.8 shows the distribution of the
shear.stress in the compression zone. The maximum shear
stress value obtained at ultimate load was about 1.7 N/mm2
for concrete strength 60 N/mmz. Regan (93) took the
average shear stress for the critical condition with respect

to shear to be 0.2 (fé)%.

In this study, the average shear stress value is taken
as £3/20. This value was chosen as an average value for the
shear sgtresses computed by finite element analysis across
the flange width at ultimate load. _This value also agrees

with the shear stresses given by CP 110, 1972, (1),
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considering the shear stresses in the code are divided by

a factor of safety of 1.6.

The shear strength of the flange can therefore be

expressed as:
= ° . N . .
\'4 2b, s - fc/20 | (3.13%)

Table 8.3 shows the shear forces calculated by equa-
tion (8.13) using ‘'effective widths' evaluated from equations
8.2 to 8.12, The shear forces are comparcd with the values
integrated.from the stress distribution shown in Fig 8.3 and

the experimental values,

The experimental values are the applied shear forces
acting on the beam reduced by the forces carricd by the links
in the area between the preformed crack and the supporte.

These forces are calculated as follows:

(1) For a link that has yielded, the force carried is

' = l
3 vy 2 5o Ay (8.14)
where Vl = shear force carried by the link
fy = yield strength of the steel = 250 N/mm2
Asl = cross sectional arcea of the link

(2) For a link that has not yje lded

vl - 2 ° Es. l-l OAAal (8.15)
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Table 8.3

Shear Strength of the Flange
Integrated | E W Eq (8.2)| E W Eq (8.3)| E W Eq (8.4)| E W
Béam Flange v
5 exp v \'s v v v \'s v v v
No Width| Thickness ‘ ¢ o il = = & = 2 o e L &
mm mm kN kN exp kN exP kN exp kN exp kN
TBX-I 350 50 28.9 19.7 0.72 23.6| 0.82 22.7 | 0.79 22,3 0,77 |22.96
TBX~-II 700 50 35.4 28.9 0.82 29.3| 0.83 54 .1 1 0,96 29.26 ] 0.83 29.57
TBX~-III 1050 50 38.2 33.3 0.87 3.4 0.90 27.8 10.73 |34.85] 0.92 [3%.9
TBX-IV 350 70 %24 .2 28.8 0.97 35.6 | 1.14 .2 11,10 3546 1.14 35.87
TBX~V 700 70 Ly 2 4t 1 1.0 42,1} 0.95 47:31 1,07 k2,531 0.96 42,42
TBX-VI 1050 70 49,7 50.4 1.01 48,71 0.98 45,4 1 0.91 48.31| 0.97 47.9
TBX-VII 350 S0 38.1 36.2 0.95 43,81 1.15 41.3 1 1.08 43,85} 1.15 £3,95
TBX-VIII 700 90 50,2 50.2 1.0 55.6{ 1,10 62.4 | 1.24 56, .12 54,97
TBX=-IX 1050 90 6257 62.1 0.99 67:21- 108 65.3 | 1.04 66.6 1.06 65.13
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Table 8.3 (Continued)

£q(8.5) | E W Eq (8.6)] E W Eq (8.7)| E W Eq (8.8)] E W Eq (8.9){ E W Eq (8.11)} E W Eq (8.12)
Vc yc Vc Vc vc Vc .vc vc vc -Vc Vc vc Vc
L kN | Vexp | k8 | Vexp kN | Vexp kN | Vexp kN | Yexp | xn Vexp
0.79 24,12 0,83 |20.43 | 0.71 22.67|0.78 23.25 | 0.8 14,8 0.51 222021 0,76
0,384 25.78] 0.73 }30.26 {0.85 28,6410,81 28.87 1 0.82 20.69| 0.58 |29.26 0.83
0.92 25.991 0.68 |38.82 | 1.02 33.92}0.89 |33.06}0.87 |27.39] 0.72 |34.,47 { 0.90
1.15 37.14) 1.19 {30,03 | 0.96 37.25}1.19 |37.14 | 1.19 | 23.66| 0.76 |34.8 1.12
0,96 41.79 0.95 |41.,16 | 0.93 45,471 1.03 bi,52 | 1.01 33.18] 0.75 (44.3 1.0
0.96 40,56 | 0.82 50.86 1,02 £9.64{1.0 50.55 | 1.02 |50.45] 1.02 |47.49 | 0.96
1.5 43.,85| 1.15 |35.45 |0.93 41.36{1.1 4o.71 4§ 1.07 30,811 .0.81 j43.1 1.13
1.10 59.91] 1.19 }50.9 |1.01 55.36{1.1 54,19 | 1.08 }|50.29| 1.0 577 1.15
1.04 61.4 | 0.98 [66.47 |1.06 65.67]'1.05 67:8 | 1.08 ['84.58|21.35 166473 1.06




"y )
Young's modulus of stecl = 200 x 10° N mm“

]

where E
S

m

recorded strain in the link

There were five links in this area, but the strains
were only measured on the two ncarest to the preformed
cracke. In some beams these two links had both yielded before
the ultimate load was reached. In this case an additional
value of 50% of the force carried by the second link was
added to the force computed for the other two links. This
approach was based on the observations of the measured
strains in the links where it was noticed that the second
link started to record strains after the first one had

yielded.

