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Summary 

The use of Finite Element (FE) based homogenisation has improved the study of composite 

material properties. A homogenisation is a method of averaging a heterogeneous domain by 

using a replacement unit cell according to the proportions of constituents in the domain. 

However, the homogenisation method involves enormous computational effort when 

implemented in engineering design problems, such as optimisation of a sandwich panel. The 

large number of computations involved can rule out many approaches due to the expense of 

carrying out many runs. One way of circumnavigating this problem is to replace the true system 

by an approximate surrogate model, which is fast-running compared to the original. In 

traditional approaches using response surfaces, a simple least-squares multinomial model is 

often adopted. In this thesis, a Genetic Programming model was developed to extend the class 

of possible models by carrying out a general symbolic regression. The approach is demonstrated 

on both univariate and multivariate problems with both computational and experimental data. Its 

performances were compared with Neural Networks - Multi-Layer Perceptrons (MLP) and 

polynomials. 

The material system studied here was the auxetic materials. The auxetic behaviour means that 

the structure exhibits a negative Poisson's ratio during extension. A novel auxetic structure, 

chiral honeycomb, is introduced in this work, with its experiments, analytical and simulations. 

The implementations of the auxetic material surrogate models were demonstrated using 

optimisation problems. One of the optimisation problems was the shape optimisation of the 

auxetic sandwich using Differential Evolution. The shape optimisation gives the optimal 

geometry of honeycomb based on the desired mechanical properties specified by the user. 

The thesis has shown a good performance of numerical homogenisation technique and the 

robustness of the GP models. A detailed study of the chiral honeycomb has also given insight to 

the potential application of the auxetic materials. 
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1. Introduction 

Advances in technology have brought about many innovative creations of new materials with 

outstanding properties. These newly designed and manufactured material systems have replaced 

many natural solids in various industrial applications, for example alloys and polymers being 

used from laboratory tools, engineering structures to household products that can withstand high 

heat and corrosions. Material design has evolved to obtain not only composite structural 

materials, but functional, multifunctional (by combining a few functional materials) or even 

intelligent materials (a more sophisticated combination of functional materials to form an 

intelligent material system), such as Shape Memory Alloys (SMA), piezoelectric materials, 

magneto- / electro-rheological fluids, Micro-Electro Mechanical Systems (MEMS) etc. One of 

the new fields of endeavour is the domain of auxetic materials. 

The auxetic materials are material systems that exhibit negative Poisson's ratios under loading 

conditions. This counterintuitive property has shown some potential in several engineering 

applications and offered enhanced performance compared to conventional materials in various 

ways. The auxetic material itself may be a functional material, such as the smart bandage that 

applies medicine according to the swelling condition [55] or smart filters with automatic 

defouling capability [73, 82]. The auxetic material may also be combined with a functional 

material, such as the SMA honeycomb that is discussed in [26] and combined with a 

piezoelectric sandwich face to form a smart sandwich structure [25]. Other examples of auxetic 

material applications include enhanced pulling-resistance fibre composites [67]. The current 

drive is on using auxetic materials as platforms for multifunctional structures, with embedded 

sensor capabilities for structural health monitoring, and microwave applications [65, 70] and 

many others [I]. 

Composites with auxetic materials have unusual mechanical properties, such as higher shear 

rigidity, enhanced indentation resistance and bending stiffness [I, 82]. Auxetic material systems 

with extreme hardness, polymers of negative thermal expansion, and composites with auxetic 

cores have demonstrated potential applications in multifunctional sandwich structures and are 

within the reach of current manufacturing and process technology. The details of auxetic 

materials, including their background and current applications will be discussed in later sections. 

The investigations of the auxetic cellular materials described in this work lead to a ground 

breaking understanding of their mechanical behaviour in the sense of fundamental 

understanding and their possible engineering applications. Analytical, computational and 

experimental studies of such material systems offer a better understanding of the known 



mechanisms responsible for their unusual properties. It also helps suggest new mechanisms, 

which may lead to achieving novel designs of material systems under given conditions. 

The theme of this thesis is to develop novel metamodelling techniques to improve the 

effectiveness of cellular material simulations (with sepecial emphasis on auxetic), which are 

based on a Finite Element Analysis (FEA) approach, for engineering design optimisation. 

Complex simulation models of proposed real systems are often used to make decisions on the 

actual alteration to a system design. The FE models related to auxetic materials and structures 

may be quite complex, therefore reduced order approximations of the material properties are 

constructed via data fitting. The metamodel method proposed in this work allows a synthesis of 

the FE computed output with respect to the auxetic structural geometries, in order to create an 

accurate approximation of the FE models, also known as the metamodel. 

Numerical computational tools like the Finite Element Analysis (FEA) have significantly 

increased the progress of engineering analysis over the last 50 years. However, their intensive 

computational requirements can still be a hurdle for today's engineering design. Efforts have 

been made over the years to overcome this issue, such as taking advantage of symmetry, or, for 

periodic objects, by modelling only the periodic / unit cell. Despite these approaches, 

researchers in the FE domain are still involved in searching for ways to boost the computational 

speed in order to cope with the increasingly complex design problems. 

When the design problem is incorporated with explicit simulations, typically FE simulations. or 

experiments that determine the design parameters; depending on their complexity, they can be 

bottlenecks, which slow the optimisation process of the design problem. A typical engineering 

design problem would involve the handling of many design parameters; some parameters may 

be complicated functions instead of plain single variables. The function can be a description of a 

simulation or experimental data in a predefined range. Therefore, researchers identified 

polynomials, splines, wavelet functions etc. to describe these datasets efficiently. This process is 

called metamodelling. 

The intention of metamodelling is to introduce a fast running surrogate / replacement model of 

the simulation or experiment. There are various metamodels to choose from, each having 

different complexity and a performance extent. For example, the parametric models (eg. 

empirical formulae, polynomials etc) are fast to implement but require prior knowledge of the 

system (e.g. the simulation / experiment); while the flexible models (examples given below) can 

fit any system with very little knowledge of the actual system, but with more effort put in to 

construct the model (training effort), depending on the complexity of the system. Figure \.1 
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briefly demonstrates the standpoint of different metamodels in the area of structural dynamics 

problems [17]. 
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Figure 1.1 Implementation effort and complexity ofvarious classes of metamodels 1171. 

The neural network showed here is just an example among various flexible models; other 

examples of the flexible models include wavelet functions, splines, genetic programming and 

other evolutionary programming approaches. The response surface method indicated by [17] is 

a physics - based parametric model , with extensive prior knowledge of the system to 

accommodate for nonlinearities included in the model. The physics - based parametric model 

used by [17] is a nonlinear polynomial function describing the damage condition of a multi-DoF 

system. The traditional reduced models are mostly linear parametric models and do not model 

stochastic phenomenon and nonlinear dynamic behaviour effectively. 

In this work, the data used for developing the metamodels consist mainly of FE simulations of 

periodic cellular structures such as honeycombs, with auxetic properties (experiencing negative 

Poisson 's ratio), used for sandwich composite applications. The FE simulations were performed 

using the homogenisation method, namely a generalised method for representing a periodic 

medium. The data were then collected to create surrogate models using Neural Networks (NN) 

or Genetic Programming (GP). The NN model used here is a Multi-Layered Perceptron (MLP), 

developed as in [81]. The reason for choosing MLP and GP is due to their high flexibility to fit 

most functions. Though the traditional honeycombs (hexagonal in shape, or inverted hexagonal 

shown in Figure 1.2) have their analytical formulae developed by [23], most other structures, 

especially complicated ones, may not have such convenience, For example one of the structures 

studied in this work, the chiral honeycomb, is still not widely understood. The character of the 

chiral honeycomb is still at its early stage of being investigated. Therefore, it is handy to have 

these flexible metamodels to give rough estimations of the complex structures ' behaviours in 

relation to their geometry setup, in order to avoid intensive FE modelling for every variation of 

the structures ' behaviour that correspond to a minor change of its geometry. 
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i. An Introduction to Auxetics 

When a conventional material is stretched; it is expected to contract in the direction 

perpendicular to the stretching. The ratio of the strain in these two directions (with the minus 

sign) is defined by the Poisson's ratio, and in this case it is a positive ratio. Most naturally 

occurring materials experience such behaviour and the Poisson's ratio generally falls between 

G 
0.2 and 0.4. For isotropic materials, the Poisson's ratio is defined as v = _.2.. , where Ex is the 

Gx 

tensile strain in the stretching direction and Ey is the transverse tensile strain in the direction 

perpendicular to the stretching. The presence of the negative sign is to ensure a positive value of 

the ratio. 

In theory, the elastic isotropic materials can have their Poisson's ratio ranging between -1.0 and 

0.5. When a material with a negative Poisson's ratio is stretched, it will expand in one if not all 

the other directions, exhibiting therefore an unusual volumetric deformation. Lakes first found a 

material with negative Poisson's ratios in 1987 [82], named as anti-rubber, dilatational, and 

auxetic by later researchers. The term auxetic is used throughout this thesis, it is named by [18] 

as aV;EfOcr (pronounced as 'auxetic'. Originating from the Greek: 'that may be increased ', 

referring to the width and volume increase when stretched), to avoid the cumbersome phrase: 

' material with negative Poisson ' s ratio' . 

t t t t t t t t t t t t 

A 

t t t t t t t t t t t t 

(b) 

Figure 1.2 (a) Conventional Honeycomb (b) Re-entrant / inverted (auxetic) Honeycomb under 
deformation. 
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The conventional hexagonal unit cell of a regular honeycomb in Figure 1.2(a) can be made 

auxetic with are-entrant / inverted angle as shown in Figure 1.2(b), and it exhibits lateral 

expansion when pulled along one direction. The re-entrant / inverted honeycombs are highly 

anisotropic and feature a stronger shear resistance compared to conventional honeycombs [82, 

63], other properties include directional band-gaps in flexural wave propagations and strong 

dielectric anisotropic properties which can be used in conjunction with the mechanical 

anisotropic properties to design electromagnetic compatibility characteristics in microwave 

absorbers [59, 65]. 

Sin!ered ceramics 
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t Clbic metals . 
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~rs -
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Figure 1.3 Examples of auxetic materials in different scales and different material systems [1 J. 

Auxetic behaviour does not only occur in man-made structures, Figure 1.3 shows some 

examples of auxetic behaviour that occur in all major classes of materials (polymer, composites, 

metals and ceramics), both synthetic and natural [1, 72, 73]. Examples of naturally occurred 

molecular auxetics include human and animal skins, a-cristobalite, cubic metal crystals and a 

number of zeolites [72, 73, 82). Synthetic auxetic materials include auxetic foam, such as 

auxetic polyutherane (PU) foam and polytetrafluoroethylene foam (PI FE) [1], auxetic 

structures such as the auxetic honeycombs shown in Figure 1.2 and composites, such as the 

auxetic fibre reinforced composites [73, 82]. 

The auxetic materials are not just interesting because of its counterintuitive behaviour, the 

enhancement of the material properties that are related to the Poisson's ratio also shows 

significant improvements. The resistance of indentation of the auxetic material is higher 

compared to the normal material. When an object hits an auxetic material and compresses it in 

one direction, the auxetic material contracts laterally, which creates an area of denser material 

around the vicinity of impact and resists the impact. Also, for material with Poisson's ratio of -I, 

it corresponds to a very high shear modulus with respect to the bulk modulus, which is ideal for 
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most structural design [1]. It is also known that the acoustic damping of the auxetic materials 

overtakes the normal materials [1,59,65]. 

The current applications and manufacturing of auxetic materials are still to be explored, some 

existing applications include pyrolytic graphite for thermal protection in aerospace applications, 

auxetic composite materials for crashwortruness in structures, some foreseen medical 

applications such as prosthetic materials, surgical implants, dilators to open up blood vessels, 

auxetic filters with enhanced defouling capabilities, etc [73, 82]. The manufacturing of auxetic 

foams include LIGA technology, laser stereolithography, molecular self-assembly, silicon 

surface micromachining techniques and nanomaterials fabrication process [1]. 

DD 
DD 

(n) (e) 

Figure 1.4 Examples of centresymmetric and non-centresymmetric models used in this work. (a) 
Conventional hexagonal honeycomb; (b) Auxetic hexagonal honeycomb; (c) Square cells and (d) 

Chiral honeycomb. 

The honeycombs used in this work, as shown in Figure lA, include the above mentioned 

centresymmetric hexagonal honeycomb and also the non-centresymmetric honeycomb. The 

centresymmetric models include squares, hexagons and re-entrant hexagons (Figure 1.4 (a) -

(c)), while the example for non-centresymmetric is the chiral honeycomb (Figure 1.4 (d)). The 

centresymmetric characteristic indicates that the unit cell model is symmetric at its centre; on 

the other hand, the non-centresyrnmetric, like the chiral honeycomb, does not have symmetry 

along the normal horizontal and vertical directions, however, it has a rotational symmetry in the 

local cells. 
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ii. Homogenisation 

Composite materials are well known for their excellent characteristics, such as high strength 

ratios, corrosion resistivity etc, which cannot be achieved by uniform materials. However, it is 

impossible to theoretically evaluate the exact properties of a highly heterogeneous composite. 

Conventional studies mainly assume the heterogeneous composite material is a homogeneous 

orthotropic material using the law of mixtures [36]. The information obtained using such a 

method evaluates only the mean value of the microscopic information. 

The microstructure information for the composite is required in order to improve the design of 

the composite material. For example, determining the stress concentration in a material interface 

within the composite will affect the precise strength of the resultant structure. The 

homogenisation approach was proposed to evaluate the composites by approximating the 

heterogeneous media to derive its effective properties. It is an idea that 'replaces by a material' 

possessing the effective properties of the actual composite mixture, in other words, 

characterising the average properties of a heterogeneous domain by describing it as an effective 

volumetric representative element (VRE), also known as a microstructure / unit cell [2, 3, 12. 30, 

60,61]. 

The physical idea of homo genis at ion emerged in the early 20th century, developed by Rayleigh, 

Reuss and Voigt [3, 12]. Initial work treated homogenisation as an approach to define the 

bounds for possible effective composite properties [14, 76]. At a later stage, it became an 

averaging method to estimate the effective properties [12]. 

A mathematical approach to homogenisation theory in engineering composite analysis appeared 

in the 1970's [3]. Since then, a considerable amount of research activities have been carried out 

in the analytical and numerical homogenisation domain. Periodic homogenisation, as used in 

this work, is a heuristic method; it was proposed about a decade ago by using the double scale 

asymptotic expansion and periodicity assumption. Homogenisation was then used as an 

approximation method [3, 83] to determine the global properties through the knowledge of the 

effective VRE / unit cell properties. 

Fundamental references on the theory can be found, among others, in [2,3, 12,27,30,37,60, 

61]. This method was later proposed for topology optimisation [24, 38, 39, 45, 52, 75], in order 

to obtain an optimum shape and topology of a continuum structure. The details of the double 

scale asymptotic expansion / periodic homogenisation theory will be discussed in a later chapter. 
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Ill. Metamodelling 

The design of a composite sandwich panel involves more than one FE simulation to determine 

its properties. The situation becomes worse when the design involves a constant update of the 

parameters that affect the properties of the composite. For a design problem that is associated 

with some experimentally or numerically determined parameters, the heavy computational 

effort to determine such parameters makes the problem non-trivial. Therefore metamodelling 

techniques such as MLPs, polynomials, GP and others are introduced, in order to study the 

query-and-response of the experiment I simulation, and to reduce the computational time. The 

query-and-response of the experiment I simulation is the input-output relationship of a system. 

For example, in a FE model, which is a system, the geometry of the model affects its property; 

therefore the input-output relationship of the FE model is the geometry-property relationship. 

The query-and-response procedure is often by trial and error and the researcher may never fully 

understand the underlying input-output relationship and therefore never be able to identify the 

best setting for input values, for the specific design problem. 

The basic approach to this problem is to develop an approximation of the analyses that is more 

efficient to execute, and to obtain more 'insight' into the relationship between the input and 

output. This approximate I surrogate model ofthe original is called a metamodel. 

The creation of the metamodel involves choosing a function in order to represent the data in the 

most appropriate way. Whether linear regression, quadratic or even Fourier analysis, all require 

some form of background knowledge of the experimental/simulation data that one is attempting 

to fit. Once the proper function is chosen, one proceeds to a series of analyses. 

A traditional metamodelling approach often involves using a multivariate response surface 

model. A general response surface method would be first to screen the data to reduce the set of 

design variables that are most influential to the output; this will require some prior knowledge 

of the system. Then with the chosen function, one would start to perform a general fitting, 

followed by some refining procedures. If the researcher decided that such function doesn't give 

a promising fit, alternative functions may then be considered. 

The research in traditional metamodelling reached its mature state some time ago, but there are 

still some known problems, such as difficulties with the polynomial basis functions, problems in 

trying to fit a highly nonlinear model, explosion of coefficients etc. 
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In short, the creation of the surrogate model requires both the identification of the correct 

function that fits the data and the appropriate estimation of the function's coefficients. The 

problem can be seen as finding a proper function, in symbolic form, which fits a given finite 

sample of data, or symbolic regression. [41] 

Alternative methods include Artificial Neural Networks (ANN), Genetic Programming (GP) 

and other evolutionary and adaptable algorithms. These methods are well known for their wide 

range of applications, flexibility and independence of prerequisite knowledge of the problems. 

The metamodels used in this work include NNs and GP. The NN model used here is the Multi­

Layer Perceptron (MLP) [80, 81], while the GP was created using the Java programming 

language [19] during the research period. The performances of these evolutionary metamodels 

are compared with the traditional polynomial least square models. 

In the following chapter, theory and detailed background regarding homogenisation, 

metamodelling, neural networks - MLPs and genetic programming (GP) will be discussed. A 

GP code was also developed in this work, and its performance is bench marked with the MLP in 

Chapter 3. The efficiency of using the numerical homogenisation method to develop the FE 

models in representing the structures and the convergence of the numerical homogenisation 

method is bench marked in Chapter 4. Application of the OP and NN in structural design was 

also studied in this chapter. Subsequent testing on the numerical homogenisation in cellular 

solids is demonstrated in Chapter 5. Also a novel application of the metamodels (OP and NN) in 

a hexagonal honeycomb is included, whereby a case study utilising the Differential Evolution 

(DE, another example of flexible model but not used as a metamodel here) is proposed for a 

shape optimisation of the cellular structure. Chapter 6 studies the chiral honeycomb out-of-plane 

properties. Derivations of analytical formulae and simulations on the chiral honeycomb out-of­

plane structural modulus, shear modulus and critical buckling stress were developed and were 

also validated by some experiments. The chapter is also accompanied by a shape design 

optimisation case study of a chiral sandwich panel, which involves cascading the metamodels 

into an empirical sandwich modal density formula taken from [56]. 
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2. Theoretical Background 

In this chapter, the theory and detailed background regarding homogenisation, metamodelling, 

neural networks - MLPs and Genetic Programming (GP) will be discussed for the completeness 

of the thesis. 

The homogenisation method used here is a double scale asymptotic equation developed 

heuristically [3, 83]. It is used to simplify the simulation of a complex heterogeneous domain, 

by representing it using a unit cell, which is composed of all the components of the 

heterogeneous domain according to their proportion. The unit cell also requires a periodicity 

constraint to define its continuity in the heterogeneous domain. This technique was chosen to 

study the material structures in this work as it is widely used among researchers and its 

effectiveness has also been proven in the literatures [12,14,24,27,37,38,39,40,41,61,83, 

85]. The numerical implementation of the homogenisation is also included in Appendix 6. The 

theory of the homogenisation is referenced from [12, 24, 27]. 

For the metamodelling, a general overview of the backbones of metamodels will be discussed. 

Followed by the theory of the MLP and GP, the latter was developed during this research, in 

order to test for its robustness when compared to the MLP. The theory of the MLP is referenced 

to [81], while the GP theory is mostly taken from [41). The reader is suggested to refer to [15, 

41] for further details of metamodelling and the GP topic respectively. 

i. Homogenisation 

A complex heterogeneous domain is numerically expensive to model usmg Finite Element 

Methods (FEM) as mentioned in the previous chapter, and the homogenisation method was 

developed to cope with this issue, as it computes the heterogeneous domain by looking into only 

its 'periodic unit cell', much like seeing the world through a grain of sand. 

A domain is considered periodic when it obeys the following relationship [27]: 

<1>( x + NY) = <1>( x) (2.1) 

where <I> is an arbitrary function describing the property of the domain, it can be a scalar, 

vectorial or tensorial function of a point x, such as the stiffness or compliance matrix. The fast 

varying property at the microscopic level is on the left hand side, and the slow varying property 

at the macroscopic level is on the right. Considering a R3 space of the heterogeneous domain, 

the position vector x is (I x3), it is the coordinates of a point x in the domain, Y is also (1 x3), it 

is the constant vector determining the period of the structure in each direction and N is a (3x3) 
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diagonal matrix containing arbitrary integers acting as a scale-factor of Y. As shown in Figure 

2.1, the periodicity also requires that the functions have equal values at each of the points PI. P2, 

P3 and P4• 

-_.---_ .. _._----

Figure 2.1 A representation of a RJ domain, with point P magnified to show its periodicity. 

The theory of homogenisation suggests that the period Y compared to the dimensions of the 

overall domain is very small, and the heterogeneity of the domain is varying rapidly within a 

very small interval, Ox . This can be viewed as a double-scale dependence: one slow variation, 

large scale describing the macroscopic level x, and one fast variation, small scale describing the 

microscopic level y of the composite domain. The ratio of these two coordinates is denoted by: 

£ = X/y (2.2) 

It indicates the proportion between the dimensions of the unit cell and the whole domain. 

Consequently, if <I> is a general function describing the domain, then it also has the double-scale 

dependence: 

<I>(x) = <I>(x, y) = <I>(x, £Ix) 

~~~ 

~~~ 
~~===±==~==~=-~x 

~ l i e 

Yl ~ 
Y 

Figure 2.2 An equilibrium domain with different periodicity at point x. 

(2.3) 

1 I 



To illustrate the technique, consider the domain n in Figure 2.2, with this double-scale 

expansion, the domain can be seen as the unit cell in the figure. The parameter c indicates the 

proportion between the unit cell and the whole domain. The inverse of c can be seen as a 

magnification factor of the unit cell, Y. 

If a coordinate x == (Xl, X2, X3) in a R3 space, is used to defined the n domain: with the 

periodicity of the domain, it can be seen as a collection of parallelepiped cells of identical 

dimension (cY], cY2, cY3), where Y(, Y2 and Y3 are the sides of the unit cell Y in a microscopic 

coordinate system y == (y], Y2, Y3) == x / c. Therefore, for any given point x in the macroscopic 

domain, any dependency on y can be regarded as Y -periodic. 

The function determining the behaviour of the n domain, (2.3). can then be expanded (using a 

double-scale asymptotic expansion) as: 

<1>C ( x, y = ; ) = <1>0 (x, y) + e<I>1 (x, y) + 6 2<1>2 (x, y) + ... (2.4) 

when 6 ~ 0, the right hand side of the above equation are smooth with respect to x and 

periodic in y. The smoothness of the unit cell within the domain means that, for different points 

x within the domain, the composition may vary, but if one looks through a microscope at a point, 

a periodic pattern can be found. 

For simplicity, a linear elastic domain comprised of only a single unit cell without pre-stresses 

is considered. Before explaining the theory of homogenisation, the problem illustrated in Figure 

2.2 is first defined: Assume that the domain, n, is an open subset ofR3
• The domain has a body 

force.!. surface traction r t and displacement constraints rd at its boundary, r. 

The unit cell Y, which makes up the domain, is illustrated in Figure 2.3, and it is also assumed 

to be an open rectangular parallelepiped in R3
, denoted by 

Y== ]O,YI[ x ]O,Y2[ x ]O,Y3[ (2.S) 
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y A 

Figure 2.3 A unit cell of a homogeneous domain. 

Also, assume that there is a hole u in the unit cell; the boundary of the hole i defined as 

au = S . The hole is assumed to be smooth in order not to have a traction force occur within the 

hollow. The solid part of the unit cell is 1\.. Therefore the solid part of the macroscopic domain 

can be described as 

Also define 

all cells 

S c = U S; 

i = I 

which states that every hole, s;, in every unit cell , belongs to the set SC. None of the holes Sl 

interacts with the boundary f of the n domain. Also, let the admissible linear manifold be 

where u Ird is the value of u on the boundary of fd [24] and HI is a Sobolev space [27], which 

grades the continuity. 

Now, consider the deformation u of the body nc
, subject to the body force f, surface traction t 

on boundary f t and prescribed displacement on r d, together with the traction p inside the holes 

SC, this can be stated as: 

Consider the stress-strain and strain-displacement relationship: 

(2.6) 

(2.7) 
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where uE: = the periodic displacement on Y; d = the periodic axial stress on Y; e'; = the 

periodic strain on Y; EE: = the Young's Modulus for the periodic cell Y. 

Find DE: EVE:, such that 

(2.8) 

The equation above describes the equilibrium of the n domain (Figure 2.2), whereby the 

displacement of the domain (left hand side) is constructed by the displacement caused by the 

internal/body force of the unit cell in Figure 2.3 ( 1" j,''v,dQ.), the displacement due to 

traction of the solid part ( 1 I,v,dr), and the displacement due to the traction of the hole 
, 

Also the elastic constants have symmetry and coercivity properties: 

E!Jkl = EJlkl = ElJlk = EkllJ 

:3 a > 0 : E;kAjekl = aeljel) , Vel) ::= ejl 

To solve this problem, a homogenisation method is used. The method involves first assuming a 

double-scale asymptotic expansion to be the solution of the above problem. Upon substituting 

this double-scale expanded solution into the statement, compare both sides with identical terms. 

A 'unit cell problem' is deduced from the comparisons. With this 'unit-cell problem', a final 

homogenised equation will be obtained. 

To begin with, a unique solution of uE is assumed to exist when the functions I, f and pare 

smooth and boundaries r" rd and sc- are regular [24]. Since the traction p and body forces and 

elastic constants vary within a small region, where the dimensions are much smaller than the 

macroscopic scale of the composite domain, i.e. they are Y -periodic / two-scale functions. 

Therefore, the solution for uE should also be a two-scale function: 

u(X) = u(x, Y) = u(x, x/e) (2.9) 

Note that it is assumed that the traction t on the r t boundary only depends on x. 

Expanding the periodic displacement uE: using a double scale asymptotic method gives: 

DE: ( X, y = ; ) = D° (x,y ) + 80 I (x, Y ) + 8 2
0

2 (x, Y ) + ... (2.10) 
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Now, the task is to find each u tenn in the above equation. It is important to know that 

au
c 

= au +! au . Also, for a V-periodic function, \fI(y) (e.g. structural properties of the 
Ox Ox e(}y 

domain), is said to be the integration of microscopic properties of the unit cell over the whole 

domain: 

!~~ 1,. 'P (: yn -> I~I U 'P (y }1Ydn 
and 

li~ r,,, qt(~ ldn~_ll I r rqt(y)dSdn 
c~o 1 ere Y .b J. 

(2.11) 

(2.12) 

each representing the solid part and hollow part of the unit cell respectively, where IYI is the 

volume of the unit cell. 

Substituting Equation (2.10) into (2.8) and comparing both sides with similar tenns, will lead to 

the following: 

1 r r auZ Ov, d 'A lYf .b J" El)k' Oy, OyJ Yun = 0 (2.13) 

i {I~I i E,"[( :: + Z: J:: + Z: :: ]dY}dn= i(I~1 fp,v,dS )dn 

i{_l i E'J/c/ [(auZ + au! J Ovj +(au! + au; J Ov, JdY}dn 

(2.14) 

Iyl Ox, Oy, Ox, Ox, Oy, OyJ 

= i(I~1 iJ,v,dy}n+ iy,dr 
(2.15) 

Vv E V OxA. V is an arbitrary function representing the admissible displacement [12]. 

The next problem is to solve equations (2.13) - (2.15): 

Multiplying (2.13) by ;. and taking the limit G ~ 0+ of (2.11), then, integrating by parts and 

applying periodicity (i.e. the tenns in opposite faces of the unit cell can be cancelled), yields 

(2.16) 

As v is arbitrary, this gives 

(2.17) 

(2.18) 
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As (2.17) has a unique foon, a proposition is applied to solve this form of equation, which is 

stated as in [24,27, 5 I]: 

The problem ~(Elik,(y)8$(Y))=F(Y) has a solution in Y (i.e. the unit cell domain), 
OyJ Oy, 

where Y is periodic and has a smooth boundary, defined up to an additive constant, for a regular 

. r r 8$(y) 
F, Iff J\ F(y)dY = -III Eyk, Oy, nJdS = O. 

