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Summary 

Myeloproliferative disorders describe a group of conditions characterised by clonal 

proliferation of one or more haematopoietic components in the bone marrow, liver or 

spleen. In this study, two types of patients were included in the analysis 1) idiopathic 

myelofibrosis (IMF) which is a clonal haematopoietic stem cell disorder which results 

in a chronic myeloproliferation and atypical megakaryocyte hyperplasia and 2) acute 

myeloid leukaemia (AML) which is a heterogeneous group of malignant neoplasms 

composed of clonal expansions of immature cells. 

Receptor-type tyrosine kinases (RTKs) constitute a family of proteins which are 

important in growth and developmental processes. Class III RTKs are characterized 

by an extracellular region composed of five immunoglobulin-like domains and by a 

split tyrosine kinase domains. R TK class III genes share a common structural 

organization. 

Some of the class III RTKs perform major functions in haematopoiesis. They are the 

colony-stimulating factor-l (CSF-l R or c-fms), Steel factor (SLF or c-kit) receptors, 

and the product of the FLT3 gene and PDGFR{3. 

The aim of this study was to identify the type and occurrence of c-fms and FLT3 

mutations in IMF and AML. Therefore, the establishment of the conformation 

sensitive gel electrophoresis (CSGE) analysis for c-fms and FLT3 gene was carried 

out in this study. Novel and previously identified polymorphic nucleotide alterations 

in the c-fms gene were investigated. In total, twelve different apparently polymorphic 

alterations were identified. These are five alterations that resulted in silent amino acid 

changes and 7 intronic nucleotide alterations. Furthermore, important mutations that 

have been previously identified in the c-fms gene (i.e. 301 and 969 mutation) were 
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also investigated. However, none of the patients analysed had the 301 or the 969 

mutation. In addition, three novel nucleotide changes resulting in amino acid 

substitution were identified in exons 6, 8 and 9. 

In the other part of the study, which concerns the FLT3 gene, it was shown, together 

with the data of Agnes et aI, (1994), that the entire FLT3 gene comprises 24, rather 

than the previously assumed 21 exons. In addition, the homologous location for 

codon 301 of the c-fms gene was screened to identify possible pathologically 

important mutations in this location. None of the AML or the IMF patients showed 

any mutations in exon 9. In addition, the homologous location to the codon 413 

mutation found in the c-fms gene was also investigated, similarly no mutation was 

identified in that part of the FLT3 gene. 

Furthermore, the previously identified, FLT3 internal tandem duplication (ITO) was 

also investigated. The data from this study showed that FLT3 ITO occurs in 12.6% of 

adults with AML at diagnosis. It was demonstrated that AML patients possessing a 

FLT3 ITO should be regarded as having high risk disease, irrespective of 

cytogenetics. This study also identified the presence of an Asp835 mutation that 

occurs in approximately 7% of AML patients. None of the IMF patients, or normal 

individuals screened had the Asp835 mutation. However, the Asp835 mutation was 

not found to be of prognostic significance in this group of AML patients. 
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Cliapter 1: Introduction 

Introduction 

1.1 Haematopoiesis 

In humans, blood cells are programmed to live for only a few hours (granulocytes), or weeks 

(erythrocytes), before being destroyed. As a result, the body is required to produce 

approximately 10 13 new myeloid cells to replace this loss. This activity takes place within 

the bone marrow, where blood cells in various stages of development can be identified 

morphologically, as well as more primitive cells. It is these premature cells that act as the 

precursors for the various mature cell lineages. 

The pluripotent stem cell, thought to be a nondescript lymphocyte-like cell, is the producer 

of all these precursor cells and ultimately the native component found in the peripheral 

blood. Growth factors, including colony-stimulating factors and interleukins, can stimulate 

stem cell division, differentiation and maturation, to form the mature cellular elements of the 

blood. Mesenchymal cells in the yolk sac are the source of embryonic haematopoietic stem 

cells, while the fetal liver becomes the main site after 12 weeks. The bone marrow becomes 

an important site from week twenty, and becomes the main haematopoietic organ at the time 

of birth. During the first 2-3 years of life, active (red) bone marrow is found in the majority 

of skeletal bones, although a gradual replacement of active marrow by inactive (fatty) tissue 

occurs such that in adulthood active haematopoietic tissue is limited to the epiphyses of the 

long bones, the sternum, ribs, cranium, vertebrae and the pelvis. 

The expansion of the haematopoietic tissue terminates after the third year of infancy such 

that, the volume of active marrow in an adult is similar to that in a 3 year old child. As 

stated, haematopoiesis derives from a pool of undifferentiated cells known as stem cells, 

which give rise to the more differentiated bone marrow cells by division and differentiation. 
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Chapter 1: Introduction 

Stem cell have been shown to have the ability for self-renewal in mouse stem cells (Lu et al. 

1988; Semenza et ai, 1989). 

A unique process of simultaneous balanced expansion and differentiation operates to 

maintain the stem cell pool throughout life while, at the same time, generating differentiating 

cells. In vitro experiments have shown that single undifferentiated blast cells divide 

repetitively, to produce clones of mature cells of specific lineages. The progenitor cell 

compartment encompasses the immediate progeny of stem cells, or multilineage progenitor 

cells (MPC), to cells committed to one differentiation lineage, the unilineage progenitor cell 

(UPC). After several divisions and lineage events, the MPC give rise to several UPCs, each 

of which is committed to a single lineage. Such progenitor cells have been named according 

to their product e.g. (CFU-GM, CFU-Eo, CFU-Bs, CFU-Meg, BFU-E). Cells whose 

progeny will be exclusively red cells have been termed erythroid burst-forming units (BFU­

E). Similarly, megakaryopoiesis appears to progress in a fashion analogous to 

erythropoiesis, until the formation of a dedicated precursor cells termed megakaryocytic 

burst-forming-units (BFU-MK). Myeloid maturation is dependent on precursor cells called 

colony-forming units for granulocytes and monocytes (CFU-GM) (table 1.1). 
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Chapter 1: Introduction 

Table 1.1. Haematopoietic progenitor cells 

CFU-GEMM 

CFU-GM 

CFU-Eo 

CFU-Bs 

CFU-Meg 

CFU-E 

BFU-E 

Colony-forming unit-Granulocyte, erythrocyte, macrophage/monocyte, 

megakaryocyte. 

Colony-forming unit-granulocyte, macrophage/monocyte. 

Colony-forming unit-eosinophil. 

Colony-forming unit-basophil. 

Colony-forming unit-megakaryocyte. 

Colony-forming unit-erythrocyte. 

Burst-forming unit-erythrocyte. 

1.2 Haematopoietic growth factors and interleukins 

Proliferation, differentiation and maturation of haematopoietic progenitor cells are mainly 

regulated by haematopoietic growth factors, or colony stimulating factors (CSFs), and 

interleukins (ILs) which have a role in survival and function regulation of mature blood cells. 

A significant advance in our understanding of haemopoiesis was made in the mid 1960s, 

with the introduction of the colony assay for haematopoietic progenitor cells (Pluznik and 

Sachs, 1965; Bradley and Metcalf, 1966). This assay demonstrated that under suitable 

conditions, individual haematopoietic stem, or progenitor cells, would divide and 

differentiate, giving rise to discrete colonies, each of which constituted the differentiated 

progeny of single ancestral cells. 

Similarly, the growth factors, termed interleukins, were discovered using a variety of liquid 

culture systems designed to study T- and B-cell proliferation and differentiation 

(Quesenberry et ai, 1989). The term 'interleukin' was initially applied to a series of 

polypeptide factors, on the basis that they were produced by, and acted upon, various 

leukocytes. The term was later extended, however, to include polypeptide factors released 
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Cfiapter 1: Introduction 

during inflammatory responses, irrespective of whether they were also produced by, or acted 

upon, non-leukocytes. Twenty interleukins have been identified to date (table 1.2). 

Table 1.2. Cytokines involved in haematopoietic blood cell development. 
arne Source Target 

Growth Factors 
Erythropiotin 
G-C F 

GM-C F 

M-C F 
Tbrombopoietin 

CF 

TGFp 
FLT3 ligand 

Interlellkills 
IL-t 

IL-2 
IL-3 

IL-4 
IL-S 
1L-6 

IL-7 
{L-8 
[L-9 

lL-IO 

IL-ll 

1L-12 
IL-13 
IL- 14 
IL-IS 
IL-16 
IL-1 7 

IL-IS 
IL-19 

IL-20 

Kidney, Liver 
Macrophages, Endothelial cells, 
Fibroblasts. 
T - and B-Iymphocytes, monocyte­
macrophage, Endothelial cells , 
Fibroblasts. 
Most tissues. 
Stromal cells 
Stromal cell, endothelial cell, 
monocyte/macrophage. 
Platelets, mast cells 

Monocyte-macrophage, endothelial 
cell, fibroblast. 
T lymphocyte. 
T lymphocyte, mast cells. 

T lymphocytes 
T lymphocyte, mast cells. 
Monocyte-macrophage, 
megakaryocyte, eosinophil, B­
lymphocyte, fibroblast, stromal cell. 
Stromal cell. 
Monocytes T cells, fibroblasts 
T lymphocyte. 

T cells, macro phages, B cells 

Stromal cell, fibroblast. 

B cells, macrophages 
T-cells 
T-cells 
T-cells and epithelial cells 
Eosinophils, CDS+ T -cells 
CD4+ T-cells 

Hepatocytes 
Monocytes 

Keratinocytes 

Erythroid progenitors 
Stem cells, Neutrophil precursors. 

Progenitors for neutrophils, 
Eosinophils, monocytes. 

Monocyte-macrophage, granu locyte. 
Megakaryocyte. 
Stem cell, megakaryocyte, mast cell, 
granulocyte, and eosinophil. 
Fibroblast 
Stem cells, monocyte, macrophages, 
granulocyte, and erythrocyte 

T lymphocyte, stem cell, 
megakaryocyte. 
T- and B-lymphocyte. 
Granulocyte, erythroblast, stem cell, 
mast cell eosinophil, megakaryocyte, 
monocyte-macrophage. 
B cells, mast cells, T cells. 
Eosinophil, B-lymphocyte. 
Stem cell, .granu locyte, 
megakaryocyte, and monocyte­
macrophage. 
Pre-B cells T -cells . 
Neutrophils, T cells, basophils. 
T lymphocyte, eosinophil, 
megakayocyte, mast cell . 
B cells, macrophages, T cells, mast 
cells. 
Stem cell, megakarocyte, 
granulocyte, eosinophil , and mast 
cell. 
T cells, NK cells 
B cells. 
Activated B cells . 

CD4+ T-cells 
Stimulates fibroblast to sustain 
CD34+ proginators. 
Enhances NK cells activity 
induces production of IL-6 and TNF­
alpha and results in cell apoptosis 
tnrough TNF-alpha 
keratinocyte proliferation and acts as 
a paracrine or autocrine factor 

Adapted from (Harmening, 1992,· Gallagher et ai, 2000; Liaa et ai, 2002) 
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Chapter 1: Introduction 

Interaction between AML progenitor cells and the haematopoietic growth factors is required 

for cell proliferation in vitro. (Griffin and Lowenberg, 1986) demonstrated that AML 

colonies could be formed following incubation for 1-2 weeks with specific haematopoietic 

growth factors. This study highlighted the importance of haematopoietic growth factors for 

proliferation and survival of AML progenitor cells. Furthermore, leukaemic colonies can be 

induced and DNA synthesis stimulated in more than 80% of AML cells in the presence of 

interleukin-3 (IL3), GM-CSF and G-CSF (Miyauchi et ai, 1987; Vellenga et ai, 1987; 

Delwel et ai, 1988; Pebusque et ai, 1988) 

A significant amount of research effort has been directed towards the investigation of this 

group of glycoproteins. At least 16 separate CSFs have been purified, characterised and 

subsequently molecularly cloned (Shurin et ai, 1998). It has been shown that primitive 

progenitors are only able to proliferate in vitro when stimulated by mUltiple growth factors 

(Shurin et ai, 1998). In contrast, however, single cytokines were able to stimulate committed 

progenitor cells, although the synergistic effect of a number of growth factors can cause 

enhanced growth (Metcalf, 1993; Ogawa, 1993). 

In general, interaction of haematopoietic growth factors (HGF) with blood cells occurs at 

different levels in the cascade of cell differentiation, from multi potent progenitor cells to the 

mature cell found in peripheral blood (Groopman et ai, 1989). Two important growth factor 

are GM-CSF and G-CSF, both categorised by their biologic activities on the haematopoietic 

system (Grosh and Quesenberry, 1992). GM-CSF is produced by T lymphocytes, monocytes, 

fibroblasts and endothelial cells and is encoded by a gene located on the long arm of 

chromosome 5 at band q21-q33 (Wong et ai, 1985). Monocytes, fibroblasts and endothelial 

cells also produce G-CSF. The G-CSF gene has been mapped to the long arm of 

chromosome 17, at bands 17q 11.2 to 17q 11.21 (Gough el ai, 1990). It is noteworthy that 

these myeloid growth factors have a high affinity for their cognate receptor, which is 
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Cliapter 1: Introauction 

typically present at low levels on the surface of the target cell (Nicola, 1989). Interestingly, 

activation of downstream signalling by these cytokines appears to require a low level of 

receptor binding (i.e. 5-10% of receptor occupancy) (Nicola, 1989). 

GM-CSF has been found to act at several stages of myeloid differentiation, from the early 

stem cell to the mature cell. It is known to be specific for the development of both 

granulocytes and monocytes/macrophages, although, it also has a growth and differentiation 

effect on premature progenitors (Metcalf, 1990; Grosh and Quesenberry, 1992). 

Furthermore, its effect extends to the maintenance of mature cells, including macrophage and 

monocytes, although the amount needed for this function is less than that required to 

promote proliferation (Lau et aI, 1996). The effect of GM-CSF on neutrophils includes 

enhancement of phagocytosis, induction of chemotaxis and migration of neutrophils to sites 

of inflammation (Lau et ai, 1996). In vivo experiments, using animal models, has shown that 

GM-CSF also enhances the megakaryocyte number while, in an in vitro system, the addition 

of GM-CSF has been shown to support the growth of megakaryocytes (Hoffman, 1989). 

However, the effect of GM-CSF on megakaryocytopoiesis is not sufficient by itself, as GM­

CSF interaction with other cytokines is needed (Ishibashi et ai, 1990; Vannucchi et ai, 1990). 

In contrast, G-CSF is a late acting, lineage specific haematopoietin, acting mainly on 

committed progenitors of the neutrophil lineage (Grosh and Quesenberry, 1992), although it 

can interact with IL3, to enhance the proliferation of multipotent haematopoietic and 

megakaryocyte progenitors (lkebuchi et ai, 1988; McNiece et ai, 1988). The activity of G­

CSF is targeted toward regulating neutrophils function, including phagocytosis, superoxide 

release, antibody-dependent cellular cytotoxicity and migration (Groopman et aI, 1989). 

Erythropoietin (EPO) is a growth factor that is mainly produced in the kidneys and to a less 

extent the liver, in response to hypoxic conditions resulting from reduced atmospheric 
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oxygen (Goldberg et ai, 1987; Goldberg et ai, 1988). Erythropoietin was the first 

haematopoietic growth factor identified (Browne et ai, 1986), and is encoded by a gene 

located on the long arm of chromosome 7 (Powell et ai, 1986). EPO stimulates the growth 

and differentiation of erythroid progenitor cells (Browne et ai, 1986) as well as enhancing 

the proliferation of more differentiated erythroid precursors. 

FLT3 ligand (FL) is the ligand for the FLT3 (fms-like tyrosine kinase 3) receptor. 

Expression of FL has been reported for bone marrow fibroblasts and haematopoietic cells of 

myeloid B-cell and T-cell lineages (Brasel et aI, 1995). FL is believed to have a similar role 

in inducing proliferation of normal myeloid and lymphoid progenitors, although it is not as 

potent as other growth factors (Lyman et ai, 1994). FL does, however, interact with other 

growth factors and interleukins to induce proliferation of myeloid and lymphoid progenitors 

(Lyman and Jacobsen, 1998). FL interestingly, has also been shown to stimulate the 

proliferation of primary AML cells that express FLT3, as well as myeloid and monocytoid 

leukaemic cell lines (Piacibello et ai, 1995; Drexler, 1996). The importance of FL was 

highlighted as the result of its ability, together with other growth factors, to stimulate the 

expansion of CD34+ haematopoietic progenitors. Indeed this function may be useful in 

stimulating marrow recovery after cytotoxic chemotherapy (Gilliland and Griffin, 2002). 

The use of FL as leukaemic therapy may not be without risk, as FL stimulation of FLT3 can 

enhance the proliferation and survival of leukaemic blasts (Minden et ai, 1996). 

CSF-I, or M-CSF, is synthesized by mesenchymal cells and is thought to be able to stimulate 

the survival, proliferation and differentiation of haematopoietic cells within the monocyte­

macrophage lineage (Stanley et ai, 1983). CSF -I is encoded by a gene located on the long 

arm of chromosome 5 (Ralph et ai, 1986). Expression of CSF-l on premature 

haematopoietic cell can be considered as an early marker of commitment to the monocytes­

macrophage series (Bartelmez et ai, 1985). CSF -1 play an important autocrine and/or 
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paracrine role in cancer of the ovary, endometrium and breast, as well as myeloid and 

lymphoid malignancies (Stanley et ai, 1997). CSF -1 has been shown to participate in the 

regulation of mononuclear phagocyte production, since the injection of recombinant human 

CSF1 into mice causes an increase in circulating monocytes, from 3% to 30% (Stanley et ai, 

1994). Although CSF -1 has an obvious effect on the function of mature monocytes and 

macrophages, it does not appear to affect premature progenitor cells of other cell lineages 

(Stanley et ai, 1997). 

Stem cell factor (SCF) is encoded by a gene located on chromosome 12 in humans 

(Anderson et ai, 1991) and has an effect on the development of colony-forming unit­

granulocyte/macrophage (CSF-GM) (Heyworth et ai, 1992). Its effect is weak, however, on 

myeloid colony formation (Heyworth et ai, 1992). When combined with GM-CSF, G-CSF, 

IL3 or EPO it can enhance colony growth of myeloid and erythroid lineage (McNiece et ai, 

1991). SCF also has an enhancing effect on megakaryocytopoiesis, since it acts in synergy 

with IL3 and GM-CSF (Avraham et ai, 1992). 
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1.3 Receptor tyrosine kinases (RTKs) 

Receptor tyrosine kinase (RTKs) are an important group of genes. Up to 90 tyrosine kinase 

genes have been identified so far, of which 58 are of the receptor type (Reilly, 2002). RTKs 

are transmembrane proteins that are involved in ligand binding and signal transduction 

(Gupta et ai, 2002). They catalyse the transfer of the y-phosphate of A TP to tyrosine residues 

of protein substrates. Recently, RTKs have been grouped into 20 subfamilies based on 

kinase domain sequence (Robertson et ai, 2000; Robinson et ai, 2000). These subfamilies 

are characterised by an extracellular ligand binding domain, a transmembrane (TM) domain 

and an intracellular tyrosine kinase domain (Robinson et ai, 2000) (figure 1.1) 

The extracellular domain has the least homology between the R TKs. The TM domain is 

believed to playa critical role in receptor activation, due to the presence of a common alpha 

helical structure which is believed to anchor the molecule in the cell membrane (Gupta et aI, 

2002). The cytoplasmic kinase domain is separated from the TM by the juxtamembrane 

region (JM), which is highly conserved in each family of RTKs. However, the kinase 

domains are the most conserved domains among RTKs (Gupta et ai, 2002). 

The most important domains in RTKs are the activation loop (A-loop), the nucleotide­

binding loop and the catalytic loop, which are located in the Ie part of the receptor. All of 

these domains have a crucial role in phosphorylation and hence down-stream signalling. The 

A-loop in the inactive state, prevents phosphorylation, by either blocking the substrate or the 

A TP binding site of the receptor (Mohammadi et ai, 1996). However, in the active state, the 

A-loop, by repositioning and contacting specific residues in the c-terrninal domain of the 

receptor, exposes the kinase domain (Mohammadi et ai, 1996) (see figure 1.4). It is believed 

that the catalytic loop of the protein kinase contains an invariant aspartate residue that serves 

as the catalytic base in the phosphotransfer reaction (Johnson et ai, 1996). 
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1.3.1 Class III receptor tyrosine kinase 

Class III RTKs are characterized by an extracellular ligand-binding domain that contains five 

immunoglobulin like domains (figure 1.2). Class III RTKs like many other RTKs have a 

T~ 1M, two intracellular tyrosine kinase (TK1 and TK2) domain divided by a KI, and a C­

terminal domain (Yard en et ai, 1987; Ullrich and Schlessinger, 1990). 

EC 

IC 

CT 

Figure 1.2 schematic representation of 

class III tyrosine kinase receptor with an 

extracellular domain, EC (with 5 

immunoglobulin- like domains, Ig); 

transmembrane domain, TM; 

intracellular domain, IC; juxtamembrane 

domain, 1M; tyrosine kinase domains, 

TK 1 & TK2; kinase insert domain, KI. 

C-terminus; CT. 