For the range.of flange widths and thicknesses con-
gsidered in Table 8.3, the computed shear forces show satis-
factory agreement with the experimental results except those
caiculated using the 'effective widths' from equations 8.3,
8.6, and 8.11. Using equation 8.3, the predicted shear
strength of the flahge was 0.73% of the experimental value
in beam TBX III and 1.24% in TBX VIII. With equation 8.6,
the correlation between the calculated and experimental
values showed low values as in TBX II and TBX III (0.78%
and 0.68%). Using equation 8.11, the comparison showed
lower and higher values as TBX I ( 0.51%) and TBX IX (1.35%).
Despite the exclusion of the effect of the amount of main
steel and the flange thickness in calculating the ‘'effective
width' by equation 8.7, the predicted shear forces are in
good agreement w;th the experimental values except in beam

TBX I (0.71%) which has short and thin flange.
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It can be concluded now that equation (8.13) predicts
the shear strength of the flange reasonably well. Among the
predicted equations for the 'effective widths', equations
(8.2), (8.4) and (8.7) are the simplest and rcasonable
equations for evaluating the 'effective width' of the

compression zone.,

8.3.3 Shear Strength of the Flange with
Respect to Results of Full Beam Tests

Equation (8.13) has beén applied to test
resultg of other investigators (5), (6), (9), (10), (11),
(13), (20) and (94). The 'effective widths' have been cal-
culated using equations (8.2), (8.4) and (8.7). These
tests had different B/bo, t/h and arca of longitudinal
steels The results are presented in Tables.8.4-8.8. It
should be noticéd that these tests represent the ultimate
shear strength of the beam and hence include dowel and
agg?egate interlock forces, while the computed values obtained
from equation (8.13) represent the shear strength of the

compression zone alone.

The tests carried out by Placas (13) were on T-beams
with shear reinforcement, so the value V1 in Table 8.5 is
calculated as the shear force resisted by the stirrups and

this has been subtracted from the ultimate shear force to

obtain V .
u

From Table 8.4,B/b° was 4,33, t/h was 0.217 and p
varied between 1.48% and 4.4%. The shear strength of the
flange predicted by equation (8.13) and using equation (8.2)

for the 'effective width' ranges between 52% and 71% of the




Table 8.4 Al Alusi Tests (6)
2b B \'A v o ,
Beam Bt B 5 P % rf £! (1§ ab, (13 ut c(1) 2b_ |2b |V | Y;Eiﬁl 2b | 2b, L c(3)
N R by / o Vv o L ) o ” i'““' - S
B s i bo h N/mm N/mm?‘ mm bo kN kN ut n(un) bo (kl?l ut (3) i (3) Vut
[ % ) 3 - 4 ° 1 ol : i
11 330 2ol 8 3% 10217 1 2,63 28.6 186 | 2.43 | 8.4k 7kt T 185 | 2.4 | 8.57 i 99 | 258 | Bo1g] 0.k
10 : : : - 7 5 8.4 14.75 (
330 | 32]4.33 217127 28.6 187 | 2.45 5 75 0.58 183 | 2.4 | 8.37 0.57 179 | 2.34 | 8.190 0.56
4 b4, i : = 5% 2.2 4] 13.88 ;
| 330 | 32|4.33 217 | 1.5 26.53 | 171 4| 7 o.52 | 185 | 2.4 7.77 | ©.56 179 | 2.34 | 7.6 | 0.55
e / sal 27«32 24P . 14.2 P - - -
5 330 | 32| 4.33 | .217 | 1.48 703 171 24 | 739 5 183 | 2.6l 7.97] 0.56 179 | 2.5 | 7.8 0.55
! s ; G . 12,6 )
1. 1330 |..3214.33 | '.217 }/'1,48 27,00 | 171} 2.24 | 7.35 5.8 185 ] 2.8{ 7.92| ©.63 179 | 2.36 | 7.74) 0.61
- : 13,02 :
o SEL 32 k.33 | 2217 | 149 28:6 171 2.24 | 7.76 2 0.60 185 | 2.4 | 8.37 0.64 179 | 2.34 | 8,19 0.63
T - 5 /! . 13.55 P o a0
Ban|i339 |adBlited s |1n827 [2.71 23421 487 2000 Te22 1 29097 o 56 | 183 2.4 | 7.84] 0.55 | 179] 2.34) 7.28 0.54
/ ‘ = o ! s 402 1 g m )
8. 1330 |.-32]4.33 1,217 | 2.71 26.25 | 187 | 2.45] 7.8 3% 6.58 | 183 | 2.4 7.67| 0.57 | 179 | 2.3% | 7.5 0.56
i =z . 2 o . . 02 » - - y
19 1330 | 3214.33 | .217 | 4.21 50,6 | 206 2.7 | 10 L 0.71 | 183 | 2.4 8.96 | 0.64 | 179 2.34} 8.76 0.63
o |330| 32|4.33 | .207 | 2.72 | - |31.7 | 187 2.45] 9.4 | 1425} ol el au] 9,28 0.66 | 179] 2.3k | 9.0§ 0.64
2 3 23 - RS . .02 : 5
01330 1 3214435 1 .217.] 4,21 27.25| 206 2.7 | 9 15 0.60' | 183 | 2.4} 7.98 | 0.53 | 179| 2.34 7.6 0.52
: S « , . : £
4 1330 | 32433 | .217 | 2.7 - 27.0 | 187] 2.45 | 8.02 | 12.6¢ 0.63 | 183 ] 2.4 7.92| 0.62 | 179| 2.3%| 7.73 0.61
a3 |330 | 32{4.33 |.217 | 4.8 | - | 28.18] 209 2.7k 9.35 | 1417} o0 | i3 54| 8.25| 0.58 | 179 2.34{ 8.07 0.57
ut = Ultimate strength from tests
2be(1) &V (4 E W Calculated by Equation (8.2)
2be(2) & V c(2)! E W Calculated by Equation (8.4)
2b D ! ' 4 1 "
e(3) & v < (3)* E W Calculated by Equation (8.7)
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total shear forces carried by the beams. For beam No 11,

a lower value Qas obtained about (49%). This beam had a
lower a/d ratio (a/d was 3.32) than the others. When using
equation (8.4) to calculate the 'effective width' the shear
strength of the flange fangcd between.53% and 66% of the
ultimate shear strength, except for beam 11 (48%). The
effect of neglecting the amount of main steel can be noticed
in beams with high percentages of rginforcement, for example
in beam 19 with P = 4&.,2%, the shear strength of the

flange decreased from 71% to 64%. The same occurred in

beam 20 where the shear strength decreased from 60% to 53% and
in beam 23 the decrease was from 66% to 58%. Using equa=-
tion (8.7), the shear strength of the flange was between

