
GLOBAL ANALYSIS OF DYNAMICAL SYSTEMS 

ON Low-DIMENSIONAL MANIFOLDS 

Y I So G 

A THESI BMITTED 

T O 

THE U IVERSITY OF SHEFFIELD 

THE FA LTY OF ENGI EERING 

D ME T OF A TOMATI CO TROL A 0 Y TEM E GI EERI NG 
THE PART 

FOR THE DEGREE OF 

DOCTOR OF PHI LOSOPHY 

J E 200 



© Copyright by Yi Song, 2008. 

All Rights Reserved 



iii 

To my dearly loved parents. 



iv 

Abstract 

The interaction of topology and dynamics has attracted a great deal of attention from 

numerous mathematicians. This thesis is devoted to the study of dynamical systems 

on low-dimensional manifolds. 

In the order of dimensions, we first look at the case of two-manifolds (surfaces) and 

derive explicit differential equations for dynamical systems defined on generic surfaces 

by applying elliptic and automorphic function theory to uniformise the surfaces in 

the upper half of the complex plane with the hyperbolic metric. By modifying the 

definition of the standard theta series, we will determine general meromorphic systems 

on a fundamental domain in the upper half plane, the solution trajectories of which 

'roll up' onto an appropriate surface of any given genus. Meanwhile, we will show 

that a periodic nonlinear, time-varying dissipative system that is defined on a genus-p 

surface contains one or more invariant sets which act as attractors. l\loreover, we shall 

generalize a result in [Martins, 2004] and give conditions under which these invariant 

sets are not homeomorphic to a circle individually, which implies the existence of 

chaotic behaviour. This is achieved by analyzing the topology of inversely unstable 

solutions contained within each invariant set. 

Then the thesis concerns a study of three-dimensional systems. \Ve give an explicit 

construction of dynamical systems (defined within a solid torus) containing any knot 

(or link) and arbitrarily knotted chaos. The first is achieved by expressing the knots 

in terms of braids, defining a system containing the braids and extending periodically 

to obtain a system naturally defined on a torus and which contains the given knotted 

trajectories. To get explicit differential equations for dynamical systems containing 

the braids, we will use a certain function to define a tubular neighbourhood of the 

braid. The second one, generating chaotic systems, is realized by modelling the Smale 

horseshoe. 

Moreover, we shall consider the analytical and topological structure of systems 



v 

on 2- and 3- manifolds. By considering surgery operations, such as Dehn surgery, 

Heegaard splittings and connected sums, we shall show that it is possible to obtain 

systems with 'arbitrarily strange' behaviour, Le., arbitrary numbers of chaotic regimes 

which are knotted and linked in arbitrary ways. 

We will also consider diffeomorphisms which are defined on closed 3-manifolds 

and contain generalized Smale solenoids as the non-wandering sets. l\lotivated by the 

result in [Jiang, Ni and Wang, 2004], we will investigate the possibility of generating 

dynamical systems containing an arbitrary number of solenoids on any closed, or i­

entable 3-manifold. This shall also include the study of branched coverings and Reeb 

foliations. 

Based on the intense development from four-manifold theory recently, we shall 

consider four-dimensional dynamical systems at the end. However, this part of the 

thesis will be mainly speculative. 
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Chapter 1 

Introduction 

1.1 Overview 

Dynamical systems, as an independent discipline, has been studied for a long time. 

The roots of dynamical systems theory can be traced a long way back as in the 

Principia Mathematica of Issac Newton. His attempts to understand and model the 

motions of the bodies in the solar system eventually led to his development of the 

calculus. From then on the study of dynamical problems as differential equations, 

which gave functional descriptions of the solutions to physical problems or of the 

mathematical models describing the physical systems, started and has attracted more 

and more attention ever since. 

However, it was at the end of the nineteenth century that Henri Poincare first es­

tablished the modern, geometric theory of dynamical systems when he was studying 

the three body problem of celestial mechanics (see [Poincare, 1899]). The qualita­

tive analysis of differential equations then became the centre of attention because, 

determined by the global phase portrait, the qualitative behaviour provides better 

information than just obtaining a formula since it geometrically describes the move­

ment of every solution for all time. 

1 
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In spite of the simple forms that differential equations might take, the solutions 

to some specific problems have been proved tremendously difficult and engaged many 

mathematicians. Following Poincare's work, the last hundred years witnessed a re­

markable explosion in this subject due to the contribution of a lot of differential topol­

ogists, including Birkoff, Pontryagin, Kolmogorov, Anosov, Arnol'd, Moser, Smale, 

etc. To point out, in [Birkhoff, 1912]' Birkhoff outlined the conjecture of Poincare 

that the 'general' motion of dynamical systems in phase space was of the so-called 

'discontinuous type'. Meanwhile, he introduced the beautiful idea of 'minimal' sets of 

motions, also known as the 'recurrent' sets, which declared the beginning of the study 

of symbolic dynamics; Smale, in his classic paper [Smale, 1967], outlined a number of 

outstanding problems and stimulated an explosion of research in this field. However, 

although several potential applications has been sketched, (such as in [Takens, 1980], 

Takens addressed the importance of 'strange attractors' in the study of turbulence,) 

until the mid 1970s the modern methods of qualitative analysis were mainly in the 

hands of pure mathematicians, 

It is during the last two decades that dynamical systems theory has found a lot of 

exhilarating applications in the scientific world other than mathematics. For example, 

in the engineering community, especially solid and fluid mechanics, there is now a 

widespread interest in strange attractors, chaos, and dynamical systems theory; also 

since a knot can be obtained as the periodic solution of some differential equation, 

dynamical systems theory hence provides penetrating insight into the study of knot­

theory-related areas. These range from molecular biology, which involves topological 

structures of closed DNA strands, to physics, due to its surprising connections with 

quantum field theory. 

l\luch of the theory of dynamical systems in n-dimensional spaces is studied in 

Rn, i.e. a 'flat' Euclidean vector space (see, e.g. [Perko, 1991]); indeed phase-space 

portraits are shown in this way. However, globally speaking, a dynamical system is 
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situated on some manifold, M, which constitutes all the states ofthe system and hence 

is also known as the state space. Defined by some first order differential equation 

(ODE) 

x = f(x), (1.1) 

where f E C1(M), the unique solution will then generates a flow CPt : M ---? M, t E R 

Geometrically, these curves determine the motion of all the points in the space under 

this specific dynamical system. It is this flow that builds up the bridge which links 

dynamical systems with the corresponding topology of the base manifold. Here is an 

example. 

Example . Consider a spherical pendulum (see fig. 1.1 for illustration), it has two 

degrees of freedom, and the Lagrangian for this system is 

The Euler-Langrange equations yield 

mg 

Figure 1.1: A spherical pendulum 
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dt (mi2B) - mi~ sin B cos B</J2 + mgi sin B = 0 , 

{

d' • 

1t(mi2(sinB)2</J) = 0 

so the system is given by two equations of motion, i.e. 

{ 
~ = 1>2 sin B cos ~ -. g / i . sin B 

</J = - (2 cos () . B • </J) / sin B 

4 

In phase-space coordinate, by setting Xl = B, X2 = iJ = WE, X3 = </J, X4 = 1> = wq" 

we have 

• 2 . /i . X2 = X4 SlllXl COSXI - g . SlllXl 
(1.2) 

This is a 4-dimensional system. Now assume X3 = </J = k, where k is a constant. 

Consequently X3 = 0 and X4 = we/> = 0, the system will then become 

X2 = -gil· sinXI 

X3 = 0 

which stands for a single pendulum in the 2-dimensional case. Fig. 1.2a shows the 

trajectories in the phase-plane. 

By identifying -7r with 7r and then gluing the two ends of the resulting cylinder 

together, we know that a single pendulum is defined on a Klein bottle (see fig. 1.2). In 

fact, by Liouville's theorem, any integrable Hamiltonian system has integral surfaces 

which are either tori or Klein bottles (see [Abraham and Marsden, 1978; Arnold, 

1989]). 
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01 

9 

(a) (b) (c) 

Figure 1.2: A simple pendulum is defined on a Klein bottle. 

Moreover by setting 1;3 = We/> = k, i.e. the system has a fixed nonzero angular 

velocity in c/J, (1.2) then becomes 

Xl = X2 

X2 = x~ sin Xl cos Xl - gil· sin Xl 

X3 = k 

X4 = 0 

which is entiallya 3-dimen ional hyperplane given by X4 = c (where c is a constant) 

within ]R4. Furthermore, since the vector field is periodic in both XI- and x3-axis with 

period 27r, it i naturally defined within the cube 

as shown in fig. 1.3a. 

e 

(0) (b) 

Figure 1.3: Phase-plane portrait of the spherical pendulum when w e/> = k. 
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Note that the phase-space portrait is a sequence of 2-dimensional single pendulums 

that sit on different slices defined by ¢ = k, and since e, ¢ = 7r and e, ¢ = -7r are 

physically the same, we can identify them accordingly by pairing the opposite sides. 

In order to define the system on a compact manifold, we compress the infinite 

cube to a finite one, as shown in fig. 1.3b. Since the dynamics at the top and bottom 

ends are pointing the opposite directions, the appropriate identification yields a self­

intersection in the 3-dimensional Euclidean space fig. 1.4 illustrates the embedding 

in IR3. 

~
. 

=>-

. .r
o

" , . 

Figure 1.4: Construction of a 3-dimensional solidKlein bottle. 

Thu we obtain the 3-manifold on which this special spherical pendulum is situ-

at d. W all it 3-dim n ional olid Klein bottle. 

Th abov xample ugge t a potential link between dynamical systems and man-

ifold th ory. ntH now, a gr at amount of research has been carried out to tackle 

th problem of how to describe the flow ¢t geometrically via its action on subsets of 

M. Thi impJi clas ification of the asymptotic behaviours of all possible solutions, 

by finding quilibrium point , p riodic orbits, homo clinic loops, separatrix cycles and 

trang attractor as limit et . In many cases, the topological changes of ¢t under 

p rturbation ar of the mo t interests. In fact , many of the exhilarating r suIts 

achi v by both dynamici ts and topologists have proved that this area of research 

i v ry int r ting and promi ing, hence well worth a continued effort. 
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1.2 Low-Dimensional Topology 

Low-dimensional topology, as an independent subject of mathematics, has been un­

dergoing an intense development for the last century. The reason why it has received a 

large amount of attention is because the approach to algorithmic solutions in topology 

always proves to be a rich source of well-stated mathematical problems. 

11anifold theory possesses a central theme of low-dimensional topology. lIistor­

ically, the topology of two-manifolds is well understood with one unique invariant, 

the Euler characteristics, which can distinguish all different surfaces topologically. 

Three-manifolds theory turns out to be much more difficult since a complete set of 

topological invariants does not exist. However, lots of efforts from numerous topol­

ogists have contributed to a great deal of useful invariants. In [Thurston, 1979], the 

idea was first proposed of approaching 3-manifold topology geometrically. Then in 

the 1980s, low-dimensional topology encountered mathematical physics, and their ex­

hilarating interactions then yielded the so-called quantum invariants. This wealth of 

invariants provides us with diverse viewpoints to study 3-manifolds from. The topol­

ogy and differentiable structure of four-manifolds is probably the most difficult of any 

dimension. Once was almost completely ignored, 4-manifold theory has gained lots of 

attention for the last two decades and exhibited somewhat more strange behaviour, 

such as the well-known exotic ]R4. The existence of Smale, 11ore-Smale and (pseudo) 

Anosov diffeomorphisms in the case of 4-manifolds then becomes more difficult be­

cause of the complex interaction of the topology and differentiable structures. In spite 

of all the difficulties, the differentiable structure can still be, to some extent, measured 

by some recently discovered invariants by Donaldson (see [Donaldson, 1983, 1990)) 

and simplified by Seiberg-\Vitten invariants (see [Moore, 1996]). With the interplays 

with mathematical physics, knot theory, algebraic geometry, etc., low-dimensional 

topology is now finding applications in diverse scientific areas. 
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1.2.1 Knots, Links and Surgery Operations 

Knot theory has been an important subject in its own right for a long time (see 

[Kauffman, 1991]), and recently a great deal has been written on the connections 

between knot theory and dynamical systems (see, for example, [Ghrist , Holmes and 

Sullivan 1997]) . The key idea is this: a closed (periodic) orbit in a three-dimensional 

flow is an embedding of the circle, 51 , into the three-manifold that constitutes the 

state space of the system, hence it is a knot. Therefore, periodic solutions of dynamical 

systems may be knotted or linked and in fact , a chaotic system contains any knot and 

link ([Birman and Williams 1983]). A simple approach to obtaining a (non-chaotic) 

sy tem which contain an arbitrary knot (even a wild knot) is given in [Banks and 

Diaz 2004]. 

It i wid ly known that any knot can be expre sed in terms of braids. By writing 

down xplicit differential quations for these braids over a finite time interval and 

making the v ctor field periodic, we can glue th two ends of the phase space at 

iv p riodic time points together (see fig. 1.5), which will yield the desired 

knot mb dd d within a olid torus. This can serve as our bridge to link knot theory 

and dynamical y tern . 

igur 1.5: Con tructing knot from braid by gluing the two ends together. 

Mor ov r urg ry op ration play an important role in the study of 3-manifold 

th ry. Th urgeri can be r gard d as decompositions of a 3-manifold in terms of 

impl ron . In it ct, we may con truct new 3-manifolds from the exi ting ones. The 

m in urg ry op ration include: Dehn surgery Heegaard splittings, connected sums, 
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branched coverings (see [Ratcliffe, 1994; Ilempel, 1976; Rolf::;en, 1976; Montesinos, 

1974]). 

1.2.2 Strange Attractors in Dissipative Systems 

The general theory of dynamical systems is, of course, a subject with a long and distin-

guished history. In particular, the study of dynamical behaviours of non-conservative 

and chaotic systems, especially with the interplay of topology, has attracted a lot 

of attention in the past (see, for example, [Levinson, 1944; Martins, 2004; Wiggins, 

1988]). Consider a system 

{ 

~ = F(x, y, t) , 

y = G(x, y, t) 

where F(x, y, t) and G(x, y, t) are both periodic in t. It will be called dissipative 

or non-conservative if there is a locally proper invariant set on the corresponding 

2-manifold on which the system is defined. In fact, most real systems are of this kind. 

Up to present a great deal of interest has been paid to the study of the topology of 

this invariant set (e.g. [Levinson, 1944]). 

Recently in [Martins, 2004J, Martins considered the system of the form 

x + h(x)x + g(t, x) = 0, 

where hand 9 are smooth functions, periodic on both x and t. It is essentially a 

periodic nonlinear 2-dimensional, time-varying oscillator with appropriate damping. 

Equivalently, we can write down the system in the following way 

Y2 - H(Yl) 

-g(t, yd 
( 1.3) 
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where H(x) = fox h(s)ds, h and 9 are smooth functions, both I-periodic on Yl and 

T-periodic in t. The Poincare map is defined as P(Yo) = y(T; 0, Yo). Since the vector 

field (Yl,Y2) - (Y2 - H(Yl),-g(t ,Yl)) is periodic with period R = (I , h(I)) , the 

solutions Y and Y + kR (k E Z) are equivalent and so the system may be defined on 

a cylinder, as in fig. 1.6. 

Figure 1.6: The invariant set defined on a cylinder. 

Here .A is the invariant set 

where EPa is some bounded set (which exists because the system is dissipative, as 

impli d by the arrows in fig (1.6)). In [Martins, 2004], he showed that .A is not 

Figure 1.7: Invariant set in the torus case. 

homeomorphic to a circle if there is an inversely unstable periodic orbit; we can think 
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of the problem as sitting on a torus with one unstable cycle, as in fig (1.7). lIenee the 

topological structures of attractors can serve as a guidance towards the understanding 

of geometric behaviours of differential equations. 

1.3 The Contents of This Volume 

This research project mainly attempts to consider dynamical systems and the related 

manifold theory, and we mainly concentrate on the structure of dynamical systems 

on manifolds of dimension 2, 3 and 4. 

In Chapter 2, to follow immediately, we derive explicit differential equations for 

dynamical systems defined on generic surfaces by applying elliptic and automorphic 

function theory to the upper half plane model with hyperbolic metric. By modifying 

the definition of the standard theta series we will determine general analytical systems 

on a fundamental domain in the upper half plane where the solution trajectories 

'match up' onto an appropriate surface of any given genus. The extension of this 

result to 3-dimensional case is concerned then and proved possible with restriction. 

Moreover, we will show that a periodic nonlinear, time-varying dissipative system 

that is defined on a genus-p surface contains one or more invariant sets which act 

as attractors. We shall also generalize the result in [Martins, 2004J and study the 

topology of these invariant sets, which might imply the existence of chaotic behaviour. 

This is achieved by studying the appearance of inversely unstable solutions within 

each invariant set. 

The 3-manifold topology is much more involved than the 2-dimensional theory, 

largely because of the fact that there exists no complete set of topological invariants. 

However, we have the notions of Heegaard splittings and connected sums. Moreover, 

knot and link invariants turned out to be able to classify 3-manifolds to some extent 

(see, for example, [Rolfsen, 1976]). On the other hand, dynamicists have been seeking 
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to use knot theory to describe periodic orbits and hence help understand the under­

lying ODEs better. In Chapter 3, we will give a resume of the information mentioned 

above. 

Chapter 4 mainly concerns the study of dynamical systems on 3-manifolds. We 

give an explicit construction of dynamical systems (defined within a solid torus) 

containing any knot (or link) and arbitrarily knotted chaos. The first is achieved 

by expressing the knots in terms of braids, defining a system containing the braids 

and extending periodically to obtain a system naturally defined on a torus which 

contains the given knotted trajectories. The second one, generating chaotic systems, 

is realized by modelling the Smale horseshoe. Moreover, from the topological point of 

view, we also consider analytical methods, i.e., applying surgeries such as IIeegaard 

splittings and connected sums, to obtain dynamical systems situated on 3-manifolds. 

Lickorish's result (see [Lickorish, 1962]) provides us a useful tool here. 

Chapter 4 is also devoted to the study of diffeomorphisms which are defined on 

closed 3-manifolds and contain generalized Smale solenoids as the non-wandering sets. 

In particular, motivated by the result in [Jiang, Ni and \\Tang, 2004], we will study 

the possibility of generating dynamical systems containing an arbitrary number of 

solenoids on any closed, orient able 3-manifold. 

Four-manifold theory is much more involved since the topological and differen­

tiable structure are completely different. However, we still have available general­

ized connected sums, 'blow-ups' and 'blow downs' which can be used to simplify 

the dynamics. The resulting manifold topology and differentiable structure can be 

measured, to some extent, by the Seiberg-vVitten invariants. Chapter 5 consists of 

a summary of 4-manifold topology. Furthermore, we shall discuss the case of 4-

dimensional dynamical systems and their defining manifolds, with an emphasis on 

piecing up a finite set of local dynamical systems to obtain some global result. Some 

open problems that pertain to 4-manifold theory will be outlined at the end. 
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In accordance with the understanding of this thesis, we will provide a succinct 

review of the principal aspects in topology and manifold theory in Appendix A. 

Similarly in Appendix B we recall Smale's theory of dynamical systems on manifolds 

and the idea of Smale solenoids, when he classified the types of basic sets (see [Smale, 

1967]). 



Chapter 2 

Two-Dimensional Systems 

The simplest non-trivial theory is in two dimensions. There exists a well-known topo­

logical invariant, genus p, which can distinguish all 2-manifolds. For an orient able one, 

genus p is equivalent to the number of 'holes' attached to the surface. In other words, 

any orient able 2-manifold is topologically a sphere with p 2: 0 handles attached. Any 

nonorientable surface can be obtained from an orient able one by cutting out a disk 

from the surface and sewing back in a Mobius band (which has only one edge and is 

topologically a circle). The Poincare -Hopf index theorem then says that the total 

index I of a vector field X on a 2-manifold S must equal the Euler characteristic 

Ix = xs = 2(1 - p). (2.1) 

lienee X(S2) = 2, X(T2) = 0, where T2 denotes a 2-dimensional torus. Note 

that in nonorientable case, the genus 9 = q/2, where the nonorientable surface S 

is topologically S2 with q holes along whose boundaries the antipodal points are 

identified. Thus, the characteristic of the projective plane X(P) = 1 and for Klein 

bottle X(K) = o. 
The relation (2.1) regulates system dynamics by topological restrictions, which 

can serve as a breakthrough to the study of dynamical systems on manifolds. In 

14 
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fact, explicit dynamical systems have been written down for the torus case. However, 

it turns out to be difficult to find their counterparts on higher genus surfaces due 

to the obstacles in finding simple explicit forms for the equations of the surfaces in 

three-dimensional space. 

2.1 Classification of Singularities 

In the case of linear (two-dimensional) systems, the standard classification by means 

of the eigenvalues of the system matrix recognizes three topologically distinct types 

- stale or unstable nodes, centres and saddle points. In the case of nonlinear systems 

defined by elliptic or (modified) automorphic functions, the local behaviour at a 

singularity is given by the local structure of a meromorphic function consisting of a 

pole or zero of any order, i.e., by the systems 

for any positive integer k. (We can always translate a pole or zero to the origin.) 

Consider first the single pole system 

and substitute z = re iO
, so that 

-k Zk e- ikO cos kO - i sin kO 
z = r2k = rk -



2.1. Classification of Singularities 16 

Since i = rei () + riei()iJ, we obtain the radial and angular equations 

r 1k (cos 8 cos k8 - sin8sink8) = 1k cos(k + 1)0 
r r 

iJ - k:l sin(k + 1)8. 
r 

Generally speaking, iJ is not identically zero, hence the solution curves given by 

iJ = 0 divide a neighbourhood of the equilibrium point into a finite number of open 

regions called sectors. Moreover, the boundary trajectories are called separatrices, 

defined by 
. In 

sm(k + 1)8 = 0 or 8 = -k -, l = 0, 1,··· , 2k + l. 
+1 

Note that at these points, 

r = \ cos(ln), 
r 

(2.2) 

(2.3) 

which altern at in sign. In fact, there are only three types of sectors in 2-dimensional 

case. They are: hyperbolic sectors, elliptic sectors and parabolic sectors (see fig . 2.1). 

(a) Hyperbolic sector. (b) El1iptic sector. (c) Parabolic sector. 

Figure 2.1: Three types of sectors in 2-dimensional systems. 

For a hyperbolic ector, we have two possibilities, as shown in fig. 2.2. 

From (2.2) and (2.3) it follows that for a single pole system, every sector is hyper­

bolic, so that a kth order pole is surrounded by 2(k+ 1) hyperbolic sectors. From the 

index formula for a general critical point in a dynamical system (see [Perko, 1991]) 

e-h 
Index of a general equilibruim (critical) point = 1 + -2-' 
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\ 
(a) () decreasing along the trajec­
tory, i.e. iJ < o. 

r>O 

(b) () increasing along the trajec­
tory, i.e. iJ > o. 

Figure 2.2: Two possibilities for hyperbolic sectors. 

wher is the number of elliptic sectors, and h denotes the number of hyperbolic 

ctors we e that a kth order pole system has index - k at the pole. 

ow on ider th ingle zero system 

w obtain the quations 

r = rk cos(k - 1)8 

Ii = r k
-

l sin(k - 1)8 

nd n by 

l7r 
in(k - 1) = 0 or e = k _ 1 1 = 0, 1, · .. , 2(k - 1) - 1. 

It n h t th ar all lliptic ctors. Hence the system with a kth order 

uilibrium pint urround d by 2(k - 1) elliptic sectors, and the index is 

+k. 

L m a 2.1.1. Any m romorphic dynamical y tem on a surface which has poles 

at th pom PI,··· Pn of oro r k1,···, kn and zero at the points Ql , . .. , Qm of 
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orders 11, ... ,1m (where all the points are distinct) has total index 

m n 

1= Lli- Lki. 
i=l i=l 

o 

Note that this index, of course, must equal the Euler characteristic of the surface. 

2.2 Elliptic Functions 

In this section, we shall give a brief resume of the theory of elliptic functions which 

we need in the next section. All the results are well-known and can be found, for 

example in [Jones and Singerman, 1987]. 

Definition 2.2.1. A merornorphic function f : re -+ L (L denotes the Riemann 

sphere) is elliptic with respect to a lattice n ~ C (i.e. n = {mwI +nw2: m,n E Z}, 

WI, W2 E C where WdW2 is not real) if f is doubly periodic with respect to n, i. e. 

f(z + w) = f(z), 't/ z E re, wEn. 

The order ord(J) of an elliptic function f is the sum of the orders of the poles of 

f in a fundamental parallelogram of the lattice. Note that ord(J) = 0 if and only if 

f is constant, so a non constant elliptic function must have at least one pole. Let F 

be a fundamental parallelogram of the lattice of the elliptic function f. 

Theorem 2.2.1. i) The sum of the residues of f in F is zero. 

ii) If f has order N > 0, then f takes every value eEL exactly N times. 0 

Elliptic functions are uniquely determined (modulo a constant) by their zeros and 

poles. Given an arbitrary set of points in the fundamental parallelogram, we can find 
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an elliptic function with poles and zeros of given orders at these points under certain 

conditions. Thus we have 

Theorem 2.2.2. Let aI, ... ,ar , bI , ... ,bs be distinct points in F. Then there exists 

an elliptic function with zeros of orders kI' ... ,kr at aI, ... ,ar, respectively, and poles 

of orders 11, ... , Is at bI , ... ,bs if and only if 

i) ki + ... + kr = II + ... + ls 

o 

The most important elliptic function is the \Veierstrass p function, defined by 

where' on the summation means that we omit the origin from the lattice. Note that 

p ha.-, order 2. Another important elliptic function is the Weierstrass a function, 

defined by 

In order to construct an elliptic function which has poles and zeros as in theo-

rem 2.2.2, we can use the a-function and define 

(2.4) 

and then f will be the required elliptic function. 

It is also possible to construct an elliptic function which has given principal parts 

at some distinct points bI , ... ,bs in the fundamental parallelogram F, provided they 

satisfy the condition of theorem 2.2.1 such that the sum of the residues is zero. Thus, 
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let the principal part at bj be given by 

and assume that 

I, 
'"' ak,j 
~(Z-b·)k' 
k=1 J 

s 

l:al,j = O. 
j=l 

20 

Then we can form an elliptic function with these principal parts at bI ,'" ,bs . In 

order to do this, define the functions 

w 

and 

Then we wri te 
s I j 

J(z) = I: l: ak,jFk(z - bj ) 
j=1 1.;=1 

and this is the required function. If V denotes the vector space of elliptic functions 

which are analytic on F\{b1 ,··· ,bs } and are analytic or have poles of order ::::; lj at 

b· then J' 

dim V = 11 + ... + Ls , (2.5) 

(as a vector space over C). (This is a simple version of the Riemann-Roch theorem.) 

Note that finally the p function generates all elliptic functions in the sense that 

if J is any elliptic function, then 
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for some rational functions R1 , R2 . 

2.3 Dynamical Systems on the Torus 

We now consider the dynamical systems which can be defined on a torus by the 

equation 

i = E(z) 

where E is an elliptic function. The simplest elliptic function is, of course, a constant 

and the equation is i = c (c E C), and if z = x + iy, 

{ 
± = Re(c) 

iJ = Im(c). 

This is the well-known system which generates (p, q)-knots if Re(c)/Im(c) = p/q 

(where p, q are positive integers) and has a dense orbit if Re(c)/Im(c) is irrational. 

In the following discussion, we shall choose a rectangular lattice in order to gen­

erate the elliptic functions, i.e. 

n = {k+li: k,l E IE}. 

Since we are only interested in the topological structure of systems on torus, there is 

no loss of generality. (Of course, different lattices may generate conformally distinctly 

tori.) 

Now consider the following question: Suppose we specify a (finite) set of distinct 

points {n,· .. ,PK } on a torus, which are to be the equilibria of a dynamical system 

and suppose that each point is surrounded by only one type of sectors (i.e. parabolic, 
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hyperbolic or elliptic), e.g. 

PI, ... ,Pk1 are each surrounded by 1 parabolic sector 

(A) ~ is surrounded by ei elliptic sectors, for kI + 1 ~ i ~ k2 

~ is surrounded by hi hyperbolic sectors, for k2 + 1 ~ i ~ K. 

Then we ask - when does there exist a dynamical system on the torus with these 

equilibria? Recall that if any given equilibrium is surrounded by e elliptic sectors and 

h hyperbolic sectors, then the index of that point is given by 1 + (e;h). lIenee we see 

from Poincare's index theorem that a necessary condition for the above problem is 

that 

(2.6) 

(since the Euler characteristic of the torus is 0). 

