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Summary 

Sliding mode control is a well-known approach to the problem of the control of uncertain 

systems, since it is invariant to a class of parameter variations. Well-established invest­

igations have shown that the sliding mode controller/ observer is a good approach from 

the point of view of robustness, implementation, numerical stability, applicability, ease of 

design tuning and overall evaluation. 

In the sliding mode control approach, the controller and/ or observer is designed so 

that the state trajectory converges to a surface named the sliding surface. It is desired to 

design the sliding surface so that the system stability is achieved. 

Many new methods and design techniques for the sliding controller/ observer are 

presented in this thesis. 

LQ frequency shaping sliding mode is a way of designing the sliding surface and 

control. By using this method, corresponding to the weighting functions in conventional 

quadratic performance, a compensator can be designed. 

The intention of observer design is to find an estimate for the state and, if the input 

is unknown, estimate a suitable input. Using the sliding control input form, a suitable 

estimated input can be obtained. The significance of the observer design method in this 

thesis is that a discontinuous observer for full order systems, including disturbance inputs, 

is designed. The system may not be ideally in the sliding mode and the uncertainty may 

not satisfy the matching condition. 

In discrete-time systems instead of having a hyperplane as in the continuous case, 

there is a countable set of points comprising a so-called lattice; and the surface on which 

these sliding points lie is named the latticewise hyperplane. Control and observer design 

using the discrete-time sliding mode, the robust stability of the sliding mode dynamics 

and the problem of stabilization of discrete-time systems are also studied. 

The sliding mode control of time-delay systems is also considered. Time-delay sliding 

system stability is studied for the cases of full information about the delay and also lack of 

information. The sliding surface is delay-independent as for the traditional sliding surface, 

and the reaching condition is achieved by applying conventional discontinuous control. 

A well-known method of control design is to specify eigenvalues in a region in the 

left-hand half-plane, and to design the gain feedback matrix to yield these eigenvalues. 

This method can also be used to design the sliding gain matrix. The regions considered in 

this thesis are, a sector, an infinite vertical strip, a disc, a hyperbola and the intersection 



ii 

of two sectors. Previous erroneous results are rectified and new theory developed. 

The complex Riccati equation, positivity of a complex matrix and the control of 

complex systems are significant problems which arise in many control theory problems 

and are discussed in this thesis. 
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Chapter 1 

Introduction to Sliding Mode Control 

1.1 Historical Developments 

1.1.1 Brief History of the Genesis of Sliding Mode Control 

Variable structure control (VSC) or sliding mode control (SMC) was developed extensively 

in Russia in the early 1960's, the term "variable structure control" (VSC) being first used 

in the late 1950's. Fliigge-Lotz [40] was the first to present the concept of sliding motion. 

However, Filippov [38] was the first to consider the solution of differential equations with a 

discontinuous right-hand side. Filippov's pioneering work still serves as the basis for work 

in sliding mode control which was essentially developed by [117]-[120] and Emel'yanov 

(35], (36], Drazenovic (31] and their eo-workers. Most early work concentrated on SISO 

linear systems in phase canonical form with discontinuous feedback gain. The research was 

undertaken in eastern Europe and permeated elsewhere through work such as Itkis [59] 

and Utkin (118]. In the 1970's SMC was extended to MIMO systems by Utkin (118)-(120], 

Itkis [59] and Zinober [144]. Thereafter numerous theoretical results and applications 

have been reported (see Zinober (145] and (146]) and many survey and tutorial papers 

have been published e.g. DeCarlo et al (27] and Utkin (120). 

The development of SMC theory has been established for different system models in­

cluding nonlinear systems, discrete-time systems, time-delay systems, stochastic systems, 

large scale systems and infinite-dimensional systems, and has been extended to many 

classes of problems such as system stabilization, tracking, adaptive and optimal control, 

and state observation [26], (29], (33], [34], (55], (68]-[70], [104], [106], [109], [111], [120], 

[135], [136], [144]. 

1 
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Sira-Ramirez (103] has examined and interpreted the analysis and design of the sliding 

mode control of affine nonlinear systems by using differential geometry. SMC theory has 

been developed for the generalized observability canonical form (GOCF) (Sira-Ramirez 

(105]). Sliding mode control provides a systematic approach to the problem of maintaining 

stability and consistent performance in the face of modelling and parameter imprecision 

and uncertainty. A sliding controller is not necessarily discontinuous [ 27], [ 111]. However, 

to ensure that the state of a system crosses the sliding surface the control must be dis­

continuous. 

1.1.2 Introduction to Sliding Mode Control 

Variable structure control has proved successful in practical problems. High-speed switch­

ing feedback control, switching between two particular values, drives the state trajectory 

onto a specified surface, the so-called sliding (switching ) surface, in the state space at a 

finite time and maintains the state trajectory on this surface for all subsequent time. This 

surface is called the sliding (switching) surface because the state trajectory tends to the 

surface smoothly and repeatedly crosses the surface in the idealised sense. When the state 

trajectory is on the sliding surface, the control takes a specific value, the so-called equival­

ent control. When the state trajectory remains on the sliding surface for all subsequent 

time after a finite time instant, the system is said to be in the ideal sliding mode. 

For the generation of the sliding mode, the precise value of the system parameters need 

not be identified. This is shown in Example 2.2.1. Specification of the sliding surface and 

appropriate design of the sliding control yield the system response which asymptotically 

tracks the desired trajectory. 

There are two phases for the design of sliding mode control. The first phase is the 

construction of the sliding surface so that the state trajectory is directed to the sliding 

surface. The second phase is the construction of a sliding control law which causes the 

system trajectory to satisfy a set of sliding conditions for the existence and reachability 

of a sliding mode. 

When the ideal sliding mode exists, the state trajectory is along the sliding surface 

after a finite time instant and remains on it for all subsequent time. This requires in­

finitely fast switching. In actual systems, some imperfections such as delay, hysteresis 

and unmodelled dynamics cause the control to display chatter motion, i.e. the control 

oscillates rapidly between its extreme values. In some practical examples one wishes to 

reduce the chattering phenomenon. One method is to consider a continuous control which 
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Figure 1.1: Sector region as a neighbourhood of the sliding surface, s = 0 

has a similar structure to the discontinuous control. The state trajectory then lies within 

a neighbourhood of the sliding surface, the so-called boundary layer (Slotine and Sastry 

[109]). Note that, if the frequency of the switching is very high in comparison with the 

response of the system, this chattering phenomenon is often negligible. More recently, the 

concept of a sector (cone) layer has been presented by many authors including Furuta and 

Pan [45]. In the topological sense the cone (or sector) is a neighbourhood of the sliding 

surface and after a finite time the sliding motion lies inside this cone (sector) (see Fig. 

1.1). 

1.2 Applications and Methods 

Numerous practical applications and theoretical studies of sliding mode control (SMC) 

have been demonstrated in many laboratories and papers in the last two decades throughout 

the world. Applications include aircraft flight, helicopter flight, spacecraft control, ship 

steering, turbogenerators, temperature control of an industrial furnace, robot manipulat­

ors, electrical power system, motor control, etc. 

Theoretically, as already stated, when the sliding mode occurs, SMC is ideally switched 

at an infinite frequency, and infinitely fast chattering control preserves the state on the 

sliding surfaces. In this case, the velocity vectors of the state trajectories always point 

towards the sliding surfaces. But, in practice, the control is switched at a finite frequency. 

The trajectories chatter with respect to the sliding surfaces and this causes unwanted 
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chatter motion. For example, this can produce excessive wear of mechanical parts and 

large heat losses in electrical circuits. Therefore to obviate the chattering, a continuous 

approximation to SMC in the vicinity of the sliding surfaces may be considered such that 

the basic VSC and properties of the system are maintained. This idea has been developed 

by a number of authors including Ambrosino et al [4) and Burton and Zinober [15). To 

eliminate this undesired control chattering, Slotine and Sastry [109) proposed a boundary 

layer approach which approximates the ideal relay characteristics by a linear saturated 

amplifier. Some conditions guarantee that the state trajectories converge to this bound­

ary layers and remain in the interior of this boundary layer for the subsequent time. Note 

that during the sliding mode the state trajectories are maintained in these layers. 

Sliding control has been applied widely because of its robustness properties. Dur­

ing the sliding mode, the system which satisfies the so-called matching condition, is 

invariant to parameter variations and independent of certain disturbances. Sufficient 

conditions of invariance have been proposed by Drazenovic [31] and reconsidered by 

El-Ghezawi et al (34]. 

In the sliding mode, the order of then order system with m inputs is reduced because 

the motion of the state is governed by n - m slow modes provided that the sliding surface 

is designed for the original system. The remaining m modes are the fast modes. 

1. 2.1 Design Methods 

There exist several methods for designing a sliding surface, sliding control and observer 

for continuous and discrete-time systems. The most important methods are: 

• Using the reduced order equivalent system approach to find the feedback gain mat­

rix so that all the eigenvalues of the reduced order sliding system are the desired 

eigenvalues in the left-hand half-plane. Specifying null space eigenvalues within the 

left-hand half-plane and designing a suitable control yields the sliding eigenvalues 

relating to the sliding surface (Dorling and Zinober [29]). 

• Using pole assignment methods to specify a region in the left-hand half-plane within 

which these sliding eigenvalues must lie. These regions may have a variety of geo­

metric shapes (Woodham and Zinober [131]). 

• Using optimal control laws to yield the sliding surfaces (Young et al [135]). 
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• By means of the H 00 technique a generalized system can be specified and then a 

sliding surface is introduced (Hashimoto and Konno [55]). 

• Using output feedback (Zak and Hui [141]). 

• A recent method is based on the augmented system where the sliding surface is 

considered as r.p = C(xt) + x2 with C(·) a linear operator of a dynamic system 

(Young and Ozgiiner [137]). In fact there are two classes of compensator for any 

system; a generalized class of dynamic output controllers and a generalized class of 

dynamic state variables. 

• Another new method of designing SMC is using frequency-shaped weighting func­

tions in a LQ cost functional. This method has been applied to a linear dynamic 

model of a flexible structure (Young and Ozgiiner (137]). 

1.3 Outline of the thesis 

In Chapter 2 the basic concepts and definitions of the existence of the sliding mode and 

sliding control are reviewed. Also a class of sliding surface and a method for designing 

sliding control are presented. A straightforward method for finding the invariance condi­

tions is also proposed. This approach yields some useful information about the system in 

the sliding mode and the influence of disturbance inputs on the sliding system. 

In Chapter 3 the optimal sliding mode and optimal control are discussed. The sliding 

mode in regulator and tracking problems, and also for a class of servo-mechanism systems 

and reference signal systems are considered. 

In Chapter 4 frequency shaping in the sliding mode is discussed. Frequency shaping is 

a technique for designing control and the sliding mode by using a conventional functional 

performance index. A new method of designing sliding mode control is presented when 

the LQ weighting functions are not constant for all frequencies. Furthermore, conditions 

for which the spectrum of the original reduced system is a subset of the spectrum of the 

augmented system are introduced. An iterative constructive procedure for the optimal 

sliding mode is developed. The sliding mode can be expressed as a linear operator of 

states in the form of a dynamic system. 

In Chapter 5 sufficient conditions for the sliding mode control design of systems with 

disturbance input, and the sliding dynamics, and a method for the design of asymptotically 
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stable sliding observers, are presented. The stability and ultimate boundedness of state 

reconstruction error systems via the method of Lyapunov is also studied. 

In Chapter 6 the concept of the discrete-time sliding mode is clarified and sufficient 

conditions for the existence of the sliding mode are presented. Control design using 

the discrete-time sliding mode is proposed and the robust stability of the sliding mode 

dynamics is presented. Furthermore, the problem of stabilization of discrete-time systems 

is studied. The sliding mode observer of linear discrete-time systems is also discussed. 

In Chapter 7 the sliding mode control of time-delay systems is considered. Time-delay 

sliding system stability is studied for the cases of having information about the delay and 

also lack of information. The sliding surface is delay-independent as for the traditional 

sliding surface, and the reaching condition is achieved by applying a conventional discon­

tinuous control. 

In Chapter 8 complex Lyapunov and complex and generalized Riccati equations are 

considered. By using these equations the sliding surface and feedback gain matrix can be 

found such that all the eigenvalues of the closed-loop system lie in specified regions. The 

work of Shieh et al (101], Woodham (129] and Woodham and Zinober (131] are studied; 

and errors and inaccuracies are corrected. Various illustrative examples are presented. 

Several new methods are proposed for all the eigenvalues of the closed-loop system to lie 

in the specified regions. 

In Chapter 9 the real and complex matrix vector spaces are studied and also the 

relationship between these two matrix vector spaces are clarified. The positivity concept 

of a matrix is defined such that the meaning in the "real" sense is established. A method 

for finding the solution of the complex Riccati equation is proposed. Also complex sys­

tems (i.e. systems with complex matrices and variables) and their application are briefly 

considered. 

In Chapter 10 conclusions and suggestions for further research are presented. 



Chapter 2 

Sliding Mode Control Design 

2.1 Variable Structure Control Design Using the Sliding 

Mode 

In this chapter, the properties of the sliding mode, some background and basic concepts, 

definitions of sliding mode control, the design of a new class of stable sliding surface, 

the design method of a stable sliding surface and the associated control law are studied. 

Although the control structure and design method are similar to previous work by Ryan 

and Corless (92] and Dorling and Zinober [29], the design method and structure are 

somewhat different. This structure is obtained by the properties of sliding mode and 

guarantees the stability of the sliding mode along or near the sliding surface. 

2.2 Conditions for the Existence of a Sliding Mode 

The existence of the sliding mode requires the state trajectories to be directed towards the 

sliding surface in a neighbourhood of the surface [27], [118], [121]. So, for the generation 

of a sliding mode, the stability of the state trajectory along or to the sliding surface is 

required to be asymptotic. The largest such neighbourhood is known as the attractive 

region. 

Definition 2.2.1 [118): The domain Din the manifolds= 0 is the sliding mode domain 

if for any E > 0 there exists a positive real number 6 such that any motion starting within 

the &-neighbourhood (Bs(6)) may leave the €-neighbourhood (Bs(E)) only through the 

7 
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s=O 

8 

€-neighbourhood of 
boundary point of D 

Figure 2.1: Sliding mode domain 

€-neighbourhood of the boundary of D (see Fig. 2.1). 

The existence of a sliding mode domain can be proved by the second Lyapunov method 

using a generalized Lyapunov function [121). Observe that D C {x E Rnls(x) = 0} and 

the domain D is an (n- m)-dimension domain if the subspace {x ERn Js(x) = 0} is an 

n- m-dimensional subspace of JRn. The following theorem gives a sufficient condition 

based on the Lyapunov method. 

Theorem 2.2.1 [118]: Let 0 and D ben-dimension and n-m-dimension domains such 

that D c 0. A sufficient condition forD to be the sliding mode domain is that there exists 

an continuously differentiable function V(t, x, s) satisfying the following conditions: 

1. V(t, x, s) is positive definite with respect to s, i.e. V(t, x, s) > 0 for arbitrary s # 0, 

t, x; V(t, x, 0) = 0 with s = 0; and for any real number r # 0, any t and x E 0 the 

function V(t, x, s) has positive infimum and supremum values on the sphere llsll = r. 

2. The time derivative V for· the system has a negative supremum on 0 except for x 

on the sliding surface s = 0 where the control inputs are undefined. 
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A suitable Lyapunov function is V = ~8T 8. So for generation of the sliding mode, a sliding 

hyperplane with suitable control may be designed such that V = 8T s < 0. However this 

condition is a sufficient condition for the existence of the sliding mode and may be replaced 

by another condition, say 8T P8, where Pis a p.d.s. matrix. 

SMC with a discontinuous control law produces a differential equation with discontinu­

ous right-hand side which does not satisfy the conventional theorems on the existence 

and uniqueness of a solution in differential equation theory. However, for the system 

with isolated discontinuity points or, more precisely, for the system with zero measure 

of discontinuity points, some analysis and synthesis methods have been achieved based 

on classical differential equation theory by means of point to point transformations and 

averaging at the occurrence of high frequency switching (119], (121]. However, in many 

practical problems, such as a mechanical system with Coulomb friction, the measure of 

the discontinuity points set is not zero. So the proof problem of existence and uniqueness 

of the discontinuous right-hand system arises. One way to consider this problem is that 

ideal sliding motion is regarded with all nonidealities tending to zero. Then the problem 

reduces to finding a certain system of differential equation with continuous right-hand 

sides, despite discontinuous control in the original system, that describes the motion in 

the sliding mode, i.e the system behaves in a unique way when restricted to 8 = 0 [119], 

[121). 

There are some methods for determining the system motion in a sliding mode including 

methods proposed by Filippov [39) and Utkin [119]. The method of Filippov [39), which 

is one of the earliest and purportedly straightforward approaches, is now stated. Consider 

the n-th order single input system 

with the discontinuous control 

u={ 

x(t) = f(t, x, u) 

if 8(x) > 0 

if 8(x) < 0 

(2.1) 

(2.2) 

It can be shown from Filippov's work in [39) that the state trajectories of (2.1) with 

discontinuous control strategy (2.2) on 8 = 0 satisfy the equation 

where j+ = j(t, x, u+) and !- = f(t, x, u-) (see Fig. 2.2). Thus there exists a such 

that 0 < a < 1, and rq = aj+ + (1 - a)f- is tangent to the state trajectory in the 

sliding mode, i.e. < grad(s), rq > = 0. Solving the equation < grad(s), rq >= 0 for 
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Figure 2.2: The Filippov method for determining the desired velocity vector for sliding 

mode motion 

a ields a= < grad(s), f- > and then 1- a=- < grad(s), f+ > . Since 
y < grad(s), u-- f+) > < grad(s), u-- f+) > 

0 ~a~ 1, 0 ~ 1- a~ 1, there are two cases: 

(i) For < grad(s), (!- - f+) > > 0, one has to choose < grad(s), f+ > ~ 0 and 

< grad(s), f-) > ~ 0. 

(ii) For < grad(s), (!- - f+) > < 0, the only choices are < grad(s), f+ > ~ 0 and 

< grad(s), f- > ~ 0. 

Therefore the solution to (2.1) with control (2.2) exists and is uniquely defined on s = 0. 

A method of determining the system behaviour in the sliding mode has been proposed 

by Drazenovic (31] and Utkin (118]. The following corollary gives the existence of the 

equivalent control, i.e. control during the the sliding mode, by using the Filippov method. 

Moreover the relationship between the equivalent control and the actual control is given. 

Corollary 2.2.1: Consider the system (2.1} with control (2.2}. Then there exist an a 

(0 < a < 1) such that f(t, x, Ueq) = af+ + (1 - a)f- where Ueq is the equivalent control 

and J (t, x, Ueq) is the velocity of the state in the sliding mode. 0 

One may conclude that the equivalent control is the average of the control when the 

state trajectories are on the sliding surface. However, Corollary 2.2.1 shows that the 
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velocity of the state with equivalent control is a convex value of the velocity of the state 

corresponding to the two different values of the control. However, if the relative degree 

of an n-input m-output system equals one, the equivalent control is the convex value of 

two different control values [65]. 

Example 2.2.1: Consider the following second-order system 

Let 

Assume s(xi, x2) = xi + ex2 = 0 with e > 0 and the control law is given by 

u = sgn ( s) = { 
1 

-1 

if s(x) > 0 

if s(x) < 0 

(2.3) 

Ifs= 0, 8 =XI+ ci2 = 0. Since XI = x2, s = 0 yields x2(t) = x 2(T)e-(t-r)/c where T is 

the initial time and x2(T) is the value of the state x2 at initial timeT. Hence lim x(t) = 0, 
t-+oo 

i.e. the system in the sliding mode is asymptotically stable. In the sliding mode the 

equivalent control is given by 

where C = [ 1 e J . If a2 = eai, the values of a I and a2 do not affect the equivalent 

control. In this case 
ai(xi + ex2) 1 x2(t) 

Ueq = b - be x2 = - bc 
1 

and more precisely Ueq = -be x2(T)e-(t-r)/c. Moreover, in this case the behaviour of the 

motion in the sliding mode is independent of the values of ai and a2. So the system in 

the sliding mode is governed by 

XI = X2 

:i;I + ex2 = 0 

which shows that the system in the sliding mode is independent of certain plant parameters 

or uncertainties. 
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2.3 System in the Sliding Mode 

Consider the linear time-invariant system 

x = Ax + Bu + f( (2.4) 

where x E IRn is the state variable, A E lRnxn, BE Rnxm is full rank, u E Rm is the input 

control, r E Rnxm and ( E Rm is the external disturbance input. 

It is assumed that (A, B) is completely controllable, and m < n. Define the sliding surface 

as 8 = Cx = 0 where C E Rmxn. C is selected so that CB is nonsingular, i.e. the relative 

degree of the system is one. The behaviour of the system in the sliding mode, when the 

relative degree is greater than one, has been studied in [33]. The ideal sliding mode is 

said to exist if there is a finite time ts such that 

8 = Cx = 0 (2.5) 

The sliding surface is the null space of C, i.e. 

JV (C) = {X : c X = 0} (2.6) 

Since CB is chosen to be nonsingular, rank(CB) is m and therefore 

col(B)~JV(C) (2.7) 

where col(B) indicates the column vectors of the matrix B. Then there exists a nonsingular 

matrix r such that C = r Bl., i.e. 

!Jl(B) n A"( C) = {0} (2.8) 

[29]. Since B(CB)-1C is projector operator and the matrices C and B are full rank, 

&l(B(CBt1C) = &l(B) and S(B(CB)-1C) =A"( C). Then 

(2.9) 

and 
X= A"( C) EB !Jl(B) 

where X is the state space. 

In this thesis it is assumed that C E Rmxn, but if C E JRlxn (l < m) the sliding mode may 

be defined as 8 = FCx where F E IRmxl is called the adaptation (adjustment) matrix and 

can be found by methods as in [32), [123] and [142]. If m= l, take F =I. 
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2.3.1 Invariance Condition (Matching Condition) 

During the sliding mode x E JV(C) and from (2.5) the control does not directly affect 

the motion. Differentiating (2.5) and inserting (2.4) implies 

Ueq = -(CBt1(CAx +er~) (2.10) 

where Ueq is the equivalent control of the system, i.e. the effective control during the sliding 

mode. The actual control and the equivalent control can be considered approximately to 

be equal in the neighbourhood of the sliding surface. The motion of the equivalent system 

is 

x =(A- B(CB)-1CA)x +(I- B(CB)- 1C)r~ (2.11) 

and is independent of the disturbance if and only if 

Therefore, in this case it is sufficient that 

col(f) E JV(I- B(CB)-1C) 

(2.12) 

because CB is nonsingular [34). Equation (2.12) is equivalent to col(f) rt JV(C), and 

&l'(f) ~ &l'(B) which is equivalent to rank(B, f)=rank(B) and if r is full rank, then 

&l'(f) = &l'(B). This relationship shows that there exists an m x m matrix 2 such that 

r = BB. This condition is known as the matching condition (or matched uncertainty) 

and was first presented by Drazenovic [31) and reconsidered by El-Ghezawi et al [33), [34). 

A straightforward approach is now presented to yield further information about the sys­

tem. Assume T is an orthogonal matrix such that 

TB= [ ~,] (2.13) 

where B2 is an m x m nonsingular matrix. Let Tx = Yr, then 

(2.14) 

Now assume 

T ( T T) Yr = Y1, Y2 , (2.15) 
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Therefore 

where 

f}l (t) 

iJ2 ( t) 

AnY1(t) + A12Y2(t) + rl~ 
A21Y1 (t) + A22Y2(t) + B2u(t) + f2~ 

T ATT = [ ~:: ~:: ] , Tf = [ ~: ] 

14 

(2.16) 

(2.17) 

The system in the sliding mode is independent of ~ if r 1 = 0. A sufficient condition for 

the reduced order system (2.16) to be independent of~ is that there exists an m x m 

matrix D such that 

f=BD (2.18) 

We now prove that (2.18) is satisfied if and only if f 1 = 0. Suppose r =BD, then 

rr 

(2.19) 

Therefore, r 1 = 0. Conversely, assume that r 1 = 0. Since B2 is full rank 

rr [ ~: ] 
[ Oc~;;m] 
TBD 

Since T is an invertible matrix, r =BD. 

However, if m > 1 the system (2.16) may be independent of~ but f 1 =J 0. Therefore 

the condition (2.18) is not a necessary condition for the independence of the reduced 

order system (2.16) of~- In the general case, the necessary and sufficient condition for 
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independence of the system (2.16) of the perturbation signal~ is that f. E uf'(ri), where 

,AI' (r 1 ) is the null space of r 1· If m = 1, r 1 is a real number and r 1 ~ = 0 if and only if 

r 1 = 0. So the system in the sliding mode is independent of ~ if and only if there exists 

a real number p such that 

r=pB 

and hence rank[B, r] = 1. 

Let err= [C1 C2]. When the ideal sliding mode occurs, s = 0, so 

(2.20) 

and then 

(2.21) 

where F = C2 -
1C1. The equation (2.16) is given by 

(2.22) 

which is known as the reduced order system and An- A12F has n- m eigenvalues, i.e. 

in the sliding mode m eigenvalues of the system (2.4) are zero [34). It is desired to find 

F such that An - A12F is a stable matrix. 

2.4 Design of a Class of Sliding Surface 

The sliding surface (2.20) is selected such that the stability of the nominal reduced or­

der system (2.22) is achieved. However, a modified sliding surface (2.20) is required for 

many purposes such as pole placement in a specified region in the left-hand half-plane, 

to improve the stability performance and other aims. A sliding surface is defined by in­

troducing a design parameter matrix. The order of the defined hyperplane is the same 

as (2.20) and the stability of the nominal reduced system (2.22) is preserved. It is clear 

that for some design parameters the system stability is achieved. The main problem is 

to establish the class of design matrices to ensure the desired properties. Some design 

methods will be proposed for obtaining a sliding design parameter r so that all the eigen­

values of An - r A12 F lie in the left-hand half-plane and/ or an infinite vertical strip in 

the left-hand complex plane. This problem is discussed in general in this section and a 

design method is presented in Section 3.2. 
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In this section the system (2.4) with r = 0 is studied. Let C = [ C1 C2 ] where C2 is 

nonsingular matrix. A class of sliding surfaces 

is constructed which gives a suitable region in the trajectory phase plane. The design 

parameter a is a real number in a known range. In [121] the sliding surface has been 

considered by Utkin as s = f(xi) + x2 where f is an arbitrary function. So the Utkin 

definition is a particular case of the above definition, i.e. sa = 0. Assume 

X= [:J 
A = [ ~:: ~::]. B = [ !: l 

Then the system (2.4) is given by 

Aux1 (t) + A12x2(t) + B1 u 

A21X1 (t) + A22x2(t) + B2u 

When sa = 0, Cx + ax2 = 0 and then 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

provided that C2+alm is nonsingular. This condition is satisfied if amin(C2 ) > -a. During 

the sliding mode sa = 0 and substituting (2.4) and (2.25) in s·a = Ci: + ai:2 = 0 yields 

provided that CB + aB2 is nonsingular. Then 

Ueq = -(CB+ afh)-1 [(C\Au +(aim+ C2)A2I)x1 + (C1A12 +(aim+ C2)A22) x2(t)] 

Now consider the system (2.4) and assume T is the orthogonal matrix in (2.13) given by 

T = [ ~:: ~:: l 
[ T1 T2 ] (2.28) 

then 
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implies 

xl T'{;_yl + Ti;.y2 (2.29) 

x2 T't;y1 + T~y2 (2.30) 

Therefore 
T 

xl [Tu l 
T21 [ ~: l 

Tfyr 

X2 [ T12 r [ Y1 l 
T22 Y2 

TJyr (2.31) 

Hence 

CTT Yr + o:TJ Yr 

(C1 + o:T~)YI + (C2 + o:T~)Y2 (2.32) 

where err= [Cl C2l· When Sa = 0, 

(2.33) 

provided that C2 + o:T:f; is nonsingular. Let F = (C2 + o:T~)- 1 (C1 + o:T~). The design 

parameter o: should be chosen such that the matrix A11 - A 12 F is a stable matrix. 

Definition 2.4.1: Define the sliding surface as 

(2.34) 

where M E Rmxm is an arbitrary matrix. Matrix M is called the modification matrix of 

the sliding surface. For M = o:I, o: is called the coefficient of the sliding surface. When 

M =0 (or o:=O) the sliding surface is said to be a principal sliding surface or simply the 

sliding surface. D 

Definition 2.4.1 yields 

s M = C\ x1 + C2x2 + M x2 = 0 

and if C2 +M is nonsingular, S!Yf = 0 implies 

(2.35) 
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which for M = 0 coincides with Utkin definition 1121]. Here M is an arbitrary matrix 

such that 62 +M is nonsingular. In this case the (2.33) becomes 

provided that c2 + MT~ is nonsingular. The set 

!/M= { Bif I Sif = Cx + Mx2 = 0, 62 +M is nonsingular} 

consists of a class of sliding surface. 

2.5 Control Design Technique 

The procedure of designing sliding control using the properties of the sliding mode is 

developed. The technique includes a mild modification of the technique in (29] and (129]. 

In previous work the structure of the switching part of the control law is prespecified 

and then a control is found with this structure such that the state approaches the sliding 

surface. By selecting a suitable transformation the sliding surface is converted to the 

intersection of the m-coordinate surfaces with n- m dimension. In this way the structure 

of the sliding mode is simplified. 

Using the transformation (2.13) the system is converted to two subsystems (2.16) and 

(2.17). Now it is desired to change the state coordinate such that one of coordinates 

surfaces is on the sliding surface. Consider a second transformation 

z = SyT (2.36) 

where 

S = [In-m 0 ] 
F Im 

then 

8 _1 = [ In-m 0 ]· 
-F Im 

If 

z= [ :: l 
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where z1 E Rn-m and Z2 E Rm, then 

(Au - A12F)z1 + A12z2 

(A21 - A22F +FAn- F A12F)z1 + (A22 + F A12)z2 + B2u 

Now let 

L; An- A12F 

"W A22 + FA12 

X 

Then the system can be represented by 

Since C2 is nonsingular 

Ez1 + A12z2 

XZ1 + 'llz2 + B2u 

8 Cx 

CTTTx 

crrs-1syT 
crrs-1z 

[ 01 02 J [ In-m 0 ] [ 
2
1 ] 

-F Im Z2 

19 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

and it is concluded that 8 = 0 if and only if Z2 = 0. So if 8 = 0, z2 = 0 and when the 

sliding mode occurs, 8=0. Since 

(2.43) 

the ideal sliding mode exists if and only if Z2 = 0 and i2 = 0. Hence for generation of the 

sliding mode, z2 should be a function such that: (i) for all t ~ t 8 , i 2(t) = 0 and z2 (t) = 0; 

or (ii) after a finite time instant if z2 < 0 in the neighbourhood of z2 = 0. One can select 

(2.44) 

where "W* is an arbitrary negative definite real matrix, and M and K = K(t, z) are 

nonsingular matrices such that zf Ksgn(M z2) > 0. This choice is now considered. An­

other suitable and more general choice will be studied in Remark 2.5.1. Assume <I> is any 
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m x m nonsingular matrix and <P<PT is positive definite. The matrix \ll * = -<P<I>T and 

substituting (2.44) into (2.41) gives 

(2.45) 

Hence 

(2.46) 

From (2.45) 

(2.47) 

which can be considered as the control law, including continuous (linear) and discontinu­

ous (switching or nonlinear) parts. In [29] M has been chosen as a p.d.s. matrix, but here 

M is only a nonsingular matrix which also includes p.d.s. matrices. The positivity of M 

may require the positivity of K. For simplicity, K may be chosen to be a diagonal matrix 

with positive elements. The matrix M actually depends on matrix C2 in (2.42) and could 

be selected as M = C2 • The choice may be physically meaningful in some practical sys­

tems. Since there are five design parameters in control formula, this control law type is 

very useful, flexible and more confidence than previously. The choice of design parameters 

depend upon the conditions, and structure of the system and should be obtained so that 

the stability of the sliding mode is guaranteed. So the previous work is a particular case 

of this work. Thus 

U = Ueq +Us (2.48) 

where 

is the nonlinear (switching or discontinuous) part of the control and 

(2.49) 

is the linear (equivalent or continuous) part of the control. But 

(2.50) 

hence 

Us= -B21 Ksgn ([0 M] STx) (2.51) 
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and the sliding control law is 

U - Ueq +Us 

which ensures that the state trajectory converges to the sliding surface [0 Im] STx = 0 

and remains on it thereafter. 

2.5.1 Reduction of Chattering Phenomenon 

For reduction of the chattering, which is produced by the discontinuous control, one can 

modify u to be a smooth continuous control. Let 

T/1 

Mz2 = 
T/2 

TJm 

Take 

(, = l ~. if TJk > f 
if ITJkl~f, 1 ~ k ~m 

-1 if T/k < -f 

where f is a small positive real number and !kEG! [-f, f] belongs to the class of functions 

which are continuous and differentiable on the interval [-f , f] and fk(O) = 0, fk(f) = 1, 

fk(-f) = -1. For example, 

f ( ) _ . ((4m + 1)'rrt) 
k t - sm 

2
f , mEN (2.53) 

Consider the control law (2.48) with 

where K is an mxm non-singular matrix and 

(= 
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The function Us is now continuous because for any 1 :::;;; k :::;;; m, (k is a continuous 

function. In (2.53) since fk(t) oscillates between -1 and 1, chattering may exist with a 

sliding boundary width of 2£ where £ is sufficiently small. 

Consider an approximation of the discontinuous part of control (2.48) as 

Mz2 
Us= -K 11Mz211 + 8 

where 6 > 0 is sufficiently small [29). The performance of this approximation in practical 

problems yields acceptable results. However, there may exist unacceptance chattering if 

8 is close to 0. For large 8, this function is no longer an admissible approximation of the 

discontinuous part of control. Consider Example 2.2.1 with a1 = a2 = 0, b = 1, c = 1 and 

the control law 

Simulation results are shown in Fig 2.3. 

1 

0.5 

:::1 0 

-0.5 

-1 
0 

~ -0.4 

-0.6 

Control action 

~ 

2 4 

Phase plane 

0.5 
x1 

6 

State behaviour 
1 

..-
>< 

-0.5 

-1 
0 2 4 6 

Sliding function 

-0.5 '----~~--~---___J 
0 2 4 6 

Figure 2.3: Phase plane of the system (2.3) with control (2.54) for 8 = 0.01 

(2.54) 

Hence the continuous control removes the undesired chattering behaviour. The boundary 

layer, as already stated is a way to reduce the chattering. The width of the boundary 

layer can be chosen arbitrarily small. 

Let K = p(x, t)K1f where pis a real bounded function and K1 is a nonsingular m x m 
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matrix. Then 

U - Ueq +Us 

For example, let K1 = B2, 

where 

sgn(7Jk) = l ~ 
-1 

and r = diag(/1, /2, ... '!m) with 

'Yk = 
1 

sgn(7Jl) 

sgn(7J2) 

sgn(7Jm) 

if 1Jk > 0 

if 1Jk = 0 ' 

if 1Jk < 0 

otherwise 

then, 

u = -B2-
1
(xz1 + (\ll- \ll*)z2)- p(x, t) ll ~~ ~]] ~~:ll 

When r = Im, the control is the same as (2.52) 

u = -B2 - 1(xz1 + (\ll- \ll*)z2- p(x, t)K1sgn ([0 M] STx) 

23 

Therefore this control design method is more general than that considered previously, 

e.g. [29]. The sliding mode is governed by (2.16) and (2.21). The design of the sliding 

mode requires the determination of the gain matrix F such that all the eigenvalues of 

A11 - A12F lie in the left-half complex plane. 

Remark 2.5.1 It is desired to select Us to be a discontinuous function on the sliding 

surface. This function can be chosen in many ways. One choice has been already stud­

ied; another approach is now presented which may be useful in many practical problems 

because there are five design parameter functions in the discontinuous part of the control 

law. The designer can choose these functions based on the desired properties so that the 
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sliding mode starts at a finite time. Assume that the nonlinear (switching ) part control 

law (2.48) is in the form of 

_ ( ) a(t, x)M z2 + f3(t, x)N z2 

Us- -p x,t l19(t,x)I.IIMz211 + l77(t,x)I.IINz211 
where p > 0, a, /3, 19 and 77 are real bounded functions oft and x such that iJ 'I= 0 or 

77 'I= 0. Matrices M and N are choose such that 

JY(N) = JY(M) = {0} 

A sufficient condition for the existence of the sliding mode is that aM+ f3N is a negative 

definite matrix. Let Pv be the u.p.d. solution of the Lyapunov equation 

(2.55) 

where 'lj;. is an arbitrary negative definite matrix. From (2.42) Pvz2 = 0 if and only if 

z2 = 0. So in the sliding mode z2 = 0 and Us should be discontinuous at these points. In 

fact the sliding surface is the coordinate plane z2 = 0. Consider the discontinuous part of 

the control as 

( ) [a(t,x)Bi 1
- f3(t,x)Im] Pvz2 

Us = -p x,t (liJ(t,x)l + l77(t,x)I.IIB21II) IIPvz2ll 

For generation of the sliding mode it is sufficient to choose the functions a and f3 such 

that aB2 -
1 Pv- f3Pv is a p.d. matrix. Since z = STx, 

and 

[a(t, x)B21 
- f3(t, x)Im] [0 Pv]STx 

Us= -p(x, t) (l19(t, x)l + l77(t, x)I-IIB21 II) 11[0 Pv]STxll 

1 .T, ) ST ( ) [a(t, x)Bi
1 

- f3(t, x)Im] [0 Pv]STx 
u = - B 2 - [x w - 'J-' x - p x t -;---=--------~.....:......---=---

* ' (l19(t,x)l + l77(t,x)I.IIB21II) II[O Pv]STxll 

By choosing f3 = 0, a= 1, 19 = 0 and 77 = 1/IIB21II, the control law is as in [29J 

-1 { [0 Pv]STx } 
u = -B2 [x w- w.] STx + p(x, t) II[O Pv]STxll 

Since all the functions p, a, /3, iJ and 77 are bounded and also iJ and 77 are not zero 

simultaneously, the discontinuous part of the control law is bounded 

max {lal, l/31} 
llusll ~ p min {liJI, 1771} 

if min {liJI, 1771} 'I= 0. Also instead of p, a, /3, 19 and 77 being real functions they can be 

chosen as m x m matrices. Then the norms of these matrices replace the absolute values. 

In this case, if min {111911, 117711} 'I= 0 then 

!lull ~ pmax {llall, 11/311} 
"' min { 111911, 117711} 
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For existence of a feedback gain sliding matrix F in (2.22) such that the sliding system 

(2.22) is stable, (A, B) must be a stabilizable pair. 

Lemma 2.5.1: Let Ak (1 ~ k ~ n) be the eigenvalues of A. A necessary and sufficient 

condition for the controllability of (A, B) is that for all k, rank [.Aki- A B] = n. 

Proof: See [11, page 87]. 0 

Since only the eigenvalues of the state matrix A are required to test the controllability of 

the system, Lemma 2.5.1 is very useful in practical problems. 

For existence of a feedback gain sliding matrix F satisfying (2.22), (A, B) must be a 

stabilizable pair. However, the reduced order system (2.16) is the system in the sliding 

mode, which shows that the matrices An and A12 influence the reduced order system is 

similar to the state and control matrices A and B in (2.4). So, it seems that the existence 

of the feedback gain sliding matrix F also depends on the stabilizability of (An, A12). 

The following lemma shows that the controllability (stabilizability) of the system implies 

the controllability (stabilizability) of the reduced order system, and vice versa. So, for 

establishing the stabilizability of the system, it is preferable to prove the stabilizability of 

the reduced order system. Our proof is new and benefits from Lemma 2.5.1. This lemma 

can also be directly applied to test the controllability of the system. 

Lemma 2.5.2 [118]: (An, A12) is controllable (stabilizable) if and only if (A, B) is con­

trollable (stabilizable). 

Proof: The proof in [135] is fors E C while the proof below is fors E a(A). 

Necessity. Assume (A, B) is a controllable pair and A is an eigenvalue of A. Lemma 

2.5.1 yields rank[.AI- A B] = n. So 

[ 
.AI - An A12 0 l [ ] rank [.AI - A B] = rank = rank .AI - An A12 + m 

A21 .AI - A22 B2 

since rank(B2) =m. Thus, rank[.AI- An A12] = n- m 

Sufficiency. Suppose (An, A12) is a controllable pair. Then for any eigenvalue .A of 

A
11

, rank[.AI- A B] = n- m. Since B2 is a nonsingular matrix 
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This shows that if B is full rank then for the proof of the controllability pair (A, B) it 

is sufficient that for all the eigenvalues ..\ of An, rank([..\/- An A12) = n -m. So if 

(A, B) is only a stabilizable pair, then all the uncontrollable stable eigenvalues are the 

eigenvalues of An and vice versa. Therefore (An, A12) is a stabilizable pair if and only if 

(A, B) is a stabilizable pair. D 

The proof of Lemma 2.5.2 establishes that the controllability of (A, B) depends only on 

the eigenvalues of An which means the system is controllable if and only if for all the 

eigenvalues of An, rank [ .AI- A B J = n. Since (A, B) is a controllable pair, (An, A12) 

is also controllable and the Riccati equation 

(2.56) 

where Q and Rare arbitrary (n-m) x (n-m) semi-positive and m x m p.d.s. respectively, 

has a u.p.d.s. solution P, and An - A12R-1 A[2P is a stable matrix. Then the sliding 

surface is given by (2.21) where F = R-1 A[2P. A design procedure for sliding control is 

as follows: 

• Find Tin (2.13) and then the system (2.4) is converted to (2.16) and (2.17). 

• Solve the Riccati equation (2.56) to obtain F. 

• Consider the transformation S in (2.36) and then the system (2.4) is converted to 

(2.40) and (2.41). The sliding surface is [0 Im] STx = 0. 

• Select the m x m nonsingular matrices K and M such that zf Ksgn(M z2) > 0 where 

Z2 = [0 Im] STx. 

This method guarantees the stability of the sliding system in the absence of disturbance 

and also for the case when the matching condition is satisfied. If P is the u.p.d.s solution 

of the Riccati equation 

where Rand Q are arbitrary (n- m) x (n- m) semi-p.d.s. and m x m p.d.s. respectively 

and a is a negative real number, then all the eigenvalues of An-A12F where F = R-1 Af2P 
lie to the left of the vertical line x = a. Further discussion of the ARE will be presented 

in Chapter 8. 
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2.6 Summary and Discussion 

In this chapter, the basic concept of the sliding mode, a method for designing a class of 

sliding surface and a method for control design have been presented. Although the control 

design method is similar to previous work (Ryan and Corless (92], Dorling and Zinober 

(29]), the design method and the control structure have been somewhat expanded. Using 

the sliding mode properties a suitable control can be constructed. In the new revised 

method, by applying an appropriate Riccati equation, the sliding gain matrix can be 

obtained such that the stability of the reduced order system is achieved. 

Two different methods of sliding control design for SISO and MIMO systems including 

a disturbance input will be presented in Chapter 5. Further results may be obtained by 

investigating the dynamical behaviour of s and s in the neighbourhood of s = 0 to find a 

more general formulation of control. 



Chapter 3 

Optimal Sliding Mode Control 

The LQ method is a suitable method for designing a sliding gain matrix yielding a stable 

reduced order system. In this chapter the design of the optimal sliding mode and related 

problems are studied. Our design ensures that in a specific parameter range, the stability 

of the system in the sliding mode is preserved. Some results about the sliding mode for 

a class of servo-mechanism systems, reference signal systems and tracking problems are 

also obtained. 

3.1 Optimal Control and the Sliding Mode 

Consider the system (2.4) with f = 0 and the quadratic LQ cost functional index 

J = 100 

(xTQx +uT Ru)dt (3.1) 

where Q and Rare semi-p.d.s and p.d.s matrices, respectively [11, page 280]. The optimal 

control is given by 

where P is u.p.d.s matrix solution of the Riccati equation 

(3.2) 

The index (3.1) is not suited to find the optimal sliding surface, because the sliding mode 

is control-independent and during the sliding mode the system is governed by the reduced 

order system. Utkin [121, page 140] considered in the sliding mode 

J = 100 

(xTQx + u~qRueq)dt (3.3) 

28 
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where Ueq = -(CE)-1CAx. The index (3.3) can be applied to find the sliding surface. 

By defining the sliding surface as Y2 = - Fy1, then the equivalent control is 

Ueq = -E21(F Au- A22F- F A12F + A2dY1 

Therefore, (3.3) is converted to 

where 

and 

w Qu + rT(E2 -lf RE:;1r- 2Q12F + FTQ22F 

r F Au - A22F - F A12F + A21 

TQTT = [ Qu Q12] 
Q21 Q22 

(3.4) 

Hence, to find F the index (3.4) should be minimized with respect to F on the trajectories 

(2.16). 

Some new insight is now provided into the above approach. If the index (3.3) is minim­

ized with respect to Ueq, then from (3.3) Ueq = U0 • This is impossible, because all the 

eigenvalues of A- ER-1 ET P lie in the left-hand half-plane, but at least m eigenvalues 

of A- E(CE)-1CA of the sliding mode are zero. In fact, the rank of A- ER- 1 ET P 

is n but the rank of I- E(CE)- 1C is n -m. Therefore, for all systems Ueq cannot 

have the form u 0 • In particular, assume that the matrix A is a p.d.s matrix, then for all 

weighting matrices Q and R, A is not a solution of the Riccati equation (3.2). Therefore 

the following theorem has been proved. 

Theorem 3.1.1: Assume B is n x m matrix. Then for all semi-p.d.s Q 

(3.5) 

does not have a p. d solution. 0 

A state feedback gain control can also be found by considering other quadratic cost func­

tional expressions rather than (3.1). Consider 

11±11 2 + IIYII2 
- IIAx + Eull 2 + IICxll 2 

(Ax + Eu)T(Ax + Eu) + (Cxf(Cx) 

xT(AT A+ crc)x + 2xT AT Eu +UT BT Eu 

xTQx + 2xTsT u + uTRu 
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where Q =AT A+ ere, s = BT A and R = BTB. Then 

J 100 

(11±11 2 + IIYII 2
) dt 

loo (xTQx + 2xTSTu + uTRu) dt (3.6) 

So the minimization of (3.6) yields the optimal feedback control 

where P the is u.p.d.s matrix solution of the Riccati equation 

(A- BR-1 Sl P + P(A- BR-1 S)- P BR-1 BT P = -Q + sr R-1 S (3.8) 

If C = BT then an optimal control is 

(3.9) 

where Pis the u.p.d.s. solution of the ARE 

On the other hand, the equivalent control is 

(3.11) 

Therefore in this case, the optimal control law given by (3.7) is the summation of the 

equivalent control (3.11) and the control law (3.9), i.e. 