Applying the above proposition, it follows from (2.17) and (2.18) that 

UO = u(x) (2.19) 

This indicates that the first teon of the U
C expansion only depends on the macroscopic scale x. 

Now, solving the 8-
1 teon: 

Multiplying (2.14) by 8 and taking the limit e~ O· of(2.11) and (2.12), then, integrating by 

parts and applying periodicity, yields 

r[1 I (ouZ(x) oU!)OvI ] _r(1 r ) 
.b 1Yf /\ EykJ ox, + Oy, ~y dO. - .b Iyl! P, vidS dO. (2.20) 

Since the above equation is satisfied for any v, choosing v = v(y) results in: 

r E (OuZ (x) + OU!) Ovi (Y)dY = rp v (y)dS 
J/\ IjkJ Ox ::l. , ::l. , J I I 

, vy, VYJ 

(2.21) 

One integrates (2.21) by parts and applys the divergence theorem (i.e. in the absence of the 

creation / destruction of matter, the density within a region of space can change only by having 

it flow into or away from the region through its boundary [33]), then on applying the periodicity 

condition, it becomes: 

(2.22) 

As v is arbitrary, canceling it from both sides, will lead to: 

(2.23) 

(2.24) 

On the other hand, if v = vex) is chosen for (2.20), then it will yield 

1(1~1 Ip,v,dS' )dn ~ 0 (2.25) 
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which implies that 

(2.26) 

This means that the tractions within the holes are in self-equilibrium and it restricts the 

possibility of applied traction occuring in the hole [24). 

Solving for the ctenn: 

Introducing (2.19) into (2.15), and choosing v = v(x), yields 

1[_1 1 E (auZ + au! JdY] Bv, (x) dO Iyl 'A IjkJ ax, By, ax) 

= .b(l~l J,f.dY )v,(x~n+ it,v,(x~r 
(2.27) 

This is the statement of overall equilibrium in the macroscopic scale. 

Choosing v = v(y), yields 

1 [-1111 Eijk' (au! + au; J dY] Bvi (y) dO = 1 (_11 11 J;dY) Vi (y)do 
y ax, By, ax) Y 

(2.28) 

which is equivalent to 

r E (au! + au; JBv, (y) dY = r +v (y)dY 
JA IjkJ a ;}., a JA J i , 

'X, vy, 'X) 
(2.29) 

The above equation represents the unit cell at the microscopic level, which is known as the 'unit 

cell problem'. 

In order to obtain the homogenised equation that describes the macroscopic equilibrium with the 

similar trend as equation (2.8), the following two problems are considered: 

(2.30) 

(2.31) 

where II is the first order correction factor [51], also known as the microscopic characterisation 

displacement field [27], it plays the role of a parameter. 

The existence of solution of the above two problems is assured by the aforementioned 

proposition. Therefore, from equation (2.22), the second tenn of the u expansion, u l can be 

written as: 

1 kJ ( ) auZ (x) ( ) _I ( ) ui = -Xi x,y a If/i x,y +Ui X 
'X, 

(2.32) 

where a: is an arbitrary constant of integration in y. 
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Introducing equation (2.32) into (2.27) yields 

r[_l r (E _ E 8X;' )dY] auZ Bvj (x) dQ 
.b Iyl JA IJ/d IJfXI 8yq ax, ax) 

~ t(I~1 t( E,k1 a;,' t~~x) dY }Q+ t(I~1 t j,dY}. (x)dQ 
(2.33) 

+ i {,V, (x)dr 
I 

Now, defining each term in the above equation: 

(2.34) 

(2.35) 

(2.36) 

each representing the homogenised elastic constants, average 'residual' stress within the unit 

cell due to the traction p inside the holes and h, represents for the average body force. The above 

equations simplify (2.33) to become: 

r £H auZ Bv, (x) dQ 
.b uk' ax ax , ) 

= 1 'l"1J (x) Bv, (X)dQ+ lb, (X}vj (x)dQ+ i (jV, (x)dr 
ax) I 

(2.37) 

This is very similar to equation (2.8), and it represents the macroscopic equilibrium. 

The following procedure is to solve for the elasticity problem stated in (2.8): 

1. Find X and 'I' within the unit cell by solving the equation (2.30) and (2.31 ). 

2. Find £,;" 'l"1j and h, using equation (2.34) - (2.36). 

3. Construct equation (2.37) in the macroscopic domain. 

As an example of the implementation of the homogenisation method, equation (2.6) can be 

determined at each point of the domain, by using the expansion ofu&: 

cOl 2() (j = (j . + [;(j + [; ... 
,/ Ij Ij (2.38) 

where 

(2.39) 

(2.40) 

Introducing (2.32) into (2.39) will lead to the approximation of the macroscopic stress as 
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A similar procedure also applies for solving equation (2.40), and obtaining the periodic stress 

from equation (2.38). 

To solve for such complicated composite domains using the homogenisation method, a standard 

FE method is used to describe the periodic displacement function, by introducing a shape 

function N. 

total no.of nodes 

U= L Nju, =Nu (2.41) 
1=1 

where u is the discrete displacement. Substituting equation (2.41) into (2.6) and (2.7), they 

become: 

e=B·u 

O'=C·e=C·B·u 
(2.42) 

where B is the strain operator and C the material constitutive matrix (previously represented as 

E) 

The FE approximation of the unit cell problem is obtained by introducing the above discretised 

equations «2.41) - (2.42» into (2.30): 

(2.43) 

{ell} {e21} { 0 } 
where vectors ~ are represented by: cJ 

= ~I , e~2 , ;'3 . 
A 

The function cJ) represents the discretised displacement function (previously known as X). As 

v T is an arbitrary test function, it can be removed from both sides. 

The above equations resemble the discrete Hooke's Law relationship: 

(2.44) 

where 

total no. of element r 
K= L !Bl'CBdY 

m=fl I ' Y is volume of meshed element. 
total no. 0 e ement 

FJ = L l B l'cJdY 
m=1 

The Hooke's relationship (2.44) is solved three times for a two-dimensional problem (six times 

for a three-dimensional problem) to determine the discrete displacement <h with suitable 

boundary conditions to represent the periodicity of a unit cell. The functional <h can then be 

used to evaluate the homogenised elastic constant through the following relation: 
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11 _ 1 total no. of element r ( A \.-J 
C - -" L ,1; C -CB«f) rY 

Y m=1 
(2.45) 

The microscopic properties such as displacement, stress and strain, can then be evaluated as: 

et: =(I-BcP)eO 
(2.46) 

(Jt: = (c -CBcP )eO 

where e' is the initial strain; e' ~ {i H i H ~} . 
The FE modelling performed in this work is based on a two-dimensional analysis of a special 

orthotropic material, which leads to the calculation of four elastic constants. 

The numerical homogenisation code developed in this work consists of three main sections. The 

pre-processor develops the geometrical layout of the unit cell model and constructs the Hooke's 

relationship to be used to solve for the characteristic displacement cP and elastic constants elf. 
This section involves setting up the key-point coordinates, nodes and element by meshing the 

numerical unit cell model. The solver computes the structural responses of the model subjected 

to unit strain loading, which is done using static analysis inside the FE package. The post­

processor then evaluates the stress-strain distribution at element level, by harvesting the 

numerically computed results, and computes the elastic constants C1l
. 
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ii. Metamodelling 

Much of today's engineering analysis is involved in complex computer studies, supplying a 

vector of design variables / inputs (x) and computing a vector of responses / outputs (y). While 

computer power is cheap nowadays, a single run of such analysis may take from minutes to 

hours, it is still unrealistic to rely the complex engineering analysis on many FE / experimental 

analyses for which every minor adjustment is made. Moreover, this query-response procedure is 

a trial-and-error technique where the user may never get to know what is the best input 

corresponding to the desire response. 

Many researches have addressed this concern and the basic idea is to develop an approximation 

of the input-output (or query-response) relationship that is more efficient to run, and gain more 

insight into the relationship. Therefore the role of learning from the data has become important. 

There are two stages in the operation of a learning system / metamodel / approximation model / 

surrogate model, first learning from data / training the metamodel, followed by predicting for 

future test samples. It is important to note that the training and testing data must originate from 

the same underlying statistical distribution. In other words, the training and testing data must be 

obtained from the same source, though most of the time, the underlying statistical distribution is 

unknown. Therefore the training data from the query (x) - response (y) procedure, which is used 

to construct the metamodel, is independent and identically distributed according to the joint 

probability density function: 

p(x,y) = p(x)p(y I x) (2.47) 

where p(x) is the fixed density for a given set of inputs x, and P(Ylx) is the fixed conditional 

probability density for the corresponding output y. 

There are many specific learning tasks; they include classification (separating data into different 

classes), regression (estimating the input-output relationship), probability density estimation and 

others. Classical approaches to a learning problem depend on a strict assumption on the fixed 

number of parameters allowed in a function. The development of the non-parametric models is 

mainly to overcome the shortage of classical models: having to specify the parametric form of 

the unknown distributions and dependencies. 

Let us assume that the mathematical model explaining the input-output relationship of a 

simulation is as follows: 

y = j( x) + ~easument (2.48) 
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where y is the output of the simulation, e.g. the structural property of a honeycomb; and x is the 

input, e.g. the length, width and height of the honeycomb, its core material properties etc, and 

b;neasument is the error obtain during measurement. For simplicity, the derivations below will be 

based on Multiple-Input-Single-Output (MISO) systems, and the estimation of the metamodel 

of the actual system can be represented as: 

y = g( x) + e = y + etotal (2.49) 

where etotal is the error of approximation (Gapprox) and measurement (Gmeasument), the approximation 

error comes from the regression of actual data into metamodels, and the measurement error 

comes from experiments. The g(x) is the estimated underlying deterministic function of the 

system; it can be written as g(x,w), where w is the parameter vector of the approximating 

function. 

The measurement of mismatch is quantified by the loss function, L(y,g(x,w», it is usually 

nonnegative value [151, so a large loss value from the loss function indicates poor 

approximation. The most commonly used loss function for regression is the squared error (L2): 

L(y,g(x, w)) = (y - g(x, W))2 (2.50) 

In order to obtain the best approximation, assuming that the error is purely random with zero 

mean and constant variance, the expectation of the loss function must be minimised using the 

training data, which is also called the risk functional: 

R(w) = f(y-g(X,W))2 p(x,y)dxdy (2.51) 

The above equation measures the accuracy of the metamodel's predictions of the system's 

response. It can be explained as measuring the accuracy of approximating the actual function 

.f{x): 

R(w) = f(y- f(x)+ f(x)- g(x, W))2 p(x,y)dxdy 

= f (y - f ( x ) ) 
2 
P ( x, y) dxdy + f( g ( x, w) - f ( x ) ) 

2 
P ( x, y) dx 

+2 f(y- f(x)){f(x)- g(x, w))p(x,y)dxdy 

(2.52) 

With error of zero means, the last term on the right hand side in the equation above becomes 

zero. The first term of the equation does not depend on g(x,w) and by utilising equation (2.48), 

it can be written as the variance of the noise: 

J(y- f(X))2 p(x,y)dxdy 

= JEmea .. uremen/ p(Y I x) p( x)dxdy 

= K fEmeasureme} p(Y I x)dx }(x)dy 

= fEe ( E measurement 2 I x) p ( X )dx 

(2.53) 
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which simplifies equation (2.52) to become: 

(2.54) 

Therefore the risk for a regression model, with L2 loss and zero mean is composed of the noise 

variance and the accuracy of approximating the function. 

As the noise variance does not depend on w, the minimisation of equation (2.54) relies on the 

second term on the right hand side, which measures the difference between the unknown actual 

functionj{x) and the approximation function g(x). 

The second stage of learning is to use the metamodel to predict future data. As the accuracies of 

the metamodel only measures the training data, it is important that the metamodel can generalise 

well for other data that is from the same source, which was not presented during the training 

procedure. 

The mean square error (MSE) used in this work to measure the error of the approximation 

betweenj{x) and g(x,w) can be written as [15]: 

En [(g(x, w)- f(X))2] = En [(g(x, w)-En [g(x, W)J)2] 

+(g(x)-En [g(x, w)Jf 
(2.55) 

where E[ ] represents the expected value of an average over all the training samples of size n. 

The first term on the right hand side of the above equation represents the variance and is 

followed by the bias squared, i.e. mse(g(x, w» = bias2(g(x, w) + var(g{x, w». When the 

estimated function is applied on another dataset, the variance indicates how much the 

approximation function varies from the training data to the new dataset and bias measures the 

mismatch between the two datasets. 

A model with high variance and low bias will give very accurate mapping of the training dataset, 

but fail to generalise for other data from the same source, this is known as overfitting. On the 

other hand, a model with low variance and high bias will not be able to fit the data at all, as it 

only bias towards one value among all values within the dataset, this is known as underfitting. 

Therefore it is important to find the middle ground between these two. There are several 

methods to avoid over- I under-fitting of the metamodel, which rely on methods of quantifying 

the complexity of the metamodels, such as penalisation, early stopping rules, structural risk 

minimisation, Bayesian inference and many others [15]. They all basically embrace the 

following concept: 'if two metamodels with equal performance is presented, the one with least 

complexity will be chosen'. The most widely used method is so far the penalisation method, 

where a penalisation term is added into the empirical risk to be minimised: 
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Rpen (w) = Remp (w)+ A¢[g( x, W)] (2.56) 

where Remp denotes the usual empirical risk (training error) and the penalty ¢[ ] is a nonnegative 

functional associated with each possible estimate of g(x, w), A> 0 is a parameter which defines 

how severely the empirical risk will be penalised by its complexity. As the prior knowledge of 

the true system is incorporated in the penalty function and it is independent from the training 

data, it follows that a highly flexible model (in predicting future data) will have penalties close 

to zero. The penalty function can be strictly defined, such as by ridge penalty and subset 

selection [15], others may be defined implicitly when choosing the metamodels, such as a linear 

combination of the basis functions. 

The optimal value for A is usually chosen using a resampling method. The resampling method 

makes no assumptions on the statistical information of the data or the type of target function 

that is being estimated. The basic idea is to separate the dataset randomly into learning / training 

set and validation set. The metamodel is constructed based on the training set, and evaluated 

using the validation set. There are various strategies on how to partition the data when using the 

resampling method. The easiest one takes a continuous chunk of data as the training data (say 

70% of the whole dataset), while the remaining ones will become the validation data. In the case 

where the data is expensive to obtain and it is too small to split, an alternative way is to estimate 

all possible partitionings and average these estimates, known as cross-validation [15]. However, 

this alternative way requires extremely expensive computational power, therefore more practical 

solutions were suggested, such as the k-fold cross validation and leave-one-out-cross-validation. 

The k-fold method is to randomly divide the data into k disjoint subsamples (roughly equal size), 

take out one of the subsamples and train the metamodel using the remaining samples. The 

process is repeated for a number of times, and the risks of all the validation subsamples are 

averaged. The leave-one-out is a special case of k-fold strategy, where every data has to be 

isolated from the others as the validation set. A careful separation of data is important, as it 

determines the penalty weight imposed on the empirical risk (training error). As the complexity 

of the metamodel increases, the empirical risk decreases, while the second term of equation 

(2.56) - the true risk, which is indicated by the validation set, increases (Figure 2.4). 
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Figure 2.4 Risk versus complexity plot for resampling strategy. 

The process of developing a metamodel involves learning from data and implementation of the 

metamodel in predicting the future data, whereby the generalisation of the metamodel is 

important. The regularisation / penalisation method is commonly used for choosing which 

metamodel is generalising well (low risk) without being too complex. The implementation of 

regularisation becomes difficult when used in flexible metamodels such as Neural Networks 

(NN). The difficulties involve nonlinear optimisation of the equation (2.56) and the method of 

resampling. The optimal solution of the nonlinear optimisation problem depends on the initial 

parameters, which were often initiated randomly, followed by various validation procedures. 
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iii. A Neural Network - The Multi-Layered Perceptron (MLP) 

A brief discussion of Artificial Neural Networks - Multi-Layer Perceptron (ANN - MLP) is 

carried out in this section. More details on the theory and mathematical background of MLPs 

are available in [28, 80]. The construction of Artificial Neural Networks has developed since the 

mid 1940's, and was motivated by the idea of mimicking the properties of a human brain 

through a theoretical and computational model , in the hope of having a more powerful paradigm 

for a computer, and to give insight into the operation of the brain. 

The ANN studies were inspired by the construction and behaviour of a biological neuron, which 

is the basic processing unit of the human brain. In brief, the neuron acts by summing stimuli 

from connected neurons and each element of the summation is weighted by the strength of the 

connection. If the accumulation of stimulus or activation exceeds a threshold, the neuron ' fires' . 

In another words, it generates a stimulus, which is passed on into the nerve network system. If 

the activation is less than the threshold, the neuron remains dormant. 

y 

Threshold 

Figure 2.5 The McCulloch-Pitts model. 

A mathematical model of a single neuron was developed by McCulloch and Pitts in 1943 [21]. 

The McCulloch-Pitts (MCP) model (Figure 2.5) constitutes the simplest neural network model. 

However, the simple single neuron MCP model is insufficient to represent some si mple 

functions, and this led to the construction of a network of Mep neurons. The study of sllch 

networks, called perceptrons, began in 1962 [80]. 
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The most commonly used neural network now is a modern version of the perceptron - the 

Multi-Layer Perceptron (MLP) trained with back propagation. The basic back propagation 

algorithm consists of two passes through the network layers. In the feed forward process, input 

signals are fed into the input layer nodes, and propagated through the hidden layer nodes, 

producing an output from the output layer nodes. As seen in Figure 2.6, each node} in layer m is 

connected to each node i in layer (m + I) by a connection of weight wt+I
) . For a network with 

(1+ I) layers, layer 0 represents the input layer and layer I is the output layer. The input signal 

passes through each node in layer (m+ I) as follows: a weighted sum is performed at node i of 

all outputs x~m ) from layer m, and gives an excitation z}m+J) of node i , 

(2.57) 

where l1(m) is the number of nodes in layer m. The summation index starts at zero to 

accommodate the bias node, which allows constant offsets. This excitation signal is then passed 

through a nonlinear activation function to produce an output of the node i in the (m+ I) layer, 

described as 

(2.58) 
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The activation function used in this work is chosen to be the most common sigmoid, hyperbolic 

function,j(x) = tanh(x}. The benefits of using this activation function can be found in [2S]. The 

input layer nodes do not have nonlinear activation functions as they only serve the purpose of 

distributing inputs to the first hidden layer. 

When presented with data, the network estimates the outputs Y, by the feed forward process. 

This is compared with the known desired output Yi and the error term is: 

o(/) = Y _yA 
I I I 

(2.59) 

o,r') is fed back through the network in order to improve the network accuracy by updating the 

weights accordingly. This learning algorithm is known as back propagation. A network error J 

is evaluated at each presentation of a training set: 

1 n(/) 

J(/) = - LO, (/)2 
2 pi 

(2.60) 

where J=J( 8,. 8;. .... 8n) is a function of the network parameters, and the e, are the connection 

weights ordered in some ways. The integer t is the presentation order of the training set. 

In the simplest case, a steepest descent algorithm is used to adjust the parameters, 

dJ 
IlB =-n-=-nV J 

I Of vB Of I 

I 

(2.61) 

'7 determines the step size and is known as the learning coefficient [SO, 2S]. The weight updates 

in the hidden layers can be computed by using the chain rule of partial differentiation: 

w~m) (t) = w~m) (t -l)+t:.w~m) (I) (2.62) 

where is the error in the output of the ,oIlJ node in layer m, and 

t:.w~m)(t)="O,(m)(t)x;m-I)(t). The error must be constructed from the known errors 

o,r') = y, - Y, at the output layer /, which explains the name 'back propagation'. The weight 

must be adjusted layer by layer, moving backwards from the output layer. 

Little guidance on the learning coefficient can be found, it slows the convergence of parameters 

if it gets too small; while large values of the learning coefficient will lead to divergence or 

oscillation. Therefore a momentum term, a, is introduced into the update rule: 

(2.63) 

The effect of this additional term is to damp out the oscillations in the back-propagation error 

signal. Once the comparison error reaches an acceptable level over the whole training set, the 

training procedure ends, and the network is established. 
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iv. Genetic Programming 

Genetic Programming (GP) shares the same concepts as the well-known Genetic Algorithm 

(GA) but increases the flexibility and complexity by allowing the structure of the solution to 

undergo adaptation. The structure is typically a hierarchical computer program or mathematical 

function of dynamically varying size and shape. 

GP starts with an initial population of randomly generated individuals, which consists of 

function and terminal nodes appropriate to the problem domain. The appropriateness of the 

functions are less strict than the traditional metamodel, as it is just to decide if the function used 

would be arithmetical, logical etc., one can even use some user-defined functions that are 

suitable for the problem domain, examples of the function nodes are: '+', '-', 'x' and '+'. 

Therefore, depending on the problem domain, the GP population individuals may be real, 

complex, vector, symbolic, multiple valued etc. The terminal set, however, does not take in any 

argument; it is purely the input variables or randomly generated constants. 

As mentioned earlier, each individual is built from repeatedly combining all possible functions 

and terminals: 

(2.64) 

where F and T represent function sets and terminal sets respectively; M and N are the number of 

functions and terminals included in the GP. Each function Ji takes in a specific number of 

arguments - the number also known as the function's arity, while the terminals have null arity. 

Z(J;,J;' ... '/M) = Z, z(a.,a2,···,aN) = 0 (2.65) 

There is however one rule to obey: each function must be applicable to any values returned by 

other functions and any values carried by the terminal nodes. 

The creation of the initial random population is a blind search in the problem domain, whereby 

the birth of each individual is achieved by randomly generating a root node, and its subsequent 

branches. The root node must be chosen from the function set, as illustrated in Figure 2.7, a root 

node '+' has arity 2, with each argument being represented by a connection to a subsequent 

node. It is then randomly combined with other nodes from either the terminal or function set. If 

a terminal node was chosen, it will stop branching out; else the growth will continue. The 

individual created from Figure 2.7 represents an expression of (x*y) + z. 
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Figure 2.7 Creation of an individual in Genetic Programming (GP). 

There are a few growth strategies, namely the full method, grow method and ramped half-and­

half [41] The full method of generating the initial population involves creating individuals that 

grow up until the maximum allowable level. The grow method involves creating individuals 

that are variably shaped, but the depth can be of any level less than or equal to the maximum 

allowable depth. The ramped half-and-half is a mixture of both. The grow method is adopted in 

this work. 

To prevent the individuals from growing infinitely, a limit is enforced on the depth of the tree 

structure and on the total number of nodes a tree can have, after which only terminal nodes are 

chosen. Some other bloat (i.e. rapid increase of individual tree size) control methods are 

described in [48,68]. 

The driving force of GP, as for GA, is by computing the fitness of the individuals before 

'mating' them to produce subsequent generations. Each individual in the population is measured 

in terms of its performance merit, known as the fitness measure. There are several ways of 

assigning a fitness measure based on different problem domains [41]. The fitness measure 

enables the best individuals to be chosen to inherit across the generations, and eliminates the 

unfit ones. Because the problem here is modelling, the fitness of an individual in this work is 

assigned by the inverse of its percentage Mean Square Error (MSE). 

1 100 N A 2 

. = MSE =-2 L)Yi-Yi) 
Fllness N(J'y i= l 

(2.66) 

where N is the number of data points, (J': is the variance of the desired output, Yi and Yi are 

the desired and estimated output respectively. Generally, a fitness of 10, in another words an 

MSE percentage of 0.1, is considered as an excellent fitness. 

At each generation, genetic operators are applied to modify the individuals to create offspring. 

The genetic operators are crossover and mutation. The GP has to go through the population to 

select the 'good/fit' parents, based on their fitness measure, in order to perform the genetic 

operations. There are several selection methods, like the GA, this work adopted fitness 
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proportionate selection, others include Stochastic sampling with replacement, Stochastic 

sampling with partial replacement, Stochastic universal sampling [20] etc. 

The fitness proportionate scheme works like a spm of a roulette wheel (Figure 2.8) . The 

cumulative sum of the fitness (sum_total) over all individuals in the current population is 

detem1ined. The individuals are then mapped one-to-one into adjacent intervals in the range [0, 

sum total]. The size of each individual interval corresponds to its fitness value. A random 

number is generated in the range of [0, sum total] and the individual whose segment spans the 

random number is then selected. The process is repeated until the desired number of individuals 

has been selected [20]. 

Figure 2.8 Roulette wheel diagram. 

The crossover operation in GP brings variation into the population by producing offspring that 

inherit parts of each parent. As for the mutation, unlike the GA, the GP mutation operation is 

by randomly substituting a branch of an expression, and often gives more constructive 

modification [46] than the GA mutation. 

There are different crossover and mutation strategies, such as two-parent-one-child, two-parent­

two-children crossover, size fair crossover [10], branch mutation, node mutation etc. The 

genetic operators adopted for this work are two-parent-two-children crossover and a mixture of 

branch and node mutation. 

31 



-.-.. ~-.-.-... ~-.-.-, : * : z : : 

: 'x' . 
; .. ~ •..... ... .......... i 

; ..... ;A .............. 3 : / ..... ]@ 

!. \~ ............ ~.i 
~ 

z / : . . 
. . 

: .. § ......... ¥!.; 

~ 

® \:? l;; 
. ~ . 
lQS (y) ; 
; ..... ......................... : 

Figure 2.9 An illustration of crossover process in GP. 
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Figure 2.10 An illustration of mutation process in GP. 

As shown in Figure 2.9, a two-parent-two-children crossover was chosen for this work. A 

random node will be chosen from each of the parents, and the process is just to swap the two 

chosen nodes and their subsequent branches from one to the other. In Figure 2.10, a branch 

mutation has taken place, whereby a random node is chosen from one parent, the node and its 

subsequent branches will be replaced or chopped or inserted with another random branch. A 

node mutation is far simpler; it is just to substitute the randomly chosen node. However, one 

must take great care of the compatibility of arity between the original and replacement nodes. 

The mixture of mutation strategies used in this work is namely branch replacement, branch 

insertion, branch chopping and node mutation, which will be discussed in the following chapter. 

For methods used by other GPs, one can refer to [21,44]. 

So far this chapter has demonstrated the backbone of the homogenisation method and the 

discretised homogenisation method was used in FEA, the boundary condition (i.e. the unit 

displacement imposed on the unit cell). Unit cell geometry, meshing and calculation of the 

homogenised properties will be presented in later chapters. The FE macros for all the unit cells 

studied in this work are included in Appendix 6. 

Though the FE saves the cost of doing experiments, it is still time consuming when it comes to 

engineering design optimisation. Therefore an approximation model/surrogate model / 
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metamodel is used to approximate the input-output relationship of the FEA. There are classical 

approaches, which are parametric models with fixed form. Recent finding on some flexible 

models, such as NN and GP show that they are desirable for highly complicated systems, 

despite the nonlinear optimisation of the penalty risk function. The development of the GP will 

be discussed in the next chapter, and its performance is compared with NN and polynomials. 
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3. Genetic Programming Development 

i. GP configuration 

There are many GP implementations available online for download, however these are mostly 

solution examples of some well known optimisation and search problems, such as the 

Travelling Salesman, Santa Fe Trail/ Artificial Ant Problem, Lawn Mower Problem etc [41]. A 

general purpose GP implementation is not as easily found as code for a GA. Though these 

solution examples come with source code, it is troublesome to alter these case-tailored GP 

programs. Therefore a decision here was made to develop the GP code from scratch. 

Though every computer language (e.g. Pascal, C, FORTRAN, etc) is capable of constructing a 

GP program, most of the GP implementations found were written in LISP, C++ or Java. Within 

the GP algorithm, the structures that evolve are hierarchical computer programs based on a 

symbolic like representation of each function and terminal. Koza [41] chose LISP as it has a 

symbolic expression (S-expressions) for both computer programs / function (such as +, -, x, + 

etc) and data / terminals (such as x, y, z and randomly generated constants). This allows the GP 

trees to be strings of executables, and to be genetically manipulated separately from the main 

GP routine, while the code for the GP algorithm handles only the results from these GP trees (i.e. 

the fitness evaluated from each GP individual). 