It turns out that this condition is also sufficient, provided the points {Pj ,··· ,PK } 

can be positioned to satisfy condition (ii) of theorem 2.2.2. Thus, we have 

Theorem 2.3.1. Suppose that we choose distinct points {PI,'" ,PK } on a torus 

such that we may find a set of points {qj, ... ,q K} in the fundamental parallelogram 

in C for which 

Where ej, hi and K satisfy (2.6). Then there exists a dynamical systems on the torus 

which satisfies condition (A) above. Moreover, if these conditions are satisfied, then 

the system can be realized by the equation 

z = E(z) (2.7) 

wher-e E is an elliptic function. 
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Proof. The only thing left to prove is condition (i) in theorem 2.2.2. However, 

this is equivalent to (2.6), since by the results of section 2.1, each pole of order k is 

surrounded by 2(k + 1) hyperbolic sectors and each zero of order k is surrounded by 

2(k - 1) elliptic sectors (or single parabolic sector if k = 1). Hence condition (i) in 

theorem 2.2.2 becomes 

which is precisely (2.6). o 

Corollary 2.3.1. Suppose that a system on the torus (defined by an equation of the 

form (2.7) on a fundamental parallelogram F in C} is analytic on F\ {PI,' .. ,Ps} 

and the point Pi is surrounded by ::; hi elliptic sectors (where hi is even). Then the 

number of topologically independent systems on the torus of this type is given by 

Proof. We simply use the Riemann-Roch theorem in the form of (2.5). o 

We can construct a system given in theorem 2.3.1 explicitly by using (2.4). Thus, 

given the data in condition (A), we obtain the system (assuming the conditions of 

theorem 2.3.1 arc satisfied): 

n
k2 ne,/2+1 ( ( _ .))j 

. i=1 )=1 a Z Pl 

Z = nK nh,/2-1 ( ( ))1" 
i=k2+ 1 j=1 a Z - Pi 

(2.8) 

Note that the parabolic sectors are included in the elliptic sectors, in which case we 

take ej = o. 
Example 1. Consider the system 

z = p(z), 
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i.e. where the vector field is given by the Weierstrass p function. The dynamics 

are shown in fig. 2.3. Note that there is one zero and one pole in each fundamental 

parallelogram. The zero has two elliptic sectors (and two parabolic sectors), while 

the pole has four hyperbolic sectors. The total index is 0 as expected (i.e. the Euler 

characteristic of the torus). Note that the dynamics is periodic and so wraps onto 

a system on the torus. \Vhen we study systems on higher genus surfaces, it will 

be seen that we cannot simply use the obvious generalizations of elliptic functions 

(i.e. automorphic functions) to generate systems on these surfaces. This is because 

hyperbolic geometry is not the same as Euclidean geometry. 

Phase portrait of dzldt = Weierstrass pll) 

0.9 

0.8 

0.7 

" 0.6 r 
!l.. 

0.5 

0.4 

0.3 

0.2 

0.1 

x.Rell) 

Figure 2.3: Phase portrait of the \,veierstrass p function. 

Example 2. Consider now the following system of the form (2.8): 

. o-(z - 0.25 - 0.25i)o-(z - 0.75 - 0.75i) 
z= 2 

(o-(z - 0.5 - 0.5i)) 

This system has two simple zeros and a pole of order 2. The phase trajectories are 

shown in fig. 2.4. 
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Phase portrait of the system with two zeros and one double pole 

0.91-----

0.8,-____ -

0.11-----

0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 
.·Re(z) 

Figure 2.4: Phase portrait for a more general elliptic system. 

This system has two spiral equilibria of total index 2 and an equilibrium at 0.5 + 

0.5i surrounded by six hyperbolic sectors, which has index -2, as expected. 

2.4 Automorphic Systems on Surfaces of Higher 

Genus 

In this section we shall consider systems on surfaces of genus :2: 2 and to do this we 

shall first give a brief summary of the theory of automorphic functions (essentially 

analytic functions, apart from isolated poles, defined on Riemann surfaces). More 

details can be found in [Ford, 1929; Jones and Singerman, 1987; Shimura, 1971J. 

We start with automorphisms of Riemann sphere E. These are precisely the linear 

fractional transformations of the form 

T(z)=az+b, 
cz+d 

(2.9) 
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where a, b, e, dEC, ad-be =I- O. There is a group homomorphism GL(2, C) -+ Aut(~) 

given by 

which becomes an isomorphism on the projective special linear group PSL(2, C) (thot;e 

elements of GL(2, C) of positive determinant modulo the scalar matrices). 

If we restrict attention to the upper half plane, then the automorphism group is 

PSL(2, JR) (linear fractional transformations with real coefficients). If T is a map of 

the form (2.9) where a, b, e, dE JR, we classify it as follows: 

i) If la + dl = 2, T is parabolic. 

ii) If la + dl > 2, T is hyperbolic. 

iii) If la + dl < 2, T is elliptic. 

We can always normalize a transformation T as follows: 

az+_b_ 
T{z) = ~ yI5. 

c Z + d 
"JE ~ 

where D. = ad - bc, so that 

~. ~ _ _ b_. _c_ = ad- bc = 1 
.JE.JE .JE.JE 6 . 

lienee without lo::-;s of generality, we can assume that 

ad - be = 1. 
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Note that the fixed point of T are given by 

ez2 + (d - a)z - b = 0, 

if ad - be = 1, then the discriminant becomes (a + b)2 - 4 so that T has a single fixed 

point if and only if 

(a + d)2 = 4, 

i.e. if and only if T is parabolic. 

We shall be interested in transformations which map some region into a congruent 

disjoint region in hyperbolic space. We can use either of the standard models of this 

space (Le. the (open) upper half plane U or the (open) unit disk D). Groups of 

transformations which operate like this are called Fuchsian groups and generalize 

the translation group in the case of elliptic functions. More precisely, we say that a 

discrete subgroup of PSL(2, IR) is a Fuchsian group. Any Fuchsian group F is properly 

discontinuous in the sense that if T E F, y E U and V is a neighbourhood of y such 

that T(V) n V i' 0, then T{y) = y. If f ~ PSL{2, IR) is a Fuchsian group, then 

the orbit f(z) of any z E U is discrete. lIenee any limit points must occur on the 

boundary of U, i.e. IR U {oo}. 

The importance of Fuchsian groups in the theory of Riemann surfaces is that they 

define a fundamental region of U (resp. D) which is congruent to all its transforma­

tions under the group and which, together with these congruent regions, tessellates 

U (resp. D). Formally, a fundamental region F in U for the group f is a closed set 

such that 

i) UrE r T(F) = U 

ii) [;,nT(F) = 0, 'IT E f\{I}. 

Usually we require F to be connected. The important result for us is 
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Theorem 2.4.1. (See [Jones and Singerman, 1987]) 

(a) Let r be a Fuchsian group and let fl = {Ii} be the subset of r containing maps 

which pair the side of a given fundamental region of f. Then f 1 generates the 

group f. 

(b) U I f is a connected Riemann surface and 1f : U ---+ U Ir (the canonical projec­

tion) is a holomorphic map. 

(c) If r 1 and r2 are Fuchsian groups without elliptic elements, then U Ir l and 

U I f 2 are conformally equivalent if and only if there exists T E PSL(2, JR) such 

o 

Anoth r u ful r ult relates to the compactness of U If. 

Th or m 2.4.2. ( [Jones and Singerman, 1987]) 

(a) U I . a compact Riemann urface if and only if there exists a compact funda­

m ntal region for f . 

(b) If I ompact th n f contain no parabolic elements. o 

xampl. ~ g D ra the noncompact Riemann surface in fig. 2.5 (of genus 1) 

w uld r quir p aboli tran formation. 

igur 2.5: A noncompact urface of genus 1. 

In ord r t g n raliz the arli r r ults on y terns defined on tori by elliptic 

fun tion w n d h ir generalization to higher genus surfaces. These are functions 
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invariant under the elements of some Fuchsian group r called automorphic functions. 

These functions 'uniformise' the Riemann surface generated by r, in the sense that 

they define meromorphic functions on U (or D) which can be used to introduce 

dynamical systems on the surface. 

An automorphic Junction A for the Fuchsian group r is a meromorphic function 

defined on U such that 

A(J(z)) = A(z) 

for all, E r and all z E U. It is tempting to generalize the elliptic (torus) case by 

introducing dynamical systems of the form 

i = A(z) 

where A is an automorphic function. However, it can be seen that the dynamics 

(trajectories) generated by these systems in U are not r-invariant and so these systems 

will not 'wrap-up' into systems on higher genus surfaces. In order to generate systems 

i = J(z) with r-invariant trajectories, we require the following invariance of the vector 

field J. 

Lemma 2.4.1. The system 

i = J(z) 

will have r -invariant trajectories Jar any given Fuchsian g7'OUp r, iJ 

dT- 1 

J(z) = ~(Tz) . J(Tz), VT E r (2.10) 

Proof. Clearly we require the 'ends' of infinitesimal vectors in the direction of J(z) 

to map appropriately under r (see fig. 2.6). 

lIenee we require 

T(z + cJ(z)) = Tz + cJ{Tz) 
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z+sJ(z) 

z./ 
T1 
Tz ... -----i)~. 

T 

Tz+sJ(Tz) 

Figure 2.6: Mapping a vector field under any T E f . 

for uffici nt l mall e. Thu 

j (z) = T -
1 (T z + ej (Tz)) - z 

€ 

nd t h r ult follow from th chain rule by letting € ---t O. 

If 

h n 

nd 

T (z ) = az + b, 
ez+ d 

dT-
1 

(T( z )) = (ez + d)2. 
dz ad - be 

30 

o 

H n invariance of j given by (2.10) may be written in 

h ~ rm 
ad - be 

F(T z) = (ez + d)2 F (Z). 

I i .. di fr m h u ual invarianc 

A(Tz) = A(z), T E f 

(2.11) 

orphi fun tion , 0 w hall generate functions (vector fields) F satis-
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fying (2.10) by modifying the usual O-series which Poincare used (see [Ford, 1929]) to 

generate automorphic functions for infinite Fuchsian groups. 

Definition 2.4.1. If H is a rational function, which has poles away from the limit 

points of the Fuchsian group r, the theta series (of type m) is given by 

00 

O(z) = L(CiZ + di)-2m lI(zi), 
i=O 

where Z E U, mEN, To = I, T l , T2 ,'" is an enumeration of the elements of r, and 

I t is easy to check that 

for each i, and so if we define a function 

where 01, O2 are theta series of the same type m, then 

for each i, i.e. F is an automorphic function. 

In the case of dynamical systems, we shall modify the definition of an automorphic 

fUIlction and instead use the function 
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and the usual theta series 

Lemma 2.4.2. The function 

satisfies 

F{z) = 81 (z) 
02(Z) 

for each i and so defines a r invariant vector field if m ~ 3. 

Proof. Since O2 is a normal theta series, we have 

for any j. For 01 we have 

32 
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since 

and 

det(7j7j(z)) - (ajaj + biCj) . (Cibj + didj ) - (aibj + bidj ) . (Ciaj + diCj) 

- (a-d- - b-c-)(a-d - b-c) JJ JJ 11 11' 

lIenee, 

The result now follows. 

33 

o 

Definition 2.4.2. We shall call a merom orphic, complex-valued function F, which 

satisfies {2.11} for each transformation T in a given Fuchsian group r, an auto-

morphic vector field on U. 

We have seen that such functions F give rise to dynamical systems on the Riemann 

surface of the F\lchsian group r of the form 

i = F(z) 

in the sense that the trajectories of this system are r-invariant on any fundamental 

region of the group in U ~ C and so 'wrap up' into a dynamical system on the surface. 

We shall now give three examples to illustrate the theory developed above. Clearly, 

for {'(lch choice of the functions Ill, I12 and the ruchsian group r we will obtain a 
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dynamical system, although they may not all be topologically distinct. 

Example 1. We shall give an example of a system defined on the fundamental region 

(in U) shown in fig. 2.7, which has Fuchsian group generated by the transformations 

d 

-7 -3 -1 3 5 7 

Figure 2.7: A fundamental region in U. 

T1(z) = 2z+13 
- z+6 

T2(z) = 1 
- z+4 

(2.12) 
T3(Z) 6z-13 

z-2 

T4(Z) = 7z - 28. 

Choo ing 
1 1 

HI (z) = z + 2 _ 3i H2 (z) = z - 2 - 3i' 

w obtain a y tern with a pole at - 2 + 3i and a zero at 2 + 3i. The vector field 

F(z) gen rat d by these functions will have singularities at these points. However, 

it will also have other poles and zeros introduced by the modified theta series which, 

tog th r with tho at - 2 + 3i and 2 + 3i, satisfy the Poincare index theorem. The 

Ri mann urfac in this case is, of course, a two-holed torus (surface of genus 2). 

Fig. 2. hows the olution trajectories of the system (computed in MAPLE). 

Example 2. (Hamiltonian 8y terns) It is well-known (see [Abraham and Marsden, 

197 ]) that a Hamiltonian system in two dimensions may be written in the form 

. 2 ·8B 
Z= - t-. oz 
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y 

Figure 2.8: The solution trajectories for the system z = F(z), where F is generated 
by Hi, H2 . 

This is equivalent to the system 

{ 

q = 8H 
8p 

P = -~~, 

if we set z = q + ip. Clearly, the only analytic Hamiltonian system on a surface is 

constant, since the system Hamiltonian is just a function of z (not z). By taking the 

Hamiltonian 

H(z) = F(z) 

where F(z) is the function generated in example 1, we obtain the Hamiltonian system 

z = _2i oF(z) 
oz 

on a surface of genus 2. Similarly, any function F generated from a Fuchsian group 

as above gives rise to a Hamiltonian system in this way. Note that it cannot be 

integrable, by Liouville's theorem. 

Example 3. (Bifurcating Systems) Consider the modified fundamental region of the 
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one in example 1 where the fundamental arcs a and b are replaced by semicircles of 

radius £ as in fig. 2.9. 

d 

Figure 2.9: A modified fundamental region. 

W can d fine y tern on the corre ponding surface as in example 1. Suppose 

that 

z = F(£,z) 

u h t m d p nding on £ . CI ady, we will again obtain a parameterized set 

m d fin d on urface of g nu 2. As £ -- 0 the fundamental region becomes 

th t hown in fig. 2.10. In thi cas th sy t m will bifurcate into one defined on a 

d 

r 2.10: The fundamental region of fig . 2.7 as £ -- O. 

ru : 

z = F(O,z) 
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and 0 by the re ults of the last section F must be conformally equivalent to an elliptic 

function. 

2.5 Connected Sums 

Connected urns of 2- and 3-manifolds provide an efficient method of generating 'com­

plicat d manifolds out of simpler ones. In this section we shall consider its effect to 

dynamical terns on 2-manifolds. Our main technical tools will be Poincare -Hopf 

ind x theor m and the flow-box theorem. The latter may be stated as follows: 

Th or m 2.5.1. L t <Pt denote a dynamical system on a manifold M of dimension 

n. If x EM' not an equilibrium point ( i.e. <Pt(x) =1= x, Vt =1= 0), then there exists 

a ( Lo ed) Local coordinate neighbourhood U of x such that on U, <Pt is topologically 

conjugat to th dynamical y tem 

x E {O ~ Xi ~ 1, 1 ~ i ~ n} 

a n tanto o 

torUI 
.2 

ur 2.11: A local flow box in a 2-dimen ional surface. 

hi. . • th til away from quilibria, the flow can be parallelized ', e.g. in 

w fl w 1 lik in fig. 2.11. 
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Given any two 2-manifolds 81 and 82 , we define their connected sum 8 1 #82 as 

the two-manifold obtained by cutting out disks from 81 and 82 and sewing together 

their boundaries (see fig. 2.12 ). 

Figure 2.12: Connected sum of 81 and 82 . 

Lemma 2.5.1. Let SI and 82 be two surfaces on which dynamical systems qh and 4>2 

are defined. If we form the connected sum by removing discs D l , D2 from 81 and 82, 

where Dl and D2 contain no critical points, then we must introduce two hyperbolic 

equilibria (with index - 1) on the disc boundaries. 

Proof. Sinc th re are no equilibrium points in the discs being removed, we can find 

flow box PI and F2 in 81 and 82 , respectively, so that 

i = 1,2 

provid d Dl , D2 are small enough. The discs can be chosen such that there are two 

di tinct traj ctories which are tangent to the discs at two points (see fig. 2.13). 

Dl 

£-+-+--+--t--t--t----t::::*T an gent po I nts 

Fl 

Figure 2.13: Flow box Fl containing disc D l . 
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If we now pull out tubes to form the connected sum 8, these two points clearly 

become singular points as in fig. 2.14. 

~ 

~(~ ] ~ 
~ 

J(e) =-1 

Figure 2.14: Introduction of singular points: Case I. 

Suppose that one surface, say 8 2, is a sphere. In this case, since 8 = 8 1 #82 = 8 1 

and X(82 ) = 2, the total index of the two singular points on the removed discs must 

be -2. Hence the result follows. o 

Suppose next that the removed discs contain critical points. Note that we can 

always make Di small enough such that it contains only one equilibrium Pi (i = 1, 2). 

There are several situation that we need to consider. 

Lemma 2.5 .2. Construct the connected sum of two surfa ces S1 and 8 2 , where each of 

them has a dynamical system situated. Suppose the removed discs D1, D2 contain one 

critical point each, P1 and P2· If the construction does not introduce new equilibria, 

then P1 and P2 must be 'dual ' in the sense that if one equilibrium point has n1 elliptic 

ector and n2 hyperbolic s ctors, then the other must consist of precisely n1 hyperbolic 

sectors and n2 elliptic sectors. 

Proof. Suppose the genuses for 81 and 82 are g1 , 92 , respectively. Denote 8 = 

(81#82), then 8 is a surface of genus (91 + 92). Hence by Poincare index theorem, 

w have 
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J(PI) + J(rSI ) - 2(1 - g1) - X(S1) 

J(P2) + J(rS2) - 2(1 - g2) - X(S2) (2.13) 

J(rsl) + J(rs2) - 2(1 - g1 - g2) - X(S) 

where rS I and rS2 are the remaining equilibria on S1 and S2 respectively. Suppose 

I( ) = 1 n1 - n2 
PI + 2 ' 

from (2.13) we have 

( ) 
n2 - ni 

I P2 = 2 - J (PI) = 1 + 2 . 

lienee the result follows. o 

Clearly, after removing discs containing equilibria and gluing the rest together, 

we may introduce extra critical points on the disc boundaries. Stick to the notations 

in lemma 2.5.2, we have 

Lemma 2.5.3. Suppose the structures of PI and P2 are exactly the same (i.e., PI 

and P2 both have nl elliptic sectors and n2 hyperbolic sectors). If the construction of 

connected sums introduces new equilibria, then among them, there must be ni elliptic 

points (with index +1) and n2 hyperbolic ones (with index -I). 

Proof. First we look at the case of hyperbolic equilibria( with index -1). It has 

4 hyperbolic sectors. The removed discs DI and D2 can be chosen such that there 

are exactly four trajectories tangent to the discs at four distinct points, as shown in 

fig. 2.1Sa. The same argument in the proof of lemma 2.5.1 applies here. Referring to 

fig. 2.14, one hyperbolic sector generates one hyperbolic point (with index -1) after 

the gluing. Since Pi has n2 hyperbolic sectors, we end up with n2 hyperbolic points 

after connected sum construction. 

Next consider the elliptic sectors. As illustrated in fig. 2.15b, there exist two 

pairs of closed trajectories which are tangent to discs Dl and D2 , respectively. By 
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(a) Hyperbolic point. 

(c) Introduction of equilibria for el­
liptic points. 

... ...... Tangent points 

(b) Elliptic point. 

(d) Cycles around the introduced 
singular point. 

Figure 2.15: Introduction of singular points: Case II. 
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pulling out the tube to form the connected sum 8 the corresponding pairs of the 

four tangent point are identified to yield two elliptic points which contain cycles only 

( ee fig. 2.15c and 2.15d). 

till we as ume the genuses for 81 and 82 are 91 92, respectively. Denote 8 = 

x(S) = 2(1 - 91 - 92)' 

Al 0 w hav 

uppo ther are n introduced elliptic point , then 

nl nl 
2(1 - gt} - (1 + "2) + 2(1 - 92) - (1 + "2) + n = 2(1 - 91 - 92)' 

whi h yi Id n = n1' So there are exactly nl new elliptic points introduced in S. 0 

Certainly, the structure of PI can be different from that of P2 even if there are 

xtra quilibria introduced. 
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Theorem 2.5.2. Let Di C Si (i = 1,2) be two discs, Pi E Di be two critical points, 

and (:Pi be the dynamical system situated on Si' Then it is possible to apply the con­

nected sum operation, S = SI #S2, such that the dynamics given by ¢i match up if 

and only if there exists a separation to the sectors in PI, i. e. nIl elliptic and n21 

hyperbolic sectors share the same structure as those in P2, while the rest in PI are 

'dual' to the remaining in P2. 

Proof. The proof follows from those of lemma 2.5.2 and 2.5.3, because these two 

are the only conditions that can happen to the surface dynamics when performing 

the connected sum, and they will match up in the following way: For PI, split nl 

elliptic sectors to nIl and n12, n2 hyperbolic ones to n2I and n22. Combine nIl and 

n2I sectors to the same structure on P2, while glue nI2 and n22 sectors to their 'dual', 

respectively. 

The index also match up because in this case, 

(2.14) 

hence, we have 

o 

2.6 2-D Systems Containing Strange Attractors 

2.6.1 General Systems on Genus-p Surfaces 

In [Martins, 2004]' invariant sets for 2-dimensional dynamical systems containing 

inversely unstable solutions were studied in the torus case. It is then natural to ask 
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what will happen in the higher genus case? 

In order to extend Matins' result, we first need to define dynamical system which 

contain periodic orbits. In section 2.4 we have shown how to write down analytic 

(or meromorphic) systems on genus-p surfaces by the use of automorphic functions. 

However, these systems are not general enough to include systems with knots, chaotic 

annuli, etc. So we must consider vector fields which are Coo but which are invariant 

under certain linear, fractional transformations. This will be the analogue of systems 

which are periodic in [Martins, 2004] and have inversely unstable periodic motions -

the latter now becoming knots on the genus-p surface. 

In order to generate the most general Coo systems, consider a fundamental domain 

F in the upper-half plane model of hyperbolic metric for the surface, then we have 

Lemma 2.6.1. There exists a map from F onto a rectangle R which is one-to-one 

on the interior and C apart from at the cusp points. 

Proof. We hall construct the map explicit ly so that the required properties will be 

clear. 

y 

R 

; x 
/ '--------'--+ 

1t- Cl ----_1-/ 
Figure 2.16: Mapping the fundamental region F onto a rectangle R 

An lementary calculation shows that 

{

X = (1)1 (r , ()) 

y = (/J2(r, 8) 
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where 

(2.15) 

where a is the value of the starting angle corresponding to the curve within the 

fundamental region in the (r,O)-plane (as shown in fig (2.16)). o 

\Ve shall call R the modified fundamental region, and write this map as ¢ : (r, e) -

(x,y). Let Di = ¢i(Ci) be the edges of the curves Ci on the boundary of F. From 

the above remarks we see that a vector field w on R which is associated with one on 

the original surface must satisfy 

(2.16) 

where 11. pairs the segments Di, and Di2 . Let ml, m2, ••• , m4p E R denote the points 

mi = ¢( i) (Le., the ¢-image of the cusp points on F). Then we have 

Lemma 2.6.2. Any vector field w which is Coo on the interior of R and satisfies 

{2.16} where ¢ is given by {2.15} and such that 

defines a unique vector field on a genus-p (p > 1) surface. 

Proof. The only part left to prove is the converse. This follows from the above 

remarks and the Poincare index theorem~any dynamical system on a surface of 

genus p > 1 must have at least one equilibrium point. Vie can choose this as the cusp 

points of F. o 

\Ve next consider the existence of periodic knotted trajectories on the surface. By 

the above results we can restrict attention to a rectangle R as shown in fig. 2.16. Any 

closed curve on the surface is given by a set of non-intersecting curves which 'match' 
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in the sense of (2.16) at identified boundaries. 

(a) A closed curve 
inR. 

b 
(b) A trefoil knot in 
R. 

Figure 2.17: Closed curves on a surface. 
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For example, the set of curves shown in fig. 2.17a form a closed curve on the 

corresponding surface; moreover, fig . 2.17b stands for a trefoil knot on a 2-hole torus 

if we identify the sides in the appropriate way. 

Of course, the knot type of this closed curve depends on the embedding of the 

surface in 1R3 (or 83) . For instance, the surface in fig. 2.17a could be embedded as in 

fig. 2.18, which also gives a knot diagram, therefore one can calculate a knot invariant 

(such as the Kauffman polynomial). 

Let 'l/Ji (X , y, t) denote the curve Ci within the modified fundamental region R , 

f i(x,y) and gi(X,y) be any C functions that guarantee the matching of vector fields 

at the identified boundaries via (2 .16) . Hence we have 

Lem ma 2.6.3. If there are Ci (1 ~ i ~ k) curves within the modified fundamental 

region that stand for a periodic trajectory of a dynamical system on a genus-p surface 

in ]R3, then this sy tem can be defined by 

(2.17) 
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Trefoil knot 

Figur 2.1 ; A tr foil knot on a surface 

f. in • d fin the curve Ci in r gion R, we have 

o 

o. 
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(2.18) 

(2.19) 

r if all t rm in (2.17) xcept the ith one. Substitute 

(2.17) int (2.1) nd w hav 

(2.20) 

o 
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2.6.2 The Poincare map and Knotted Attractors 

Equation (2.17) now can be regarded as a general form of dynamical systems in 

the hyperbolic upper-half plane, which can be situated on a genus-p surface after 

identification of the corresponding sides. 

Again consider the Poincare map P : ]R2 _ ]R2 given by 

P(Xo, Yo) = Y (T; 0, (xo, Yo)), 

where Y(t) = Y(t; 0, (xo, Yo)) is the solution of (2.17) starting from point (xo, Yo). lle­

cause of the 'periodicity' from the automorphic form which is defined by the Fuchsian 

group r, we have 

where r i is the transformation from one fundamental region to another next to it. 

Moreover, if (x,y) is a solution of (2.17), so is rr(x,y) (n E Z). \Vithout loss of 

generality, we can concentrate on one fundamental region F and consider only the 

dynamics within it. It is obvious that the Poincare map is well defined on F. 

If the system given by (2.17) is dissipative, then there exists an unstable periodic 

orbit, which means all the trajectories are pointing outward along this closed curve. 

Assume that it is represented by {'ljld (1 ~ i ~ k), we are mainly interested in what 

the dynamics will look like on the rest of the surface. 

To begin with, some surgery is needed for the 2-manifold. Note that by cutting 

along one existing closed orbit, the genus-p surface, S, will effectively turn into another 

surface, 8', with the genus reduced by 1 and two boundary circles being introduced. 

Example. To make this statement clearer, we now look at an example of cutting 

along a trefoil knot which is situated on a torus. 

As shown in fig. 2.19, by cutting the torus along this trefoil knot and identifying 

the corresponding segments on both sides, m and n, we get a cylinder (Le., a sphere 
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(a) Trefoil knot on a 
torus. 

(c) Cut the fundamental 
along the knot. 

n 

m m 

n 
(b) Trefoil knot in the 
fundamental region. 

Trefoil knot 
(d) The resulting surface. 

Figure 2.19: Cutting the trefoil knot on a torus. 
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with two hole in) with the two ends being the original trefoil knot. This surgery 

can alway be performed on the genus-p surface such that the knot along which it is 

cut will g nerate one pair of ides in the fundamental domain. Hence this results in 

the constructed 2-manifold being a (p - I)-hole torus with two boundary cycles (as 

shown in fig. 2.20). 

Figure 2.20: Cutting a p-hole torus open along a knot 

In [Martins, 2004], Martins studied the torus case (i.e. 9 = 1) , and showed that 

if there exi t a trivial unstable periodic orbit, then an invariant set A, i.e. a band 

around the tube, which mayor may not be homeomorphic to a circle, must exist (see 

fig. 1.7 for an illustration) . A is a compact, non-empty, connected set, and it acts as 

an attractor towards which all dynamics converge. It is given by the iterations of the 
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Poincare map within the fundamental region to a well-defined bounded set. 

In the case of genus-2 surfaces the same argument applies for the existence of 

the invariant set as in [Martins, 2004]' while the exact number of the invariant sets 

may vary. More specifically, if we cut a 2-hole torus along a knotted trajectory, 

topologically the surface will turn into a torus but with two boundary circles, as 

illustrated in fig. 2.21. 

