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Summary

Sliding mode control is a well-known approach to the problem of the control of uncertain
systems, since it is invariant to a class of parameter variations. Well-established invest-
igations have shown that the sliding mode controller/observer is a good approach from
the point of view of robustness, implementation, numerical stability, applicability, ease of

design tuning and overall evaluation.

In the sliding mode control approach, the controller and/or observer is designed so
that the state trajectory converges to a surface named the sliding surface. It is desired to

design the sliding surface so that the system stability is achieved.

Many new methods and design techniques for the sliding controller/observer are

presented in this thesis.

LQ frequency shaping sliding mode is a way of designing the sliding surface and
control. By using this method, corresponding to the weighting functions in conventional

quadratic performance, a compensator can be designed.

The intention of observer design is to find an estimate for the state and, if the input
is unknown, estimate a suitable input. Using the sliding control input form, a suitable
estimated input can be obtained. The significance of the observer design method in this
thesis is that a discontinuous observer for full order systems, including disturbance inputs,
is designed. The system may not be ideally in the sliding mode and the uncertainty may
not satisfy the matching condition.

In discrete-time systems instead of having a hyperplane as in the continuous case,
there is a countable set of points comprising a so-called lattice; and the surface on which
these sliding points lie is named the latticewise hyperplane. Control and observer design
using the discrete-time sliding mode, the robust stability of the sliding mode dynamics

and the problem of stabilization of discrete-time systems are also studied.

The sliding mode control of time-delay systems is also considered. Time-delay sliding
system stability is studied for the cases of full information about the delay and also lack of
information. The sliding surface is delay-independent as for the traditional sliding surface,

and the reaching condition is achieved by applying conventional discontinuous control.

A well-known method of control design is to specify eigenvalues in a region in the
left-hand half-plane, and to design the gain feedback matrix to yield these eigenvalues.
This method can also be used to design the sliding gain matrix. The regions considered in

this thesis are, a sector, an infinite vertical strip, a disc, a hyperbola and the intersection



ii
of two sectors. Previous erroneous results are rectified and new theory developed.

The complex Riccati equation, positivity of a complex matrix and the control of
complex systems are significant problems which arise in many control theory problems

and are discussed in this thesis.
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Chapter 1

Introduction to Sliding Mode Control

1.1 Historical Developments

1.1.1 Brief History of the Genesis of Sliding Mode Control

Variable structure control (VSC) or sliding mode control (SMC) was developed extensively
in Russia in the early 1960’s, the term “variable structure control” (VSC) being first used
in the late 1950’s. Fliigge-Lotz [40] was the first to present the concept of sliding motion.
However, Filippov [38] was the first to consider the solution of differential equations with a
discontinuous right-hand side. Filippov’s pioneering work still serves as the basis for work
in sliding mode control which was essentially developed by [117]-[120] and Emel’yanov
[35], [36], Drazenovi¢ [31] and their co-workers. Most early work concentrated on SISO
linear systems in phase canonical form with discontinuous feedback gain. The research was
undertaken in eastern Europe and permeated elsewhere through work such as Itkis [59]
and Utkin [118]. In the 1970’s SMC was extended to MIMO systems by Utkin [118]-[120],
Itkis [59] and Zinober [144]. Thereafter numerous theoretical results and applications
have been reported (see Zinober [145] and [146]) and many survey and tutorial papers
have been published e.g. DeCarlo et al [27] and Utkin [120].

The development of SMC theory has been established for different system models in-
cluding nonlinear systems, discrete-time systems, time-delay systems, stochastic systems,
large scale systems and infinite-dimensional systems, and has been extended to many
classes of problems such as system stabilization, tracking, adaptive and optimal control,

and state observation [26], [29], [33], [34], [55], [68]-[70], [104], [106], [109], [111], [120],
[135], [136], [144].
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Sira-Ramirez [103] has examined and interpreted the analysis and design of the sliding
mode control of affine nonlinear systems by using differential geometry. SMC theory has
been developed for the generalized observability canonical form (GOCF) (Sira-Ramirez
[105]). Sliding mode control provides a systematic approach to the problem of maintaining
stability and consistent performance in the face of modelling and parameter imprecision
and uncertainty. A sliding controller is not necessarily discontinuous [27], [111]. However,

to ensure that the state of a system crosses the sliding surface the control must be dis-

continuous.

1.1.2 Introduction to Sliding Mode Control

Variable structure control has proved successful in practical problems. High-speed switch-
ing feedback control, switching between two particular values, drives the state trajectory
onto a specified surface, the so-called sliding (switching ) surface, in the state space at a
finite time and maintains the state trajectory on this surface for all subsequent time. This
surface is called the sliding (switching) surface because the state trajectory tends to the
surface smoothly and repeatedly crosses the surface in the idealised sense. When the state
trajectory is on the sliding surface, the control takes a specific value, the so-called equival-
ent control. When the state trajectory remains on the sliding surface for all subsequent

time after a finite time instant, the system is said to be in the ideal sliding mode.

For the generation of the sliding mode, the precise value of the system parameters need
not be identified. This is shown in Example 2.2.1. Specification of the sliding surface and
appropriate design of the sliding control yield the system response which asymptotically

tracks the desired trajectory.

There are two phases for the design of sliding mode control. The first phase is the
construction of the sliding surface so that the state trajectory is directed to the sliding
surface. The second phase is the construction of a sliding control law which causes the

system trajectory to satisfy a set of sliding conditions for the existence and reachability

of a sliding mode.

When the ideal sliding mode exists, the state trajectory is along the sliding surface
after a finite time instant and remains on it for all subsequent time. This requires in-
finitely fast switching. In actual systems, some imperfections such as delay, hysteresis
and unmodelled dynamics cause the control to display chatter motion, i.e. the control
oscillates rapidly between its extreme values. In some practical examples one wishes to

reduce the chattering phenomenon. One method is to consider a continuous control which
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Figure 1.1: Sector region as a neighbourhood of the sliding surface, s = 0

has a similar structure to the discontinuous control. The state trajectory then lies within
a neighbourhood of the sliding surface, the so-called boundary layer (Slotine and Sastry
[109]). Note that, if the frequency of the switching is very high in comparison with the
response of the system, this chattering phenomenon is often negligible. More recently, the
concept of a sector (cone) layer has been presented by many authors including Furuta and
Pan [45]. In the topological sense the cone (or sector) is a neighbourhood of the sliding

surface and after a finite time the sliding motion lies inside this cone (sector) (see Fig.

1.1).

1.2 Applications and Methods

Numerous practical applications and theoretical studies of sliding mode control (SMC)
have been demonstrated in many laboratories and papers in the last two decades throughout
the world. Applications include aircraft flight, helicopter flight, spacecraft control, ship
steering, turbogenerators, temperature control of an industrial furnace, robot manipulat-

ors, electrical power system, motor control, etc.

Theoretically, as already stated, when the sliding mode occurs, SMC is ideally switched
at an infinite frequency, and infinitely fast chattering control preserves the state on the
sliding surfaces. In this case, the velocity vectors of the state trajectories always point
towards the sliding surfaces. But, in practice, the control is switched at a finite frequency.

The trajectories chatter with respect to the sliding surfaces and this causes unwanted
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chatter motion. For example, this can produce excessive wear of mechanical parts and
large heat losses in electrical circuits. Therefore to obviate the chattering, a continuous
approximation to SMC in the vicinity of the sliding surfaces may be considered such that
the basic VSC and properties of the system are maintained. This idea has been developed
by a number of authors including Ambrosino et al [4] and Burton and Zinober [15]. To
eliminate this undesired control chattering, Slotine and Sastry [109] proposed a boundary
layer approach which approximates the ideal relay characteristics by a linear saturated
amplifier. Some conditions guarantee that the state trajectories converge to this bound-
ary layers and remain in the interior of this boundary layer for the subsequent time. Note

that during the sliding mode the state trajectories are maintained in these layers.

Sliding control has been applied widely because of its robustness properties. Dur-
ing the sliding mode, the system which satisfies the so-called matching condition, is
invariant to parameter variations and independent of certain disturbances. Sufficient

conditions of invariance have been proposed by DraZenovi¢ [31] and reconsidered by

El-Ghezawi et al [34].

In the sliding mode, the order of the n order system with m inputs is reduced because
the motion of the state is governed by n —m slow modes provided that the sliding surface

is designed for the original system. The remaining m modes are the fast modes.

1.2.1 Design Methods

There exist several methods for designing a sliding surface, sliding control and observer

for continuous and discrete-time systems. The most important methods are:

e Using the reduced order equivalent system approach to find the feedback gain mat-
rix so that all the eigenvalues of the reduced order sliding system are the desired
eigenvalues in the left-hand half-plane. Specifying null space eigenvalues within the
left-hand half-plane and designing a suitable control yields the sliding eigenvalues
relating to the sliding surface (Dorling and Zinober [29]).

o Using pole assignment methods to specify a region in the left-hand half-plane within
which these sliding eigenvalues must lie. These regions may have a variety of geo-

metric shapes (Woodham and Zinober [131]).

e Using optimal control laws to yield the sliding surfaces (Young et al [135]).
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e By means of the H,, technique a generalized system can be specified and then a

sliding surface is introduced (Hashimoto and Konno [55]).
e Using output feedback (Zak and Hui [141]).

e A recent method is based on the augmented system where the sliding surface is
considered as ¢ = C(z;) + z2 with C(-) a linear operator of a dynamic system
(Young and Ozgiiner [137]). In fact there are two classes of compensator for any
system; a generalized class of dynamic output controllers and a generalized class of

dynamic state variables.

e Another new method of designing SMC is using frequency-shaped weighting func-
tions in a LQ cost functional. This method has been applied to a linear dynamic

model of a flexible structure (Young and Ozgiiner [137]).

1.3 Outline of the thesis

In Chapter 2 the basic concepts and definitions of the existence of the sliding mode and
sliding control are reviewed. Also a class of sliding surface and a method for designing
sliding control are presented. A straightforward method for finding the invariance condi-
tions is also proposed. This approach yields some useful information about the system in

the sliding mode and the influence of disturbance inputs on the sliding system.

In Chapter 3 the optimal sliding mode and optimal control are discussed. The sliding
mode in regulator and tracking problems, and also for a class of servo-mechanism systems

and reference signal systems are considered.

In Chapter 4 frequency shaping in the sliding mode is discussed. Frequency shaping is
a technique for designing control and the sliding mode by using a conventional functional
performance index. A new method of designing sliding mode control is presented when
the LQ weighting functions are not constant for all frequencies. Furthermore, conditions
for which the spectrum of the original reduced system is a subset of the spectrum of the
augmented system are introduced. An iterative constructive procedure for the optimal
sliding mode is developed. The sliding mode can be expressed as a linear operator of

states in the form of a dynamic system.

In Chapter 5 sufficient conditions for the sliding mode control design of systems with

disturbance input, and the sliding dynamics, and a method for the design of asymptotically
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stable sliding observers, are presented. The stability and ultimate boundedness of state

reconstruction error systems via the method of Lyapunov is also studied.

In Chapter 6 the concept of the discrete-time sliding mode is clarified and sufficient
conditions for the existence of the sliding mode are presented. Control design using
the discrete-time sliding mode is proposed and the robust stability of the sliding mode
dynamics is presented. Furthermore, the problem of stabilization of discrete-time systems

is studied. The sliding mode observer of linear discrete-time systems is also discussed.

In Chapter 7 the sliding mode control of time-delay systems is considered. Time-delay
sliding system stability is studied for the cases of having information about the delay and
also lack of information. The sliding surface is delay-independent as for the traditional

sliding surface, and the reaching condition is achieved by applying a conventional discon-

tinuous control.

In Chapter 8 complex Lyapunov and complex and generalized Riccati equations are
considered. By using these equations the sliding surface and feedback gain matrix can be
found such that all the eigenvalues of the closed-loop system lie in specified regions. The
work of Shieh et al [101], Woodham [129] and Woodham and Zinober [131] are studied;
and errors and inaccuracies are corrected. Various illustrative examples are presented.

Several new methods are proposed for all the eigenvalues of the closed-loop system to lie

in the specified regions.

In Chapter 9 the real and complex matrix vector spaces are studied and also the
relationship between these two matrix vector spaces are clarified. The positivity concept
of a matrix is defined such that the meaning in the “real” sense is established. A method
for finding the solution of the complex Riccati equation is proposed. Also complex sys-

tems (i.e. systems with complex matrices and variables) and their application are briefly

considered.

In Chapter 10 conclusions and suggestions for further research are presented.



Chapter 2

Sliding Mode Control Design

2.1 Variable Structure Control Design Using the Sliding
Mode

In this chapter, the properties of the sliding mode, some background and basic concepts,
definitions of sliding mode control, the design of a new class of stable sliding surface,
the design method of a stable sliding surface and the associated control law are studied.
Although the control structure and design method are similar to previous work by Ryan
and Corless [92] and Dorling and Zinober [29], the design method and structure are
somewhat different. This structure is obtained by the properties of sliding mode and

guarantees the stability of the sliding mode along or near the sliding surface.

2.2 Conditions for the Existence of a Sliding Mode

The existence of the sliding mode requires the state trajectories to be directed towards the
sliding surface in a neighbourhood of the surface [27], [118], [121]. So, for the generation
of a sliding mode, the stability of the state trajectory along or to the sliding surface is

required to be asymptotic. The largest such neighbourhood is known as the attractive

region.

Definition 2.2.1 [118]: The domain D in the manifold s = 0 is the sliding mode domain
if for any € > 0 there exists a positive real number ¢ such that any motion starting within
the d-neighbourhood (B,(J)) may leave the e-neighbourhood (Bs(€)) only through the
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T2

3 \\\\ )

e-neighbourhood of
boundary point of D

s=0
Figure 2.1: Sliding mode domain
e-neighbourhood of the boundary of D (see Fig. 2.1).

The existence of a sliding mode domain can be proved by the second Lyapunov method
using a generalized Lyapunov function [121]. Observe that D C {z € R*|s(z) = 0} and
the domain D is an (n — m)-dimension domain if the subspace {z € R*|s(z) = 0} is an
n — m-dimensional subspace of R*. The following theorem gives a sufficient condition

based on the Lyapunov method.

Theorem 2.2.1 [118]: Let Q and D be n-dimension and n—m-dimension domains such
that D C Q. A sufficient condition for D to be the sliding mode domain is that there erists

an continuously differentiable function V (t,x, s) satisfying the following conditions:

1. V(t,z,s) is positive definite with respect to s, i.e. V(t,z,s) > 0 for arbitrary s # 0,
t,z; V(t,z,0)=0 with s = 0; and for any real number r # 0, any t and € Q the

function V(t,z, s) has positive infimum and supremum values on the sphere ||s|| = r.

9. The time derivative V for the system has a negative supremum on Q ezcept for x

on the sliding surface s = 0 where the control inputs are undefined.
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A suitable Lyapunov function is V = 7s”s. So for generation of the sliding mode, a sliding
hyperplane with suitable control may be designed such that V = sT5 < 0. However this
condition is a sufficient condition for the existence of the sliding mode and may be replaced

by another condition, say sTPs, where P is a p.d.s. matrix.

SMC with a discontinuous control law produces a differential equation with discontinu-
ous right-hand side which does not satisfy the conventional theorems on the existence
and uniqueness of a solution in differential equation theory. However, for the system
with isolated discontinuity points or, more precisely, for the system with zero measure
of discontinuity points, some analysis and synthesis methods have been achieved based
on classical differential equation theory by means of point to point transformations and
averaging at the occurrence of high frequency switching [119], [121]. However, in many
practical problems, such as a mechanical system with Coulomb friction, the measure of
the discontinuity points set is not zero. So the proof problem of existence and uniqueness
of the discontinuous right-hand system arises. One way to consider this problem is that
ideal sliding motion is regarded with all nonidealities tending to zero. Then the problem
reduces to finding a certain system of differential equation with continuous right-hand
sides, despite discontinuous control in the original system, that describes the motion in

the sliding mode, i.e the system behaves in a unique way when restricted to s = 0 [119],
[121].
There are some methods for determining the system motion in a sliding mode including

methods proposed by Filippov [39] and Utkin [119]. The method of Filippov [39], which

is one of the earliest and purportedly straightforward approaches, is now stated. Consider

the n-th order single input system
©(t) = f(t,z,u) (2.1)
with the discontinuous control

_ { ut(t,z)  ifs(z) >0 2.

Bl u(t,z) ifs(z) <0

It can be shown from Filippov’s work in [39] that the state trajectories of (2.1) with

discontinuous control strategy (2.2) on s = 0 satisfy the equation
i) =aft+(1-a)f"=f9  0<axl

where ft = f(t,z,u%) and f~ = f(t,z,u”) (see Fig. 2.2). Thus there exists o such
that 0 < o < 1, and f% = aft 4+ (1 — a)f™ is tangent to the state trajectory in the
sliding mode, i.e. < grad(s), f¢ > = 0. Solving the equation < grad(s), f¢ >= 0 for
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Figure 2.2: The Filippov method for determining the desired velocity vector for sliding
mode motion

< grad(s), f~ >

o Yields & = orad(s), (F- — 1) >
0<a<1,0<1—a<l,there are two cases:

< grad(s), f* >

-2 2rad (). (F~ — 17 ~ Since

and then 1 — o =

(i) For < grad(s), (f~ — f*) > > 0, one has to choose < grad(s), ff > < 0 and
< grad(s),f7) > 20.

(13) For < grad(s),(f™ — f*) > < 0, the only choices are < grad(s), f* > > 0 and
< grad(s), f~ > <0.

Therefore the solution to (2.1) with control (2.2) exists and is uniquely defined on s = 0.
A method of determining the system behaviour in the sliding mode has been proposed
by Drazenovi¢ [31] and Utkin [118]. The following corollary gives the existence of the
equivalent control, i.e. control during the the sliding mode, by using the Filippov method.

Moreover the relationship between the equivalent control and the actual control is given.

Corollary 2.2.1: Consider the system (2.1) with control (2.2). Then there erist an «
(0 < o < 1) such that f(t,2,ue) = af " + (1 —a)f~ where ue, is the equivalent control
and f (t, T, Ueq) 15 the velocity of the state in the sliding mode. O

One may conclude that the equivalent control is the average of the control when the

state trajectories are on the sliding surface. However, Corollary 2.2.1 shows that the
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velocity of the state with equivalent control is a convex value of the velocity of the state
corresponding to the two different values of the control. However, if the relative degree
of an n-input m-output system equals one, the equivalent control is the convex value of

two different control values [65].

Example 2.2.1: Consider the following second-order system

[2}:[—: ;H:HE]U 23

0
A - 1 y xTr = xl
—Q1 —Qy T9

Assume $(z1,T2) = &1 + cxz = 0 with ¢ > 0 and the control law is given by

Let

1 if s(z) >0
-1 if s(z) < 0

u = sgn(s) = {

If s =0, § =1 +cgy = 0. Since 1 = x5, § = 0 yields z5(t) = zo(7)e~ ")/ where 7 is
the initial time and z(7) is the value of the state z, at initial time 7. Hence Jim z(¢) =0

t—+o0 )
i.e. the system in the sliding mode is asymptotically stable. In the sliding mode the

equivalent control is given by

teq = —(CB)"'C Az(t) = LT 922 Jbr”” _ g-x

where C = [ 1 ¢ ] If a; = cay, the values of a; and a; do not affect the equivalent

control. In this case

a1(zy +ecza) 1 zo(t)
Ugg = ——F————= — —Tp = —
¢ b be 2 be
. 1 —(t—
and more precisely uey = —Eiﬁz (T)e (t=)/e. Moreover, in this case the behaviour of the

motion in the sliding mode is independent of the values of a; and a,. So the system in
the sliding mode is governed by
iill = T
.’i‘l + C.’i?z =0
which shows that the system in the sliding mode is independent of certain plant parameters

or uncertainties.
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2.3 System in the Sliding Mode

Consider the linear time-invariant system
T = Az + Bu+T¢ (2.4)

where £ € R™ is the state variable, A € R"*", B € R™™ is full rank, u € R™ is the input

control, I' € R**™ and £ € R™ is the external disturbance input.

It is assumed that (A, B) is completely controllable, and m < n. Define the sliding surface
as s = Cz = 0 where C € R™*™. C is selected so that C'B is nonsingular, i.e. the relative
degree of the system is one. The behaviour of the system in the sliding mode, when the
relative degree is greater than one, has been studied in [33]. The ideal sliding mode is

said to exist if there is a finite time ¢, such that

s=Cz=0 t >t (2.5)
The sliding surface is the null space of C, i.e.
N (C)={z:Czx =0} (2.6)
Since CB is chosen to be nonsingular, rank(C B) is m and therefore
col(B)g A (C) (2.7)

where col(B) indicates the column vectors of the matrix B. Then there exists a nonsingular

matrix I such that C = TB%, i.e.
#(B) N A (C) = {0} (2.8)

[29]. Since B(CB)™!C is projector operator and the matrices C and B are full rank,
%(B(CB)™'C) = #(B) and N (B(CB)™'C) = #(C). Then

Z(B) C #+(C) (2.9)
and
X =4(C)® %(B)
where X is the state space.

In this thesis it is assumed that C € R™ " but if C € R*" (I < m) the sliding mode may
be defined as s = FCxz where F' € R™! is called the adaptation (adjustment) matrix and
can be found by methods as in [32], [123] and [142]. If m =, take F = 1.
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2.3.1 Invariance Condition (Matching Condition)

During the sliding mode z € A4(C) and from (2.5) the control does not directly affect
the motion. Differentiating (2.5) and inserting (2.4) implies

Ueg = —(CB) ' (CAz + CT¢) (2.10)

where ., is the equivalent control of the system, i.e. the effective control during the sliding
mode. The actual control and the equivalent control can be considered approximately to

be equal in the neighbourhood of the sliding surface. The motion of the equivalent system
1s
&= (A-B(CB)'CA)z+ (I - B(CB)™'C)T¢ (2.11)
and is independent of the disturbance if and only if
(I-B(CB)'C)[¢=0
Therefore, in this case it is sufficient that

col(T') € #(I — B(CB)™'C) = ®(B(CB)™'C)
= %(B) (2.12)

because CB is nonsingular [34]. Equation (2.12) is equivalent to col(I') & A'(C), and
Z(T) C %(B) which is equivalent to rank(B,I')=rank(B) and if I' is full rank, then
Z(T) = #(B). This relationship shows that there exists an m x m matrix = such that
I' = BE. This condition is known as the matching condition (or matched uncertainty)

and was first presented by Drazenovi¢ [31] and reconsidered by El-Ghezawi et al [33], [34].

A straightforward approach is now presented to yield further information about the sys-

tem. Assume T is an orthogonal matrix such that

TB =

’ 2.13
5, (219
where B, is an m x m nonsingular matrix. Let T'z = y,, then

y.(t) = TATTy,(t) + TBu(t) + TTE(t) (2.14)

Now assume

yz: = (yT7y2T)a N € Rn-m, yQGRm (215)
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Therefore
() = Ann(t) + Anpy(t) + ¢ (2.16)
P2(t) = Anyi(t) + Anya(t) + Bou(t) + '€ (2.17)
where
TATT = A Ap  IT= Iy
Ay Axp Iy

The system in the sliding mode is independent of £ if I'y = 0. A sufficient condition for

the reduced order system (2.16) to be independent of £ is that there exists an m x m

matrix D such that

I'=BD (2.18)
We now prove that (2.18) is satisfied if and only if I'; = 0. Suppose I' = BD, then

TT" = TBD

_ O(n—m)xm ]
= D (2.19)

L B, i

[ -

O(H—m)xm

B,D

Therefore, I'; = 0. Conversely, assume that I'; = 0. Since B, is full rank

Iy = By(B;'Ty)
= BQD

where D = By 'T',. Then

_ [ O(n—m) xm
| BD
= TBD

Since T is an invertible matrix, I' = BD.

However, if m > 1 the system (2.16) may be independent of £ but I'; # 0. Therefore
the condition (2.18) is not a necessary condition for the independence of the reduced

order system (2.16) of . In the general case, the necessary and sufficient condition for
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independence of the system (2.16) of the perturbation signal £ is that £ € A4/(I';), where
A (') is the null space of I';. If m =1, I'; is a real number and I';§ = 0 if and only if
I, = 0. So the system in the sliding mode is independent of ¢ if and only if there exists

a real number p such that
I'=pB

and hence rank(B,I] = 1.

Let CTT = [C) C,]. When the ideal sliding mode occurs, s = 0, so
Ciy(t) + Coya(t) = 0 t>t, (2.20)
and then
y2(t) = —Fyi(t) (2.21)
where F' = C,"'C,. The equation (2.16) is given by
41(t) = (A — A F)y(t) + T (2.22)

which is known as the reduced order system and A;; — A2 F has n — m eigenvalues, i.e.
in the sliding mode m eigenvalues of the system (2.4) are zero [34]. It is desired to find

F such that A;; — Ao F is a stable matrix.

2.4 Design of a Class of Sliding Surface

The sliding surface (2.20) is selected such that the stability of the nominal reduced or-
der system (2.22) is achieved. However, a modified sliding surface (2.20) is required for
many purposes such as pole placement in a specified region in the left-hand half-plane,
to improve the stability performance and other aims. A sliding surface is defined by in-
troducing a design parameter matrix. The order of the defined hyperplane is the same
as (2.20) and the stability of the nominal reduced system (2.22) is preserved. It is clear
that for some design parameters the system stability is achieved. The main problem is
to establish the class of design matrices to ensure the desired properties. Some design
methods will be proposed for obtaining a sliding design parameter r so that all the eigen-
values of A;; — A1 F lie in the left-hand half-plane and/or an infinite vertical strip in
the left-hand complex plane. This problem is discussed in general in this section and a

design method is presented in Section 3.2.
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In this section the system (2.4) with I' = 0 is studied. Let C = [ C, G, ] where C, is

nonsingular matrix. A class of sliding surfaces
S = {sa | s¢ = Cz + azy =0, Um(éz) > —a}

is constructed which gives a suitable region in the trajectory phase plane. The design
parameter « is a real number in a known range. In [121] the sliding surface has been
considered by Utkin as s = f(z1) + z2 where f is an arbitrary function. So the Utkin

definition is a particular case of the above definition, i.e. s, = 0. Assume

-~ zl
r = :I , z €ER™™, x9€ R™
b xz
[ 4, A B
A= |2 B=| (2.23)
| A21 A22 B2
Then the system (2.4) is given by
.’L'l(t) - fiuml(t) + /1129:2(t) + Blu (224)
j)g(t) = /iglllil(t) + x‘izzxz(t) + Bg’u (225)
When s, = 0,Cz + az2 = 0 and then
g = —(Cy+aly,) 'Cizy (2.26)

provided that Cy+al, is nonsingular. This condition is satisfied if Omin(C2) > —a. During
the sliding mode $, = 0 and substituting (2.4) and (2.25) in s, = Ci + aiy = 0 yields

Ugg = —(CB+ aB2)~1(CA$ + @Ay 21 (t) + aAzms(t)) (2.27)
provided that CB + aB, is nonsingular. Then
Uueqg = —(CB+aBy)™ [(C'lfiu + (alm + Co) Ag1)zy + (CrAr2 + (alm + C2) Ag) :1:2(t)]
Now consider the system (2.4) and assume T is the orthogonal matrix in (2.13) given by

Ty Th
Ty Ty

[ T\ T, ] (2.28)

T =

then

"N
-]
Y2
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implies
z1 = Thy+ Ty, (2.29)
zy = Ty +Thy (2.30)
Therefore
T
T
z = 11 7)1
Ty Y2
= TlTyT
T
T;
2y = 12 n
T Y2
= Ty, (2.31)
Hence

sa = CTTy, +oTyy,
= (C+ oTH)n + (Ca + aTg)y (2.32)
where CTT = [C; C,). When s, =0,
Y2 = —(Cay + aTL)"HCy + oTE)y, (2.33)
provided that C + oT% is nonsingular. Let F = (C; + oT,) " (C1 + oT5). The design

parameter o should be chosen such that the matrix A;; — A F is a stable matrix.

Definition 2.4.1: Define the sliding surface as
s, =Cz+ Mz, =0 (2.34)

where M € R™*™ is an arbitrary matrix. Matrix M is called the modification matrix of
the sliding surface. For M = al, a is called the coefficient of the sliding surface. When
M=0 (or a=0) the sliding surface is said to be a principal sliding surface or simply the

sliding surface. 0

Definition 2.4.1 yields
SM = él$1 +éz.’L‘2 + M.’E2 =0

and if C, + M is nonsingular, s;; = 0 implies

TI9 = —'(Cz + M)—léll'l (235)
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which for M = 0 coincides with Utkin definition [121]. Here M is an arbitrary matrix
such that Cy + M is nonsingular. In this case the (2.33) becomes

Yo = —(02 + MT;;)_I(Cl + MTS)?/I
provided that C + M T} is nonsingular. The set
Sy = {31\71 | syy=Cz+ Mz, =0, Co+ M is nonsingular}

consists of a class of sliding surface.

2.5 Control Design Technique

The procedure of designing sliding control using the properties of the sliding mode is
developed. The technique includes a mild modification of the technique in [29] and [129].
In previous work the structure of the switching part of the control law is prespecified
and then a control is found with this structure such that the state approaches the sliding
surface. By selecting a suitable transformation the sliding surface is converted to the

intersection of the m-coordinate surfaces with n —m dimension. In this way the structure
of the sliding mode is simplified.
Using the transformation (2.13) the system is converted to two subsystems (2.16) and

(2.17). Now it is desired to change the state coordinate such that one of coordinates

surfaces is on the sliding surface. Consider a second transformation

z =5y, (2.36)
where
In-—m
S = 0
F I,
then
g1 [T 0
-F I,
If
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where z; € R ™ and 2z, € R™, then

i1 = (An = ApF)a + Apz, (2.37)
Zy = (A21 — ApF + FAy — FA]QF)Zl + (A22 + FA12)22 + Byou (238)

Now let

¥ = Ay - ApF
\IJ = A22 + FA12
= A21 - A22F + FZ: (239)

Then the system can be represented by

Z'l - Ezl + A1222 (240)
Z = xz+ ¥z + Byu (2.41)

Since C, is nonsingular

s = Crz
= CT™Tx
= CTTS '8y,
= CTTS 2
- [e el 22

= Gy (2.42)

and it is concluded that s = 0 if and only if 2o = 0. So if s = 0, 23 = 0 and when the

sliding mode occurs, $=0. Since
$ = Cody (2.43)

the ideal sliding mode exists if and only if 22 = 0 and 2, = 0. Hence for generation of the
sliding mode, z; should be a function such that: (i) for all £ > t,, Z5() = 0 and 23(t) = 0;

or (ii) after a finite time instant 27 z; < 0 in the neighbourhood of z; = 0. One can select
22 = \11*22 - ngn(Mzz) (244)

where U, is an arbitrary negative definite real matrix, and M and K = K(t,z) are
nonsingular matrices such that 28 Ksgn(Mz;) > 0. This choice is now considered. An-

other suitable and more general choice will be studied in Remark 2.5.1. Assume & is any
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m x m nonsingular matrix and ®®7 is positive definite. The matrix ¥, = —®37 and

substituting (2.44) into (2.41) gives

W,z — Ksgn(Mze) = x21 + ¥z + Byu (2.45)
Hence
z(t) = €Y' 2,(0) + ¥, (e — 1) Ksgn(M z,(t)) (2.46)
From (2.45)
u=—B;(xz + (¥ —¥,)2 + Ksgn(Mz,)) (2.47)

which can be considered as the control law, including continuous (linear) and discontinu-
ous (switching or nonlinear) parts. In [29] M has been chosen as a p.d.s. matrix, but here
M is only a nonsingular matrix which also includes p.d.s. matrices. The positivity of M
may require the positivity of K. For simplicity, K may be chosen to be a diagonal matrix
with positive elements. The matrix M actually depends on matrix C; in (2.42) and could
be selected as M = C,. The choice may be physically meaningful in some practical sys-
tems. Since there are five design parameters in control formula, this control law type is
very useful, flexible and more confidence than previously. The choice of design parameters
depend upon the conditions, and structure of the system and should be obtained so that

the stability of the sliding mode is guaranteed. So the previous work is a particular case

of this work. Thus

U= Ugg + Us (2.48)

where
u, = —B; ' Ksgn(Mz)

is the nonlinear (switching or discontinuous) part of the control and
ueq = -—B2—1(X21 + (\I’ — ‘Il*)22) (249)
is the linear (equivalent or continuous) part of the control. But

=0 I,]STz (2.50)

hence

us = —B;'Ksgn ([0 M] STx) (2.51)
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and the sliding control law is

U = Uegg+ Us

= -By Y {(x ¥-9,)8Tz—Ksgn([0 M] STz)} (2.52)

which ensures that the state trajectory converges to the sliding surface [0 I,,] STz =0

and remains on it thereafter.

2.5.1 Reduction of Chattering Phenomenon

For reduction of the chattering, which is produced by the discontinuous control, one can

modify u to be a smooth continuous control. Let

T

MZ2 = 77_2

TIm

o -

Take
1 if m>e

G=9 fi if |ml<e,  1<k<m
-1 if m < —e

where € is a small positive real number and f,€C! [—¢ , €] belongs to the class of functions
which are continuous and differentiable on the interval [—¢ , €] and fx(0) =0, fi(e) =1,

fi(—€) = —1. For example,

Eﬁiﬂﬁ), meN (2.53)

fr(t) =sin ( 5
Consider the control law (2.48) with
us = —DB5 K¢

where K is an mxm non-singular matrix and

G
C2

Cm
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The function u, is now continuous because for any 1 < k < m, {; is a continuous
function. In (2.53) since fi(t) oscillates between —1 and 1, chattering may exist with a

sliding boundary width of 2¢ where £ is sufficiently small.

Consider an approximation of the discontinuous part of control (2.48) as

Mz,
U= R+ e
where 6 > 0 is sufficiently small [29]. The performance of this approximation in practical
problems yields acceptable results. However, there may exist unacceptance chattering if
§ is close to 0. For large 4, this function is no longer an admissible approximation of the
discontinuous part of control. Consider Example 2.2.1 witha; =a; =0,b=1,¢=1 and
the control law
T1+7T
“= |z -:- T 1 ) (2.54)

Simulation results are shown in Fig 2.3.

Control action State behaviour
1 1
0.5 0.5 x1
o o] = 0
X!
-0.5 -0.5
-1 -1
0 2 4 6 (o} 2 4 6
t t
Phase plane Sliding function
(o] 1
-0.2
0.5
N -0.4 17
(o]
-0.6
—0. -0.5
085 05 1 o 2 4 6
x1 t

Figure 2.3: Phase plane of the system (2.3) with control (2.54) for § = 0.01

Hence the continuous control removes the undesired chattering behaviour. The boundary
layer, as already stated is a way to reduce the chattering. The width of the boundary

layer can be chosen arbitrarily small.

Let K = p(z,t) K[’ where p is a real bounded function and K; is a nonsingular m x m



Chapter 2. Sliding Mode Control Design 23

matrix. Then

U = Ueg T Us

= —By ' {xz1 + (¥ - W)z — p(z,t)K T sgn ([0 M]STz)}

For example, let K; = By,

sgn(m)
sgn

sgn(Mz) = g .(772)

| 580(7m) |
where
1 if m>0
sgn(m) =4 0 if m=0, 1<k<m

-1 if m <0

and T = diag(7, Y2, - - » ¥m) With

|n .
———”M’;L” if Mz #0

Yk

1 otherwise

then,
0 M]ST=x

uv=—By" (xz1 + (¥ - L)) - p(a,1) [0 M]STz|

When T = I,,, the control is the same as (2.52)
u=—By ' (xz1 + (¥ — ¥,)2p — p(z,t)K1sgn (0 M]STx)

Therefore this control design method is more general than that considered previously,
e.g. [29]. The sliding mode is governed by (2.16) and (2.21). The design of the sliding

mode requires the determination of the gain matrix F' such that all the eigenvalues of

A — AoF lie in the left-half complex plane.

Remark 2.5.1 It is desired to select u, to be a discontinuous function on the sliding
surface. This function can be chosen in many ways. One choice has been already stud-
ied; another approach is now presented which may be useful in many practical problems
because there are five design parameter functions in the discontinuous part of the control

law. The designer can choose these functions based on the desired properties so that the
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sliding mode starts at a finite time. Assume that the nonlinear (switching ) part control
law (2.48) is in the form of
a(t,z)Mz; + B(t, T)N 2,
us = —p(z, 1)
’ [9(8, z)]. | M 22 || + |n(2, )] | N 22|
where p > 0, o, 8, ¥ and 7 are real bounded functions of ¢t and z such that ¥ # 0 or

n # 0. Matrices M and N are choose such that
H(N) = H (M) = {0}

A sufficient condition for the existence of the sliding mode is that oM + SN is a negative

definite matrix. Let Pp be the u.p.d. solution of the Lyapunov equation
Ppy, + 9] Pp = —In, (2.55)

where 1, is an arbitrary negative definite matrix. From (2.42) Ppz; = 0 if and only if
23 = 0. So in the sliding mode z; = 0 and u, should be discontinuous at these points. In

fact the sliding surface is the coordinate plane z; = 0. Consider the discontinuous part of

the control as
’ 9 D)1 + It 21185 ) [ Poza]

For generation of the sliding mode it is sufficient to choose the functions a and 8 such

that aB,~'Pp — BPp is a p.d. matrix. Since z = 5Tz,
we = —p(a 1) LT BT = P ] [0 PplSTa
’ (19t ©)] + In(t, 2) 1B M) [0 Po)STa

and
[a(t, z)By! — B(t, x)Im] [0 Pp)STz
(19t 2)I + In(t, 2)|1B () [0 Pp]STz]|
By choosing 8 = 0, @ =1, 9 = 0 and 1 = 1/||B;*||, the control law is as in [29]
[0 Pp)STzx
110 PD]STJ?H}

Since all the functions p, a, B, ¥ and n are bounded and also ¥ and 7 are not zero

u=—-By'[x ¥-VU,]STz - p(z,t)

uw=—By" {[x U —¥,]STz + p(z,t)

simultaneously, the discontinuous part of the control law is bounded

”U’S“ S pmin{|19|, |"7|}

if min {|9], |n]} # 0. Also instead of p, @, B, ¥ and 7 being real functions they can be

chosen as m x m matrices. Then the norms of these matrices replace the absolute values.

In this case, if min {||9]], ||nl|} # O then

< max {|a||, || 8]}
[l P min {19, 171}




Chapter 2. Sliding Mode Control Design 95

For existence of a feedback gain sliding matrix F in (2.22) such that the sliding system
(2.22) is stable, (A, B) must be a stabilizable pair.

Lemma 2.5.1: Let Ay (1 < k < n) be the eigenvalues of A. A necessary and sufficient
condition for the controllability of (A, B) is that for all k, rank [\y\] — A B]=n.

Proof: See [11, page 87]. O

Since only the eigenvalues of the state matrix A are required to test the controllability of

the system, Lemma 2.5.1 is very useful in practical problems.

For existence of a feedback gain sliding matrix F satisfying (2.22), (A, B) must be a
stabilizable pair. However, the reduced order system (2.16) is the system in the sliding
mode, which shows that the matrices A;; and A,; influence the reduced order system is
similar to the state and control matrices A and B in (2.4). So, it seems that the existence
of the feedback gain sliding matrix F' also depends on the stabilizability of (A, A12).
The following lemma shows that the controllability (stabilizability) of the system implies
the controllability (stabilizability) of the reduced order system, and vice versa. So, for
establishing the stabilizability of the system, it is preferable to prove the stabilizability of
the reduced order system. Our proof is new and benefits from Lemma 2.5.1. This lemma
can also be directly applied to test the controllability of the system.

Lemma 2.5.2 [118]: (A1, Ai2) is controllable (stabilizable) if and only if (A, B) is con-
trollable (stabilizable).

Proof: The proof in [135] is for s € C while the proof below is for s € o(A).

Necessity. Assume (A, B) is a controllable pair and A is an eigenvalue of A. Lemma

2.5.1 yields rank[A\] — A B] =n. So

M — Ay Arz

Ay M — Ay B, =rank[)J-—A11 A12]+m

rank [\ — A B] = rank [

since rank(B;) = m. Thus, rank[]A\] — A;; Al =n-m

Sufficiency. Suppose (A1, Ar2) is a controllable pair. Then for any eigenvalue A of

Ajp, rank[A] — A B] = n —m. Since B, is a nonsingular matrix

A — Ay A 0

rank
A21 AI - A22 B2




Chapter 2. Sliding Mode Control Design 2

This shows that if B is full rank then for the proof of the controllability pair (A, B) it
is sufficient that for all the eigenvalues A of Aji, rank([A] — A;; Ajp] =n—m. So if
(A, B) is only a stabilizable pair, then all the uncontrollable stable eigenvalues are the
eigenvalues of A;; and vice versa. Therefore (A1, As) is a stabilizable pair if and only if
(A, B) is a stabilizable pair. 0

The proof of Lemma 2.5.2 establishes that the controllability of (A, B) depends only on
the eigenvalues of A;; which means the system is controllable if and only if for all the
eigenvalues of Ay, rank[ M—-A B ] = n. Since (A, B) is a controllable pair, (A1, A12)

is also controllable and the Riccati equation
AT P+ PA; — PARR'AT,P = —Q (2.56)

where Q and R are arbitrary (n—m) x (n—m) semi-positive and m xm p.d.s. respectively,
has a u.p.d.s. solution P, and Ay — ApRALP is a stable matrix. Then the sliding
surface is given by (2.21) where F' = R‘lATZI-:’. A design procedure for sliding control is

as follows:

e Find T in (2.13) and then the system (2.4) is converted to (2.16) and (2.17).

¢ Solve the Riccati equation (2.56) to obtain F'.

e Consider the transformation S in (2.36) and then the system (2.4) is converted to
(2.40) and (2.41). The sliding surface is [0 I,]STz=0.

e Select the m x m nonsingular matrices K and M such that 2I Ksgn(Mz,) > 0 where
2p=[0 In]STx.

This method guarantees the stability of the sliding system in the absence of disturbance

and also for the case when the matching condition is satisfied. If P is the u.p.d.s solution

of the Riccati equation
(AT, — aluem)P + P(An1 — aly_p) = PARRTALP = —Q

where R and Q are arbitrary (n—m) x (n —m) semi-p.d.s. and m xm p.d.s. respectively
and o is a negative real number, then all the eigenvalues of A;; — A1y F where F' = R1AT, P

lie to the left of the vertical line z = o. Further discussion of the ARE will be presented
in Chapter 8.
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2.6 Summary and Discussion

In this chapter, the basic concept of the sliding mode, a method for designing a class of
sliding surface and a method for control design have been presented. Although the control
design method is similar to previous work (Ryan and Corless [92], Dorling and Zinober
[29]), the design method and the control structure have been somewhat expanded. Using
the sliding mode properties a suitable control can be constructed. In the new revised
method, by applying an appropriate Riccati equation, the sliding gain matrix can be

obtained such that the stability of the reduced order system is achieved.

Two different methods of sliding control design for SISO and MIMO systems including
a disturbance input will be presented in Chapter 5. Further results may be obtained by

investigating the dynamical behaviour of s and $ in the neighbourhood of s = 0 to find a

more general formulation of control.



Chapter 3

Optimal Sliding Mode Control

The LQ method is a suitable method for designing a sliding gain matrix yielding a stable
reduced order system. In this chapter the design of the optimal sliding mode and related
problems are studied. Our design ensures that in a specific parameter range, the stability
of the system in the sliding mode is preserved. Some results about the sliding mode for

a class of servo-mechanism systems, reference signal systems and tracking problems are

also obtained.

3.1 Optimal Control and the Sliding Mode

Consider the system (2.4) with I' = 0 and the quadratic LQ cost functional index
J= f (7 Qx + uT Ru)dt (3.1)
0

where Q and R are semi-p.d.s and p.d.s matrices, respectively [11, page 280]. The optimal

control is given by
u, = —R'BTPz

where P is u.p.d.s matrix solution of the Riccati equation
ATP 4+ PA-PBR'BTP=-Q (3.2)

The index (3.1) is not suited to find the optimal sliding surface, because the sliding mode
is control-independent and during the sliding mode the system is governed by the reduced

order system. Utkin [121, page 140] considered in the sliding mode

J= /0 (zTQz + uZ;Rueq)dt (3.3)

28
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where u., = —(CB)"!CAz. The index (3.3) can be applied to find the sliding surface.

By defining the sliding surface as y, = —Fy;, then the equivalent control is
= —B2_1(FA11 —_ A22F —_ FA12F + A21)y1

Therefore, (3.3) is converted to

J= / [Wy)d (3.4)
where
W = Qu+TT(ByYIRB;'T — 2Q1,F + FTQuF
' = FAy, — ApF —FApF + Ay
and
TQTT _ Qu Q2
Qa Q2

Hence, to find F the index (3.4) should be minimized with respect to F' on the trajectories
(2.16).

Some new insight is now provided into the above approach. If the index (3.3) is minim-
ized with respect to ueg, then from (3.3) ueq = u,. This is impossible, because all the
eigenvalues of A — BR7'BTP lie in the left-hand half-plane, but at least m eigenvalues
of A— B(CB)~'CA of the sliding mode are zero. In fact, the rank of A — BR™'BTP
is n but the rank of I — B(CB)™'C is n — m. Therefore, for all systems wu,, cannot
have the form u,. In particular, assume that the matrix A is a p.d.s matrix, then for all
weighting matrices Q and R, A is not a solution of the Riccati equation (3.2). Therefore

the following theorem has been proved.