Five receptors ofRTKs belong to the class III RTKs, these are c-fms (Coussens et aI, 1986), 

c-kit (Yarden ef ai, 1987), FLT3 (Rosnet et ai, 1993a), PDGFRa (Claesson-Welsh et ai, 

1989) and PDG}](jJ (Yarden el ai, 1987). All class III RTKs except PDGFRa, have an 

important role in haematopoiesis. A close evolutionary relationship was suggested for class 

III R TKs due to their close genomic structure and paired chromosomal location (Rosnet el 

aI, 1991 b; Andre el aI, 1992; Rosnet et aI, 1993b). Chromosome 4 contains two class III 

R TKs; the c-kit and PDGFRa gene, which are located in tandem on bands q 11-q 13 

(Gronwald e( af, 1990; Giebel et ai, 1992). Similarly, both the PDGFR~ and c-fms genes lie 

in tandem on chromo orne 5 at q31-q33 (Groffen el aI, 1983 ; Roberts el aI, 1988). The 
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FLT3 and FLT] (a class V RTK) genes both map to 13qI2, were FLT3 is located in a head­

to-tale fashion to FLT] (Rosnet et ai, 1993b; Imbert et ai, 1994). 

1.3.1.1 Colony stimulating/actor 1 receptor CSF-1R 

The actions of CSF -1 are mediated through its binding to a single class of high-affinity 

receptors (CSF-l R), expressed on monocytes, macrophages, and their committed progenitors 

(Sherr el ai, 1988). The c-fms proto-oncogene encodes the cell surface receptor for the 

macrophage colony stimulating factor, CSF-I (Sherr et ai, 1985). c-fms was cloned and 

sequenced in 1989, and was shown to consist of 42 kb of DNA, including 1.7 kb 5' to the 

first c-fms coding exon, 33 kb of interrupting c-fms coding sequences, and 7 kb of DNA 3' to 

the c-fms mRNA polyadenylation site. It has been shown that the c-fms gene contains 22 

exons, however, exon 1 is non coding, therefore the coding exons are exon 2-22 (Hampe et 

ai, 1989). The c-fms coding exons are short, with length ranging from 89 base pairs (bp) 

(exon 16) to 285bp (ex on 4); exon 22 consists of 153bp encoding the c-fms C-terminus, as 

well as 777 bp of 3' non-coding sequence before to the polyadenylation site (Hampe et ai, 

1989). Intron sizes are variable, ranging from 6355 bp Cintron 11) to as short as 81 bp (intron 

18) (Hampe et ai, 1989). Initial analysis was performed using primer extension and nuclease 

protection experiments for c-fms promoter region. It was concluded that the upstream non­

coding exon 1 is transcribed, however, sequences corresponding to known mammalian 

promoter motifs have not yet been identified, nor has a c-fms promoter been functionally 

demonstrated (Hampe et ai, 1989). However in murine tumour cell line the expression of the 

c-fms is regulated by two distinct promoters: distal and proximal. The distal promoter is 

active in trophoblasts during embryogenesis and the proximal promoter directs expression to 

the cells of myeloid lineage (Favot et ai, 1995). 

13 
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In relation to myeloid neoplasms, two c-fms mutations have been reported in several 

myeloproliferative and myelodysplastic disorders, for instance Ridge et ai, (1990), reported 

in human myeloid malignancies, an incidence of 12.7% (141110) for mutations of codon 969 

and 1.8% (2/110) for mutations of codon 301. Codon 969 mutations are located in the C­

terminal tail region. Although that codon 969 mutation occurred in heterogeneous disorders, 

it has been found to be associated with poor outcome in the myelodysplastic syndrome 

(MDS) group. The codon 301 mutations are located in the fourth Ig-like domain of c-fms, 

and involve a highly conserved amino acid. Furthermore, the same genetic alteration was 

found in v-fms (feline McDonough sarcoma virus) (Roussel et ai, 1988; Woolford et ai, 

1988). In addition, allelic loss of c-fms has been detected in both AML and MDS (Ridge el 

ai, 1990; McGlynn et ai, 1997). 

1.3.1.2 FMS-like tyrosine kinase (FLT3) 

The search for additional members of the RTK family led to two groups discovering a RTK 

termed fetal liver kinase 2 (FLK2) in mice (Matthews et ai, 1991 a; Matthews et ai, 1991 b) 

and in humans, the FMS-like tyrosine kinase (FLT3) (Rosnet et ai, 1991a; Rosnet et ai, 

1991 b). FLT3 has been shown to be expressed in a variety of human and murine cell lines of 

both myeloid and B-lymphoid lineage (Brasel et aI, 1995; Turner et aI, 1996). In normal 

bone marrow, the expression of FLT3 appears to be restricted to early progenitors, including 

CD34+ cells with high expression of CDI17 (c-kit) (Rasko et ai, 1995; Rosnet et ai, 1996). 

The amino acid sequence of FLK2 was found to be nearly identical to FLT3 except for two 

amino acids in the extracytoplasmic domain and 31 amino acids in the C-terminus in the 

cytoplasmic domain (Lyman et ai, 1993). Therefore, it was suggested that they are encoded 

by one gene and share the same ligand (Lyman et ai, 1993). The human FLT3 cDNA was 

initially cloned from a pre-B-cell line and shows a great similarity with the corresponding 

mouse FL T3/FLK2 protein (Rosnet et ai, 1993a). Human FLT3 is encoded by a gene 
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located on chromosome 13q12 and shares structural homology with other subclass III RTKs. 

It has also been demonstrated that the human FIT3 extracellular domain exhibits 18% and 

19% homology with c-kit and c-fms, respectively, which increases to 63% and 64% for the 

tyrosine kinase domain (Agnes et ai, 1994). 

FIT3 is expressed in CD34+ bone marrow cells in humans (Small et ai, 1994). Recently the 

human FIT3 receptor has attracted attention due to fact that it is highly expressed in many 

types of leukaemia, including AML, B-ALL and T-ALL (Birg et ai, 1992; Rosnet et ai, 

1993a; Turner et ai, 1996). Interestingly, an internal tandem duplication (lTD) has been 

documented in more than 20% of AML and in most cases the duplication occurs in the JM 

domain and correlates with a poor prognosis (Nakao et ai, 1996; Horiike et ai, 1997; Abu­

Duhier ef ai, 2000). Furthermore, an Asp835 mutation has been identified in the activation 

loop of the FIT3 gene, and is present in 7% of adult AML (Abu-Ouhier el ai, 2001; 

Yamamoto et ai, 2001). Taking into account the ITO and the Asp835 mutation, about a third 

of AML have a FIT3 mutation. It is noteworthy that the Asp835 mutation is analogous to 

the Asp816 alteration of the c-kit gene (Abu-Duhier et ai, 2001; Yamamoto et ai, 2001). 

1.3.1.3 c-kit 

The extracellular domain of c-kit consists of five Ig-like domains as in all other class III 

RTKs. As stated earlier, c-kit and its ligand (SCF) have a critical role in normal 

haematopoiesis. c-kit is expressed by 70% of C034+ cells in bone marrow, including 

lineage-restricted haematopoietic progenitor cells (Ashman et ai, 1991; Papayannopoulou et 

ai, 1991) and by primitive cells capable of establishing long-term in vitro haematopoiesis 

(Simmons ef ai, 1994). Human c-kit (CDI17) consists of 975 amino acids: twenty three 

form the signal sequence at the N-terminus, while the five Ig-like domains consist of 497 

amino acids and contain nine potential N-glycosylation sites (Blechman et ai, 1993). The Ig-
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like domains are characterised by a primary sequence of 70-100 amino acids residues with 

disulfide bridges spanning 40-60 amino acids (reviewed by Blechman et al 1993). The three 

amino tenninal Ig-like domains contain the stem cell factor (SCF) binding site, while the 

fourth Ig-like domain is essential for receptor dimerisation (Lev et ai, 1993; Blechman et ai, 

1995). The function of the fifth Ig-like domain, however, has not been detennined 

(Blechman et ai, 1995). It is worth mentioning that c-kit mutations have been associated 

with AML exhibiting either an inv(16) or t(8;21) karyotype, i.e. the core binding factor 

leukaemias. For instance, an AML patient with t(8;21) has been reported having Asp816Tyr 

(Beghini et ai, 1998). Later the same group reported Asp816 mutation in 4/9 cases with 

t(8;21) and 2/6 cases with inv( 16) (Beghini et ai, 2000). Moreover, around a third of the 

AML-M4Eo patients analysed in a study carried out by Gari et al (1999) have been reported 

to have a novel exon 8 deletion/insertion mutation with consistent loss of Asp419 located in 

the fifth Ig-like domain of the c-kit receptor (Oari et ai, 1999). Deletions in the extracellular 

domain can lead to ligand-independent activation due to the removal of the negative 

regulatory constraints (Khazaie et ai, 1988; Uren et ai, 1997). It was suggested, therefore, 

that the discovery of Asp419 mutations could be the first evidence to the importance of the 

fifth Ig-like domain (Oari et ai, 1999). c-kit mutations have also been reported in exon 2 in 

two patients with idiopathic myelofibrosis and one with chronic myeloid leukaemia (CML) 

(Nakata et ai, 1995). Although it was not detennined if such mutation resulted in a 

constitutively activated receptor, it was documented that this acquired abnonnality of the 

extracellular domain resulted in enhanced sensitivity of the patients stem cells to SCF 

(Kimura et ai, 1997). 
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1.3.1.4 Platelet-derived growth factor receptor (PDGFRPJ 

PDGFRp, a class III RTK is a 170-190 KDa single transmembrane glycoprotein (CD 140b), 

expressed on fibroblasts, smooth muscle cells, glial cells and chrondrocytes. PDGFRp has 

also been identified on different types of haematopoietic cells, including B and T 

lymphocytes (Goustin et aI, 1990; Tsai et aI, 1994), NK cells (Gersuk et aI, 1991), cultured 

monocytes (Inaba et aI, 1993), HL60 myelomonocytic cells (Pantazis et aI, 1990), platelets 

and megakaryocytes (Yang et aI, 1997). 

Golub et aI, (1994) showed that an infrequent cytogenetic abnormality in atypical CML, 

namely t(5;12) (q31;p13), results in a TELl PDGFRp fusion gene. The NH-2 terminus of the 

receptor is replaced by the first 154 amino acids of the transcription factor TEL, which 

contains a putative helix-loop-helix (HLH) domain, a motif that enables the fusion receptor 

to dimerize in the absence of ligand (Golub et ai, 1994). 

Furthermore, the oncogenic capacity of TELIPDGFRp was confirmed in vivo by showing 

that expression of the chimeric gene, when under the control of the CD 11 b promoter in 

transgenic mice, can cause a chronic myeloprliferative syndrome characterized by 

leucocytosis, megakaryocytic hyperplasia and splenomegaly due to an extramedullary 

haematopoiesis (Ritchie et ai, 1999). 

Class III RTKs (figure 1.3) are therefore of great interest due to the association with an 

increasing number of haematological malignancies (Reilly, 2002) (see table 1.3). 
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c-fms FLTI c-KlT 

AspS2 (exo n 2) - CMPD 

AML, MDS • 
30 l(exon 7) Ins del (exon 8) - AML 

Plasma membrane TM ValS30 (exon 10) - AML 

AML, MDS, CMML 
969 (exon 22) 

AMUMDS (exons I41J5) ITO 

AML (exon 20) Asp 835 

C-tenninal tail 

JM insldel (exon 11 ) - GISTs 
-SNL 

TKl Asp8J6 (exon 17) - MCD AML 
Asp820 (exon 17) MCD 

K1 Asp825 (exon 17) - SNL 

TK2 

Figure 1.3 A Schematic representation of some class In RTKs 

highlighting the position of reported mutations and their disease 

associations of c-fms, FLT3 and c-kit. CMPD, chronic 

myeloproliferative diseases; AML, acute myeloid leukaemia; GISTs, 

gastrointestinal stromal tumours; SNL, sinonasal lymphomas; MCn, 

mast cell disease; MDS, myelodysplastic syndrome; CMML, chronic 

myelomonocytic leukaemia; insldel, insertion-deletion mutations. 

Adaptedfrom(Reilly, 2002) 
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1.3.2 Activation of RTKs by ligand binding 

Ligand binding is considered as the main step for receptor activation (Heldin, 1995). It is 

believed that this step is the major cause for dimerization in monomeric receptors of the 

RTK family (Schlessinger, 2000). It is noteworthy to mention that ligand binding can induce 

receptor homodimerization or heterodimerization (Schlessinger, 2000). The second step of 

receptor activation is signal transduction. Although this step is considered essential for 

receptor activation, it does not directly lead to increased kinase activity. It is therefore, 

believed that there is a requirement for further conformational changes in the receptor. It is 

believed that the TM domain has an exceptional role in this process. A conserved 

hydrophilic region of several residues has been noticed within the alpha helices such that 

they lie on the same face of the domain (Sternberg and Gullick, 1990; Ullrich and 

Schlessinger, 1990). As an effect of the ligand binding, these will lead to coupled rotation of 

the paired RTKs within a receptor-ligand complex. Therefore, the hydrophilic residues 

located in the TM (and other) domains of each receptor would be able to form hydrogen 

bonds that hold them in fixed position. As a result, the kinase domain of each receptor 

would be in a contact with that of its partner and therefore allow transphosphorylation of one 

by the other (Sell et ai, 2000). 

In general, there are two theories as to how receptor transphosphorylation is initiated. The 

first is that the highly mobile A-loop (see section 1.3) will swap between an active and an 

inactive conformation and therefore, would provide the kinase domain of the 

unphosphorylated receptor with a low-level of activity. Furthermore, the ligand binding 

simply amplifies the local concentration of kinase domain (i.e. enzyme and substrate) 

consequently, this will increase the likelihood of transphosphorylation (Hubbard et al. 1998). 

The second suggestion is that the dimerization transiently stabilizes the A-loop allowing the 
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substrate binding and phosphotransfer to occur (Johnson et ai, 1996) (figure 1.4). It is worth 

mentioning that tyrosine phosphorylation of activated RTKs both promotes intrinsic kinase 

activity and generates sites of interaction for a variety of downstream phosphotyrosine 

binding signalling protein (Hubbard et ai, 1998). 

C)top\asm 

A-loop in the active confonnation 

Figure 1.4. Schematic diagram showing the swap of the A-loop between 

an active and an inactive conformation. N, N-terrninus; C, C-terminus; P, 

Phosphorylation. 

Adaptedfrom (Blume-Jensen and Hunter, 2001) 

The autophosphorylation of RTKs has an essential role in controlling the protein kinase 

activity plus its role in the enrolment and activation of a variety of signalling proteins. The 

sites of tyrosine autophosphorylation are located in the non catalytic regions of the receptor 

molecule which also work as binding sites for SH2 (Src homology2) or PTB 

(phosphotyrosine binding) domains of a variety of signalling proteins. Therefore, it is 

believed that the SH2 domain-mediated binding of signalling proteins to tyrosine 
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autophosphorylation sites provides a mechanism for assembly and recruitment of signalling 

complex by activated receptor tyrosine kinases (Schlessinger, 2000). 
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1.4 Myeloproliferative disorders 

In 1951 the concept of myeloproliferative disorders was introduced by Dameshek et 

al,(1951) to describe a group of conditions characterised by clonal proliferation of one or 

more haematopoietic components in the bone marrow, liver or spleen (i .e. chronic myeloid 

leukaemia (CML), polycythaemia vera (PV), essential thrombocythaemia, myelofibrosis 

(MF) and acute myeloid leukaemia (AML)). The fact that these disorders are closely related 

to each other accounts for the occurrence of transitional forms in a number of cases and, in 

addition, evolution from one entity into another may occur during the course of the disease 

(figure 1.5). It is generally believed that each of these disorders is a clonal haematopoietic 

neoplasm 

Principal 
cellular 
proliferation 

Clinical 
entity 

Bone marrow stem cell 

Figure 1.5. Schematic representation showing the relationship of various 

myeloproliferative disorders to each other. 

Chronic myeloid leukaemia, CML; polycythaemia vera, PV; myelofibrosis, 

MF; acute myeloid leujkaemia, AML. 

Adaptedfrom Hoffbrand and pettit, (/993). 
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1.4.1 Leukaemias 

Accumulation of abnormal white cells in the bone marrow is the main feature of leukaemia. 

The accumulation of these abnormal cells may cause bone marrow failure, a raised 

circulating white cell count and infiltration of organs. Leukaemias are classified in two main 

groups; acute and chronic leukaemia. The two main types of chronic leukaemias are chronic 

myeloid leukaemia (CML) and chronic lymphocytic leukaemia (CLL). Acute leukaemia, a 

heterogeneous group of malignant neoplasms composed of clonal expansions of immature 

cells, which is characterised by the presence of more than 30% myeloblasts or lymphoblasts 

in the bone marrow at clinical presentation, is divided into two groups, acute myeloid 

leukaemia (AML) and acute lymphoblastic leukaemia (ALL) on the basis of morphology and 

cytochemistry . 

1.4.1.1 Diagnosis of Acute Myeloid Leukaemia (AML) 

The main criteria for the diagnosis of AML is dependent on an examination of the 

morphological characterization of leukemic myeloblasts in peripheral blood and bone 

marrow. Infiltrations with leukaemic cells and marrow failure are the main blood film 

features for patients with AML. The number of leukaemic blasts present in blood can vary 

from zero to more then 200 x 109fL with a median count of 15-20 x 109fL which is directly 

related to the number of cells in the bone marrow. However, attempts to classify leukaemia 

from the characteristics of blood blast should not be made. Myelodysplastic syndrome 

(MDS) can be distinguished from AML by the presence of less than 30% of myeloblasts in 

the bone marrow aspirate (Catovsky et ai, 1991). ALL can be distinguished from AML by 

the morphological picture, as sometimes myeloid characteristics of the cells are obvious 

(Catovsky et ai, 1991), however, immunological and immunohistochemical methods are still 
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required for distinguishing AML from ALL in the majority of cases (Matutes et ai, 1988; 

Ryan, 1992). 

1.4.1.2 Classification of acute myeloid leukaemia 

A classification system for AML was introduced by the French-American-British (F AB) co-

operative group in 1976 (Bennett et ai, 1976), and has been updated and included new 

diagnostic criteria (Bennett et ai, 1985b; 1991). AML is divided into eight types MO-M7 

(Bennett et ai, 1985b; a; 1991) based on the morphological appearance of the blast cells and 

their reactivity with histochemical stains (table 1.4). Although this classification was initially 

proposed to define the subtypes of AML morphologically, it has been shown to be clinically 

and prognostically important. 

Table 1.4. French-American-British (F AB) classification of AML 

F AB Common name (% of cases) Results of cytochemical 
subtype staining _________ . 

Myeloper- Sudan Non-
oxidase black specific 

esterase 
MO Acute myeloblastic leukaemia with minimal differentiation 

(3%) 
M I Acute myeloblastic leukaemia without maturation (15·20%) + + 
M2 Acute myeloblastic leukaemia with maturation (25-30%) + + 
M3 Acute promyelocytic leukaemia (5-10%) + + 
M4 Acute myelomonocytic leukaemia (20%) + + + 
M4Eo Acute myelomonocytic leukaemia with abnormal eosinophils 

(5-10~o) + + + 
M5 Acute monocytic leukaemia (2-9%) + 
M6 ET)throleukaemia (3-5%) + + 
M7 Acute megakaryocytic leukaemia (3-12%) + 

Reviewed by Lowenberg et ai, 1999. 

1.4.1.3 Incidence and pathogenesis 

According to the Leukaemia Research Fund report (2000), 1,600 cases of AML are 

diagnosed each year in the UK. However, it appears that the incidence of the disease 

increases gradually with age especially after 55 years after which it tends to increase 
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progressively (Stevens, 1996). In childhood, AML is responsible for a minor fraction (10-

15%) of leukaemias. 

1.4.1.4 Cytogenetics and molecular genetics 

Several studies have highlighted the strong association between specific AML subtypes and 

karyotypes. These chromosomal abnormalities are seen at diagnosis but are not detectable 

cytogenetically if complete remission is achieved, however, they can reappear at relapse 

(Walker et ai, 1994). 

In AML, cytogenetic abnormalities are either numerical or structural. For instance, trisomy 

8 is the most frequent numerical abnormality seen in AML and, although not typically 

associated with a specific F AB type, it is typical of F AB types M 1, M4 and M5. In 1973, the 

t(8;21} translocation was described, interestingly more than 90% of identified cases were 

M2, however, not all M2 F AB type have t(8;21) translocation as only 40% of M2 have 

t(8;21) translocation (Rowley, 1973). The t(8;21) translocation has been described at 

molecular level, the genes involved being ETO on chromosome 8 and AML] on chromosome 

21 ,which results in a fusion gene AMLlIETO (Downing et ai, 1993). 

1.4.2 Idiopathic myelofibrosis (IMF) 

Idiopathic myelofibrosis (IMF) was first described by Heuck et aI, (1879) who reported the 

presence of marrow fibrosis and extramedullary haematopoiesis in the liver and spleen of 

two patients (Heuck, 1879). The disease is described as a chronic, malignant haematological 

disorder characterised by splenomegaly, a leukoerythroblastic blood picture, teardrop 

poikilcytosis, a varying degree of marrow fibrosis and extramedullary haematopoiesis (Varki 

et ai, 1983). 
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Table 1.5. Conditions associated with Myelofibrosis 

Malignant diseases Non-malignant diseases 
cute megakaryoblastic leukaemia. 

Idiopathic Myelofibrosis. 
Chronic Granulocytic leukaemia. 

cut m eloid leukaemia. 
cute I mphobla tic leukaemia. 

Hairy cell leukaemia. 
Tran itional myeloproliferati e syndrome. 
Polycythaemia rubra era. 

temic ma tocytosis. 
Hodgkin s disea e. 
M eloma. 

Reviewed by McCarthy, 1985. 

Renal osteodystrophy. 
Vitamin D deficiency. 
Hypoparathyroid ism. 
Hyperparathoidisim. 
Grey platelet syndrome. 
Systemic lupus erythematosis. 
Systemic sclerosis. 
Thorium dioxide administration. 