Figure 2.21: Cutting a 2-hole Torus . 

Suppo that thi knot is unstable. Hence after the surgery, all the dynamics are 

p in ing outward from the two resulting boundaries. Since fig. 2.21 is essentially a 

cylind r with a toru attach d in the middle, from [Martins, 2004], we know that there 

xi tome invariant t A. How v r the number of invariant sets differs from that 

in th t r idal e. In fact , there can be three fundamental types of invariant sets, as 

hown in fig . 2.22. In thi figure , A denotes the invariant set, while m and m' stand 

for the addle type quilibria which have - 1 index respectively. This makes sense 

b au I(m) + I (m' ) = - 2, which accounts for the correct Poincare characteristic 

for a g nu -2 urfac . 

Not that th actual invariant set may be a combination of more than on of these 

fundam ntal typ, fig. 2.23 for illustration. 

A th g nu of a urface increases, the number of the invariant sets may increase 

a rdingl but th y ar always based on the three fundamental types shown in 

fig. 2.22. Mor ov r w have 
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m' 

(a) (b) (c) 

Pigur 2,22: Fundamental types of invariant sets on genus-2 surfaces. 

m' 

(a) (b) (c) (d) 

Pigur 2.23: Po ible combinations of invariant sets. 

L mma 2.6 .. Giv nay t m ituated on a genus-p surface with only one unstable 

p riodi orbit. Th n there can be at most (2p - 1) attractors that might be knotted 

and linked togeth r. Mar over, a surgery can always be performed such 

that th attractor will b combination of the fundamental invariant ets. 

b induction. 

it i known that the attractor i a band as shown in fig. 1. 7 

([ 1ar in n a 2-hol oru from the di cu ion above, there can b at 

m hr 

A ' um it i tru for th g nu -p urfac such that it has (2p - 1) invariant sets 

dding h g nu by 1, w entially introduce another hole to 

m nHold will h will yield two mor at tractors at mo t, hence proves the 

I mm. o 
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2.6.3 Inversely Unstable Solutions and Topology of Knotted 

Attractors 

Inversely unstable solutions to a dynamical system has been studied for a long time. 

To be precise, we restate the main idea, which can be found in [Levinson, 1944], for 

example. 

Denote a two-dimensional system by 

{ 
~ = 

y = 

where F and G are both T-periodic in t. 

F(x, y, t) 

G(x, y, t) 
(2.21 ) 

Definition 2.6.1. Suppose (a, b) E Z x N, b ~ 1, a solution z = (x, y) of (2.21) is 

(a, b)-periodic if and only if 

z(t + bT) = rf(z(t)) 

where r i is the map from one fundamental region onto the other one next to it. 

Note that these solutions correspond to the trajectories that 'wind around' one 

of the tubes in the genus-p surfaces a times within bT time interval before closing. If 

(x(t),y(t)) is a (a, b)-periodic solution, then the initial point A, i.e. (x(to),y(to)), is 

a fixed point of AI = pb - (ra (z(O)) - z(O)), where P is the Poincare map. Assume 

A is an isolated fixed point, and let Ao denote the point (x(to) + uo, y(to) + vo) near 

A in the hyperbolic upper-half plane. Applying the Poincare map once yields 

where Al is denoted by (x(to) + u}, y(to) + VI)' By using a power series in Uo and Vo 

with coefficients function in t, we can express the solution trajectory of (x(t), y(t)) 
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starting at Ao by 

{ 

X(t) = 

Y(t) = 

x(t} + Cl(t)UO + C2(t)VO + c3(t)u5 + C4(t)UOVo + .. . 

y(t) + d1(t)uo + d2(t)vo + d3 (t)U5 + d4 (t)uovo + .. . 
(2.22) 

In particular, by setting t = to + T, we have 

{ 

Ul = auo + bvo + alu5 + b1U ovo + .. . 

t'l = CUo + dvo + Clu5 + d1Uovo + .. . 

DCIlote (x(to) + uo. y(to) + vo) and (x(to) + Ul, y(to) + VI) by (xo, Yo) and (Xl, Yl) 

resp<'ctive/y, then 

J(Xl' YI) = J(U1' VI), 
xo, Yo uo, Vo 

wliNe J is the Jacobian of the Poincare map of the point (xo, Yo). For very small values 

Uo and va. (2.22) is dominated by its linear terms. So the characteristic multiplier 

(a - A)(d - A) - bc = O. 

Usillg tIl(' Ilotation abovc, we have 

Definition 2.6.2. Given an (a, b)-periodic solution (x(t), y(t)) of (2.21) such that 

(x(to),y(t o)) is an isolatcdJixed point of AI, we shall say the solution (x(t),y(t)) lS 

inversely unstable if and only if A2 < -1 < Al < O. 

To ('ollsidl'r topology of the knottpd attractors under the existence of inversely 

ullstable solutions. we rw('d 

Definition 2.6.3. A system defined on a surface S is dissipative relative to a knot 

1\ if tlm'c i8 a ncighbourhood, N of J( in S such that on 8( S / N), the vector field is 

pointing inlo N. 

Thc'll we have 
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Theorem 2.6.1. Given a system defined by (2.17) on a genus-p surface, which is 

dissipative relative to a knot K situated on this surface as well, if there exists an 

inversely unstable solution (XI, Yl) within the (knotted) attract or AI, then AI is not 

homeomorphic to the circle 1r = IRjZ. 

Proof. We shall prove this theorem in a geometrical way. Due to the dissipative 

nature, there exists one or more unstable periodic orbits, while each of them is equiv­

alent to a knot on the surface that the system is defined on. By cutting the surface 

along one of these knots, we can reduce the surface genus by 1 with two boundary 

circles being introduced (see fig. 2.21 for illustration). In fact, these two circles are 

equivalent to the knot that was cut along. Now gluing the two circles will produce 

a tubular neighbourhood containing an attractor A. Assume that there exists an 

inversely unstable solution in A. Let A be a fixed point of the associated Poincare 

map. It is always possible to find a neighbourhood U :;, A such that A is the only 

fixed point in U. Suppose Ao is a point in U close to A (see fig. 2.24 for illustra­

tion). If we apply Poincare map once to Ao, with the dynamics being determined 

by the characteristic multipliers, which are ..\2 < -1 < Al < 0, the trajectory will 

move from Ao to A I, a point lies in the other half plane with respect to y-axis and 

is much closer to the fixed point A. Now apply Poincare map to AI, note that this 

time the characteristic multipliers become 0 < A~ < 1 < A~ due to the action of 

p2, which gives directly unstable solution that moves the dynamics from Al to A2, 

a point further away in the left-half plane. \Vith iterations of the Poincare map, the 

corresponding characteristic multipliers will be alternatively positive and negative. 

However, all neighbouring dynamics point towards the knotted attractor by dissipa­

tivity. In other words, within the invariant set near the inversely unstable solution, 

the dynamics tend to either get close to this periodic orbit or escape from it, while 

at the boundary, they are all pushed back by the external dissipative condition. This 

is why chaotic behaviour can happen which means that A is not homeomorphic to 
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a circle. The same idea follows when there are more than one attractor containing 

separate inversely unstable solutions. o 

Figure 2.24: How an inversely unstable solution affects the dynamics. 

So generally speaking, a dissipative system given by (2.22) situated on a genus­

p surface can have at most p topologically distinct knotted attractors (see [Banks, 

2002]) ; wh ther they are homeomorphic to a circle individually depends on the exis­

tence of inv rsely unstable solution within themselves. 

It is known that any dynamical system sitting on a 2-manifold of genus p can be 

represented on a spher by cutting each handle along a fundamental circuit which 

contains no equilibrium point and filling in the dynamics on the resulting region 

bounded by these curves (see [Banks, 2002]). Conversely, we can get higher genus 

surface systems by performing surgery on certain spherical ones. Specifically, given a 

spherical system, irrespective of the rest of the dynamics, provided that it contains 

2 stable equilibria, E1 and E2 , we can always choose two small neighbourhoods Mi 

(i = 1,2) such that E1 and E2 are the only critical points within each region. Glue 

in a dissipative region with attractor A, cut this attractor open, twist and identify 

the two ends together in the appropriate way, we then obtain the desired knot (as 

shown in fig. 2.25). If the attractor contains an inversely unstable solution, then it is 
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Dot homeomorphic to a circle, which means chaotic behaviour will occur within this 

i Dvari ant et. 

By Twists 
and Turns 

=> 

Figur 2.25: COD truct a torus system from a spherical one. 

H DC W ha prov d 

h r m 2.6.2. Any dynamical system on a genus-p surface that contains a set 

of k (k ;::: 1 kEN) (knotted) di ipative attractors, where each of them contains 

an inv r Ly un table orbit, can be repre ented by a system with at least 2k stable 

uilibrium point on a phe11. Conver ely, starting from a spherical system that 

contains at 1 t 2k tabl quilibria, we can construct a system on a genus-p surface 

that contain k J.--nott d attractor each with chaotic behaviour contained. o 

m rk . An important D quence of this th orem is that we can determine the 

of a t m with k 'chaotic' dissipative attractors by considering 

tabl quilibrium point on a ph reo Of course, such a system must 

h point u h that the total index adds up to 2, by the Poincare 

hi impli th xi tence of some hyperbolic points. 

2. x mpl 

In how h t w can obtain systems with dissipative chaotic behaviour 

d un tabl knotted orbits, and the unstable orbit acts as the 

di ip iv ' r p II r . 
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Fundamental circles 

Figur 2.26: A urface of genus two carrying two distinct knot types. 

In [Banks 2002J it i bown tbat for a dynamical system on a surface of genus 

p, an arr a rno t p di tinct typ of (homotopically nontrivial) knots. For 

xampl fig. 2.26 how the two di tinct knot types that a system can have on a 

uppo bat th two knot act as two attractors, (the existence of chaotic 

b havi ur \ ill d p nd on wb th r th re is an inversely unstable solution within each 

h r mu t xi t one or more unstable orbits due to which these two 

invarian r t d. To find out explicitly, we first represent the system onto 

obtain d by cutting along two fundamental circuits 

nd p ning h h ndl ut, bown in fig. 2.27a. 

h un tab 1 

n h 

hould bound each part of the attractors presented 

th y will pu h the dynamics toward the invariant sets and 

h vi our. Mor over, there must exist some equilibrium 

t ind x of a genu -2 surface, which is - 2. Fig. 2.27b shows 

for h olution trajectories of two unstable orbits. Note that 

uniqu . 

llling th 

m nit ld with 

rr ponding boundary ei rel ,we eventually recover the original 2-

d nami al y t m ituated. It has two unstable periodic cycles, 

\ hi h n rat wo knott d attractor with di tinct types, and two saddle critical 
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Unstable orbit 1 + Saddle Type 
Unstable orbit 2 Equil ibrium 

(a) Op ning out a pherical system. (b) Possible unstable orbits. 

Figur 2.27: pherical repr entation for the attractor . 

pint wlll h ac ount for th corr ct index of - 2 (see fig. 2.28 for an illustration). 

Unstable Orbit 1 Unstable Orbit 2 

--Knotted Attractor 1 --Knotted Attractor 2 

& Equilibria of Saddle Type 

igur 2.2 : g nu -2 urf ontaining 2 knotted attractors. 

F Ir h rm rash wn in fig. 2.29 if ach invariant et contains an inversely unsta-

bl xi t a band within which chaotic behaviour 

th numb r f inv riant t by on and assume the existence of only 

rbi I ~ 11 wing th m algorithm above, we get one po sible solution 

~ r h d mi ' in g. 2.30. ot that again there are two addle points which 
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Invariant set 1 Invariant set 2 

Figure 2.29: Invariant sets with inversely unstable orbits. 

account for the correct index. 

--Unstable Orbit --Knotted Attractor 

+ & Equilibria of Sadd le Type 

Figur 2.30: A g nu -2 urface containing one Knotted Attractor. 

Invariant Set 

Figur 2.31: On knotted attractor with an jnver ely unstable soluUon 

nd r th xj t nce of inversely un table solution, chaotic behavjour will occur 
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within the invariant set (see fig. 2.31). 

2.7 Concluding Remarks 

In this chapter, we have studied dynamical systems that are globally situated on 

surfaces of any genus. By using the generalized automorphic functions, we showed 

an algorithm to generate meromorphic systems on general surfaces. We have given 

some examples, including Hamiltonian systems, to illustrate such procedure. More­

over, these systems may bifurcate by shrinking meridian curves on the handles of the 

surfaces to zero. These global bifurcations are of a rather different type than the 

usual ones in that the manifold on which the dynamics are defined also changes. Of 

course, any local bifurcation of such type can occur on any given surface and we may 

generate any meromorphic system by appropriate choice of the modified theta series 

(based on the fundamental region) and their generating functions HI, H 2. 

On the other hand, we have looked at the topology of knotted attractors under the 

existence of unstable periodic orbits and proved that for a surface of genus p with only 

one unstable cycle, the number of invariant sets may vary while a maximum of (2p-1) 

must not be exceeded. Furthermore, we extended the result in [Martins, 2004] and 

showed that for a surface of genus> 1, the individual attractor is not homeomorphic 

to a circle if there exists an inversely unstable solution within itself. This is purely 

because of the property of inversely unstable solution which can generate a local 

behaviour to make dynamics fight against the effect of global unstable orbit. 



Chapter 3 

Three-Dimensional Manifolds 

A 3-manifold M is a separable metric space such that each point x E M has an open 

neighbourhood, which is homeomorphic to lR3 or lR! = {x E ]R3: X3 ~ O}. We 

can assume all the 3-manifolds we consider here are differentiable (or p.l.l) manifolds 

since any 3-manifold has a unique p.l. or differentiable structure (see [Hempel, 1976]). 

The 3-manifold topology is much more complicated than the 2-dimensional one. 

In fact, there is no complete set of topological invariants for 3-manifolds (see [Markov, 

1958]); although a great deal of invariants have been found, with the most interesting 

being related to quantum groups and braided tensor categories (see [Chari and Press­

ley, 1994; Kassel, 1995]). Moreover, the Euler characteristic of a 3-manifold is 0 so the 

index theorem does not give too much information in this case. However, there are 

useful results in 3-manifold theory which can be used to obtain some decomposition 

of 3-manifolds in terms of simpler ones. These results are related to Dehn surgery, 

Heegaard splittings and branched covering manifolds. Also, 3-manifold theory pro­

vides a penetrating insight into the study of knot theory. \Ve shall discuss all these 

topics in this section. 

1 piecewise linear 
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3.1 The Theory of Knots and Links 

3.1.1 Basic Definitions 

Definition 3.1.1. A knot is an embedding K : 8 1 --+ 8 3 . More generally a Link is 

L : U 8 1 --+ 8 3 , i. e. a disjoint, finite collection of knots. 

(a) The unknot. (b) Trivial knot. (c) Trefoil knot. (d) Figure-8 knot. 

Figure 3.1: The simplest knots. 

Fig. 3.1 shows some of the simplest knots. Two knots, K and K', are equivalent 

if there exi:sts a homeomorphism h : 8 3 -+ 53 such that h 0 K = K'. Knots and links 

arc usually oriented. Indeed, all spaces are endowed with orientations, all of which h 

is required to preserve. 

Given a transverse representation of an oriented knot in the plane, each crossing 

poillt has an induced orientation, as shown in fig. 3.2. 

Figure 3.2: Sign convention for crossings. 

Definition 3.1.2. A homotopy ht : 8 3 -+ 53 (t E [0, 1]) is called ambient isotopy 

if ko is the identity and each ht is a homeomorphism. Two knots K and K' are 

ambient isotopic if there is an ht such that hI 0 K = K'. 
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One of the fundamental problems in knot theory is to ask when two knots are 

isotopic. Denote knots in their corresponding planar representations, we have the 

following result 

Theorem 3.1.1. (Reidemeister) Two transverse representations denote isotopic 

links if and only if the diagrams are related by isotopy (fixing the crossing points) and 

by a finite sequence of the three Reidemeister moves, illustrated in fig. 3.3. 0 

b--d ( I -

Figure 3.3: Three Reidemeister moves: R1 , R2 and R3 · 

3.1.2 Relation between Knots and Braids 

Knot theory is studied conveniently in terms of braids, which were originally intro-

duced in [Artin, 1925]. By definition, an m-strand braid is a set of m non-intersecting 

smooth paths connecting m points on one vertical line to m points on another vertical 

line (to the right of the first one) -- see [Kauffman, 1991 J and fig. 3.4 for illustration. 

By gluing the corresponding left and right hand sides of the braid together, we obtain 

the so-called closure of a braid. In fact, the closure of fig. 3.4 is actually a knot. Of 

course, the closure of a braid can also be a link. Usually closures of braids are taken 

to be oriented, all strands are oriented from left to right in this thesis. 
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Figure 3.4: A braid in 3-space. 

Theorem 3.1.2. ( Alexander's Theorem) Each link can be represented as the 

closure of a braid. 0 

Since a link is composed of several knots , we have the following 

Corollary 3.1.1. Each knot can be represented as the closure of a braid. 0 

ow we give an algorithm to construct braid from a given knot. We will illustrate 

the method by the elaboration on a figure-8 knot (see fig. 3.5) - the general case will 

then be clear. 

Note that the braid construction has at least one strand (in the unknot case). The 

key idea will be to cut the knot in a proper way such that it will turn into several 

strands which yield the required braid representation. 

First , we choose one part of the given knot which is away from any crossing, cut 

the diagram at a point from this part and straighten the two ends resulted from the 

cut, which gives us the first strand of the braid. Clearly it is better to cut the top or 

th bottom of the knot , as shown in fig. 3.5a and 3.5b. 

Since the only knot with a one-string braid is the unknot, generally there is a 

need to cut the diagram several times in order to build up the braid representation. 

Self-crossing of any strand can be removed by Reidemeister moves. So the next step 

will be to choose a part of the resulting diagram which is before or after a self-crossing 
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(a) (b) (c) 

(d) (e) 

(f) 

Figure 3.5: Construction of a braid from the figure-8 knot. 

of the one-strand from the previous stage, cut it and straighten the diagram. Note 

that because a knot is homeomorphic to S1, we must guarantee that it starts at 

one end and finishes at the other. The solution to this is simple: Adding another 

cro sing if necessary to en ure that a strand coming in from one side mu t going out 

from the other ( e fig. 3.5c and 3.5d for illustration). Meanwhile, for each strand, the 

starting and ending points cannot share the same x-value or y-value (according to the 

coordinate system in fig. 3.5), otherwise the braid will represent a multi-component 

link instead of a knot. 

Reiterate the above procedures until all the strands in the braid have no self-

eros ings, as shown in fig. 3.5e. 

Rearrange the braid 0 that there is at most one twist at each vertical strip (as 

shown in fig. 3.5f), and this will yield the braid representation eventually. Of course, 

there are an infinite number of braid representations of a given knot. However, we 

will consider the simplest one in this thesis. 



3.2. Dehn Surgery 65 

3.2 Dehn Surgery 

It is known that any knot or link may be removed from its embedding space, S3. These 

examples can be made compact by removing the interior of a tubular neighbourhood 

of the knot or link. In fact, the complement of a knot can be very enigmatic, and 

it turned out to be a topological invariant which can distinguish knots to a certain 

extent. 

Moreover, it is possible to cut out a tubular neighbourhood of K in S3 (which is 

topologically a solid torus) and then glue it back in by a different homeomorphism 

from the boundary of the excised torus to the boundary of the toroidal 'hole ' in 

S3. This is called Dehn surgery. There are many ways to do this, because the 

torus has many diffeomorphisms. The generator of the kernel of the inclusion map 

'1Tl(T'l) ---t '1Tl(solid torus) determines the topology of the resulting 3-manifold. 

It is then natural to ask what 3-manifolds can be obtained from S3 by doing the 

Dehn surgery. Inde d, Lickorish proved 

Theorem 3.2.1. ([Lickorish, 1962]) Any closed, connected, orientable, combina­

torial 3-manifold M, is piecewise linearly homeomorphic to S3, the 3-sphere, from 

which have been removed a finite set of disjoint solid tori which are sewn back in a 

different way. o 

c 

(a) C E u. (b) Cut S along C. (c) Twist and glue. 

Figure 3.6: Performing C-homeomoephism. 

Moreover, Lickorish showed that such a homeomorphism can be generated (up 

to i otopy) by a sequence of C-homeomorphisms, which can be 'performed' in the 

following way on a 2-manifold S. Let C be a simple closed curve in S, U C X be a 
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neighbourhood of C and U ~ 8 1 
X I , i.e. a cylinder. Cut 8 along C , twist one end 

of the cylinder through 211", and glue them back again (see fig. 3.6 for illustration). 

Note that this homeomorphism leaves 8 fixed except in a neighbourhood of C. 

As an example, fig. 3.7 shows how to obtain a trefoil knot from a trivial one by 

applying this surgery. 

EE3
b, EE3b, Ei1jb .... f I I : .... 

I , I .. ..0! 
: I A' 

0 , 0 0 ' ! 0 0 ,./ 0 

b b b 

Figure 3.7: Generating a trefoil knot from a trivial one via C-homeomorphisms. 

Dehn surgery and Lickorish's result then lead to the possibility of defining dy­

namical systems on three-manifolds: First choosing one on 8 3 which has periodic 

solution , and these generate some links in S3; then we can perform Dehn surgery on 

the link to obtain a dynamical system on the resulting three-manifold . 

Example. It is known that by attaching two 3-balls together via any homeomor­

phism of their boundaries, the resulting space is 53 (Alexander's trick). Consider 

the analogou construction to two solid tori, VI and \12. With a homeomorphism 

h : aVI -+ av2, we can form the space M = VI Uh V2. Choose fixed longitude and 

meridian generators lJ and ml for 11"1 (aVj) , we have 
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where p and q are coprime integers. Hence M is called the Lens space of type (p ,q) 

and denoted by 

M = L(p,q). 

From [Rolfsen, 1976], we know that 3/4-surgery on a trivial knot in 83 yields the 

lens space L(3,4) (= L(3, 1)). Consider the nonsingular Morse-Smale flow on 8 3 with 

a Hopf link as periodic solutions given as in fig. 3.8a. 

(a) A nonsingular Morse-Smale flow (b) A typical heteroclinic orbit in 
onS3 . L(3,4). 

Figure 3.8: The 3/4-surgery on a Morse-Smale flow. 

Now do 3/4-surgery on the trivial knot Kl and we obtain a system on L(3, 4) with 

two periodic solutions such that the stable periodic solution is surrounded by stable 

solutions which wind around it 3 times (as illustrated in fig. 3.8b). 

We have 

Theorem 3.2.2. ([Banks and Song, 2008]) There is a nonsingular Morse-Smale 

system on any lens space. o 

The next theorem is due to Papakyriakopoulos, with the importance of deriving 

geometric conclusion from an algebraic hypothesis. 

Theorem 3.2.3. (Loop Theorem.) Let M be a compact orientable 3-manifold 

and the inclusion homomorphism i* : 7rl (a M) -t 7rl (M) has nontrivial kernel, then 
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there exists a disk D2 c At such that a(D2), i.e. a closed curve, lying in OAf and 

representing a nontrivial element of 7rI (OM). D 

Moreover, we lay down another fundamental result in topology for future reference. 

Theorem 3.2.4. (Whitney Embedding Theorem.) Every smooth compact man­

ifold of dimension n > 1 can be embedded in jR2n-I, i.e. Euclidean (2n - I)-space. 

D 

3.3 Heegaard Splittings and Connected Sums 

Next we consider the concept of lIeegaard splittings and connected sums (see [Hempel, 

1976]). 

IIeegaard splittings is probably the earliest method to decompose a 3-manifold to 

receive attention. It has visual geometric appeal and is easy to describe. 

Definition 3.3.1. A 3-manifold, At, is called an n handle body if it can be obtained 

from the 3-ball n 3 by attaching n distinct copies of D2 x [-1, 1] by homeomorphisms 

that identify the 2n disks D2 x {±I} with a collection {D I ,··· ,D2n } of pairwise 

disjoint, properly embedded 2-disks on aB3. Moreover, n is called the genus of the 

handle body M. 

7rI (AI) is a free group of rank n. Two handlebodies are homeomorphic if they 

have the same genus and are both orient able or both nonorientable. The boundary 

of a handlebody of genus n is a closed 2-manifold of genus n, which has the same or i­

entability as the handlebody. A lIeegaard splitting of a closed, connected 3-manifold 

At is a pair (Ill, I12 ), where III and H2 are handlebodies of the same genus and ori­

entation such that Af = HI U H2 and HI n 112 = alII = afh The lIeegaard diagram 

associated with the Heegaard splitting At = HI U II2 of genus n is the identification 

map h : alII -+ aH2 , such that n distinct closed curves on aliI are mapped onto 
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n fundamental meridians of 8H2 , respectively. For example, the trefoil knot on the 

torus is a Heegaard diagram for the lens space L(3 , 2) , see fig. 3.9. 

Figure 3.9: Heegaard splitting for L(3, 2): h(md = 312 + 2m2 . 

Theorem 3.3.1. Every closed, connected 3-manifold M has a Heegaard splitting. 

Proof. We only give an outline of the proof, for more details, refer to [Rolfsen, 1976; 

Hempel, 1976]. 

Take a triangulation K of M and let fl be the set of all I-simplexes of K (i.e. 

the I-skeleton). Let f2 be the dual I-skeleton, which is the maximall-subcomplex of 

the first derived complex K' such that K' is disjoint from f 1. Then if we put 

where N is the normal neighbourhood of C with respect to K" (the second derived 

of K) , it can be shown that (VI, V:!) is a Heegaard spliting of M. 0 

In [Lickorish, 1962] , he showed that for a Heegaard diagram, the surface homeo­

morphism can be generated by as quence of C-homeomorphisms as well. 

The advantage of the decomposition method lies in the fact that the resulting 

piece are simple. However, it is not easy to obtain useful information about the 

emb dding of a Heegaard surface from intrinsic properties of the corresponding man­

ifold. Hence incompressible surfaces attract a great deal of attention because they 

ar considered to be good representatives of the properties of the corresponding man-
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ifolds. Let M be a 3-manifold and F a surface properly embedded in M. F is called 

compressible if either one of the following conditions is satisfied. 

i) F bounds a 3-ball B3. 

ii) There exists a 2-disk D c M such that D n F = aD, i.e. a closed curve, and 

aD is not contractible in F. 

Otherwise, F is called incompressible. Furthermore, we have 

Theorem 3.3.2. (Haken's Finiteness Theorem.) Let.M be a compact orientable 

3-manifold. Then there exist a finite number of pairwise disjoint, non-parallel, closed 

connected incompressible surfaces in AI. o 

Definition 3.3.2. Let M, All and 11.12 be connected 3-manifolds. If there exist 3-

balls B'f C Int(Ali) (i = 1,2) and embeddings hi : (Mi - Bn -+ AI such that 

hl(Ml-B?)nh2(A12-B~) = hI (aB?) = h2(aB~) andAf = hl(Afl-B?)Uh2(M2-B~), 

then M is called a connected sum of Afl and Al2' denoted by Af = All #Af2. 

For oricntaLle 3-manifolds All and 11.12, we require the attaching homeomorphism 

h : aB? -+ aBi to be orientation reversing such that hi : (Ali - Bl) -+ Af is 

orientation preserving. lIenee M = MI #Al2 is an orient able 3-manifold. Under this 

restriction, connected sum is a well-defined associative and commutative operation in 

the category of oriented 3-manifolds and orientation preserving homeomorphisms. 

Definition 3.3.3. Let M, !vh and 11.12 be connected 3-manifolds. If AI = All #M2 

implies one of MI , 11.12 is a 3-sphere, then AI is called prime. 

Clearly, Lens spaces are prime. Large amount of interest has been focused on 

prime factorizations of bounded as well as closed 3-manifolds. A prime factorization 

AI = All # ... #Aln is called normal if, when AI is orientable, some of Afi (1 :S i :S n) 

is Sl X Sl. In fact, any prime factorization can be replaced by a normal one. The 

following result is fundamental in the theory of connected sums. 
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Theorem 3.3.3. Every compact 3-manifold can be expressed as a connected sum of 

a finite number of prime factors. Moreover, the decomposition is unique up to order 

and homeomorphism, i.e., let M = (M1#··· #Aln) = (M{#··· M~,) be two normal, 

prime factorizations, then n = n' and Ali is homeomorphic to AI: (after rearranging 

if necessary). 0 

3.4 Branched Coverings 

Definition 3.4.1. Let AI and N be two compact n-manifolds, A C M and BeN be 

two (n - 2)-submanifolds that are properly embedded in A1 and N respectively. If there 

exists a continuous function f : Af --+ N such that f(A) = B, f(Af - A) = N - B, 

and (N - B) is the only set which is evenly covered in N, i. e. for a neighbourhood 

U C (N - B), f maps each component of f-l(U) homeomorphically onto U, then f 

is called a branched covering with branched sets A and B. 