Theorem 3.1.1: Assume B is n X m matriz. Then for all semi-p.d.s Q
2P? — PB(CB)'BTP = -Q (3.5)

does not have a p.d solution. 0

A state feedback gain control can also be found by considering other quadratic cost func-
tional expressions rather than (3.1). Consider
]2+ lyl* = |14z + Bull* + [|Cal|®
= (Az + Bu)"(Az + Bu) + (Cz)"(Cx)
= zT(ATA+CTC)z + 20TATBu + uTBTBu
= 27Qz + 227 STu+ uTRu
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where Q = ATA+ CTC, S = BTA and R = BTB. Then
= [+ ) at

/ (z"Qz + 2z7STu + uT Ru) dt (3.6)
0

So the minimization of (3.6) yields the optimal feedback control
uo = —RY(BTP + S)z(t) = — (R'BTP + (B"B)'BT A) z(t) (3.7)
where P the is u.p.d.s matrix solution of the Riccati equation
(A— BR'S)"P+ P(A- BR™'S)~ PBR'B"P=-Q+ S"R™'S (3.8)
If C = BT then an optimal control is
Uen = —(BTB) "' BT Pz(t) (3.9)
where P is the u.p.d.s. solution of the ARE
ATP + PA— PBR'BTP=STR'BTP+ PBR'S-Q+STR'S=Q. (3.10)
On the other hand, the equivalent control is
Uo, = —(BTB)"'BT Az(t) (3.11)

Therefore in this case, the optimal control law given by (3.7) is the summation of the

equivalent control (3.11) and the control law (3.9), i.e.

Therefore the equivalent control never equals the optimal control but it can be a part of
the optimal control law by selecting appropriate weighting functions or more precisely by

minimizing the functional index (3.6).

3.2 Sliding Mode Using the LQ Approach

The design of the sliding surface using the linear quadratic (LQ) approach has been
considered by Young et al [135]. The basic idea is that y; is the input control of the
subsystem (2.16), and LQ methods can be used to find the optimal control or more

precisely the optimal sliding mode. Consider the singular quadratic cost functional

J=/ T Qrdt (3.12)
ts
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where @ is a p.d.s. matrix. Assume T is the transformation (2.13)

TQTT — [ Q;l Q12
Qiy Q2
Then (3.12) and y = Tz yield
J = /t (y1 Quyr + 23/{@123!2 + szszy'z)dt (3.13)

Suppose

Qu = Qu—QnQ»Ql,
Ay = An - A4Q5 Q7
u(t) = pat) + QxnQhun(t) (3.14)

Since (A, B) is a controllable pair, (A, Ayp) is also a controllable pair. Moreover, Q is a

p.d.s. matrix, so Q is a p.d.s. matrix. Then (3.13) is converted to
= " (FOQuun() + o6 Qu(t)) et (3.15)
Therefore the Riccati equation
AT P + PA;, — PA12Q5 AL,P = —Qy,
has the u.d.s.p. solution P and
v(t) = - 2_21A1T2P1/1 (t)

So
ya(t) = —Q3 ( 2+ Asz) y1(t)

Thus, without loss of generality it is assumed ()12 = 0 and then (3.13) becomes

J = /z (41 Quyr + y3 Qaays)dt (3.16)
and
y2 = —Qa AL, Py, = —Fy, (3.17)

where P is the u.p.d.s. matrix solution of the following Riccati equation

AT P+ PAn — PAQy ALP = —Qu (3.18)



Chapter 3. Optimal Sliding Mode Control 392
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Figure 3.1: The stability region of the sliding system

So y; + Fy; = 0 is the sliding surface for system (2.14), and
Cz =0, C=[F IIT

is the sliding surface for the original system (2.4).

Define the sliding surface as
SuM=y2+Fy1 + My, =0

where M is an m X m nonsingular matrix such that 0,,(M) > —1 and F = Q2—21 A¥’2 P.

Then
Y2 = —(Im + M)™'Q5, AL, Py (3.19)
For the particular case when M=al,,
Yo = _H%QE;A%PUI, a> -1 (3.20)

For stability of the reduced order system, it is necessary that all the eigenvalues of the
closed-loop matrix A1 — Ai2(Im+M)~Q3; AT, P lie in the left-hand complex plane. Since
1/(1 + a) > 1/2, the stability of the reduced order system is preserved [93]. Therefore,
the closed-loop matrix A;; — A12Q2_21A‘T2P/(1 + a) is stable if |a| < 1. In Fig. 3.1 the

appropriate region of the sliding surface for (2.14) is shown.
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Figure 3.2: Block-diagram of servo-mechanism system with optimal feedback

3.3 Output Tracking Problems

3.3.1 Sliding Mode Servo-Mechanism Systems

The linear quadratic optimal control problem was studied in Section 3.1. The LQ method
yields a full linear state feedback controller. The optimal control law to achieve tracking or
regulation has been presented by Wang and Munro [125], Mahalanabis and Pal [89], Saif
[97], amongst others. The sliding mode of servo-mechanisms and regulators are discussed

in this section. Recall the system (2.4) with output
y = Cz (3.21)

where C € R™*". Assume r € R™, the reference input, is a time-varying bounded

piecewise continuous function. Assume the rank of
. | A B
-C 0

is n +m. The output y is required to remain as close as possible to the reference input r.

Define
E=1—y (3.22)

where e is the output of the servo compensator given by (3.22) (see Fig. 3.2).

Then

Az + Bu+Tr +T¢ (3.23)
C (3.24)

81
Il

3
Il
81
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where

=[] S HESHES I

From Lemma 2.5.1 the pair (A, B) is completely controllable if, for any eigenvalues A of
A,

B
0

A 0
-C 0

= T =

)

A=Al 0 B

rank [A — Mnim) B] = c AL

=n+m (3.25)

In order to prove (3.25), first suppose A # 0. Since (A, B) is a controllable pair
rank (A —AI, B]=n

and then (3.25) is satisfied for A # 0. If one eigenvalue of A is zero, i.e. A =0, equation
(3.25) is converted to

A 0 B A B
ran = rank

—-C 0 —-C 0
where rank is n + m.
The minimization of the performance index

o
J = / (27 Qz + uT Ru)dt (3.26)
0

where R and @ are p.d. and semi-p.d.s. matrices respectively, yields the optimal control
u, = —~R'BTPz (3.27)

where P is the u.p.d. matrix solution of the Riccati equation
ATP + PA- PBR'BTP=-Q (3.28)

Substituting (3.27) in (3.23) yields

i=(A-BR'B"P)z +T¢+Tr (3.29)
Then
Iif _ A 0 _ B R_l [ BT 0 ] 11 P12 T
€ - 0 0 21 Poo e
0
+ T+ F 14
I 0

(3.30)

r—Cz

(A— BR™'BTPy;)z — BR'BT Pyye + T'¢ }
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where

Pll P12
P12 P22

Therefore the optimal control is
u, = —BR'BTPyz — BRT'BT Ppse
where ,
e= / (r —Czx)dr
0

The gain matrix —BR™'BTP,, is a linear state feedback matrix for the original system
(2.4) and the gain matrix —BR™'BT Py, provides the integral control action to improve

the accuracy (see Fig. 3.2). The system satisfies
i =(A—-BR'BTP,))z — BR'BTPye +T¢ (3.31)

The closed-loop system (3.29) is asymptotically stable when the disturbance and reference

inputs are step functions. Its poles are the roots of the characteristic equation

i » ® I, - A BR™BTP — -1pT
det (sIpsmy — A+ BRBTP) = | "7 . T
- sl,,

In the presence of disturbances, the state is ultimately bounded and the boundedness

width depends upon the disturbance bound.

3.4 Sliding Control Design

Consider the system (3.23). Define the sliding surface as
s=Cz+Cee=0

where C, € R™*™ is a design matrix. The sliding function s contains a term proportional

to the integral of the error. This term yields the ideal sliding mode. The virtual equivalent

control is

Upg = —(CB)"' ((CA - C.C)x + C,r + CT¢)
Consider the discontinuous servo-control

u=—(CB)™' ((CA-C.C)z + C.r + Ksgn(s))
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Figure 3.3: A block-diagram of sliding servo-mechanism system with feedback

where K is a diagonal matrix with positive entries and Amin(K) > ||CT||M. This control
guarantees the existence of the sliding mode because Amin(K) > ||CT||M yields

sTs=sT (CT¢ — Ksgn(s)) <0

This is in Section 5.2.2. The sliding surface should be designed so that in the absence
of disturbance and in the case of the matching conditions being satisfied, sliding system

stability is achieved (see Fig. 3.3).

The sliding surface of the system (2.4) is Cz = 0, but the sliding surface of system (3.23)
is s = Cz + C.e = 0 which is a proportional integral sliding surface.

When y = 0, the sliding function is converted to s = C, fot r(t)dr. So if y = 0 after a
finite time, the servo system is in the sliding mode if C, fot r(7)dT = 0 after a finite time,
ie. e € N (C).

If C.r(t) is a uniformly continuous function after a finite time and ljm_ I 0‘ C,r(7)dr exists

(with finite limit), then the Barbalat Lemma (see Appendix C) yields lim C,r(t) =0.

For some particular cases the behaviour of the tracking system is now considered. Define

r(t) as

<t

t
3.32
- (3.32)

o0={3" 5 "

where 71 (t) is bounded. Assume t; = max{t1, ¢,} where ¢, is the time when the sliding
mode of the system (2.4) is reached. Therefore, when the system is in the sliding mode
and t > t3, the system (3.23) is also in the sliding mode. However, the starting times of

the sliding mode of these two systems are different. The sliding surface of the system (2.4)
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is a subspace of the sliding surface of system (3.23). The ideal equivalent control of the
system (2.4) is given by (2.10). Note that the control of the two systems (2.4) and (3.23)
are not the same. But after £ > ¢; the control of both systems is the identical equivalent
control. Therefore, in the sliding mode after a certain time instant, the input reference
signal does not affect the system. It is therefore not necessary that the reference input

be injected for all the time; the reference input may be cut off or kept constant after a

certain time as in the regulator.

Remark 3.4.1 Define

(3.33)

« if

r(t)_{ ri(t) if Ofi:tl
= U1

where a € R™*! is a constant vector and r;(t) € R™*! is bounded. In this case the sliding

surface is transformed to s — a =0 or

Cizy 4+ Cozy —a =0 (3.34)

where C = [C’l C’g]. O

3.4.1 Optimal Sliding Mode for the Tracking Problem

Consider the tracking system (2.4) and assume T is an orthogonal transformation matrix

which is satisfied by (2.13). Then the system (2.4) can be written as

hi(t) = Auyi(t) + Anye(t) + & (3.35)
ho(t) = Anyi(t) + Anye(t) + Bau(t) + I'aée (3.36)

where yT and TATT are given by the equations (2.14)-(2.17) and

I
Iy

In (3.35) ¥ is an input of the system. Let é = r — y, with r(¢) bounded and

[

CTT=[(:1 cz], T =

Therefore




Chapter 3. Optimal Sliding Mode Control 38

and
U, = Anfr + Apgs + T1E+Tr (3.37)

Since (A, B) is a controllable pair, (A;1, A12) is a controllable pair [121] where

< A O _
All = H N A12 = A12
_Cl 0 —‘Cz
The performance measure
J = /0 (1" Qu1 + 251" Nz + y; Ryp)dt (3.38)
is to be minimized where
rorr=| ¢
NT R
The optimal sliding surface is
S(,%) =v2+ K1 =0, K =R"'(AP+NT) (3.39)
or
S(y1,y2,.€) = Kipn +y2 + Kee =0, K =[K; Ky (3.40)

where P is the u.p.d.s. matrix solution of the Riccati equation

AL P+ PAy — (PAy+ MR (AL, + NT)P = —Q (3.41)
The sliding surface (3.40) ensures that the system (3.37) is stable if the disturbance input
is a step function and I'; = 0.

Suppose I'; = 0 and 7 is the limiting value of r. The solution of system (3.37) is

t -
() = eA‘tgjl(O) +/ eA’(t”T)Tr(T)d'r
0

where /—h = Au - A12K, ltiggo h(t) = A,_ITTOO. If f‘iz_lTToo = (, the tracking problem is
perfectly achieved.

The sliding surface can be defined as

S(G1,y2) = (M+Im)y2 + Ky =0

where M is an arbitrary matrix with o,,(M) > —1 and K defined by (3.39). The modi-

fication matrix M is selected so that the nominal system (3.37) is stable.

Remark 3.4.2 The orthogonal matrix T = diag(T,I) converts the system (3.23) to
(3.37).
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3.4.2 Dynamical Reference Input Signal

The design of the sliding manifold for a nonlinear tracking systems has been proposed
by many authors including Davies et al [26]. The basic idea is based on the fact that in
practical cases, a system may need an input signal for switching, working, tracking and/or
starting. This signal can be given various forms depending on what signal is necessary as

the input of the system. A system may need a reference signal

(i) only for switching for a certain interval of time. In this case the reference signal is

given by (3.32).

(ii) for all time, but the reference signal is constant or piecewise. The reference signal
in the form of (3.33) where « is constant or a piecewise function. When « is a

piecewise function, the switching surface is (3.34), but in different intervals the

switching surface is different.

(14i) for all time, but the reference signal is the output signal of another system, pre-
system or reference system. The reference system operates as a signal generator.
This case is a generalization of cases of above (i) and (44). In this case, the original
system can be considered as a subsystem of an augmented system consisting of the

original system and a reference system.

A generalized approach for linear systems is presented which can be applied to the non-

linear case including the nonlinear affine system and nonlinear systems where the nonlin-

earity appears only in the disturbance term.

Consider the system (2.4) and also assume R(t) € R™ is a reference signal defined as

R(t) = AR(t) + B,r(t)
yr = CrR(t) (3.42)

where A € R™™ is a stable matrix, Cr € R™*™, B, € R™?, 4, ¢ R, r(t) € RP is
bounded. Define

é="T(y —y(t) (3.43)
where YT € R™™ is a nonsingular matrix. Taking

z
T=| R

e
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then the system has the form

i = A%+ Bu+T¢+ B,r (3.44)
where
A 0 0 0
f‘i = 0 A 0 ) B = 0 ) f‘ = 0 ) Br = Br
-YC CrYT 0 0

The stability of A is required because R is uncontrollable via u. This assumption ensures
the existence of linear feedback in order to satisfy system stability in the absence of the
disturbance input. So the stability of A is sensible and important, and a system with an

unstable model is not usually driven. The controllability matrix is

¢ = | B AB AB ... AHB]
(B AB  A2B ... A™'B
= 0 0 0 0
0 —YCB —YCAB ... —YCA™'B
[ 4 oB||o B 4B ... 4B
- o o0o0|loo o ... o (3.45)
Ycoollro o ... o

with rank @ = n + m. So (A4, B) is not a controllable pair but it is a stabilizable pair
because of the the stability of A. This condition ensures the existence of a linear feedback
gain matrix which yields the stability of the nominal servo system (see Appendix C). An

optimal controller results from the minimization of the cost functional
J= /0 N (z7Qz + uT Ru)dt
where @, R are semi-p.d.s. and p.d.s. matrices respectively. Then
U, = —R'BTPz = -Kz
where P is an u.p.d.s. matrix solution of the Riccati equation
ATP+PA-PBR'B"P=-Q
Assume
Py Py P

P = Py P Py
Py3 Py; Pis
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then
K=R'BT[P; Py Py

and the optimal control is
Uy = —R_IBT(PuiE + P12R + P136)

This control is proportional integral control where —R'BTP;;z and —R"'!BTP;,R are
ordinary linear state feedbacks and the term —R~' BT Py3e provides integral control action

to improve the static accuracy.

3.4.3 Tracking Sliding Control

Define the switching surface as

s(z) = C2 (3.46)

where
c=[c cr C.|
and C, € R™*™ is an arbitrary matrix. Then the switching surface is

s=Czx+CrR+Ce=0 (3.47)
and
Tg = —C{l(Clxl + CrR + Cee)

where C = [C; C.] and C, is nonsingular matrix. When s = 0,5 = 0 and
Ci+CrR+Ce=0 (3.48)
inserting (2.4), (3.42) and (3.43) in (3.48) gives
Ug = —(CB) ' ((CA-C.XC)x + (CrA + C.YCR)R + CrB,r + CT§)  (3.49)
Consider the discontinuous control
uw=—(CB)" ' ((CA—-C.XC)z + (CrA + C.YCg)R + CgB,r + Ksgn s)

where K is a diagonal p.d. matrix Amin(K) > [|CT||M and s is defined by (3.46). Similarly
to Section 3.4.1, this control guarantees the existence of the sliding mode. To achieve
perfect tracking of the desired output y,, the reduced order augmented system must be
stable. So the sliding gain matrix C should be selected such that the stability of the
sliding augmented system is guaranteed. Section 3.4.4 yields an optimal sliding surface

which ensures the stability of the nominal sliding augmented system.

UNVERSITY OF
S FIELD

e
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3.4.4 Sliding Surface Design

Consider the system (3.35) and let

Y1
g1=| R
e
Then the system has the form
U, = Anfh + Anya + Tié + Bor (3.50)
where
An 0 0 A I 0
Al]_ = 0 A 0 ’ A12 = 0 ] fl = O 3 Br = BT
-YTC, CgY 0O —-TCy 0

The optimal sliding surface is obtained from the minimization of the cost functional
J= /000 (71 Quih + y3 Qa2y2)dt
where Q; € RM™*(+m) and Qg € R™ ™ are arbitrary matrices. Then
Y2 = — 2_21;11T2—’5?71 = —Ki

where P is a semi-p.d.s. matrix solution of the Riccati equation

fiﬂp + PA;, - Pz‘ilez_zlfi{'zp =—Qn
Assume
P, Py Py
12 Pao Pog
Py Py Py

then K =Q2—21A¥; pu Plg 1513] and
Yo = —Ky = -Qz_zlfi{z(f’uyl + PyR+ P136)

is the sliding surface of the augmented system. Take C = [K 1I]. With this choice
of C, the nominal reduced order augmented system is stable. When y = 0, the sliding
function is converted to s = CpR+ C.TCr J3 R()dr. So if y = 0 after a finite time, the
augmented system is also in the sliding mode if CRR =0, i.e. R € A4 (Cg).
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3.5 Summary and Discussion

In this chapter LQ, LQR (regulator), LQT (tracking) problems and the sliding mode for
these problems have been studied. These methods yield suitable sliding mode control.
Using the linear quadratic cost functional guarantees the stability of the system in the
absence of disturbance and also when the disturbance is a step function. When the system
has a reference signal input, the design of the sliding surface is different. In this case the
reference input and its effect on the system must be considered. By using both output
tracking and regulator problems the sliding surface has been obtained. The relationship
between the two systems (2.4) and (3.23) in the sliding mode has been clarified. The
reference input has been considered as a dynamic system, and the control and the sliding
surface obtained. In fact, in this case the reference system is a dynamic system inde-
pendent of the original system and operates as a signal reference controller or generator.
Further results could be obtained for the nonlinear optimal control case to generalize the
work by Davies et al [26], or by using statistical methods for stochastic processes. If the
system is an m-input l-output system, Y is an m X ! matrix and the sliding surface can
be defined as already stated. More results may be obtained by investigating the sliding

condition regarding the boundary layer and also extending the results to nonlinear and

discrete-time systems.



Chapter 4

Frequency Shaping in Sliding Mode

Control

4.1 Prologue

The frequency shaping approach to linear quadratic (LQ) design has been proposed in
recent years [5], [41]-[55], [66], [67], [86], [114], [137]. For example, Moore and Mingori
[86] discussed frequency-shaped LQ and spectral factorization. They proposed techniques
for the construction of optimal controllers which preserve the robustness properties of
standard LQ state feedback. Tharp et al [114] discussed the parameterization of LQ
frequency weightings, the associated dynamic controller and a two-phase procedure for
the design of controllers for systems utilizing frequency weighting. They developed a
technique to retain the spectrum of closed-loop design model, resulting from a conventional

LQ problem, as a subset of eigenvalues of the closed-loop augmented system.

In [137] a method for control and sliding mode design using the frequency domain
techniques was presented, but considered only the case when the control weighting mat-
rix is dependent on frequency. In this chapter all the possible cases are considered for
which the weighting functions may be frequency-dependent. The frequency shaping of
sliding mode control and design compensators for the reduced order system are studied.
Furthermore, the conditions that the poles of original LQ reduced order system remain

the poles of the reduced order system with compensator are obtained.

The frequency-dependent weight functions may have a penalty on the control at high

frequencies, e.g. the frequency response may drop off slowly as 1/w at high frequencies

44
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Plant

Pre-compensator Post-compensator

Controller

Figure 4.1: A block-diagram of the augmented system

[48]. For the case of state feedback in LQ design, the controller has 60° phase margin
and (%, o) gain margin. Using appropriate frequency weight functions yields augmented
control systems which can be applied to obtain the sliding mode and optimal control.
Frequency shaping is a way of dealing with plant uncertainties and links linear quadratic

optimal control and sliding mode control.

In Section 4.2 the main problem and some new results are discussed. The main prob-
lem arises when the weighting functions in the LQ performance functional are frequency-
dependent. In this way a pre-compensator, post-compensator or both can be designed for

the system in the sliding mode (see Fig. 4.1).

4.2 Frequency Shaping of the Sliding Mode

In this section, methods are presented for finding the sliding surface when the weighting
matrices are functions of frequency. The quadratic cost (3.16) can be written in the

frequency domain using Parseval’s Theorem
1 [, .. . . . _ .
= ‘2?/ (47 (iw)@Qu (w)y1 (w) + 3 (iw) Qa2 (iw) Y2 (iw)) dw (4.1)
-0

where the matrices @1 (iw) and Q(iw) are frequency-dependent Hermitian weighting
matrices. They are p.d. matrices for all frequencies except a set of frequencies with
sero measure, i.e. for almost every frequency the weighting functions are p.d. matrices.
Assume the weight functions are proper rational functions of w? [48]. This assumption
guarantees that the optimal sliding solution is causal. Note that any real function can be

approximated by a rational function. There exist four cases:
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(1) both @, and @y are constant for all frequencies
(1) Qo is a function of w? and Qy; is constant for all frequencies

(i) Q11 is a function of w? and @y is constant for all frequencies

(iv) both @Q1; and Qs are functions of w?

Case (i) was considered in Section 3.2 and (i¢) has been presented by Young and Ozgiiner
[137] and Hashimoto and Konno [55]. It has been shown by Anderson et al [5] that when
Q11 (iw) and Qq2(iw) are the inverse of each other, then identical closed-loop poles and
an optimal sliding mode are obtained. Therefore, except for this case, the sliding gain

matrices are not identical, i.e. the sliding surfaces are no longer the same.

Cases (i1), (#41) and (iv) are considered here. Case (ii) is considered first, i.e. Qy is

constant for all frequencies and @2 is a function of w?. Assume that W(s) is a spectral

factor of (a2, 1.€.

ng(iw) = Wz*(iW)Wg('I;w) (42)

Then the quadratic cost (4.1) can be replaced by

= [ Q) + Walio)lio)) Wailnw) do (43)
= [ GiQun -+ (4.4)
where

i(s) = Wa(s)ya(s)

This implies that @ is the output of a filter or dynamic system with transfer function W;(s)
and input y,. If Wy(s) is considered to be a transfer function, then W(s) represents the

pre-compensator transfer function of the system

:i;w2 = szxwz + Bw2y2
ﬂ"lUQ = sz-rwz + Dw2y2 (45)

The optimal sliding surface for the augmented system, which is the original system with

the dynamic compensator (4.5), is now studied. Consider

Te = AeTe + Bey2 (46)
Ae = AW2 0 y Te = e ) Be = Bw2 )
0 Ap (3 A
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ctc,, 0 T
Qe = |: 2 ] Ne = CIU2DW2
0 Qn 0

and R, = DI _D,,. The quadratic cost (4.1) is converted to
J = /t oo(ﬂceTQeace + 227 Noys + y3 Reya)dt (4.7)
Therefore, the sliding surface is
s=ys+ Kz, =0, K = R;Y(BTP, + NY) (4.8)
where P, is the u.p.d.s. matrix solution of ARE
ATP, 4+ P.A, — (P.B. + NJ)R.'(BIP.+ N]) = -Q. (4.9)
For K = [K, K>] equation (4.8) becomes
s =y + Ki1Zw, + Kot =0 (4.10)

which is not the sliding surface of the original system, but is a linear operator of states.

Assume

n=KiZw, + Y2 (4.11)

Then the system

:‘wa = A‘wsz2+B'uJ2y2
n = KiZTu, +¥ (4.12)

is a filter for y, which is obtained by designing the sliding surface (4.12) [137]. Therefore

there is a filter for y, corresponding to the sliding surface.

4.3 Iterative Constructive Procedure for the Optimal

Sliding Surface

One way to obtain various sliding surfaces is to alter the weighting functions in the
functional performance index (4.1). The problem is how should the weighting functions
be selected. An iterative method enables one to consider various sliding surfaces and

choose the desired sliding surface. This method may be applied a finite number times
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and the sliding surface chosen by comparing the eigenvalues of the reduced order systems

corresponding to each sliding surface. Example (a) in Section 4.6 illustrates this approach.

An iterative method for designing the sliding surface is now presented. Conventional
weighting matrices are considered which yield a new compensator and augmented system.
In this way, various sliding surfaces can be designed. Equations (4.5) and (4.11) yield the
new system.

Consider
ty = C1Zw, + D1y2

Cl = CO ) Dl = DO
KOI Im

with Cy = Cy,, Do = Dy, and Ko; = K. Suppose

where

01(s) = Dy + Ci(sI — Ay,) ' By,
i.e. Q, is the transfer function of the system

i‘w2 = szl‘wz -+ szyg
CiTw, + D1ys (4.13)

U

Now consider (4.6) with weighting matrices

cT D,

cre, o
3 Nle:
0

Qle = l:
0 Qu

and Ry, = DTD,. The quadratic cost (4.1) is converted to

J = / ($ZQleme + 2$Z1Nley2 + ngley2)dt (414)
ts

Therefore, the sliding surface is
51 = Y2 + Kieze =0, K. = R }(BTP,. + NT) (4.15)

where P, is the u.p.d.s. matrix solution of the appropriate Riccati equation. For

Ki. = [Ku1 K5] equation (4.15) is

s1=Y2+ KuZw, + Kioyy = 0 (4.16)
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Since the quadratic cost functionals (4.7) and (4.14) are different, the sliding surfaces
(4.8) and (4.15) are not the same, i.e. a new compensator and a new sliding surface are

designed. For the next step, consider
’&2 = Cz$w2 + D2y2

where

Ci

Cy =
Kll

,D2

I
L —
RS
———d

Suppose
Qa(s) = Dy + Cy(sI — Ay,) ' By,

Consider (4.6) with weighting matrices

crc, 0 ] N2€=[CgD2]

Qae = [ 0 Qu 0

and Ry, = DI D,. The quadratic cost (4.1) now becomes
®
J= / (xe QZexe + 2$Z1N26y2 + ng2ey2)dt (417)
ts
Therefore, the sliding surface is
Sy =12+ Kz, =0, K, = Rz_el (BZP% + NZT; (418)

where Pj, is the u.p.d.s. matrix solution of the appropriate Riccati equation. For
Ky = [Ko1 K2 equation (4.18) is given by
s2 = Yo + K21Zw, + Kooy =0 (4.19)

By proceeding iteratively for a given positive integer number N > 1 it is obtained that

UN = CN$w2 + Dnyo

where

Dy

Cn_
CN=[ A ],DN= .

Kn-1n

Suppose
QN(S) =Dy + Cn(sI - sz)_lez
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i.e. Qu is the transfer function of the system

iw2 = szxwz + Bw2y2
CN.’131,,2 + DNy2 (4.20)

un

Now consider (4.6) with weighting matrices

Qne = |: C{,CN 0 y Nye = C?\;DN
0 Qu 0

and Ry, = D% Dy. The quadratic cost (4.1) is converted to

o0

J= [ (=IQnexe+ 22 Nyevs + y3 Ruveo)dt (4.21)
ts

Therefore, the sliding surface is
sy = Y2 + Kneze =0, Kye = RyL(BT Py, + NL,) (4.22)

where Py, is the u.p.d.s. matrix solution of the Riccati equation

AZPNe + PneAe - (PNeBe + NNe)RNe—l(BZPNe + NITve) = QN (4.23)
For KN = [KNI KN2] equation (422) is given by
SN =Y2 + Kn1Zw, + Koy =0 (4.24)

Therefore, for all N there exists an augmented system, an optimal sliding surface and a

filter for y, relating to the sliding surface.

4.3.1 Design of a Post-Compensator

Next Case (i43) is discussed. Suppose Q11(s) is a function of w? but Qg,(s) is constant for

all w,

Qu (iw) = W1 (iw) W, (iw) (4.25)
where W, (iw) is the spectral factor Q11(s). Then (4.1) becomes

J = -21; /_C: {(W1(iw)y1 (i) Wh (iw)y1 (iw) + y3(iw) Qa2y2(iw) } dw (4.26)
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Assume iy, (iw) = W1 (iw)y: (iw) and the transfer function of the system

i'wl = Awlmwl + Bwlyl (427)
'ﬁ'wl = Cw1$w1 + le )1 (428)
is Wy(s). Consider
i, = A1 + By (4.29)
A - [4 :
N = v ) A= H 0 3 = A12
Ty, Bw1 Aw1 0

DZ)-'l le Dgl Cwl
CZ;l le Cgl C'wl

For CT Cy, > 0 and DT D, — DL, Cu, (CT Cu))™1CT Dy, > 0, Q is semi-p.d.s. matrix
(see Appendix C.2). The quadratic cost (4.26) is now

o0

J= [ (#Qo+ i Quys) at (4.30)

ts

and the sliding surface is
s=y+Kih =0, K=Q;BTP (4.31)
where P is the u.p.d.s. matrix solution of the ARE
ATP + PA—- PBQZBTP = -Q (4.32)
Assume K = [K; K] then the sliding surface is given by
y2 + K1y + Koz, =0 (4.33)

The equations (4.10) and (4.33) are basically similar, i.e. the frequency shaping con-
trol weighting function and frequency shaping state weighting have similar effects on the
closed-loop system. The equations (4.5) and (4.27)-(4.28) describe a pre-compensator and
a post-compensator for the system (2.16), respectively. The equations (4.10) and (4.33)
indicate that the sliding surface can be considered as a linear operator corresponding to

the pre- and post-compensator, respectively.
Assume 7T is the linear operator

T(yl) = Klyl + K2xwl
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Define the sliding surface ¢ = 7 (y1) + y2. For the system
Ty, = AwTw, + Bu,i
z = Ky + Kozy, (4.34)
the augmented system is (4.29). Hence, the sliding surface is
¢ =1y + Ky + Kz, =0

The system (4.34) is a filter for y; which has been obtained by designing the sliding surface

(4.33). Also note that a linear operator has a realization as a dynamical system.

4.4 Relationship between LQ Reduced System and
Augmented Sliding System

The augmented system is a new system which is a combination of the original LQ reduced
order system and a compensator. Generally, the poles of the reduced order system are not
the poles of the augmented system. Since allocation of the system poles is very important
for designing control, it is desirable to design a compensator such that the poles of the
LQ system remain the poles of the augmented system. In this way some of the properties
of the LQ system are conserved. In this section conditions are stated for the poles of the
LQ reduced order system to be preserved as the poles of the reduced order augmented
system. Note that in the following discussion, the general case of decomposition of the
weighting matrix is considered; in particular when the weighting matrix is not strictly

proper. Consider the performance index (4.1). Assume
Qu1(iw) = Qo + Qu: (iw) (4.35)
where @ is constant matrix. Suppose

Jy = /t (yf Qov1 + Y3 Qaay2)dt (4.36)

where Qs is constant for almost all frequencies. Then an optimal sliding surface for the

original system is
y2 = —Qa APy = Ky, (4.37)
where P is the u.p.d.s. solution of the Riccati equation

AT P+ PA;y — PAQy ALP = —Qq (4.38)
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Suppose one selects Qo = 0. Denote A, A, ..., Ay, and 5\1, 5\2, ey 5\n2 as the eigenvalues
of A;; in the closed left-hand half plane and open right-hand half plane, respectively.
Then the eigenvalues of Ay — AjpK are Ap, Ag, ..., Ay, —X1, =2+ .., —An, [64]. When
Qo = 0, for the stability of the reduced order system it is necessary that matrix A;; has

no eigenvalues on the imaginary axis.

For
Qn = Wf 2%}
the transfer function of the system
£w1 = Awljwl + +Bw1y1
W = CyZu, + leyl (4.39)
is Wl (S)
Consider the augmented system
Qe = Aege + Bey2 (440)
where
i):[:yl]’ Aez {111 AO ’ Ae_—_ A12
Lw, Bwl AU)1 0
Then the index (4.1) is converted to
o0
~TA A
J = /t (% Quufe + Y3 Qooy2)dt (4.41)

where
Gu=| @t Dolu DuC
CZ;lle C’(:ll).'léwl

Hence the optimal sliding surface is
ys = —Qp B Peje = —K.je (4.42)
where P, is the u.p.d.s. solution of the Riccati equation
ATP, + P.A. - P.B.Q3 Bl P. = —-Qn (4.43)
The system in the sliding mode is governed by

g1 = (Ae — B.K.)i (4.44)



Chapter 4. Frequency Shaping in Sliding Mode Control 54

Theorem 4.4.1 If

Ay, = (An — ApK) + B,

~

Cw, = Dy, (4.45)

then the eigenvalues of A;; — A12K are also the eigenvalues of A, — B.K.,.

Proof: Assume Ay, g, ..., An_m, are the eigenvalues of A;; — Ao K and vy, v,, ..., Vpm

the corresponding eigenvectors, respectively. Therefore

A11 - A12K = V_IAV

where V = [ Vi Vg ... Upn_m ] and A = diag(A;, A2, ... ,A\i_m). The Hamiltonian
matrix for system (4.40) and index (4.41 ) is
g [ A, -B.QuBT
| —Qu —-A7
r All O —A12Q2_21AT2 O
= Do o ° 0 (4.46
~-Qo - DT D,, -DI C,, —AT, BT .46)
| -CID,  -CIC,, 0 —AT |

Since the eigenvalues of A. — B.K, are the eigenvalues of H, (see Theorem C.1.1), it is

sufficient to prove that the eigenvalues of A;; — A, K are the eigenvalues of H,. Assume

- -

.
v
PV

0 ]

<
i

Then
(A1 — ApQy ALP)YV
~ (Bwl - Auu)v
—{(Qo+ AT,P)+ DI Dy, — CZ Dy, }V
—(l’jz;léwl - C\‘Z;l C’wl)v
(A — ApK)V
— (A1 — ApK)V
(PA;; — PALK)V
0

(4.47)
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VA
_ -VA
| PVA
0
= VA (4.48)
Therefore A1, Az, ... , An—m are also the eigenvalues of A, — B.K,. O

Lemma 4.4.1 Assume that the conditions of Theorem 4.4.1 are satisfied and P is the
w.p.d.s. solution of ARE (4.38). The u.p.d.s. solution of ARE (4.43) is
P+P P

P, = . R
P P

where P is the u.p.d.s. matriz solution of the Riccati equation

AL P+ PA,, — PALQy ALP=-DT D, (4.49)

Proof: Substituting P. into the left-hand side of (4.43) and using Theorem 4.4.1 and
(4.38), yields

s A ~ Ay 0 P+P P
AT P,A,— P.B.QnhBI =| .~ . ' i
Acbe @z By, A, p P
RS PP AL o
P P|| B, As
T [~ A A
P+P P A1z _1 | A P+P P
P P 0 21 9 PP
[ Qo + P(An - A12Q2—21A{2P + Bw1) + (A — (A1 + Bwl - A12Q1_11AT2P)T}5+
AQirATLP + By,)TP — PA1Q;; AP PA,, — AppQALP
P(All + Bwl - A12Q2_21A¥12P)T + Awlp_
PApQy ALP Aw, P+ PAy,, — PAj,Q5 AL P J
_ [ Q0+D51bwl égll,jwl
h DZ;I é‘wl 051 Cwl
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Therefore, the sliding surface is

y2 = —Ke
= —Qn B: P
= —Qp AL(P + P)y — Q3 AL, P3,, (4.51)

and the reduced order system is
9 = (A BKo)in
Ap — ApQR AL(P + P) —AQ5 AT,P
Bwl Awl

n ] (4.52)

Ty,

4.5 Design of Two Compensators for Frequency-
Dependent Weighting Functions

Now consider Case (iv), i.e. both Q1; and Qo are functions of w?. Let W,(s) be the
spectral factor of Qe, £ =1,2. Then Wy(s), £ =1, 2, are the transfer functions of the
systems (4.27)-(4.28) and (4.5), respectively. W, and W, are post- and pre- compensators
(see Fig. 4.2). Then the quadratic cost (4.1) is transformed to

7= o [ R WAG)60) + 430 ()W)
= /t " (979 + a”a) dt (4.53)
where
5 = W)y (iw)
i = Waliw)ys(iw) (4.54)

are frequency shaped state variables and inputs, respectively. Consider

i, = A%, + Bz, (4.55)
U Ayn 0 0 Ap
‘lil = xwl ? A = Bw1 Awl O ) B = O
Ty 0 0 A, By,
D£1 D‘u)l DZ;1 C’wl O 0
On=|CID, CLC, 0 |, Qu= 0 , Qun =DLD,,

0 0 CTL.Cu, CT D,,
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J‘[_j— - -
Y2 +
A12 X f

At
AUJI
Ky Ty, f t\X)-F B,, *
___ -
sz
Ks o J ot B.,

Figure 4.2: Structure of generalized system in the sliding mode

Since CT. C, > 0 and DZ Dy, — DI Cy, (CE,Cu,)'CE, Dy, > 0 then

[ Dngwl D‘Z;lcwl
C’El le 01’51 Cwl

and Q;; are semi-p.d.s. matrices which guarantee the existence of an u.p.d.s. solution of

the conventional ARE. The quadratic cost (4.1) can be replaced by
J= /too(ﬁ@ufl + 2:5{@12?42 + ngzz?h)dt (4.56)
which is minimized with respect to yo. The optimal sliding surface is
s=1y+Ki =0, K=0Q3(B"P+QFh) (4.57)
where P is a p.d.s. matrix solution of ARE
/~1T15 + Pz‘i + (PB + Qu)@z_zl (BTP + sz) = ‘Qu (4-58)
Let K = [K, K, Kj]. Then the sliding surface is given by

Yo + Klyl + K2-T'w1 + KS-Twz =0 (459)
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Note that in this case the sliding surface is a linear operator of states. Unlike both the
previous cases, the sliding is no longer in the phase plane (y;, y2). When both @1, and Qs
are frequency-dependent, their effect on the system is similar to only one of them being
frequency-dependent. However, the sliding surfaces in this case differ, but the structure

of the sliding surfaces are similar.

Consider
m = KQ.’L‘wl + K1y1

M2 = K3Tu, + Y2
Then the systems

j;wl = Awlzuu +Bw1yl

m = Ky, + Ky (4.60)
and

:i*‘IUQ = szmw2+Bw2y2

N = K3Tuw, +¥2 (4.61)

are filters for y, and yi, respectively. These filters are given by the design of the sliding

surface.

Remark 4.5.1: All the methods in this chapter can be used for designing control. It is

sufficient that Qq1, @22, ¥1, Y2 are replaced by Q, R, z and u respectively, using the
usual LQ control notation, since y, is the input control of the subsystem (2.16).

4.6 Example: Two-Link Robot Manipulator

Robot manipulators are controllable nonlinear mechanical systems. The task of a two-link
robot is to move to a given final position as specified by two constant given joint angles.
Each link joint has a motor for providing input torque, an encoder for measuring joint
position and a tachometer measuring joint velocity. It is desired to design the control or
a sliding surface such that the joint positions 6, and ¢, tend to the desired positions 6,
and ¢,4, which are specified by a motion planning system. When a robot hand is required

to moved along a specified path, there is a tracking problem.
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Figure 4.3: Robot manipulator with two link arms

Consider the robot manipulator with two link arm, which moves in a horizontal plane.

The nonlinear equations governing its movements are

i, = ¢ [_szlé, + avo, + abf? + bJyd? + 20050, + Jouq — auQ] (4.62)

b = 9o - hvrdy — bh62 + abJog? + 206, — auy + hs| (4.63)

with

a = J2+2m2l1l2cos¢,

b= 2m2l1l2 sin ¢.,-

h = Lh+J+ 4m2lf + I + dmolsly cos o,

1

97 T e

where [; is the length of link 7, J; is the inertia moment of link 7 about axis 7, m; is the

mass of link %, v; is the viscous friction constant for axis ¢ and I is the moment of inertia of

the axis motor [129] (see Fig. 4.3). For simplicity, the cross terms in the equations (4.62)

and (4.63) will be ignored in the design, but can be included in the model simulation.

This strategy enables suitable results to be obtained [129]. If the cross terms are ignored,

equations (4.62) and (4.63) become

b, | | —9lnr gav
ér gavy —ghvs

gl —ga Uy
} +[ —a gh] l“?] (4.64)
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Let
0, =1, 9.,-21132 br = T3 ¢r=$4
then
T, = T2 Ty = I T3 = T4 T4 = I3
and
N o 1 0 o | [=xn]l [ o 0 ]
[ 0 —gJov; O av x Jy —
V) _ gJ2t1 gavsy 2 n gJ2 ga Uy (4.65)
.’tg 0 0 0 1 T3 0 0 U2
| T4 | 0 gavy 0 —ghvy | | z4 | | —ga gh |
Consider the robot manipulator system (4.65)
= Az + Bu
with
0 1.0000 0 0 | [0 0 ]
4 0 —-0.3320 O 0.0187 B 130.8 —308.3
|0 0 0 1.0000 |’ 0 0
0 0.7830 0 -0.1914 | | —308.3 3155.4 ]
Assume
[ 1 0 0 0 |
0 0 1
T= 0
0 —-0.3906 0 0.9206
| 0 —0.9206 0 —0.3906
is the transformation matrix given by (2.13) then
00 —0.3906 —0.9206
A = , A=
00 0.9206 —0.3906

(a) Consider the functional (4.1) with Qq; = I, and Qg (s) = Wi (s)Wa(s). Assume

with

W2(S) = Dw2 + sz (SI2 e sz)_lez

[ 0.3 0.1 ]
| 0 06 |
[ 03 0.9 ]

03 0

-

0 0
By, =

05 1
0.28
0.30

|

0.90
~0.02

|
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Then the augmented system is (4.6) with

The u.p.d.s solution of ARE (4.9) is

So

[ 0.3 0.1 0 0]
0 06 0 0
, B,
0 0 00
| 0 0 0 0]
[ 0.1740 0.2640 |
0.2520 0.8100
0 0 ’
|0 0
[ 0.18 0.27
0.27 0.81
Qe:
0 0
| 0 0
685.3062 —43.8132
—43.8132 8.3965
—67.5632 8.8390
| 2.433¢  -0.5894

15.2715 0.5819
16.8784 0.4274

and the sliding surface is

s=y2+[

The eigenvalues of A, — B.K are —0.3537 £ 1.0688:, —0.1495, —3.4473. So the
augmented system in the sliding mode is stable. The locations of the resulting
eigenvalues depend upon the choice of the proper weighting function @2;. The
sliding function s(t) is not the sliding function for the LQ system but is a linear

operator of the augmented states and has the form of a dynamic compensator.

15.2715 0.5819
16.8784 0.4274

Simulation results are shown in Fig. 4.4.

0
0
1.00
0

0
0.5000
—-0.3906
0.9206

0.1684
0.2460

0

0

0
1.00

—67.5632

8.8390
10.8023

—-0.5776

—0.6878
—0.8771

—-0.6878
—0.8771

—0.5894
—0.5776

3.1932
—1.2032

0

1.0000
~0.9206
~0.3906 |

0.2460
0.8104

2.4334

0.3376

3.1932
-1.2032

] =0
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State behaviour of the augmented system
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0.6 T Y T T T T 15 T
0.4 11 =
O.215 w21
-0.21 xw22 3
—o 4 1 1 1 1 ey | 1 1 1 1
o} 2 4 6 8 10 12 14 16 18 20
time
Sliding functions
1 T T T T T T
0.5 4
2
0 -
s1
1 1 1 L 1 1 1 L 1
=0.5 > 4 6 8 10 12 14 16 18 20
time

Figure 4.4: Responses of Example (a)

The iterative constructive method is now applied. At the first step consider

C]z

0.3000

0.8339
0
0

Qle

[ 0.3000 0.9000 ]

15.2715 0.5819
| 16.8784 0.4274 |

[ 15.4455 17.1424 ]

0

1.2374
0
0

le —

-

[ 518.2784 16.3706
16.3706  1.3313

0 0

0 0

At the first step the gain matrix is

le

5.8304 0.0379

—0.4473

50,28

0.30

1.00
0

1.1684 0.2460
0.2460 1.8104

OSi= L OO
SO OO

0.90 ]
~0.02
0
1.00 |

0.8252

: 12.5602 0.6850 —-0.5926 —0.4663

|
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The eigenvalues of A, — B.K, are —0.1819 4 0.86917, —0.1711, —0.9311.

At the second step consider

[ 0.3000 0.9000 |

[ 0.28

0.90
0.3000 0 0.30 —0.02
Oy — 15.2715 0.5819 D, = 1.00 0
16.8784 0.4274 0 1.00
5.8304 0.0379 1.00 0
| 12.5602 0.6850 | 0 1.00 |
[ 21.2759 29.7026 ]
0.8718 1.9224 | 2.1684 0.2460
Nee= | o | T [0.2460 2.8104}
- 0 0 -
So the second step yields the gain matrix
31.1239 0.2781 —3.3756  15.7457
*7 | 26.4561 2.0299 —0.8349 —5.6859 }

The eigenvalues of A, — BeKo, are —0.1031 £ 0.7789:, —0.1749, —0.6789. At the

third step consider

[ 0.8

0.3000 0.9000 0.90
0.3000 0 0.30 —0.02
152715 0.5819 1.00 0
16.8784 0.4274 0 1.00
C3—- D3=
5.8304 0.0379 1.00 0
12.5602 0.6850 0 1.00
31.1239 0.2781 1.00 0
| 26.4561 2.0299 | 0 1.00 |
[ 52.3997 56.1587 |
N 1.1499  3.9523 [ 3.1684 0.2460
Be ™ 0 0 0.2460 3.8104
- 0 0 -
So the third step yields the gain matrix
o | 3033 0.1311 —0.2920  0.4816
%71 11.7485 0.6377 —0.4192 —0.2967
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The eigenvalues of A, — B.K3. are —0.1074 & 0.8902z, —0.1232, —0.5245.