Different terms ha e been u ed to describe the disease, these include, myelofibrosis, 

myelo clerosi osteo clerosis idiopathic myeloid metaplasia and agnogenic myeloid 

metaplasia (AMM) ( ilverstein et ai, 1967; Silverstein, 1970). It is noteworthy to mention 

that fibrosis of the bone marrow is not specific to IMF and it may appear with other disorders 

(table 1.5). The marrow fibrosis in IMF is thought to be a response to a clonal proliferation 

of haematopoietic stem cells hich mainly leads to progressive marrow failure (Jacobson et 

al 1978). 

1.4.2.1 Incidence, epidemiology and aetiology 

Earliest studies show no epidemiological data to estimate the actual incidence of IMF. An 

overall annual incidence of 0.5-1.3 per 100,000 was reported for IMF in Australia (Dougan 

et ai, 1981). In Japan IMF is considered a rare disorder with 0.084 per 100,000 (Reiter et ai, 

1997). However the incidence of myelofibrosis was 18 times greater among survivors who 

v ere 10 OOOm or Ie from the hypocentre of the atomic bomb explosion at Hiroshima 

(Ander on et at 1964). The e data highlighted the strong link between excessive radiation 

e posure and de elopm nt of IMF. Furthermore, the disease has been also associated with 
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exposure to benzene (Hu, 1987), petroleum product (Honda et ai, 1995), and thorium 

(Visfeldt and Andersson, 1995). 

Ward and Block et aI, (1971) reported that the disease is one-quarter as common as CML 

(Ward and Block, 1971). The male to female ratio is 2:1 (Dougan et aI, 1981). Similar to 

other myeloproliferative disorders, most IMF cases occur in middle aged and elderly people, 

i.e. between 50 and 70 years (Boxer et ai, 1975). 

1.4.2.2 Pathogenesis 

A number of earlier studies have proposed that haematopoiesis in IMF is clonal, resulting 

from the malignant proliferation of a pluripotent stem cell. This conclusion was first 

proposed after the analysis of glucose-6-phosphate-dehydrogenase (G-6PD) isoenzyme in a 

black female patient who was heterozygous for this X-linked gene (Jacobson et ai, 1978). 

Subsequently, this result was confirmed using cytogenetic analysis (Wang et ai, 1992) and 

fibroblast proliferation kinetics (Castro-Malaspina et aI, 1982). It is believed that the 

megakaryocyte cell lineage plays an important role in the pathogenesis of IMF (Groopman, 

1980; Castro-Malaspina, 1984). Castro-Malaspina (1984), hypothesized that the 

intramedullary death of large numbers of megakaryocyte is due to a defective maturation of 

megakaryocytes which is accompanied with an ensuing abnormal release of megakaryocyte 

components, including platelet-derived growth factor (PDGF), a mitogen for human bone 

marrow fibroblasts, and platelet factor 4 (PF4) which inhibits collagenase activity (Castro­

Malaspina et ai, 1981). It was suggested, therefore, that the excessive accumulation of 

collagen within the marrow stroma is due to the imbalance between increased collagen 

production and decreased collagen degradation (Castro-Malaspina, 1984). In addition, the 

growth factors present in platelet alpha granules are thought to be pathologically important, 

including epidermal growth factor (EGF) and transforming growth factor-p (TGF-P) 

28 



Cfiapter 1: Introduction 

(Kimura et ai, 1988). The above hypothesis concerning the pathogenesis of IMF has been 

supported by several observations, which suggests that the release of the mitogens from the 

megakaryocyte cell lineage may be pathologically involved. For instance, the accumulation 

of collagen fibre has been found to be closely associated with clusters of dysplastic 

megakaryocytes (Hasselbalch, 1990). In addition, the findings of decreased POOF activity 

in the circulating platelet or increased urinary platelet factor 4 are consistent with the idea 

that an abnormal release of PDOF occurs from platelets or megakaryocytes in the bone 

marrow microenvironment (Burstein et aI, 1984; Baglin et aI, 1988). Plasma and urinary 

PDOF excessive release is associated with severe myelofibrosis characteristic of patients 

with acute megakaryoblastic leukaemia (Oersuk et aI, 1989; Reilly et ai, 1996). The 

increased bone marrow macrophage population might be due to the increased release of 

PDOF (Thiele et aI, 1992) and the reduced natural killer cell activity (Oersuk et ai, 1993) that 

characterise the disease. 

Furthermore, bone marrow fibroblasts from patients with myeloproliferative disorders have 

been found to exhibit an increased sensitivity to various mitogens, which might enhance 

fibroblast proliferation and accumulation of collagen in the bone marrow (Oay et aI, 1984; 

Reilly et aI, 1985). 
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1.5 Aim of the study 

Mutations in receptor tyrosine kinases (RTKs) have been linked to an increasing number of 

human diseases. Interestingly, mutations observed in RTK, result in constitutive receptor 

activation. Mutations in c-kit, a class III RTKs, have been reported in exon 2 in idiopathic 

myelofibrosis and chronic myeloid leukaemia patients. Furthermore, a novel exon 8 

deletion/insertion mutations have been identified with consistent loss of Asp419 located in 

the fifth Ig-like domain of the c-kit receptor in a third of the AML-M4Eo patients analysed. 

As a result, class III RTKs were of great interest due to the association with an increasing 

number of haematological malignancies. It is also believed that many novel mutations 

remain to be identified. Furthermore, two c-fms mutations have been reported in several 

myeloproliferative and myelodysplastic disorders. However, IMF patients have not been 

investigated for this mutation. In addition, c-fms has not been under full mutational analysis 

to confirm the presence or absence of any other mutation within the gene. Furthermore, 

FLTJ, a member of RTK class III has been shown to be preferentially expressed on the 

surface of a high proportion of AML and B-lineage ALL cells in addition to haematopoietic 

stem cells, brain, placenta and liver. An interaction of FLT3 and its ligand has been shown 

to play an important role in the survival, proliferation and differentiation of not only normal 

haematopoietic cells but also leukaemia cells. Recently, a FLT3 lTD and Asp835 mutations 

were reported in AML. In addition, activation of the tyrosine kinase receptors was also 

reported in human leukaemias. This study aimed to perform systemic screening of the 

genetic alterations of c-fms and FLT3 genes in AML and IMF patients. Structural analysis 

for the FLT3 gene was also required to facilitate the screening for genetic alterations. This 

study could help in the diagnosis and treatment of c-fms and FLT3 genes mediated diseases 

in particular AML and IMF. 
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Materials and Methods 

2.1 Patients and control subjects 

2.1.1 Acute myeloid leukaemia (AML) patients 

Samples of genomic DNA were obtained from the bone marrow at presentation of all the 

AML cases studied. Sixty cases of AML were initially studied (group A). These cases were 

entered into the Medical Research Council (MRC) AML X Trial. According to French­

American-British (F AB) criteria (Bennett et aI, 1976) they were morphologically classified 

as having AML and they were sub classified as: MO (n=4), Ml (n=8), M2 (n=lO), M3 

(n=10), M4 (n=12), M5 (n=10), M6 (n=6). Standard cytogenetic analysis demonstrated 

inv(16) (n=7), t(8;21) (n=2), t(15;17) (n=lO), other chromosomal abnormalities (n=25) and 

normal karyotype (n= 16). 

Due to the study requirements, 43 further AML cases were obtained with either inv(16) 

(n=30) or t(8;21) (n=13) (group B). These patients were entered into the MRC AML XII 

trial. Morphological diagnoses, cytogenetic analysis and DNA extraction were performed on 

AML X and XII samples by University College London (UCL) staff (Department of 

Haematology). 

Two small groups of local AML patients (numbering 8 and 12 patients) were also entered 

into the study (group C 1, C2). Furthermore, 185 new AML samples from patients entered 

into AML X and XII trails were entered at the end of the study (group D) in order to 

establish the result obtained in a large number of AML patients (cytogenetic and F AB 

classification are not provided). 
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2.1.2 Idiopathic myelofibrosis (IMF) patients 

Forty cases of IMF were studied following informed consent. All cases of IMF fulfilled the 

following criteria: a leucoerythroblastic blood picture, tear drop poikilocytosis, absence of 

monocytosis, marked bone marrow fibrosis and lack of the Philadelphia chromosome. 

Peripheral blood samples were obtained from these cases and DNA was extracted from each 

sample using the Nucleon TU BACC2 extraction kit (see section 2.3). Patients with the closely 

related disorders, post-polycythaemic myelofibrosis, myelodysplasia with myelofibrosis and 

transitional myelodysplasia myelofibrosis (Reilly and Dolan, 1991) were excluded from the 

study. All IMF samples were referred to Royal Hallamshire Hospital (RHH), Sheffield from 

all over the United Kingdom. 

2.1.3 Normal controls 

EDT A tubes were used to collect 5 ml of peripheral blood from seventy normal unrelated 

individuals and DNA was extracted using the Nucleon TU BACC n method (Nucleon 

Biosciences). Subsequently, 130 further DNA samples were obtained from normal unrelated 

individuals. 

2.1.4 Ethical approvals 

AML samples used in this study were obtained from the MRC (Medical Research Council) 

DNA bank. All patients consented for samples to be stored at the time of diagnosis for future 

studies. Samples from patients with IMF were obtained with informed consent, the 

study having been approved by the Northern General Hospital Research Ethics Committee 

(first 20 samples) and CSUH Trust's Research Ethics Committee (last 20 samples) 

(SSREC02l287). 
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2.2 Materials 

2.2.1 Chemicals, reagents and plastic-ware 

Reagents and buffers were prepared using chemical components supplied by Sigma® 

Chemical Company Ltd, British Drug Houses (BDH) Chemicals Ltd or Merck® Ltd unless 

otherwise noted. DNA markers for agarose gel electrophoresis were obtained from MBI 

Fermentas. All plastic-ware was purchased from Sarsted Ltd and Sterilin Ltd. 

2.2.2 Radioactive isotope 

y)2p ATP with specific activity of (3000Ci/mMol; IllBtq/mMol) was purchased from 

Amersham Life Sciences, Ltd, UK. 
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2.3 Methods 

2.3.1 Genomic DNA extraction from whole blood 

Nucleon no BACC2 DNA extraction kit (Nucleon Biosciences) was used to extract genomic 

DNA from whole blood. 5-10 m1 of whole blood with EDT A-anticoagulant was mixed and 

lysis buffer (solution A:, 10 mM Tris-HC~ 320 mM sucrose, S mM MgCh, 1% Triton X-IOO, 

pH 8.0) was added up to a final volume of 4Sm1 in SO m1 polypropylene tubes and incubated 

for 5 minutes at room temperature. The supernatant was removed and the cell pellet collected 

after centrifugation (Beckman J6 centrifuge) at 1300 g for 4 minutes. If using a swabbing 

technique (using a plastic spatula or wire brush), place the swab containing the cells in a 2m1 

tube. Add 1.5m1 PBS and centrifuge for 1 min. If extracting from saliva, collect the saliva in 

a sterile universal tube. Put the IsoCod (ABgene) (to absorb the saliva) stick in the tube 

containing the saliva and incubate for 1 min at room temperature Remove the IsoCod stick 

and put it in a 2m1 tube and centrifuge to collect the cell pellet. The cell pellet was washed in 

20 m1 (Sm1 in case of saliva or buccul swab) of lysis buffer and centrifuged at 800 g for 5 

minutes. 2m1 of nuclear lysis buffer (solution B~ 400 mM Tris-HCI pH 8.0, 60 mM EDTA, 

ISO mM NaCI, 1% SDS) was used to resuspend the cell pellet. 0.5m1 of 5 M sodium 

perchlorate was used to deproteinise the sample. After inverting the tube seven times, the 

solution was transferred to a 15m1 screw-capped polypropylene centrifuge tubes. After 

adding 2 m1 of pre--cooled chloroform, the solution was mixed by inverting the tube at least 

seven times. The solution was centrifuged at 800g for 1 minute and 0.3 ml of Nucleon Silica 

suspension was added above the solution. The tubes were centrifuged at 1300 g for 3 minutes 

after that the upper aqueous layer was removed into a universal container containing 5 ml of 

ice-cold absolute ethanol, to precipitate the DNA. After inverting the tube gently several 
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times the DNA was removed using a sealed glass Pasteur pipette. The DNA was air dried 

for 10-15 minutes and resuspended in 1 00-200 ~ of sterile water. DNA samples were 

quantitated as described in section 2.5 and then stored at -20 °C. 

2.3.2 Cell Separation using VarioMACS system 

This method was used to extract and store DNA from myeloid and lymphoid cells from the 

blood of patients with IMF. It is suitable for 5-30 ml of whole blood in EDT A. Separation 

of 30 ml of fresh whole blood Oess than 8 hours old) was carried out in twelve 15 ml 

centrifuge tubes per patient. 

5 ml Histopaque 1119 was added to a 15 ml conical centrifuge tube using sterile syringe and 

needle. 5 ml of Histopaque 1077 was carefully layered over the Histopaque 1119 as above. 

The whole blood was diluted 1:2 with phosphate buffered saline (PBS) in a separate 15 ml 

tube. 5 ml of diluted blood was carefully layered over the Histopaque 1077. The tube was 

centrifuged at 700g in a MSE Mistral 2000 for 30 minutes at room temperature. Two layers 

of cells were seen (A and B in figure 2.1). 

The upper fluid was aspirated and discarded to within 0.5 em of layer A. Cells were 

transferred from this layer to a tube marked "A" (MNCs). Similarly, the histopaque fluid 

was aspirated and discarded to within 0.5 em of layer B and cells were transferred from this 

layer to a tube labelled "B" (granulocytes). Each aliquot (A and B) was washed twice in 10 

ml of PBS, centrifuged at 800g for 5-10 minutes and the supernatant was discarded the each 

time. The cells were resuspended in 2 ml PBS by gentle aspiration with a Pasteur pipette. 

Each aliquot (A and B) was diluted 1:10 in PBS (100 ~ of A or B cell suspension in 900 ~ 

of PBS) and the cell count for both A and B suspension and for the original whole blood 

sample was established using an automated haematology analyser (Bechman Coulter GenS 

System 2) in the Haematology Department. 
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The percentage of T-cells (CD3+) and neutrophils (CDI5+) in each aliquot (A and B) and 

whole blood was determined by flowcytometry (see section 2.4.2). Cell numbers were 

calculated as follows: 

Example: 

WBC=7.3xI09 n (count from the analyser) total white blood count in 30 ml = 7.3 x 30/1000 

=2.19x 108 cells. 

CD 3 +ve cells from whole blood = 5.24% x 2.191100 = 1.147 x 107 T cells. 

CD 15 +ve cells from whole blood = 86.09% x 2.19/100 = 1.88 x 108 neutrophils. 

Count for A suspension in 2 ml = 5.1 x 109/1 = 5.1 x 109 x 211000 = 10.2 x 106 cells 

CD3 +ve cells from A cell suspension = 90.2% 

Purity for T-cells = 90.2% (T-cells) 

10.2 x 106 

= 88.9% (T-cells) Yield %= 

1.147 X 107 

2.3.2.1 Magnetic Cell Sorting (MACS) 

Each aliquot of cells (A and B) was pelleted by spinning at 800g for 10 minutes, the 

supernatant was completely removed and each cell pellet was resuspended in 80 f.!l of cold 

PBS per 107 cells. If the cells clumped together a 30f.!m nylon mesh was placed over the 

column and the cell suspension was added onto the top of the nylon mesh and the cell 

suspension was allowed to pass through. 
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20 III of well mixed CD3 MicroBeads was added to aliquot A (T -cells). 20 III of well mixed 

CD15 MicroBeads was added to aliquot B (neutrophils) per 107 cells, both tubes were mixed 

well separately and incubated for 15 minutes at 6-12°C. Both aliquots were washed by 

adding 5 ml of PBS, centrifuged at 800g for 10 minutes, the supernatants were completely 

removed and the cell pellets were resuspended in 500 III of cold PBS per 108 cells. 

For aliquot A, one of the positive selection column was chosen according to the expected 

number of positive cells; RS+ (for up to 107 positive cells), or VS+ (for up to 108 positive 

cells) and the column was placed in the magnetic field of the VarioMACS (see fig 2.2). 

The column (RS+ or VS+) was prepared by pipetting 500lli of cold PBS for RS+ and 3 ml of 

cold PBS for VS+ onto the top of column, the buffer allowed to pass through the column into 

the collection tube (waste), another collection tube was prepared. 500lli of the cell 

suspension (A) was added to the column, the unbound cells were allowed to pass through 

and then rinsed with cold PBS; 4 x500 III for RS+ column and 4 x 3 ml for VS+ column. The 

effiuent was collected as the negative fraction. The column was removed from separator, 

then placed on a collection tube supplied with the column. Cold PBS was added; I ml to 

RS+ column or 5 ml to VS+ column. Bound cells was flushed out by pushing down the 

plunger supplied with the column, the collection tube contains the positive fraction A (see 

figure 2.2). 

The procedure was repeated for aliquot B. The collection tube contained the positive 

fraction B. The cell count was performed for each fraction as well as for CD3+ and CD13+ 

(see section 2.3.2) as before to establish the purity and yield. DNA was extracted from T­

cells (A) and neutrophils (B) using the nucleon protocol (section 2.3.1). 
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2.3.2.2 Flow cytometry 

Peripheral blood, mononuclear cells (A cells) or neutrophils (B cells) may have high cell 

counts in some cases of IMF. The cell count was obtained by using the automated cell 

analyser (Bechman Coulter GenS System 2) in the Haematology Department in the RHH. 

The sample was diluted if necessary with PBS to adjust the cell count to approximately lOx 

109/1. 

3 falcon tubes were labelled as WB, A and B. 50 III of cells was added to each tube. 5 III of 

CD3 phycoerythrin (PE) and 5 III of CD 13 fluorescein isothiocyanate isomer (FITC) were 

added to each tube and mixed gently. Tubes were incubated at room temperature for 15 

minutes protected from direct light. 1 ml of Facs Lyse solution was added to each tube, 

vortexed and incubated at room temperature for 15 minutes protected from direct light. 

Tubes were centrifuged at 1800 rpm for 5 minutes, the supernatant was removed and the 

cells were resuspended in PBS. The supernatant was decanted and the cells were 

resuspended in 200 III PBS. The cells were mixed and refrigerated until ready for 

acquisition, using the standard operating procedure for acquisition and analysis in the Cell 

Marker Laboratory CML, RHH. 

2.3.3 Determination of DNA concentration 

Two methods are commonly used for determination of DNA (genomic, plasmid and primers) 

or RNA concentration, quantitative and qualitative methods. The quantitative method is 

based on the optical density measurement while; the qualitative method is based on the 

estimation against a standard DNA ladder of known concentration. Only the quantitative 

method was used in this study. 
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2.3.3.1 Optical density 

The DNA concentration in the solution was measured by reading the absorbance at a 

wavelength of 260 nm. 1: 100 dilution with sterile water was performed in a 1.5 ml tube and 

transferred to a 1 ml Quartz cuvette. The cuvette was then placed into a UV 

spectrophotometer (Beckman). One absorbance unit at 260 nm wavelength (OD260) 

corresponds to a concentration 50 j.lg/ml for double stranded DNA, 25 j.lg/ml for single 

stranded DNA and 40 J.lg/ml for RNA. DNA concentration was calculated using the above 

equation. Afterwards the DNA was diluted to the concentration required. 

2.3.4 DNA amplification 

Polymerase chain reaction (PCR) was the selected method to carry out DNA amplification 

for c-fms (2-22) and FLT3 (9, 11, 14-15,20). All 21 exons of c-fms, exons 9, 11,14-15,20 

of FLT3 and all intronlexon boundaries were amplified independently. 

2.3.4.1 Designing primers and synthesis 

Primer 3, a computer software available over the Internet was used to design all the primers 

for c-fms (see table 2.1) and FLT3 (see table 2.2) gene amplification (http://www­

genome.wi.mit.edulcgi-hinlprimer/primer3.cgi), except for the lTD for which previously 

designed primers were initially used (Nakao et ai, 1996). Primers for the c-fms gene were 

synthesised using a 381 A DNA synthesiser (Applied Biosystems) by Hazel Holden (Division 

of Genomic Medicine, University of Sheffield, UK). Primers for the FLT3 gene were 

synthesised by Abgene Ltd, UK. 

All PCR reactions comprised the following; 500 ng of genomic DNA, 16.6 mM (NH4hS04, 

67 mM tris HCI (pH 8.8), 10 mM p-mercaptoethanol, 100 Ilg bovine serum albumin (BSA). 

300 ng of each primer, 200 j.lM dNTPs (Pharmacia), MgCh 1-1.5, and 1 U Taq DNA 
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polymerase (Bioline) in a final volume of 50 ,.d. Samples were initially denatured at 95°C 

for 5 minutes. DNA amplification was performed by 35 cycles of denaturation at 94°C for 1 

minute, annealing at 52-60°C for 30 seconds and extension at 72°C for 30 seconds. 5 jJ.I of 

each PCR product was loaded onto a 4% polyacrylamide gel (section 2.3.6.2) to confirm that 

the amplification had occurred. Each PCR product was then screened for mutations using 

conformation sensitive gel electrophoresis (2.3.5). 
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Table 2.1 Primer sequence and annealing temperatures required for peR 
amplification of the c-fms gene. 