The restriction f : A1 - A --+ N - B is obviously a covering space, we call it 

the associated unbranched covering. Since AI is compact, it is finite-sheeted. In 

[Alexander, 1920], the following theorem was asserted 

Theorem 3.4.1. (Alexander's Theorem.) Every closed orientable 3-manifold is 

a branched covering space of 8 3 with the branch set a link in 8 3
. 0 

lIenee branched covering is an effective method to construct 3-manifolds. More­

over, Montesinos and Hilden (independently) proved that every closed orientable 3-

manifold is a 3-sheeted branched covering of S3, branched over a knot (see [Mon­

tesinos, 1974; Ililden, 1974]). This knot is called universal knot and it is nontoroidal. 

lIenee 

Theorem 3.4.2. Any three manifold is a branched covering of S3 branched over a 

'universal knot '. 
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Proof. In fact, Hilden proved it by constructing a certain irregular 3-fold branched 

covering of the 3-ball, D3
, by a genus-g handlebody , called X g , with branch set A, 

i.e. a set of 9 + 2 proper arcs. Then for this branched covering, any homeomorphism 

of 8Xg is isotopic to a homeomorphism 'ljJ that projects to a homeomorphism of 

8D3 (i.e. 52). Assume X; is another handlebody of genus g, h : aXg -+ aX; 

and 11 : aD3 -+ aD3. (Xg, X;, h) will represent a lIeegaard diagram for a genus-g 3-

manifold, AI, where /1,1 = XgU!/JhX; for some homeomorphism 'ljJ of aXg that projects 

to a homeomorphism W of 8 D3. Then we have 

which is a branched covering space with branch set the knot A UWH A'. 

Meanwhile, J. Montesinos has proved the result using surgery on knots and links, 

which is very different from Hilden's method. 0 

It is worth noticing that figure-8 knot, the Borromean rings and the Whitehead 

link are all universal (see [tlildcn, Lozano and .Montesinos, 1983]). 



Chapter 4 

Three-Dimensional Systems 

Due to the complexity of 3-manifold topology, the general theory of 3-dimensional 

dynamical systems is much more involved than its 2-dimensional counterpart. Among 

so many interesting aspects, knot theory found its close relation with the study of 3-

dimensional dynamical systems, especially the periodic solutions. We shall extend our 

2-manifold theory coupled with Heegaard splittings and connected sums to approach 

a theory of 3-dimensional dynamical systems. Moreover, this part also concerns 

the study of generalized Smale solenoids linked with the branched coverings of 3-

manifolds. 

4.1 Knots, Links and Chaos 

Over the past decade, several attempts have been made to draw knot theory and 

dynamical systems closer together. It turned out that knot and link invariants can 

be used to describe periodic orbits and hence help better understand the underlying 

ODEs. Since any knot can be expressed in terms of braids, in this section we will 

consider writing down general explicit differential equations for these braids over a 

finite time interval, and then making the vector field periodic. In this way, we can 

glue the two ends in the phase space at successive periodic time points together (see 

73 
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fig. 4.1), which will give us the desired knot embedded within a solid torus. 

Figure 4.1: Constructing knots from braids. 

4 .1.1 Coo Functions 

The twists in the braids mentioned above will be achieved by using Coo functions. We 

shall now give a brief overview of the theory of Coo functions which is needed later. 

All the results here are well-known, and can be found, for example, in [Helgason, 

1978J. 

Let 5 c ]Rm and 5' c ]Rn be two open subsets, and 1j; 5 -t 5' be the map 

between these two subsets. 

Definit ion 4.1.1. The mapping 1j; is called differentiable if the coordinates Yj ( 1j;(p)) 

of 1j;(p) are differentiable functions of the coordinates Xi(P) for p E 5. 

Definition 4.1.2 . The mapping 1j; is called analytic if for each point p E 5 there 

exists a neighbourhood U of p and an n power series Pj (1 ~ j ~ n) in m variables 

such that Yj(1j; (q)) = Pj (Xl(q) - Xl(P),··· ,xm(q) - xm(P) ) (1 ~ j ~ n) for q E U. 

Definit ion 4.1.3. A differentiable mapping 1j; : 0 -t 0 ' is called a diffeomor­

phism of 0 and 0' if, 1j; is one-to-one and onto, and the inverse mapping 1j;-1 is 

differentiable. 

For an analytic function on ]Rm, if it vanishes on an open set, then it is identically 

zero. However, for general differentiable functions and in particular Coo functions, 

the situation is completely different . 
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Theorem 4.1.1. If A and B are two disjoint subsets of lRm , then there exists an 

infinitely differentiable function <p which is identically 1 on A and identically 0 on B. 

o 

To emphasize the dependence on A and B, we often write this as <p(x; A, B). 

Obviously such a function is non-analytic, since it is identically 0 or 1 for a continuous 

interval; however, it is infinitely differentiable, which makes it very useful in defining 

twists in braids. 

The standard procedure for constructing such a Coo function is as follows: Let 

o < a < b and consider the function f on lR defined by 

{ 

exp(.lb - _1_) if a < x < b 
f(x) = x- x-a 

o otherwise. 

Then f is differentiable and the same holds for the function 

F(x) = J: f(t)dt, J: f(t)dt 

which has value 1 for x ::; a and 0 for x ~ b. The Coo function t.p defined on IRm is 

It can be seen that <p is differentiable and has values 1 for xi + ... + x~ ::; a and 0 

for xi + ... + x~ ~ b, by a slight abuse of notation we shall write it as <p(x; a, b) (see 

fig. 4.2). In fact we can approximate it by just using an exponential function, say 

y = exp( _x20 ). However, for exact matching at the boundaries we require a function 

which is constant on certain regions of the space. 
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Figure 4.2: Function plot of Coo. 

4.1.2 Dynamical Systems for Braids 

\Ve now consider dynamical systems which contain any braids constructed from some 

given knots. Keep using the coordinate system shown in fig. 3.5, it is always possible 

to arrange the braid, which is composed of several strands, such that at an arbitrary 

vertical strip (an interval of the t coordinate), there is at most one twist. lienee if 

we can find a dynamical system which gives us the twist, then it just remains to 

repeat the process in order to give the appropriate number of twists necessary for the 

complete braid. 

Each strand in the braid is given by a set of equations of the form 

x - G1(x,y,t) 

iJ - G2 (x, y, t) 

i - G3 (x, y, t) 

where GJ, G2 and G3 are functions of x, y and t. Normally we set G3 to be a constant 

such that the t-axis is effectively the time axis and periodicity of G with respect to t 

will then lead to a system with the required knot. 

Fig. 4.3 shows a twist projected onto three different planes, namely the xt-, xy-, 

and ty-plancs. Assume that at the two ends, all the strands are parallel to the t-axis 
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x t 

x 

o 
y y y 

(a) xt-plane projection. (b) xy-plane projection. (c) ty-plane projection. 

Figure 4.3: One twist of a braid. 

(mathematically speaking, we need x = 0 and iJ = 0) , which makes the vector fields 

at these connecting points (equivalently periodic points) match in order to perform 

the gluing. We now give explicit equations for these strings. 

Note that in fig. 4.3a, the shape of the red strand is that of the C function. 

After studying the change of the vector field , x, we have 

x = t.p(t; a, b) - t.p(t; b, c), (a < b < c). (4.1) 

In the case of an ascending strand instead of a descending one, we have 

x = t.p(t; b c) - cp(t; a, b) (a < b < c). (4.2) 

In the xy-plane, the transformation group brings the top strand to the bottom and 

the bottom one to the top without intersection (see fig. 4.3b). In the ty-plane, the 

trajectory for one strand is a semicircle in the middle plus two straight lines at the 

two ends (see fig . 4.3c). Hence a proper combination of Coo functions will define any 

desired link. Thus, for an over-crossing such as the red strand in fig. 4.3, we have 

iJ = cp(t; b, c) - t.p(t ; a, b) + t.p(t ; c, d) - cp(t; d, e) (a < b < c < d < e), 
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while for an under-crossing, such as the blue one, it becomes 

if = cp(t; a, b) - cp(t; b, c) + cp(t; d, e) - cp(t; c, d) (a < b < c < d < e). 

We assume that i = constant; then the equation for one twist in a braid is 

j; -
{ '1'(1; a, b) - 'PU; b, c) 

(a < b < c) 
cp(t, b, c) - cp(t, a, b) 

if { cp(t; b, c) - cp(t; a, b) + cp(t; c, d) - cp(t; d, e) 
(4.3) 

cp(t; a, b) - cp(t; b, c) + cp(t; d, e) - cp(t; c, d) 

(a < b < c < d < e) 

i = constant, 

where the choice is made depending on whether the twisted strand is ascending or 

descending, under-crossing or over-crossing. 

Starting from (4.3), we can obtain dynamical system for just one strand, it is of 

the form 

p 

j; - L±(cp(t;ai,bi) -cp(t;bi,Ci») (ai < bi < Ci) 
i=l 

p 

Y - L ±(cp(t; ai, bi) - cp(t; bi, Ci) + cp(t; di, ei) - cp(t; Ci, di ») 
i=l 

i-constant, 

where p is the total number of twists in this strand, and the ± sign is taken depending 

on whether at the corresponding twist i, the strand ascends or descends, under-crosses 

or over-crosses. 

The next step will be to combine all the equations for different strands together 
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in a proper way such that they yield a system for the whole braid. By definition, an 

m-strand braid is a set of m non-intersecting smooth paths, so the key idea is: as 

long as the radius is small enough, there always exists a tubular neighbourhood, Ui, 

of the string, Si, such that Ui n Uj = (/) for i =1= j. In this way, we effectively obtain 

one equation for the whole braid while avoiding the intersections between different 

strands. Illustrated in fig. 4.4, create a tube around each string, such that within this 

tube, all the trajectories follow the middle strand, while outside of it, the dynamics 

are all zero, i.e. i; = 0 and iJ = O. 

(.) 

Figure 4.4: Creating a tube around each existing strand. 

This is also achieved by using the Coo function of the form 

(4.4) 

where (Xl, yd is the coordinate of the middle strand with respect to different t value. 

Note that a, b need to be chosen small enough so that the tubular neighbourhood 

does not intersect with the others. Consequently, the dynamical system of the braid 
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is 

q 

x - L<pj 'Xj 
j=1 

q 

Y = L<pj' Yj 
j=1 

i - constant, 

where q is the total number of strands in the braid, <pj is the tubular function for the 

jth strand, and Xj, Yj are the dynamics for the jth strand obtained from (4.4). As 

before, we set i = constant. 

Example. Consider the trefoil knot, we shall give two braid representations and the 

corresponding dynamical systems for it. 

ii) As shown in fig. 4.5, the trefoil knot can be represented by a 2-strand braid. 

lIenee the dynamics for strand 1 is of the form 

x = <p(t; a, b) - cp(t; b, c) + cp(t; e, J) - <p(t; d, e) + cp(t; g, h) - cp(t; h, i) 

. a+b a+b b+c b+c 
y = cp(t; a, -2-) - cp(t; -2-' b) + cp(t; -2-' c) - cp(t; b, -2-) 

d+e d+e e+J e+J 
+cp(t; -2-' e) - cp(t; d, -2-) + <p(t; -2-' J) - cp(t; e, -2-) (4.5) 

g+h g+h h+i . h+i 
+<p(t; g, -2-) - cp(t; -2-' h) + cp(t; -2-' z) - cp(t; h, -2-) 

z = constant 

for some numbers a, b, c, d, e, J, g, h, i, while for strand 2, the equations are much the 

same except the change of ± sign. So let (Xl, yd and (X2' Y2) stand for the x- and Y-

values for strands 1 and 2 respectively, we can build up a tube around each string, 



4 .1. Knots, Links and Chaos 

(a) 

,.- . 

/' 

(b) 

\ 

(c) 

~------Y _~ ~ 
(d) 

Figure 4.5: Braid construction of the trefoil knot - method 1. 

and obtain the dynamical system for a braid, which is 

j; = cp ((x - Xl)2 + (y - Yl)2; 6 , 6) x 

(cp(t; a, b) - cp(t; b, c) + cp(t· e, f) - cp(t; d, e) + cp(t; 9 h) - cp(t -h, i» 
+cp ((x - X2)2 + (y - Y2)2; ~l, ~2) X 

(cp(t; b, c) - cp(t; a, b) + cp(t; d, e) - cp(t; e, 1) + cp(t; h, i) - cp (t; g, h» 

if = cp ((x - Xl)2 + (y - Yl)2; ~l ' ~2) X 

( a+b a+b b+c b+c 
cp(t; a, -2-) - cp(t; -2-' b) + cp(t; -2- ' c) - cp(t; b, -2-) 

d +e d+ e e+ J e+ J 
+cp(t; -2-' e) - cp(t; d, -2-) + cp(t; -2-,1) - cp(t; e, -2-) 

g + h g + h h+ i. h+i) 
+ cp(t; g, -2-) - cp(t --2-' h) + cp(t; -2-'~) - cp(t; h, -2-) 

+cp ((x - X2)2 + (y - Y2)2; ~l' 6) x 

(a + b a+b b+c b+c 
cp(t; -2-' b) - cp(t;a, -2-) + cp(t; b, -2-) - cp(t; -2-' c) 

d+e d +e e+ J e+ J 
+cp(t; d, -2-) - cp(t; -2-' e) + cp(t; e, -2-) - cp(t ; -2-,1) 

g + h g + h h +i h +i . ) 
+ cp(t; -2-' h) - cp(t; g, -2-) + cp(t; h, -2-) - cp(t; -2-'~) 

Z = constant 

wh re ~l' 6 need to be chosen carefully to avoid intersections with other tubes_ 

81 
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Using Matlab, the phase space portrait is shown in fig. 4.6. 

Figure 4.6: A 2-strand braid generated from Matlab. 

ii) By adding another cut as shown in fig. 4.5c (the red line), a new braid repre­

sentation for the same trefoil knot is introduced (see fig. 4.7) . 

~ . 1 

. ~ ' -

(a) (b) 

Figure 4.7: Braid construction of the trefoil knot - method 2. 

(Xl Yl) ,(X2, Y2) and (X3, Y3) for t he x- and y-value of the three strings, respectively. 
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Then the dynamical system for this 3-strand braid is 

x = <p ((x - XI)2 + (y - YI)2;6,6) x Xl 

+<p ((x - X2)2 + (y - Y2)2; 6 , 6) X X2 

+<p ((x - X3)2 + (y - Y3)2;6,6) x X3 

Y = <p ((x - XI)2 + (y - YI)2;6'~2) X YI 

+<p ((x - X2)2 + (y - Y2)2. 6 , 6) X Y2 

+<P ((X-X3)2+(Y-Y3)2; 6 ,6) XY3 

i = constant 

The phase plane portrait from Matlab is shown in fig. 4.8 After gluing the corre-

(a) (b) 

Figure 4.8: A 3-strand braid generated from Matlab. 

ponding ends of the braid together, we get the required knot situated in a solid torus 

- thi is quivalent to making the vector field in the systems above periodic. 

4 .1.3 Chaotic Systems 

By making an extension of the methods above, we now consider constructing dynam­

ical systems with arbitrarily knotted chaos. In particular, we shall need some elemen-
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tary ideas from transformation group theory. Thus, if X is a topological space, and 

G is a group, we say that G is a transformation group on X if there is a continuous 

map cp : G x X -+ X such that 

i) cp(g,cp(h,x)) = cp(gh,x) for all g,h E G, and all x E X. 

ii) <p(e,x) = x for all x E X, where e is the identity of G. 

We usually write gx for cp(g, x). If G is a subset of GL(n) (the general linear group), 

we call G a linear transformation group. 

Consider now a process for modifying a given dynamical system 

x = f(x, t) 

by a given function t -+ G(t) where G(t) is an element of a (linear) transformation 

group for each t. We define 

y(t) = G(t)x(t) 

Then 

iJ = Gx + Gx 

= GG-1y + Gf(x, t) 

Theorem 4.1.2. Suppose that the vector field (x, t) -+ f(x, t) (defined on a subset 

U ~ ]Rn) is periodic in t, with period 1f, and that the map t -+ G(t), where G(t) 

belongs to some linear transformation group on U, is such that the vector field 

(y, t) -+ G(t)G-1(t)y + G(t)f(G-1(t)y, t) 
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is also periodic in t with period 1[', then the system 

{ 
iJ = G(y, t) , 

i = 2Jf=Z2 
Y E U, z(O) = 0 

is naturally defined on the torus U x [O,IJ/ "", where"" is the equivalence relation 

such that 

(u,t) '" (v,t) 

if and only if u = v and t = 0 or 1['. 

Proof. The result follows from the above discussion and the fact that the unique 

solution of the equation 

i = 2)1 - Z2, z(O) = 0 

is 

z(t) = sin 2t 

which is periodic with period 1['. o 

Example. Consider the trivial system 

{ :: : : 
which is defined on the disk {lIxll < I}, and let G be the orthogonal group 0(2, ~). 

Then if 

(

COS t sin t ) 
G(t) = 

- sin t cos t 
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(i.e. counterclockwise rotation through t) we have 

Hence the system 

y(t) ( 0 1). y(t) 
- 1 0 

z = 2V1 - Z2 , z(O) = 0 

has tr foil knot olutions (se fig. 4.9) . 

Figure 4.9: Forming a trefoil knot. 

Thi is, of cour e, a trivial example and to be useful we often require to operate 

in different r gions of the tate space with different 'local' transformation groups. To 
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do this we introduce, as in the previous sections, Coo functions defined on disjoint 

subsets of IRn as follows. Let Ui, 1 ~ i ~ K (for some finite K) be bounded open 

subsets of IRn such that there exist disjoint open neighbourhoods Vi of Ui for which 

Vi:JUi andVin\;j=0, fori-:j:.j, l~i,j~K. 

Let 'Pi be a Coo function such that 

, if x E Ui 

Now let Gi, 1 ~ i ~ K be K (linear) transformation groups and let t -+ Gi(t) be J( 

smooth functions with values in Gi • Then as in (4.1) we consider the system 

x = f(x, t) 

and the transformed system 

K 

if = L 'Pi(y)Gi(y, t), 
i=l 

where 

Consider the effect of Gi on Vi at t = 11'. Define 

and let 

Xij = Vi n W j , 1 ~ i, j $ J( 
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be the K2 intersections of the sets {Vi} and {Wi}. We assume that the functions 

t -+ Gi(t) are chosen so that X ij are mutually disjoint. Let 'Pij be the obvious 

restriction of 'Pi to X ij and consider the system 

K 

iJ = L 'Pij(y)Ci(y, t). 
i=! 

Theorem 4.1.3. Using the above notation, if the function 

K 

L 'Pij(y)Ci(y, t) 
i=l 

is periodic with period 1f, then the system 

K 

iJ = L 'Pij(y)Ci(y, t), Y E U, 0 ~ t ~ 1f 

i=1 

z = 2~, z(O) = 0 

(where U is a ball containing all sets Vi), is naturally defined on the torus Ux [0, III "', 
where'" is as in theorem 4 .1.2. o 

Example. We will use this method to generate systems with arbitrarily knotted 

chaos. Consider first a system with unknotted chaos. Let U1 , U2 be the sets 

and "",VI, }V2 the sets 

1 
U1 - {(XllX2):0<XI<I,0<X2<3} 

2 
U2 - {(XI,X2): 0 < Xl < 1, 3 < X2 < I} 

1 
- {(XI,X2): 0 < Xl < 3,0 < X2 < I} 

2 
{(XI,X2) : 3 < Xl < 1,0 < X2 < I}. 
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The transformation groups G 1, G2 , G3 correspond to: 

i) the 'stretch and squeeze' 

ii) rotation 

iii) translation 

Finally we define 

1 ~ i,j ~ 2 

and we have the system 

2 

iJ - L IPij(y)C)i(y, t) 
i,j=l 

Z - 2v'1 - Z2 

where IPij(Y) is a Coo function corresponding to Xij' 

and Oi is obtained from Gi as in (4.2). This system has chaotic orbits as shown 

in fig. 4.10. Note that if Gi(t), 1 ~ i ~ 3 are properly chosen, the system has no 

homoclinic orbits. (This simply implements the Smale horseshoe map.) 
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.......... ....... ..... 

. ...... 
'" 

""'! 

Figure 4.10: Creating a chaotic system from the Smale horseshoe. 

N ow consider a system of the form 

{ 
~ = 

z = 

f(x, t) 

2~ 

90 

(4.6) 

defined for x E U, where U is some bounded open set in IRn. Let 1/J : [O,?T] -t IRn be 

any Coo function (which represents a strand of a braid) and cp : IRn 
-t IR be a Coo 

function which is 1 on U and 0 outside some neighbourhood of U. Then if we set 

Y = x + '1/;, the system 

iJ x + ~ = (f( x, t) + ~)cp(x -1/J(t)) 

(f(Y - '1/;, t) +~) tp(y) 

will have trajectories like those of (4.6) in U, but 'bent ' by 'I/; (see fig. 4.11). 

More generally, if Ui (1 ~ i ~ K) are several open (disjoint) sets in IRn, and tpi, 

1/Ji are associated functions as above, then the system 

iJ L (f(Y - 'ljJi(t) , t) + ~i(t)) tpi(X - 'l/;i(t)) 
i 

it = 2~ 
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.. .. -... 

. . . . 

y 

x 

Figure 4.11: A twisted braid . 

. ...... .. ' .. 

: ~ : 

Figure 4.12: Knotted chaos. 

will hay traj ctori imilar to a given sy tern in the regions Ui , but 'bent ' by the 

1 arly by appropriate choice Of 'l/Ji and 'Pi we can obtain a system with 

ar i rarily knott d h 0 , which contains no homoclinic orbits. Fig. 4.12 shows a braid 

f a tr foil knot which contains a chaotic system, Smale horseshoe 

in id 
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4.2 Heegaard Splittings and Connected Sums 

The importance of dynamical systems theory is that, globally, they arc not defined 

on 'flat' Euclidean spaces, but on manifolds. In fact, we have shown that the simple 

pendulum 'sits' naturally on a Klein bottle. Now we derive some results on the nature 

of three-dimensional systems and the 3-manifolds on which they 'live'. 

4.2.1 Gluing Two Systems 

lIeegaard splittings and connected sums are two standard ways of decomposing a 

complicated 3-manifold as a union of 'simple' pieces. Specifically, a IIcegaard di-

agram can be realized by a sequence of C-homeomorphisms which define a proper 

surface homeomorphism (see [Lickorish, 1962]). \Ve shall use this result and consider 

generating a three-dimensional system by gluing together two systems defined on 

'handlebodies' along specified links. 

Suppose, therefore, that we wish to determine an analytic system defined on a 

compact 3-manifold which has an invariant surface contained in the manifold. Let 

Al be a 3-manifold of this kind with boundary S which is a surface of genus g. From 

chapter 2, a dynamical system on S is given by a generalized automorphic function 

F, which satisfies 
ad - be 

F(Tz) = (ez + bd)2 F (z), T E r, (4.7) 

where r is any Fuchsian group and T E r is a Mobius transformation. The following 

neat result shows that we can extend a meromorphic system defined on S as above 

to the whole of M. 

Theorem 4.2.1. Given a dynamical system on a surface S of genus g, we can extend 

it to a dynamical system defined throughout the solid handebody with boundary S by 

adding a single critical point at the 'centre' and one in the interior of each handle. 

Proof. Let {D1 ,··· ,D g} be a set of disjoint properly embedded 2-cells in Al such 
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that they cut M into a ball (3-cell), B~ which do not contain any equilibria on S. By 

shrinking these 2-cells to points, we obtain a 3-cell, with 2g extra quilibria on the 

boundary. We may then regard this 3-cell as a standard ball, B~, with a pherical 

boundary. Now extend the system defined on the surface throughout the whole of B~ 

by simply shrinking the surface dynamics to fit on a nested set of spheres which fill 

out B~. Thus the dynamics are foliated on a sequence of concentric spheres, and are 

identical on each piece. The singularity at the origin has index 2(1- g) by Poincare's 

index theorem. To remove the equilibria inside the 3-ball apart from the on at the 

origin, we add a normal vector field f to the spheres such that f is zero at the origin 

and on the surface of B~ and nonzero elsewhere. After the extension of dynamics 

throughout B~ , we can rebuild the original 3-manifold with a surface of genus-g by 

gluing the appropriate points of the sphere and 'blowing up ' the singularities there. 

This can clearly be done such that each resulting handle has a single equilibrium in 

its interior. This process is shown in fig. 4.13. 

35L fiSLltPLQ 
(II III) (II ) {I) II) (II I 

(a) Opening an orientable handle. (b) Open a nonorientable handle. 

~ o 
"1 '''1 (111) 

~lL 
(Iv) ortentoble handle (v) nonorlentoble handle 

(c) Recovering the handle. 

Figure 4.13: Extending the surface dynamics throughout a solid handle. 

o 

Example 1. Recall that a single pendulum is given by the following differential 
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equa ion 

{: 
w 

which i defined on a Klein bottle globally (see fig. 4.14a). By opening the nonori­

entable handle as illu trated in fig. 4.13b and shrinking the do ed curve introduced 

b he cut we can then extend the surface dynamics throughout the 3-ball (see 

fig. 4.14b). Finally after pulling and expanding the two holes as shown in fig. 4.14c, 

th original Klein bottle can be recovered by gluing the two ends back together prop-

rl. ot ha this time the tem is situated on the whole solid Klein bottle with 

the urfac d namics r main unchanged. 

(e) (q 

(a) P ndulum dynam- (b) Opening the han- (c) Extending surface 
n KI in bottle. die. dynamics. 

F igur 4.14: Ext nding the dynamic through Klein bottle. 

It i kn wn that h r is xactly on nonorientable 3-manifold with a genus 1 Hee-

g rd pli ting ( [ll mp I 1976]), and ince Klein bottle is such a bounding surface, 

h id n it m p will qualify to be the homeomorphism that glues the two of them 

in h p ndulum cas there will be exactly two such systems defined 

in th abov way, and via the Heegaard diagram, these two 

3-1Tl will b glu b th id ntity map and therefore yield a nonorientable 

3-m nj~ Id . 

pI 2. A hawn in [Banks 2002]' a urface of genus 2 can carry at most two 

ig. .15 give u the whole procedure of transforming a simplest 

kn t f th whi h can b situated on a 2-hole surface by performing 
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C-homeomorphisms. 

(a) (b) 

~) ~) 

igur 4.15: urgery to transform one knot to another. 

o in hapt r 2, w gav xplicit con truction of an automorphic system gener-

will 

pr dur. 

forma ion giv n by (2.12). K ep using the same example, the dynamics 

rding to th urg ry performed on the surface. Fig. 4.16 explains this 

t m throughout the solid 2-hole torus respectively, 

morphi m to glue th surfaces while guarantee the matching-up 

f th d n mi . In thi way, w obtain a new system which is defined on a more 

3-manifold from two impJer ones. 
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(a) (b) 

(c) (d) 

igur 4.16: urfac dynamics affected by the surgery. 

4 .2.2 Thr e-dimensional systems, H eegaard Splittings and 

onn ct d Sums 

In hi 

mu 

g nu 1 II 

on id r a thr e-dimensional dynamical systems defined on a closed 

ntaining nl a finit numb r of quilibria. We shall examin conditions 

t m has a H gaard plitting that respects the dynamics, i.e. 

n in ariant g nu -p urfac , which define a Heegaard diagram. Again the 

I inv Iv d will be Poincare -Hopf index theorem and the flow-box 

n inv riant urfa in M can only have tho e ingularities of M in order 

n invariant H gaard plitting of genus p f= 1 the dynamical system 

on quilibrium, 0 that ystems with no equilibria can only have 

pli ting , i .. toru or Klein bottle splittings. 

h or m 4 .2.2. 1f a dynamical ystem on a clo ed :i-manifold M has a Heegaard 
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splitting (compatible with the dynamics) of genus p, then it contains at least one 

equilibrium and in some subset of the equilibria, AfI ,'" ,Afl , there is an invariant 

two-dimensional local surface passing through the equilibrium with {2-dimensional} 

index Oi, such that 
I 

L Oi = 2(1 - p). 
i=I 

o 

Corollary 4.2.1. A dynamical system on a compact 3-manifold which has only lin­

earizable equilibria and a compatible lIeegaard splitting of genus p ~ 1 must have at 

least 2(p - 1) hyperbolic points. o 

The above results are only necessary, in general, to find sufficient conditions for a 

dynamical Heegaard splitting we first recall theorem 3.3.1, i.e. every closed, connected 

3-manifold Af has a IIeegaard splitting. Suppose there is a splitting of a system on 

such a manifold M. Let K be a triangulation of AI determining the splitting as in 

theorem 3.3.1. IIence if Vi = N(ri , Kif) (i = 1,2), where r 1 is the set of all I-skeletons 

of K, r 2 is the dual I-skeleton, Kif is the second derived complex of K and N is the 

normal neighbourhood of r i with respect to K", then S = (VI n \12) is a surface which 

is invariant under the dynamics. Since A1 is compact, we can cover Al by a finite 

number of open sets {F1,··· ,Fl} where Fi is a flow box if it does not contain an 

equilibrium point of the dynamics or just a neighbourhood of such a point otherwise. 