Therefore, various sliding surfaces and augmented systems with different poles can

be found. One can then select a sliding surface with suitable eigenvalues taking into

account the actual system requirements.

The following illustrates the case when Q11 is a function of frequency but Qg is
constant. Assume Qo = 0.05. Then the u.p.d.s. solution of ARE (4.38) is

Therefore,

22
p_ | 02236 0
0 02236
o | 00873 02058
~ | —0.2058 —0.0873

|

and A;; — A1oK has just one eigenvalue —0.2236 (repeated twice). Consider

and (4.39) with

e

—0.2236

Then
[0 0
] 0 0
A=l 0
| 0.4000 0.5000

Taking Q22 = I and

Qu =

0.4000 0.2764

Qu(iw) = Qo + Q11 (iw)

0 B, = 0 0
0.4 0.5
Duu = Auu
0 0 |
0 0 X
, Be
-0.2236 0
0.4000 0.2764 |

[ 4.5500 7.4250 4.5000
7.4250 20.5025 7.4250
4.5000 7.4250 4.5000

| 7.4250 20.4525 7.4250

The u.p.d.s solution of ARE (4.43) is

Pe

[ 1.8676
1.5054
1.6440
| 1.5054

1.5054
4.7733
1.5054
4.5497

1.6440
1.5054
7.1020
1.5054

}’ C’w1=[1'5 4.50}
1.5 0.45
[ —0.3906 —0.9206 ]
| 09206 —0.3906
- 0 0
L 0 O .
7.4250 |
20.4525
7.4250
20.4525 |
1.5054 ]
4.5497
1.5054
4.5497 |
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and

K — 0.6564  3.8063  0.7437  3.6005
“7 | —2.3073 —3.2503 -2.1014 —3.1629

The eigenvalues of fle — B.K, are —4.8346, —1.3068, and —0.2236 (repeated). So
the repeated eigenvalues —0.2236 are the eigenvalues of A;; — A;3K. The sliding

surface is
0.6564  3.8063 0.7437  3.6005
Y2 = — - T, (4.66)
—-2.3073 —3.2503 —2.1014 —3.1629
The reduced order system 1is
[ —1.8677 —1.5055 —1.6441 —1.5055 |
Bug | | 15055 —4.7736 —1.5055 —4.5500 | | fu,
g | 0 0  —0.2236 0 i
0.4000  0.5000  0.4000  0.2764 |

Since A;; = 0, the eigenvalues of the LQ closed-loop A1 — A2 K are zero if Qg = 0.
On the other hand, it is desired to find K, so that the eigenvalues of the closed-loop
Ay — Ao K remain the eigenvalues of the closed-loop A, — B.K.. So @y should be
selected as a nonzero matrix. Here select Qo = 0.05. Then A;; — A, K is a stable
matrix and the stability is given by A, — B.K.. If (A11, A12) is not a stabilizable
pair then Theorem 4.4.1 fails, because there is not a feedback gain K such that

Ay — Ao K is a stable matrix. Simulation results are shown in Fig. 4.5.

(c) Now consider the case (iv) in which two weighting matrices are frequency-dependent.

0 2 0 O
Awl = ) Bw1 =
0.3 2 0.4 05
13 0.95 3.00
C’u.u = ’ D‘wl =
10 1.00 —-0.05
0 2.0 0 1.0
A’wz = ) BW2 =
20 0.5 7.0 04

1.0 0 0.7 0
Cw2 = 3 Dw2 =
-0.61.0 -0.6 0.7

Suppose
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State behaviour of the augmented system

0.1
y11
0.05 - ]
xw11
{wi2
o._
yi2
0,08 5 10 15
time
Sliding functions
.
0.5 1
N
o_
s2
-0.5 ]
&lo 5 10 15
time
Figure 4.5: Responses of Example (b)
Therefore
[ ] [ _0.3906 —0.9206 |
(S (B () 0.9206 —0.3906
~ 2 0 0 = 0
A — ) B = 0
04 05 03 2 0 0 0 0
Qe Qe 2 0 1.0000
0202505 7.0000 0.4000
[ 1.9025 2.8000 1.9500 2.8500 0 pEe]
2.8000 9.0025 2.9500 9.0000 0 0
1.9500 2.9500 2.0000 3.0000 0 0
Q11= 2.8500 9.0000 3.0000 9.0000 0 0
0 0 0 0 1.3600 —0.6000
0 0 0 0 —0.6000 1.0000
[ty 0 0 0 —0.6000 1.0000 |
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3.0916
—5.6197
0.5821
3.5534
—0.2406
1.0681

[ o 0 |
0 0
i 0 0 ) 0.85 —0.42
e N [ ~0.42  0.49
1.06 —0.42
—0.60  0.70
The u.p.d.s. solution of ARE (4.58) is
[ 93149 —15.9939  2.0791  13.4303 —0.5250
_15.9939 387375 —0.6894 0.9834  0.5946
5 9.0791 —06894  3.3153  10.3865 —0.0614
127 | 134303 09834  10.3865  113.2893 —0.2914
_0.5250 05946 —0.0614 —0.2914  0.7948
3.0916 —5.6197  0.5821 35534  —0.2406
and
[ 38636 16441 27836 215820 —0.2407 14231
~ | 0.0128 —2.7951 —0.6191 -52115  1.7316 0.2719

So the sliding surface is given by (4.59) with

3.8636
0.0128

|

K

1.6441
—2.7951

|
|

2.7856
—-0.6191

o

—0.2407 1.4231
1.7316 0.2719

Simulation results are shown in Fig. 4.6.

So in Case (c) two compensators corresponding to the weighting matrices @, and

Q42 have been designed. The order of the augmented system is much higher than

the LQ system.

Cases (1), (i) and (1v) can be applied to practical problems as illustrated by the
examples in Section 4.6. However, if it is desired to apply the iterative method,
Case (i3) (Example (a)) is more suitable than (44¢) and (iv) (Examples (b) and (c)).
To apply Theorem 4.4.1, Case (iiz) (as in Example (b)) is recommended, while for
Case (iv) (Example (c)) improves the stability of the system more strongly than the

other cases.

21.5820
-5.2115

|
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State behaviour of the augmented system

4 T T T T T T T T T
y11 xw11
xw21
1 1 1 1 1 .
(o] 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time
Sliding functions
15 T T T T T T T T T
10 E
s1
I3 —
O
-5 1 1 Il 1 L 1 1 1 1
o} 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time

Figure 4.6: Responses of Example (c)

In all cases the sliding function has the form of a dynamic compensator. The poles
of 5, in Case (i) and the zeros of @11 in Case (i22) correspond to the compensator
poles and zeros, respectively. In Case (2v) there are both. All these compensators in-
fluence directly the reduced order closed-loop transfer function. Example 4.6 shows
that the frequency shaping of the sliding mode can provide additional flexibility for
the design of the sliding mode using LQ techniques. Suitable design of the sliding
surface may depend on the (i) model validity, (iz) actuator/sensor characteristics,

(i4i) sliding function objectives and (iv) disturbance spectrum [48].

It is assumed that @1 and Q22 are proper weighting functions. Generally, there
may be cancellations between the poles of one compensator and the transmission
zeros of the other compensator system, when (J1; and @92 are not proper functions.
A modified method for this case has been presented in [48].
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4.7 Summary and Discussion

Frequency shaping control design linked with linear quadratic optimal and sliding mode
control is a technique for controlling systems with uncertainties. In this chapter a new
method for designing the control and the sliding surface has been proposed when the
LQ weighting functions are not constant for all frequencies. By using this method pre-
and post-compensators are designed. The resulting augmented system is a combination
of the original system and compensators. The order of the augmented system depends
upon the dimension of the original system state and the weighting functions. It has been
concluded that the sliding mode can be expressed as a linear operator of states i.e. a
dynamic system. Additionally, conditions have been obtained to retain the spectrum
of the original LQ reduced order system as a subset of the spectrum of the augmented
system. This is important if compensators for the system are required such that the
cigenvalues of the LQ system are the eigenvalues of the augmented system. Furthermore
an iterative constructive procedure has been developed to obtain the optimal sliding mode.
This method enables one to find various sliding surfaces and by comparing the eigenvalue

locations in the left-hand half-plane a sliding surface can then be selected to suit.

Further research should address Hy, and the sliding mode, and extend the work in
55]. Possibly a generalized system can be found and then one can use Ho methods.
Similarly to [55], by using the H, approach, the sliding gain matrix could be found for
Cases (iii) and (iv) of Section 4.1. However, some Hy, methods to obtain the feedback

gain matrix could be adapted to those augmented systems which have been discussed in

this chapter.



Chapter 5

Sliding Mode Controller-Observer
Design

5.1 Introduction

All state variables may not be measurable in many practical problems. Then using know-
ledge of the output of the system a suitable estimate of the state is required. Many new
state observation techniques for linear and nonlinear systems have been proposed in recent
years. The topic of control of nonlinear systems using feedback linearization can be found
in [14], [76], [123], [142] and the extension of linearization in [13] amongst others. The
method of Lyapunov-based observer design (Thau [113]) has been extended in [75], [140]
and [134]. There is a fundamental limiting condition in sliding mode control to guarantee
robustness despite the presence of the uncertainty in the system; namely the ‘matching
condition’, i.e. the range space of the disturbance input distribution matrix must be a
subspace of the range space of the control input distribution matrix. Matching conditions

for linear and nonlinear systems have been considered in many papers including [29], [32],
[107], [108], [121], [142].

Sliding mode observers as well as sliding mode controllers are known for their ro-
bustness and insensitivity with respect to unknown parameter variations [19], [28]. The
fundamental difference between a sliding mode observer and other observer approaches is
that the sliding mode observer is usually a discontinuous (or a continuous approximation
to a discontinuous observer in the sense of the bounded layer) such that the state error
trajectories move onto a specified attractive hyperplane. Robustness, insensitivity prop-

erties and simplicity of design make sliding observers a powerful approach. Analysis and

70
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comparison of several kinds of observers can be found in [115] showing that the sliding
mode observer is a good approach from the point of view of robustness, implementation,

numerical stability, applicability, ease of design tuning and overall evaluation.

Walcott and Zak [123], [142] discussed the state observation of nonlinear dynamic
systems with bounded nonlinearities/uncertainties. They advocated an observer design
method using Lyapunov and min-max methods. Their approach requires the matching
condition and is linked to the strictly positive real condition. Yaz and Azemi [134] presen-
ted a method for designing an observer for nonlinear deterministic and stochastic systems,

and applied the continuous (boundary layer) gain given by Walcott and Zak [123).

Emel’yanov et al [37] considered the problem of output stabilization for uncertain
linear time-invariant SISO systems and proposed a method for designing a reduced order
observer, i.e. designing an observer for the reduced order system. Almost all of these
techniques are based on Lyapunov and min-max methods, i.e. minimizing the derivative

of the Lyapunov function and obtaining suitable sufficient conditions.

Edwards and Spurgeon [32] modified the Utkin observer [121} and extended the discon-
tinuous observer to nonlinear systems. They developed a robust discontinuous observer.
Sira-Ramirez et al [108] discussed matching conditions of the sliding mode observer for
linear systems and also studied the generalized observer canonical form. Koshkouei and
Zinober [69] have presented methods for designing an asymptotically stable observer, the
existence of the sliding mode and stability of state reconstruction systems of MIMO linear

systems including disturbance input, as presented below.

The most popular and well-known observer approach is that of the Luenberger ob-
server [78]. The full order Luenberger observer uses a gain observer matrix so that the
state error decays suitably fast. In practical problems, the gain of the observer should be
chosen to give eigenvalues of the error system matrix not too far into the left half-plane,
to avoid excessive noise amplification [28]. A sliding mode observer yielding insensitivity
to unknown parameter variations and noise, has been proposed by Utkin [121]. The re-
duced order system (slow subsystem) is included in the constant feedback gain matrix,
whereas both the slow and fast subsystems relate to the discontinuous vector. Dorling
and Zinober [28] compared the full and reduced order Luenberger observers with the
Utkin observer. They reported some difficulty in the selection of an appropriate constant
switched gain to ensure that the sliding mode occurs and discussed the elimination of
chattering. However, the unmatched uncertainty was shown to affect the ideal dynamics

prescribed by the chosen sliding surface.
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In this chapter some results about sliding dynamics are first presented and then an
observer for a system which may not satisfy the matching condition, is developed. This
type of observer for a SISO system has been considered in [107], [108] for matched un-
certainty (matching condition). However, in these papers the feedforward injection input
map, the external compensation signal gain, the stability of reconstruction error system
and the condition of the existence of the sliding mode control were not studied. In [107],

[108] the sliding mode observer was extended to the generalized observer canonical form.

In Section 5.2.1 some sufficient conditions for the existence of the sliding mode for
a SISO system with disturbance input are presented, and then the results are extended
to a MIMO system in Section 5.2.2. These conditions ensure that the state trajectory
approaches the sliding surface in the presence of unmatched uncertainty. In this case, the
disturbance rejection problem for the sliding system may not be completely satisfied, but

when the sliding mode occurs, the state trajectory moves within a neighbourhood of the

sliding surface to the origin.

An approach for designing a sliding observer and the proof of the stability of the state
reconstruction error system for linear time-invariant multivariable systems using the Lya-
punov method, is given in Section 5.3. Methods are established to find the feedforward
injection map and the external feedforward compensation signal, which correspond to the
control input distribution map and the input of the reconstruction error system, respect-
ively. Sufficient conditions for the existence of the sliding mode for the reconstruction
error system are proposed such that ultimate boundedness or asymptotic stability of the
error system is assured. Sufficient conditions are derived to ensure error system stability
and the existence of the sliding mode. When there is unmatched uncertainty, the stabil-
ity of the system may not be achieved. However, a region exists in which the state error

trajectory converges to the sliding surface after a finite time and remains on this surface

to the origin.

The significance of our method is that a discontinuous observer for full order systems
with disturbance input is designed. This system may not be ideally in the sliding mode
and the uncertainty may not satisfy the matching condition. Similar to discontinuous con-
trollers, there are many methods to eliminate observer chattering including a continuous

approximation for discontinuous feedforward compensation signals [29).

The basic aim of observer design is to find an estimate for the state and, if the

input is unknown, estimate a suitable input. Using the sliding control input form, a

suitable estimated input can be obtained. Before observer design is studied, a technique
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for designing a controller using sliding mode properties is stated and some aspects of the
behaviour of the sliding dynamics are studied. Then sufficient conditions are presented

for the existence of the sliding mode in the face of unmatched uncertainty.

To establish the stability of the error system, suitable conditions on the disturbance
input are needed; (i) the matching condition, (47) the convergency of the norm of disturb-
ance input signal to zero, (iii) the norm of the disturbance signal bounded on the norm
of the output error, i.e. there exists a real function M (or a real number M) such that
€|l < M||C(z — £)|| where £ is the disturbance input and £ is the estimate of the state
. Otherwise, the asymptotic stability of the error system may not exist in the presence

of the disturbance input. Note that since the output is accessible, so is the estimated

output.

Suitable examples regarding the results and conclusions are presented in Section 5.4.

5.2 Sufficient Conditions in Sliding Mode for Systems
with Unmatched Uncertainty

In this section the condition for the existence of the sliding mode for control systems
including disturbance input, and some results about the sliding dynamics and the reaching
time to the sliding surface, are presented. If the range of the distribution disturbance input
map is not in the range of the distribution control input map, the disturbance affects the
system in the sliding mode. However, the existence of the sliding mode guarantees the
state to lie in the vicinity of the sliding surface. The control design using the sliding mode

technique, when the constant design gain matrix is a diagonal matrix, is considered.

5.2.1 The SISO System

Consider the linear time-invariant system
£(t) = Az(t)+ bu(t) + v&(t) (5.1)
y(t) = cz(t) (5.2)

where z € R is the state variable, A € R**", b € R" is nonzero vector, u is the scalar
input control, ¢ € R" such that ¢b # 0, y € R is the scalar output and v € R" is the
perturbation input map. The map £ € R is the bounded scalar disturbance input, i.e.
there exists a nonnegative real number M such that |£| < M. For suitable performance the
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real number M is chosen as small as possible and if sup |£(¢)| is known, set M = sup [£(t)].

It is assume that (A, b) is completely controllable and (A4, ¢) is completely observable.

A technique of control design using the sliding mode is presented, and then the sliding

mode dynamical behaviour is studied. The reaching sliding mode condition is y sgn y < 0.

Then

ysgny = (cAz +cbu+cy€) sgny
= (—cbueq + cbu) sgn y
= —cb(ueg —u) sgn y (5.3)

For the right-hand side of (5.3) to be negative

U < Ugg if cby >0
u>tug if cby <0

Therefore

Ueqg — K1 if cby >0
U= Ug if y=0 (5.5)
Ueq + Ko if cby <O

where K, and K, are positive real function design gains. For simplicity, assume

A~

Ki=K,=K
then (5.5) becomes
u = e, — K sgn (chy) (5.6)
The control u has two parts, a linear part u, and a discontinuous part u, = — K sgn (cby),
ie.
1
U= ——C—E(cAa: +cv€ + K sgn y) (5.7)

where K = |cb|K > 0. The right-hand side of (5.7) is known except for the disturbance
input £ which is unknown and is not accessible. So it is necessary to replace £ by an

estimate é so that the reaching sliding mode condition is satisfied. Choosing

~

£ = M sgn(cyy)

1
u = —— (cAz + (lcy|M + K) sgn y)
1
= —E (CA:II + Klsgn y) ’ Kl - lc’Y'M + K (58)
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Then
ysgny=cysgny— Mley| - K <0 (5.9)
since cy€ sgn y < |¢v€| < M|cy|. The output dynamics satisfies
y=cy€—(leyIM + K)sgn y

If (5.1) is an undisturbed system (i.e. £ = 0), the control is given by (5.7) with £ = 0. In
this case, differentiating (5.2) and inserting (5.7) yields

y=—Ksgny (5.10)

and
y=—~K(t—t,) sgny

which implies that

ly(0)]

t, = ——

K
where y(0) is the arbitrary initial condition. Note that for ¢ € [0,,] the state moves from

y(0) to the sliding surface y = 0. The output dynamics (5.10) shows that y converges
asymptotically to y = 0, and the rate of change of y is guaranteed to be either —K (or

K) for y positive (or negative), i.e. the velocity to the sliding surface y = 0 is K.

As already stated, using the reaching sliding mode condition for a system including dis-
turbance signal gives a control (5.7) which depends on the perturbation and disturbance
inputs. Therefore, an estimate of the disturbance signal in the control law is needed such
that the reaching sliding mode condition is achieved. The control law (5.8) shows that if
K is chosen sufficiently large, i.e. K > |cy| M, the control can be chosen independently
of £. In this case, the condition K1 2 |ey|M on the control feedback gain K is necessary
to satisfy the reaching sliding mode condition. Consider

S Az + K
u——ab—(c z+ K sgn y) (5.11)

i.e. the input control is independent of the perturbation signal. The output signal is given

by

y=cy§ - Ksgny (5.12)

and

y() = ey (/t:g dt) —K(t—1,) sen y
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Multiplying (5.12) by sgn y gives
ysgny=cysgny— K (5.13)
Hence, a sufficient condition for the existence of the sliding mode is
cy€sgny < K

and a sufficient condition for the existence of the sliding mode is

ley|M < K (5.14)
The output y satisfies
|y| 2 (lC’)”M - K)(t - ts) if ¢ < ts
=0 if t>t,
and
< )
K — Mlcy|

5.2.2 The MIMO System
Now the results of Section 5.2.1 are extended to MIMO systems. Recall the time-invariant
system (2.4)

i(t) = As(t)+ Bu(t) + T() (5.15)

y(t) = Cx(t) (5.16)

where I' € R**™ is the perturbation input map and £ € R™ is the bounded disturbance
input, i.e. there exists a positive real number M such that l€]l € M. The real number M
is chosen as small as possible and if sup ||£(t)|| is known, M = sup ||£(t)||. Assume that
(A, B) is completely controllable and (A, C) completely observable.

Now the sufficient conditions for the existence of the sliding mode in the presence of

uncertainty are investigated. Choose the control
u = —(CB) !(CAz + CT{+ Kysgn y) (5.17)
where the design gain matrix K is a diagonal matrix with positive elements

K1 = dia,g(kl, kz, “e ,km)
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Then, for yT= [yl Y2 .- ym]
y'y = y'(CAz + CBu + CT¥¢)
= —y"Kysgny
= —(kilyi| + k2lye| + - - + km|yml)
< 0 (5.18)

Differentiating (5.16) and using (5.17) yields the output signal dynamics

y=-Kisgny (5.19)
Hence, for any 1 <1< m
Yi = —kisgn y; (5.20)
and then
Yi = —ki(t — tis) sgn v (5.21)

where t;, is the time to reach the surface y; = 0. Therefore, the output behaviour is

governed by

y=—K(t—t;) sgny (5.22)
From (5.21)
to= max_ |yi]£?)| (5.23)
Since for all 3, 1 < i < m, |5i(0)| < ||y(0)|| and o (K)) < ki, (5.23) yields
- I
T om(Ky)

Note that for t € [0,1;] the state variable z moves to the the sliding surface y = 0. The
output dynamics (5.22) shows that y asymptotically converges to y = 0 and for any i,
1 < i < m, the rate of change of y; is guaranteed to be —#; ( k;) for y; positive (negative),

i.e. the velocity of y to the sliding surface y = 0is [ky k2 ... kn).

If £ is unknown, the control law (5.17) cannot be implemented. So an estimate £ of € is

required. Let £ = Msgn (Cz). The control law (5.17) is converted to
u = —(CB) Y CAz+ CT¢ + Kisgn )

— —(CB) ' (CAz + (CTM + K,)sgn y)
= —(CB)'(CAz + Ksgn y), K =CT'M + K, (5.24)
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Therefore the control is given by

u=—(CB) '(CAz + Ksgn y)

78

(5.25)

where the matrix K — CI'M is a p.d. matrix. For simplicity, consider the matrix K to

be a diagonal matrix with positive real entries such that
Moy(CT) < 0,(K)

Then the output signal is given by

y=CTl¢ - Ksgn y

for

[ ! ]
cre=| "

Tm

The reaching condition of the sliding mode is

Yy <0, Vi 1<i<m

On the other hand
yTy = y"(CT¢ — Ksgn y)

Hence
i .
71 — k1 sgn yy
) Y2 — k2 sgn y,
yTy=yT ,
| ¥m — km SgD Ym

Therefore, if for allz, 1 <1< m

Yi(vi — ki sgn y;) <0

(5.26)

(5.27)

then yT9 < 0. Thus, a sufficient condition for the existence of the sliding mode is that

1vil < ki Vi 1<i<m

Hence, if

(5.28)

(5.29)
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then (5.28) is true. From (5.29)
CTE| < om(K) (5.30)

But
|ICT¢|| < Moy (CT)

so, if
Moy (CT) < o (K) (5.31)

then (5.28) is true, i.e. (5.31) is a sufficient condition for (5.28) and for the existence of

the sliding mode control.

If (5.26) is satisfied then

Bi=vi—kisgny, Vi, 1<i<m

t
Y = (/ Yi dt) - kz(t - tis) sgn y;
tis

where t;, is the time to reach the surface y; = 0. Therefore, (5.27) implies

and

visgn y; =visgny; —k; <0
Hence, a sufficient condition for the state trajectories to converge to the surface y; = 0 is
Yi sgn yi < ki

which holds if (5.28) is satisfied. For any 1 < ¢ < m, there is a real number 7; such that
lyil <m < ki and m; < |CT||M. Hence the i-th output y; satisfies

=0 if t >t
Then (0
< BOL G Cicm
ki —mni

Assume the condition (5.31) is true, then

t, = max 1
1<igm
max yi(o)
1<ism kb — 7
lly )
0m(K) — Moy (CT)

N
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5.3 Sliding Mode Observer Design

Sliding observers potentially offer advantages similar to those of sliding controllers; in
particular, inherent robustness to parametric uncertainty and straightforward application

to important classes of systems.

Here state estimation for the system (5.15)-(5.16) is considered so that the estimate of
the state is close to the actual state. This yields a reconstruction error system which
is asymptotically stable or ultimately bounded. A method for sliding observer design

and sufficient conditions for the existence of the sliding mode and the sliding region, are

proposed.

A robust observer for the system (5.15)-(5.16) with an estimate of the disturbance input
£(t) is

£(t) = A#(t) + Bu(t) + H(y(t) — §(t)) + DE(2) (5.32)
where 7 is the state estimate, £ is an estimate of the disturbance £, and H € R™™ is the
observer gain matrix. In the absence of uncertainty the observer will be asymptotically

stable if H is selected such that A — HC is a stable matrix. Clearly if £ is known, set
¢ = €. The general form of the sliding observer (5.32) for the system (5.15)-(5.16) may

be selected as
= A +Bu+H(y—9) +Av (5.33)
= C% (5.34)

&

L~

where v € R™ is an external discontinuous feedforward compensation signal and A € R**™
is the feedforward injection map such that C'A is a nonsingular matrix. The state recon-

struction error is defined as e = z — . Subtracting (5.15) from (5.33) gives the dynamical
reconstruction error system
¢ = (A-HC)e+T¢ - Av (5.35)

ey = Ce (5.36)
where ¢, = y — ¥ Is the output reconstruction error. The initial state ro = z(to) is
unknown and & = Z(to) can be arbitrary assigned. A suitable value for Z; is a point on
the sliding surface y = 0, i.e. cip = 0.
If the control u is not directly accessible, the conventional estimate is in the form (5.25),
le.

u=—(CB)"'(CA% + Ksgn (Cz)) (5.37)
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where the matrix K is a diagonal matrix with positive entries such that
MCTM(CP) < O'm(K)

The ideal sliding mode for the system (5.35)-(5.36) satisfies e, = 0, é, = 0 [29]. The

virtual equivalent feedforward input is given by
Veq = (CA) "' (C Ae + CT¢) (5.38)

Substituting (5.38) in the state reconstruction error system (5.35) gives the reduced order

system
é¢= (I —A(CA)IC)Ae+ (I — A(CA)IC)TE (5.39)
with m of the eigenvalues (5.39) zero and the n — m remaining eigenvalues to be assigned

[34]. The reduced order system is independent of the disturbance input signal if there

exists an m X m matrix D such that
I'=AD (5.40)

The error system in the sliding mode is now studied. Using the transformation T (2.13),
the system (2.4) is converted to the system (2.15). Let CT” = [C) C,]. Consider a

second transformation

In—m 0
T, = 5
o G, ] (5.41)
Then
Y
TTz=|" } (5.42)
Y
and the system (5.15)-(5.16) is converted to
n(®) = Anyi(t) + Auy(t) + 1€ (5.43)
g(t) = Auyi(t) + Any(t) + CBu(t) + Tt (5.44)
where
- .
A A
T TATTT ! = 11 Az

i Ay An
[ A11 — A12C’2_ICI A12C2—1
| C1An + CoAy — (ChA12 + CoAn)C5'C1 (CiArp + CyAy)C5t
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and

T,TT = Ijl = I
[y CiI'y + CoTy

Using the transformation T,T" the observer (5.33)-(5.34) is given by

-

i1(t) = And(t) + And(t) + Hie, + Ao (5.45)
J(t) = Andi(t) + Agpi(t) + CBu(t) + Hae, + Agv (5.46)
where
T,T3 = [ W nrm=| ™ (5.47)
Y Hy

Subtracting (5.43)-(5.44) from (5.45)-(5.46), the error system is given by
a(t) = Auei(t) + Aney(t) + 116 — Ay — Hye, (5.48)
é,(t) = Anei(t) + Amey(t) + 2€ — Agv — Hyey (5.49)

The sliding mode occurs if e, = 0 and é, = 0. Assume that A, is a nonsingular matrix.

The equivalent feedforward input (5.38) is obtained from the subsystem (5.49)
Ueg = A" (A12€1 + IA‘2f) (5.50)
The subsystem (5.48) yields the error system in the sliding mode
elt) = Anei(t) + 1€ — Aveg (5.51)

where ve, is the equivalent feedforward input. Substituting (5.50) in (5.51), the reduced

order error system 1is
él(t) = (12111 - A1A2_1/'i21)€1(t) + (f‘l — AlAQ_IfQ)f (5.52)

Since (A, C) is observable, the pair (Ay1, Ag1) is also observable and A;; — AjA;t Ay can
be assigned arbitrary eigenvalues with negative real parts by a suitable choice of A. The
bounded inputs ['¢ guarantee the bounded error e, but the asymptotic stability (5.52) is
not guaranteed in general. However, some sufficient conditions that ensure the stability
of the reduced order error systems. A sufficient condition for the reduced order system to

be free of the influence of the disturbance ¢ is that
I — MAFT, =0 (5.53)

If condition (5.40) holds, then (5.53) is also satisfied.
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Remark 5.3.1 It is possible to find the reduced order system (5.52) directly. Consider

the transformation

T) =

In—m "'AIAQ_l
0 I,

Then the error system (5.48)-(5.49) is converted to
él(t) = fluel(t) + Algey — (Hl - AlAngg)ey(t) + (f‘l — A1A2_1f‘2)€ (555)
éy(t) = Anéi(t) + Aney(t) + 126 — Haey — Ay (5.56)

where A;; = Ay - AAS Ay, A = Ay — MA Ay + A AAS Y and Agy = Ay +
A21A1A2_1, é] =€y — AlAgley. In the Slldlng mode

&1 = (An — MiA; An)ér + (1 = MAT'T)E (5.57)
Since in the sliding mode é; = ey, the reduced order system (5.57) coincides with (5.52).
Now it is desired to obtain H, A and v such that the stability of the observer system is
preserved. The observer gain H can be found in two ways; pole assignment methods, i.e.
assigning n prespecified eigenvalues to the matrix A — HC; and the LQ method. The
cigenvalues of A — HC and AT — CTHT are the same, so the problem is that of finding
a feedback for the dual system corresponding to (5.15) such that the eigenvalues are the

prespecified values. (A4, C) is observable if and only if (A7, CT) is controllable. Therefore,
the observability of (A, C) guarantees the existence H.

Now the LQ method is utilized to find H. Therefore the algebraic Riccati equation (ARE)

AP + PAT - PCTR™'CP = -Q (5.58)

with @, R are arbitrary semi-p.d.s. and p.d.s. matrices respectively, has a u.p.d.s. matrix
solution P. Then AT — CTHT is stable with

H=PC'R" (5.59)
which is equivalent to the stability of 4 — HC.
The matrix A can be found in several ways:
1. Take
A= PCTR™

where R is an arbitrary matrix. If R = R then A = H. This choice of A may be

suitable if there exists uncertainty in the output.
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2. Let (A, A) be a controllable pair. The vector A in (5.35) should be obtained so that
the stability of the reduced order system or the eigenvalue allocation of the reduced

order system

e = (I-A(CA)T'C) Ae (5.60)
Ce = 0

is achieved. The system (5.60) has m zero eigenvalues and the n — m remaining

stable eigenvalues can be freely selected [29], [34], [34], [141].

3. Let D be a nonzero matrix. Take AD =T if I' # 0. In this case, the error system
(5.35) in the sliding mode is independent of the perturbation signal.

4. In the sliding mode the systems (5.15) and (5.35) are independent of £ only if there
exist matrices D and D such that I = BD and I' = AD, respectively. Therefore
if both the systems are independent of &, both these condition are simultaneously
satisfied. In this case the ideal sliding mode dynamics take place simultaneously on

y =0 and e, = 0.
5. The vector A can generally be found such that the state reconstruction error system

(5.35) is asymptotically stable, i.e.

lim, e(t)=0 (5.61)

To ensure that the state approaches and crosses the sliding surface sufficiently fast, v

should be a discontinuous function. Let Py be the u.p.d.s. solution of the Lyapunov

equation
(A= HC)P;+ P;(A- HO) = -Q; (5.62)

where @; is an arbitrary p.d.s. matrix. Consider the discontinuous feedforward input

Ce
=W Z— .
v ||Ce|| (063)

where W is an m x m diagonal p.d. matrix with

Amax(CP;1CT)

)‘min W 2M D
(W) > M| ”Amin(CPf—ICT)

(5.64)

Assume the condition (5.40) is satisfied. It is desired to find conditions such that

lim e(t) =0
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Set
A=P7iICTW! (5.65)

Note that CA is a nonsingular matrix and W is a p.d. matrix. Therefore CAW is

nonsingular and

Amin(CAW) = Anin(CP7'CT) # 0

The quadratic stability of the reconstruction error system is guaranteed. by (5.64) and

(5.65). A Lyapunov function candidate for (5.35) is
V(e) = €' Pre (5.66)

If Ce # 0, then

V = T((A- HC)P; + Pi(A— HC)T)e + €' PT¢ + (T€)" Pre — (Av)" Pre — e" PrAv
= ¢"((A— HC)P; + Pj(A— HC)")e + 2¢" P;T¢ — 2¢” Py Av
= T((A- HC)P; + Pj(A— HC)")e + 2¢" PADE — 2¢" PyAv
= T((A— HO)P; + Pj(A— HC) e + 2" Py P; ' CT"W™' D¢ — 2¢" Py P CTW !
_ (A HC)P; + Py(A~ HC)")e + 2e"CTW ' DE — 27 CT -2

[ Cell

< —dTQe+2 | FCT] (IWDIM — 1)
< —erQue+2 167 (DI -1)
< 0 (5.67)
since
) > M1 CE 0 iy

/\mm(CP '1CT)
If Ce =0, v = veq and
V = ¢"((4— HC)P;+ P(A~ HO)")e + 2" P;TE — 2" PrAv

= —CTQfE + QGTPfPFICTW_lDé' —_ 2eTPfPf—lcTW—1veq

= —eTQfe +2eTCTW-1DE — QeTCTW—lveq

= —eTQfe

<0 (5.68)
Therefore

Now a condition for the existence of the sliding mode is found. Since the system is stable,

the convergent sliding mode exists, i.e. lim e,(t) = 0. The problem is that it is necessary
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to find a region, the so-called sliding region, so that after a finite time, the state error

trajectory lies in the vicinity of the sliding surface and inside the region. Consider

ele, = el (CA— CHC)e+Cr¢) - el CAW ”g ”
€
< |ICe|l [C(A ~ HC)el| +€"CT (CP;'CT) W™ Dg - €'CT (CP;'CT) H(ijll
€

< |Cell |IC(A = HC)ell + [|€"CT [ Amax(C P CT) |W ' D|| M
Ce

|Cell

ICell [IC(A = HO)||llell + Amax(CP7'CT)|W ™ DIIM ~ Awin(CPF'CT)] (5.69)

—TCT Ain (CP;ICT)

A sufficient condition for the sliding mode is that the right-hand side of (5.69) be non-

positive. Thus

Amin(CP7'CT) = Amax (CP'CT) |W™'D|| M
llell < =, (5.70)
om(C(A - HC))

or
- Amin(CP;1CT) = Amax(CP;'CT) W' D|| M
llell < o Oon(A =~ HO)

= 7y (5.71)

Remark 5.3.2: One may choose A = P !CT, then all the conditions for the stability of
the system and sliding mode remain intact, and only the velocity of the state approaching

the origin and the state trajectory dynamics on the sliding surface may differ.

In [142] it has been shown that when V'(e) = " Pye and V(e) < —eTQye , then the norm

le(t)]] tends to zero at least as fast as a certain exponential function, so

e’ Q
f€
V / eTPfe (572)
Let
p= min {e"Qse | €' Pre =1} (5.73)
then
1

To determine the minimum of (5.73), consider the Lagrange multiplier function

Gle,\) = eTQre — AMeT Pre — 1)
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Then e, the minimum of e, satisfies

oG
Fe Qfemin — APsemin = 0
eriPiemn—1 = 0 (5.75)

From (5.75) one can conclude that
(Pf_le - )‘)emin =0

i.e. A is an eigenvalue of P/ 'Q; and e, is the corresponding eigenvector. Multiplying

(5.75) by €L, gives

T
el in@ emin — Aeh Premin = 0

with u = . From (5.74)
V(e(t)) < V(elto)) e 7%

SO
T
le? < I
Amin (Pf)
Vie(to)) _uie—to)
S T—=~ € 0 5.
/\min(Pf) (O 76)

Hence e(t) is bounded and approaches zero at least as fast as e

Remark 5.3.3: Consider the discontinuous feedforward input
v =Wsgn e, ife, #0

where W is an m x m p.d. matrix which satisfies in the condition (5.64) and sgn ey
indicates the signum function of e,. Then all the conditions for the existence of the
sliding mode and stability (5.64)-(5.70) are satisfied for this feedforward compensation

signal.

5.3.1 Sliding Error System with Unmatched Uncertainty

We now develop new theory relating to unmatched uncertainty. If the error system in
the face of uncertainty does not satisfy the matching condition, the error system stability
is not generally guaranteed. However, if some conditions on the uncertainty rather than
boundedness are available, an asymptotic observer is achieved. The behaviour of the

system depends upon the norm of a matrix which is named the ‘unmatched uncertainty
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matrix’, (or portion [10]). The norm of this matrix, , is called the ‘unmatched uncertainty
distance’. If the ‘unmatched uncertainty distance’ is zero, the matching condition is

completely satisfied. Let D € R™*™ be a matrix such that

[ Onstnemy T | T=| Omsuomy T | AD (5.77)

Set E =T —AD and ||E|| = .

Definition 5.3.1: Consider the system (5.15). The uncertainty ['¢ is said to satisfy a

matching condition with e-approximation (or briefly e-matching condition ) if there exists

a matrix D such that

(i) condition (5.77) holds;

() ||| = Il = AD|| =«
If ¢ = O the uncertainty is said to satisfy the matching condition.

Sometimes the term ‘matching condition with e distance’ is utilized instead of the e-
matching condition. When an e-matching condition holds, I' = AD + E where € = ||E].
Matrix AD is the matched uncertainty matrix (portion) and E is the unmatched uncer-
tainty matrix (portion) of the matrix I'. So the unmatched distance is ||E|| = €. If € # 0,
the error system (5.35) may no longer be generally asymptotically stable. But as already
stated, if a condition on the disturbance input like the convergence of the norm of dis-
turbance input signal to zero or the norm of the disturbance signal is bounded on the
norm of the output error, the system is asymptotically stable. Otherwise, only ultimate
boundedness results. So the state error trajectory enters a region centred on the origin

and thereafter remains within this region. See Appendix A for the definitions of ultimate

boundedness and uniform ultimate boundedness.
Consider the Lyapunov function (5.66). Then similarly to (5.67) one obtains
V = e ((A- HC)P; + P{(A— HC)") e+ 2¢" Py(AD + E)¢ — 2¢" PsAv
~[lel®Amin(@r) + 2lell[| P BN M
~lell {(1 = 0)Amin(@)llell + OAmin (@) lell — 2[| P E|| M} (5.78)

N

I

where 0 < 8 < 1. So if
201Py Bl

el >
el 0 Amin(Qf)



Chapter 5. Sliding Mode Controller-Observer Design 89

V < 0. Since V is a monotonically decreasing function on the outside of the set

2|\ PrE|M
QE:{eER"IHeHg ZT}
2||PE||M ,
for |je|l = H’;, the maximum value of V on the compact set Qp is attained and

the state error trajectory enters the ellipsoid
ép = {e € R* | V(e(t) < r?} (5.81)

where
_ 2M|[PBll A (P)

0’\min(Qf )
The set & is closed and bounded. So according to the Heine-Borel theorem the set &5

is a compact set. The solution of the error system is uniformly ultimately bounded with
ultimate boundedness ratio

2P EIM [ Amax(Pr)
b, =
GAmin(Qf) /\min(Pf) (5'82)

The ultimate boundedness radius 7 is

r, =inf{r e R | &g C B,}

where B, is a ball with radius r centred on the origin. Note that all trajectories starting
inside &g, remain within this set for all future time, and all trajectories starting outside

&% enter this compact set within a finite time and remain inside thereafter. Hence e(t) is

bounded by
le()]] < max {[le(0)]], b} (5.83)

If ||e(0)|| is sufficiently small, then |le(t)|| < by for all ¢.

Remark 5.3.4: Since |P;E|| < ||Py||.|E|l = €||Pf||, one can conclude that

Vo< =llell {1 = 0)Amin(@p)llell + OAmin(Qy)llell — 26| Pr[| M} (5.84)
So V is a monotonically decreasing function on the outside of the set

2 M Amax (Py) }
9/\min(Qf)

The ratio Amax(Pf)/Amin(@y) is minimized by the choice @ = I (see Corollary 6.8.1).

0 ={ecR| Jel < (5.85)

Consider

& ={e R | V(e(t) <7} (5.86)



Chapter 5. Sliding Mode Controller-Observer Design 90

where 32

™ =
9)\min (Q Vi )
The state error trajectory enters the ellipsoid &; in a finite time and remains inside there-

after.

To obtain explicit bounds on e(t) and e(t)T Pse(t) and then show that the state trajectory

enters the set & in a finite time and remain inside thereafter, consider

()T Pre(t)et d (eT(t) Pse
el Fre) _ (LOB) o 1 et () Prety

< (~lle®IPAmin(@y) + 20le@ M PrEIM) e + Ain(Q)lle(t) e
2lle()II.|| Py E|| MeH (5.87)

where & = Amin(Q;)/Amax(Ps). Integrating both sides over the interval {0,] yields
e(t)T Pre(t)e"" — e”(0)Pre(0) < 2 /0 t le(t)]|-| PrE|| Met™ dr
Multiplying both sides by e™# gives
e’ Pre < e’ (0)Pre(0)e™" + 2b, || Py E|| Me™* /t erdr
0

since ||e|| < by. Therefore

20, M || Py E|| Amax(Fy)
Amin(Q)

Since after a finite time, ||e|| < 2||PrE||M/0Anin(Q;), equation (5.88) shows that the state

e Pre < €T (0)Pre(0)e ™ + (1—e*) (5.88)

error e(t) converges to the compact set &g defined in (5.81), i.e.

Amax(Pr) [ Amax(Py)
0/\12nin(Qf) ’\min(Pf)

: T < 2 2
tl_l’rgloe Pre < 4M*||PsE||

and then

lim d(e(t),8g) =0 (5.89)

t—o00

where d denotes the Euclidean metric on R"™ and

d(e(t), &) = inf d(e(t),a))

aEsy

The reaching time to &% is finite, otherwise for all ¢ > 0, V(e(t)) < 0 and V(e(t)) tends
to zero asymptotically. The result (5.89) shows that the state error trajectory enters &%
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at finite time t. and after this time remains inside . Hence, boundedness is guaranteed
in the presence of a bounded disturbance with possibly unknown bound. But the size of

&x cannot be estimated a priori if no bound on the disturbance input is given.

Equation (5.88) also yields

el < (Hepe -+ B A (e ) Jmel)

)\min(Pf)
Then
1 20, M||PsE|| Amax (Pf)
el < |lle(0)le 2* + 4/ ——F5— (1 —ent Amax\L7f)
el (n o)l \/ e e | gl
“ip [Amax(Py) | 2M||PrE|| Amax(Pr) ) /4
= fle(0)fle”3* + V= (3=055)
Amin(Pf)  VBAmin(Qy) Amin(Pr)
When ¢t — o0
IM||PLE| [ Amax(P)NY s Amax(P7) ) M
|6” < = bu == \/5 (M) bu
| VOmin(Q) Amin(P) Amin(P¥)
So

>b, if 1260>7
bug =b, if f=n (5.90)
<b, if 6<n

min P
where 7 = i\—%)ff—)) On the other hand
> Tro if 120> 7]3
buyg =rq if =108 (5.91)
<rq if 0<p’

However b, > rq and the equality holds if P = pI (p > 0). Although Qg is not the
smallest ultimately bounded set, when 2 is a small neighbourhood about the origin, the

concept of uniform ultimate boundedness is tantamount to ‘practical’ asymptotic stability.

Note that for suitable performance one can choose 6 =1 or certainly close to 1.

Remark 5.3.5: In the case of the e-matching condition not being satisfied, the gain

matrix W should be chosen so that

M||D|| A max(CP;'CT) + M||CE)||
/\min(CPf_ICT)

Amin(W) 2 (5.92)
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In this case the sliding region is

S ={eeR" | [lefl <2} (5.93)

where

__ mjcs|
'~ om(C(A— HO)) (5:04)

N

T2
and 7, was defined in (5.70).

If the disturbance norm ||£(t)|| converges to zero in addition to being bounded, the con-

vergence of e(t) to zero results. To prove this, let 7(t) be a continuous nonnegative mono-
tonically decreasing real function such that IE@)|I < n(t) and lim n(t) = 0. Consider
(5.87) with ||£(¢)|| instead of M. Then

t
TP < eT(0)Pre(0)e " + by||PyElle / () lledr
0
t
< T(0)Pye(0)e™ + by||PyEle / n(r)e"dr
0
/2

eT(O)Pfe(O)e_“t + 2”PfE||bu {7’](0)6‘%’“(1 — e“%l‘t) +n(t/2)(1 - e—%ut)}
(5.95)

t/2 t
< eT(0)Pre(0)e™ + by || PrE|le™ ( /0 n(r)e! dr + / 77(7')6‘”d7'>
t

N

Since Jim n(t) =0, lim T(t)Pre(t) = 0 and then Jim e(t) = 0.

5.4 Examples

The examples below illustrate our results regarding the sliding mode, stability of error

system and observer design.