Uo = 1Leq + Uon 

Therefore the equivalent control never equals the optimal control but it can be a part of 

the optimal control law by selecting appropriate weighting functions or more precisely by 

minimizing the functional index (3.6). 

3.2 Sliding Mode Using the LQ Approach 

The design of the sliding surface using the linear quadratic (LQ) approach has been 

considered by Young et al [135]. The basic idea is that Y2 is the input control of the 

subsystem (2.16), and LQ methods can be used to find the optimal control or more 

precisely the optimal sliding mode. Consider the singular quadratic cost functional 

J = J.oo xTQxdt (3.12) 
t. 
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where Q is a p.d.s. matrix. Assume T is the transformation (2.13) 

Then (3.12) and y = Tx yield 

J =loo (y[QuYl + 2yfQ12Y2 + yfQ22Y2)dt 
t. 

Suppose 

v(t) 

Au - A12Q2lQf2 

Y2(t) + Q2lQf2Yl (t) 

31 

(3.13) 

(3.14) 

Since (A, B) is a controllable pair, (A, A12) is also a controllable pair. Moreover, Q is a 

p.d.s. matrix, so Q is a p.d.s. matrix. Then (3.13) is converted to 

Therefore the Riccati equation 

has the u.d.s.p. solution P and 

So 

Thus, without loss of generality it is assumed Q12 = 0 and then (3.13) becomes 

J = !.oo (yfQuYl + yfQ22Y2)dt 
t. 

and 

where pis the u.p.d.s. matrix solution of the following Riccati equation 

(3.15) 

(3.16) 

(3.17) 

(3.18) 
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Y2 

Figure 3.1: The stability region of the sliding system 

So y2 + Fy1 = 0 is the sliding surface for system (2.14), and 

Cx = 0 
' C = [F I]T 

is the sliding surface for the original system (2.4). 

Define the sliding surface as 

where M is an m x m nonsingular matrix such that am(M) > -1 and F = Q2l Af2P. 

Then 

{3.19) 

For the particular case when M=alm 

1 -1 T 
Y2 = - 1 +a Q22 A12PY1, a> -1 (3.20) 

For stability of the reduced order system, it is necessary that all the eigenvalues of the 

closed-loop matrix An- A12(Im + Mt1Q2l A[2P lie in the left-hand complex plane. Since 

1/(1 +a) > 1/2, the stability of the reduced order system is preserved [93]. Therefore, 

the closed-loop matrix Au- A12Q2"lA}2Pj(1 +a) is stable if lal < 1. In Fig. 3.1 the 

appropriate region of the sliding surface for (2.14) is shown. 
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, _____________ ~9!ltNU~r _____________ , , _ _ _ _ _ _ _ _ _ _ _ _ ___ P!~l_l~ ___________ , 

BR-lBTPll X= Ax + Bu + r~ X c 

I 

I~--------------------------------~ L._ ____ _..J, 

~-----------------------------------~ 

Figure 3.2: Block-diagram of servo-mechanism system with optimal feedback 

3.3 Output '!racking Problems 

3.3.1 Sliding Mode Servo-Mechanism Systems 

The linear quadratic optimal control problem was studied in Section 3.1. The LQ method 

yields a full linear state feedback controller. The optimal control law to achieve tracking or 

regulation has been presented by Wang and Munro [125), Mahalanabis and Pal [89), Saif 

[97], amongst others. The sliding mode of servo-mechanisms and regulators are discussed 

in this section. Recall the system (2.4) with output 

y = Cx (3.21) 

where C E JRmxn. Assume r E JRm, the reference input, is a time-varying bounded 

piecewise continuous function. Assume the rank of 

A= [ A B l 
-C 0 

is n +m. The output y is required to remain as close as possible to the reference input r. 

Define 

e=r-y 

where e is the output of the servo compensator given by (3.22) (see Fig. 3.2). 

Then 

Ax + Bu + Tr + f'~ 
Cx 

(3.22) 

(3.23) 

(3.24) 
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where 

From Lemma 2.5.1 the pair (A, B) is completely controllable if, for any eigenvalues A of 

A, 

[ - -) [ A- Aln 0 B l rank A- Al(n+m) B = = n +m 
-C -Aim 0 

(3.25) 

In order to prove (3.25), first suppose A =I 0. Since (A, B) is a controllable pair 

rank [A - Aln B] = n 

and then (3.25) is satisfied for A =I 0. If one eigenvalue of A is zero, i.e. A = 0, equation 

(3.25) is converted to 

rank [ A 
0 

B ] = rank [ A B ] 
-C 0 0 -C 0 

where rank is n + m. 

The minimization of the performance index 

J = 100 

(xrQx + ur Ru)dt (3.26) 

where R and Q are p.d. and semi-p.d.s. matrices respectively, yields the optimal control 

where P is the u.p.d. matrix solution of the Riccati equation 

Substituting (3.27) in (3.23) yields 

Then 

x = (A- fJR- 1 fJT P)x + f'~ + Tr 

[ 
(A- BR- 1 BT Pu)x- BR-l BT pl2e + r~ l 

r- Cx 

(3.27) 

(3.28) 

(3.29) 

(3.30) 
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where 

Therefore the optimal control is 

where 
e = lt(r- Cx)dr 

The gain matrix -BR-1 BT P11 is a linear state feedback matrix for the original system 

(2.4) and the gain matrix -BR-1 BT P12 provides the integral control action to improve 

the accuracy (see Fig. 3.2). The system satisfies 

(3.31) 

The closed-loop system (3.29) is asymptotically stable when the disturbance and reference 

inputs are step functions. Its poles are the roots of the characteristic equation 

( A
- B-R-1B-rP) _ [sin -A+BR-1BTP11 -BR-1BTP12 ] 

det Sl(n+m) - + - = 0 
-C slm 

In the presence of disturbances, the state is ultimately bounded and the boundedness 

width depends upon the disturbance bound. 

3.4 Sliding Control Design 

Consider the system (3.23). Define the sliding surface as 

where Ce E ]Rmxm is a design matrix. The sliding functions contains a term proportional 

to the integral of the error. This term yields the ideal sliding mode. The virtual equivalent 

control is 
Ueq = -(CB)-1 ((CA- CeC) X+ Cer + cro 

Consider the discontinuous servo-control 

u = -(CB)-1 ((CA- CeC) x + Cer + Ksgn(s)) 
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Figure 3.3: A block-diagram of sliding servo-mechanism system with feedback 

where K is a diagonal matrix with positive entries and Amin(K) > IICfiiM. This control 

guarantees the existence of the sliding mode because Amin(K) > IICfiiM yields 

sr s = sr (Cr~- Ksgn(s)) < 0 

This is in Section 5.2.2. The sliding surface should be designed so that in the absence 

of disturbance and in the case of the matching conditions being satisfied, sliding system 

stability is achieved (see Fig. 3.3). 

The sliding surface of the system (2.4) is Cx = 0, but the sliding surface of system (3.23) 

is 8 = Cx + Gee = 0 which is a proportional integral sliding surface. 

When y = 0, the sliding function is converted to s = Ce J; r(r)dr. So if y = 0 after a 

finite time, the servo system is in the sliding mode if Ce J; r(r)dr = 0 after a finite time, 

i.e. e E JV(Ce)· 

If Cer(t) is a uniformly continuous function after a finite time and liEl J; Cer(r)dr exists 

(with finite limit), then the Barbalat Lemma (see Appendix C) yields li!ll Cer(t) = 0. 

For some particular cases the behaviour of the tracking system is now considered. Define 

r(t) as 

r(t) = { ~~(t) :: (3.32) 

where r1(t) is bounded. Assume t2 = max{t1, ts} where ts is the time when the sliding 

mode of the system (2.4) is reached. Therefore, when the system is in the sliding mode 

and t ~ t 2 , the system (3.23) is also in the sliding mode. However, the starting times of 

the sliding mode of these two systems are different. The sliding surface of the system (2.4) 
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is a subspace of the sliding surface of system (3.23). The ideal equivalent control of the 

system (2.4) is given by (2.10). Note that the control of the two systems (2.4) and (3.23) 

are not the same. But after t ~ t2 the control of both systems is the identical equivalent 

control. Therefore, in the sliding mode after a certain time instant, the input reference 

signal does not affect the system. It is therefore not necessary that the reference input 

be injected for all the time; the reference input may be cut off or kept constant after a 

certain time as in the regulator. 

Remark 3.4.1 Define 

r(t) = { :{t) if 0 ~ t < t1 

if t ~ t1 
(3.33) 

where a E JRmxl is a constant vector and r1(t) E lRmxl is bounded. In this case the sliding 

surface is transformed to s - a = 0 or 

(3.34) 

where c = [cl c2]. 0 

3.4.1 Optimal Sliding Mode for the Tracking Problem 

Consider the tracking system (2.4) and assume T is an orthogonal transformation matrix 

which is satisfied by (2.13). Then the system (2.4) can be written as 

AuY1 (t) + AI2Y2(t) + rl~l 

A21Y1 (t) + A22Y2(t) + B2u(t) + r26 

where yT and T ATT are given by the equations (2.14)-(2.17) and 

In (3.35) y2 is an input of the system. Let e = r- y, with r(t) bounded and 

__ [ Y1 l YI-
e 

Therefore 

(3.35) 

(3.36) 
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and 

Jh = Auih + A12ih + f\~ + Tr 

Since (A, B) is a controllable pair, (An, A12) is a controllable pair (121) where 

A- _ [ Au 0 l A- _ [ A12] 11 - ' 12-
-C1 0 -C2 

The performance measure 

J =loo ('ffi TQffi + 2ffi T Ny2 + yf Ry2)dt 

is to be minimized where 

The optimal sliding surface is 

or 

where Pis the u.p.d.s. matrix solution of the Riccati equation 

38 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

The sliding surface (3.40) ensures that the system (3.37) is stable if the disturbance input 

is a step function and r 1 = 0. 

Suppose f 1 = 0 and r 00 is the limiting value of r. The solution of system (3.37) is 

f}I(t) = eA1t1h(O) + lt eA1(t-r)'fr(r)dr 

where A1 = Au- A12K, li.Poo th(t) = Aj1Troo. If Aj1f'roo = 0, the tracking problem is 

perfectly achieved. 

The sliding surface can be defined as 

S(fh, Y2) =(M+ Im)Y2 + Kfh = 0 

where M is an arbitrary matrix with am(M) > -1 and K defined by (3.39). The modi­

fication matrix M is selected so that the nominal system (3.37) is stable. 

Remark 3.4.2 The orthogonal matrix T = diag(T,J) converts the system (3.23) to 

(3.37). 
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3.4.2 Dynamical Reference Input Signal 

The design of the sliding manifold for a nonlinear tracking systems has been proposed 

by many authors including Davies et al [26]. The basic idea is based on the fact that in 

practical cases, a system may need an input signal for switching, working, tracking and/or 

starting. This signal can be given various forms depending on what signal is necessary as 

the input of the system. A system may need a reference signal 

( i) only for switching for a certain interval of time. In this case the reference signal is 

given by (3.32). 

( ii) for all time, but the reference signal is constant or piecewise. The reference signal 

in the form of (3.33) where a is constant or a piecewise function. When a is a 

piecewise function, the switching surface is (3.34), but in different intervals the 

switching surface is different. 

( iii) for all time, but the reference signal is the output signal of another system, pre­

system or reference system. The reference system operates as a signal generator. 

This case is a generalization of cases of above ( i) and ( ii). In this case, the original 

system can be considered as a subsystem of an augmented system consisting of the 

original system and a reference system. 

A generalized approach for linear systems is presented which can be applied to the non­

linear case including the nonlinear affine system and nonlinear systems where the nonlin­

earity appears only in the disturbance term. 

Consider the system (2.4) and also assume R(t) E lRm is a reference signal defined as 

R(t) = AR(t) + Brr(t) 

Yr = CRR(t) (3.42) 

where A E Rmxm is a stable matrix, eR E ]RmXm' Br E ]RmXp' Yr E JRffi' r(t) E ]RP is 

bounded. Define 

e = Y(Yr- y(t)) (3.43) 

where Y E lRmxm is a nonsingular matrix. Taking 
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then the system has the form 

(3.44) 

where 

The stability of A is required because R is uncontrollable via u. This assumption ensures 

the existence of linear feedback in order to satisfy system stability in the absence of the 

disturbance input. So the stability of A is sensible and important, and a system with an 

unstable model is not usually driven. The controllability matrix is 

(3.45) 

with rank CC = n + m. So (A, B) is not a controllable pair but it is a stabilizable pair 

because of the the stability of A. This condition ensures the existence of a linear feedback 

gain matrix which yields the stability of the nominal servo system (see Appendix C). An 

optimal controller results from the minimization of the cost functional 

J = 100 

(iTQi +uT Ru)dt 

where Q, Rare semi-p.d.s. and p.d.s. matrices respectively. Then 

U 0 = -R-liJTPx = -Kx 

where P is an u.p.d.s. matrix solution of the Riccati equation 

Assume 
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then 

and the optimal control is 

This control is proportional integral control where -R-1 BT Pux and -R-1 BT P12R are 

ordinary linear state feedbacks and the term - R- 1 BT P13e provides integral control action 

to improve the static accuracy. 

3.4.3 Tracking Sliding Control 

Define the switching surface as 

s(x) = 6x (3.46) 

where 

and Ce E Rmxm is an arbitrary matrix. Then the switching surface is 

(3.47) 

and 
X2 = -C21(Clxl + CRR +Gee) 

where C = [C1 C2] and C2 is nonsingular matrix. When s = 0, 8 = 0 and 

Cx+CRR+Cei:-=0 (3.48) 

inserting (2.4), (3.42) and (3.43) in (3.48) gives 

Ueq = -(CBt1((CA- Ce iC)x + (CRA + Ce iCR)R + CRBrr +er~) (3.49) 

Consider the discontinuous control 

where K is a diagonal p.d. matrix Amin(K) > IICfiJM and s is defined by (3.46). Similarly 

to Section 3.4.1, this control guarantees the existence of the sliding mode. To achieve 

perfect tracking of the desired output Yn the reduced order augmented system must be 

stable. So the sliding gain matrix 6 should be selected such that the stability of the 

sliding augmented system is guaranteed. Section 3.4.4 yields an optimal sliding surface 

which ensures the stability of the nominal sliding augmented system. 

UNVERSITY OF 
s:-·~~F1ELO 
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3.4.4 Sliding Surface Design 

Consider the system (3.35) and let 

Then the system has the form 

(3.50) 

where 

The optimal sliding surface is obtained from the minimization of the cost functional 

J = 100 

(Y[Qufh + yiQ22Y2)dt 

where Q11 E JR(n+m)x(n+m) and Q22 E lRmxm are arbitrary matrices. Then 

Q-lA-T PA- K-
Y2 = - 22 12 Y1 = - Y1 

where P is a semi-p.d.s. matrix solution of the Riccati equation 

Assume 

is the sliding surface of the augmented system. Take 6 = [K J]. With this choice 

of 6, the nominal reduced order augmented system is stable. When y = 0, the sliding 

function is converted to s = CRR + Ce TCR J~ R(T)dT. So if y = 0 after a finite time, the 

augmented system is also in the sliding mode if CRR = 0, i.e. RE JV(CR)· 
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3.5 Summary and Discussion 

In this chapter LQ, LQR (regulator), LQT (tracking) problems and the sliding mode for 

these problems have been studied. These methods yield suitable sliding mode control. 

Using the linear quadratic cost functional guarantees the stability of the system in the 

absence of disturbance and also when the disturbance is a step function. When the system 

has a reference signal input, the design of the sliding surface is different. In this case the 

reference input and its effect on the system must be considered. By using both output 

tracking and regulator problems the sliding surface has been obtained. The relationship 

between the two systems (2.4) and (3.23) in the sliding mode has been clarified. The 

reference input has been considered as a dynamic system, and the control and the sliding 

surface obtained. In fact, in this case the reference system is a dynamic system inde­

pendent of the original system and operates as a signal reference controller or generator. 

Further results could be obtained for the nonlinear optimal control case to generalize the 

work by Davies et al [26], or by using statistical methods for stochastic processes. If the 

system is an m-input [-output system, Y is an m x l matrix and the sliding surface can 

be defined as already stated. More results may be obtained by investigating the sliding 

condition regarding the boundary layer and also extending the results to nonlinear and 

discrete-time systems. 



Chapter 4 

Frequency Shaping in Sliding Mode 

Control 

4.1 Prologue 

The frequency shaping approach to linear quadratic (LQ) design has been proposed in 

recent years [5], [41]-[55], [66], [67], [86], [114], [137]. For example, Moore and Mingori 

[86] discussed frequency-shaped LQ and spectral factorization. They proposed techniques 

for the construction of optimal controllers which preserve the robustness properties of 

standard LQ state feedback. Tharp et al [114] discussed the parameterization of LQ 

frequency weightings, the associated dynamic controller and a two-phase procedure for 

the design of controllers for systems utilizing frequency weighting. They developed a 

technique to retain the spectrum of closed-loop design model, resulting from a conventional 

LQ problem, as a subset of eigenvalues of the closed-loop augmented system. 

In [137] a method for control and sliding mode design using the frequency domain 

techniques was presented, but considered only the case when the control weighting mat­

rix is dependent on frequency. In this chapter all the possible cases are considered for 

which the weighting functions may be frequency-dependent. The frequency shaping of 

sliding mode control and design compensators for the reduced order system are studied. 

Furthermore, the conditions that the poles of original LQ reduced order system remain 

the poles of the reduced order system with compensator are obtained. 

The frequency-dependent weight functions may have a penalty on the control at high 

frequencies, e.g. the frequency response may drop off slowly as 1/w at high frequencies 

44 
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Plant 

Pre-compensator Post-compensator 

Controller 

Figure 4.1: A block-diagram of the augmented system 

[48). For the case of state feedback in LQ design, the controller has 60° phase margin 

and (k, oo) gain margin. Using appropriate frequency weight functions yields augmented 

control systems which can be applied to obtain the sliding mode and optimal control. 

Frequency shaping is a way of dealing with plant uncertainties and links linear quadratic 

optimal control and sliding mode control. 

In Section 4.2 the main problem and some new results are discussed. The main prob­

lem arises when the weighting functions in the LQ performance functional are frequency­

dependent. In this way a pre-compensator, post-compensator or both can be designed for 

the system in the sliding mode (see Fig. 4.1). 

4.2 Frequency Shaping of the Sliding Mode 

In this section, methods are presented for finding the sliding surface when the weighting 

matrices are functions of frequency. The quadratic cost (3.16) can be written in the 

frequency domain using Parseval's Theorem 

J = 
2
1 foo (y;(iw)Qu(iw)yi(iw) + y;(iw)Q22(iw)y2(iw)) dw (4.1) 
7r 1-00 

where the matrices Q11 ( iw) and Q22 ( iw) are frequency-dependent Hermitian weighting 

matrices. They are p.d. matrices for all frequencies except a set of frequencies with 

zero measure, i.e. for almost every frequency the weighting functions are p.d. matrices. 

Assume the weight functions are proper rational functions of w 2 [48). This assumption 

guarantees that the optimal sliding solution is causal. Note that any real function can be 

approximated by a rational function. There exist four cases: 
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( i) both Q11 and Q22 are constant for all frequencies 

( ii) Q22 is a function of w2 and Q11 is constant for all frequencies 

(iii) Q11 is a function of w2 and Q22 is constant for all frequencies 

(iv) both Q11 and Q22 are functions of w2 

Case (i) was considered in Section 3.2 and (ii) has been presented by Young and Ozgiiner 

!137] and Hashimoto and Konno !55]. It has been shown by Anderson et all5] that when 

Q11 (iw) and Q22 (iw) are the inverse of each other, then identical closed-loop poles and 

an optimal sliding mode are obtained. Therefore, except for this case, the sliding gain 

matrices are not identical, i.e. the sliding surfaces are no longer the same. 

Cases ( ii), ( iii) and ( iv) are considered here. Case ( ii) is considered first, i.e. Q11 is 

constant for all frequencies and Q22 is a function of w2. Assume that W2 ( s) is a spectral 

factor of Q22, i.e. 

(4.2) 

Then the quadratic cost ( 4.1) can be replaced by 

J = I_ loo (y~(iw)Qu(iw)yl(iw) + (W2(iw)y2(iw))*W2(iw)y2(iw)) dw 
21T -00 

(4.3) 

l oo (y;QuYI + u*u)dt 
ts 

( 4.4) 

where 

This implies that u is the output of a filter or dynamic system with transfer function W2(s) 

and input y2 • If W2(s) is considered to be a transfer function, then W2(s) represents the 

pre-compensator transfer function of the system 

(4.5) 

The optimal sliding surface for the augmented system, which is the original system with 

the dynamic compensator (4.5), is now studied. Consider 

(4.6) 
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and Re= D~2Dw2 • The quadratic cost (4.1) is converted to 

(4.7) 

Therefore, the sliding surface is 

S = Y2 + K Xe = 0, ( 4.8) 

where Pe is the u.p.d.s. matrix solution of ARE 

(4.9) 

ForK= [K1 K2) equation (4.8) becomes 

(4.10) 

which is not the sliding surface of the original system, but is a linear operator of states. 

Assume 

(4.11) 

Then the system 

(4.12) 

is a filter for y2 which is obtained by designing the sliding surface ( 4.12) [ 13 7]. Therefore 

there is a filter for Y2 corresponding to the sliding surface. 

4.3 Iterative Constructive Procedure for the Optimal 

Sliding Surface 

One way to obtain various sliding surfaces is to alter the weighting functions in the 

functional performance index ( 4.1). The problem is how should the weighting functions 

be selected. An iterative method enables one to consider various sliding surfaces and 

choose the desired sliding surface. This method may be applied a finite number times 
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and the sliding surface chosen by comparing the eigenvalues of the reduced order systems 

corresponding to each sliding surface. Example (a) in Section 4.6 illustrates this approach. 

An iterative method for designing the sliding surface is now presented. Conventional 

weighting matrices are considered which yield a new compensator and augmented system. 

In this way, various sliding surfaces can be designed. Equations ( 4.5) and ( 4.11) yield the 

new system. 

Consider 

where 

with C0 = Cw
2

, D0 = Dw2 and Ko1 = K1. Suppose 

i.e. Q1 is the transfer function of the system 

(4.13) 

Now consider ( 4.6) with weighting matrices 

_ [ crc~ o ] 
Qle- 0 Qu ' 

and R 1e = D[ D 1. The quadratic cost (4.1) is converted to 

J = 100 

(x~QleXe + 2x~ N1eY2 + yf R1eY2)dt 
t. 

( 4.14) 

Therefore, the sliding surface is 

( 4.15) 

where He is the u.p.d.s. matrix solution of the appropriate Riccati equation. For 

K 1e = [K11 K12] equation (4.15) is 
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Since the quadratic cost functionals (4.7) and (4.14) are different, the sliding surfaces 

(4.8) and (4.15) are not the same, i.e. a new compensator and a new sliding surface are 

designed. For the next step, consider 

where 

Suppose 

Consider ( 4.6) with weighting matrices 

_ [ Cf C2 0 l N _ [ Cf D2] 
Q2e- Q ' 2e-

0 11 0 

and R2e = Df D2 . The quadratic cost ( 4.1) now becomes 

J = (X> (x~ Q2eXe + 2x~ N2eY2 + yf R2eY2)dt it. 
Therefore, the sliding surface is 

82 = Y2 + K2eXe = 0, 

( 4.17) 

(4.18) 

where He is the u.p.d.s. matrix solution of the appropriate Riccati equation. For 

K2e = [K21 K22J equation (4.18) is given by 

By proceeding iteratively for a given positive integer number N ~ 1 it is obtained that 

where 

[ 
CN-1 l D [ DN-1 l CN = , N = 

K{N-1)1 lm 

Suppose 
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i.e. QN is the transfer function of the system 

Now consider ( 4.6) with weighting matrices 

and RNe = D~DN· The quadratic cost (4.1) is converted to 

J = r)() (x!'QNeXe + 2x!' NNeY2 + yf RNeY2)dt 
lt. 

Therefore, the sliding surface is 

where PNe is the u.p.d.s. matrix solution of the Riccati equation 

For KN = [KNI KN2J equation (4.22) is given by 
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( 4.20) 

(4.21) 

( 4.22) 

( 4.24) 

Therefore, for all N there exists an augmented system, an optimal sliding surface and a 

filter for y2 relating to the sliding surface. 

4.3.1 Design of a Post-Compensator 

Next Case ( iii) is discussed. Suppose Qu ( s) is a function of w2 but Q22 ( s) is constant for 

all w, 

(4.25) 

where W1 ( iw) is the spectral factor Qu ( s). Then ( 4.1) becomes 

J = }__ 100 

{(W1(iw)yi(iw))*WI(iw)yi(iw) + y;(iw)Q22Y2(iw)} dw (4.26) 
27f -00 
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Assume Uw
1 

( iw) = W1 ( iw )Yt ( iw) and the transfer function of the system 

is W1 ( s). Consider 

Awl Xwl + Bwl Yt 

Cwl Xw1 + Dwl Yt 
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( 4.27) 

( 4.28) 

( 4.29) 

For C~1 Cw
1 

> 0 and D~1 Dw1 - D~1 Cw 1 (C~1 Cw1 )- 1 C~1 Dw1 ~ 0, Q is semi-p.d.s. matrix 

(see Appendix C.2). The quadratic cost (4.26) is now 

and the sliding surface is 

J = {oo ( iJ[ Qi)t + yf Q22Y2) dt 
lt. 

s = Y2 + K Yt = 0, K = Q:;} f1T p 

where Pis the u.p.d.s. matrix solution of the ARE 

Assume K = [K1 K2] then the sliding surface is given by 

(4.30) 

( 4.31) 

( 4.32) 

( 4.33) 

The equations (4.10) and (4.33) are basically similar, i.e. the frequency shaping con­

trol weighting function and frequency shaping state weighting have similar effects on the 

closed-loop system. The equations (4.5) and (4.27)-(4.28) describe a pre-compensator and 

a post-compensator for the system (2.16), respectively. The equations (4.10) and (4.33) 

indicate that the sliding surface can be considered as a linear operator corresponding to 

the pre- and post-compensator, respectively. 

Assume 7 is the linear operator 
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Define the sliding surface t.p = T(yi) + Y2· For the system 

z ( 4.34) 

the augmented system is (4.29). Hence, the sliding surface is 

The system ( 4.34) is a filter for Y1 which has been obtained by designing the sliding surface 

(4.33). Also note that a linear operator has a realization as a dynamical system. 

4.4 Relationship between LQ Reduced System and 

Augmented Sliding System 

The augmented system is a new system which is a combination of the original LQ reduced 

order system and a compensator. Generally, the poles of the reduced order system are not 

the poles of the augmented system. Since allocation of the system poles is very important 

for designing control, it is desirable to design a compensator such that the poles of the 

LQ system remain the poles of the augmented system. In this way some of the properties 

of the LQ system are conserved. In this section conditions are stated for the poles of the 

LQ reduced order system to be preserved as the poles of the reduced order augmented 

system. Note that in the following discussion, the general case of decomposition of the 

weighting matrix is considered; in particular when the weighting matrix is not strictly 

proper. Consider the performance index ( 4.1). Assume 

Qu(iw) = Qo +Qu(iw) ( 4.35) 

where Q0 is constant matrix. Suppose 

J2 = loo (y'[ QoYI + yf Q22Y2)dt 
t. 

( 4.36) 

where Q22 is constant for almost all frequencies. Then an optimal sliding surface for the 

original system is 

( 4.37) 

where pis the u.p.d.s. solution of the Riccati equation 

( 4.38) 
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Suppose one selects Q0 = 0. Denote )q, >.2, ... , An1 and ~1, ~2, ... , ~n2 as the eigenvalues 

of A 11 in the closed left-hand half plane and open right-hand half plane, respectively. 

Then the eigenvalues of An- A12K are ..\1, ..\2, ... , An1 , -~1, -~2, ... , -~n2 [64). When 

Q0 = 0, for the stability of the reduced order system it is necessary that matrix An has 

no eigenvalues on the imaginary axis. 

For 

the transfer function of the system 

(4.39) 

is Wt (s). 
Consider the augmented system 

( 4.40) 

where 

y= [::J 
Then the index ( 4.1) is converted to 

J =loo (f/;Qnfle + yfQ22Y2)dt 
t. 

(4.41) 

where 

Hence the optimal sliding surface is 

( 4.42) 

where Pe is the u.p.d.s. solution of the Riccati equation 

( 4.43) 

The system in the sliding mode is governed by 

( 4.44) 
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Theorem 4.4.1 If 

(4.45) 

then the eigenvalues of Au - AI2K are also the eigenvalues of Ae - BeKe. 

Proof: Assume AI, A2, ... , An-m are the eigenvalues of A11 - AI2K and vi, v2, ... , v11 _m 

the corresponding eigenvectors, respectively. Therefore 

where V = [ VI v2 . . . Vn-m J and A = diag(AI, A2, ... , An-m)· The Hamiltonian 

matrix for system (4.40) and index (4.41 ) is 

[ A, ' -l'T l 
He 

-BeQ22 Be 
-

-AT -Qu e 

Au 0 -AI2Q22I Af2 0 

Bwl Awl 0 0 
AT A AT A 

-Afi 
AT ( 4.46) 

-Qo- Dw
1
Dw1 -DwlCwt -Bwl 

AT A 

-CwlDwt 
AT A 

-Cw1 Cw1 0 
AT 

-Awl 

Since the eigenvalues of Ae- BeKe are the eigenvalues of He (see Theorem C.l.l), it is 

sufficient to prove that the eigenvalues of Au - AI2K are the eigenvalues of He. Assume 

Then 

V 

-V 
V= 

PV 

0 

(Au- AI2Q2l A[2P)V 

(Bw 1 - rlwJV 
T AT A AT A 

-{(Qo + A11 P) + Dw1 Dw1 - Cw
1
DwJV 

AT A AT A 

-(Dw1 Cw1 - Cw
1
Cw1 )V 

(Au - AI2K)V 

-(Au- AI2K)V 

(PA 11 - PAI2K)V 

0 

(4.47) 
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VA 

-VA 
PVA 

0 

VA 

Therefore ..\ 1 , ..\2 , ... , An-m are also the eigenvalues of Ae- BeKe. 
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( 4.48) 

0 

Lemma 4.4.1 Assume that the conditions of Theorem 4.4.1 are satisfied and P is the 

u.p.d.s. solution of ARE (4.38). The u.p.d.s. solution of ARE (4.43} is 

P,=[p;p ;] 
where P is the u.p.d.s. matrix solution of the Riccati equation 

( 4.49) 

Proof: Substituting Pe into the left-hand side of (4.43) and using Theorem 4.4.1 and 

(4.38), yields 

0 
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Therefore, the sliding surface is 

Y2 -Kefh 

Q-lBTP. A 

- 22 e eYl 

-Q221 Af2(P + P)yl- Q221 Af2Piw1 

and the reduced order system is 

Y! 
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( 4.51) 

( 4.52) 

4.5 Design of Two Compensators for Frequency­

Dependent Weighting Functions 

Now consider Case (iv), i.e. both Qu and Q22 are functions of w2. Let Wt(s) be the 

spectral factor of Qu, f = 1, 2. Then Wt(s), f = 1, 2, are the transfer functions of the 

systems (4.27)-(4.28) and (4.5), respectively. W1 and W2 are post- and pre- compensators 

(see Fig. 4.2). Then the quadratic cost (4.1) is transformed to 

J _ __!_loo (y~(iw)Wt(iw)Wl(iw)yl(iw) + y;(iw)W;(iw)W2(iw)y2(iw)) dw 
27r -00 

l oo (vrv+uru)dt (4.53) 
t. 

where 

V 

u 

W1(iw)y1(iw) 

W2(iw)y2(iw) 

are frequency shaped state variables and inputs, respectively. Consider 

i1 = Ax1 + Bx2 

X!= 

Qu = 

(4.54) 

( 4.55) 
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I 
An I 

l I Y1 

rl + 
A12 

l ·IX' r J I 
I + l I 

1-1 Awl I 
I 

+~+ 
~ K2 

I J I I 
Bw! 

I 
Xw! l I 

X l I 
- -

K1 X 
-

1-1 A~<~2 I 
I 

+ I K3 I I J I r-0+ J Bw2 
I 

I r Xw2 I I l I 

Figure 4.2: Structure of generalized system in the sliding mode 

and Q11 are semi-p.d.s. matrices which guarantee the existence of an u.p.d.s. solution of 

the conventional ARE. The quadratic cost (4.1) can be replaced by 

J = {oo (xf Quxl + 2xf Q12Y2 + yf Q22Y2)dt it. 
which is minimized with respect to Y2· The optimal sliding surface is 

s = Y2 + Kx1 = 0, 

where P is a p.d.s. matrix solution of ARE 

Let K = [K1 K2 K3]. Then the sliding surface is given by 

( 4.56) 

(4.57) 

( 4.58) 

( 4.59) 
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Note that in this case the sliding surface is a linear operator of states. Unlike both the 

previous cases, the sliding is no longer in the phase plane (y1, y2). When both Q11 and Q22 

are frequency-dependent, their effect on the system is similar to only one of them being 

frequency-dependent. However, the sliding surfaces in this case differ, but the structure 

of the sliding surfaces are similar. 

Consider 

Then the systems 

T/1 ( 4.60) 

and 

(4.61) 

are filters for y2 and Y1, respectively. These filters are given by the design of the sliding 

surface. 

Remark 4.5.1: All the methods in this chapter can be used for designing control. It is 

sufficient that Q 11 , Q22, Y1, Y2 are replaced by Q, R, x and u respectively, using the 

usual LQ control notation, since Y2 is the input control of the subsystem (2.16). 

4.6 Example: Two-Link Robot Manipulator 

Robot manipulators are controllable nonlinear mechanical systems. The task of a two-link 

robot is to move to a given final position as specified by two constant given joint angles. 

Each link joint has a motor for providing input torque, an encoder for measuring joint 

position and a tachometer measuring joint velocity. It is desired to design the control or 

a sliding surface such that the joint positions Or and <Pr tend to the desired positions (}rd 

and cPrd, which are specified by a motion planning system. When a robot hand is required 

to moved along a specified path, there is a tracking problem. 
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y 

Figure 4.3: Robot manipulator with two link arms 

Consider the robot manipulator with two link arm, which moves in a horizontal plane. 

The nonlinear equations governing its movements are 

with 

g [ -J2v1Br + av2~r + abiJ; + bJ2~; + 2bJ2Br~r + J2u1- au2] 

g [av10r - hv2~r - bhO; + abJ2~; + 2ab0r~r- au1 + hu2 J 

a J2 + 2m2l1l2 cos 4>r b = 2m2l1l2 sin 4>r 

h 
2 -

J1 + h + 4m2ll + I + 4m2l2l2 cos 4>r 
1 

g 

( 4.62) 

(4.63) 

where li is the length of link i, Ji is the inertia moment of link i about axis i, mi is the 

mass of link i, Vi is the viscous friction constant for axis i and lis the moment of inertia of 

the axis motor [129) (see Fig. 4.3). For simplicity, the cross terms in the equations ( 4.62) 

and ( 4.63) will be ignored in the design, but can be included in the model simulation. 

This strategy enables suitable results to be obtained [129). If the cross terms are ignored, 

equations (4.62) and (4.63) become 

[ ~:] = [ -g:::: _:::] ( 4.64) 
-ga 
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Let 

then 

and 

XI 0 1 0 0 XI 0 0 

X2 0 -gJ2vi 0 gav2 X2 gJ2 -ga [ :: l + 
xa 0 0 0 1 X a 0 0 

X4 0 gavi 0 -ghv2 X4 -ga gh 

Consider the robot manipulator system (4.65) 

± = Ax+Bu 

with 

0 1.0000 0 0 0 0 

0 -0.3320 0 0.0187 
B= 

130.8 -308.3 
A= 

0 0 0 1.0000 0 

0 0.7830 0 -0.1914 -308.3 

Assume 

1 0 0 0 

T= 
0 0 1 0 

0 -0.3906 0 0.9206 

0 -0.9206 0 -0.3906 

is the transformation matrix given by (2.13) then 

AI
2 

= [ -0.3906 -0.9206] 
0.9206 -0.3906 

0 

3155.4 

60 

( 4.65) 

(a) Consider the functional ( 4.1) with Qu = !2 and Q22 ( s) = w; ( s) W2 ( s). Assume 

W2(s) = Dw2 + Cw2 (sJ2- Aw2 tiBw2 

with 

[ 

0.3 
Aw = 

2 0 
0.1 l 
0.6 ' 

B _ [ 0 0 l 
W

2
- 0.5 1 

[ 
0.3 c -

W2- 0.3 
0.9 l 
0 ' 

Dw
2 

= [ 0.28 0.90 l 
0.30 -0.02 
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Then the augmented system is ( 4.6) with 

0.3 0.1 0 0 0 0 

0 0.6 0 0 0.5000 1.0000 
Ae= Be= 

0 0 0 0 -0.3906 -0.9206 

0 0 0 0 0.9206 -0.3906 

0.1740 0.2640 

0.2520 0.8100 [ 0.1684 0.2460 l Ne= Re= 
0 0 0.2460 0.8104 

0 0 

0.18 0.27 0 0 

Qe= 
0.27 0.81 0 0 

0 0 1.00 0 

0 0 0 1.00 

The u.p.d.s solution of ARE (4.9) is 

685.3062 -43.8132 -67.5632 2.4334 

-43.8132 8.3965 8.8390 -0.5894 
Pe = 

-67.5632 8.8390 10.8023 -0.5776 

2.4334 -0.5894 -0.5776 0.3376 

So 

K = [ 15.2715 0.5819 -0.6878 3.1932] 

16.8784 0.4274 -0.8771 -1.2032 

and the sliding surface is 

[ 
15.2715 0.5819] [ -0.6878 3.1932] 

S - Y2 + Xw2 + Yl = 0 
- 16.8784 0.427 4 -0.8771 -1.2032 

The eigenvalues of Ae - BeK are -0.3537 ± 1.0688i, -0.1495, -3.4473. So the 

augmented system in the sliding mode is stable. The locations of the resulting 

eigenvalues depend upon the choice of the proper weighting function Q22 . The 

sliding function s(t) is not the sliding function for the LQ system but is a linear 

operator of the augmented states and has the form of a dynamic compensator. 

Simulation results are shown in Fig. 4.4. 
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State behaviour of the augmented system 
0.6 ~--~----~----.----.-----.----.-----.---~----~--~ 

0.4~11 
0.2~~ 

0 ~_y12 

-0 .2~ 
- 0.4 OL------'-2-----4L----~6-----:'8'-----1:"::0-----=-'12:-----1-'-4-----:'-16-----1L8--____J20 

time 

Sliding functions 
1~---.-----.----.----,,----.----.-----.----.-----.----. 

s1 

- 0. 5 0[_ _ ___,_2 _____ 4L----'-6 ----_j8L----1:"::0-----=-'12=-----1-'-4-----:'-16 _____ 1.L8--____J20 

time 

Figure 4.4: Responses of Example (a) 

The iterative constructive method is now applied. At the first step consider 

0.3000 0.9000 

0.3000 0 
C1= 

15.2715 0.5819 

16.8784 0.4274 

15.4455 17.1424 

0.8339 1.2374 
Nl e = 

0 0 

0 0 

518.2784 

Qle = 
16.3706 

0 

0 

At the first step the gain matrix is 

[ 5.8304 0.0379 
K -

l e - 12.5602 0.6850 

0.28 0.90 

Dl= 
0.30 -0.02 

1.00 0 

0 1.00 

- [ 1.1684 0.2460 l 
Rle -

0.2460 1.8104 

16.3706 0 0 

1.3313 0 0 

0 1 0 

0 0 1 

-0.4473 0.8252] 
-0.5926 -0.4663 

62 
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The eigenvalues of Ae- BeKle are -0.1819 ± 0.8691i, -0.1711, -0.9311. 

At the second step consider 

C2= 

0.3000 0.9000 

0.3000 0 

15.2715 0.5819 

16.8784 0.4274 

5.8304 0.0379 

12.5602 0.6850 

21.2759 29.7026 

0.8718 1.9224 

0 0 

0 0 

So the second step yields the gain matrix 

0.28 0.90 

0.30 -0.02 

1.00 0 
' D2= 

0 1.00 

1.00 0 

0 1.00 

' R
2

e = [ 2.1684 0.2460 l 
0.2460 2.8104 

K _ [ 31.1239 0.2781 -3.3756 15.7457] 
2

e - 26.4561 2.0299 -0.8349 -5.6859 

63 

The eigenvalues of Ae- BeK2e are -0.1031 ± 0.7789i, -0.1749, -0.6789. At the 

third step consider 

0.3000 0.9000 0.28 0.90 

0.3000 0 0.30 -0.02 

15.2715 0.5819 1.00 0 

16.8784 0.4274 0 1.00 
C3= ' D3= 

5.8304 0.0379 1.00 0 

12.5602 0.6850 0 1.00 

31.1239 0.2781 1.00 0 

26.4561 2.0299 0 1.00 

52.3997 56.1587 

1.1499 3.9523 R _ [ 3.1684 0.2460 l 
N3e = ' 3e-

0 0 0.2460 3.8104 

0 0 

So the third step yields the gain matrix 

[ 3.0334 0.1311 -0.2920 0.4816] K -
Je- 11.7485 0.6377 -0.4192 -0.2967 
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The eigenvalues of Ae- BeK3e are -0.1074 ± 0.8902i, -0.1232, -0.5245. 

Therefore, various sliding surfaces and augmented systems with different poles can 

be found. One can then select a sliding surface with suitable eigenvalues taking into 

account the actual system requirements. 

(b) The following illustrates the case when Q11 is a function of frequency but Q22 is 

constant. Assume Q0 = 0.05. Then the u.p.d.s. solution of ARE (4.38) is 

p = [ 0.2236 0 l 
0 0.2236 

Therefore, 

K = [ -0.0873 0.2058] 
-0.2058 -0.0873 

and A11 - A12K has just one eigenvalue -0.2236 (repeated twice). Consider 

Qu(iw) = Qo + Qu(iw) 

and ( 4.39) with 

Awl = [ 

-0.2236 

0.4000 

Then 

0 0 

Ae= 
0 0 

0 0 

0.4000 0.5000 

Taking Q22 = !2 and 

Qu = 

~ [ 0 0 l Bwl= ' 
0.4 0.5 

Cwl = [ 1.5 4.50 l 
1.5 0.45 

0 0 -0.3906 -0.9206 

0 0 0.9206 -0.3906 
Be= 

-0.2236 0 0 0 

0.4000 0.2764 0 0 

4.5500 7.4250 4.5000 7.4250 

7.4250 20.5025 7.4250 20.4525 

4.5000 7.4250 4.5000 7.4250 

7.4250 20.4525 7.4250 20.4525 

The u.p.d.s solution of ARE (4.43) is 

1.8676 1.5054 1.6440 1.5054 

1.5054 4.7733 1.5054 4.5497 
Pe = 

1.6440 1.5054 7.1020 1.5054 

1.5054 4.5497 1.5054 4.5497 
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and 

Ke = [ 0.6564 3.8063 0.7437 3.6005] 
-2.3073 -3.2503 -2.1014 -3.1629 

The eigenvalues of Ae - BeKe are -4.8346, -1.3068, and -0.2236 (repeated). So 

the repeated eigenvalues -0.2236 are the eigenvalues of A11 - A12 K. The sliding 

surface is 

__ [ 0.6564 3.8063] Yl _ [ 0.7437 3.6005] Xw 

y2
- -2.3073 -3.2503 -2.1014 -3.1629 1 ( 4.66) 

The reduced order system is 

-1.8677 -1.5055 -1.6441 -1.5055 

[ ±£, l = 
-1.5055 -4.7736 -1.5055 -4.5500 [X~, l 

0 0 -0.2236 0 

0.4000 0.5000 0.4000 0.2764 

Since A11 = 0, the eigenvalues of the LQ closed-loop A11 - A 12 K are zero if Q0 = 0. 

On the other hand, it is desired to find Ke so that the eigenvalues of the closed-loop 

Au - A 12 K remain the eigenvalues of the closed-loop Ae- BeKe. So Q0 should be 

selected as a nonzero matrix. Here select Qo = 0.05. Then A 11 - A12 K is a stable 

matrix and the stability is given by Ae- BeKe. If (Au, A12) is not a stabilizable 

pair then Theorem 4.4.1 fails, because there is not a feedback gain K such that 

A
11 

- A 12 K is a stable matrix. Simulation results are shown in Fig. 4.5. 

{c) Now consider the case (iv) in which two weighting matrices are frequency-dependent. 

Suppose 

[ 
0 0 l Bw = 1 

0.4 0.5 

[ 1 3] 
1 0 ' 

Dw1 = [ 
0.95 3.00 l 
1.00 -0.05 

[ 
0 2.0 l 

Aw2 = 2.0 0.5 ' [ 
0 1.0 l Bw = 2 

7.0 0.4 

[ 
1.0 0 l [ 0. 7 0 l Cw2 = ' Dw2 = 

-0.61.0 -0.6 0.7 
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State behaviour of the augmented system 
0 . 1,---------------~--------------~----------------, 

,.._ v11 
o.o5 --....:: Q~,u 

~=======~~Q~•w12~~ 0 .\ y12 
- 0.05 \_ ----===== 

0 5 

0 .5 
s1 

time 

Sliding functions 

10 15 

-1L---------------~--------------~--------------~ 
0 5 10 15 

time 

Figure 4.5: Responses of Example (b) 

Therefore 

0 0 0 0 0 0 -0.3906 -0.9206 

0 0 0 0 0 0 0.9206 -0.3906 

A= 0 0 0 2 0 0 B= 0 0 

0.4 0.5 0.3 2 0 0 0 0 

0 0 0 0 0 2 0 1.0000 

0 0 0 0 0.2 0.5 7.0000 0.4000 

1.9025 2.8000 1.9500 2.8500 0 0 

2.8000 9.0025 2.9500 9.0000 0 0 

1.9500 2.9500 2.0000 3.0000 0 0 

Qu = 2.8500 9.0000 3.0000 9.0000 0 0 

0 0 0 0 1.3600 -0.6000 

0 0 0 0 -0.6000 1.0000 

0 0 0 0 - 0.6000 1.0000 
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0 0 

0 0 

Q12 = 
0 0 Q - [ 0.85 -0.42] 

' 22-
0 0 -0.42 0.49 

1.06 -0.42 

-0.60 0.70 

The u.p.d.s. solution of ARE ( 4.58) is 

9.3149 -15.9939 2.0791 13.4303 -0.5250 3.0916 

-15.9939 38.7375 -0.6894 0.9834 0.5946 -5.6197 

2.0791 -0.6894 3.3153 10.3865 -0.0614 0.5821 
p12 = 

13.4303 0.9834 10.3865 113.2893 -0.2914 3.5534 

-0.5250 0.5946 -0.0614 -0.2914 0.7948 -0.2406 

3.0916 -5.6197 0.5821 3.5534 -0.2406 1.0681 

and 

K = [ 3.8636 1.6441 2. 7856 

0.0128 -2.7951 -0.6191 

21.5820 -0.2407 1.4231 l 
-5.2115 1.7316 0.2719 

So the sliding surface is given by ( 4.59) with 

K _ [ 3.8636 1.6441 l ' 
1 

- 0.0128 -2.7951 
K

2 
= [ 2.7856 

-0.6191 

[ 
-0.2407 1.4231 l 

K3= 
1. 7316 0.2719 

Simulation results are shown in Fig. 4.6. 