Exon Primer Sequence 5'-3' Location Size/bp A'flC 
number name 

2 2F GTCTCTTCTCCCAAGACCCC 1562-1581 463 52 
2R TCACAGGGGTCTTCTCCATC 2005-2024 

3 3F TGAGCAGGTTGAGGGTTAGG 7138-7157 565 52 
3R TCTTCCAGGTCCTTGCTCAT 7683-7702 

4 4F AGGGCAGTTGTAACCCTGTG 7966-7985 460 56 
4R CCATTGAGGGGAAGAAGTGA 8406-8425 

5 5F ATCATATTCAGGGAGCCTGG 10040-1 0060 341 56 
5R GAGATCTCGGGTGAGTCTGC 10362-10381 

6 6F AAAGGCTGAGGATTGGAACC 10824-10843 409 56 
6R AAGGGAAAGCTCCTGGAGAG 11213-11182 

7 7F GGTGGATGACAAAATGGAC 14767-14785 331 56 
7R CTTGCTGAAGCATACCCCAT 15077-15096 

8 8F TCACCAACACCACCTGATTCT 17736-17756 205 56 
8R CATCCCTCCAGGCAGTCC 17923-17940 

9 9F AGGGCACAGGGAAGTAGGTA 17955-17974 271 58 
9R CATGTCCCTCCCACTCACA 18207-18225 

10 10F AGTGGGAGGGACATGCTG 18211-18228 382 56 
lOR GCTAGGATCTGCTCCAAAGG 18573-18592 

11 IIF CCACTGTGTTCCAGGCAGT 19919-19937 259 52 
IIR CCATCCAAATCTGGCTCACT 20158-20177 

12 12F CTCTTGGGGGTCAGAAACAA 26402-26421 294 56 
12R CAAAGGGCCTCTGTCCAAG 26677-26695 

13 13F ATGGGCCCTTGGACAGAG 26670-26687 256 56 
13R TGTGTGTGATGCCTCTTGTG 26906-26925 

14 14F CCCCATGTATCTGTGTGGTG 27283-27302 246 52 
14R CCTGGGGCCCTGAGATTC 27511-27528 

15 15F CCCAGTCTCATGCTCCTGTT 28391-28410 306 56 
15R TGGCTTTGAAGACAGACTCG 28677-28696 

16 16F TGAGCAGTGCAGTGATGATG 30678-30697 209 56 
16R AGCAGCCCCTTCTCCTTTT 30818-30886 

17 17F AAAAGGAGAAGGGGCTGCT 30868-30886 215 60 
17R ACAGACCTGGGTGGCTATGA 31063-31082 

18 18F CCTCAGGCTCAGGTAGGAGA 31930-31949 257 56 
18R GGGATGACAGTCCCCAGTTAT 32166-32186 

19 19F GCCCAAAATAACTGGGGACT 32159-32178 222 56 
19R CACCAAACAGCTTTGTCCAC 32361-32380 

20 20F GGGAATGGGGAGAAGACAAT 32936-32955 200 60 
20R AAAGCCTGGGGTGTCCTTT 33117-33135 

21 21F GTGTTAATGGCCCCTGGAC 33836-33854 220 60 
2 1R CAGCCCAACGTGCTTTACC 34037-34055 

22 22F GAGAGAGCGGGTGAGTGG 33996-34013 382 52 
22R GCCGAGCTGTTGAGTGAAAT 34358-34377 
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Table 2.2 Primer sequence and annealing temperatures required for PCR 
amplification of the FLT3 gene. 

Exon I Primer Sequence 5'-3' Size/bp 
number name 

9 9F CTCCTGGGTTTTCACTTGGA 400 
9R TCCTTCTCAAGGGCAACAAG 

II IIF CCCAGCCAGTGAGCTTATTT 201 
IIR GGTCAGAGAGTTTTATGTTCTTCCA 

14-15 14F GCAATTTAGGTATGAAAGCCAGC 328 
ISR CTTTCAGCATTTTGACGGCAACC 

20 20F CCAGGAACGTGCTTGTCA 194 
20R TCAAAAATGCACCACAGTGAG 

2.3.5 onformation sensitive gel electrophoresis 

AToC 

58 

S8 

S2 

S6 

Conformation sensitive gel electrophoresis (CSGE) was the method chosen for mutation 

detection. GE analysis was used to identify the alterations in electrophoretic movement 

of double tranded D that resulted from the bending of heteroduplexes at sequence 

mismatches (Ganguly et aI1993). Heating the PCR products at 95°C for 5 minutes and then 

incubating it at 65° for 30 minutes was carried out to denature the DNA and to create 

heteroduple of mutant and wild-type complementary DNA strands. 40 well castle combs 

were u ed to create the wells of the 10% polyacrylamide gels (41x33xO.l em) prepared as 

99: I acrylamide: 1 4 bis-acrolypiperazine (BAP; Fluka), 10% ethelyene glycol, 15% 

formamide in 0.5xTTE buffer (1 xITE = 89 rnM tris, 28.5 mM taurine, 0.2 mM DTA), 

were pre-electrophoresed for 20 min at 750 volts. 5-7 III of heteroduplexed PCR products 

were then mi d with 2 III loading dye (50% glycerol, 0.25% bromophenol blue and 0.25% 

xylene canol and loaded onto the gel. The gel was electrophoresed for 16-18 hours at 400 

volts and tained in 0.5xITE buffer containing 1 Ilg/ml ethidiurn bromide for 5 minutes at 

room temp rature, de tained for 10 minutes in sterile water and the DNA bands were 

vi uali ed under light. 
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2.3.6 DNA electrophoresis 

Electrophoresis is used to separate molecules by some property. In the case of DNA the 

molecules can be separated based on their size. DNA has a negative charge in solution, so it 

will migrate to the positive pole in an electric field. 

Two types of gel were used for identification and purification of DNA fragments by 

electrophoresis, namely agarose and polyacrylamide gel. Different concentrations were used 

for separation depending on the size of the DNA fragment and the resolution required 

(Sambrook et al 1989). DNA samples were mixed with 6xgelloading buffer (50% glycerol, 

0.25% bromophenol blue and 0.25% xylene cyanol,) prior to loading onto the gel. Ethidium 

bromide (EtBr) was used to localise the DNA fragments within the gel and visualised by 

illuminating with UV light on a transilluminator (UVP, 302 nm). The size of DNA 

fragments was estimated by comparison with known molecular size standards. 

2.3.6.1 Agarose gel electrophoresis 

In agarose gel electrophoresis the DNA is forced to move through a sieve of molecular 

proportions that is made of agarose. The end result is that large pieces of DNA move slower 

than small pieces of DNA. The place in the gel that the DNA migrates to is observable 

under ultraviolet light when the current is turned off and the gel is stained with EtBr. 

Although agarose gels have lower resolving power than polyacrylamide gels, they have a 

greater range of separation. Solid agarose (0.7-1.0%) was melted by boiling in 1 x 

electrophoresis buffer (l xTBE; 0.089 M tris-borate pH 8.0, 2 mM EDT A), and after cooling 

EtBr was added to a concentration of 0.5 Ilg/ml. The agarose was poured into a plastic 

mould and allowed to set. 
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2.3.6.2 Polyacrylamide gel electrophoresis 

Another type of gel was also used (polyacrylamide gel) due to it's higher resolving power 

than agarose gels and for being able to separate fragments that differ in size by as little as 

0.2%. Furthermore, polyacrylamide gel electrophoresis is sufficient for the separation of 

small fragments of DNA (less than 1 kb in length). 4-8 % polyacrylamide gels were 

prepared from stock solutions containing acrylamide and bisacrylamide at a ratio of 19: 1 

Depending on the type of DNA analysis, two types of polyacrylamide gels are commonly 

used; non-denaturing and denaturing gels. 

Only the non-denaturing polyacrylamide gels were used for the separation of double stranded 

DNA fragments. Gels were prepared in 1 xTBE with 0.1 % (w/v) ammonium persulphate 

(APS) and 0.001% (v/v) N,N,N',N'-tetramethylethylenediamine (TEMED) using BioRad 

mini-protean II vertical electrophoresis equipment. After polymerisation of the gel, the wells 

were washed with buffer to remove any unpolymerised material. DNA samples were mixed 

with 6x loading buffer and loaded onto the gels. 8x 10 cm gels were electrophoresed for 25 

minutes at 200 volts. Gels were stained with ethidium bromide (EtBr) and visualised under 

UV light. 

2.3.6.3 Silver staining o/polyacrylamide gels 

In some cases, more sensitive method than EtBr staining is needed to visualise the DNA 

fragments separated by polyacrylamide gel electrophoresis. Therefore, silver staining was 

used following electrophoresis. The gel was placed in fixing solution (0.5% acetic acid, 10% 

ethanol) for 5 min. The gel was then submerged in 10% AgN03 solution for 20 min, 

washed twice with H20 and transferred into fresh formaldehyde NaOH solution (0.1 % 

formaldehyde, 1.5 NaOH) and left until stained. When the bands were visualised the gel was 
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submerged in 0.75 NruC03 for 10 min, drained and sealed in plastic for documentation and 

storage. 

2.3.7 DNA purification 

This step was undertaken in order to prepare the DNA to be suitable for DNA sequencing, 

restriction enzyme analysis and other analytical techniques. Gel electrophoresis can be used 

as a preparative procedure for the isolation of individual species of DNA molecules. 

2.3.7.1 Agarose gel DNA purification 

In some cases a clean PCR product was not achieved, therefore, other DNA purification 

technique is recommended. Pharmacia Biotech DNA purification kit was used to purifY the 

DNA band from agarose gel. Using a clean scalpel the DNA band of interest was excised 

from the gels under UV illumination. Excised DNA band was cut into several small pieces 

and transferred into 1.5 ml tube. 10jllllOjlg of capture buffer was added to the tube 

(maximum 300jll / 0.3 g gel slice), mixed by vortexing several times. The tube was 

incubated in a water bath at 60°C for 5-15 min until the gel was completely dissolved. The 

sample was transferred to GFX column (provided with the kit), incubated at RT for 1 min, 

centrifuged (MSE) mistral 2000 at full speed for 30 second. The flow-through was 

discarded. The GFX column was placed inside a new collection tube and 500jll of wash 

buffer was added to the column, centrifuged at full speed (MSE) mistral 2000 for 30 second. 

After discarding the collection tube the GFX column was transferred to a fresh 1.5 ml tube, 

20-40 jll of DW was added to the top of the glass fibre matrix in the GFX column to elute 

the DNA. The GFX column was incubated at RT for 1 min, centrifuged at full speed for 1 

min to recover the purified DNA. 
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2.3.7.2 En7J'matic purification of peR product for DNA sequencing 

PCR product had to be treated to remove any unincorporated dNTPs and primers, this was 

achieved by pre-treatment with the Thermo Sequenase Cycle Sequencing Kit 

(AmershamTM). Purification was simply performed by breaking down the primers and the 

dNTPs using two hydrolytic enzymes active in the PCR reaction buffer. 5 J.lI of PCR product 

was mixed with 10 units of exonuclease I and 2 units of shrimp alkaline phosphatase and 

incubated at 37°C for 15 minutes. Enzymes were inactivated by further incubation at 80°C 

for 15 minutes. 

2.3.8 DNA sequencing 

Thermo-Sequenase cycle sequencing kit (Amersham TM) was used to perform direct DNA 

sequencing. The manufacturers protocol was followed with some alterations if needed. 

2.3.8.1 DNA Sample preparation 

The PCR fragment required for sequencing was purified using the enzymatic purification 

method (sections 2.3.7.2). The purified PCR fragment was then electrophoresed on a 

polyacrylamide mini gel (section 2.3.6.2) and the DNA concentration was estimated using 

the method in section 2.3.3.1. 

2.3.8.2 End labelling of primers 

T4-polynucleotide kinase (PNK) was used to label the 5' end of the sequencing primer as 

described by the manufacturer. 1 J.lI of the primer (70 nglJ.lI) was added into a 0.5 ml 

eppendorf tube containing 1J.lI of PNK buffer (lxPNK buffer), IJ.lI of PNK enzyme (10 

units) and 3 J.lI of y)2p ATP (approximately 1.11 MBq). The tube was then vortexed, pulse-
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spun and incubated at 37°C for 30-45 minutes. To inactivate the residual PNK enzyme, the 

mixture was incubated at 80°C for 10 minutes. 

2.3.8.3 DNA sequencing protocol 

A 0.5 ml tube was used to prepare the reaction mix by adding 1-1 0 ~l of the purified 

template DNA (20-100 ng), 2 III reaction buffer (1 xreaction buffer), 2 III Thermo-Sequenase 

DNA polymerase (8 Units) and 1111 labelled primer (1.5 pmoles). The final volume was 

made up to 17.5~1 with sterile water. The tube was mixed and spun. 4~1 of the reaction mix 

was then added to four 0.5 ml tubes each containing 4 ~l of 150 IlM (di-deoxy NTPs) each of 

ddATP (A tube), ddCTP (C tube), ddOTP (0 tube) and ddTTP (T tube). Each tube was then 

mixed by vortexing, pulse-spun and overlaid with one drop of mineral oil. Tubes were 

placed in a thermal cycler (Perkin Elmer Cetus 480) and cycled through 50 cycles of 30 

seconds at 95°C (denaturing), 30 seconds at 50°C (annealing) and 2.0 minutes at noe 

(extension). At the end of the 50 cycles, reactions were stopped by the addition of 4111 of 

stop solution (95% formamide in 0.05% bromophenol blue, 0.05% xylene cyanol, 20mM 

EDT A pH 8.0) to each tube and the mixture was vortexed and pUlse-spun. Tubes were 

incubated at 90°C for 5min prior to loading on 6% denaturing polyacrylamide gel. 

2.3.8.4 Denaturing electrophoresis of sequencing reactions 

All sequencing reactions (A, e, G and T tubes) were electrophoresed though a 6% 

denaturing polyacrylamide gel containing 7 M urea (section 2.3.6.2). The gels, 50 cm in 

length, 20 cm width, 0.35 cm in thickness with 24 lanes were electrophoresed for 15-30 

minutes at 38 watts. 4 ~l of each sample was loaded onto the gel and electrophoresed using 

electrophoresis tanks (Scotlab) at a constant power of 38 watts until the desired separation 

had occurred, usually until the bromophenol blue dye had reached the bottom of the gel for 
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sequence close to the primer (up to a maximum of2 hours). The sequencing gel was fixed in 

10% acetic acid and 10% ethanol for 10-15 minutes to remove the urea, transferred to 3 MM 

Whatman filter paper and covered by Saran Wrap (Genetic Research Instrumentation). The 

gel was then dried for 2 hours using a Biorad Gel dryer followed by autoradiography (section 

2.3.9). 

2.3.9 Autoradiography 

Due to light sensitivity, all steps had been performed in the dark room. Gels were exposed to 

Cronex X-ray film (Du Pont) in lightproof cassettes, containing intensifying screens, before 

being developed using Cronex developer and fixer. The exposure time for most gels was 

overnight, depending on the level of the radioactivity emitted from the gel. Pre-flashing of 

the films (flashgun, Amersham) was performed when a low level of radioactivity was 

detected, to increase the film sensitivity and also by leaving them during the exposure time at 

-70°C (Laskey and Mills 1977). 

2.3.10 Automated sequencing 

DNA samples were prepared as described in section 2.3.8.1 diluted in 1110 in 1O~1 of water. 

Automated sequencing was then performed using ABI 377 automated gene sequencer 

(DGM). 

2.3.11 Statistical analysis 

2.3.11.1 Kaplan-Meier Survival Analysis 

The objective of the Kaplan-Meier (KM) methodology is to estimate the probability of 

survival of a defined group at a designated time interval (conditional probability). KM uses a 

non-parametric survival function for a group of patients (in other words their survival 
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probability after the time t) and therefore does not make assumptions about the survival 

distribution. Stat-view software (Abacus Concepts, Inc) available in the Division of Genomic 

Medicine was used to measure the survival analysis using Kaplan-Meier method. 

2.3.12 Numbering schemes 

Alterations were numbered according to the eDNA position unless it was located in the 

intronie part of the gene. In ease if the alteration is located in the intronie part, the number of 

the nearest exonic nucleotide from either end of the exon i.e. 5' or 3' will be used, however, 

the distance (number of nucleotides) from that end to the alteration site will be also included 

as + if it was in the 3' end and as - (minus) if it is located in the 5' of the exon (see figure 

2.3). 

1) 

t 
~ctcttctttaaattagGTCTCTTCTCCC~TCTTCTCCATC 

7 500 

2) 

c 
GTCTCTCCCAA~TCTTCTCCATC~ctcttctttaaattag 

600 18 

Figure 2.3. Numbering system for intronic nucleotide alterations. 

1) If the alteration is in the 5' end the position of the change will be 

500-7 A>T. 

2) If the alteration was in the 3' end the position of the change will 

be 600+ 18 G>C. Capital letters represent exonic sequence and 

small letters represent intronic sequence. 
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Establishment of screening of the c-fms gene and analysis 

of polymorphic sequence alteration 

3.1 Introduction 

c-fms or CSFIR is a class III RTK that is encoded by the c-fms proto-oncogene (Sherr et ai, 

1985). it is located on the long arm of chromosome 5 at q33.3 (Groff en et ai, 1983). c-fms 

and other class III RTK consist of an extracellular part that consists of five immunoglobulin 

repeats, a transmembrane domain (TM), a juxtamembrane domain (JM), an intracellular 

tyrosine kinase domain, composed of two tyrosine kinase domain (TKI and TK2) separated 

by a kinase insert, and a c-terminal domain (Yarden and Ulrich, 1988). 

c-fms is about 75kb in length and consists of 22 exons with ex on 1, however, being a non­

coding exon, located 26kb upstream from the receptor-coding sequence (exon 2) (Hampe et 

ai, 1989; Visvader and Verma, 1989). All the c-fms coding exons are short, with lengths 

ranging from 89bp (exon 16) to 285bp (exon 4) (Hampe et ai, 1989). Intron sizes, however, 

are variable, ranging from 81 bp (intron 18) to 6355bp (intron 11) (Hampe et ai, 1989). 

Exons 2-10 and the 5' portion of exon II encode the extracellular domain of the c-fms 

receptor, while the intracellular domain is encoded by the 3' end of exon 11 and by exons 12-

22 (Hampe et ai, 1989). The A TG initiation codon is located in exon 2, which encodes the 

signal peptide for translocation of the polypeptide chain into the cavity of the endoplasmic 

reticulum (Wheeler et ai, 1986). Exon 3 to the 5' end of exon 11 encode the remainder of the 

extracellular domain. Yet, exon 11 also contains the complete hydrophobic membrane­

spanning segment that attaches the polypeptide within the membrane of the endoplasmic 

reticulum during its synthesis (Rettenmier et ai, 1985). Exon 13 encodes the predicted site 
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of ATP binding (Lysine 616). The 3' region of ex on 17 to exon 21 encode the most closely 

homologus sequence to other class III RTK, namely c-kit, which shows the closest similarity 

to c-fms of other known genes (Besmer et ai, 1986; Yarden et ai, 1986). c-kit has the 

greatest degree of similarity in exon 19, decreases in exon 20 and is the weakest in exon 21 

of the c-fms receptor (Hampe et ai, 1989). Yet, the kinase insert (KI) sequence is found 

between the A TP binding site in exon 13 and the most highly conserved region of the 

tyrosine kinase domain (Hampe et ai, 1989). Exon 22 contain the TGA termination codon 

and the 3' untranslated sequence of 777 bp length 5' to the site of polyadenylation (Hampe et 

ai, 1989). 

A number of different biological questions are raised when a new gene is identified 

underlining the relationship of the gene structure to function and the possible pathological 

relevance of mutations or polymorphisms. Polymorphism refers to the simultaneous 

occurrence in the population of allelic variation. A variant that occurs in greater than 1 % of 

the normal population and has no pathological effect on any expressed gene product can be 

considered as a polymorphism (Peake and Winship, 1991). Mutations can be distinguished 

from polymorphisms by the fact that "any putative mutation must demonstrate a functional 

consequence to eliminate the possibility of a polymorphism" (Trent, 1997). Generally, 

mutation refers to the identification of a change in the DNA that produces disease, or 

dysfunction (Trent, 1997). Small nucleotide deletions can be identified by peR based 

techniques e.g. the common three nucleotide deletion affecting codon Phe508 in cystic 

fibrosis. However, in terms of causing genetic disorders, point mutations occur more 

frequently than deletions. In the practical world, point mutations affecting a single 

nucleotide are more difficult to identify because they are small and heterogeneous; in the 

case of inherited mutations, it is not unusual for each family to have its own specific 

mutation (Trent, 1997). 

55 



(liaeter 3: f£sta6[isfzment of screen ins oftfze c-fms gene ana ana[ysis ofpo[ymorpliic sequence a[teration 

In the last few years, there has been an increased necessity to screen amplified DNA to 

identify gene fragments likely to contain a mutation. In some diseases, there are a number of 

point mutations, which have a great effect on the circumstances of the disease. DNA 

sequencing technologies are one of the main approaches that now are being used to sequence 

small regions of interest in the human genome. For unknown mutations however, in some 

cases, time and cost considerations could limit the use of this approach as a mutation 

detection technique. 

A number of mutation detection techniques have been developed to screen DNA for point 

mutations. Methods can be divided into two categories according to whether the mutation is 

previously known or not. Some of the commonly used methods for detection of known 

mutations include allele specific amplificationlhybridisation (ASAlH) (Okayama et ai, 1989) 

and the oligonucleotide ligation assay (aLA) (Nickerson et ai, 1990). However, these 

methods are unable to detect mutations outside the chosen area and are not useful for 

screening a given gene for novel mutations. Therefore, these methods will not be described 

in this study. In contrast, if the position or nature of a mutation is unknown, then screening 

can be achieved using one of the several techniques including single strand conformational 

polymorphism (SSCP) (Orita et ai, 1989); denaturing gradient gel electrophoresis (DGGE) 

(Fischer and Lerman, 1979) and conformation sensitive gel electrophoresis (CSGE) 

(Ganguly et ai, 1993). 

3.1.1 DNA Sequencing 

The technical innovation for DNA sequencing was established in 1977, when Maxam and 

Gilbert described a method for sequencing using base specific chemical degradation and 

Sanger and his colleagues described a method for enzymatic sequencing using chain 

terminators (Maxam and Gilbert, 1977; Sanger et aI, 1977). These basic techniques of DNA 
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sequencing, established 1977, are still in use. DNA sequencing methods have been further 

refined to enable automation. 