52% and 64% and nearly the same decrease as occurred in beams

with high percentages of longitudinal reinforcement,

For tests in Table 8.5, B/b° was 4 (except 2 beams with

B/bo of 2 and 7), t/h was 0.25 (one beam t/h was 0,5) and

P was between 1.25% and 4.16%. By using equation (8.2),
the shear strength of the flange ranges between 52% and 67%
of the experimental ultimate shear strength except for beanms
T 1 (48%) and T 35 (77%). When using equation (8.4) the
shear strength of the flange was between 50% and 70% except
T 2 (73%) and T 35 (75%). Again with beams of higher per-
centage of main reinforcement, the equation yields lower
strength for the flange as in beams T 6, T 18 and T 34

( P= 4.,16%). The decrease in beam T 6 was from 62% to 56%,
in beam T 18 was from 60% to 54% and in beam T 34 was from

63% to 52%. Using equation (8.7), the shear strength of
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Table 8.5 Placas Tests (13)
2b v v % v ”"“
Beam' B t B t rf £ e 2b \4 4 . ¢ c(1) c(2) c(3)
— - P % yv c 0 i ut u el ¥ sl oy 8122
N (1) (1) v c(2) v ;

o mm mm b h N/nzm2 N/mm2 i b KN kN KN KN u e u k;:d(j) Yo
T1 610 76 L 0.25 1525150584279 336 | 2.2 |35.67{ 109.9. |74.2 |35.7 | 0.48 | 39.44 0.53 | 36.22 0.49
T2 610 76 L 0525 1.46 - 28,04 341 |2.24 - 54.74% | 54,7 | 364 0.67 | 39.75 0.73 | 36 .4 0.67
T3 610 | 76 Lo sl e | as8 [ 27e5l 541220 35.67 | 104,58 | 68.91] 35,7 | 0.52 | 38.98 | 0.56 | 35.7 0.52
T4 610 76 A 0.25 1.95| .58 |32.45] 354 2.32 |35.67 | 109,47 | 73.8 [43.77] 0.59 | 46.0 0.62 | 42.12 0.57
T5 610 76 b 0. 25 1.46{1.15 |33.7 341 [2.24 7134 139,73 | 68.39] 43.77] 0.64 | 47.79 0.70 | 4%.75 0.64
T6 610 | 76 | 4 |0.25 | 4.16{2.25 [25.77 y12 |2.70 [139.17 204,7 | 65.43| 40,4k 0.62 | 36.53 | 0.56 | 33.45 | 0.51
T7 610 76 4 lo.>s | 3.0 | .58 |27.35] 382 |2.51 35467 | 109,47 | 73.8 | 39.81 0.54 [ 38.77 | 0.53 | 35.5 0.48
T8 610 76 5 |o.25 | 4.16] .58 |31.2 | 412 |2.70 35067 | 124,6 | 88.93| 48,99 0.55 | 44.22 | 0.50 [ 40.5 0.45
ri0 | 610 | 76 | 4 |o.25 | 1.46] .38 |28.18] 341 2.24 |23.8 | 86.78 [ 62,98} 36.61] 0,58 | 39.94 | 0.63 | 36.58 | 0.58
T18 610 76 &t . |0.25 WG]l 28s 301 4125 2«70 2 74,76 | 74.76] 44 ,56] 0.60 | 40.24 | 0.54 | 36.85 0.49

| 754 505 26 o 0.25 4.16] .58 | 33.9 305 | 2.0 35467 | 112,14 | 76.47] 47.79] 0.63 | 40.22 | 0.52 | 31.82 042
T35 |1067 76 2 |o.25 | 4.16] .58 | 33.62| 473 3,1 | 3567 114,8 | 79.14] 60.59] 0.77 | 5920 | 0.75 | 61.74 | 0,78
T38 610 | 152 b 0.5 4.16| 2.25 | 30.18] 466 | 3.06 | 139+2% 239,41 [100.14f 53.95] 0.54 [ 54.45 0.5% | 39.18 | 0.39

v (1), E.W. calculated by pquation (8.2)
(¢

\'4 (2), E.N. calculated by BEquation (8.%)
C

\'s (3), E. W, calculated by Equation (8.7)



the flange varied between 51% and 67%. But there are beams
with higher and lower values than this. Neglecting the amount
of main steel and thickness of the flange reduces the shcecar
strength of the flange from 54% to 48% in beam T 7, from 55%
to 45% in beam T 8 and from 60% to 49% in beam T 18. In

beam T 34 with short flange width (B/bo = 2), the decrease

was from 63% to 42% and in beam T 38 with thick flange

(t/h = 0.5) the decrease was from 54% to 39%. fhe greater
decrease in the latter two cases shéw that in beams with
thicker flanges the effect of flange thickness should be

included when calculating the 'effective width'.