21.5820 l 
-5.2115 

So in Case (c) two compensators corresponding to the weighting matrices Q11 and 

Q22 have been designed. The order of the augmented system is much higher than 

the LQ system. 

Cases (ii), (iii) and (iv) can be applied to practical problems as illustrated by the 

examples in Section 4.6. However, if it is desired to apply the iterative method, 

Case {ii) (Example (a)) is more suitable than {iii) and {iv) {Examples (b) and (c)). 

To apply Theorem 4.4.1, Case (iii) (as in Example (b)) is recommended, while for 

Case ( iv) (Example (c)) improves the stability of the system more strongly than the 

other cases. 
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State behaviour of the augmented system 
4 .----.-----.-----.-----.----.-----.-----.-----.-----~--~ 

2 ::S:.11 
xw21 

xw11 

0 0.5 1 

7 y12 
xw12 

1.5 2 2.5 3 3 .5 
time 

Sliding functions 

-
4 4.5 5 

15.----,.----.-----.-----.-----.----.-----.-----.-----.---~ 

10~ s1 
5 

0 ~~~··0~~----------------------------------------------~ 

-5L---~-----J----~-----L-----L----~----~----~----L---~ 
0 0 .5 1 1.5 2 2.5 3 3.5 4 4.5 5 

time 

Figure 4.6: Responses of Example (c) 

In all cases the sliding function has the form of a dynamic compensator. The poles 

of Q22 in Case ( ii) and the zeros of Qu in Case ( iii) correspond to the compensator 

poles and zeros, respectively. In Case ( iv) there are both. All these compensators in­

fluence directly the reduced order closed-loop transfer function. Example 4.6 shows 

that the frequency shaping of the sliding mode can provide additional flexibility for 

the design of the sliding mode using LQ techniques. Suitable design of the sliding 

surface may depend on the (i) model validity, (ii) actuator/sensor characteristics, 

( iii) sliding function objectives and ( iv) disturbance spectrum [48]. 

It is assumed that Qu and Q22 are proper weighting functions. Generally, there 

may be cancellations between the poles of one compensator and the transmission 

zeros of the other compensator system, when Qu and Q22 are not proper functions. 

A modified method for this case has been presented in [48]. 
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4.7 Summary and Discussion 

Frequency shaping control design linked with linear quadratic optimal and sliding mode 

control is a technique for controlling systems with uncertainties. In this chapter a new 

method for designing the control and the sliding surface has been proposed when the 

LQ weighting functions are not constant for all frequencies. By using this method pre­

and post-compensators are designed. The resulting augmented system is a combination 

of the original system and compensators. The order of the augmented system depends 

upon the dimension of the original system state and the weighting functions. It has been 

concluded that the sliding mode can be expressed as a linear operator of states i.e. a 

dynamic system. Additionally, conditions have been obtained to retain the spectrum 

of the original LQ reduced order system as a subset of the spectrum of the augmented 

system. This is important if compensators for the system are required such that the 

eigenvalues of the LQ system are the eigenvalues of the augmented system. Furthermore 

an iterative constructive procedure has been developed to obtain the optimal sliding mode. 

This method enables one to find various sliding surfaces and by comparing the eigenvalue 

locations in the left-hand half-plane a sliding surface can then be selected to suit. 

Further research should address H 00 and the sliding mode, and extend the work in 

I 55]. Possibly a generalized system can be found and then one can use H 00 methods. 

Similarly to (55], by using the Hoo approach, the sliding gain matrix could be found for 

Cases (iii) and (iv) of Section 4.1. However, some Hoo methods to obtain the feedback 

gain matrix could be adapted to those augmented systems which have been discussed in 

this chapter. 



Chapter 5 

Sliding Mode Controller-Observer 

Design 

5.1 Introduction 

All state variables may not be measurable in many practical problems. Then using know­

ledge of the output of the system a suitable estimate of the state is required. Many new 

state observation techniques for linear and nonlinear systems have been proposed in recent 

years. The topic of control of nonlinear systems using feedback linearization can be found 

in [14], [76], [123], [142) and the extension of linearization in [13) amongst others. The 

method of Lyapunov-based observer design (Thau [113]) has been extended in [75), [140) 

and [134]. There is a fundamental limiting condition in sliding mode control to guarantee 

robustness despite the presence of the uncertainty in the system; namely the 'matching 

condition', i.e. the range space of the disturbance input distribution matrix must be a 

subspace of the range space of the control input distribution matrix. Matching conditions 

for linear and nonlinear systems have been considered in many papers including [29], [32), 

[107), [108), [121), (142]. 

Sliding mode observers as well as sliding mode controllers are known for their ro­

bustness and insensitivity with respect to unknown parameter variations [19], [28). The 

fundamental difference between a sliding mode observer and other observer approaches is 

that the sliding mode observer is usually a discontinuous (or a continuous approximation 

to a discontinuous observer in the sense of the bounded layer) such that the state error 

trajectories move onto a specified attractive hyperplane. Robustness, insensitivity prop­

erties and simplicity of design make sliding observers a powerful approach. Analysis and 

70 
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comparison of several kinds of observers can be found in [115] showing that the sliding 

mode observer is a good approach from the point of view of robustness, implementation, 

numerical stability, applicability, ease of design tuning and overall evaluation. 

Walcott and Zak [123], [142] discussed the state observation of nonlinear dynamic 

systems with bounded nonlinearitiesfuncertainties. They advocated an observer design 

method using Lyapunov and min-max methods. Their approach requires the matching 

condition and is linked to the strictly positive real condition. Yaz and Azemi [134] presen­

ted a method for designing an observer for nonlinear deterministic and stochastic systems, 

and applied the continuous (boundary layer) gain given by Walcott and Zak [123]. 

Emel'yanov et al [37] considered the problem of output stabilization for uncertain 

linear time-invariant SISO systems and proposed a method for designing a reduced order 

observer, i.e. designing an observer for the reduced order system. Almost all of these 

techniques are based on Lyapunov and min-max methods, i.e. minimizing the derivative 

of the Lyapunov function and obtaining suitable sufficient conditions. 

Edwards and Spurgeon [32] modified the Utkin observer [121] and extended the discon­

tinuous observer to nonlinear systems. They developed a robust discontinuous observer. 

Sira-Ramirez et al [108] discussed matching conditions of the sliding mode observer for 

linear systems and also studied the generalized observer canonical form. Koshkouei and 

Zinober [69] have presented methods for designing an asymptotically stable observer, the 

existence of the sliding mode and stability of state reconstruction systems of MIMO linear 

systems including disturbance input, as presented below. 

The most popular and well-known observer approach is that of the Luenberger ob­

server [78]. The full order Luenberger observer uses a gain observer matrix so that the 

state error decays suitably fast. In practical problems, the gain of the observer should be 

chosen to give eigenvalues of the error system matrix not too far into the left half-plane, 

to avoid excessive noise amplification [28]. A sliding mode observer yielding insensitivity 

to unknown parameter variations and noise, has been proposed by Utkin [121]. The re­

duced order system (slow subsystem) is included in the constant feedback gain matrix, 

whereas both the slow and fast subsystems relate to the discontinuous vector. Dorling 

and Zinober [28] compared the full and reduced order Luenberger observers with the 

Utkin observer. They reported some difficulty in the selection of an appropriate constant 

switched gain to ensure that the sliding mode occurs and discussed the elimination of 

chattering. However, the unmatched uncertainty was shown to affect the ideal dynamics 

prescribed by the chosen sliding surface. 
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In this chapter some results about sliding dynamics are first presented and then an 

observer for a system which may not satisfy the matching condition, is developed. This 

type of observer for a SISO system has been considered in [107], [108] for matched un­

certainty (matching condition). However, in these papers the feedforward injection input 

map, the external compensation signal gain, the stability of reconstruction error system 

and the condition of the existence of the sliding mode control were not studied. In [107], 

j108] the sliding mode observer was extended to the generalized observer canonical form. 

In Section 5.2.1 some sufficient conditions for the existence of the sliding mode for 

a SISO system with disturbance input are presented, and then the results are extended 

to a MIMO system in Section 5.2.2. These conditions ensure that the state trajectory 

approaches the sliding surface in the presence of unmatched uncertainty. In this case, the 

disturbance rejection problem for the sliding system may not be completely satisfied, but 

when the sliding mode occurs, the state trajectory moves within a neighbourhood of the 

sliding surface to the origin. 

An approach for designing a sliding observer and the proof of the stability of the state 

reconstruction error system for linear time-invariant multivariable systems using the Lya­

punov method, is given in Section 5.3. Methods are established to find the feedforward 

injection map and the external feedforward compensation signal, which correspond to the 

control input distribution map and the input of the reconstruction error system, respect­

ively. Sufficient conditions for the existence of the sliding mode for the reconstruction 

error system are proposed such that ultimate boundedness or asymptotic stability of the 

error system is assured. Sufficient conditions are derived to ensure error system stability 

and the existence of the sliding mode. When there is unmatched uncertainty, the stabil­

ity of the system may not be achieved. However, a region exists in which the state error 

trajectory converges to the sliding surface after a finite time and remains on this surface 

to the origin. 

The significance of our method is that a discontinuous observer for full order systems 

with disturbance input is designed. This system may not be ideally in the sliding mode 

and the uncertainty may not satisfy the matching condition. Similar to discontinuous con­

trollers, there are many methods to eliminate observer chattering including a continuous 

approximation for discontinuous feedforward compensation signals [29). 

The basic aim of observer design is to find an estimate for the state and, if the 

input is unknown, estimate a suitable input. Using the sliding control input form, a 

suitable estimated input can be obtained. Before observer design is studied, a technique 
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for designing a controller using sliding mode properties is stated and some aspects of the 

behaviour of the sliding dynamics are studied. Then sufficient conditions are presented 

for the existence of the sliding mode in the face of unmatched uncertainty. 

To establish the stability of the error system, suitable conditions on the disturbance 

input are needed; ( i) the matching condition, ( ii) the convergency of the norm of disturb­

ance input signal to zero, ( iii) the norm of the disturbance signal bounded on the norm 

of the output error, i.e. there exists a real function M (or a real number M) such that 

11~11 ~ MIIC(x- i:)ll where~ is the disturbance input and i: is the estimate of the state 

x. Otherwise, the asymptotic stability of the error system may not exist in the presence 

of the disturbance input. Note that since the output is accessible, so is the estimated 

output. 

Suitable examples regarding the results and conclusions are presented in Section 5.4. 

5.2 Sufficient Conditions in Sliding Mode for Systems 

with Unmatched Uncertainty 

In this section the condition for the existence of the sliding mode for control systems 

including disturbance input, and some results about the sliding dynamics and the reaching 

time to the sliding surface, are presented. If the range of the distribution disturbance input 

map is not in the range of the distribution control input map, the disturbance affects the 

system in the sliding mode. However, the existence of the sliding mode guarantees the 

state to lie in the vicinity of the sliding surface. The control design using the sliding mode 

technique, when the constant design gain matrix is a diagonal matrix, is considered. 

5.2.1 The SISO System 

Consider the linear time-invariant system 

x( t) 

y(t) 

Ax(t) + bu(t) + l~(t) 

cx(t) 

(5.1) 

(5.2) 

where x E JRn is the state variable, A E lRnxn, b E lRn is nonzero vector, u is the scalar 

input control, c E lRn such that cb =/= 0, Y E 1R is the scalar output and 1 E lRn is the 

perturbation input map. The map ~ E 1R is the bounded scalar disturbance input, i.e. 

there exists a nonnegative real number M such that I~ I ~ M. For suitable performance the 
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real number M is chosen as small as possible and if sup l~(t)i is known, set M= sup i~(t)i. 

It is assume that (A, b) is completely controllable and (A, c) is completely observable. 

A technique of control design using the sliding mode is presented, and then the sliding 

mode dynamical behaviour is studied. The reaching sliding mode condition is iJ sgn y < 0. 

Then 

iJ sgn y (cAx + cbu + C')'~) sgn y 

( -cbueq + cbu) sgn y 

-cb(ueq- u) sgn y 

For the right-hand side of (5.3) to be negative 

Therefore 

U < Ueq 

U > Ueq 

if cby > 0 

if cby < 0 

if cby > 0 

if y = 0 

if cby < 0 

(5.3) 

(5.4) 

(5.5) 

where Kt and K 2 are positive real function design gains. For simplicity, assume 

then {5.5) becomes 

u = Ueq- k sgn (cby) 

The control u has two parts, a linear part Ueq and a discontinuous part Us 

i.e. 

1 
u = - cb ( cAx + C')'~ + K sgn y) 

{5.6) 

-k sgn (cby), 

{5.7) 

where K = lcb!K > 0. The right-hand side of (5.7) is known except for the disturbance 

input ~ which is unknown and is not accessible. So it is necessary to replace ~ by an 

estimate ~ so that the reaching sliding mode condition is satisfied. Choosing 

~=M sgn {c')'y) 

u 
1 

- cb (cAx + (ic'YIM + K) sgn y) 

1 
-- (cAx + Ktsgn y), Kt = !c'YIM + K 

cb 
(5.8) 
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Then 

iJ sgn y = c1~sgn y- Mlc11- K < 0 (5.9) 

since C/~ sgn y ~ lc1~l ~ Mlcll· The output dynamics satisfies 

iJ = C/~- (lc1IM + K) sgn y 

If (5.1) is an undisturbed system (i.e. ~ = 0), the control is given by (5.7) with~= 0. In 

this case, differentiating (5.2) and inserting (5.7) yields 

iJ = -Ksgn y (5.10) 

and 

y = -K(t- ts) sgn y 

which implies that 
ts = iy(O)I 

K 

where y(O) is the arbitrary initial condition. Note that for t E [0, ts] the state moves from 

y(O) to the sliding surface y = 0. The output dynamics (5.10) shows that y converges 

asymptotically to y = 0, and the rate of change of y is guaranteed to be either - K (or 

K) for y positive (or negative), i.e. the velocity to the sliding surface y = 0 is K. 

As already stated, using the reaching sliding mode condition for a system including dis­

turbance signal gives a control (5.7) which depends on the perturbation and disturbance 

inputs. Therefore, an estimate of the disturbance signal in the control law is needed such 

that the reaching sliding mode condition is achieved. The control law (5.8) shows that if 

K 1 is chosen sufficiently large, i.e. K1 ;;:::: lc1IM, the control can be chosen independently 

of~· In this case, the condition K1 ;;:::: lc1IM on the control feedback gain K1 is necessary 

to satisfy the reaching sliding mode condition. Consider 

1 
u = - cb ( cAx + K sgn y) (5.11) 

i.e. the input control is independent of the perturbation signal. The output signal is given 

by 

y = C/~ - K sgn y (5.12) 

and 
y(t) = C/ (l.t ~ dt) - K(t- ts) sgn y 
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Multiplying (5.12) by sgn y gives 

iJ sgn y = C"f~ sgn y - K 

Hence, a sufficient condition for the existence of the sliding mode is 

C"f~ sgn y < K 

and a sufficient condition for the existence of the sliding mode is 

lci'IM < K 

The output y satisfies 

IYI { :;. ~lqiM- K)(t- t,) 

and 

5.2.2 The MIMO System 

if t < t8 

if t ~ t8 

76 

(5.13) 

(5.14) 

Now the results of Section 5.2.1 are extended to MIMO systems. Recall the time-invariant 

system (2.4) 

±(t) 

y(t) 

Ax(t) + Bu(t) + r~(t) 
Cx(t) 

(5.15) 

(5.16) 

where r E JRnXm is the perturbation input map and ~ E IRm is the bounded disturbance 

input, i.e. there exists a positive real number M such that 11~11 ~ M. The real number M 

is chosen as small as possible and if sup ll~(t)ll is known, M= sup ll~(t)ll· Assume that 

(A, B) is completely controllable and (A, C) completely observable. 

Now the sufficient conditions for the existence of the sliding mode in the presence of 

uncertainty are investigated. Choose the control 

u = -(CB)-1(CAx + Cr~ + K1sgn y) (5.17) 

where the design gain matrix K1 is a diagonal matrix with positive elements 
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Then, for YT = [ Y1 Y2 · · · Ym ] 

yT iJ yT(eAx + eBu +er~) 

-yTK1 sgn y 

-(k1IY1I + k2IY2I + · · · + kmiYml) 

< 0 

Differentiating (5.16) and using (5.17) yields the output signal dynamics 

iJ = -K1sgn y 

Hence, for any 1 ~ i ~ m 

and then 

77 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

where tis is the time to reach the surface Yi = 0. Therefore, the output behaviour is 

governed by 

From (5.21) 

max 
1 ~ i ~m 

Since for all i, 1 ~ i ~m, IYi(O)I ~ lly(O)II and am(KI) ~ ki, (5.23) yields 

t ~ lly(O)II 
5

-..;::: O"m(Kt) 

(5.22) 

(5.23) 

Note that for t E (0, t5 ] the state variable x moves to the the sliding surface y = 0. The 

output dynamics (5.22) shows that y asymptotically converges to y = 0 and for any i, 

1 ~ i ~ m, the rate of change of Yi is guaranteed to be -ki ( ki) for Yi positive (negative), 

i.e. the velocity of y to the sliding surface y = 0 is [ k1 k2 . . . km]. 

If~ is unknown, the control law (5.17) cannot be implemented. So an estimate t of~ is 

required. Let~= Msgn (Cx). The control law (5.17) is converted to 

u -(eB)-1(eAx +er~+ K 1sgn y) 

-(CB)-1 (CAx + Ksgn y), K=erM+K1 (5.24) 
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Therefore the control is given by 

u = -(CB)-1(CAx + Ksgn y) (5.25) 

where the matrix K - er M is a p.d. matrix. For simplicity, consider the matrix K to 

be a diagonal matrix with positive real entries such that 

Then the output signal is given by 

for 

iJ = er~ - K sgn y 

er~= 

'Yl 

'Y2 

'Ym 

The reaching condition of the sliding mode is 

Vi 1 ~ i ~m 

On the other hand 

Hence 

'Yl - k1 sgn Y1 

/'2 - k2 sgn Y2 

'Ym - km sgn Ym 

Therefore, if for all i, 1 ~ i ~ m 

(5.26) 

(5.27) 

then yT iJ < 0. Thus, a sufficient condition for the existence of the sliding mode is that 

Vi 1 ~ i ~m (5.28) 

Hence, if 

'Yi + 'Y~ + . 0 0 + 'Y~ < min k~ 
1 ~i:s;:m " 

(5029) 
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then (5.28) is true. From (5.29) 

(5.30) 

But 

so, if 

(5.31) 

then (5.28) is true, i.e. (5.31) is a sufficient condition for (5.28) and for the existence of 

the sliding mode control. 

If (5.26) is satisfied then 

ili = 'Yi - ki sgn Yi Vi, 1::;;; i::;;; m 

and 

Yi = (i: 'Yi dt) - ki(t- tis) sgn Yi 

where tis is the time to reach the surface Yi = 0. Therefore, (5.27) implies 

Yi sgn Yi = 'Yi sgn Yi - ki < 0 

Hence, a sufficient condition for the state trajectories to converge to the surface Yi = 0 is 

which holds if (5.28) is satisfied. For any 1 ::;;; i ::;;; m, there is a real number 'Tli such that 

I'Yil ::;;; 'T/i < ki and 'T/i ::;;; IICriiM. Hence the i-th output Yi satisfies 

{ 
>-: ('11·- k·)(t- t· ) iYii ::;.-- O·n z zs 

Then 

if t < tis 
if t ~ tis 

t
. ~ IYi(O)i 
lS '-' k ' Vi 1::;;; i::;;; m 

i- 'Tli 

Assume the condition (5.31) is true, then 

Yi(O) 
::;;; max 

I~ i ~m ki- 'T/i 

Jiy(O)II 
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5.3 Sliding Mode Observer Design 

Sliding observers potentially offer advantages similar to those of sliding controllers; m 

particular, inherent robustness to parametric uncertainty and straightforward application 

to important classes of systems. 

Here state estimation for the system (5.15)-(5.16) is considered so that the estimate of 

the state is close to the actual state. This yields a reconstruction error system which 

is asymptotically stable or ultimately bounded. A method for sliding observer design 

and sufficient conditions for the existence of the sliding mode and the sliding region, are 

proposed. 

A robust observer for the system (5.15)-(5.16) with an estimate of the disturbance input 

~( t) is 

i(t) = Ax(t) + Bu(t) + H(y(t) - y(t)) + r~(t) {5.32) 

where x is the state estimate,~ is an estimate of the disturbance~' and HE Rnxm is the 

observer gain matrix. In the absence of uncertainty the observer will be asymptotically 

stable if H is selected such that A - HC is a stable matrix. Clearly if~ is known, set 

~ = ~· The general form of the sliding observer (5.32) for the system (5.15)-{5.16) may 

be selected as 

y 

Ai + Bu + H(y - y) + Av 

Ci 

(5.33) 

(5.34) 

where v E Rm is an external discontinuous feedforward compensation signal and A E Rnxm 

is the feedforward injection map such that CA is a nonsingular matrix. The state recon­

struction error is defined as e =x-i. Subtracting (5.15) from (5.33) gives the dynamical 

reconstruction error system 

(A- HC)e+ r~- Av 

Ce 

(5.35) 

(5.36) 

where ey = y - y is the output reconstruction error. The initial state x0 = x(t0 ) is 

unknown and i 0 = i(t0 ) can be arbitrary assigned. A suitable value for i 0 is a point on 

the sliding surface y = 0, i.e. cio = 0. 

If the control u is not directly accessible, the conventional estimate is in the form (5.25), 

i.e. 

u = -(CB)-1 (CAi + Ksgn (Ci)) (5.37) 
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where the matrix K is a diagonal matrix with positive entries such that 

The ideal sliding mode for the system (5.35)-(5.36) satisfies ey = 0, ey = 0 [29]. The 

virtual equivalent feedforward input is given by 

(5.38) 

Substituting (5.38) in the state reconstruction error system (5.35) gives the reduced order 

system 

(5.39) 

with m of the eigenvalues (5.39) zero and then- m remaining eigenvalues to be assigned 

[34]. The reduced order system is independent of the disturbance input signal if there 

exists an m x m matrix D such that 

f=AD (5.40) 

The error system in the sliding mode is now studied. Using the transformation T (2.13), 

the system (2.4) is converted to the system (2.15). Let err = [C1 0 2]. Consider a 

second transformation 

(5.41) 

Then 

T,Tx = [ ~ l (5.42) 

and the system (5.15)-(5.16) is converted to 

where 

T. TATTT- 1 
s s 

ill (t) 
y(t) 

AuY1 (t) + A12Y(t) +I\~ 

A21Y1(t) + A22Y(t) + CBu(t) + f'2~ 

[ ~:: ~:: l 

(5.43) 

(5.44) 

[ 
An - A12Ci

1
C1 A12C21 l 

C1An + C2A21 - (C1A12 + C2A22)Ci1C1 (C1A12 + C2A22)C2"1 
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and 

Using the transformation TsT the observer (5.33)-(5.34) is given by 

Au:01(t) + A12Y(t) + H1ey + A1v 

A21Y1(t) + A22Y(t) + CBu(t) + H2ey + A2v 

where 

T,TX = [ ~ l , T,T H = [ ~: l 
Subtracting (5.43)-(5.44) from (5.45)-(5.46), the error system is given by 

el(t) Auel(t) + A12ey(t) + 1\~- Alv- Hley 

ey(t) - A21el (t) + A22ey(t) + i\~- A2v- H2ey 

82 

(5.45) 

(5.46) 

(5.47) 

(5.48) 

(5.49) 

The sliding mode occurs if ey = 0 and ey = 0. Assume that A2 is a nonsingular matrix. 

The equivalent feedforward input (5.38) is obtained from the subsystem (5.49) 

Veq = A21 
( A12e1 + f'2~) (5.50) 

The subsystem (5.48) yields the error system in the sliding mode 

(5.51) 

where Veq is the equivalent feedforward input. Substituting (5.50) in (5.51), the reduced 

order error system is 

(5.52) 

Since (A, C) is observable, the pair (Au, A2I) is also observable and A11 - A1A21 A21 can 

be assigned arbitrary eigenvalues with negative real parts by a suitable choice of A. The 

bounded inputs r~ guarantee the bounded errore, but the asymptotic stability (5.52) is 

not guaranteed in general. However, some sufficient conditions that ensure the stability 

of the reduced order error systems. A sufficient condition for the reduced order system to 

be free of the influence of the disturbance ~ is that 

(5.53) 

If condition (5.40) holds, then (5.53) is also satisfied. 
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Remark 5.3.1 It is possible to find the reduced order system (5.52) directly. Consider 

the transformation 

(5.54) 

Then the error system (5.48)-(5.49) is converted to 

- - 1 ~ ~ 

Aue1(t) + A12ey- (H1- A1A2 H2)ey(t) + (f1- A1A2 1 f2 )~ (5.55) 

A21e1(t) + A22ey(t) + 1\~- H2ey- A2v (5.56) 

(5.57) 

Since in the sliding mode e1 = e1, the reduced order system (5.57) coincides with (5.52). 

Now it is desired to obtain H, A and v such that the stability of the observer system is 

preserved. The observer gain H can be found in two ways; pole assignment methods, i.e. 

assigning n prespecified eigenvalues to the matrix A - HC; and the LQ method. The 

eigenvalues of A- HC and AT- er HT are the same, so the problem is that of finding 

a feedback for the dual system corresponding to (5.15) such that the eigenvalues are the 

prespecified values. (A, C) is observable if and only if (AT, er) is controllable. Therefore, 

the observability of (A, C) guarantees the existence H. 

Now the LQ method is utilized to find H. Therefore the algebraic Riccati equation (ARE) 

(5.58) 

with Q, Rare arbitrary semi-p.d.s. and p.d.s. matrices respectively, has a u.p.d.s. matrix 

solution P. Then AT- er HT is stable with 

(5.59) 

which is equivalent to the stability of A- HC. 

The matrix A can be found in several ways: 

1. Take 
A= pcric1 

where R is an arbitrary matrix. If R = R then A = H. This choice of A may be 

suitable if there exists uncertainty in the output. 
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2. Let (A, A) be a controllable pair. The vector A in (5.35) should be obtained so that 

the stability of the reduced order system or the eigenvalue allocation of the reduced 

order system 

e (I- A (CA)-1 C) Ae (5.60) 

Ce 0 

is achieved. The system (5.60) has m zero eigenvalues and the n -m remaining 

stable eigenvalues can be freely selected [29), [34], [34), [141). 

3. Let D be a nonzero matrix. Take AD = r if r =/= 0. In this case, the error system 

(5.35) in the sliding mode is independent of the perturbation signal. 

4. In the sliding mode the systems (5.15) and (5.35) are independent of~ only if there 

exist matrices D and iJ such that r = BD and r = AD, respectively. Therefore 

if both the systems are independent of~' both these condition are simultaneously 

satisfied. In this case the ideal sliding mode dynamics take place simultaneously on 

y = 0 and ey = 0. 

5. The vector A can generally be found such that the state reconstruction error system 

(5.35) is asymptotically stable, i.e. 

lim e(t) = 0 
t-+oo 

(5.61) 

To ensure that the state approaches and crosses the sliding surface sufficiently fast, v 

should be a discontinuous function. Let Pt be the u.p.d.s. solution of the Lyapunov 

equation 

(5.62) 

where Q1 is an arbitrary p.d.s. matrix. Consider the discontinuous feedforward input 

Ce 
v = WIICell 

where W is an m x m diagonal p.d. matrix with 

Assume the condition (5.40) is satisfied. It is desired to find conditions such that 

lim e(t) = 0 
t-+oo 

(5.63) 

(5.64) 
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Set 

(5.65) 

Note that CA is a nonsingular matrix and W is a p.d. matrix. Therefore CAW is 

nonsingular and 

Amin(CAW) = Amin(CPj1CT) -j. 0 

The quadratic stability of the reconstruction error system is guaranteed by (5.64) and 

(5.65). A Lyapunov function candidate for (5.35) is 

(5.66) 

If Ce -j. 0, then 

V eT((A- HC)P1 + PJ(A- HCf)e +eT P1f~ + (r~f Pfe- (Av)T P1e- eT P1Av 

eT((A- HC)PJ + P1(A- HCf)e + 2eTP1r~- 2eTP1Av 

eT((A- HC)P1 + P,(A- HC)T)e + 2eT P1ADE,- 2eT P1Av 

eT((A- HC)P1 + P1(A- HC)T)e + 2eT P1P1-
1CTW- 1 DE,- 2eT P1Pj1CTW- 1v 

eT((A- HC)P1 + P1(A- HCf)e + 2eTCTW-1DE,- 2eTCT ll~:ll 
~ -eTQ1e + 2 lleTCTII (IIW-1 DIIM- 1) 

~ -eTQ!e + 2 lleTCTII (Aminl(W) IIDIIM- 1) 
< 0 

since 

If Ce = 0, v = Veq and 

Therefore 

V eT((A- HC)P1 + P1(A- HC)T)e + 2eTP1rt,- 2eTP1Av 

-eT Qfe + 2eT pfpJ-1cTw-1 D~- 2er pfpJ-1cTw-1veq 

-eTQ1e + 2ercrw-1 DE,- 2ercrw-1veq 

-eTQ!e 

< 0 

lim e(t) = 0 
t-+oo 

(5.67) 

(5.68) 

Now a condition for the existence of the sliding mode is found. Since the system is stable, 

the convergent sliding mode exists, i.e. li.Poo ey(t) = 0. The problem is that it is necessary 
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to find a region, the so-called sliding region, so that after a finite time, the state error 

trajectory lies in the vicinity of the sliding surface and inside the region. Consider 

e~ey e~ ((CA- CHC)e +er~)- e~CAW ll~:ll 
5:: IICeiiiiC(A- HC)ell + eTCTC (p-lcTw- 1

) D~- eTcTcp-lcTw-lw Ce 
" 1 1 IICell 
5:: IICell IIC(A- HC)ell +eT eT (cp-lcT) w-l D~- eTCT (cp-lcT) Ce 
" 1 1 IICell 
~ IICell IIC(A- HC)ell + lleTCTII-Xmax(CP1-

1CT)IIW-1DIIM 
TcT, (cp-1 T) Ce 

-e Amin f C !!Cell 
~ !!Cell [IIC(A- HC)II-IIell + Amax(CPI-ICT)IIW-1 DIIM- Amin(CP1-

1CT)] (5.69) 

A sufficient condition for the sliding mode is that the right-hand side of (5.69) be non­

positive. Thus 

or 

Remark 5.3.2: One may choose A= Pj 1CT, then all the conditions for the stability of 

the system and sliding mode remain intact, and only the velocity of the state approaching 

the origin and the state trajectory dynamics on the sliding surface may differ. 

In [142] it has been shown that when V(e) =eT P1e and V(e) ~ -eTQ1e , then the norm 

lie(t) 11 tends to zero at least as fast as a certain exponential function, so 

V eTQ1e 
(5.72) -- ~ 

V ?" eT P1e 

Let 

J-l = min e 
{ eTQ!e I eT P1e = 1} (5.73) 

then 

V 
-v~J-l (5.74) 

To determine the minimum of (5.73), consider the Lagrange multiplier function 
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Then emin, the minimum of e, satisfies 

ac ae = Qfemin- APJemin 

e~in Pfemin - 1 

From (5.75) one can conclude that 

0 

0 
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(5.75) 

1.e. A is an eigenvalue of Pi 1Qf and emin is the corresponding eigenvector. Multiplying 

(5.75) by e~in gives 

with J.L =A. From (5.74) 
V(e(t)) ~ V(e(t0 )) e-JL(t-to) 

so 

(5.76) 

Hence e(t) is bounded and approaches zero at least as fast as e-¥. 

Remark 5.3.3: Consider the discontinuous feedforward input 

if ey -:f. 0 

where W is an m x m p.d. matrix which satisfies in the condition (5.64) and sgn ey 

indicates the signum function of ey. Then all the conditions for the existence of the 

sliding mode and stability (5.64)-(5.70) are satisfied for this feedforward compensation 

signal. 

5.3.1 Sliding Error System with Unmatched Uncertainty 

We now develop new theory relating to unmatched uncertainty. If the error system in 

the face of uncertainty does not satisfy the matching condition, the error system stability 

is not generally guaranteed. However, if some conditions on the uncertainty rather than 

boundedness are available, an asymptotic observer is achieved. The behaviour of the 

system depends upon the norm of a matrix which is named the 'unmatched uncertainty 



Chapter 5. Sliding Mode Controller-Observer Design 88 

matrix', (or portion [10]). The norm of this matrix, E, is called the 'unmatched uncertainty 

distance'. If the 'unmatched uncertainty distance' is zero, the matching condition is 

completely satisfied. Let DE Rmxm be a matrix such that 

[ Omx(n-m) Im ] r = [ Omx(n-m) Im ] AD (5. 77) 

Set E = r - AD and 11 E 11 = E 0 

Definition 5.3.1: Consider the system (5.15). The uncertainty r~ is said to satisfy a 

matching condition with €-approximation (or briefly E-matching condition ) if there exists 

a matrix D such that 

(i) condition (5.77) holds; 

(ii) IIEII = llf- ADII =E. 

If f = 0 the uncertainty is said to satisfy the matching condition. 

Sometimes the term 'matching condition with f distance' is utilized instead of the f.­

matching condition. When an E-matching condition holds, r =AD+ E where f = IIEII. 

Matrix AD is the matched uncertainty matrix (portion) and E is the unmatched uncer­

tainty matrix (portion) of the matrix r. So the unmatched distance is IIEII =E. If E =f. 0, 

the error system (5.35) may no longer be generally asymptotically stable. But as already 

stated, if a condition on the disturbance input like the convergence of the norm of dis­

turbance input signal to zero or the norm of the disturbance signal is bounded on the 

norm of the output error, the system is asymptotically stable. Otherwise, only ultimate 

boundedness results. So the state error trajectory enters a region centred on the origin 

and thereafter remains within this region. See Appendix A for the definitions of ultimate 

boundedness and uniform ultimate boundedness. 

Consider the Lyapunov function (5.66). Then similarly to (5.67) one obtains 

V eT ((A- HC)PJ + PJ(A- HCf) e + 2eT P,(AD +E)~- 2eT P1Av 

~ -lleii 2-Xmin(Q,) + 2lle1111PJEIIM 

- -llell {(1- 0)-Xmin(Q,)IIell + 0-Xmin(Q,)IIell- 2IIP,EIIM} (5.78) 

where 0 < 0 ~ 1. So if 

(5. 79) 
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V < 0. Since V is a monotonically decreasing function on the outside of the set 

(5.80) 

2IIPEIIM . 
for llell = 1 ( ) , the maximum value of V on the compact set OE is attained and 

0Amin Qf 
the state error trajectory enters the ellipsoid 

(5.81) 

where 
2MIIPtEII J-Xmax(P) r = _.....:..:...._...!...._....:..:.....!~=.:..:..___:_ 

0Amin(QJ) 
The set &E is closed and bounded. So according to the Heine-Borel theorem the set &E 

is a compact set. The solution of the error system is uniformly ultimately bounded with 

ultimate boundedness ratio 

bu = 2IIPJEIIM 
0Amin(QJ) 

The ultimate boundedness radius r u is 

Amax(PJ) 
Amin(PJ) 

(5.82) 

where Br is a ball with radius r centred on the origin. Note that all trajectories starting 

inside &E, remain within this set for all future time, and all trajectories starting outside 

&E enter this compact set within a finite time and remain inside thereafter. Hence e(t) is 

bounded by 

lie( t) 11 ~ max { lle(O) 11, bu} (5.83) 

If lle(O)II is sufficiently small, then lle(t)ll ~ bu for all t. 

Remark 5.3.4: Since IIP,EII ~ IIPJII·IIEII = EIIPJII, one can conclude that 

V ~ -llell {(1- O)Amin(Q,)IIell + 0-Xmin(QJ)IIeii- 2EIIPtiiM} (5.84) 

So V is a monotonically decreasing function on the outside of the set 

(5.85) 

The ratio Amax ( P1) /Am in ( Q f) is minimized by the choice Q = I (see Corollary 6. 8.1). 

Consider 

(5.86) 
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where 
2tM -\!(~ ( P1) 

rl = 
(}_\min( Qf) 

The state error trajectory enters the ellipsoid ~ in a finite time and remains inside there­

after. 

To obtain explicit bounds on e(t) and e(t)T Pte(t) and then show that the state trajectory 

enters the set tffE in a finite time and remain inside thereafter, consider 

d(e(t)T P,e(t)eJLt) 
dt 

d (eT(t~;Je(t)) eJLt + f.LeT(t)P,e(t)eJLt 

~ ( -iie(t) 11
2 

Amin( Qf) + 2lle(t) IIIIPtEIIM) eJLt + Amin( Qf) lle(t) ll 2 eJLt 

2lle(t)II.IIP,EIIMeJLt (5.87) 

where f..l = Amin(QJ )/ Amax(PJ ). Integrating both sides over the interval [0, t] yields 

e(t)T Pte(t)eiLt- eT(O)Pte(O) ~ 21t iie(t)ii-IIPtEIIMeJLr dr 

Multiplying both sides by e-JLt gives 

eT P1e ~ eT (O)Pte(O)e-JLt + 2buliPJEIIM e-JLt 1t eJLr dr 

since 11 e 11 ~ bu. Therefore 

eT P,e ~ eT (O)Pte(O)e-JLt + 2buMIIPJEII-\max(Pt) (1 - e-JLt) (5.88) 
Amin(QJ) 

Since after a finite time, llell ~ 2IIPJEIIM/9Amin(QJ ), equation (5.88) shows that the state 

error e(t) converges to the compact set tffE defined in (5.81), i.e. 

. Tp 4M2 liP Ell2 Amax(PJ) 
hm e 1e ~ 1 (), 2 (Q ) t--+oo "'min f 

and then 

lim d(e(t), tffE) = 0 
t--+oo 

where d denotes the Euclidean metric on lRn and 

d(e(t), tffE) = inf d (e(t), a)) 
aEGE 

Amax(PJ) 

Amin(PJ) 

(5.89) 

The reaching time to tff E is finite, otherwise for all t > 0, V ( e ( t)) < 0 and V ( e ( t)) tends 

to zero asymptotically. The result (5.89) shows that the state error trajectory enters tffE 
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at finite time te and after this time remains inside CE. Hence, boundedness is guaranteed 

in the presence of a bounded disturbance with possibly unknown bound. But the size of 

CE cannot be estimated a priori if no bound on the disturbance input is given. 

Equation (5.88) also yields 

llell2 ~ (11e(O)II2e-tLt + 2buMIIPJEII (1- e-tLt)) Amax(PJ) 
Amin ( Q f) Amin(PJ) 

Then 

llell ~ 

When t --7 oo 

llell ~ 2MIIPJEII (>.max(PJ))
314 

= bu = v10 (>.max(PJ))
114 

bu 
v1J Amin ( Q J) Amin ( Pj) Amin ( Pj) 

So 

( >b. 
if 1~0>ry 

bu = bu if O=ry 

< bu if O<ry 

(5.90) 

where TJ = Amin (PI i . On the other hand 
Amax(PJ 

( > rn 
if 1 ~ (} > T/3 

bu = rn if (} = T/3 

< rn if (} < T/3 

(5.91) 

However bu ~ rn and the equality holds if p = pi (p > 0). Although nE is not the 

smallest ultimately bounded set, when nE is a small neighbourhood about the origin, the 

concept of uniform ultimate boundedness is tantamount to 'practical' asymptotic stability. 

Note that for suitable performance one can choose (} = 1 or certainly close to 1. 

Remark 5.3.5: In the case of the t-matching condition not being satisfied, the gain 

matrix W should be chosen so that 

MIIDIIAmax(CPf-lCT) + MIICEII 
Amin(W) ~ Amin(CP,-tcr) (5.92) 
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In this case the sliding region is 

(5.93) 

where 

~ MIICEII 
r 2 "'rs- aM(C(A- HC)) (5.94) 

and rs was defined in (5.70). 

If the disturbance norm ll~(t)ll converges to zero in addition to being bounded, the con­

vergence of e(t) to zero results. To prove this, let 77(t) be a continuous nonnegative mono­

tonically decreasing real function such that ll~(t)ll < 77(t) and liHcJ 77(t) = 0. Consider 

(5.87) with ll~(t)ll instead of M. Then 

eTP1e ~ eT(O)P,e(O)e-~-'t + buiiPtEile-~-'t 1t ll~(r)iie~-'rdr 

~ eT (O)Pte(O)e-~Lt + buiiPtEiie-~Lt 1t 7J(r)e~-'r dr 

:;;; eT ( 0 )PJe(O)e -•t + bu liP! Ell e -•t ( [
12 ~( T )e"' dr + J.;, ~( T )e"' dr) 

~ er(o)P,e(O)e-~-'t + 2IIPtEIIbu { 7J(O)e-!~-'t(1- e-!~-'t) + 7J(t/2)(1- e-!~-'t)} 

(5.95) 

Since }irn ry(t) = 0, }irn er(t)Pte(t) = 0 and then Jirn e(t) = o. 

5.4 Examples 

The examples below illustrate our results regarding the sliding mode, stability of error 

system and observer design. 

Example 5.4.1: Consider the system 

X - [ -~ _:.·:~ =~:~ l X+ [ Q.:Q ~ l U + [ -~ .. ~~~: ~:~~~~ l ~ 
0 0.50 -1.0 0.12 0 0.0188 0.0188 

y - [ 0.2 0.4 0.89] X 

0.2 0 1.00 
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Suppose~ is a bounded random signal satisfying 11~11 < 0.1. Choosing R = /2 and Q = ! 3 , 

the u.p.d.s. solution of ARE (5.58) is 

I 
1.8831 0.6396 

p = 0.6396 0.5534 

-0.1829 -0.1750 

-0.1829] 
-0.1750 

0.3449 

From (5.59) 

I 0.4697 0.1938] 
H = 0.1936 -0.0470 

0.2004 0.3083 

Note that the eigenvalues of A- HC are -1.7043 ± 1.0365i, -0.7881. Let Q1 = 5/3 . The 

u.p.d.s. solution matrix of the Lyapunov equation (5.62) is 

Let W = diag (2.5, 2.5) and 

From (5.65) 

8.6608 

3.0202 

-1.0694 

3.0202 -1.0694] 
2.6000 -0.7952 

-0.7952 1.5302 

Ce 
v = WIICell 

[ 

-0.0117 0.0244] 
A = 0.1709 0.0676 

0.3133 0.3136 

(5.96) 

The reduced order error system is independent of~ since r = 0.06A. In fact D = 0.06/2 • 

So the error system is quadratically stable which means the estimated state error quad­

ratically converges to the actual state. 

The minimum eigenvalue of CAW is 0.0510. The value of the right-hand side of {5.70) is 

rs = 0.0156 and the value of the right-hand side of {5.71) is fs = 0.0119. After respective 

short times r 1 and r 2 conditions (5.70) and (5.71) are both true. Noting that r 1 ~ r 2 , when 

(5.70) is valid fortE [T1, T2] (5.71) may not be valid, i.e. the condition (5.70) is weaker 

than (5.71). Simulation results are shown in Fig. 5.1 with e(O) = [0.1 0.2 0.325]T as 

the initial state error. 
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Figure 5.1 : Responses of Example 5.4.1 when the LQ method is applied. 
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To find H such that the eigenvalues of A - HC have specific values, one can apply 

pole assignment techniques. Suppose it is desired that the eigenvalues of A - HC are 

- 1, -1 ± 0.15i . The existence of His guaranteed by the observability of (A, C) . Using 

the MATLAB Control Toolbox 

I 
5.7656 - 5.5452 ] 

H = -1.3486 -0.7121 

1.2296 -1.0990 

For v as in (5 .96) and Q, = 3!3, the u.p.d.s. matrix solution of the Lyapunov equation 

(5 .62) is 

Equation (5.65) gives 

1.4234 

0.2455 

-0.0052 

0.2455 

1.6728 

- 0.0650 

- 0.0052] 
- 0.0650 

1.5066 

[ 

0.0400 0.0568 ] 
A = 0.0991 0.0020 

0.2407 0.2658 
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So 

and then 

D=[ 0.1044 0.0407] 

-0.0238 0.0339 

E = r- AD= 0 0 I -0.0035 -0.0021 I 
0 0 
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with norm IIEII = E = 0.0041. So the matching condition is not satisfied. However, the 

state error trajectory enters a sphere with small radius because 

and bu = 0.00047. So stability of the error system is nearly achieved. Note that the value 

of the right-hand side of (5.70) is 0.0329 and the value of the right-hand side of (5.71) 

equals 0.0271. In the time interval (0, 3] the maximum value of I! ell is 0.3945 and the 

minimum value is 0.02. Hence the conditions (5.70) and (5.71) are true, after short times 

71 and r 2 , respectively. It is clear that T1 ~ T2. However, the time until the start of the 

sliding mode ts should be shorter than the time T1 when (5.70) is satisfied, i.e. ts ~ r 1. 

The sliding region radius (5.93) is r2 = 0.0328. Simulation results are shown in Fig.5.2 

Example 5.4.2: The observer design procedure is now illustrated by another example. 