Example 5.4.1: Consider the system

[ 1 9295 —-04 0.30 0 —0.0007 0.0015
i = 0 —150 -20 |z+| 0 1lu+| 00103 0.0041 | €
0 050 —1.0 0.12 0 0.0188 0.0188
(0.2 0.4 0.89
y = T
|02 0 1.00
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Suppose £ is a bounded random signal satisfying ||£|| < 0.1. Choosing R = I, and Q = I,
the u.p.d.s. solution of ARE (5.58) is

1.8831 0.6396 —0.1829
P= 0.6396  0.5534 -—0.1750
—0.1829 —0.1750 0.3449

From (5.59)

0.4697  0.1938
H= 101936 -0.0470
0.2004  0.3083

Note that the eigenvalues of A— HC are —1.7043 £ 1.03654, —0.7881. Let QQ; = 5I3. The

u.p.d.s. solution matrix of the Lyapunov equation (5.62) is

8.6608  3.0202 -1.0694
Py = 3.0202  2.6000 —0.7952
—-1.0694 —0.7952 1.5302

Let W = diag (2.5,2.5) and

Ce

v=W_——
[|Cell

(5.96)

From (5.65)

—0.0117 0.0244
A= 0.1709 0.0676
0.3133 0.3136

The reduced order error system is independent of ¢ since I' = 0.06A. In fact D = 0.061,.

So the error system is quadratically stable which means the estimated state error quad-

ratically converges to the actual state.

The minimum eigenvalue of CAW is 0.0510. The value of the right-hand side of (5.70) is
r, = 0.0156 and the value of the right-hand side of (5.71) is 7, = 0.0119. After respective
short times 71 and 7, conditions (5.70) and (5.71) are both true. Noting that 7y < 75, when
(5.70) is valid for ¢ € [11, 72] (5.71) may not be valid, i.e. the condition (5.70) is weaker
than (5.71). Simulation results are shown in Fig. 5.1 with e(0) = [0.1 0.2 0.325]" as

the initial state error.
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Feedforward compensation signal Feedforward compensation signal
o 2
= 0 >0 , |
-2 -2
0 0.5 1 1.5 2 (0] 0.5 1 1.5 2
Time Time
State error behaviour Phase space
% 0.3 0.5 G
e3
>
S 0.1 e1 —85
= (=] — -
o O 0 0.05 0.1
0 0.5 1 1.5 2 e2 -0.2 O a1
Time
Sliding fuctions Disturbance input signals
0.4 = e
0.2(s2
0
0 0.5 1
Time

Figure 5.1: Responses of Example 5.4.1 when the LQ method is applied.

To find H such that the eigenvalues of A — HC have specific values, one can apply
pole assignment techniques. Suppose it is desired that the eigenvalues of A — HC' are

—1, —1 4 0.15¢. The existence of H is guaranteed by the observability of (A, C). Using
the MATLAB Control Toolbox

5.7656 —5.5452
H=| -1.3486 -0.7121
1.2296 -1.0990

For v as in (5.96) and @ = 313, the u.p.d.s. matrix solution of the Lyapunov equation
(5.62) is
1.4234 0.2455 —0.0052

P = 0.2455 1.6728 —0.0650
—0.0052 —0.0650 1.5066

Equation (5.65) gives

0.0400 0.0568
A= 0.0991 0.0020
0.2407 0.2658
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So

D 0.1044 0.0407
—0.0238 0.0339

and then

—0.0035 -0.0021
E=T-AD= 0 0
0 0

with norm ||E|| = e = 0.0041. So the matching condition is not satisfied. However, the

state error trajectory enters a sphere with small radius because
rq = 2M||PfE||/ Amin(Qf) = 0.00039

and b, = 0.00047. So stability of the error system is nearly achieved. Note that the value
of the right-hand side of (5.70) is 0.0329 and the value of the right-hand side of (5.71)
equals 0.0271. In the time interval [0,3] the maximum value of |e]| is 0.3945 and the
minimum value is 0.02. Hence the conditions (5.70) and (5.71) are true, after short times
7, and 7o, respectively. It is clear that 7, < 7. However, the time until the start of the
sliding mode ¢, should be shorter than the time 71 when (5.70) is satisfied, i.e. t, < 7.

The sliding region radius (5.93) is 7 = 0.0328. Simulation results are shown in Fig.5.2

Example 5.4.2: The observer design procedure is now illustrated by another example.
To design an sliding observer, it is necessary to find H, A and select suitable W such that

the appropriate conditions are satisfied. Consider the system

-1 225 0.4 0.30 —0.0025
r = 0 —-1.50 -20 |z+ 0 u+ 0.0404 | &
0 050 -1.0 0.12 0.0644

y = [020 040 0.89 | =

Assume & is a bounded random signal satisfying | | < 0.101. Taking Q@ = I3 and R = 1,
the u.p.d.s. solution of ARE (5.58) is

1.9640  0.6722 -0.1863
P = 0.6722  0.5879 —0.2001
-0.1863 -—0.2001 0.3763
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Feedforward compensation signal Feedforward compensation signal
2 2
=80 s o |
%) -2
0 0.5 1 1.5 2 (0] 0.5 1 1.5 2
Time Time
State error behaviour Phase space
303 0.5 ' '
e3
>
- 0.1 "
g ole2 =2 83 0.1
w 0 -
0.05
(o] 0.5 1 1.5 2 e2 —-0.2 0 o1
Time
Sliding fuctions Disturbance input signals
0.4 1 y e
0.2(s2
(0]
0] 0.5 1
Time

Figure 5.2: Responses of Example 5.4.1 when the pole assignment technique is applied.

From (5.59) H is

0.4959
H = 0.1915
0.2176

The eigenvalues of A — HC are —1.4812 £ 0.99214, —0.9070. Let @y = I3. The u.p.d.s.

solution matrix of the Lyapunov equation (5.62) is

1.8681 0.6640 —0.2271
Py = 0.6640  0.5781 —0.2012
—0.2271 -0.2012 0.3575

Consider
v =3.34 sgn ¢,
Then (5.65) gives
—0.0742
Af= 0.6660
1.0730

rq = 0.00088 and b, = 0.0028. These results show that there exists a finite time such

that after that time, the norm of the state error is less than 0.0028. So the estimated
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state tends to the actual state and the difference is at most 0.0028. However, the actual

difference may be less than 0.0028 as shown by the simulation results.

The maximum value of ||e]| is 1.1855. The value of the right-hand side of (5.70) is
r, = 1.8958 and the value of the right-hand side of (5.71) is 7, = 1.4105. As seen in Ex-
ample 5.4.2, condition (5.70) is weaker than (5.71). Since D = 0.06, £ = [0.0020 0.0004 0]
and ¢ = 0.002. The reduced error system is not independent of £ since £ # 0. In this
|CE|| = 0.000568 and [|[CE||M = 0.00005737 which is very small. So r, ~ r, and
the sliding region is the set (5.93) with 7, ~ ry = 1.8958. Simulation results are shown in

Fig. 5.3 with ¢(0) = [0.3 0.6 0.975] as the initial state error.

case

Feedforward compensation signal State error variables
4 1
2
0.5
>3 0 el
(0]
= e2
-4 -0.5
o) 1 2 3 (0] 1 2 3
time time
Sliding function Disturbance input
1.5— 0.1
1 0.05
Z 0.5 0 ‘
(0] M -0.05
- -0.1
85 1 2 3 0 1 2 3
time time

Figure 5.3: Responses of Example 5.4.2 when the LQ method is applied.

Similarly to Example 5.4.1 the gain matrix H can be found such that the eigenvalues of
A — HC have specific values. Suppose the eigenvalues of A — HC are —1, —1 + 0.15i.
Using the MATLAB Control Toolbox one determines

—0.2912
H=| -1.0677
—0.0165
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Let @; = I3 and W = 3.34. Then the u.p.d.s. matrix solution of the Lyapunov equation
(5.62) is

3.2614  1.0988  0.2036
Pr=11.0988  0.7288 —0.0451
0.2036 —0.0451 0.4850

Therefore (5.65) implies

-0.1894
A= 0.4916
0.6747

So D = 0.0954 and E =T —AD =[0.0156 —0.0065 0]” with ||E|| = 0.0169. Consider
v = 3.34 sgn e,. Since rq = 2||PyE||M/Anin(Q) = 0.0092 and b, = 0.0346, the norm of
the state error is eventually less than 0.0346. The sliding mode region radius (5.93) is
ro = 1.7831 while r, = 1.7831. Therefore, the difference is not perceptible. The value of
the right-hand side of (5.70) equals ry = 1.7831 and the value of the right side of (5.71)
is 0.9034. The maximum value of |le|| is less than 1.2453. However, after a short time
lle|| < 1.7830 = 72, and the time until the start of the sliding mode ¢, should be shorter
than the time when ||e|| < 0.9034. Note that all these conditions may not be necessary

for the existence of the sliding mode. Simulation results are shown in Fig. 5.4.



Chapter 5. Sliding Mode Controller-Observer Design 99

State error variables Sliding function

1 1.5
1
0.5
o1 & 0.5
0
0o
e2
= -0.5
0.5, 1 2 3 o 1 2 3
time time
Phase space External disturbance signal
0.1
0.05
(0]
|
-0.05 ‘
—0.1
(0] 1 2 3
time

Figure 5.4: Responses of Example 5.4.2 when the pole assignment technique is applied
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5.5 Summary and Discussion

In this chapter the sliding dynamics for SISO and MIMO linear systems, and conditions
for the existence of the sliding mode in the presence of uncertainty have been studied.
The existence of the sliding mode guarantees that the state trajectories converge to a
sliding surface at a finite time and then move along the surface to the origin. However,
the system may generally not be stable. For the system to be asymptotically stable, some
further conditions may be needed. An interesting problem is to study the system with
unmatched uncertainty and find some relaxed sliding conditions to impose asymptotic
stability.

A sliding observer design method has been proposed such that the estimated state
nearly approaches the actual state. Certain sufficient conditions should be satisfied for the
asymptotic stability of the system. These conditions are limitations on the uncertainty
input. Otherwise, this method ensures only that the estimated state approximately tends
to the actual state. The ‘size’ of this approximation is given by (5.82). In this way the
state error trajectory enters a certain set in finite time and remains within the set for
future time. The sliding mode occurs after a finite time. So there exists a finite time after
which the state trajectories enter the ‘sliding region’ and move to the origin along the
sliding surface. A sliding region has been obtained (5.94). Of course, the sliding mode
domain may be larger than the stated sliding domain (5.93). The value 7, indicates that
the hitting time is at most that time when the state error trajectory enters the set 7
(5.93), i.e. the ball with radius r (5.93). Further research should investigate whether
tighter bounds can be obtained. The results may be extended to nonlinear systems where

the nonlinearity appears only in the disturbance term.



Chapter 6

Discrete-Time Sliding Mode Control

6.1 Sliding Lattice Design for Discrete-Time Systems

Sliding mode control design is well established for continuous control systems [29]-[34],
[118], [121]. Sliding mode control of discrete-time systems has been not studied as much as
its continuous counterpart. There are relatively few papers about discrete sliding mode
control and most of them discuss SISO discrete-time systems [9}, [12], [21], [30], [44],
[70)-[72], [84], [98], [105], [111], [112], [122], [139].

Discrete-time sliding mode control (DSMC) has been defined in numerous ways.
DSMC of discrete-time systems has been considered by Milosavljevi¢ [84] in the con-
text of sampled-data systems and he named the discrete sliding mode the quasi-sliding
mode. Sarpturk et al [98] presented a new sufficient condition for the existence of DSMC
and discussed the stability. The main problem of discrete sliding is to find a suitable
reaching condition such that when the sample period tends to zero, the continuous sliding
mode reaching condition is satisfied. Some authors have applied the ideal sliding mode
conditions for designing control [12], [122]; others sliding mode reaching conditions for
SISO systems [44], [98], [105], [138]. In [84] a reaching sliding condition is presented

which is only a necessary condition for the existence of the sliding mode.

Utkin [122] and Bartolini et al [12] considered a discrete-time system which is obtained
from the linear time-invariant continuous system, and presented a method for designing
the control. They considered two cases: (¢) when complete information of the plant
parameters is available, (i7) when the system operates under uncertainty conditions. Their
method is based upon the definition of ideal sliding and the selection of a suitable real

number bounding the control. This method guarantees the existence of a boundary layer

101
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with width twice the sample period.

Yu [138] presented an algorithm to calculate the upper and lower bounds for DSMC.
These upper and lower bounds are independent of the distance of the system state from
the sliding surface. Yu [138] used the sliding mode condition as stated by Milosavljevi¢ [84]
and defined a control structure based upon linear feedback with switched gain DSMC.
Additional conditions ensure the state approaches and/or crosses the sliding hyperplane
without divergence from the sliding surface. To eliminate the zigzagging behaviour which
appears with this control, he modified the control structure. In spite of using this modified
method which ensures the sliding mode does not diverge from the sliding surface, the
distance of the sliding motion from the sliding hyperplane is not specified. However,
his algorithm shows how to calculate the upper and lower bounds for DSMC that are

independent of the distance of the system state from the sliding surface.

The method presented in [74] indicates that the lower and upper bounds depend upon
the distance of the system state from the sliding surface. Baida [9] studied discrete-time
sliding modes based on the definition of Drakunov and Utkin [30] by using unit control
methods under uncertainly conditions and minimization of control efficiency. Gao et al
[46] defined a quasi-sliding mode band. They used an equivalent form of a continuous
so-called reaching law to give a discrete-time reaching law. Sarpturk et al [98] presented

the reaching condition for SISO systems
js(k + 1)] < s(k)] 6.1)
with s the sliding function, and Sira-Ramirez [105] proposed the following reaching con-
dition
|s(k +1)s(k)| < s%(k) (6.2)

which is equivalent to (6.1). Furuta [44] used the Lyapunov function V (k) = %32(k) and

considered the condition
1
s(k)As(k+1)| < —i(As(k + 1))2 (6.3)

with As(k + 1) = s(k + 1) — s(k) which is also equivalent to (6.1) and (6.2). Almost all
authors have stated the same condition. Spurgeon [111] and Yu and Potts [139] showed
that the condition |s(k + 1)| < |s(k)| is only a sufficient condition for existence of the
discrete sliding mode. Sarpturk et al [98] and Sira-Ramirez [105] presented the necessary

condition for the existence of the sliding mode as stated by Milosavljevié [84]

s(k + 1)s(k) < s*(k) (6.4)
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yielding an unstable sliding mode along the sliding surface s = 0. This condition is not
a sufficient condition for the existence of the discrete sliding mode and only guarantees
the sliding points approach and/or cross the sliding hyperplane. It is not sufficient for

convergence to the sliding latticewise hyperplane [138], [139].

Equivalent control in the Furuta approach [44] is obtained by setting
s(k) =s(k+1) (6.5)

but it should be emphasized that, when the sliding mode occurs, s(k) = 0 and the
equivalent control in the sense of Furuta is the same as in the traditional case [121].
Assume for all k > k, (6.5) is satisfied. Then, for all £ > ks, s(k) = s(ks). So according
to Furuta’s definition, the discrete-time sliding mode occurs if there exists a finite time
k, such that after this time the value of the sliding function is constant. So for all k > k,,
z(k) — z(k;) € A(C), that means the state belongs to the right coset A (C)4(k,) of the
null space C. Only when z(ks) = 0 does the state belongs to the null space of C.

Koshkouei and Zinober |[70]-[72] have presented a condition which is weaker than the

above conditions (6.1), (6.2) and (6.3) and is detailed in Section 6.2.

In discrete-time systems instead of having a hyperplane as in the continuous case,
a countable set of points is defined comprising a so-called lattice; and the surface on

which these sliding points lie is named the latticewise hyperplane (Koshkouei and Zinober

[70]-[72]. The sliding lattice is defined as
s(k)=0 (6.6)

One way to design a sliding lattice hyperplane for MIMO (m-input m-output) systems is

to consider the intersection of the m sliding lattice surfaces. Let

0

S2

Sm

The i-th sliding lattice is s; = 0 and

i=m

() {z(k) : si(k) =0}

i=1

is a sliding lattice for the system. The i-th component of u;(k) (1 < i < m) of the

state feedback control vector u(k) is selected such that the state lies on the i-th sliding
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lattice. The sliding mode of discrete-time systems is completely different from SMC in
continuous systems. In continuous systems the sliding variable is a linear transforma-
tion s: R* — R™ with £ — Cz and when the sliding mode occurs z € Ker(s) (or
z € A (C)) where Ker(s) is the lglernel of epimorphism (surjective I}lomomorphism) of s in

the sense of vector space. So m is isomorphic to R™ | i.e. RT(S) = R™. Therefore,

. . R"
the dimensions of Ker(s) and R™ are the same. Hence, the dimension of A4 (C) (the
nullity of linear transformation of s) is n — m. In contrast, for discrete-time systems the
sliding function consists of a sequence which can be considered as the restriction of the
function s(z(t)) on N. When the sequence {s(k)}32, is a null sequence, i.e. lims(k) = 0,

the convergent sliding mode exists.

In this chapter a new reaching condition for the existence of the sliding mode is
presented and the behaviour of the sliding dynamics is studied. The definition of the
discrete sliding mode is clarified and techniques for designing the control by applying the

sliding mode properties are presented. There are two ways for designing a control via the

sliding mode technique:

(i) First the form of the conventional control law is chosen such that the state reaches
the desired sliding lattice after some finite time. This method is suitable for design-
ing a control for systems which can take only specific values, like the boost power

converter and the quantum boost series resonant converter (SRC).

(ii) The precise control is found by using the reaching or ideal sliding mode conditions.
This method can be applied to systems which have no particular restrictions on the

control law or the control bounds.

For the generation of the sliding mode in continuous systems such that the state trajectory
crosses the sliding surface, the control should be discontinuous. As stated in Chapter 2
the sufficient condition for the existence of the sliding mode in a continuous system on a
manifold, s = 0, is that sTs < 0 in the neighbourhood of the manifold [118],[121]. So in

continuous sliding systems the control law and /or sliding surface is chosen such that this

sliding condition is satisfied.

Some authors have considered a control law for discrete-time systems like the dis-
continuous control law in continuous systems [44], {105], [122]. Since the control in the
discrete-time systems is defined only at the sample points, the structure of the control
is not required to be the same as in continuous systems. This is so because the discrete

sliding mode condition differs fundamentally from the continuous sliding mode condition.
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In discrete-time sliding systems the control can be chosen as a simple linear control [111].
This control guarantees the state to converge onto the sliding hyperplane and the state
trajectories may not cross the sliding surface. In the discrete sliding mode the effect of
external disturbances on the discrete-time system is reduced, but to eliminate the disturb-
ance completely may need an additional condition like the invariance condition. So, in the
presence of disturbances the state may not lie precisely on the sliding lattice hyperplane
[82]. However, when certain conditions like the cone inequality for the norm of the state
and disturbance input, and the matched uncertainty condition hold, the sliding points

may lie on the prespecified sliding lattice.

Problems of the stabilization of linear and nonlinear discrete-time systems have been
studied by many authors including [24] via the difference equation, and [82], [99], [132],
[133] using the Lyapunov min-max method. In Section 6.2 the concept of the discrete-
time sliding mode is clarified and new conditions for the existence of the discrete-time
sliding mode (DSM) are suggested. In Section 6.3 a control design procedure is presented
such that the robust stability of the sliding mode motion is achieved. Furthermore, the

reduced order discrete-time system and the stability of this system are studied.

The problem of the stabilization of discrete-time dynamic systems using the direct
method of Lyapunov is addressed in Section 6.4. In Section 6.5 optimal sliding mode
control is considered. In fact the sliding lattice gain matrix is found such that all the
eigenvalues of the reduced order discrete-time system lie either inside the unit circle or
inside a specified circle enclosed within the unit circle with centre on the real axis. In

Section 6.6 some examples are considered to illustrate the results of the discrete-time

control design theory.

In Section 6.7 an asymptotically stable observer for discrete-time systems is designed
by using the properties of the sliding mode such that the stability of the nominal error
system in the sliding mode is maintained. Various techniques for finding the feedforward
injection map are proposed. A technique for observer design and methods for finding the
feedforward injection map and the external feedforward compensation signal are proposed.
The stability of the reconstruction error system when the perturbation signal has bounded
magnitude proportional to the norm of the state error, is studied in Section 6.8. In Section

6.9 some examples are considered to illustrate the results of the observer theory.
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6.2 Discrete-Time Systems

Consider the discrete-time linear time-invariant system

z(k+1) = Axz(k)+ Bu(k) +T¢(k) (6.7)
y(k) = Cuz(k) (6.8)

where & > 0 is an integer, z(k) € R" is the state, A € R"*", B € R"™ is full rank,
u(k) € R™ is the input control, C € R™*" such that CB is a nonsingular matrix,
y(k) € R™ is the output and I' € R**™ is the perturbation input map. The function
£ € R™ is the reference or measurable external input and there exists a positive real
number M such that ||£]|] < M. If € is unknown or not directly measurable, a suitable

estimate of & should be selected [112]. Assume that (A, B) is completely controllable.

The sliding dynamical sequence is defined by

s(k) = Cx(k)

Definition 6.2.1: The set of all points z(k) € R*, which lie on the hyperplane Cz(k) = 0,

is said to be the sliding latticewise hyperplane or more concisely the “sliding lattice”.

In fact, the sliding latticewise manifold is an infinite countable subset of the manifold

Cz = 0 (see Fig. 6.1 (a)).

(a)

x2

0:5 1 15 2
x1

Figure 6.1: (a) Sliding lattice hyperplane; (b) Ideal discrete sliding mode
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Therefore, the sliding lattice is formed by the points of the state satisfying

s(k) = Cz(k) =0 (6.9)

Definition 6.2.2: The ideal discrete sliding mode is generated if there exists a positive
integer k, such that for all integers k > ks, s(k) = 0. The time instant k, is the time
when the sliding mode is reached (see Fig. 6.1 (b)).

States on the sliding latticewise hyperplane lie in the null space of C, i.e.
H(C)={zeR":Cz =0} (6.10)
The sliding lattice is a sequence of points on the manifold Cz =0
H(C) = {z: Cz(k) =0} (6.11)

So A(C) € A(C). Since the dimension of A4 (C) is n — m, so the dimension of the
state space is n — m, i.e. the discrete-time system in the sliding mode is converted to
a closed-loop system with m zero eigenvalues. Therefore the discrete-time system in the
sliding mode as in the case of continuous systems yields two subsystems: a slow and a fast
subsystem. The slow subsystem is the system in the sliding mode. The fast subsystem
only involves the control and with (6.9) gives the equivalent control. Equivalently, the
equivalent control can be obtained by (6.7) and (6.9). Substituting (6.7) in Cz(k +1) =0

yields the equivalent control
ueq(k) = —(CB) Y (CAz(k) + CT¢(k)) (6.12)

and substitution into (6.7) gives the ideal reduced order system. The sliding system on

the sliding latticewise surface s(k) = 0 satisfies
z(k+1) = (I - B(CB)"'C)Ax(k)+ (I - B(CB)™'C)I¢(k) (6.13)

with m eigenvalues of the closed-loop system zero and the remaining to be freely chosen.

Definition 6.2.3: Let ¢ > 0 be a real number. Define N(¢) = {z € R* : ||Cz|| < ¢}

and
Ni(e)={z € R" : ||Cx| <eand Czx # 0}

N, (€) and N(e) are said to be a neighbourhood and a deleted neighbourhood of s = Cz = 0

respectively.
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Definition 6.2.4: The convergent discrete sliding mode exists if for any real number

€ > 0 there is a positive integer number ko such that for all integers k& > ko, z(k) € N,(¢).

If the sliding mode takes the form of the convergent sliding mode and not the ideal sliding
mode, then for a given boundary layer of s = 0, the sliding points lie inside the layer after

a certain time instant depending upon the layer width.

Definition 6.2.5: The discrete sliding mode exists if there is a real number € > 0 and a
positive integer ko such that for all integers k > ko, (k) € N;(e).

This guarantees that the sliding points lie in the boundary layer with width 2e.

Definition 6.2.6: Let the sequence {3;(k)}%2, be a rearrangement of the nonzero terms
of the sequence {s;(k)}>, The discrete-time system (6.7) is said to exhibit a sliding

mode if there exists an integer number ko such that for all integers k > k¢ and for all
integer 1 <1< m

5i(k) (3:(k + 1) — &(k)) < 0 (6.14)

Corollary 6.2.1: Let s = [s1 83 ... sm]". The discrete-time system (6.7) ezhibits a
sliding mode if there ezists a deleted neighbourhood of s = 0, N!(¢) such that for all
z € N(e) and for alll <i<m

si(k)(si(k + 1) - S,(k)) <0 (6.15)

Milosavljevi¢ [84] defined the sliding mode for SISO systems similarly to Corollary 6.2.1.
This definition of the existence of a sliding mode guarantees only that the state approaches

and/or crosses the sliding surface, and allows an unstable sliding mode [105], [138].

Corollary 6.2.2: Let the sequence {3(k)}s%, be a rearrangement (with the same order)
of the nonzero terms of the sequence {s(k)}3Z,. The discrete-time system (6.7) ezhibits a

sliding mode if there exists a neighbourhood of s =0, Ni(e), such that for all z(k) € N,(e)
5(k)(8:(k+1) = 3(k)) <0 (6.16)

Corollary 6.2.3: A sufficient condition for the ezistence of the discrete sliding mode is

that there exists a positive integer ko such that

stk + 1| < lls(E)l, k> ko (6.17)

in a deleted neighbourhood of s = 0.
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Proof: If this condition is satisfied, then the sequence {||s(k)||}s2,, is monotonically

decreasing and converges to zero. 0

Since the finite integer k has no effect on the behaviour of the sequence s(k), it is sufficient

that (6.17) is satisfied after a certain time kq.

For SISO systems, Corollary 6.2.3 or its equivalent has been stated as a definition of the
convergent sliding mode [21], [44], [46], [98], [105], [111] and [138]. When a convergent
sliding mode exists, the sliding points converge to the sliding surface. Therefore Corollary

6.2.3 is a strong sufficient condition for the existence of the discrete sliding mode.

Alternatively, to prove Corollary 6.2.3, one can show that the Lyapunov function

V (k) = ||s(k)|| satisfies
AV(k) =V(k+1) - V(k) = lls(k+1)|| = lls(k)|| <0

The Lyapunov method also guarantees the stability of the sliding mode.

Corollary 6.2.4: A sufficient condition for the existence of the discrete sliding mode is

that there erists a positive integer ko such that for all1 < i< m
lsi(k +1)| <lsi(R)[, Kk >ko (6.18)

in a deleted neighbourhood of s =0

Proof: This is an immediately result of Corollary 6.2.3. 0

When for all 1 < ¢ < m, s;(k + 1)s;(k) > 0, (6.15) and (6.18) are identical, but if there
exists 4 (1 < ¢ < m) such that si(k + 1)s;(k) < 0, they are different. On the other hand,
(6.18) gives (6.17), but the converse is true only if m = 1. The following corollary yields

weaker conditions than (6.18) for the existence of the sliding mode.

Corollary 6.2.5: Let s = [s1 52 ... sm] . Assume for any 1 < i < m, {s;*(k)} k=1
and {s;~(k)}e=1 are the positive and negative subsequences of {s;(k)}32,, respectively.
The sufficient condition for the ezistence of the discrete sliding mode is that the positive
subsequence {s;* (k) }x=1 and negative subsequence {s;~(k)}x=1 starting from some integer

number ko = 0, are monotonically decreasing and increasing sequences, respectively, i.e.

$i+(k + 1) < Si+(k) (

k
si (k+1)>s7(k) (k2 k) (6.19)
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When conditions (6.19) are satisfied, then lim s(k) = 0 which guarantees the existence
and stability of the sliding mode on the surface s = 0. It is clear that conditions (6.19)
may be satisfied, but not necessarily condition (6.17). Also conditions (6.19) give (6.15)

for the both sequences {s;*(k)}x=1 and {s;”(k)}x=1, but the converse may not be true.
Theorem 6.2.1: Let As(k+ 1) = s(k + 1) — s(k). Consider the following conditions:

(a) Is(k + DI < lIs(k)ll
(b) sT(k)As(k + 1) < —3[|As(k + 1)|?

(c) |s"(R)s(k + 1)| < [ls(R)II*

Conditions (a) and (b) are equivalent, while conditions (a) and (b) imply (c) and the

converse 18 true if m = 1.

Proof: (a) ¢ (b). (a) Suppose (a) is true, then

Is(k+ D2 = s> = s"(k+1)s(k+1) ~ s (k)s(k)
= (sT(k) + (As(k +1))T)(s(k) + As(k + 1)) — sT(k)s(k)
= 2sT(k)As(k +1) + ||As(k + 1)

(a) =(c). Suppose (a) is true, then the Cauchy-Schwartz inequality gives
|sT(k)s(k + 1| < [ls(B)| lls(k + )| < ls(®)II*

The converse may not be true. 0

As already stated, Sarpturk et al [98], Furuta [44] and Sira-Ramirez [105] defined the
convergent quasi-sliding mode as (a), (b) and (c) respectively for SISO systems. Theorem
6.2.1 shows that for SISO systems all these conditions are equivalent. Note that both the
Lyapunov functions V (k) = [|s(k)||” and V/(k) = ||s(k)|| give the condition (a), i.e. these
Lyapunov functions essentially have the same effect and the Lyapunov function can be
selected in the form V (k) = |s(k)||. A sufficient condition for the existence of the sliding
mode can be stated as ||s(k + 1)|| < nlls(k)|| where 0 < n <1 is a real number indicating
the velocity of motion to reach the sliding mode. In this case, ||s(k)|| < |s(0)||n* where
5(0) is an arbitrary initial condition. So in this case, the velocity of the state moving
onto the sliding lattice hyperplane depends on the value of 7 and the initial condition

z(0) influences the reaching time of the sliding mode. It is clear that the condition (a) in
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Theorem 6.2.1 is weaker than the condition [|s(k + 1){| < nl|s(k)||, because this condition
implies the condition (a) but the converse may not true. Some authors have used the

terms quasi-sliding mode [84], [98] and pseudo-sliding mode for the discrete-time sliding
mode [138], [139].

It is possible to consider a suitable Lyapunov function to find a more general sliding mode
condition than (6.17). Consider the Lyapunov equation V (k) = sT(k)Ps(k) where P is a

p.d. matrix. Since
Vk+1)-V(k)= sT(k+1)Ps(k +1) = sT(k)Ps(k) = ||s(k + D% - ls(k)||%

a sufficient condition for the discrete-time system state to converge onto the sliding lat-

ticewise hyperplane is that
Is(k + D)i|lp < [[s(k)llp

Then the conditions (a), (b) and (c) of Theorem 6.2.1 are converted to the following

conditions respectively:
(@) lIs(k + Dllp < lIs(k)llp
(') sT(k)PAs(k + 1) < —3[|As(k + 1)[1%

() |sT(k)Ps(k + 1)] < [Is(k)|I%
and Theorem 6.2.1 also holds.

Theorem 6.2.2: A sufficient condition for the ezistence of a convergent sliding mode is

that the system (6.7) is asymptotically stable. The converse is not true.

Proof: Assume the system (6.7) is asymptotically stable, i.e. lim x(k) = 0. Then the

sequence {z(k)}$, is a Cauchy sequence. So, for a given real number € there exists an
integer ko such that for all integers &k > ko

z(k -z _€
o+ 1) - 2l < 15

On the other hand
stk +1) =s(®ll < CIllz(k +1) — z(k)||

Therefore, for all integers k > ko, ||s(k + 1) — s(k)|| < ¢ ie. {s(k)}2, is a Cauchy

sequence. Therefore, lim s(k) =0. o
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If there exists ko such that, for all k > ko, z(k) = 0, then s(k) = Cz(k) = 0. This is a
trivial case of Theorem 6.2.2. The proof of Theorem 6.2.2 indicates that if the distance
between two consecutive state points is less than e, the distance between two consecutive
sliding points is less than ||C|le, and s = 0 is the accumulation point set of the sliding
points, i.e. for any boundary layer of s = 0, all the sliding points except for a finite

number lie on the sliding latticewise surface. So, stability of the system guarantees the

existence of a boundary layer with a given width.

6.3 Discrete-Time Control Design

In this section a technique for the design of a controller is presented which guarantees
the stability of the sliding mode and yields desired sliding dynamical behaviour. The
reaching condition (6.18) and the technique stated in Section 6.1 are utilized. Let s;(k)
be the i-th row of vector s(k), so s; = C;z(k) where C; is the i-th row of matrix C.
A sufficient condition for the existence of the sliding mode is that for all 1 < i < m,
|si(k + 1)] < |si(k)|, which is equivalent to —|si(k)| < si(k + 1) < |s;(k)|. Therefore

—|8i(k)| < C;B(—ueq(k) + u(k)) < |si(k)|

Soforalll<i<m

Suppose

Then |W;(k)] < 1 and

|si(k)[Wi(k) = CiB(—ueq(k) + u(k))

Hence
W (k)|s(k)| = CB(—ueg(k) + u(k))

where W (k) = diag(Wi(k), Wa(k), . .. , Wi(k)). Therefore, the control law is

u(k) = teg(k)+ (CB)™'W(k)|s(k)|
= —(CB)™' (CAz(k) + CTE(k) — W (k)|s(k)|) (6.20)
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where |s(k)| = [ |s1(k)| [s2(k)] ... |sm(K)]| ]T. Substituting (6.20) in (6.7) gives the
dynamic state equation
z(k+1) = (I-B(CB)'C)Az(k)+ (I - B(CB)'C)T¢(k) +
+B(CB)™'W (k)]s (k)| (6.21)
This control guarantees the existence of the sliding mode. Inserting (6.21) in
s(k+1)=Cz(k+1)
yields the dynamic motion of the sliding mode

s(k+1) = Cz(k+1)
— (U - B(CB)™'C)A(k) + (I - B(CB)™'C)T&(k) + B(CB)™'W (k)|s(k)|)

= W(k)ls(k)| (6.22)
Since for any %, |W;| < 1, therefore ||W|| < 1. From (6.22)

ls(k+ DIl < W lls(R)Il

The function ||W (k)|| indicates the velocity at which the sliding mode occurs and can be
constant. Moreover, ||s(k)|| = |[W]|¥||s(0)|| where s(0) is an arbitrary initial condition,
i.e. the sliding dynamics is only dependent upon the initial conditions and selection of
W. This condition is true for all k¥ < k;, k, a finite number, and for all k¥ > ks s(k) = 0.
Thus (6.22) guarantees the existence and stability of the sliding mode. If £ is unknown,
the control (6.20) is no longer accessible because of the uncertainty. So it is necessary to
estimate £&. An estimate for £(k) is £(k — 1) [112] which guarantees that the sliding points
lie inside a boundary layer. If £(k) — &(k — 1) is a decreasing sequence (or sufficiently

small) after a finite time instant, then the convergence sliding mode occurs and the state

lies nearly on the sliding hyperplane.

6.3.1 Discrete-Time System in the Sliding Mode

As stated in Section 6.1, the system in the sliding mode is converted to a subsystem with
dimension n — m. Therefore, the state in the discrete sliding mode belongs to a subspace
with dimension n — m. Thus m eigenvalues of the closed-loop system are zero and the
remaining n — m eigenvalues can be selected such that the reduced order system is stable.
Assume 7T is an orthogonal matrix (2.13). SoTB = [ 0 B, ]T where B, is a nonsingular

matrix. Let Tz = z, then

z(k + 1) = TATT z(k) + T Bu(k) + TT¢(k) (6.23)
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Now assume 27 = (27, 2,7) where z; € R*"™ and z,€R™, then

z1(k+1)=Anzi(k) + Az (k) + T1€(k) (6.24)
Z2(k + 1) :A2121 (k) + A22Z2(k) + B2U(1€) + sz(k) (625)

where

TATT = An Ap  TT = I
Ay Az [y

The system in the sliding mode is independent of £ if and only if I'; = 0. As stated in
Chapter 2 the system in the sliding mode is independent of £ if there exists a matrix D
such that ' = BD. If m = 1 this condition is also necessary. Suppose CTT = [C, C,]

then
S(k) = Clzl(k) -+ 0222(k)

When s(k) =0
Zg(k) = —Kzl(k), K= 02—101 (626)

Substituting (6.26) into (6.24) yields the reduced order system

a(k+1) = (A — ApK)z (k) + T1£(k) (6.27)
and then
2 (k+1) = (A — ApK)F %2 (k) + v (6.28)
where .
v=> (An — AnK) Tk — i+ k,)
i1=kg

Consider the nominal reduced order system

21 (k + ].) = (All et AmK)k+l_k’Zl(’€s) (629)

Then
z1(k + D) < [(A1n = AK)||F175| 2 (k,))|

For Jim 21 (k) = 0 it is sufficient that

|(An — AK)|| < 1 (6.30)
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i.e. all the eigenvalues of A;; — Ao K lie in the unit circle centred at the origin. When all

the eigenvalues of A;; — AjpK are in the unit circle and I'; # 0, the state variables are

bounded since
lzi(k+ 1)) < [1(Ain — AK)|[FH ||z (k)|

k
+ 3 1A ~ AK)|F* | M]|-|IT4 |

i=k,
< (A = AK) 75z (k)|

1=1(A11—A10K) ||k~ kst+1
+ ey =LA (6:31)

From (6.31) for k¥ — oo, the norm of z1(k) is eventually less than
| MI|NIT1]/(1 = [[ A — Ar2K])

which shows that the states during the sliding mode are bounded and if ||A;; — ApK||
is small, the width of this bound becomes small. So if the condition (6.30) is satisfied,
i.e. the nominal sliding system is stable, the sliding system state is bounded. Otherwise,

the system may be unstable despite the existence of the sliding mode.

6.4 System Stability

The problem of system stability will be studied which can appear in several ways: (i) the
stability of the system in the sliding mode, (i7) when the system is independent of the
perturbation signal, (i) when the perturbation signal is bounded proportionally to z(k),

(iv) when there is no knowledge of the bounded perturbation signal.

Let Aeg = (I — B(CB)™'C)A and B,y = I - B(CB)~!C. Assume that all the eigenvalues
of A,y lie in the unit circle. Then there is a real number r such that p(Aey) < 7 < 1 where

p(A.,) indicates the spectral radius of Aeg. Then the discrete Lyapunov equation

Al PA,—1P=-Q (6.32)

with @ an arbitrary p.d.s. matrix, has a p.d.s. matrix solution P. Suppose that the
perturbation signal is bounded by a multiplier factor of the norm of the state, i.e. there is

a positive real number & such that [|(k)|| < &llz(k)]|. Now it is shown that the system

is stable if

l‘—“Aeq” }

|W|| < min {1’ —|IT|é0 + 1B(CB)=T|.ICT (6.33)
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- —p2 .
where = \/||Aeq”2 + (/\mm(Q);'nf:x(;))/\mm(P)’ provided that

i > [ Aell + [ITlIGll BCB) . IIC

A suitable Lyapunov candidate function is V (k) = z(k)T Pz(k) where P is the u.p.d.s.
solution of Lyapunov equation (6.32). Then the triangle and Cauchy-Schwartz inequalities

give

AV (k)

V(k+1)—V(k)

[z (B)I*Amin(@) + (1 = 7*)Amin(P)) + [EEIPITI N Begll* Amax (P) +

2||z(k) ||| Aegll Amax (P) || Beg | ITE| +

20| z(k)|1?[| Acql Amax(PYIB(CB) [ CI W | +

2)|z(k) ||| B(CB) ™ ICl| Amax (P) | Begll- W - ITE]l

HIW P2k BCB)  PICI* Amax (P)

() [~ Amin(@) — (1 = %) Amin (P)+

TP Amax(P)| BCB) . CI* +

2Amax(P)IIT]| |1BCB)THIIC|- | Aegliéo +
(P)|Acgll-IBECB) T LICHIW I +

2 max (P)IIIB(CB)HPICIP&ITI W | +

IW2IB(CB) ™ 2IICI* Amax (P)]

< 0 (6.34)

N

N

min 1-r? min
from (6.33). Let po = \/1 +2 (Q):{iax(;;/\ ) w |Aegll <1 and

po > 1+ Tl B(CB)LICII

the condition

Wil < min {1, ~ITllé + rrre8=myer ) (6.35)

yields the stability of the system. Now suppose that rank(I', B) = m. Then the system

in the sliding mode is independent of the external input signal and the system is stable if

1]
W) < min {1, pmem-en (6.36)

If || Aegll < 1, the condition

IW]| < min {1, T CB 1” [|C||} (6.37)
is a sufficient condition for the stability of the system. When there is insufficient knowledge

of ||Aeq||, the condition (6.37) may prove useful.
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6.5 Optimal Discrete-Time Sliding Mode

Minimizing the conventional quadratic discrete cost functional is a way to design the
feedback gain such that the closed-loop system is stable. Control design using the optimal
method for discrete-time and continuous systems has been studied by many authors in
recent years [11, page 287], [90, Chapter 8]. However, the method presented next for
designing the optimal discrete sliding mode is new. Here the optimal discrete sliding
mode and optimal discrete control are studied. A method to ensure all the eigenvalues of

the reduced order system lie within a specified circle, is also presented.

6.5.1 Optimal Discrete-Time Control

Consider the discrete cost quadratic functional for the system (6.7)

0o

J = (27 (k)Qz (k) + u* (k) Ru(k)) (6.38)

k=0
where @ and R are arbitrary semi-p.d.s. an p.d.s. matrices, respectively. Minimizing J

in (6.38) with respect to u yields the optimal controller

u(k) = —Kz(k), K =(R+B"PB)"'B"PA (6.39)
where P is the u.p.d.s. solution of the standard algebraic discrete Riccati equation
(ADRE)

ATPA - ATPB(R+ B*PB)"'BTPA- P=-Q (6.40)

All the eigenvalues of A — BK lie in the unit circle U with centre at the origin, i.e. this

feedback guarantees the stability of the nominal closed-loop discrete-time system (6.7).

For all the eigenvalues of the closed-loop system to lie in a specified circle D with centre
a € R, |a| <1, and radius r < 1 — ||, consider the shifted system

Aoy iy gﬂ(k) + ;g(k) (6.41)

gk +1) = (

[43]. When all the eigenvalues of A—BK lieinside D, the eigenvalues of (A — BK — ol)/r
lie within U. So all the eigenvalues of the nominal closed-loop system (6.7) are in D if
and only if all the eigenvalues of the shifted system (6.41) are inside the unit circle U.
Therefore, when all of the eigenvalues of the closed-loop system (6.7) lie within the open

circle D, the control is

BT B _,BT _A-ol
i(k) = —(R+ —P)7 — 2

T r

(k)
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and then
u(k) = —Kz(k), K = (r*R+ BT"PB)'BTP(A — al) (6.42)
where P is a p.d.s. solution of the DRE

(A-al)TP(A-al) - (A—al)"PB(r*R+ B"B)'BTP(A — al) — r’P = Q)
(6.43)

6.5.2 Optimal Sliding Lattice

Similarly to continuous systems [135], the optimal sliding lattice can be found by minim-
izing the conventional quadratic index. The basic idea is that z; is the input control of
the subsystem (6.24) and the LQ method can be applied for finding the optimal control,

or more precisely the optimal sliding lattice. Consider the linear discrete quadratic cost

functional

J= Z(zl )Qz1(k) + 22] (k)Nzo(k) + 73 (k) Rz2(k)) (6.44)

where Q, N and R are arbitrary matrices such that

@ N >0 R>0
NT R = (645)
and also @ and R are symmetric matrices. Define
22(16) = Zg(k) + R_lNTzl (k) (646)
Ay = Ay - ApRINT (6.47)
Q = Q-NR'NT (6.48)

The positivity and symmetry of (6.45) ensure that Q is a p.d.s. matrix, and the control-
lability of (A, B) ensures the controllability of (A, Ay2) [121]. Then (6.44) is converted to

the standard linear discrete quadratic optimal regulator
o0
J= Z (z1 )Qz; + 32 (k)R22(k)) (6.49)
k=

Minimizing J in (6.49) with respect to Z; yields the optimal gain sliding matrix

20(k) = —(R+ AL PAp) AL PA,, 2 (k) (6.50)
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where P is a p.d.s. solution of the algebraic discrete Riccati equation (DARE)
AT PA, — AT PA(R+ AL PAL) AT PA, -~ P = -0 (6.51)
Using (6.46), (6.47) may be transformed to
2(k) = —K = (k), K = (R+ A[,PAy,) '(A],PA;; + NT) (6.52)

Matrix K guarantees that all the eigenvalues of A;; — A;2K lie inside the unit circle U.
Similarly to Section 6.5.1, the gain matrix K can be found such that all the eigenvalues

of the reduced order system lie inside the specified circle D.

6.6 Examples

Now some examples are considered to demonstrate the sliding lattice theory.

Example 6.6.1 (Chan [21]): Consider the discrete-time system

B 0 1 (k) 0
N [0.24 0.20] [a:2(k) uk)+ [ d(k) ] ¢

where £ is a external input signal signal and d(k) is uncertain. The system in the sliding

+

1

z1(k+1)
za(k +1)

mode is independent of d(k) because d(k)b= [0 d(k)]T. This is achieved via feedforward
of the disturbance. Choose the sliding matrix C = [0 1]. The eigenvalues of A, are zero,
so the spectral radius of Ae; is 0. Let @ = I; and r = 0.9. A p.d.s. solution P of the Lya-
punov equation (6.32) is P = diag(1.2346,2.7587) with the eigenvalues 1.2346 and 2.7587
and then pg = 1.2031. Take W = 0.2021 sin(kw/6). The system is stable since condition
(6.36) is satisfied. Simulation results are shown in Fig. 6.2 with z(0) = [0.2 0.2]".

Example 6.6.2 (Sira-Ramirez [105]): Consider the system

ak+)] _[o 1] [am] o
[mz(k+1)] - [0 oJ [zQ(k)}“LL]“(k)
Define the sliding sequence as s(k) = Cz(k) = c1z1(k) + zo(k). Then

g] and (I—BC’/CB)A:[O 0 ]

0 —C

- BC/CB= [
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Control action Equivalent control
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0 5 10 15 0 5 10 15

t t
State behaviour State behaviour
0.2 1 0.2
=< 0.1} N 0.1 L

(o] 0

5 10 15
t
Sliding function

(o] 5 10 15
t
Phase Plane

o
0.2} : 0.2
¥o.1 J » 0.1
o

o horer
(o] 0.05 0.1 0.15 0.2 0 5 10 15
x1 t
Disturbance input
0.05
0 3
-0.05

Figure 6.2: The responses of Example 6.6.1

Therefore the eigenvalues of A, are 0 and —c;. For the stability of the reduced order

system take |c;| < 1. The control is given by (6.20) and now

z(k+1)= [0 ! }r(k)—!—W[ 00 ] z(k) sgn s(k)

0 —q c 1
Choosing |c;| < r < 1 and W such that (6.36) is satisfied, then the system is stable. Let
r=097, ¢ =0.7,Q=1and W = 0.075cos(kn /4). For ¢; = 0.7 or ¢, = —0.7, a p.d.s.
solution P of the Lyapunov equation (6.32) has eigenvalues 1.0628, 4.5749. Obviously
(6.36) is satisfied which guarantees the stability of the system. Simulation results are

shown in Fig. 6.3.