The hierarchical tree structures of each program that forms an individual in the GP algorithm is 

similar in structure and purpose to the parse tree that is commonly created when compiling or 

interpreting the program itself. It is not possible to access this parsing and executing process 

directly from within most programming languages. Thus, with most programming languages, it 

is not possible to automatically create code written in that same language, and then execute it 

directly. LISP is the exception to this rule - a LISP program can generate and execute LISP 

programs simply and easily - which is why LISP has long been a favourite of 'artificial 

intelligence' researchers. Other reasons for choosing LISP are listed by J. Koza in [41]. 

Unfortunately, LISP has become infrequently used over the years; however, the convenience 

that LISP provides can still be easily achieved by the more recent Object Orientated 

Programming (OOP) languages. OOP languages available nowadays include C++, Java, 

Smalltalk etc. The OOP languages create a design paradigm based around data objects that are 

usually modelled after real-world objects, simulating their state and behaviour. A software 

object maintains its state by saving it in one or more variables. A variable is an item of data 

named by an identifier. A software object implements its behaviour with methods, i.e. 
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subroutines associated with the object [74]. In the case of GP coding, the object is the 

function/terminal, such as +, -, x, -T, constant, x, y, z etc; the state of the object is the arity of the 

function, while the behaviour of the object is the execution of the functions with arity. For 

example, x and z (both are terminals) both maintain their state by carrying numerical/string / 

integer values, and their behaviour is the value / character; in the mean time, '+' (a function) 

maintains its state in x and z, and the execution of '+' behaviour is by ' adding x and z'. The 

OOP concepts improve the GP hierarchical structure handling, and allow a similar effectiveness 

of symbolic expression of GP individuals. 

The Genetic Programming (GP) code developed in this work is written in the Java language for 

the convenience of future deployment on various computer platforms (i .e. platform 

independence). Though Java shares a lot of features in common with C++, Java is more robust 

and has better memory management. Other differences between Java and C++ can be found in 

[19]. Performance comparisons between Java, C++ and LISP can be found in [34]. 

The GP algorithm can be divided into a sequence of tasks (Figure 3.1). 

generate 
initial 

o ulation 

generate 
new 
population 

.... .. --_ ...... .. .. ............. ... . . ... . . ..... ...... ......... ........ . 

Figure 3.1 The GP flow chart. 

The first generation of the population is created by randomly combining the function and 

terminal nodes. The individuals of the population are restricted to have a maximum of n levels 

of nodes and m number of nodes in total. 

The GP code was first developed without penal ising the larger individuals, and only contained 

simple crossover and mutation procedures, namely crossing two parent individuals to create two 

offspring, and randomly substituting a branch of an individual for the mutation. 

In the process of crossover, both parents and offspring are assigned their fitness values, only the 

two fittest individual out of these four will remain for the following generation. Similarly, in the 
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mutation process, the fitness of the original individual will be compared to its mutated self; the 

less fit individual will be discarded. 

The termination criterion is fixed by the total number of generations, and the best individual 

from the population of the final generation is printed out. 

The initial function set only contained {+, -, x, +, sin, cos, power, log} at that time. and the 

corresponding arity set was {2, 2, 2, 2, I, I, 2, I}. The terminal set used to test the GP was 

chosen to represent the inputs for the analytical model of a hexagonal honeycomb with 

structural properties EI and V\2 [23], and randomly generated constant values. The results will 

be discussed in the section (iii). 

It is important to note that the operating limits of some functions are different from other 

operating platforms. The '+' used here is a protected division. It returns zero rather than infinity 

when the denominator is close to zero. For the case of 'power' and 'exponential', it returns zero 

if the base is zero, also when the power term was strictly set to positive values to avoid being 

used as a denominator in '+', which creates 'NaN' (Not a Number) error, also to avoid having 

0°; 'log' is a natural log (base e), it returns zero when its input argument is close to zero. 

'Infinity' and 'NaN' are prohibited in the construction of the GP code, as 'NaN' cannot be 

evaluated at successive levels of the tree; the computations that would lead to 'infinite' results 

such as division by zero are treated as errors. 

In the later stages of development, the crossover and mutation process were refined to include 

more variety. The methods used were branch mutation, branch insertion, branch chopping, 

mutation at function nodes and mutation at the terminal nodes. The reasons for introducing 

various mutation strategies is that the GP is sensitive to a high mutation rate, and the original 

mutation method used in this work causes a drastic alteration of the individual tree [46]. 
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Figure 3.2 (a) mutation at the function node; (b) mutation at the terminal node; (c) branch 
chopping; (d) branch insertion. 

The 'branch mutation ' is the original mutation, which only replaces a branch of the individual 

tree; however, more than a branch can be mutated at a time, which will lead to a drastic 

mutation. ' Branch insertion ' is to randomly create and insert a new branch into an individual 

tree; it does not chop off the original tree. ' Branch chopping', on the other hand, randomly 

chops off some branches from an individual tree, to prevent the individual tree from growing 

too much. ' Mutation at the function nodes ' is replacing only the function node, and similarly, 

' mutation at the terminal nodes' is replacing only the terminal node. Mutation of the function 

nodes must be carefully done, as the arity of each function is different. Therefore, only function 

nodes with the same arity can be used for replacement. Each of these mutation strategies takes a 
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certain percentage of the general mutation probability set by the user at the beginning of the GP 

process and remains the same throughout. 

More functions were included in the function set at a later stage, and the function set can be 

customised to suit specific problems. 

There is always an elite chosen and reserved in each generation. The elite is chosen to prevent 

the loss of the best solution so far, which could be destroyed by random crossover or mutation. 

The GP also allows identical individuals, this encourages the individual to perform genetic 

operations with more than one individual, with its original state, within a generation. In other 

words, it enhances the fitness proportion to have better 'search' around the 'best solution so far'. 

The individual is not considered at its original state after experiencing crossover / mutation, 

although it may be re-selected to perform other genetic operations with other different 

individuals. The multiplication of the reserved elite was to encourage the stronger individuals 

and their offspring to dominate the population throughout generations. 

The method used for selecting the 'parents' to be used for successive generations was fitness 

proportionate. This process is like the roulette wheel mentioned in Chapter 2, it allows 

individuals with higher fitness to be chosen more often than others. This is because the wheel is 

sectioned according to the fitness of each individual; those with higher fitness will get a bigger 

portion of the wheel and vice versa. As the wheel (with a pointer) turns, the pointer will be more 

likely to hit the big portions, therefore choosing the fitter individual. 

Figure 2.8 shows an example population with eight individuals. Individual 3 has the least fitness, 

while individual 1 is the fittest of all, followed by individual 4. For a crossover of 4 times and 

mutation of 2 times, the wheel would be spun 10 times - 8 times to select pairs of parents for 

crossover, and 2 times for mutations. In each tum, individual I and 4 will more likely to be 

chosen than the others. 
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ii. GP Extrapolation capability 

The extrapolation capability of the GP is studied using a static example. The data involved in 

this section are generated from the analytical fonnulation of a hexagonal honeycomb structural 

properties with respect to the geometrical parameters that detennine the hexagonal shape. 

The in plane structural moduli of hexagonal honeycombs were generated from the analytical 

model in [23]. 

E _ E (~)' (~+sinl1 ) 1 
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12
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0 [ ( 2 ) ( )2] 
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2
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sin O( a + sin 0) 1 + (1.4 + 1.5v .. )(t /1)2 
V

21 
= cos20 . ( 2 )()2 

1+ 2.4+1.5v, +tan20++ ~ 
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E,(r/l)2(a+sinO) 1 
~2= .-

a 2 cosO F 

(2.4 + 1.5vs )(2 + a + sin 0) 

F = 1 + 2a + (-It )2 a 
a + sin 0 [( . 0) 2 0 . oJ + 2 a+sm tan +sm 

a 

where, 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

a = ~ = [1,2, ... ,9],0 = [-300 ,-25°, ... ,60°], E, = 1.85x 1010 Pa, v, = 0.33'7 = 0.01 , and 

subscripts I and 2 refer to directions XI and X2, as shown in Figure 3.3. 
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a = h/l 

fJ = til 

h 

Figure 3.3 Hexagon honeycomb with various a 

Equations (3 .1) to (3.5) can be generalised as a function of a and f): 

(E
" 

V I2 ,E2 , V 21,GI2 ) = f( a,B) 

Meanwhile, the terminal set T and function set F for the GP can be defined as: 

T = {B,a,R} 

where R is the randomly generated real constants during the creation of the GP trces. 

F = {+,-,x, +, sin, cos, power, log} 

with the associated arity set being {2,2,2,2, 1,1,2,1} respectively. 

The GP code was first tested using the EI data and VI 2 data, with 10000 generations, 500 

individuals used for EI and 10000 generations, 100 individuals for V1 2. The GP code at this stage 

only contained branch mutation and two-parent-two-children crossover. The maximum 

allowable nodes and maximum allowable levels were set as 50 and 10 respectively. As it was at 

the beginning of the GP development, the GP test run was performed based on the judgement of 

the researcher, in other words, the number of generations, population size, the crossover rate and 

the mutation rate were configured heuristically. In this case, the crossover and mutation rates 

were set as 0 .6,0.5 for EI and 0.5, 0.5 for V/2. 
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Figure 3.4 Comparison of fitness between GP model and equation (3.1) . (3.2). 

The test of the GP code proved to be successful. Figure 3.4 shows the fitness of the GP mode l 

compared to the analytical equations (3.1) and (3.2). The metamodels gave a fitness of 6.95 and 

17.18 respectively, which corresponds to mean square error of 0.1439 and 0.0582 respectively. 

Figure 3.5 illustrates the tree representation of the analytical solution of (3 .] ) and (3 .2) in 

comparison with the GP fitted model; it shows that for data within a predefined range, the GP 

models are more compact than the analytical ones. 
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(a) (b) 

(c) (d) 

Figure 3.5 (a) GP tree representation of (3.1). (b) GP tree representation of (3.2). (c) Original (3.1) 
represented in tree structure. (d) Original (3.2) represented in tree structure. 

As the GP development has become more mature, subsequent data (Ez, V2I, and GI Z) werc fitted 

by training with only 2000 generations and 300 individuals, while the crossover and mutation 

rates were determined by sweeping through all the combinations between 0.1 to 0.9, with each 

combination being repeated 10 times using 10 different initial conditions, i.e. different random 

number seeds, for a better generalisation. The mutation mcthod for GP at this stage was 

modified to contain a greater variety of approaches, which was mentioned in the previous 

section. Consequently Ez, Vn, and Gil had not only the branch mutation, but also branch 

insertion, branch chopping, function node mutation and terminal node mutation. As mentioned 

in the previous section, each of these mutation strategies is chosen randomly using a certain 

percentage of the general mutation probability set by the user at the beginning of GP process, 

and this percentage remains the same throughout. The percentage set for each of these mutation 

strategies was: Branch mutation (38.5%), Branch insertion (23.1%), Branch chopping (7 .7%), 
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Mutation at the function nodes (23%) and Mutation at the terminal nodes (7.7%). These 

numbers were determined heuristically by the GP user, indicating the chances of eaeh mutation 

strategy to happen during every mutation in generation. 

Ctouover. 4., - G.o 
fIf,tl IfOfl: D. 1 

0.1 - 0.9 0.1 - 0.9 O. I - U 0.1 - 0.9 0. 1-0. 9 0. 1- 0.9 0. 1 - 0.9 0. 1- 0.9 
0.1 0.3 0.4 AS 0.0 0.7 o.t 0.0 

Figure 3.6 Fitness of GP model in fitting equation (3.3) - (3.5). 

The individuals with best fitness from each combination of mutation and crossover probabilities 

were selected and compared with one another. Figure 3.6 shows the best testing fitness of all 

combinations for £ ], VlI, and Gil' The GP-created surrogate models for each of these datasets 

was determined by the highest fitness model, marked by circle in Figure 3.6 and their 

configurations are listed in Table 3.1. 

Crossover Rate Mutation Rate Fitness (%) 

E2 0.4 0.6 42.72 

V21 0.7 0.1 35.02 
GI2 0.1 0.1 14.20 

Table 3.1 Fitness of GP model and its genetical operator configurations in fitting equation (3.3) -
(3.5). 

The output of these GP models compared with the empirical equations (3.1)-(3.5) is illustrated 

in Figure 3.7. The shaded areas are the area where the hexagonal honeycombs exhibit auxetic 

behaviour. 
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Though it seems that there is good agreement between the GP and equations (3 .1 )-(3.5), the GP 

surrogate model cannot be used to construct the honeycomb constituent matrix for reasons 

described below. 
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Figure 3.7 Comparison of fitness between GP model and equation (3.3) - (3.5). 
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The constituent matrix elements are defined as: 

E, E2v l 2 DII = ,D12 = ---=---=--
I-v,2v 21 I-v12v21 

E 2 E 1v21 D G Dn = ,D21 = , 33 = 12 
1- V 12V 21 1- V I2V 21 

(3.6) 

The direct manipulation of the GP model to obtain the constituent matrix, propagates the 

slightest error and leads to a large disagreement with analytical equations, except D 33 , where its 

value is actually the original GP model itself. Figure 3.8 shows the disagreement of the 

constituent matrices. 
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Figure 3.8 Disagreement between direct manipulation of GP model with the element of the 
constituent matrix. 

This phenomenon is common among many regression models, as the extrapolation capability of 

a surrogate model is error sensitive. Therefore it is suggested that the extrapolation of the GP 

model should only be used with precautions. This may lead to improper evaluation of the 

objective functions , which is a function of the constituent matrix, during the optimisation 

process. It is suggested that instead of manipulating the OP metamodels after it is established, 

the data representing the element of the constituent matrix (equation (3.6» must be used for 

training the GP metamodels. 
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III. GP application in damage detection data 

The GP development was also applied to data provided by the Los Alamos National Laboratory 

obtained from a FE damage simulation of a civil aircraft. According to [57], a face-centered 

cubic design (147 data points) was generated to relate the nine stiffnes parameter of the 

aircraft FE model with the first natural frequency and six elements of its as ociated modal 

displacement. 

J 

Parameter 

X I = XIO 

X2 = XII 

X) = X I2 

X4 = X I3 

X s = X I4 

X6 = XI S 

X 7 = X I6 

X g = X 17 

X9 = XIS 

- 9, /9'0 and 1l;I6" 

= 6/9'2 . 94/9'3 • 9s16'4 and 96/9'5 

= 616,6 and 1lgI9'8 
= 9e1917 

y 

~ - Correction Elements 

.Mass Points 

Figure 3.9 Stiffness parameters of the aircrllft structure 1571. 

Location Type 

Fuselage I Wing connection (l/r) Imill 

Fuselage I Wing connection (l/r) IllIax 

Wing I Pylon connection at outer engine (l/r) Imill 

Wing I Pylon connection at outer engine (I/r) IllIax 

Wing I Pylon connection at inner engine (l/r) Im in 

Wing I Pylon connection at inner engine (l/r) Imax 

Fuselage I HTP connection (1/r) Imin 

Wing (1/r) E 

Fuselage I HTP connection (l/r) Imax 

Table 3.2 Stiffness parameters of the aircraft structure 1571. 

Figure 3.9 and Table 3.2 illustrate the stiffness parameters of the aircraft trllcture. The 

parameters are symmetrical along the aircraft length; therefore, there are only nine parameter 

[57). 
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Each of the 9 stiffnesses was 'damaged' by varying their values, which were normalised to -1.0 

and + I [17]. The damaged stiffnesses will affect the whole modal behaviour of the aircraft. 

However, only the first natural frequency and the first element of the associated modal 

displacement were used in this works for illustration. 

The GP was applied with the aim of constructing a relationship between the above-mentioned 

numerical simulated inputs and outputs. The 147 data points were split into training (100). 

validation (27) and testing (20) sets. The GP terminal set consisted of randomly generated real 

values and nine normalised parameters representing bending and torsional stiffness of the 

aircraft. 

T = {R, inputl, ... , input9} 

The GP functions used were: 

F = { +, -, x, +, power, sin, cos, log, ramp, step, l""} 

where the step function is defined as f ( x ) = {
f(X) = 0, 

f(x) = 1, 

{

f(X) = 0 

and the ramp function is defined as f ( x ) = : ( x) = 1 

if x <0 

ifx~O 

if x <0 

if X ~ 1 

if 0 $ x < 1 

(3.7) 

(3.8) 

The terminals have zero arity, while the function set has an associated arity set {2, 2, 2,2,2, I, 

I, I, I, I, I}. 

The data were used to train the GP ten times for each different probability combination of 

genetic operators (crossover and mutation rate), with ten different initial conditions (i.e. random 

number seed). A population of 300 and 2000 generations were used throughout. A validation 

procedure was then performed to find the best initial condition from every combination of the 

trained models, followed by a testing procedure on the best validated model, in order to check 

the generalisation of the GP model. It is important to know if the model has successfully 

obtained the input-output relationship, so that it will give a good prediction of future data. An 

un-generalised model only fits the model to the data used, which means that the model only 

works on that particular set of data, and gives poor prediction of future data. 

There are some internal settings in the GP code that do not vary throughout the GP parameters 

tuning process (these values are set based on the heuristic experience of user and do not vary 

throughout the training procedures): 
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• Number of generations and populations. 

• The population allows identical individuals. 

• There is an elite individual chosen at each generation. 

• Only a maximum of 100 nodes is allowed in each individual. 

• The observation over the GP development shows that the system operates better with a 

less drastic mutation. Therefore, each different mutation strategies takes a certain 

percentage of the user defined mutation rate: 

Branch mutation (38.5%) 

Branch insertion (23. 1%) 

Branch chopping (7.7%) 

Mutation at the function nodes (23%) 

Mutation at the terminal nodes (7.7%) 

The best GP surrogate model describing the above dataset was compared with a polynomial 

(linear and quadratic) and MLP model. All utilising the same training, validation and testing 

sets. 

The MLP model was created using the Neural Network - MLP program. Only one hidden layer 

was used, however the number of hidden nodes and the number of presentations with different 

initial condition (i.e. random number seed) are adjusted to find the best network configuration. 

The network is first trained using the training set, and validated using the validation set, the 

lowest validation MSE model will be chosen, and will be tested using the testing set for its 

generalisation. 
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Figure 3.10 Validation Fitnesses from GP - Natural Frequency model. 

Figure 3.10 illustrates the best validation fitness of the 81 GP parameter combinations applied to 

the natural frequency data. The overall best combination has mutation rate 0.2, and crossover 

rate 0.7. This gives a validation fitness of 14.7118 (marked with a circ le), and testing fitness of 

15.8802. 
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Figure 3.11 Comparison among (a) Genetic Programming (b) Neural Network li nd (c) Linear 
polynomial regression model on the natu ral frcqucncy. 
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Frequency (H~ 

Surrogate 
GP Neural Network Polynomial Model .. 

Linear Quadratic 
Fitness 15.8802 10 1. 1363 9.7561 
%MSE 0.0630 0.1 0.8800 0.1025 

Generations: 2000 
III Population: 300 Hidden nodes: 2 
= Crossover rate: 0.7 .2 ... c= Mutation rate: 0.2 Learning and No.ofCoef. : No. of oe r.: ... 
:l 
Ol) No. of nodes: 95 momentum regime: 2 10 55 t;:: 
c Tree Depth: 22 0 u Inputs selected: No. of weights: 23 

1, 2,4,8 

Table 3.3 Configuration of GP, Neural Network, Linear and Quadratic polynomial models in fitling 
the natural frequency data. 

Figure 3. 11 shows the first natural frequency data fitted by GP, NN and the linear polynomial. 

The configurations of each of the metamodel are listed in Table 3.3. The regime number 

mentioned in the table above is a default setting of the MLP program, it defines the learning and 

momentum coefficient of the network with respect to the total number of presentation of the 

data, which is as follows [81]: 

Regime Regime Learning Momentum 
Number Be~ins Coefficient Coefficient 

I 0 0.30000 0.40000 
2 10000 0.15000 0.20000 
3 30000 0.03750 0.05000 
4 70000 0.00234 0.00313 
5 150000 0.00001 0.00001 

Table 3.4 Default learning schedule in the M LP program 1811. 

The fitness of the GP has outperformed both the MLP and the polynomial metamodels. The 

quadratic polynomial model is not a desirable solution, as it has more coefficients, which leads 

to cumbersome manipulations. There is also some evidence of over-fitting, as a higher fitness 

cannot be achieved without increasing the order of the polynomia l and hence its number of 

coefficients . 

Also, from Table 3.3, the GP model utilises only 4 input variables instead of all 9 of them. It 

shows that inputs I, 2, 4 and 8 have the strongest influence on the natural frequency of the 

s imulation model , which agrees with [57]. The inputs I, 2, 4 and 8 as indicated in Table 3.2, 

represent for the aircraft's wing / fuselage connections, wing / pylon connection of the outer 

turbine engine and the wing stiffness respectively. 
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Both the GP and polynomial were running on a PC (P4, 3.06GHz and 512MB RAM), while the 

Neural Network was running on a Sun Grid Engine (I0xV880 machine 8x900MHz, total 

32GB Physical Memory). 

The time taken to calculate the results from each of the final mctamodels was a fraction of a 

second. However, the GP and Neural Network take roughly 20 hours for tuning (i .e. choosing 

the optimum number of hidden nodes, learning and momentum coefficients etc.), in rdcr to 

achieve an optimal configuration of the model. 

b. First Mode Shape Surrogate Model 

C./ossov": 0.1- 0. 9 
rd/folrioU: 0.1 

D.I-D.t O.I-U ,),7 - 0.1 D.I - U O. I - O.t D.I - o.P 0. 1 - 0. 0 0. 1- 0. 1 
0.2 0.3 0.4 4 5 M 0.7 D.I D.I 

1.4 .----.---.------.----,------,----,-----,---,-----, 

1.2 

OL---~--~--~--~--~--~---~--~-~ 

Figure 3.12 Validation Fitnesses from CP - Mode Shape model 

Figure 3.12 indicates that the best GP configuration for the mode shape i 0.6 crossover rate and 

0.5 mutation rate, which gives a validation fitness of 1.2549 (marked in circle) and testing 

fitness of 0.9448 . The tuning process is similar to that for the natural frequency data . 
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Figure 3.13 Comparison among (a) Genetic Programming (b) Neural Network and (c) Lillcnr 
polynomial regression model on the mode shupe. 
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Figure 3.13 Comparison among (a) Genetic Programming (b) Neural Network and (c) Linenr 
polynomial regression model on the mode shape. 

, Mode Shape (cm) 
Surrogate 

GP Neural Network Polynomial 
Model 

Linear Quadratic 
Fitness 0.9448 1.9608 0.2917 1.4130 
%MSE 1.0584 0.5099 3.4282 0.7077 

Generations: 2000 
<Il Population: 300 Hidden nodes: 13 
c 

Crossover rate: 0.6 0 

'E Mutation rate: 0.5 Learning and No. of Coer.: No . or ocr.: 
6h No. of nodes: 100 momentum regime: 2 10 55 

'"a Tree D~th: 19 0 
U Inputs selected: No. of weights: 144 

1,2,3,4,6, 7, 8 

Table 3.5 Configuration of GP, Neural Network, Linear and QUlldrlltic polynomilll models III fitting 
the mode shape data. 

Figure 3.13 shows the perfonnance of all models on the mode shape data. The mode shape data 

proved to be a chall~nge for all the methods used to try fitting a metamodel. As shown in Table 

3.5, all the surrogate models have become more complicated, except the polynomial, where the 

number of coefficients was fixed. The MLP model has 13 hidden nodes with 144 weigh ts, while 

the GP has generated a tree with 19 levels with maximum allowable nodes ( 100 nodes). It is 

worthwhile to note that both the polynomial and Neural Network model used all the input 

variables to perfonn the metamodelling; while GP only used seven out of nine variable , 

without much effect on its fitness. 
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It shows that except for inputs 5 and 9, which denote for the wing / pylon connection of the 

inner turbine engine and the fuselage / HTP connection from Table 3.2, all other parameters 

affect the output. The selection of parameters agrees with [57]. 

So far, the GP has proved to be successful in the aforementioned examples. The performance of 

GP is compatible with the MLP and polynomial models. Though the GP is still in a rather initial 

stage of development, where there are still a lot of rooms for improvement. This includes the 

bloat control to avoid complex and big trees, more effective penalisation strategy, such as using 

simulated annealing to place a penalisation weight on the size of individuals that will decrease 

as the generation increases and other selection methods. 

The large generation of 10000 used at the beginning of the studies was set by trial and error; the 

main purpose was just to test if the GP programming coded so far shows a promising 

performance. Subsequent testing on the honeycomb properties has shown that the GJ> gives II 

good convergence without having large generations and populations. 
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4. Metamodelling for bounded microstructure models 

The term ' bounded microstructure' comes from the geometry of the unit cells, whereby the unit 

cell has an enclosed / bounded domain. In this chapter, the unit cell is a unit square with a void 

in the middle. Its FE model was developed in ANSYS [6] and the periodic boundary conditions 

were applied on the enclosed boundaries using homogenisation theory. The in-plane propel1ie 

of the unit cell were calculated based on the homogenised FE model. These properties were then 

fed into a Neural Network and Genetic Programming algorithm to create a replacement / 

surrogate model of the Finite Element model. 

i. Homogenisation development & its convergence 

The numerical homogenisation code was bench marked on a domain composed of a periodic unit 

cell as shown in Figure 4.1. The geometrical configuration of the unit cell was dclibcrately 

chosen according to [27], in order to verify the FE homogenisation code developed in thi s work. 
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Figure 4.1 Unit cell configuration and its core material properties. 

The unit cell model was created using 2-dimensional 8-node elements (PLANE82) in the 

commercial finite element code ANSYS61 [6]. There are 1908 elements after me hing the full 

unit cell described above. However by taking advantage of its symmetrical geomctry, only a 

quarter of the cell was simulated. 

The periodic boundary condition applied to the cell is by imposing a periodic strain (i.e. 

displacement / length of the cell border) on its boundary. According to (2. 1), a characteristic 

function (it can be any physical field, such as a displacement function, or stress function) at 

point x in a heterogeneous domain, can be viewed as a minor perturbation of a homogeneous 
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domain. The minor perturbation is a rapidly changed function within a very small 

neighbourhood of x. Therefore, the displacement function of the unit cell in the y, and y) 

directions can be written as: 

(4. J) 

(4.2) 

where ej (i = 1, 2) are the total strains during deformation of the cell in the YI (i = I, 2) direction. 

the term uE denotes the fast changing periodic displacement of the unit cell and y" Y2 is the 

length of each side of the cell, i.e. I" 12• The above equations can be expanded to hecome: 

(4.3) 

v = t.'21YI + t.'nY2 + v" (4.4) 

The strains (Gil, G12, G21 and G22) need to be calculated in order to define the tinite clement 

boundary conditions at the boundaries of the cell. 

By applying a unit displacement to the cell in the YI and Y2 directions, the periodic 

displacements between two opposite walls have the following relationships: 

u( - ~ 'Y2 ) = u( ~ 'Y2 ) 

V (y" -~ ) = v (y" ~ ) 
(4.5) 

In the case of shearing, the periodic displacements between the opposite walls are descrihed hy: 

v( -~ 'Y2 ) = -v( ~ 'Y2 ) 

u(y,,- ~) = -u(y" ~) 
(4.6) 

Substituting (4.5) or (4.6) into (4.3) and (4.4) gives the normal strain loading or shear strain 

loading for the cell boundaries respectively: 
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(4.7) 

where E" and E22 are the strain in the YI and Y2 directions respectively, E33 is the shear strain in 

plane YJ, Y2· 

Figure 4.2 (a) Normal loading in YI direction; (b) Normal loading in Y2 direction; (c) Shear loading 
in YI Y2 direction. 

The deformation of the unit cell under each loading together with their boundary conditions is 

illustrated in Figure 4.2. A unit displacement was applied on the edge of the cell , while the line 

of symmetry were constrained; in the case of shearing, half the unjt displacement is applied on 

every side and the lines of symmetry remain constrained. The resultant displacement of the 

elements along the edges were recorded for the post processing in order to obtain the elastic 

moduli (E., E2), the relative Poisson's ratios (VI2' V21) and in - plane shear modulus (G I2) . The 

displacement was divided by the total length of the unit cell to obtain strain. Reaction forces 

within the model were also divided by the total cross sectional area to obtain the stress. The 

effective homogenised properties were calculated as the ratio between the stress and strain. 

These structural properties obtained from the post processing were used to calculate the 

elements of the stiffness matrix, C: 
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(4.8) 

where 

(4.9) 

These results were compared with [27] in Table 4.1. In general, the result proves that the 

numerical homogenisation code developed so far was successful. 

C" C12 C22 C33 

FE simulation 12.670 3.446 17.767 2.639 

Ref. [27] 12.820 3.124 17.407 2.634 

Table 4.1 Comparison of the unit square cell structural properties with 1271. 