To design an sliding observer, it is necessary to find H, A and select suitable W such that 

the appropriate conditions are satisfied. Consider the system 

X 

[ 

-1~ 2.25 -0.4

1 

I 0.30 I I -0.0025

1 

-1.50 -2.0 X+ 0 U + 0.0404 ~ 

0.50 -1.0 0.12 0.0644 

y = [ 0.20 0.40 0.89 ] X 

Assume~ is a bounded random signal satisfying 1~1 < 0.101. 

the u.p.d.s. solution of ARE (5.58) is 

Taking Q = 13 and R = 1, 

I 
1.9640 

p = 0.6722 

-0.1863 -0.2001 

0.6722 -0.18631 
-0.2001 

0.3763 

0.5879 
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Figure 5.2: Responses of Example 5.4.1 when the pole assignment technique is applied. 

From (5.59) H is 

I 0.49591 
H = 0.1915 

0.2176 

The eigenvalues of A- HC are -1.4812 ± 0.9921i, -0.9070. Let Qf = 13 . The u.p.d.s. 

solut ion matrix of the Lyapunov equation (5.62) is 

Consider 

Then (5.65) gives 

[ 

1.8681 

P1 = 0.6640 

-0.2271 

0.6640 

0.5781 

-0.2012 

v = 3.34 sgn ey 

I -0.0742 1 
A= 0.6660 

1.0730 

-0.2271 I 
-0.2012 

0.3575 

Tn = 0.00088 and bu = 0.0028. These results show that there exists a finite time such 

that after that time, the norm of the state error is less than 0.0028. So the estimated 
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state t ends to the actual stat e and the difference is at most 0.0028. However , the actual 

difference may be less than 0.0028 as shown by the simula tion results. 

Th maximum value of 1/ e/ / is 1.1855. The value of t he right-hand side of (5.70) 1s 

r 8 = 1.8958 and the value of the right-hand side of (5.71) is fs = 1.4105. As seen in Ex­

ample 5.4.2, condition (5. 70) is weaker than (5.71) . Since D = 0.06, E = [0.0020 0.0004 0] 

and E = 0.002. The reduced error system is not independent of t;, since E # 0. In this 

case 1/ CEI/ = 0.000568 and 1/ C EI/ M = 0.00005737 which is very small . So r 2 ~ r 8 and 

the sliding region is t he set (5.93) with r2 ~ r 8 = 1.8958. Simulation results are shown in 

F ig. 5.3 with e(O) = [0.3 0.6 0.975] as the initial state error. 

State error variables 
1 .---------------------~ 

- 2 

-0.5 
1 2 3 0 2 3 

time time 

S liding function Disturbance input 

1 .5 0 . 1 

1 0.05 

>. 0.5 i\ Q) 

0 

-0.1 -0.5 
0 2 3 0 2 3 

time time 

Figure 5.3: Responses of Example 5.4.2 when the LQ method is applied. 

Similarly to Example 5.4.1 the gain matrix H can be found such that the eigenvalues of 

A- H C have specific values . Suppose t he eigenvalues of A- H C are - 1, - 1 ± 0.15i. 

Using the MATLAB Control Toolbox one determines 

[ 

- 0.291 2 ] 
H = - 1.0677 

- 0.0165 
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Let Q1 = 13 and W = 3.34. Then the u.p.d.s. matrix solution of the Lyapunov equation 

(5.62) is 

Therefore (5.65) implies 

[ 

3.2614 1.0988 

P1 = 1.0988 0.7288 

0.2036 -0.0451 

0.2036] 
-0.0451 

0.4850 

[ 

-0.1894] 
A= 0.4916 

0.6747 

SoD= 0.0954 and E = r- AD= [0.0156 - 0.0065 of with \\E\\ = 0.0169. Consider 

v = 3.34 sgn ey. Since rn = 21\P,E\\M/.Xmin(Q) = 0.0092 and bu = 0.0346, the norm of 

the state error is eventually less than 0.0346. The sliding mode region radius (5.93) is 

r
2 

= 1. 7831 while r s = 1. 7831. Therefore, the difference is not perceptible. The value of 

the right-hand side of (5.70) equals rs = 1.7831 and the value of the right side of (5.71) 

is 0.9034. The maximum value of 1\e\1 is less than 1.2453. However, after a short time 

1\e\1 < 1.7830 = r2 , and the time until the start of the sliding mode ts should be shorter 

than the time when \le\\ < 0.9034. Note that all these conditions may not be necessary 

for the existence of the sliding mode. Simulation results are shown in Fig. 5.4. 
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Figure 5.4: Responses of Example 5.4.2 when the pole assignment technique is applied 
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5.5 Summary and Discussion 

In this chapter the sliding dynamics for SISO and MIMO linear systems, and conditions 

for the existence of the sliding mode in the presence of uncertainty have been studied. 

The existence of the sliding mode guarantees that the state trajectories converge to a 

sliding surface at a finite time and then move along the surface to the origin. However, 

the system may generally not be stable. For the system to be asymptotically stable, some 

further conditions may be needed. An interesting problem is to study the system with 

unmatched uncertainty and find some relaxed sliding conditions to impose asymptotic 

stability. 

A sliding observer design method has been proposed such that the estimated state 

nearly approaches the actual state. Certain sufficient conditions should be satisfied for the 

asymptotic stability of the system. These conditions are limitations on the uncertainty 

input. Otherwise, this method ensures only that the estimated state approximately tends 

to the actual state. The 'size' of this approximation is given by (5.82). In this way the 

state error trajectory enters a certain set in finite time and remains within the set for 

future time. The sliding mode occurs after a finite time. So there exists a finite time after 

which the state trajectories enter the 'sliding region' and move to the origin along the 

sliding surface. A sliding region has been obtained (5.94). Of course, the sliding mode 

domain may be larger than the stated sliding domain (5.93). The value r 2 indicates that 

the hitting time is at most that time when the state error trajectory enters the set Yr 

(5.93), i.e. the ball with radius r2 (5.93). Further research should investigate whether 

tighter bounds can be obtained. The results may be extended to nonlinear systems where 

the nonlinearity appears only in the disturbance term. 



Chapter 6 

Discrete-Time Sliding Mode Control 

6.1 Sliding Lattice Design for Discrete-Time Systems 

Sliding mode control design is well established for continuous control systems [29]-[34], 
[118], [121]. Sliding mode control of discrete-time systems has been not studied as much as 

its continuous counterpart. There are relatively few papers about discrete sliding mode 

control and most of them discuss SISO discrete-time systems [9], [12], [21], [30), [44], 

[70]-[72], [84], [98], [105], [111], [112], [122], [139). 

Discrete-time sliding mode control (DSMC) has been defined in numerous ways. 

DSMC of discrete-time systems has been considered by Milosavljevic [84] in the con­

text of sampled-data systems and he named the discrete sliding mode the quasi-sliding 

mode. Sarpturk et al [98] presented a new sufficient condition for the existence of DSMC 

and discussed the stability. The main problem of discrete sliding is to find a suitable 

reaching condition such that when the sample period tends to zero, the continuous sliding 

mode reaching condition is satisfied. Some authors have applied the ideal sliding mode 

conditions for designing control (12], [122]; others sliding mode reaching conditions for 

SISO systems [44], (98], (105], [138]. In [84] a reaching sliding condition is presented 

which is only a necessary condition for the existence of the sliding mode. 

Utkin (122) and Bartolini et al [12] considered a discrete-time system which is obtained 

from the linear time-invariant continuous system, and presented a method for designing 

the control. They considered two cases: ( i) when complete information of the plant 

parameters is available, ( ii) when the system operates under uncertainty conditions. Their 

method is based upon the definition of ideal sliding and the selection of a suitable real 

number bounding the control. This method guarantees the existence of a boundary layer 

101 
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with width twice the sample period. 

Yu [138) presented an algorithm to calculate the upper and lower bounds for DSMC. 

These upper and lower bounds are independent of the distance of the system state from 

the sliding surface. Yu [138] used the sliding mode condition as stated by Milosavljevic [84] 

and defined a control structure based upon linear feedback with switched gain DSMC. 

Additional conditions ensure the state approaches and/ or crosses the sliding hyperplane 

without divergence from the sliding surface. To eliminate the zigzagging behaviour which 

appears with this control, he modified the control structure. In spite of using this modified 

method which ensures the sliding mode does not diverge from the sliding surface, the 

distance of the sliding motion from the sliding hyperplane is not specified. However, 

his algorithm shows how to calculate the upper and lower bounds for DSMC that are 

independent of the distance of the system state from the sliding surface. 

The method presented in [74] indicates that the lower and upper bounds depend upon 

the distance of the system state from the sliding surface. Baida [9] studied discrete-time 

sliding modes based on the definition of Drakunov and Utkin [30] by using unit control 

methods under uncertainly conditions and minimization of control efficiency. Gao et al 

[46] defined a quasi-sliding mode band. They used an equivalent form of a continuous 

so-called reaching law to give a discrete-time reaching law. Sarpturk et al [98] presented 

the reaching condition for SISO systems 

is(k + 1)1 < is(k)l (6.1) 

with s the sliding function, and Sira-Ramirez [105] proposed the following reaching con­

dition 

is(k + 1)s(k) I < s2(k) (6.2) 

which is equivalent to (6.1). Furuta [44] used the Lyapunov function V(k) = ~s2 (k) and 

considered the condition 

1 
s(k)~s(k + 1)1 < -2(~s(k + 1)? (6.3) 

with ~s(k + 1) = s(k + 1)- s(k) which is also equivalent to (6.1) and (6.2). Almost all 

authors have stated the same condition. Spurgeon [111] and Yu and Potts [139] showed 

that the condition is(k + 1)1 < ls(k)l is only a sufficient condition for existence of the 

discrete sliding mode. Sarpturk et al [98) and Sira-Ramirez [105] presented the necessary 

condition for the existence of the sliding mode as stated by Milosavljevic [84) 

s(k + 1)s(k) < s2(k) (6.4) 



Chapter 6. Discrete-Time Sliding Mode Control 103 

yielding an unstable sliding mode along the sliding surface s = 0. This condition is not 

a sufficient condition for the existence of the discrete sliding mode and only guarantees 

the sliding points approach and/ or cross the sliding hyperplane. It is not sufficient for 

convergence to the sliding latticewise hyperplane [138], [139]. 

Equivalent control in the Furuta approach [44] is obtained by setting 

s(k) = s(k + 1) (6.5) 

but it should be emphasized that, when the sliding mode occurs, s(k) = 0 and the 

equivalent control in the sense of Furuta is the same as in the traditional case [121]. 

Assume for all k ~ ks (6.5) is satisfied. Then, for all k ~ k8 , s(k) = s(k8 ). So according 

to Furuta's definition, the discrete-time sliding mode occurs if there exists a finite time 

ks such that after this time the value of the sliding function is constant. So for all k ~ k5 , 

x(k)- x(ks) E JV(C), that means the state belongs to the right coset JV(C)+x(k.) of the 

null space C. Only when x(ks) = 0 does the state belongs to the null space of C. 

Koshkouei and Zinober [70]-[72] have presented a condition which is weaker than the 

above conditions (6.1), (6.2) and (6.3) and is detailed in Section 6.2. 

In discrete-time systems instead of having a hyperplane as in the continuous case, 

a countable set of points is defined comprising a so-called lattice; and the surface on 

which these sliding points lie is named the latticewise hyperplane (Koshkouei and Zinober 

[70]-[72]. The sliding lattice is defined as 

s(k) = 0 (6.6) 

One way to design a sliding lattice hyperplane for MIMO (m-input m-output) systems is 

to consider the intersection of the m sliding lattice surfaces. Let 

s= 

The i-th sliding lattice is si = 0 and 

i=m n {x(k) : Si(k) = 0} 
i=l 

is a sliding lattice for the system. The i-th component of ui(k) (1 ~ i ~ m) of the 

state feedback control vector u(k) is selected such that the state lies on the i-th sliding 
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lattice. The sliding mode of discrete-time systems is completely different from SMC in 

continuous systems. In continuous systems the sliding variable is a linear transforma­

tion 8: JR.n ---+ Rm with x ---+ Cx and when the sliding mode occurs x E Ker(8) (or 

x E JV(C)) where Ker(8) is the kernel of epimorphism (surjective homomorphism) of sin 

h f S lR.n . . h' ll])m • Rn 11]) 

t e sense o vector space. o K ( ) lS 1somorp 1c to~ , Le. K ( ) "" ~m. Therefore er 8 er 8 ' 

the dimensions of K~~ 
8

) and Rm are the same. Hence, the dimension of JV (C) (the 

nullity of linear transformation of 8) is n - m. In contrast, for discrete-time systems the 

sliding function consists of a sequence which can be considered as the restriction of the 

function 8(x(t)) on N. When the sequence {8(k)}~ 1 is a null sequence, i.e. lims(k) = 0, 

the convergent sliding mode exists. 

In this chapter a new reaching condition for the existence of the sliding mode 1s 

presented and the behaviour of the sliding dynamics is studied. The definition of the 

discrete sliding mode is clarified and techniques for designing the control by applying the 

sliding mode properties are presented. There are two ways for designing a control via the 

sliding mode technique: 

( i) First the form of the conventional control law is chosen such that the state reaches 

the desired sliding lattice after some finite time. This method is suitable for design­

ing a control for systems which can take only specific values, like the boost power 

converter and the quantum boost series resonant converter (SRC). 

(ii) The precise control is found by using the reaching or ideal sliding mode conditions. 

This method can be applied to systems which have no particular restrictions on the 

control law or the control bounds. 

For the generation of the sliding mode in continuous systems such that the state trajectory 

crosses the sliding surface, the control should be discontinuous. As stated in Chapter 2 

the sufficient condition for the existence of the sliding mode in a continuous system on a 

manifold, s = 0, is that sT s < 0 in the neighbourhood of the manifold [118],[121]. So in 

continuous sliding systems the control law and/ or sliding surface is chosen such that this 

sliding condition is satisfied. 

Some authors have considered a control law for discrete-time systems like the dis­

continuous control law in continuous systems [44], [105J, [122J. Since the control in the 

discrete-time systems is defined only at the sample points, the structure of the control 

is not required to be the same as in continuous systems. This is so because the discrete 

sliding mode condition differs fundamentally from the continuous sliding mode condition. 
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In discrete-time sliding systems the control can be chosen as a simple linear control [111]. 

This control guarantees the state to converge onto the sliding hyperplane and the state 

trajectories may not cross the sliding surface. In the discrete sliding mode the effect of 

external disturbances on the discrete-time system is reduced, but to eliminate the disturb­

ance completely may need an additional condition like the invariance condition. So, in the 

presence of disturbances the state may not lie precisely on the sliding lattice hyperplane 

[82]. However, when certain conditions like the cone inequality for the norm of the state 

and disturbance input, and the matched uncertainty condition hold, the sliding points 

may lie on the prespecified sliding lattice. 

Problems of the stabilization of linear and nonlinear discrete-time systems have been 

studied by many authors including [24] via the difference equation, and [82], [99], [132], 

1133) using the Lyapunov min-max method. In Section 6.2 the concept of the discrete­

time sliding mode is clarified and new conditions for the existence of the discrete-time 

sliding mode (DSM) are suggested. In Section 6.3 a control design procedure is presented 

such that the robust stability of the sliding mode motion is achieved. Furthermore, the 

reduced order discrete-time system and the stability of this system are studied. 

The problem of the stabilization of discrete-time dynamic systems using the direct 

method of Lyapunov is addressed in Section 6.4. In Section 6.5 optimal sliding mode 

control is considered. In fact the sliding lattice gain matrix is found such that all the 

eigenvalues of the reduced order discrete-time system lie either inside the unit circle or 

inside a specified circle enclosed within the unit circle with centre on the real axis. In 

Section 6.6 some examples are considered to illustrate the results of the discrete-time 

control design theory. 

In Section 6. 7 an asymptotically stable observer for discrete-time systems is designed 

by using the properties of the sliding mode such that the stability of the nominal error 

system in the sliding mode is maintained. Various techniques for finding the feedforward 

injection map are proposed. A technique for observer design and methods for finding the 

feedforward injection map and the external feedforward compensation signal are proposed. 

The stability of the reconstruction error system when the perturbation signal has bounded 

magnitude proportional to the norm of the state error, is studied in Section 6.8. In Section 

6.9 some examples are considered to illustrate the results of the observer theory. 
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6.2 Discrete-Time Systems 

Consider the discrete-time linear time-invariant system 

x(k + 1) 

y(k) 

Ax(k) + Bu(k) + r~(k) 

Cx(k) 

106 

(6.7) 

(6.8) 

where k ~ 0 is an integer, x(k) E IRn is the state, A E IRnxn, B E IRn xm is full rank, 

u(k) E IRm is the input control, C E IRm xn such that CB is a nonsingular matrix, 

y(k) E IRm is the output and r E JRnXm is the perturbation input map. The function 

~ E :!Rm is the reference or measurable external input and there exists a positive real 

number M such that 11~11 ::::; M. If e is unknown or not directly measurable, a suitable 

estimate of ~ should be selected [112). Assume that (A, B) is completely controllable. 

The sliding dynamical sequence is defined by 

s(k) = Cx(k) 

Definition 6.2.1: The set of all points x(k) E :!Rn, which lie on the hyperplane Cx(k) = 0, 

is said to be the sliding latticewise hyperplane or more concisely the "sliding lattice'. 

In fact, the sliding latticewise manifold is an infinite countable subset of the manifold 

Cx = 0 (see Fig. 6.1 (a)). 

(a) (b) 

0 

-2 -2 

-4 -4 
C\1 C\1 
X X 

-6 -6 

-8 -8 

-10 -10 
0 0.5 1 1.5 2 0 0.5 1.5 2 

x1 x1 

Figure 6.1: (a) Sliding lattice hyperplane; (b) Ideal discrete sliding mode 
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Therefore, the sliding lattice is formed by the points of the state satisfying 

s(k) = Cx(k) = 0 (6.9) 

Definition 6.2.2: The ideal discrete sliding mode is generated if there exists a positive 

integer ks such that for all integers k ~ ks, s( k) = 0. The time instant ks is the time 

when the sliding mode is reached (see Fig. 6.1 (b)). 

States on the sliding latticewise hyperplane lie in the null space of C, i.e. 

JY(C) = {x ERn : Cx = 0} (6.10) 

The sliding lattice is a sequence of points on the manifold Cx = 0 

~(C) = {x: Cx(k) = 0} (6.11) 

So A'd(C) c JV(C). Since the dimension of JY(C) is n- m, so the dimension of the 

state space is n - m, i.e. the discrete-time system in the sliding mode is converted to 

a closed-loop system with m zero eigenvalues. Therefore the discrete-time system in the 

sliding mode as in the case of continuous systems yields two subsystems: a slow and a fast 

subsystem. The slow subsystem is the system in the sliding mode. The fast subsystem 

only involves the control and with (6.9) gives the equivalent control. Equivalently, the 

equivalent control can be obtained by (6.7) and (6.9). Substituting (6.7) in Cx(k + 1) = 0 

yields the equivalent control 

Ueq(k) = -(CBt1(CAx(k) + cr~(k)) (6.12) 

and substitution into (6.7) gives the ideal reduced order system. The sliding system on 

the sliding latticewise surface s(k) = 0 satisfies 

x(k + 1) = (I- B(CBt1C)Ax(k) +(I- B(CBt1 C)f~(k) (6.13) 

with m eigenvalues of the closed-loop system zero and the remaining to be freely chosen. 

Definition 6.2.3: Let f > 0 be a real number. Define Ns(E) = {x ERn : IICxll < f} 

and 

Ns (f) and N; (f) are said to be a neighbourhood and a deleted neighbourhood of s = C x = 0, 

respectively. 
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Definition 6.2.4: The convergent discrete sliding mode exists if for any real number 

f.> 0 there is a positive integer number ko such that for all integers k ~ k0 , x(k) E Ns(i). 

If the sliding mode takes the form of the convergent sliding mode and not the ideal sliding 

mode, then for a given boundary layer of s = 0, the sliding points lie inside the layer after 

a certain time instant depending upon the layer width. 

Definition 6.2.5: The discrete sliding mode exists if there is a real number f. > 0 and a 

positive integer k0 such that for all integers k ~ ko, x(k) E Ns(i). 

This guarantees that the sliding points lie in the boundary layer with width 2L 

Definition 6.2.6: Let the sequence { si(k)}~0 be a rearrangement of the nonzero terms 

of the sequence {si(k)}~0 . The discrete-time system (6.7) is said to exhibit a sliding 

mode if there exists an integer number ko such that for all integers k ~ k0 and for all 

integer 1 ~ i ~ m 

si(k)(si(k + 1)- si(k)) < 0 (6.14) 

Corollary 6.2.1: Let s = (s1 s2 ... smf· The discrete-time system (6. 7) exhibits a 

sliding mode if there exists a deleted neighbourhood of s = 0, N; (f.) such that for all 

x E N; (f.) and for all 1 ~ i ~ m 

(6.15) 

Milosavljevic [84] defined the sliding mode for SISO systems similarly to Corollary 6.2.1. 

This definition of the existence of a sliding mode guarantees only that the state approaches 

and/or crosses the sliding surface, and allows an unstable sliding mode (105], (138]. 

Corollary 6.2.2: Let the sequence { s(k )}~0 be a rearrangement {with the same order) 

of the nonzero terms of the sequence { s(k)}~0 . The discrete-time system {6. 7) exhibits a 

sliding mode if there exists a neighbourhood of s = 0, Ns(i), such that for all x(k) E Ns(i) 

(6.16) 

Corollary 6.2.3: A sufficient condition for the existence of the discrete sliding mode is 

that there exists a positive integer ko such that 

lls(k + 1)11 < lls{k)JI, (6.17) 

in a deleted neighbourhood of s = 0. 
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Proof: If this condition is satisfied, then the sequence {ils(k)ll}k(~ko is monotonically 

decreasing and converges to zero. 0 

Since the finite integer k has no effect on the behaviour of the sequence s(k), it is sufficient 

that (6.17) is satisfied after a certain time k0 • 

For SISO systems, Corollary 6.2.3 or its equivalent has been stated as a definition of the 

convergent sliding mode [21], [44], [46], [98], [105], [111] and [138]. When a convergent 

sliding mode exists, the sliding points converge to the sliding surface. Therefore Corollary 

6.2.3 is a strong sufficient condition for the existence of the discrete sliding mode. 

Alternatively, to prove Corollary 6.2.3, one can show that the Lyapunov function 

V(k) = lls(k)ll satisfies 

~V(k) = V(k + 1)- V(k) = ils(k + 1)11-lls(k)ll < 0 

The Lyapunov method also guarantees the stability of the sliding mode. 

Corollary 6.2.4: A sufficient condition for the existence of the discrete sliding mode is 

that there exists a positive integer ko such that for all 1 ~ i ~ m 

(6.18) 

in a deleted neighbourhood of s = 0. 

Proof: This is an immediately result of Corollary 6.2.3. D 

When for all 1 ~ i ~ m, si(k + 1)si(k) > 0, (6.15) and (6.18) are identical, but if there 

exists i (1 ~ i ~m) such that si(k + 1)si(k) < 0, they are different. On the other hand, 

(6.18) gives (6.17), but the converse is true only if m= 1. The following corollary yields 

weaker conditions than (6.18) for the existence of the sliding mode. 

Corollary 6.2.5: Lets = [s1 s2 ... sm]r. Assume for any 1 ~ i ~ m, {si+(k)}k=l 

and {si-(k)}k=I are the positive and negative subsequences of {si(k)}~0 , respectively. 

The sufficient condition for the existence of the discrete sliding mode is that the positive 

subsequence {si+(k)}k=l and negative subsequence {si-(k)}k=l starting from some integer 

number ko ~ 0, are monotonically decreasing and increasing sequences, respectively, i.e. 

s/(k + 1) < si+(k) 

Si-(k + 1) > Si-(k) 

(k ~ ko) 

(k ~ ko) (6.19) 
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When conditions (6.19) are satisfied, then lim s(k) = 0 which guarantees the existence 
k-+oo 

and stability of the sliding mode on the surface s = 0. It is clear that conditions (6.19) 

may be satisfied, but not necessarily condition (6.17). Also conditions (6.19) give (6.15) 

for the both sequences {si+(k)}k=l and {si-(k)}k=l, but the converse may not be true. 

Theorem 6.2.1: Let 6.s(k + 1) = s(k + 1)- s(k). Consider the following conditions: 

(a) lls(k + 1)11 < lls(k)ll 

(b) sT(k)6.s(k + 1) < -!ll6.s(k + 1)11 2 

(c) lsT(k)s(k + 1)1 < lls(k)ll 2 

Conditions (a) and (b) are equivalent, while conditions (a) and (b) imply (c) and the 

converse is true if m = 1. 

Proof: (a) {:} (b). (a) Suppose (a) is true, then 

lls(k + 1) 11 2
- lls(k) 11 2 sT(k + 1)s(k + 1)- sT(k)s(k) 

(sT(k) + (~s(k + 1)f)(s(k) + ~s(k + 1))- sT(k)s(k) 

2sT(k)~s(k + 1) + ll~s(k + 1)W 

(a) =}(c). Suppose (a) is true, then the Cauchy-Schwartz inequality gives 

lsT(k)s(k + 1)1 ~ lls(k)lllls(k + 1)11 < lls(k)ll2 

The converse may not be true. 0 

As already stated, Sarpturk et al [98], Furuta [44) and Sira-Ramirez (105) defined the 

convergent quasi-sliding mode as (a), (b) and (c) respectively for SISO systems. Theorem 

6.2.1 shows that for SISO systems all these conditions are equivalent. Note that both the 

Lyapunov functions V(k) = lls(k)ll 2 and V(k) = lls(k)ll give the condition (a), i.e. these 

Lyapunov functions essentially have the same effect and the Lyapunov function can be 

selected in the form V(k) = Jlls(k)ll. A sufficient condition for the existence of the sliding 

mode can be stated as lls(k + 1)11 < 7JIIs(k)ll where 0 < 7] < 1 is a real number indicating 

the velocity of motion to reach the sliding mode. In this case, lls(k)ll < lls(O)II7Jk where 

s(O) is an arbitrary initial condition. So in this case, the velocity of the state moving 

onto the sliding lattice hyperplane depends on the value of 7] and the initial condition 

x(O) influences the reaching time of the sliding mode. It is clear that the condition (a) in 
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~heorem 6.2.1 is weaker than the condition lls(k + 1)11 < TJIIs(k)ll, because this condition 

implies the condition (a) but the converse may not true. Some authors have used the 

terms quasi-sliding mode (84], (98] and pseudo-sliding mode for the discrete-time sliding 

mode (138], (139). 

It is possible to consider a suitable Lyapunov function to find a more general sliding mode 

condition than (6.17). Consider the Lyapunov equation V(k) = sT(k)Ps(k) where Pis a 

p.d. matrix. Since 

V(k + 1)- V(k) = sT(k + 1)Ps(k + 1)- sT(k)Ps(k) = lls(k + 1)ll2p -lls(k)ll 2
p 

a sufficient condition for the discrete-time system state to converge onto the sliding lat­

ticewise hyperplane is that 

lls(k + 1)IIP < lls(k)IIP 

Then the conditions (a), (b) and (c) of Theorem 6.2.1 are converted to the following 

conditions respectively: 

(a') lls(k + 1)IIP < lls(k)IIP 

(b') sT(k)P~s(k + 1) < -!ll~s(k + 1)ll2
p 

(c') lsT(k)Ps(k + 1)1 < lls(k)ll2
p 

and Theorem 6.2.1 also holds. 

Theorem 6.2.2: A sufficient condition for the existence of a convergent sliding mode is 

that the system (6. 7) is asymptotically stable. The converse is not true. 

Proof: Assume the system (6.7) is asymptotically stable, i.e. lipoo x(k) = 0. Then the 

sequence {x(k)}~ 1 is a Cauchy sequence. So, for a given real number E there exists an 

integer ko such that for all integers k ~ ko 

f 

llx(k + 1) - x(k)ll < IICII 

On the other hand 

lls(k + 1)- s(k)ll ~ IICII·IIx(k + 1)- x(k)ll 

Therefore, for all integers k ~ ko, lls(k + 1)- s(k)ll < E, i.e. {s(k)}~ 1 is a Cauchy 

sequence. Therefore, !L~ s(k) = 0. 0 
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If there exists k0 such that, for all k ~ ko, x(k) = 0, then s(k) = Cx(k) = 0. This is a 

trivial case of Theorem 6.2.2. The proof of Theorem 6.2.2 indicates that if the distance 

between two consecutive state points is less than t, the distance between two consecutive 

sliding points is less than IICIIt, and s = 0 is the accumulation point set of the sliding 

points, i.e. for any boundary layer of s = 0, all the sliding points except for a finite 

number lie on the sliding latticewise surface. So, stability of the system guarantees the 

existence of a boundary layer with a given width. 

6.3 Discrete-Time Control Design 

In this section a technique for the design of a controller is presented which guarantees 

the stability of the sliding mode and yields desired sliding dynamical behaviour. The 

reaching condition (6.18) and the technique stated in Section 6.1 are utilized. Let si(k) 

be the i-th row of vector s(k), so si = Cix(k) where Ci is the i-th row of matrix C. 

A sufficient condition for the existence of the sliding mode is that for all 1 ~ i ~ m, 

lsi(k + 1)1 < lsi(k)l, which is equivalent to -lsi(k)l < si(k + 1) < lsi(k)l. Therefore 

So for all 1 ~ i ~ m 

Suppose 

Then IWi(k)l < 1 and 

Hence 
W(k)is(k)i =CB( -ueq(k) + u(k)) 

where W(k) = diag(W1(k), W2(k), ... , Wm(k)). Therefore, the control law is 

u(k) - Ueq(k) + (CB)- 1W(k)ls(k)l 

-(CB)-1 (CAx(k) + Cf~(k)- W(k)is(k)l) (6.20) 
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where js(k)l = [ js1(k)l js2(k)l . . . lsm(k)l ]T. Substituting (6.20) in (6.7) gives the 

dynamic state equation 

x(k + 1) = (I- B(CBt1C)Ax(k) +(I- B(CB)- 1 C)f~(k) + 
+B(CB)-1W(k)js(k)l (6.21) 

This control guarantees the existence of the sliding mode. Inserting (6.21) in 

s(k + 1) = Cx(k + 1) 

yields the dynamic motion of the sliding mode 

s(k + 1) Cx(k + 1) 

C ((I- B(CB)-1C)Ax(k) +(I- B(CB)- 1 C)f~(k) + B(CB)-1W(k)js(k)l) 

W(k)is(k)l (6.22) 

Since for any i, !Wil < 1, therefore IIWII < 1. From (6.22) 

i!s(k + 1)11 ~ IIWI!.I!s(k)ll 

The function 11 W ( k) 11 indicates the velocity at which the sliding mode occurs and can be 

constant. Moreover, lls(k)ll = IIWIIklls(O)II where s(O) is an arbitrary initial condition, 

i.e. the sliding dynamics is only dependent upon the initial conditions and selection of 

W. This condition is true for all k < ks, ks a finite number, and for all k ~ ks s(k) = 0. 

Thus (6.22) guarantees the existence and stability of the sliding mode. If~ is unknown, 

the control (6.20) is no longer accessible because of the uncertainty. So it is necessary to 

estimate~· An estimate for ~(k) is ~(k -1) (112] which guarantees that the sliding points 

lie inside a boundary layer. If ~ ( k) - ~ ( k - 1) is a decreasing sequence (or sufficiently 

small) after a finite time instant, then the convergence sliding mode occurs and the state 

lies nearly on the sliding hyperplane. 

6.3.1 Discrete-Time System in the Sliding Mode 

As stated in Section 6.1, the system in the sliding mode is converted to a subsystem with 

dimension n- m. Therefore, the state in the discrete sliding mode belongs to a subspace 

with dimension n- m. Thus m eigenvalues of the closed-loop system are zero and the 

remaining n- m eigenvalues can be selected such that the reduced order system is stable. 

Assume T is an orthogonal matrix (2.13). SoT B = [ 0 B2 J T where B2 is a nonsingular 

matrix. Let Tx = z, then 

z(k + 1) = TATT z(k) + TBu(k) + Tf~(k) (6.23) 
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Zl (k + 1) = Auzl (k) + A12z2(k) + rl~(k) 
z2(k + 1) = A21Zl (k) + A22Z2(k) + B2u(k) + r 2~(k) 

where 

114 

(6.24) 

(6.25) 

The system in the sliding mode is independent of ~ if and only if r 1 = 0. As stated in 

Chapter 2 the system in the sliding mode is independent of ~ if there exists a matrix D 

such that r = BD. If m = 1 this condition is also necessary. Suppose CTT = [C1 C2] 

then 

When s(k) = 0 

(6.26) 

Substituting (6.26) into (6.24) yields the reduced order system 

(6.27) 

and then 

(6.28) 

where 
k 

V= L (Au - A12K)i-k•r1~(k- i + ks) 
i=ks 

Consider the nominal reduced order system 

(6.29) 

Then 

For lim z1 (k) = 0 it is sufficient that 
k--too 

(6.30) 
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i.e. all the eigenvalues of A 11 - A12K lie in the unit circle centred at the origin. When all 

the eigenvalues of Au - A12K are in the unit circle and r 1 =/= 0, the state variables are 

bounded since 

llz1(k + 1)11 :::;; II(Au- A12K)IIk+l-k•iizl(ks)ll 
k 

+ L II(Au- A12K)W-k•IIMII.IIf1ll 

From ( 6.31) for k ---+ oo, the norm of z1 ( k) is eventually less than 

which shows that the states during the sliding mode are bounded and if IIA11 - A12KII 
is small, the width of this bound becomes small. So if the condition (6.30) is satisfied, 

i.e. the nominal sliding system is stable, the sliding system state is bounded. Otherwise, 

the system may be unstable despite the existence of the sliding mode. 

6.4 System Stability 

The problem of system stability will be studied which can appear in several ways: ( i) the 

stability of the system in the sliding mode, ( ii) when the system is independent of the 

perturbation signal, ( iii) when the perturbation signal is bounded proportionally to x(k ), 

( iv) when there is no knowledge of the bounded perturbation signal. 

Let Aeq =(I- B(CBt1C)A and Beq =I- B(CB)-1C. Assume that all the eigenvalues 

of Aeq lie in the unit circle. Then there is a real number r such that p(Aeq) < r :::;; 1 where 

p(Aeq) indicates the spectral radius of Aeq· Then the discrete Lyapunov equation 

(6.32) 

with Q an arbitrary p.d.s. matrix, has a p.d.s. matrix solution P. Suppose that the 

perturbation signal is bounded by a multiplier factor of the norm of the state, i.e. there is 

a positive real number ~o such that ll~(k)ll :::;; ~ollx(k)ll. Now it is shown that the system 

is stable if 

(6.33) 
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h ''A 11
2 + (Amin(Q)+(l-r2),\min(P) 'd d th t 

w ere J.-l = eq Amax(P) , prov1 e a 

A suitable Lyapunov candidate function is V(k) = x(k)TPx(k) where Pis the u.p.d.s. 

solution ofLyapunov equation (6.32). Then the triangle and Cauchy-Schwartz inequalities 

give 

~V(k) - V(k + 1)- V(k) 

~ -llx(k)li 2 (Amin(Q) + (1- r
2)Amin(P)) + li~(k)li 2 ilfli 2 11Beqll 2 -'max(P) + 

2ilx(k)ll IIAeqliAmax(P)IIBeqll·lif~li + 
2llx(k) 11

2
11 Aeq 11 Amax ( P) IlB (CB) -lii.IICII·II W 11 + 

2llx(k)II.IIB(CBt 1 II·IICII-'max(P)IIBeqii·IIWII.IIf~ll 

+IIWII 2 IIx(k) II 2 IIB( CB)-1II 2 IICII 2 Amax(P) 

~ llx(k)ll 2 [-Amin(Q)- (1- r
2)Amin(P)+ 

(511fil 2 -'max(P)IIB(CB)-111 2 .IICII2 + 
2-Xmax(P)IIfll IIB(CB)- 1 ii·IICII.IIAeqll~o + 
2Amax(P)IiAeqii·IIB(CB)-1 ii·IICII.IIWII + 

2Amax(P)IIIIB(CB)- 1 ii 2 ·IICII 2~ollfii.IIWII + 

IIWII 2 IIB( C B)-1
11

2 .JJCII2 Amax(P)] 

< 0 (6.34) 

from (6.33). Let J.-to = 1 + Amin(Q)+(l-r
2
)Amin(P) If IIAeqll ~ 1 and 

Amax(P) 

the condition 

(6.35) 

yields the stability of the system. Now suppose that rank(f, B) = m. Then the system 

in the sliding mode is independent of the external input signal and the system is stable if 

llwll 
. {1 tL-IIAeqll } 

< mm ' IIB(CB)-1ii·IICII (6.36) 

If IIAeqll ~ 1, the condition 

(6.37) 

is a sufficient condition for the stability of the system. When there is insufficient knowledge 

of IIAeqll, the condition (6.37) may prove useful. 
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6.5 Optimal Discrete-Time Sliding Mode 

Minimizing the conventional quadratic discrete cost functional is a way to design the 

feedback gain such that the closed-loop system is stable. Control design using the optimal 

method for discrete-time and continuous systems has been studied by many authors in 

recent years [11, page 287], [90, Chapter 8]. However, the method presented next for 

designing the optimal discrete sliding mode is new. Here the optimal discrete sliding 

mode and optimal discrete control are studied. A method to ensure all the eigenvalues of 

the reduced order system lie within a specified circle, is also presented. 

6.5.1 Optimal Discrete-Time Control 

Consider the discrete cost quadratic functional for the system (6.7) 
00 

(6.38) 
k=O 

where Q and R are arbitrary semi-p.d.s. an p.d.s. matrices, respectively. Minimizing J 

in (6.38) with respect to u yields the optimal controller 

u(k) = -Kx(k), (6.39) 

where p is the u.p.d.s. solution of the standard algebraic discrete Riccati equation 

(ADRE) 

(6.40) 

All the eigenvalues of A - BK lie in the unit circle U with centre at the origin, i.e. this 

feedback guarantees the stability of the nominal closed-loop discrete-time system (6.7). 

For all the eigenvalues of the closed-loop system to lie in a specified circle D with centre 

a E JR, lal < 1, and radius r < 1- ial, consider the shifted system 

A- a! B r ~ 
x(k + 1) = ( )x(k) + -u(k) + -~(k) (6.41) 

r r r 

[43]. When all the eigenvalues of A-BK lie inside D, the eigenvalues of (A- BK- al)fr 

lie within U. So all the eigenvalues of the nominal closed-loop system (6.7) are in D if 

and only if all the eigenvalues of the shifted system (6.41) are inside the unit circle U. 

Therefore, when all of the eigenvalues of the closed-loop system (6.7) lie within the open 

circle D, the control is 
BT B BT A-od 

u(k) = -(R + -P-)-1-P x(k) 
r r r r 
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and then 

u(k) = -Kx(k), (6.42) 

where P is a p.d.s. solution of the DRE 

(A- alfP(A- al)- (A- al)TPB(r2R + BTB)-1 BT P(A- al)- r2 P = -Q 

(6.43) 

6.5.2 Optimal Sliding Lattice 

Similarly to continuous systems [135J, the optimal sliding lattice can be found by minim­

izing the conventional quadratic index. The basic idea is that z2 is the input control of 

the subsystem (6.24) and the LQ method can be applied for finding the optimal control, 

or more precisely the optimal sliding lattice. Consider the linear discrete quadratic cost 

functional 
00 

J = L (z[(k)Qz1(k) + 2z[(k)Nz2(k) + zf(k)Rz2 (k)) 
k=ks 

where Q, N and Rare arbitrary matrices such that 

[
Q Nl >-O NT R ~ , R>O 

and also Q and R are symmetric matrices. Define 

z2(k) Z2(k) + R-lNT zl(k) 

An - An - A12R-1 NT 

Q Q- NR- 1NT 

(6.44) 

(6.45) 

(6.46) 

( 6.4 7) 

(6.48) 

The positivity and symmetry of (6.45) ensure that Q is a p.d.s. matrix, and the control­

lability of (A, B) ensures the controllability of (A, A12) [12lj. Then (6.44) is converted to 

the standard linear discrete quadratic optimal regulator 

00 

J = L ( zf(k)Qzl + zf(k)Rz2(k)) (6.49) 
k=O 

Minimizing J in (6.49) with respect to i2 yields the optimal gain sliding matrix 

(6.50) 
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where P is a p.d.s. solution of the algebraic discrete Riccati equation (DARE) 

Using (6.46), (6.47) may be transformed to 

(6.52) 

Matrix K guarantees that all the eigenvalues of Au - A12K lie inside the unit circle U. 

Similarly to Section 6.5.1, the gain matrix K can be found such that all the eigenvalues 

of the reduced order system lie inside the specified circle D. 

6.6 Examples 

Now some examples are considered to demonstrate the sliding lattice theory. 

Example 6.6.1 (Chan [21]): Consider the discrete-time system 

[
x 1(k+1)] [ 0 1 l [Xt(k)l [0] [ 0 l 
x

2
(k + 1) = 0.24 0.20 x2 (k) + 1 u(k) + d(k) E, 

where E, is a external input signal signal and d(k) is uncertain. The system in the sliding 

mode is independent of d(k) because d(k)b = [0 d(k)JT. This is achieved via feedforward 

of the disturbance. Choose the sliding matrix C = [0 1]. The eigenvalues of Aeq are zero, 

so the spectral radius of Aeq is 0. Let Q = /2 and r = 0.9. A p.d.s. solution P of the Lya­

punov equation (6.32) is P = diag(l.2346, 2.7587) with the eigenvalues 1.2346 and 2.7587 

and then J-Lo = 1.2031. Take W = 0.2021 sin(krr/6). The system is stable since condition 

(6.36) is satisfied. Simulation results are shown in Fig. 6.2 with x(O) = [0.2 0.2]r. 

Example 6.6.2 (Sira-Ramfrez [105]): Consider the system 

[ 
Xt (k + 1) l = [ 0 1 l [ Xt (k) l + [ 0 l u(k) 
x2 (k + 1) 0 0 x2(k) 1 

Define the sliding sequence as s(k) = Cx(k) = CtXt(k) + x2(k). Then 

I- BC/CB= [ 
1 0 

l and (I- BC/CB)A = [ O O l 
-c1 0 0 -c1 
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Control action Equivalent control 

10 

l ~ -0 :.____V _______ 
15 0 5 

~-O.Ji 
0 5 10 15 

State behaviour State behaviour 

Phase Plane Sliding function 

~:::[ : 
0 0.05 0.1 0.15 0.2 0 5 10 15 

x1 

Disturbance input o.o:fV\1\/ I 
-0.050 5 10 15 

t 

Figure 6.2: The responses of Example 6.6.1 

Therefore the eigenvalues of Aeq are 0 and -cl. For the stability of the reduced order 

system take led < 1. The control is given by (6.20) and now 

x(k + 1) = [ 
0 1 

] x(k) + W [ 
0 0 

] x(k) sgn s(k) 
0 -c1 c1 1 

Choosing lc11 < r ~ 1 and W such that (6.36) is satisfied, then the system is stable. Let 

r = 0.97, c1 = 0.7 , Q =I and W = 0.075 cos(k7r /4). For c1 = 0.7 or c1 = -0.7, a p.d.s. 

solution P of the Lyapunov equation (6.32) has eigenvalues 1.0628, 4.5749. Obviously 

(6.36) is satisfied which guarantees the stability of the system. Simulation results are 

shown in Fig. 6.3. 

Example 6.6.3 (Gao et al (46]): Consider the system 

[ 
x1(k + 1) l = [ 1.2 0.1] [ x1(k) l + [ 0 l u(k) 
x2(k + 1) 1 0.6 x2(k) 1 
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Control action State behaviour 

~~:Y : l ~~::lC=--..__..____;j 
0 5 10 15 0 5 10 15 

t t 
State behaviour 

~=~P 
-8 

1 ~~:c::=a 
0 5 10 15 

t 
Sliding function 

0':[ : 
0 5 10 15 

t 

-20 -15 -10 
x1 

Figure 6.3: The responses of Example 6.6.2 

Define the sequence of sliding mode as 

Then 

-5 0 

121 

The eigenvalues of Aeq are 0 and 1.2- 0.1c21ct. The system is stable in the sliding mode 

if 11.2- 0.1c21c11 < 1 which simplifies to 2 < c21ct < 22. By applying the control (6.20) 

Choosing c2 = 1 and Ct = 5 the eigenvalues of Aeq are 0 and 0. 7. Therefore, r ~ 1 can 

be selected only greater than 0.7. Let r = 0.998 and Q = I. A p.d.s. solution P of 

the Lyapunov equation (6.32) has eigenvalues 75.8083, 1.0040 and J.l = 6.1411. Choosing 

W = 0.0001(sin(kn/4) + cos(kn/6)), (6.36) is satisfied which implies that the system is 

stable. Simulation results are shown in Fig. 6.4 with x(O) = [2 - 6]T. 
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Control action State behaviour 
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:::::1 
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-10 -1 
0 0.5 1 1.5 2 0 5 10 15 

x1 t 

Figure 6.4: The responses of Example 6.6.3 

Example 6.6.4 (Spurgeon (110]): Consider the system 

[ 

x1(k + 1) l [ 1 0.60 0.04] [ x
1
(k) l [ 0.02] [ 0.002] 

x
2
(k + 1) = -0.01 0.90 0.12 x2 (k) + 0.09 u(k) + 0.009 ~ 

x3(k + 1) -0.16 -1.25 0.57 X3(k) 0.99 0.099 

where f, is random noise. Define the sequence of the sliding mode as 

Then 

s(k) = Cx(k) = 0.44xl(k) + 1.7x2(k) + 0.85x3 

[ 

0.9943 

(I- BC/CB)A = -0.0357 

-0.4432 

0.5854 

0.8344 

-1.9718 

0.0259] 
0.0567 

-0.1267 

with the eigenvalues 0.8510 ± 0.1336i, 0 guarantees the stability of the reduced order 

system. The system in the sliding mode is independent of the perturbation input because 

r = 0.1B. Choosing r = 0.97 and Q =I, (6.32) gives the p.d.s solution P 

[ 

8.6950 14.5886 0.8786 ] 

p = 14.5886 47.0455 2.8979 

0.8786 2.8979 1.2460 
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with eigenvalues 52.1441, 3.7795, 1.0628 and then 

Therefore for the stability of the system the function W should be bounded by 0.0023. 