The basis of both techniques of DNA sequencing (Maxam and Gilbert, 1977; Sanger el aI, 

1977) is the generation of a set of single stranded DNA fragments, which are separated by 

size on a polyacrylamide gel. However, the Sanger chain termination method has been under 

further development and has become more widely used. Automated chain termination DNA 

sequencing was introduced in 1986 (Ansorge et aI, 1986) with fluorescent labelling, 

decreasing the time of detection and excluding the use of radioactive material. 

In general. using sequencing as a mutation detection technique is the most sensitive and 

accurate technique available. However, the disadvantage of using the automated sequencing 

in screening a large number of patients, is that it is an expensive approach. Using manual 

DNA sequencing would be an impractical and time-consuming approach. 

3.1.2 Single Strand Conformational Polymorphism (SSCP) analysis 

SSCP is a scanning technique that is widely used because of its simplicity. The principle of 

this method is the ability of a nucleotide alteration to change the electrophoretic mobility of a 

single DNA strand in a non-denaturing polyacrylamide gel. Unlike double-stranded DNA, 

single stranded DNA is flexible and will adopt a conformation determined by intramolecular 

interactions (Orita el aI, 1989). The presence of any sequence change, due to mutation or 

polymorphism between mutated and wild type DNA, will alter the differential migration 

pattern. This can be detected as an alteration in the electrophoretic mobility of the single­

stranded DNA in non-denaturing polyacrylamide gel (Orita et ai, 1989). 

The sensitivity of SSCP analysis can reach up to a 95% detection level in certain model 

systems (Michaud et al. 1992; Sheffield el aI, 1993). Achieving such high detection rates by 
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SSCP may require running the gels under specific conditions, because the conformation of 

single-stranded DNA is sensitive to a number of parameters, including ionic strength, the 

type of gel matrix, fragment length, and temperature. When the SSCP technique was 

originally introduced, radioactive nucleotides were used and SSCP was originally performed 

on large sequencing gels. It was performed in a cold room to control the temperature, which 

makes the technique difficult and not always reproducible (Orita et aI, 1989). However, the 

simplicity and reproducibility of this method was increased when the technique was 

modified by the development of a non-radioactive technique and introducing temperature 

controlled electrophoretic units (Ainsworth et ai, 1991; Yap and McGee, 1993). SSCP, 

however, is less effective if DNA fragments of more than 200bp are analysed, since 

sensitivity of PCR-SSCP tends to decrease as fragment length increases. For example, if a 

400 bp fragment is screened for a single-base change, then the sensitivity falls to 

approximately 80% compared to 95% sensitivity for a 200 bp fragment (Hayashi and 

Yandell, 1993). 

3.1.3 Denaturing Gradient Gel Electrophoresis (DGGE) 

In 1979, denaturing gradient gel electrophoresis (DGGE) was introduced as an alternative 

method to distinguish any segment of DNA containing a single base pair mutation from its 

corresponding wild-type segment (Fischer and Lerman, 1979). The separation principle of 

this technique is based on the melting properties of DNA in solution. Thus, when the 

temperature or the denaturant concentration is raised, this will cause the DNA molecules to 

melt in discrete segments called the melting domains. It is noteworthy to mention that the 

melting temperature (TM) of a melting domain depends on its nucleotide sequence. The 

separation of a DNA double strand into single-strand segments increases if the DNA 

fragment is electrophoresed through a linear gradient of increasing denaturant concentration. 
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Furthermore, a single base substitution in the DNA molecule can cause differential mobility 

during DGGE. This causes the DNA segment to form a less uniform three-dimensional 

structure that moves through a polyacrylamide matrix at a reduced rate. At a certain 

position, the DNA molecule will start branching and slowing down when it enters the 

concentration of denaturant where its lowest temperature domain melts. This results in 

separation of different fragments by the end of the run. A computerised program has been 

developed to determine the theoretical melting domains of the DNA fragment of interest 

(Lerman and Silverstein, 1987). However, the DGGE method is not very popular since it 

requires a significant time for preparation and analysis when compared to SSCP and CSGE. 

3.1.4 Conformation Sensitive Gel Electrophoresis (CSGE) 

One of the most commonly used methods for mutation detection is heteroduplex analysis. 

Heteroduplexes are formed by mixing wild type and mutant DNA amplified by PCR. By 

heating and cooling, the samples are denatured and re-annealed (Ganguly et aI, 1993). In a 

non-denaturing and for some applications, a mildly denaturing system, mutations can be 

detected by heteroduplex analysis based on the decreased mobility of the heteroduplex 

compared with the corresponding homoduplex (Ganguly et aI, 1993). Due to an expanded 

open double-strand pattern surrounding the mismatched bases, the heteroduplexes tend to 

migrate more slowly than their parallel homoduplexes. 

One of the heteroduplex detection methods is CSGE. As stated earlier, in the presence of a 

single mismatch a differentiation can occur between heteroduplexes and homoduplexes using 

polyacrylamide gels in a mildly denaturing solvent system. In an early study, it was shown 

that DNA conformational changes can be created below the concentration required for total 

denaturation at moderate temperatures in the presence of mildly denaturing solvents like 

ethylene glycol and formamide (Orosz and Wetmur, 1977; Lee et aI, 1981). Therefore, this 
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confonnational change will expand the differential migration of DNA heteroduplexes and 

homoduplexes during gel electrophoresis (figure 3.1). 

CSGE is a highly sensitive mutation detection system and, according to a recent study can 

reach up to 94% sensitivity (Korkko et ai, 2002). Furthennore, a recent report demonstrated 

that CSGE can be adopted for use on a fluorescent platfonn (F-CSGE) and results in a higher 

throughput and sensitivity (Ganguly et ai, 1998). The simplicity of this method and the direct 

use of PCR product without the need for any extra purification are the main advantages of 

this method. Therefore, many laboratories have adopted this method for scanning genes for 

sequence alterations including mutations and single nucleotide polymorphisms (SNPs). 

For this part of the study. the main aim was to screen the c-fms gene for mutations in two 

different groups of patients having AML or IMF. CSGE was the method of choice for this 

study due to several factors. This technique was previously used and established in our 

laboratory for the analysis of the factor VIII gene in patients affected by haemophilia A 

(Williams et al. 1998: Goodeve et ai, 2000). It was also used in further genes such as the 

von Willbrand factor gene (Abuzenadah, 1998), factor IX (Hinks et ai, 1999) and produced 

reliable results in all of these studies. In the factor IX gene, ten previously reported mutations 

and eleven novel mutations were identified in 21 patients with haemophilia Busing CSGE 

demonstrating 100% sensitivity in this patient cohort (Hinks et ai, 1999). Therefore, the 

CSGE method was selected on basis of laboratory experience, sensitivity and simplicity. 

The establishment of CSGE analysis for the c-fms gene is described in this chapter. 

Furthennore. the novel and previously identified fragments of c-fms exhibiting polymorphic 

nucleotide alteration are presented in this chapter. Newly identified and previously reported 

mutations will be presented in chapter 4 of this study. 
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Control D A PCR product (wild type) Patient DNA (pCR product) 

A) Heat patients and control samples to denature the DNA 

B) Incubate the denatured DNA at 65°C for 30 min for heteroduolex formation 

Homoduplexes 

/\ 

Homoduplexes 

Heteroduplex contains the 
sequence change 

ConfomlationaJ change as a result of 
the mismatch leading to differential 
migration 

-~ 
C) Load the D A mix into polyacrylamide gel containing denaturing solvents and 
electrophorese overnight (16-18 hr) at 400 volts 

Bands can be visualised under UV light after staining with EtBr 

ocmru control b _ 
Homoduplex 

Heteroduplex 

Figure 3.1 chematic repre entation ofe GE analysis ofheteroduplexed DNA sample with 
a ingle ba e ub titution demon trating the principle of the technique 
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3.2 Results 

Sixty cases of AML (group A) were initially screened for changes in the c-fms gene. These 

cases were entered into the Medical Research Council (MRC) AML X Trial. According to 

French-American-British (F AB) criteria (Bennett et ai, 1976) they were morphologically 

classified as having the following AML types: MO (n=4), MI (n=8), M2 (n=IO), M3 (n=IO), 

M4 (n=12), M5 (n=lO) and M6 (n=6). Furthermore, forty cases of IMF were also studied. 

All cases of IMF fulfilled the following criteria: a leucoerythroblastic blood picture, tear 

drop poikilocytosis, absence of monocytosis, marked bone marrow fibrosis and lack of the 

Philadelphia chromosome. 

All 21 exonic and flanking intronic regions of the c-Jms gene were amplified using the 

polymerase chain reaction (PCR) and the primers listed in table 2.1 (section 2.3.4.1). DNA 

fragments were amplified individually using PCR and specific primers for each exon and 

then self-heteroduplexed (heated to denature DNA and then cooled to re-anneal the DNA). 

CSGE analysis was then performed for all samples, DNA sequencing was then performed for 

cases exhibiting abnormal CSGE patterns. 
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3.2.1 Polymorphism in exon 3 

Exon 3 was amplified from the genomic DNA of 100 patients (60 AML and 40 IMF) using 

the primers described in section 2.3.4.1. CSGE analysis of self-heteroduplexed PCR product 

of each patient demonstrated that 47 patients (24 AML and 23 IMF) had abnormal CSGE 

patterns (fig 3.2). DNA sequence analysis of patients with aberrant patterns revealed that 

patients had a C~ T substitution at position 384 of the c-frns cDNA (numbering after 

(Coussens et aI, 1986» and were heterozygous for a silent change at codon 28 (Pro28Pro; 

CCC~CCT; figure 3.3). Further analysis of 70 normal individuals by CSGE followed by 

DNA sequencing showed that seven individuals were heterozygous for the same silent 

change in exon 3. 

c 
C 
C~T 

1 2 3 4 5 

Heterozygote Wild-type 

Figure 3.2 CSGE analysis of exon 3 PCR 

fragment demonstrating a polymorphism in the 

c-fms gene. The gel shows the normal pattern in 

lanes land 2 and a positive control in lane 3 and 

two samples with positive patterns in lanes 4 

and 5. 

C 
C 
C 

Figure 3.3 Direct DNA sequence 

analysis showing the novel C~ T 

polymorphism at codon 28 in exon 3. 
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3.2.2 Polymorphism in exon 4 and the surrounding intronic sequence 

Exon 4 was amplified from genomic DNA of 100 patients (60 AML and 40 1M F) using the 

primers de cribed in section 2.3.4.1. CSGE analysis of PCR product from each patient 

demonstrated that 15 patients (11 AML and 4 1MF) showing 3 aberrant CSGE patterns. One 

AML sample had a G~A (Ser139Ser) substitution at position 717 plus a G~A substitution 

at position 892+41 with CSGE pattern as shown in figure 3.4 (lane 1). The pattern shown in 

lane 2 was seen in 13 patients (9 AML and 4 1MF) who had a G~A substitution at position 

892+41 . A further AML patient had a C~G substitution at position 892+54 plus a T ~C 

substitution at position 892+65 with a different pattern as in figure 3.3 lane 3. Seventy 

normal individuals were screened using CSGE, 8 out of 70 had a band shift as shown in lane 

2 indicating heterozygosity for the G to A substitution at position 892+41. 

1 2 3 4 5 

Figure 3.4. GE analysis of exon 4 peR fragment demonstrating 3 different 

C G patterns in the c-fms gene. Lane 1 shows the CSGE pattern of AML patient 

5026 with a G A ( er139 er) substitution at position 717 plus a G~A substitution 

at po ition 892+41 (intronic non coding region). Lane 2 shows an AML patient 

with the G A ub titution at position 892+41 alone, lane 3 shows an AML patient 

with a G substitution at position 892+54 plus a T ~C substitution at position 

892+65 oth intronic). Lanes 4 and 5 show two AML patients with normal CSGE 

pattern . 

DNA equence ar hown in figure 3.5. 
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=====-:-=..--- - - -~ 

G.\ 

Figure 3.SA Automated sequence analysis showing the novel 717 

TCG~TCA (Ser139Ser) silent change in exon 4 of the c-jms gene 

(position 121 on this trace). 

Wild-type Heterozygote 

Heterozygote 

892+54 

T ~ v..---I....-JI 

892+65 

oi--- G~A 892+41 

Figure 3.SB Direct DNA sequence 

analysis showing novel 892+41 G~A 

polymorphism in intron 4. 

Figure 3.Se. Direct DNA sequence 

analysis showing novel 892+54 C~ 

G and 892+65 T ~C 

polymorphisms. 
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3.2.3 Polymorphism in exon 5 

Exon 5 was amplified from genomic DNA of 100 patients (60 AML and 40 IMF) using the 

primers described in section 2.3 A.!, eSGE analysis of peR products from each patient 

demonstrated that 51 patients (28 AML and 23 IMF) had abnormal eSGE patterns as seen in 

figure 3.6A. Direct DNA sequence analysis of patients with different patterns than normal 

revealed that all these patients had a e~ T substitution at position 1026 and were 

heterozygous for a silent change at codon 242 (Thr242Thr; ACe~AeT; figure 3.6B). 

Further analysis of 70 normal individuals showed that 20 (28.6%) of them were also 

heterozygous for a C~ T substitution at position 1026. This polymorphism was previously 

identified after sequencing cDNA clones from different normal individuals (Hampe et ai, 

1989). 

A 
e 
e 

Thr242 

1 2 3 4 

Figure 3.6A. eSGE analysis of exon 5 peR 

fragment demonstrating a polymorphism in the e­

fms gene. Lane 1 shows a positive control. Lanes 

2 and 3 show AML samples positive for the 

previously reported change in exon 5. Lane 4 

shows an AML sample with wild type sequence for 

the exon 5 fragment. 

Wild-type Heterozygote 

ACGTACGT 

~LTI 
Thr242 

Figure 3.6B Direct DNA 

sequence analysis showing the 

Thr242Thr silent change in exon 

5 of the e-fms gene (Hampe et ai, 

1989). 
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3.2.4 Polymorphism in intron 6 

Exon 6 was amplified from genomic DNA of 100 patients (60 AML and 40 IMP) using the 

primers described in section 2.3.4.1. CSGE analysis of PCR product of each patient 

demonstrated that 49 patients (26 AML and 23 IMF) had abnormal CSGE patterns (figure 

3.7 A). DNA sequence analysis of patients with different patterns than normal revealed that 

patients have a TT~AG substitution at position 1189+67-68 in intron 6 (figure 3.7B). 

Further analysis of 70 normal individuals showed that 16 individuals had the same change in 

intron 6 (22.9%). Hampe et aI, (1989) previously identified this polymorphism after 

sequencing different clones from different normal individuals. A further intronic change; a 

C~ T at position 1189+28 was identified in two AML patients. This change is described in 

chapter 4. 

C 1 2 3 4 5 

,. 

Figure 3.7 A CSGE analysis of 

intron 6. Lane C shows a positive 

control. Lanes 1-3 show 

abnormal CSGE profiles in three 

AML patients. Lanes 4 and 5 

show a normal CSGE pattern. 

. . N ° (, G 

320 

TIa
G 

Figure 3.7B Automated sequence analysis showing an individual 

heterozygous for the previously identified TT ~AG change in 

intron 6 of the c-fm gene (Hampe e/ ai, 1989). 
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3.2.5 Polymorphism in Intron 11 

Exon 11 was amplified from genomic DNA of 100 patients (60 AML and 40 IMF) using the 

primers described in section 2.3.4.1. eSGE analysis of peR product of each patient 

demonstrated that four patients (2 AML and 2 IMF) had abnormal e G patterns (figure 

3.8A). DNA sequence analysis of patients with different patterns than normal revealed that 

patients have a novel intronic e~ T substitution at position 1926+6 (figure 3.8B). Further 

analysis of 70 normal individuals by eSGE showed that only one individual had the same 

change in intron 11 . The novel change was classified as polymorphic with a low frequency. 

C 1 2 3 4 5 

Figure 3.8A. eSGE analysis of intron 11 peR 

fragment demonstrating polymorphism in the e­

fms gene. Lane e shows a positive control. 

Lanes 1-4 show IMF samples with wild type 

sequence for the exon 11 fragment. Lane 5 

shows an IMF sample positive for a e~ T 

substitution in intron 11 of the e-fms gene. 

Heterozygote Heterozygote Wild-type 
Figure 3.8B. Direct DNA 

sequence analysis showing the 

novel e~ T polymorphism in 

two IMF patients and the wild 

type sequence of one normal 

individual. 

AC GTA CGT ACGT 
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3.2.6 Polymorphism in exon 19 

Exon 19 was amplified from genomic DNA of 100 patients (60 AML and 40 IMF) using the 

primers described in section 2.3.4.1. CSGE analysis of PCR product of each patient 

demonstrated that 10 patients (6 AML and 4 IMF) had abnonnal CSGE patterns (figure 

3.9A). DNA sequence analysis of patients with different patterns than normal revealed that 

patients had a novel C---+G substitution at position 2835, and were heterozygotes for a silent 

change at codon 846 (Leu846Leu) (figure 3.9B). Further CSGE analysis of 70 nonnal 

individuals showed that three individuals (4.3%) were heterozygous for the same novel 

change in exon 19. 

c 1 2 3 4 

Figure 3.8A CSGE analysis of exon 19 

PCR fragment demonstrating a silent 

change in the c-fms gene. Lane C shows 

a positive control. Lanes 1 and 4 show 

AML samples positive for a C---+G 

substitution. Lanes 2 and 3 show wild 

type sequence for the exon 19 fragment 

of the c-fms gene. 

Figure 3.9B. Direct DNA sequence 

analysis of exon 19 fragment 

showing the novel C---+G substitution 

in one AML patients and the wild 

type sequence of one normal 

individual. 
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3.2.7 Polymorphism in exon 21 

Exon 21 was amplified from genomic DNA of 100 patients (60 AML and 40 IMF) using the 

primers described in section 2.3.4.1. CSGE analysis of PCR product of each patient 

demonstrated that one IMF patient had an abnormal CSGE pattern (figure 3.10A, lane 11). 

DNA sequence analysis of the positive IMF patient revealed that this patient has a novel 

C~T substitution at position 3009, and was heterozygous for a silent change at codon 904 

(phe904Phe) (figure 3.10B). None of the 70 normal individuals analysed by CSGE has this 

novel change. 

Q} 
Phe 904 

C 1 2 3 4 5 6 7 8 9 10 11 

Figure 3.10A CSGE analysis of exon 21 PCR fragment 

demonstrating a silent change in the c-fms gene. Lane C shows a 

positive control. Lanes 1-10 show IMF samples with a normal 

pattern on CSGE, lane 11 shows an IMF sample positive for a 

C~ T substitution 

Wild-type Heterozygote Figure 3.10B. Direct DNA 

A C G T A C G T 
sequence analysis of exon 21 

fragment showing the wild type 

sequence of one normal 

individual and the novel C~ T 

substitution in one IMF patient. 
Phe 904 
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3.2.8 Polymorphism in the 3' non coding region of the c-fms gene 

Exon 22 fragment was amplified from genomic DNA of 100 patients (60 AML and 40 IMF) 

using the primers described in section 2.3.4.1. CSGE analysis of the PCR product of each 

patient demonstrated that 31 patients (17 AML and 14 IMF) had abnormal CSGE patterns 

(figure 3.1IA). DNA sequence analysis of patients with different patterns than normal 

revealed that patients have a novel TC~CA substitution at 3254-3255 in the 3' non coding 

region of the c-fms gene (figure 3.11B-C). Further analysis of 70 normal individuals by 

CSGE showed that eleven individuals (15 .7%) had the same change in the 3' non coding 

region of the c-fms gene. In addition, this change was confirmed recently by another group 

(Romashchenko et ai, 2002) 

C B 1 2 3 4 

Figure 3.11A CSGE analysis of exon 

22. Lane C shows a positive control. 

Lane B shows a PCR blank. Lanes 1-2 

show abnormal CSGE profiles in two 

AML patients. Lanes 3 and 4 show a 

normal CSGE pattern. 

Heterozygote Heterozygote 
ACGTACGT 

Wild-type 
A C G T 

TC CA 

Figur 3.11B. Direct D A sequence analysis showing the novel 

T A polymorphism in two AML patients and the wild type sequence 

of one normal individual. 
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GA~TG 

F 3' C A ACT TeA A A C eT C eTC C C C T 5' 

Figure 3.1le Automated sequence analysis of showing the identified 

TC~CA change in the 3' non coding region of the c-fms gene. The 

arrow indicates 5' to 3' direction. 

F= Forward sequence 

In general, screening for polymorphisms in this chapter shows that there is an increase 

heterozygocity in both AML and IMF patients compare to the normal individuals for all the 

c-fms polymorphisms except the alteration within intron 13 where no heterozygote was 

identified in the IMF patients (table 3.2). Furthermore, the TT ~AG substitution at position 

1189+67 -68 in intron 6 could create a new splicing site, according to the consensus of the 

donor and acceptor sequence (Mount, 1982), within intron 6 that could modify the structure 

of the mRNA and perhaps the protein of the c-fms gene. 

3.2.9 egative CSGE results 

The remaining exons i.e. exons 2, 7, 10, 14, 15, 16, 17, 18 and 20 were analysed for 

nucleotide alterations in the same way as above. None has presented an aberrant pattern on 

CSGE. It was concluded that there were no detectable alteration in these fragments. The 

changes identified throughout c-fm are summarized in Table 3.1. 
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Table 3.IA Spectrum and percentages of polymorphic nucleotide alterations identified 
within the c-fms gene by CSGE. 