A general comparison of the unit cell model with void sizes ranging between 0.1 and 0.9 can be 

seen in Figure 4.3. The bi-cubic polynomial model from [27] is listed in Appendix I. The mean 

square error for each case is: 7.026% for C Il , 19.184% for C12, 7.306% for e22 and 2.449% for 

e33• A high error e21 is observed and it is suspected to be a compounded error, whereby the 

error is propagated when fonnulating (4.9) using the results obtained from each of the FE 

loading conditions mentioned above. 
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a. Convergence study of the homogenisation 

A study of the scale aspect of the numerical homogenisation was made to understand the 

convergence of the heterogeneous mUltiple cell into the homogenised unit cell. The 

homogenised model is expected to approach closer to the structural properties of the 

macrostructure as the unit cell duplicates, i.e. as t:~O. 
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Figure 4.4 Convergence of the unit cell structure. 
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A grid of 9 x 9 wand h combinations, equally spaced in the range from 0.1 to 0.9 was used for 

the convergence studies. The replications of each original unit cell configurations were 2, 5 and 

10 times in both horizontal and vertical directions, resulting in a 2x2, 5x5 and lOx 10 grid 

domain respectively. As shown in Figure 4.4, a single cell is sufficient to represent the domain 

(Figure 4.1). 
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ii. Surrogate models setup 

This section is about how to set up a surrogate model using the data gathered from numerical 

simulations of the unit cell model mentioned in the earlier sections. The surrogate models / 

metamodels discussed here are Neural Network - Multi-Layer Perceptron (MLP) and Genetic 

Programming (GP). Their training, validation, testing procedure and performance comparison 

will be discussed in the following section. 

a. MLP model 

A surrogate model is used to study the input-output relationship of a system, which is in this 

case, the FEA of a unit square with a variable void in its centre. The numerical homogenisation 

procedure was applied throughout the design space of various void configurations, namely 0.1 ~ 

(w, h) ~ 0.9, for calculating their associated structural properties (Cll , C21 • C22 and C:u). The 

outputs (the structural properties) from the numerical calculations were used for training the 

MLP for function fitting. 

The neural network training set was obtained by performing numerical homogenisation 

simulations based on 450 random combinations of void sizes within the design space, generated 

from a uniform distribution (j.t = 0.5, a= ± 0.4), to obtain the homogenised structural properties. 

The input - output relationship that needs to be studied by the MLP is the void configuration 

and its associated homogenised structural properties. The homogenised structural properties are 

the MLP desired output, while the void sizes are the inputs of the MLP. The system is now a 

double input - single output MLP system, and there are four such systems, each representing C ll , 

C12, C22 and C33 • The 450 input - output pairs were trained in the MLP using a Unix Sun Grid 

Machine. The training process involved tailoring the connection weights and number of hidden 

nodes in each hidden layer and the number of presentations of data, which defines the learning 

and momentum coefficients. Only a single hidden layer is used here, as the functions being 

fitted are rather simple. There were all together 250 MLP network configurations (maximum 25 

hidden nodes and number of presentation from 100 to 1000 with an interval of a hundred) each 

configuration was trained under 10 random initial conditions. 

The resultant network was validated by using a separate dataset. The validation set consists of 

450 random data points. The validation process is to find the best combination of the network 

configurations. The validated network would then be tested for its generalization. The testing set 

consists of 81 void combinations (wand h) that were equally spaced between 0.1 and 0.9, and 

their corresponding homogenised structural properties. 
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Table 4.2 shows the best ML P configuration found, they are detenn ined by the lowest 

validation MSE. Their corresponding testing set MSE values are also li sted in the table. 

e" e l l en e 33 

No. of hidden nodes I I 13 8 
Learning and 

2 2 2 2 
momentum regime 

No. of weights 5 5 53 33 
Validation fitness = 

0.769 0.256 0.588 9.090 
IIMSE% 

Validation MSE % 1.3 3.9 1.7 0.11 
Testing fitness 0.588 0.071 0.400 0.909 

Test set MSE % 1.7 14 2.5 1.1 

Table 4.2 The best MLP network configuration for each model: CII• Cli. Cn and Cn . 

As shown in Figure 4.5 , the MLP surrogate model gives a good agreement compared to the FE 

model. A perfonnance comparison and discussion about a ll the metamodels used will be given 

at the end ofthe next section. 
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Figure 4.5 Comparison between MLP models with FE models. 
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b. GP model 

The GP metamodels of the unit square FE model were also constructed based on the same set of 

training, validation and testing set mentioned earlier. The GP metamodels were trained using a 

normal Pc. All the GP metamodels were fixed to have only 1000 generations with 300 

individuals, each model being trained 10 times (with different initial condition, i.e. random 

number seeds) for each different probability combination of genetic operators (i .e. mutation and 

crossover rate). The trained models were validated to obtain the best GP metamodel (i.e. 

individual), followed by a testing procedure to obtain the generalisation of the data in the range 

of 0.1 ::; (w, h) ::; 0.9. 

The best GP configuration for each system together with the validation fitness and the 

corresponding testing fitness are listed below. The GP program was created in a way that 

encouraged the individuals to grow in any shape until they reached the maximum allowable 

nodes, which in this case is 50 nodes for each metamodel. The maximum levels of the 

individuals are not fixed here, as this helps protect the individuals from being chopped too much 

over the crossover / mutation process, which allow a finer tune of an individual by performing a 

much more localized crossover / mutation. 

CII C21 Cn C33 

Crossover Rate 0.7 0.5 0.4 0.2 
Mutation Rate 0.4 0.2 0.3 0.3 
No. of nodes 50 50 50 50 
No. of levels 14 16 16 13 

Validation 
42.371 7.107 51.233 14.449 

fitness = lIMSE 
Validation MSE 0.0236 0. 141 0.0195 0.0692 
Testing fitness 22.963 2.341 13.468 3.334 
TestingMSE 0.0435 0.427 0.0743 0.299 

Table 4.3 The best GP configuration for each model: CII , Cu , Cn and C.l.!. 

Both the MLP and GP give good agreement to the FE model. The MLP offers a much simpler 

metamodel for almost all the systems, but the fitnesses are not as good compared to the GP. The 

GP utilizes the maximum allowable number of nodes to achieve higher fitnesses . 
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Also in Figure 4.6, both of the metamodels agree well with [27]. It is worth mentioning that the 

bi-cubic polynomial literature models were built using conventional Least Squares (Appendix 2), 

and the range of void configurations used were [0.0, 1.0], the structural properties of the unit 

cell were not obtained from the same source as this work. The surrogate models constructed 

here were only operating in the void range of [0.1 , 0.9]. This may bring some disagreement 

between the MLP / GP models and the literature models. Apart from this issue, the problem 

with ANSYS compound error with Co calculation has also contributed to the error in function 

fitting. 
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iii. Optimisation Case Study for Void Model 

An optimisation example of a special orthotropic plate is illustrated as an application of the 

above-mentioned metamodels. The optimisation computational routine was done using 

Sequential Quadratic Programming (SQP) [77] ; the optimised results were further verified by 

using the FE package. 

t ! 
t · .. - - ---- a 

Figure 4.7 Illustration of the optimisation problem. 

Figure 4.7 shows the plane stress optimisation example: A square Aluminium plate is simply 

supported on all sides, it consists of a hundred replications of the void microstructure (Figure 

4.1), i.e.8 (w) x8 (h)=0.l x O.l=0.01. As E ~ 0, the plate will become a homogeneous fl at 

panel which is made with infinitely small voids, much like a kitchen scourer. 

A uniformly distributed load, qo, was applied on the top face . The displacement function of the 

plate, u" is described by [79, 47] : 

a4 ~ ~ qmll . (Jrmx) . ('my) u. = -4 L.... L.... -D Sin -- Sin -b- , (4.10) 
- ;r m=1 n~ mn a 

{ 

16%'f -
- 2 - 1 m,n-l,3, ... 

where q mn = ;r mn 
o if m, n = 2, 4, ... 

_ b - 0 - lOON -4 -) a - - 10m, I = .2m, qo ( ) ,Ix 10m ~ Uz ~ 1 xl 0 m, 
ab l-wh 

Dmn =D11 m
4 +2(D21 +2D)))(mnR)2 +D22 (nRt ' 

a [/2 2 •• 
R = -, Di; = Cijz dz l,j = 1,2,3 

b ' t l 2 
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The constraints of the microstructure geometry were set as: 0.1 ~ (w, h) ~ 0.9. The optimisation 

procedures were performed using the built-in command in the MATLAB65 optimisation 

toolbox (fmincon) [77] . The aim is to find the minimum plate displacement of the constrained 

nonlinear multivariable displacement function (4.10) and the corresponding microstructure 

configuration based on SQP. All values within the range of microstructure configuration were 

used as initial guesses (81 initial guesses). Only those that produce feasible solutions from the 

optimisation were illustrated in Figure 4.8. 
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Figure 4.8 Optimised points under the objective functions built using (a) NN; (b) GP and (c) 
Difference among the objective functions built using different metamodels. 

The sub-functions (Dmn) used in the objective function (4.10) are calculated based on the 

surrogate models developed in previous sections. Instead of calculating the sub-function by 

calling a FE program, the metamodels act as a subroutine of the optimisation process, saving 

some computational effort. Two optimisation routines were created using two different 

metamodels (MLP and GP), in order to study the performance differences between them. 

Figure 4.8(c) shows the objective functions (4.10) created using the metamodels and the FE 

model. The FE models were generated using the SHELL63 element [6] , with 10 replications of 

the unit cell in vertical and horizontal directions. The out-of-plane displacements on all four 

sides of the plate were constrained and the load was applied as an equally distributed force on 

the top face of the plate. Figure 4.9 shows an example of the FE model. The FE simulated plate 

displacement shown in Figure 4.8(c) had only 81 points within the range of 0.1 ~ (lV, 11) ~ 0.9. 

It shows the differences between the metamodel, which encapsulate the analytical model, and 
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the FE model, the analytical model described by (4.10) has a higher estimation compared to the 

FE model , both the analytical model developed from MLP and GP are agreeing well. 

• • • • • • • • • • • • • • • • • • • • 
• I • • • • • • • • 
• I • • • • • • • • 
• I • • • • • • • • 
• I • • • • • • • • 
• I • • • • • • • • 
• I I • • • • I • • 
~ • I I I I I I • • 

• • • • • • • • • • 
Figure 4.9 A displacement example of a perforated plate. 

The average time taken for each metamodel to converge during the optimisation process, and 

the average error of the optimised results when verified with the FE results are listed in Table 

4.4. 

MLP GP 
Average time of 

convergence 0.0430 0.0816 
(seconds) 

Error when 
compared to FE (% 2.7304 2.6427 

MSE) 

Table 4.4 Performance of metamodels in optimisation routine. 

The reason that the GP runs slower may be that the limits of the mathematical operators used by 

GP are different between Java and MATLAB. The deployment of the GP metamodels in 

MA TLAB needs to redefine the GP mathematical operators by creating user-defined 

subroutines in MA TLAB, which are called at every evaluation of the relevant mathematical 

operators within the GP metamodel. These redefined mathematical functions include square 

roots, natural logs, power and division. This problem may be overcome by revising the GP code, 

in order to have the Java program handling NaN (Not a Number) and lnf (infinite) values, 

alternatively, by performing the optimisation in Java, or creating the GP code in MA TLAB 

environment. These user-defined mathematical functions were redefined as follows: 

67 



Redefined 
Mathematical Operating Condition 

functions 

Square roots M; None 

Natural logs Inlxl; Ifx == 0 , this mathematical function will return O. 

Powers I-,f' If x == 0 , this mathematical function will return O. 

x 
Division - Ify == 0, this mathematical function will return O. 

y 

Table 4.5 Redefined mathematical functions used in metamodels developed from Genetic 
Programming. 

The results that successfully converged from the optimisation process were further verified by 

using the FE package. From Figure 4.8(a), (b) and Table 4.4, both the metamodels shows good 

agreement with the FE model , and the numerical homogenisation code developed in this work 

has also represented the homogeneous structure successfully. 
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5. Metamodelling for cellular microstructure models 

Cellular materials have been used for centuries and they are common in nature, for example 

cork, wood, coral and sponge. The term 'cell' comes from Latin cella, which means a small 

compartment; and the 'cellular' is from the Roman cellarium, which is a cluster of cells [23J. 

Cellular solids are made up of an interconnected network of solid ligaments or plates forming 

the edges and frames of cells. There are at least three common types of cellular solids. The 

simplest one is a two-dimensional array of hexagonal polygons clustered to create a plane area 

like the honeycombs of the bee [23]. Other more common ones are polyhedra packed in three­

dimensional space like foams. There are open-cell and closed-cell foams, the latter ones much 

like a three-dimensional variation of the previously mentioned two-dimensional honeycomb; 

and the open-cells has planes of honeycomb criss-crossing within the three-dimensional space. 

Apart from the naturally occurred ones, man has created more synthetic cellular materials, from 

simple honeycomb-like panels to foam-like products. The unique characteristics of the cellular 

solids have given rise to creative applications, such as insulations, energy absorbers and 

lightweight sandwich panels. 

Sandwich panels were invented to improve structural integrity and stiffness in lightweight 

structures. Classical sandwiches consist of two face sheets at the top and bottom of the 

sandwich core. The face sheets are generally tougher than the core material, while the core 

material is normally very light in weight, but has exceptional out-of-plane properties, for 

example the honeycombs. 

The development of sandwich core materials has brought a large advancement in engineering 

design, as natural materials do not have such excellent weight-to-strength ratio. The sandwich 

panels are further exploited to achieve a better functionality. One of the possible approaches is 

to replace the conventional hexagonal honeycomb core by auxetic honeycombs, to develop an 

auxetic sandwich panel. The advantages of such a substitution include better crashworthiness 

and shear rigidity of the sandwich panel. 

In this chapter the focuses are on the sandwich core (cellular material) design, optimising the 

shape of the honeycomb core using Differential Evolution (DE), and the effectiveness of 

metamodels in representing the honeycombs. The sandwich core used here is the 

centresymmetric hexagonal honeycomb. 
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i. Homogenisation and metamodel development 

Unlike the bounded models, the cellular models have discontinuous unit cells (Figure 5.1). The 

boundary conditions are similar to the ones used as a homogenisation test case in previous 

chapters, but are further constrained with constraint equations that describe the motions of 

ligaments on all sides. 
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Figure 5.1 (a) Centre-symmetric hexagonal cell in a unit square. (b) Non-centre-symmctric chiral 
cell in a unit square. 

The term centresymmetry means that the unit cell is symmetrical along any line passing through 

the geometric centre of the cell. A centresymmetric structure can repeat itself with translations 

along the horizontal and vertical directions, On the contrary, a non-centresymmetric (Figure 

5.1 (b» unit cell has symmetry lines that are offset from the centre line, and it duplicates by 

combined rotations and translation, this will be discussed further in next chapter. 

The FE model used here is a centresymmetric hexagonal honeycomb, as shown in Figure 5.2. 

When the angle, B, becomes a negative value, which forms a re-entrant hexagonal honeycomb, 

this re-entrant honeycomb model exhibits an auxetic behaviour (Figure 3.3), The dimensionless 

parameters defining the model are: a = h / t, f3 = t / t, r = b / t, where b is the gauge thickness of 

the sandwich core, The symbols of non-dimensional parameters are consistent with the one used 

in [23]. 
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Figure 5.2 Illustration of hexagonal honeycomb. 

An auxetic honeycomb experiences expansion when being pulled along one direction, resulting 

in a volume increment of the structure. This negative Poisson's ratio effect improves the out-of­

plane indentation / buckling resistance of an auxetic sandwich panel. The relationship between 

the unit cell geometry and its auxeticity will be discussed later in the section. 

The in-plane auxeticity and the out-of-plane buckling of the honeycomb are studied here using 

FEA combined with homogenisation techniques. The first step of the process involves finding a 

unit cell that represents the honeycomb domain properly with boundary conditions describing 

the neighbourhood with other unit cells. There are no rules on how to choose a unit cell. [27] 

suggests that the unit cell: 

1. should cover the whole range of voids and solids; 

2. should fit the periodicity assumptions. (i.e. the unit cell should duplicate in a 

consistent way); 

3. should be defined by a very few parameters. 

There are many choices of unit cells available to represent a honeycomb domain (Figure 5.3); 

all have a good representation of the empty and solid areas of the domain. Not all types of 

representations duplicate the honeycomb domain in a centresymmetric manner, as can be seen 

in Figure 5.3(f). However, all unit cells are suitable for homogenisation studies, provided that 

the proper boundary conditions must be applied to describe the relative behaviours of the 

contiguous ligaments. It is also important to know that for some of the unit cells, the ligaments 
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have to be halved along the lateral directions. For example in Figure 5.3(b), the vertical 

ligaments along the sides have to be halved, in order to avoid overlapping areas during 

replications of the unit cell; for Figure 5.3(c) and (g), the ligaments on both left and right side 

have to be halved for the same reason. These examples are difficult to model as the halved 

ligaments occur at the joints, the boundary conditions that constrain the movement of the 

ligaments and joints are troublesome. The unit cell used here is Figure 5.3(e), for its simplicity, 

good representations of the honeycomb joints and centresymmetric duplication manner. 

Figure 5.3 Various types of honeycomb unit cells. 

The honeycomb geometrical parameters (~ (J, yand 8) were randomly generated based on a 

uniform distribution between the range of 1 :-:; a:-:; 6; 0.05 :-:; {J:-:; 0.2; -300 
:-:; () :-:; 600 and y= I. 

The FE models built for in-plane studies were based on plane stress assumptions with 2-

dimensional 8-node PLANE82 elements [6]. The free ligaments on all sides were constrained 

by using the constraint equations, describing the movements in relation to the contiguous 

ligaments. Figure 5.4 gives an example of the boundary condition used in x2-direction loading. 

Figure 5.4 Boundary condition for loading in X2 direction. 
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The idea of the constraint equations is similar to (4.5), for normal XI and X2 direction loading, 

the displacements of the contiguous ligaments are: 

U(A,X2) = U(A',X2) 

v(x"B) = v(x"B') 
The load was imposed as a unit displacement at the tip of the ligaments. 

(5.1) 

The figure below shows the effect of the geometrical parameters affecting the in-plane auxetic 

behaviour of the honeycombs. The hexagonal honeycomb becomes a re-entrant honeycomb 

once the internal angle is below zero degrees. The effect of the aspect ratio,a, which contributes 

to the length of the inclined ligaments has an inverse relationship with the auxeticity. Also in the 

same figure, the re-entrant honeycomb exhibits a larger counter intuitive behaviour, as its aspect 

ratio gets smaller. It is important to note that the analytical model for the structural moduli and 

Poisson's ratios are only considering the bending deformation, while for the FE model, the axial 

stiffness is also taken into account. This has caused a very high value of deformation at () = 0°. 

Therefore the evaluation for the properties listed below eliminates the configuration when () = 

0° •. 
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• Similarly, for E" ~" VI2, E2 and a t, the reason to omit the data at 0° for all these models was due to 
coherence with the next section (training of metamodels). However, despite the FE convergence limit at 
this difficult region, the FE unit cell representations of the hexagonal honeycomb give correct 
representions the honeycomb domain at all angles. 

73 



20 

15 

f! 10 

5 

p = 0.01 
a= 1 -5 

0~~Wf/!1"-
a decrease 

--~o -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55 60 

8 (deg) 

(b) 

Figure 5.5 Effect of honeycomb geometrical parameters to Poisson's ratios (a) xI-direction loading; 
and (b) x2-direction loading. 

Though the density, fl, of the honeycomb does not affect the Poisson's ratio much, it has a large 

influence on the in-plane structural moduli of the honeycomb. The effect of the aspect ratio , a, 

in this case is considered minor compared to the density. (Figure 5.6) 
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Figure 5.6 Effect of honeycomb geometrical parameters to Structural Moduli (a) xI-direction loading; and 

(b) xrdirection loading. (cont.) 
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Figure 5.6 Effect of honeycomb geometrical parameters to Structural Moduli (a) ) xl-direction 
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The normal hexagonal honeycomb or the re-entrant honeycombs, having long and s lender 

ligaments caused by large aspect ratios; or the thick and fat walls by larger densities have 

variations in the out of plane property as much as the variations in the in-plane. One of the out 

of plane properties affected by the in-plane geometrical parameters is the buckling of the 

honeycomb. 

The unit cells used for buckling studies are similar to the above mentioned, with extrusion in the 

out-of-plane (X3) direction. The FE buckling models were built using quadrilateral isoparametric 

SHELL93 elements [6] , with all the lateral degrees of freedom (OoF) at the lower face of the 

honeycomb being constrained. The buckling loads were applied on the top surface, towards the 

honeycomb. Constraint equations were applied on all the free ligaments of the unit cell , 

describing the continuity of the horizontal, vertical and rotational movements of the ligaments 

on each opposite sides: 

u(A,y,z) = u(A ',y,z) 

v( x,B,z) = v(x, B ',z) 
liJ(A,B,z) = liJ(A ',B',z) 

(5.2) 

where u , v and liJ are x I-direction displacement, x2-direction displacement and rotation in XIXr 

plane respectively. An example of the hexagonal honeycomb unit cell with all the boundary 

conditions is illustrated in Figure 5.7. 
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Figure 5.7 Boundary condition for a negative-angle hexagonal honeycomb unit cell. 

The buckling force obtained from the FEA was divided by the total area of the honeycomb to 

get the critical stress, (5.3). oc is sometimes written as O"crih representing the critical stress. The 

total area of Figure 5.3(e) is a half of a hexagon area. The buckling stress was also nonnalised 

by the Young's modulus of the core material. 

0" - ~uckle = F;,uckle 

c - .4,0101 (hI cos 0 + 12 sin 0 cos 0) (5.3) 

The FE results were compared to the empirical results obtained from theoretical formulae [23]. 

Equation (3.\) - (3.4) were used to verify the FE in-plane results; and (5.4) was used to verify 

the FE buckling analysis [23]. 

(5.4) 

The buckling resistance for the re-entrant honeycomb is higher compared to the nonnal 

honeycomb (Figure 5.8). Given a finite domain, when a pressure is applied towards the depth of 

a block of material domain, say a soap sponge, it will cause the sponge to expand in the 

horizontal direction. For any normal material, this horizontal expansion will cause one side, Xl 

direction for example, to expand; while another side will contract. Hence the material collapses / 

buckles under pressure. On the other hand, if the material exhibits auxeticity, this horizontal 

expansion will cause all sides to expand. This reaction acts as a resistance towards the buckling 

pressure applied, which elevates the buckling resistance of the auxetic materials. 
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60 

The comparisons between the FE model and theoretical formulae are illustrated in Figure 5.9, 

each shows that the FE model gives good representation to the honeycomb domain, that the 

MSE between the FE and theory are minimal. 
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Also, from Figure 5.5 - Figure 5.6 and Figure 5.8, the FE models show a reasonable relationship 

between the geometrical configurations and the structural properties, and agree well with the 

theory. The in-plane structural moduli showed a larger dependency towards the density (fJ) than 

the aspect ratio (a); the in-plane Poisson's ratios showed a strong relationship with the aspect 

ratio and the density did not affect much the results; while the buckling depending very much 

on both the density and the aspect ratio of the honeycomb. It is also worth reminding that the 
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angle (fJ) contributes the most exciting behaviour of the honeycomb by introducing the 

auxeticity into the regular hexagonal honeycomb. 

All the above-mentioned FE models require very high computational effort; an average time 

taken for one FE run to obtain a set of in-plane properties (EI' E2, V12, 1121) is roughly 20s CPU 

time, and 12s CPU time for one FE buckling analysis. This is not desirable for making the FEA 

as a subroutine in an optimisation process. Therefore metamodels were introduced here in the 

hope of obtaining a proper representation of the honeycomb design domain, and reduce the time 

consumption of the computation for the relationship between the honeycomb geometrical 

parameters and its mechanical properties. 
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ii. Metamodels for hexagonal honeycomb 

There were 250 FE generated models based on the uniformly distributed random geometrical 

parameters, a, fJ and e, and these data were used to create metamodels from the MLP and GP. 

The range of each geometrical parameter was: I ~ a ~ 6; 0.05 ~ fJ ~ 0.2; -300 ~ e ~ 60° and y = 

I . The data were separated into training, validation and testing sets, each having 100, 100 and 

50 points respectively. The MLP and GP surrogate models were then used toformulate a 

relationship between the honeycomb properties and its geometrical parameters with the same 

training procedures mentioned in the earlier chapters. Polynomials were also used to fit these 

mode ls. 

As mentioned in Chapter 3, equations (3.1) - (3.4) (the in-plane properties derived from 

theoretical formulas) contains several regions of NaN (Not a Number) caused by some 

combinations of mathematical functions that depend on the geometrical parameters. Though the 

FEA managed to calculate the properties of these difficult geometrical configurations, the errors 

are reasonably high. Similarly, for the buckling analysis, the theoretical formula gives extreme 

buckling resistance for some of the honeycomb geometry configurations. These areas are 

difficult to model with the FEA, and difficult to fit by the metamodels. This may be overcome 

by having more data points scattered around the difficult region to obtain a better 'zoom in ' of 

these areas; however it is expensive to generate more FE models, especially at these regions. 

The properties correspond to XI loading and buckling were difficult to fit, due to the reason 

mentioned above. The best configurations for every surrogate model representing each property 

are listed in the table below. 

Surrogate 
GP MLP Linear Quadratic 

Model Polynomial Polynomial 
E, 

%.MSE 6.33 72 60.51 56.36 
CI) Generations: 1000 Hidden nodes: 4 
d 

Population: 300 Learning and 0 

.~ Crossover rate: 0.1 momentum 
No. of coef.: 10 No. of coef.: 55 Ql) Mutation rate: 0.4 regime: 5 t.;:; 

s:: No. of nodes: 50 No. of weights: 0 
U Tree Depth: 11 21 

Va 
%MSE 2.02 56 90.28 68.52 

til Generations: 1000 Hidden nodes: 3 s:: 
Population: 300 .9 Learning and -~ Crossover rate: 0.1 momentum 

No. of coef.: 10 No. of coef.: 55 :::l 
Ql) Mutation rate: OJ regime: 3 t.;:; 
c No. of nodes: 49 No. of weights: 0 
U Tree Depth: 13 16 
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E2 
%MSE 0.61 2.90 45.65 13.88 

til Generations: 1000 Hidden nodes: 10 c: 
Population: 300 0 Learning and -! Crossover rate: 0.2 momentum 

No. of coef.: 10 No. ofcoef.: 55 6b Mutation rate: 0.3 regime: 5 t;:: 
c No. of nodes: 50 No. of weights: 0 

U Tree Depth: 12 51 

V2/ 

%MSE 0.30 1.1 18.35 4.86 
til Generations: 1000 Hidden nodes: 3 c 

Population: 300 .g Learning and -til Crossover rate: 0.1 momentum 3 No. of coef. : 10 No. of coef.: 55 eo Mutation rate: 0.4 regime: 3 t;:: 
c No. of nodes: 50 No. of weights: 0 
U Tree Depth: 12 21 

O"c 

%MSE 2.05 0.84 40.65 13.66 

til Generations: 1000 Hidden nodes: 17 
= Population: 300 Learning and 1 Crossover rate: 0.4 momentum 

No. of coef. : 10 No. of coef.: 55 
Mutation rate: 0.5 regime: 4 t;:: 

c No. of nodes: 50 No. of weights: 0 
U Tree Depth: 17 86 

Table 5.1 Metamodel configurations for hexagonal honeycomb buckling stress. 

Figure 5.10 also illustrates examples of the performance of the surrogate models in comparison 

with the theoretical models. In general, the polynomials failed to fit the data. And the MLP also 

failed to represent E/ and VI2 In the case for E 2 and o"c, the MLP has too many weights to 

estimate for a given 250 data points. 

The GP too struggled to fit the models, though in general its performance is better compared to 

others. It maximises the use of allowable nodes, and all models have a big expression up until 

maximum of 17 levels, which is the o"c model. The complications of finding the optimal weights 

in MLP is not encountered in GP, as the constants are generated randomly and no optimisation 

scheme has yet developed for these constants in this stage. 

However, the GP doesn't seem to predict the buckling stress as well as the MLP, the MSE error 

is nearly doubled the MLP model. The MLP model as can be seen in Figure 5. 1 O(e), managed to 

capture the trend of the buckling model, despite its vast number of weights, but fails to fit the 

difficult regions where high buckling stress occur. 