In Table 8.6, the tests by Erikitola had B/bo from
2 to 10, t/h of 0,3 and p of 2.,54%, 6.52%, and 10.2%.
The tests by Adepegba had B/bo of 2:5; t/h of .33 and P
of 2.54%. The shear strength of the flange was between 306%
and 49% of the ultimate shear. The lower values obtained
in this group of tests were probably due to the high per-
centage of longitudinal reinforcement used in these beams,
which would incrcase the dowel effect. Thié was also noticed
in the tests of Adepegha shown in the same table, where two
rows of steel reinforcement were useds Two beams of these
tests gave rather lower strength of the flange, beam 152
T-16 (28%) and beam T 6 (23%).  The 'effective width' of
these two beams was higher than the flange width and this
may be due to the high percentage of the main steel with
respect to a small flange (B/bo = 2). The effective width
was, tﬁerefore, taken equal to the flange width in these
two beams, and this probably was the reason for the low

strength of the flange. For the beam 152 T«10 with lower

-.163 -



Erikitola

Table 8.6 Tests (20)
Boam B loE _g: i S T e : 2b _?Ez \(fz) ¥ i \_‘;__;__(_3_; X ng;(__g_)_ Vﬁ }’Vg 3
N/mm“ | N/mm® | mm o N KN utestt (2) ut (3) ut

152T-10 152 38 2 o3 2.54 - 37.12 | 152 | 2.0 10,72 | 16.7 0.64 [10.72 | 0.64 | 8.7 0.52
152T-16 152 38 2 3 6.52 o 27.68:1 152 | 2.0 8.0 | 28.8 0.28 | 8.0 0.28 | 6.49 | 0.23
2287 228 58 3 Tt 6452 - D7268015228 115,00 ' 1Hi45.4 | 32,2 0.38 | 8.97 | 0.28 | 7.73 | 0.24
380t 380 38 5 o3 6.52 = 27.68 | 252 |3.32 |13,25] 36.7 0.36 |10.55 [ 0.29 [10.2 0.28
5327 532 38 7 > 6.52 - 27.68 272 3.58 | 14,3 35.5 0.40 [12.15 0.%4 (12,68 0.36
9730 760 38 10 3 | 6.52 - |28.16 | 303 ]3.98 116.2 | 39.9 0.41 |14.76 | 0.37 [16.68 | 0.42
T6 152 38 2 o3 110,2 = 27.6 152 | 2.0 7.97 | 35.0 0,23 2.97 | 0.23 | 6.49 | 0.19
T9 228 38 3 .3 |10.2 - 27.6 228 3.0 11.56 32.3 0.37 | 8.97 | 0.28 | 7.73 | 0.24
T15 380 38 5 ¢34 110.2 - 2746 300 | 3.94 | 15,78 32.3 0,49 |10.,55 | 0.33 |10.2 0,32
T21 532. 38 7 e3 10,2 - 27.6 321 4,22 |116.88| 36.1 - | 0.47 [12.15 | 0.34 12,68 | 0,35
6130 760 38 10 cac 1052 - 31.52.] 351 ] 4.6 21,02 | 48.9 0.3 |16.47 | 0.37 |18.67 | 0.38
Adepegha tests'(94)
TD4 381 76 2,5 o i Rt - 33,07 | 357 | 2.3% |4h.o4)] 91.67 | 0.49 [41.12 | 045 |33.99 | 0.37
TD5 381 76 2.5 .35 | 2.54 - 30.3 357 | 2434 | 41.23]| 95.65 | 0.43 |37.67 | 0.39 |31.15 | 0.33
TD6 381 76 2.5 33 | 2.54 - 30.8 357 | 2.34 | 41,98 91.63 | 0.46 |38.29 | 0.42 |[31.66 | 0.35
TD7 381 76 2.5 igg g Bl - 34,73 | 357 | 2.34 |47.23] 91.67 | 0.52 |48.18 | 0.47 [35.7 0.39
i
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steel ratio (2.54%),, the strength of the flange was 64Y%
which was higher than that for any other beam of this zroup.
When using equation (8.4), the shear strength of the flange
ranged between 23% and 37% in Erikitola tests. It can

be noticed that the decrease in the strength of the flange
is greater than that for beams in Tables 8.4 and 8.5. 1In
Adepegba tests the range was between 39% and 47%. By using
equation (8.7) the strength of the flange was bhetween 19%
and 38%. In beam 152 T~10, the percentage decreased from
64% to 52%. This shows the effect of flange thickness

(t/h was 0.3). Also with Adepegba tests (t/h = 0,33) the

decrease in the percentages was greater with equation (8.7).

In Taple 8.7, the tests given by Ferguson had B/b0 =
%.25, t/h = .162 and P = 4,79%. Tests of Quereshi had
B/bO =3, t/h = .22 and P = 3.49%. The tests by Guralnick
had B/bo = 3,3, t/h = 0.26 and P of 2.37% & 4,19 %. Using
equation (8.2), the strength of the flanges given by the
tests of Ferguson were between 53% and 57% except beam A 5
(70%);Those by Quereshi were between 50% and 57% except
beam S1-3 (38%), this beam had a/d ratio of 3.0. Those of
Guralnick were between.sz% and 78% except beam 1A-IM (41%,
a/d = 2.8). The range of the flange strength of these beams
coincides with that of Tables 8.4 and 8.,5. When using
equation (8.4), the strength of the flange of Ferguson tesgts
ranged between 45% and 49% except beam A 5 (60%). Thosc of