ExoniIntr Nucleotide Amino acid 
onNo. change*R change*R 

Exon 3 384 C>T Pro 28 Pro 
Exon4 717 G>A Ser 139 Ser 
Intron 4 892+4 1 G>A NA 

892+54 1C>G NA 
892+65 2T>C 

Exon 5 1026 C>T Thr 242 Thr 
Intron 6 1189+28 C>T NA 

1189+67-68 
TT>AG 

Intron 11 1926+6 C>T NA 
Intron 13 Not possible to NA 

sequence 
Exon 19 2835 C>G Leu 846 Leu 
Exon 21 3009 C>T Phe 904 Phe 
3'UTR 3254-3255 NA 

TC>CA 

.R = Numbering according to (Coussens et ai, 1986). 
1.2 Both changes were found in the same patient 

No. AML IMF patients normal 
patients n=40 controls 
n=60 (%) (%) n=70 

(%) 
24 (40) 23 (57.5) 8 (11.4) 
1 (1.6) 0 0 
9 (15) 4 (10) 8 (11.4) 
1 (1.6) 0 0 
0 0 0 
28 (46.6) 23 (S7.S) 20 (28.5) 
2 (3.3) 0 0 
26 (43.3) 23 (S7.S) 16 (22.9) 

2 (3.3) 2 (S) 1 0.4) 
18 (30) NT 23 (32.9) 

6 (10) 4(10) 3 (4.3) 
0 1 (2.5) 0 
17 (28.3) 14 (3S) 11 (1S.7) 

Table 3.IB. Difference in the frequency of heterozygote between different groups 

ExonlIntron Nucleotide change AMLIIMF AML/control IMF/control 
No. p-value p-value p-value 
Exon 3 384 C>T NS 0.0002 <0.0001 
Exon S 1026 C>T NS NS 0.0028 
Intron 6 1189+28 C>T NS NS NS 

1189+67-68 TT>AG NS 0.0128 0.0003 

Intron 13 Not possible to <0.0001 NS <0.0001 
sequence 

3'UTR 3254-3255 TC>CA NS NS 0.0202 

NS= not statistically significant. 
Only significant heterozygosity difference were included in the table 
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3.2.10 Screening for restriction sites 

To be able to detect the presence or absence of a homozygous version of the identified 

alteration in this study, a further step was introduced. All novel and previously identified 

alterations were analysed for the consequence of any alteration at restriction enzyme sites 

using the Webcutter 2.0 programme provided via the internet by Yale University 

(http://www.firstmarket.comlcutter/cut2.html). 

The sequence of PCR fragments with and without alterations were screened for a restriction 

site using all the enzymes in the programme database (Table 3.2) to identify the presence of 

specific enzymes that could cut the PCR fragment with or without the alteration. Therefore, 

this approach was used to identify the exact occurrence and frequency of the changes 

identified in the c-fms gene during this study. Furthermore, this approach may help other 

researchers to screen for using restriction endonuclease analysis. 
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Table 3.2 Restriction endonuclease site analysis within the c-fms gene. 

Exonl Fragment Nucleotide Enzyme Product size/bp 
Intron size/bp change wlla type allele Aonormal allele 

No. 

Exon 3 565 384 C>T AvaI 209, 356 565 
Exon4 460 717 G>A BegI 146, 314 460 
Intron 4 460 892+41 G>A NEC* - -

892+54 C>G BssAI 34, 87, 121 , 163, 
163 , 176 176 

892+65 T>C NEC - -

Exon 5 341 1026 C>T StyI 63,96, 96, 245 
182 

Intron 6 1189+28 NEC 
C>T 

1189+67-68 NEC 
TT>AG 

Intron 11 259 1926+6 C>T PIeI 259 48, 211 
Exon 19 222 2835 C>G BseRI 34, 65 , 34, 188 

123 
Exon 21 220 3009 C>T NEC 
3'UTR 382 3254-3255 NEC - -

TC>CA 

NEe = No Enzyme Cut identified 
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3.3 Discussion 

This study presents, for the first time, polymorphism analysis of the complete coding and 

flanking sequence of the c-fms gene. Previous studies have sought a small number of 

mutations based on investigations designed to specific locations in the c-fms gene (Roussel et 

aI, 1987; Roussel et ai, 1988; Woolford et ai, 1988). Polymorphisms have been also reported 

in a few studies which have compared different genomic or cDNA clones in each study 

(Coussens et aI, 1986; Hampe et ai, 1989). 

This study identified 12 different apparently polymorphic alterations, five alterations that 

result in silent amino acid changes and 7 intronic nucleotide alterations. Of these, one of the 

silent changes is a C~ T at position 1026 (Thr242Thr in ex on 5), one intronic alteration 

(TT ~AG at position 1189+67-68 in intron 6) and the TC~CA substitution at position 3254-

3255 in the 3' non coding region of the c-fms gene have been previously reported (table 3.1) 

(Hampe et aI, 1989; Romashchenko et ai, 2002). The TT ~AG change at position 1189+67-

68 in intron 6 could have a potential functional relevance as this change could create a 

consensus 3' acceptor splicing site within intron 6 that could modify the structure of the 

mRNA and protein of the c-fms gene. However, to confirm this observation, the mRNA 

should be analysed further to identify the possible splicing forms. The TC~CA substitution 

was 34 bp downstream of the translation stop codon. Furthermore, according to a recent 

study carried out by Romashchenko et aI, (2002) the polymorphic dinucleotide appeared to 

be located immediately upstream of an octamer showing 100% homology to the cis element -

CAAACTTC-, which is responsible for controlled instability of mRNAs of several genes 

(Romashchenko et ai, 2002). Based on these data, functional significance was assumed for 

this polymorphism of the c-fms gene. Hence, this polymorphism could affect the half life of 

the c-fms mRNA because this region is involved in the stability of the mRNA 
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Therefore, all of the previously identified polymorphisms within the screened part of the c­

Ims gene were detected using CSGE (Table 3.1). All the polymorphisms that were identified 

in this study were included in this chapter. 

It was reported recently that interaction of different components involved in mRNA 

synthesis, maturation, transport, translation or degradation might take place due to nucleotide 

alteration at some SNP sites (Shen et aI, 1999). Still, SNPs without an obvious effect on the 

RNA consensus and protein sequence could lead to phenotypic effect, mainly by non­

consensus-dependent mechanisms (Shen et ai, 1999). Furthermore, Shen and his colleagues 

demonstrated that SNPs could cause significant structural variation in allelic forms of human 

mRNA. Therefore, this structural variation can affect the mRNA-structure-dependent 

mechanisms consequently causing allele-specific biological consequence (Shen et aI, 1999). 

Screening for restriction sites was also performed for all the changes to facilitate any future 

analysis for any of those specific alterations that was identified in the c-fms gene. 

Furthermore, allelic frequency can be obtained from restriction enzyme analysis for any 

specific alteration identified earlier in this chapter. It is noteworthy to mention that 

identification of restriction enzyme sites was the method of choice for the first systematic 

studies of single base variants (Botstein et ai, 1980). Restriction fragment length 

polymorphism (RFLP) is the method of distinguishing alleles or variants based on its 

fragment sizes, simply by digestion of a piece of DNA containing the relevant site with an 

appropriate restriction enzyme (Botstein et aI, 1980). Furthermore, SNPs are the most 

abundant type of DNA sequence variation in the human genome (Cooper et aI, 1985). Still, 

if the SNP were found within a small, unique segment of DNA, it would also serve as a 

physical landmark or as a genetic marker whose transmission can be traced from parent to 

child (Kwok and Gu, 1999). Therefore, identifying novel polymorphisms and the 
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identification of suitable enzymes to be used as a differentiation tool between the two allelic 

variants between those novel polymorphisms would be very beneficial for future studies. 

As stated in chapter 2, CSGE was the technique of choice for the mutational analysis of the 

c-fms gene in this study. This technique is able to detect mutations in double stranded DNA 

due to the fact that single-base mismatches can produce conformation changes in the double 

helix that in tum will cause different migration speeds between the heteroduplexes and 

homoduplexes (Ganguly et ai, 1993). 

The high sensitivity of this technique was one of the advantages of this technique. Several 

studies showed that CSGE is able to detect up to 95% of nucleotide mismatches in a PCR 

product of 200-800bp in length (Ganguly et ai, 1993; Ganguly and Prockop, 1995). Higher 

sensitivity was reported afterwards in another study carried out by Korkko et aI, (1998) when 

CSGE detected all 76 previously identified single-base changes in a large series of PCR 

products from collagen genes that contain multiple exons with highly repetitive and GC-rich 

sequences. 

The usefulness of this technique was confirmed by several studies, for instance CSGE was 

able to identify nucleotide alterations in seven out of seven patients (100%) with severe 

haemophilia A (Williams et aI, 1998). Furthermore 10 previously reported and 11 newly 

identified mutations were identified by CSGE in 21 patients with haemophilia B patients 

(Hinks et ai, 1999). 

It is noteworthy to mention that sensitivity is not the only advantage of this technique. 

Safety for example, is another advantage for using CSGE. Abuzenadah et aI, (1998) 

reported that CSGE does not require the use of toxic and radioactive materials such as those 

used in the chemical cleavage mismatch (CCM) technique (Abuzenadah, 1998). 

Furthermore, a special consideration for the cost of applying this technique in a large-scale 

78 



Cliapter 3: lEsta6fisliment of screening oftlie c-fmseene atuf ana{ysis ofpo{ymorpfiic sequence aCteration 

study would obviously be in favour of using CSGE due to its low cost in comparison to other 

techniques. For instance, a cost comparison between direct sequencing and CSGE in the 

analysis of collagen COL2A1 gene demonstrated the huge difference in the cost of applying 

CSGE ($365/patient) and direct DNA sequencing ($1,583/patient) due to the fact that only 

aberrant fragment are sequenced when CSGE is used (Ganguly and Williams, 1997). 

Nevertheless, the large number of samples that can be analysed in one CSGE run (40 

samples/CSGE gel) demonstrated that not only the quality but also the quantity of the 

analysis is improved in comparison to direct DNA sequencing. Normally 4-6 hours of 

preparation is required on the first day and the result can be obtained on the following day. 

In addition, no special preparation of the PCR product is required and up to four CSGE tanks 

can be handled in one run. 

As stated earlier, a number of novel and previously identified polymorphisms were identified 

in this study. It is well established that polymorphisms can be found throughout the genome, 

e.g. in exons, introns, promoter region or enhancer (Krawczak et ai, 1992; Drazen et ai, 

1999; Schork et ai, 2000). Furthermore, polymorphisms can have an important effect in 

some cases, for instance, it can have a direct effect on splicing or gene expression (Krawczak 

et ai, 1992). However, in this study, none of the polymorphisms identified were likely to 

have an effect at an important site (i.e. promoter, enhancer or splicing sites). All the 

identified polymorphisms were analysed for an obvious effect on splicing sites, according to 

consensus sequence of the 5' donor and 3' acceptor sites of the gene (Mount, 1982). Except 

for the C-+ T at position 1026 and the TC~CA substitution at position 3254-3255 

alterations, no direct effect was predicted for other alterations identified in the c-fms gene. 

Thus, none of the alteration identified have been shown to create a new splicing site. 

However, further analysis at the RNA level would be required to exclude this event. 

Furthermore, as has been suggested recently, large-scale epidemiological studies might be 
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to be biologically inert (i.e. neutral) or have unknown function" (Schork et al. 2000). 

Therefore, a combination of other information from genomic structure analysis and protein 

level studies, which examine the molecular physiology and pathology of the gene, may 

enlighten us about more useful information regarding the effect of such alteration within the 

c-fms gene or other class III R TK. 
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Sequence alterations that predict amino acid changes in 

the c-fms gene 

4.1 Introduction 

c-fms, c-kit, FLT3 and PDGFRp are all members of class III RTK family (Ullrich and 

Schlessinger, 1990). Class III RTK (Ullrich and Schlessinger, 1990) are closely related 

proteins that are characterised by five immunoglobulin-like domains in the extracellular part, 

a single transmembrane domain (TM), a juxtamembrane domain (JM), two intracellular 

kinase domains (TK 1 and TK2) separated by a kinase insert domain (KI), and have a C­

terminal domain in their 3' part. Ligand-dependent activation is initiated by ligand binding 

causing receptor dimerization and subsequent activation of the intrinsic tyrosine activity 

catalysing transphosphorylation of specific tyrosine residues (Ullrich and Schlessinger, 1990; 

Weiss and Schlessinger, 1998). 

Previous studies revealed that class III RTK have a crucial role in normal haematopoiesis 

(Coussens et ai, 1986; Yarden et ai, 1987; Rosnet et ai, 1993a). An important role for the c­

fins receptor in monocytic differentiation has been established since 1985, when c-fms was 

detected in peripheral blood monocytes and on blast cells from certain patients with 

myelomonocytic leukaemia (Sariban et ai, 1985). Further studies highlighted the role of this 

receptor in growth and differentiation of the monocyte-macrophage-osteoclast lineage 

(Sherr, 1990). Other RTK class III, like c-kit and FLT3, are also important in 

haematopoiesis. c-kit and FLT3 are essential for the survival, proliferation and 

differentiation of haematopoietic progenitor cells (Lyman and Jacobsen, 1998). Until now, 

the PDGFRp relationship to haematopoiesis has not been well defined, however, it has been 

reported that it might have a significant role in megakaryocytopoiesis (Yang et ai, 1997b). 
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Earlier studies reported the presence of a number of important mutations in some of the class 

III RTK (Roussel et ai, 1987; Roussel et ai, 1988; Woolford et ai, 1988). In the human 

haematopoietic system, 70% of CD34+ cells in the bone marrow express c-kit (Ashman et al. 

1991). A pathogenic role of c-kit was highlighted in mastocytosis when two point mutations 

Val560Gly and Asp816Vai in the juxtamembrane and the phosphotransferase domain 

respectively, were identified in the mast cell leukaemia cell line, HMC-l (Furitsu et ai, 

1993). Additionally, the presence of the c-kit Asp816Vai mutation was identified in the 

peripheral blood mononuclear cells of patients with myelofibrosis and in patients with 

myelodysplasia associated with mastocytosis (Nagata et ai, 1995). It is noteworthy that c-kit 

mutations have also been identified in AML. An Asp 816Tyr mutation was identified in 

AML-M2 patients with t(8;21) (Beghini et ai, 2000a). Gari et al (1999) identified other 

mutations in exon 8 (deletion-plus-insertion) that consistently affect the Asp419 codon. 

Several mutations have also been reported in FLT3, another class III RTK. Internal tandem 

duplication (lTD) mutations were the first reported somatic mutation in the FL T3 gene 

(Nakao et ai, 1996). The lTD mutations affect the juxtamembrane (JM) domain and are 

mainly present in ex on 14 of the FLT3 gene (see chapter 5). The location and length of the 

lTD mutation varies from case to case, although, the gene was always transcribed in frame 

and encoded mutant FLT3 with a long JM domain (Nakao et ai, 1996). Several studies 

reported the presence of FLT3 ITO mutations in a high proportion of AML cases (20-24 %) 

(Yokota et ai, 1997; Xu et ai, 1999; Rombouts et al. 2000; Kottaridis et al, 2001). The FLT3 

lTD has been associated with poor prognosis in AML (Kiyoi et al, 1999; Abu-Duhier et al. 

2000; Rombouts et ai, 2000). So far it is unclear what is the underlying mechanism of the 

receptor constitutive activation, although it is known that the mutated receptor is dimerized 

and phosphorylated in the absence of ligand (Kiyoi et al. 1998). Another interesting FL T3 

mutation are the novel changes seen at codon Asp835 that were recently identified by two 

separate groups (Abu-Duhier et ai, 2001b; Yamamoto et ai, 2001) in approximately 7% of 
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AML cases. The mutation was independent of the FLT3 lTD, and suggest that FLT3 is the 

most commonly mutated gene in AML. 

Another receptor of the class III RTK, c-fms, was found to be a cellular homologue of the v­

fms gene of the Susan McDonough strain of the feline sarcoma virus (Donner et ai, 1982). 

Interestingly, the v-fms gene product was found to possess constitutive kinase activity in the 

absence of ligand (Sacca et ai, 1986). Critical genetic alterations resulting in the induction 

of cell transformation were identified by comparing the structure of the c-fms and v-fms­

coded glycoprotiens (Woolford et ai, 1988). Comparison of the c-fms sequence with that of 

v-fms shows that the proteins encoded by these two genes differs by nine amino acids, as a 

result of substitutions and the replacement of 50 C-terminal amino acids present in c-fms by 

11 unrelated residues in v-fms. Using chimeric c-fms genes and site-directed mutagenesis, 

Woolford et aI, (1988) were able to determine that the C-terminal modification, present in v­

fms, is sufficient to generate a partially transforming phenotype, but that mutations at amino 

acid positions 301 and 374 are also required (in addition to the C-terminal modification) to 

generate a fully transforming c-fms gene (Woolford et ai, 1988). Furthermore, other sites 

crucial for transforming activity have been identified in the extracellular part (i.e. 218, 267, 

312,329,335, 337 and 343) and the intracellular part (i.e. 802) of the c-fms receptor using a 

cassette mutagenesis technique (van Daalen Wetters et ai, 1992; Morley et ai, 1999). 

In 1987, a leukaemogenic role for the c-fms gene was suggested by the finding that over­

expression of c-fms in mice leads to the development of myeloblastic leukaemia 

(Gisselbrecht et ai, 1987). Mutations at codon 301 of the human c-fms was found to induce 

ligand-independent transformation of the mouse NIH3T3 cultured cells (Roussel et ai, 1988). 

Furthermore, later studies identified c-fms point mutations at codon 301 and 969 in AML and 

MDS patients (Ridge et ai, 1990; Tobal et ai, 1990). However, in a study of 110 patients 

with AML or MDS, the mutations at codon 969 were more frequent (12.7%) than those at 

codon 301 (1.8%) (Ridge et ai, 1990). c-fms mutation at codon 969 was also identified in 11 
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out of 70 patients in remission from lymphoma (Baker et ai, 1995a). Another c-fms mutation 

at codon 965 was identified in a single patient with B-cell malignancy (Baker et ai, 1995b). 

Mutational analysis of the c-fms gene will be described in this chapter. Furthermore, 

important mutations that have been previously identified in the c-fms gene (i.e 301 and 969 

mutation) will be analysed in this selected group of myeloproliferative patients. Previously 

identified polymorphisms and silent changes were discussed in chapter 3. 
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4.2 Results 

4.2.1 Change in Exon 6 

Exon 6 was amplified from genomic DNA of 100 patients (60 AML and 40 IMP) using the 

primers described in section 2.3.4.1. CSGE analysis of PCR product of each patient 

demonstrated that two AML patients had abnormal CSGE patterns (figure 4.1A). DNA 

sequence analysis of patients with different patterns than normal revealed that two AML 

patients (number 5026 and 5308) each had three changes; a G~ T substitution at position 

1033 which predicts for an amino acid change at codon 245 (Ala245Ser); a C~T intronic 

change at position 1189+28 and the previously identified intronic polymorphism TT ~AG at 

position 1189+67-68 (see section 3.2.1.4), (figure 4.2B). None of the 40 IMF and the 70 

normal individuals analysed by CSGE had the G~T substitution (Ala245Ser) at position 

1033. 

1 2 3 4 5 

Figure 4.1A CSGE analysis of exon 6 PCR fragment demonstrating a 

change in the c-fms gene. Lanes 1-3 AML patients with an intronic 

change IT ~AG (see section 3.2.1.4). Lane 4 shows an AML patient 

with a normal CSGE profile, lane 5 shows an AML patient 5026 with an 

abnormal CSGE profile due to a G~ T (Ala245Ser) substitution at 

position 1033. 
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G--)oT 
(1) 

Figure 4.1B Automated sequence analysis of exon 6 showing (1) nucleotide 

substitution G--)oT at position 1033 which predicts for the Ala245Ser amino 

acid change, (2) C--)o T novel nucleotide substitution at position 1189+28 in the 

intronic part of the PCR fragment, (3) the previously identified nucleotide 

substitution TT --)oAG at position 1189+67-68. The blue highlighted sequence 

indicates the exonic part of the fragment. Yellow highlighted sequence 

indicates the position of nucleotide substitution for each change. 

4.2.1.1 Exon 6 restriction enzyme analysis 

= 

The genomic sequence of the amplified exon 6 fragment was analysed for the consequence 

of the identified alteration at any restriction enzyme sites using Web cutter 2.0 programme 

provided via the Internet by Yale University (http://www.firstmarket.comlcutter/cut2.html) . 

The Cac81 restriction enzyme was found to cut four times in the wild type sequence and 

three times in the case of a G--)o T change at position 1033 (figure 4.1 C) (see table 4.2). Only 

two AML patients have this change, none of the 40 IMF and the 70 normal individuals 

analysed by restriction enzyme had the G--)oT substitution (Ala245Ser) at position 1033. 
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M 1 2 3 4 5 

Figure 4.1C Cac8I digest of 

169bp exon 6 PCR fragment (size 

81bp 409bp). Lane M shows a 

marker, lanes 1, 2 and 3 show 

AML patients with wild type 

alleles, lane 4 show a 

heterozygote for the G~ T 

change at position 1033, lane 5 

show undigested PCR product. 