Therefore, mixtures of metamodels are chosen to perform the shape optimisation routine. The 

GP models are used to predict the in-plane properties, and the MLP model is used to predict the 

buckling stress of the honeycomb. 
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iii. Differential Evolution Concept 

Differential Evolution (DE) shares similar concepts with Genetic Algorithms (GA), except that 

it is for real value optimisation, while GA is for binary value optimisation. DE was developed 

by Stom and Price [71] in the late 1990' s. 

Unlike conventional optimisation methods, DE is capable of handling nonlinear, non­

differentiable and multimodal functions, by using a parallel direct search method, i.e. searching 

in multi-directions simultaneously and not using information from derivatives. Direct search 

involves a search strategy which generates variation of parameter vectors, and a decision 

making process which is whether to accept the newly derived parameters or not. 

For each generation, G, in DE, there is an m-dimensional population vector containing n­

individuals. The number of individuals, n, does not change over the generations. Each of the m­

th dimensional population represents the mth-parameter that is of interest to the user. 

1 1 1 
xu;, x2,G"", Xn.G 

2 2 2 
X1,G' X2,G"", Xn,G 

m m m 
X 1,(;, X 2,G"'" Xn,G 

i = 1,2, .. ·,n 

j = 1,2, .. ·,m 

(5.5) 

Like all other inherently parallel search techniques, the initial populations are generated 

randomly and should give a good coverage of the entire parameter space. A Gaussian 

distribution is used here. 

For each m-dimensional target vector at current generation, Xi,(i = «(1' X/~(j'"'' X/~;i ), a 

mutated vector is generated: 

v -x +F.(x -x ) 1,0+1 - 'j,G '2,G 'l,G (5.6) 

where x'I,(i' X'2,G' X",G are m-dimensional vectors randomly chosen from the population, n, 

within the current generation G. The total number in the population, n, must be more than 4 in 

order to have the mutation take effect. F is a real constant between the range of 0 and 2, and F 

must be greater than O. It gives weight to the differential variation (x
r2

•G - X".li )' 
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A crossover process is introduced to increase the diversity of the perturbed parameter vectors. 

The crossover produces an m-dimensional trial vector: 

(
12 m) 

U,.(;+I = U,.G+I' U'.G+I'···' U,.G+I (5.7) 

The elements ofthe trial vector are chosen based on: 

if (randb(j) ~ CR) orj = rnbr(i) 

if (randb(j) > CR) andj"* rnbr(i)' (5.8) 

j = 1,2,···,m 

Equations (5.7)-(5.8) states that the trial vector consists of the elements from both mutated 

vectors and original target vectors (X(Ci). The choice is made based on the randb(j): for each 

element of the trial vector (U(G+I ), a random number randb is generated, it should be between 0 

and 1. If the randb is greater than the user defined crossover ratio, CR E [0, 1], the element 

U(Ci+1 will be taken from the original target vector at current generation; else, it will be taken 

from the mutated vector. Higher CR will have more chances of taking the elements from 

original target vector and vice versa. The rnbr(i) is randomly generated between 1 and m, to 

ensure that at least one element of the trial vector is taken from the mutated vector. 

The trial vector U,.(;+I will then be compared with the target vector X,,(i in order to decide if it is 

fit enough to become a member of the next generation. If the trial vector gives smaller error than 

the target vector, X"G+l is replaced by U;,G+l; otherwise X"G will remain in the population. 

The above-mentioned procedures are repeated until all the individuals of the current generation 

have been chosen as a target vector, then the algorithm restarts with the next generation. The 

algorithm is terminated when the fitness or error converges to the predefined threshold, or the 

maximum number of generation is reached. 
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iv. Shape Optimisation Case Study for Honeycomb 

The shape optimisation proposed here takes the desired material properties as the target vector, 

and the DE algorithm determines the corresponding geometrical parameters of the hexagonal 

honeycomb. 

Some of the structural properties of the honeycomb may be achieved by several different 

geometrical parameters. For example, hexagon honeycombs with a = I, f3 = 0.04, -25° < () < -

20°; a = I, f3 = 0.05, -10° < () < _5° and a = I, f3 = 0.05, 50° < () < 55°, all gives a relative / 

normalised critical buckling stress close to 9.3xI0-4. Therefore constraints are introduced to 

limit the search region into the auxetic region «() < 0°) and non-auxetic region «() ~ 0°), in order 

to avoid non-unique optimisation solution. 

The objective function of this shape optimisation is the summation of the MSE from each 

structural property: 

(

A )2 
a X-X 

MSE= L I 2 I 

1=1 Xi 

(5.9) 

where a is the length of the target vector, in other words, it is the number of desired structural 

properties; Xi and x, are the target structural property and the DE estimated structural property 

respectively. In this case, there are five elements (i.e. a = 5) in the target vector, i.e. E" E2, V/2, 

According to [71], the population is best chosen to be 5 to 10 times the number of dimensions, 

and a high crossover ratio can speed the convergence rate, while scaling factor around 0.5 is 

also recommended. The parameters used in this work were set heuristically, there were 20 

generations with 30 populations, each running for 100 times. The scale factor is 0.6 and 

crossover ratio is 0.8. 

A penalty was also introduced for geometrical parameters that fall outside the design domain, it 

can be seen that the penalty increases quadratically as the data deviates further away from the 

feasible region [42]: 

3 (X . _X)2 10 mm I for X < X . 
X . ' I mm 

mm 

Penalty ( Xi ) = 0 , for xmin ~ Xi ~ Xmax (5.10) 

3 (X _X)2 10 max I ,for x, > xmax 
xmax 
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The penalty wa added into the MSE values, the constant of 1000 was found to be efficient by 

trial and error. 

DIFFERENTI L EVOLUTION 

random population ai' /30, ~ 

POST -PROCESSING 

DE proposed shape l4 jJ, e 
I 

DE propo. cd properties: 

DI.~.vll . vll.am 

muta tion & 
crossover o f 

(4. /30, ~ 

Figure 5.11 The shape optimisation flowchart. 

As shown in Figure 5.11 , the shape optimisation starts with the desired structural properties, 

which were assigned by the user as: E\ = I.Oe8Pa, £2 = 3.0e7Pa, V\ 2 = -2, ~ \ = -0.5 , a crit = 

5.0e7Pa, which roughly corresponds to the geometrical parameters a = 2; f3 = 0.006; e = _16 0 

and core material properties were E s = 7e I OPa, Vs = 0.33. These structural values were generated 

by inserting the arbitrary geometrical parameters (a,j3, B) into the theoretical formulae that 

determine the structural properties of the honeycomb. 

The shape optimisation was performed by taking these structural properties as the target vector. 

The DE optimi ation first generates a random population that contains all the geometrical 

parameters within the design range, each of these geometrical parameters were fed into the 

surrogate models (GP for in-plane properties, MLP for critical buckling stress) to evaluate for 

its corresponding DE estimated structural properties. These estimated structural properties were 
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compared to the desired ones, and thereby calculating its percentage of MSE. The penalty is 

applied here for those geometrical parameters that fall outside the range. Mutation and crossover 

are performed within the population in the current generation. The performance measure among 

these offspring and the original geometrical parameters then takes place, those that out-perform 

their competitors will remain in the population for the next generation. 

As the termination criterion, such as the number of generations or number of runs is reached, 

the optimisation process will terminate with the suggested geometrical parameters that give the 

lowest MSE. A simple post processing was then used to evaluate the corresponding structural 

properties of the honeycomb that has these suggested geometrical parameters. The purpose is to 

see if the surrogate models, despite their errors in representing the FEA data, can still give good 

estimation of the geometrical parameters. 

Figure 5.12 shows an example of the final structure of the honeycomb. The result of the DE 

shape optimisation has a MSE of 2.081 %. The geometrical parameters suggested by the 

surrogate models are listed in Table 5.2. 

- Theory 

- Surrogate Models 

Figure 5.12 Shape optimisation of hexagonal honeycomb. 
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Desired Value Surrogate Model 

a 2 1,642 

fJ 0,006 0,006 

e _160 -15.40 

El le8 Pa I,SSe8 Pa 

E2 3e7 Pa 2,97e7 Pa 

VI2 -2 -2,007 

"71 -0,5 -0.351 

O'crit 5e7 Pa 8,94e7 Pa 
MSE N /A 2,081% 

Table 5.2 Shape optimised from Theoretical model and surrogate model compared to the desired 
values. 

The table above shows that the surrogate models have given a very good e timation of the 

honeycomb geometry, except a, which leads to the error for the critical buckling tress and "'.! I, 

both sensitive towards the aspect ratio of the honeycomb, 

It is worth mentioning again that an accurate surrogate model is important, as the error of the 

surrogate model , which is inherent from the FEA, will propagate and be magnified through the 

optimisation process, 
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6. Chiral Honeycomb 

The chiral structural honeycombs were first shown in [54, 82]. The term 'chiral' in physics 

means that it is impossible to superimpose the structure on its mirror image [3 I] , or it cannot be 

mapped to its mirror images by rotation and translation alone. The word 'chiral' is derived from 

the Greek X£tp (cheir), meaning the 'hand' , which is the most common chiral structure. There 

are many familiar objects that are chiral, such as our left and right hands, b to dol' p (d and pare 

the same, except for orientation), helix structures etc [32]. 

Figure 6.1 (a) shows a conceptual layout of the chiral honeycomb unit cell , the mirror image of 

the original layout is presented in Figure 6.1 (b), which is not identical to the original layout. It is 

impossible to replicate Figure 6.1 (b) from Figure 6.1 (a) by simple rotation or translation alone. 

However, by making Figure 6.1 (a) infinite in all directions, the pattern becomes achiral (i.e. 

able to create an identical mirror image), but without a line of symmetry or centre of symmetry, 

an example is illustrated in Figure 6.I(c) [32]. 

@ @ @ @ @ 
@ @ @ @ @ 

(a) 

@ @ @ @ @ 
@ @ @ @ @ 

(b) 

@ @ @ @ @ 
@ @ @ @ @ 

@ @ @ @ @ 
@ @ @ @ @ 

@ @ @ @ @ 
@ @ @ @ @ 

(c) 

Figure 6.1 A basic layout of (a) chiral honeycomb (b) its mirror image and (c) more replications of 
the chiral honeycomb (above the double line) with its mirror image (below the double lines). 

Though this infinite honeycomb domain no longer maintains its chirality (unable to 

superimpose the structure on its mirror image), the name ' chiral honeycomb ' is retained to 

celebrate the unique pattern (without a line of symmetry) of such a honeycomb. Unlike the 

cellular structure in the previous chapter, the chiral honeycomb is a non-centresymmetric 

cellular structure; it does not have symmetry lines along the centre axes. The replications of the 

chiral honeycomb will be discussed in further details in the next few sections. 
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The parameters that determine the chiral honeycomb are shown in Figure 6.2. The circular 

elements / nodes of equal radius r form the basis of the honeycomb. The distance between thc 

centres of these nodes is indicated as R. The angle between the horizontal axis and the centre 

distance of two nodes is denoted bye. The tangent ligament connecting the nodes has length L. 

The intersection angle between the tangent lines and the centre distance of the nodes is cp. The 

ligaments and nodes have a uniform wall thickness, t. In order to use a consistent nomenclature 

with the Cellular Material Theory (CMT) [23], the cell aspect ratio, density and gauge thickness 

are defined as a (Llr), fJ(tlr) and r(hIL) respectively. 

This chiral structure has some outstanding in - plane and out of plane properties compared to 

other auxetic structures, e.g. the re-entrant hexagonal honeycomb. According to [54], the chiral 

honeycomb with e = 30° has an in-plane Poisson's ratio of nearly - I , and exhibits an in-plane 

isotropic behaviour. 

Figure 6.2 Geometrical parameters definition for chiral honeycomb. 

This chapter is dedicated to the investigation of this novel structure, and to looking at the 

possible sandwich applications. Thjs section is only focussed on the out-of-plane property 

characterisation using theoretical formulae, FEA and experiments. A shape optimisation routine 

based on the chiral honeycomb modal density is also included in the final section to demonstrate 

the effectiveness of the metamodels in representing the chiral FE simulated properties. 

93 



i. Homogenisation Development and Simulations 

There are not as many varieties of unit cells for chiral honeycombs compared to the 

centre symmetric hexagonal honeycomb, as the chiral honeycomb does not have a 

centresymmetric duplication manner. However, it is not impossible to choose a unit cell that can 

represent the chiral domain properly. Figure 6.3 shows four types of unit cell configurations. By 

looking at the apparent area enclosed by the thin blue dotted lines, cell (a), (c) and (d) can 

tessellate in a normal horizontal and vertical directions, without overlapping any part of the unit 

cell. In fact, the ratio between cell (c) and cell (d) with cell (a) is 113 and 116 respectively. For 

cell (b), though the tessellation manner remains non-centresymmetric, it is a reduced model of 

the cell (a), due to its chiral symmetry. The ratio between cell (a) and (b) is 2/3. 

Another exciting feature of the chiral honeycomb is that different parts of the unit cell have their 

own strength, for example, the cylinders have better compression resistance; while the 

ligaments are more flexible under shear [50]. Therefore different unit cells were used for 

different analysis. Figure 6.3(b) and (c) were adopted in this work for their simplicity. Cell (c) 

was used to model out of plane shear modulus (Gxz), as the shear loading is mostly carried by 

the ligaments. A proper representation of the ligaments (without splitting them in half) can 

provide a better understanding of the deformation characteristics of the ligaments. Cell (b) is 

used to model the out-of-plane compressive strength (O'xz). As cylinders carry most of the 

compression, a FE representation of a full circle will provide a better insight into the stress 

distribution in the cylinder. For the out of plane structural modulus, Ez, both models show 

similar results. 

Figure 6.3 Possible unit cells that represent the chiral honeycomb domain. 

The cross sectional areas of both Figure 6.3(b) and (c) have slight differences. However, the 

boundary condition for the chiral honeycomb is the same as before, whereby the loads were 

applied at the top of the structure, and constraints were applied at the bottom of the structure. 
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The free ends of the structures were linked by constraint equations describing their relative 

movements. The element used for all chiral models is shell93 [6]. The constraints and cross 

sectional area used for different studies will be discussed in more detail in the following 

sections. 
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ii. Analytical derivations 

The chiral honeycomb is still a very new structure in auxetic material/structural studies, 

therefore there is not much theoretical documentation available, and it is mentioned in this 

chapter for the reader to gain some understanding towards the chiral honeycomb stnlcture. The 

reader is also suggested to refer to the originals of the derivations from [65, 50, 64, 69, 53] . FE 

model setups for E" G.rz and ac are included here. The results obtained from the analytical 

derivations and the FEA will be compared with the experiments in the next section. 

a. Elastic Modulus 
The relationship between the Young's modulus of the core material (Ec) to the out of plane 

elastic modulus (Ez) of the chiral honeycomb, can be described as the ratio between the load 

bearing and the total cross sectional area of the structure. This relationship is also equivalent to 

the relative structural density (pi Pc) of the honeycomb [23]. 

Ez = J!.... = Total load bearing area (6.1) 
n Total cross section area 
~c 

As the FE unit cell was built from Figure 6.3(c), the calculations of the chiral honeycomb areas 

mentioned above are also based on the same model. In Figure 6.4, the area covered by dotted 

lines indicates the total cross sectional area, which is made of one whole circle with two 

triangles [50]. 
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Figure 6.4 The total load bearing area and total cross section area of the chiral honeycomb unit cell. 

(6.2) 

Some concerns regarding the derivation of the area of the triangles are illustrated in (Appendix 

2) [49, 50] . 

The load bearing area is represented by the ligaments and the circumference of the circle 

marked by the dotted lines. The four ligaments' areas at the edge of the unit cell are halved as 

the thickness is shared among adjacent unit cells. It is worth noticing that the above statement 

does not indicate that the ligaments were halved in the FE models. 
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4Lt 
A lot load bearing = 27rrl + LI + -- = (27rr + 3L)1 - - 2 

(6.3) 

As B = 30°, applying the dimensionless parameters into (6.2) and (6.3), the empirical formula 

for Ez can be written as: 

E. p 2f3(27r+3a) 
- ' --= 

J3a 2 +27r (6.4) 

This calculation is based on low density structures, with' « I or {J « I, in this case, {J = 0.22 , 

measured from the experimental specimen. Equation (6.4) shows some similarities with the 

theoretical formulae for hexagonal honeycombs in [23], as the structural modulus and the 

relative density (;i Pc) of the honeycomb scales I inearly with the density {J. There is al so an 

inverse relationship between the aspect ratio a and the relative density (pi Pc)/ {J, Figure 6.S gives 

an example obtained from a FE model. Though with these similarities, it is important to 

remember that the definitions of these dimensionless parameters (a, {J, y) are not similar to the 

hexagonal honeycombs. The similarities between the two honeycomb models only howed the 

consistency of equation (6.4). 

a 

Figure 6.5 An inverse relationship between the relative density of the chiral honeycomb and its 
aspect ratio. 

The transverse structural modulus of the chiral honeycomb was also estimated using FEA. The 

FE model was built using 8-node 6 DoF shell elements, shell93 [6]. An example of the unit cell 

geometrical parameters were modelled based on the experimental specimen, where a = 4.44, {J 

= 0.22, y = I and B = 30°, and consists of 1625 elements. Loads were applied on the top surface 

97 



as a unifonn displacement field, all movements in the lower surface were constrained and 

constraint equations were also applied on the free ends to constrain the out of plane rotation 

(Figure 6.6). The transverse structural modulus was calculated by averaging the reaction forces 

over the cross-sectional area of the unit cell, and dividing by the imposed strain. 

Figure 6.6 Chiral honeycomb FE model with boundary condition for the out of plane structural 
modulus. 

b. Buckling 

The approximation of the chiral honeycomb buckling model was considered as a linear 

superposition of buckling loads [64], the approximation takes the chiral unit cell as a 

combination of cylinders and ligaments, and the total buckling stress in the chiral honeycomb is 

equivalent to the summation of the buckling stress in the cylinder and the ligament, it is also 

assumed that there is no shear defonnation during the buckling. It must be emphasized that the 

linear superposition of buckling mode is a basic approximation, because the mode shapes 

associated to the fundamental buckling of cylinders and plates are different. However, for long 

aspect ratio cylinders (i.e. tending to become slender hollow beams), the eigenmodes associated 

to fundamental buckling in both structural elements tend to converge. It must be noted however, 

that the approximaton put in place provides a good convergence with the experimental results, 

with the cylinder contributes the most to the compressive strength. 
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(a) (b) 

Figure 6.7 (a) A cylinder under compression; (b) A ligament of the chiral honeycomb, viewed as a 
panel, under compression. 

The critical elastic buckling stress for a cylinder with radius r (Figure 6.7(a», and wall thickness 

of t is [84]: 

(6.5) 

And the critical buckling stress for a ligament (illustrated as a flat panel in Figure 6. 7(b» of 

height L and wall thickness of tis [84]: 

a/ig = K ~(!...)2 
I-vc L 

(6.6) 

where the constant K is dependent on the boundary conditions at the edge of the ligaments and 

the aspect ratio (hIL, from Figure 6.7(b» of the ligament. For large aspect ratio (hiL ~ 3), typical 

values of K can range from 3.29 (the ligament edge is simply supported. In this case, the K 

value is also the same for hlL = 1,2) to 5.73 (fully clamped edge) [84]. 

Combining (6.5) and (6.6), the elastic buckling force of the chiral honeycomb becomes: 

F""ril = 27rrtacyl + 6Lta/ig (6.7) 

Therefore the critical buckling stress for the chira1 honeycomb can be expressed as: 

a . = ~r;1 
erll ~ 

~otal 

(6.8) 

where the A lolal is the total cross sectional area and it is different from the previous model. The 

total area used here is from the full model (Figure 6.3(a», and it is illustrated below [64]: 
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Figure 6.8 (a) Geometry ofthe chiral honeycomb used (or the FE buckling analysis [64], (b) 
Magnified angles in the centre circle [64]. 

Figure 6.8(a) shows that the area of the hexagon consists of one full circle, 6 triangles and 6 

semicircles. And due to its chiral symmetry, element 2 is contiguous to element 5, similarly 

elements 3 - 6 and 4 - 7. Six ligaments connect the centre circle to the outer ring of semicircles, 

forming an angle of 2B (B = 30°) between two radii that joins two adjacent tangent points in the 

centre circle (Figure 6.8(b». The total area of the unit cell is the summation of the area of the 

centre circle and all the external semicircles (element 1 - 7) and the area of each triangle 

(element 8 - 13) [64] : 

~O/al = 7rr2 + 6( ~7rr 2 ) + 6(~L2 sin (2t9) ) = 47rr2 + 3L2 sin (2t9) (6.9) 

Substituting (6.5) - (6.7), (6.9) into (6.8), the critical buckling stress of the chiral honeycomb 

becomes: 

a
cril 

47rf32 12Kf33 

F;= (87r+3J3a 2 )~3(1-V;) + a(1-v;)(87r+3.J3a 2) (6.10) 

100 



Equation (6. 10) is only valid for long cylinders that sat isfy the condition Z > 2.85 [69] , where Z 

is defined as: 

(6.11) 

While long cylinders have Z > 2.85, short cylinders have lower values. The buckling modes are 

also different for long and short cylinders. Short cylinders give ring / symmetrical buckling, 

medium cylinders give chessboard-like buckling and the long cylinders buckle like any normal 

slender column [84]. 

The value of the critical buckling in (6.10) is dependent on the square of fJ. And only the 

ligaments contribute with a cubic dependency of fJ. This has indicated that in general , the 

cylinders ' performances are dominant when applying a buckling force . However, the 

contribution of the ligaments becomes more s ignificant when fJ is increased. Figure 6.9 shows a 

comparison between the FE and the theoretical model. In general , the theoretical mode l 

underestimates the buckling when fJ is beyond 0. 125. The contribution of the cylinder and 

ligament was computed from the first and second portion of (6 .10) respectively. On the other 

hand, the hexagonal honeycombs have elastic collapse stress dependent only on the cube of fJ 
[23 , 50]. It is again, worth mentioning that the dimensionless geometrical parameters are 

different from those of the hexagonal honeycombs. 
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Figure 6.9 Comparison between theoretical, FE model for the buckling of the chiral honeycomb, 
include the contribution from the cylinder and the ligament. 
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An eigenvalue buckling analysis was carried out on the FE chiral honeycomb unit cell. The 

model is shown in the figure below, it is a reduced model from Figure 6.8, the ligaments were 

only modelled for half of their length . 

Figure 6. t 0 Unit cell used for FE modelling of the compressive strength. 

This model was chosen based on the assumption that the global buckling produces symmetric 

and homogeneous deformation. According to [64], when considering the whole honeycomb, it 

is reasonable to assume that the ligaments are stiffeners, and that they would minimise the effect 

of local imperfections (e.g. eccentricity) in the cylinders alone (the gauge thickness, r = I). 

Furthermore the neighbouring effect of adjacent cells would stabilise the buckling behaviour of 

a single cylinder. 1\s the cylinders carry most of the buckling forces, a full picture of the stress 

flow around the cylinder and half the length of the ligaments should capture the buckling mode 

of the whole domain. 
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Figure 6.11 Boundary conditions of the chiral honeycomb used for the FE buckling analysis 

A unit force was uniformly distributed on the top surface. A periodic boundary condition was 

applied as a series of constraint equations, describing the relative out-of-plane rotation of the 

contiguous ligaments. The in-plane rotations of the ligaments were prohibited. The bottom 

surfac·e is simply supported (only constraining the translational DoFs). 

The buckling force obtained from the FE buckling analysis was divided by the total area of the 

unit cell - in this case, the area ofthe hexagon - for the critical buckling stress. 

c. Shear Modulus 

The computation of the shear modulus, Gxz, for the chiral honeycomb is relatively sophisticated 

comparing to the previous two properties. As until today, there are still limits to where the 

analytical solution can be stretched, the theoretical analysis for the chiral honeycomb out-of­

plane shear modulus is still determined by upper and lower bounds. The exact solution of the 

shear modulus relies on the numerical method, and is later verified by experiment results. 
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(a) (b) 

Figure 6.12 (a) Shear stress imposed in xz plane. (b) Ligaments of the chiral cell. 

The upper bound of the chiral honeycomb is calculated using the minimum potential energy [23, 

50]. As shown in Figure 6.12(a), a shear stress ' xz causing a deformation rxz is acting on the face 

of the unit cell in the x-direction. The bending is neglected, as almost all the elastic strain energy 

is stored in cell walls during the shear displacements. It is also assumed that the cylinders do not 

carry any shear or bending during the deformation. Therefore the shear strain in wall a, band c 

(Figure 6.12(b» can be written as: 

Yo = Yxz cos(B-q» 

Y b = Y xz cos ( B + q> ) 

Yc = Yxz smq> 

The expression of the minimum potential energy has the form: 

(6.12) 

(6.13) 

where Gc is the shear modulus of the core material, Yt is the shear strain in each of the wall of 

volume ~. Substituting (6.12) into (6.13), and with some manipUlations (Appendix 3), the 

equation above, with non-dimensional terms, becomes: 

(6.14) 

Similarly, for the upper bound of Gyz: 

(6.15) 
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Both (6.14) and (6.15) suggest that the transverse shear moduli in the xz and yz planes equal 

each other: 

(6.16) 

In the case of the lower bound of the out of plane shear modulus, the minimum complementary 

energy method is used. With the shear loading shown in Figure 6. 12a, the components of shear 

force F for the unit cell are (Figure 6.13): 

( ) 
Fay 

tan e-fJ =-
Fax 

F. 
tan ( e + jJ) = ~ 

~x 
F 

tan j3 = ---E!.. 

F;,y 

Figure 6.13 Equilibrium of shear forces in the ligaments of the chiral unit cell. 

The minimum complementary energy theorem can be expressed as an inequality: 

(6.17) 

(6.18) 

where !i is the shear strain in each of the walls of volume Vi. According to the assumption stated 

before, that the shear loading was mainly carried by the walls (verified in Figure 6.14), i.e. the 

G.a can be developed based on the four walls a, b, c and d (Figure 6.12(b». Also the symmetry 

of the cell indicates that walls c and d each carry the same load, therefore (6.18) is applied only 

to walls a, band c. The summation of T; Vi is the resultant shear force F. 
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Figure 6.14 Percentage of sbear carried in (a) cylinder (b) ligaments of a chiral honeycomb unit cell. 

With some manipulation from (6.18), the lower bound on Gxz can be written as: 

G ap F2 
-E.... > _ _ ---'-__ -:----=---~ 

Ge - a 2 cosO + 7r F;,2 + F,,2 + Fe2 (6.19) 

where Fa, Fb and Fe represents the forces in wall a, band c, and F can be determined from the 

equilibrium of internal shear stresses (Appendix 3). 
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Similarly, for the case of Gyz: 

(6.20) 

In a general hexagonal honeycomb, the out of plane shear modulus is also affected by the gauge 

thickness, r. which defines the ratio between the out of plane thickness to the length of cell wall 

[23]. The gauge thickness modifies the stress distribution and affects the bending of the wall 

under shear loading. Grediac has shown that the shear modulus has an inverse relationship with 

the gauge thickness, varying from the lower bound when the gauge thickness is high, to the 

upper bound when decreasing the thickness ofthe honeycomb [23]. 

For the chiral honeycomb, the effective out of plane shear modulus shares a similar trend to the 

hexagonal ones (6.21), 

(6.21) 

where the constant C is 0.787 for a normal honeycomb [23] and 1.342 for a hexagonal re-entrant 

auxetic honeycomb [50]. The C value for the chiral honeycomb was determined using Least 

Square fitting of the results from the homogenisation FE simulation for a chiral honeycomb 

with various a (from 2 - 6) and y(from 1 - 10) values into the above formula, f3was fixed to 

0.05, and the C value was found to be 0.58 [50]. 

The FE model used for the chiral honeycomb out of plane shear modulus is again Figure 6.3( c). 

The figure below illustrates the boundary conditions used for the shear modulus simulation. 

Figure 6.15 Boundary condition for chiral out of plane shear modulus simulation. 
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The boundary conditions are similar to those mentioned for the out of plane elastic modulus 

simulation, except that the top plane of the honeycomb is now a displacement field in the x­

direction. The shear modulus was calculated from the reaction shear force averaged by the total 

area, and divided by the imposed strain. 