Suppose that {pI, ... ,Pk} are equilibrium points of the dynamics which belong to S, 

and Pi E Fi (1 :::; i :::; k). (This can always be done by renumbering the Fi's.) Let 

Ef = Fi n Vj, 1:::; i :::; k, 1 :::; j :::; 2. 

Then we can find a refinement {P{,··· ,Ft
1

, F{', ... ,F/~} of the remaining open sets 
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Fk+ l ,'" ,A so that there exists a partition 

r l 
- {Ef, EJ, ... ,E~, FI'"" ,A'} 

r2 - {E;, E~, . .. ,EZ, FI", ... ,A"} 

with 

such that the sets r l and r 2 are invariant under the dynamics. By taking the flow 

boxes small enough, we can associate a triangulation of the manifold AI (by taking 

the corners of the flow boxes away from the vertices) which is arbitrarily close to the 

original one. Conversely, if we can find a system of flow boxes for the dynamics on 

M with the above properties and the associated triangulation, then we will have a 

dynamical IIeegaard splitting. Thus we have proved 

Theorem 4.2.3. Consider a closed 3-manifold AI on which a compact dynamical 

system is given. Suppose there is a refinement r l U r 2 of a covering of AI by flow 

boxes or neighbourhoods of equilibria, such that r l and r 2 are invariant under the 

dynamics. Let r l and r 2 be triangulations of urI, ur2, respectively, such that r l U r 2 

is a triangulation of AI' (where /or1' is the first derived of AI). Then (urI, ur2) is a 

dynamical /leegaard splitting of AI if r l and r 2 are dual triangulations or the two­

skeletons of r l and r 2 have equal Euler characteristics. 0 

Moreover, the 'connected sum' result in chapter 2 extends to three-dimensional 

case. Note that the connected sum of two compact 3-manifolds All, AI2 is defined 

by removing two 3-cells from MI and A12 and attaching their (spherical) boundaries 

together. The Euler characteristic of a compact 3-manifold is always 0, hence by 

Poincare -Hopf theorem, the total index of any vector field on the manifold is zero. 

First we form a connected sum by removing 3-cells which contain no equilibria. This 

time the singular set is a (topological) circle, so we must introduce an infinite set 
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of equilibria or a limit cycle - by twisting the cells before gluing. Note that the 

cycle does not change the index, as expected. If we perform the connected sum by 

removing cells containing equilibria without introducing new singularities, then the 

equilibria must be 'dual' in the sense that regions on one part which point out of 

the cell must be matched to those on the other part which point inwards. Clearly, 

the indices of such critical points in three dimensions are the inverse of each other, 

giving a total index change of 0, again as expected by the Poincare -Hopf theorem. If 

during the procedure of removing 3-cells which contain critical points, we introduce 

new singularities, then from the combination of the statements above, it is known 

that the total change of index is still zero. 

4.3 3-Dimensional Automorphic Systems 

In chapter 2, we showed how to define general (analytic) systems on 2-manifolds by 

using the theory of automorphic functions, we shall now consider extending this result 

and propose to show how to generalize explicit differential equations that naturally 

have global behaviour on 3-manifolds. Note that commutativity is assumed in this 

section. 

The idea follows from the 2-dimensional case, i.e. by using the generalized auto­

morphic functions. To denote points in lR3 , we use the following coordinates: 

lR3 = C X (-00, (0) 

= {(z,r) I z E C,r E lR} 

= {(x,y,r) I x,y,r E lR}. 

Also, lR3 can be regarded as a subset of Hamilton's quaternions 7-f., so a point p 
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(p E JR3) can be expressed as a quaternion whose fourth term equals zero, i.e. 

p = (z, r) = (x, y, r) = z + rj, 

where z = x + yi and j = (0,0,1), then 

Definition 4.3.1. A Mobius transformation of i 3 is a finite composition of 

reflection of jR3 in spheres, where jR3 is the one-point compactification of JR3 I i. e. 

jR3 = JR3 U {oo}. 

It is exactly the same linear fractional transformation as in two dimensions of the 

form 

T = ap+ b 
cp+d' 

only where a, b, e, dE JR3 and ad - be =J 0. 

( 4.8) 

A Mobius transformation is a conformal map of the extended 3-sphere, (i.e. Rie­

mann 3-manifold,) denoted by Aut(jR3). Moreover, (4.8) can be represented in terms 

of a matrix for simplicity 

G=(: :). 
In fact there exists a group homeomorphism h : GL(2, JR3) - Aut(jR3) given by 

which becomes an isomorphism on the projective special linear group PSL(2, JR3) (i.e. 

those elements of GL(2, JR3) with positive determinant modulo the scalar matrices). 

It is known that 3-dimensional hyperbolic space (or 3-dimensional hyperbolic man­

ifold) is the unique 3-dimensional simply connected Riemannian manifold with con-
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stant sectional curvature -1 (see, e.g., [Elstrodt, 1998]). Also, since Mobius transfor­

mations are defined on Riemannian manifolds, they can then be used to generate a 

discrete group of discontinuous isometries, or equivalently, the transformation group 

r as in chapter 2, of the upper-half space 1[]3, where 

llJ3: = C x (0,00) 

- {(z,r)lzEC,r>O} 

- {(x, y, r) I x, y, r E JR, r > O}. 

Note that like in 2-dimensional case, l[J3 is a model for hyperbolic space, so we 

can use r to tessellate l[J3 and obtain a 3-manifold, AI, by r-side-pairing either the 

fundamental region or a finite collection of discrete regions which are congruent to 

the fundamental region. In this way, we call J..1 is with (llJ3, r)-structure. 

By restricting attention to the upper-half space, the automorphism group becomes 

PSL(2, C) (linear fractional transformations with complex coefficients). If T is a map 

of the form (4.8), where a, b, c, dEC, we have 

T(p) = T(z + rj) 

= 
(az + b)(cz + d) + acr2 

Ilcp + dl1 2 

. r 
+J Ilcp + dl1 2 

Similarly, for an element 9 E PSL(2, C), it is classified as parabolic, hyperbolic or 

elliptic if Itr(g) I equals, greater or less than 2, respectively, where tr(g) E JR. 

In order to obtains systems p = f(p) with r-invariant trajectories, we require the 

following invariant property of the vector field f: 

Lemma 4.3.1. The system 

p= f(p) 
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will have r -invariant trajectories for any given discrete group r of isometrics of 

hyperbolic 3-space X, if 

d(T- 1(T(p)) ) 
f(p) = dp . f(T(p)), V TE r. (4.9) 

Proof. This follows exactly from its 2-dimensional counterpart we stated in chapter 2. 

o 

Hence, for such a map T E r, the invariance of the dynamical system f given by 

(4.9) can be written in the form 

ad - be 
F(T(p)) = (ep + dF . F(p). (4.10) 

As before, we use modified theta series to guarantee the invariant property given 

by (4.10). This time 
00 

O(p) = 2)CiP + di)2 . H(pJ, 
i=O 

where p E 1U3, I, T}, T2 ,'" are elements of r, and 

And the modified theta series is defined as 

lienee follow the proof in 2-dimensional case, we have 

Lemma 4.3.2. The function 

F(p) = 81(p) 
82 (p) 

(4.11 ) 
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atisfies 

for each i and so defines a f -invariant dynamical system if m ~ 2. 

Therefore, dynamical systems given by 

p = F(p), 

where F(p) is defined by (4.11), will be an automorphic vector field such that the 

trajectories are f-invariant on any fundamental region. We can then either 'wrap up' 

one of them or choose a finite number and apply the f-side-pairing, both of which 

will give rise to systems sitting on the resulting hyperbolic 3-manifold. 

Example . It is known that the upper-half space 1[]3 can be tessellated by hyperbolic 

ideal tetrahedron. Fig. 4.17 shows one particular representation. 

III =­
~ 

Figure 4.17: Tessellation of 1IJ3 by hyperbolic tetrahedra 

Let the f- ide-pairing be either translations or simple expansions and contractions. 

According to fig. 4.17, we have the Fuchsian group generated by the transformations 

Choosing 

T1(P) =~; 

T (p) - p-1-V3i. 
3 - 2 ' 

Ts(p) = p+ 2. 

H() 1 J3 . 5' 
1 P = P + 2 + T t + ], 
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we obtain a dynamical system by the modified automorphic functions. Note that in 

this example, Hi and H2 do not define poles within the phase-space. However, the 

system will have poles introduced by the modified theta series. In fact, the whole z­

plane will be covered with equilibria due to the fact that it contains only cusp points. 

Fig. 4.18 shows one possible construction of a hyperbolic 3-manifold by translation. 

C C ' 

Figure 4.18: Side-pairing two tetrahedra by translation. 

Moreover, fig. 4.19 illustrates the solution trajectories of the system (computed in 

MAPLE) , and the vector fields match up perfectly at the boundaries. 

Figure 4.19: The solution trajectories for the system p = F(p) . 

4.4 Gluing 3-Manifolds Using the Conformal Ball 

Model 

W now propose another way of generating dynamical systems on 3-manifolds. In­

stead of using the upper-half space model, we shall now investigate hyperbolic 3-

manifolds under the conformal ball model. The same argument applies here, i.e. 
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given a group r of isometries of X and a proper r-side-pairing, we can form a 3-

manifold M with an (X, r)-structure by gluing a finite number of disjoint convex 

polyhedra. Moreover, if we take into consideration of the dynamical systems natu­

rally situated on those solid fundamental polyhedra, the r-side-pairing will then yield 

a new system defined on the resulting manifold M if and only if the trajectories match 

up according to the gluing pattern. 

Again, as an example, we consider a regular ideal tetrahedron in 1m3, which has 

the shape in fig . 4.20. 

Figure 4.20: An ideal tetrahedron 

Let Tl and T2 be two disjoint regular ideal tetrahedra in B 3 , illustrated in fig. 4.2l. 

For simplicity, we regard them as regular tetrahedra in the Euclidean space. 

Figure 4.21: The gluing pattern of two regular ideal tetrahedra. 

Because a Mobius transformation of the unit ball B3 leaves it invariant, the per­

mutation of the four vertices will determine the gluing pattern accordingly. Hence by 
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labeling the sides and edges of Tl and T2 as in fig.4.21, there must exist an isometry 

of B3 such that the sides of T2 , namely, A', B', C' , D', are mapped onto those of T1, 

i.e. A, B , C D, and exactly in this order. It can be proved that this side-pairing is 

proper, hence implies that the resulting space will be a hyperbolic 3-manifold M. In 

fact, M is known as the figure-eight knot complement (see [Ratcliffe, 1994]). 

Now by assuming the existence of sy terns on these solid tetrahedra, a new dy­

namical system can then be constructed on the resulting manifold via the side-pairing 

if and only if the trajectories match up on the corresponding boundaries of the poly­

hedra components. As an example, fig. 4.22 illustrates this matching up by applying 

the side-pairing that we mentioned above. Note that the explicit dynamics in (a) 

and (c) are obtained by repeating (b) ane (d) on all sides and edges of Tl and T2, 

respectively. 

(0) (b) 

(c) (d) 

Figure 4.22: Dynamical systems on Tl and T2 
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4 .5 M odified Reeb Foliations and Systems on 3-

Manifolds 

The classical Reeb foliation of the sphere and the torus are well-known (see [Candel 

and Conlon, 2000· Moerdijk and Mrcun, 2003]) . These are obtained first from a 

Heegaard splitting of the ph ere 

wh re X is a olid torus and each copy of X carries the foliation shown in fig. 4.23. 

Figure 4.23: The Reeb Foliation. 

Each leaf apart from the bounding torus is a plane immersed into a solid torus. We 

hall now how that an infinite et of dynamical systems exists on the 3-sphere which 

are form d by taking a genus p (for any p 2': 1) Heegaard splitting of S3 and finding a 

g n raliz d Reeb foliation on the olid genus p bounded 3-manifolds. Each leaf (apart 

from the bounding gnus p surfaces and a singular leaf) will be an unbounded surface 

of infinit genu. Of our e, it is well-known that every compact 3-manifold has a 

(non ingular) foliation (see [Candel and Conlon, 2000]), essentially proved by Dehn 

surg ry on mb dd d tori ach of which carries a Reeb component. However, this is 

an xi t nc r ult and it i difficult to use to define explicit dynamical systems on 

3-manifold . 

We begin by d cribing a impl system on the torus which can be mapped onto 

ach I af of the Reeb foliation to give a system on ]R2 with an infinite number of 
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equilibria. The basic system on the torus will consist of a source, a sink and two 

saddles as shown in fig. 4.24. (Note that the converse of the Poincare index theorem 

is not true, so it is not possible to have just a source and a saddle on the torus, 

although their total index would be 0.) 

Figure 4.24: A Simple system on the torus 

Consider a single noncompact leaf in the Reeb foliation consisting of a 'rolled up' 

plane as in fig. 4.25. 

x 

Figure 4.25: A single leaf L 

The plane P cuts the leaf L into an infinite number of cylinders plus a disk. 

Mapping the dynamic of fig.4.24 onto each cylinder and adding a source at the 

origin of the disk give the system on the plane shown in fig. 4.26. 

We hall organiz the dynamics on the leaf so that the sources lie 'below' the point 

x on the toru when the leaf is folded up. Note that the size of the shaded region in 

fig.4.26 depends on the leaf and shrinks to zero with origin 'below' x as in fig. 4.27. 

We hall now how that there is a (singular) foliation of a 3-manifold of genus p 

ontaining a compact leaf consisting of the bounding genus p surface, an uncountable 

numb r of unbound d 1 aves of infinite genus and a set of one-dimensional singular 

leav . Con ider fir t the genus 2 case. 



4.5. Modified Reeb Foliations and Systems on 3-Manifolds 109 

Figure 4.26: Resulting dynamics on the cylinder 

........ 

x 

Figure 4.27: Shrinking of the leaf 

Lemma 4.5.1. Consider the orientable 3-manifold with boundary consisting of the 

closed surface of genus 2. There is a singular foliation of this manifold defined by 

a dynamical ystem with a singular one-dimensional invariant submanifold, an infi­

nite number of noncompact invariant submanifolds of infinite genus and a single leaf 

consisting of the boundary. 

Proof. We obtain the foliation by modifying the Reeb foliation and its associated dy­

namical system introduced above. Hence consider two systems of the form in figA.26 , 

where one has the arrows reversed (Le. we reverse time in the corresponding dynam­

ical ystem). We then form the connected sum of the bounding tori by removing a 

disk around the ource (or link) at the point x. Then we 'plumb' each leaf in a similar 

way (again removing the source or sink). This will require one singular line joining 

the origins of the leave which occur just 'below' x (see fig. 4.28 for illustration) . 

The leaves clearly have the form stated in the lemma. o 

Remarks.The nonsingular leaves (apart from the genus 2 boundary surface) are 
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o~o 
Figure 4.28: Gluing two tori via the leaves 

embeddings of the surface shown in fig.4.29. 

Figure 4.29: A typical leaf. 

Note that we must have at least one singular fibre in order to introduce such a 

foliation on a higher genus surface. For we have 

Theorem 4.5.1. Any foliation of codimension 1 of a compact orientable manifold M 

of dimension 3 with finite fundamental groups and genus> 1, which is transversally 

oriented must have a singular leaf 

Proof. By Nivikov's theorem (see [Moerdijk and Mrcun, 2003]), any codimension 1 

transversely orient able foliation of M has a compact leaf and if M is orientable, this 

compact leaf is a torus containing a Reeb component. Thus if M contains a compact 

leaf of genus> 1, it is not a torus and hence there must exist a singular leaf. 0 

Remarks. We can find a similar singular foliation of a genus-2 3-manifold by adding 

a handle between the stable and unstable points on the torus in fig. 4.24. This gives 

a typical leaf shown in fig. 4.30, rather than the one in fig. 4.29. 
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Figure 4.30: A typical leaf obtained by adding handles. 

We now define systems on 3-manifolds by gluing two systems of the form above 

situated on solid genus-p surfaces by the use of a Heegaard diagram. 

Theorem 4.5.2. For any 3-manifold M, and any p > 0, there is a Reeb-like dynamical 

system on M given by gluing two systems of the form given in Lemma 4.5.1. 

Proof. Let (~, \12) be a Heegaard splitting of M with genus p and let <PI, <P2 be 

dynamical systems defined on Vi , V2 of the form given in Lemma 4.5.1 , respectively. 

Let 'l/J : aVi -t aV2 :::: a~ be the homeomorphism that defines the Heegaard diagram. 

By using C-homeomorphisms of the type in [Lickorish, 1962], we can assume that 

'l/J is smooth. Now let V2 (t) be a solid genus-p handlebody contained within V2 (as 

in fig. 4.31) so that VI (l) = \12 and \12(0) is a solid genus-p handlebody properly 

contained in \12. We can extend 'l/J to a smooth map 'l/J : V2 -t V2 by the homotopy 

Figure 4.31: A solid genus-p handle-body contained within V:!. 

{

(I - t) J + t'l/J on aV2 (t) 

;j; = J on V:!(O) 
(4.12) 
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Let X 2 be the vector field corresponding to ¢2 on av;. Then we 'twist' the dynamics 

on V2 by 'l/J, i.e. ('l/J-1 ).X2 and extend this to V2 in an obvious way using 4.12. Then 

the dynamics on aV2 match those on 8~ according to the I1eegaard diagram and the 

result is proved. o 

4.6 Smale Solenoids as Knotted Attractors 

In [Smale, 1967], Smale classified the famous Axiom A systems (see Appendix 13), 

whose non-wandering set, fl, consists of a finite number of indecomposable subsets, 

i.e., the basic sets. Furthermore, he introduced the idea of solenoids into dynamical 

systems as hyperbolic attractors, and they have been widely studied ever since. A 

resume of Smale theory can be found in Appendix B. 

4.6.1 Smale Solenoids on Solid Tori 

Smale solenoids in three-dimensions are defined in the following way. Let T = 8 1 X D2 

denote a solid torus and e : T --+ T be a D2-level-preserving embedding such that the 

set n:=o (D2 n em(T)) is a Cantor set. 

Definition 4.6.1. Let !If be a compact, closed 3-manifold and f : !If --+ !If be a 

d'iJJcomorphism. If there exists a solid torus T C !II such that fiT (resp. f- 1IT) is 

conjugate to e : T --+ T above, then 8 = n;;:l>l fn(T) (resp. 8 = n;;:l>l f-n(T)) will 

be called a Smale solenoid. 

Fig. 4.32 illustrates Sl x D2 and its image under f : 3 1 x D2 --+ 3 1 
X D2 defined 

by z X D2 --+ Z2 X D2. 

In [Jiang, Ni and \Vang, 2004]) automorphisms containing a knotted Smale solenoid 

as an attractor in 3-manifolds are studied. In particular, the following theorem is 

proved 
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Figure 4.32: A 3-dimensional Smale solenoid. 

Theorem 4.6.1. Suppose M is a compact 3-manifold. There is a diffeomorphism 

f : M --t M with the non-wandering set O(J) a union of finitely many Smale solenoids 

if and only if the manifold M is a lens space L(p, q), p =1= O. 

It was proved by using the Loop theorem and Raken's finiteness theorem. We will 

now propose a simpler proof to the above result . Note that since the IF part is to 

find the existence result, it is only left to prove the 0 LY IF part, i.e. 

Lemma 4.6.1. Suppose f : M --t M is a diffeomorphism of a closed orientable 3-

manifold M. If the non-wandering set O(J) of f contains only finitely many Smale 

solenoids, then it can only have two such solenoids. Moreover, one is the attractor, 

the other is the repeller. 

To prove the above lemma, we need the following result while keep using the 

notations 

Lemma 4.6.2. If the non-wandering set 0 contains only finitely many stable and 

unstable equilibria, then it can only have two such points. Moreover, one is stable and 

the other is unstable. 

Proof. Clearly, O(J) must contain a combination of stable and unstable nodes, due 

to the fact that the dynamics need to 'match up'. Furthermore, since these are the 

only possible structures in the basic set, we can always assume that within M - O(J) 

all the trajectories go parallel (by flow-box theorem). Suppose D(J) contains nl stable 

nodes and n2 unstable nodes. 
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i) ni = n2 = 1. One pair of stable and unstable points are always valid (as shown 

in fig. 4.33a). In fact, sn always admits such pair of points in the corresponding 

dimension. 

ii) nI, n2 > 1. In this case, it is necessary to have separatrices to determine individ­

ual direction of the solutions. Hence, new basic structure, such as saddle points, 

will be introduced, which contradicts the assumption (see fig. 4.33b-4.33e for 

ill ustration). 

Hence the result follows. 

.' . 

v v . . . . 
' .. 

' .. . . . . . ~ 
(a) 

Introduced saddle 

(b) 

A~ 
Introduced saddle Introduced saddle Introduced saddle 

(c) (d) (e) 

Figure 4.33: Combinations of stable and unstable nodes. 

Proof to lemma 4.6.1. Suppose 

o 

is the non-wandering set for f. By definition, Si = n;;:l>l r(Ti ) is the attractor 

(where all dynamics enter), while Sj = n;;:l>l j -n(Tj ) is the repeller (where all dy­

namics leave) . Moreover, each of these solenoids is situated within the corresponding 

solid torus. 

Without loss of generality, we can shrink Si (which is a tubular neighbourhood 

of some twisted closed curve, isomorphic to Sl), to a point while leaving 7i - Si 

unchanged, as shown in fig. 4.34. 

Note that after the shrinking, we end up with a discrete topology. Conversely, the 

original solenoid Si can always be restored by 'blowing-up Pi accordingly. 



4 .6. Smale Solenoids as Knotted Attractors 115 

= -- e 

Figure 4.34: Shrinking a Smale solenoid S to a point p. 

Since D(J) contains only solenoids, and they are either attractor or repeller , the 

shrinking points Pi can only be either stable or unstable critical points. Hence by 

lemma 4.6.2, the result follows. 0 

Because the proof we proposed does not involve specific 3-manifold topology, the 

r ult can then be extended to higher dimensional cases. In fact, the generalized 

(2n + I)-dimensional lens space is obtained by gluing the boundaries of two (2n + 1)­

dimensional tori, each of which has an sn meridian and an sn longitude. 

4 .6.2 Generalized Smale Solenoids On Genus-p 3-Manifolds 

In this section, we are going to investigate the possibility of extending the result in 

[Jiang, Ni and Wang, 2004J and study generalized Smale solenoid attractors defined 

by automorphisms on general 3-manifolds. 

Let N be a genus-p solid torus, and ai (1 ::; i ::; p) represent a sequence of trivial 

knots where each one of them surrounds the corresponding element in 7r(N) (see 

fig. 4.35). 

Figure 4.35: Trivial Knots {ad surrounding 7rl(N). 
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Let e : N ~ N be a linear embedding that maps ai to a~ such that 

i) a~ is a knot that involves only one generator of 7r(N) , and is a w-string braid 

with w > 1 (see fig. 4.36a); 

ii) a~ involves more than one generator of 7r(N), in this case, a~ can be intertwined 

with the image aj of aj to form a link (see fig. 4.36b). 

a , a, a', a', 

(a) a~ only involves one generator 

a, a, 

(b) s~ involves more than one generator 

Figure 4.36: Two possible pictures of a~ 

H nee w have 

Theorem 4.6.2. The embedding e : N ~ N above is a homomorphism that maps 

the solid genus-p torus onto a tubular neighbourhood S with the core generated by 

L' ("-1),, 

where L~j i the image of the one-dimensional branch Lij that joins ai with aj and 

a UL b denotes the disjoint union of a, band L where the endpoints of L are identified 

with points of a and b (see fig· 4·37 for illustration) . 

Proof. We will prove the theorem for the genus-2 torus case and the general genus-p 

case will then follow. 
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Figure 4.37: e : al UL az --+ a~ UL' az' 12 12 

Let aI, az denote the trivial knot surrounding each of the two generators of 7rl (N), 

hence the core of N is al U
L 12 

az , denote it byac. We can decompose N into 3 parts, 

namely, N l , N z and N3 (as shown in fig. 4.37). With a~ and a~ being the image of al 

and a2 respectively, L12 will be mapped onto a one-dimensional curve L~2 that joins 

a~ with a~ due to the fact that e is an embedding. Denote a~ UL' a~ by a~. Hence 
12 

a tubular neighbourhood of ac will be mapped onto a tubular neighbourhood of a~ 

under e. And since ac is the core of the genus-2 torus N , e actually maps N onto a 

tubular neighbourhood, N' of a~. o 

Remarks. Note that by applying the embedding map e more than once, (i.e., e2
, e3

, 

... ,) the mbedding is naturally defined within the tubular neighbourhood N' C N 

of a~. Hence we can define the generalized Smale solenoid as follows: 

Definition 4.6.2. Let M be a compact, closed 3-manifold and f : M --+ M be a 

diffeomorphism. If there exists a solid genus-p torus N C M such that fiN (resp. 

f - lIN) is conjugate to e : N --+ N defined above, then S = n ;:l>l fm(N) (resp. 

S = n 1ml>1 f -m(N)) will be called a generalized Smale solenoid. Moreover, if 

m> 0, S is a hyperbolic attmctor of f; otherwise it is a repeller of f· 

Note that the generalized Smale solenoid carries information about the way e(N) 

is braided in N and also how N is knotted and framed as a subset of M. 

By as uming that the generalized Smale solenoid is the only type of basic set for 

f , we have 
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Theorem 4.6.3. Suppose AI is a compact, closed orientable 3-maniJold, there is a 

diffeomorphism J : At --+ ]1,[ such that the non-wandering set O(J) contains only 

a finite number oj disjoint genus-p Smale solenoids iJ and only iJ M is a genus-p 

3-maniJold. Moreover, for the sufficient condition, the number of generalized Smale 

solenoids in O(J) can only be two: one is attractor, and the other is repeller. 

We will give the proof in three parts. For the necessary part, 

Proof. Assume O(J) is a union of generalized Smale solenoids, say 8 1 , 8 2 , "', 8n . 

Then by definition, it is easy to see that O(J) satisfies the Axiom A condition, i.e. 

flSi is hyperbolic and the periodic points are dense in 8 j • 

By spectral decomposition theorem (see Appendix B) of diffeomorphisms, 

O(J) can be written uniquely as a finite union of disjoint, closed, invariant indecom­

posable subsets BI , B2 , "', Bk • We are now going to prove Si = Bl . 

Since 8 i is also an J-invariant closed subset which contains a dense orbit, Si C 

Bl , for l = 1,2"", k. Conversely, given a point x E Uj , where Uj is a closed 

neighbourhood of 8 j , its orbit o(x) is dense in Bl due to the fact that Sj is an attractor 

of f (or f-l) and Bl contains a dense orbit. Since x E O(JIUi ), and x E 8 i , we then 

have Bl = o(x) E Si. Hence Si = B l . Therefore 

is a disjoint union of generalized Smale solenoids with the same genus p. Furthermore, 

8 j C N j , where Ni is a solid genus-p torus. 