Take W = 0.0022 sin(0.1k7r), then 

[ 

0.9943 0.5854 0.02591 [ 0.01991 
u(k) = -0.0357 0.8344 0.0567 x(k) + 0.0091 sin(0.1k7r) 0.0897 is(k)i 

-0.4432 -1.9718 -0.1267 0.9867 

Simulation results are shown in Fig. 6.5 with x(O) = [0.80 - 0.50 - 0.02)T. 

Control action State behaviour 

~ _:::[:== ~I 
- 1o 5 10 15 20 

~-~r:s;d 
0 5 10 15 20 

t t 
State behaviour State behaviour 

~ o.:rs; : : J ~ Jl/:=- . j 
- 0 ·5o 5 10 15 20 0 5 10 15 20 

t t 

Slid;ngfun~;on 

1 

_:::~l 

5 1 0 15 20 0 5 1 0 15 20 
t t 

Figure 6.5: The responses of Example 6.6.4 

Now an example is considered to demonstrate the MIMO theory. 

Example 6.6.5: Consider the system 

Xl(k + 1) 0 1 0 0 X1 (k) 0 0 0 0 

X2(k + 1) -5 6 1 1 x2(k) 1 0 1 0 
+ u(k) + ~ 

X3(k + 1) 0 0 0 1 X3(k) 0 0 0 0 

X4(k + 1) 0 0 10 9 x4(k) 0 1 0 1 
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where 

~= [ 0 l 0.5 sin(O.l7rk) 

The system in the sliding mode is independent of ~ because B = r. Choose the sliding 

matrix 1111] 

c = [ 0.3565 3.0000 0.3417 0.2157] 

0.0918 0.2157 1.0767 3.0000 

The eigenvalues of Aeq are -0.3606, -0.1092 and 0. The spectral radius of Aeq is 0.3606. 

Let Q = 14 and r = 0.5. A p.d.s. solution P of the Lyapunov equation (6.32) is 

4 0 0 0 

P= 
0 21.3107 0 2.6746 

0 0 4 0 

0 2.6746 0 42.4283 

with the eigenvalues 20.9772, 4, 42.7617 and J-L = 1.1083. Hence 

J-L- IIAeqll O 
IIB(CB)-1 II·IICII = '

0353 

Take W = -0.0352 sin(krr /10)12. The system is stable since condition (6.36) is satisfied. 

Simulation results are shown in Fig. 6.6. 

6. 7 Sliding Mode State Observers for Linear Discrete­

Time Systems 

Discrete-time sliding mode observer design is a new topic. Discrete observer design using 

sliding mode control has been developed by Koshkouei and Zinober 171). In Section 6.1 

the concept of the discrete sliding mode and the sliding lattice were defined and a method 

for designing a controller presented such that the stability of the system and sliding mode 

are conserved. Now discrete sliding mode observer design is considered. Techniques for 

finding the feedforward injection map and the external feedforward compensation signal 

will be developed. The discrete-time linear time-invariant system 

x(k + 1) 

y(k) 

Ax(k) + bu(k) + ~~(k) 
cx(k) 

(6.53) 

(6.54) 
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Figure 6.6: The responses of Example 6.6.5 

is considered where k ~ 0 is an integer, x(k) E Rn is the state, A E Rn xn, b E Rn IS 

nonzero vector, u(k) is the scalar input control, c E Rn such that cb =P 0, y(k) E R 

is the scalar output, 1 E Rn is the perturbation input map and ~ E R is the bounded 

scalar disturbance input. It is assumed that (A, b) is completely controllable and (A, c) 

completely observable. 

A sliding observer for the system (6.53) is 

x(k + 1) = Ax(k) + bu(k) + h(y(k)- y(k)) + Av(k) 

y(k) = c:i;(k) (6.55) 

where v ER is an external discontinuous feedforward compensation signal, A ERn is the 

feedforward injection map such that eA # 0 and h E Rn is the observer gain vector. By 

choosing h such that A - he is stable, the observer will be asymptotically stable. The 

state reconstruction error is defined as e = x - x. Subtracting (6.53) from (6.55) gives 

the reconstruction error system 

e(k + 1) 

ey(k) 

(A- hc)e(k) + ~~(k)- Av(k) 

ce(k) 

(6.56) 

(6.57) 

where ey(k) = y(k) - y(k) is the output reconstruction error. Assume that for all k, 

l~(k)l ~ ~0 lle(k)ll, where ~o is a positive real number. 
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Now it is desired to obtain h, >. and v such that the stability property of the observer is 

achieved. The vector h can be found in two ways as for the continuous counterpart; pole 

assignment methods, i.e. assigning prespecified n eigenvalues to the matrix A- he; and 

the LQ method. The eigenvalues of A- he and AT- cThT are the same, so the problem 

is that of finding a feedback for the dual system corresponding to (6.53) such that the 

eigenvalues are the specified values. But (A, c) is observable if and only if (AT, eT) is 

controllable. Therefore, the observability of (A, c) guarantees the existence of h. 

The LQ method is now used to find h. Since (A, c) is observable, (AT, eT) is controllable. 

Therefore the discrete Riccati equation (DRE) 

AP AT -
1 

APcT cP AT - P = -Q (6.58) 
a+ cPcT 

with Q an arbitrary semi-p.d.s. matrix and a> 0, has a u.p.d.s. matrix solution P. Then 

AT- cThT is stable with 

hT = 1 
cP AT (6.59) 

a+ cPcT 

which is equivalent to the stability of A - he. So 

h = 1 
APcT (6.60) 

a+ cPcT 

The ideal sliding mode for the system (6.56)-(6.57) is obtained if ey(k) = 0 after a finite 

integer k. The equivalent feedforward input is given by 

Veq(k) = (c>.)- 1(cAe(k) + C/~(k)) (6.61) 

Substituting (6.61) into the state reconstruction error system (6.56) gives the reduced 

order system 

(6.62) 

One of the eigenvalues of matrix (I ->.(c>.)-1c)A is zero and the n-1 remaining eigenvalues 

can be assigned. The reduced order system is independent of the disturbance input signal 

if there exists a real number 'TJ such that 1 = 'TJA. As for continuous systems the vector >. 

can be found in several ways (see Section 5.3): 

1. Take >. = AT PeT A/(f3 + cPcT) where f3 is an arbitrary positive real number. If 

j3 = a then ,\ = h. 

2. The vector >. in (6.55) can be obtained so that the stability of the reduced order 

system and the allocation of the n - 1 nonzero stable eigenvalues of the reduced 

order system 
e(k + 1) = [I- >.cj(c>.)]Ae(k) 
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are achieved. 

3. The vector ). can be found such that the nominal system in the sliding mode is stable. 

When the reduced order system (6.62) is independent of the perturbation signal, this 

approach yields the stability of the matrix [I - .Ac/ ( c.A) ]A, and lAPoo e( t) = 0. Gen­

erally, LQ methods for finding the vector .A cannot be achieved directly. However, 

the existence of .A under some conditions is guaranteed. 

Suppose A is a nonsingular matrix. Let .A= [..\1 ..\2 ... An]r, c = [c1 c2 ... en], 

eA= M and .A(c.A)-1 =F. Hence cF = 1. Therefore, vector .A can be found if there 

exists a vector F such that cF = 1. Then (I- .A(c.A)- 1c)A =A-FM. Since (A, c) is 

observable and A is a nonsingular matrix, (A, M) is also observable and the discrete 

Riccati equation 

T 1 T T 
APA - (J+MPMTAPM MPA -P=-Q (6.63) 

where Q is an arbitrary semi-p.d.s. matrix and (J a positive real number, has a 

u.p.d.s. matrix solution P. Taking 

1 T 
F= fl+MPMTAPM (6.64) 

yields all the eigenvalues of A - FM located inside the unit circle. If cF = 1, ,\ 

exists such that .A(c.A)-1 = F and all the eigenvalues of (I- .A(c.A)- 1c)A lie within 

the unit circle. Let F = [!1, h, ... , fn]T. Then .A(c.At1 = F gives 

(cd1- 1)..\1 + c2/1.A2 + 
cd2.A1 + (c2h- 1),\2 + 

+ + 

+ 
+ 

0 

0 

0 

(6.65) 

which has an infinity of solutions for which all the eigenvalues of (I- .A(c.A)-1c)A lie 

inside the unit circle. Equation (6.65) can be written as (c ® F- I),\= 0 and then 

(c ® F).A = ). (6.66) 

where ® indicates the Kronecker product. The determinant of matrix c ® F - I 

is ±(cF- 1). Thus the system of equations (6.65) has a nonzero solution .A if and 

only if cF = 1. In this case the vector ,\ is not unique. Generally such a ,\ may not 

exist, but this method can be modified so that it is applicable for many practical 

problems. The above yields the following lemma which clarifies the conditions of 

the existence of vector .A. 
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Lemma 6.7.1: Assume F is given by {6.64) and F = F/(cF). If all the eigenvalues 

of A- FM are inside the unit circle, then there exists a real number A such that all 

the eigenvalues of (I- A(cA)- 1c)A lie within the unit circle. 

4. In the sliding mode the systems (6.53) and (6.56) are independent of~ if and only 

if there exist real numbers p and J.l such that "f = pb and "f = J.LA. Therefore if both 

systems are independent of ~, there exists a real number v such that A = vb. Take 

A = vb where v is a real number. 

5. The vector A can be found such that the state reconstruction error system (6.56) is 

asymptotically stable, i.e. ll!P"" e(k) = 0. 

The external feedforward compensation signal v is an input of the reconstruction error 

system (6.56), so the structure is similar to the input control. Therefore, utilizing the 

discrete-time sliding mode properties yields the control law 

v(k) = Veq(k) + (cA)-1Wice(k)l 

which guarantees the existence the sliding mode and the stability of the error system (6.56) 

[70]. Since the equivalent control Veq is not accessible, the feedforward compensation 

input v should be chosen independently of the state error. consider the feedforward 

compensation input 

v(k) = - W(k)ice(k)i if ce(k) :f: 0 

where W(k) is a real function with IW(k)l < 1. This feedforward compensation signal 

ensures that when there exists an integer ko such that ce(ko) = 0, then for all integers 

k ~ ko, ce(k) = 0. Suppose ko is an integer such that ce(ko) = 0, then v(k0 ) = Veq(k0 ). 

Substituting (6.56) in ce(ko + 1) gives 

s(ko + 1) ce(ko +I) 

cAe(ko) + C"f~(ko) - CAVeq = 0 

So if ce(k) = 0, then ce(k + 1) = 0. Hence, for the existence of the ideal sliding mode, it is 

sufficient that there exists some integer ko such that ce(ko) = 0, i.e. if a state point is on 

the sliding surface then the ideal sliding mode exists. As stated in Theorem 6.2.2, when 

the system (6.53) is asymptotically stable, sliding convergence exists. On the other hand, 

if the state error trajectory lies on the sliding surface at some time instant, after that time 

the sliding points remain on the sliding surface and consist of a sliding lattice. Therefore, 

it is clear that method 5 for finding the vector A yields stability of the reconstruction 

error system. 
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6.8 The Stability of the Reconstruction Error System 

Let us now study the stability of the error system (6.56) which is very important because 

the stability of the reconstruction error system ensures the state observer tends to the 

actual state. Since A- he is stable, all the eigenvalues of A- he lie within the unit circle. 

Let r be a real number such that p(A- he) < r ~ 1 where p(A- he) is the spectral radius 

of A- he. Then the discrete Lyapunov equation (DLE) 

(6.67) 

where Q
9 

is an arbitrary p.d.s. matrix, has a u.p.d.s. solution matrix P9 • A conventional 

Lyapunov function candidate for (6.56) is V(k) = eT(k)P9 e(k). Then 

~V(k) = V(k + 1)- V(k) 
I 

~ e(kf ( -Q9 - (1- r2 )P9 ) e(k) + 2IWI [e(kf(A- hcf P9(A- hc)e(k)] 2 

1 1 I 

x (AT P9 AT) 2ice(k)l + 2l~l(-lP9r)2 [e(k)T(A- hcf P9 (A- hc)e(k)] 2 

+2I~I.IWI.Ice(k)I(.Ar P9.A)~ (''? P9!)~ + I~I 2 'Yr P91 + W2 lce(k)l2 >t P9 .A 

~ lle(k)ll 2 
{- (.Amin(Qg) + (1- r

2)Amin(P9)] + 
2IWI.IIcll [ -Amin( Qg) + T2 Amax(Pg)] ~ II.AII (.Amax(Pg)) ~ + 

2~o [ -Amin( Q9 )+ r 2 Amax(Pg)]~ llrll (Amax(Pg)) ~ 

+2~oiWI.IIcii·II.AII·II'YII.Amax{Pg) + ~o 2 lbll 2 
Amax(Pg) + W2 llcii 2 II.AII 2 Amax(P9)} 

~ lle(k)ll 2
{- (.Amin(Qg) + (1- r

2)Amin(P9)] + 
2 [ -Amin(Q9) + T2 Amax(Pg)] ~ Amax(Pg)~ (II'YII~o + IWI.IIcii·II.AII) + 

Amax(Pg) (llrll~o+ IWI.IIcii.II.AII)2
} (6.68) 

For the right-hand side (6.68) to be less than zero 

II'YII~o + IWI.IIcii.II.AII < 

Then 

1 
IWI < llcii·II.AII (JJ-o- ~olbll) 

subject to ~0 < JJ-o/II'YII· Therefore, stability of (6.56), requires that 

IWI < min { 1, licii~II.AII (JJ-o- ~olbll)} 

(6.69) 

(6.70) 

(6.71) 
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Let TJ be a real number. Taking >. = TI~fi'Y the error system in the sliding mode is 

independent of the perturbation signal, and (6.70) becomes 

1 ( Jlo ) IWI < jryj M - ~0 (6.72) 

subject to ~0 < fflr. Therefore, for the stability of the system (6.56) it is necessary that 

IWI < min { 1, l~l ( 1~11 - ~o)} (6.73) 

The above and Theorem 6.2.2 imply the following theorem: 

Theorem 6.8.1: If condition (6. 70) is satisfied, the error system (6.56) is asymptotically 

stable and a convergent sliding mode exists. 

Let us now consider a special case of (6.67). Choosing r = 1, condition (6.70) yields 

1 
IWI < llcll.ll>-ll (Jlt- ~olbll) (6.74) 

Amin ( Q g) . h 1: /I I 11 
where 111 = 1 - 1 - Amax(Pg) w1t <.,O < /11 I · It can be proved that Jlt is maximal 

if Qg =I, but first a useful lemma is stated. 

Lemma 6.8.1: Let Qg be an arbitrary p.d.s. matrix, and PgQ and Pg1 be the u.p.d.s. 

solutions of the DLE (6.67) corresponding to Qg and I, respectively. Then 

Proof: Suppose wE JRn is a given vector. Then 

00 

PgQ =I: r-2(i+l)((A- hcf)iQg(A- hc)i 
i=O 

00 

Pg1 =I: r-2(i+l)((A- hc)T)i(A- hc)i 
i=O 

and 

wT(P
90

)w wT (t, r-'(i+lll((A- he)T)'Q,(A- he)') w 

) Amin(Q,)wT ( t, r-2(i+ll((A- hcf)'(A- he)') w 

Amin(Qg)wTPg1 W (6.75) 
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The following corollary is obtained immediately from Lemma 6.8.1. 

Corollary 6.8.1 [99]: Let P9 be the p.d.s. solution (6.67). The maximum value of 

Amin(Qg) is obtained if Q
9 

=I. 
Amax(Pg) 

Therefore, for Q9 = I, Ill is maximal. But {Lo may not take the maximum value for 

Q
9 

= I. In fact, the relationship between Q9 and the ratio Amin~Pg~ is unknown 153]. 
Amax P9 

The following theorem is now stated: 

Theorem 6.8.2: Let Q9 be an arbitrary p.d.s. matrix, and P9Q and P91 be the u.p.d.s. 

solutions of the DLE (6.67) corresponding to Q9 and I, respectively. Then 

with the equality satisfied if Q9 = qi for any positive real number q. 

Proof: Suppose w E lRn is a given vector. The DLE (6.67) can be written as 

and the u.p.d. solution is 

00 

P
9

q = L r-2(i+l)((A- hcf)iQ
9
(A- hc)i 

i=D 

Thus 
00 

wr(A- hc)r(L r-2(i+l)((A- hc)T)iQ
9
(A- hc)i)(A- hc)w 

i=O 

wT ( t. r -'(i+l) ((A - hc)T)(i+l)Q 
9 
(A - he )(i+l)) w 

) Am;n(Q9 )wT (t. r-'('+li((A- hc)T)(i+II(A- hc)<'+II) w 

Amin(Q9 )wT(r2 Pg1 - I)w (6.76) 

Since for all real vectors w, 
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0 

Note that Lemma 6.8.1 and Corollary 6.8.1 are direct results of Theorem 6.8.2. Theorem 

6.8.2 yields Amin(Q9 )I- Q9 ~ r2 (P91 - P9Q). Since Amin(Q9 )I- Q9 is a nonpositive 

matrix, r2 (>..min(Q9 )P91 - P9Q) is also a nonpositive matrix. On the other hand, r -::j:. 0 

yields P9Q ~ >..min(Q9 )P9n i.e. Lemma 6.8.1 is obtained. Therefore, Theorem 6.8.2 clarifies 

the relationship between the solutions of DLE (6.67) which are obtained for Q9 =I and 

an arbitrary p.d.s. matrix Q9 . 

6.9 Examples 

The following examples illustrate the design procedure for an asymptotically stable ob-

server. 

Example 6.9.1 Consider the system 

[ ::~:: ~; l = [ -0~01 ~::~ ~:~: l 
X3(k + 1) -0.16 -1.25 0.57 

[ 

x1(k) l [ 0.02] [ 0.002] 
x2(k) + 0.09 u(k) + 0.009 ~ 

x3(k) 0.99 0.099 

where e is a bounded random noise signal satisfying 1~1 :s; 0.0106 [110]. Taking 

c = [ 0.44 1.7 0.85 ] 

Q = h and n = 1, the observer gain vector his given by 

h = [ 0.0246 0.2623 0.1225 ]T 
Let 'f/o be a real number and >.. = T]ob. For all 'f/o the reconstruction error system in the 

sliding mode is independent of the perturbation signal because >.. = 107Jo"Y = 'f/f. Taking 

"1 = 0.5 yields 

A = [ 0.0010 0.0045 0.0495 ] T 

The eigenvalues of A- he are 0.1388, 0.8852 ± 0.1276i. Hence the spectral radius A- he 

is 0.8943. Since all the eigenvalues of A- he are in the unit circle, the observer (6.55) is 

asymptotically stable. 

Choosing Q
9 
=I and r = 0.9852, the u.p.d.s. solution of the DRE (6.67) is P_9 

[ 

17.8877 -1.3712 -7.4347] 
P9 = -1.3712 2.1476 -2.3686 

-7.4347 -2.3686 13.6161 
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with Amin(Pg) = 1.0788 and Amax (Pg) = 23.4925. On the other hand, ~o = 0.0113 and 

l~(k)l ~ 0.0113ll e(k)ll· Since Amin(Q9) = 1, c = 1.9509 and r = 0.0994, then ~-to = 0.0225 

and the right-hand side inequality (6.70) is 

1 
llcll·ll>..ll (~-to- ~ollrll) = 0.2208 

Choose W = 0.2198sin(O.lk7r). The feedforward injection input signal is defined as 

v(k) = -0.2198sin(O.lk7r) ls (k)l, if s(k) =1- 0 

where s(k) = 0.44e1(k) + 1.7e2 (k) + 0.85e3 (k) and e(k) = [e1(k) e2(k) e3 (k)f. Since the 

condition (6. 72) is satisfied, the error system is asymptotically stable. Simulation results 

are shown in Fig. 6.7. 
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Figure 6.7: The responses of Example 6.9.1 

Example 6.9.2 Consider the system as in Example 6.9.1. Let (3 be a real number and 

Q
9 

= ! 3 . Then 

F = [ -0.3543 0.0545 0.9123 ] T 

The eigenvalues of A- Fe are 0.8950 , 0.4314 ± 0.1011i and lie inside the unit circle, but 

the condition cF = 1 is untrue. Consider F = Fj(cF) , 

F = [ - 0.4973 0.0766 1.2808 ] T 
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with the eigenvalues of A-FM being 0.8908, -0.0371 , 0.6163 which lie inside the unit 

circle. Lemma 6.7.1 is applied so that there exists a A such that all the eigenvalues of 

(I - A(cA)-1c)A lie within the unit circle. Vector A must be found so that 

[ 

-1.2188 

c 0 fr - h = o.o337 

0.5636 

-0.8455 

-0.8699 

2.1774 

-0.4227] 
0.0651 

0.0887 

Then A= [ 0.0186 -0.0023 0.0495 J T' and h is obtained as in Example 6.9.1. So the 

igenvalues of A- he, and also rand P9 are the same as in Example 6.9.1. The responses 

are shown in Fig. 6.8. 
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Figure 6.8: The responses of Example 6.9.2 
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6.10 Summary and Discussion 

In this chapter the concept of the discrete-time sliding mode has been clarified and suffi­

cient conditions for the existence of the discrete-time sliding mode have been presented. 

The sliding surface for the discrete-time systems is a lattice which is called the sliding 

latticewise surface or more concisely the sliding lattice. A method of control design using 

the properties of the discrete sliding mode has been proposed. This control guarantees the 

stability of the sliding mode and the stability of the system. This discrete-time control 

does not have the same structure as sliding mode continuous control. The behaviour of 

the system in the sliding mode, and stability conditions have been studied. It is concluded 

that if the nominal reduced order matrix is stable, then the state in the sliding mode is 

bounded. In this case the width of the boundary layer depends upon the disturbance 

bound, the norm of the distribution disturbance input map and the degree of stability of 

the nominal reduced system matrix. 

An important problem in discrete-time sliding systems is the perfect rejection of un­

known disturbances during the sliding mode. In the discrete-time case perfect disturbance 

rejection is achieved if only the disturbance is exactly known and the associated equivalent 

control component is applied. 

One can consider some restrictive conditions like; (i) the matching condition, (ii) 

suitable estimation for the successive disturbance difference ~(k) - ~(k - 1), (iii) the 

existence of a finite time t1 such that for all t ~ tf, the difference sequence ~(k) -~(k -1) 

is a decreasing sequence or sufficiently small. Although this problem also appears in 

continuous systems, for discrete-time systems the proof of perfect disturbance rejection is 

more complicated. This difference arises from the reaching sliding condition of continuous 

systems which differs from that of discrete-time. In the discrete-time case the stability 

of the system and the reaching sliding condition are established by considering a discrete 

Lyapunov function, and difference equations arises. In the case of continuous system the 

continuous Lyapunov function is utilized which results in derivatives. 

The control design method as stated in this chapter needs an estimate for disturb­

ance input. One may utilize the estimation as in [112]. The equivalent control with zero 

disturbance can be considered. In this way it is assumed that in the average sense, the 

disturbance does not affect the equivalent control. More precisely, since the equivalent 

control can be considered as the average of the control input and if the average of dis­

turbance is zero, the equivalent control may be assumed independent of the disturbance 

input. 
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There are two ways for designing discrete-time sliding mode control: (i) in the first 

instance a dynamical sliding mode (or a control for the system ) is specified, and then 

it is necessary to find the conventional control (sliding mode dynamics) [46], [21]; (ii) a 

control is determined by using the properties of the sliding mode such that the stability 

of the nominal systems in the sliding mode is conserved. In this chapter methods ( i) and 

{ii) have been applied successfully for linear systems. In some previous work [126] there 

are errors [88] and also some restrictions [21]. 

The system stability has been studied and the design of the optimal sliding mode 

matrix is also extended to DSMC. 

A method for discrete-time sliding mode observer design including external feedfor­

ward compensation and feedforward injection map has been presented, as have results for 

the stability of reconstruction error systems of linear systems. The problem of disturbance 

rejection has been studied. The cone condition for the error system is a limiting condition 

and satisfying this condition may be difficult in some practical problems. However, the 

stability of the system is guaranteed if one of the following conditions is satisfied: ( i) the 

cone condition for the disturbance input with respect to the state; ( ii) there exists a finite 

time instant such that after this time, the disturbance input sequence ~ is a decreasing 

sequence. So a simple condition on the disturbance should be found such that the stability 

of the error system is achieved. 

A useful theorem, a corollary and a lemma have been stated in Section 6.8. Theorem 

6.8.2 determines the relationship between the solution of the DLE {6.67) for arbitrary 

weighting function Q9 and the solution obtained for Q = I. An open problem is to find 

a bound for the ratio Amin(P9 )/ Amin(P9 ) which appears in some stability conditions, e.g. 

{6.69). 

Examples have been presented to demonstrate the techniques of the controller and 

observer design methods. These examples show that the results of this chapter can be 

successfully applied to many systems. 



Chapter 7 

Sliding Mode in Time-Delay Systems 

7.1 Introduction 

In recent years many methods have been reported for designing control for time-delay 

systems, for instance [81] and [100), and criteria for the stability of time-delay systems 

[23), [87) have been developed. Time-delays may appear in many ways; delays in measure­

ment of system variables including physical properties of equipment used in the system 

or signal transmission; delays in control which arise in many chemical processes and ra­

diation problems in physics. Time-delay systems are also used to model several different 

mechanisms in the dynamics of epidemics. Many problems such as incubation periods, 

maturation times, age structure, seasonal or diurnal variations, interactions across spatial 

distances or through complicated paths have been modelled by time-delay systems [16]. 

The work on the stability of time-delay linear systems has been reported by many 

authors and can be found in [22), [23), [54) and [87] amongst others. Work on the stabil­

ization problem for a class of uncertain linear systems with delay on the state has been 

studied in [81). The proof of stability of closed-loop time-delay systems with discontinuous 

control is more complicated than for the continuous case. 

Stability criteria for time-delay systems can be classified into two categories: ( i) there 

is no information about the delays, i.e. delay-independent criteria; (ii) there is some 

information about the delays, i.e. delay-dependent criteria. The delay-independent cri­

teria are strong conditions to test the stability of the system. However, if the delays are 

small, these criteria may be useful. Delay-dependent criteria for a closed-loop system are 

dependent upon the kind of control which is applied to the system. To prove the stabil­

ity of both open- and closed-loop time-delay systems, an appropriate Lyapunov function 

137 
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can be selected. The magnitude of the delay may not necessarily be important when 

establishing system stability. The stability may hold for certain sufficient conditions 154]. 

Sliding mode time-delay systems may employ the proportional-integral sliding mode 

(PISM) [100) and the traditional sliding mode. In the case of PISM the sliding surface may 

depend on delays and it is difficult to specify its dynamic performance; for the traditional 

sliding mode the sliding surface is independent of delay. In this chapter a method of 

designing the sliding surface and appropriate discontinuous control are presented to yield 

the stability of the sliding mode and the system. 

7.2 Sliding Time-Delay Systems 

Consider the following uncertain system 

x(t) 

x(t) 

Ax(t) + Aox(t- 7) + Bu(t) + f(t, x, 7) 

cjJ(t), t E [-7,0] (7.1) 

where x E ]Rn is the state variable, A E JRnx n, B E Rnx m is full rank, u E Rm is the input 

control, C E ]Rmxn such that CB is nonsingular, r is a positive real number and cjJ(t) 

is a continuous vector-value initial function with llc/JII -~~Ro JJcp(t)JJ. Assume that (A, B) 

is a completely controllable pair, m < n and the function f(t, x, r) E Rn is a bounded 

disturbance or uncertain input signal. The sliding surface is defined as s = Cx(t) = 0. 

The ideal sliding mode exists if there is a finite time ts such that 

Cx = 0, Cx = 0 t ~ ts 

where C E Rmxn is the sliding mode matrix. Then the virtual equivalent control is given 

by 
Ueq(t) = -(CBt1 (CAx(t) + CAox(t- r) + C f(t, x, 7)) 

and the system in the sliding mode is 

x(t) = Aeqx(t) + AeqX(t- 7) + Beqf(t, x, 7) (7.2) 

where Aeq =(I -B(CB)-1C)A, Aeq =(I -B(CBt1C)Ao, and Beq =(I -B(CB)-10). 

Assumption: Matching condition. Assume that f(t, x, 7) = Bg(t, x, 7). Then the system 

in the sliding mode 

x(t) = Aeqx(t) + Aeqx(t- 7) (7.3) 

is independent of the external input f. The matching condition is a suitable condition 

for the system in the sliding mode to be independent of the external uncertain input. 
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7.2.1 Sliding Control 

Consider the control 

u(t) = -(CB)-1 (CAx(t) + CA0x(t- T) + p sgn s(t)) (7.4) 

where p = p(t, x(t), T) = diag(p1, P2, ... , Pm) with positive real functions Pi = Pi(t, x(t), T) 

(1 ~ i ~ m) and sgn s = [ sgn s1 sgn s2 . . . sgn sm J T. The system is now given by 

x(t) = Aeqx(t) + Aeqx(t- T) + f(t, x, T)- B(CB)-l p(t, x(t), T) sgn s (7.5) 

Hence the sliding dynamics is governed by 

s = C f(t, x(t), T) - p(t, x(t), T) sgn s (7.6) 

and for all 0 ~ t ~ ts 

s(t) = C (l f(t, x(t), r) dt) - p(t, x(t), T)(t- t,) sgn s 

The reaching sliding mode condition is 

si sgn si < 0, 'i/i 1 ~ i ~ m (7.7) 

in the neighbourhood of si = 0 [29], (121]. Multiplying the i-th (1 ~ i ~ m) row of (7.6) 

by sgn Si gives 

si sgn si = Cd(t, x(t), T) sgn Si- Pi(t, x(t), T) (7.8) 

Hence, a sufficient condition for the existence of the sliding mode is 

Cd(t, x(t), T)sgn si < Pi(t, x(t), T) 

and a sufficient condition is that 

IIC f(t, x(t), T) 11 < min Pi (7.9) 
l~i'm 

7.3 System in the Sliding Mode 

The behaviour of the system in the sliding mode is considered in this section. The system 

in the sliding mode is a subsystem of (7.1) of order n- m. Assume T is an orthogonal 

matrix (2.13) 

TB= [ ;,] 
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where B2 is a nonsingular matrix. Let z = Tx, then 

z(t) = T ATT z(t) + T AoTT z(t- r) + T Bu(t) + TBg(t, x(t), r) (7.10) 

z1(t) - Auz1(t) + A12z2(t) + Auz1(t- r) + A12z2(t- r) (7.11) 

z2 (t) - A21Z1 (t) + A22z2(t) + A21z1 (t- r) + A22z2(t- r) + B2u + B2g(x(t), T, t) 

(7.12) 

where 

Subsystem (7.11) is the system in the sliding mode. So the sliding surface is 

where CTT = [Cl C2]· In the sliding mode z2(t) = -KZ! (t) with K = c2-lcl. Therefore 

the reduced order system (7.11) is converted to 

(7.13) 

For any x(O) and any function </J E C([-r, 0), Rn) there exists a function zi(t) satisfying 

the differential equation (7.13) almost everywhere [25]. In this case, for all integers k the 

function z1(t) will be Ck on ((k- l)r, oo), i.e. for all 1 ~ j ~ k the j-th derivative of 

function z1 ( t) is continuously differentiable on ( (j - 1 )r, oo). With these conditions the 

solution of (7.1) is 

ZI(t) = e(Au-A12K)tlj>1 (0) + 1t e(Au-A1 2 K)(t-w) X 

{ (Au- A12K)z1(w- r)} dw, t ~ 0 (7.14) 

where T</J = [</J1 l/>2]T. Let 114>111 = ~~~0 II4>I(t)ll· There exist positive real numbers 17 

and M such that llz1 (t) 11 ~ (MIIl/>1 (0) 11 + M2ll4>dlr) e(M
2
+11 )t [25]. It is desired to find K 

such that A11 - A12K is stable. Consider the Riccati equation 

(7.15) 

with Q and Rare arbitrary semi-p.d.s. and p.d.s matrices respectively, having the u.p.d.s. 

matrix solution P. ForK= R- 1 A[2P, the matrix A11 - A12K is stable. 
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7 .3.1 System Stability without Delay Information 

For this case, system (7.1) is asymptotically stable if all the roots of the characteristic 

polynomial of the system (7.11) p(s) = det(sl- Au + A12K- (A 11 - A 12 K)e-rs) have 

negative real parts. If all the roots of p(s) = 0 lie in the open left-half complex plane, 

this condition is equivalent to p(s) -=/= 0 for all s E C+ where C+ is the set of all complex 

numbers with nonnegative real parts. Note that for T > 0 there may be infinitely many 

solutions, while for T = 0 there are finitely many solutions. So when T > 0, it is very 

difficult to find all the infinity roots of p( s) = 0 and check if the roots are in the open 

left-hand half-plane. This motivates one to avoid the delay-dependent condition p(s) = 0 

for stability of the system and use the condition p( s) -=/= 0 for all s E c+ to prove the 

asymptotic stability independent of delay. However, since p(s) is an entire function, there 

are only a finite number of roots of p( s) = 0 in any compact set, in particular in a vertical 

strip of the complex plane. Furthermore, there exists a real number a such that all the 

roots of p( s) lie to the left of the vertical line x = a [52]. 

The function p( s) is an analytic function on c+. Therefore according to the Maximum 

Principle Theorem [3, page 134] p(s) takes the maximum value on its boundary, i.e. there 

exists a w such that max p( s) = p( iw). Hence 

(7.16) 

For simplicity, set A = An - A12K and Ao = An - A12K. So from [22] the following 

theorem is obtained. 

Theorem 7.3.1: Assume p ( (A)-1 Ao) < 1. The system (7.11} is asymptotically stable 

independent of delay T if and only if 

'lw ~ 0 (7.17) 

Proof: Since A is a stable matrix, p ((si- A)- 1 Ao) is an analytic function in the right 

half-plane and according to the Maximum Principal Theorem [3, page 134] it is assumed 

that it takes its maximum value on the imaginary axis. Thus 

sup p ((iwl- At1 Ao) 
w~O 

sup p ((iwl- At1 A0e-iwr) 
w~O 

sup p ((si- A)- 1 A0e-sr) 
set+ 

Necessary. Assume that the system (7.13) in the sliding mode is asymptotically 

stable independent of delay. Since A is a stable matrix, for all 8 E c+' det(sl- A) i= 0. 
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If s = 0 then p ( (A.)-1 Ao) < 1 and there is nothing to prove. Suppose that s =J. 0 

then det (I- (si- A)-1Aoe-ST) =I= 0, i.e. for all s E c+, 1 is not an eigenvalue of 

(si- A.)- 1 Aoe8 r, so 

Vw ~ 0 (7.18) 

Assume there exists a w such that p ((iwi- A)-1 Ao) >1. Since p ( (iwi- A)-1 A 0 ) is a 

continuous function, there is a wo such that p ( (iw0I- A.)- 1 A0 ) = 1 which contradicts 

(7.18). Therefore p ( (wi- A)- 1 Ao) < 1 Vs E c+. 

Sufficiency. Assume that (7.17) is satisfied. Hence 

sup p ((iwi- At1 Ao) < 1 
w;;::o 

Thus p(s) = det ((si- A)-1Aoe-sr) =I= 0, Vs E c+. 0 

Since 

p ( (iwi- (An - A12K)t1(Au- A12K)) :::-; 

ll(iwi- (An- A12K))_1(Au- A12K)II Vw ~ 0 

for (7.16) to be satisfied it is sufficient that 

1 A A 

ll(iwi- (Au- A12K))- (An- A12K)II < 1, 'v'w ~ 0 

To assess the stability by direct applying Theorem 7.3.1 is difficult. So for practical 

problems, it is necessary to find a criterion to test the stability. The following theorem 

gives such a condition free of frequency. Its proof is similar to that in [23]. 

Theorem 7.3.2: Let P be the u.p.d.s. solution of the Riccati equation 

AuP + P A[1 - 2P A12R-1 A[2P = -Q 

where Q and R are arbitrary semi-p.d.s. and p.d.s. matrices respectively. Then if 

the system in the sliding mode is asymptotically stable independent of delay. 

(7.19) 

(7.20) 

Proof: Let P be the u.p.d.s. matrix solution of the Riccati equation (7.19). Adding and 

subtracting iwP on the left-hand side of (7.19) gives 

( -A11 + A12K + iwl)* P + P( -Au + A12K + iwi) = Q (7.21) 
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and by pre- and post-multiplication by 

and 

yields 

A A T 1 A A 

(A11 - A12K) (( -Au + A12K + iwi)*)- P(Au- A12K) 
A A T A A 

+(An- A12K) P( -Au + A12K + iwl)-1(Au- A12K) 
A A T 1 

(An - A12K) (-An + A12K + iwi)- Q 
1 A A 

(-An+ A12K + iwi)- (Au - A12K) (7.22) 

So 
11( -An+ A12K + iwi)-1(An- A12K)II2 Amin(Q) < 

2IIP{An- A12K)II·II( -An+ A12K + iwl)-1(Au- A12K)II 

< Amin(Q) 11(-An + A12K + iwl)-1(Au- A12K)II 

This complete the proof. 0 

7.3.2 A Criterion for Sliding System Stability 

If the delay-independent criteria fail, then the stability of the sliding system should be 

tested by delay-dependent criteria. In this case, some information regarding the delay is 

necessary. However, when there is no information about the delay, for establishing the 

time-delay system stability, the use of delay-independent criteria is a useful and powerful 

method. Also, it is straightforward to check the stability condition. Now, the stability of 

the sliding system (7.11) is studied. A suitable Lyapunov function is 

where p is the p.d.s. solution of the Riccati equation (7.15). Let K = R-1 A[2 P, then 

V = zf (t) {(An - A12K)T P + P(Au - A12K)} z1 (t) 
T A A T 

+ z1 (t- T)(Au - A12K) Pz1 (t) 
A A T + zf(t)P(Au- A12K)z1(t- T) + z1 (t)Qz1(t)- zf(t- T)Qz1(t- 7) 
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then the matrix 

is p.d. and V < 0; and the system is stable. Note that if 

then 

and the system is stable. 

7.4 Global Stability of the System 

If the ideal sliding mode occurs, the system (7.1) is converted to the reduced order system 

(7.13). Otherwise, the states lie in a boundary layer of the sliding surface s = 0 and the 

dynamical motion is no longer governed by a reduced order system, i.e. there is no finite 

time instant such that after this time instant the states lie on the sliding surface. The 

system is now given by (7.5). The stability of the sliding system with f = 0 is studied 

in this section. Consider system (7.1) with control (7.4). Let i > maxR(.A(Aeq)) where 

R(·) denotes the real part of complex number (·). Since one eigenvalue of Aeq is 0, i > 0. 

Assume that h(s) = C (si- (Aeq- d)r1 
B is strictly positive real. Then matrix Aeq-d 

is stable and the Lyapunov equation 

(Aeq- dfP + P(Aeq- d)= -Q (7.24) 
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where Q is an arbitrary p.d.s. matrix, has a u.p.d. solution P. Consider the Lyapunov 

function 

V(t,x(t),x(t- r)) = xT(t)Px(t) + 1~7 xT(O)Rx(O)dO 

where Pis the p.d.s. solution of the Lyapunov equation (7.24) and R is an arbitrary p.d.s. 

matrix. For simplicity, consider R = r I where r is an arbitrary positive real number. Then 

V = xr(t)[(Aeq- df P + P(Aeq- t.I) + R]x(t) + 
xr(t- r)A!'qPx(t) +xr(t)PAeqx(t- r)­

xT(t- r)Rx(t- r) + 2t.xT(t)Px(t)­

(xT(t)P B + BT Px(t))p(t, x(t), r)sgn(Cx(t)) 

xT(t)( -Q + 2t.P + rl + r- 1 PAeqA~P)x(t)-

r { x(t- r) - r-1 A!'qPx(t)} T { x(t- r)- r- 1 A~Px(t)} 
-(xT (t)P B + BT Px(t))p(t, x(t), r)sgn(Cx(t)) 

Since BT P = aC for some a > 0. Then V < 0 if 

is a negative definite matrix. So if 

then V < 0. Assume that 

and 

f.< Amin(Q) 
2Amax(P) 

Amin(Q)- 2t.Amax(P) r = _ __;_~ _ _____:;=:..:....:..........:.. 

2 

(7.25) 

Then V < 0 if r ~ IIPAeqll· The stability of the system with a strictly positive real 

condition has been proved. However, the stability of the system without this condition 

can be proved by choosing p =ere and a Q matrix satisfying (7.24). 

7.5 Example 

Example 7.5.1: Consider the system 

[1 -1] [-1 0.4] [0] [0] x(t) = 0 _2 x(t) + 0 1 x(t- r) + 1 u(t) + 1 g(t, x, r) 
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where g(t, x, T) is an external input signal with lg(t, x, T)l < 1. Choose x(t ) = cj>(t) 

[0, - 1] for -T ~ t ~ 0. The u.p.d. solution of (7.15) is P = 2.4142 . So K = -2.4142 and 

C = [- 2.4142 1]. Choose the control 

u(t) = [ 2.4142 -0.4142 J x(t) - [ 2.4142 0.0343 J x(t- T) - sgn s(t) 

where s(t) = Cx(t) . The sliding surface is s = -2.4142x1 (t) + x2 (t) = 0. Since the condi­

tion (7.9) is satisfied, the sliding mode occurs. The system in the sliding mode is given 

by ±1 = x1 - x2 - x1(t- T) + 0.4x2(t- T). Let R = Q = 1. The system in the sliding 

mode is given by ±1 = -1.4142xl - 0.0343x1 (t- T). Since 

11 (An- A12K) Pll = 0.1268 < >-min(Q) / 2 = 0.5 

the system is stable independent of delay because Theorem 7.3.2 is satisfied. Simulation 

results forT= 0.4 are shown in Fig. 7.1. 

State variables 

0 .5~ 

-0:0 
-1 0 5 

t 
Sliding function 

10 

Control input 

5 
time 

Equivalent control 

10 

._::v I ~_:E-· -------~ 
- 1 OIL.-----5~------:-'1 0 0 5 

time 
External disturbance 

time 

time 
Phase plane 

10 

~ -;~t==::=? I 
0 0 .05 0 .1 0 .15 

x1 

Figure 7. 1: Responses of Example 7.5.1. 

Example 7.5.2: Consider the system 
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where g(t , x, r) is an external input signal with /g(t, x, r ) / < 1. So the u.p.d. solution of 

(7.15) is P = 2.4142. Consider the sliding surface and ~as in Example 7.5. 1. Select the 

discontinuous control 

u(t) = [ 2.4142 - 0.4142 J x(t) + [ 0 - 0.5172 J x(t - r ) - sgn s(t ) 

where s(t) = Cx(t ). The condition (7.9) is satisfied , so the sliding mod occurs. T he 

system in the sliding mode is given by ±1 = x1- x2 + 0.2x2 (t- r ). Let R = Q = 1. The 

system in the sliding mode is given by ±1 = - 1.4142xl + 0.4828x1 (t- r ). On the other 

hand 11 ( A11 - A12K) Pll = 0.7464 > Amin(Q)/2 = 0.5. So the condition (7.20) is not 

atisfied. But the system is st able independent of delay. Therefore the condition (7.20) is 

only a sufficient condit ion. Simulation results for r = 0.4 are shown in F ig. 7.2 . 

State variables 

0:~ 
- 0 .5L_ 

- 1o ~5--------~10 

time 
Sliding function 

Control input 

5 
time 

Equivalent control 

10 

-_::v 1 ~ _:t--------l 
- 1 0~--------~5----------710. 0 

time 
External disturbance 

_::r--~~~····---~ 
0 5 

time 
10 

5 
time 

Phase plane 

10 

~-:~E2 I 
0 0 .1 0 .2 0 .3 

x1 

Figure 7.2 : Responses of Example 7. 5.2 
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7.6 Summary and Discussion 

Time-delay systems appear in many practical problems. The sliding mode on a specified 

surface is achieved if the state converges to the surface. 1\vo kinds of sliding surface can 

be designed: ( i) when the sliding surface is independent of the delays; or ( ii) the sliding 

surface depends on the delays. In the second case the delays should be constant, otherwise 

the sliding surface is not a simple hyperplane. In this chapter the stability of the sliding 

mode control of a system with a delay on the state has been considered. 

The delay is assumed known. If the delay is unknown, the problem then is how to 

define the sliding control such that the state lies on a certain sliding surface. The extension 

of the results of this chapter for systems with finite and varying delays is straightforward. 

The results can also be extended to systems with delay in control and to the sliding mode 

observer for time-delay systems. Further research may find a weaker condition than (7.20) 

to ensure system stability independent of delay. 



Chapter 8 

Pole Assignment of Linear Systems and 

Sliding Hyperplanes 

8.1 Pole Assignment Techniques for Control and Sliding 

Hyperplane Design 

Pole assignment is applied not only to ensure system stability but is carried out also to 

achieve other aims. The choice of the eigenvalues influences the stability and response of 

the system. Therefore to get desired responses, it is required to locate poles in desired 

positions. A popular method for designing the linear feedback gain matrix or the sliding 

hyperplane requires the exact specification of the desired closed-loop eigenvalues. This 

method is often too rigid a design requirement, since in many practical problems exact 

eigenvalue specification may not be required. In general, a set of exact eigenvalues for 

the closed-loop system may not be known, so it is useful to be able to specify a region of 

the left-hand half-plane within which the eigenvalues should lie. The fundamental basis 

of the design method is based on linear quadratic optimal control (LQ) methods, as well 

as pole assignment methods. 

A method has been studied for yielding closed-loop poles at desired locations which 

is capable of shifting both real and imaginary parts to any location (Rousan and Sawan 

[91]). Some work has been done on the placing of closed-loop eigenvalues within particular 

regions by linear state feedback methods. Another technique is the placing of the eigenval­

ues within a hyperbola with major and minor axes at 45° to the x and y axes by employing 

two connected Riccati equations (Kawasaki and Shimemura [64]). In this method the con-

149 
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troller design is achieved by utilizing an iterative algorithm for finding the solutions of the 

appropriate Riccati equations and then the feedback gain matrix. Some work has been 

done on necessary and sufficient conditions for the eigenvalues of both real and complex 

matrices to lie in a specified region (Gutman [49), Gutman and Vaisberg [51]). Root clus­

tering using Lyapunov type approaches is another way of designing a controller (Gutman 

and Jury (50], Abdul Wahab (1], (2], Woodham (129], Woodham and Zinober (130], (131]). 

More recently work has been published on the pole placement problem using H 00 methods 

(Saeki (96]). The problem of pole placement in a vertical strip has been studied by Shieh 

at el (101] using LQ methods. Their method has some inaccuracies and errors which will 

be corrected in Section 8.6. A recursive method using the LQ approach in order to shift 

the open-loop poles inside a vertical strip has been considered by Arar et al [7]. The most 

interesting regions are: a disc, a hyperbola, an infinite vertical strip and a sector in the 

left-hand half-plane. 