108 



iii. Experimental setup for chiral honeycomb 

Some experiments were done to verify the chiral honeycomb analytical and numerical 

formulations. These included tensile tests, compression tests and three-point bending tests to 

determine the core material properties that made the chiral honeycomb, compressive strength, 

structural modulus and shear modulus of the chiral honeycomb respectively. 

a. Compression test 

The sample for the compression test was manufactured by the Exeter Advanced Technologies 

Enterprises, using the Selective Laser Sintered (SLS) Rapid Prototyping technology. The 

material used for manufacturing the compression test sample is the Nylon 6 DuraForm PA 

powder [35] and the core material properties (i.e. Nylon 6 DuraForm PA powder) were 

determined from three standard tensile specimens (Figure 6.16) manufactured and tested 

according to the A TSM D638 standard [9] . 

Figure 6.16 A tensile test specimen. 

Figure 6.17 shows the stress-strain curve from one of the Nylon 6 DuraForm PA powder tensile 

test samples, giving Young's modulus of 15GPa, and yield strength of about 47MPa at 10% of 

strain. The tensile tests were carried out using a MAYES tensile machine, with strain rate of 0.1 

mm/s. 
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y = 1.5e+OOg·x - 1.2e+OO6 
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Figure 6.17 Stress strain curve for HP-PA powder sample obtained from ASTM 0638 tensile test. 
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The overall size of the chiral honeycomb sample was 21 Omm x 200mm x 20mm, it was split 

into four equal size samples, each having size around 100mm x 105mm x 20mm, providing a 

total area of around 1 0500mm2
• The configurations of the chiral honeycomb test sample were a 

= 4.4, f3 = 0.22, y= I, L = 20mm and r = 4.5mm (Figure 6.18). 

Figure 6.18 Chiral honeycomb compression test sample. 

The compressive test was done according to the ASTM C365-00 standard (Flatwise Tensile 

Strength of Composites) for non-metallic core materials [8, 64]. The test was carried out using 

the rnstron 801 machine. The loading strain rate was 0.008 mm/s, with which the specimen will 

reach its maximum load in around 3 - 6 min, and the displacements were collected at every 0.2s 

interval. The load was applied from the movement of the machine head to an alignment-plate, 

which is sitting on top of the specimen (Figure 6.19). It is to help getting a uniform load 

distribution to the specimen. The plate must be aligned at the centre of the machine head, and 

great care must be taken to ensure that the plate is sitting in parallel to the specimen, so that load 

is transferred perpendicularly to the specimen. 

The alignment plate was adjusted while the load has being manually applied, any misalignment 

of the plate-sample was corrected at this time, the manual loading continued until all gaps 

visibly closed. This was to minimise the misalignment during the initial movement of the 

machine head, before starting the test (Figure 6.19). 
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Figure 6.19 Compressive test apparatus set up. 

The sample was tested for 50% strain; a force-displacement curve was plotted to determine the 

compressive strength (maximum load) and its compressive elastic modulus (the slope). Figure 

6.20 shows the force-displacement curve of the sample lip to 50% load, the maximum 

compressive strength was 87 kN, and the slope was 80.7 kN/mm. 
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Figure 6.20 Chira) honeycomb under compression with strain up to 50%. 

At the initial state, the curve is constant until the alignment plate starts to press on the whole 

specimen, when the load starts to transfer. The linear relationship in the force-displacement 

curve indicates the elastic compressive strength. It continues until the maximum load is reached 

and followed by compressive failure. The compressive failure of the sample is indicated by the 

decrease of force until around 45kN. A densification process starts after 8mm compression 

deformation. 
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h. 3-Point Bending test 

The chiral honeycomb sample shown in Figure 6.21 was used for the bending test. The 

sandwich core was manufactured with ABS (Acrylonitrile Butadiene Styrene) plastic using 

Rapid Prototyping stereolithography technology. The ABS plastics have a Young' s modulus of 

900 MPa, yield strength of 30 MPa and Poisson's ratio 0.3. The configurations of the chiral 

honeycomb test sample were a = 4.4, fJ = 0.22, r = 1, L = 20mm and R = 21.5mm. 

The faces were made of unidirectional prepreg ACG MTM28 carbon fibre. The face skin 

material has a tensile modulus of 121GPa, flexural modulus of I 24GPa, flexural strength 

1.7GPa and interlaminar shear strength 80MPa. These properties were normalised with volume 

fraction 0.6 at room temperature [50]. The face skins were attached to the chiral honeycomb 

core using EvoStik impact adhesive [50] . The overall dimension of the sandwich panel was 

85.5mm x 225mm, with total thickness of20.8mm. 

(a) (b) 

Figure 6.21 Chiral honeycomb bending test sample. (a) Before assembly, (b) After assembly. 

The bending test was done according to ASTM C393-00 procedure (Method for Flexural 

Properties of Sandwich Cores) [7, 53], though the experiment is much easier to set up, the shear 

information will require some post processing of the experimental data, the post-processing 

steps will be mentioned later in the section. 

The three point bending test was carried out using an Instron 850 I machine. The specimen is 

loaded in the middle of the plate at a rate of 0.005 mm/s, and the plate was simply supported at 

two ends, equidistant from the center (Figure 6.22). Two extensometers were placed at the 

supporting edges to identify any possible local crushing. 
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Figure 6.22 Machine set up for bending test [53]. 

The tests were carried out up to a maximum deflection of I mm, to ensure that the panel stayed 

within its elastic limits. Eight different span lengths were used from 150mm - I 80mm at 5 mm 

intervals. The specimen was preloaded manually to 0.04kN in order to account for any slack in 

the system. The displacement and load measurements were recorded every I second interval 

using LabView code [53]. 

The deflection of a sandwich sample under three-point bending is expressed as a resultant of 

bending and shearing effects: 

FL3 FL o =0 . +0 =-+--
1010/ bendmg shear 48D 4AG (6.22) 

where o,ola/ is the centre deflection of the sandwich, F is a point load applied at the centre of the 

sandwich, L is the span length between the two simply supported ends, D is the flexural rigidity, 

G is the shear modulus of the sandwich core and constant A = bcf/c (Figure 6.23), in this case, A 

= 1779.084 mm2
• 

Figure 6.23 Cross sectional area of tbe sandwicb panel. 
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According to [4] the deflection is measured at two different spans and the resulting pair of 

equations can be solved for flexural rigidity and shear modulus of the sandwich core. Therefore 

rearranging (6.22), one gets 

8 L2 1 
-=--+--
FL 48D 4AG 

and 

8 1 1 1 
--=--+--.-
FL3 48D 4AG L2 

which can be illustrated as straight lines in the graphs below: 
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Figure 6.24 Shear stiffness aod flexural rigidity curves [4]. 

(6.23) 

(6.24) 

The slope and intercept of the figures above will give information about the flexural rigidity and 

the shear modulus of the bending sample. Detailed calculations are listed in Appendix 4. The 

out of plane shear modulus determined from the experiment is 10MPa. 

114 



iv. Experimental results vs theory and simulations 

All the FE and analytical models mentioned earlier for, Ez, Gxz and a cril were verified with 

experimental results. 

a. Elastic Modulus 

For the elastic modulus, the experimental result was computed as the slope of the stress-strain 

curve from the compression test (Figure 6.25). 
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Figure 6.25 Structural modulus of the chiral honeycomb panel obtained from the compressive test. 

It is considered here that the cylinders carried most of the loads, the parameter defining the 

cylinder thickness and its radius, p = fir, is playing a crucial part. After measuring the internal 

and external diameter of the cylinders in the test specimen, the mean thickness of cylinders were 

found to be 1.5 mm, whereby the thickness of the ligaments were 'tapered' to close the 

connection between ligaments and cylinders. This can be seen in a coarser test sample that made 

by using stereolithography method (Figure 6.26(b». Although the laser sintering technique has 

already overcome the imperfections / gaps manufactured using stereo lithography (Figure 

6.26(b », the behaviour of the ligaments and cylinders are still the same as the stereolithography 

sample, such as the cylinders are still unable to rotate to create enough auxetic effects and the 

behaviour of the cylinders and ligaments are still very independent from each other under 

loading conditions. 
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Therefore the actual thickness of the cylinders was taken as 0.5 mm instead of full thickness of 

L mm, which led to j3cylinder as 0.11. This value of j3 is used in the analytical and simulation 

calculation of the chiral honeycomb elastic modulus. A rough measurement of a cylinder, using 

a caliper, is also shown in the figure below. 

(b) 

Figure 6.26 (a) Measurement of a cylinder of the chiral honeycomb sample, manufactured using 
laser sintering technology; (b) imperfection of the chiral honeycomb manufactured using 

stereolithography. 

The other configurations were a = Llr = 20mm I 4.5mm = 4.44, y= blL = 20mml20mm = I and 

() = 30°. Table 6.1 shows a comparison between the analytical, simulation and experiment 

which shows exellent results. 
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Analytical Equation (6.4) 
Finite Element [MPa] 

Experiment in Figure 6.17 
rMPal [MP& 

160 159 160 

Table 6.1 Chiral honeycomb elastic modulus result comparisons between analytical, simulation and 
experiment. 

As mentioned in Appendix 2, the analytical equations neglected the gaps between the cylinders 

and ligaments; it is still assumed that the cylinder is free to rotate, due to the torque produced 

whi le the ligaments are bent. In Figure 6.27, the finite elements model has also permitted 

rotation of the cylinders, though the curvatures of the cylinders were not perfectly fitted (i.e. 

looked more like a polygon while fitted by the shell elements). The manufacturing of this novel 

structure is still a very challenging task to be able to maximise the capabilities of the structure. 

Figure 6.27 Displacement of the chiral honeycomb unit cell under loading in z-direction. 

b. Compressive Strength 

The compression strength of the chiral honeycomb is taken from the same test as above, and the 

result is more straightforward compared to the elastic modulus (Figure 6.20). Table 6.2 shows 

the comparison between theory, simulation and experiment. 

Table 6.2 Chiral honeycomb collapse stress result comparisons betwecn analytical bounds, 
simulations and experiment. 

In Figure 6.28(a), the FE model shows a global buckling mode of the chiral honeycomb unit cell. 

While most of the ligaments already buckled under the loading, the displacement of the cylinder 

is behaved in a ring-type buckling, and is more rigid (Figure 6.28(b)). 
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(c) 

Figure 6.28 FE model and experimental sample for buckling analysis. 

The overall mode shape agrees well with the compression test sample Figure 6.28(c), which was 

cut out from the test sample after an applied 20% compressive strain. The good agreement 

between the analytical, numerical and experimental shows that the assumption made earlier, 

where the cylinders contribute significantly to the compressive strength is valid. However, as 

shown in Figure 6.9 the contribution of ligaments will become more dominant when the 

thickness or fJ is higher. 

It is known that the honeycomb collapse stress has a parametric form of relationship as 

described below [23]: 
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[ail J = KfJa
m (6.25) 

where constants K and m were 0.0215 and - 0.6288 respectively. It was calculated using a 

pseudo-inverse method from the FE simulation data. 

c. Shear Modulus 

The shear modulus of the chiral honeycomb was determined from the three-point bending test. 

The experimental sample for the bending test is not manufactured using the same material as the 

other tests . The ABS plastic sandwich core has Young 's modulus of900 MPa, yield strength of 

30 MPa and Poisson's ratio 0.3 . The configurations of the chiral honeycomb test sample were a 

= 4.4, fJ = 0.22, y= 1, L = 20mm and R = 21.5mm. 

Analytical Analytical 
Equation (6.21) Finite Element Experiment 

Upper Bound Lower Bound 
[MPa] [MPa] [MPa] 

(6.14) [MPa] (6.19)fMPal 
12.4 6.6 11 9.8 to 

Table 6.3 Chiral honeycomb shear modulus result comparisons between analytical bounds, 
simulations and experiment. 

Table 6.3 shows that the numerical and experimental results lie well within the analytical 

bounds, and have good agreement with the analytical equation that takes the gauge thickness of 

the honeycomb into account. The values are closer to the upper bound as the cylinders of the 

honeycomb are reasonably short (y= 1). Figure 6.29 shows an example of shear displacement in 

the FE model, which is a good estimate of the experimental values. 

Figure 6.29 Shear displacement of a chiral honeycomb unit cell. 

119 



v. Optimisation Case study 

In general, all the chiral models described previously were validated with satisfactory results. 

Surrogate models were again built to replace the time-consuming numerical models to 

overcome the bottleneck of an optimization process. 

The surrogate models were built using both Neural Network and Genetic Programming to 

compare their effectiveness and accuracies in this optimisation case study. 

The optimisation process in this section is a shape optimisation of the chiral honeycomb. For a 

given modal density of the chiral honeycomb, the optimisation process will compute the 

corresponding geometrical properties of the chiral honeycomb. As the modal density of the 

honeycomb is related to the out of plane shear modulus (Gx;) and elastic modulus (Ez)(aka 

apparent density in equation (6.1 )), the surrogate models describe here are the GP and NN fitted 

G.a and Ez models. Theory regarding modal density, which is a topic discussed under the 

Statistical Energy Analysis (SEA) studies of honeycombs can be found in [62]. 

a. Surrogate model setup for the chiral shear and structural 
modulus 

The surrogate models for the chiral honeycomb out of plane shear properties were built by first 

obtaining data from the FE models, which were built from randomly generated geometrical 

parameters (l :5 a:5 6, 0.05 :5 f3:5 0.2, 1 :5 r:5 10) from a uniform distribution. The geometrical 

parameters and the FE generated Gxz and Ez were then used for creating the surrogate models, a 

total of 400 points were used for each of the surrogate models (Gxz and Ez), which were 

allocated for training ( 170 points), validation ( 130 points) and testing (1 00 points) sets. 

The GP models were built with 1000 generations each containing a population of 300. Each 

mutation and crossover rate (0.1 - 0.9) was trained at 10 different initial conditions (random 

numbers), and validated to avoid under-lover-fitting the data. The setup for each types of 

mutation method is the same as mentioned in previous chapters. 

For NN models, the number of hidden nodes in the layer (only one layer is used) and number of 

presentations (affecting the momentum and learning coefficients) were the variables. Each 

different setting was also trained with 10 different initial conditions and then validated. 
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The best configuration ofGP and NN surrogate model is listed in Table 6.4. 

Surrogate GP MLP 
Model 

Ez 
%MSE 0.0037 0.12 

til Generations: 1000 Hidden nodes: 20 c: 
Population: 300 0 

'';::: 
tIS Crossover rate: 0.2 Learning and momentum regime: 3 ... 
6b Mutation rate: 0.3 !.;::: 
c: No. of nodes: 50 0 No. of weights : 101 U Tree Depth: 16 

Gxz 
%MSE 0.0894 0.46 

til Generations: 1000 Hidden nodes: 22 
c: Population: 300 .9 ..... 

Crossover rate: 0.6 Learning and momentum regime: 3 tIS 
I' ... 

;::I 
01) Mutation rate: 0.2 
t: 

No. of nodes: 49 c 
0 No. of weights: I I I U Tree Depth: 22 

Table 6.4 Best configurations of GP and NN in fitting the Gn and E. data. 

b. Objective function of chiral honeycomb shape optimisation 

The optimisation process is to get the geometrical parameters of the chiral honeycomb, based on 

the desired modal density. As the modal density requires the knowledge of the chiral 

E 
honeycomb relative density (i.e. _ 1 x Pc) and out-of-plane shear property (i.e. Gxz and Gyz), 

Ec 

these surrogate models developed in the section before wi ll be computed during the 

optimisation process to find out the correct chiral geometry corresponding to these properties, 

therefore its modal density. 

The theory regarding modal density can be found in [62]. It is one of the three properties (modal 

density, coupling loss and damping) that used in Statistical Energy Analysis (SEA), which 

determines the high frequency dynamic characteristics of a complex structure. The SEA method 

is useful for quantifying the transmissions and absorptions of the acoustic waves, handling 

vehicle internal noise and many other vibro-acoustic applications. At a high operating frequency, 

the modes of a structure can overlap, which made it difficult to count the resonant modes; the 

modal density allows the engineer to determine the vibration energy of the structure by giving 

the number of resonant modes per Hertz. 
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The honeycomb sandwich plates are much stiffer than normal uniform plates with similar mass; 

therefore the honeycomb plates have low modal density and are ideal for making typical 

spacecraft platforms and side panels. The theoretical expression and experimental measurement 

techniques of the modal density for honeycomb sandwich plates have been studied by [16, 56] 

and many other researchers. 

The modal density, which is the objective function of the shape optimisation in this work, of the 

chiral honeycomb sandwich plate (Figure 6.30) with different configurations were computed 

using the equation below [56, 16]: 

(6.26) 

Gyz is the same due to the isotropic behaviour of the chiral honeycomb, and will be computed 

from the surrogate model of Gxz. The constant A is the surface area of the plate, Vc = 0.33 is the 

Poisson's ratio of the constitutive material, E, and E3 are the structural moduli of the top and 

bottom face sheet, B = (~ + ~ + ~)2 ( El~E3~ J is the face sheets longitudinal stiffness 
2 El~ +E3~ 

parameter, f and aJ are frequencies in Hz and rad/s respectively, m = Pl~ + P2~ + P3~ is the 

total mass per unit area of the sandwich plate, where PI, 0. and P3 represent the density of the 

top face sheet, composite core and bottom face sheet individually, and P2 = Ez x Pc' The data 
Ec 

used for the sandwich core and faces are listed in Table 6.5, where the density of the chiral 

honeycomb, 0., will be computed during the optimisation process using the surrogate model of 

the normalised elastic modulus, Ez. 

~ 

<? 

t 

Figure 6.30 A chiral honeycomb composite model. 
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Chiral Honeycomb 

Area 0.23 m x 0.088 m 
Thickness 2x 10-2 m 

Apparent Density 
To be computed from 
the surrogate models 

G'f,Z, GyZ 
To be computed from 
the surrogate models 

Face Sheets (CFRP layer) 

Thickness 2x 1 0-3 m @ side 

Young' s Modulus 121 x 109 Nm-2 

Density 1380 kgm-3 

Table 6.S Sandwich panel data used for the computation of modal density. 

The shape optimisation were again computed using the Differential Evolution (DE) routine. The 

scaling factor and crossover ratio was determined to be 0.9 and 0.7 respectively. The objective 

statement is, for a given frequency of 2 kHz, find a chiral honeycomb, which has a modal 

density of about 0.3 modes I kHz. The radius of the chiral honeycomb was fixed to be 4.5mm. 

The core material density (Pc) and the Young's modulus (Ec) of the chiral honeycomb is set to 

be 590 kg/m) and 5x 106 N/m2 respectively. 

The shape converged with the above scaling factor and crossover ratio is shown in the figure 

below: 

- Oe$lred Shape 
- Genetic Programming 

Neural NelWoric 

Figure 6.31 Final geometrical configuration of the chiral honeycomb obtained from the DE shape 
optimisation. 
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From the figure above, it shown that the new configurations have different ligament lengths 

(geometrical parameters are listed in Table 6.6). The ligaments were not appeared as tangents of 

the cylinders. This is due to the limitation from the numerical FE model , as it interpolates the 

curved surface by a polygon spline. This does not affect the FE calculation much, as the 

accuracy of the numerical models only increases slightly with a very fine polygon mesh on the 

curved cylinder surface. 

The MSE for the shape optimisation was calculated as: 

(6.27) 

The MSE ofthe optimisation, based on the MLP and OP surrogate model, were 8.4999x 10,9 and 

6.7744x 10, 10 respectively. The corresponding relative density, shear modulus, geometrical 

parameters and the modal density are listed in the table below. 

.. - Target Value GP MLP 
a 4.44 3.3912 2.3131 

f3 0.22 0.1906 0.1887 

y I 1.1102 2 .2776 
On (N/m2) 1.4392x 105 1.4883x 105 1.6420x l05 

p(kglm3
) 125 .60 139.30 182.19 

n(f)(no. of modes I 
0.3043 0.3043 0.3043 

kHz) 
MSE% nla 6.8 x 10,10 8.5x 10,9 

Table 6.6 Shape optimisation results for the chiral honeycomb. 

In general, the estimation of shape is promising; the shape optimisation that was built on the OP 

surrogate model is performing slightly better than the MLP one. The shape optimisation routine 

relies heavily on the surrogate models (OP or MLP); the slightest error from the surrogate 

model can propagate through the optimisation routine and affect the sensitivity of the shape 

optimisation. 

This problem can be overcome by having more data points for developing the surrogate models. 

However, this approach will involve a larger computational effort from collecting FE simulation 

data for training the surrogate models. 
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7. Conclusion 

The work done in the thesis so far has developed a novel metamodelling technique (GP) to 

improve the effectiveness of honeycomb simulations based on a FEA approach. The complex 

simulation models were successfully represented by a reduced order metamodel, which was 

built by using either NN or GP. The NN or GP built metamodels were approximating the 

relationship between the honeycomb geometrical parameters and its corresponding material 

properties; they were also used to perform interpolation I some minor extrapolation of the 

material properties up to certain accuracies, in order to avoid regenerating a new FE model for 

every minor change of the honeycomb structure. 

In terms of the FE modelling of the microstructures, either bounded (Chapter 4) or cellular 

models (Chapter 5 and 6), are built using the homogenisation method. This method allows the 

user to generalise the heterogeneous domain into a more homogeneous domain, by including all 

the contents of the heterogeneous domain into a unit cell according to its proportions. 

All the material models used in this study contain only hollow and solid materials. However, a 

strategic distribution of the hollows and solids must be considered when forming a unit cell, in 

order to maintain the periodicity of the unit cell and make it easy to perform numerical 

simulations. For a bounded model mentioned in Chapter 4, the ratio between the hollow and 

solid is low and it is easy to manipulate the numerical model by choosing the most obvious unit 

cell. While for the cellular solids, the ratios between hollow and solid are much higher. 

Particularly for the auxetic cellular solids, the existence of the hollows in fact promotes the 

change in shape of the auxetic materials during deformations. Furthermore as the solids are 

thinner, the free-ends need to be constrained with constraint equations, in order to guide the 

movement of the cellular solid unit cell when perturbation is introduced during the numerical 

simulations. The coding of these numerical models for bounded and cellular solids, using the 

homogenisation technique, has been successfully validated by experiments and analytical 

solutions in Chapter 4. The finding in Chapter 4 has been published in 2004 (Please refer to the 

publications list [ID. 

One of the auxetic honeycombs studied here was chiral honeycomb, the experimental 

validations, analytical derivations [IV - IX] and comparisons between these with the 

metamodels were also reported in [IV - IX], and these results shows excellent agreements, 

which proves that the assumptions made so far were correct. 
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For the metamodel built in this work - based on Genetic Programming, show its effectiveness 

and its compatibility to the MLP in some of the tests mentioned in Chapter 3. The GP is still in 

its very primary stage, and more detailed works are required to further refine the program. 

These will be discussed in the next chapter. The GP extrapolation capability is also lower than 

the MLP; however, it is not recommended that either of these surrogate models is reliable for 

extrapolation. 

From the studies of the aircraft wing damage detection (Chapter 3), the GP has not only shown 

its performance at such early stage of coding (without many mutation / crossover strategies). It 

has also shown the capability of choosing the most sensitive parameters (instead of using all) to 

create the metamodel. Traditional data fitting requires data screening to pick for the few most 

influential parameters to reduce the order / complexity [57]. The GP's capability to pick the 

most influential parameters has provided a very convenient way of analysing data. This finding 

has been reported in the author's publications. (Please refer to the publications list [II, VI]) 

It is worth mentioning that the 10000 generations used in Chapter 3 was during the testing stage 

of the GP code and the GP configurations were determined heuristically to examine the 

performance of GP in fitting some theoretical formulas of the hexagonal honeycomb within a 

predefined domain. 

For the damage detection of the aircraft mentioned in Chapter 3, the first natural frequency of 

the aircraft was found to be sensitive particularly to the I, 2, 4 and 8th parameter, which denotes 

for the aircraft's wing / fuselage connections, the wing / pylon connection of the outer turbine 

engine and the wing stiffness itself. While for the first element of the mode shape that 

corresponds to the natural frequency, it shows sensitivities to almost all parameters, except the 

5th and 9th parameter, which denotes for the wing / pylon connection of the inner turbine 

engine and the fuselage / HTP connection. Both these selections of parameters agree with [57], 

which states that the most influential parameters for the natural frequency were the I st and 8th 

parameter; and for the first element of the modal displacement affected mostly by the 1st, 3rd, 

4th, 6th and 8th parameters. 

When the coding of the GP became more complete (more methods of mutation were included), 

it was put to perform some metamodelling, such as to replace the numerical models in Chapter 4 

- 6. It has shown some good achievements. However, as pointed out earlier, the GP is not 

reliable for any extrapolation; it has to be used strictly within the design domain. Also, it is 

inappropriate to perform mathematical operations among the GP surrogate models. The GP 

models, though appeared to be some conventional mathematical functions, it does not follow the 

rule of elementary / advanced manipulations of the conventional functions. 
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The applications of using the GP surrogate models in the design of a honeycomb structure have 

also shown good agreement when compared among other surrogate models. It has shown some 

successful applications when being cascaded as a sub-function of the optimisation process. It is 

worth mentioning that this cascading of surrogate models (either NN or GP or polynomials) will 

propagate (and possibly magnify) the error of the surrogate model in representing the actual 

model, through the optimisation process in this case. The less complicated the optimisation in 

cascading the metamodels, the less error propagation would be magnified over the optimisation 

procedures. 

Since the GP in this work was developed in the Java language, the interface between the GP 

metamodel to the objective function (written in Matlab) has slowed down the optimisation 

process significantly. The reason this occurred was due to the difference in function handling. 

Matlab is tailored to handle various numerical calculations; while for Java, the mathematical 

functions included are rather elementary. Manipulations of these functions will lead to error if 

NaN and Inf were produced, which will halt the GP training. Hard limits were introduced in 

Java, during the training of the GP, to avoid such problems, as shown in Table 4.5. However, 

the GP metamodel will create conflicts if these hard limits were not introduced in Matlab during 

the optimisation, and these hard limits of the Java mathematical functions were introduced as 

little sub-routines of the optimisation process. These little sub-routines will be called each time 

the GP metamodel uses them. 

The speed oftraining the GP using Java is also an issue. Though Java is powerful in terms of its 

object orientated programming nature and its independence of computer platforms, it is memory 

hungry and relies heavily on the capacity and performance of the computer. The basic 

requirement up to date to run Java programs is 512MB and 3GHz of RAM, the more advanced 

the computer, the faster the computation ofGP. 

While performing the shape optimisation of the auxetic honeycombs, it is noticed that the 

slightest change of shape of the material unit cell model can have a large effect on its overall 

structural performance. The metamodelling techniques were introduced in this work to obtain an 

understanding of the geometrical parameters of the unit cell to its corresponding structural 

behaviour. This was done by using a reduced order replacement / surrogate models to represent 

a random Gaussian distribution of input - output matching of the numerical simulations. The 

resultant surrogate models provide the relationship between the unit cell geometry and its 

corresponding structural behaviour within a predefined design range, which also saved some 

computational effort to re-generate the unit cell model for every change of the geometry. These 
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surrogate models were inserted into the shape optimisation routine in order to perform the shape 

optimisation based on the criteria set by the user. 

The shape optimisation of the honeycombs that is studied in this work, has suggested a new 

approach for material optimisation. The shape optimisation was targeted at only one unit cell at 

a time, where the designer already knows which type of unit cell to be used. The geometry of 

the unit cell was optimised based on the desired perfonnance predefined by the designer. The 

shape optimisation routine was carried out using the differential evolution method (DE). The 

basic idea of this DE shape optimisation is in fact an inverse of the surrogate models, in other 

words, it is to get the geometrical parameters based on the desired structural properties, by 

utilising the aforementioned NN or GP surrogate models. 

The shape optimisation perfonned in both the hexagonal re-entrant honeycomb and the chiral 

honeycomb shows successful results. These optimisation procedures require constant updates of 

the properties ofthe sandwich core, which relies on the geometry of the honeycombs. Therefore, 

instead of calling for a FE routine during each step of the optimisation, a surrogate model was 

inserted as a subroutine of the optimisation procedure. Also in Chapter 5, the hexagonal 

honeycomb has some transitional properties between auxetic and nonnal when changing from 

negative angles to positive angles, the solutions lying in this region are very sensitive to the 

accuracies of the metamodels. Error will occur when the metamodels gives positive Poisson's 

ratio for negative angles. 