Que.reshi were between 41% and 48% except beam S1-=3 (32%). The

greatef decrease in these two groups of tests when using
equation (8.4) is due to the higher percentage of longitu-

dinal reinforcement used (4.29% and 3.49%). The tests by
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Table 8.7 Ferguson Tests (5)
2b \' : Vv \'4 \% , ~~\r il AN -
Beam B t B t e e Le e i Vat —.c(1) ¢ —.c(2) c V e(3)
No b h P % 2 of (1) 15 (1) Vat (2) ¥ (30 W T
o N/mm N/mm mm o kN kN L kN ut kN ut
mm mm : e - _
Al 1432' 38 k.25 ].162 4,79 - 29.7 | 276 | 2.72 15.63 | 29.32 0.53 13.55 0.46 13.29 0.45
A2 432 38 4,25 |.162 4,79 - 27.28{276 | 2.72 14.36 | 27.2 0.53 1225 0.45 12,21 0.45
A3 32 | 38 |4.25 |.162 | 4.79 - 35.07| 276 | 2.72 | 18.46 | 33.9 0.54 15.76 | 0.47 15.6 0406
Ak 432 38 |4&.25 [.162 k.79 - 34,93 276 | 2.72 | 18.38 | 31.9 0.58 15.7 0.49 15.63 0.49
A5 432 38 {4.25.|.162] 4.79 - 45,33] 276 | 2.72 [ 23,86 | 34.17 | 0.70 20.37 | 0.6 20.28 | 0.59
A6 4532 | 38 |4.25 [.162 | 4.79 - 38,65] 276 | 2.72 | 20.34 | 35.9 0.57 17.37 | 0.48 173 0.48
QUGfCShi Tests (10)
81=31li229 '1'25 .4 3 222 3.49 - 30.87] 184 | 2.41 7.21]19.24 0.38 6 .06 0.32 5.77 0.3
S1-4 [229 [25.4 | 3 022 | 3.49 - 30.87| 184 | 2.41 | 7.21[13.8 0.52 6,06 | O.h4 5.77 | o.42
s1-6 229 [25.4 | 3 22 | 3.49 - 30.87] 184 | 2.41 | 7.21 | 14.46 1 0.50 6,06 | O.42 577 | 0.l
sM~8 | 229 |25.4 3 .22 3,49 - 27,841 184 | 2.41 6.5 ]'111.79 0.55 5.46 0.46 5.2 Ok
S3-4 [229 |25.4 | 3 .22 | 3.49 - 31.97| 184 | 2,41 | 7.47]15.56 | 0.48 6.27 | 0.41 5.98 | 0.38
$3-6 | 229 |25.4 3 .20 3,49 - 30,04| 184 | 2.41 7.0212.37 | 0.57 5489 0.48 5.62 0.45
s3-8 |229 |25.4 3 oo 1z kg - 31, 47| 184 | 2.41 7.36 13.91 | 0.53 6.17 | O.hh 5.88 | 0.42
Guralnik Tests (9)
IA-IM| 584 102 3.3 .26 2 Ypu e - 26.86] 411 2.51 56~07 139.73 O.41 58.3 0.42 49,05 0.35
Ic-IM| 584 | 102 3.3 .26 4,19 - 33,5 | 467 | 2.63 79.471155.31| 0,52 72.72 0.47 61,17 0.39
IICc-I1M| 584 | 102 e 5 .26 237 - 26.86) 411 | 2.31 56.07] 84.99| 0.66 5843 0.69 49,05 0.58
IIC-IM| 584 | 102 3.3 .26 | 4.19 - 33.5 | 467 | 2.63 | 79.47]101.02 0.78 227201:0.72 61.17-} 0.61
\'4 c (1)’ E W Calculated by Eqguation (8.2)
\' (2)* E W Calculated by Equation (8.4)
Cl& .
Virsiaye E W Calculated by Equation (8'ei7)
c\D ’
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Guralnick were between &2% and 72%. When using cquation
(8.7), there is a little differecnce in the strength of the
flange of Ferguson and Quereshi's tests than those pre-
dicted using equation (8.4). This is due to the thin flanges
used in these testsy while the difference is noticéable in

Guralnick tests, where thicker flange was used (t/h = 0.206).

In Table 8.8, the tests had B/bo between 2,57 and 3%.54,

t/h between .203 and .223 and P between 2.306% and 5.5%.

By using equation (8.2), the shecar strength of the flange
varied between 48% and 72%. This range agrees with the
percentages from Tables 8.4, 8.5 and 8.7. Using equation
(8.4), the percentages ranged between 38% and 62%. The

beams with higher percentages of main stecl had higher de-
crease thanvthe«others. By using equation (8.7), the per-

centages were between 35% and 60%.

The discussions above show that equation (8.2) eva-
luates the 'effective width' of the compression zone in T-
beams reasonably well., The effects of flange width, flange
thickness and amount of main steel‘are all taken into
consideration in this equation. When excluding the percen-
tage of main reinforcement in equation (8.4), the 'effective
width' decreases with higher percentages of steel and con-
‘sequently, a decrease in the fiange strength occurs. Thus
equation (8.4) can be used within a limited percentage of
main steel. From the tests shown in this discussion this
limit can be suggested as 3%, ie equation (8.4) can be used
for P not greater than 3%. When neglecting the amount of