Most research work based on the Lyapunov approach has proposed sufficient condi­

tions to guarantee that all the eigenvalues of the system, with parameter uncertainty in 

the state matrix of the system, lie inside the specified region (Juang [60], Jaung et al [61], 

Abdul Wahab [1], [2] and Horng et al [58]. In their studies all the eigenvalues of the state 

matrix A are assumed to be in the specified region. Then some conditions on a matrix 

E are found to ensure that all the eigenvalues of A + E lie in the same region. These 

methods differ from the methods for the case where there is no such information about 

matrix A, or all the eigenvalues of A are not in the left-hand half plane. Some of these 

approaches to obtain robust stability benefit from the matrix measure properties and an 

appropriate Lyapunov equation (Juang (60]). Woodham (129] and Woodham and Zinober 

(130], [131] have proposed a method for designing a feedback gain matrix and sliding hy­

perplane. They used a complex Riccati equation and found a feedback gain matrix such 

that all the eigenvalues lie in the specified sector S bounded by a line at an angle () to 

the imaginary axis and the reflection of this line in the real axis. Their method has some 

limitations, i.e. it cannot be applied to all sectors. Their method fails even for () = 0, 

but may work for a range of(} for some systems. However, it is very difficult to specify 

precisely such a range or type of system. The technique usually holds for sectors with an 

angle to the imaginary axis (} E (0, 40o). This estimate of the range of(} was obtained 

by testing about 100000 random controllable canonical form linear systems. There is no 

exact mathematical method available to predict this range. These inaccuracies arise from 

(i): using the absolute value of elements of a conventional p.d. Hermitian matrix solution 

of appropriate Riccati equation; ( ii) applying some properties of real matrices which may 

not be valid for complex matrices. In Section 8.4 some examples illustrate these results. 
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Figure 8.1: S Sector 

In this chapter the pole placement problem within a sector by using suitable Lyapunov 

and Riccati equations, is first considered. Then errors in the statement and proof of 

Theorem 1 in [101] are presented for an infinite vertical strip in the left-hand complex 

plane. These inaccuracies will be corrected by proposing a modified theorem with new 

conditions and proof. 

In Section 8.2 the complex Lyapunov equation and the problem of system stability are 

discussed; and in Section 8.2 and 8.3 the conditions for all the eigenvalues of A+BF to lie 

in a specified sector are presented. Some of these conditions are necessary and sufficient, 

others only sufficient. However, these methods are new and work for all sectors. These 

results are based on the solutions of appropriate Riccati equations. 

The design of the feedback gain matrix or the sliding hyperplane by using the complex 

Riccati equation is complicated as shown in Section 8.2. Straightforward methods are 

proposed in Sections 8.5 and 8.6 and Tables 8.1-8.3 summarise the results. 

In this chapter the control law is u = Fx, S is a sector with the vertex o: and its edges 

form angles of 6, 0 ~ () < rr /2, with the coordinate axes as in Fig. 8.1. When () = rr /2, 

the region S is the null set. The matrix F refers to the sliding mode gain matrix as stated 

in Chapter 2. 
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New methods of pole placement in the sector S 

Tools Validity of(} Section Theorem 

CARE 0 :::::; (} < 90° 8.2 Theorems 8.2.2 and 8.2.3 

ARE, 

Shifted and Rotation 0 :::::; (} :::::; 45° 8.3 

ARE with 

zero right-hand side 0:::::; (}:::::; 90° 8.5 Proposition 8.5.1 

Table 8.1: Pole placement methods for the eigenvalues to lie in the sector S 

New methods of pole placement in a specified region 

Region Restriction Section 

Hyperbola See page 172 8.5.2 

Between two sectors See page 171 8.5.1 

Table 8.2: Pole placement methods for the eigenvalues to lie in the specified region 

symmetric with respect to x-axis 



11 _ ___ Erro~s in the pre~i~us work _ --~ 
Method Pole placement Problem description Page Section 

Shieh et al [101) in a vertical strip Errors and inaccuracies 174 8.6 

Restrictions 175 8.6 

Woodham [129) in a vertical Solution of the ARE 187, 188 

strip and a sector with zero right-hand side 191 8.7.2-8.7.3 

Error in using CARE 165 8.4 

Woodham and Zinober [131) Pole placement in a sector Weighting matrices 163, 197 8.4 

Their suggested feedback 163-166 8.4 

Table 8.3: Pole placement methods for the eigenvalues to lie in the specified region 
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8.2 Pole Placement in a Sector using Complex Riccati 

Equation 

The Lyapunov equation is important for the proof of the stability of systems. A matrix is 

stable if and only if the appropriate Lyapunov equation has a p.d.s. solution matrix. The 

stability approach can be studied in a number of ways; for instance, (i) all the closed-loop 

eigenvalues lying in the specified regions in the left-hand half-plane, (ii) h-stability with 

h > 0 means all the eigenvalues lie to the left of the line x = -h, (iii) S/{a:,o)-stability 

(a < 0 and 0 ~ (} < 1r /2) denotes all the eigenvalues are in a symmetric sector with 

respect to the real axis, with angle (} with respect to the imaginary axis and with the 

vertex a in the left-hand half-plane. One way to prove the S/{a:,o)-stability of a system is 

that to show an appropriate generalized complex algebraic Riccati equation (CARE) has 

a u.p.d. Hermitian solution. Another is to use a real algebraic Riccati equation (ARE) 

with zero right-hand side. This problem is considered in Theorems 8.2.2 and 8.2.3 for the 

complex case, and Proposition 8.5.1 for the real case. In this section the complex Lyapunov 

equation and the system stability are studied. A method for obtaining a solution of the 

CARE and further discussion are presented in Chapter 9. 

Lemma 8.2.1: If A E lRnxn is a constant matrix then all the eigenvalues of A lie in the 

regionS (see Fig. 8.1) if and only if the matrix e-i8 (A- al) is stable. 

Proof: If all the eigenvalues of A lie in the regionS, then all the eigenvalues of e-i8(A-al) 

lie inside the left-hand half-plane. Conversely, if all the eigenvalues of e-i6(A - al) lie 

inside the left complex plane, then all the eigenvalues of ei8 (e-i8(A- a!))= A- a/ lie 

within a sector with the origin as vertex and the edges parallel to the sector S. So all the 

eigenvalues of A are located in the sector S. 0 

Remark 8.2.1: If A E cnxn is a constant complex matrix and all the eigenvalues of A 

lie in the regionS then ei8(A- al) is a stable matrix but the converse is not always true 

as in Example 8.2.1. 

Example 8.2.1 (Counterexample): Let 

[ 

-0.5412 - 1.3066i 

A= 0 

0 

0 

-1.1945- 1.0360i 

0 0.1121 ~ 1.5772i l 
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and a = 0 and () = 1r /12. The eigenvalues of A are -0.5412- 1.3066i, -1.1945- 1.0360i, 

0.1121 - 1.5772i and the argument of the eigenvalues of A are 

-112.5000°,-139.0651°,-85.9349° 

Assume A1 = Ae-i7T/12 , i.e. 

[ 

-0.8609- 1.1220i 

A1= 0 

0 

0 

-1.4219 - 0.6915i 

0 -0.2999 ~ 1.5524i I 
The eigenvalues of A1 are -0.8609- 1.1220i, -1.4219- 0.6915i, -0.2999- 1.5524i and 

the argument of eigenvalues A1 are 

-127.5000°' -154.0651°' -100.9349°. 

Therefore the eigenvalues of A lie in the right-hand half-plane but the eigenvalues of A1 

are not in the sector. So Lemma 8.2.1 is not satisfied if A is a complex matrix. 

To prove all the eigenvalues of a real matrix A lie in the sector S, one can study a 2n x 2n 

conventional real matrix. The general case of this corresponding matrix will be discussed 

in detail in Chapter 9. The following Lemma is equivalent to Lemma 8.2.1. 

Lemma 8.2.2: If A E Rnxn is a constant matrix, then all the eigenvalues of A lie in the 

region S if and only if 

As= (A- al) ® [ c~s() -sin() l 
sm (} cos(} [ 

(A - a!) cos () - (A - a!) sin () l 
(A - al) sin(} (A- al) cos() 

is a stable matrix. 

Proof: The eigenvalues of the matrix 

[ :~:: -:~: l 
are e±io. For any eigenvalue >.of A, >.s = e±io >.are the eigenvalues As (see Appendix B). 

So ). is in sector S if and only if >.s is in the left-hand half-plane. 0 

Lemma 8.2.3: If A E cnxn is a constant matrix, then all the eigenvalues of A lie in the 

regionS if and only if both the matrices e-i0(A- al) and ei9(A- a!) are stable. 
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Proof: If e-i8 (A- ad) and ei8(A- a!) are stable then all the eigenvalues of A are located 

under the line L1 and above of the line L2, respectively (See Fig. 8.1). 0 

Theorem 8.2.1 (Lyapunov) [11): Assume A E cnxn is a matrix. The matrix A is stable 

if and only if the Lyapunov equation 

A*P+ PA = -Q (8.1) 

where Q is an arbitrary p.d. Hermitian matrix, has a u.p.d. Hermitian matrix solution 

P. 

Corollary 8.2.1: If A E IRnxn is a constant matrix, then all the eigenvalues of A lie in 

the region S if and only if the Lyapunov equation 

(8.2) 

where Q is an arbitrary p.d.s. matrix, has a unique p.d.s. Hermitian matrix solution P. 

Proof: The proof follows from Theorem 8.2.1 and Lemma 8.2.1. 0 

Remark 8.2.2: Note that if A E cnxn, according to Remark 8.2.1, when the Lyapunov 

equation (8.2) has a u.p.d. Hermitian matrix solution, then e-iB (A- al) is a stable matrix 

but all the eigenvalues of A may not be located in the regionS. However, if e-i8(A- a!) 

is a stable matrix, the arguments of all the eigenvalues of e-i8(A - al) are less than 

3rr /2 - 28 and the real parts of all the eigenvalues of A are less than a. Then all the 

eigenvalues of e-i8(A- al) are located in the region S. In fact the following corollary is 

satisfied. 

Corollary 8.2.2: If A E cnxn is a constant matrix, all the eigenvalues of A lie in the 

region S if and only if both Lyapunov equations 

ei8(A- a!)* P+ + P+e-i8(A- al) = -Q 

e-i8(A- a!)* P_ + P_ei8(A- al) = -Q 

(8.3) 

(8.4) 

where Q is an arbitrary p.d. Hermitian matrix, have u.p.d. Hermitian matrix solutions. 

Proof: By using Lemma 8.2.3 similarly as in Corollary 8.2.1 the proof is obtained. 0 

Note that when A E IRnxn Corollaries 8.2.1 and 8.2.2 are the same, because in this case, 

when p+ is the solution of equation (8.3) then P+ is the solution of (8.4). So p_ = p+· 
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Theorem 8.2.2: Assume F is a real feedback matrix such that u = Fx, then all the 

eigenvalues of A + B F lie in the region S if and only if the generalized Riccati equation 

where Q is an arbitrary p.d.s. matrix, has a u.p.d. Hermitian matrix solution. 

Proof: According to Corollary 8.2.1 all the eigenvalues of A+ BF lie in the region S if 

and only if 

ei9(A + BF- alf P + Pe-i9(A + BF- a!) = -Q (8.6) 

has a u.p.d. Hermitian matrix solution P. Then (8.6) is readily obtained. 0 

Note that for () = 1r /2, the Hermitian solution (8.5) is a skew-symmetric matrix which is 

obviously not a p.d. matrix. Therefore, it is impossible to find a p.d. Hermitian solution 

for (8.5). In fact, in this case S is the null set. When 0 tends to 1r /2, the eigenvalues of 

A+BF are approximately real. If the matrix Pis an Hermitian matrix, then P = P1 +iP2 

where P 1 is p.d.s. and P2 is askew-symmetric matrix. Then (8.5) implies 

(cos()+ isinO)(A- al)T(PI + iP2) +(cos()- isinO)(P1 + iP2)(A- a!)+ 

(cosO + isinO)(BF)r(P1 + iP2) + (cosO- isinO)(P1 + iP2 )(BF) = -Q (8.7) 

Then 

(A- alf(cosOP1- sinOP2) +(cos OPt+ sinOP2)(A- od) + (BFf 

(cosOP1- sinOP2) + (cosOP1 + sin0P2)(BF) = -Q (8.8) 

and 

(A - a!) T (sin () P 1 + cos () P2) + (cos () P2 - sin ()PI) (A - a!) + 
(BFf(cosOP2 +sinOPI) + (cosOP2- sinOP1)(BF) = 0 (8.9) 

The gain matrix F can be found by using optimization methods similar to the method in 

18) such that both generalized real Riccati equations (8.8) and (8.9) are satisfied. Similarly 

to the real case, i.e. as when 0 = 0, let F = - R-1 BT P where R is an arbitrary p.d.s. 

matrix and P is a p.d.s. matrix to be determined. Then 

(A - al)r( cos OP1 -sin OP2) + (cos OP1 +sin OP2)(A - al) - F BR-1 Br 

x(cosOP1 -sinOP2)- (cosOP1 +sinOP2)BR-1Brp = -Q (8.10) 
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and 

(A- al)T(sin OPt +cos OP2) +(cos OP2 - sin OP1)(A- a!) - p BR-1 BT 

x(cosOP2 +sinOPI)- (sin0P1 - cosOP2)BR- 1Brp = 0 (8.11) 

This analysis leads to the following theorem. 

Theorem 8.2.3: All the eigenvalues of A+ BF with F = -R-1 BT P lie in the sectorS 

if and only if the dual Riccati equations (8.10) and {8.11} have the p.d.s., skew symmetric 

and p.d.s. solutions Pr, P2 and P, respectively. o 

As already proved, equations (8.8) and (8.9) are immediately results of (8.5). So, to 

test for a given real F, whether all the eigenvalues of the closed-loop A+ BF lie in the 

sector S, it is sufficient that (8.5) has a p.d. Hermitian solution P. Conversely, if all 

the eigenvalues of A+ BF lie in the sector S, F and P must satisfy (8.6). On the other 

hand, the p.d.s. matrix Pr and the skew symmetric matrix P2 are the solutions of the 

dual ARE (8.8) and (8.9) if and only if P = Pr + iP2 is a solution of (8.5). So, all the 

eigenvalues of A+ BF lie in the sectorS if and only if the dual ARE (8.8) and (8.9) have 

p.d.s. and skew symmetric matrices Pr and P2. However, if the feedback gain matrix F 

is in the form of the optimal gain, there is a p.d.s. matrix P such that F = -R-1 BT P. 
Theorem 8.2.3 implies that for a given p.d.s. matrix P, all the eigenvalues of A+ BF 

with F = -R-1BTP lie in the sectorS if and only if (8.10) and (8.11) are satisfied by 

p.d.s. and skew symmetric matrices P1 and P2. Therefore, Theorems 8.2.2 and 8.2.3 do 

not yield a direct way to find the solutions of these equations. These theorems give only 

criteria for establishing whether for given real F and p.d.s. matrices P, the eigenvalues 

of A+ BF lie in the sector S. 

To obtain such a real F, a straightforward method is given in Proposition 8.5.1. Further 

research is needed to find a method for obtaining the solutions of the dual ARE (8.10) 

and (8.11). The following example illustrates the above results. 

Example 8.2.2 (129]: Consider the system (2.4) with 

-1 1 0 0 0 0 0 

0 -2 1 0 0 0 0 

A= 0 0 0 1 0 B= 0 1 

0 0 0 0 1 0 1 

0 0 0 0 0 1 0 
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The orthogonal transformation matrix T (2.13) is 

-1.0000 0 0 0 0 

0 -0.7071 -0.5000 0.5000 0 

T= 0 -0.7071 0.5000 -0.5000 0 

0 0 0 0 -1.0000 

0 0 -0.7071 -0.7071 0 

Then the matrices Au and A12 (2.16) are 

[ 

-1.0000 0. 7070 0. 7070 l 
An = 0 -0.8965 -1.1035 , 

0 -0.3965 -1.6035 
A12 = [ -0.5~00 0.85~5] 

0.5000 0.1465 

Let Q = 13 , a= -2 and(}= 60°. Consider 

F = [ 0. 7390 -0.3290 3.8290 l 
3.4859 3.2673 3.8277 

The solution of the dual equations (8.10) and (8.11) are 

In fact 

[ 

5.7785 3.0104 -1.6647] 
P1 = 103 

X 3.0104 1.5843 -0.8902 

-1.6647 -0.8902 0.5135 

p2 = [ 26~.4 701 

-377.9352 

-260.4701 

0 

-122.2723 

377.9352] 
122.2723 

0 

[ 

5.7785- O.OOOOi 3.0104- 0.2605i -1.6647 + 0.3779i l 
p = 103 X 3.0104 + 0.2605i 1.5843- O.OOOOi -0.8902 + 0.1223i 

-1.6647- 0.3779i -0.8902- 0.1223i 0.5135- O.OOOOi 

159 

is the u.p.d. Hermitian solution of (8.5). Therefore all the eigenvalues of Au - A12F are 

in the sectorS. The eigenvalues of An- A12F are -2.1148 ± 0.0542i and -4.6988. Note 

that in this case, F = R-1 A[2P where 

[ 

9.6268 3.2694 4.7475] 
p = 3.2694 3.3637 2.7058 

4.7475 2.7058 10.3639 

pis p.d.s. matrix which satisfies the dual equations (8.10) and (8.11). 
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Remark 8.2.3: Note that when F is not a real matrix, Remark 8.2.2 implies that, if 

all the eigenvalues of A+ BF are in region S, the generalized Riccati equation (8.5) has 

a u.p.d. Hermitian matrix solution but the converse is not true unless the argument of 

all the eigenvalues of A + EF - al are less than 37r /2 - 2(} and the real parts of all the 

eigenvalues A+BF are less than a. 

Remark 8.2.4: Suppose F = - fl-I ET P where R is an arbitrary p.d. Hermitian matrix 

and Pis the u.p.d. matrix solution of the generalized Riccati equation (8.5). Then (8.5) 

is converted to 

ei8(A- alfP + e-i8P(A- a!)- 2cosOPER-1ETP = -Q (8.12) 

and if consider R = R/2 cos(}, then (8.12) is given by 

ei8(A- odfP+ e-i8P(A- al)- PER-1ETP = -Q (8.13) 

When () = 0, the left-hand of (8.11) is zero, because in this case, P2 = 0. So (8.11) is 

converted to 0 = 0. Therefore, the equations (8.10) and (8.13) are the same and P = P 

is a p.d.s. real matrix. 0 

When F is complex, the converse of Theorem 8.2.2 is not true. In this case for all the 

eigenvalues of A+ EF to lie in the sector S, two generalized Riccati equations 

ei8(A- al)* P+ + P+e-iB(A- al) + ei8(EF)* P+ + e-io P+(EF) = -Q 

e-i8(A- a!)* p_ + P_ei8(A- a!)+ e-i8(EF)* P_ + ei8 P_(EF) = -Q 

should have p.d. Hermitian solutions. 

(8.14) 

(8.15) 

0 

It is clear that, when A+BF is a real matrix, the equations (8.14) and (8.15) are equivalent 

because if P+ is the u.p.d. Hermitian matrix solution of (8.14), P+ the complex conjugate 

of P+, is the u.p.d. matrix solution of (8.15). Assume F = -ft-l ET P+ where R is a p.d.s. 

matrix and P+ is the u.p.d. matrix solution of (8.14). Then 

Assume R = R/2cos0. Then the equation (8.16) will be 

ei8 (A- a!)* P + e-iB P(A- a!) - P ER-1 BT P = -Q (8.17) 

If p is the u.p.d. Hermitian matrix solution of the Riccati equation (8.17), then all the 

eigenvalues of A- BR-1 BT P may not be in the regionS unless()= 0. This shows that 
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for() -:f: 0 the feedback gain matrix is not in the form of -R-1 BT P or -R-1 BT P where 

P, the complex conjugate of P, is the solution of the equation 

e-i8(A- o:I)* P + e-iO P(A- o:I)- PBR-1 BT P = -Q (8.18) 

Remark 8.2.5: The Riccati equation (8.17) is equivalent to 

(8.19) 

where 

A= [ (A- o:I) cos() -(A- o:I) sin() l p = [ Pt 
(A- o:I) sin() (A - o:I) cos() ' P2 

-=[Q o],B=[B 0] R=[R ol 
Q OQ OB' OR 

The Riccati equation (8.19) has a u.p.d.s. real matrix solution P. The feedback gain 

matrix is given by 

(8.20) 

The feedback gain matrix (8.20) relates to the 2n x 2n system 

X Ax+Bu (8.21) 

w 6x 

But the original system is an n x n system. The problem is how can a feedback gain 

matrix be obtained from the 2n x 2n feedback gain matrix for the n x n system. This 

problem is discussed in Section 9.4. 

8.3 Shifted and Rotation Method 

For () ~ 45°, another method exists for designing a feedback gain matrix such that all the 

eigenvalues lie in the sector S. Let P be the u.p.d. solution of the Riccati equation 

(8.22) 

All the eigenvalues of A - BR- 1 BT P lie in the left-hand complex half-plane. Assume 

the eigenvalues of A- BR-1 BT Pare A1, A2, ... , Am, >.1, >.1, >.2, ... , >.m and the remaining 
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A2m+l, A2m+2, ... , An are real, where Ak stands for the complex conjugate of Ak, k 

1, ... , m. Without loss of generality assume the eigenvalues A1, A2 , ••. , Am have positive 

imaginary parts, then ei8 (AI) +a, ei8 (A2) +a, ... , ei8 (Am) +a, e-iO().I) +a, e-i8 (5.2) + 
a, ... , e-iO().m) +a, A2m+l +a, A2m+2 +a, ... , An+ a lie in the region S if()~ 45°. It is 

desired to find the real feedback gain matrix such that the eigenvalues 'f/i of the closed-loop 

system are 'f/1 = ei8 (AI)+a, TJ2 = ei8 (A2) +a, ... , 'fJm = ei8 (Am)+a, 'fJm+l = e-iB(5.I)+a, 

'flm+2 = e-i0().2) +a), ... , 'f/2m = e-iO().m) +a), 'f/2m+l = A2m+1 +a, 'T12m+2 = A2m+2 +a, 

... , 'Tln = An+ a. To determine the feedback gain matrix K pole assignment methods can 

now be applied. For instance, using the method in [79, page 43], [11, page 268] gives the 

appropriate feedback gain. The controller matrix K is decomposed asK= EMT where 

E and M are m- and n-vectors. The vector E is chosen such that the auxiliary single 

input plant 

±=Ax+BEu (8.23) 

is completely controllable via u. This is possible whenever the system {2.4) is completely 

controllable and the matrix A is cyclic, i.e. its characteristic polynomial is a minimal 

polynomial. Assume the eigenvalues of AT are 6, 6, ... , ~n with w1, w2, ... , Wn the cor­

responding eigenvectors. Let 

where 

k=n 
M= Lfkwk 

k=l 

£ _ n~=~ (~k- 17j) 

k- wfBEll;:~ (~k- ~i) 
)'# 

(8.24) 

So all the eigenvalues of A+ BK are 171,172, ... , 'f/n and lie in the specified sector. The 

following example illustrates the results of the Shifted and Rotation method 8.3 . 

Example 8.3.1: Consider the system {2.4) with a= -2, () = 45°, Q = /3 and R = !2 . 

The u.p.d.s. solution of the ARE (8.22) with An replacing A, and A 12 replacing B is 

[ 

0.4919 0.1316 

p = 0.1316 0.5564 

0.0853 -0.1901 

0.0853] 
-0.1901 

0.4458 

The eigenvalues of A 11 - A12R-1 A[2P are -1.0771 ± 0.1721i and -2.0589. So 

171 = -2.8833 + 0.6399i, 'fJ2 = -2.8833- 0.6399i, 'fJJ = -4.0589 
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Using the pole assignment method the feedback gain is obtained as 

F = [ 4.3768 -1.0225 5.0192 ] 
5.5974 3.5255 2.0172 

The eigenvalues of A 11 - A12F are 'f/I, 'f/2, 'f/3 which obviously lie in the sector. 

8.4 Examples 

Now the work of Woodham 1129) and Woodham et all131) is discussed and some errors 

and inaccuracies in their method are shown. Their method is known to fail for some cases, 

i.e. for (} less than 60° and also (} = 0. Also it has been shown by Cao and Sun in 120) 

that the Woodham et al [131] method does not work for all sectors. A counterexample 

for the case()= 40° is presented 120) and it is shown that the weighting matrices in [131] 

are not Hermitian matrices. 

The following example shows that even if(} = 0 and P is the u.p.d. Hermitian solution 

of (8.13), all the eigenvalues of Au - A12R-1 Af2P may not lie in the sector S where P 
is defined such that its elements are the absolute value of the elements of P. If Pii is the 

(i,j)-th element of P, Pii = ../PiiPii is the (i,j)-th element of P. 

Example 8.4.1: Consider the following example of a remotely piloted vehicle (RPV) 

(Safonov et al [94]; Safonov and Chiang [95]). 

-0.0257 -36.6170 -18.8970 -32.0900 3.2509 -0.7626 

0.0001 -1.8997 0.9831 -0.0007 -0.1708 -0.0050 

0.0123 11.7200 -2.6316 0.0009 -31.6040 22.3960 
A= 

0 1.0000 0 0 0 0 

0 0 0 0 -30.0000 0 

0 0 0 0 0 -30.0000 

0 0 

0 0 

B= 
0 0 

0 0 

30 0 

0 30 
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Then the orthogonal matrix (2.13) is given by 

-1 0 0 0 0 0 

0 0 0 1 0 0 

0 0 1 0 0 0 
T= 

0 -1 0 0 0 0 

0 0 0 0 -1 0 

0 0 0 0 0 -1 

and from (2.16) 

-0.0257 32.0900 18.8970 -36.6170 3.2509 -0.7626 

0 0 1.0000 0 
Au = -2.6316 -11.7200 ' A12 = 

-0.0123 0.0009 

0 0 

31.6040 -22.3960 

0.0001 0.0007 -0.9831 -1.8997 -0.1708 -0.0050 

Assume R = h, Q = !4, a= -2.1896, 0 = 0. The u.p.d.s of the Riccati equation (8.13) 

is 

0.2633 -8.3023 -0.0082 -5.0598 

-8.3023 381.9231 1.4851 226.8472 
P= 

-0.0082 1.4851 0.0406 0.7875 

-5.0598 226.8472 0.7875 136.8960 

Assume 
-1 T A 

F1 = R A12P 

then 

0.2633 8.3023 0.0082 5.0598 

P= 8.3023 381.9231 1.4851 226.8472 

0.0082 1.4851 0.0406 0.7875 

5.0598 226.8472 0.7875 136.8960 

and therefore 

F = [ 0.2494 35.1795 1.1740 17.9540 l 
1 

-0.4087 -40.7259 -0.9186 -22.1792 

The eigenvalues A 11 -A12F1 are -27.7918±19.7733i, -4.8295, 0.0119. Since 0.0119 is not 

in the left-hand half-plane, the Woodham et al [131) method fails for()= 0. However, it is 

very difficult to specify a value of 0 for which their method works. Since F2 = R- 1 Af2 P, 

p. = [ 1.4624 -18.8002 1.1210 -14.9435] 
2 0.0072 -28.0633 -0.9062 -14.4620 
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the eigenvalues A11 - A12F2 are -33.8104, -25.3151, -4.8263, -3.7015 which lie within 

the specified region. 

Woodham et al (131] claimed that their method works for() < 60°. But the following 

example shows that this statement is not always true, i.e. for a real feedback matrix all 

the eigenvalues may not be located in the sector S for some () < 60°. 

Example 8.4.2: Consider An and A12 as in Example 8.4.1. Assume a = -5.8898, 

() = 50°, Q = ! 4 , R = /2 • Then the u.p.d. Hermitian matrix solution of the Riccati 

equation (8.13) is 

0.61 -18.44- 1.50i -0.07 - 0.04i -9.07- 0.31i 

-18.44 + 1.50i 856.01 3.58 503.09 + 10.48i 
P= 

-0.07 + 0.04i 3.58 0.05 1.85 + 0.14i 

-9.07 + 0.31i 503.09 - 10.48i 1.85- 0.14 329.86 

The eigenvalues of An - A12F1 are -43.1168 ± 59.7971i, -5.1977, -1.4200, where 

F
1 

= R-1Af
2
P. Obviously, one of eigenvalues -1.42 is not in the sector S. Let F2 = 

R-1 A[
2
P. The eigenvalues of An- A12F2 are -57.8464 + 17.0566i, -5.8683- 15.4634i, 

-5.8287- 1.5450i, -7.3276- 0.0481i. So all the eigenvalues of Au - A12R-1 A12T P 

are not in the sector S. This example shows that even if the Hermitian matrix solu­

tion of the CARE (8.13) is utilized to design a complex feedback, all the eigenvalues of 

An - A12R-1 Af2P may not lie in the sector S. 

For a= -9.1032, () = 40°, Q = !4, R = /2, the u.p.d. Hermitian matrix solution of the 

Riccati equation (8.13) is 

1.6 -36.8- 3.1i -0.1- 0.1i -10.9 + 0.4i 

-36.8 + 3.1i 1656.2 6.8 + 0.1i 958.4 + 25.8i 
P= 

-0.1 + 0.1i 6.8- 0.1i 0.1 3.5 + 0.7i 

-10.9- 0.4i 958.4 - 25.8i 3.5- 0.7i 725.5 

Therefore 

1 T ~ [ 8.6378 171.1769 2.2386 24.1044] 
F1 = R- A12p = -4.9753 -185.2597 -1.7824 -91.6911 

The eigenvalues of An - A12F1 are -66.0690 ± 97.6081i, -2.3101, -8.9935. Hence two 

eigenvalues of the closed-loop matrix Au - A12F1 are not in the sector S. On the other 

hand 

F
2 

R-1Af2P 

- [ 2.83 + 2.87~ 
1.89- 1.99z 

-68.33 - 8. 76i 1.27 - 0.17i -49.00 + 23.00i l 
-129.05 + 4.68i -1.55 + 0.07i -73.53- 15.74i 
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and the eigenvalues of An - A12F2 are -63.7920 + 21.0003i, -8.5553 - 16.9893i, 

-9.9447- 3.9711i, -13.6067- 0.0398i. Clearly, the eigenvalue -8.5553- 16.9893i of 

A11 - A12F2 is not in the specified sector, i.e. in this case the complex feedback F2 also 

does not work. 

Now let us alter a. Suppose a= -2.6614, (} = 40° and Pis the u.p.d. Hermitian matrix 

solution of the Riccati equation (8.13) 

0.27 -8.31 - 0.37i -0.02 - 0.02i -4.95 - 0.04i 

-8.31 + 0.37i 384.90 1.59 + 0.04i 227.62 - 0.24i 
P= 

-0.02 + 0.02i 1.59- 0.04i 0.04 0.83- 0.03i 

-4.95 + 0.04i 227.62 + 0.24i 0.83 + 0.03i 137.91 

The eigenvalues of A11 - A12R-1 Af2P are -31.1910 ± 29.3426i, -4.7796, -0.6119. Ob­

viously, -0.6119 is not in the sector S. 

These examples establish that the Woodham et al [131] method for pole placement in 

a specified sector fails for certain values of a and 8. The interval of values (} for which 

their method works, is unknown and the above examples are counterexamples. The main 

reason for the failure is that if the u.p.d. Hermitian matrix solution P of the ARE (8.13) 

is used, all the eigenvalues of the associated closed-loop system may not be inside the 

sector S as stated in Remarks 8.2.2 and 8.2.3. 

8.5 Eigenvalue Assignment Method by using Real ARE 

As stated, the pole placement method utilizing the complex Riccati equation is complic­

ated. Most effort has been focused on the real case. In this section a method is proposed 

to construct a feedback gain matrix such that all the eigenvalues of the closed-loop system 

lie in the specified sector. First three lemmas are stated which are used in the proof of a 

proposition and theorem. 

Definition 8.5.1 Let P1 and P2 be two matrices. P1 is said to be greater than P2, 

p
1 
~ p2, if and only if Pt - P2 is a semi-p.d. matrix. P1 is the maximum solution of an 

ARE if, for any solution P2, P1 ~ P2. 

The so-called mirror-image shift lemma (Molinari [85]) is now stated. This lemma presents 

the basic idea about the solution of the Riccati equation with zero right-hand side. 
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Lemma 8.5.1 [64), [101): Let Ai (1 ~ i ~ n) be the eigenvalues of A, and P the 

maximum solution of the algebraic Riccati equation 

Assume si (1 ::;;; i ::;;; n) are the eigenvalues of A- BR-1 BT P. Then 

if ~(-Xi) ::;;; 0 

if ~(-Xi) > 0 

(8.25) 

0 

The maximum solution P of (8.25) is a semi-p.d.s. matrix because a solution of (8.25) 

is Po = 0 and if Pm is the maximum solution of (8.25), then Pm- P0 =Pm ~ 0. The 

following lemma shows the relationship between the Riccati equation (8.25) and a certain 

Lyapunov equation. Note that A is a completely unstable matrix if -A is a stable matrix. 

Lemma 8.5.2: Assume A is a completely unstable matrix, (A, B) is a completely con­

trollable pair and m x m matrix R is an arbitrary p.d.s. matrix solution. Then P is a 

nonsingular solution of ARE (8.25} if and only ifS= p- 1 is the solution of the Lyapunov 

equation 

S( -Af + ( -A)S = -BR-1 BT (8.26) 

Moreover, if P is a p.d.s. matrix, so is S. 

Proof: Since (A, B) is controllable, (A, BR-t) is controllable (Anderson and Moore [6]). 

Assume P is the solution of ARE (8.25) so 

Pre- and post-multiplying by p-1 

p- 1 AT+ AP-1 = BR-1 BT 

So S = p-1 is the solution of {8.26). Moreover, S is symmetric if and only if P is 

symmetric, and S is p.d. if and only if P is p.d.. o 

Fact 8.5.1: Equation (8.25) has no p.d. solution unless A is a completely unstable 

matrix (see Theorem A.1.1). This is now proved in detail. Since (A, B) is a completely 

controllable pair, if A is a stable matrix, the Lyapunov equation 

(8.27) 
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has a u.p.d.s. solutionS [47], [127]. Hence -S-1 is the solution of (8.25) which is negative 

definite. On the other hand, if P is a p.d.s. solution of (8.25) then -P-1 is a solution of 

(8.27), which yields -A stable. This contradicts the stability of A. Therefore when A is 

stable, (8.25) has no nonzero semi-p.d.s. and the maximum solution is the trivial solution 

P = 0. Except for this case, the maximum solution of (8.25) is a nonzero matrix. In 

particular, if A is a completely unstable matrix, the Riccati equation (8.25) has a p.d.s. 

solution matrix. 

Now the solution of the Riccati equation (8.25) is studied. Let ...\1, ...\2, ... , ...\~- be the 

eigenvalues of A which are in the left-hand half-plane and ~1, ~2, ... , ~;:- be the corres­

ponding eigenvectors. The maximum solution of (8.25) satisfies 

JV(P) =span {~1, ~2, ... ,~;;- } 

where JV(P) and span { ~1, ~2, ... , ~;:- } denote the null space of P and the linear 

subspace spanned by vectors ~1, ~2, ... , ~;:- [64]. Therefore the nullity of P is n-. On 

the other hand, the dimension of range P (rank P) plus the nullity of P equals n, the 

dimension of the space. Therefore the dimension of range P is n- n- = n+. Hence n­

eigenvalues of Pare zero and the remaining n+ eigenvalues lie in the right-hand half-plane. 

Moreover, if A has no eigenvalues in the right-hand half-plane, the range of Pis zero, i.e. 

in this case P = 0. If A has no eigenvalues in the left-hand half-plane, the dimension of 

the range of Pis n. SoP is the p.d.s. solution of the Riccati equation (8.25). 

The following lemma allocates the eigenvalues of the shifted closed-loop matrix A- BK. 

Lemma 8.5.3: Let Ai (1 ::;; i ::;; n) be the eigenvalues of A, a a nonnegative real number 

and P the maximum solution of the ARE 

Assume si (1 ::;; i::;; n) are the eigenvalues of A- BR-1 BT P. Then 

if R(...\i) ::;; -a 

if R(...\i) >-a 

(8.28) 

Proof: Let A= A+al and ~i (1 ::;; i::;; n) be the eigenvalues of A. Assume si (1 ::;; i::;; n) 

are the eigenvalues of A- BR-1 BT P, then Lemma 8.5.1 gives 

if R(~i) ~ 0 

if R(~i) > 0 
(8.29) 
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Substituting Si = si + a and ~i = Ai +a in (8.29) gives 

if ~(Ai) ::;; -a 

if ~(Ai) > -a 
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0 

Proposition 8.5.1: Assume Ai (1 ::;; i ::;; n) are the eigenvalues of A which are not 

necessary distinct, and S is a sector with vertex at nonpositive real a and the angle with 

the imaginary axis() {see Fig.8.1 }. Suppose 

(8.30) 

and P is the maximum solution of ARE 

(AT- (a- rJ)I)P + P(A- (a- rJ)I) - P BR- 1 BT P = 0 (8.31) 

Then all the eigenvalues of A-BR-1 BT Pare in the sectorS if ~(Ai) =J a- rJ (1 ::;; i ::;; n). 

If there is a Ai such that ~(Ai) =a- rJ, P is the p.d.s. solution of ARE 

where € is small positive real number such that for all i, Ai =f. a- rJ- €. 

Proof: Using Lemma 8.5.3 the eigenvalues of A- BR- 1 BT P, si (1 ::;; i::;; n) are 

if ~(Ai) ::;; -(rJ- a) 

if ~(Ai) > -(77- a) 

Assume ~(Ai) < -(77- a) then ~(Ai) ::;; a- ~(Ai) tan 0, i.e. Ai = ~(Ai) + i~(,\i) is inside 

the sector with boundary lines 

a- ytan () 

a+ ytanO 

as shown in Fig.8.1. Suppose ~(Ai) > -(77- a) then 

R(si) -2(77- a)- ~(Ai) 

< -2(77- a)+ (rJ- a) 

< a -77 

Since 
Vi 1 ::;; i ::;; n 
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therefore 

~(si):::;; a- ~(si) tanO 

i.e. si lies in the sectorS. If there is ani such that ~().i) = -(77- a), Ai is a point on the 

boundary of the sector. Let f be a real positive number such that for all i, Ai # a- 77- f, 

and P be the p.d.s. solution of ARE (8.32). Converting a to a - f in the proof of the 

first part of the proposition, the desired result is obtained. 0 

Note that when all the eigenvalues of A are real, 7J = 0 and for all values of 0 the solution 

p of ARE is invariant. Therefore in this case the closed-loop eigenvalues are also invariant 

for all values of 0. 

It is possible to find various feedback gain matrices such that all the eigenvalues of the 

closed-loop system lie in the sector S. Here a method is presented which enables one 

to find feedback gain matrices such that all the closed-loop eigenvalues lie within the 

sector without any restriction on placement in the sector. This method can be applied as 

an iterative method. Horng et al [58] presented conditions for all the eigenvalues of the 

summation of two matrices A and G, i.e. matrix A+ G, to lie in a specified region when 

all the eigenvalues of matrix A are inside that region. Now a similar method is applied 

and a new feedback gain is found. 

Let F = -BR-1 BT P where Pis the maximum solution of the ARE (8.31). According 

to Proposition 8.5.1 all the eigenvalues of A+ BF are in the sector. 

Assume A = A + B F and consider the new system 

x = Ax+Bu (8.33) 

The control law is u = Fx. Since all the eigenvalues of A are in the sector S, then the 

Lyapunov equation 

(8.34) 

where Q is an arbitrary p.d.s. matrix, has the u.p.d. Hermitian matrix solution P. Then 

if 

(8.35) 

all the eigenvalues of A+ BF lie in the regionS. Using (8.34) in (8.35) yields 

(8.36) 
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A sufficient condition for (8.36) to hold is that 

Let F = -R- 1 BT P where Pis a real p.d.s. matrix. Now 

aM(e-i6 PBR- 1 BT P + ei9 PBR-1 BT P) 

::S aM(e-i9PBR-1BTf>) +aM(ei9PBR-1BTP) 

:::;; aM(P)aM(BR-1 BT P) + aM(P BR-1 BT)aM(P) 

::S 2aM(P)aM(BR-1 BT P) 

From (8.37) and (8.38) one can imply if 

then (8.37) is satisfied. But (8.39) can be replaced by 

a (P) < am(Q) -
M 2aM(PBR- 1BT) - Cs 

The closed-loop matrix is 

A+BF+BF 

A- BR-1BTP- R-1BTf> 

A- BR-lBT(P + P) 
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(8.37) 

(8.38) 

(8.39) 

(8.40) 

(8.41) 

To find P, noting (8.40) consider an n x n arbitrary nonsingular matrix E and P = 
(d

8
/aM 2 (E)) EET where ds is a positive real number such that d5 < c8 • Therefore, for 

any arbitrary nonsingular matrix E, a matrix P is obtained which gives a new feedback 

gain matrix F = -R-1 BT(P + P). 

8.5.1 Extension Technique for a Region Bounded by Two Sectors 

A technique for placing all the closed-loop poles in a region bounded by the intersection 

of two sectors, will now be considered. Suppose the first sector S1 has boundary lines 

crossing the real axis at a in the left-hand half-plane and with angle to the imaginary 

axis B. The second sector S2 has boundary lines crossing the real axis at f3 in the left­

hand half-plane and with angle to the imaginary axis cf>. Consider a new sector S3 with 

vertex 'TJ = min {a, /3} and the angle with the imaginary axis 0 = max { cf>, B} (see Fig. 
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Figure 8.2: 53 Sector 

8.2). By applying Proposition 8.5.1, the gain feedback F can be found such that 

all the eigenvalues of A + BF lie within the sector 53. It is clear in this case that all 

the eigenvalues of A+ BF lie in the intersection of the two sectors 5 1 and 52 . The only 

restriction of this method is that the eigenvalues of A+ B F cannot lie in the small common 

region of two sectors 5 1 and 52, and outside the sector 5 3 . 

8.5.2 Pole Placement in a Hyperbola 

The extension of the technique for placing all the closed-loop system eigenvalues within 

a hyperbola in the left-hand half-plane is now considered. The pole placement within the 

hyperbola with asymptotic lines y = ±x has been considered by Kawasaki and Shimemura 

[64]. They obtained two associated Riccati equations with conventional weighting matrices 

and an iterative computational algorithm. 

A new method is presented which guarantees that all the closed-loop eigenvalues lie in a 

hyperbola. Consider the hyperbola 

(~(..\) + a)2 (~(..\))2 
a2 - b2 = 1 (8.42) 

Let S be a sector with boundary lines crossing {3 = a - a on the real axis and parallel to 

the asymptotic lines of the hyperbola, i.e. the boundary lines of the sector are 

R(..\) +a ± ~(..\) = 1 
a b 

(8.43) 

Obviously, when all the eigenvalues of the closed-loop system are in sector 5, they also lie 

inside the hyperbola. The only restriction of this method is that the eigenvalues cannot 
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lie in the region between the sector and the hyperbola. 

8.6 Eigenvalue Assignment Methods in a Vertical Strip 

8.6.1 Introduction 

Shieh et al (101] presented a computational method for finding the feedback control of the 

linear quadratic regulator so that all the eigenvalues of the closed-loop system lie in an 

open vertical strip. Some of the conditions of their Theorem 1 are incorrect and also their 

proof has some inaccuracies. In this section these errors are corrected and the modified 

theorem with a new conventional proof is proved. Illustrative examples are presented in 

Section 8. 7. 

R(.) and ~( ·) indicate the real and imaginary parts of complex number ( ·), and Tr( ·) the 

trace of matrix ( ·). To avoid any misunderstanding the notation below is the same as in 

paper (101], i.e. the system is given by 

x=Ax+Bu (8.44) 

where A and Bare n x nand n x m real matrices respectively, and (A, B) is a completely 

controllable pair. Let h1 and h2 be two nonnegative real numbers. The closed vertical 

strip is specified by the closed interval [-h2, -h1] with h2 ~ h1 and the open vertical 

strip is given by ( -h2, -h1) with h2 > h1. Assume A!, A2, ... , A~- are the eigenvalues 

of A which are in the closed left-hand half-plane, and At, At, ... , A~+ are the open 

right-hand half-plane eigenvalues of A. The shifted system matrix is A = A+ h1In. Let 

~~, ~2, ... , ~;- be the closed left-hand half-plane eigenvalues of A, and ~t, ~t, ... , ~t+ 
be the open right-hand half-plane eigenvalues of A. The feedback control is u = -r K x 

where r is a real number and K is an m x n matrix to be defined later. Let P be the 

maximum solution {64} of the Riccati equation, their (6c), 

where R is an arbitrary positive definite symmetric matrix. Then the eigenvalues of the 

closed-loop system 
x =(A- rBK)x, r > 0.5 

where K = R-1 BT P, are -X1, .X;-,··· , -X;:_, -X1, -X2, · · · , ~n+· The .Xi (1 ~ i ~ n+ ) with 

R(~i) = -ai < 0 are the newly placed left-hand open half-plane eigenvalues in the shifted 

coordinates (101]. 
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Now the errors in [101] are stated. These errors, inaccuracies and restrictions are divided 

into two parts as follows: 

Error and inaccuracies in their theory: 

1. Error in the proof of their Theorem 1 [101]: The main part of Theorem 1 g1ves 

conditions for the eigenvalues of closed-loop system to lie in the open vertical strip 

( -h2, -hi). In their proof Shieh et al obtained the result, their {9h), 

n+ 

L ai = h2- h1 
i=l 

and stated that "Since each &i is a positive real value and 

n+ 

L ai = h2 - h1 > o 
i=l 

therefore, each &i < h2- h1, and the newly placed eigenvalues of (A- rBK) for 

r > 0.5 lie inside the vertical strip, { -{h2- h1), 0} in the shifted coordinates." 

This is wrong because if A has only one eigenvalue in the right-hand half-plane, i.e. 

n,+ = 1, then 

and their (9h) gives 

which contradicts &1 < h2 - h1 implied in the first paragraph after {9h) in their 

paper, i.e. in this case h2- h1 < h2 - h1 which is wrong. 

2. Their Riccati equation (6c) has no p.d.s. matrix solution unless the matrix -A is 
a stable matrix, i.e. all the eigenvalues of A lie to the right of the vertical line - h1. 