Example 6.6.3 (Gao et al [46]): Consider the system

Tl 1 06 || m(k) 1
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Control action State behaviour
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Figure 6.3: The responses of Example 6.6.2

Define the sequence of sliding mode as
S(k‘) = CCII(/{I) = clxl(k) + Cz.’lfg(k)
Then

(I—BC/CB)Az[ 1.2 0.1 ]

-1.2¢'¢; -0.1¢; "¢

The eigenvalues of A, are 0 and 1.2 — 0.1¢c, 'c,. The system is stable in the sliding mode
if |1.2 — 0.1c;'¢;| < 1 which simplifies to 2 < c;'e1 < 22. By applying the control (6.20)

0 0

—clep 1

1.2 0.1

~1.2¢;te; —0.1¢3 e

]a:(k) +W

r(k+1)= } z(k) sgn(c;zy + caxy)

Choosing ¢; = 1 and ¢; = 5 the eigenvalues of A, are 0 and 0.7. Therefore, r < 1 can
be selected only greater than 0.7. Let r = 0.998 and @ = I. A p.d.s. solution P of
the Lyapunov equation (6.32) has eigenvalues 75.8083, 1.0040 and u = 6.1411. Choosing
W = 0.0001(sin(k7/4) + cos(km/6)), (6.36) is satisfied which implies that the system is

stable. Simulation results are shown in Fig. 6.4 with z(0) = 2 - 6]”.
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Control action State behaviour
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Figure 6.4: The responses of Example 6.6.3

Example 6.6.4 (Spurgeon [110]): Consider the system

ok +1) 1 060 004 | | z:(k) 0.02 0.002
pp(k+1) | = | —0.01 090 012 | | za(k) | + | 0.09 | u(k)+ | 0.009 |¢
z3(k + 1) —0.16 —1.25 057 | | z3(k) 0.99 0.099

where ¢ is random noise. Define the sequence of the sliding mode as
s(k) = Cz(k) = 0.44z (k) + 1.725(k) + 0.85z3

Then

0.9943 0.5854  0.0259
(I - BC/CB)A= | —0.0357 0.8344 0.0567
—0.4432 -1.9718 -0.1267

with the eigenvalues 0.8510 £ 0.1336¢, O guarantees the stability of the reduced order
system. The system in the sliding mode is independent of the perturbation input because

T = 0.1B. Choosing r = 0.97 and @ = I, (6.32) gives the p.d.s solution P

8.6950 14.5886 0.8786
P =] 14.5886 47.0455 2.8979
0.8786 2.8979 1.2460
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with eigenvalues 52.1441, 3.7795, 1.0628 and then

/\min —r? )‘min
(—nAeqn + \ﬂlAeqHz i Jml (P)) /(1BCB)IC1l) = 0.0023

Therefore for the stability of the system the function W should be bounded by 0.0023.
Take W = 0.0022sin(0.1k7), then

0.9943 0.5854  0.0259 0.0199
w(k) = | —0.0357 0.8344  0.0567 | z(k)+0.0091sin(0.1k7) | 0.0897 | |s(k)|
~0.4432 —1.9718 —0.1267 0.9867

Simulation results are shown in Fig. 6.5 with z(0) =[0.80 — 0.50 — 0.02]7.

Control action State behaviour
0.5 2
ot 4 1t 4
= =
-0.5 o
-1 -1
0 5 10 15 20 0 5 10 15 20
t t
State behaviour State behaviour
1 1
0.5 0
N P
0 -1
—0. -2
50 5 10 15 20 0 5 10 15 20
t t
Sliding function Disturbance input
0.5
1.5
»n 1 (o]
0.5
0 -0.5
fo) 5 10 15 20 o] 5 10 15 20

Figure 6.5: The responses of Example 6.6.4

Now an example is considered to demonstrate the MIMO theory.

Example 6.6.5: Consider the system

[z, (k+1) 01 0 0] z(k) 00 00
k+1 —5 6 1| | 2o(k 10

p(k+1) | _ 2(k) | ar+ |10

z3(k + 1) 0 0 1 z3(k) 0 0 00

| za(k+1) | 0010 9] [z(k)] L0 1] 0 1
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where

0
‘= [ 0.5sin(0.17k) ]

The system in the sliding mode is independent of { because B = I'. Choose the sliding
matrix [111]

O = 0.3565 3.0000 0.3417 0.2157
0.0918 0.2157 1.0767 3.0000

The eigenvalues of A., are —0.3606, —0.1092 and 0. The spectral radius of A4, is 0.3606.
Let Q = I, and r = 0.5. A p.d.s. solution P of the Lyapunov equation (6.32) is

4 0 0 0

0 21.3107 0 2.6746

0 0 4 0

| 0 2.6746 0 42.4283 |

with the eigenvalues 20.9772, 4, 42.7617 and p = 1.1083. Hence

1= || Aegll
= 0.0353
|B(CB)~.|C||

Take W = —0.0352sin(km/10)I2. The system is stable since condition (6.36) is satisfied.

Simulation results are shown in Fig. 6.6.

6.7 Sliding Mode State Observers for Linear Discrete-

Time Systems

Discrete-time sliding mode observer design is a new topic. Discrete observer design using
sliding mode control has been developed by Koshkouei and Zinober [71]. In Section 6.1
the concept of the discrete sliding mode and the sliding lattice were defined and a method
for designing a controller presented such that the stability of the system and sliding mode
are conserved. Now discrete sliding mode observer design is considered. Techniques for
finding the feedforward injection map and the external feedforward compensation signal

will be developed. The discrete-time linear time-invariant system

k+1) = Ax(k)+bu(k) + vE(k) (6.53)
y(k) = cz(k) (6.54)
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Figure 6.6: The responses of Example 6.6.5

is considered where £ > 0 is an integer, z(k) € R* is the state, A € R**", b € R" is
nonzero vector, u(k) is the scalar input control, ¢ € R" such that ¢b # 0, y(k) € R
is the scalar output, v € R" is the perturbation input map and £ € R is the bounded
scalar disturbance input. It is assumed that (A,b) is completely controllable and (A, c)

completely observable.

A sliding observer for the system (6.53) is

#(k + 1) = Az (k) + bu(k) + h(y(k) — §(k)) + Mo (k)
g(k) = ci(k) (6.55)

where v € R is an external discontinuous feedforward compensation signal, A € R" is the
feedforward injection map such that cA # 0 and h € R" is the observer gain vector. By
choosing h such that A — hc is stable, the observer will be asymptotically stable. The
state reconstruction error is defined as e = x — . Subtracting (6.53) from (6.55) gives

the reconstruction error system

e(k+1) = (A— hc)e(k) +~vE(k) — Av(k) (6.56)
e (k)" = ce(k) (6.57)

where e, (k) = y(k) — §(k) is the output reconstruction error. Assume that for all k,

|E(k)| < &lle(k)]|, where & is a positive real number.



Chapter 6. Discrete-Time Sliding Mode Control 126

Now it is desired to obtain h, A and v such that the stability property of the observer is
achieved. The vector h can be found in two ways as for the continuous counterpart; pole
assignment methods, i.e. assigning prespecified n eigenvalues to the matrix A — hc; and
the LQ method. The eigenvalues of A — hc and AT — ¢Th” are the same, so the problem
is that of finding a feedback for the dual system corresponding to (6.53) such that the
eigenvalues are the specified values. But (4,c) is observable if and only if (AT,cT) is

controllable. Therefore, the observability of (A4, c) guarantees the existence of h.

The LQ method is now used to find h. Since (4, ¢) is observable, (AT, cT) is controllable.
Therefore the discrete Riccati equation (DRE)

1
APAT — mAPcTcPAT —-P=-Q (6.58)

with @ an arbitrary semi-p.d.s. matrix and @ > 0, has a u.p.d.s. matrix solution P. Then

AT — ¢ThT is stable with

T _ 1 T
h™ = o cPA (6.59)
which is equivalent to the stability of A — hc. So
- 1 T

The ideal sliding mode for the system (6.56)-(6.57) is obtained if e, (k) = 0 after a finite

integer k. The equivalent feedforward input is given by
beqlk) = (cX) ™ (cAe(k) + cE (k) (6.61)
Substituting (6.61) into the state reconstruction error system (6.56) gives the reduced

order system
e(k+1) = (I — Mch)'e)de + (I — A(eh)Te)yé (6.62)

One of the eigenvalues of matrix (/—X(c))"'c) A is zero and the n—1 remaining eigenvalues
can be assigned. The reduced order system is independent of the disturbance input signal
if there exists a real number 7 such that v = nA. As for continuous systems the vector A

can be found in several ways (see Section 5.3):

1. Take A = ATPcTA/(B + cPc’) where (3 is an arbitrary positive real number. If
(= a then A = h.

9. The vector X in (6.55) can be obtained so that the stability of the reduced order
system and the allocation of the n — 1 nonzero stable eigenvalues of the reduced

order system

e(k + 1) = [I — Ac/(c\))Ae(k)
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are achieved.

3. The vector A can be found such that the nominal system in the sliding mode is stable.
When the reduced order system (6.62) is independent of the perturbation signal, this
approach yields the stability of the matrix [/ — Ac/(cA)]A, and lim e(t) = 0. Gen-
erally, LQ methods for finding the vector A cannot be achieved directly. However,

the existence of A under some conditions is guaranteed.

Suppose A is a nonsingular matrix. Let A = M do ... \]7, ¢ = [e1 ¢2... e,
cA = M and A(cA\)~! = F. Hence cF = 1. Therefore, vector A can be found if there
exists a vector F such that ¢F = 1. Then (I —A(cA)"'c)A = A— FM. Since (A4, c) is
observable and A is a nonsingular matrix, (A, M) is also observable and the discrete
Riccati equation

1

BZUWFMFAPMTMPAT_fn=_Q (6.63)

APAT -

where Q is an arbitrary semi-p.d.s. matrix and 3 a positive real number, has a
u.p.d.s. matrix solution P. Taking

1

F=—
B+ MPMT

APMT (6.64)

yields all the eigenvalues of A — F'M located inside the unit circle. If ¢F = 1, A
exists such that A(cA)™! = F and all the eigenvalues of (I — A(cA)~!¢)A lie within
the unit circle. Let F = [f1, fa,... , fa]". Then A(cA)~! = F gives

(lel - 1)/\1 + cafiAo + ... + cnfiAn
le2/\1 + (szz - 1)/\2 + ... + Cnfg/\n =
| | | S | . (6.65)
c1fa +  afite + ...+ (enfa=DA =0

which has an infinity of solutions for which all the eigenvalues of (I — A(cA)~!c)A lie

inside the unit circle. Equation (6.65) can be written as (¢ ® F — I)A = 0 and then
(c®@F)A= ) (6.66)

where ® indicates the Kronecker product. The determinant of matrix c® F — I
is £(cF —1). Thus the system of equations (6.65) has a nonzero solution ) if and
only if cF = 1. In this case the vector A is not unique. Generally such a A may not
exist, but this method can be modified so that it is applicable for many practical

problems. The above yields the following lemma which clarifies the conditions of

the existence of vector A.
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Lemma 6.7.1: Assume F is given by (6.64) and F = F/(cF). If all the eigenvalues
of A— FM are inside the unit circle, then there ezists a real number A such that all

the eigenvalues of (I — A(cA)™'c)A lie within the unit circle.

4. In the sliding mode the systems (6.53) and (6.56) are independent of ¢ if and only
if there exist real numbers p and u such that v = pb and v = uA. Therefore if both
systems are independent of &, there exists a real number v such that A = vb. Take

X = vb where v is a real number.

5. The vector A can be found such that the state reconstruction error system (6.56) is

asymptotically stable, i.e. lim e(k) = 0.

The external feedforward compensation signal v is an input of the reconstruction error
system (6.56), so the structure is similar to the input control. Therefore, utilizing the

discrete-time sliding mode properties yields the control law
(k) = veg(K) + (cA) ' W]ce(k)|

which guarantees the existence the sliding mode and the stability of the error system (6.56)
[70]. Since the equivalent control v, is not accessible, the feedforward compensation

input v should be chosen independently of the state error. consider the feedforward
compensation input

v(k) = —W(k)|ce(k)| if ce(k)#0
where W (k) is a real function with [W(k)| < 1. This feedforward compensation signal
ensures that when there exists an integer kg such that ce(ko) = 0, then for all integers
k > ko, ce(k) = 0. Suppose ko is an integer such that ce(ko) = 0, then v(ko) = ves(ko).
Substituting (6.56) in ce(ko + 1) gives

s(ko+1) = ce(ko+1)
= cAe(ko) + cy€(ko) — cAvgg =0

So if ce(k) = 0, then ce(k+1) = 0. Hence, for the existence of the ideal sliding mode, it is
sufficient that there exists some integer ko such that ce(ko) = 0, i.e. if a state point is on
the sliding surface then the ideal sliding mode exists. As stated in Theorem 6.2.2, when
the system (6.53) is asymptotically stable, sliding convergence exists. On the other hand,
if the state error trajectory lies on the sliding surface at some time instant, after that time
the sliding points remain on the sliding surface and consist of a sliding lattice. Therefore,

it is clear that method 5 for finding the vector A yields stability of the reconstruction

error system.
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6.8 The Stability of the Reconstruction Error System

Let us now study the stability of the error system (6.56) which is very important because

the stability of the reconstruction error system ensures the state observer tends to the

actual state. Since A — hc is stable, all the eigenvalues of A — hc lie within the unit circle.

Let r be a real number such that p(A — hc) < 7 < 1 where p(A — hc) is the spectral radius
of A — he. Then the discrete Lyapunov equation (DLE)

(A= he)TP,(A - he) — r*P, = —Q, (6.67)

where @, is an arbitrary p.d.s. matrix, has a u.p.d.s. solution matrix P,. A conventional

Lyapunov function candidate for (6.56) is V/(k) = e” (k) Pye(k). Then

AV (k)

= V(k+1)—V(k)
<e(k)T (~Qy — (1 =) P,) e(k) + 2{W| [e(k) (A — he)T Py(A — he)e(k)]
x (ATR,AT)? [ee(k)| + 20€1 (Y7 Pyy) [e(k)T (A = he)T Py(4 — he)e(k))
+2ELIW |- |ce(k) (AT BA)E (VP Py + (€297 Pyy + W2ce(k) PAT ByA
<lle(®) 12 {= Pemin(@) + (1 = ) Amin(Py
2AW Lllell [~ Mmin(@a) + r*Amax(Po)]® 1Al Arnax(Py)) 2 +
260 [~ Mmin (@) + 7 Amax(P)]? 1] Amax(By)) ®
1260l W1l I IV Ama(P) + €022 Amax (By) + W lelP NI Amax(Py) }
<Jle() = [min(@0) + (1 = 72 Amin(P,)] +
2 [~ Aumin(@s) + " Amax(Po)]? Amax(Po)F (171160 + [WIIelLIATD +
Amae(By) (I¥ll€0+ W]l M1} (6.68)

[

+ X

]+

Lllad \/

For the right-hand side (6.68) to be less than zero

)‘min Pg /\min g
Iléo + W Lllell NI < \/ R i \/ - (60)
max max\{ g

Then

Wl < (ko = &allvII) (6.70)

1
lell- Il

subject to & < po/||vl|- Therefore, stability of (6.56), requires that

. 1
W] < mm{l, I sonvn)} (6.71)
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Let n be a real number. Taking A = —TCZ—’y the error system in the sliding mode is
independent of the perturbation signal, and (6.70) becomes

1 Ho
Wle— (10 _
| |<In|<llvll 5") (6.72)

subject to & < ﬁ-' Therefore, for the stability of the system (6.56) it is necessary that
W] < min {1, L (ﬁ"— - fo)} (6.73)
Il \ Il
The above and Theorem 6.2.2 imply the following theorem:

Theorem 6.8.1: If condition (6.70) is satisfied, the error system (6.56) is asymptotically

stable and a convergent sliding mode exists.

Let us now consider a special case of (6.67). Choosing r = 1, condition (6.70) yields

1
Wl < s (i —
. . )‘min(Qg) . . .
where p; =1 —4/1 :\——(15—) with & < pi/||v]|- It can be proved that y; is maximal
max\{ g

if @, = I, but first a useful lemma is stated.

Lemma 6.8.1: Let Q, be an arbitrary p.d.s. matriz, and Py, and Py, be the u.p.d.s.
solutions of the DLE (6.67) corresponding to Qg and I, respectively. Then

qu 2 )‘min(Qg)Pgl

Proof: Suppose w € R” is a given vector. Then

o o]

Py = > r (A = ho)T)'Qy(A — he)’
i=0
Py =Y_r (A = he)T)H(A = he)?
1=0

and

w’ (Py)w = w” (Z r 2 (A = he)T)'Qg(A - hc)i) w

1=0

\Y,

=0

= /\min(Qg)wTPylw (6'75)

)\min(Qg)wT (Z ,,.—2(i+1)((A _ hC)T)i(A _ hc)i) w



Chapter 6. Discrete-Time Sliding Mode Control 131

Since for all real vectors w, W Puw 2 Amin(Qq)wT P,,w, then Pyo 2 Amin(Q,) P, O
min X

The following corollary is obtained immediately from Lemma 6.8.1.

f\lorollary 6.8.1 [99]: Let P, be the p.d.s. solution (6.67). The mazimum value of
Amin(Q) is obtained if Qg = I.

’\maX(Py)

Therefore, for Q, = I, p is maximal. But p may not take the maximum value for

Q, = I. In fact, the relationship between (), and the ratio :\\Linilr;—g; is unknown [53].
max\{ g

The following theorem is now stated:

Theorem 6.8.2: Let Q; be an arbitrary p.d.s. matriz, and Py, and Py, be the u.p.d.s.
solutions of the DLE (6.67) corresponding to Q, and I, respectively. Then

?Pae = Qg 2 Amin(Qg)(r2P,, — 1)
with the equality satisfied if Q4 = qI for any positive real number q.
Proof: Suppose w € R is a given vector. The DLE (6.67) can be written as
(A — hc)Py,(A - he)T = TngQ - Q,
and the u.p.d. solution is

Py =D r (A — he)T)iQy(A — he)’

1=0
Thus
wl (r’Py, — Qgw = wl (A - hc)T(Z r= 2D (A - he)T)iQy(A — he)')(A — he)w
i=0
= w? (i r 20 (4 - he)T)HDQ (A - hc)(i“)) w
i=0

> Amin(Q@g)w” (Z rH((4 - he)T)ED (4 - hc)@*”) w

1=0

= Amin(@p)wT (r*P,, — Nw (6.76)

Since for all real vectors w,

wT(T2PgQ - Qg)w P )‘min(QQ)wT('rngl - I)w
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then T2PgQ — Q2 Amin(Qg) (r* Py, — I). a

Note that Lemma 6.8.1 and Corollary 6.8.1 are direct results of Theorem 6.8.2. Theorem
6.8.2 yields Amin(Q@g)! — @y 2 r?(Py, - Py,)- Since Apin(Qg)I — Q, is a nonpositive
matrixX, 72(Amin(Qq) Py — Pyo) is also a nonpositive matrix. On the other hand, r # 0
yields Py, 2 Amin(Qg) Py;» i-e. Lemma 6.8.1 is obtained. Therefore, Theorem 6.8.2 clarifies
the relationship between the solutions of DLE (6.67) which are obtained for @, = I and

an arbitrary p.d.s. matrix .

6.9 Examples

The following examples illustrate the design procedure for an asymptotically stable ob-

server.

Example 6.9.1 Consider the system

o (k+ 1) 1 060 004 | (k) 0.02 0.002
zo(k+1) | = | —001 090 0.2 | | zp(k) | + | 0.09 | u(k)+ | 0.009 | ¢
za(k +1) —0.16 —1.25 0.57 | | z3(k) 0.99 0.099

where € is a bounded random noise signal satisfying |{| < 0.0106 [110]. Taking
c=[044 17 085 |
Q = I3 and « = 1, the observer gain vector h is given by
h=[00246 02623 01225 ]T
Let o be a real number and A = neb. For all 5y the reconstruction error system in the

sliding mode is independent of the perturbation signal because A = 107,y = ny. Taking

T
A= [ 0.0010 0.0045 0.0495 ]

The eigenvalues of A — hc are 0.1388, 0.8852+0.1276:. Hence the spectral radius 4 — hc

is 0.8943. Since all the eigenvalues of A — hc are in the unit circle, the observer (6.55) is
asymptotically stable.
Choosing Q, = I and 7 = 0.9852, the u.p.d.s. solution of the DRE (6.67) is P,

17.8877 —1.3712 —7.4347
P,=| -13712 2.1476 —2.3686
—7.4347 —2.3686 13.6161
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with Apin(Pg) = 1.0788 and Apax(Pg) = 23.4925. On the other hand, & = 0.0113 and
(k)] < 0.0113]|e(k)||. Since Amin(Qy) =1, ¢ = 1.9509 and y = 0.0994, then po = 0.0225
and the right-hand side inequality (6.70) is

1
———— (o — &o|7|l) = 0.2208
el A

Choose W = 0.2198sin(0.1k7). The feedforward injection input signal is defined as
v(k) = —0.2198sin(0.1k7) |s(k)|, if s(k) #0

where s(k) = 0.44e; (k) + 1.7ey(k) + 0.85e3(k) and e(k) = [e1(k) ez(k) es(k)]". Since the
condition (6.72) is satisfied, the error system is asymptotically stable. Simulation results

are shown in Fig. 6.7.
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Figure 6.7: The responses of Example 6.9.1

Example 6.9.2 Consider the system as in Example 6.9.1. Let 3 be a real number and

Qg = ]3. Then -
F= [ 03543 0.0545 0.9123 ]

The eigenvalues of A — Fc are 0.8950, 0.4314+0.1011i and lie inside the unit circle, but
the condition cF' = 1 is untrue. Consider F = F/(cF),

4 T
e [ —0.4973 0.0766 1.2808 ]



Chapter 6. Discrete-Time Sliding Mode Control 134

with the eigenvalues of A — FM being 0.8908, —0.0371, 0.6163 which lie inside the unit
circle. Lemma 6.7.1 is applied so that there exists a A such that all the eigenvalues of

(I — A(cA)"'c)A lie within the unit circle. Vector A must be found so that

—1.2188 —0.8455 —0.4227
cRF — I = 0.0337 —0.8699  0.0651
0.5636 2.1774  0.0887

T
Then A = [ 0.0186 —0.0023 0.0495 ] , and h is obtained as in Example 6.9.1. So the

eigenvalues of A — he, and also 7 and P, are the same as in Example 6.9.1. The responses

are shown in Fig. 6.8.
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Figure 6.8: The responses of Example 6.9.2
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6.10 Summary and Discussion

In this chapter the concept of the discrete-time sliding mode has been clarified and suffi-
cient conditions for the existence of the discrete-time sliding mode have been presented.
The sliding surface for the discrete-time systems is a lattice which is called the sliding
latticewise surface or more concisely the sliding lattice. A method of control design using
the properties of the discrete sliding mode has been proposed. This control guarantees the
stability of the sliding mode and the stability of the system. This discrete-time control
does not have the same structure as sliding mode continuous control. The behaviour of
the system in the sliding mode, and stability conditions have been studied. It is concluded
that if the nominal reduced order matrix is stable, then the state in the sliding mode is
bounded. In this case the width of the boundary layer depends upon the disturbance

bound, the norm of the distribution disturbance input map and the degree of stability of

the nominal reduced system matrix.

An important problem in discrete-time sliding systems is the perfect rejection of un-
known disturbances during the sliding mode. In the discrete-time case perfect disturbance

rejection is achieved if only the disturbance is exactly known and the associated equivalent

control component is applied.

One can consider some restrictive conditions like; (¢) the matching condition, (%2)
suitable estimation for the successive disturbance difference £(k) — £(k — 1), (ii1) the
existence of a finite time ¢; such that for all ¢ > t;, the difference sequence £(k) —§(k —1)
is a decreasing sequence or sufficiently small. Although this problem also appears in
continuous systems, for discrete-time systems the proof of perfect disturbance rejection is
more complicated. This difference arises from the reaching sliding condition of continuous
systems which differs from that of discrete-time. In the discrete-time case the stability
of the system and the reaching sliding condition are established by considering a discrete
Lyapunov function, and difference equations arises. In the case of continuous system the

continuous Lyapunov function is utilized which results in derivatives.

The control design method as stated in this chapter needs an estimate for disturb-
ance input. One may utilize the estimation as in [112]. The equivalent control with zero
disturbance can be considered. In this way it is assumed that in the average sense, the
disturbance does not affect the equivalent control. More precisely, since the equivalent
control can be considered as the average of the control input and if the average of dis-

turbance is zero, the equivalent control may be assumed independent of the disturbance

input.
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There are two ways for designing discrete-time sliding mode control: (z) in the first
instance a dynamical sliding mode (or a control for the system ) is specified, and then
it is necessary to find the conventional control (sliding mode dynamics) [46], [21]; (i) a
control is determined by using the properties of the sliding mode such that the stability
of the nominal systems in the sliding mode is conserved. In this chapter methods (7) and
(41) have been applied successfully for linear systems. In some previous work [126] there

are errors [88] and also some restrictions [21].

The system stability has been studied and the design of the optimal sliding mode
matrix is also extended to DSMC.

A method for discrete-time sliding mode observer design including external feedfor-
ward compensation and feedforward injection map has been presented, as have results for
the stability of reconstruction error systems of linear systems. The problem of disturbance
rejection has been studied. The cone condition for the error system is a limiting condition
and satisfying this condition may be difficult in some practical problems. However, the
stability of the system is guaranteed if one of the following conditions is satisfied: (i) the
cone condition for the disturbance input with respect to the state; (i) there exists a finite
time instant such that after this time, the disturbance input sequence £ is a decreasing

sequence. So a simple condition on the disturbance should be found such that the stability

of the error system is achieved.

A useful theorem, a corollary and a lemma have been stated in Section 6.8. Theorem
6.8.2 determines the relationship between the solution of the DLE (6.67) for arbitrary
weighting function @, and the solution obtained for Q = I. An open problem is to find
a bound for the ratio Amin(Py)/Amin(Py) Which appears in some stability conditions, e.g.

(6.69).
Examples have been presented to demonstrate the techniques of the controller and
observer design methods. These examples show that the results of this chapter can be

successfully applied to many systems.



Chapter 7

Sliding Mode in Time-Delay Systems

7.1 Introduction

In recent years many methods have been reported for designing control for time-delay
systems, for instance [81] and [100], and criteria for the stability of time-delay systems
[23], [87] have been developed. Time-delays may appear in many ways; delays in measure-
ment of system variables including physical properties of equipment used in the system
or signal transmission; delays in control which arise in many chemical processes and ra-
diation problems in physics. Time-delay systems are also used to model several different
mechanisms in the dynamics of epidemics. Many problems such as incubation periods,
maturation times, age structure, seasonal or diurnal variations, interactions across spatial

distances or through complicated paths have been modelled by time-delay systems [16}.

The work on the stability of time-delay linear systems has been reported by many
authors and can be found in [22], [23], [54] and [87] amongst others. Work on the stabil-
ization problem for a class of uncertain linear systems with delay on the state has been
studied in [81]. The proof of stability of closed-loop time-delay systems with discontinuous

control is more complicated than for the continuous case.

Stability criteria for time-delay systems can be classified into two categories: (i) there
is no information about the delays, i.e. delay-independent criteria; (ii) there is some
information about the delays, i.e. delay-dependent criteria. The delay-independent cri-
teria are strong conditions to test the stability of the system. However, if the delays are
small, these criteria may be useful. Delay-dependent criteria for a closed-loop system are
dependent upon the kind of control which is applied to the system. To prove the stabil-

ity of both open- and closed-loop time-delay systems, an appropriate Lyapunov function
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can be selected. The magnitude of the delay may not necessarily be important when

establishing system stability. The stability may hold for certain sufficient conditions [54].

Sliding mode time-delay systems may employ the proportional-integral sliding mode
(PISM) [100] and the traditional sliding mode. In the case of PISM the sliding surface may
depend on delays and it is difficult to specify its dynamic performance; for the traditional
sliding mode the sliding surface is independent of delay. In this chapter a method of

designing the sliding surface and appropriate discontinuous control are presented to yield

the stability of the sliding mode and the system.

7.2 Sliding Time-Delay Systems

Consider the following uncertain system

i(t) = Az(t)+ Aoz(t — 1)+ Bu(t) + f(t,z,7)

z(t) = ¢(), te[-7,0] (7.1)
where z € R" is the state variable, A € R**", B € R"*™ is full rank, u € R™ is the input
control, C € R™™ such that CB is nonsingular, 7 is a positive real number and ¢(%)
is a continuous vector-value initial function with [|¢|| = sup ||¢(t)||. Assume that (4, B)
is a completely controllable pair, mm < n and the function f(t,z,7) € R" is a bounded
disturbance or uncertain input signal. The sliding surface is defined as s = Cz(t) = 0.

The ideal sliding mode exists if there is a finite time ¢, such that
Cz=0, Ci=0 t>t,

where C € R™*" is the sliding mode matrix. Then the virtual equivalent control is given

by
Ueg(t) = —(CB) ' (CAz(t) + CApz(t — 1) + Cf(t,z,7))

and the system in the sliding mode is
$(t) = Aeg(t) + Aegz(t — ) + Begf(t,2,7) (7.2)
where A¢q = (I—B(C’B)'IC)A, /ieq = (I- B(CB)~'C)Ao, and B,, = (I-B(CB)~'0).
Assumption: Matching condition. Assume that f(t,z,7) = Bg(t,z,7). Then the system
in the sliding mode
5(t) = Aegt(t) + Aequ(t — ) (7.3)

is independent of the external input f. The matching condition is a suitable condition

for the system in the sliding mode to be independent of the external uncertain input.
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7.2.1 Sliding Control

Consider the control

u(t) = —(CB)™! (CAz(t) + CAoz(t — T) + p sgn s(t))

139

(7.4)

where p = p(t, z(t), 7) = diag(ps, ps, . . . , pm) With positive real functions p; = p;(t, z(t), 7)

. T
(1<i<m) andsgns= [ Sgn S; SgN S ... SEN Sy ] . The system is now given by

i(t) = Aegz(t) + Aeqx(t —7)+ f(t,z,7) — B(CB) 'p(t,z(t), ) sgn s

Hence the sliding dynamics is governed by
§=Cf(t,z(t),7) — p(t, z(t), 7) sgn s
and forall 0 <t < ¢

s(t)=C ( f(t,z(t),7) dt) —p(t,z(t),7)(t — t,) sgn s

ls

The reaching sliding mode condition is

sisgns; <0, Vi 1<i<m

(7.5)

(7.6)

(7.7)

in the neighbourhood of s; = 0 {29], [121]. Multiplying the i-th (1 < i < m) row of (7.6)

by sgn s; gives
$: sgn s; = Ci f(¢,2(t), 7) sgn s; — pi(t, z(t), 7)
Hence, a sufficient condition for the existence of the sliding mode is
Cif(t,z(t), 7)sgn s; < pi(t, x(t), 7)
and a sufficient condition is that
ICf(t,2(),7)]| < min p;

1€i<m

7.3 System in the Sliding Mode

(7.8)

(7.9)

The behaviour of the system in the sliding mode is considered in this section. The system

in the sliding mode is a subsystem of (7.1) of order n — m. Assume T is an orthogonal

matrix (2.13)

TB =
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where B, is a nonsingular matrix. Let z = Tz, then
2(t) = TATT 2(t) + TAT " 2(t — 7) + TBu(t) + TBy(t, z(t), 7) (7.10)

Now assume 27 = [z, zg]T, 2z € R*™™,  zeR™. Then

a(t) = Anzi(t) +Anat) + Aua(t— )+ Apz(t - 1) (7.11)
5(t) = Anz(t) + Anz(t) + Anzi(t — 1) + Anz(t — 7) + Bou + Bag(a(t), 7, 1)
(7.12)
where
TATT — All A12 , TA()TT — {ill 1%12
2 Az Ay A

Subsystem (7.11) is the system in the sliding mode. So the sliding surface is
C]Zl (t) + CzZz(t) =0

where CTT = [C; C.). In the sliding mode 2;(t) = — Kz (t) with K = C,'C,. Therefore

the reduced order system (7.11) is converted to
7(t) = (An — ApK)zi(t) + (An — ApK)z (t - 1) (7.13)

For any z(0) and any function ¢ € C([-7,0],R") there exists a function z,(t) satisfying
the differential equation (7.13) almost everywhere [25]. In this case, for all integers k the
function z;(¢) will be C* on ((k — 1)1,00), i.e. for all 1 < j < k the j-th derivative of

function z(t) is continuously differentiable on ((j — 1)7,00). With these conditions the

solution of (7.1) is
t
() = e(Au—AlzK)t¢1(0) +/ elAn—AnK)(t-v) o
0
{(fiu - 1‘112K)Z1(w - T)} dw, t>0 (7.14)

where T¢ = [¢1 ¢2]T. Let ||é1]] = sup_ l|¢1(t)l]. There exist positive real numbers 7
and M such that [z, (2)]| < (M||o1(0)|| + M?||¢1]7) eM*+mt 1951 Tt is desired to find K

such that A;; — A2 K is stable. Consider the Riccati equation
ApP + PAT, — PALR'ATP = —Q (7.15)

with Q and R are arbitrary semi-p.d.s. and p.d.s matrices respectively, having the u.p.d.s.
matrix solution P. For K = R AL P, the matrix A;; — Ao K is stable.
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7.3.1 System Stability without Delay Information

For this case, system (7.1) is asymptotically stable if all the roots of the characteristic
polynomial of the system (7.11) p(s) = det(s] — A;; + A1K — (Ay; — AjpK)e ™) have
negative real parts. If all the roots of p(s) = 0 lie in the open left-half complex plane,
this condition is equivalent to p(s) # 0 for all s € C* where C* is the set of all complex
numbers with nonnegative real parts. Note that for 7 > 0 there may be infinitely many
solutions, while for 7 = 0 there are finitely many solutions. So when 7 > 0, it is very
difficult to find all the infinity roots of p(s) = 0 and check if the roots are in the open
left-hand half-plane. This motivates one to avoid the delay-dependent condition p(s) =0
for stability of the system and use the condition p(s) # 0 for all s € C* to prove the
asymptotic stability independent of delay. However, since p(s) is an entire function, there
are only a finite number of roots of p(s) = 0 in any compact set, in particular in a vertical
strip of the complex plane. Furthermore, there exists a real number a such that all the

roots of p(s) lie to the left of the vertical line z = « [52].

The function p(s) is an analytic function on C*. Therefore according to the Maximum

Principle Theorem [3, page 134] p(s) takes the maximum value on its boundary, i.e. there

exists a w such that maxp(s) = p(iw). Hence
det(iw] — Ay + AeK — (A — ApK)e™ ) #0, Yw 20 (7.16)

For simplicity, set A=Ay — ApK and Ay = 4y, - ApK. So from [22] the following

theorem is obtained.

Theorem 7.3.1: Assume p ((fi)‘lfio) < 1. The system (7.11) is asymptotically stable
independent of delay T if and only if

P ((z’w[ - A)-lfio) <1, Vw30 (7.17)

Proof: Since A is a stable matrix, p ((3 I— A)™! fio) is an analytic function in the right
half-plane and according to the Maximum Principal Theorem [3, page 134] it is assumed
that it takes its maximum value on the imaginary axis. Thus

sup p ((iwI — fl)“lﬁo) = sup p ((iw[ - x‘i)'lfioe‘i“T)

w20 w20

= sup p ((sI - A)‘lﬁoe‘”)

sect

Necessary. Assume that the system (7.13) in the sliding mode is asymptotically
stable independent of delay. Since A is a stable matrix, for all s € Ct, det(s] — A) # 0.
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If s = 0 then p((fi)‘lfio) < 1 and there is nothing to prove. Suppose that s # 0

then det (I — (sl - A)‘I/ioe‘") #0, ie. for all s € C, 1 is not an eigenvalue of
(sI — A)~1Age*", so

p((iwl - D) Ag) #1, Vw0 (7.18)
Assume there exists a w such that p ((z'wI - A)“lfio) >1. Since p ((iwI - A)‘IAO) is a
continuous function, there is a wp such that p ((iwo I— A)"'4) = 1 which contradicts
(7.18). Therefore p ((wI - /i)‘lfio) <1 VseC.
Sufficiency. Assume that (7.17) is satisfied. Hence

sup p ((iwI - fi)_lfio) <1

w20

Thus p(s) = det ((sI - fi)‘lfioe‘”) #0, VseC*. 0

Since

p (i — (As1 = AK)) ™ (Au - ApK)) <
||(qu - (All - A12K))_1(/111 — A12K)” Yw 2 0

for (7.16) to be satisfied it is sufficient that
| (jw! — (A — AK)) YA - ApK)|| < 1, Yw >0

To assess the stability by direct applying Theorem 7.3.1 is difficult. So for practical
problems, it is necessary to find a criterion to test the stability. The following theorem

gives such a condition free of frequency. Its proof is similar to that in [23].

Theorem 7.3.2: Let P be the u.p.d.s. solution of the Riccati equation
AP+ PAT, —2PARALP = —Q (7.19)
where Q and R are arbitrary semi-p.d.s. and p.d.s. matrices respectively. Then if
” (Au - filzK> P“ <Imn(@)/2, K=RTAp"P (7.20)

the system in the sliding mode is asymptotically stable independent of delay.

Proof: Let P be the u.p.d.s. matrix solution of the Riccati equation (7.19). Adding and
subtracting iwP on the left-hand side of (7.19) gives

(—An + ApK +wl)*P + P(—An + ApK +iwl) = Q (7.21)
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and by pre- and post-multiplication by
(A — AK)T((—Aw + ApK +iwl)*)™!
and
(-—Au + A12K + iw[)~1(x‘i11 - AlzK)
yields
(A — ApK)T (mAn + Ak +iwl)") ™ P(A) — AK)
+(Ay — ApK)TP(—An + ApK + iwl) (A — AK)
= (An — ApK)T(—An + ApK +iwl)™'Q

(—An + AK +iwl) ™ (A} - ApK) (7.22)
So
(= A1 + Ak +iwl) (A1 ~ ApK)|PAmin(@) <
2||P(A11 — ApK)|llI(—An + AK +iwl) (A — ApK)||
< Amin(Q) [1(—An + AnK +iwl)™ (A - ApK))|
This complete the proof. O

7.3.2 A Criterion for Sliding System Stability

If the delay-independent criteria fail, then the stability of the sliding system should be
tested by delay-dependent criteria. In this case, some information regarding the delay is
necessary. However, when there is no information about the delay, for establishing the
time-delay system stability, the use of delay-independent criteria is a useful and powerful
method. Also, it is straightforward to check the stability condition. Now, the stability of
the sliding system (7.11) is studied. A suitable Lyapunov function is

Vit a0, 56— ) = OPa@ + [ C T (0)Qn(0)0

t—T1
where P is the p.d.s. solution of the Riccati equation (7.15). Let K = R™'AT, P, then
V = 27(t) {(An, — AK)TP + P(An — ApK)} 21(t)

+ Z’IT(t - T)(/in - A12K)TP21 (t)
+ le(t)P(/iu — ApK)z(t - 1) + 2] ()Qai(t) - 2 (t = T)Qz (t — 7)
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= - ()PALRT'ALPx(t) + 21 (t — 7)(An — AK) Pz (t) +
F)P(An — ApK)z(t — 1) — 20 (t — 7)Qz1 (t — 7)

[ oae ]

- [ z(t—1) }

PApR'ALP  -P(An - ApkK) z1(t)
<
If “A12“R—1 > ||/111 - A12K|IQ~1, i.e.

—(Ay — ApK)TP Q (t — 1)
(7.23)

A12R_1A’{2 — (1‘111 - Ang)Q_l(/iu - Ang)T >0

then the matrix

PARRIAT P —P(A) - ApK)
—(Ann — ApK)TP Q

is p.d. and V< 0; and the system is stable. Note that if

O’M(/in — Ang) <

then
AR AT, — (Ah — ApK)Q Y (A — AK) > 0

and the system is stable.

7.4 Global Stability of the System

If the ideal sliding mode occurs, the system (7.1) is converted to the reduced order system
(7.13). Otherwise, the states lie in a boundary layer of the sliding surface s = 0 and the
dynamical motion is no longer governed by a reduced order system, i.e. there is no finite
time instant such that after this time instant the states lie on the sliding surface. The
system is now given by (7.5). The stability of the sliding system with f = 0 is studied
in this section. Consider system (7.1) with control (7.4). Let ¢ > max R(A(A.,)) where
R(-) denotes the real part of complex number (-). Since one eigenvalue of A, is 0, € > 0.
Assume that h(s) = C (s] — (Aeg — €l ))~! B is strictly positive real. Then matrix Aeq—el

is stable and the Lyapunov equation

(Aeg = €)TP + P(Aeg — e) = -Q (7.24)
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where @ is an arbitrary p.d.s. matrix, has a u.p.d. solution P. Consider the Lyapunov

function .
V(t,z(t), z(t — 7)) = =7 (t) Pz(t) +/ zT (0) Rz(6)d6

t—T1
where P is the p.d.s. solution of the Lyapunov equation (7.24) and R is an arbitrary p.d.s.

matrix. For simplicity, consider R = rI where r is an arbitrary positive real number. Then

V = 2T(t)[(Aeg — €I)TP + P(Aeq — €I) + Rjz(t) +

T (t - T)A;Pz(t) + 2T (t)PAgz(t — 7) —

£ (t — T)Rz(t — 7) + 2exT (t) Px(t) -

(zT (t)PB + BT Px(t))p(t, z(t), T)sgn(Cz(t))
2T (t)(—Q + 2¢P + I + 17 PA, AT P)x(t) —

R T

T {x(t - 7)— r_lAZ;P:r(t)} {a:(t -7)— r_lfiZqu(t)}
—(zT(t)PB + BT Pz(t))p(t, z(t), 7)sgn(Cz(t)) (7.25)

Since BTP = aC for some a > 0. Then V <0if
~Q+2eP + 11+ 77 PA, AL P

is a negative definite matrix. So if

_)‘min(Q) + 26/\max(P) + T + T_IHPA6¢1||2 < 0

then V < 0. Assume that
)\min (Q)

S PAma(P)

and

Amin(Q) = 26/\max(P)
2

Then V < 0if r > ||Pfleq||. The stability of the system with a strictly positive real

r =

condition has been proved. However, the stability of the system without this condition
can be proved by choosing P = CTC and a Q matrix satisfying (7.24).

7.5 Example

Example 7.5.1: Consider the system

it) = [; :z}xw[‘; Of}z(t—ﬂwh[‘l’]uuw
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where ¢(t,z,7) is an external input signal with |g(¢,z,7)| < 1. Choose z(t) = ¢(1) =
[0, —1] for —7 < ¢ < 0. The u.p.d. solution of (7.15) is P = 2.4142. So K = —2.4142 and
C = [—2.4142 1]. Choose the control

u(t) = [ 24142 04142 | a(t) - | 2.4142 0.0343 | a(t — 7) — sgn (1)

where s(t) = Cz(t). The sliding surface is s = —2.4142x(t) + x5(t) = 0. Since the condi-
tion (7.9) is satisfied, the sliding mode occurs. The system in the sliding mode is given
by &, = x; — 2 — z1(t — 7) + 0.425(t — 7). Let R = Q = 1. The system in the sliding
mode is given by #; = —1.4142z; — 0.0343z,(t — 7). Since

” (Au — Apk) PH = 0.1268 < Amin(Q)/2 = 0.5

the system is stable independent of delay because Theorem 7.3.2 is satisfied. Simulation

results for 7 = 0.4 are shown in Fig. 7.1.

State variables Control input
0.5 2
x1
0
5 0
-o0.51/ X2
-1 -2
0 5 10 o} 5 10
t time
Sliding function Equivalent control
0.5 2
0
w g)- 0 _!\___f
-0.5
-1 -2
0 5 10 o} 5 10
time time
External disturbance Phase plane
0.5
0.5
0
= 0 B AP ABA AP A A N
-0.5
-0.5 -1
o 5 10 (o] 0.05 0.1 0.15
time x1

Figure 7.1: Responses of Example 7.5.1.

Example 7.5.2: Consider the system

_ 1% —10 (5 0 0.2 £ Lo 0
F(E) = [0 _Jz(tﬂ[o 1].(t )w{1
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where ¢(t,z,7) is an external input signal with |g(¢,z,7)| < 1. So the u.p.d. solution of

(7.15) is P = 2.4142. Consider the sliding surface and ¢ as in Example 7.5.1. Select the

discontinuous control
u(t) = [ 24142 04142 |w(®)+ [ 0 05172 | a(t — ) - sgn s(1

where s(t) = Cz(t). The condition (7.9) is satisfied, so the sliding mode occurs. The
system in the sliding mode is given by &) = x; — 13 + 0.225(t — 7). Let R = @Q = 1. The
system in the sliding mode is given by &; = —1.4142x; + 0.4828z(t — 7). On the other
hand “(Au - 121121\’) PH = 0.7464 > Anin(Q)/2 = 0.5. So the condition (7.20) is not
satisfied. But the system is stable independent of delay. Therefore the condition (7.20) is

only a sufficient condition. Simulation results for 7 = 0.4 are shown in Fig. 7.2.