main steel and flange thickness in equation (8.7). higher
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Table 8.8 Ramakrishnan Tests (11)
B;im - Flange B s £1 26 2, V., 54 3 Sy(1) ¥ VF(S
mx?x ; :mz bo 2 N/xn::n2 mm B:— kN lf:;f) db il 2) Vut
S5 256 352 | 3.35) .208 | 5.5 {33.9 |213 |2.79 | 24.2 |11.46 |.48] 9.13 0.35
S3 256 33 3.35 1 218 | 5.5 35,39 | 213 [ 2.8 2%.58112,56 | «51110.03 0.37
S1 254 31 |3.33].203 | 5.5 |36.38|211 |2.78} 24.92}11.87 | -48] 9.4 0.35
s2 256 33 | 3.35]| .213 | 5.5 |53.64|213 2.8 | 30.79|18.57 | .60] 14,42 0.45
1 391 ) 3.62 1 .223 3.8 34,84 | 275 {2.55 ] 26.38]19.0 «72] 16 .38 0.61
- 391 40 | 3.62] .223 | 2.36 | 33.35 | 249 | 2.3 | 26.64}16.48 | .62/ 15.68 0.57
5 394 40 3.54 | .223 | 3.8 34,33 | 282 | 2.54 | 30.15{19.22 | .64]| 16.14 0.53
4 394 40" | 3.54 | .223 | 3.8 | 35.28 ] 282 [ 2.54 ] 27.47]19.75 | +72] 16.59 0.6
s6 256 53 | 3.351] .218 | 5.5 | 29.99 | 213 | 2.8 | 16.97{10.64 | .63} 8.49 0.45
ST 256 33 3.35}] .218 | 5.5 29,99:1 213 12.8 15.93]10.64 | «+67| 8.49 0.48
s8 256 33 Rogot ozl sss R0 87 112157 1°2.8 17.7 |10.69 | «6 8.65 7.93 1 0.45
S9 256 32 | 3.39] .208 | 5.5 | 30.87 211 2.8 | 16.55]10.34 | .62] 8.39 7.69 | 0.46
12 256 32 | 3.35| .208 | 5.5 | 30.87]213 [2.8 | 20.47}10.36 | +51] 8.39 7.69 ] 0.38
M1A 251 32 | 2.59| .208 { 5.5 | 31.25 240 [2.48 | 20.22|11.91 |.59] 9.4 8.74 | 0.453
M1B 251 32 | 2,59 .208 | 4.3k | 31.25 | 240 | 2.48 | 24.75[11.91 | -48] 9.4 8.74 | 0.33
M2B 251 32 2.59{ .208 | 4.34 | 31.25 | 240 {2.48 | 21.35{11.08 | -52| 9.4 8.74 | 0.41
M3A 251 32 | 2.57 1 .208 | 4.34% | 31.58 | 240 12,48} 19.25[12.03 | «63] 9.5 8.85 | 0.46
M3B 251 32 | 2.57 | .208 | 4.34% ) 31.58 | 240 | 2.48| 22.3 |12.03 | 54 9.5 8.83 | 0.40




decrease in the 'effective width' and shear strength of the
flange was obtained in particular with beams of high per-

centage of main steel and thicker flanges.

Excluding the beams of Table 8.6 for the recasons dis-
cussed above, it can be estimated that the shear resilstance
of the flange represents between 50% and 70% of the total
ultimate shear strerdgth of T-beams. Bahia (83) predicted
from his tests on fibre reinforced concrete T-beams that
the contribution of the compression zone to shear resistance
was between 55% and 60% of the total shear strength. It must
be noted however, that Bahia's percentages were based on the
assumptiong that the three components contributing to the
shear resistance are additive at the ultimate stage, and that
the contribﬁtions of the dowel action and aggregate interlock
are interdependent and constant throughout the full load

range.

8.4 Conclusions

From the analytical results for shear resistance of
the flange of T-beams presented in this chapter the following

conclusions can be drawn:

(1) The shear stress distribution at the middle surface of
the flange takes the form shown in Fig 8.3 with higher
values near the centre of the flange. The maximum shear

stress values ranged between 1.75 N/mm2 and 2.4 N/mmz.

(2) With increasing flange width, the shear stresses are
concentrated in a limited area of the flange adjacent

to the web and reduced significantly towards the edges.
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(3) The 'effective width' was found to be: fér small

flanges, B/bO = 2, between 94% and 98% of the total

flange width, for medium flanges, B/bo = 4, between 52%
and 63%, and for wide flanges, B/bé = 6, between 43% and
£9%.

(&) Different forms of equations were found to be satis-

~

factory in evaluating the 'effective width' of the
flange. These equations included the factors B/bo, t/h and
P. Equation of the form of (8.2) was used in this study.
Equatién (8.4) was also used which involved only flange
: dimensions
CcCross sectionlas parameters. This equation was found to be
used in becams with medium percentages of main reinforcement
Which :
(P less than 3%). Equation (8.7),£expresues the teffec-

tive width' in terms of B/bo only was found to give rather

conservative values for the 'effective width'.

(5) From the evaluated 'effective width!' and the average
value of the computed shear stresses (fé/zo), an
equation is predicted to estimate the shear strength of the
flange. The calculated values from this equation compare
satisfactorily with the corresponding ones obtained from

the tests carried oute.

(6) The comparison made between the shear force carried
by the flange and the total shear force supported by

the beam at ultimate load, showed that between 50% and

70% of the ultimate shear force was resisted by the com=-

pression zone in the flange.
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CONCLUSIONS, LIMITATICNS AND
N

4
SUGQGESTIONS FOX UL

9.1 Conclusions

The major purpose of this study was to investigate the
contribution of the flange of a reinforced concrete T-becam
in resisting shear forces at ultimate load. The study in-
cluded theoretical analyses and experimental investigations.
The theoretical study was carricd out by using a 3-dimensional
Finite Element Stfess Analysis. The expcerimental work was
conducted on T-beams provided with preformed cracks in the

webs of the shear spans.