This has been proved in Section {8.5). 

3. The conditions h2 >maxI~(~;) I+ h1 and max~(~i) =1- 0 are necessary conditions 

for all the invariant eigenvalues to lie in the open vertical strip while the condition 

h2 ~ max l~(~i) I+ h1 is only a necessary condition for all the invariant eigenvalues 

to lie in the closed vertical strip. Condition max ~(~i) =1- 0 ensures that for all 

1 ~ i ~ n-, ~(~i) =1- 0, i.e. the matrix A has no eigenvalue on the vertical line 

x = -h1. If h2 <maxI~(~;) I+ h1, A has an eigenvalue to the left of the vertical 

line -h2. The eigenvalue of A with the real part -max 1~(..\i) I satisfies this 
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condition. Thus the matrix A has an eigenvalue which is an invariant eigenvalue of 

A- r Bk and is not in the vertical strip. So without these conditions it is impossible 

for the invariant eigenvalues of closed-loop matrix A- rBK to lie in the desired 

vertical strip. These conditions are required for the theorem to be satisfied. 

4. If .Xi satisfies R(.Xi) = -h1, all the conditions are satisfied, but .Xi is not in the 

specified open vertical strip ( -h2, -h1). Moreover, the condition 

1 h2- hl 
r = + ----=-2 2 "'71+ ).+ L.n=l ~ 

is not always true. For example when A has just one eigenvalue in the right-hand 

half-plane, their (9h) yields -(h2-ht) as the real part of the eigenvalue of A-rBK 

which is not in the open infinite vertical strip ( -(h2 - h1), 0), i.e. the real part of 

one eigenvalue of A- r BK is -h2 which is not in the open vertical strip ( -h2, -h1). 

Restrictions in (101]: There are some restrictions in their Theorem 1 [101): 

(i) When r = 1/2 then h2 = h1 and vice versa. So if h2 =/= h1, r cannot take the value 

1/2. Thus when r = 1/2 all the eigenvalues of A - r Bk should lie in the vertical 

line h1 = h2 . This excludes a large class of matrices A with eigenvalues to the left 

of the vertical line x = -h1, when there is no choice in selecting h2 except h2 = h1• 

(ii} Also by choosing h1 > 0, the dominant eigenvalues of A- rBk cannot lie in the 

vertical strip ( -h1 , 0}. Even when h1 is a small positive real number, this selec­

tion of h1 is such that the eigenvalues of A - r Bk cannot lie sufficiently near the 

imaginary axis, i.e. inside the vertical strip (-h1 ,0). Note that choosing h1 = 0 
•+ A 

gives r = ~(1 + h2/2:~=l .At) which differs from [101] and the matrix A- rBK is 

different. 

These inaccuracies are illustrated by an example. 

Example 8.6.1 (Counterexample): Consider the system (8.44) with 

A= ' [ 
1 1 l 
0 -2.5 B = [ ~ l 

The eigenvalues of A are 1 and -2.5. First choose h1 = 1 and h2 = 3. So A= A+ h1/ 2 

with n,+ = 1, >.t = 2. Then 2:7~1 >.t = 2 and r = 1. The Riccati equation (6c) has four 

symmetric solutions 

p3 = [ 49 14] 
14 4 
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Since the eigenvalues of P3- P2 are 51 and 0, P3- P2 ~ 0. Also P3 - PI ~ 0 because 

the eigenvalues of P3- PI are 53.2389 and 2.7611. Hence the maximum solution of the 

Riccati equation (6c) is P3. Matrix P3 is semi-positive definite symmetric because the 

eigenvalues of P3 are 53 and 0. Therefore the Riccati equation (6c) may not generally 

have positive definite symmetric solution. Only when all the eigenvalues of A are in the 

right-hand half-plane, does the Riccati equation (6c) have a p.d.s. matrix solution. Except 

for this case, the solution is semi-positive definite symmetric. Hence K = [14 4] and the 

eigenvalues of A-BK are -2 and -1.5. So, the eigenvalues of A-rBK are -3 and -2.5. 

Here h2 - hi = 2 = ii, so according to the proof of Theorem 1 in [101], ii < h2 - hi, i.e. 

2 = h2- h1 < h2- h1 = 2, which not true. Moreover, for h2 < 2.5 = max IR(~i) I+ hi, -3 

is not inside the vertical strip [-h2, -hi]· Therefore the condition h2 ~ max IR(~t}l +hi 

is a necessary condition for A to have an eigenvalue to the left line of the vertical line 

X= -h1. 

Note that JV(P3 ) has one element ~1 = [-0.2747 0.9615f which is the eigenvector 

corresponding to the eigenvalue -1.5 of A and the range of A has one element because 

rank P3 = 1. As already stated, one eigenvalue of P is zero. 

Next consider h1 = 2.5 and h2 = 3. 

h2 > max {IR(>.i)l} = max {1, I- 2.51} = 2.5 

All the conditions of their Theorem 1 are satisfied, but -2.5, which is an eigenvalue of 

A- rBK with r = 0.5713, is not inside the open vertical strip (-3, -2.5). Matrix 

A should have no eigenvalues on the vertical line x = -hi. Moreover, for h1 ::j:. h2 , r 

could take values greater than or equal to 1/2. Particularly, taking r = 1/2 yields all the 

eigenvalues of A- rBk in the closed vertical strip [-h2, -hi] which is not obtained from 

the method in (101]. Take h1 = 1 and h2 = 3, then with the method in [101] r cannot be 

1/2. However, for r = 1/2 the eigenvalues of A- r BK are -2.5 and 0, i.e. in the vertical 

strip [-h2 , -hi] = [-3, -1] with hi ::j:. h2. 

Now consider hi = 0, h2 = 3; then r = 2 and the maximum solution of their Riccati 

equation ( 6c) is 

with eigenvalues 26.5 and 0. The eigenvalues of A- rBK are -2.5, -3 in the vertical 

strip [-3, 0]. This result is not obtained from the method stated in [101]. 
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Summary: 

Hence, for the eigenvalues of A- r BK to lie in the open vertical strip ( -h2 , -hi), the 

correct necessary conditions should be 

h1 -! R(>.i), for all i = 1, 2, ... , n-

and 
1 1 h2- hl 
2 < r < 2 + n+ ~+ 

2 Li=l \ 
For the eigenvalues of the closed-loop system to lie in the closed vertical strip, the correct 

conditions are 

and 
1 1 h2- hl 
- $.. r $.. - + ----,-,...-::...... 
2 ""' ""' 2 "n.+ ~+ 

2 L.,i=l \ 

Note that when r varies from ~ to ~ ( 1 + (h2- hi)/ I:::1 ~t), some of the eigenvalues 

of A- rBK can move from one place to another location in the open vertical strip. So, 

if the accumulation of the dominant eigenvalues near the vertical line -h1 is required, r 

should be chosen sufficiently near 1/2; and if they should be near the vertical line -h2 , r 

should be selected sufficiently near 

The choice 

r=~(2+ h2n:~~) 
Li=l Ai 

guarantees the dominant eigenvalues to be concentrated towards the the centre of the 

vertical strip, i.e. near the vertical line x = -(h2 + hi)/2. 

Now Theorem 1 in [101] is modified such that with a new conventional proof, the above 

obstacles in the statement, proof and restrictions are removed. This proof is completely 

different from that of Shieh et al. Note that the theorem gives only a sufficient range for 

variation of r, i.e. there may be a value of r, for which the eigenvalues of A- rBK lie in 

the vertical strip, greater than ~ ( 1 + (h2- h1)/ L~:1 ~t). 

Theorem 8.6.1: Let h1 and h2 be nonnegative real numbers with h2 ~ h1, A E JRnxn 

and A = A + h1In· Assume .A!, >.2, ... , >.~- are the eigenvalues of A which are in 
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the closed left-hand half-plane and >..t, >..t, ... , )..~+ are the open right-hand half-plane 

eigenvalues of A. Let >.1, 5.;-, ... , 5.f:- be the closed left-hand half-plane eigenvalues of A 
and >.t, >.t, ... , 5.~+ be the open right-hand half-plane eigenvalues of A and 

Let P be the maximum solution of the algebraic Riccati equation 

(8.45) 

where R is an arbitrary positive definite symmetric matrix. Suppose r is an arbitrary real 

number. The intervals [-h2, -hd with h2 ~ h1 and ( -h2, -hi) with h2 > h1 specify the 

closed and open vertical strip, respectively. Then 

(i) if L:~:1 >.t # 0, the eigenvalues of A- rBK are inside 

(a) the open vertical strip (-h2, -hi) if 1/2 < r < rJ, max { R(5.i)} # 0 and 

h2 > max { IR(5.i)l} + h1 = -min { ~(5.i)} + h1 

(b) the closed vertical strip [-h2, -h1] if 1/2 ~ r ~ rJ and 

h2 ~ max { IR(5.i)l} + h1 = -min { R(5.i)} + h1 

(ii) if L:~:1 5.t = 0, the eigenvalues of A- rBK lie in 

(a) the open vertical strip ( -h2, -hi) if, 

h2 > max { IR(5.i)l} + h1 = -min { R(5.i)} + h1 

and max { ~(5.i)} # 0. 

(b) the closed vertical strip [-h2, -hd if 

h2 ~ max { IR(5.i)l} + h1 = -min { R(5.i)} + h1 

In Case (ii} the maximum solution of {8.25} is P = 0 and all the eigenvalues of 

A - r BK are the same as the eigenvalues of A. 
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Proof: Using Lemma 8.5.1 the spectrum of A- BK is given by 

a(A- BK) = { .\1, .\2, · · ·, ,\~_, --Xt, -.\t, .. ·, -.\!+} 

Therefore 

n- n.+ 
Tr(A- BK) = 2::-X;- 2:-Xt (8.46) 

i=l i=l 

On the other hand 

Tr(A- BK) Tr(A) - Tr(BK) 
n.- n.+ 

I: -X;+ L -Xt- Tr(BK) (8.47) 
i=l i=l 

From (8.46) and (8.47) 

n.+ 
Tr(BK) = 2 L -Xt (8.48) 

i=l 

as in [101]. Using (8.48) 

n- n+ 
Tr(A- rBK) I: -X;+ L -Xt- rTr(BK) 

i=l i=l 

n- n+ n+ 

2::-X; + 2:-Xt- 2r 2:-Xt 
i=l i=l i=l 

n- n.+ 

2:: .x; - (2r - 1) I: ~t (8.49) 
i=l i=l 

Since { .\}, ~2, ... , ~~-}is an invariant set for all r ~ ~'therefore -(2r- 1) E~:1 -Xt is 

the summation of the remaining eigenval ues of A - r B K corresponding to 

A sufficient condition for the eigenvalues of A- rBK to lie in the closed (open) left-hand 

half-plane is that 2r- 1 ~ 0 (2r- 1 > 0). 

n+ A+ 
1. Assume Li=l \ -=!= 0. 

( i) If h2 > max {I !R( .\;)I} + h1 and max !R( .\;) -=/= 0 are satisfied and 

n+ 
'""A+ 0 < (2r- 1) L.J \ < h2- h1 

i=l 

(8.50) 
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then all the eigenvalues of A-rBK are in the open vertical strip ( -(h2 - hi), 0), 

and the eigenvalues of A-rBK are in the open vertical strip ( -h2 , -hi). Equa­

tion (8.50) is equivalent to 1/2 < r < 11· 

(ii) If h2 ~ max { l~(~i)l} + h1 is satisfied and 

n+ 

0 ~ (2r - 1) L ~t ~ h2 - h1 (8.51) 
i=l 

then all the eigenvalues of A-r BK are in the closed vertical strip [-(h2-hi), 0). 

Thus the eigenvalues of A- rBK are in the closed vertical strip [-h2 , -ht]. 

Equation (8.51) is true if and only if 1/2 ~ r ~ 11· 

•+ A A •- A 

2. If E~=l >..t = 0, from (8.49) Tr(A- r BK) = E~1 Ai. 

(i) If the conditions h2 > max{l~(~i)l} + h1 and max~(~i) -j. 0 are satisfied, 

then all the eigenvalues of A- r BK are in the vertical strip ( -h2 , -hi). 

(ii) For all the eigenvalues A- rBK to lie in the closed vertical strip [-h2 , -h1] 

the condition h2 > max {I~( ~i) I} + h1 is sufficient. 

For r = !, (8.49) implies that all the eigenvalues of A- !BK are the eigenvalues of A 
which are in the left-hand half-plane or on the imaginary axis, while for r = 17 and n+ = 1, 

all the corresponding eigenvalues of A to the right of the vertical line x = -h1 lie on the 

vertical line h2. D 

If h
1 

= 0 and A has an eigenvalue on the imaginary axes, the condition for the eigenvalues 

of the closed-loop system to lie in the open vertical strip cannot be derived from Theorem 

8.6.1. To ensure the stability of the closed-loop system it is required that all the eigenvalues 

A_ r BK lie in the left-hand half-plane. This problem is a particular case of the following. 

Remark 8.6.1 Suppose one of the eigenvalues of A is -h1 . Consider A= A+ (h 1 +t=)In 

where f is a small positive real number such that h1 +t is not the real part of an eigenvalue 

of A, and -(h1 + t=) is not an eigenvalue of A. Assume all the conditions of Theorem 8.6.1 

are satisfied, then all the eigenvalues of A- r BK lie within the vertical strip ( -h2 , -hi). 

Theorem 8.6.1 yields only a range of r satisfying the desired condition. However, the 

greatest upper value of r with the desired property can be found by trial and error. 

The real number r0 is said to be an upper bound satisfying (u.b.s.) the desired condition 

if for any 0.5 < r ~ r0 , all the eigenvalues of A- rBK lie in the vertical strip. An u.b.s. 
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r0 is said to be the greatest upper bound satisfying (g.u.b.s.) the desired condition if for 

any r > r0 , there exists one eigenvalue of A- rBK outside the region. Abbreviations 

u.b.s. and g.u.b.s. denote these properties. 

8. 7 Examples 

Examples 8.7.1-8.7.3 below illustrate the numerous results about pole placement in a 

vertical strip stated in Section 8.6. The remaining examples 8.7.4 and 8.7.5 illustrate the 

results of Section 8.5 about pole placement in a sector and address the errors in [129] for 

obtaining the solution of the ARE (8.45). 

Example 8. 7.1 (101]: Consider the system (8.44) with 

-0.5000 0.1100 -0.6600 -0.2200 0.80 0.20 

0 -1.0300 -0.4100 2.0700 0 0.52 
A= B= 

0 -1.3200 -0.3300 2.6400 -0.20 0.36 

0 -0.0300 0.0300 0.0600 -0.04 0.10 

The spectrum of A is 

a(A) = {AI = -0.5000, A2 = -1.5002, A3 = 0.0017, A4 = 0.1985} 

Let h1 = 1 and h2 = 2, then 

a(A) ={~I= 0.5000, ~2 = -0.5002, ~3 = 1.0017, ~4 = 1.1985} 

·+ A A A A 

Then E~=I At =AI+ A3 + A4 = 2.7002 and an u.b.s. of r is 

n+ 

o.5(1 + (h2- hi)/ I:~:= o.6852 
i=I 

· r can take all values between 0.5 and 0.6852. However, the g.u.b.s. r is not 0.6852. t.e. 
As already stated in Remark 8.6.1, the g.u.b.s. roof r with desired property can be found 

by trial and error. When r tends to ro some of the eigenvalues of the closed-loop A- r B K 

move to the vertical line x = - h2. 

The semi-p.d.s. matrix solution of ARE (8.45) is 

16.49831928793 -74.18522113962 56.48932042071 149.06146039136 

-74.18522113962 374.55921933460 -290.26838686087 -721.59550305191 
P= 56.48932042071 -290.26838686087 225.50261148977 556.19493305580 

149.06146039136 -721.59550305191 556.19493305580 1584.72921533561 
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and 

K = [ -4.0617 27.5693 -22.1569 -55.3790 ] 

-0.0343 3.2776 -2.8413 13.2857 

Let r = 0.5, then 

1.1281 -11.2455 8.4869 20.6030 

0.0089 -1.8822 
A-rBK= 

0.3287 -1.3843 

-0.4000 0.8470 -2.0343 -5.2893 

-0.0795 0.3575 -0.2711 -1.7119 

and the eigenvalues of A- rBK are -1 ± 0.7742i, -1.5002, -1 are not all in the open 

vertical strip ( -h2 , -hi). In fact, three eigenvalues of A- rBK are on the vertical line 

x = -h1 . Let r = 0.51, then 

1.1607 -11.4726 8.6698 21.0195 

0.0091 -1.8992 0.3435 -1.4534 
A-rBK= 

-0.4080 0.8903 -2.0683 -5.4479 

-0.0811 0.3653 -0.2771 -1.7473 

and the eigenvalues of A- rBK are -1.0170 ± 0.7740i, -1.5002, -1.0200. Taking 

r = 0.6852 
1.7312 -15.4516 11.8749 28.3159 

0.0122 -2.1978 0.6024 -2.6638 
A- rBK = 

-0.5481 1.6496 -2.6655 -8.2264 

-0.1090 0.5010 -0.3826 -2.3682 

and the eigenvalues of A-rBK are -1.3146±0.7074i, -1.5002,-1.3710. Theorem 8.6.1 

guarantees that all the eigenvalues of A - r BK are inside the vertical strip if 0.5 < r < 

0.6852. 

In the following some values of r are chosen to find the influence of value r on the dominant 

eigenvalues of A- rBk. Let r = 0.55, then 

1.2909 -12.3810 

0.0098 -1.9674 
A- rBK = 

-0.4400 

-0.0875 

1.0637 

0.3963 

9.4016 22.6853 

0.4026 -1.7297 

-2.2047 -6.0823 

-0.3012 -1.8891 

with the eigenvalues -1.0849 ± 0.7695i, -1.5002, -1.1002. Choosing r = 0.57 

A- rBK = 

1.3560 -12.8353 9.7674 23.5182 

0.0102 

-0.4560 

-0.0906 

-2.0015 

1.1503 

0.4118 

0.4322 

-2.2729 

-0.3132 

-1.8679 

-6.3994 

-1.9599 
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the eigenvalues are -1.1189 ± 0.7650i, -1.5002, -1.1402. For r = 0.6700 

1.6817 -15.1064 11.5968 27.6828 

0.0120 -2.1719 0.5799 -2.5587 
A-rBK= 

-0.5360 1.5837 -2.6137 -7.9853 

-0.1066 0.4893 -0.3734 -2.3143 

and the eigenvalues are -1.2888 ± 0.7183i, -1.5002, -1.3405. 

Therefore, when r increases from 0.5, the eigenvalues of A - r BK corresponding to the 

eigenvalues of A which lie in the right-hand half-plane, move to the vertical line x = -2 

and there is an r0 such that for all r > ro all the eigenvalues are not inside the strip. This 

ro is the maximum (g.u.b.s.) of all the values r which all the eigenvalues of A- rBK 

lie inside the vertical strip. However, the g.u.b.s. r with this property is 0.9708, i.e. for 

all 0.5 < r < 0.9709, all the eigenvalues of A - r BK are inside the vertical strip. For all 

values r outside this interval, the eigenvalues are not inside the vertical strip. The g. u. b.s. 

r = 0.9708 can be obtained by a trial and error method. Taker= 0.9708. Then 

2.6611 -21.9378 17.0996 40.2100 

0.0173 -2.6846 1.0243 -4.6368 
A-rBK= 

-0.7766 2.8874 -3.6390 -12.75559 

-0.15449 0.7224 -0.5546 -3.3803 

The eigenvalues of A- rBK are -1.5991, -1.9998, -1.9435, -1.5002 which are in the 

vertical strip. But for r = 0.9709 

2.6614 -21.9401 17.1014 40.2141 

0.0173 -2.6847 1.0245 -4.6375 
A- rBK = 

-0.7767 2.8878 -3.6393 -12.7572 

-0.1544 0.7225 -0.5546 -3.3806 

and the eigenvalues of A-rBK are -1.5986, -2.0007, -1.9437, -1.5002. Some of these 

eigenvalues lie outside the strip. 

The eigenvalues of A - r BK for various r are shown in Table 8.4. When r increases from 

0.5, the three eigenvalues of A- rBK move from the vertical line x = -1 to the vertical 

line x = -2, and when r > 0.9708 then at least one eigenvalues lies outside the open 

vertical strip, i.e. the real part of this eigenvalue is equal to or less than -2. Therefore, 

the range of variation of r depends upon the value h2 • 

Now Jet h1 = 0.5, h2 = 2 and A = A+ h1. It can be shown that 0.5 is an eigenvalue of 
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11 
h1 = 1 and h2 = 2 

11 

r Eigenvalues of A - r BK 

0.5 -1.0000 + 0.7742i -1.0000- 0.7742i -1.5002 -1.0000 

0.54 -1.0679 + 0.7712i -1.0679- 0.7712i -1.5002 -1.0801 

0.58 -1.1359 + 0.7621i -1.1359- 0.7621i -1.5002 -1.1602 

0.62 -1.2038 + 0.7469i -1.2038- 0.7469i -1.5002 -1.2404 

0.66 -1.2718 + 0.7249i -1.2718 - 0. 7249i -1.5002 -1.3205 

0.7 -1.3397 + 0.6956i -1.3397- 0.6956i -1.5002 -1.4006 

0.74 -1.4077 + 0.6581i -1.4077- 0.6581i -1.5002 -1.4807 

0.78 -1.4756 + 0.6108i -1.4756- 0.6108i -1.5002 -1.5609 

0.82 -1.5436 + 0.5512i -1.5436 - 0.5512i -1.5002 -1.6410 

0.86 -1.6115 + 0.4748i -1.6115- 0.4748i -1.5002 -1.7211 

0.9 -1.6795 + 0.3710i -1.6795 - 0.3710i -1.5002 -1.8012 

0.94 -1.7475 + 0.2018i -1.7475- 0.2018i -1.5002 -1.8812 

0.9708 -1.5991 -1.9998 -1.5002 -1.9435 

0.9709 -1.5986 -2.0007 -1.5002 -1.9437 

0.98 -1.5595 -2.0710 -1.5002 -1.9617 

Table 8.4: The eigenvalues of A - r BK for various values of r 

A- rBK. The semi-p.d.s. solution of ARE (8.45) is 

0 0 0 0 

0 23.501070148989 -20.799096827320 -31.645246165015 
P= 

-20.899096827320 0 18.408231026207 28.207531424950 

0 -31.645246165015 28.207531424951 131.007541236564 

Therefore 

K = [ 0 5.4256 -4.8099 -10.8818] 
0 1.5684 -1.3678 6.7999 

and the eigenvalues of A- rBK are -0.5000, -1.1985, -1.0017, -1.5002 which are not 

all in the open vertical strip, i.e. Theorem 1 in [101) is wrong. But our Theorem 8.6.1 

gives suitable feedback gain matrices. Let f = 0.005, h1 = h1 +f = 0.505 and A= A+k1 . 

Then the semi-p.d.s. solution of ARE (8.45) is 

P= 

-0.167700002142 0.132519208919 0.028714648294 

-0.1677700002142 24.655229461686 -21.727613589579 

0.1322519208919 -21.727613589579 

0.3355294603867 -33.801431560986 

19.156542679854 

29.931096893038 

0.335294603867 

-33.800431560986 

29.931096893038 

135.992881929296 
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and 

K = [ -0.0169 5.5634 -4.9225 -11.1577] 
-0.0002 1.5852 -1.3824 6.8653 

Let h2 = 1.7002. Since the eigenvalues of A are 0.0050, -0.9952, 0.5067, 0.7035, 
n+ A+ . 

Li=l .Xi = 1.2152 and an u.b.s. fJ of r IS 

'I~ 0.5 ( 1 +{I!,~ hl)/ ~ >.t) ~ 0.9938 

For r = 0.5 

-0.4932 -2.2739 1.4473 3.5566 

0.0001 -1.4422 
A- rBK = 

-0.0506 0.2850 

-0.0017 -1.0490 -0.5734 0.2885 

-0.0003 0.0020 0.0007 -0.5064 

with eigenvalues -0.5050 ± 0.0595i, -0.5050 and -1.5002. For r = 'Tl = 0.9938 

-0.4865 -4.6283 3.5285 7.2865 

0.0001 -1.8492 0.3044 -1.4779 
A- rBK = 

-0.0033 -0.7813 -0.8138 -2.0340 

-0.0007 0.0336 -0.0283 -1.0659 

with eigenvalues -0.5101, -1.1997, -1.5002 and -1.0054. The value fJ = 0.9938 is 

obtained from Theorem 8.6.1. In fact the g.u.b.s. of r is 1.3454 which is obtained by trial 

and error, since 

-0.4817 -6.3046 5.0102 9.9420 

0.0002 
A- l.3454BK = 

-2.1390 0.5571 -2.7330 

-0.0045 -0.5908 -0.9850 -3.6875 

-0.0009 0.0561 -0.0489 -1.4641 

with eigenvalues -0.5079, -1.70015, -1.5002, -1.3616. For r = 1.3455 

-0.4817 -6.3050 5.0107 9.9428 

0.0002 -2.1391 0.5572 -2.7334 
A - 1.3455BK = 

-0.0045 -0.5907 -0.9851 -3.6880 

-0.0009 0.0561 -0.0489 -1.4642 

with eigenvalues -0.5079, -1.7003, -1.5002 and -1.3617. 

So when r increases from x = 0.5 to 1.3454, the dominant eigenvalues move from the 

vertical line x = h1 to the vertical line x = h2. 
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Example 8. 7.2 [129): Consider the system (2.4) with 

-1 1 0 0 0 0 0 

0 -2 1 0 0 0 0 

A= o· 0 0 1 0 B= 0 1 

0 0 0 0 1 0 1 

0 0 0 0 0 1 0 

The orthogonal transformation matrix T (2.13) is taken as 

-1.0000 0 0 0 0 

0 -0.7071 -0.5000 0.5000 0 

T= 0 -0.7071 0.5000 -0.5000 0 

0 0 0 0 -1.0000 

0 0 -0.7071 -0.7071 0 

Then the matrices An and A12 (2.16) are 

[ 

-1.0~000 
An= 

0. 7071 0. 7071 l 
-0.8964 -1.1036 ' 

-0.3964 -1.6036 

A12 = [ -0.5~00 0.8~36] 
0.5000 0.1464 

The eigenvalues of An are -2, -1, -0.5. Consider the strip ( -h2 , -hi) with h1 = 1.5 

and h2 = 2.5. Let An = An + h1/3. The eigenvalues of An are 0.5, 1, -0.5 and 
•+ A+ b £ • E~==l .. \ = 1.5. Thus an u. .s. or r 1s 

n+ 

"'= o.5(1 + (h2- hi)! 2: >..t = o.8333 
i:::l 

By considering An as A, and A12 in place of B, the semi-p.d.s. solution P of ARE (8.45) 

is 

[ 

2.45457213932604 1.46296027139282 2.00829564804722] 

p = 1.46296027244758 2.20516150011468 -0.13624308281623 

2.00829564697450 -0.13624308431857 2.97637478827414 

(8.52) 

The eigenvalues of Au - A12R-
1 Af2P are -0.5, -1. So Lemma 8.5.1 is satisfied and P 

(8.52) is an acceptable solution of the ARE (8.45). However, the exact solution P of the 

ARE (8.45) is semi-p.d.s. with a zero eigenvalue. So P (8.52) is an approximation to the 

correct solution. In fact, some entries of the exact P have an infinite decimal expansion; 

50 
some the elements of P are only an approximation to the correct solution. Therefore 
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the gain matrix F obtained from this P is valid. But P in !129, page 52) is incorrect, it 

does not satisfy Lemma 8.5.1. This error arises form their incorrect theory about finding 

the solution of the ARE with zero right-hand side. So their matrices F and C are not 

correct despite the fact that the eigenvalues of Au - A12R- 1 Af2P lie inside the strip 

(-1.5, -2.5). 

For r = TJ = 0.8333, F is given by 

and 

F = [ 0.2272 -0.9755 1.2969] 
1.2856 1.5519 0.2662 

c = [ -0.2272 -0.2272 1.1363 -1.1363 -1.00000 l 
-1.2857 -1.2857 -1.3500 -0.0642 

which is correct. Let 

F
1 
= R_1Af

2
P = [ 0.2727 -1.1707 1.5563] 

1.5428 1.8624 0.3194 

The eigenvalues of An - A12F are -2.0000 ± 0.1508i, -2. These eigenvalues are within 

the vertical strip ( -2.5, -1.5). Since two eigenvalues of An are in the right-hand half­

plane, the proof of Theorem 8.6.1 implies that the two eigenvalues of A11 - 0.5A12 F take 

the value h1. In fact, the eigenvalues of An - r A12F are -1.5000 ± 0.3016i, -2. By 

testing various values of r, the g.u.b.s. r with the desired property can be found. The 

g.u.b.s. r is 0.99998, because the eigenvalues of A11 - 0.99998A12F are -2, -2.4999 and 

the eigenvalues of Au - 0.99999At2F are -2, -2.5. For r = 0.99998 

c = [ -0.2727 -0.2727 1.3635 -1.3635 -1.0000 l 
-1.5428 -1.5428 -1.4786 0.0643 0 

The eigenvalues of Au - r A12F for various r are shown in Table 8.5. When r increases 

from 0.5, the three eigenvalues of Au-rA12F move from the vertical line x = -h1 = -1.5 

to the vertical line x = h2 = -2.5. If r > 0.99998 then at least one eigenvalue lies outside 

the open vertical strip, i.e. the real part is equal to or greater than -2.5. Therefore, the 

range of variation of r depends upon the value h2. Now consider h1 = 1 and h2 = 2.5. 

Since -1 is an eigenval ue of An , for all values of r one of the eigenval ues of A 11 - r A 12 

is zero. Therefore, the vertical line x = -h1 should be shifted to x = h1 +f. where f. is 

a small positive real number, say 0.0005. Suppose An = Au + h1t:.. The eigenvalues of 
•+ A 

Au are then 0.0005, 0.5005, -0.9995 and E~=I >..t = 0.0505. So an u.b.s. r of is 1.9970. 
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11 
h1 = 1.5 and h2 = 2.5 

11 

r Eigenvalues of A11 - r A12F 

0.5000 -1.5000 + 0.3016i -1.5000 - 0.3016i -2 

0.5400 -1.5600 + 0.2999i -1.5600 - 0.2999i -2 

0.5800 -1.6200 + 0.2950i -1.6200 - 0.2950i -2 

0.6200 -1.6800 + 0.2865i -1.6800 - 0.2865i -2 

0.6600 -1.7400 + 0.2743i -1.7400- 0.2743i -2 

0.7000 -1.8000 + 0.2577i -1.8000- 0.2577i -2 

0.7400 -1.8600 + 0.2358i -1.8600 - 0.2358i -2 

0.7800 -1.9200 + 0.2069i -1.9200 - 0.2069i -2 

0.8200 -1.9800 + 0.1676i -1.9800- 0.1676i -2 

0.8600 -2.0400 + 0.1068i -2.0400- 0.1068i -2 

0.9000 -2.0148 -2.1852 -2 

0.9400 -1.9930 -2.3270 -2 

0.9800 -1.9953 -2.4447 -2 

0.99998 -2.0000 -2.4999 -2 

0.99999 -2.0000 -2.5000 -2 

1.0200 -2.0061 -2.5539 -2 

1.0600 -2.0213 -2.6587 -2 

1.1000 -2.0394 -2.7606 -2 

1.1400 -2.0594 -2.8606 -2 

Table 8.5: The eigenvalues of Au - r A12F for various values of r 

The semi-p.d.s. solution of ARE (8.45) is 

[ 

0.00100242112344 0.00104171782023 

p = 0.00104171782023 0.66835723935475 

0.00037590613253 -0.66688404201337 

0.00037590613253] 

-0.6668840420133 7 

0.667 41564846600 

188 

Since the eigenvalues of Au - A12R-1 Af2P are -0.0005, -0.5005, -0.9995 and the 

eigenvalues of A11 are 0.0005, 0.5005, -0.9995, respectively, (8.45) gives the correct 

solution P and the corresponding F. But Pin (129, page 52) is incorrect. The author also 

mentioned that it is not clear why this solution is not satisfied in the ARE and desired 

properties. In fact, Pin (129) is not satisfied by Lemma 8.5.1 and F obtained from P is 

wrong. 
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. n.+ ~+ . 
An u.b.s. of r 1s 1.9970 because Li=l .-\ = 0.5010. Consider F = 1.997F1 where 

F
1 
= R_1 Af

2
P = [ -0.0003 -0.6676 0.6671 l 

0.0009 0.4729 -0.4715 

Then 

c = [ 0.0007 0.0007 1.3328 -1.3328 -1.0000 l 
-0.0019 -0.0019 -1.6501 0.2359 0 

The eigenvalues of An -1.997 A12R-1 A[2 P and the eigenvalues of A11 - 1.998A12R- 1 A[2 P 

are -1.0011, -2, -2.4999 and -1.001, -2, -2.5, respectively. Therefore the g.u.v. 7' is 

1.997. Let 

_ -lAT p _ [ -0.0003 -0.6676 0.6672] 
F1- R 12 -

0.0009 0.4729 -0.4715 

The eigenvalues of Au - r A12F1 for various r are shown in Table 8.6. As r increases 

from 0.5, the eigenvalues Au - r A12F move from the vertical line x = -h1 = -1 to the 

vertical line x = h2 = -2.5, and if r > 1.997 then at least one of them is located outside 

the open vertical strip, i.e. the real part of this eigenvalue equals or is greater than -2.5. 

When the t: method is used, r = 0.5 is also an acceptable value because h1 is one of the 

eigenvalues of An and -(h1 + t:) is an eigenvalue of Au - A12F which is clearly in the 

vertical strip ( -h2 , h2 ). As the value of r increases the eigenvalues corresponding to the 

eigenvalues of A1 which are in the right-hand half-plane, move to different places. These 

results are shown in Table 8.6. 

Example 8. 7.3 [129): Consider the system (2.4) with 

0 1.0000 0 0 0 0 

0 -0.3320 0 0.0187 130.8 -308.3 
A= B= 

0 0 0 1.0000 0 0 

0 0.7830 0 -0.1914 -308.3 3155.4 

Assume T is the transformation matrix given by (2.13) 

1 0 0 0 

0 0 1 0 
T= 

0 -0.3906 0 0.9206 

0 -0.9206 0 -0.3906 
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11 
h1 = 1 and h2 = 2.5 

11 

r The eigenvalues of An - r A12F1 

0.500 -1.0005 + 0.0129i -1.0005- 0.0129i -2 

0.650 -1.0017 -1.1496 -2 

0.800 -1.0012 -1.3004 -2 

0.950 -1.0010 -1.4509 -2 

1.100 -1.0010 -1.6012 -2 

1.250 -1.0010 -1.7515 -2 

1.400 -1.0010 -1.9018 -2 

1.550 -1.0010 -2.0521 -2 

1.700 -1.0010 -2.2024 -2 

1.850 -1.0011 -2.3526 -2 

1.997 -1.0011 -2.4999 -2 

1.998 -1.0011 -2.5009 -2 

2.000 -1.0011 -2.5029 -2 

2.150 -1.0012 -2.6532 -2 

2.300 -1.0012 -2.8034 -2 

2.450 -1.0012 -2.9537 -2 

2.600 -1.0013 -3.1039 -2 

2.750 -1.0013 -3.2542 -2 

2.900 -1.0014 -3.4044 -2 

3.050 -1.0014 -3.5547 -2 

3.200 -1.0015 -3.7050 -2 

Table 8.6: The eigenvalues e of An - r A12F1 for various values of r 

Then from (2.16) 

_ [ 0 0 l A _ [ -0.3906 -0.9206] An- , 12-
0 0 0.9206 -0.3906 

The eigenvalues of A11 are a double root at 0. Selecting h1 = 2 and h2 = 3 gives the 

matrix A.
11 

= An + 2/2 . The eigenvalues of An are double repeated eigenvalues 2 and 

Tr(Ai
1

) = 4. Therefore an u.b.s. for r is 

n.+ 
11 = o.5(1 + (h2- hi)! I: ~t = o.62s 

i=l 
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The p.d.s. solution P of ARE (8.45) with Au as A and A12 in place of B is 

p = 3438 
[ 

13751 0 ] 
0 13751 

3438 

_ R-lAT p _ [ -1.5623 3.6821 ] F1- 12 -
-3.6821 -1.5623 
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It is straightforward to show that this Pis an exact solution of (8.45) and satisfies Lemma 

8.5.3. The sliding matrix for r = 0.625 is 

[ ] T [ 
-0.9764 -0.3906 2.3013 0.9206 ] 

c1 = o.625Fl h = 
-2.3013 -0.9206 -0.9764 -0.3906 

The p.d.s. solution P (8.45) in [129, page 59] is incorrect, because this P does not satisfy 

Lemma 8.5.3, in spite of the eigenvalues of the closed-loop reduced system lying in the 

strip. The eigenvalues >. of Au - r A12F1 for various values of r are shown in Table 8. 7. 

The g.u.b.s. r for all the eigenvalues of Au- rA12F1 to lie in the strip is 0.7499. Note 

that for all r, A11 - r A12F1 has only a double eigenvalue. 

h1 = 2 and h2 = 3 
!! ' ' ' ' ' ' 

r 0.50 0.53 0.56 0.59 0.62 0.625 0.65 0.68 0.71 0.74 

). -2.00 -2.12 -2.24 -2.36 -2.48 -2.50 -2.60 -2.72 2.84 -2.96 

r 0.7499 0.75 0.77 0.80 0.83 0.86 0.89 0.92 0.95 

A -2.9996 -3.00 -3.08 -3.20 -3.320 -3.44 -3.56 -3.68 -3.80 

Table 8. 7: The eigenvalues A of Au - r A12F for various values of r 

Example 8.7.4: Consider Example 8.4.1. Assume a= -2 and(}= 30°. The solution of 

the Riccati equation (8.31) is 

0.0130 -0.4584 0.0039 -0.2922 

-0.4584 16.8859 -0.0896 10.6139 
P= 

0.0039 -0.0896 0.0084 -0.0832 

-0.2922 10.6139 -0.0832 6.7645 

and 

F = [ 0.2142 -6.1348 0.2926 -4.7346] 
-0.0949 2.3032 -0.1909 2.0523 
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The eigenvalues of An - A12F are -5.6757, -4.9732 ± 0.2462i, -4.0251 and the sliding 

matrix is 

c = [ -0.2142 4.7346 0.2926 -6.1348 -1.0000 0 ] 

0.0949 -2.0523 -0.1909 2.3032 0 -1.0000 

The method of Section 8.2 is now applied. Let Q = J4. Then ds = 0.37211 x 10-6 . Taking 

P = d8 ] 4 the eigenvalues of An - A12R-
1 A[2 (P +F) are -5.7336, -4.9506 ± 0.330li, 

-4.0129 while the eigenvalues of An - A12R-
1 A[2P are -5.6757, -4.9732 ± 0.2462i, 

-4.0251. So by using this method various gain matrices can be found such that all 

eigenvalues of the closed-loop system lie in the specified sector.The eigenvalues of the 

closed-loop system for a= -2 and various(} are shown in Table 8.8. 

11 
a= -2 

11 

(} Eigenvalues of A11 - A12F 
oo -5.6757 -4.6889 ± 0.2462i -3.7408 
100 -5.6757 -4.7757 ± 0.2462i -3.8276 

20° -5.6757 -4.8681 ± 0.2462i -3.9200 

30° -5.6757 -4.9732 ± 0.2462i -4.0251 

40° -5.6757 -5.1021 ± 0.2462i -4.1540 

50° -5.6757 -5.2757 ± 0.2462i -4.3276 

60° -5.6757 -5.5417 ± 0.2462i -4.5936 

70° -5.6757 -6.0417 ± 0.2462i -5.0936 

80° -5.6757 -7.4813 ± 0.2462i -6.5332 

Table 8.8: The eigenvalues of An - A12F 

When a decreases, the real parts of the eigenvalues of An- A12F also decrease progress­

ively at a regular rate. However, for certain (} the imaginary part of the eigenvalues are 

invariant with respect to variations in a. This result is obtained form the mobilization of 

Proposition 8.5.1. The variation of the eigenvalues of A11 - A12F for(}= 80° and various 

values of a are shown in Tables 8.9. The eigenvalues of An- A12 F are far from the vertex 

a; in fact the real parts of the eigenvalues An - A12F lie within the range 2a ± 6. 

Example 8.7.5: Consider Example 8.7.3 again. Choose(}= 30° and a= -2.0001. The 

p.d.s. solution of ARE (8.31) is 

[ 

5.55861265813242 2.81835724537085 5.04106085141026] 

p = 2.81835724536768 3.42901981419127 0.55622119703102 

5.04106085141342 0.55622119703550 6.57230440878359 
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which gives 

F = [ 1.1114 -1.4364 3.0080 l 
3.1438 3.0084 1.4370 

The eigenvalues of A11 - A12F are -2.0002, -3.0002, -3.5002 and the sliding matrix is 

c = [ -1.1114 -1.1113 2.2222 -2.2222 -1.0000 l 
-3.1438 -3.1434 -1.4928 0.0786 0 

Since all the eigenvalues of Au are real, TJ = 0, i.e. for all values oo ~ () < 90° the solution 

p of the ARE (8.31) is invariant, which causes the gain matrix F and the sliding matrix 

C to be invariant for all values of 0. However, all the eigenvalues lie inside the sector. 

Assume a= -2. Since -2 is an eigenvalue of A 11 , it is also an eigenvalue of the closed­

loop matrix A11 - A12F which is on the boundary of the sector. More precisely it is 

the vertex of the sector. In this case let f be a small positive real number and consider 

Ji
11 

= A11 +(a+ €)12 . In fact, by using this method the sector is shifted to a new sector 

with vertex a + f and boundary lines parallel with the boundary lines of the previous 

sector. For example, take f = 0.0001 and a= -2. 

Now consider the method for placing the poles of the closed-loop system within the 

intersection of two sectors as stated in Section 8.5.1. Take a= -2, () = 30°, f3 = -4 

and cP = 45°. Consider a new sector with vertex TJ = -4 and angle with imaginary axis 

9 = 45°. This sector is inside the intersection of the two sectors. The semi-p.d.s. solution 

of ARE (8.31) is 

and then 

[ 

347.279364009904 43.769241278813 

p = 43.769241278813 11.859265309981 

54.454529393184 6.863925898970 

54.454529393184] 
6.863925898970 

26.196398665093 

[ 
5.3426 

F-
45.3336 

-2.4977 9.6662] 

11.1279 9.6942 

The eigenvalues of A11 - A12F are -6, -7, -7.5 and the sliding matrix for the full state 

is found to be 

[ 
-5.3426 -5.0689 6.0820 -6.0820 -1.00000 l 

c = -45.3336 -14.7235 -1.4240 0.0098 
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Example 8.7.6 Now consider Example 8.7.3 again. Choose a = -2. Since zero is a 

repeated eigenvalue of A, 2a is an eigenvalue of Au - A 12F and Proposition 8.5.1 gives 

a single invariant gain matrix for all 0. The solution of ARE (8.31) is 

p = [ 3.999709 0 l 
0 3.999709 

and then 

F = [ -1.5623 3.6821 l 
-3.6821 -1.5623 

The poles of the closed-loop reduced system are the eigenvalues of An- A12F which are a 

double root at -4. After transforming to the full state space, the sliding matrix is found 

to be 

c = [ -1.5623 -0.3906 3.6821 0.9206] 
-3.6821 -0.9206 -1.5623 -0.3906 

Now consider the method for placing the poles of the closed-loop system within the 

intersection of two sectors. Take a = -2, () = 30°, /3 = -4 and </J = 45°. Consider a 

new sector with vertex rJ = -4 and angle 0 = 45o. This sector is inside the intersection 

of two sectors. A11 has double eigenvalues 0. The double eigenvalue of A11 - A12F is -8. 

To find F and then C, the semi-p.d.s. solution of ARE (8.31) should first be obtained. 