4.2.1.2 Codon 245 cross-species comparison 

Cross-species comparison of amino acid sequence of the c-fms and c-kit gene was performed 

around codon 245 located in the third Ig-like domain. However, the result of the analysis 

shows that this codon is not highly conserved (figure 4.1D). 

c-fms Human HNNT----KLAIPQQ 
245 

c-EMS Rat RGDT----KLEIPLN 
245 

c-kit Human RENS--QTKLQEKYN 
256 

c-KIT Rat KMNPQPQHIAQVKHN 
259 

Figure 4.1D BLAST alignment showing cross-species comparison of amino acid 

sequence of c-fms and c-kit in human and rat showing an alignment of the amino 

acid Ala245. Red letters represent the amino acid which is mutated in human c­

fms, blue letters represent the homologous amino acid in the different proteins. 
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4.2.2 Change in Exon 8 

Exon 8 fragment was amplified from genomic DNA of 100 patients (60 AML and 40 IMF) 

using the primers described in section 2.3.4.1. CSGE analysis of PCR product of each 

patient demonstrated that 13 patients (5 AML and 8 IMF) had abnormal CSGE patterns 

(figure 4.2A). D A sequence analysis of patients with a different pattern than normal 

revealed that the e cases had an A---+G substitution at position 1385 which predicts an amino 

acid change at codon 362 (His362Arg) (figure 4.2B). 

R 

Figure 4.2A CSGE analysis of exon 8 

PCR fragment demonstrating a change 

in the c-fms gene. Lane C shows a 

positive control. Lanes 1 and 3-8 show 

IMP with a normal pattern. Lanes 2 * 
and 9* show two IMF patients with 

abnormal CSGE profiles. 

Figure 4.2B Automated 

sequence analysis of exon 8 

using the reverse primer 

showing the nucleotide 

substitution T ---+C (A---+G in 

forward sequence). 

F= forward sequence 

F TC C CAe T T CC A CAe G G A C G T T R= reverse sequence 
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Seventy normal individuals were screened for the change using CSGE, six were identified 

(8.5%) with A~G substitution at position 1385. Therefore, this change was considered to 

be polymorphic. 

4.2.2.1 Exoll 8 restrictioll enzyme analysis 

The genomic sequence of the amplified exon 8 fragment was analysed for the consequence 

of the identified alteration at restriction enzyme sites using Web cutter 2.0 programme 

provided via the Internet by Yale University (www.firstmarket.comlcutter/cut2.html) . The 

Hin61 restriction enzyme was found to cut once in the wild type sequence and twice in the 

case of an A--tG change at position 1385 (figure 4.2C) (see table 4 .2) . In total five AML 

patients and 8 IMF patients analysed using restriction enzyme digestion had the A~G 

change at position 1385. Seventy normal individuals were also analysed using restriction 

enzyme, six individuals (8 .5%) were heterozygous for the A--tG change at position 1385 . 

200bp 

M 1 2 3 4 

Figure 4.2C Hin6! digest of 

exon 8 PCR fragment (size 

164bp 205bp). Lane M shows a marker, 

33bp lane 1 show a heterozygote for 

the A~G change at position 

41bp 

31bp 

1385, lanes 2 and 4 show IMF 

patients with wild type alleles, 

lane 3 shows an lMF patient 

homozygous for the A~G 

change at position 1385. 
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4.2.2.2 Codon 362 cross-species comparison 

Furthermore, cross-species comparison of amino acid sequence of the c-fms and c-kit gene 

was performed around codon 362 which is located in the fourth Ig-like domain. The result 

of the analysis shows that this amino acid is highly conserved across the other class ill RTKs 

except in the human c-fms protein (figure 4.2D). 

c-fms Human 
c-EMS Rat 
c-KIT Human 
c-KIT Rat 

ATTKDTYRHTFTLSL 
ITQRAIYRYTFKLFL 
SENESNIRYVSELHL 
SDNKSNIRYVNQLRL 

Figure 4.2D BLAST alignment showing Cross-species comparison of 

amino acid sequence of c-fms and c-kit in human and rat showing an 

alignment of the amino acid His362. Red letters represent the mutated 

codon in human c-fms, blue letters represent the homologous amino acid in 

the different proteins. 
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4.2.3 Change in Exon 9 

Exon 9 was amplified from genomic DNA of 100 patients (60 AML and 40 IMF) using the 

primers described in section 2.3.4.1. Initial CSGE analysis of the PCR product of each 

patient demonstrated that three patients (1 AML and 2 IMF) had abnormal CSGE patterns 

(figure 4.3A). DNA sequence analysis of patients with different patterns than normal 

revealed that these patients have a G~A substitution at position 1537 which predicts for an 

amino acid change at codon 413 (Gly413 Ser) (figure 4.3B). Further analysis of 70 normal 

individuals by CSGE showed that none of the normal individuals analysed had this change. 

1 2 3 

Heterozygote Wild-typ 

A C GT AC GT 

4 

Figure 4.3A CSGE analysis of exon 9 

PCR fragment (size 271bp) 

demonstrating codon 413 change in the 

c-fms gene . Lane 1 shows a normal 

individual (negative control), lanes 2 and 

3 show two IMF patients (54 and 02D) 

with a G~A substitution, lane 4 shows 

an AML patient with the G~A 

substitution (5104). 

Figure 4.3B Direct DNA sequence 

analysis showing the G~A 

nucleotide substitution which 

predict for an Gly413 Ser amino acid 

change in one AML patient (5104), 

the wild type sequence in another 

AML patient and a normal 

individual. 
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4. 2.3.1 Exon 9 restriction enzyme analysis 

Analysis of the sequences involved in the nucleotide alterations affecting codon 413 

demonstrated that the G~A substitution at position 1537 would create a restriction enzyme 

site for the Alul enzyme in the 271 bp fragment and produce two fragments for the abnormal 

allele (151 and 120 bp). Therefore, in order to screen the same 100 patient samples and the 

70 normal individuals for a possible heterozygous or homozygous G~A substitution at 

position 1537, the 271 bp fragment was digested with Alul enzyme (see chapter 2). 

Restriction enzyme analysis confirmed the presence of the G~A substitution in the same 

three patients (figure 4.3C). The G~A substitution at position 1537 wa not identified in 

any other patients or in any of the 70 normal individuals. 

300bp 

200bp 

100bp 

M B 1 234 

Figure 4.3C AZul digest of exon 9 

PCR fragment. Lane M shows a 

100bp marker, lane B shows 

271 b negative control, lanes 1 and 2 show 

two IMF patients positive for the 
151bp 
120bp G~A substitution, lanes 4 and 5 

show two nonnal individual 

without the G~A substitution at 

codon 413. 
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In order to confirm the percentage of the G~A substitution at position) 537, forty three 

more AML patients (group B) were screened from different F AB groups. Another AML 

patient was identified to have codon 413 mutation among the 43 new AML (number 5341). 

Similarly, the number of normal individual screened was also increased but none of the extra 

130 normal individuals screened by CSGE has this change (total number of normal 

individuals screened was 200). 

4.2.3.2 Codon 413 cross-species comparison 

Cross-species comparison of the amino acid sequence of the c-fms and c-kit proteins was 

performed around codon 413, located in the fifth Ig-like domain, and the result of the 

analysis highlighted that this amino acid is highly conserved, furthermore, it also shows the 

short distance between codon 413 in c-fms and the previously identified mutation at codon 

419 in exon 8 of the c-kil gene (Gari et ai, 1999) (figure 4.3D). 

413 
c - fms Human PEVSVI WIFIN SGTLLCAASGYPQ 

419 

c - KIT Human PEILTY RLVN G M--LQCVAAGFPE 

c - FMS Rat PEVSVT WMPVN G SDVLFCDVSGYPQ 

c - KIT Rat PEILTY DRLMN G R--LQCVAAGFPE 

Figure 4.3D. Cross-species comparison of amino acid sequence of c-fms and 

c-kit in human and rat showing the highly conserved amino acid Gly 413 . 

Red letter represent the mutated codon in human c-fms, blue letters represent 

the homologous amino acid in the different proteins. Green underlined letters 

represent the previously identified Asp419 amino acid change in exon 8 of 

human c-kit (Gari el aI, 1999). 
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4.2.3.3 Analysis of germ line cells 

In order to clarify whether the codon 413 mutation is an acquired or inherited mutation, 

remission samples were necessary for patients with the c-fms mutation. However, this was 

not achievable due to the fact that patients were deceased or did not achieve a remission 

state. Therefore, DNA from nonnal somatic cells was the second option to carry out the 

analysis. A buccal swab and a saliva sample were requested from patient 02D. DNA was 

extracted from both samples using the same technique in section 2.3.1 (after centrifugation 

of each swab to collect the cells) followed by PCR and CSGE analysis. However, due to the 

fact that the patient had IMF and had bleeding gums, contamination with blood was not 

prevented. Therefore, a definite result was not achieved concerning the presence or absence 

of exon 9 mutation at codon 413 of the c-fms gene in the somatic cells of this patient. The 

result of the CSGE analysis showed that the exon 9 mutation is present in both samples 

(buccal swab and saliva sample) (figure 4.3E). 

N +C B 1 2 3 4 5 6 

Figure 4.3E CSGE analysis of exon 9 PCR fragment demonstrating codon 413 

change in the c-fms gene. Lane N shows a nonnal individual (negative control), 

lane +C positive control (sample with exon 9 mutation), lane B a blank, lane 1 

patient 02D sample (buccal swab), lane 2 nonnal individual (buccal swab) lanes 3, 

4 and 5 show two IMF patients (54 and 02D) and an AML patient (5341) with the 

G~A substitution, lane 6 shows patient 02D sample (saliva). 
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4.2.4 naly i of the previously identified mutations affecting codons 301 

and 969 

Two earlier studi s reported the presence of two different mutations in the c-fms gene 

namely codon 301 and 969 (in exon7 and ex on 22 respectively). In this study, none of the 

143 patients (40 IMF and 103 ML) analysed using eSGE had the 301 change, due to the 

absence of band shift in exon 7 (figure 4.4A). Similarly, none of the 160 patients (40 IMF 

and 110 AML) analysed u ing e GE had the 969 change after sequencing patients with 

band hifts in e on 22 fragment. However, a TC~CA substitution was identified at 3254-

3255 in the 3' non coding region of the c-fms gene in 31 patients (14 IMF and 17 AML) as 

shown in figure 4.4B (see chapter 3 section 3.2.1.8 for more details). 

1 2 3 4 5 

B 1 2 3 4 

Figure 4.4A CSGE analysis of exon 7 

peR fragment demonstrating the negative 

result for this fragment. Lane e shows a 

positive control, lanes 1-5 show normal 

eSGE patterns in 5 IMF patients 

Figure 4.4B eSGE analysis of exon 22 peR 

fragment demonstrating a bandshift due only to 

an intronic change. Lane e shows a positive 

control. Lane B show a blank. Lanes 1-2 show 

abnormal e GE profiles in two AML patients. 

Lanes 4 and 5 show normal e GE patterns. The 

alteration in patients was shown to result from 

Te~eA substitution at 3254-3255 in the 3' non 

coding region of the c-fms gene. 
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Although the result of the analysis was satisfactory due to the sensitivity and the use of gel 

controls in each run of CSGE a further step was preferred to confirm this result. Therefore, a 

positive control for both of the 301 and the 969 mutation was sought to confirm the 

sensitivity of the CSGE technique. However, a positive control for the codon 301 mutation 

was not obtainable. A supposed positive control for the 969 mutation was received from a 

research group in the United Kingdom. Unfortunately, no mutation at codon 969 was 

detected after screening this samples using CSGE. Therefore, this control was sequenced 

using automated sequencing to clarify the presence or absence of the 969 mutation in this 

sample. However, the result of the sequencing confIrmed our initial fInding and shows that 

this control sample does not contain any change at codon 969 of the c-jms gene (figure 

4.4D). 

WT 3'TTGAGG AGTCGTCT TGAC TAT CAACAACCC GACGTCGTTC 5 ' 
1 

3'TTGAGG AGTCGTCTTGAC TAT CAACAACCC GACGTCGTTC 5 ' 

Figure 4.4D Automated sequence analysis of exon 22 showing the nucleotide 

sequence using the reverse primer for the "positive control" for codon 969 mutation. 

Bold letters represent the forward sequence around codon 969 in the c-fms gene. 

WT = wild-type sequence. 
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4.2.5 Novel mutations of the c-fms gene 

Mutations identified by this study within the c-fms gene are summarized in table 4.1 . Table 

4.2 shows the analysis of restriction endonuclease sites for novel identified mutations within 

the c-fms gene. 

Table 4.1 Spectrum and percentage of amino acid alterations identified within the c-fms 
gene. 

ExonlIntron Nucleotide Amino acid AML patients IMF patients Nomlal 
No. change change n=60 n=40 controls 

n=70 
Exon6 1033 G>T Ala 245 Ser 2 (3.3%) 0 0 

Exon 8 1385 A>G His 362 Arg 5 (8.3%) 8(200/01 6 (8.5%) 
Exon 9 1537 G>A G1y 413 Ser 2* (1.9%) 2 (5%) 0 

* Note: only one AML patient (out of the 60) had the Gly413Ser change in exon 9. The 
second AML patient was identified in the second patients group (group B) screened (see 
section 4.2.1.1) 

Table 4.2 Restriction endonuclease site analysis within the c-fms gene 

Exonl Fragment Nucleotide Enzyme Product sizelbp 
Intron sizelbp change WIIO type allele Aonomlal allele 

No. 

Exon6 409 1033 G>T Cac81 16,21, 81 , 16,21, 169, 
88,203 203 

Exon 8 205 1385 A>G Hin61 41 , 164 3],41,133 
Exon 9 271 1537 G>A AluI 271 120, ]5] 
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4.3 Discussion 

c-fms or CSF-IR is the receptor for CSF1, a homodimeric glycoprotein produced primarily 

by messenchymal cells that stimulates the proliferation and enhances the viability of 

monocytes, macrophages, and their committed bone marrow progenitors (Stanley et aI, 

1983). As stated earlier, c-fms is one of the class ill RTK that is characterised by five 

repeated Ig-like domains in the extracellular part as well as the presence of a particular 

kinase insert domain between two tyrosine kinase domains (Coussens et al, 1986). 

A number of previously identified and novel polymorphisms that were identified in the c-fms 

receptor in AML and IMF patients were discussed in chapter 3. This chapter however, 

demonstrates that a number of nucleotide changes were identified that predicted amino acid 

changes in the c-fms gene. In total, three novel nucleotide changes were identified in exons 

6, 8 and 9. In exon 6, a G-+ T substitution that predicts an amino acid change at codon 245 

(Ala245Ser) was identified in two AML patients. The change is located in the extracellular 

part of the c-fms receptor. None of the IMF or the normal individuals screened had this 

change. The result of the cross-species comparison of the Ala245 aa shows that this aa is not 

conserved. In addition, the Ala245Ser change is unlikely to modify the structure of the 

protein since Ala and Ser have similar degree of hydrophobicity. Exon 8 showed an A-+G 

substitution in 13 patients (5 AML and 8 IMF) at position 1385, which predicts an amino 

acid change at codon 362 (His362Arg) and was also located in the extracellular part of the 

receptor. However, normal individuals were also identified with the same change in exon 8 

of the c-fms gene. It was noticed that there is significant increase of the Arg362 in IMF 

patients compared to AML and normal individuals. Despite that the aa are positively 

charged, they have ditTerent degree of hydrophobicity. In addition, this aa change 

(His362Arg) could also affect the three dimensional structure of the protein. Therefore, 

these observation suggesting that the Arg could be involved in the pathogenesis ofIMF. 
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In exon 9 a novel G~A substitution at codon 413 (Gly413Ser), was identified in four 

patients (2 AML and 2 IMF) out of the 143 patients (103 AML and 40 IMF) screened for 

exon 9 (2.8%). None of the 200 nonnal individual screened had this change. 

It is noteworthy to mention that all these changes were identified in the extracellular part of 

the c-fms receptor. The exon 9 (Gly413Ser) mutation for instance, is located in the fifth 

immunoglobulin-like domain in the extracellular part of e-fms. This part of the class III 

RTKs have been suggested to be important as a negative regulatory constraint and its 

removal (i.e. by deletion of the receptor) can lead to ligand-independent activation (Khazaie 

et ai, 1988~ Uren et ai, 1997). Furthennore, gene transfer experiment using an 

experimentally mutated version of e-fms showed that an extracellular mutation at codon 301 

resulted in the activation of the tyrosine kinase activity and was sufficient to transfonn 

mouse 3T3 cells in vitro (Roussel et ai, 1988). Although the codon 301 activating mutation, 

located in the fourth Ig-like domain, does not affect the CSF-l binding site in the receptor's 

extracellular domain, it must induce a confonnational change that mimics the effect of ligand 

binding, resulting in c-fms independent signals for cell growth (Roussel et ai, 1988). 

Furthennore, novel activating mutations were previously identified, using random chemical 

mutagenesis, within sequence separating the third and fourth immunoglobulin-like domains, 

as well as within non-covalently stabilized loop 4 of the c-fms extracellular domain (van 

Daalen Wetters et ai, 1992). Therefore, it was suggested that mutations able to activate the 

c-fms receptor are not restricted to the previously identified mutation at codon 301 of the e­

lms gene (van Daalen Wetters et ai, 1992). 

In this study an exon 9 mutation located at codon 413 was identified and was found to be 

within a highly conserved codon of class III RTKs and is only a short distance (5 amino 

acid) from the previously identified mutations at codon 419 in the c-kit receptor (Gari et aI, 

1999). The result of this study is not sufficient by itself to speculate the exact effect of this 

extracellular mutations of the e-fms gene especially with the small number of AML F AB 
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groups analysed in this study. Therefore, a larger group of patients should be analysed in 

order to clarify the occurrence of this mutation in different F AB groups of AML. 

This study showed that previously identified mutations at co dons 301 and 969 are not present 

in this group of patients. Although the number of AML patients analysed was increased 

(group B), none of the patients analysed had the 301 or the 969 mutation. Indeed one could 

argue that this might be due to the use of an insensitive technique and this was a false 

negative result. The sensitivity of the CSGE technique has been previously established by 

several studies (see chapter 3) and was also confirmed with the use of positive control 

(sample with known change) in each CSGE gel. This study was not the first study to report 

the negative finding concerning the 301 and 969 mutations in c-fms. Shepherd et al (1990) 

failed to find any mutation at codon 301 or 969 in either AML or MDS patients using direct 

sequencmg. This findings were confirmed by another group using an allele specific 

restriction analysis (ASRA) protocol for the detection of these mutations (Springall et ai, 

1993). Similarly, in a study of 42 cases of AML and MDS, only one patient was identified 

with the 969 mutation (Jaquet et ai, 1993). However, a normal individual has been 

previously reported with the 969 mutation in c-fms (Hirai et ai, 1987). Recently, 70 patients 

with MDS were screened for c-fms mutations using SSCP and none of the patients analysed 

has a 301 or 969 mutation (Misawa et ai, 1997). Therefore, it was recently suggested that 

positive results presented by some of the previous studies could be due to the use of a 

relatively insensitive allele specific oligonucleotide (ASO) hybridization technique (Reilly, 

2002). It seems that the previously identified mutations at codon 301 and 969 are not the 

dominant mutations in c-fms disorders. 
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FLT3 Genomic Structural Organization 
5.1 Introduction 

The detennination of the complete sequence of genes is a significant step towards 

understanding the importance of these genes (Sterky and Lundeberg, 2000). In 1990 the 

human genome project (HOP) was launched to map and sequence the entire human genome 

(Sterky and Lundeberg, 2000). Automated DNA sequencing was an important breakthrough 

towards large-scale sequencing. Due to the large size and complexity of genomes, all 

genomes are sub-cloned in small pieces to suit DNA sequencing techniques (Sterky and 

Lundeberg, 2000). 

Detennination of the function of a newly sequenced gene can be achieved by experiment, 

although only a few genes have been studied using this approach (Andrade and Sander, 

1997). Instead, earlier characterised proteins are frequently used to hypothesise a potential 

function of unknown protein, since proteins with similar sequence tend to posses similar 

functions (Sterky and Lundeberg, 2000). 

5.1.1 Class III RTKs 

Rosnet et aI, (1991) isolated FL T3, a novel member of class III RTK. The FL T3 gene was 

assigned to human chromosome 13q 12 and to mouse chromosome 5 (Rosnet et aI, 1991 b). 

Early data suggested that the genomic loci encoding the FLT3, c-kit and c-fms receptors 

share overall conservation of exon size, number, sequence and exonlintron boundary 

positions (Agnes et aI, 1994). In addition, class III RTKs were found to occur in pairs on 

different chromosomes: in man, e-kit and PDGFRa gene are located as a pair on 

chromosome 4 (Matsui et ai, 1989) and chromosome 5 in mouse (Rosnet et aI, 1991a), while 

ejms and PDGFR{3 genes are located in tandem on human chromosome 5 (Roberts et ai, 

1988) and mouse chromosome 18 (Buchberg et ai, 1989). Initial findings suggested that 
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FLT3 was the only RTK class III gene located on band q12 of chromosome 13 (Rosnet et aI, 

1991b). However, FLT1, a class V RTK (characterised by seven immunoglobulin-like 

domains), was later found to lie within the same 600-kb fragment as the FLT3 gene on 

human chromosome band 13q12 and within the same 350-kb fragment on murine 

chromosome 5 (Rosnet et aI, 1993b). These findings suggest that the R TK class III genes 

have arisen evolutionary as a result of a cis and trans duplication events (Andre et aI, 1992; 

Rosnet et ai, 1993b; Agnes et ai, 1994; Abu-Duhier et aI, 2001a). 

Interest in FL T3 has been heightened by recent reports linking exonic mutations to the 

pathogenesis of acute myeloid leukaemia (Nakao et aI, 1996; Yokota and Kiyoi, 1998; Xu et 

aI, 1999; Abu-Duhier et aI, 2000; Abu-Duhier et aI, 2001b; Kottaridis et aI, 2001). 