The major conclusions that can be drawn from this study

arc as follows:

f Theoretical Study:

fng ) The behaviour and shear strength of reinforced
concrete T—beamé-is well predicted by the non-

lincar finite element method used in this investigation.
The computer program which was developed can be applied to
predict the load=-deflection curve, the failure load and the

trend of the cracking pattern of reinforced concrete beams,

(2) Tensile cracking is the most important non-
linear effect of reinforced concrete T-becams
failing in shear. At failure the compressive concrete stresses
did not exceed 40-50% of the 28 day cube crushing strength in
any of éhe problems analysed., Therefore shear failures can
be adequately predicted by the study of the crack propagation

alone.

S ey Ly



(3) The maximOm tensile stress criterion and the
multiaxial stress criterion in terms of octa-
hedral ncrmal and shear stresses predicted the behaviour of
the beams satisfactorily. The former predicts the tensile
cracking in the tension zones, while the latter predicts the
cracking in the tension-compression zones.

~

(4) Normal, shear and principal stresses can be
obtained in any part of the beam and at any load

level., This made it possible to obtain the shear stress dis-

s

\

tributions across the flange width which were used in cal-

culating the shear strength of the flange at ultimate load.

(5) Brick~type isoparametric eclements with parabolic
displacemcnt functions proved to be efficient
in non=linear applications. The cracked zones were spread
smoothly in the beam. The numerical integration used with
these elements made it possible to handle incelastic and clastic

arcas within the same element.

LI Experimental VWork:
(1) A workable structural concrete mix was achicved

using PFA as a replaccment for cement and sand,.
At 28 days, the concrete mix gave a cube strength of about

2
35 N/mmz and flexural tensile strength of about 4.2 N/mm“,

(2) The tests of beams with different locations of
preformed cracks showed that the stiffness of
the beams decreased as the location moved towards the load

point .
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(3) The location of the preformed crack used in
the beams with differcent flange widths and

thicknesses produced a shearing mode of failure in the flange.

(4) The distribution of the concrete strains across

the top surface of the flange was uniform and

compressive in the early stages of loading. These strains
became non-uniform ;nd changed to tensile when approaching

the ultimate load particularly mnear the head of the pre-

formed cracke

5

IIT tEffective Width' and Shcar
Resistance of the Flange:

(1) The equations developed for the 'effeclive width!
and shear resistancce of the flange are based upon
data obtained from theoretical analyses of beams with flange
widths ranging between 350 mm and 1050 mm and flange thick-

nesses ranging from 50 mm to 90 mm.

(2) The shear stress distributions in the flanges are
concentrated in the arcea above the web and arec

reduced significantly towards the outer cdges.

(3) The 'effective width' and shear strength of the
flange increcasec with the incrcase of flange
width, flange thicknegs and area of main longitudinal rein-
forcement. Different equations were predicted to evaluate
the 'effective width'. The equations included the paramcters
B/bo; t/h and P . The best equation to evaluate the 'effec-
tive wiéth' satisfactorily was found to be in the form:

2 b, =b, [1.09 + .135 (B/b_) + 1.429 (t/h) + .172p |
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Simpler equations were predicted including only U/b( or
D
t/h, but they gave conservative values for the 'effective

width'.

(4) The shear strength of the flange at ultimate
load is expressed in an equation including the
cvaluated 'effective width' and an average value for the

‘shear stress (fé/ZO)‘as follows:

\' I ST s 4 A6
c e c
The values obtained from this equation for the shear strength

of the flange agree closely with the experimental values.

{51 The contribution of the flange in resisting shecar
fgrccs'at ultimate load calculated by the above
equations is between 50% and 70% of the total shear force
that the beam can support.

9.2 Limitations and Suzgestions
for Future Work

In the following, some phenomena noticcd from the
analysis are discussed and suggestions are made for further

study:

(1) Due to thé lack of experimental information and becausc
of the fact that the compressive stresses were below

500 of the ultimate cube strength of concrete, the uni-

axial stress~-strain relationship was adopted in the Finite

Element 'Analysis. In general, stress-strain relationships

for concrete under different multiaxial sgtress states are

needed. This depends on the available experimental information
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and in particular the -deformation characteristics of concrete
under combined stresses. Work in this field will be fruit-

ful., .

(2) As discussed in Chapter 7, there were differences in

ultimate strength between the predicted and the actual
loads in some beams. An improveument in the failure laws is
required to predict Lhe failure and the crack patterns in the
tension-compression zone. Morecover, experimental work must
be directed to obtain a universal failure criterion for

concrete under combined stresses.

(5) The variable stiffness technique used in conjunction
with the incremental method proved to be an efficicnt
technique in'non—lingar analysis despite it being expensive
regarding combutation tine. More study is required to bring
down the cost of computation. .Othcr techniques could be
incorporated in thq program such as the residual forces

method or modified Newton-iaphson techniqgucs.

(&) fhe use of the 2 point integration rule with the para-
bolic brick-type element was found to be the cheapest
in computation time and yielded reasonable load-deflection
curves and cracking patterns. It was noticed however, from
the shear stress distribution at differcent load increments,
that some points were not consistent. This could be due to
the reduced integration rules. More work is desirable on
this point to verify the use of the reduced integration rules
in non—iincar analysis and the consistency of stress distri-

bution within the elements.
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(5) Material properties laws can be extended to include

other aspects of the behaviour of concrete such as:

(a) Non=-linear constitutive law in multiaxial
compression stress states. An investigation
could also be tried to predict the compressive failure of

concrete in relation to internal microcracking.

(b) Aggregate interlock which is of fundamental
importance in shear failures, needs thorough
investigation., It might be worth trying to develop a rela-
tionship expressing aggregate interlock in terms of the crack

widthe.