So 

p = [ 7.9994183 0 l 
0 7.9994183 

and then 

F = [ -3.1246 7.3643] 
-7.3643 -3.1246 

The eigenvalues of Au - A12F are a double root at -8. After transforming to the full 

state space, the sliding matrix is found to be 

[ 
-3.1246 -0.3906 7.3643 0.9206] 

C= 
-7.3643 -0.9206 -3.1246 -0.3906 
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11 
() = 80° 

11 

a Eigenvalues of An - A12F 

0 -5.6757 -3.4813 ± 0.2462i -2.5332 

-0.5 -5.6757 -4.4813 ± 0.2462i -3.5332 

-1 -5.6757 -5.4813 ± 0.2462i -4.5332 

-1.5 -5.6757 -6.4813 ± 0.2462i -5.5332 

-2 -5.6757 -7.4813 ± 0.2462i -6.5332 

-2.5 -5.6757 -8.4813 ± 0.2462i -7.5332 

-3 -5.6757 -9.4813 ± 0.2462i -8.5332 

-3.5 -5.6757 -10.4813 ± 0.2462i -9.5332 

-4 -5.6757 -11.4813 ± 0.2462i -10.5332 

-4.5 -6.1167 -12.4813 ± 0.2462i -11.5332 

-5 -7.1167 -13.4813 ± 0.2462i -12.5332 

-5.5 -8.1167 -14.4813 ± 0.2462i -13.5332 

-6 -9.1167 -15.4813 ± 0.2462i -14.5332 

-6.5 -10.1167 -16.4813 ± 0.2462i -15.5332 

-7 -11.1167 -17.4813 ± 0.2462i -16.5332 

-7.5 -12.1167 -18.4813 ± 0.2462i -17.5332 

-8 -13.1167 -19.4813 ± 0.2462i -18.5332 

-8.5 -14.1167 -20.4813 ± 0.2462i -19.5332 

-9 -15.1167 -21.4813 ± 0.2462i -20.5332 

-9.5 -16.1167 -22.4813 ± 0.2462i -21.5332 

-10 -17.1167 -23.4813 ± 0.2462i -22.5332 

-10.5 -18.1167 -24.4813 ± 0.2462i -23.5332 

-11 -19.1167 -25.4813 ± 0.2462i -24.5332 

-11.5 -20.1167 -26.4813 ± 0.2462i -25.5332 

-12 -21.1167 -27.4813 ± 0.2462i -26.5332 

-12.5 -22.1167 -28.4813 ± 0.2462i -27.5332 

-13 -23.1167 -29.4813 ± 0.2462i -28.5332 

-13.5 -24.1167 -30.4813 ± 0.2462i -29.5332 

-14 -25.1167 -31.4813 ± 0.2462i -30.5332 

-14.5 -26.1167 -32.4813 ± 0.2462i -31.5332 

-15 -27.1167 -33.4813 ± 0.2462i -32.5332 

Table 8.9: The eigenvalues of Au - A12F for various values of a 
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11 
(} = 80° 

11 

a Eigenvalues of Au - A12F 

-15.5 -28.1167 -34.4813 ± 0.2462i -33.5332 

-16 -29.1167 -35.4813 ± 0.2462i -34.5332 

-16.5 -30.1167 -36.4813 ± 0.2462i -35.5332 

-17 -31.1167 -37.4813 ± 0.2462i -36.5332 

-17.5 -32.1167 -38.4813 ± 0.2462i -37.5332 

-18 -33.1167 -39.4813 ± 0.2462i -38.5332 

-18.5 -34.1167 -40.4813 ± 0.2462i -39.5332 

-19 -35.1167 -41.4813 ± 0.2462i -40.5332 

-19.5 -36.1167 -42.4813 ± 0.2462i -41.5332 

-20 -37.1167 -43.4813 ± 0.2462i -42.5332 

-20.5 -38.1167 -44.4813 ± 0.2462i -43.5332 

-21 -39.1167 -45.4813 ± 0.2462i -44.5332 

-21.5 -40.1167 -46.4813 ± 0.2462i -45.5332 

-22.5 -42.1167 -48.4813 ± 0.2462i -47.5332 

-23 -43.1167 -49.4813 ± 0.2462i -48.5332 

-23.5 -44.1167 -50.4813 ± 0.2462i -49.5332 

-24 -45.1167 -51.4813 ± 0.2462i -50.5332 

-24.5 -46.1167 -52.4813 ± 0.2462i -51.5332 

-25 -47.1167 -53.4813 ± 0.2462i -52.5332 

-25.5 -48.1167 -54.4813 ± 0.2462i -53.5332 

-26 -49.1167 -55.4813 ± 0.2462i -54.5332 

-26.5 -50.1167 -56.4813 ± 0.2462i -55.5332 

-27 -51.1167 -57.4813 ± 0.2462i -56.5332 

-27.5 -52.1167 -58.4813 ± 0.2462i -57.5332 

-28 -53.1167 -59.4813 ± 0.2462i -58.5332 

-28.5 -54.1167 -60.4813 ± 0.2462i -59.5332 

-29 -55.1167 -61.4813 ± 0.2462i -60.5332 

-29.5 -56.1167 -62.4813 ± 0.2462i -61.5332 

-30 -57.1167 -63.4813 ± 0.2462i -62.5332 

Table 8.9 (contd) The eigenvalues of Au- A12F for various values of a 
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8.8 Summary and Discussion 

In this chapter the Lyapunov and Riccati equations, and stability properties of complex 

and real systems have been considered. Several new methods have been proposed to find 

feedback matrices such that all the eigenvalues of Au - A 12F lie in a specified sector 

or vertical strip. These techniques have been extended to the hyperbola and the region 

between two specified sectors. The errors and inaccuracies in [101] have been clarified, 

and a new theorem and its proof have been presented to yield all the eigenvalues of the 

closed-loop system to lie in a specified vertical strip in the left-hand half-plane. 

All these methods are based on properties of the Riccati equation. The ARE with 

zero right-hand side has a semi-p.d.s. solution matrix, and only if the state matrix is 

completely unstable does this ARE have a p.d.s. solution. When the matrix is stable, the 

semi-p.d.s. solution is the zero matrix. All these facts have been proved and illustrated 

by examples. Further research is needed to obtain conditions for all the eigenvalues to lie 

in a specified region by using the CARE. More details of the CARE will be presented in 

Chapter 9. 

The work by Woodham [129] also has some error and inaccuracies, which arise from 

applying the Shieh et al [101] method. Shieh et al [101] believed that the ARE with 

zero right-hand has a p.d.s. solution matrix but this is generally not true. The methods 

in (129] and [131] fail because, for some sectors, all the eigenvalues obtained by these 

algorithms may not lie in the specified sector. However, the associated CARE has a p.d. 

Hermitian solution. So, if all the eigenvalues of the closed-loop system are in the specified 

sector, the associated CARE has a p.d. Hermitian solution, but the converse is always 

not true. Another reason for the failure is that they considered pure complex weighting 

matrices (i.e. for all() =f. 0 the weighting matrix is not real) and finally apply real weighting 

matrices. They also consider the absolute values of a matrix while the absolute value of 

a p.d.s matrix is not necessarily a p.d.s. matrix. Note that the positivity definition of a 

matrix is not related to the positivity of all the elements of the matrix. 

It should be emphasized that Woodham [129] stated that her feedback gain matrix 

seems to work in some cases. She did not specify for which systems the feedback matrix 

is valid and indicated that more work was needed. The definition of a p.d. matrix in 

the statistics literature is equivalent to the p.d. of the elements, but this definition is not 

valid in control theory. 

Many examples have been presented to illustrate the results. Some conditions are 
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necessary and sufficient, others only sufficient. Further work is needed to obtain conditions 

which are weaker than those stated in this chapter. Using the transfer function of the 

closed-loop system may prove fruitful. 



Chapter 9 

Matrix Complex Vector Space and 

Linear Complex Systems 

The real algebraic Riccati equation is important because system stabilization can be 

achieved by using a suitable feedback gain corresponding to its solution. Also H 00 the­

ory extensively uses solutions arising from the Riccati equation. Many methods have 

been proposed for obtaining the solution of this equation. The Schur method using an 

associated Hamiltonian matrix has been proposed by Laub 177]. Another method, the 

so-called Macfarlane-Potter-Fath method (Kailath !631), uses eigenvalue decomposition of 

an associated Hamiltonian matrix. 

If the weighting matrix of the right hand-side of the ARE is zero as in (8.25), the 

Hamiltonian matrix may not have sufficient eigenvalues with negative real parts, because 

the eigenvalues of the Hamiltonian matrix are the eigenvalues of matrices A and -AT. In 

this case, the eigenvalues of the closed-loop matrix are the eigenvalues of A and -A which 

lie in the left-hand closed half-plane. The solution of this ARE cannot be obtained from 

the Hamiltonian matrix. In fact the matrix which can be used for obtaining the solution 

is not invertible (see Appendix C). This solution is semi-p.d. and the number of zero 

eigenvalues of the solution matrix is the same as the number of eigenvalues of A which 

are in the left-hand closed half-plane. The nature of the solution of this Riccati equation 

has been studied in Chapter 8. Byers's solution method 117] is only for SISO problems. 

The more general MIMO case still remains unsolved. 

As seen in Chapter 8, the complex Riccati equation appears in many control problems. 

However, an algorithm for finding the solution of the complex Riccati equation has not 

been considered in the established literature. In this chapter the real vector spaee of 

199 
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complex square matrices is studied and the positivity concept of a matrix is extended 

to the complex case. In Section 9.1 the relationship between the real vector spaces of 

complex and real square matrices is clarified. This relationship yields links between the 

real and complex Riccati equations. In Section 9.2 the concept of the p.d. complex matrix 

is defined and the concept of positive definiteness is extended to the complex case. Some 

theorems yield the necessary and sufficient conditions for positivity of a complex matrix. 

In Section 9.3 the complex Riccati equation and some related aspects are considered. 

Complex systems and their application are considered in Section 9.4. 

In this chapter Mn(lR) and Mn(C) denote the real vector space of real n x n matrices 

and the real vector space of complex n x n matrices, respectively. 

9.1 Complex Matrix Vector Space 

Some basic concepts about the real vector spaces of real and complex square matrices are 

reviewed in this section. The relationship between real vector spaces of real and complex 

square matrices is also considered. In fact there is an isomorphism from Mn(C) onto a 

subspace of M2n(1R). Note that the dimensions of Mn(lR) and Mn(C) over the field 1R are 

n2 and 2n2 , respectively. 

Let ME Mn(C), then M= A+ iB where A, BE Mn(lR). Then, for any z = x + iy E C' 

Mz (A+ iB)(x + iy) 

(Ax- By)+ i(Ay + Bx) 

Assuming M z = x + if), then 

Equation (9.2) shows that the map <P : C' --+ lR2
" defined by 

where Zj =xi+ iyi for 1 ~ j ~ n, is an isomorphism of lR-vector spaces. 

Define the operator J : lR2
" --+ lR2

" with 

(9.1) 

(9.2) 
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Thus the operator J is 

J = n E M2n(1R) 
[ 

0 -1 l 
In 0 

Suppose 

M=[~~] 
where A, B, C, D E Mn(lR). Then M J = J M if and only if A = D and B = -C. Let 

N : JR2n ---+ JR2n and M : en ---+ en be linear operators related by cl> M = N cl>. Then M 

is linear if and only if M J = J M. On the other hand, for any M E M 2n (JR), M iH in the 

form of [ ; -: ] if and only if M J = J M. Define 

M(C) {ME M2n(1R): MJ = JM} 

{ [ ; -: l : A, B E Mn (R)} (9.3) 

Therefore, the following theorem is well established. 

Theorem 9.1.1 Let 1/J : Mn(C) ---+ Mn(C) be a map which is defined by 

[
A -B l A+ iB---+ B A 

'ljJ is an isomorphism in the sense of rings and JR-vector spaces. 

Proof: The proof is straightforwardly achieved by checking the properties of the 

isomorphism. 0 

Since the complex vector space Mn (C) on the field lR has properties corresponding to the 

JR-vector space Mn(C), this theorem is very important. For example a complex matrix is 

invertible if and only if its corresponding real matrix is invertible. 

9.2 Positivity of a Complex Matrix 

In this section the positivity concept of a complex matrix, necessary and sufficient con­

ditions for positivity, and some related results are presented. The positivit.y concept is 

defined to include the traditional definition for a real matrix. In fact the real matrix is a 

particular case of a complex matrix with zero complex parts. 
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Definition 9.2.1 A complex matrix A = A1 + iA2 E Mn(C) is called p.d. if for all 

complex vectors X i 0, ~(x* Ax) > 0, i.e. A = Al + iA2 is p.d. if for all X = X}+ ix2 E en 

(9.4) 

If A = A1 + iA2 is a complex matrix and x E lRn, then ~(x* Ax) = xT Aix. When A is 

a real matrix and x E lRn, then x* Ax = xT Ax and the definitions coincide. Also, if A is 

an Hermitian matrix, then for all X E en' (x* Ax)* = x"' Ax and (x"' Ax)* E JR. Since the 

eigenvalues of an Hermitian matrix are real, the eigenvalues of a p.d. Hermitian matrix 

are positive real [42, page 105]. It is necessary to deal with the general case including 

non-Hermitian matrices. 

Lemma 9.2.1: Let A= AI+ iA2 be a complex matrix and x = x1 + ix2 E C', then 

(9.5) 

Proof: 

x* Ax (x?- ixi)(AI + iA2)(xi + ix2) 

x[ AI xi - xf A2x2 +xi A2x1 +xi A1x2 + 
i(xf A2xi + xf Aix2- xi Aixi + xr A2x2) (9.6) 

Hence 

~(x* Ax) 

0 

Lemma 9.2.2: Let A = AI + iA2 E Mn(C) be a complex matrix. A necessary awl 

sufficient condition that A is p. d. is that the matrix 

is a p.d. real matrix. 
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Proof: Let A be a p.d. complex matrix and 

be an arbitrary vector. Let x = x1 + ix2. Then, by using Lemma 9.2.1, ~(x* Ax) > 0 if 

and only if 

Lemma 9.2.2 shows that the positivity of complex matrix is converted to the positivity of 

a corresponding real matrix. 

Lemma 9.2.3: Let A = A1 + iA2 E Mn(C) be a matrix. A necessary and suffirif~nt 

condition that A is an Hermitian matrix is that the matrix 

is a symmetric real matrix. 

Lemma 9.2.4: Let A = A1 + iA2 E Mn(C) be a complex matrix. A necessar-y and 

sufficient condition that A is stable, is that the matrix 

is stable. 

Proof: If >..k, k = 1, 2, ... , n, are the eigenvalues of the complex matrix A, then the 

eigenvalues of A are >..k and its conjugates ).k· 0 

Lemma 9.2.4 implies that all the eigenvalues of the complex matrix A = A1 + iA2 lie in a 

specified region symmetric with respect to the real axis, if and only if all the eigenvalues 

of its corresponding real matrix A lie in this region. 
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Proof: 

A2 + A2A1-1 A2A-1 A2 

A2A1 -I (A1 + A2A1- 1 A2) 

The following theorem is obtained directly from the above Lemma. 

204 

0 

Theorem 9.2.1: Assume A = AI + iA2 E Mn(C) is an invertible complex matrix with 

jA11 -=J 0 and IA1 + A2AI-l A2l =I 0. Then 

Corollary 9.2.1: Assume A= A1 + iA2 E Mn(C). A sufficient condition for the inver·t­

ibility of the matrix A is that IA1I =I 0 and IA1 + A2A1-1 A2l f= 0. This condition i.<; not 

necessary. 

Proof: The proo[f ~z.es~tz

0
~ ]immediately from Theorem 9.2.1. This condition is not neces­

sary. Note that has an inverse but the conditions of Corollary 9.2.1 are not 

satisfied. 0 

If A E M(C), IA1I =I 0 and IA1 +A2A1-1 A2l =I 0. Corollary 9.2.1 and Theorem 9.2.1 yield 

[ 
AI -A2 ]-l = [ (A1 + A2A1-I A2)- 1 A1- 1 A2(A1 + A2A1- 1 A2t 1 l 
A2 AI -AI-l A2(Al + A2AI-l A2)-l (AI + A2Ai-i A2)-l 

9.3 Complex Algebraic Riccati Equation {CARE) 

In Section 9.1 some properties of complex matrices and relationships between the real 

vector spaces of real and complex square matrices have been stated. In this section an 

important problem, i.e. the complex Riccati equation is considered. The complex Riccati 

equation is related to its real counterpart. This correspondence characterizes a way to 

convert the complex problem to the real matrix case. 

Consider the complex Riccati equation 

(9.7) 
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where A, B are n x n and n x m complex matrices. Also R, Q are arbitrary p.d. and semi­

p.d. Hermitian m x m and n x n complex matrices, respectively. Therefore A= At+ iA2 , 

B = B1 + iB2, R = R1 + iR2 and Q = Ql + iQ2 where Rt, Qt are symmetric matrices 

and R2, Q2 are skew-symmetric matrices. Now it is desired to to find a p.d. Hermitian 

matrix solution P = P1 + iP2 such that 

(Pt + iP2)(At + iA2) + (Af- iAr)(Pt + iP2) - (P, + iP2)(Bt + iB2) 

(Rt + iR2)-1(BI + iB2)T(P1 + iP2) = -(Qt + iQ2) (9.8) 

Since R is p.d.s matrix, Rt + R2R1-1 R2 > 0 and Rt > 0. Therefore, IRtl =f. 0 and 

IR1 +R2R 1- 1 R2l =f.O. Thus, from Theorem 9.2.1 the inverse of R exists and R- 1 = ~ - 1 +iA, 

where~= R1 + R2R1-1 R2 and A= -R~- 1 R2(R1 + R2R1-1 R2)-1. Hence 

{ P1A1 - P2A2 +A[ P1 +A~ P2- ((PtBt - P2B2)~ -l- (P2B1 + P1B2) A) 

(B'[ P1 - Bf P2) + ((P2B1 + P1B2)~ -t + (P1B1 - P2B2)A)(Bf P1 + Bf P2)} 

+i { P2A1 + P1A2 + Af P2- Ar P1- ((P2B1 + P1B2)~ -l + (P1B1- P2B2)A) 

(B[Pt + BfP2)- ((PtBt- P2B2)~- 1 - (P2B1 + P1B2)A) (BfPl + BfP2)} 

= -(Ql + iQ2) (9.9) 

Therefore 

P 1A1 - P2A2 +A[ P1 +A~ P2- ((P1B1- P2B2)~ -I- (P2B1 + P1B2)A) 

(Bf P1 + Bf P2) + ( (P2B1 + P1B2)~ -t + (PtBt - P2B2) A) 

(Bf P1 + Bf P2) = -Ql (9.10) 

and 

P2A1 + P1A2 +A[ P2 -A~ P1 - ( (P2B1 + P1B2)~ -l + (PtBt - P2B2)A) 

(B'[ P1 - Bf P2) + ((PtBt- P2B2)~ -t - (P2B1 + P1B2)A) 

(Bf P1 + Bf P2). = -Q2 (9.11) 

Consider the Riccati equation 

?A.+ A.T?- ?iJir1 fJTp = Q (9.12) 

where 
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and 

If R2 = 0, R = RI and A = 0 

The equation (9.12) includes both the equations (9.10) and (9.11). This implies the 

following theorem: 

Theorem 9.3.1: The p.d. Hermitian matrix P = P1 + iP2 is a solution of the Riccati 

equation (9. 7) if and only if the p.d.s. matrix 

is a solution of (9.12). P is unique if and only if the matrix P is unique. 

Theorem 9.3.2: Assume that P and P are the p.d. matrix solution of equation.~ (9. 7) 

and (9.15), respectively. A- BR-I BT P is stable if and only if A- iJfl-l iJT P is stable. 

Proof: A- iJfl-I iJT Pis stable if and only if the Riccati equation (9.12) has an u.p.d.s. 

matrix solution. But Theorem 9.3.1 implies that P is the u.p.d.s. matrix solution of 

(9.12) if and only if Pis the u.p.d. Hermitian matrix solution of (9.7). This is equivalent 

to the stability of the matrix A- BR-I BT P. o 

Corollary 9.3.1: Let AI, A2, ... , An be the eigenvalues of A - BR-1 BT P. Then the 
. - - --1 -T - - - -

ezgenvalues of A- BR B P are AI, A2, ... , An, AI, A2, ... , An· 

Proof: The proof follows immediately from Lemma 9.2.4. 0 

From Corollary 9.3.1 the eigenvalues of A- i:Jfl-l flT Pare AI, --\2 , •.. , An, >. 1, >.2 , ..• , >-n· 

So if A- iJfl-I iJT P has a real eigenvalue, this eigenvalue appears twice in the spectrum. 

Then eigenvalues of A- BR-1 BT Pare contained in the eigenvalue set of A- flfl- 1 iJ'r P 
and if Ai is an pure complex eigenvalue (i.e. Ai ~ IR) of A- BR- 1 BT P, then .Xi may not 

be an eigenvalue of A- BR-IBTP. However, all the eigenvalues of A- BR- 1B'l'P and 

A_ iJfl-I iJT P lie in the same region. 
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9.4 Complex Systems 

When the terms "complex system" or "system with complex state and control matrices" 

are used, it may seem that the systems under consideration are not directly real life 

problems. But as stated in Section 9.1, there is an isomorphism from the lR-linear vector 

space of complex matrices onto a subspace of the JR-linear vector space of real matrices 

which gives information about the corresponding system with eomplex states in the real 

world. In this section an example of this type of system model is presented. Complex 

systems (with complex state and control matrices) have been studied in a few papms 

(Martin (83], Hazewinkel and Martin (56], Byrnes et al (18]). Consider the system 

x = Ax+Bu (9.13) 

where A = Al +iA2 E cnxn' B = Bl +iB2 E cnxm' u E cm' X E en. Assume X = XJ +i:r;2 

and u = u1 + iu2 where x1, x2 E lRn, u1, u2 E lRm. The matrices A, B are defined as in 

(9.12) and 

i = [ ::]. u = [ :: l 
Then the complex system (9.13) is equivalent to the real system 

[ 
~1 l [ A1 - A2] [ x1 l + [ B1 - B2] [ u

1 l 
x2 A2 A1 x2 B2 B1 u2 

(9.14) 

Therefore, any complex system of order n is equivalent to a 2n-th order real system. 

Theorem 9.3.2 gives the re~ation[s~ be~;:nl t~e stability of a complex system and ap­

propriate real system. If§ = 1s a feedback for the system {9.14), then 
§2 $1 

§ = § 1 + i§2 is a feedback for the complex system {9.13). When A+ fJ§ is a stable 

matrix, A+ B§ is also stable. In fact the poles of the system {9.13) lie within the same 

region as the poles of the real system (9.14). Therefore an optimal feedbaek for the real 

system (9.14) is u = .ff:x with 

where 

§1 -~- 1 B[Pl + ~- 1BfP2 + ABfPt + ABfP2 

§ 2 - -~- 1BfP2- .6.-1BfP1 +ABfP2- ABfP1 

with the same A, D. and P as in Section 9.3. 
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Figure 9.1: Two helicopters with a rigid bar 

9.4.1 Example of a Complex System Model 

The twin lift helicopter system (Martin [83J, Hazewinkel and Martin [56), Byrnes et al 

[181) is given by 

(9.15) 

It has been shown by Wang et al [124) that if (A1, B) is controllable and 

A = [ _ ~; ~:]. B = [ ! ~ l 
(A,B) may not be controllable. Therefore, this system cannot be asymptotically stabilized 

by local state feedback. The system (9.15) is equivalent to the complex system 

(9.16) 

where x = x 1 + ix2 and u = u1 + iu2 . The system (9.16) (and also (9.15)) is controllable 

if and only if (A1 + iA2, B) is controllable. 

The moving of large loads with helicopters is important in commercial and military opera­

tions. The Sikorski CH-53E is a large helicopter able to carry a payload of approximately 

40,000 lbs. Consider using two helicopters for carrying large loads; this is known as twin 

lift [83). Assume two helicopters H1, H2 are carrying a rigid bar attached by cables such 

that the mass, M, is in the centre of the cable as is shown in Fig. 9.1. The system is mod­

elled by linear dynamics of the form (9.15) where the helicopter dynamics are modelled 

by the matrix A2 , representing the coupling between the two systems and containing the 

effect of the parameters L1 and £2. The local feedback of x1 by u1, and x2 by u2 should 
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have the same gain matrix K, i.e. ui = Kxi, j = 1, 2 and hence u = u1 +iu2 = K(x 1 +ix2). 

The control for a complex system can be represented as a complex vector. It is desired 

to obtain real feedback. Generally, a complex system is in the form 

x = Ax+Bu (9.17) 

where A, B, x and u are complex matrices, i.e. A = A1 + iA2 and B = B1 + iB2 where 

A1, B1 are symmetric and A2, B2 skew-symmetric matrices. 
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9.5 Summary and Discussion: 

In this chapter the JR-vector spaces of complex and real matrices have been studied and 

the relationship between the spaces have been clarified. More precisely, there is an iso­

morphism from the JR-vector space of complex n x n matrices onto a subspace of the 

JR-vector space of 2n x 2n real matrices in the sense of rings and vector spaces. This 

yields a suitable manner of finding the solution of the CARE. The existence conditions 

for the CARE u.p.d. solution have been presented. The relationship between the complex 

system of order n and its equivalent system which is a 2n-th order real system has been 

given. Any problem in the lR-vector space of complex matrices can be converted to the 

JR-vector space of real matrices. Complex systems can be converted to real ones. Complex 

feedback should be considered and the associated real feedback applied. 



Chapter 10 

Conclusions and Suggestion for Future 

Work 

10.1 Conclusions 

Sliding mode control is a well-known approach to the problem of control of uncertain 

systems, since it is invariant to a class of parameter uncertainty. Well-established invest­

igations have shown that the sliding mode controller/ observer is a good approach from 

the point of view of robustness, implementation, numerical stability, applicability, ease of 

design tuning and overall evaluation. In the sliding mode control approach the controller 

and/ or observer is designed so that the state trajectory converges to a surface named the 

sliding surface. It is desired to design the sliding surface so that the system stability is 

achieved. 

The continuous and discrete-time optimal sliding mode and optimal control have 

been studied. The sliding mode in regulator and tracking problems, and also a class of 

servo-mechanism and reference signal systems have been considered. Using the linear 

quadratic cost functional guarantees the stability of the system. When the system has 

a reference signal input, the design of the sliding surface is different. In this case the 

reference input and its effect on the system must be considered. Therefore by consid­

ering output tracking and regulator problems the sliding surface can be obtained. The 

reference input has been considered as a dynamic system, and the sliding control and the 

sliding surface have been obtained. In this case the reference system is a dynamic system 

independent of the system and operates as a signal reference controller or generator. 

211 
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Frequency shaping control design linked with linear quadratic optimal control and 

sliding mode control is a technique for controlling systems with uncertainties. A new 

method for designing the control and the sliding surface has been proposed when the LQ 

weighting functions are not constant for all frequencies. By using this method pre- and 

post-compensators have been designed. The resulting augmented system is a combination 

of the LQ system and compensators. The order of the augmented system depends upon 

the dimension of the LQ system state and the weighting functions. It has been concluded 

that the sliding mode can be expressed as a linear operator of states, i.e. a dynamic 

system. Additionally, conditions have been obtained to retain the spectrum of the LQ 

reduced system as a subset of the spectrum of the augmented system. This is important if 

compensators for the system are required such that the eigenvalues of the LQ system are 

the eigenvalues of the augmented system. Furthermore an iterative constructive procedure 

for the optimal sliding mode has been developed. This method enables one to find various 

sliding surfaces and by looking at the eigenvalue locations in the left-hand half-plane a 

sliding surface can then be selected to suit. 

The aim of observer design is to find an estimate for the state and, if the input 

is unknown, estimate a suitable input. Using the sliding control input form observer 

a suitable estimated input can be obtained. In this thesis a discontinuous observer for 

full order systems with disturbance input has been designed. The system may not be 

ideally in the sliding mode and the uncertainty may not satisfy the matching condition. 

The proposed sliding observer design method yields an estimated state which nearly ap­

proaches the actual state. A sufficient condition ensures the asymptotic stability of the 

system with some limitations on the uncertainty input. Otherwise, this method ensures 

only that the estimated state tends approximately to the actual state. The bounds of 

this approximation have been expressed precisely. In this way, the state error trajectory 

enters a compact set at a finite time and thereafter remains there. The sliding mode also 

occurs after a finite time; so there exists a finite time such that the state trajectories enter 

the 'sliding region' and move to the origin along and in the vicinity of the sliding surface. 

An controller-observer design method has been presented by considering the sliding mode 

properties of linear systems. 

The sliding dynamics for SISO and MIMO linear systems and conditions for the 

existence of the sliding mode in the presence of uncertainty, have been studied. The 

existence of the sliding mode guarantees that the state trajectories converge to a sliding 

surface at a finite time and move along the surface to the origin thereafter. However, the 

system may generally not be stable. For the system to be asymptotically stable, some 



Chapter 10. Conclusions and Suggestions for Future Work 213 

further conditions may be needed. 

A new straightforward technique for determining whether the system in the sliding 

mode is independent of the perturbation input has been presented. Also sufficient condi­

tions for the sliding mode control design of systems with disturbance input and the sliding 

mode dynamics have been obtained. 

The sliding surface for the discrete-time systems is a lattice called the sliding lat­

ticewise surface or more concisely the sliding lattice. A new control design technique using 

the properties of the discrete sliding mode has been proposed. This control guarantees the 

stability of the sliding mode and the stability of the system. This control does not have 

the same structure as continuous SMC. The behaviour of the system in the sliding mode 

and stability conditions have been studied. If the nominal reduced order matrix is stable, 

then the state in the sliding mode is bounded. In this case the width of the boundary 

layer depends upon the disturbance bound, the norm of the distribution disturbance input 

map and the degree of stability of the nominal reduced system matrix. 

The main problem in discrete-time sliding systems is the perfect rejection of unknown 

disturbances during the sliding mode. In the discrete-time case perfect disturbance re­

jection is achieved if only the disturbance is exactly known and the associated equivalent 

control component is applied. One needs to consider various restrictive conditions like; 

( i) the matching condition, ( ii) suitable estimation for the successive disturbance dif­

ference (the variation of the disturbance sequence) ~(k) - ~(k - 1), (iii) the difference 

sequence ~(k) - ~(k- 1) is a decreasing sequence or sufficiently small after a finite time. 

Although this problem also appears in continuous systems, in the case of discrete-time 

systems the proof of perfect disturbance rejection is more complicated. This difference 

arises because the reaching sliding condition of continuous systems differs from that of 

discrete-time systems. In discrete-time systems in the study of the stability of the system 

and also the reaching sliding condition, the discrete Lyapunov function is employed and 

difference equations appear. In the case of continuous systems the continuous Lyapunov 

function is utilized which results in derivatives. In the discrete-time control design method 

one needs to use an estimate for the disturbance input. One may achieve the estimation 

as in [112). Another approach uses the equivalent control with zero disturbance and one 

assumes that the disturbance does not affect the equivalent control. More precisely, since 

the equivalent control can be considered as the average of the control input, if the mean of 

the disturbance is zero, then the equivalent control may be assumed to be "independent" 

of the disturbance input. 
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There are two approaches to the design of a discrete-time sliding mode controller: (i) 

in the first instance a dynamical sliding mode(or the control) is specified, and then it is 

necessary to find the conventional control (sliding mode dynamics) [46], [21J; (ii) a control 

is found by using the properties of the sliding mode so that the stability of the nominal 

systems in the sliding mode is conserved. In this thesis both methods (i) and (ii) have 

been applied successfully to linear systems. New discrete-time system stability conditions 

have been proposed and the design of the optimal sliding mode matrix has been extended 

to DSMC. Most previous DSMC research has considered only SISO systems. 

New results for the stability of reconstruction error systems of linear discrete-time 

systems have been proposed. The same difficulties which occur in the disturbance rejection 

problem exist for the discrete-time sliding observer. The cone condition for the error 

system is a boundedness condition and satisfying this condition is difficult in practice. 

However, the stability of the system is guaranteed if one of the following conditions is 

satisfied: ( i) the cone condition for the disturbance input with respect to the state; ( ii) 

there exists a finite time instant such that after this time the disturbance input sequence 

f. is a decreasing sequence. So a simple condition on the disturbance should yield the 

stability of the error system. Further research is needed to find this condition. 

The sliding mode control of time-delay systems has been considered. Time-delay slid­

ing system stability has been studied for the cases of having full information about the 

delay and also lack of information. The sliding surface is delay-independent as for the tra­

ditional sliding surface, and the reaching condition is achieved by applying a conventional 

discontinuous control. The sliding mode on a specified surface is achieved if the state 

converges to the surface. Two kinds of sliding surface can be designed: ( i) the sliding 

surface is independent of the delays; ( ii) the sliding surface depends on the delays. In the 

second case the delays should be constant, otherwise the sliding surface is not a simple 

hyperplane. 

The Lyapunov and Riccati equations, and stability properties of complex and real 

systems have been considered. By using these equations the sliding surface and feedback 

gain matrix can be found such that all the eigenvalues of the closed-loop system li£~ in a 

specified region. 

Several new methods have been proposed for all the eigenvalues of the closed-loop 

system to lie in a specified region. Eigenvalues can be specified in a region in the left-hand 

half-plane for the system and design the gain feedback matrix to yield these eigenvalues. 

This method can also be applied to the design of the sliding gain matrix. The following 
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regions have been considered; a sector, an infinite vertical strip, a disc, a hyperbola and 

the intersection of two sectors. A modified new theorem with a new proof has been 

presented to place all the eigenvalues of the closed-loop system in a specified vertical 

strip in the left-hand half-plane. These methods are based on properties of the Riccati 

equation. The ARE with zero right-hand side has a semi-p.d.s. solution matrix, and only 

if the state matrix is completely unstable, does this ARE have a p.d.s. solution. When 

the matrix is stable, the semi-p.d.s. solution is the zero matrix. Illustrative examples have 

been presented. If all the eigenvalues of the closed-loop system are in the specified sector, 

the associated CARE has a p.d. Hermitian solution, but the converse is not always true. 

The definition of a p.d. matrix in the statistics literature is equivalent to the p.d. of the 

elements but this definition is not appropriate in control theory. 

The complex equation, positivity of a complex matrix and the control of complex sys­

tems are significant problems which appear in many control theory problems. Generalized 

complex Riccati equations have been considered. The positivity concept of a matrix has 

been carefully defined. A method for finding the solution of the complex Riccati equation 

has been proposed. 

There is an isomorphism from Mn(C) into M2n(1R), so the lR-vector space of complex 

matrices is isomorphic to the conventionallR-vector spaces of real matrices in the sense of 

rings and vector spaces. This yields a suitable way of finding the solution of CARE. Ex­

istence conditions for the u.p.d. solution of CARE have been presented. The relationship 

between a complex system of order n and its equivalent system, which is a 2n-th order 

real system, has been given. Any problem in the lR-vector space of complex matrices can 

be converted to the JR-vector space of real matrices. For instance, complex systems can 

be converted to their real counterpart. 

10.2 Suggestions for Further Research 

In this section some problems requiring further research and some open questions are 

discussed. Possibly most results of this thesis could be extended to nonlinear affine systems 

x = A(t, x)x + B(t, x)u + f(t, x, u) 

Also some results for continuous systems could be extended to discrete-time systems. 

Some of these problems are: 

( i) The optimal sliding tracking problem for a nonlinear affine system with uncer-
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tainty needs to be investigated; also linear and nonlinear discrete-time systems. 

If the bounded reference input is a stepwise function, the stability of the system is 

achieved. But if the reference signal is not a stepwise function and the reference 

input is only bounded, the stability of the system needs be investigated. 

Useful results may possibly be obtained by investigating of the sliding condition 

in the sense of the boundary layer and also in extending the theory to nonlinear 

systems. 

(ii) Further research should address Hoo and the sliding mode, and extend the work in 

[55). Possibly a generalized system could be found and then Hoo methods could be 

used. Similarly to [55], by using the H 00 approach, the sliding gain matrix could 

be found for cases (iii) and (iv) of Section 4.1. Moreover, in [55) only one way ha.'i 

been presented for obtaining the sliding gain matrix. However, some H00 methods 

to obtain the feedback gain matrix, could be adapted to those augmented systems 

which have been discussed in Chapter 4. 

( iii) Further research should investigate bounds tighter rather than those stated in 

Chapter 5. The results may be extended to nonlinear systems with nonlinearit­

ies only in the disturbance input term. 

It is interesting to consider the system with unmatched uncertainty and obtain a 

relaxed sliding condition to impose asymptotic stability. 

(iv) Theorem 6.8.2 determines the relationship between the solution of the DLE (6.67) 

for arbitrary weighting function Q9 and the solution for Q = /. An open prob­

lem is to find a relationship between the eigenvalues of the p.d.s. matrix solu­

tion of the discrete-time Lyapunov equation, particularly a bound for the ratio 

Amin(P
9
)/ Amin(P9 ) which appears in some stability conditions, such as (6.69). 

( v) The sliding mode control of delay systems is a relatively new field which needs to 

be developed. The stability of the sliding mode control of a system with a delay on 

the state has been considered. It was assumed that the delay is constant, but if the 

delay is a function of time, how should sliding control be defined so that the state 

lies in a certain sliding surface. The extension of the results of this thesis to systems 

with finite delays is straightforward. The results should also be extended to systems 

with delay in the control and to the sliding mode observer for time-delay systems. 

Further research may yield a weaker condition than (7.20) to ensure system stability 

independent of the delay. 
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(vi) Further work is needed to obtain conditions weaker than those in this thesis, for the 

eigenvalues of a closed-loop continuous system to lie in the specified region in the 

left-hand half-plane. By using the CARE one may obtain appropriate conditions. 

Using the transfer function of the closed-loop system may also prove fruitful. 

( vii) Complex feedback may be considered to find the associated real feedback so that 

the stability of the system and other desired properties are preserved. As stated 

in Chapter 8, the CARE gives a complex feedback gain matrix which has not the 

same properties as real case. However the CARE yields a associated real feedback 

for a real system with order two times higher than original system. The problem is 

whether one can drive a real feedback gain matrix by using the complex feedback 

gain matrix or more precisely with the solution of the CARE. 

( viii) More general cases of the Riccati equation and some related problems are still open 

questions. A method is also required to obtain the semi-p.d.s. solution of the ARE 

when the weighting matrix of the right-hand side is zero (see equation (8.25)). 

(ix) More research is required to obtain a dynamical well-behaved sliding mode so that 

the stability of the system in the presence of external unmatched disturbance input 

is achieved. Using the transfer function of the system may be a possible way to 

design a sliding mode. This method may need some information about the zeros of 

the system. 

(x) There are many ways forward regarding the adaptive sliding surface design for con­

tinuous and discrete-time systems. Sliding surfaces could possibly be designed by 

using a method similar to the backstepping approach [128]. 



Appendix A 

A.l Stability 

Consider the time-varying system 

x = f(x, t) (A.l) 

where x E Rn and f : D x ll4 --+ lRn where the domain D C JRn, is a piecewise continuous 

function in t and locally Lipschitz in x. 

Suppose x E D is an equilibrium point with f(x, t) = 0 for all t ~ t0 . Any equilibrium 

point can be shifted to the origin via a change of variables, y = x- x. So without loss of 

generality, all the definitions are stated for the case when the equilibrium point is at the 

origin. 

Definition A.l.l: The equilibrium point 0 of (A.l) is 

( i) stable, if for each E > 0 there exists a 8 ( E, to) > 0 such that for all t ~ t0 

llx(to; Xo, to)ll < 8 =} llx(t; Xo, to)ll < E 

( ii) unstable, if it is not stable 

( iii) asymptotically stable, if it is stable and there exists a <5 such that 

llx(to;xo,to)ll < 8 =} lim x(t;xo,to) = 0 
t-+oo 

Definition A.1.2: The equilibrium point 0 (A.l) is 

(A.2) 

(A.3) 

( i) exponentially stable, if there exist two positive real numbers, a and /3, such that for 

for all t ~ to, 

llx(t; Xo, to)ll < nllx(to; Xo, t 0)lle-.B(t-to) (A.4) 

218 
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(ii) quadratically stable, if there exist p.d.s. matrices P, Q E Rnxn such that for all t ~ t 0 , 

(A.5) 

Corollary A.l.l: Consider the system { A.l) satisfying ( A.5). If the equilibrium point 0 

is quadratically stable, then it is exponentially stable. 

Proof: Consider the Lyapunov function V= xTPx. From (A.5) 

dV(x(t) 
2 

TQ 
---'----'---'- ~ - X X 

dt '..;:: (A.6) 

From (A.6) one can show that (A.4) holds with 

o:= 

0 

Theorem A.l.l: Consider the linear time-invariant system 

x(t) = Ax(t) (A.7) 

The origin is 

( i) asymptotically stable if all the eigenvalues of A lie in the open left-hand half-plane 

( ii) stable, but not asymptotically stable, if all the eigenvalues of A lie in the closed left­

hand half-plane, i.e. A has one eigenvalue on the imaginary axis 

( iii) unstable if at least one eigenvalue of A has a positive real part 

( iv) completely unstable if the real part of all the eigenvalues of A are positive. 

0 

Theorem A.1.2: Consider the linear time-invariant discrete-time system 

x(k + 1) = Ax(k) (A.8) 

The origin is 
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( i) asymptotically stable if all the eigenvalues of A lie inside the unit circle. 

(ii) stable, but not asymptotically stable, if A has at least one eigenvalue on the boundary 

of the unit circle. 

( iii) unstable if at least one eigenvalue of A is outside the unit circle 

(iv) completely unstable if all the eigenvalues of A are outside the unit circle. 

A.2 Boundedness 

Definition A.2.1 The solution x(t; xo, t0 ) of (A.l) is 

(i) bounded, if there exists a constant h(x0, t 0) > 0 such that 

llx(t; xo, to)ll < h(xo, to) (A.9) 

( ii) uniformly bounded, if there exists a constant h1 (x0 ) > 0, possibly dependent on x0 

but not on t 0 , such that 

llx(t; Xo, to)ll < hl(xo) (A.lO) 

( iii) ultimately bounded, with respect to a compact set X C Rn, if there exists a nonneg­

ative time T(t0 , x 0 , X) such that for all t ~ t 0 + T(t0 , x 0 , X), x(t) EX. 

(iv) uniformly ultimately bounded with respect to a compact set X E Rn, if T(x0 , X), 

possibly dependent on xo but not on to defined as ( iii) is independent of t0 , i.e. there 

exists a nonnegative time T(xo, X) such that for all t ~ t0 + T(x0 , X), x(t) E X. 

Definition (iv) (A.2.1) can be stated as follows [62, page 202]: 

The solution x(t; x 0 , t 0 ) of (A.l) is uniformly ultimately bounded, if there exists constants 

a and c, and for every a E (0, c) there is a constant T = T(a) such that, for all t > t0 +T, 

llx(to; xo, to)ll <a=> llx(t; xo, to)ll < b (A.ll) 
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B.l Kronecker Product 

Let A= (aij) E cnxm and B = (bij) E axq. Then A® B is an np x mq matrix having 

the (i,j)-th block aijB· Basic properties are: 

(Bt) (A® B)*= A* 0 B*. 

(B2 ) Let C and D be m x rand q x s, respectively; then (A 0 B)(C 0 D)= AC 0 BD 

(B3 ) If A and B are nonsingular, m= nand p = q, then (A 0 B)-1 = A- 1 0 n-1 

(B4) If m= n and p = q, and Ai (1 :( i :( n) and Jli(1 :( j :( p) are the eigenvalues of A 

and B, respectively, then 

( i) the eigenvalues of A 0 B are AiJlj 

(ii) the eigenvalues of A® Ip +In 0 Bare Ai + Jlj· 
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C.l Real Algebraic Riccati Equation (ARE) 

Let A E rxn' c E JRrXn' Q E JRrXr' R E JRmXm and B E JRnXm. Suppose R and Q are 

p.d. matrices, r ~ n and m ~ n. Assume that (A, B) is a stabilizable pair and (A, C) is 

a detectable pair. The real continuous algebraic Riccati equation 

(C.l) 

has a u.p.d.s. P matrix solution and all the eigenvalues of A - BR- 1 BT P lie in the 

left-hand half-plane. The Hamiltonian matrix is defined as 

H = [ A - B R-1 BT l 
-CTQC -AT (C.2) 

If A is an eigenvalue of H, then so is -A {with the same multiplicity). Let U be the matrix 

of eigenvectors of H, ordered so that the n left-most columns correspond to eigenvalues 

with negative real parts, and the n right-most columns correspond to eigenvalues with 

positive real parts. If (A, B, Q112C) is minimal, H has no eigenvalues on the imaginary 

axis [80, page 226]. Now partition U into n x n blocks 

u = [ ~:: ~:: l (C.3) 

The solution to (C.l) is then given by P = U21 U;/. 

Theorem C.l.l: For the matrix H in (C.2) let U (C.3) be any matrix which transforms 

H into upper Jordan form, u- 1 HU = J. Then provided that Uu is nonsingular, the 

solution to ( C.J) is given by p = u21 U;""/ and the eigenvalues of A - B R-l BT p are the 

same as those of Su where 

222 
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Remark C.l.l: As already stated, it can be shown that provided (A, B) is completely 

controllable and (A, Q112C) completely observable, then H in (C.2) has no eigenvalues 

on the imaginary axis 180, page 50), 111, pages 282-284]. This ensures that there exist 

nonsingular matrices ull . 

C.2 Positivity 

Theorem C.2.1 The real matrix 

p = [ ;:: ;:: l 
is p. d. if and only if one of the following conditions is satisfied: 

1. det (>.I - be) = ( -1) n >. n-l ( >. - eb) 

2. det(>..J- (I- be))= (-l)n(>.- l)n-l(>..- 1 + eb) 

11 
be II = llbll llell 3

· eb lebl 

4. Ill_ be II = llbll I I ell 
eb lebl 

S. det(>..J _ (bc)T(bc)) = (-I)n(>. _ l)n-2 (>.. _ llbll
2

llcll
2

) 
cb eb (cb)2 

Proof: 
cTbTbc 

(cb) 2 

cTIIbll2c 

(eb)2 

ll!1f.cr c 
(cb) 2 

0 

The matrix eT e has just one nonzero eigenvalue which equals the trace of eT c, i.e., llcll 2 . 

. . be T be . llbll 2 llcll 2 
Therefore, the maximum e1genvalue of (cb) (cb) 1s (eb)2 . 0 
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For MIMO systems the following lemma holds: 

Lemma C.2.2 Let B and C be n x m and m x n matrices. Then 

1. m eigenvalues of B(CBt1C are 1 and the remaining (n- m) are zero. 

2. n- m eigenvalues of (I- B(CB)- 1C) are 1 and the remaining m are zero. 

3. the matrix B(CBt1C has m nonzero and n- m zero singular values. 

4- m singular values of I- B(CBt1C are zero and the remaining n- m are nonzcro. 

0 

C.3 Barbalat Lemma 

Theorem C.3.1 (Barbalat): Consider the function 4> : ~ -+ JR. If 4> is uniformly 

continuous and lim rot 4>( T )dT = 0 exists and is finite, then t~oo Jf 

lim (j>(t) = 0 
t~oo 

Proof: See [62, page 186] 
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shaping, 44, 212 

homomorphism , 104 

237 

mvanance condition (see also matching 

condition), 4, 13, 105 

invariant 

eigenvalue, 175, 192 

set, 179 

solution, 170, 193 

invariant 

eigenvalue, 174 

isomorphism, 104, 200, 215 

iterative method, 47 

Kronecker product, 221 

latticewise hyperplane, 103, 106 

matched uncertainty (see matching con­

dition), 13 

matching condition, 4, 13, 36, 70, 135, 

138, 212 

t-, 88, 91 

notation, xi 

observer, 70, 211 

discrete-time sliding mode, 136 

discrete-time systems, 105, 124 

gain matrix, 80 

gain vector, 125 

time-delay sliding mode, 148 

optimal 

control, 28, 34 

discrete-time control, 117 

sliding lattice, 118, 136 



Index 

sliding mode, 28, 212 

sliding mode control, 105 

sliding surface, 28, 38, 41, 42, 46, 52, 

53 

pole placement, 150, 152, 166 

pole placement in 

a hyperbola, 172 

a sector, 152, 181 

a vertical strip, 181 

the intersection of two sectors, 171, 

193 

practical stability, 91 

projector operator, 12 

reconstruction error system, 80, 125, 

reduced order discrete-time system, 105 

reduced order system, 15, 28, 56, 81, 84, 

114 

reference models, 39 

regulator, 33, 43, 118, 211 

relative degree, 11, 12 

Riccati equation, 26, 28, 168, 215, 222 

complex, 150, 154, 166, 199, 204 

generalized, 157 

with zero right-hand side, 166 

robustness, 4, 6, 44, 70, 80, 105 

servo-mechanism systems, 33 

sliding mode, 12, 18 

control design, 101 

control, 1, 7, 45, 52, 104, 148 

control design, 43 
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