State variables Control input
0.5 2
x1
0
> 0
_05 x2
—1 -2
0 5 10 0 5 10
time time
Sliding function Equivalent control
0.5 2
0
n § 0 J\
-0.5
-1 -2
0 5 10 0 5 10
time time
External disturbance Phase plane
0.5
0.5
M»WWM 3
= o] X
-0.5
-0.5 ]
0 5 10 0 0.1 0.2 0.3
time x1

Figure 7.2: Responses of Example 7.5.2
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7.6 Summary and Discussion

Time-delay systems appear in many practical problems. The sliding mode on a specified
surface is achieved if the state converges to the surface. Two kinds of sliding surface can
be designed: (i) when the sliding surface is independent of the delays; or (ii) the sliding
surface depends on the delays. In the second case the delays should be constant, otherwise
the sliding surface is not a simple hyperplane. In this chapter the stability of the sliding

mode control of a system with a delay on the state has been considered.

The delay is assumed known. If the delay is unknown, the problem then is how to
define the sliding control such that the state lies on a certain sliding surface. The extension
of the results of this chapter for systems with finite and varying delays is straightforward.
The results can also be extended to systems with delay in control and to the sliding mode

observer for time-delay systems. Further research may find a weaker condition than (7.20)

to ensure system stability independent of delay.



Chapter 8

Pole Assignment of Linear Systems and

Sliding Hyperplanes

8.1 Pole Assignment Techniques for Control and Sliding
Hyperplane Design

Pole assignment is applied not only to ensure system stability but is carried out also to
achieve other aims. The choice of the eigenvalues influences the stability and response of
the system. Therefore to get desired responses, it is required to locate poles in desired
positions. A popular method for designing the linear feedback gain matrix or the sliding
hyperplane requires the exact specification of the desired closed-loop eigenvalues. This
method is often too rigid a design requirement, since in many practical problems exact
eigenvalue specification may not be required. In general, a set of exact eigenvalues for
the closed-loop system may not be known, so it is useful to be able to specify a region of
the left-hand half-plane within which the eigenvalues should lie. The fundamental basis

of the design method is based on linear quadratic optimal control (LQ) methods, as well

as pole assignment methods.

A method has been studied for yielding closed-loop poles at desired locations which
is capable of shifting both real and imaginary parts to any location (Rousan and Sawan
[91]). Some work has been done on the placing of closed-loop eigenvalues within particular
regions by linear state feedback methods. Another technique is the placing of the eigenval-
ues within a hyperbola with major and minor axes at 45° to the z and y axes by employing

two connected Riccati equations (Kawasaki and Shimemura [64]). In this method the con-
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troller design is achieved by utilizing an iterative algorithm for finding the solutions of the
appropriate Riccati equations and then the feedback gain matrix. Some work has been
done on necessary and sufficient conditions for the eigenvalues of both real and complex
matrices to lie in a specified region (Gutman [49], Gutman and Vaisberg [51}). Root clus-
tering using Lyapunov type approaches is another way of designing a controller (Gutman
and Jury [50], Abdul Wahab [1], [2], Woodham [129], Woodham and Zinober [130], [131]).
More recently work has been published on the pole placement problem using H,, methods
(Saeki [96]). The problem of pole placement in a vertical strip has been studied by Shieh
at el [101] using LQ methods. Their method has some inaccuracies and errors which will
be corrected in Section 8.6. A recursive method using the LQ approach in order to shift
the open-loop poles inside a vertical strip has been considered by Arar et al [7]. The most

interesting regions are: a disc, a hyperbola, an infinite vertical strip and a sector in the

left-hand half-plane.

Most research work based on the Lyapunov approach has proposed sufficient condi-
tions to guarantee that all the eigenvalues of the system, with parameter uncertainty in
the state matrix of the system, lie inside the specified region (Juang [60], Jaung et al [61],
Abdul Wahab [1], [2] and Horng et al [58]. In their studies all the eigenvalues of the state
matrix A are assumed to be in the specified region. Then some conditions on a matrix
E are found to ensure that all the eigenvalues of A + E lie in the same region. These
methods differ from the methods for the case where there is no such information about
matrix A, or all the eigenvalues of A are not in the left-hand half plane. Some of these
approaches to obtain robust stability benefit from the matrix measure properties and an
appropriate Lyapunov equation (Juang [60]). Woodham [129] and Woodham and Zinober
[130], [131] have proposed a method for designing a feedback gain matrix and sliding hy-
perplane. They used a complex Riccati equation and found a feedback gain matrix such
that all the eigenvalues lie in the specified sector S bounded by a line at an angle 6 to
the imaginary axis and the reflection of this line in the real axis. Their method has some
limitations, i.e. it cannot be applied to all sectors. Their method fails even for 6 = 0,
but may work for a range of 6 for some systems. However, it is very difficult to specify
precisely such a range or type of system. The technique usually holds for sectors with an
angle to the imaginary axis 6 € (0,40°). This estimate of the range of § was obtained
by testing about 100000 random controllable canonical form linear systems. There is no
exact mathematical method available to predict this range. These inaccuracies arise from
(i): using the absolute value of elements of a conventional p.d. Hermitian matrix solution
of appropriate Riccati equation; (#1) applying some properties of real matrices which may

not be valid for complex matrices. In Section 8.4 some examples illustrate these results.
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R

Figure 8.1: S Sector

In this chapter the pole placement problem within a sector by using suitable Lyapunov
and Riccati equations, is first considered. Then errors in the statement and proof of
Theorem 1 in [101] are presented for an infinite vertical strip in the left-hand complex

plane. These inaccuracies will be corrected by proposing a modified theorem with new

conditions and proof.

In Section 8.2 the complex Lyapunov equation and the problem of system stability are
discussed; and in Section 8.2 and 8.3 the conditions for all the eigenvalues of A+ BF to lie
in a specified sector are presented. Some of these conditions are necessary and sufficient,
others only sufficient. However, these methods are new and work for all sectors. These

results are based on the solutions of appropriate Riccati equations.

The design of the feedback gain matrix or the sliding hyperplane by using the complex
Riccati equation is complicated as shown in Section 8.2. Straightforward methods are

proposed in Sections 8.5 and 8.6 and Tables 8.1-8.3 summarise the results.

In this chapter the control law is u = F'z, S is a sector with the vertex « and its edges
form angles of 8, 0 < 6 < /2, with the coordinate axes as in Fig. 8.1. When 6 = /2,

the region S is the null set. The matrix F' refers to the sliding mode gain matrix as stated

in Chapter 2.
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New methods of pole placement in the sector S
Tools Validity of | Section | Theorem
CARE 0<60<90° |82 Theorems 8.2.2 and 8.2.3
ARE,
Shifted and Rotation | 0 < # < 45° | 8.3
ARE with
zero right-hand side | 0 <8 <90° | 8.5 Proposition 8.5.1

Table 8.1: Pole placement methods for the eigenvalues to lie in the sector S

New methods of pole placement in a specified region

Region Restriction | Section
Hyperbola See page 172 | 8.5.2
Between two sectors | See page 171 | 8.5.1

Table 8.2: Pole placement methods for the eigenvalues to lie in the specified region

symmetric with respect to z-axis



Errors in the previous work

Method Pole placement Problem description Page Section
Shieh et al [101] in a vertical strip Errors and inaccuracies | 174 8.6

Restrictions 175 8.6
Woodham [129] in a vertical Solution of the ARE 187, 188

strip and a sector with zero right-hand side | 191 8.7.2-8.7.3

Error in using CARE 165 8.4
Woodham and Zinober [131] | Pole placement in a sector | Weighting matrices 163, 197 || 8.4

Their suggested feedback | 163-166 | 8.4

Table 8.3: Pole placement methods for the eigenvalues to lie in the specified region
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8.2 Pole Placement in a Sector using Complex Riccati

Equation

The Lyapunov equation is important for the proof of the stability of systems. A matrix is
stable if and only if the appropriate Lyapunov equation has a p.d.s. solution matrix. The
stability approach can be studied in a number of ways; for instance, (7) all the closed-loop
eigenvalues lying in the specified regions in the left-hand half-plane, (i¢) h-stability with
h > 0 means all the eigenvalues lie to the left of the line z = —h, (i4i) A g)-stability
(¢ < 0and 0 < 6 < m/2) denotes all the eigenvalues are in a symmetric sector with
respect to the real axis, with angle 6 with respect to the imaginary axis and with the
vertex « in the left-hand half-plane. One way to prove the .#4 g)-stability of a system is
that to show an appropriate generalized complex algebraic Riccati equation (CARE) has
a u.p.d. Hermitian solution. Another is to use a real algebraic Riccati equation (ARE)
with zero right-hand side. This problem is considered in Theorems 8.2.2 and 8.2.3 for the
complex case, and Proposition 8.5.1 for the real case. In thissection the complex Lyapunov

equation and the system stability are studied. A method for obtaining a solution of the

CARE and further discussion are presented in Chapter 9.

Lemma 8.2.1: If A € R"*" is a constant matriz then all the eigenvalues of A lie in the
region S (see Fig. 8.1) if and only if the matriz e (A — al) is stable.

Proof: If all the eigenvalues of A lie in the region S, then all the eigenvalues of e " (A—-al)
lie inside the left-hand half-plane. Conversely, if all the eigenvalues of e'“’(A —al) lie
inside the left complex plane, then all the eigenvalues of (e (4 — al)) = A — ol lie
within a sector with the origin as vertex and the edges parallel to the sector S. So all the

eigenvalues of A are located in the sector S. O

Remark 8.2.1: If A € C**" is a constant complex matrix and all the eigenvalues of 4

lie in the region S then e?(A — ) is a stable matrix but the converse is not always true

as in Example 8.2.1.

Example 8.2.1 (Counterexample) : Let

—0.5412 — 1.3066i 0 0
A= 0 —1.1945 — 1.0360i 0
0 0 0.1121 — 1.5772
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and o = 0 and § = 7/12. The eigenvalues of A are —0.5412 — 1.30667, —1.1945 — 1.03603,
0.1121 — 1.5772: and the argument of the eigenvalues of A are

—112.5000°, —139.0651°, —85.9349°

Assume A; = Ae™""/12 ie.

—0.8609 — 1.1220: 0 0
A= 0 —1.4219 — 0.6915: 0
0 0 —0.2999 — 1.5524¢

The eigenvalues of A, are —0.8609 — 1.12207, —1.4219 — 0.6915¢, —0.2999 — 1.5524¢ and

the argument of eigenvalues A, are

—127.5000°, —154.0651°, —100.9349°.

Therefore the eigenvalues of A lie in the right-hand half-plane but the eigenvalues of A,

are not in the sector. So Lemma 8.2.1 is not satisfied if 4 is a complex matrix.

To prove all the eigenvalues of a real matrix A lie in the sector S, one can study a 2n x 2n
conventional real matrix. The general case of this corresponding matrix will be discussed

in detail in Chapter 9. The following Lemma is equivalent to Lemma 8.2.1.

Lemma 8.2.2: If A € R*™ s a constant matriz, then all the eigenvalues of A lie in the
region S if and only if

(A—al)cos@ —(A - al)sinf
(A—al)sinf (A - al)cosf

A,=(A-al)® =

sin @ cos @

cosf) —sinf ]

is a stable matriz.

Proof: The eigenvalues of the matrix
cosf —sind
sin @ cosf
are eXi. For any eigenvalue A of A, A; = e** ) are the eigenvalues A, (see Appendix B).

So A is in sector S if and only if A, is in the left-hand half-plane. 0

Lemma 8.2.3: If A € C**" is a constant matriz, then all the eigenvalues of A lie in the

region S if and only if both the matrices e**(A — al) and e®(A — al) are stable.
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Proof: If e=®(A—al) and e*(A — o) are stable then all the eigenvalues of A are located
under the line L; and above of the line L,, respectively (See Fig. 8.1). 0

Theorem 8.2.1 (Lyapunov) [11]: Assume A € C**" is a matriz. The matriz A is stable
if and only if the Lyapunov equation

A*P+PA=-Q (8.1)

where Q is an arbitrary p.d. Hermitian matriz, has a u.p.d. Hermitian matriz solution

P.

Corollary 8.2.1: If A € R"*" is a constant matriz, then all the eigenvalues of A lie in

the region S if and only if the Lyapunov equation
e®(A—al)"P+e®P(A~al) = -Q (8.2)

where Q is an arbitrary p.d.s. matriz, has a unique p.d.s. Hermitian matriz solution P.

Proof: The proof follows from Theorem 8.2.1 and Lemma 8.2.1. 0

Remark 8.2.2: Note that if A € C**", according to Remark 8.2.1, when the Lyapunov
equation (8.2) has a u.p.d. Hermitian matrix solution, then e *(A—al) is a stable matrix
but all the eigenvalues of A may not be located in the region S. However, if e=*(A — o)
is a stable matrix, the arguments of all the eigenvalues of e=#(A — al) are less than
3m/2 — 26 and the real parts of all the eigenvalues of A are less than . Then all the

eigenvalues of e""®(A — al) are located in the region S. In fact the following corollary is

satisfied.
Corollary 8.2.2: If A € C*™™ is a constant matriz, all the eigenvalues of A lie in the
region S if and only if both Lyapunov equations

(A —al)*Py + Pre®(A—al) = —Q (8.3)
e (A - al)'P_+ P_e®(A—al) = -Q (8.4)

where Q is an arbitrary p.d. Hermitian matriz, have u.p.d. Hermitian matriz solutions.
Proof: By using Lemma 8.2.3 similarly as in Corollary 8.2.1 the proof is obtained. O

Note that when A € R™" Corollaries 8.2.1 and 8.2.2 are the same, because in this case,

when P, is the solution of equation (8.3) then P, is the solution of (8.4). So P_ = P,.
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Theorem 8.2.2: Assume F is a real feedback matriz such that u = Fz, then all the
eigenvalues of A+ BF lie in the region S if and only if the generalized Riccati equation

e?(A—al)TP +Pe (A~ al)+’(BF)TP + ¢ P(BF) = —Q  (8.5)

where Q is an arbitrary p.d.s. matriz, has a u.p.d. Hermitian matriz solution.

Proof: According to Corollary 8.2.1 all the eigenvalues of A + BF lie in the region S if
and only if

e*(A+ BF —al)"P + Pe™(4+ BF - al) = -Q (8.6)
has a u.p.d. Hermitian matrix solution P. Then (8.6) is readily obtained. Q

Note that for § = 7 /2, the Hermitian solution (8.5) is a skew-symmetric matrix which is
obviously not a p.d. matrix. Therefore, it is impossible to find a p.d. Hermitian solution
for (8.5). In fact, in this case S is the null set. When 6 tends to 7/2, the eigenvalues of
A+ BF are approximately real. If the matrix P is an Hermitian matrix, then P = P, +iP,

where P, is p.d.s. and P, is a skew-symmetric matrix. Then (8.5) implies

(cosf + isin8)(A — al)" (P +iP,) + (cosf — isin6) (P, +iP)(A — ol )+
(cos@ + isin 0)(BF)T (P, +iP,) + (cos@ — isin8) (P, + iP,)(BF) = —Q (8.7)

Then
(A — aI)T(cos 0P, —sinfP;) + (cosOP, +sinP;)(A — al) + (BF)T
(cos§P, — sinfP,) + (cos@P, + sin0P;)(BF) = —-Q (8.8)
and
(A — o) (sinP, + cos0P,) + (cos 0P, —sin6P,)(A — al) +
(BF)T(cos 6P, +sin0P;) + (cos 0P, —sinfP,)(BF) = 0 (8.9)

The gain matrix F can be found by using optimization methods similar to the method in
[8] such that both generalized real Riccati equations (8.8) and (8.9) are satisfied. Similarly
to the real case, i.e. as when 6 =0, let F' = —R-'BTP where R is an arbitrary p.d.s.

matrix and P is a p.d.s. matrix to be determined. Then

(A—- al)T(cosOP; — sinfP;) + (cos 6P, +sinfP;)(A — al) — PBR™'BT
x(cos P — sin@P,) — (cosOP, +sinfP,)BR™'BTP = —Q (8.10)
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and

(A —al)T(sinP; + cos §P;) + (cos P, — sin§P,)(A — o) — PBR™'BT
x (cos P, + sinfP;) — (sinfP; — cos6P,)BR'BTP =0 (8.11)

This analysis leads to the following theorem.

Theorem 8.2.3: All the eigenvalues of A+ BF with F = —R™'BTP lie in the sector S
if and only if the dual Riccati equations (8.10) and (8.11) have the p.d.s., skew symmetric
and p.d.s. solutions Py, P; and P, respectively. O

As already proved, equations (8.8) and (8.9) are immediately results of (8.5). So, to
test for a given real F, whether all the eigenvalues of the closed-loop A + BF lie in the
sector S, it is sufficient that (8.5) has a p.d. Hermitian solution P. Conversely, if all
the eigenvalues of A + BF lie in the sector S, F' and P must satisfy (8.6). On the other
hand, the p.d.s. matrix P; and the skew symmetric matrix P, are the solutions of the
dual ARE (8.8) and (8.9) if and only if P = P, + iP, is a solution of (8.5). So, all the
eigenvalues of A+ BF lie in the sector S if and only if the dual ARE (8.8) and (8.9) have
p.d.s. and skew symmetric matrices P, and P,. However, if the feedback gain matrix F
is in the form of the optimal gain, there is a p.d.s. matrix P such that F = —R-'BTP.
Theorem 8.2.3 implies that for a given p.d.s. matrix P, all the eigenvalues of A + BF
with F = —R~!BTP lie in the sector S if and only if (8.10) and (8.11) are satisfied by
p.d.s. and skew symmetric matrices P; and P,. Therefore, Theorems 8.2.2 and 8.2.3 do
not yield a direct way to find the solutions of these equations. These theorems give only

criteria for establishing whether for given real F' and p.d.s. matrices P, the eigenvalues

of A + BF lie in the sector S.

To obtain such a real F, a straightforward method is given in Proposition 8.5.1. Further
research is needed to find a method for obtaining the solutions of the dual ARE (8.10)
and (8.11). The following example illustrates the above results.

Example 8.2.2 [129]: Consider the system (2.4) with

1 100 0] [0 0]
0 -2 100 00
A=| o0 010|, B=|o 1
0 001 01
_0 000_ _10
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The orthogonal transformation matrix T (2.13) is

159

[ _1.0000 0 0 0 0
0 —0.7071 —0.5000  0.5000 0
T = 0 —0.7071  0.5000 —0.5000 0
0 0 0 0  —1.0000
0 0 —0.7071 —0.7071 0 |
Then the matrices A;; and A (2.16) are
—1.0000  0.7070  0.7070 0 0
Ay = 0 -0.8965 -1.1035 |, Ai2=] —0.5000 0.8535
0 -0.3965 —1.6035 0.5000 0.1465

Let Q = I3, « = —2 and 6 = 60°. Consider

[ 0.7390 -0.3200 3.8290
| 3.4859  3.2673 3.8277

The solution of the dual equations (8.10) and (8.11) are

5.7785  3.0104 —1.6647

P, =103 x 3.0104  1.5843 —0.8902

-1.6647 —0.8902  0.5135

0 —260.4701 377.9352

P= 260.4701 0 122.2723

—377.9352 —122.2723 0
In fact

5.7785 — 0.0000¢  3.0104 — 0.2605; —1.6647 + 0.3779;
P =10 x 3.0104 + 0.2605;  1.5843 — 0.0000; —0.8902 + 0.1223;

—1.6647 — 0.3779:  —0.8902 — 0.1223: 0.5135 — 0.0000:

is the u.p.d. Hermitian solution of (8.5). Therefore all the eigenvalues of A;; — Ao F are
in the sector S. The eigenvalues of A;; — A1 F' are —2.1148 £0.0542¢ and —4.6988. Note

that in this case, F = R"1AT,P where
9.6268 3.2694 4.7475

3.2694 3.3637 2.7058
4.7475 2.7058 10.3639

pP=

P is p.d.s. matrix which satisfies the dual equations (8.10) and (8.11).
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Remark 8.2.3: Note that when F is not a real matrix, Remark 8.2.2 implies that, if
all the eigenvalues of A + BF are in region S, the generalized Riccati equation (8.5) has
a u.p.d. Hermitian matrix solution but the converse is not true unless the argument of

all the eigenvalues of A+ BF — al are less than 37/2 — 260 and the real parts of all the

eigenvalues A+BF are less than a.

Remark 8.2.4: Suppose F' = —R BT P where R is an arbitrary p.d. Hermitian matrix
and P is the u.p.d. matrix solution of the generalized Riccati equation (8.5). Then (8.5)

is converted to
(4 — ol)TP + e ®P(A - al) —2cosPBR™'BTP = —Q (8.12)
and if consider R = f?,/ 2 cosf, then (8.12) is given by
¢?(A—al)TP+e*P(A-al)- PBRT'B"P=-Q (8.13)

When 6 = 0, the left-hand of (8.11) is zero, because in this case, P, = 0. So (8.11) is
converted to 0 = 0. Therefore, the equations (8.10) and (8.13) are the same and P=pP

is a p.d.s. real matrix. 0

When F is complex, the converse of Theorem 8.2.2 is not true. In this case for all the

eigenvalues of A + BF to lie in the sector 5, two generalized Riccati equations

¢?(A—al)*P, + Pre™®(A—ol) + ¢°(BF)'P, + ¢ P, (BF) = —Q (8.14)
e~9(A — ol)*P_ + P_e”(A - al) + e *(BF)*P_ + ¢’P_(BF) = -Q (8.15)

should have p.d. Hermitian solutions. O

It is clear that, when A+ BF is a real matrix, the equations (8.14) and (8.15) are equivalent
because if P; is the u.p.d. Hermitian matrix solution of (8.14), P, the complex conjugate
of P,, is the u.p.d. matrix solution of (8.15). Assume F' = —R"IBTP+ where R is a p.ds.

matrix and P, is the u.p.d. matrix solution of (8.14). Then
(A —al)*'P+eP(A—-al)— 2cos6PBR™'BTP = —Q. (8.16)
Assume R = R/2cos6. Then the equation (8.16) will be
¢?(A—al)*P+e“P(A—al) - PBRT'BTP = —Q (8.17)

If P is the u.p.d. Hermitian matrix solution of the Riccati equation (8.17), then all the

eigenvalues of A — BR'BTP may not be in the region S unless # = 0. This shows that
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for 6 # 0 the feedback gain matrix is not in the form of —R~*BTP or —R"!BT P where

P, the complex conjugate of P, is the solution of the equation

e ®(A—-al)*P+e¥P(A-al)- PBR'BTP = —Q (8.18)

Remark 8.2.5: The Riccati equation (8.17) is equivalent to

ATP+ PA—-PBR'BTP=-Q (8.19)
where
a1 (A—al)cosf§ —(A-al)sinb B P, -P,
(A —al)siné (A—al)cosf |’ P, P,
- 0 ~ B 0 -
Q = Q ) B = , = R 0
0 @ 0 B 0 R

The Riccati equation (8.19) has a u.p.d.s. real matrix solution P. The feedback gain
matrix is given by
R'BTp, —R1BTP,

=—-R'BT@P 8.20
R'BTP, RBTP (8.20)

F=-R'B"P=-

The feedback gain matrix (8.20) relates to the 2n x 2n system

£ = Ai+ Bi (8.21)

£
I

Q
81

But the original system is an n x n system. The problem is how can a feedback gain

matrix be obtained from the 2n x 2n feedback gain matrix for the n x n system. This

problem is discussed in Section 9.4.

8.3 Shifted and Rotation Method

For 8 < 45°, another method exists for designing a feedback gain matrix such that all the

eigenvalues lie in the sector S. Let P be the u.p.d. solution of the Riccati equation
ATP + PA- PBR'BTP=-Q (8.22)

All the eigenvalues of A — BR™!'BTP lie in the left-hand complex half-plane. Assume
the eigenvalues of A — BR'BTPare A, Ay, , Am, AL, AL A2, . .., Ay and the remaining
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A2m+1, Aam+2; - - - s An are real, where A stands for the complex conjugate of Ay, k =
1,...,m. Without loss of generality assume the eigenvalues A;, Ay, ... , Ay, have positive
imaginary parts, then (A1) + o, €?(X2) + o, ..., e®(An) + a, e7(X)) + o, e*(Xy) +
Q... e %Am) + @, domi1 + @, Aamyz + @, .., Ay +a lie in the region S if § < 45°. It is
desired to find the real feedback gain matrix such that the eigenvalues 7; of the closed-loop
system are 7; = €2(A)+o, m=e?(N) +a,..., nn =€ (An)+a, i = e (M) +q,
Mmsz = €0 (A2) + @)y s Tom = e (Am) + @), Tam+1 = dom1 + @, Tomaz = Aoman +

.. ,1n = Ap+a. To determine the feedback gain matrix K pole assignment methods can
now be applied. For instance, using the method in [79, page 43|, [11, page 268] gives the
appropriate feedback gain. The controller matrix K is decomposed as K = EM7 where

E and M are m- and n-vectors. The vector E is chosen such that the auxiliary single
input plant

t = Az + BFEu (8.23)
is completely controllable via @. This is possible whenever the system (2.4) is completely
controllable and the matrix A is cyclic, i.e. its characteristic polynomial is a minimal

polynomial. Assume the eigenvalues of AT are £,&,, ... ,&, with wy, ws, ... ,w, the cor-

responding eigenvectors. Let
k=n
M=} ftew (8.24)
k=1

where .
3ot (6 — )

- wy{ BE HEE (& — &)

So all the eigenvalues of A + BK are 7;,7s,...,7, and lie in the specified sector. The

k

following example illustrates the results of the Shifted and Rotation method 8.3 .

Example 8.3.1: Consider the system (2.4) with @ = -2, § =45°, Q = I and R = .
The u.p.d.s. solution of the ARE (8.22) with Ay, replacing A, and A, replacing B is

0.4919 0.1316  0.0853
P=101316 0.5564 -0.1901
0.0853 —0.1901 0.4458

The eigenvalues of A1 — AR AL P are —1.0771 £ 0.17215 and —2.0589. So

m = —2.8833 + 0.6399i, 7o = —2.8833 — 0.6399, 73 = —4.0589
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Using the pole assignment method the feedback gain is obtained as

o 4.3768 —1.0225 5.0192
5.5974  3.5255 2.0172

The eigenvalues of A;; — A1 F are 7y, 72, 73 which obviously lie in the sector.

8.4 Examples

Now the work of Woodham [129] and Woodham et al [131] is discussed and some errors
and inaccuracies in their method are shown. Their method is known to fail for some cases,
i.e. for @ less than 60° and also & = 0. Also it has been shown by Cao and Sun in [20]
that the Woodham et al [131] method does not work for all sectors. A counterexample
for the case § = 40° is presented [20] and it is shown that the weighting matrices in [131]

are not Hermitian matrices.

The following example shows that even if § = 0 and P is the u.p.d. Hermitian solution
of (8.13), all the eigenvalues of A;; — A1 R'AT, P may not lie in the sector S where P
is defined such that its elements are the absolute value of the elements of P. If p;; is the

(i, j)-th element of P, p;; = \/pijPi; is the (i, j)-th element of P.

Example 8.4.1: Consider the following example of a remotely piloted vehicle (RPV)
(Safonov et al [94]; Safonov and Chiang [95)).

[ —0.0257 -36.6170 -18.8970 —32.0900 3.2509 —0.7626
0.0001 —1.8997 0.9831 -0.0007 —0.1708 —0.0050
0.0123  11.7200 -2.6316 0.0009 -31.6040  22.3960

A= 0 0 1.0000 0 0 0
0 0 0 0 —30.0000 0
0 0 0 0 0 —30.0000
T
0 0
|0 0
0 0
30 0
0 30
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Then the orthogonal matrix (2.13) is given by
[ _1 0 ]

00 0 O
0 01 0 0
0 10 0 O
T =
0 -1 00 0 0
0 000 -1 0
0 000 0 —1
and from (2.16)
© _0.0257 32.0900 18.8970 —36.6170 ] [ 3.2509 —0.7626 |
0 0 1.0000 0 0 0
A11= 3 A12=
—~0.0123 0.0009 —2.6316 —11.7200 31.6040 —22.3960
0.0001 0.0007 —0.9831 —1.8997 | | -0.1708  —0.0050 |

Assume R = L, Q = I;, @ = —2.1896, § = 0. The u.p.d.s of the Riccati equation (8.13)
is
0.2633 —8.3023 —0.0082 —5.0598
—8.3023 381.9231 1.4851 226.8472
—0.0082 1.4851 0.0406 0.7875
| —5.0598 226.8472 0.7875 136.8960 |

Assume

F, = R'ALP
then
[ 0.2633 8.3023 0.0082 5.0598 |
8.3023 381.9231 1.4851 226.8472
0.0082 1.4851 0.0406 0.7875
| 5.0598 226.8472 0.7875 136.8960 |

S
il

and therefore
_ 0.2494  35.1795 1.1740 17.9540
YTl —0.4087 —40.7259 —0.9186 —22.1792

The eigenvalues A —ApFy are —27.7918+19.77331, —4.8295, 0.0119. Since 0.0119 is not
in the left-hand half-plane, the Woodham et al [131] method fails for # = 0. However, it is
very difficult to specify a value of # for which their method works. Since F, = R™1AL P,

_ | 14624 —18.8002  1.1210 -14.9435
27 | 0.0072 -28.0633 —0.9062 —14.4620
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the eigenvalues A;1 — Ay F are —33.8104, —25.3151, —4.8263, —3.7015 which lie within
the specified region.
Woodham et al [131] claimed that their method works for § < 60°. But the following

example shows that this statement is not always true, i.e. for a real feedback matrix all

the eigenvalues may not be located in the sector S for some 6 < 60°.

Example 8.4.2: Consider A;; and A, as in Example 8.4.1. Assume o = -5.8898,
§ =50°, Q=1I;, R=1I, Then the u.p.d. Hermitian matrix solution of the Riccati

equation (8.13) is

[ 0.61 —18.44 —1.500 —-0.07-0.04: -9.07 - 0.31%
—18.44 + 1.50z 856.01 3.58 503.09 + 10.48:
F= —0.07 + 0.04: 3.58 0.05 1.85 + 0.14:
| —9.07+0.312 503.09 — 10.48: 1.85 —-0.14 329.86

The eigenvalues of Ay — AxFy are —43.1168 + 59.7971i, —5.1977, —1.4200, where
F = R—lA};I?’. Obviously, one of eigenvalues —1.42 is not in the sector S. Let F; =
R!AT,P. The eigenvalues of Ay; — Ao F; are —57.8464+17.0566¢, —5.8683 — 15.46344,
—5.8987 — 1.5450i, —7.3276 — 0.0481:. So all the eigenvalues of A;; — AR TALTP
are not in the sector S. This example shows that even if the Hermitian matrix solu-
tion of the CARE (8.13) is utilized to design a complex feedback, all the eigenvalues of
A, — ARt AL, P may not lie in the sector S.

For a = —9.1032, 0 =40°, Q = I, R = I, the u.p.d. Hermitian matrix solution of the
Riccati equation (8.13) is

[ 1.6 -368—-31 —0.1-0.17 —10.9+0.4s
p —36.8 + 3.1 1656.2 6.8+0.1i  958.4 + 25.8i
| -01+0.1¢ 6.8 —0.1i 0.1 3.5+ 0.7
| -109-04i 958.4—258; 35— 0.7 725.5
Therefore

8.6378  171.1769  2.2386  24.1044
—4.9753 —185.2597 -—1.7824 —-91.6911

The eigenvalues of Ay — A12Fy are —66.0690 & 97.6081i, —2.3101, —8.9935. Hence two
eigenvalues of the closed-loop matrix A1 — A Fi are not in the sector S. On the other

F=R'ALP = [

hand
F, = RT'ALP
2.83 + 2.87: —68.33 — 8.761 1.27 - 0.17: —49.00 + 23.00:
1.80 —1.997 -129.05+4.68: —1.55+0.07¢ —73.53 — 15.741 ]
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and the eigenvalues of A;; — AppFy are —63.7920 + 21.0003:, —8.5553 — 16.98933,
—9.9447 — 3.9711:, —13.6067 — 0.0398:. Clearly, the eigenvalue —8.5553 — 16.9893: of

A;; — ApF, is not in the specified sector, i.e. in this case the complex feedback F; also

does not work.

Now let us alter a. Suppose & = —2.6614, § = 40° and P is the u.p.d. Hermitian matrix
solution of the Riccati equation (8.13)

0.27 —8.31-0.37 —0.02—-0.02 —4.95—0.04 ]
P —8.31+0.37: 384.90 1.59 + 0.04: 227.62 — 0.241
—0.02 4+ 0.02: 1.59 — 0.042 0.04 0.83 — 0.03:
| —4.95+0.04¢ 227.62 + 0.24¢ 0.83 4+ 0.03: 137.91

The eigenvalues of A;; — A12R‘1A1T215 are —31.1910 + 29.34261¢, —4.7796, —0.6119. Ob-
viously, —0.6119 is not in the sector S.

These examples establish that the Woodham et al [131] method for pole placement in
a specified sector fails for certain values of o and 6. The interval of values 6 for which
their method works, is unknown and the above examples are counterexamples. The main
reason for the failure is that if the u.p.d. Hermitian matrix solution P of the ARE (8.13)
is used, all the eigenvalues of the associated closed-loop system may not be inside the

sector S as stated in Remarks 8.2.2 and 8.2.3.

8.5 Eigenvalue Assignment Method by using Real ARE

As stated, the pole placement method utilizing the complez Riccati equation is complic-
ated. Most effort has been focused on the real case. In this section a method is proposed
to construct a feedback gain matrix such that all the eigenvalues of the closed-loop system

lie in the specified sector. First three lemmas are stated which are used in the proof of a

proposition and theorem.

Definition 8.5.1 Let P, and P, be two matrices. P; is said to be greater than P,

P, > P, if and only if P — P, is a semi-p.d. matrix. P, is the mazimum solution of an

ARE if, for any solution P, Py = P,.

The so-called mirror-image shift lemma (Molinari [85]) is now stated. This lemma presents

the basic idea about the solution of the Riccati equation with zero right-hand side.
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Lemma 8.5.1 [64], [101]: Let A; (1 < i < n) be the eigenvalues of A, and P the

mazimum solution of the algebraic Riccati equation
ATP+ PA-PBR'BTP =0 (8.25)
Assume s; (1 < i < n) are the eigenvalues of A— BR™'BTP. Then

o4 N if R(A\) <0
' Y if R(\)>0

The maximum solution P of (8.25) is a semi-p.d.s. matrix because a solution of (8.25)
is P, = 0 and if P,, is the maximum solution of (8.25), then P, — Py = P,, > 0. The
following lemma shows the relationship between the Riccati equation (8.25) and a certain

Lyapunov equation. Note that A is a completely unstable matrix if —A4 is a stable matrix.

Lemma 8.5.2: Assume A is a completely unstable matriz, (A, B) is a completely con-
trollable pair and m x m matriz R is an arbiirary p.d.s. matriz solution. Then P is a

nonsingular solution of ARE (8.25) if and only if S = P~ is the solution of the Lyapunov
equation
S(—A)T + (-A4)S=~-BR'BT (8.26)

Moreover, if P is a p.d.s. matriz, so is S.
Proof: Since (4, B) is controllable, (4, BR~1%) is controllable (Anderson and Moore [6]).
Assume P is the solution of ARE (8.25) so

AP +PA=PBR'B'P
Pre- and post-multiplying by P~

P'AT + AP =BR'BT

So § = P! is the solution of (8.26). Moreover, S is symmetric if and only if P is
symmetric, and S is p.d. if and only if P is p.d.. 0

Fact 8.5.1: Equation (8.25) has no p.d. solution unless A is a completely unstable
matrix (see Theorem A.1.1). This is now proved in detail. Since (A, B) is a completely

controllable pair, if A is a stable matrix, the Lyapunov equation

SAT + AS= -BR™'BT (8.27)
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has a u.p.d.s. solution S [47], [127]. Hence —S~! is the solution of (8.25) which is negative
definite. On the other hand, if P is a p.d.s. solution of (8.25) then —P~! is a solution of
(8.27), which yields —A stable. This contradicts the stability of A. Therefore when A is
stable, (8.25) has no nonzero semi-p.d.s. and the maximum solution is the trivial solution
P = 0. Except for this case, the maximum solution of (8.25) is a nonzero matrix. In

particular, if A is a completely unstable matrix, the Riccati equation (8.25) has a p.d.s.

solution matrix.

Now the solution of the Riccati equation (8.25) is studied. Let A, A;,..., A _ be the
eigenvalues of A which are in the left-hand half-plane and {7, &;,...,£ - be the corres-

ponding eigenvectors. The maximum solution of (8.25) satisfies
N (P)=span{¢&, &,... & }

where #(P) and span {51—, &2 €0 } denote the null space of P and the linear
subspace spanned by vectors &7, & ... ,&,_ [64]. Therefore the nullity of P is n=. On
the other hand, the dimension of range P (rank P) plus the nullity of P equals n, the
dimension of the space. Therefore the dimension of range P is n — n~ = n*. Hence n~
eigenvalues of P are zero and the remaining nt eigenvalues lie in the right-hand half-plane.
Moreover, if A has no eigenvalues in the right-hand half-plane, the range of P is zero, i.e.
in this case P = 0. If A has no eigenvalues in the left-hand half-plane, the dimension of

the range of P is n. So P is the p.d.s. solution of the Riccati equation (8.25).

The following lemma allocates the eigenvalues of the shifted closed-loop matrix A — BK.

Lemma 8.5.3: Let A; (1 < i < n) be the eigenvalues of A, o a nonnegative real number
and P the mazimum solution of the ARE

(AT + a)P+ P(A+al) - PBRT'BTP =0 (8.28)
Assume s; (1 < i< n) are the eigenvalues of A— BR™'BTP. Then

aol ™ it R(\) < —a
| —20- if R(\) > —a

Proof: Let A = A+al and \; (1 < i < n) be the eigenvalues of A. Assume 3; (1€ign)
are the eigenvalues of A — BR'BTP, then Lemma 8.5.1 gives

(8.29)
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Substituting §; = s; + o and Xi = X + a in (8.29) gives

s = A if R(\) < -a
-\ —2a if R(N) > -a

Proposition 8.5.1: Assume ); (1 < @ < n) are the eigenvalues of A which are not

necessary distinct, and S is a sector with vertez at nonpositive real o and the angle with
the imaginary azis 8 (see Fig.8.1 ). Suppose

n = tanf max | ()] (8.30)
and P is the mazimum solution of ARE

(AT = (@ —n))P+ P(A— (a~n)I) - PBRT'B"P =0 (8.31)

Then all the eigenvalues of A~ BR™ BT P are in the sector S if R(\;) #a—n (1 < i< n).
If there is a \; such that R(\;) = a —n, P is the p.d.s. solution of ARE

(AT — (@ —e—n))P+ P(A— (@ —e—n)[) - PBRT'BTP=0  (8.32)

where € is small positive real number such that for all i, A\; # o —n—e.

Proof: Using Lemma 8.5.3 the eigenvalues of A — BR'BTP s, (1< i< n)are

&z{xi if RA)<-(n—a)
-2(n—a) = A if R(\)>-(n-0)

Assume R();) < —(n— @) then R(A;) < a—F(\;)tand, ie. A = R(N) +43(X) is inside

the sector with boundary lines

Li: z = a-ytanf

Ly: z = a+ytand

as shown in Fig.8.1. Suppose #(};) > —(n — ) then

R(s:) = —2(n—a)—R(N)
< 2n-a)+(n—a)
< a—n7n

Since
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therefore
R(s;) < a—3(s;)tand

i.e. s; lies in the sector S. If there is an ¢ such that ®(\;) = —(n — a), A; is a point on the
boundary of the sector. Let € be a real positive number such that for all i, ; # a—n—e¢,
and P be the p.d.s. solution of ARE (8.32). Converting o to a — € in the proof of the
first part of the proposition, the desired result is obtained. 0

Note that when all the eigenvalues of A are real, n = 0 and for all values of 6 the solution

P of ARE is invariant. Therefore in this case the closed-loop eigenvalues are also invariant

for all values of 6.

It is possible to find various feedback gain matrices such that all the eigenvalues of the
closed-loop system lie in the sector S. Here a method is presented which enables one
to find feedback gain matrices such that all the closed-loop eigenvalues lie within the
sector without any restriction on placement in the sector. This method can be applied as
an iterative method. Horng et al [58] presented conditions for all the eigenvalues of the
summation of two matrices A and G, i.e. matrix A + G, to lie in a specified region when

all the eigenvalues of matrix A are inside that region. Now a similar method is applied

and a new feedback gain is found.

Let F = —BR'BTP where P is the maximum solution of the ARE (8.31). According
to Proposition 8.5.1 all the eigenvalues of A+ BF are in the sector.

Assume A = A + BF and consider the new system
& = Az + Bu (8.33)
The control law is u = Fz. Since all the eigenvalues of A are in the sector S, then the
Lyapunov equation
e’(A~al)P+e“P(A-al) = ~Q (8.34)
where @ is an arbitrary p.d.s. matrix, has the u.p.d. Hermitian matrix solution P. Then
if
e (A - al) P+ e P(A—al) + e *(BF)TP + ¢ B(BF) < 0 (8.35)
all the eigenvalues of A + BF lie in the region S. Using (8.34) in (8.35) yields

—Q +e*(BF)TP + ¢“P(BF) <0 (8.36)
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A sufficient condition for (8.36) to hold is that

om(e®(BF)TP + e® P(BF)) < 0,(Q) (8.37)
Let I = —R-!BTP where P is a real p.d.s. matrix. Now

om(e"®PBR'BTP + ¢ PBR™'BTP)

< om(e ®PBR™'BTP) + o) (e PBR™'BT P)
< om(P)oy(BR'BTP) + op(PBR™'BT)op(P)
< 20(P)om(BR™'BTP) (8.38)

From (8.37) and (8.38) one can imply if
20(PBR™'BT)o ) (P) < 0m(Q) (8.39)

then (8.37) is satisfied. But (8.39) can be replaced by

» om(Q)
om(P) < o PBRBT) (8.40)

The closed-loop matrix is

A+BF = A+BF+BF
= A-BR'BTP-R'BTP
= A-BR'BY(P+P)
(8.41)

To find P, noting (8.40) consider an n x n arbitrary nonsingular matrix E and P =
(d./om?(E)) EET where d, is a positive real number such that d, < c,. Therefore, for

any arbitrary nonsingular matrix E, a matrix P is obtained which gives a new feedback
gain matrix F=-R'BT(P+P).

8.5.1 Extension Technique for a Region Bounded by Two Sectors

A technique for placing all the closed-loop poles in a region bounded by the intersection
of two sectors, will now be considered. Suppose the first sector S has boundary lines
crossing the real axis at « in the left-hand half-plane and with angle to the imaginary
axis 6. The second sector S, has boundary lines crossing the real axis at 3 in the left-
hand half-plane and with angle to the imaginary axis ¢. Consider a new sector S; with

vertex 7 = min {e, B} and the angle with the imaginary axis 6 = max {¢, 0} (see Fig.
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20

Figure 8.2: S3 Sector

8.2). By applying Proposition 8.5.1, the gain feedback F' can be found such that
all the eigenvalues of A + BF lie within the sector S;. It is clear in this case that all
the eigenvalues of A + BF lie in the intersection of the two sectors S and Sy. The only
restriction of this method is that the eigenvalues of A+ BF cannot lie in the small common

region of two sectors S; and S5, and outside the sector Ss.

8.5.2 Pole Placement in a Hyperbola

The extension of the technique for placing all the closed-loop system eigenvalues within
a hyperbola in the left-hand half-plane is now considered. The pole placement within the
hyperbola with asymptotic lines y = £z has been considered by Kawasaki and Shimemura
[64]. They obtained two associated Riccati equations with conventional weighting matrices

and an iterative computational algorithm.

A new method is presented which guarantees that all the closed-loop eigenvalues lie in a
hyperbola. Consider the hyperbola
(RO) +0)* _ (S())?

a? b2

=l (8.42)

Let S be a sector with boundary lines crossing f = o — a on the real axis and parallel to
the asymptotic lines of the hyperbola, i.e. the boundary lines of the sector are

RO+ %E)A)

=L (8.43)

Obviously, when all the eigenvalues of the closed-loop system are in sector S, they also lie

inside the hyperbola. The only restriction of this method is that the eigenvalues cannot
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lie in the region between the sector and the hyperbola.

8.6 Eigenvalue Assignment Methods in a Vertical Strip

8.6.1 Introduction

Shieh et al [101] presented a computational method for finding the feedback control of the
linear quadratic regulator so that all the eigenvalues of the closed-loop system lie in an
open vertical strip. Some of the conditions of their Theorem 1 are incorrect and also their
proof has some inaccuracies. In this section these errors are corrected and the modified

theorem with a new conventional proof is proved. Illustrative examples are presented in
Section 8.7.

R(-) and S(-) indicate the real and imaginary parts of complex number (-), and Tr(-) the

trace of matrix (-). To avoid any misunderstanding the notation below is the same as in

paper [101], i.e. the system is given by

z = Az + Bu (8.44)

where A and B are n x n and n X m real matrices respectively, and (A, B) is a completely
controllable pair. Let h; and hy be two nonnegative real numbers. The closed vertical
strip is specified by the closed interval [—h2, —hy] with hy > hy and the open vertical
strip is given by (—ha, —hy) with hy > hy. Assume A}, Ay,..., A _ are the eigenvalues
of A which are in the closed left-hand half-plane, and A, A},..., A}, are the open
right-hand half-plane eigenvalues of A. The shifted system matrix is A = A + hyJ,,. Let
S D T , A5 be the closed left-hand half-plane eigenvalues of A and M, A},. . 0%
be the open right-hand half-plane eigenvalues of A. The feedback control is u = —r Kz
where 7 is a real number and K is an m x n matrix to be defined later. Let P be the

maximum solution [64] of the Riccati equation, their (6¢),
PBR'B'P-A"TP-PA=0

where R is an arbitrary positive definite symmetric matrix. Then the eigenvalues of the

closed-loop system
i = (A —rBK)z, r>05

~

where K = R7!BTP, are ) P SR S VI PO , A+ The A; (1 < i < A% ) with
g{(j‘i) = —&; < 0 are the newly placed left-hand open half-plane eigenvalues in the shifted

coordinates [101].
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Now the errors in [101] are stated. These errors, inaccuracies and restrictions are divided

into two parts as follows:

Error and inaccuracies in their theory:
1. Error in the proof of their Theorem 1 [101]: The main part of Theorem 1 gives

conditions for the eigenvalues of closed-loop system to lie in the open vertical strip
(—hg, —hy). In their proof Shieh et al obtained the result, their (94),

At
Z 5(1 - h2 - h1
i=1

and stated that “Since each @; is a positive real value and

At

S G=hy—h >0
1=1

-

therefore, each &; < hy — hy, and the newly placed eigenvalues of (A — rBK) for
r > 0.5 lie inside the vertical strip, {—(hy — h;), 0} in the shifted coordinates.”