(c) - Dowel action has an important role in shear
failures, thus it should be involved in the
analysis and a constitutive law has to be developed to tackle

this phenomena.

(a) Non-linear bond;slip relationships defining
the behaviour between conércte and stecel has to
be introduced into the analysis., This might need reformula-
tion for the bar element used in this study. This could

also be investigated through the use of linkage clements.

(e) Other phenomena such as repeated loading and
temperature effects can also be incorporated in

the finite element model.

(6) The equations predicted for the 'effective width' and
shear resistance of flange are based on a limited number

of becams analysed by the Finite Element model. Ilowever,
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these equations showed consistency when applicd to other
experimental data. It could be worth analysing different
cases of beams where the shear span, flange gocumetry and main
reinfofcemcnt are varied. Hodifications in the constants

of the equations could then be made.
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I Determination of Principal Stresses

To determine the principal stresscs 01, 0, and O3
from th artesian stres ompo t
f e Car i s components Ox’ Oy' Oz’ .txy'

Iyz and sz, the following cubic equation must be solved.

-~

3 2 - Soy
o} -(ox+oy+oz)o +(oxoy+o g 0. 0, 'cyz
2 D
e -'[xy)O = (0, Oy 0, L P b
2 2 2 e
ox ryz - oy sz - oz 'cxy) = 0 (A.1)

The three roots of this equation give the values of the three

principal stresses O0y» O, and 03, (25).

The above equation can be expressed in terms of the

stress variants Il’ I2 and 13, (73) as:
3 2 - =
where 11 = Ox + Oy + Oz
2 2 2
12 = O, Oy + 0y 5L e Uas Tyz -sz'-Txy
I = o 6} O+ 2T T T -~ T2 -0 Tz
s et x Oy Oz * 2y Txz Txy = Ox Tyz y "xz
2
-0, Txy
Il Il
Defining o' = 0 - 5 ie 0=0"'+ 5 (A.3)

Then equation (A.2) becomes:
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2 3
- I 2 I i1 i
i oy __,l_ , R 1 1 2 . o ~ ‘
0] (3 12) 0 ( 55 - 5 . 13) =0 (A.h)
or
g
'y e, 7 IR B R, ) SRR (A.5)
o 2
I? 2 I? Il 12
T ] i iy ik 1 -
where I2 s Ia and 13 57 3 + I
IL g' is put egual to r cos ©, then equation (A.5) becomes
r co8- Q. i~ I! r cos © - Ié = 0 (A.6)
or
Tt '
3 2 o
cos” @ - — cos O - —= = 0 (A7)
r2 r-

which is identical to the standard trigonometrical expression

'cos3 8 - % cos © - % cos 3 @ - 0 (A.8)
f U
it RS e CoL e
r2 r’
ie
4o
] 4
r o= 4 1 and cos 3 0 = = 2 (A.9)
5

from which three values for 8 can be obtained and accordingly
three values for O' can be calculated. Then substituting
in equation (A.3), three values for the principal stresses

can be obtained.
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II Calculation of’' the Principal Directions

To determine the rotation of the principal stress
axes from the reference axes x; y, zZ the normalised modal

matrix [A] must be obtained (73), where

241 a40 I
{2 it B 822 823 (4,10}
a ' a
431 32 33
L. % -

Each eigenvector of this matrix will give the direction
cosines of one of the principal stresses relative to the

reference axis, ie:

311 = direction cosine of angle between the
major principal stress axis and ox

a4 = direction cosine of angle between the
ma jor principal stress‘axis and oy

-a = direction cosine of angle between the

3%

major principal stress axis and oz

Knowing that the.principal stresses are perpendicular
to the planes on which they act, then the equilibrium equa-
tions for the stress components in the directions of the
reference axes can be found and from these the direction
cosines can be calculated. For example, the direction co=-
sines for the major principal stress are [a a

11 01 %31]
and these can be calculated from:
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( Ox - 01) R b Ay, * sz a 51 = 0 (A.11)
Ixy a y + ( Oy - 01) @, ¥ Iyz a 59 = 0 (A.12)
Tz 241 7 Tzy 221 ¢ L o P Tl (A.13)

These equations can be written in the form:

— T - -9
Ox i 01 T’xy sz a11
Txy Oy - 01 Tyz 1121 = 0 (A.14)
Txz Tay i s a9
b il L. -
From (A.il)
DR S il : i T
ok iy i —a~—§L—-— 8214 —6——§5-— Baq (A.15)
i x 01 X O1

Substituting (A.15) into (A.12), then

[Txy Txz = Ty (Ox T 01)]

vz -
a = a (Aolb)
21 Ly 5 L 31
o - 00, - 0,) xy ]
and
2 I -Exy 5 [ txy Tz ~ Tyz (Ox % 01)] a
: 1 s ' B ot | 4 5 e B SR
x 1 G0 = 0(0 .0 xy ]
Tz
A (A.17)
o 1
Ox o1 2
Putting a31 = 1,0, then the values 844 and a,, can be

calculated and the eigenvector of equation (A.1%4) becomes:
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1.0 (A.18)

-

The length of this vector, A is given by:

2 e 2
A = N/all + A, 1.0 (A.19)

The normalised vector is then given by:

~ i "

a4/

Aagl/A (A.20)

1.0/A
L v oA fi

which represents the direction cosines of the major princi-
pal stress or the 1st eigenvector of cquation (A.1%4). The
second and third eigenvectors of equation (A.14) can be
obtained in the same way but using 02 and 03 respectively

in eguations (A.11) to (ha1%)
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