In Chapter 6, the shape optimisation was in fact embedded within a few different surrogate 

models (some developed using GP, others using MLP). The chiral honeycomb surrogate models 

in Chapter 6 were more complicated, the error of the metamodel in representing the original 

geometry - property has propagated throughout the optimisation process. Also, the optimisation 

problem proposed for the chiral honeycomb has a lot of local minima, as there are a few 

possible chiral geometry configurations that can give a close approximation of the desired 

modal density. Therefore hard constraints must be imposed and several trials and different 

scaling / crossover ratios (for the Differential Evolutions) are also suggested. The choice of the 

best model will depend on the designer, as which one is more feasible to be manufactured etc. 
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8. Future work 

i. Chiral honeycomb 

The investigation of the honeycombs involved in this work has led to some new understanding 

of the structural behaviour of the auxetic honeycombs, typically the chiral honeycombs. 

Analytical, computational and experimental studies has validated that the assumptions were 

correct, and the mechanisms that are responsible for their unusual properties. 

However, the manufacturing of the chiral honeycomb is still an obstacle to exploit a full 

capability of the chiral honeycomb. Though the gaps presented in Figure 6.26(b), which was 

manufactured using stereolithography technique, were overcome by using the laser sintering 

technique, the cylinders in the chiral honeycomb must be allowed to rotate and warp the 

ligaments in order to exhibit higher deformation. 

On top of the outstanding out-of-plane performance of the chiral honeycombs, they are also a 

good candidate for manufacturing smart panels for damage detection, where the sensors can be 

located inside the cylinders, as the cylinders do not collapse easily compared to a flat panel. 

However the wiring of sensors, optimised location of sensors and the weight of sensors 

affecting the dynamical behaviour of the chiral sandwich panel is still a challenging task. 

The study of damage detection in the sandwich panel, particularly skin cracks and the core-skin 

debonding, would require the measurement of strain or acceleration imposed to the sandwich 

panel. While the damage of the panel, in general requires the knowledge of the total strain of the 

panel, the acceleration measurements at different locations are useful for impact testing. Though 

the strain gauge provides direct information, it is troublesome to mount the gauge inside the 

cylinders. Furthermore, it is too difficult to ensure an excellent contact between the strain 

gauges with the cylinder wall, with such a small opening. 

On the other hand, the accelerometer is easier to install and does not require advanced 

workmanship. However, they have a disadvantage in terms of their weight. As the kinetic 

energy is indeed proportional to the mass of the structure, a sensor with relatively higher weight 

than the sandwich panel would modiry the dynamic characteristics of the panel. The size of the 

accelerometers is still a problem, while the cylinders are the most resistant part in the chiral 

honeycomb, the accelerometer must be small enough to be inserted into the chiral honeycomb 

cylinder. Also, the cylinders do not provide a flat surface to glue the accelerometers, which also 

brings a difficulty to use the accelerometers, though it could be glued on the ligament walls as a 
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less desirable alternative. The short range of operating frequencies that is provided by the 

accelerometers is also a challenge, as a sensor with high frequency with wide range is needed. 

Another alternative choice of sensor would be a PVDF (polyvinylidene fluoride) film. The 

PVDF film can be bent into complex shapes, which can accommodate any surfaces. But these 

PVDF sensors have some disadvantage such as they are more delicate than the conventional 

sensors and can be damaged mechanically, which will cause unreliable measurements. 

A modal density experiment and simulation were performed on the chiral honeycomb core itself, 

without any cylinders being filled (to represent the sensors' weight). The result and procedure of 

the modal density experiment is described in Appendix 5. Meanwhile the optimisation of chiral 

honeycomb sandwich panel remains numerical and the modal density of a chiral honeycomb 

sandwich was modelled based on the theoretical studies of [16, 43, 56]. 

Apart from all the problem of choosing the correct sensors, the problem of wiring of sensors 

inside the chiral honeycomb sandwich panel remains unsolved. The wire can pass around the 

honeycomb itself easily without the top and bottom sandwich faces. A solution to this is to bore 

a hole in the honeycomb to pass the wires. This approach is undesirable as it decreases the 

mechanical properties of not only the honeycomb, but also the whole sandwich, as the hole will 

be a stress concentration place during loading. An alternative way to this wiring problem would 

be to create some grooves at the panels as shown in Figure 8.1. It was suggested in [49] that this 

layout could be manufactured using Rapid Prototyping (RP) technology, such as 

stereolithography or laser sintering, as it would manufacture the chiral honeycomb with grooves 

as one piece, rather than drilling holes to the completed product, which initiates cracks. 

However the suggestion would involve precision manufacturing, and though the RP technology 

brought down the manufacturing cost of some products, precision manufacturing using RP 

technology would require strict workmanship, which may not turn out to be cost effective after 

all. 

Figure 8.1 Suggestions of cutting grooves on the ligaments for sensor wiring 1491. 
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The optimisation of sensor locations in the chiral honeycomb is another topic to study, as it is to 

minimise the cost of installing excessive sensors, minimise the weight added on to the panel that 

would change the dynamical behaviour of the sandwich, while still manage to capture good 

results from the damage detection tests. While the experiment and manufacturing of the chiral 

honeycomb for sensor installation still remains difficult, the optimisation of sensor location may 

lead to some interesting findings. 
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H. Genetic programming 

As mentioned earlier, the Genetic Programming (GP) developed in this studies still needs some 

improvements. These include the optimisation of the randomly assigned constant in the 

individuals, evolution strategies such as the mutation / crossover and selection method with 

their effects on the population search direction, more functions included and more effective 

bloat controls. 

The optimisation for each randomly assigned constant in the individuals was proposed to 

maximise the possibility to search for the best individual for shorter generations and population. 

Simulated annealing may be a choice for refining these constants, as it can vary the optimisation 

steps according to the generations. When the GP is at its initial generations, the refining step 

would be bigger, and slowly reduce to smaller steps as the GP evolves towards the maximum 

allowed generations. This may waste more computer effort compared to the GP without such 

optimisation; however, the trade off of computer effort should be studied before any decision is 

made. 

More initiation of population, selection methods and evolution methods should also be included 

to suit for different purposes. The initiation must give adequate diversity into the population, in 

order to perform healthy genetic operations, examples of initiation method include the grow 

method, the full method and a mixture of both etc. The selection method is also important, as it 

usually affects the convergence of an evolutionary program, examples of selection method 

include fitness proportionate, which was used in this work, tournament selection, demetic 

grouping etc. Tournament selection allows the user to vary the selection pressure by varying the 

size of the tournament. And the demetic grouping is also an alternative selection to avoid 

premature convergence [21]. More variety of the genetic operators must also be included, in 

order to obtain less destructive crossover and mutation processes. Some studies on the methods 

used for crossover and mutation can be found in [41, II]. 

As also mentioned in the previous chapter, the GP metamodels experience performance degrade 

when being used in Matlab. This may be overcome by improving the capabilities of GP-Java in 

handling NaN and Inf. 
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iii. Auxetic material design using metamodels with shape 

optimisation 

Auxetic materials are exhibiting some very interesting properties as a result of its counter­

intuitive deformation, it will be better if one can create more auxetic structures, instead of 

replying on the limited choice of naturally occurred auxetic materials. 

Ideally, a shape optimisation, which can evolve any sensible shape, based on the desired 

properties of the engineer is very exciting, for example shapes that exhibits auxetic behaviour. 

However, this will involve having a very large database of all possible auxetic structures and 

their corresponding properties to training the surrogate models (i.e. large database of 

metamodels for every different auxetic structure), and able to create an effective classification 

(As there may be regions where different geometrical configurations of structures having similar 

performances.). This will result in a huge computational power and ineffective training. 

Another problem is the interpolation between structures in order to create a new structure. 

Imagine teaching a child to differentiate two types of fruit, orange and apple, it is 

straightforward to classify them into two different groups. The orange having rough skin and 

orange in colour, while the apple has smooth skin and red in colour (assuming that there is only 

one colour for all apples). When the child was asked to name a fruit, which has a rough skin and 

red in colour, a strawberry may come out as an answer. While the metamodel may learn much 

slower than a child, also a surprising 'strawberry' will not appear as an answer when it was 

asked to interpolate among these different structures. In the mean time, the search for new 

auxetic materials / structures remains as a blind search, which much relies on the human's 

creativity and curiosity. 
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Appendix 1 
Hi-cubic polynomial for void model 

The polynomial listed below is taken from [27], which was obtained from least square fitting. 

The bi-cubic polynomial was used in Chapter 4 as a comparison between NN and GP. 

i. Bi-cubic complete polynomial 

CI~ ( w, h) = 1.03470 - 0.19507w - 0.44185h + 0.17949w2 
- 0.83233wh - 0.46685h2 

- 0.08561 w3 + 0.19546w2 h + 0.68235wh2 
- 0.04131h3 

CI~ (w,h) = 0.31345-0.12080w-O.l2080h-O.l7639w2 -0.26954wh -0.17639h2 

+ 0.00835w3 + 0.27454w2 h + 0.27454wh2 + 0.00835h3 

C~ ( w, h) = 1.03470 - 0.44815w - 0.19507 h - 0.46682w2 - 0.83233wh + 0.17949h2 

- 0.04131 w3 + 0.68235w2 h + 0.1 9546wh2 
- 0.08561h3 

C~ (w,h) = 0.37940-0.17684w-O.l7684h+ O.l2103w2 -1.03828wh + 0.12103h2 

- 0.24676w3 + 0.65449w2 h + 0.65449wh2 
- 0.24676h3 

ii. Bi-quartic complete polynomial 

CI~ ( w, h) = 1.00382 - 0.0 1512w - 0.00878h - 0.04857w2 -1. 77977wh - 2.21837 h2 

- 0.08208w3 + 1.46200w2 h + 1.26972wh2 + 2. 71675h3 + 0.04045w4 

-0.16884w3h -1.01329w2h2 +0.28394wh3 -1.45002h4 

CI~ (w,h) = 0.29676+0.05085w+ 0.05085h-0.73751w2 -0.75721wh -0.73751h2 

+0.77797w3 +0.77154w2h+0.77154wh2 +0.77797h3 -0.37826w4 

- 0.02620w3 h - 0.45770w2 h2 
- 0.02620wh3 

- 0.3 7826h4 

C~ (w,h) = 1.00382 -O.00878w-0.01512h-2.21837w2 -1.77977wh -0.04857h2 

+ 2.71675w3 + 1.26972w2 h + 1.46200wh2 
- O.08208h3 -1.45002w4 

+ 0.28394w3h -1.01329w2h2 
- 0.1 6884wh3 + 0.04045h4 

C3~ (w,h) = 0.33684+0.10190w+O.10190h-0.11496w2 -2.93878wh-0.11496h2 

- 0.36793w3 + 2.5907w2 h + 2.59067wh2 - O.367793h3 + 0.08564w4 

- 0.1 0022w3 h -I. 78586w2 h2 
- 0.1 0022wh3 + 0.08564h4 
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Appendix 2 
Chiral triangle calculations. 

Figure A 2. 1 Gap appeared at the joints between chiral ligaments and the cylinder. 

Considering the figure above, the ratio between the radius r and segment x is given by: 

~ = tan(20) 
x 

where B= 30°. The circular segment ABC is calculated as 

r2 
A - = ----,----,-

ABC tan (20) 

From the equation above, the area of the polygon OABC can be written as: 

The area ABC only covers roughly 27% of the total area OABC. When computing the area of 

the chiral unit cell , it is therefore reasonable to neglect its contribution [64]. 

139 



Appendix 3 
Chiral honeycomb out-of-plane shear modulus - Analytical 
derivations. 

The upper bound of the chiral honeycomb out-of-plane shear modulus detailed derivation is as 

below, and is refered to the derivation done in [49]: 

(a) (b) 

Figure A 3.1 (a) Shear stress imposed in xz plane. (b) Ligaments of the chiral cell 

The upper bound of the chiral honeycomb is calculated using the minimum potential energy [23, 

50]. As shown in Figure A 3.I(a), a shear stress X:xz causing a deformation Yxz is acting on the 

face of the unit cell in the x-direction. The bending is neglected, as almost all the elastic strain 

energy is stored in cell walls during the shear displacements. It is also assumed that the 

cylinders do not carry any shear or bending during the deformation. Therefore the shear strain in 

wall a, band c (Figure A 3.1 (b)) can be written as: 

Yo = Yx: cos(B-q;) 

Yh = Yxz cos(B+q;) 

Yc = Yx: smq; 

The expression of the minimum potential energy has the form: 

which lead to 

(A3.1) 

(A 3.2) 

(A 3.3) 
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Substituting (A 3.1) into (A 3.3), yields 

Yx:
2 

cos
2 

(
0 - P)bLt 1 

+Y x;: 2 
COS

2 (0 + P)bLt 

+Yx;:2 sin 2 (P)bLt 

=>G"S ( bLt 'J (cos'(O-P)+cos'(O+p)+sin'(p)) 
G, 2 1 L2 (0) tfr b - cos +.~ 

2 2 

(A 3.4) 

The lower bound of the chiral honeycomb out-of-plane shear modulus involves some tedious 

manipulation of equations. The reference is also taken from [49]. The minimum complementary 

energy method is used here. With the shear loading shown in Figure A 3.1 (a), the components 

of shear force F for the unit cell are (Figure A 3.2): 

tan(O-P) = Fay 
Fax 

tan ( 0 + P) = F"y 
Fhx 

tanp = F;" 
F;:I' 

The minimum complementary energy theorem can be expressed as an inequality: 

! Tx;: V~! L(~V,J 
2 Gx;: 2 / Gc 

(A 3.5) 

(A 3.6) 

where z; is the shear strain in each of the wall of volume Vi. According to the assumption stated 

before, that the shear loading was mainly carried by the walls (verified in Figure 6.14), i.e. the 

Gu can be developed based on the four walls a, b, c and d (Figure A 3.1(b». Also the symmetry 

of the cell indicates that walls c and d each carry the same load, therefore (A 3.6) is applied only 

to walls a, band c. The summation of r,Vi is the resultant shear force F. 

Therefore the equation above becomes: 

1 T! V < 1 (2V 2v. 2V ) -- --- To o+Tb b+Tc c 
2 Gx;: 2xG, (A 3.7) 
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F 
Figure A 3.2 Flow of forces in the chiral honeycomb cell wall as a result of shear in xz direction. 

From the figure above, a set of relation can be derived: 

{
Fax +Fbx +Fc:c = F 

Fay + 0,y + Fey = 0 

where each of these component can be seen as: 

F., 
tan ,.8+/JJ=-

P'r 

(A 3.8) 

...... j 
Fr. 

Figure A 3.3 Force component of the chiral honeycomb cell wall, during shear at xz direction. 

Therefore, (A 3.8) can be written as: 

{

Fa.T +Fbx +Fc:c = F 

F x tan(B-fJ)+Fbx .tan(B + fJ) +Fcx x ~) =0 
ax tan fJ 

(A 3.9) 

To solve (A 3.9), an equilibrium of external stress is fonnulated as below: 
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F ( 1 1tr2 ) (F ) => ( 2 ) x 2 - L2 cos ( B) + - = _a L X I x cos ( B - P) 
2 ~L2 cos(B)+1tr 2 2 LxI 

2 2 

+(~)LxtxCOS(B+ P)+(~)xSin(p) 
LxI LxI 

=> F = ~ COs( B- P)+ F;, cos( B+ P)+ F:: sin(p) 

with the triangulation of the force components shown in Figure A 3.3, the above equilibrium 

stress can be simplified as: 

(A 3.10) 

F Fa Fa Fe 
Also as , . = -- "a = , 'a = -- and 'c = --, (A 3.7) can be expressed as 

x. A LxI LxI LxI 
cell 

! F V< 1 ~ V _h_ V _c_ V 2 (()2 ( ~)2 ( F)2 J 
2 AL2ell X G xz - 2 x G. L x t a + L x I h + L x I C 

G F2 U 
~ ---E.. ;::: C X 2 2 2 ' where C = ( ( )J and 

G, Fa+F;,+F:: 12 () 7tr
2 

2x -L cos () +-
2 2 

~ _G_x:: > C x~_~ _______ F_2 ________ ---:-
G, - F2 - 2 ( FaxF'"x + F~.F;,y + FaxFc;c + ~yF:y + F;,xFc;c + F;,yF::v ) 

where each components of F can be solved from the formulae described in (A 3.9) and (A 

3.10). 
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Appendix 4 
Chiral shear modulus experimental post-processing 

As mentioned in Chapter 6, where the out-of-plane shear modulus of the chiral honeycomb 

depends on the following relationship: 

FL3 FL 
8 =8 +8 =--+--

total "endlng .. hear 48D 4AG 

and that by rearranging the equation, the shear modulus can be obtained from the slope of the 

following plots: 

8 L2 1 
-=--+--
FL 48D 4AG 
8 1 1 1 
--=--+-_.-
FL3 48D 4AG L2 

The data is too large to be included in this work, explanation of the post-processing procedures, 

which helps to calculate the effective out-of-plane shear modulus will be described in words. 

The displacement (up till lmm) collected in the three-point bending test was plotted in a load 

(kN) versus displacement (mm) graph in order to obtained the best fit straight line and its 

corresponding slope. The displacements collected from each of the span lengths, from 1 SO mm 

- 180 mm, were plotted in order to find the slope of the graph, there are 7 slopes gathered here. 

These slopes represent F , inverting the values ofthe slopes will give ~. 
8 F 

Then, with the inversed slopes, further divide it to become ~ and ~. Plot these two results 
FL FL 

against L2 and IIL2 respectively, as shown in the figure below: 
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Figure A 4. 1 Plot of - vs. L and plot of -=r versus tiL . 

FL FL 

45 

The slopes and intercepts of Figure A 4. 1 are listed in the table below, where A = bd2/c, as 

mentioned in Chapter 6, is 1779.084 mnt 

From Figure A 4. l(a) From Figure A 4. 1 (b) 

Slope _1_ = 2.69 x 10-4 D =77.32 Nm _1_ = 1.50x 10-5 G = 9.54 MPa 
48D 4AG 

lntercept _ 1_ = 1.41 x 10-5 G = 10.1 MPa _1_ = 2.39 x 10-4 
D = 87.2 Nm 

4AG 48D 

Table A 4. 1 Slopes and intercepts obtained from Figure A 4. 1, in order to compute for the shear 
modulus (G) and flexural rigidity (D) of the chiral honeycomb. 
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Appendix 5 
Modal density test for chiral honeycomb 

The modal density test was done together with [29] to determine the modal behaviour of the 

chiral honeycomb core. No masses were added into the cylinders to represent sensor weight. 

The sample was hanging freely and a random signal was applied to the sample though a shaker, 

the sample was connected to the shaker using a stinger attached at the bottom right corner of the 

honeycomb. The overall displacement of the chiral honeycomb was measured using a Scanning 

Laser Yibrometer (SLY). A force transducer was attached between the shaker and sample, 

acting as a reference signal for the SLY measurement, in order to perform the FFT in the SLY 

program. 

The arrangement of the experiment is shown in Figure A 6. 1. 

/ SigLab\ 

Force 
Transducer 

0000 
F========:;~~J- .... o. o oo • • o. __ ~ • • o o .oooo •• • o •• • 0 Sample 

~~ 000 

Figure A 6. I Instrument setup for the experiment. 

The test was done with a mean frequency of 100Hz. The random signals were generated using 

SigLab from a computer. 

The displacement was measured using the SLY, pointing at 250 points selected on the chiral 

honeycomb, in order to map the chiral honeycomb surface. Each point was scanned 10 times 

throughout the experiment and an average was taken from the 10 measurements, in order to 

obtain a good result. A Hanning window was chosen for sampling the displacement, sample 

time is 8s. 

The specimen is made by Nylon 6 DuraForm PA powder, using laser sintering technology. The 

density of this powder is 950kgrno3. The dimension of the test sample used in this experiment is 
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100 nun x 100nun with depth of20mm. The mass of the test sample is 43g without the stinger 

attached at the bottom right, 43 .86g with the stinger attached . 

The result is shown in the table below, the peaks were obtained from the H I window as shown 

in Figure A 6. 2. A sharp spike at 50Hz was due to the interference of the ambient wiring 

connection. 

~50 
J! 
g 
M 

~ 
~ 
~ 
G! 
(D 

I 

~ 
0 -
~ 
J 0 

Max. Frequency 100 Hz 
Peak No. Frequency rHz] 

I 3.25 
2 5.125 
3 8.625 
4 15.25 
5 18.875 
6 21 
7 27.5 
8 36.75 
9 53.75 
10 63.5 
II 78 .25 

Table A 6. 1 The natural frequencies captured from the modal density test. 

2S 50 
fr~IHzl 

75 

Hl 
AYeI!Ige Spectl\Jll 

100 

Figure A 6. 2 Frequency response function of the modal density test for chiral honeycomb. 

The result shows some success in using the SLY to determine the modal density of the chiral 

honeycomb core, which can benchmark for future exploration of how the sensor weight affects 

the dynamics behaviour of the chiral honeycomb. 

The mode shapes captured from the experiment are in animation form, some snapshots of the 

mode shape at 3.25Hz are shown below. 
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Figure A 6.3 Some snapshots of the chiral honeycomb sample at 3.25Hz. 
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Appendix 6 
FE macros for all unit cells. 

The FE macros included here are not the full macros as most of the boundary conditions are 

repeatedly used, typically for the hexagonal honeycomb and the chiral honeycomb model. 

i. Void unit cell used in Chapter 4 
Es=7elO 
nus=O.33333 
stepi=lO 
stepj=lO 
/prep7 
!*hght=O.l 
!*wdth=O.l 
!**ask,wdth,width of the hole,O.l 
!**ask,hght,height of the hole,O.9 
!*stepi=lO 
!*stepj=lO 
!*Es=26.6672 
!*Es=7elO 
!*nus=O.33333 
!* qO=lOO 
*do,i,O,stepi,l 

k, , i, 0 
*do,j,l,stepj,l 

k"i,j 
*enddo 

*enddo 
a 1=1 
b_l=stepj+2 
c l=b 1+1 
d 1=2 
al=a 1 
bl=b 1 
cl=c 1 
dl=d 1 
aOl=al 
bOl=bl 
cOl=cl 
dOl=dl 
*do,i,l,stepi 

*do,j,l,stepj 
a,aOl,bOl,cOl,dOl 
aOl=dOl 
bOl=cOl 
dOl=al+1+j 
cOl=c1+j 

*enddo 
al=bl 
dl=cl 

*enddo 

bl=b 1-1+al 
cl=b l+al 
aOl=al 
bOl=bl 
cOl=cl 
dOl=dl 
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*do,i,l,stepi,l 
*do,j,l,stepj,l 

*enddo 

kll (i-l)+(1-wdth)/2, (j-l)+(1-hght)/2 
kll (i-l)+(1+wdth)/2, (j-l)+(1-hght)/2 
k" (i-l) + (l-wdth) /2, (j-1) + (l+hght) /2 
k" (i-1) + (l+wdth) /2, (j-l) + (l+hght) /2 

*enddo 
el=(stepi+1)*(stepj+l)+1 
fl=e1+l 
gl=fl +2 
h1=fl+1 
e01=e1 
fOl=f1 
gOl=gl 
h01=h1 
*do,i,l,stepi*stepj 

a,e01,fOl,gOl,h01 
e01=hOl+2 
f01=eOl+1 
gOl=fOl+2 
h01=fOl+1 

*enddo 
*do,j,l,stepi*stepj 

asba,j, (stepi*stepj)+j 
*enddo 
nurnmrg,all 
numcmp,all 
aglue,all 
ET,l,SHELL63 
!*keyopt,l,l,O 
!*keyopt,l,2,O 
!*keyopt,l,3,2 
!*keyopt,l,5,O 
!*keyopt,l,6,2 
r,l,O.2 
mp,ex,l,Es 
mp,nuxy,l,nus 
smrtsize,4 
type,l 
mat,l 
amesh,all 
nurnmrg,all 
numcmp,all 
nsel,s,loc,x,O 
nsel,a,loc,x,lO 
nsel,a,loc,y,O 
nsel,a,loc,y,lO 
d,all,uz,O.O 
allsel,all 
*get,tot_ele,elem,O,count, 
!*f,all,fz,-lOO/tot_ele 
f,all,fz,-100/(100-wdth*hght*lOO) 
!*sfa,all,1,pres,-lOO/(100-wdth*hght*100) 
/solu 
solve 
/postl 
set,l,l 
etable,uz,u,z 
!*pretab,uz 
esort,etab,uz,l,O 
*get,uz_min,sort,O,min 
*get,uz_max,sort,O,max 
*get,loc_min,sort,O,imin 
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*get,loc_max,sort,O,imax 
uz_ans(count,l)=wdth 
uz_ans(count,2)=hght 
uz ans(count,3)=uz_min 
uz_ans (count, 4)=uz_max 
uz_ans(count,5)=loc_min 
uz_ans(count,6)=loc_max 
*sta 
fini 

ii. Honeycomb unit cell used in Chapter 5 
*afun,deg 
beta=0.41 
a1ph = 1 
theta = -30 
Es = 7.0e9 
nus = 0.33 
L = 1 
*dim,E hexa,array,50,5 
*afun,deg 
th=theta 
a=a1pha 
l=L 
h=l*a 
t=beta*l 
disp=l*O.Ol 
cl=t/cos(th) 
c2=-t/2*tan(th)+cl/2 
1tr=sqrt( (t/2)**2+((cl/2)+c2)**2) 
*set,wdth,2*1*cos(th) 
*set, hgth, ((l*sin (th)) +h) 
mc=1.6 !*mesh refining factor 
nt=6 
n1=nint((nt/(beta*mc)) ) 
na=nint ( (a *n1) ) 
nc=nint(( (ltr*nt)/t)) 
nrl=nint((nt*( (cl/t)/(mc*2)))) 
nr2=nint( (nt/(mc*2))) 
/prep7 
k,l, (1/2)*cos(th),l/2*sin(th) 
k, 2, (1/2) *cos (th) , (1/2) *sin (th) -cl/2 
k, 3, (1/2) *cos (th), (1/2) *sin (th) +cl/2 
k,4,l*cos(th),1*sin(th) 
k,5,l*cos(th),1*sin(th)-cl/2 
k,6,l*cos(th)-t/2,l*sin(th)+c2 
k,7,1*cos(th)+t/2,l*sin(th)+c2 
k,8,l*cos(th),l*sin(th)+(h/2) 
k,9,l*cos(th)-t/2,l*sin(th)+(h/2) 
k,lO,l*cos(th)+t/2,l*sin(th)+(h/2) 
k,11,2*1*cos(th),O 
k,12,2*1*cos(th),cl/2 
k,13,2*1*cos(th)-t/2,-c2 
k,14,2*1*cos(th)+t/2,-c2 
k, 15, (5/2) *l*cos (th) , (1/2) *sin (th) 
k, 16, (5/2) *l*cos (th), (1/2) *sin (th) +cl/2 
k, 17, (5/2) *l*cos (th), (1/2) *sin (th) -cl/2 
k,18,2*1*cos(th),-h/2 
k,19,2*1*cos(th)-t/2,-h/2 
k,20,2*1*cos(th)+t/2,-h/2 
1,1,2 
1,1,3 
1,2,5 
1,3,6 
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1,7,10 
1,6,9 
1,8,10 
1,8,9 
1,7, 12 
1,5,13 
1,12,16 
1,14,17 
1,15,17 
1,15,16 
1,14,20 
1,13,19 
1,18,19 
1,18,20 
1,6,5 !*triangles 
1,5,7 
1,7,6 
1,12,13 
1,13,14 
1,14,12 
mp,ex,l,Es 
mp,nuxy,l,nus 
mp,dens,1,2400 
et,1,plane82 
keyopt,1,3,0 
keyopt,1,1,0 
lesize,1",nr1 
lesize, 2", nr1 
lesize, 7, "nr2 
lesize,8",nr2 
lesize, 13" ,nr1 
lesize, 14" ,nr1 
lesize,17",nr2 
lesize,18",nr2 

!*ELement coordinate system global 
!*lines perpendicular to beams 

lesize,19",nc !*triangles 
lesize,20",nc 
lesize,21",nt 
lesize,22",nc 
lesize,23",nt 
lesize,24",nc 
lesize, 3" , nl/2 
lesize,4",nl/2 
lesize,5",na/2 
lesize,6",na/2 
lesize,9",nl 
lesize, 10, "nl 
lesize,11",nl/2 
lesize,12",nl/2 
lesize,15",na/2 
lesize, 16, , , na/2 
a1,1,2,3,4,19 !*l areas 
al,9,10,20,22 
al, 11, 12, 24,14,13 
al,5,6,7,8,21 !*alpha areas 
al, 15, 16, 17,18,23 
a1,19,20,21 !*triangular areas 
al,22,23,24 
mshape,1,2D !*triangular elements 
ase1,s",1,5 
amesh,all 
asel,all 
mshape,1,2d 
ase1,s",6,7 
amesh,a11 
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asel , all 
nummrg , a l l 
numemp , all 
allsel , all 
dk , l , ux , disp/2 
dk , 15 , ux ,-disp/2 
dk , l , uy , O 
dk , 15 , uy , O 
ksel , s , kp " 1 
nslk 
*get , nl , node " num , min 
al1sel , al1 
ksel , s , kp , , 15 
nslk 
*get , nI5 , node " num , min 
al l sel , all 
l sel , s , line ,, 1 
nsll , s , 1 
nsel , u , node " nl 
*get , n um5 ,node , O, eount 
*dim , mat3 , array , num5 , 2 
*do , count5 ,I, num5 , 1 