Because of the disjoint property of Sj, it is always possible to assume Ni n Nj = 0 

for i t- j. By rearranging the sequence {Sd if necessary, without loss of generality, 

we can assume that SI, 8 2 , ••• , 8k are attractors of J and Sk+l, .•. , Sn are repellers. 
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Therefore, 

i=l .. · k<n , ,-, 

& j-l(Nj ) C Int(Nj ), j = k + 1"" ,n. 
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(4.13) 

(4.14) 

Define Vi = U:=1 f-m(Int(Ni )) for i = 1,,,, ,k. It is easy to see that Vi is open 

because j is a homeomorphism. Moreover, due to the unique solution of dynamical 

systems and the fact that generalized Smale solenoids are the only type of basic set 

structure, we have 

Vi n Vj = 0, 1:S; i < j :s; k & f(Vi) = Vi ( 4.15) 

First let n = 1 and suppose Yl = M -Int(Nl ). Then Yl is compact, so from (4.13) 

and (4.14), j-l(Yi) C Int(Yi), which implies that there exists a repeller contained in 

Y1, which contradicts the assumption that n = 1. 

lienee n > 1. Denote Y2 = A1 - U7=k+l 8 j for k 2: 1. Since 8 j are disjoint, Y2 is 

connected and Vi C Y2 . If let Y3 = M - (U7=k+l 8j ) U (U7=1 Vi), then Y3 is not empty. 

Also because 8 i n 8j = 0 and Vi n Vj = 0, Y3 is connected. Suppose x E Y3 . Since 

8j C Nj is compact, we can choose Nj small enough such that x ¢:. U7=k+l Int(Nj ). 

lienee by setting Y4 = M - ((U7=k+l Int(Nj )) U (U;=1 Vj)), it is again compact, 

not empty and connected. Since Nj is a repeller for j 2: k + 1 and j(Vi) = Vi, we 

have f(Y4 ) C Y4 , which means 0.(1) n Y4 =10, which contradicts the fact the 0.(1) is 

a disjoint union of finite generalized Smale solenoids. 

lIenee we proved that f can only have one attractor, and similarly for f- 1
, so 

n = 2 and one of them is attractor, the other is repeller of f· 

Now we are going to prove that AI is a genus-p 3-manifold. 

o 

Proof. Let 8 1 and 8 2 both be generalized Smale solenoids. 8 1 is an attractor, while 

8 2 is a repeller. Assume 
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00 00 

8 1 = n fm(Nd, 82 = n f- m (N2) & Nl nN2 = 0. (4.16) 
m=l m=l 

As Sl and S2 being the invariant sets, we have D jn (N2) c Int( Nl ) for large enough 

n. Moreover, since H2(N, Il) = 0, Dfn(N2) must separate Nl into two parts, say Xl 

and X2. Let Dr(N2) = DXl, and DX2 contains two components. 

Because 1Tl (Nl) =1= 1Tl (D f n(N2)) , it is obvious that the homomorphism induced by 

the immersion i : afn(N2) -+- Nl , which is, i. : 1Tl (ajn(N2)) -+- 1Tl(N1), is not injec­

tive. Hence by Papakyriakopoulos' Loop Theorem, ar(N2) is a compressible 

surface in Nl, i.e. there exists an embedded disc D C A1 such that DnDjn(N2) = aD 

and aD is an essential circle in ar(N2). Due to the irreducibility of NI , we have 

afn (N2 ) bounds a p-hole torus N~ in NI , where p equals to the genus of NI . So 

N~ = Xl' Hence 

M = (M - Nd U NI - (M - N I ) U (X2 U X I) 
aNI {)NI ar(N2) 

- r(N2 ) U N{ ( 4.17) 
ar(N2) 

Again by irreducibility (see appendix A) of N2 , we have fn(N2) is a genus-p torus 

(maybe twisted in some way). Hence M is a 3-manifold which can be yielded by 

identifying two p-hole solid tori along their boundaries. Also because of the fact that 

a genus-p' splitting, where p' < p, cannot accommodate the genus-p generalized Smale 

solenoid structure on either of the components, so AI is a 3-manifold of genus p. 0 

At the end we will prove the sufficient condition, i.e. if A1 is a genus-p 3-manifold, 

then it admits a diffeomorphism f : AI -+- M with two generalized Smale solenoids 

being the only possible basic sets. 

Proof. Since AI admits a genus-p Heegaard splitting, we have 
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where NI and N2 are both solid tori with the same genus p, and h : aNI -+ aN2 

is the attaching homeomorphism. Hence (NI , N2 , h) is a requir d genus-p Heegaard 

diagram for M (see fig. 4.38a and 4.38b). 

h 
--+ 

(a) B1 = C1 UL12 C2 (b) Bi = c~ ULi. ~ 
hi 

'\. 19 
e', L" 2 Cl

2 

hi 
~ 

Figure 4.38: Two possible pictures of a;. 

Without loss of generality, we can alway assume that the characteristic curves 

on aNI are taken to be the p generators of 'lrl(N1), i.e. {CI ' C2 ... ,cp }. Furthermore, 

under the homeomorphism h, these curves are mapped onto p distinct knots, namely, 

{C~,~,, · . ,~}. By linking Ci and Ci+1 with a one-dimensional curve L i(Hl), we obtain 

the core of N I , which, under h, will be mapped onto a branched I-manifold consisting 

of p distinct knots c: (1 ~ i ~ p) , each linking with the neighbouring ones by L~(HI) 

and L,i-l)i' In particular, h : L i(Hl) -+ L~(i+1) is a homeomorphism. Fig. 4.38 

illustrates the operation for genus-2 case. 

Now let 

BI = CI U ~ U .. · U Cp & 
L12 L23 L(p_ 1)p 

B' I c~ U C; U .. · U , 
Cp ' 

L~2 L23 L' (1'-1)1' 
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and h' be a map induced by h but maps B1 onto B~, where 

Note that B~ is the image of B~ inside the solid genus-p torus N2 (as shown in 

fig. 4.38b and 4.38d). 

Hence h~, induced by h', is a diffeomorphism between tubular neighbourhoods of 

B} and B~'. Denote them by 8} and 8~ respectively. It is always possible to take 

B~ small enough such that it is situated inside N2 , consequently, 8~ is a generalized 

Smale solenoid with the according genus (as in fig. 4.38c). Furthermore, since Bl is 

the core of a genus-p torus, 81 = N2 • Due to the property built inherently into our 

construction, the image of h~n (n > 1) will always be inside 8~. In this way, h~ will 

serve as the diffeomorphism that has generalized Smale solenoid 8~ as a basic set, 

say the attractor. Similarly, h~-l will define the other generalized Smale solenoid 8~, 

which is the repeller of the system. IIence 8~ and 8~ form the only basic sets of h:.O 

4.6.3 3-Manifolds Containing Arbitrary Generalized Smale 

Solenoids 

So far we have considered the cases when either Smale solenoid or generalized Smale 

solenoid is the only type of basic set defined by f E Diff( Ai). Clearly the genus of the 

solenoids needs to be commeasurable with that of the closed 3-manifold M. A natural 

question will be to ask whether it is possible to remove the restriction on the genus 

and the number of solenoids that we can put on a closed, orient able 3-manifold. The 

result in [Montesinos, 1974; I-Iilden, 1974], i.e. every closed, orientable 3-manifold is 

a branched covering, P : M -+ 8 3 , of 83 over a universal knot which is nontoroidal, 

is clearly paving the way to the solution to the above question. Note that from the 

perspective of dynamical systems, this universal knot, which is important for the 
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branched covering P to be applied, must be generated by the system dynamics. 

Because 8 3 admits any genus Heegaard splitting, consequ ntly w can put any pair 

of genus-p generalized Smale solenoids, one being the attractor while the other being 

the repeller, inside 8 3 . According to the flow-box theorem, we can cut a B~ C 8 3 

which is far away enough from the two solenoids such that all trajectories are going 

parallel in B~ (see fig. 4.39a). By replacing B~ with another 3-ball B~ which contains 

a nontoroidal knot, say, the figure-eight knot we effectively change the local structure 

inside B? defined by f while leaving the dynamics invariant elsewhere (see fig. 4.39b 

for illustration). Clearly it is inevitable to introduce some new basic set structures 

other than solenoids. Moreover, this knot will serve as the universal knot. 

,-' 

(/ ~B~ s· 

,) 
_/ 

(a) 8 3 containing 
B~ 

(b) Replacing B~ by B~ 

Figure 4.39: Introducing the universal knot. 

We now explain the surgery that changes dynamics from B~ to B~ in more details. 

One way will be to use Coo functions and braid representation to obtain the universal 

knot. Here we give a more 'natural' operation to achieve the result. By putting one 

nonlinear equilibrium point, el , the trajectories can be twisted from fig.4.40a to 4.40b. 

Furthermore, a periodic orbit is obtained if we add a saddle point left to el as shown 

in fig. 4.40c. 
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(a) Parallel trajecto­
ries within B3 

(b) Adding equilib­
rium el 

Figure 4.40: Surgery within B3. 

(c) Adding a saddle 
point e2 
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Bifurcating the resulting cycle around the corresponding points, i.e. al and a2 in 

terms, will eventually yield the wanted figure-eight knot (see fig. 4.41 for illu tration). 

Note that the whole operation will leave the dynamics outside B3 unchanged. 

Figure 4.41: Obtaining the figure-eight knot from a periodic orbit by bifurcation. 

Lifting the dynamics back to the original 3-manifold M by p - l over the figure-

eight knot which is constructed above, we can obtain arbitrary pair of generalized 

Smale solenoids on any closed, orientable 3-manifold (as shown in fig. 4.42). Hence 

~BlS3 po' 

M 

Generalized Smale 

Figure 4.42: Lifting the dynamics on 8 3 onto M. 

we proved 

Theorem 4.6.4. By allowing basic set structure other than generalized Smale solenoid 
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to exist, a closed, orientable 3-manifold AI can accomodate arbitrary pair of general­

ized Smale solenoids with arbitrary genus p. 0 

4.7 Concluding Remarks 

In this chapter, we have studied knot theory from dynamical systems' point of view. 

Stick to the braid representations, we elaborated the procedure of generating any 

knot by using the theory of transformation groups and Coo functions. Based on these 

results, we then proposed an algorithm to generate 3-dimensional systems that can 

contain arbitrarily knotted chaos. 

Inspired by the idea of generating complicated 3-manifolds from much simpler 

ones, (particularly Heegaard splitting and connected sums,) we considered generating 

new dynamical systems resulting from such surgery operations. 

Moreover, we extended the result in Chapter 2, i.e. using generalized automorphic 

functions to yield meromorphic systems on 3-manifolds. However, because of the non­

commutativity of quaternionic operations, we need to restrict the coefficients to be 

chosen from lR. We also studied three-dimensional systems by adopting the conformal 

ball model and modified Reeb foliations. 

Finally, we considered automorphisms on 3-manifolds which contain generalized 

Smale solenoids as their basic sets and linked the dynamical behaviour thereafter 

defined with the topological structure of the base manifold. This can be regarded as 

an explicit example of how the topology interacts with the dynamics, which can be 

used as a kind of 'benchmarking' guiding the study of dynamical systems theory. Also, 

we investigated the possibility of lifting dynamics onto the original manifold from 53 

due to the fact that every closed, orient able 3-manifold is a branched covering of 53 

over some universal knot. In this way, we are able to construct systems which have 

arbitrary genus-p generalized Smale solenoids. 



Chapter 5 

Four-Dimensional Manifolds and 

Systems 

The topology of curves and surfaces (i.e. manifolds of dimension:::; 2) has been well 

understood since the nineteenth century. Three-manifold topology turns out to be 

much harder, however, it has been well developed and there has been steady progress 

in the filed during the last century. Meanwhile, the topology of high-dimensional 

manifolds has also been pushed forward significantly, mainly by the development of 

s-cobordism (see [Milnor, 1965]) and surgery theorems. 

On the other hand, the topology and differentiable structure of four-manifolds 

is probably the most difficult of any dimension. In fact, it had remained mysterious 

until 1970's. However, due to the continuous efforts of numerous mathematicians, the 

past two decades witnessed an explosive growth in 4-manifold theory, which, surpris­

ingly enough, has very complex interactions with various fields such as gauge theory, 

algebraic geometry and symplectic topology. In 1982, Donaldson introduced gauge 

theory, particularly the self-dual analysis of Yang-Mills equations, into the study of 

4-manifold theory, and showed that smooth 4-manifolds are very much different from 

their high-dimensional counterparts. For example, ]R4 is the only Euclidean space 

126 
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that carries different differentiable structures, i.e. there are 4-manifolds homeomor­

phic but not differmorphic to IR4, which are called 'exotic IR4'. lIenee the predictions 

about 4-manifold theory made by s-cobordism and surgery theorems have nowhere 

to fit in. This clearly put 4-manifold theory in a unique position, which might be 

regarded as a transition between low- and high-dimensional topology. 

The scheme proposed by Donaldson dominated smooth 4-manifold theory for the 

next 12 years after its introduction. In 1994, the analysis of the Scibcrg-Witten 

equations simplified and expanded both Donaldson's approach and results. The con­

sequent invariants discovered by Donaldson and the Seiberg-\Vitten invariants there­

after can be used to provide measurement of differentiable structures to some extent. 

The aim of this chapter is to study the interaction between dynamical systems 

and four-manifold topology, and the content remains mainly speculative. However, 

adequate background knowledge, such as de Rham cohomology theory and differential 

geometry theory, is properly referred. 

5.1 Vector Bundles 

There exists an interesting connection between the vector bundles, especially tangent 

bundle, and the base topological spaces where they are attached. Therefore it at­

tracted enormous attention from both topologists and geometers. Since 1930's, the 

so-called characteristic classes, i.e. methods of associating cohomology classes of base 

space B to the vector bundles attached, have been widely studied. The important 

ones are Stiefel-Whitney classes, Chern classes, Pontryagin classes and Euler classes. 

We first review the basic definitions of vector bundles. The following definitions 

and results are well-known, and can be found, for example, [Milnor, 1965; Hatcher, 

2003]. 

We are all familiar with the Mobius strip (see fig. 5.1a), the twisted product of a 
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circle and a line. Moreover, an annulus is the product of a standard circle 8 1 and a 

line (see fig. 5.1b). A natural generalization of the Mobius strip and annulus is called 

vector bundles. 

D<J .. . .. .. 

(a) A Mobius strip. (b) An annulus. 

Figure 5.1: A Mobius strip and an annulus. 

Definition 5.1.1. An n-dimensional vector bundle ~ = (E, B, P,p) contains the 

following; 

i) a topological space E which is called the total space, 

ii) a topological space B which is called the base space, 

iii) a continuous map 7r : E ---.. B which is called the bundle projection map, 

iv) a vector space F which is called the fibre, 

v) and for each b EVe B, there exists a homeomorphism 

such that 7r o h(b,f) = bforb E V,f E F. 

Moreover, the homeomorphisms {h} are taken from the general linear group of 

that corresponding vector space. Thus a real vector bundle has fibre lRn and group 
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GL(n, JR), a complex vector bundle has fibre en and group GL(n, e), and a quater­

nionic vector bundle has fibre Qn and group GL(n, Q). 

Roughly speaking, a vector bundle is a family of vector spaces, which are para­

meterized by a smooth base manifold B. To construct such a family, we start with 

an open covering of B, {Ua : a E A}. Suppose the vector spaces are all isomorphic 

to JRm. For every two intersecting coverings, Ua and U/3 (a,{3 E A), their respective 

vector spaces are related by 

9a/3 : Ua n U/3 ---t GL(m, JR), 

where 90./3 are called transition functions and satisfy the condition 

9a/3 ·9/3-y = 9a-y (5.1) 

By taking a Lie group G of GL(m, .), we obtain a G-vector bundle with the 

corresponding transition functions taking values in G. Furthermore, if G = O(m), 

i.e. the orthogonal group, a fibre metric of the bundle E is defined as the smooth 

function 

<, >p: Ep x Ep ---t lR. (or e), 

where Ep = 7r- 1(p), p E B. 

A section of a vector bundle (E, B, 7r) is a smooth map (J : B ---t E such that 

7r 0 (J = identity. For an open covering, {Ua : a E A}, of B, we have (J(p) = {O"a{P)}, 

where 0"", : U", ---t JRm (or em, Qm), and p E U", c B. In fact, the smooth maps (J", 

are called local representatives of 0" and they are related by 

(5.2) 

Suppose A1 is a smooth manifold, we now give two examples of vector bundles. 
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Example 1. The tangent bundle TM of M is a smooth vector bundle, with total 

space being the manifold DAJ, composed of all pairs (x, v) with x E AI and v tangent 

to A1 at x. The projection map 11' : DA1 ---+ Af is given by 7r(x, v) = x. l\1oreover, the 

cotangent bundle T* AI is dual to the tangent bundle. 

Example 2. The normal bundle v of A1 is obtained through the tangent space DAI, 

with the total space E being the set of all pairs (x, v) where x E M and v is orthogonal 

to the tangent space at x, i.e. DAfx . The projection map is defined as in the previous 

example. 

5.2 Connections and Curvatures 

One of the main geometric structures on manifolds and vector bundles is connection. 

In fact, the topology of 4-manifolds is strongly related to the space of connections in 

the tangent bundle attached. 

Let X(M) denote the set of vector fields on A1, r(E) be the set of smooth sections 

of E. I3y definition, a connection on the vector bundle is a map 

dA : f(E) ---+ r(T* AI ~ E), 

which satisfies 

where a, T are sections of E and f is a function on A1 (f is real-valued if E is a real 

vector bundle, a complex-valued if E is a complex vector bundle). As an example, 

any connection dA on a trivial bundle is of the form 

dAa = da + wa = (d + w)a, (5.3) 

where d is the exterior derivative and w is a matrix of one-forms (see [Chern, 1960; 
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Moore, 1996]). Explicitly, it is of the form 

= + 

Because a section 0' E qE) consists of a collection of local representatives 0'0;, 

dAO' must also be composed of {(dAO')O;}' a set of local representatives on UO;' lienee 

in UO;' (5.3) is taking the form 

which is called the local representative of the connection dA and WO; is an m x m 

matrix of one-forms. Again, these local representatives are related by the transition 

functions as follows 

Taking into consideration of (5.2), we conclude 

(5.4) 

Since any vector bundle E is 'locally trivial', given a covering {UO; : Q' E A} of 

E, a connection is defined as a collection of differential operators d + Wo;, where w 

transforms according to (5.4). 

Let OP(l\1) = r(AP(T* M)) be differential p-forms on M. By requiring Leibniz rule 

to hold and d(dxi) = 0, we can obtain a cochain complex 
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which yields the p-th de Rham cohomology group 

HP(A1' 'R) = kernel of d : DP Af ~ Op+l CM) 
, image of d : np-l M ~ O1'(A1) . 

Further discussion can be found in, for example, [Chern, 1960J. It is well-known that 

these groups are topological invariants of Af, which give rise to the possibility of 

studying topological manifolds through the vector bundles attached to them. 

By letting E be a vector field over Af, a connection can be represented by 

which is a linear map from zero-forms to one-forms, and OP(E) is the collection of 

p-forms on Al with values in E. Of course, dA can be extended according to the 

following 

for w E OP(M), (7 E r(E). 

Furthermore, it turns out that the space S of unitary connections in a given 

complex line bundle Lover Af can be classified up to isomorphism. In fact, by 

choosing dAo, a unitary connection on L, as a base point, any unitary connection on 

L can be represented as dA = dAo - ia, where a E Ol(M) (see [Moore, 1996]). A 

gauge transformation of L is a smooth map g : Al ~ S1, which acts on connections 

by conjugation 

Denote the space of gauge transformations by 9, the space of gauge equivalence classes 

of connections on L is £ = S/9. 

Moreover, 
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which shows (dA)2 is linear over functions. Hence it is a tensor field and called the 

curvature of the connection, dA . For example, in the case of a trivial bundle, we have 

where n is a matrix of 2-forms. By differentiating (5.3), we have 

d~(O') = (d+wo)(dO'+wO') 

= (dw + w 1\ w)O'. 

For each local representative 0'0 of 0' E f(E), we then have 

(5.5) 

where no is a matrix of local 2-forms and yields the Bianchi identity after differenti-

ation 

The local ni's transform as 

(5.6) 

Generally speaking, the curvature n is only locally defined. However, it is shown 

no is skew-Hermitian (see [Moore, 1996]), so 2~nO' U11'no)k (k E 11:) are Hermitian. 

Therefore, the trace of the differential-form matrix is invariant under similarity. We 

then have 
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lIence these locally defined forms give rise to a globally defined element of J12k(Mj lR) 

(or C, Q) which is independent of the (unitary) connection and Hermitian metric 

on E. It is called the characteristic class of E, denoted by Tk(E). Note that the 

differential form Tk(E) is closed and dTk(E) = O. 

The Chern classes Cl, C2 of E are defined by 

Moreover, for a tangent bundle to a compact oriented surface Af, the Gauss-Donnet 

theorem gives rise to the first Chern class based on the fundamental class of Af 

< Cl (TAf), [AfJ >= X(Af), 

where X(A1) is the Euler characteristic of M. 

The idea of finding geometric and topological invariants of a space M from the 

vector bundle over a collection of local coverings can be used to obtain a global 

structure given a finite number of local dynamical systems. In fact, we can regard 

the local systems as tangent bundles attached to some manifold and hence study the 

connections and curvatures of these bundles, which will yield the collation of each 

local system in order to form a global picture. 

Example. \Ve now consider dynamical systems on 54, regarded as the one-point 

compactification of the quaternion numbers, i.e. 54 = Q U {oo}. Given Q the 

standard quaternion coordinate q and let Uo = 54 - {oo}, U 00 = 8 4 
- {O} be the 

two local neighbourhoods. Since the dynamical systems are given in terms of tangent 

bundles, the transition map is generated by 

1 
9000 = 2' on Uo n Uoo • 

q 
(5.7) 
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Given two 4-dimensionallocal systems, a stable node and an unstable node, taking 

the form 

y=y 

Z=z 

r=1 

and 

i; =-x 

y =-y 

Z =-z 

r =-1 

(5.8) 

defined on Uo and Uoo respectively. We now consider the possibilities of how these two 

local systems can be situated on S4. Using quaternion coordinate q = x+iy+ jz+kr, 

the two local sections are 

x -y -z -I 

y X-I z 

Z 1 x-y 

1 -z Y X 

Let Wo be a matrix of one-forms 

Wo = dq = 

By (5.3), we then have, for (J'o 

dx 

dy 

dz 

dr 

dx -dy -dz -dr 

dy dx -dl dz 

dz dl dx -dy 

dr -dz dy dx 

(J'oo = 

-dy 

dx 

dl 

-dz 

-x y Z 1 

-y -x 1 -z 

-z -I -x y 

-r z -y -x 

-dz -dr 

-dl dz 

dx -dy 

dy dx 

x -y -z -I 

Y X -I Z 
+wo' 

z r x-y 

r -z y x 

(5.9) 

(5.10) 
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By (5.5) we have, for local curvature representative of 0"0, 

dx -dy -dz -dr 

dy dx -dr dz 
0 0 = d + Wo 1\ Woo 

dz dr dx -dy 

dr -dz dy dx 

Since Wo is composed of one-forms, Wo 1\ Wo = O. By definition, d(dx) = d(dy) = 

d(dz) = d(dr) = O. Hence 0 0 is skew-Hermitian. Moreover, 

(5.11) 

Meanwhile, for 0"0()) the 4 x 4 matrix Woo is given by 

Woo - goood(g~lO) + gooowog~lo 
2 

- -. dq+ dq, 
q 

where 
2x 

~ 
2z 2r 

jqp jqp jqp 

2 -~ 2x 2r 2z 
jqp jqp -fqp 

(5.12) = 
q 2z 2r 2x 

~ -jqp -jqp fqp 
2r 2z -~ 2x 

-jqp jqp jqp 

and Iql2 = x2 + y2 + Z2 + r2. The diagonal entries for Woo are 

( 
2x ) 2y 2z 2r 

Woo;; = Iql2 + 1 dx + Iql2 dy + Iql2 dz + Iql2 dr. (5.13) 

Similarly, substitute Woo into (5.3) and (5.5), we then obtain the connection dAoo 

and curvature 0 00 for section 0"00' Likewise, 0 00 is skew-Hermitian, and from (5.12), 
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we obtain 

(5.14) 

Compare (5.11) and (5.14), we have 

on Uo n Uoo • Hence these locally defined forms fit together into a globally defined 2k­

form Tk. So the locally defined systems given by (5.8) can fit together to be situated 

on S4. In fact, a pair of n-dimensional local stable and unstable nodes can always be 

stratified on sn. 
The example above is very simple, and in the future we will further the research 

of constructing a combinatorial system from a finite number of locally defined ones 

by using Chern classes. 

5.3 Spin and Spine Structures 

Let ]R4 be the space Q of quaternions, using the matrix representation with complex 

entries, 

( 

t +iz 
q= 

-x+iy 

x + iy ) . 

t - iz 

The quaternion multiplication has important applications to the geometry of 4-

manifolds. In fact, the spin group in four dimensions is the product of two copies of 

the special unitary group, i.e. 
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where SU(2) = {q E Q: < q,q >= 1} « , > denotes the Euclidean dot product) 

and W± = SU±(2). 

Suppose ,M is an orientable manifold with an open covering {Ua : a E A}. If for 

a collection of transition functions 

9a{3 : Ua n U{3 -+ Spin( 4), 

there exists an isomorphism p : Spin( 4) -+ GL(Q) such that po 9a(3 = ga(3 and the 

cocycle condition (5.1) is satisfied, then At is called a spin manifold which has a 

spin structure. It is known that M admits a spin structure if and only if the second 

Stiefel-Whitney class w2(TAI) = 0 (see [Lawson and Michelsohn, 1989]). 

Moreover, the spinc group, 

in four-manifolds is very important as well. Similarly, a spinc structure on AI is 

defined in the same way as spin structure except that pC : Spin(4)C -+ GL(Q) and 

9a{3 : U
OI 

n U{3 -+ Spin( 4Y. In fact, any orient able four-manifold admits a spinc 

structure. 

Since the co cycle condition is satisfied by the transition functions defined above, 

this yields a vector bundle accordingly. Furthermore, the isomorphism classes of spinc 

structures on lvt are in a one-to-one correspondence with complex line bundles Lover 

lvl. Therefore, p~ and p: generate ~V+ 0 Land lV_ 0 L, which are both U(2)­

bundles. This shows that spinc structure gives rise to the possibility of representing 

the complexified tangent bundle in terms of two basic vector bundles. The local 
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representative of the connection is 

where cPa is a one-form which takes values in Spin(4Y. 

The Seiberg-Witten invariants are based on the Dirac operators D A : r(l V 18) L) ---. 

r(~v 18) L) given by 

00 00 

D A(7/J) = Lei' dA7/J(ei) = Lei . V~7/J, 
i=1 i=1 

where the ei's are the standard Dirac matrices forming a basis of a Clifford algebra. 

In the case of four-manifolds, 1 :::; i :::; 4. 

Furthermore, the vector bundle Laplacian ~A : r(W 0 L) -+ r(W 0 L) is given 

by 
4 

~A1/J = - L[V~ 0 V~7/J - V~ •• e.1/JJ, 
i=1 

where (el,e2,e3,e4) is an orthonormal frame. Note that the introduction of V~.ie.7/J 

is to guarantee the independence of the choice of a particular frame. 

The relationship between the Dirac and Laplacian operators is gIven by the 

Weitzenbock's formula 

DA(1/J) = ~1/J + ~7/J - L FA(ej, ej)(iei . ej .7/J), (5.15) 
i<j 

where s is the scalar curvature of Af and FA is the curvature of the connection of a 

line bundle L. 

From (5.15), it is clear to see that the Dirac operator is almost the square root of 

the Laplacian. Another key property of the Dirac operator is that it is self-adjoint, 
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i.e. 

Of course it is known that the Laplacian is also self-adjoint. 

The importance of introducing the Dirac operator lies in the fact that D A splits 

into two parts, 

D~ : r(~V± ® L) -+ f(W'f ® L), 

where W± are both U(2) bundles, and D~ are adjoints of each other. The index of 

D1 is defined as 

index of D1 = dim(Ker(D~)) - dim(Ker(DA)) 

The following result is fundamental and well-known in four-manifold theory 

Theorem 5.3.1. (Atiyah-Singer Index Theorem.) Let AI be a compact ori­

entable four-manifold and L be a line bundle. If DAis a Dirac operator with coeffi­

cients in L on Af, then 

where r( M) is the signature of M, r( AJ) = b+ - b_, and Cl (L) is the first chern class 

of L. o 

Several striking applications of the Atiyah-Singer Index theorem have been studied 

later on and yielded topological invariants which have strong connections with the 

geometric structure: Rochlin's theorem showed that the signature of a compact 

orient able smooth spin 4-manifold is always divisible by 8, Lichnerowicz's theorem 

related the curvature to topology of Riemannian 4-manifolds, and in the case of L 
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being a complex line bundle, the Chern character is defined as 

(More details can be found in [Chern, 1960; Compf and Stipsicz, 1999; Moore, 199GJ.) 