This is wrong because if A has only one eigenvalue in the right-hand half-plane, i.e.

At =1, then

and their (9h) gives
g =hy—h
which contradicts &; < hg — hy implied in the first paragraph after (9h) in their

paper, i.e. in this case hs — hy < hy — hy which is wrong.

9. Their Riccati equation (6¢) has no p.d.s. matrix solution unless the matrix —Ais
a stable matrix, i.e. all the eigenvalues of A lie to the right of the vertical line —h,.

This has been proved in Section (8.5).

3. The conditions hy > max |R(A7)| + 1 and max R(A7) # 0 are necessary conditions
for all the invariant eigenvalues to lie in the open vertical strip while the condition
h, > max |§R(;\i‘ )| + h1 is only a necessary condition for all the invariant eigenvalues
to lie in the closed vertical strip. Condition max 9?(5\1‘) # 0 ensures that for all
1isn, R(A;) # 0, i.e. the matrix A has no eigenvalue on the vertical line
z = —hi. If hy < max m(j‘i_ )| + h1, A has an eigenvalue to the left of the vertical
line —he. The eigenvalue of A with the real part —max |R(A;)| satisfies this
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condition. Thus the matrix A has an eigenvalue which is an invariant eigenvalue of
A —r Bk and is not in the vertical strip. So without these conditions it is impossible
for the invariant eigenvalues of closed-loop matrix A — rBK to lie in the desired

vertical strip. These conditions are required for the theorem to be satisfied.

4. If A7 satisfies R(\;) = —hy, all the conditions are satisfied, but A;" is not in the

specified open vertical strip (—hs, —h;). Moreover, the condition

1 hp—hy
r = —‘+—.+‘—‘,:""
A} Sy

is not always true. For example when A has just one eigenvalue in the right-hand
half-plane, their (9h) yields —(hz — h,) as the real part of the eigenvalue of A-rBK
which is not in the open infinite vertical strip (—(h2 — h,),0), i.e. the real part of

one eigenvalue of A—rBK is —hy which is not in the open vertical strip (—hg, —h1).
Restrictions in [101]: There are some restrictions in their Theorem 1 [101]:

(i) When r = 1/2 then hy = hy and vice versa. So if hy # hy, 7 cannot take the value
1/2. Thus when r =1 /2 all the eigenvalues of A — rBk should lie in the vertical
line h; = ho. This excludes a large class of matrices A with eigenvalues to the left

of the vertical line z = —h, when there is no choice in selecting hy except hy = h;.

(17) Also by choosing h; > 0, the dominant eigenvalues of A — rBk cannot lie in the
vertical strip (—hi,0). Even when h; is a small positive real number, this selec-
tion of h; is such that the eigenvalues of A — rBk cannot lie sufficiently near the
imaginary axis, i.e. inside the vertical strip (—=h1,0). Note that choosing h; = 0
gives r = %(1 + hy/ Z:’; A7) which differs from [101] and the matrix A — rBK is
different.

These inaccuracies are illustrated by an example.
Example 8.6.1 (Counterexample): Consider the system (8.44) with

o] ==l

The eigenvalues of A are 1 and —2.5. First choose by = 1 and hy = 3. So A= A+ h I,
with a7 =1, Af = 2. Then Z:‘; Af =2 and r = 1. The Riccati equation (6¢) has four

symmetric solutions

0 0 1 2 49 14
:0, P-: 3 P= , P:
Py ' [0 —3} ’ [21] : {14 4]
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Since the eigenvalues of Py — P, are 51 and 0, P3 — P, > 0. Also P; — P, > 0 because
the eigenvalues of P; — P; are 53.2389 and 2.7611. Hence the maximum solution of the
Riccati equation (6¢) is P3. Matrix P3 is semi-positive definite symmetric because the
eigenvalues of P; are 53 and 0. Therefore the Riccati equation (6c) may not generally
have positive definite symmetric solution. Only when all the eigenvalues of A are in the
right-hand half-plane, does the Riccati equation (6¢) have a p.d.s. matrix solution. Except
for this case, the solution is semi-positive definite symmetric. Hence K = [14 4] and the
eigenvalues of A—BK are —2 and —1.5. So, the eigenvalues of A—rBK are —3 and —2.5.
Here hy — hy = 2 = &, so according to the proof of Theorem 1 in {101}, & < hy — Ay, i.e.
9 = hy—hy < hy—hy = 2, which not true. Moreover, for h; < 2.5 = max |§R(:\,-_)|+h1, -3
is not inside the vertical strip [—hg, —h;]. Therefore the condition hy > max |§R(;\j)| +hy

is a necessary condition for A to have an eigenvalue to the left line of the vertical line
I = '—hl.
Note that ¥ (P;) has one element & = [—0.2747 0.9615]T which is the eigenvector

corresponding to the eigenvalue —1.5 of A and the range of A has one element because

rank P; = 1. As already stated, one eigenvalue of P is zero.
Next consider h; = 2.5 and hy = 3.

ha > max {|R(A)|} = max {1,| — 2.5]} = 2.5

All the conditions of their Theorem 1 are satisfied, but —2.5, which is an eigenvalue of
A — rBK with r = 0.5713, is not inside the open vertical strip (—3,-2.5). Matrix
A should have no eigenvalues on the vertical line z = —h,. Moreover, for h; # hy, r
could take values greater than or equal to 1/2. Particularly, taking r = 1/2 yields all the
eigenvalues of A — 7Bk in the closed vertical strip [k, —hy] which is not obtained from
the method in [101]. Take h; =1 and hy = 3, then with the method in [101] r cannot be
1/2. However, for r = 1/2 the eigenvalues of A —rBK are —2.5 and 0, i.e. in the vertical

strip [—ha, —h1) = [=3, —1] with hy # hy.

Now consider hy = 0, hy = 3; then r = 2 and the maximum solution of their Riccati

24.
P 3 7
7 2

h eigenvalues 26.5 and 0. The eigenvalues of A — rBK are —2.5, —3 in the vertical

equation (6¢c) is

wit
strip [-3,0]. This result is not obtained from the method stated in [101].
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Summary:

Hence, for the eigenvalues of A — rBK to lie in the open vertical strip (—hy, —h;), the
correct necessary conditions should be
hy > max{|§R(;\,_)|} + h; = —min {§R(;\l‘)} + hy
hi #R(\]), foralli=1,2,... ,n"

and
2 2 2 Zz-—l 1
For the eigenvalues of the closed-loop system to lie in the closed vertical strip, the correct

conditions are

hy > max {|§R(x;)|} + hy = —min {?R(f\,-‘)} +hy

and 1
<r<s+—2——L ha — hl
2 Zz 1 z

Note that when 7 varies from 1 to % (1 + (ha — hy)/ Ez LA} ) some of the eigenvalues
of A — rBK can move from one place to another location in the open vertical strip. So,

[N

if the accumulation of the dominant eigenvalues near the vertical line —h; is required, r

should be chosen sufficiently near 1/2; and if they should be near the vertical line —h,, r

should be selected sufficiently near

l hz - h1
2 221—1 i
The choice
r=l (2 hy — h1 )
4 21_1 1

guarantees the dominant eigenvalues to be concentrated towards the the centre of the

vertical strip, i.e. near the vertical line z = —(hy + h1)/2.

Now Theorem 1 in [101] is modified such that with a new conventional proof, the above
obstacles in the statement, proof and restrictions are removed. This proof is completely
different from that of Shieh et al. Note that the theorem gives only a sufficient range for

variation of r, i.e. there may be a value of r, for which the eigenvalues of A — rBK lie in

the vertical strip, greater than 3 (1 + (hy — hy)/ Z:z; ;\f)

Theorem 8.6.1: Let b and hy be nonnegative real numbers with hy > h;, A € R**"
and A = A+ hl, Assume Ay, A7,--+ A - are the eigenvalues of A which are in
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the closed left-hand half-plane and X, A},...,AY, are the open right-hand half-plane
eigenvalues of A. Let ;\1_, ;\2', ey ;\T.:_ be the closed left-hand half-plane eigenvalues offi
and 5\1", 5\2+, e ,;\7.’:+ be the open right-hand half-plane eigenvalues of A and

gl fe=h
2 XN

Let P be the mazimum solution of the algebraic Riccati equation
ATP+ PA- PBR'BTP =0 (8.45)

where R is an arbitrary positive definite symmetric matriz. Suppose r is an arbitrary real
number. The intervals [—ha, —hi] with hy > hy and (—hy, —hy) with hy > hy specify the

closed and open vertical strip, respectively. Then

(2) if E:‘_:l AP # 0, the eigenvalues of A — rBK are inside

~

(a) the open vertical strip (—hg, —hy) if 1/2 <r <75, max {§R( z‘)} #0 and
hy > max{|§R(5\i‘)|} +h = —min{?R(S\i‘)} +hy
(b) the closed vertical strip [—ha, —hi] if 1/2 < r < n and

hy > max {|RO))|} + by = —min {ROD)} + by

(1) of Z:‘; M =0, the eigenvalues of A — rBK lie in
(a) the open vertical strip (—hg, —hy) 1f,
ha > max {|RG7)(} + b = —min {R(D)} + b
and max {%(5\:)} #0.
(b) the closed vertical strip [—ha, —hi] if

hy > max {m(x;n} + hy = —min {é}?(f\{)} +hy

In Case (ii) the mazimum solution of (8.25) is P = 0 and all the eigenvalues of

A — rBK are the same as the eigenvalues of A.
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Proof: Using Lemma 8.5.1 the spectrum of A — BK is given by

o(A - BK) = {,‘\;, ORI Vol S S ,—J\;}
Therefore
A= At
Te(A- BK) =) A -3 Af (8.46)

On the other hand

Tr(A — BK) = Tr(A) - Tr(BK)

= Y A +Y N -Tx(BK) (8.47)
i=1 =1
From (8.46) and (8.47)
At
Tr(BK)=2) A} (8.48)
i=1

as in [101]. Using (8.48)

A~ At
T(A-rBK) = Y A\ +Y A —rIx(BK)
i=1 i=1

n- At At
= DN+ N-22) N
1=1 =1 i=1
A” it
= Y A -@-1)) ¥ (8.49)
Since {5\1“, Ay, ,:\;_} is an invariant set for all 7 > 1, therefore —(2r — 1) E:':l Af is

the summation of the remaining eigenvalues of A-rBK corresponding to
{—,\{’, A -A;+}

A sufficient condition for the eigenvalues of A—rBK to lie in the closed (open) left-hand
half-plane is that 2r —1 > 0 (2r-1>0).

1. Assume E:’; AP #£0.
(4) If hy > max {I%(j\[)l} + hy and max R();) # 0 are satisfied and

At
0<@r—1)) M <h—h (8.50)

i=1



Chapter 8. Pole Assignment of Linear Systems 180

then all the eigenvalues of A—rBK arein the open vertical strip (—(hy — h;), 0),
and the eigenvalues of A—rBK are in the open vertical strip (—h;, —h;). Equa-
tion (8.50) is equivalent to 1/2 <r <.

(¢¢) If ho > max {I?R(){)I} + h, is satisfied and

At
0<@r—1)> A <ha— (8.51)
i=1

then all the eigenvalues of A—rBK are in the closed vertical strip [—(hg—h4), 0].
Thus the eigenvalues of A — rBK are in the closed vertical strip [—hg, —h).
Equation (8.51) is true if and only if 1/2 < 7 < 7.

2. If ¥ A+ =0, from (8.49) Tr(A—rBK) = > _ A/

1

(i) If the conditions hy > max{l%(j\{ )l} + h; and max §R(:\{ ) # 0 are satisfied,
then all the eigenvalues of A — rBK are in the vertical strip (—hy, —hy).

(1) For all the eigenvalues A — rBK to lie in the closed vertical strip [—hy, —hy]
the condition hy > max { |§R(f\;)|} + hy is sufficient.

For r = %, (8.49) implies that all the eigenvalues of A- %BK are the eigenvalues of A
which are in the left-hand half-plane or on the imaginary axis, while for r = 7 and a* =1,

all the corresponding eigenvalues of A to the right of the vertical line x = —h, lie on the

vertical line ho. O

If b, = 0 and A has an eigenvalue on the imaginary axes, the condition for the eigenvalues
of the closed-loop system to lie in the open vertical strip cannot be derived from Theorem
8.6.1. To ensure the stability of the closed-loop system it is required that all the eigenvalues
A —rBK lie in the left-hand half-plane. This problem is a particular case of the following.

Remark 8.6.1 Suppose one of the eigenvalues of A is —h;. Consider A=A+ (hy + €)1,
where ¢ is a small positive real number such that A, +¢ is not the real part of an eigenvalue
of A, and —(hy +¢) is not an eigenvalue of A. Assume all the conditions of Theorem 8.6.1

are satisfied, then all the eigenvalues of A —rBK lie within the vertical strip (~h, —h1).

Theorem 8.6.1 yields only a range of r satisfying the desired condition. However, the

greatest upper value of r with the desired property can be found by trial and error.

The real number 7o is said to be an upper bound satisfying (u.b.s.) the desired condition

if for any 0.5 <7 < To, all the eigenvalues of A — rBK lie in the vertical strip. An u.b.s.
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ro is said to be the greatest upper bound satisfying (g.u.b.s.) the desired condition if for

any r > 7o, there exists one eigenvalue of A — rBK outside the region. Abbreviations

u.b.s. and g.u.b.s. denote these properties.

8.7 Examples

Examples 8.7.1-8.7.3 below illustrate the numerous results about pole placement in a
vertical strip stated in Section 8.6. The remaining examples 8.7.4 and 8.7.5 illustrate the
results of Section 8.5 about pole placement in a sector and address the errors in [129] for

obtaining the solution of the ARE (8.45).

Example 8.7.1 [101]: Consider the system (8.44) with

- - -

[ —0.5000 0.1100 —0.6600 —0.2200 0.80 0.20
A= 0 —1.0300 —0.4100 2.0700 B 0 0.52
0 —1.3200 -0.3300 2.6400 |’ -0.20 0.36

i 0 —-0.0300 0.0300  0.0600 | | —-0.04 0.10 |

The spectrum of A is

o(A) = {\ = —0.5000, A; = —1.5002, A3 = 0.0017, Ay = 0.1985}

Let h; =1 and h = 2, then
o(A) = {,”\1 = 0.5000, s = —0.5002, A; = 1.0017, A4 = 1_1985}

Then Y%, AF = A + s + A4 = 2.7002 and an uwbs. of 7 is
At

0.5(1 + (hy — h1)/ > _ Af = 0.6852

i=1
i.e. r can take all values between 0.5 and 0.6852. However, the g.u.b.s. 7 is not 0.6852.
As already stated in Remark 8.6.1, the g.u.b.s. 7o of 7 with desired property can be found
by trial and error. When r tends to ry some of the eigenvalues of the closed-loop A—rBK

move to the vertical line z = —hs.
The semi-p.d.s. matrix solution of ARE (8.45) is

16.49831928793  —74.18522113962 56.48932042071 149.06146039136 ]
—74.18522113962 374.55921933460 —290.26838686087 —721.59550305191
P= 56.48932042071  —290.26838686087 225.50261148977 556.19493305580
L 149.06146039136 —721.59550305191 556.19493305580 1584.72921533561

-
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and

—4.0617 27.5693

" | —0.0343 3.2776

Let 7 = 0.5, then

A—rBK =

1.1281
0.0089
—0.4000

| —0.0795

182

—-22.1569 —55.3790
—2.8413  13.2857
~11.2455 8.4869  20.6030 ]
—~1.8822  0.3287 —1.3843
0.8470 —2.0343 —5.2893
0.3575 —0.2711 ~-1.7119 |

and the eigenvalues of A — rBK are —1£0.7742i, —1.5002, —1 are not all in the open
vertical strip (—hg, —h1). In fact, three eigenvalues of A — rBK are on the vertical line

z = —h,. Let r = 0.51, then

A—-rBK =

1.1607
0.0091
—0.4080
| —0.0811

—11.4726
—1.8992
0.8903
0.3653

8.6698
0.3435
—-2.0683
-0.2771

21.0195 ]|
~1.4534
~5.4479
—1.7473 |

and the eigenvalues of A — rBK are —1.0170 &+ 0.7740i, —1.5002, —1.0200. Taking

r = 0.6852

A-rBK =

1.7312
0.0122
—0.5481

| —0.1090

—15.4516
-2.1978
1.6496
0.5010

11.8749

0.6024
—2.6655
—0.3826

28.3159 |
—2.6638
—8.2264
-2.3682 |

and the eigenvalues of A —rBK are —~1.3146 +0.70743, —1.5002, —1.3710. Theorem 8.6.1

guarantees that all the eigenvalues of A — rBK are inside the vertical strip if 0.5 < r <

0.6852.

In the following some values of r are chosen to find the influence of value r on the dominant

eigenvalues of A — rBk. Let 7 = 0.55, then

A—-rBK =

with the eigenvalues —1.084

A—-7rBK =

[ 1.2009 —12.3810 9.4016  22.6853 |
0.0098 —1.9674  0.4026 —1.7297
—0.4400  1.0637 —2.2047 —6.0823
| —0.0875  0.3963 —0.3012 —1.8891 |
9 + 0.7695i, —1.5002, —1.1002. Choosing r = 0.57
1.3560 —12.8353  9.7674  23.5182 ]
0.0102 —2.0015  0.4322 —1.8679
—0.4560  1.1503 —2.2729 —6.3994
| -0.0906  0.4118 —0.3132 -1.9599 |
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the eigenvalues are —1.1189 £ 0.7650¢, —1.5002, —1.1402. For r = 0.6700

1.6817 —15.1064 11.5968  27.6828 |
0.0120 -2.1719 0.5799 —2.5587

—0.5360 1.5837 —-2.6137 —7.9853
| —0.1066 0.4893 —0.3734 —2.3143 |

A—-rBK =

and the eigenvalues are —1.2888 £ 0.71837, —1.5002, —1.3405.

Therefore, when r increases from 0.5, the eigenvalues of A — rBK corresponding to the
eigenvalues of A which lie in the right-hand half-plane, move to the vertical line z = -2
and there is an 7 such that for all r > o all the eigenvalues are not inside the strip. This
ro is the maximum (g.u.b.s.) of all the values r which all the eigenvalues of A — rBK
lie inside the vertical strip. However, the g.u.b.s. r with this property is 0.9708, i.e. for
all 0.5 < r < 0.9709, all the eigenvalues of A — rBK are inside the vertical strip. For all
values r outside this interval, the eigenvalues are not inside the vertical strip. The g.u.b.s.

r = 0.9708 can be obtained by a trial and error method. Take r = 0.9708. Then

-

2.6611 -21.9378 17.0996  40.2100
0.0173 —2.6846 1.0243 —4.6368
—0.7766 2.8874 —-3.6390 —12.75559
| —0.15449 0.7224 -0.5546  —3.3803

A—-rBK =

The eigenvalues of A — rBK are —1.5991, —1.9998, —1.9435, —1.5002 which are in the
vertical strip. But for 7 = 0.9709

2.6614 —21.9401  17.1014  40.2141 |
0.0173 —2.6847 1.0245 —4.6375
—0.7767  2.8878 —3.6393 —12.7572

| —0.1544  0.7225 -0.5546 —3.3806

A-rBK =

and the eigenvalues of A —rBK are —1.5986, —2.0007, —1.9437, —1.5002. Some of these
eigenvalues lie outside the strip.

The eigenvalues of A —rBK for various r are shown in Table 8.4. When r increases from
0.5, the three eigenvalues of A — rBK move from the vertical line z = —1 to the vertical

line £ = —2, and when 7 > 0.9708 then at least one eigenvalues lies outside the open

vertical strip,
the range of variation of r depends upon the value hs.

i.e. the real part of this eigenvalue is equal to or less than —2. Therefore,

Now let Ay = 0.5, h, = 2 and A = A+ h,. It can be shown that 0.5 is an eigenvalue of
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hi=1and hy =2
r Eigenvalues of A — rBK
0.5 —1.0000 + 0.7742: | —1.0000 — 0.77427 [ —1.5002 | —1.0000
0.54 —1.0679 + 0.7712 | —1.0679 — 0.7712: | —1.5002 | —1.0801
0.58 —1.1359 + 0.76217 | —1.1359 — 0.7621¢ | —1.5002 | —1.1602
0.62 —1.2038 + 0.7469¢ | —1.2038 — 0.7469: | —1.5002 | —1.2404
0.66 —1.2718 + 0.7249: | —1.2718 — 0.7249: | —1.5002 | —1.3205
0.7 —1.3397 + 0.6956¢ | —1.3397 — 0.6956¢ | —1.5002 | —1.4006
0,74 —1.4077 + 0.65817 | —1.4077 — 0.6581¢ | —1.5002 | —1.4807
0.78 —1.4756 + 0.6108z | —1.4756 — 0.6108: | —1.5002 | —1.5609
0.82 —1.5436 + 0.55127 | —1.5436 — 0.55127 | —1.5002 | —1.6410
0.86 —1.6115 + 0.4748: | —1.6115 — 0.4748: | —1.5002 | —1.7211
0.9 —1.6795 + 0.3710¢ | —1.6795 — 0.3710¢ | —1.5002 | —1.8012
0.94 —1.7475 + 0.20187 | —1.7475 — 0.2018¢ | —1.5002 | ~1.8812
0.9708 —1.5991 —1.9998 —1.5002 | ~1.9435
0.9709 —1.5986 —2.0007 —1.5002 | —1.9437
0.98 —1.5595 —2.0710 -1.5002 | —1.9617

Table 8.4: The eigenvalues of A — rBK for various values of r

A — rBK. The semi-p.d.s. solution of ARE (8.45) is

[0 0
P 0  23.501070148989
~ |l 0 —20.899096827320
| 0 —31.645246165015
Therefore

[0 5.4256
"l 0 1.5684 -1.3678

0

—20.799096827320

18.408231026207
28.207531424951

—4.8099

0

—31.645246165015
28.207531424950
131.007541236564 |

—10.8818
6.7999

and the eigenvalues of A —rBK are —0.5000, —1.1985, —1.0017, —1.5002 which are not
all in the open vertical strip, i.e. Theorem 1 in [101] is wrong. But our Theorem 8.6.1

giv

Then the semi-p.d.s. solution of ARE (8.45) is

es suitable feedback gain matrices. Let € = 0.005, h, = hy+€ = 0.505 and A=A+h.

0.028714648294
—0.1677700002142
0.1322519208919
0.3355294603867

—0.167700002142
24.655229461686

—-21.727613589579

—33.801431560986

0.132519208919
—21.727613589579

19.156542679854

29.931096893038

—33.800431560986

0.335204603867 |

29.931096893038
135.992881929296
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and

| —0.0169 5.5634 —4.9225 -11.1577
| —0.0002 1.5852 —1.3824 6.8653

Let h, = 1.7002. Since the eigenvalues of A are 0.0050, —0.9952, 0.5067, 0.7035,

At

S A} =1.2152 and an ubs. n of ris
nt
i=1

For r = 0.5

[ —0.4932 —2.2739  1.4473  3.5566 |
0.0001 —1.4422 —0.0506  0.2850
~0.0017 —1.0490 —0.5734  0.2885
| —0.0003  0.0020  0.0007 —0.5064 |

A—-rBK =

with eigenvalues —0.5050 % 0.0595¢, —0.5050 and —1.5002. For r = 5 = 0.9938

[ —0.4865 —4.6283 3.5285  7.2865 |
0.0001 —1.8492 0.3044 -1.4779
—-0.0033 -0.7813 —0.8138 —-2.0340

| —0.0007  0.0336 —0.0283 —1.0659

A—-rBK =

with eigenvalues —0.5101, —1.1997, —1.5002 and —1.0054. The value n = 0.9938 is
obtained from Theorem 8.6.1. In fact the g.u.b.s. of r is 1.3454 which is obtained by trial

and error, since

[ —0.4817 —6.3046  5.0102  9.9420 |
0.0002 —2.1390  0.5571 —2.7330
-0.0045 —0.5908 —0.9850 —3.6875

| —0.0009  0.0561 —0.0489 —1.4641 |

A —1.3454BK =

with eigenvalues —0.5079, —1.70015, —1.5002, —1.3616. For r = 1.3455

[ —0.4817 —6.3050  5.0107  9.9428 |

0.0002 —-2.1391  0.5572 —2.7334
—0.0045 —0.5907 —0.9851 —3.6880
| —0.0009  0.0561 —0.0489 —1.4642

A —1.3455BK =

with eigenvalues —0.5079, —1.7003, —1.5002 and —1.3617.

So when r increases from z = 0.5 to 1.3454, the dominant eigenvalues move from the

vertical line z = h; to the vertical line z = h,.
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Example 8.7.2 [129]: Consider the system (2.4) with
[ T - ]

-1 1000 0 0

0 -2 100 0 0

A=| 0 0010(, B=|01
0 0001 0 1
| 0 0000 |1 0]

The orthogonal transformation matrix T' (2.13) is taken as

[ —1.0000 0 0 0 0

0 —0.7071 —0.5000  0.5000 0

T = 0 —0.7071  0.5000 —0.5000 0
0 0 0 0  —1.0000
0 0 -0.7071 —0.7071 0

Then the matrices A;; and A2 (2.16) are

~1.0000 07071  0.7071 0 0
Ay = 0 08964 —1.1036 |, A= | —0.5000 0.8536
0 -0.3964 —1.6036 0.5000 0.1464

The eigenvalues of Aq; are —2, —1, —0.5. Consider the strip (—hy, —h;) with h; = 1.5
and ho = 2.5. Let /111 = A;; + hils. The eigenvalues of fiu are 0.5, 1, —0.5 and

Z:‘:l Af =1.5. Thus an u.b.s. for r is

at

n=05(1+ (ha — h1)/ Y Af =0.8333
i=1

By considering A;; as A, and Ajs in place of B, the semi-p.d.s. solution P of ARE (8.45)

18

2.45457213932604  1.46296027139282  2.00829564804722
P = | 1.46296027244758  2.20516150011468 —0.13624308281623 (8.52)
2.00829564697450 —0.13624308431857  2.97637478827414

The eigenvalues of Ay — AR AL P are —0.5, —1. So Lemma 8.5.1 is satisfied and P
(8.52) is an acceptable solution of the ARE (8.45). However, the exact solution P of the
ARE (8.45) is semi-p.d.s. with a zero eigenvalue. So P (8.52) is an approximation to the
ct solution. In fact, some entries of the exact P have an infinite decimal expansion;

corre
so some the elements of P are only an approximation to the correct solution. Therefore
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the gain matrix F' obtained from this P is valid. But P in [129, page 52] is incorrect, it
does not satisfy Lemma 8.5.1. This error arises form their incorrect theory about finding
the solution of the ARE with zero right-hand side. So their matrices F and C are not
correct despite the fact that the eigenvalues of Ay — ApR- 'AT,P lie inside the strip

(-1.5,—2.5).
For r = nn = 0.8333, F is given by

7o 0.2272 —-0.9755 1.2969
| 1.2856 1.5519 0.2662

and

_ | —0.2272 -0.2272 1.1363 -1.1363 —1.0000
~ | —1.2857 —1.2857 —1.3500 —0.0642 0

which is correct. Let

Fi=R'ALP =

0.2727 -1.1707 1.5563
1.5428 1.8624 0.3194

The eigenvalues of Ay — Ao F are —2.0000 £ 0.1508:, —2. These eigenvalues are within
the vertical strip (—2.5, —1.5). Since two eigenvalues of Ayy are in the right-hand half-
plane, the proof of Theorem 8.6.1 implies that the two eigenvalues of A;; — 0.5A, F take
the value h;. In fact, the eigenvalues of A;; — rA;oF are —1.5000 + 0.3016:2, —2. By
testing various values of 7, the g.u.b.s. r with the desired property can be found. The
gub.s. r is 0.99998, because the eigenvalues of A;; — 0.99998A,, F are —2, —2.4999 and

the eigenvalues of A1 — 0.99999A,,F are —2, —2.5. For r = 0.99998

-0.2727 -0.2727 1.3635 -1.3635 —1.0000
—1.5428 —1.5428 -1.4786  0.0643 0

The eigenvalues of A;; — rAF for various r are shown in Table 8.5. When r increases
from 0.5, the three eigenvalues of Ay —7 Ao F move from the vertical linez = —h; = —-1.5
to the vertical line z = hp = —2.5. If r > 0.99998 then at least one eigenvalue lies outside
the open vertical strip, i.e. the real part is equal to or greater than —2.5. Therefore, the
range of variation of 7 depends upon the value hy. Now consider h; = 1 and h; = 2.5.

Since —1 is an eigenvalue of Ay, for all values of 7 one of the eigenvalues of Ay - rAj;
is zero. Therefore, the vertical line £ = —h; should be shifted to z = h; + ¢ where ¢ is
itive real number, say 0.0005. Suppose A, = Ay + hye. The eigenvalues of

a small pos
Ay, are then 0.0005, 0.5005, —0.9995 and Zz_ /\+ = 0.0505. So an u.b.s. r of is 1.9970.
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hy =1.5and hy, = 2.5
r Eigenvalues of A}, — 1A F
0.5000 | —1.5000 + 0.3016: | —1.5000 — 0.30167 | -2
0.5400 | —1.5600 + 0.2999: | —1.5600 — 0.2999: | —2
0.5800 | —1.6200 + 0.2950¢ | —1.6200 — 0.2950¢ | —2
0.6200 | —1.6800 + 0.2865z | —1.6800 — 0.2865% | —2
0.6600 | —1.7400 + 0.2743: | —1.7400 — 0.2743:¢ | -2
0.7000 | —1.8000 + 0.2577: | —1.8000 — 0.2577¢ | —2
0.7400 | —1.8600 + 0.2358: | —1.8600 — 0.2358; | —2
0.7800 | —1.9200 + 0.2069¢ | —1.9200 — 0.2069: | —2
0.8200 | —1.9800 + 0.16767 | —1.9800 — 0.16761 | —2
0.8600 | —2.0400 + 0.10687 [ —2.0400 — 0.1068: | —2
0.9000 —2.0148 —2.1852 -2
0.9400 —1.9930 —2.3270 -9
0.9800 —1.9953 —2.4447 -2
0.99998 —2.0000 -2.4999 -2
0.99999 —-2.0000 —2.5000 -2
1.0200 —2.0061 —2.5539 -2
1.0600 —2.0213 ~2.6587 -2
1.1000 —2.0394 —2.7606 -2
1.1400 —2.0594 —2.8606 -2

Table 8.5: The eigenvalues of A;; — rA2F for various values of r

The semi-p.d.s. solution of ARE (8.45) is

0.00100242112344  0.00104171782023  0.00037590613253
P =] 0.00104171782023  0.66835723935475 —0.66688404201337
0.00037590613253 —0.66688404201337  0.66741564846600

Since the eigenvalues of A — A R7'AT P are —0.0005, —0.5005, —0.9995 and the
eigenvalues of Ay, are 0.0005, 0.5005, —0.9995, respectively, (8.45) gives the correct
solution P and the corresponding F. But P in [129, page 52] is incorrect. The author also
mentioned that it is not clear why this solution is not satisfied in the ARE and desired
properties. In fact, P in [129] is not satisfied by Lemma 8.5.1 and F obtained from P is

wrong.
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An u.b.s. of r is 1.9970 because Z:’; 5\,+ = 0.5010. Consider F = 1.997F, where

Fy=R1'ALP=

—0.0003 -0.6676 0.6671
0.0009  0.4729 -0.4715

Then

B 0.0007  0.0007 1.3328 —1.3328 —1.0000
| —0.0019 —0.0019 -1.6501  0.2359 0

The eigenvalues of A,- 1.997A,3 R~ AL, P and the eigenvalues of Ay - 1.9984,,R'AT, P
are —1.0011, —2, —2.4999 and —1.001, —2, —2.5, respectively. Therefore the g.u.v. r is

1.997. Let

—0.0003 —0.6676  0.6672 }

Fl = R_lA’{‘zP B
0.0009 0.4729 -0.4715

The eigenvalues of Ay — rAF; for various r are shown in Table 8.6. As r increases
from 0.5, the eigenvalues A;; — rA1oF move from the vertical line £ = —h; = —1 to the
vertical line z = hy = —2.5, and if r > 1.997 then at least one of them is located outside
the open vertical strip, i.e. the real part of this eigenvalue equals or is greater than —2.5.
When the ¢ method is used, r = 0.5 is also an acceptable value because h, is one of the
eigenvalues of Ay and —(hy + €) is an eigenvalue of A;; — Ao F which is clearly in the
vertical strip (—hg, h2). As the value of r increases the eigenvalues corresponding to the

eigenvalues of A, which are in the right-hand half-plane, move to different places. These

results are shown in Table 8.6.

Example 8.7.3 [129]: Consider the system (2.4) with

[0 1.0000 0 0 0 0
A 0 —0.3320 0  0.0187 B 130.8 —308.3

0 0 0 1.0000 |’ 0 0

0 07830 0 —0.1914 | | —308.3 31554 |

Assume T is the transformation matrix given by (2.13)

1 0 0 0
0 0 1 0
T =
0 —0.39%06 0  0.9206
| 0 —0.9206 0 —0.3906 |
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hy =1and h, = 2.5
T The eigenvalues of A;; — rA;2 Fy
0.500 | —1.0005 + 0.0129: | —1.0005 — 0.0129: | —2
0.650 —-1.0017 —1.1496 -2
0.800 —1.0012 -1.3004 -2
0.950 —-1.0010 —1.4509 -2
1.100 —1.0010 —1.6012 -2
1.250 —1.0010 -1.7515 -2
1.400 —1.0010 —-1.9018 -2
1.550 —1.0010 —-2.0521 -2
1.700 —1.0010 -2.2024 -2
1.850 —1.0011 —-2.3526 -2
1.997 —-1.0011 —2.4999 -2
1.998 —1.0011 —2.5009 -2
2.000 —1.0011 —2.5029 -2
2.150 —1.0012 —2.6532 -2
2.300 —1.0012 -2.8034 -2
2.450 —-1.0012 —2.9537 -2
2.600 —-1.0013 -3.1039 -2
2.750 —1.0013 —3.2542 -2
2.900 —-1.0014 -3.4044 ~2
3.050 —-1.0014 —3.5547 -2
3.200 —-1.0015 —-3.7050 -2

Table 8.6: The eigenvalues e of A;; — rA;9Fy for various values of r

Then from (2.16 )

00 —0.3906 —0.9206
All = ) Al2 =
00 0.9206 —0.3906

The eigenvalues of A;; are a double root at 0. Selecting h; = 2 and h, = 3 gives the
matrix Ay = An + 2k The eigenvalues of Ay, are double repeated eigenvalues 2 and

Tr(fi‘ﬁ) — 4. Therefore an u.b.s. for r is

1 =051+ (ha—Mh)/ D A =0625
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The p.d.s. solution P of ARE (8.45) with App as A and Ay in place of B is

13751
p— | 38
o larsi

3438

~1.5623  3.6821 ]

F,=R1'ALP =
-3.6821 —1.5623

It is straightforward to show that this P is an exact solution of (8.45) and satisfies Lemma

8.5.3. The sliding matrix for r = 0.625 is

—0.9764 —0.3906  2.3013  0.9206 ]

—2.3013 -0.9206 -0.9764 —0.3906

Ci = [ 0.625F, I ] T=

The p.d.s. solution P (8.45) in [129, page 59] is incorrect, because this P does not satisfy
Lemma 8.5.3, in spite of the eigenvalues of the closed-loop reduced system lying in the
strip. The eigenvalues A of A;; — 7 A1pF; for various values of 7 are shown in Table 8.7.
The g.u.b.s. r for all the eigenvalues of Ay, — A1 F) to lie in the strip is 0.7499. Note

that for all r, A;; — rA;12F1 has only a double eigenvalue.

hl =2 and h2 =3
T 050 053] 056 0539]| 0.62 0625| 065| 0.68]0.71 0.74
2| —2.00 | —2.12 | —2.24 | —2.36 | —2.48 | -2.50 | -2.60 | —2.72 | 2.84 | —2.96

07409 | 0.75| 077| 080| 083] 086| 089 092| 095
—2.9996 | —3.00 | —3.08 | —3.20 | —3.320 | —3.44 | —3.56 | —3.68 | —3.80

Table 8.7: The eigenvalues A of A;; — rAoF for various values of r

Example 8.7.4: Consider Example 8.4.1. Assume o = —2 and = 30°. The solution of
the Riccati equation (8.31) is

0.0130 —0.4584  0.0039 —0.2922 ]
—0.4584 16.8859 —0.0896 10.6139

0.0039 —0.0896 0.0084 -0.0832
| —0.2922 10.6139 —0.0832 6.7645 |

and
0.2142 —6.1348 0.2926 —4.7346

| —0.0949  2.3032 —-0.1909  2.0523
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The eigenvalues of A1y — Ao F are —5.6757, —4.9732 + 0.24621, —4.0251 and the sliding
matrix is
—0.2142 4.7346 0.2926 —-6.1348 —1.0000 0
0.0949 -2.0523 -0.1909  2.3032 0 -1.0000

The method of Section 8.2 is now applied. Let Q = I;. Then d, = 0.37211 x 10~%. Taking
P = d,I, the eigenvalues of A;; — AR AL(P + P) are —5.7336, —4.9506 = 0.33013,
—4.0129 while the eigenvalues of Aj; — A;aR'ALP are —5.6757, —4.9732 + 0.2462;,
—4.0251. So by using this method various gain matrices can be found such that all

eigenvalues of the closed-loop system lie in the specified sector.The eigenvalues of the

closed-loop system for o = —2 and various # are shown in Table 8.8.
a=-2
0 Eigenvalues of A;; — A F

0° | —5.6757 | —4.6889 + 0.24625 | —3.7408
10° | —5.6757 | —4.7757 + 0.2462i | —3.8276
20° | —5.6757 | —4.8681 £ 0.24623 | —3.9200
30° | —5.6757 | —4.9732 + 0.2462; | —4.0251
40° | =5.6757 | —5.1021 + 0.24625 | —4.1540
50° | —5.6757 | —5.2757 + 0.24625 | —4.3276
60° | —5.6757 | —5.5417 + 0.2462i | —4.5936
70° | —5.6757 | —6.0417 £ 0.2462; | —5.0936
80° | —5.6757 | —7.4813 + 0.2462; | —6.5332

Table 8.8: The eigenvalues of A1 — A F

When o decreases, the real parts of the eigenvalues of A;; — Ao F also decrease progress-
ively at a regular rate. However, for certain @ the imaginary part of the eigenvalues are
invariant with respect to variations in a. This result is obtained form the mobilization of
Proposition 8.5.1. The variation of the eigenvalues of Ay — Ao F for 8 = 80° and various
values of o are shown in Tables 8.9. The eigenvalues of A1 — A1 F' are far from the vertex

o in fact the real parts of the eigenvalues A;; — Ao F lie within the range 2« + 6.

Example 8.7.5: Consider Example 8.7.3 again. Choose 6 = 30° and o = —2.0001. The
p.d.s. solution of ARE (8.31) is
5.55861265813242 2.81835724537085 5.04106085141026

P = | 2.81835724536768 3.42901981419127 0.55622119703102
5.04106085141342 0.55622119703550 6.57230440878359
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which gives

Fe 1.1114 -1.4364 3.0080
3.1438 3.0084 1.4370
The eigenvalues of A;; — Ao F' are —2.0002, —3.0002, —3.5002 and the sliding matrix is

-1.1114 -1.1113  2.2222 -2.2222 -1.0000
—3.1438 —-3.1434 —-1.4928 0.0786 0

Since all the eigenvalues of A;; are real, n = 0, i.e. for all values 0° < 8 < 90° the solution
P of the ARE (8.31) is invariant, which causes the gain matrix F' and the sliding matrix

C to be invariant for all values of 8. However, all the eigenvalues lie inside the sector.

Assume a = —2. Since —2 is an eigenvalue of Ay, it is also an eigenvalue of the closed-
loop matrix Ay — ApF which is on the boundary of the sector. More precisely it is
the vertex of the sector. In this case let e be a small positive real number and consider
Ay =An+(a+ ¢)I;. In fact, by using this method the sector is shifted to a new sector

with vertex a + € and boundary lines parallel with the boundary lines of the previous
sector. For example, take ¢ = 0.0001 and o = -2.

Now consider the method for placing the poles of the closed-loop system within the
intersection of two sectors as stated in Section 8.5.1. Take a = -2, 6 = 30°, 8 = —4

and ¢ = 45°. Consider a new sector with vertex n = —4 and angle with imaginary axis

# = 45°. This sector is inside the intersection of the two sectors. The semi-p.d.s. solution
of ARE (8.31) is

347.279364009904 43.769241278813 54.454529393184
P =1 43.769241278813 11.859265309981 6.863925898970
54.454529393184  6.863925898970 26.196398665093

and then

[ 53426 —2.4977 9.6662
| 453336 11.1279 9.6942

The eigenvalues of A1 — Ao F are —6, —7, —7.5 and the sliding matrix for the full state

is found to be

—5.3426 —5.0689 6.0820 —-6.0820 —1.0000
| —45.3336 —14.7235 —1.4240 0.0098 0
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Example 8.7.6 Now consider Example 8.7.3 again. Choose @ = —2. Since zero is a
repeated eigenvalue of A, 2a is an eigenvalue of A;; — A5 F and Proposition 8.5.1 gives
a single invariant gain matrix for all 8. The solution of ARE (8.31) is

3.999709 0
0 3.999709

and then

P | ~15623 36821
~3.6821 —1.5623

The poles of the closed-loop reduced system are the eigenvalues of A;; — Ao F which are a

double root at —4. After transforming to the full state space, the sliding matrix is found

to be

—-1.5623 —0.3906  3.6821 0.9206
—-3.6821 -0.9206 -1.5623 —0.3906

Now consider the method for placing the poles of the closed-loop system within the
intersection of two sectors. Take a = -2, 8 = 30°, 3 = —4 and ¢ = 45°. Consider a
new sector with vertex 17 = —4 and angle § = 45°. This sector is inside the intersection
of two sectors. A;; has double eigenvalues 0. The double eigenvalue of A;; — Ao F is —8.
To find F and then C, the semi-p.d.s. solution of ARE (8.31) should first be obtained.

So

P 7.9994183 0
- 0 7.9994183

and then

oo [ 31246 7.3643
~7.3643 —3.1246

The eigenvalues of Ay — Ai2F are a double root at —8. After transforming to the full

state space, the sliding matrix is found to be

—3.1246 —0.3906  7.3643  0.9206
T | —7.3643 —0.9206 —3.1246 —0.3906
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6 = 80°

Eigenvalues of A;; — Ao F

-10.5
-11
—-11.5
-12
-12.5
-13
—13.5
-14
—14.5
-15

—5.6757
—5.6757
=5.6757
—5.6757
—5.6757
—5.6757
—5.6757
—5.6757
—5.6757
—6.1167
-7.1167
—8.1167
-9.1167
—10.1167
—11.1167
—-12.1167
—13.1167
—14.1167
—15.1167
—16.1167
—17.1167
—18.1167
—-19.1167
—20.1167
—21.1167
—22.1167
—23.1167
—24.1167
—25.1167
—26.1167
—27.1167

—3.4813 £ 0.2462

—4.4813 £ 0.2462:

—5.4813 £ 0.2462:

—6.4813 £ 0.2462:

—7.4813 £ 0.2462:

—8.4813 £ 0.2462:

—9.4813 £ 0.2462:
—10.4813 £ 0.2462:
—11.4813 £ 0.2462:
—12.4813 £ 0.2462:
—13.4813 £ 0.2462:
~14.4813 £ 0.2462:
—15.4813 £+ 0.2462¢
—16.4813 £ 0.2462:
—17.4813 £+ 0.2462:
—18.4813 £ 0.2462:
—19.4813 £ 0.2462:
—20.4813 £ 0.2462:
—21.4813 £ 0.2462:
—22.4813 £ 0.2462:
—23.4813 £ 0.2462:
—24.4813 + 0.2462:
—25.4813 £ 0.2462:
—26.4813 £ 0.2462:
—27.4813 £ 0.2462:
—28.4813 £+ 0.2462:
—29.4813 + 0.2462:
—30.4813 £ 0.2462:
—31.4813 + 0.2462:
—32.4813 £ 0.2462:
—33.4813 £ 0.2462:

—2.5332

-3.5332

—4.5332

—-5.5332

—6.5332

—7.5332

—-8.5332

—9.5332
—10.5332
—11.5332
—12.5332
—13.5332
—14.5332
—15.5332
—16.5332
-17.5332
—18.5332
—19.5332
—20.5332
—21.5332
—22.5332
—23.5332
—24.5332
—25.5332
—26.5332
—27.5332
—28.5332
—29.5332
—30.5332
—31.5332
—-32.5332

Table 8.9: The eigenvalues of A;; — Ao F' for various values of o
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6 = 80°

Eigenvalues of A;; — AppF

—15.5
—16
—16.5
~17
-17.5
—-18
—-18.5
-19
-19.5
—-20
—20.5
-21
-21.5
—22.5
-23
-23.5
—24
—24.5
-25
—25.5
—26
—26.5
—27
-27.5
—28
—28.5
-29
-29.5
—-30

—28.1167
—29.1167
—30.1167
—31.1167
—32.1167
—33.1167
—34.1167
—35.1167
-36.1167
—37.1167
—38.1167
-39.1167
-40.1167
—42.1167
—43.1167
—44.1167
—45.1167
—46.1167
—47.1167
—48.1167
—49.1167
-50.1167
—-51.1167
—52.1167
—53.1167
—54.1167
—-55.1167
—56.1167
—57.1167

—34.4813 £ 0.2462:
—35.4813 £ 0.2462:
—36.4813 £ 0.24621
—37.4813 £ 0.2462:
—38.4813 £ 0.24621
—39.4813 £ 0.2462:
—40.4813 £ 0.2462:
—41.4813 £ 0.2462:
—42.4813 £ 0.2462:
—43.4813 £ 0.2462:
—44.4813 £ 0.2462:
—45.4813 £ 0.2462:
—46.4813 £ 0.2462:
—48.4813 £ 0.2462:
—49.4813 £ 0.2462:
—50.4813 £ 0.2462:
—51.4813 £ 0.2462:
—52.4813 £ 0.2462:
—53.4813 £ 0.2462:
—54.4813 £+ 0.2462:
—55.4813 £ 0.2462:
—56.4813 + 0.2462:
—57.4813 + 0.2462¢
—58.4813 £ 0.2462:
—59.4813 + 0.2462:
—60.4813 £ 0.2462:
—61.4813 + 0.2462:
—62.4813 £ 0.2462:
—63.4813 £ 0.24621

—33.5332
—-34.5332
-35.5332
—36.5332
—37.5332
—38.5332
—39.5332
—40.5332
—41.5332
—42.5332
—43.5332
—44.5332
—45.5332
—47.5332
—48.5332
—49.5332
—50.5332
—51.5332
—52.5332
-53.5332
—54.5332
—55.5332
-56.56332
—57.5332
—58.5332
—59.5332
—-60.5332
—61.5332
—62.5332

Table 8.9 (contd) The eigenvalues of A;; — A2 F for various values of a

196
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8.8 Summary and Discussion

In this chapter the Lyapunov and Riccati equations, and stability properties of complex
and real systems have been considered. Several new methods have been proposed to find
feedback matrices such that all the eigenvalues of A;; — A2 F lie in a specified sector
or vertical strip. These techniques have been extended to the hyperbola and the region
between two specified sectors. The errors and inaccuracies in [101] have been clarified,
and a new theorem and its proof have been presented to yield all the eigenvalues of the

closed-loop system to lie in a specified vertical strip in the left-hand half-plane.