*get , mat3(count5 , 1) , node " num , min 
nsel , u , node " mat3(eount5 , 1) 

*enddo 
al l sel , al1 
*dim , plaee3 , array , num5 , 1 
lsel , s , line ,, 2 
nsll , s , l 
*do , count6 , 1 , num5 , 1 

plaee3(count6 ,1 )=NY(mat3(count6 , 1) ) 
mat3(count6 , 2)=NODE (O, l*sin (th) - plaee3(eou n t 6 , 1) , O) 
ee , (eount6+1) , O, mat3 (eount6 , 1) , u y , l , mat3 (count6 , 2 ), uy , I 
ee , (eount6+num5 +1 ) , O, mat3(eount6 , 1 ), ux , 1 , mat3 (eount 6 , 2 ),ux , l , nl , ux , -

2 
*enddo 
allsel , al l 

t! !!A LARGE 

sbetran 
fini 
/solu 
solve 
/postl 
set , first 
l se l, s , line " 1, 2 
nsll , s , l 
fsum 
*get , fx_l , fsum , O, i t em , fx 
*ge t,fy_l , fsum , O,i tem , fy 
allsel , all 
lsel , s , line " 13 , 14 
nsll,s , 1 
fsum 
*get , fx_2 , fsum, O, item , fx 
*get,fy_2 , fsum , O, item, fy 
allsel , all 
kse l, s , kp ,, 8 
nslk , s 
*get ,n8 , node " num ,min 
allsel , all 
uy_l =UY(n8) 
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fx_av=(fx_2 - fx_l)/2 
s_X=fx_av/hgth 
str_x=disp/wdth 
str y=2*uy_l/hgth 
nuI 2r=str_y/str_x 
Elr=s x/str x 
E_hexa(i ,I )=alpha 
E_hexa(i , 2)=beta 
E_hexa(i , 3)=th 
E_hexa(i , 4)=Elr 
E_hexa(i , 5)=nuI2r 
=======================Buckling================================ 
/prep7 1* Parameters of the panel 
*afun , deg 
teta = theta 
*SET , gam , 1 
*SET , t ,beta*L 
*SET ,h,L*alpha 
*SET , b , gam*L 
k , I , 0 , (h /2) +L*sin (teta ) 
k , 2 , (L*cos (teta)) /2, (h/2) +L*sin (teta ) /2 
k,3,-L*cos(teta),O 
k , 4 ,-L*cos(teta) ,h /2 
kgen , 2 , I, , " h/2 
kgen , 2 , 4",-L*cos(teta)/2 , L*sin (teta)/2 
I , I, 5 
1 , 1,2 
1, I, 4 
1,4,3 
1 , 4 , 6 
!* Extrusion of plane cell 
1gen, 2 , all , ""b"O, O 
1, I , 7 
1 , 2 , 9 
1,5,8 
1,4,10 
1,3,11 
1,6,12 
al ,1 2 , 2 , II, 7 
al ,l l , l , 13, 6 
al ,11, 3 ,1 4 , 8 
a l,14, 5 , 16 , 10 
al ,14, 9 , 15 , 4 
nummrg,all,l.e-12 
numcmp,all 
ET,1, SHELL93 
R, I, t """ 
MP ,DENS , 1 , 724 
MP,EX ,l, Es 
MP,PRXY,I,nus 
!* MESH 
type , 1 
real ,l 

!density 

amesh , all 
area_c=2*(2*h*L*sin (teta ) +2*sin(teta)*cos (teta ) *L**2 ) 
nsel , s ,loc , z ,O 
d,all,ux,O 
d , al1 ,uy , O 
d , all ,uz , O 
allsel , all 
lsel , s ,l ine " 1 6 , " ,1 
ns11,s,l 
*get , n_cal01 ,node , O, count 
*dim,ary_O l, array , n_calOl , 2 
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*do , count1 , 1 , n cal01 , 1 
*get , ary_01(count1 , 1) , node " num , min 
nsel , u , node " ary_01(count1 , 1) 

*enddo 
*dim , locat1 , array , n cal01 , 1 
lsel , s , line " 12",, 1 
nsll , s , l 
*do , count2 , 1 , n_cal01 , 1 

locat1(count2 , 1) = n z(ary_01(count 2 , 1)) 
ary _01 (count2 , 2) =node ( (L*cos (teta) ) /2 , (h/2) +L*s in (teta) /2 , loc 1 

(count2 , 1) ) 
ce , count2 , O, ary_01(count2 , 1 ) , ux , 1 , ary_Ol(count2 , 2) , ux , -1 
ce , n_calOl+count2 , O, ary_01(count2 , 1) , uy , 1 , ary_01(count2 , 2) , uy , -1 
ce , 2*n_calOl+count2 , 0 , ary_01(count2 , 1) , rotz , 1 , ary_01(coun -2 , 2) , r 

otz ,- l 
*enddo 
allsel , all 
ce no = n cal01* 100 

! ! !A LARGE AMOUNT OF PERI ODI C CONSTRAINT EQUATIONS WERE OMI TTED HERE!! I 

/solu 
antype , static 
pstres , on 
allsel , all 
solve 
fini 
/solu 
antype , buckle 
bucopt , subsp , lO 
outpr , nsol , all 
save 
solve 
fini 
/postl 
set , 1 , 3 
*get , f_buck , active , O, set , freq 
sig_c=abs(f_buck)/(area_c*1 . e6 ) 
! * Gibson & Ashby results 
c1=2/(1 - nus**2) 
c2=(2+(1/alpha))/(cos(teta ) *(alpha+sin(teta ) ) ) 
sig_ga=Es*cl*c2*beta**3/1 . e6 
E_hexa(i , l) alpha 
E_hexa(i , 2) beta 
E_hexa(i , 3) theta 
E _hexa (i , 4) f buck 
E_hexa(i , 5) sig_c 
E_hexa(i , 6) sig_ga 
fini 

iii. Chiral honeycomb unit cell used in Chapter 6 
1* Parameter of macro : Chiri2b . mac 
1* R distance between the axes of t he circle [m] 
1* radius circles radius [m] 
! * teta degree between Ie line that joint the circle axes 
[gradi ... cent igra di] 
1* t wall thick [m] 
!* thick panel thick [m] 
!* span 
*afun , rad 
pi=acos (- 1) 
*afun , deg 
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! *A=l 
!*B=0.05 
!*C=10 
!*R=10/1000 
beta = at an (2/A) 
!*radius=4.5/1000 
R = (2*radius)/sin(beta) 
L = A*radius 
teta=30 
!*thick=l*R 
thick=A*C*radius 
!*t=O.05*radius 
t=B*radius 
/prep7 
ffi=asin(radius/(R*sin(teta)))!* tangent degree between the central 
cirlces 
k,l,O,O,O 
k,2,R*cos(teta),R*sin(teta) ,0 
k,3,R*cos(teta),-R*sin(teta),O 
k,4,2*R*cos(teta),0,0 
!*beta=asin(2*radius/R) 
beta = atan(2/A) 
gamma=teta-beta !* upper tangent degree of the first circles -90 
k,5,radius*cos(90+gamma),radius*sin(90+gamma),0 
k,6,radius*cos(90+gamma-2*teta),radius*sin(90+gamma-2*teta),O 
k,7,R*cos(teta)+radius*cos(-90+gamma),R*sin(teta)+radius*sin(-
90+gamma),0 
k,B,R*cos(teta)+radius*cos(-ffi),R*sin(teta)+radius*sin(-ffi),O 
k,9,R*cos(teta)+radius*cos(gamma+90-
2*teta),R*sin(teta)+radius*sin(gamma+90-2*teta),0 
k,10,R*cos(teta)+radius*cos(90+gamma),­
R*sin(teta)+radius*sin(90+gamma),0 
k,11,R*cos(teta)+radius*cos(180-ffi),-R*sin(teta)+radius*sin(lBO­
ffi) ,0 
k,12,R*cos(teta)+radius*cos(garnma+270-2*teta),­
R*sin(teta)+radius*sin(garnma+270-2*teta),O 
k,13,2*R*cos(teta)+radius*cos(-90+gamma),radius*sin(-90+gamma),O 
k,14,2*R*cos(teta)+radius*cos(-90+gamma-2*teta),radius*sin(-90+gammd-
2*teta),O 
k,15,radius*cos(-90+garnma),radius*sin(-90+garnma),0 
k,16,R*cos(teta)+radius*cos(garnma-90-
2*teta),R*sin(teta)+radius*sin(gamma-90-2*teta),0 
k,17,R*cos(teta)+radius*cos(garnma+90-2*teta),­
R*sin(teta)+radius*sin(garnma+90-2*teta),0 
k,lB,2*R*cos(teta)+radius*cos(90+garnma),radius*sin(90+garnma),O 
k,19,radius*cos(-ffi),radius*sin(-ffi),O 
!*k,20,radius*cos(180-ffi),-2*R*sin(teta)+radius*sin(l80-ffi),O 
k,21,2*R*cos(teta)+radius*cos(lBO-ffi),radius*sin(180-ffi),O 
k,20,O.5*(radius*cos(-ffi)+radius*cos(180-ffi) ),0.5*(radius*sin(­
ffi)+radius*sin(180-ffi)-2*R*sin(teta)),0 
mdx=0.5*(radius*cos(-ffi)+radius*cos(lBO-ffi) )+2*R*cos(teta) 
mdy=0.5*(radius*sin(-ffi)+radius*sin(lBO-ffi)-
2*R*sin(teta))+2*R*sin(teta) 
k,22,mdx,mdy,0 
1,5,7 !* line 1 
1,B,11 
1,6,12 
1,9,14 
1,10,13 
1,19,20 
1,21,22 
larc,15,19,1,radius 

!* line 2 
!* line 3 
!* line 4 
!* line 5 
1* line 6 
!* line 7 
!* line 8 

larc,19,6,1,radius !* line 9 
larc,6,5,1,radius !* line 10 
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larc,16,7,2,radius 
larc,7,8,2,radius !* 
larc,8,9,2,radius !* 
larc,17,10,3,radius 
larc,10,11,3,radius 
larc,II,12,3,radius 
larc,13,14,4,radius 
larc,14,21,4,radius 
larc,21,18,4,radius 
angolol0=2*teta 
angolo9=abs(90+gamma-2*teta+ffi) 
angolo8=180-angolol0-angolo9 

!* line 11 
line 12 
line 13 

* line 14 
* line 15 
* line 16 
* line 17 
* line 18 
* line 19 

!* 10 
!* 9 
!* 8 

angolol7=angolol0 
angolol9=angolo8 
angolol8=angolo9 
angoloI5=abs(-90+gamma+ffi) 

!* 17=10 
1* 19=8 
1* 18=9 

!* 15 
angoloI6=abs(-ffi-(gamma+90-2*teta)) !* 16 
angoloI4=180-angoloI5-angoloI6 !* 14 
angoloI3=abs(gamma-2*teta-(-90-ffi)) 1* 13=16 
angoloI2=abs(gamma-(90-ffi)) 1* 12=15 
angolol1=180-angoloI3-angoloI2 
lunarc8=(angolo8*2*pi/360)*radius 
lunarc9=(angolo9*2*pi/360)*radius 
lunarcl0=(angolol0*2*pi/360)*radius 
lunarcll=(angololl*2*pi/360)*radius 
lunarcI2=(angoloI2*2*pi/360)*radius 
lunarcI3=(angoloI3*2*pi/360)*radius 
lunarcI4=(angoloI4*2*pi/360)*radius 
lunarcI5=(angoloI5*2*pi/360)*radius 
lunarcI6=(angoloI6*2*pi/360)*radius 
lunarcI7=(angoloI7*2*pi/360)*radius 
lunarcI8=(angoloI8*2*pi/360)*radius 
lunarcI9=(angoloI9*2*pi/360)*radius 
*if,teta,ge,50,then 

lunbase=lunarc9 
*elseif,teta,le,20,then 

lunbase=lunarcl0 
*else 

lunbase=lunarc10/2 
*endif 

! * 11=12 
8 * lenght 

* lenght 
* lenght 
* lenght 

9 
10 
11 

* lenght 12 
* lenght 13 
* lenght 14 
* lenght 15 
* lenght 16 
* lenght 17 

!* lenght 18 
1* lenght 19 

ndiv_9=nint(lunarc9/1unbase) 
& all the same 

!* middle arc of 1st semicircle on lett 

lesize,9",ndiv_9 
lesize,18",ndiv_9 
lesize,13",ndiv_9 
lesize,16",ndiv_9 
*get,len 2,line,2,leng 
ndiv_2=(nint(len_2/1unbase))/2 !* line from top circle to bottom 
circle & all the same 
lesize,2",ndiv_2 
!*lesize,6",ndiv_2 
*get,len_6,line,6,leng !* two extended ligaments from circle 1 & 4 
ndiv_6=(nint(len_6/1unbase)) 
lesize,6",ndiv_6 
lesize,7",ndiv_6 
*get,len_1,line,l,leng 
ndiv_l=(nint(len_l/1unbase))/2!* line from left circle to bottom 
circle & all the same 
lesize,I",ndiv_l 
lesize,3",ndiv_l 
lesize,4",ndiv_l 
lesize,5",ndiv_l 
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ndiv_8=nint (lunarc8/1unbase) I * 1st arc of 1st semicircle on left & al] 
the same 
lesize,8",ndiv_8 
lesize,19",ndiv_8 
lesize,12",ndiv_8 
lesize,15",ndiv 8 
ndiv_10=nint(lunZ;-rc10/1unbase)!* last arc of 1st semicircle on left & 
all the same 
lesize,lO",ndiv_10 
lesize,15",ndiv_10 
lesize,11",ndiv_10 
lesize,12",ndiv_lO 
lesize,14",ndiv_10 
lesize,17",ndiv_10 
! * MESH 

1gen, 2, all"", thick" 0, ° 
1,5,23 !*line 39 
1,6,27 !*line 40 
1,19,33 !*line 41 
1,15,37 !*line 42 
1,20,34 !*line 43 
1,9,29 !*line 44 
1,8,25 !*line 45 
1,7,24 !*line 46 
1,16,38 !*line 47 
1,12,28 !*line 48 
1,11,26 !*line 49 
1,10,31 !*line 50 
1,17,39 !*line 51 
1,13,32 !*line 52 
1,14,30 !*line 53 
1,21,35 !*line 54 
1,18,40 !*line 55 
1,22,36 !*line 56 
al,43,6,41,25 
aI, 42, 8, 41, 27 
aI, 41,9,40,28 
al,40,10,39,29 
aI, 39,1, 46,20 
al,47,ll,46,30 
aI, 46, 12, 45, 31 
al,45,13,44,32 
al, 40, 3, 48,22 
al,49,2,45,21 
al,48,35,49,16 
al,49,34,50,15 
aI, 50, 33,51,14 
aI, 44, 4, 53,23 
al,50,5,52,24 
al,52,36,53,17 
al,53,37,54,18 
al,54,38,55,19 
al,54,26,56,7 
*get,len_39,line,39,leng 
ndiv_39=(nint(len_39/1unbase))/3 
lesize,39",ndiv_39 
1esize,40",ndiv_39 
lesize,41",ndiv_39 
lesize,42",ndiv_39 
lesize,43",ndiv_39 
lesize,44",ndiv_39 
lesize,45",ndiv_39 
lesize,46",ndiv_39 
lesize,47",ndiv_39 
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lesize,48",ndiv_39 
lesize,49",ndiv_39 
lesize,50",ndiv_39 
lesize,51",ndiv_39 
lesize,52",ndiv_39 
lesize,53",ndiv_39 
lesize,54",ndiv_39 
lesize,55",ndiv_39 
lesize,56",ndiv_39 
bb=6*t 
Area=b*t 
Izz=bb*t ** 3/12 
!*Es=7.0el0 !* 
!*nus=O.33 1* 
et,l,shel193 
r,l,t 
!*et,l,beam3 
!*r,l,Area,Izz 
mp,ex,I,Es 
mp,nuxy,l,nus 
amesh,all 

[Pal 
Material: ALUMINIUM 

1* Element type: SHELL63 

nummrg,all,l.e-12 
numcmp,all 
!*-----------------------------E z---------------------------
!*disp=O.Ol*thick 
!*nsel,s,loc,z,O 
!*d,all,all,O 
!*allsel,all 
!*nsel,s,loc,z,thick 
!*d,all,uz,-disp 
!*allsel,all 
!*lsel,s,line,,39 
!*lsel,a,line,,42,44,1 
!*lsel,a,line,,47,48 
! *lsel, a, line" 51, 52 
!*lsel,a,line,,55,56 
!*nsll,s,l 
!*d,all,rotx,O 
!*d,all,roty,O 
!*allsel,all 
!*lsel,s,line"39,,,,1 
!*ns11,s,1 
!**get,n calOl,node,O,count 
!**dim,ary_Ol,array,n_calOI,2 
!**do,countl,1,n_ca101,1 
!* *get,ary_Ol(countl,I),node"num,min 
!* nsel,u,node"ary_01(count1,1) 
!**enddo 
!**dim,locatl,array,n_calOl,1 
! *lse1, s,line, ,52", ,I 
!*nsl1,s,1 
!**do,count2,l,n_calOl,1 
!* locat1(count2,1) = nz(ary_Ol(count2,1)) 
!* 

ary_01(count2,2)=node(radius*cos(90+gamma),radius*sin(9O+gamma), 
locat1(count2,1)) 
1* ce,count2,O,ary_Ol(count2,1),ux,1,ary_OI(count2,2),ux,-1 
!* ce,n_calOl+count2,O,ary_01(count2,1),uy,l,ary_01(count2,2),uy,-1 
!*ce,2*n_cal01+count2,O,ary_Ol(count2,1),rotz,1,ary_Ol(count2,2),rotz, 
-1 
!**enddo 
!*allsel,all 
!*ce no n calOl*100 
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!!!A LARGE AMOUNT OF PERIODIC CONSTRAINT EQUATION$ WERE OMI TTED HERE ! I! 

! *fini 
!*/solu 
!*solve 
!*fini 
!*/postl 
! *set , l , l 
! *are tot=4*R*sin(teta)*R*cos(teta) 
!*nsel , s , loc , z , thick 
!*fsum 
! **get , f_z , fsum , O, item, fz 
! *sz=abs(f_z)/are_tot 
!*epz=disp/thick 
! *Ez= sz/epz 
! *Ez = Ez/Es 
!*allsel , all 
!*Gz_crl(j_cal , l)=thick 
!*Gz crl(j_cal , 2)=t 
!*Gz crl(j cal , 3)=L 
!*Gz_crl(j_cal , 4)=radius 
! *Gz crl(j cal , 5)=Ez 
! *--~----------------------- shear xz-------- --- - - ----- - ---- - -
disp= O. Ol*thick 
nsel , s , loc , z , O 
d , all , all , O 
allsel , all 
nsel , s , loc , z , thick 
d , all , ux , disp 
d , all , uy , O 
d , all , uz , O 
allsel , all 
lsel , s , line , , 39", , 1 
nsll , s , l 
*get , n cal01 , node , 0 , count 
*dim , ary_01 , array , n_cal01 , 2 
*do , count1 , l , n_cal01 , 1 

*get , ary_Ol (count1 , 1) ,node " num , min 
nsel , u , node " ary_O l( countl , l ) 

*enddo 
*dim , 10cat1 , array,n_cal01 , 1 
lsel , s , line " 52", , 1 
nsll , s , l 
*do , count2 , 1 , n_cal01 , 1 

locat1(count2 ,1) = n z (ary 0 1( count2 , 1 ) ) 
ary_ 01(count2 , 2 ) =n ode (radi u s*cos (90+gamma ), radius*sin(9O+g mm ), 

10cat1(count2 , 1) ) 
ce , count2 , O, ary_0 1 (count2 , 1) , ux , l , ary_01(count2 , 2) , ux , -1 
ce , n cal01+count2 , O, ary 01( count2 , 1 ), uy , l , ary 01(count 2 , 2 ),uy , -1 
ce , 2*n_cal0 1 +count 2 , 0 , a~y_0 1(count2 , 1 ), rotz , l~ary_01( count2 , 2 ) , 

otz ,- l 
*enddo 
allsel , all 
ce no = n calOl*100 

!! ! A LARGE AMOUNT OF PERIODIC CONSTRA NT AQUATI ONS WERE OM TTE D HERE !!! 

lsel,s , line ,, 39 
lsel , a , line ,, 42 , 44 , l 
lsel , a , line ,, 47 , 48 
lsel , a ,l ine ,, 51 , 52 
lsel , a ,l ine ,, 55 , 56 
nsll , s , l 
d , all , rotx , O 
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d,all,roty,O 
allsel,all 
fini 
/solu 
solve 
fini 
/post1 
set,l,l 
are_tot=4*R*sin(teta)*R*cos(teta) 
nsel,s,loc,z,thick 
fsum 
*get,f_xz,fsum,O,item,fx 
sxz=abs(f_xz)/are tot 
epxz=disp/thick 
Gxz=sxz/epxz 
G c = Es/(2*(1+nus)) 
Gxz c=Gxz/G c 
allsel,all 
Gz_crl(j_cal,l)=thick 
Gz_crl(j cal,2)=t 
Gz_crl(j cal,3)=L 
Gz_crl(j_cal,4)=radius 
Gz_crl(j cal,5)=Gxz c 
fini 
!*----------------------------compression-----------------
/prep7 1* Parameters of the panel 
*afun,deg 
!**SET,L,0.02 
!*A 4.44 
!*B = 0.22 
!*C = 1 
!*radius = 4.5/1000 
L = A*radius 
teta = theta 
!**SET,thick,0.02 
thick = A*C*radius 
t = B*radius 
beta = atan(radius/(L/2)) 
R = (2*radius)/sin(beta) 
ffi=asin(radius/(R*sin(teta))) 
the central cirlces 
k,l,O,O,O 
beta = atan(2/A) 

1* tangent degree between 

gamma = teta-beta !* upper tangent degree of the first circles -90 
k,2,radius*cos(90+gamma),radius*sin(90+gamma),O 
k,3,radius*cos(90+gamma-2*teta),radius*sin(90+gamma-2*teta),O 
k,4,radius*cos(-ffi),radius*sin(-ffi),O 
k,5,radius*cos(-90+gamma),radius*sin(-90+gamma),0 
k,6,radius*cos(-90+gamma-2*teta),radius*sin(-90+gamma-2*teta),O 
k,7,radius*cos(180-ffi),radius*sin(-180-ffi),O 
k,8,O.5*R*cos(teta),0.5*R*sin(teta),0 
k,9,O.5*R*cos(teta),-0.5*R*sin(teta),0 
k,10,O,-R*sin(teta),0 
k,11,-O.5*R*cos(teta),-O.5*R*sin(teta),0 
k,12,-O.5*R*cos(teta),0.5*R*sin(teta),O 
k,13,0,R*sin(teta),0 
1,2,8 !* line 1 
1,3,9 !* line 2 
1,4,10 !* line 3 
1,5,11 !* line 4 
1,6,12 1 * line 5 
1,7,13 !* line 6 
larc,2,3,1,radius !* line 7 
larc,3,4,1,radius !* line 8 
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larc,4,5,1,radius 1* line 9 
larc,5,6,1,radius !* line 10 
larc,6,7,1,radius !* line 11 
larc,7,2,1,radius !* line 12 
!* Extrusion of plane cell 
1gen,2,al1"",thick,,0,0 
1,2,14 !* line 25 
1,3,16 1* line 26 
1,4,18 1* line 27 
1,5,20 1* line 28 
1,6,22 !* line 29 
1,7,24 1* line 30 
1,8,15 !* line 31 
1,9,17 1* line 32 
1,10,19 1* line 33 
1,11,21 1* line 34 
1,12,23 !* line 35 
1,13,25 !* line 36 
al,7,25,19,26 1* area 1 
al,8,26,20,27 !* area 2 
al,9,27,21,28 !* area 3 
al,10,28,22,29 1* area 4 
al, 11,29,23,30 1* area 5 
al,12,30,24,25 !* area 6 
al,l,25,13,31 !* area 7 
al,2,26,14,32 1* area 8 
al,3,27,15,33 !* area 9 
al,4,28,16,34 ! * area 10 
al,5,29,17,35 !* area 
al,6,30,18,36 ! * area 
nummrg,all,1.e-12 
numcmp,all 
ET,1,SHELL93 
R,l,t, " 
!*r,2,tcyl, 
mp,dens,1,950 
mp,ex,l,Es 
mp,nuxy,l,nus 

, , 
, , 

11 
12 

ESIZE, O. 001, 0, ! element edge length size 
MSHAPE,0,2D 
MSHKEY,l !mapped meshing 1 
!* MESH 
type,l 
real,l 
amesh,1 
amesh,2 
amesh,3 
amesh,4 
amesh,5 
amesh,6 
type,l 
real,l 
amesh,7 
amesh,8 
amesh,9 
amesh,10 
amesh,ll 
amesh,12 
!*amesh,all 
nummrg,all,1.e-12 
numcmp,al1 
*get,minx,node,O,mnloc,x 
*get,maxx,node,Q,mxloc,x 
*get,miny,node,O,mnloc,y 
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*get ,maxy ,node , O, mxloc , y 
side x=maxx - minx 
side_y=maxy-miny 
area_cell=2.6*maxy*maxy 
nsel , s,loc , z , O. O 
d,all,uz,O.O 
d , all ,ux , O. O 
d , all ,uy , O. O 
allsel,all 

!!!A LARGE AMOUNT OF BOUNDARY CONDITIONS WERE OMITTED HERE! I! 

lsel, s , line" 31",,1 
nsl1,s,1 
*get ,n_ca l0 1 , node , O, count 
*dim,ary_01,array,n_ cal01 , 2 
*do , count1 , I , n_calOI ,1 

*get , ary_OI(countl ,I),node"num , min 
nsel ,u,node " ary_OI (countl , l) 

*enddo 
*dim,locatl , array , n_calOI ,l 
lsel , s, line " 34 ",, 1 
nsll , s , 1 
*do,count2 ,I, n_cal01,1 

locatl(count2 ,1) = nz(ary OI(count2 ,1)) 
ary_01(count2 , 2)=node( - O. 5*R*cos(teta) ,-

O. 5*R*sin(teta) ,locatl(count2 ,1) ) 
ce , count2 , O, ary_OI(count2 ,1),ux ,l, ary_ OI(count2 , 2 ) , ux , -I 
ce ,n_ca lOl+count2,O,ary_ OI(count 2 , 1) ,uy, l , ary_ OI (count2 , 2 ) , uy , -1 
ce , 2*n_ calOI+count2 , O,ary_Ol(count2 , 1) , rotz , 1 , ary_ Ol (coun 2 , 2 ) , r 

otz ,-l 
*enddo 
al1sel , a1l 
ce no = n calOI*lOO 

! !!A LARGE AMOUNT OF PERIODIC CONSTRAINT EQUATIONS WERE OMITTED HERE!! I 

!*-----------------------compressive strength------------------------­
*SET , F_z ,l.O 
nse l,s,loc,z,thick 
*get , node 1,node,O,count 
f , all , fz ,-F_z/node_l 
allsel,all 
fini 
/solu 
ant ype , static 
pstres , on 
allsel , all 
solve 
fini 
/solu 
antype ,buckle 
bucopt ,subsp , 3 
outpr ,nsol , all 
save 
solve 
fini 
/postl 
set , I , 3 
*get , f_buck , active ,O, set , freq 
sigma cell=f buck/(area cell*IE6 ) 
coef epsilon~sigma cell/Es 
Gz_crl(j_cal,l)=thick 
Gz_crl(j_cal , 2 ) =t 
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Gz crl (j_cal, 3)=L 
Gz crl(j_cal,4)=radius 
Gz crl(j cal,5)=sigma_cell 
Gz_crl(j cal,6)=coef_epsilon 
fini 

164 