5.4 Seiberg-Witten Invariants 

We now consider invariants based on the theory of nonlinear partial differential equa­

tions. For a nonlinear PDE, the space AI of its solutions may be defined on a compact 

smooth manifold. Although A! will, in general, vary depending on choices such as a 

specific Riemannian metric, it is possible that AI's cobordism class can be a topo­

logical invariant which can distinguish between different smooth structures. In fact, 

this is how Donaldson approached four-manifold theory originally. Specifically, he 

studied the moduli space of anti-self-dual connections in an SU(2) bundle over a 

compact orient able 4-manifold, which is itself a smooth manifold (see [Donaldson, 

1983]). However, the compactness of this moduli space cannot be guaranteed, hence 

a great amount of effort has been focused on finding suitable compactifications, among 

which Seiberg-\Vitten invariants have been proved to be a very powerful technique. 

The Seiberg-\Vitten equations are 

D~1/J = 0, FI(ei, ej) = u(1/J) + ¢ = -~ < 1/J, ei . ej .1/J > +1> for i < j, (5.16) 

where FI is the self-dual part of FA, i.e. the curvature of the connection dA, u(1/J) is a 

quadratic form in 1/J, and ¢ is a given self-duaI2-form. The solutions of these equations 

are pairs (dA , 1/J) consisting of a connection dA on the line bundle L and a section 1/J 

of W+ 0 L. Note that the nonlinearity encountered in the Yang-Mills equations from 

gauge theory is much wilder than that in the Seiberg-Witten equations. 
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Recall that in general, L is not always well defined. However, any orient able 

four-manifold possesses a spinc structure. lIenee for such a structure defined by 

ga!3 : Ua n U{3 -+ Spin(4)C and a group homomorphism 7f : Spin(4)C -+ U(1), the 

transition functions 

generate a complex line bundle L2, which is called the anticanonical bundle. 

Clearly, £2 is well-defined generally. In this case, the solutions to (5.16) are pairs 

(d2A , 'lj;), where d2A is a connection on the line bundle L2 and Ft = ~ F2~' where F2~ 

is the self-dual part of the curvature F2A . 

For a unitary connection dAo on L, the configuration space of the solutions to 

Seiberg-\Vitten equations is 

8 = {(dAo - ia, 'lj;) : a E nl(U), 'lj; E f(W+ ® L)}. 

Taking into account the group of gauge transformations g, we form the moduli space 

UeI> of all gauge-equivalent solutions, 

UeI> = {[dAo - ia, 'lj;] E (8/9) : (dAo - ia, 'I/J) satisfies (5.16)}. 

r..loreover, UeI> turns out to be a compact manifold (see, for example [Kronheimer and 

Mrowka, 1994]). For a complex line bundle L over A!, it is clear that the moduli space 

UeI> depends on both the Riemannian metric on Al and the choice of cPo However, 

by Smale's infinite-dimensional generalization of transversality (see [Smale, 1966]), 

different cP yield cobordant moduli spaces, which can be regarded as a topological 

invariant. Hence the Seiberg-\Vitten invariants of L over AI are defined by 

SW(L) =< ct, UeI> >, 
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and Cl is the first Chern class of a line bundle over the space of all gauge-equivalent 

pairs (dA , 1/J). 

Using these invariants, by \Vitten's theorem (see [r-.loore, 1996]), it can be shown 

that the compact manifold P2C#qP2C has infinitely many distinct smooth structures. 

5.5 Four-Dimensional Dynamical Systems 

As far as dynamical systems are concerned, we can start with simple systems on S4 

and use connected sums, covering manifolds or rational blowdown techniques (see 

[Fintushel and Stern, 1997; Gompf and Stipsicz, 1999; Orlik, 1972]) to generate more 

complex systems. For example, we have the following result 

Theorem 5.5.1. Given a Morse-Smale system on a smooth simply connected 4-

maniJold AI with b+ > 1, Seiberg- Witten invariant SWM and an embedded periodic 

solution K with A-polynomial P(t), we can obtain a dynamical system on a 4-maniJold 

Alp with Seiberg- Witten invariant S~V Mp such that 

Proof. This follows from the results in Fintushel and Stern [Fintushcl and Stern, 

1998] and Etgu [Etgu and Park, 2003]' by doing Dehn surgery on the knot K. 0 

In [Gompf, 1995], the following construction of a generalized connected sum is 

given: 

Let l\J and N be two smooth, closed, orient able manifolds of dimension nand 

n - 2, respectively, and i j : N -+ !v! (j = 1,2) be disjoint embeddings with normal 

bundle Vj over N and normal Euler classes e(vj) E Jl2(N; Z) which are opposite, i.e. 

e(v2) = -e(vl)' This implies that VI and V2 are isomorphic by an isomorphism 1/J : 

VI -+ V2' Note that 'ljJ reverses the orientataion of the fibres. !-.loreover, for a tubular 

neighbourhood Vj of ij(N), there exists an orientation preserving diffeomorphism 
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¢> : (V} - i} (N)) -t (\12 - i2(N)). Then we denote by #t/>AI to be the manifold 

obtained by taking AI - UI (N) U j2(N)) with the identification of (VI - i l (N)) with 

(\12 - i2(N)) by ¢>. 

If AI = AI} U A/2, then AIt/> is the connected sum of All and A/2 along ij(N) via ¢> 

and denoted by All #t/>AI2. 

Thus if AI = All U 1'./2 is a 4-manifold with AII,Al2 both carrying dynamical 

systems and the dynamics on il(N) and i2(N) 'match up' by the induced map ¢>. : 

T(i}(N)) -t T(i2(N)), then there exists a well-defined system on AII #t/>Al2. 

Another alternative is to use the theory of covering surfaces to obtain dynamical 

systems on any 4-manifold. The theory of branched coverings of 8 4 can be found 

in [Montesinos, 1985]. In particular, Piergallini shows that every closed oriented P L 

4-manifold is a single 4-fold covering of 8 4 branched over a transversally immersed 

P L surface (see [Piergallini, 1995]). lIenee, similar to the 3-dimcnsional case, we have 

Theorem 5.5.2. A four-manifold which is simple 4-fold covering of 8 4 over an im­

mersed surface 8 carnes a dynamical system which is the lift of a system of 8 4, which 

has 8 as an invariant surface - so that the immersed double and treble points of 8 in 

8 4 are invariant sets of the flow. o 



Chapter 6 

Conclusions 

6.1 Main Contributions 

By definition, dynamical system is a mathematical formalization for a relation that 

describes the time dependence of a moving point's evolution in its ambient space. 

Generally this relation is defined in terms of differential equations. Typical examples 

include the mathematical models which describe the swinging of a single pendulum, 

the flow of the water into a tank, and the movement of a crane hanging along a 

fixed track. The study of dynamical systems not only have considerable influence on 

theoretical and practical development in both linear and nonlinear pattern formations, 

but can provide a useful insight into the analysis of dynamical behaviours which have 

been observed in a wide range of scientific disciplines. 

Because a dynamical system is a smooth evolution function defined on the phase 

space, i.e. a manifold AI, it is natural to ask a global question where topology and 

dynamics interact. The work in this thesis has presented extensive research on how 

the global topological invariants regulate dynamical structures in low-dimensional 

cases. 

The theory of two-manifold has been well understood for a fairly long time, with 

145 
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one unique topological invariant, the genus, which can distinguish all different sur­

faces. Stick to the upper half plane model, we approach the study of dynamical 

systems defined globally on surfaces of any genus by using the automorphic func­

tions. 

In the genus-l (torus) case, because of the nature of their fundamental regions, i.e. 

lattice [2 consisting of parallelograms, it is clear that any doubly-periodic function 

can serve as the generator for systems defined on a torus. l3y using the Weierstrass 

elliptic functions in particular, we formulate an algorithm to construct toroidal sys­

tems explicitly, and a necessary and sufficient condition regulated by the topological 

invariant, Euler characteristic (which is zero for a torus), is presented as well. 

Higher genus surfaces turn out to be more difficult mainly because hyperbolic 

metric is understood in this case. Moreover, since general automorphic forms only 

provide invariant 'scalars' instead of vector fields, some form of modification is neces­

sary. Hence, by adopting a revised version of theta series, we are able to present the 

algorithm of generating 'pseudo-automorphic' functions which uniformise the vector 

fields and yielding analytic systems on surfaces of any genus. 

In dynamical systems theory, an attractor (resp. repeller) is a set which attracts 

(resp. repels) dynamics and contains a dense orbit. It is a generalization of stable 

(resp. unstable) nodes and very important in studying the asymptotic behaviour 

of dynamical systems. Within the attractor itself, there exist fruitful exhilarating 

phenomena that gather the attention of many mathematicians. A 'strange' attractor 

contains a transversal homoclinic orbit, with the famous example being the Dulling 

equation 

x + ax - x + x 3 = /3 cos(wt). 

Moreover, in the case of a periodic nonlinear 2-dimensional, time-varying oscillator 

with appropriate damping which is situated on a torus and contains an attractor, 

Martins showed that if there exists an inversely unstable solution, then the attractor 
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is not homeomorphic to a circle. 

Accordingly, this thesis presents an elucidation to the generalization of the above 

result to higher genus surfaces. By studying the topology of the inversely unstable 

solutions, we are able to show that instead of just one attractor, several invariant 

sets can coexist and even be knotted to form a set of linked at tractors. l\leanwhile, 

the existence of an inversely unstable solution implies that the containing attractor 

is not homeomorphic to a circle, with the proof bearing a resemblance to the one in 

[Martins, 2004]. 

Three-dimensional dynamical systems are more interesting than their two-dim 

counterparts mainly because the one more dimension of freedom provides much more 

variety in the corresponding dynamical behaviour. In particular, Smale, in his ex­

tensive survey of differentiable dynamical systems [Smale, 1967], addressed the im­

portance of strange at tractors, especially the 'structurally stable' ones. Note that a 

dynamical system is structurally stable if small C 1 perturbations yield topologically 

equivalent systems. Historically speaking, despite the fact that they are hard to find 

in physical models, structurally stable hyperbolic attractors still possess an important 

place in dynamical systems theory, mainly because they serve as an archetype and 

guide investigations on the dynamical behaviour of other strange attractors. 

After Smale's classification of the Axiom A systems, the topological study of 

hyperbolic invariant sets has grown rapidly. One of Smale's long term program is 

to classify a I3aire set of the diffeomorphisms which define hyperbolic structures on 

the non-wandering set. This program evolved from the work of many topologists and 

dynamicists, such as [Williams, 1967, 1974; Franks, 1985; Guckenheimer and Holmes, 

1983]. 

As one type of hyperbolic attractors, Smale solenoids were introduced to dynam­

ical systems. They carry more information than the general solenoids which are just 

topological spaces. This thesis concerns the study of automorphisms on 3-manifolds 
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which contain generalized Smale solenoids as their basic sets. Therefore this gives us 

a geometric picture of necessary and sufficient conditions which must be met under 

the existence of such hyperbolic attractors. 11oreover, since every closed, oricntable 

3-manifold is a branched covering of S3 over some universal knot, we studied the 

possibility of lifting dynamics defined on S3 onto the original manifold in order to 

have arbitrary genus Smale solenoids. 

On the other hand, the enormous growth in knot theory that the last two decades 

has witnessed also facilitates the research in dynamical systems theory, mainly be­

cause a knot is essentially a twisted version of S1, which can be regarded as a periodic 

orbit generated by differential equations. From this perspective, we have shown how 

to generate three-dimensional systems containing arbitrarily knotted chaos by using 

the theory of transformation groups and Coo functions. By 'twisting' a simply existing 

dynamical system according to local transformation groups and making the resulting 

system periodic, virtually any dynamical behaviour can be obtained. 

Meanwhile, with the aid of surgery techniques, such as Dehn surgery, IIeegaard 

splittings, branched covering manifolds and connected sums, we obtained a kind of 

decomposition of 3-dimensional dynamical systems in terms of simpler ones. 

Four-manifold topology turns out to be probably the most difficult one of any 

dimension and exhibit somewhat very strange behaviour. However, by using the 

characteristic classes (of vector bundles over the original 4-manifold) developed over 

the last 80 years by numerous mathematicians, including Chern, Stiefel, \Vhitney, 

and Pontryagin, Donaldson, Seiberg and Witten, we still managed to investigate the 

problem on gluing given local systems in order to obtain a global dynamical picture. 

To sum up, this thesis provides a comprehensive work of dynamical systems on 

low-dimensional manifolds, from both topological and geometrical points of views. 
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6.2 Recommendations for Future Work 

The idea of generating dynamical systems by using modified automorphic functions 

worked perfectly in two-dimensional case, largely because of the commutativity of 

complex numbers C. In three-dimensions, however, the quaternion representations 

do not commute any more, which becomes an obstacle and presents quite a challenge. 

By studying modular forms on the upper-half space of quaternions more thoroughly, 

we are hoping to be able to find an algorithm to obtain meromorphic, or even more 

general systems on 3-manifolds in the near future. 

The most challenging area still lies in the four-dimensions. Over the past two 

decades, four-manifold theory, once in the inner sanctum of topology, has been leaking 

out and finding its interactions with diverse fields through several successful attempts. 

For example, with the novel gauge-theoretic properties, topologists are now using 

Kirby calculus to construct new 4-manifolds, decompose them into simpler pieces, 

and investigate their differentiable structures. 

Moreover, in [Fintushel and Stern, 1997], the rational blowdown is well defined as 

removing the interior of a 4-manifold Cp with BCp being a lens space and replacing 

it with a rational ball Bp. Clearly this is a technique to obtain new 4-manifolds from 

the existing ones. FUrthermore, with the aid of Seiberg-Witten invariants, Etgu and 

Park proved that symplectic 4-manifolds can accommodate infinite family of non­

isotopic symplectic tori (see [Etgu and Park, 2003]). lIenee the above results guide 

the thinking about the possibility of generating dynamical systems via the 'rational 

blowdowns'. 

In [Compf, 1995], a new surgery construction, symplectic connected sums formed 

along codimension-2 submanifolds, is generalized. In the setting of 4-manifolds par­

ticularly, by defining an orientation-reversing isomorphism of the normal bundles on 

their respective diffeomorphic submanifolds, two smooth manifolds can be summed to 

yield a new 4-manifold. Provided that we are given two dynamical systems situated 
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on different smooth 4-manifolds, this construction leads to obtaining a new system 

on their connected sum. 

To sum up, with the intense development of low-dimensional topology, dynamical 

systems theory on low-dimensional manifolds is becoming an area that is really worth 

to exploit. 



Appendix A 

Topology In a Nutshell 

After Poincare established the modern method of qualitative analysis of differential 

equations, dynamical systems theory became more and more closely related to topol­

ogy, especially manifold theory, due to the reason that topology is essentially the 

study of topological spaces and continuous functions between them. In fact, a lot of 

work is focused on how the topology, especially in low-dimensional cases, interacts 

with the dynamics. For example, in the 1930's, Morse theory was introduced and 

provided a useful insight into this interaction (see [Milnor, 1963; Morse, 1934]). 

Figure A.l: Torus over a plane. 

Example . Let M be a torus, tangent to a plane (as shown in fig. A.l), f : M -t JR 

(JR denotes the real numbers) be the height above a plane, and Ma be all the points 

x E M such that f(x) :::; a (a> 0). Then the following statements are true: 

(a) If f(p) < a < f(q), then M a is homeomorphic to a 3-cell. 
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(b) If f(q) < a < f(r), then Ala is homeomorphic to a cylinder. 

(c) If f(r) < a < f(s), then .Afa is homeomorphic to a compact gcnus-1 manifold 

with a circle boundary. 

(d) If f(s) < a, then .Afa is the full torus. 

As illustrated in the example above, for a non-degenerate function f, the gradient 

vector field, grad(J), defines a dynamical system. Moreover, the globa.l information on 

the singularities of f will then provide topological information on the global manifold, 

M. 

Hence it is necessary to introduce enough topology for later requirements. Note 

that all the following results are well-known and can be found, for example, in [Abra­

ham, marsden and Ratiu, 1980; Dugundji, 1966; Orlik, 1972; Spanier, 1966J. 

A.I Set Theory and Group Theory 

vVe first lay down a few definitions that are needed for future discussion. 

Generally speaking, a 'set' refers to a collection of abstract objects. Given a set 

A, an equivalence relation is a relation rv between elements of A which is reflexive, 

symmetric and transitive. The equivalence class of a E A with respect to rv is the 

subset {a' E A I a rv a'}. 

A partial order in A is a binary relation, denoted by '::; , satisfying the following 

i) reflexivity, i.e. a::; a for all a E A, 

ii) transitivity, i.e. a ::; a' and a' ~ a" imply a ~ a" for a, a', a" E A. 

A total order (or simple order) in A is a partial order such that for a, a' E A either 

a ::; a' or a' ~ a and which is antisymmetric, i.e. a ::; a' and a' ::; a imply a = a'. An 

upper bound a E A of a subset U C A is an element such that u ::; a for all u E U. A 
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maximal element m of an ordered set A is an element such that a :$ Tn for all a E A 

and a t= m. A subset B c A is called a chain in A if every two elements in Bare 

ordered. Moreover, 

Definition A.I.I. A partially ordered set A is called well-ordered (or ordinal) if 

every nonempty subset B c A has a first element, i. e. for each B t= 0, there exists a 

bo E B such that bo :$ b for all bE B. 

For example, 0 is well-ordered; If a set contains only one element, it is then well­

ordered; The nonnegative integers are well-ordered. It is evident that a well-ordered 

set is totally ordered, also the induced order on a subset of a well-ordered set is a 

well-order on that subset. 

Theorem A.1.I. Given other axioms of set theory, the following statements are 

equivalent 

i) Axiom of Choice Given a nonempty family {Ao I Q' E .0"'} of pairwise disjoint 

nonempty sets, there is a set S which is a collection of nonempty sets and 

consists of exactly one element from each Ao. 

ii) Zorn's Lemma A partially ordered set in which every simply ordered subset 

has an upper bound contains maximal elements. 

iii) Zermelo's Theorem Every set can be well ordered. o 

Remarks. There exists no specific construction to well order any uncountable set, 

even though Zermelo's theorem asserts that every set can be well ordered. 110reover, 

there are sets, (e.g. the set of real-valued functions of one real variable,) for which 

no specific construction of a total order is even known. Meanwhile, it is obvious that 

the well ordering guaranteed by Zermelo's theorem is not unique. 

Two sets, X and Y, are equipotent if there exists a bijective map of X onto Y. It 

is an equivalence relation in the class of all sets. Hence 
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Definition A.I.2. The cardinal number of X is the initial ordinal number of its 

equipotence class, denoted by N(X). 

There are special symbols assigned to some frequently occurred sets, e.g., N(0) = 0, 

N(l, 2"" ,n) = n, and N(N) = No. For a set X, if N(X) = n for some n, then it 

is called finite; otherwise it is called infinite. Any set X with N(X) :5 No is called 

countable; otherwise it is called uncountable. 

A group is a set G closed under a binary operation satisfying the following three 

axioms: 

i) the operation is associative, 

ii) the operation contains an identity element, 

iii) every element in G has an inverse element. 

Groups are fundamental in building up more elaborate algebraic structures such 

as rings, fields, and vector spaces. 

A homomorphism is a map between two groups that preserves the structure im­

posed by the corresponding operator. A homomorphism is called a monomorphism, 

epimorphism, isomorphism, respectively, if it is injective, surjective, bijective. Given 

a collection of groups, {GdiE[, their direct product is defined to be the group structure 

on the cartesian product XGi, i.e., (gi)(g:) = (gig:). 

A group G is said to be freely generated by a subgroup G I (G I c G) if, given 

any function f : G I -+ II, where H is a group, there exists a unique homomorphism 

F : G -+ Il such that F is an extension of f. lIence we have 

Lemma A.I.I. Any group is isomorphic to a quotient group of a free group. 0 

A normal subgroup is a subgroup N of G such that it is invariant under conju­

gation. A presentation of G is composed of a set of generators, G I, a set of rela­

tions, B C F(Gd, where F(G1) is a group freely generated by G I , and a function 
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f : G1 - G such that the extension of f to a homomorphism F: F(G1) - G is an 

epimorphism with kernel being the normal subgroup of F(Gd. G is said to be finite 

if both A and B are finite sets. 

A.2 Topological Spaces 

Given a space X, it is geometrically evident that the points in X are arranged differ­

ently such that different subsets are 'close together'. Topology is therefore introduced 

to detect this inherent differences. 

Definition A.2.1. A topological space X is a set together with a collection g of 

subsets that are called open sets such that 

i) 0 E g and X E g, 

iii) if Ui E g, i E I, then UiE1Ui E g for an arbitrary index set I. 

Formally topological spaces are denoted by a pair (X, g); however, we shall simply 

write X instead if there is no danger of confusion. 

By an open neighbourhood of x E X is meant an element of g containing x. The 

indiscrete topology, also known as the trivial topology, on a set X is comprised of 

g = {0, X}. The discrete topology on X, on the other hand, is defined as the power 

set 9'(X), i.e., g = {U I U eX}. 

Furthermore, it will simplify the specification of a topology if given just enough 

open sets to 'generate' all the open sets. Therefore we have 

Definition A.2.2. A basis for g is a family !Ja C g such that each element of g 

is the union of elements in !Ja. 
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A basis for .9'" completely determines :Y. By specifying a basis for :Y, all the open 

sets are generated as unions. 

Theorem A.2.1. Let $ c :Y be a basis for .9'". Then A is open in .9'" if and only if 

for each x E A there is aU E $ such that x E U c A. o 

In fact, the above theorem provides a useful methods for showing that a given set 

A is open. 

Definition A.2.3. A set A c X is called closed if its complements in X, X \A is 

open. 

Note that the concepts of 'closed' and 'open' are neither exclusive nor exhaustive: 

In any space X, X and 0 are both open and closed, while [0, 1[ is neither open nor 

closed. Moreover, we have the following: 

(a) The intersection of any family of closed sets is a closed set. 

(b) The union of finitely many closed sets is a closed set. 

Definition A.2.4. Let X be a topological space and A eX. The intersection of 

all closed sets containing A is called the closure of A, denoted by 11 or cl(A). The 

largest open set contained in A is called the interior of A, denoted by Int(A), i.e. 

Int(A) = U{U I (U open) 1\ (U c A)}. The boundary of A, denoted by bd(A) or 

8A, is defined to be 8A = cl(A) n cl(X \ A). 

Note that cl(A) is closed and Int(A) is open. Hence, A is closed if and only if 

A = cl(A), while A is open if and only if A = Int(A). Moreover, A C cl(A) for every 

set A. The boundary of A is a closed set, and bd(A) = bd(X \ A). 

For example, if A = [0,1[, then cl(A) = [0,1]' Int(A) =]0,1[, and bd(A) = {O, I}. 

Furthermore, if A, B, and Ai (i E 1) are subsets of X, then the following state-

ments are true 
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i) A c B =} Int(A) C Int(B), and cl(A) C cl(B). 

ii) X \ cl(A) = Int(S \ A), and X \ Int(A) = cl(S \ A). 

iii) cl(0) = Int(0) = 0. 

iv) cl(A U B) = cl(A) U cl(B), cl(A n B) = cl(A) n cl(B), 

Int(A U B) ~ Int(A) U Int(B), and Int(A n B) = Int(A) n Int(B). 

v) cl( UiEI Ai) ~ UiEI cl(A), cl( niEI Ai) c niE/ cl(Ai), 

Int( UiEI Ai) ~ UiEI Int(Ai), and Int( niEI Ai) c niEI Int(Ai). 

Definition A.2.5. Let A eX. A point x E X is called a cluster point of A if 

each neighbourhood of x contains at least one point of A distinct from x. The set 

A' = {x E X I 'V U(x) : U(x) n (A - x) "I 0} of all cluster points of A is called the 

derived set of A. 

In particular, cl(A) = A U A', and A is closed if and only if A' c A. 

Definition A.2.6. D c X is called dense in X if cl(D) = X, and is called 

nowhere dense if X \ cl(D) is dense in X. 

Clearly, X is dense in X, and in fact, X is the only closed set dense in X. 

Definition A.2.7. Let Un be a sequence of points in a space X. If there is a point 

u E X such that for every neighbourhood U of u, there is an N such that n ~ N 

implies Un E U, then this sequence is said to converge. u is called a limit point of 

{un}. 

For example, the sequence {~} in lR converges to O. Clearly the limit point of 

sequence Un is the cluster point of {un}. Moreover, in a countable space X any cluster 

point of a set A is a limit point of a sequence of elements in A, and a point u E cl(A) 

if and only if there is a sequence of points of A that converges to u. 
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Definition A.2.8. A topological space X is called reducible if it can be written as 

a union X = Xl U X 2 of two closed proper subsets Xl, X 2 of X. A topological space 

is irreducible if it not reducible. 

In fact, a topological space X is irreducible if and only if all open subsets of X are 

dense. Moreover, an irreducible component is closed because if a subset is irreducible, 

so is its closure. 

After considering topologies on one given set, we are now going to relate different 

topological spaces. 

Definition A.2.9. Let X and Y be topological spaces. A map f : X -+ Y is called 

continuous at u E X if for each neighbourhood V of f(u) there exists a neighbour­

hood U of u such that f(U) c V. If the inverse image of each open set V in Y, 

f- 1(V), is open in X, then f is continuous. 

For example, a constant map f : X -+ Y is always continuous. Therefore, any 

map from an arbitrary topological space to the trivial topological space is continuous. 

Moreover, let X be any set, $i and .92 be two topologies on X. The bijective map 

f : (X, $i) -+ (X,.92) is continuous if and only if .92 c $i. 

Proposition A.2.1. Iff: X -+ Y and g : Y -+ Z are continuous, then gof : X -+ Z 

is also continuous. 0 

Theorem A.2.2. Let X, Y be two topological spaces and f : X -+ Y. The following 

statements are equivalent: 

i) f is continuous; 

ii) the inverse image of every closed set is closed; 

iii) f(cl(A)) c cl(J(A)) for every A C X; 

iv) cl(J-I(B)) C f- l (cl(B)) for every BeY. o 
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Continuity is defined by putting requirement on the inverse image. It is also 

important to start with the image. 

Definition A.2.10. A map f : X -+ Y is called open (resp. closed) if the image 

of every open (resp. closed) set in X is open (resp. closed) in Y. 

Remarks. A continuous map needs not Le an open map, conversely, an open map 

needs not be continuous. Also in general, an open map needs not be a closed map. 

IIence the concepts of 'open map', 'closed map', and 'continuous map' are indepen­

dent. 

For example, let A c X and i : A -+ X be the inclusion map. It is obvious that 

i is continuous. l\loreover, i is open (resp. closed) if and only if A is open (resp. 

closed) in X. If f : X --+ Y is bijective, then the two situations, f is closed and f is 

open, are in fact equivalent. 

IIere are some characterizations of open maps and closed maps. 

Theorem A.2.3. The following properties of a map f : X -+ Yare equivalent: 

i) f is an open map. 

ii) J[Int(A)] c Int[f(A)] for every A eX. 

iii) f sends every member of a basis for X to an open set in Y. 

iv) For every x E U(x) where U(x) is an open neighbourhood of x and U(x) C X, 

there exists an open neighbourhood ~V C Y such that f(x) E IV C f(U). 0 

Theorem A.2.4. f: X -+ Y is a closed map if and only ifcl(J(A)) C f(d(A)) for 

every set A C X. o 

Definition A.2.11. A continuous bijective map f : X -+ Y is called a homeomor­

phism if its inverse f- 1 : Y -+ X is also continuous, denoted by f : X ~ Y. 
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Two spaces X, Yare homeomorphic, written X ~ Y, if there is a homeomorphism 

f:X~Y. 

Homeomorphism is an equivalence relation in the class of all topological spaces. In 

general, if a property is true for one space X, then it is also true for every space homeo­

morphic to X, we call it a topological invariant. For example, the Euler characteristic 

is a topological invariant for 2-dimensional manifolds. Hence from this perspective, 

homeomorphic spaces share the same topological invariants, and topology can be de­

scribed, to some extent, as the study of topological invariants. However, note that it 

is usually very difficult to show two spaces are homeomorphic, with construction of a 

homeomorphism being the general method. 

Here are some properties of homeomorphisms. 