All these methods are based on properties of the Riccati equation. The ARE with
zero right-hand side has a semi-p.d.s. solution matrix, and only if the state matrix is
completely unstable does this ARE have a p.d.s. solution. When the matrix is stable, the
semi-p.d.s. solution is the zero matrix. All these facts have been proved and illustrated
by examples. Further research is needed to obtain conditions for all the eigenvalues to lie
in a specified region by using the CARE. More details of the CARE will be presented in

Chapter 9.

The work by Woodham [129] also has some error and inaccuracies, which arise from
applying the Shieh et al [101] method. Shieh et al [101] believed that the ARE with
zero right-hand has a p.d.s. solution matrix but this is generally not true. The methods
in [129] and [131] fail because, for some sectors, all the eigenvalues obtained by these
algorithms may not lie in the specified sector. However, the associated CARE has a p.d.
Hermitian solution. So, if all the eigenvalues of the closed-loop system are in the specified
sector, the associated CARE has a p.d. Hermitian solution, but the converse is always
not true. Another reason for the failure is that they considered pure complex weighting
matrices (i.e. for all § # 0 the weighting matrix is not real) and finally apply real weighting
matrices. They also consider the absolute values of a matrix while the absolute value of
a p.d.s matrix is not necessarily a p.d.s. matrix. Note that the positivity definition of a

matrix is not related to the positivity of all the elements of the matrix.

It should be emphasized that Woodham [129] stated that her feedback gain matrix

seems to work in some cases. She did not specify for which systems the feedback matrix

s valid and indicated that more work was needed. The definition of a p.d. matrix in
the statistics literature 1s equivalent to the p.d. of the elements, but this definition is not
valid in control theory.

Many examples have been presented to illustrate the results. Some conditions are
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necessary and sufficient, others only sufficient. Further work is needed to obtain conditions

which are weaker than those stated in this chapter. Using the transfer function of the

closed-loop system may prove fruitful.



Chapter 9

Matrix Complex Vector Space and

Linear Complex Systems

The real algebraic Riccati equation is important because system stabilization can be
achieved by using a suitable feedback gain corresponding to its solution. Also H,, the-
ory extensively uses solutions arising from the Riccati equation. Many methods have
been proposed for obtaining the solution of this equation. The Schur method using an
associated Hamiltonian matrix has been proposed by Laub {77]. Another method, the
so-called Macfarlane-Potter-Fath method (Kailath [63}), uses eigenvalue decomposition of

an associated Hamiltonian matrix.

If the weighting matrix of the right hand-side of the ARE is zero as in (8.25), the
Hamiltonian matrix may not have sufficient eigenvalues with negative real parts, because
the eigenvalues of the Hamiltonian matrix are the eigenvalues of matrices A and —AT. In
this case, the eigenvalues of the closed-loop matrix are the eigenvalues of A and —A which
lie in the left-hand closed half-plane. The solution of this ARE cannot be obtained from
the Hamiltonian matrix. In fact the matrix which can be used for obtaining the solution
is not invertible (see Appendix C). This solution is semi-p.d. and the number of zecro
eigenvalues of the solution matrix is the same as the number of eigenvalues of A which
are in the left-hand closed half-plane. The nature of the solution of this Riccati equation
has been studied in Chapter 8. Byers’s solution method [17} is only for SISO problems.

The more general MIMO case still remains unsolved.

As seen in Chapter 8, the complex Riccati equation appears in many control problems.
However, an algorithm for finding the solution of the complex Riccati equation has not

been considered in the established literature. In this chapter the real vector space of

199
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complex square matrices is studied and the positivity concept of a matrix is extended
to the complex case. In Section 9.1 the relationship between the real vector spaces of
complex and real square matrices is clarified. This relationship yields links between the
real and complex Riccati equations. In Section 9.2 the concept of the p.d. complex matrix
is defined and the concept of positive definiteness is extended to the complex case. Some
theorems yield the necessary and sufficient conditions for positivity of a complex matrix.
In Section 9.3 the complex Riccati equation and some related aspects are considered.

Complex systems and their application are considered in Section 9.4.

In this chapter M, (R) and M,(C) denote the real vector space of real n x n matrices

and the real vector space of complex n x n matrices, respectively.

9.1 Complex Matrix Vector Space

Some basic concepts about the real vector spaces of real and complex square matrices are
reviewed in this section. The relationship between real vector spaces of real and complex
square matrices is also considered. In fact there is an isomorphism from M, (C) onto a
subspace of Ma,(R). Note that the dimensions of M,(R) and M, (C) over the field R are

n? and 2n?, respectively.

Let M € M,(C), then M = A+ iB where A, B € M,(R). Then, for any z =z + iy € C*

Mz = (A+iB)(z + iy)
= (Az — By) +i(Ay + Bz) (9.1)

ANER

Equation (9.2) shows that the map ¢ : C" — R?" defined by

Assuming Mz = £ + 4, then

. J 9.2)

@(21,22, v azn) = (IL'],IL'Q, s Ty Y1 Y2, ,yn)
where z; = &; + 1Y; for 1 < j € n, is an isomorphism of R-vector spaces.

Define the operator J : R?* — R?*" with

J(Il,m27"' v Tns Y1,Y2,- -« :yn) = (_yl’"‘y%- oy " Yn, T1, L2, ... ,(L'n)
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Thus the operator J is

Suppose

A B
C D

where A, B,C,D € M,(R). Then MJ = JM if and only if A = D and B = ~C. Let
N :R?*® — R?" and M : C* — C" be linear operators related by ®M = N®. Then M
is linear if and only if MJ = JM. On the other hand, for any M € M,(R), M is in the

A -B
form of [ B 4 ] if and only if MJ = JM. Define

M(C) = {M e My(R): MJ=JM}

={A—B

B
Therefore, the following theorem is well established.

1A, Be M,,(R)} (9.3)

Theorem 9.1.1 Let v : M,(C) — M,(C) be a map which is defined by

A+1B —»
A

A ~B]

W is an isomorphism in the sense of rings and R-vector spaces.

Proof: The proof is straightforwardly achieved by checking the properties of the

isomorphism. 0O

Since the complex vector space M,(C) on the field R has properties corresponding to the
R-vector space M,(C), this theorem is very important. For example a complex matrix is

invertible if and only if its corresponding real matrix is invertible.

9.2 Positivity of a Complex Matrix

In this section the positivity concept of a complex matrix, necessary and sufficient con-
ditions for positivity, and some related results are presented. The positivity concept is
defined to include the traditional definition for a real matrix. In fact the real matrix is a

particular case of a complex matrix with zero complex parts.
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Definition 9.2.1 A complex matrix A = A; + iA; € M,(C) is called p.d. if for all
complex vectors z # 0, R(z*Azx) > 0,ie. A=A, +i4,ispd. ifforall z = z; +iz, € C*

2T Ajz) — 7] Aoy + 75 Aoy + T3 Ayzy > 0 (9.4)

If A= A, + 1Ay is a complex matrix and z € R*, then R(z*Az) = zTA;z. When 4 is
a real matrix and z € R, then z*Az = 7 Azx and the definitions coincide. Also, if A is
an Hermitian matrix, then for all z € C*, (z*Az)* = z*Ax and (z*Az)* € R. Since the
eigenvalues of an Hermitian matrix are real, the eigenvalues of a p.d. Hermitian matrix
are positive real [42, page 105]. It is necessary to deal with the general case including

non-Hermitian matrices.

Lemma 9.2.1: Let A = A, +1iA; be a complex matriz and x = ; + ixy € C*, then

T
. T A -A
R(z Am):[ ' S I (9.5)
iy A2 Al ) .
Proof:
r*rAx = (IL‘IT — 'LIL‘;) (A1 + ZA2)(IE1 + Z.’L‘g)
= zT Az — 2] Azo + x3 Aoty + 2f Ayzy +
i(z] Aoy + 71 AyTp — 20 Ay + 27 Agy) (9.6)
Hence
R(z*Az) = z] Aiz) — 2] Aoy + 75 Agzy + 25 A1 T
A —A,

A, A

. I Iy
"y T2

Lemma 9.2.2: Let A = A, + iA; € M,(C) be a complez matriz. A necessary and
sufficient condition that A is p.d. is that the matriz

A -A
A, A

is a p.d. real matriz.
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Proof: Let A be a p.d. complex matrix and

" Iy
Tr=
)

be an arbitrary vector. Let z = z; + izo. Then, by using Lemma 9.2.1, R(z* Az) > 0 if

H

Lemma 9.2.2 shows that the positivity of complex matrix is converted to the positivity of

2nx 1
e R z,,1, € R*!

and only if

A Ay
Ay A

a corresponding real matrix.

Lemma 9.2.3: Let A = A; + 1Ay € M,(C) be a matriz. A necessary and sufficient

condition that A is an Hermitian matriz is that the matriz

A -4,
Ay A

is a symmetric real matriz.

Lemma 9.2.4: Let A = A; + iA; € M,(C) be a complez matriz. A necessary and

sufficient condition that A is stable, is that the matriz

a4 -4
A, A

is stable.
Proof: If \i, k = 1,2,...,n, are the eigenvalues of the complex matrix A, then the
eigenvalues of A are ) and its conjugates Ay. 0

Lemma 9.2.4 implies that all the eigenvalues of the complex matrix A = A; + 14, liein a
specified region symmetric with respect to the real axis, if and only if all the eigenvalues

of its corresponding real matrix A lie in this region.

Lemma 9.2.5: Let Ay, Ay € My (R) with |A;| # 0 and |4, + AyA1 7 Ag| # 0. Then

(A; + A2A T Ag) T Ag AT = AT Ao (A + A AT Ap) !
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Proof:

(A + A2A1_1A2)A1"1A2 = Ay + AA;71A,A7A,
= AA17' (A + ArA 7' Ay)

The following theorem is obtained directly from the above Lemma.

Theorem 9.2.1: Assume A = A; +1iA, € M,(C) is an invertible complez matriz with
IA]I T,é 0 GJLd |A1 + A2A1_1A2| '—‘,é 0. Then

A7l = (I, — 34,7 A (A + A A7 1Ay !

Corollary 9.2.1: Assume A= A, +i4; € M,(C). A sufficient condition for the invert-
ibility of the matriz A is that |A;| # 0 and [A; + A2A, "' Ay| # 0. This condition is not

necessary.

Proof: The proof results immediately from Theorem 9.2.1. This condition is not neces-

0 1 . "
sary. Note that | 0 ] has an inverse but the conditions of Corollary 9.2.1 are not
1

satisfied. O

If Ae M(C), |Ai| # 0and |A1+ A A; 71 Ag| # 0. Corollary 9.2.1 and Theorem 9.2.1 yield

-1
A —A B (A1 + A24,7'4,) 7! A7 Ag (AL + A2 AT Ap) !
Az Ay — AT Ay (Ar + A2 AT Ap) (A1 + A4, 71 Ay) !

9.3 Complex Algebraic Riccati Equation (CARE)

In Section 9.1 some properties of complex matrices and relationships between the real
vector spaces of real and complex square matrices have been stated. In this section an
important problem, i.e. the complex Riccati equation is considered. The complex Riccati
equation is related to its real counterpart. This correspondence characterizes a way to

convert the complex problem to the real matrix case.

Consider the complex Riccati equation

A*P+PA-PBR'BTP=-Q (9.7)
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where A, B are n xn and n X m complex matrices. Also R, () are arbitrary p.d. and semi-
p.d. Hermitian m x m and n x n complex matrices, respectively. Therefore A = A; +1iA4,,
B =B, +1iB3, R = R) + iRy and Q = Q; + iQ, where R, Q, are symmetric matrices
and Ry, (), are skew-symmetric matrices. Now it is desired to to find a p.d. Hermitian

matrix solution P = P, + 1P, such that
(P, + iP) (A1 + idg) + (A] —iA7)(Py +iPy) — (Py + iP2)(B) + iB,)
(Ri + iRy) ™ (By +1By) (P +iPy) = —(Q1 +1Q2) (9.8)
Since R is p.d.s matrix, R; + RoRi"'R; > 0 and R; > 0. Therefore, |R;| # 0 and
|Ry+RzR1 ™' Ry| #0. Thus, from Theorem 9.2.1 the inverse of R exists and R™'= A™!+iA,
where A = R; + R2R1_1R2 and A = —Rl_le(Rl + R2R1_1R2)—1. Hence

{PiA) - PyAs + ATPi+ ATPy — ((PBy — PyBy)A™" — (P,By + PiBy) )
(BT Py — B] P;) + (P:B1 + P.B;)A™" + (PLBy — P,B;)A)(B] P, + BT Py)}

+1 {P2A1 + P A; + A’{Pz - A:fPl - ((P2B1 + P,B))A"! + (P,B, — PzBQ)A)
(BTP, + BIP,) — ((PuB1 = P,B)A™ — (P,By + P\By)A) (B] Py + B Py) }
= —(Q1 +1Q2) (9.9)

Therefore

P A; — P Ay + ATPL+ AT Py — ((PiBy — P,B;)A™" — (P,B; + PiBy)A)
(BIP, + B B,) + ((P;B; + PiB;)A™" + (PB, — P,B;) A)
(Bg‘Pl + B'1TP2) = _Ql (910)

and

Py A, + PiAy + ATPy — AT Py — ((P:By + PLBy)A™" + (PiB; — P,B,)A)
(BT P, — B]P,)) + ((P\By = P,By)A™! — (P,B; + P, B;)A)

(BiPL+BIP) =-Q, (9.11)
Consider the Riccati equation
PA+ATP-PBR'BTP=Q (9.12)
where
= | _A2:| 5| B B s_| P P 3§ = Q —Q
A A B, B | p Pl Tl Q
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and

IfR,=0,R=Rand A=0

The equation (9.12) includes both the equations (9.10) and (9.11). This implies the

following theorem:
Theorem 9.3.1: The p.d. Hermitian matric P = P, + iP, is a solution of the Riccati
equation (9.7) if and only if the p.d.s. matriz

P —-P
P, P

is a solution of (9.12). P is unique if and only if the matriz P is unique.

Theorem 9.3.2: Assume that P and P are the p.d. matriz solution of equations (9.7)
and (9.15), respectively. A — BR™'BTP is stable if and only if A— BR™'BTP is stable.

Proof: A — BR-'BTP is stable if and only if the Riccati equation (9.12) has an u.p.d.s.
matrix solution. But Theorem 9.3.1 implies that P is the u.p.d.s. matrix solution of
(9.12) if and only if P is the u.p.d. Hermitian matrix solution of (9.7). This is equivalent
to the stability of the matrix A — BR™'BTP. 0

Corollary 9.3.1: Let A, Ay, ..., A, be the eigenvalues of A — BR™'BTP. Then the
eigenvalues of A— BRT'BTP are A1, Mg, --.) Any A1,y A2y < ey A

Proof: The proof follows immediately from Lemma 9.2.4. O

From Corollary 9.3.1 the eigenvalues of A— BR™'BTP are Ai, Ao, ..., Auy Aty Ag, -0y Ap.
Soif A— BR-'BT P has a real eigenvalue, this eigenvalue appears twice in the spectrum.
The n eigenvalues of A— BR™' BT P are contained in the eigenvalue set of A-BR'B"P
and if ); is an pure complex eigenvalue (i.e. \; ¢ R) of A— BR™'BTP, then A; may not
be an eigenvalue of A — BR™!BTP. However, all the eigenvalues of A — BR™'B"P and
A — BR-'BTP lie in the same region.
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9.4 Complex Systems

When the terms “complex system” or “system with complex state and control matrices”
are used, it may seem that the systems under consideration are not directly real life
problems. But as stated in Section 9.1, there is an isomorphism from the R-linear vector
space of complex matrices onto a subspace of the R-linear vector space of real matrices
which gives information about the corresponding system with complex states in the real
world. In this section an example of this type of system model is presented. Complex
systems (with complex state and control matrices) have been studied in a few papers

(Martin [83], Hazewinkel and Martin [56], Byrnes et al [18]). Consider the system
& = Az + Bu (9.13)

where A = A +i4;, e CV", B=B1+iB, € C*™,u € C*, x € C". Assume z = 1, +ix,
and u = uy + tuy where 1, 2 € R*, u;, up € R™. The matrices A, B are defined as in

(9.12) and

Then the complex system (9.13) is equivalent to the real system

T T
T2 )

Therefore, any complex system of order n is equivalent to a 2n-th order real system.

A —A
A, A

B, -B,
B, B,

“ ] (9.14)

Ug

Theorem 9.3.2 gives the relationship between the stability of a complex system and ap-
F1 -
Fr  H
F = F, + 1%, is a feedback for the complex system (9.13). When A+ BZ is a stable

propriate real system. If Z = [ is a feedback for the system (9.14), then

matrix, A + B.Z is also stable. In fact the poles of the system (9.13) lie within the same
region as the poles of the real system (9.14). Therefore an optimal feedback for the real

system (9.14) is & = FF with

o)

F  FH
where
# = -A'BTP +A'BTP,+ ABTP, + ABTP,
F, = —A'BIP,—- AT'B] P+ AB] P, — ABTP,

with the same A, A and P as in Section 9.3.
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H, H,
Ll Ll
\IT/
M

Figure 9.1: Two helicopters with a rigid bar
9.4.1 Example of a Complex System Model

The twin lift helicopter system (Martin [83], Hazewinkel and Martin [56], Byrnes et al

T z
D= Y+
) T

It has been shown by Wang et al [124] that if (A,, B) is controllable and

[18]) is given by

B 0
0 B

A Ay
—Axy A

“ ] (9.15)
Uz

B 0
0 B

?

oA 4
—Ay A

(/i,B ) may not be controllable. Therefore, this system cannot be asymptotically stabilized

by local state feedback. The system (9.15) is equivalent to the complex system

where z = 11 + 172 and u = u; + iuy . The system (9.16) (and also (9.15)) is controllable
if and only if (A4, + tA2, B) is controllable.

The moving of large loads with helicopters is important in commercial and military opera-
tions. The Sikorski CH—53E is a large helicopter able to carry a payload of approximately
40,000 Ibs. Consider using two helicopters for carrying large loads; this is known as twin
lift [83]. Assume two helicopters Hy, H; are carrying a rigid bar attached by cables such
that the mass, M, is in the centre of the cable as is shown in Fig. 9.1. The system is mod-
elled by linear dynamics of the form (9.15) where the helicopter dynamics are modelled
by the matrix Aq, representing the coupling between the two systems and containing the

effect of the parameters L; and Lp. The local feedback of z; by u,, and z; by u,; should
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have the same gain matrix K, i.e. u; = Kz;, j =1, 2 and hence u = u;+ius = K(z;+iz5).
The control for a complex system can be represented as a complex vector. It is desired

to obtain real feedback. Generally, a complex system is in the form

= Az + Bu (9.17)

where A, B,z and u are complex matrices, i.e. A = A; + 14, and B = B, + iB, where

A,, B, are symmetric and A, By skew-symmetric matrices.
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9.5 Summary and Discussion:

In this chapter the R-vector spaces of complex and real matrices have been studied and
the relationship between the spaces have been clarified. More precisely, there is an iso-
morphism from the R-vector space of complex n X n matrices onto a subspace of the
R-vector space of 2n x 2n real matrices in the sense of rings and vector spaces. This
yields a suitable manner of finding the solution of the CARE. The existence conditions
for the CARE u.p.d. solution have been presented. The relationship between the complex
system of order n and its equivalent system which is a 2n-th order real system has been
given. Any problem in the R-vector space of complex matrices can be converted to the
R-vector space of real matrices. Complex systems can be converted to real ones. Complex

feedback should be considered and the associated real feedback applied.



Chapter 10

Conclusions and Suggestion for Future
Work

10.1 Conclusions

Sliding mode control is a well-known approach to the problem of control of uncertain
systems, since it is invariant to a class of parameter uncertainty. Well-established invest-
igations have shown that the sliding mode controller/observer is a good approach from
the point of view of robustness, implementation, numerical stability, applicability, ease of
design tuning and overall evaluation. In the sliding mode control approach the controller
and/or observer is designed so that the state trajectory converges to a surface named the

sliding surface. It is desired to design the sliding surface so that the system stability is

achieved.

The continuous and discrete-time optimal sliding mode and optimal control have
been studied. The sliding mode in regulator and tracking problems, and also a class of
servo-mechanism and reference signal systems have been considered. Using the linear
quadratic cost functional guarantees the stability of the system. When the system has
a reference signal input, the design of the sliding surface is different. In this case the
reference input and its effect on the system must be considered. Therefore by consid-
ering output tracking and regulator problems the sliding surface can be obtained. The
reference input has been considered as a dynamic system, and the sliding control and the
sliding surface have been obtained. In this case the reference system is a dynamic system

independent of the system and operates as a signal reference controller or generator.

211
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Frequency shaping control design linked with linear quadratic optimal control and
sliding mode control is a technique for controlling systems with uncertainties. A new
method for designing the control and the sliding surface has been proposed when the LQ
weighting functions are not constant for all frequencies. By using this method pre- and
post-compensators have been designed. The resulting augmented system is a combination
of the LQ system and compensators. The order of the augmented system depends upon
the dimension of the LQ system state and the weighting functions. It has been concluded
that the sliding mode can be expressed as a linear operator of states, i.e. a dynamic
system. Additionally, conditions have been obtained to retain the spectrum of the LQ
reduced system as a subset of the spectrum of the augmented system. This is important if
compensators for the system are required such that the eigenvalues of the LQ system are
the eigenvalues of the augmented system. Furthermore an iterative constructive procedure
for the optimal sliding mode has been developed. This method enables one to find various
sliding surfaces and by looking at the eigenvalue locations in the left-hand half-plane a

sliding surface can then be selected to suit.

The aim of observer design is to find an estimate for the state and, if the input
is unknown, estimate a suitable input. Using the sliding control input form observer
a suitable estimated input can be obtained. In this thesis a discontinuous observer for
full order systems with disturbance input has been designed. The system may not be
ideally in the sliding mode and the uncertainty may not satisfy the matching condition.
The proposed sliding observer design method yields an estimated state which nearly ap-
proaches the actual state. A sufficient condition ensures the asymptotic stability of the
system with some limitations on the uncertainty input. Otherwise, this method ensures
only that the estimated state tends approximately to the actual state. The bounds of
this approximation have been expressed precisely. In this way, the state error trajectory
enters a compact set at a finite time and thereafter remains there. The sliding mode also
occurs after a finite time; so there exists a finite time such that the state trajectories enter
the ‘sliding region’ and move to the origin along and in the vicinity of the sliding surface.

An controller-observer design method has been presented by considering the sliding mode

properties of linear systems.

The sliding dynamics for SISO and MIMO linear systems and conditions for the
existence of the sliding mode in the presence of uncertainty, have been studied. The
existence of the sliding mode guarantees that the state trajectories converge to a sliding
surface at a finite time and move along the surface to the origin thereafter. However, the

system may generally not be stable. For the system to be asymptotically stable, some
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further conditions may be needed.

A new straightforward technique for determining whether the system in the sliding
mode is independent of the perturbation input has been presented. Also sufficient condi-
tions for the sliding mode control design of systems with disturbance input and the sliding

mode dynamics have been obtained.

The sliding surface for the discrete-time systems is a lattice called the sliding lat-
ticewise surface or more concisely the sliding lattice. A new control design technique using
the properties of the discrete sliding mode has been proposed. This control guarantees the
stability of the sliding mode and the stability of the system. This control does not have
the same structure as continuous SMC. The behaviour of the system in the sliding mode
and stability conditions have been studied. If the nominal reduced order matrix is stable,
then the state in the sliding mode is bounded. In this case the width of the boundary
layer depends upon the disturbance bound, the norm of the distribution disturbance input

map and the degree of stability of the nominal reduced system matrix.

The main problem in discrete-time sliding systems is the perfect rejection of unknown
disturbances during the sliding mode. In the discrete-time case perfect disturbance re-
jection is achieved if only the disturbance is exactly known and the associated equivalent
control component is applied. One needs to consider various restrictive conditions like;
() the matching condition, (i7) suitable estimation for the successive disturbance dif-
ference (the variation of the disturbance sequence) {(k) — £(k — 1), (471) the difference
sequence &(k) — &(k — 1) is a decreasing sequence or sufficiently small after a finite time.
Although this problem also appears in continuous systems, in the case of discrete-time
systems the proof of perfect disturbance rejection is more complicated. This difference
arises because the reaching sliding condition of continuous systems differs from that of
discrete-time systems. In discrete-time systems in the study of the stability of the system
and also the reaching sliding condition, the discrete Lyapunov function is employed and
difference equations appear. In the case of continuous systems the continuous Lyapunov
function is utilized which results in derivatives. In the discrete-time control design method
one needs to use an estimate for the disturbance input. One may achieve the estimation
as in [112]. Another approach uses the equivalent control with zero disturbance and one
assumes that the disturbance does not affect the equivalent control. More precisely, since
the equivalent control can be considered as the average of the control input, if the mean of

the disturbance is zero, then the equivalent control may be assumed to be “independent”

of the disturbance input.
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There are two approaches to the design of a discrete-time sliding mode controller: ()
in the first instance a dynamical sliding mode(or the control) is specified, and then it is
necessary to find the conventional control (sliding mode dynamics) [46], [21]; (i) a control
is found by using the properties of the sliding mode so that the stability of the nominal
systems in the sliding mode is conserved. In this thesis both methods (i) and (i) have
been applied successfully to linear systems. New discrete-time system stability conditions
have been proposed and the design of the optimal sliding mode matrix has been extended
to DSMC. Most previous DSMC research has considered only SISO systems.

New results for the stability of reconstruction error systems of linear discrete-time
systems have been proposed. The same difficulties which occur in the disturbance rejection
problem exist for the discrete-time sliding observer. The cone condition for the error
system is a boundedness condition and satisfying this condition is difficult in practice.
However, the stability of the system is guaranteed if one of the following conditions is
satisfied: (i) the cone condition for the disturbance input with respect to the state; (iz)
there exists a finite time instant such that after this time the disturbance input sequence
€ is a decreasing sequence. So a simple condition on the disturbance should yield the

stability of the error system. Further research is needed to find this condition.

The sliding mode control of time-delay systems has been considered. Time-delay slid-
ing system stability has been studied for the cases of having full information about the
delay and also lack of information. The sliding surface is delay-independent as for the tra-
ditional sliding surface, and the reaching condition is achieved by applying a conventional
discontinuous control. The sliding mode on a specified surface is achieved if the state
converges to the surface. Two kinds of sliding surface can be designed: (i) the sliding
surface is independent of the delays; (ii) the sliding surface depends on the delays. In the

second case the delays should be constant, otherwise the sliding surface is not a simple
hyperplane.

The Lyapunov and Riccati equations, and stability properties of complex and real
systems have been considered. By using these equations the sliding surface and feedback

gain matrix can be found such that all the eigenvalues of the closed-loop system lie in a
specified region.

Qeveral new methods have been proposed for all the eigenvalues of the closed-loop
system to lie in a specified region. Eigenvalues can be specified in a region in the left-hand

half-plane for the system and design the gain feedback matrix to yield these eigenvalues.

This method can also be applied to the design of the sliding gain matrix. The following
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regions have been considered; a sector, an infinite vertical strip, a disc, a hyperbola and
the intersection of two sectors. A modified new theorem with a new proof has been
presented to place all the eigenvalues of the closed-loop system in a specified vertical
strip in the left-hand half-plane. These methods are based on properties of the Riccati
equation. The ARE with zero right-hand side has a semi-p.d.s. solution matrix, and only
if the state matrix is completely unstable, does this ARE have a p.d.s. solution. When
the matrix is stable, the semi-p.d.s. solution is the zero matrix. Illustrative examples have
been presented. If all the eigenvalues of the closed-loop system are in the specified sector,
the associated CARE has a p.d. Hermitian solution, but the converse is not always true.
The definition of a p.d. matrix in the statistics literature is equivalent to the p.d. of the

elements but this definition is not appropriate in control theory.

The complex equation, positivity of a complex matrix and the control of complex sys-
tems are significant problems which appear in many control theory problems. Generalized
complex Riccati equations have been considered. The positivity concept of a matrix has

been carefully defined. A method for finding the solution of the complex Riccati equation

has been proposed.

There is an isomorphism from M, (C) into M>,(R), so the R-vector space of complex
matrices is isomorphic to the conventional R-vector spaces of real matrices in the sense of
rings and vector spaces. This yields a suitable way of finding the solution of CARE. Ex-
istence conditions for the u.p.d. solution of CARE have been presented. The relationship
between a complex system of order n and its equivalent system, which is a 2n-th order
real system, has been given. Any problem in the R-vector space of complex matrices can
be converted to the R-vector space of real matrices. For instance, complex systems can

be converted to their real counterpart.

10.2 Suggestions for Further Research

In this section some problems requiring further research and some open questions are
discussed. Possibly most results of this thesis could be extended to nonlinear affine systems

&= A(t,z)z + B(t,z)u+ f(t,z,u)

Also some results for continuous systems could be extended to discrete-time systems.

Some of these problems are:

() The optimal sliding tracking problem for a nonlinear affine system with uncer-



Chapter 10. Conclusions and Suggestions for Future Work 216

(i)

(iv)

tainty needs to be investigated; also linear and nonlinear discrete-time systems.
If the bounded reference input is a stepwise function, the stability of the system is
achieved. But if the reference signal is not a stepwise function and the reference

input is only bounded, the stability of the system needs be investigated.

Useful results may possibly be obtained by investigating of the sliding condition
in the sense of the boundary layer and also in extending the theory to nonlinear

systems.

Further research should address H,, and the sliding mode, and extend the work in
[65]. Possibly a generalized system could be found and then H,, methods could be
used. Similarly to [55], by using the H,, approach, the sliding gain matrix could
be found for cases (iii) and (iv) of Section 4.1. Moreover, in [55] only one way has
been presented for obtaining the sliding gain matrix. However, some H,, methods
to obtain the feedback gain matrix, could be adapted to those augmented systems

which have been discussed in Chapter 4.

Further research should investigate bounds tighter rather than those stated in
Chapter 5. The results may be extended to nonlinear systems with nonlinearit-

ies only in the disturbance input term.

It is interesting to consider the system with unmatched uncertainty and obtain a

relaxed sliding condition to impose asymptotic stability.

Theorem 6.8.2 determines the relationship between the solution of the DLE (6.67)
for arbitrary weighting function ¢, and the solution for = I. An open prob-
lem is to find a relationship between the eigenvalues of the p.d.s. matrix solu-
tion of the discrete-time Lyapunov equation, particularly a bound for the ratio

Amin(Py)/ Amin(Py) Which appears in some stability conditions, such as (6.69).

The sliding mode control of delay systems is a relatively new field which needs to
be developed. The stability of the sliding mode control of a system with a delay on
the state has been considered. It was assumed that the delay is constant, but if the
delay is a function of time, how should sliding control be defined so that the state
lies in a certain sliding surface. The extension of the results of this thesis to systems
with finite delays is straightforward. The results should also be extended to systems
with delay in the control and to the sliding mode observer for time-delay systems.
Further research may yield a weaker condition than (7.20) to ensure system stability

independent of the delay.
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(vi)

(viz)

(viit)

(12)

Further work is needed to obtain conditions weaker than those in this thesis, for the
eigenvalues of a closed-loop continuous system to lie in the specified region in the
left-hand half-plane. By using the CARE one may obtain appropriate conditions.

Using the transfer function of the closed-loop system may also prove fruitful.

Complex feedback may be considered to find the associated real feedback so that
the stability of the system and other desired properties are preserved. As stated
in Chapter 8, the CARE gives a complex feedback gain matrix which has not the
same properties as real case. However the CARE yields a associated real feedback
for a real system with order two times higher than original system. The problem is
whether one can drive a real feedback gain matrix by using the complex feedback

gain matrix or more precisely with the solution of the CARE.

More general cases of the Riccati equation and some related problems are still open
questions. A method is also required to obtain the semi-p.d.s. solution of the ARE

when the weighting matrix of the right-hand side is zero (see equation (8.25)).

More research is required to obtain a dynamical well-behaved sliding mode so that
the stability of the system in the presence of external unmatched disturbance input
is achieved. Using the transfer function of the system may be a possible way to
design a sliding mode. This method may need some information about the zeros of

the system.

There are many ways forward regarding the adaptive sliding surface design for con-
tinuous and discrete-time systems. Sliding surfaces could possibly be designed by

using a method similar to the backstepping approach [128).



Appendix A

A.1 Stability

Consider the time-varying system
& = f(z,1) (A.1)

where z € R* and f : D x Ry — R" where the domain D C R", is a piecewise continuous

function in ¢t and locally Lipschitz in z.

Suppose Z € D is an equilibrium point with f(Z,t) = 0 for all £ > #,. Any equilibrium
point can be shifted to the origin via a change of variables, y = z — Z. So without loss of

generality, all the definitions are stated for the case when the equilibrium point is at the

origin.
Definition A.1.1: The equilibrium point 0 of (A.1) is

(i) stable, if for each e > 0 there exists a (e, to) > 0 such that for all t > ¢t

lz(o; zo, to)|] < & = ||z(t; @0, to)|| < € (A.2)
(11) unstable, if it is not stable
(131) asymptotically stable, if it is stable and there exists a d such that
|z (to; zo, to)|| <0 = tl_i)r(x)lox(t;mo,to) =0 (A.3)
Definition A.1.2: The equilibrium point 0 (A.1) is

(1) ezponentially stable, if there exist two positive real numbers, o and 3, such that for

for all t = 1o,

ll2(t; To, ta)l| < cllz(to; o, to)|le™#¢H) (A.4)

218
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(ii) quadratically stable, if there exist p.d.s. matrices P, Q € R"*™ such that for all ¢ > ¢,,
2TPf(z,t) < —27Qx (A.5)

Corollary A.1.1: Consider the system (A.1) satisfying (A.5). If the equilibrium point O

is quadratically stable, then it i1s exponentially stable.

Proof: Consider the Lyapunov function V = z7Pz. From (A.5)

dv (z(t)
dt

< -227Qz (A.6)

From (A.6) one can show that (A.4) holds with

Amax(P)
a = ) = /\min P_l
A 0 AmnP7E)
a
Theorem A.l.1: Consider the linear time-invariant system
i(t) = Ax(t) (A.7)

The origin 18

(i) asymptotically stable if all the eigenvalues of A lie in the open lefi-hand half-plane

(1) stable, but not asymptotically stable, if all the eigenvalues of A lie in the closed left-

hand half-plane, i.e. A has one eigenvalue on the imaginary azis
(4ii) unstable if at least one eigenvalue of A has a positive real part

(1v) completely unstable if the real part of all the eigenvalues of A are positive.

Theorem A.1.2: Consider the linear time-invariant discrete-time system
z(k + 1) = Az(k) (A.8)

The origin 18
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(i) asymptotically stable if all the eigenvalues of A lie inside the unit circle.

(13) stable, but not asymptotically stable, if A has at least one eigenvalue on the boundary

of the unit circle.
(141) unstable if at least one eigenvalue of A is outside the unit circle

(iv) completely unstable if all the eigenvalues of A are outside the unit circle.

A.2 Boundedness
Definition A.2.1 The solution z(t; zo,t,) of (A.1) is

(i) bounded, if there exists a constant h(zg,ty) > 0 such that

12(£; o, to)|| < h(zo, to) (A.9)

(i1) uniformly bounded, if there exists a constant h)(rg) > 0, possibly dependent on z,

but not on %g, such that

|z (t; o, to)|| < h1(zo) (A.10)
(iii) ultimately bounded, with respect to a compact set X C R, if there exists a nonneg-

ative time T(tg, Tg, X ) such that for all ¢ > ¢y + T'(to, 2o, X), z(t) € X.

(1v) uniformly ultimately bounded with respect to a compact set X € R", if T(zo, X),
possibly dependent on zo but not on to defined as (717) is independent of o, i.e. there
exists a nonnegative time T'(zg, X) such that for all t > tq + T(z0, X), z(t) € X.

Definition (4v) (A.2.1) can be stated as follows [62, page 202]:

The solution z(t; zg,to) of (A.1) is uniformly ultimately bounded, if there exists constants

a and ¢, and for every a € (0, c) there is a constant T’ = T'(a) such that, for allt > to+ T,

||z (to; Zo, to) || < & = ||z(t; 20, t0)|| < b (A.11)
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B.1 Kronecker Product

Let A = (a;;) € C**™ and B = (b;;) € C°*9. Then A ® B is an np x mq matrix having
the (4, j)-th block a;; B. Basic properties are:

(B)) (A®B)* = A*Q® B*.

(B;) Let C and D be m x r and g X s, respectively; then (A® B)(C ® D) = AC ® BD
(B;) If A and B are nonsingular, m = n and p = ¢, then (A® B)™! = A~! @ B!

(By) fm=nandp=gq,and X (1 <4< n)and p;j(l < j < p) are the eigenvalues of A
and B, respectively, then

(i) the eigenvalues of A ® B are A;u;
(i1) the eigenvalues of A® I, + I, ® B are \; + p;.

221
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C.1 Real Algebraic Riccati Equation (ARE)

Let Aec R, C e R, Q € R, R € R™*™ and B € R**™. Suppose R and () are
p.d. matrices, 7 < n and m < n. Assume that (A, B) is a stabilizable pair and (4, C) is
a detectable pair. The real continuous algebraic Riccati equation
ATP+ PA-PBR'BTP =CTQC (C.1)

has a u.p.d.s. P matrix solution and all the eigenvalues of A — BR™'BTP lie in the
left-hand half-plane. The Hamiltonian matrix is defined as

A —BR'BT
-CTQC —AT
If A is an eigenvalue of H, then so is —\ (with the same multiplicity). Let U be the matrix

(C.2)

of eigenvectors of H, ordered so that the n left-most columns correspond to eigenvalues
with negative real parts, and the n right-most columns correspond to eigenvalues with
positive real parts. If (A, B, QY*C) is minimal, H has no eigenvalues on the imaginary

axis [80, page 226]. Now partition U into n x n blocks

Un Ui
Uy Uy

(C.3)

The solution to (C.1) is then given by P = U, Uj;'.

Theorem C.1.1: For the matriz H in (C.2) let U (C.8) be any matriz which transforms
H into upper Jordan form, U"'HU = J. Then provided that Uy, is nonsingular, the
solution to (C.1) is given by P = Un Ui and the eigenvalues of A— BR™'BTP are the

7= Su S
0 Sy

222

same as those of Sy where
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Remark C.1.1: As already stated, it can be shown that provided (A, B) is completely
controllable and (A, @/2C) completely observable, then H in (C.2) has no eigenvalues
on the imaginary axis [80, page 50], [11, pages 282-284]. This ensures that there exist

nonsingular matrices Uy;. 0O

C.2 Positivity

Theorem C.2.1 The real matriz
Py Py
Py Py

is p.d. if and only if one of the following conditions is satisfied:

(i) P and Py, P! Py, are p.d. matrices

(ii) Py and PiaP' Py are p.d. matrices.
Lemma C.2.1 Let b= [b,ba,... ,b,)7 and c = [c1,¢cp,...,¢,). Then

1. det(M — be) = (=1)"A" "1\ — cb)

2. det(M — (I —bc)) = (=1)*(A = 1) }(A = 1 + cb)

be, 116l el
be, _ lbll llell
5. det(M — (75 = (1 - 12 (A - 112 lel®
cb” “cb (cb)?
Proof:
(b_c g be\  cTblbe
ch ch) —  (cb)?
_ cTlblf*e
NG
I 1
= (cb)2c c
The matrix ¢Tc has just one nonzero eigenvalue which equals the trace of cTc, i.e., ||c||%.

2] /|2
Therefore, the maximum eigenvalue of (%)T(gg) is Ill%Lb”)—Z“ o
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For MIMO systems the following lemma holds:
Lemma C.2.2 Let B and C be n x m and m X n matrices. Then

1. m eigenvalues of B(CB)~'C are 1 and the remaining (n — m) are zero.
2. n — m eigenvalues of (I — B(CB)~'C) are 1 and the remaining m are zero.
3. the matriz B(CB)~'C has m nonzero and n — m zero singular values.

4. m singular values of I — B(CB)~'C' are zero and the remaining n —m are nonzero.

5. ||B(CB)™'C|| =|lI - B(CB)™'C]|.

C.3 Barbalat Lemma

Theorem C.3.1 (Barbalat): Consider the function ¢ : R, — R. If ¢ is uniformly

continuous and  lim fot é(7)dr = 0 exists and is finite, then

lim ¢(t) = 0

t—o00

Proof: See [62, page 186]
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asymptotic stability, 219

Barbalat lemma, 224
boundedness, 220

causal, 45
chattering, 2, 22
compensator, 5, 48
design, 44, 50, 56, 212
servo, 33
complex systems, 199, 207
controllability, 25, 34, 40, 208

discrete Riccati equation, 117, 126

discrete-time sliding mode control, 101

epimorphism , 104

equilibrium point, 218

equivalent control, 2, 10, 11, 29, 30, 103,
107

virtual, 35, 81, 138

error system, 71

estimate of disturbance, 74, 77, 113, 135,
213

estimated discontinuous sliding control,
72, 80

frequency
response, 44
shaping, 44, 212

homomorphism , 104
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invariance condition (see also matching
condition), 4, 13, 105
invariant
eigenvalue, 175, 192
set, 179
solution, 170, 193
invariant
eigenvalue, 174
isomorphism, 104, 200, 215

iterative method, 47
Kronecker product, 221
latticewise hyperplane, 103, 106

matched uncertainty (see matching con-
dition), 13
matching condition, 4, 13, 36, 70, 135,
138, 212
€-, 88, 91

notation, xi

observer, 70, 211
discrete-time sliding mode, 136
discrete-time systems, 105, 124
gain matrix, 80
gain vector, 125
time-delay sliding mode, 148
optimal
control, 28, 34
discrete-time control, 117
sliding lattice, 118, 136
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sliding mode, 28, 212

sliding mode control, 105

sliding surface, 28, 38, 41, 42, 46, 52,
53

pole placement, 150, 152, 166
pole placement in
a hyperbola, 172
a sector, 152, 181
a vertical strip, 181
the intersection of two sectors, 171,
193
practical stability, 91

projector operator, 12

reconstruction error system, 80, 125,
reduced order discrete-time system, 105
reduced order system, 15, 28, 56, 81, 84,
114
reference models, 39
regulator, 33, 43, 118, 211
relative degree, 11, 12
Riccati equation, 26, 28, 168, 215, 222
complex, 150, 154, 166, 199, 204
generalized, 157
with zero right-hand side, 166
robustness, 4, 6, 44, 70, 80, 105

servo-mechanism systems, 33

sliding mode, 12, 18
control design, 101
control, 1, 7, 45, 52, 104, 148
control design, 43
control of time delay systems, 6
observer, 6

sliding surface, 8, 12, 15, 26, 32, 47, 138,

144, 148
stability, 218
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complex systems, 207
continuous linear systems, 219
definitions, 218
discrete-time systems, 115, 135, 219
error discrete-time system, 128, 136
observer system, 83
reconstruction error system, 72, 85,
92
reduced order system, 27, 32, 53
sliding augmented system, 41
sliding discrete-time systems, 112
time-delay systems, 137, 143, 144
stability
reconstruction error system, 72
strictly
positive real condition, 71, 144, 145
proper, 52
system stability, 28, 43, 86, 141, 144,
154, 180, 212, 214

time-delay systems, 137, 214
tracking, 28, 33, 41, 58, 211
twin lift helicopter system, 208

two-link robot manipulator, 58

ultimate boundedness, 88, 220
uniform ultimate boundedness, 88, 89, 91,
220

unmatched uncertainty distance, 88
variable structure control, 1

width of
boundary, 22
boundary layer, 22, 102, 108, 112,
135, 213
boundedness, 35, 115