Theorem A.2.5. Let f : X --+ Y be bijective. The following properties of fare 

equivalent: 

i) f is a homeomorphism. 

ii) f is continuous and open. 

iii) f is continuous and closed. 

ivY f(cl(A)) = cl(J(A)) for every A C X. o 

To establish that a given f X --+ Y is a homeomorphism, one often uses the 

following 

Theorem A.2.6. Let f : X --+ Y and 9 : Y --+ X be continuous, 9 0 f = Ix and 

fog = 1 y. Then f is a homeomorphism. 0 

Moreover, the set of all homeomorphisms of a topological spaces X to itself forms 

a group under composition. 
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A.3 Subspaces, Products and Quotients 

This section concerns the construction of new topological spaces from old ones. Let 

Y eX, we will begin with defining the relative topology on Y. 

Definition A.3.1. Let (X, S") be a topological space and Y c X. The relative (or 

induced) topology is S"y = {YnU I U E S"}. (Y, S"y) is called a subspace of (X, S"). 

Y is called a discrete subspace of X if S"y is the discrete topology. 

For example, adjoin two points, {+oo} and {-oo}, to the set of all real numbers, 

R (lR U {-oo, +oo}) is called the extended real line, denoted by £1. With the 

induced topology, IR c £1 is the Euclidean space El. 

Let (X, 5') be a topological space and (Y, S"y) is a subspace. Then: 

i) If {Uo I Q E A} is a basis for 5', {Y n Uo I Q E A} is then a basis for S"y. 

ii) Let YI C Y. Then YI is S"y-closed if and only if Yi = Y n F, where F is 

S" -closed. 

If f : X -+ Y is continnous and A C X is taken with the subspace topology, then 

the rrstriction flA : A -+ Y is continuous. However, the converse is false. Moreover, 

if f(X) is tak<'n with the subspace topology, then f : X -+ f(X} is continuous. 

Definition A.3.2. Let {Yo 10' E A} be any family of topological spaces. The product 

topology on n" }~. consists of all subsets, (UI, U2,' •. , Ui, ••• ), which are the union 

of sels which have lhe form no Uo , where Uo is open in Yu and i ranges over all 

elements of A. 

Clearly X x Y is homeomorphic to Y x X. lienee n Yo is unrestrictedly commu­

tative. 

Theorem A.3.1. Let {Yo I Q E A} be any family of topological spaces. Then for 

each Fred fJ E A, the canonical projection Po : no Yo -+ Ya is a continuous open 
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surjection. Moreover, let f : X ---t Ill< Ya be a map, then f is continuous if and only 

if Pf3 0 f is continuous for every f3 E A. 0 

ote that Pf3 in general is not closed . For example, in ]R2 = ]Rl X ]Rl, the set 

A = {(x, y) 1 xy = I} is closed in ]R2, however, under the projection onto the first 

factor , Pl(A) = {x 1 x =f O}, which is not closed in ]Rl. 

One of the main methods to construct new spaces is by 'pasting' given spaces 

together along preassigned subsets. 

Definition A.3.3. Let X be a set. Then the set of all equivalence classes of ele­

ments in X is called the quotient set of X and denoted by X I "', together with 

the identification topology determined by the projection 7r : X ---t X I "', it is called 

the quotient space of X by"'. Furthermore, the collection of sets {U C XI "' I 

7r - 1(U) is open in X} is called the quotient topology of XI "'. 

For xample, I t I be the unit interval and rv be the equivalence relation 0 rv 1, 

x rv X (x =f 0, 1), then (II rv) ~ SI. Also, consider ]R2 and the relation", defined by 

where Z denotes the integers, then 1['2 = ]R2 I rv is called a torus (see fig. A.2 for 

ill ustration) . 

Figure A.2: Torus. 

Definition A.3.4. The set r = {(x, x') 1 x rv x'} C X x X is called the graph 

of the equivalence relation rv. The equivalence relation is called open (closed) if the 

canonical projection 7r : X ---t X rv is open (closed) . 
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A map f : XI rv~ Y is continuous iff f 0 7r : X ~ Y is continuous. Moreover, 

'" is open (closed) iff for any open (closed) subset A of X, the set 7r- 1 (7r(A)) is open 

( closed). 

Theorem A.3.2. Let X, Y be two spaces with equivalence relation "', and f : X ~ Y 

be a relation-preserving, continuous map. Then, the induced map to the quotient 

spaces, f. : X I "'~ Y I '" is also continuous. o 

Definition A.3.S. For any space X, the cone ex over X is the quotient space 

(X x 1)1 "', where rv is the equivalence relation (x, 1) f"V (x', 1) for all x, x' in X. 

The elements in ex is denoted by (x, t). Intuitively, ex is obtained from X x J 

by pinching X x 1 to a single point. 

Definition A.3.6. Let K = [-1, 1J. Given a space X, the suspension SX is the 

quotient space (X x K)I f"V, where rv is the equivalence relation (x,l) rv (x', 1), 

(x, -1) rv (x', -1) for all x,x' in X. 

SX is the dual to ex, and denoted by (x, t) as well. Intuitively, SX is obtained 

from X x K by pinching sets X x 1 and X x (-1) to two points, respectively. Here 

are some properties: 

i) SX ~ eXlx. 

ii) ex is homeomorphic to the subspace {(x, t) E SX I t 2: a}. 

iii) If the map f : X ~ Y is continuous, then the induced map e f : ex ~ ey 

(Sf: SX ~ SY) by (x, t) ~ U(x), t) is also continuous. 

A.4 Separation Axioms and Covering Axioms 

In this section, We will require a topology that 'separates' varying types of subsets 

and introduce several separation axioms. 
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Definition A.4.1. A space Y is Hausdorff (or separated) if each two distinct points 

have disjoint neighbourhoods. 

For example, Euclidean space En is Hausdorff. In Hausdorff spaces, every finite 

set is a closed set. 

Theorem A.4.1. The following invariance properties hold for Hausdorff spaces: 

i) Hausdorff topologies are invariant under closed bijections. 

ii) Each subspace of a Hausdorff space is also a Hausdorff space. 

iii) The cartesian product n Yo is Hausdorff if and only if every Yo is llausdorff·D 

Let X be an arbitrary space, Y be Hausdorff, and f, 9 : X -+ Y be continuous. 

Then: 

i) {x I f(x) = g(x)} is closed in X. 

ii) If Dc X is dense, and flD = glD, then f = 9 on X. 

iii) The graph of the continuous f : X -+ Y is closed in X x Y. 

iv) X is Hausdorff if f is inj<'ctive and continuous. 

Theorem A.4. 2. Lct '" be an equivalence relation in X I and 7r : X -+ X / '" be the 

projection. If the gmph is closed in X x X and 7r is an open map, then X / '" is 

H ausdorf]. 0 

A strollg<'r separation condition than Hausdorff yields the regular spaces. 

Definition A.4.2. A llausdo1jJ space Y is regular if for each y E Y and y ~ A, 

where A is a closed set and A c Y, then there exists a neighbourhood U of y and an 

open set ~' :> A such that Un V = 0. 
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Every regular space is a Hausdorff space, but the converse is not true. Let JR 

denote the set of all real numbers, and 5'" the topology having the open intervals and 

the set of rational numbers, Q, as subbasis. Obviously (JR,5'") is a Hausdorff space. 

However, it is not regular. For example, JR\Q is a closed set, but 1 and lR\Q do not 

have disjoint neighbourhoods. 

Properties of Hausdorff spaces also hold for regular spaces. 11oreover, 

Theorem A.4.3. Let X be regular and IT : X -- XI rv be a closed and open map, 

then XI rv is Hausdorff. Also if A C X is closed, then XIA is Hausdorff. 0 

Separation stronger than regularity is 

Definition A.4.3. A Hausdorff space is normal if every pair of disjoint closed sets 

have disjoint neighbourhoods. 

1tost standard spaces in analysis is normal. The discrete spaces are normal, for 

example. It turns out that we have the following implications: 

Normal ==? Regular ==? Hausdorff. 

Theorem A.4.4. The invariance properties of normal spaces are: 

i) Nor·malily i8 invariant under continuous closed surjections. 

ii) A subspace of a normal space may not be normal. However, a closed subspace 

is normal. 

iii) The car·tesian product of normal spaces may not be normal. However, if the 

product is normal, each factor must be normal. 0 

Let X, Y be normal spaces, and A C X closed. Then X I A is normal. Further­

more, if f : A -- Y is continuous, then X Uf Y is normal. 
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A covering {UOI I Q E I} of a space Y is called point-finite if for every y E Y there 

are at most finitely many indices a E I such that y E UOI ' The normal spaces are 

characterized by these open coverings. 

Theorem A.4.S. Let {UOI I Q E I} be a point-finite covering of a topological space Y 

by open sets. Then Y is normal if and only if there exists another covering {VOl I a E 

I} of Y such that d(VOI) C UOI for every a E I, and Va =J 0 whenever Ua =J 0. 0 

In fact, it turns out that, by relating spaces to the behaviour of their open cover­

ings, weak separation properties can become very strong. 

Definition A.4.4. A space Y is first countable if for each u E Y there exists a 

sequence {UI , U2 , ••• } = {Un} of neighbourhoods of u such that for any neighbourhood 

U of u, there is an integer n such that Un cU. Y is called second countable if it 

has a countable basis. 

Clearly, second countability implies first countability. ]Rn is second countable since 

it has the countable basis formed by rectangles. In fact, most of topological spaces 

of interest to us are second countable. 

Theorem A.4.6. (LindelOf) Every open covering {Ua } in a second countable space 

X has a countable subcovering. 0 

This is the main property of second countable spaces. It is invariant under con­

tinuous surjections. 

Definition A.4.S. A Ifausdorj] space is separable 'if it contains a countable dense 

set. 

Since the set of rational numbers Q is countable and dense in lR, lR is separable. 

Furthermore, if Y is a second countable space, then every subspace of Y is separable. 

We now consider the countable union and intersection of sets which appear fre­

quently in analysis. 
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Definition A.4.6. A set F is called an Fu if it is the union of at most countably 

many closed sets. A set G is called a Go if it is the intersection of at most countably 

many open sets. 

Q is an Fu since it is countable and every point in it is a closed set. Note that 

the concepts of Fu and Go are neither exclusive nor exhaustive. They are frequently 

expressed in the following manner: 

i) If F is an Fu , then there is a nondecreasing sequence F} C F2 C .. , of closed 

sets with F = U~l Fi • 

ii) If G is a Go, then there is a nonincreasing sequence Gl :) G2 :) •.• of open sets 

with G = n~l Gi . 

Clearly, the complement of an Fu is a Go, and vice versa. However, the properties 

of Fu and Go are not well preserved under all countable set operations in general, 

hence we now define a family which is preserved under these operations. 

Definition A.4.7. A nonempty family E C P(X), where P(X) denotes the power 

set of X, is called as (J-ring if 

i) A E ~ =} cl(A) E ~, 

ii) Ai E ~ for i = 1,2,'" =} U~l Ai E E. 

The unique smallest (J-ring containing the topology of X is called the family of 

Borel sets in X. Every Fu and every Go is a Borel set. Moreover, the countable 

union, countable intersection and the difference of Borel sets is a Borel set. 

A.5 Connectedness 

Intuitively, if a space is not comprised of two separate pieces then it is connected. In 

topology, this simple idea has led to some very sophisticated algebraic techniques for 

classifying different spaces. 
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Definition A.5.l. A space X is connected if it is not the union of two nonempty 

disjoint open sets. A subset A C X is connected if it is connected as a subspace ofY. 

If A is the only TlOnempty connected subset of X that contains A, it is then called a 

component of X. Y is locally connected if the basis of Y is composed of connected 

open sets. 

For example, ]Rn is connected and locally connected. The trivial topology is con­

nected and locally connected, while the discrete topology is neither. Every component 

of a space Y is closed in Y, and the set of all distinct components forms a partition 

of Y. If Y is locally connect('d, the components are open and closed. 

Theorem A.5.l. (Intermediate Value Theorem.) Each continuous real-valued 

function on a connrcled 8pace X takes on all values between any two that it assumes. 

o 

Definition A.5.2. A path in Y is a continuous mapping f : I -+ Y, where I = [0,1]. 

We say f joins f(O) to f(I). If each pair of points in Y can be joined by a path, the 

.<;pace Y' is callrd path-connected. Y is called locally path-connected if for every 

y E Y and neighbour'hood U of y, there exists another neighbourhood V of y such that 

any IHlir of points in V can be joined by a path in U. 

Again ]R1l is path-collnpctc'd and locally path-connected. The discrete space hav­

ing more than olle point is never path-connected. Every path-connected space is 

conllt'cted ,while the cOllv('r~c is Hot nec('ssarily true. For example, Let X be the 

suh.;pa('(' of]R2 (h'filH'd by X = {(x, y) E ]R21 x > 0, Y = sin ~ or x = 0, -1 ~ y ~ I}, 

thrll X is conn('ct(·(1. bllt not pat ii-connected. Evidently path-connectedness is a 

topological invariant. 

Defore proc('('d to t he notion of simple connectedness, we first give the definition 

of homotopy. 
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Definition A.5.3. Let X, Y be two spaces, I the unit interval, and f, 9 : X ~ Y 

are two maps. If there is a continuous map W : X x I ~ Y such that W(x, 0) = f(x) 

and W (x, 1) = g( x) for every x EX, then f and g are called homotopic (written: 

f ~ g). 

Homotopy theory plays an important role in algebraic topology, and homotopy 

invariants count for most of the known algebraic invariants. Intuitively, W stands for 

a continuous deformation of the map f to g. 

Definition A.5.4. Let X be a topological space, a closed path l is called a loop based 

at p if there exists a continuous map I : I ~ X such that 1(0) = 1(1) = p, where 

p EX. The loop I is called contractible if it is homotopic to the constant map, i. e. 

I ~ c, where c: I ~ p. 

Roughly speaking, a loop is cont ractibl(' if it can be shrunk continuously to the 

point p. The study of loops leads naturally to homotopy theory. In fact, the loops 

ba .. 'icd at one point can be classified 8.'i the so called fundamental group, denoted by 

71'(X,p), which is olle of the main topics in algebraic topology. 

Definition A.5.5. If a spare X i8 connected and every loop in X is contractible, 

then X i8 simply connected. 

Clmrly if X is simply cOllnected, then 71'1 (X, p) is trivial for evcry p E X since 

cV<'ry loop can be shrunk to its bc\.'ic point. 

A.6 Metric Spaces 

In many cases the topology is d!'riwd from a notion of distance, for example, on IR2 

the standard distance fUllction 
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between x = (XI,X2) and Y = (YI,Y2) gives rise to 2-dimensional flat disks and hence 

the topology. 

Definition A.6.!. A metric on a set Af is a map d : Af x .H -+ 1R such that for 

anyx,Y,zEAf, 

i) d(x, y) ~ O. 

ii) d(x, y) = 0 if and only if x = Y (definiteness). 

iii) d(x, y) = d(y, x) (symmetry). 

ivY d(x, z) ~ d(x, y) + d(y, z) (triangle inequality). 

With each metric d in a set M, we a.,>sociate a definite topology. 

Definition A.G.2. For { > 0 and a E M. The set B«(a) = {m E AI I d(m, a) < t} 

i8 called the open (-ball. The topology with the family of all f-balls in AI as basis is 

called the metric topology, (Ind (!If, d) is called the metric space. Two metrics in 

a sd called ('q1lil'al('nl if they induce the same mel1'ic topology. 

TIIP Ellclidean space lEn is a Ill('tric space. In fact, every set Af can be made into 

a metric ~pace by the discrete metric defined by d( m, n) = 1 for m =I n. 

In a IIH'tric l'ipace M, the distnllce of a point mo to a nonempty set A is defined 

as d(mo, A) = inf{cl(mo, a) I (l E A}; the distance between two nonempty sets A and 

il is ddirH'd as d(A, IJ) = inf{d(a, b) I a E A, b E il}; the diameter of a nonempty 

set A is (kfill('d n.'> 6(A) = slIp{d(;r, y) I x E A, YEA}. A set A is called bounded if 

6(11) < 00. 

ft-Ietrizability is a topological invariant, every subspace of a metric space is also a 

metric space. 

Theorem A.G.l. Evoy mflric space is TI017nal and first countable. Moreover, in 

metric 8P(JCC.'I, the conccpt.'! of second counlability, separability, and Lindelof are all 

cquival('nt. o 
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Definition A.6.3. Let Al be a metric space and {un} a sequence in AI. If for each 

c > 0, there exists an integer N such that n, m ~ N such that d(un, urn) < c, then 

{Un} is called a Cauchy sequence. The space M is called complete if every Cauchy 

sequence converges. 

A convergent sequence is a Cauchy sequence. 

A.7 Compactness 

This section concerns spaces having a strengthened version of the Lindelof property, 

i.e. compactness. 

Definition A.1.1. A Hausdorff space Y is compact if each open covering has a 

finite subcovering. 

A discrete space is compact if and only if it is finite. Moreover, all finite subsets 

and 0 in any space X are compact. 

Theorem A.1.1. Let Y be compact, Z be Hausdorff, and f : Y -+ Z continuous, 

then f is closed; if f is bijective, then it is a homeomorphism. 0 

The continuous image of a compact set is compact; a subspace of a compact space 

is compact if and only if it is closed. The product space TIQ YQ is compact if and only 

if every YQ is compact. 

Definition A.1.2. A llausdorff space is countably compact if every countable open 

covering has a finite subcovering. 

It is clear that every continuous real-valued function f on a countably compact 

space is bounded. Countable compactness is characterized by the behaviour of se­

quences. 
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Theorem A.7.2. (Bolzano-\Veierstrass Theorem.) For a compact Hausdorff 

space, every sequence has a convergent subsequence. o 

In metric spaces, there is no distinction between countable compactness and com­

pactness, hence the Bolzano-\Veierstrass theorem becomes very important. Moreover, 

the converse is also true in metric spaces. Since every compact metric space is second 

countable, we have 

Theorem A. 7 .3. A countably compact space Y is metrizable if and only if it is second 

countable. 0 

Given a metric space Y, A c Y compact, and BeY, A is closed and bounded. 

If An B = 0, then d{A, B) > o. 

Theorem A.7.4. Let Y be a compact metric space and {Ua } be an open covering of 

Y. Then there is a positive number '\({Ua }) such that every ball B).{y) is contained in 

at least one element of {Ua }, this number is called Lebesgue number of the covering. 

o 

A ba.<.;ic application of the above theorem yields the classical theorem on the uni­

formity of continuity: 

Theorem A.7.5. Let Y, Z be two metric spaces, Y compact, and f : Y -+ Z 

continuous. Then for any e > 0, there exi8ts a c5(e) > 0 which depends only on c, 

such that f(13(y,6)) c n(J(y),e) for every y E Y, i.e. f is uniformly continuous. 0 

In analysis, many of the important spaces are not compact, but have a local 

compactness instead. A subset A of a space is relatively compact if its closure is 

compact, and a Hausdorff space is locally compact if every point has a relatively 

compact neighbourhood. Clearly compactness implies local compactness, and it is 

invariant under continuous open mappings. 
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Moreover, some topological spaces are not compact inherently. However, there 

are several techniques that we can apply to compactify them. For example, }Rl is 

a noncom pact regular space. It can be embedded in a compact space by several 

methods, one of them is identifying }Rl with 8 1 by stereographic projection. 

Definition A.7.3. A compactification of a space X is a pair (X, h), where X is 

a compact Hausdorff space and h : X ~ X is a homeomorphism of X onto a dense 

subset of X. 

Since a subset of a compact Hausdorff space is necessarily completely regular, 

they are the only spaces that can be compactified. Among these spaces, the locally 

compact ones carry a property such that they are characterized by the position they 

must have in each compactification: 

Theorem A.7.6. X is locally compact if and only if any given compactijication 

(X, h), h: X ~ X is an open mapping. o 

By theorem A.7.6, a space that is not locally compact can never be compactified 

by adding a single point. Moreover, we have 

Theorem A.7.7. (Po Alexanderoff) Any locally compact space X can be embedded 

in a compact space by adding a single point. Given two compactijications, X and Y, 
if both X - X and Y - X are a single point, then X ~ Y. In fact, there exists a 

homeomorphism h : X ~ Y such that it is the identity map on X. 0 

This construction generalizes the one-point compactification of function theory, 

which is adding a 'point at 00' to the plane. As a trivial example, [0,1] is the one-point 

compactification of ]0,1]. From the perspective of metrizability, we have 

Theorem A.7.8. Denote X a locally compact space. Then its one-point compactifi­

cation X is metrizable if and only if X is second countable. 0 
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In 1899, Baire proved that the intersection of any countable family of open dense 

sets in a locally compact space Y is dense. This property classified a family of spaces 

that has a great impact in both topology and analysis. 

Definition A. 7.4. Let X be a topological space and A c X a subset. A is called 

nowhere dense in X if the interior of its closure is empty. A is called of first 

category in X if A C Un~l Cn where Cn is closed and Int(Cn } = 0; A is called 

of second category if it is not of first category. X is called a Baire space if the 

intersection of each countable family of open dense sets in X is dense. 

Baire spaces are of second category, and every locally countably compact regular 

space is a Haire space. The significance of Baire space is that, let X be a Haire space, 

if {An In E Z+} is any countable closed covering of X, then Int(An} =10 for at least 

one n. 

Theorem A.7.9. (Baire Category Theorem.) 

i) (BCTl) Every complete pseudometric space is a Baire space, where pseudo­

metric space is a generalization of metric space in which the distance between 

two distinct points can be zero. 

ii) (BCT2) Every locally compact space is a Baire space. o 

For example, JR, the set of irrational numbers and the Cantor set are all Baire 

spaces. Haire condition is fundamental to the idea of 'genericity' in dynamical sys­

tems. 



Appendix B 

Smale's Theory 

In this section, we will outline Smale's theory of dynamical systems on manifolds and 

the notion of basic set. All the results here are well-known, and can be found in, for 

example, [Smale, 1967]. 

B.I Conjugacy Problems 

A continuous dynamical system is defined by an lR-action, on a compact manifold A1, 

called a flow, i.e. a map <1> : IR x M -+ M such that 

(a) <1>(t,·) : M -+ M is a homeomorphism of M for all t, 

(b) <1>(0,·):!v! -+ M is the identity on A!, 

(c) <1>(t, <1>(s, x)) = <1>(t + s, x) for all s, t E lR, x E AI. 

We usually write ¢to = <I>(t, .). 

Now let I denote such a flow, i.e. I : Al -+ AI is a diffeomorphism. The orbit of 

x E M relative to I, is the subset {In(x) I n E Z} of !v!. If an orbit is finite, we call it 

periodic orbit. The points on a periodic orbit are called periodic points. lIenee x E M 

will be called a periodic point iff r(x) = x and n is the period of x. Moreover, x is 

a fixed point if n = 1. 

175 



B.2. Stable Manifold Theorem 176 

A subset A ~ M is said to be invariant for I if In(A) = A for all n E Z. A point 

x E A-f will be called a wandering point if there exists a neighbourhood U of x such 

that U1ml>O In(u) n U = 0. A point is called non-wandering if it is not a wandering 

point. i.e. U1ml>o In(u) n U :f:. 0. Clearly the set of non-wandering points form a 

closed invariant set, 0 = OU). 

Definition B.1.1. Suppose I, I' E Diff('M). II there exists a homeomorphism h : 

0U) ~ 0U') such that hI = 1'h, then I and f' are called topologically conjugate 

to 0 . The corresponding stability will be called O-stability. 

The above equivalence relation is important in Smale theory. Furthermore, if all 

diffeomorphisms l' in a sufficiently small neighbourhood of I in CI(M) are conjugate 

to I on 0, then I will be called n-stable. 

B.2 Stable Manifold Theorem 

If a closed invariant set A of I E Diff( M) cannot be represented as 

where Al and A2 are nonempty disjoint invariant sets, then we say A is indecomposable. 

Moreover, if the action of I on A can be decomposed into uniformly expanding 

and contracting pieces, it will, to a large extent, simplify the study of the behaviour 

of A. 

Definition B.2.1. An invariant set A E At lor I is hyperbolic il there exists a 

continuous I-invariant splitting 01 the tangent bundle T A-h into stable and unstable 
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bundles EJ.. ED EX with 

IIDfn(v)1I $ c).-nllvll V v E EJ.., V n > 0 

IIDf-n(v)1I $ c).-nllvll V v E EX, V n > 0 

for some fixed C > 0, ). > 1. 

If f is hyperbolic on all of M, then f is called Anosov. Within this hyperbolic 

structure, the splitting of the tangent bundle T 1'vh into f -invariant stable and unsta­

ble bundles will hence yield the f-invariant stable and unstable manifolds in M. 

Theorem B.2.!. (Stable Manifold Theorem) Suppose f : M -+ AI is a dif­

feomorphism having a hyperbolic structure, with the invariant set being A, for each 

x E A, we then have 

= {y E AI: lim Ilr(y) {:} fn(x)11 = O}, 
n-oo 

Moreover, W8(X) and WU(x) are smooth and injective immersions of the stable and 

unstable tangent bundles, E; and E;, respectively, and the sets W8(X) and WU(x) are 

the stable and unstable manifolds of x. o 

Because of its well-defined splitting structure, those f E Diff(Af), with M compact 

and satisfying the following conditions are most widely studied: 

1. the non-wandering set n is finite, 

2. the periodic points of f are hyperbolic, 

3. for each p, q E 0, WS(p) and WU(q) have transversal intersection. 

The simplest examples of hyperbolic sets for diffeomorphisms are hyperbolic fixed 

points and hyperbolic periodic points. Clearly Anosov diffeomorphisms are defined on 
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structures where the whole compact manifold is hyperbolic. Moreover, if the invariant 

set A is homeomorphic to a Cantor set, then it has a hyperbolic structure, in fact, 

this is how the Smale horseshoe is defined. 

B.3 Axiom A Systems 

Definition B.3.!. Suppose h : M -+ M is a homeomorphism. If there exists a dense 

orbit defined by h, then h is said to be topologically transitive. 

Clearly, the dense orbits form a Baire set of f,.1. In [Smale, 1967], he introduced 

the famous Axiom A systems which satisfy the following two properties. 

Definition B.3.2. (The Axiom A.) The diffeomorphism f : M -+ f,.f satisfies 

Axiom A if 

(a) the non-wandering set 0 is hyperbolic, 

(b) the periodic points of f are dense in O. 

Theorem B.3.!. (Spectral Decomposition Theorem.) If f : M -+ f,.1 satisfies 

Axiom A, then there is a unique way to write OU) as the finite union of disjoint, 

closed, invariant indecomposable subsets, on each of which f is topologically transitive: 

Oi will be called basic sets. o 

In fact, the decomposition of a manifold into invariant sets of the given diffeo­

morphism is analogous to the decomposition of a finite dimensional vector space into 

eigenspaces of a linear map. Moreover, Smale introduced another main axiom 

Definition B.3.3. (The Axiom B.) Suppose that f E Diff(M) satisfies Axiom A, Oi 

are the basic sets, and W 8 (Oi) = {x E Af I fm(x) -+ Oi' m -+ oo}. Then there exists 
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points p E Oi, q E OJ such that WS(p) and ~VU(q) have a transversal intersection, if 

WS(Oi) n WU(Oj) =J 0. 

Now we state the main approximation theorem due to Pugh. 

Theorem B.3.2. (Closing Lemma.) Suppose that f E Diff(M), and ¢ : IE -+ A1 

is given by ¢(n) = fn(x) for x E A1. If p is a point such that ¢(m) = r(p) is not a 

homeomorphism onto its image, then there exists a C1 approximation J' of f where 

p is a periodic point of J'. 0 

According to different dynamical behaviours with respect to various structural 

stabilities, we define 

Definition B.3.4. A flow ¢t is Morse-Smale if 

i) the basic set Oi is hyperbolic, 

ii) the stable and unstable manifolds of basic sets meet transversely, 

iii) each basic set is a single closed orbit or a field. 

Among structurally stable flows, Morse-Smale flows have attracted special interest 

due to the fact that they form a dense subset among the gradient flows, regardless 

of the smoothness class. Moreover, Morse-Smale flows are dense in C1 topology on 

compact 2-manifolds (due to the closing lemma). 

Definition B.3.S. A Smale flow ¢t on M is one for which 

i) the basic set Oi is hyperbolic, 

ii) the basic subsets of the basic set are zero or one-dimensional, 

iii) the stable manifold of any orbit in 0 and the unstable manifold of any other 

orbit in 0 have transverse intersection. 
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The importance of Smale flows on compact manifolds is that they are structurally 

stable under C1 perturbations. However, they are not dense in the Cl topology. 

:Moreover, given a basic set Oi of J E Diff(.M), which has a basic set structure 

satisfying Axiom A and B, we say Oi is an attractor if for an open set U c AI, 

n,nl>o r(U) = Oi' On the other hand, OJ is called a repeller if for an open set 

U C Af, nnl>O J-n(u) = OJ. 
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