5.1.2 FLT3 structure 

Initial studies in 1996 of human FL T3 mRNA revealed the presence of an internal tandem 

duplication (lTD) mutation in a group of patients with AML (Nakao et ai, 1996). Further 

studies revealed that the lTD mutations were all in-frame and were located in the sequence 

coding for the juxtarnembrane/ tyrosine kinase 1 (JMlTK1) domains of the FLT3 gene 

(Nakao et ai, 1996; Yokota et ai, 1997). Subsequent analyses of the PCR products from 

such patients demonstrated that the length of the lTD mutation varies in size (17-198 bp), 

with the starting and ending sites being distinct for each patient. The lTD mutations were 

then reported to occur in a high proportion of AML cases (20%), regardless of their F AB 

classification (Nakao et ai, 1996; Rombouts et ai, 2000). In addition, the lTD mutations 

were also found in a few cases ofmyelodysplastic syndromes (3%) and in rare cases of ALL, 

most of which express myeloid antigen, but not in patients with CML ,or in normal 

haematopoietic tissue (Yokota et ai, 1997; Ishii et ai, 1999; Xu et ai, 1999). 

A systematic screening of the entire human FLT3 gene coding region will be required to 

determine whether additional mutations are important in the pathogenesis of AML. This 
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approach has been hindered, however, by the lack of knowledge of the complete genomic 

structure of FLT3. Ideally, CSGE analysis of the coding sequence of FLT3 gene requires the 

peR amplification of DNA fragments that covers at least SObp of the intronic sequence on 

each side of the screened exon as the location of the mismatch within the peR product is 

very important. The amplification of the SObp intronic fragments was carried out to exclude 

missing any mismatch within the amplified exon. Prior to the commencement of this study, 

the necessary sequence information was not available to enable further mutational analysis of 

the FLT3 gene. 

The FL T3 protein, like all other class III R TKs, is characterized by three distinct regions. 

The extracellular region (S41aa) is composed of five immunoglobulin like domains, a 

transmembrane region (21 aa) contains a single domain and the cytoplasmic region (431 aa) 

which has a tyrosine kinase made up of an A TP-binding loop and a catalytic domain 

separated by a kinase insert domain (Wolf and Rohrschneider, 1999). 

The organisation of the downstream part (dsp), or intracytoplasmic coding sequence; of 

FLT3 was reported by Agnes et al (1993). Agnes and colleagues compared the nucleotide 

sequence of genomic subclones of the dsp of the human FLT3 gene (ds-FLT3) with human 

FL T3 cDNA. The eleven exons were arbitrarily numbered according to the analogous exons 

of the c-kit gene (exons 10-21). However, the structure of the region coding for the 

extracellular and transmembrane domains remained unclear. Due to the chromosomal 

location and genomic structure of class III RTKs, a close evolutionary relationship has been 

suggested for this type of receptor (Andre et ai, 1992; Rosnet et ai, 1993b; Reilly, 2002). 

RTKs class III exhibit close homology, especially in the intracellular (Ie) catalytic domain, 

in that the Ie domains share overall conservation of exon size, number, sequence and 

exonlintron boundary sites. 
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5.1.3 Regulation of FLT3 transcription 

It is well known that regulation of gene transcription is central both to tissue specific-gene 

expression and to the regulation of gene activity in response to specific stimuli (Latchman, 

1997). Although transcription is performed by RNA polymerase, the enzyme needs other 

proteins to produce the transcript. These factors are either associated directly with RNA 

polymerase or aid in building the actual transcription apparatus. The general term for these 

associated proteins is transcription factors. Furthermore, transcription is controlled by a set 

of functional DNA sites realising specific functions through the interaction with the relevant 

proteins (Latchman, 1993). Binding to specific DNA sites is one of the essential steps for 

transcription factors to influence transcription either positively or negatively (Latchman, 

1997). 

Transcription factor binding sites are relatively short stretches of DNA, sufficiently 

conserved in sequence to allow specific recognition by the corresponding transcription 

factor. Nowadays, experimental data on DNA sequences and the functions of thousands of 

transcription factor binding sites are accumulated within various databases. Two of the best­

known databases in this intensively developed area are EMBL Data Library and 

TRANSF AC. All of them provide initial sources of information for developing methods for 

transcription factor binding site recognition. 

In this study, preliminary work was carried out to identify the possible transcription factor 

binding sites in the 5' region of the FLT3 gene. This step is necessary to predict a likely 

effect of transcription factors on these transcription factor binding sites. Furthermore, exon 

size and intronlexon boundaries were identified for all exons of the FLT3 gene by comparing 

the FL T3 cDNA sequence with the genomic sequence available in the NCBI database. This 

step was necessary to assist the screening of functionally important domains of the FLT3 

gene for mutations. In addition, amino acid homology was also analysed between the 
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predicted FLT3, c-kit and c-fms predicted amino acid sequence. These analyses 

demonstrated that the equivalent of exon 2 and exon 3 of c-kit are actually spliced into five 

separate exons in FLT3. 

An amino acid comparison was carried out for the FLT3, c-fms and c-kit proteins. All 

sequences were aligned (using BLAST program: a set of similarity search programs designed 

to explore all of the available sequence databases (or the chosen sequence)) to allow for 

comparison (http://www.ncbi.nlm.nih.govlblast). 
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5.2 Results 

5.2.1 Amino acid sequence homology 

Due to the close similarity between the FLT3, c-fms and c-kit proteins, an alignment 

between the predicted amino acid sequence of these 3 receptors was carried out to be able to 

identify their degree of homology. 

FLT3 1 
c-f~ 1 
c-k~t 1 

FLT3 57 
c-f~ 29 
c-kit 40 

FLT3 117 
c-f~ 77 
c-kit 91 

FLT3 177 
c-frns 119 
c-kit 128 

----MPALARDGGQ~PLLVVFS IFGTITNQDLPVIKCVLINHKNNDSSVGKSSSYPMV 
--------MGPGVLLLLL-VA~AWHG-----QGI PVI----------------EPSVP--

MRGARG~WDFLQ ~~L~~VQTGSSQ-----PSVSPG----------------EPS PPS I 

SESPED~GCALRPQSSGTVYEAAA VSAS I TLQVLVDAPGN I SCLWVFKHSSLNCQP 
----- E· V\~ TVTLRCVGNGSVEWDGPASPHWTLYSDGSSS I LSTNNATF------­
HPGKS DLI VRVGDE I RLLCTDPGFVKWT-FEI LDETNENKQNEWI TEKAEAT--------

HFDL¥ {Rl-VVSMVIL . ETQAGEYLLFI QSEATNYTI LFTVSIRNTLLYTLRRPYFRKM 
---- Nr~-------TYRCTEPGDPLGGSA------AIHLYVKDPARPWNVLAQ-EVVVF 

-----NTG-------KYTCTN---KHGLSN------ SI YVFVRDPAKLFLVDR--SLYGK 

EN D~ ·CISESVPEPlVEWVLCDSQGE----- SCKEESPAVVKKEEKVLHELFGTDIRC 
)QDAJ LP L~~~PVLEAGVSLVRVRGRPLMRHTNYSFSPWHGFTIHRAKFIQS-QDYQC 

EJN ' ~C p~TpnEVTN-YSLKGCQGKPLPKDLRFIPDPKAGIMI KSVKRAYHRLCLHC 

FLT3 232 C. LG---RECTR_FTIDLN-QT PQTTLPQLFLK--------VGEPLWI RCKAVHVNH 
c-f~ 178 Go.. RKVM.:.. ISI ~LK'rQKVIPGP PALTLVPAE:.VRIR------GEAAQIVCSASSVDV 

C-k1t 187 ------ PAFKAVPVVSVSKASYLLREGEEFTVTCTIKDVSS 

FLT3 
c-f~ 

c-kit 

FLT3 
c-f~ 

C-k1t 

FLT3 
c-f~ 

C-X1t 

FLT3 
c-f~ 

c - kit 

FLT3 
c-f~ 

c - kit 

280 
232 
241 

337 
285 
297 

387 
344 
357 

438 
401 
412 

490 
461 
467 

G GL ~L . ,N---KALEEGNYFEMSTYSTNRTMIRI LFAFVSSVARNDTGYYTCSSSKHP 
NIDVFLQ ~ PQQSDFH-----NNRYQKVLTLNLDQVDFQHAGNYSCVASNVQ 
SVYS~:KP;:;NSQ:'KLQEKYNSWHHGDF--NYERQATLT ISSARVNDS--GVFMCY TF 

ALVT r 'GKGr::: TNSS-EDYEI DQYEEFCFSVRFKAYP------QI RCTWT FS 
-KH T MFF~ "~SAYLNLSSEQNLIQEVTVGEGLNLKVMVEAYPGLQGFNWTYLG-PFS 

SANV7TT:'E 'D ,_ :N: FPMI TVFVNDGENVDLIVEYEAFPKPEHQQWI YMNRTFT 

RKS F CQ!, G~DNGYS--------- I SKFCNHKHQPGEYI FHAENDDAQFTKMFTLNI RR 

H-Q~ - 1 - - ATTKDTYRHTFTLSLPRLKP SEAGRYSFLARNPGGWRALTFELTLRY 
r ~-w"'EDY P -S E ES--N-IRYVSE LHLTRLKGTEGGTYT FLVS NSDVNAAI AFNVYVNT 
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FLT3 
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FLT3 
c-fms 
c-kit 

FLT3 
c-fms 
c-kit 

FLT3 
c-fms 
c-kit 

FLT3 
c-fms 
c-kit 

549 
518 
525 

599 
571 
578 

659 
631 
638 

716 
691 
695 

763 
737 
750 

823 
790 
804 

883 
850 
864 

943 
910 
924 
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GVCLLFI VVLT----------LLI CHKYKKQFRYESQLQMVQVTGSSDNE YFYVDFREYE 
-----VVVACMSlMALLLLLLLLLLYKYKQKPKYQVRWKIIESYEG--NSYT FIDPTQLP 
LLIGFVlVAGM-----MCIIVMI LTYKYLQKPMYEVQWKVVEEING--NNYVYIDPTQLP 

YDLKWEFPRENLEFGKVLGSGAFGKVMNATAYGI SKTGVS I QVAVKMLKEKADSSEREAL 
YNEKWEFPRNNLQFGKTLGAGAFGKVVEATAFGLGKEDAVLKVAVKMLKS TAHADEKEAL 
YDHKWEFPRNRLS FGKTLGAGAFGKVVEATAYGLI KSDAAMTVAVKMLKP SAHLTEREAL 

MSELKMMTQLGSHENIVNLLGACTLSGP I YL I FEYCCYGDLLNYLRSKRE---KFHRTWT 
MSELKI MSHLGQHENIVNLLGACTHGGPVLVITEYCCYGDLLNFLRRKAEAMLGPSLSPG 
MSELKVLSYLGNHMN IVNLLGACTI GGPTLVITEYCCYGDLLNFLRRKRD---S FICSKQ 

EIFKEHNFSFYPTFQSHPNSSMPG----------SREVQIHPD---SDQISGLHGNSFHS 
QDPEGGVDYKNI HLEKKYVRRDSG--------FSSQGVDTYVEMR-PVST S-----SNDS 
EDHAEAALYKNLLHS KE SSCSDSTNEYMDMKPGVSYVVPTKADKRRSVRI G-----SYIE 

EDE I EYENQKRLEEEEDLNVLTFEDLLCFAYQVAKGME FLEFKSCVHRDLAARNVLVTHG 
FSEQD------LDKEDG-RPLELRDLLHFSSQVAQGMAFLASKNCIHRDVAARNVLLTNG 
RDVTP------AIME DDELALDLEDLLSFSYQVAKGMAFLASKNCIHRDLAARNI LLTHG 

KVVKICDFGLARDIMSDSNYVVRGNARLPVKWMAPES LFEGI YT I KSDVWSYGILLWEIF 
HVAKI GDFGLARDIMNDSNYI VKGNARLPVKWMAPESIFDCVYTVQSDVWSYGILLWEIF 
RI TKICDFGLARDI KNDSNYVVKGNARLPVKWMAPESI FNCVYTFESDVWSYGI FLWE LF 

SLGVNPYPGIPVDANFYKLIQNGFKMDQP FYATEEIYI IMQSCWAFDSRKRP SFPNLTSF 
SLGLNPYPGI LVNSKFYKLVKDGYQMAQPAFAPKN IYSIMQACWALEPTHRPTFQQICSF 
SLGSS PYPGMPVDSKFYKMl KEGFRMLSPEHAPAEMYD I MKTCWDADPLKRPTFKQIVQL 

LGC QLA-DAEEAMYQNVDGRVSECPHTYQNRRPFSREMDLGLLSPQAQVEDS-------­
LQEQAQEDRRERDYTNLP--------- SSSR------------SGGSGSSSSELEEESSS 
I EKQI SESTN-HI YSNLAN-------CSPNRQKPVVDHSVRI NSVGSTAS SS--------

FLT3 ------------------------
c-fms 949 EHLTCCEQGDIAQPLLQPNNYQFC 
c-kit 968 ------------QPLLVHDDV---

Figure 5.1. An alignment between the predicted ammo acid sequence of human 

FLT3, c-fms and c-kit, showing the identical amino acid (Red) and the conserved 

(Blue) and the non-conserved (Black) amino acids. Amino acid sequences 

representing the immunoglobulin like domains ofFLT3 are underlined. 
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This data, together with the previously published data by Rosnet et al (1993a), shows that the 

amino acid sequence alignment of the human FLT3 predicted amino acid sequence exhibited 

18% and 19% identity with human c-fms and c-kit respectively for the extracellular domain 

(Rosnet et aI, 1993a). However, the degree of homology with FL T3 is greater for the 

intraceIlular domain (47% for c-kit and 49% for c-fms) especially in the tyrosine kinase 

domain, which exhibits 63% and 64% homology with c-kit and c-fms, respectively. 

Furthermore, this strong homology between the different RTK ill also holds true for the 

mouse homologues (see figure 5.2 for the mouse homology). 

FLT3 FMS KIT 

38% 43% 

64% 63% 

6% 13% 

59% 59% 
CT 16% 21% 

Figure 5.2 Percentage ammo acid identity of mouse FLT3 receptor with other 

murine class III RTKs FMS and KIT. 

Ig = Immunoglobulin-like domain, TM = Transmembrane, 

1M =Juxtamembrene, TK = Tyrosine kinase domain, KI = Kinase Insert, CT = C-

terminus. 

Adapted from Rosnet and Birnbaum, 1993 
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5.2.2 Identification of 3 extra exons in the 5' region and determination of 

the exon/intron boundaries for the FL T3 gene 

In order to screen the functionally important domains of the FLT3 gene for mutations, a 

search was initiated for more information about the unidentified sequence of this gene. A 

well known molecular search tool, the basic logical alignment search tool (BLAST; 

http://www.ncbi.nlm.nih.govlblast), provided by the National Centre for Biotechnology 

Information (NCBI) was used, to search for genomic sequences complementary to the 

nucleotide sequence of the human FLT3 mRNA (Accession No=18582015). A BLAST 

search of unfinished high throughput genomic sequences (htgs) identified two clones located 

on chromosome 13; namely No: 11062932 (Submitted to the NCBI; 12th November 2000), 

consisting of 8 unordered fragments and No: 11137776 (Submitted to the NCBI; 9th 

November 2000), comprising 5 unordered fragments. These clones contained twenty exons 

(1-20) coding for the 5' region of the FLT3 gene. However, these two fragments did not 

contain the 3' sequence of the FLT3 gene and it was not possible to identify the exact size 

and location for exons and introns within the most 3' region of the gene i.e. exons 21-24. 

Recently (7th February 2002) a new FLT3 sequence was submitted by the Sanger Centre No: 

18582081. This sequence contains all the 24 exons of the FLT3 gene. 
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Figure 5.3. Result of the recent BLAST search using nucleotide sequence of the 

human mRNA corresponding to the FLT3 gene showing genomic sequence 

alignment using the Unfinished High Throughput Genomic Sequence (htgs) 

databases. The Homo sapiens chromosome 13 genomic clone RP 11-153M24 

(labelled A) encompasses the whole coding sequence of the FLT3 mRNA. All 

the other lines represent different clones with some homology with the FLT3 

mRNA, none had any significant homology in relation to the human FLT3 gene. 

The patterned line represents sequence with an Expect (E) value that could occur 

by chance. 

The result of the BLAST analysis showed the nucleotide sequence of the FLT3 mRN A 

matched with the sequence of the identified clone (figure 5.3). The determination of the 

exon and intron sizes was carried out using Gene Jockey II (Biosoft) . The nucleotide 

sequence of the FLT3 mRNA and the identified genomic clone were put into Gene Jockey II . 

A search was performed to locate the sequence of each exon (based on the mRNA sequence) 

on the genomic sequence of the identified clone. All the predicted exonlintron boundaries 

agreed with the canonical acceptor and donor splice sites (Mount, 1982). 

112 



Cliapter 5: PLT.3 genomicStructura{Organization 

Analysis showed that the human FLT3 gene is encoded by 24 exons, spanning approximately 

100kb. Exon sizes range from 83bp to 562bp, while the characterised introns vary from 86 

to 29,856bp (Table 5.1). Seven exons encode the first three immunoglobulin-like repeats, 

compared to four for c-kit, and include a unique 126bp exonic sequence that straddles the 3' 

and 5' end of exons 2 and 3 respectively, together with an intervening intron of 8434bp 

(figure 5.4). The first exon contains the signal sequence, the second to fourth exons encode 

the first Ig-like repeat, the fifth and sixth exons encode the second Ig-like repeat, while the 

seventh and eighth exons encode the third Ig-like repeat. 

• ••• 

c-kit [ill 271 283 ~ .. - .. -> 
1 

, 
2 

, , 
3 I I 

4 
I 

5 I , , 
I , I I I 

I 
, , , I I , , 

I 
, , I 

I 
, I , , , , 

FLT3 

1 2 4 5 7 8 

Figure 5.4. Comparison of the structural organisation of the 5' end of the 

human FLT3 and c-kit genes in relation to the first three immunoglobulin-like 

(lg) domains. Bold numbers correspond to exon numbering while exon sizes 

(bp) are indicated in the corresponding boxes. The shaded areas correspond to 

the additional 126bp of exonic sequence in exons 2 and 3. 

113 



Cfiapter 5: PLT3 genomic Structura[ OrBani::,ation 

The remainder of the FLT3 gene is split into the same number of exons c-kit (16), and is 

highly conserved in size, sequence and exonlintron boundary positions (figure 5.5). 
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I I I I I . 
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Figure 5.5 Schematic diagram representing the FLT3 receptor in relation to the 

identified 24 exons. Red coloured boxes represent the location of the lTD (exons 14-

15) and Asp835 (exon 20) mutations. 

Ig = Immunoglobulin-like domain, TM = Transmembrane, 1M =Juxtamembrene, TK = 

Tyrosine kinase domain, KI = Kinase Insert, C = C terminus. 
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Table 5.1 Exonlintron organisation of the human FIT3 gene 

Exon Exon 3' Splice acceptor 5' Splice donor Intron length 
number length (bp) (bp) 

I 43 
I 43 tccggaggccA TGCCG TGCTCGgtaaggcccc 29856 

44 165 
2 123 tgttttacagTTGTTT CCCA TGgtaaagtaac 8422 

166 368 
3 203 tgcaacgtagGT A TCA AAACAGgtaagtggag 4402 

369 484 
4 116 tgttttgcagAGGAGT T AAGAAgtaagtccag 4673 

485 614 
5 130 gatgctttagA T ACCC GG AAAGgtatgacaca 2323 

615 742 
6 128 ctaattgcagCTGT AA CAA T AGgtaacactat 320 

743 882 
7 140 catctcctagA TCT AA GAGGAGgtaataggac 97 

883 1036 
8 154 taaaacctagGGCAAC TCGT AGgtaatgcagg 940 

1037 1205 
9 169 tttcttacagAAAAGG AT ACAGgtgagaccac 10986 

1206 1309 
10 104 tttcaaacagCA T A TC T AAGAAgtaagttaaa 1142 

1310 1418 
II 109 ttttctatagGGAAAC TCCCAAgtaataagga 261 

1419 1597 
12 179 tttttttcagCTGCAC CTCCAGgtacaacagt 1086 

1598 1704 
13 107 tttgttgcagGCCCCT AAAAAGgtaaaagcaa 86 

1705 1837 
14 133 atctctgaagCAA TTT AGTTTGgtaagaatgg 90 

1838 1942 
15 105 gtctttgcagGGAAGG TGAAAGgtacagtata 5598 

1943 2053 
16 III tctttgacagAAAAAG TGTCAGgtaacccact 936 

2054 2207 
17 154 actatttcagGACCAA TTCCA G gtaagaggct 2144 

2208 2290 
18 83 tttttaatagCA TGCC CTGAAGgtaatatttt 1383 

2291 2418 
19 128 tattttacagA TGAAA AAGTCGgtatgctcct 4760 

2419 2541 
20 123 ttcttgacagTGTGTT GGCAA Tgtgaggctgc 2787 

2542 2653 
21 112 ttttccacagGCCCGT CACTTGgtaagttggg 335 

2654 2753 
22 100 ttttcctcagGTGTGA AGAAA Tgtaagttcaa 600 

2754 2859 
23 106 gcttttacagA T ACA T GAAGCGgtatgtagca 10277 

2860 
24 554 ccacattcagA TGT A T 

Uppercase letters represent exon sequence and lowercase letters represent 
intron sequence. Exon sequences were numbered according to the human 
mRNA sequence (Rosnet et ai, 1993a). 
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The revised exon numbering has resulted in previous studies using the incorrect exon 

numbering for the reported mutations discovered in the FLT3 gene (figure 5.6). Therefore, 

the previously described location for the FLT3 lTD i.e. exons 11- 12 is now exons 14-15 . 

Similarly, the Asp835 that has been presumed to be located in exon 17 is actually located in 

exon 20 according to the revised exon numbering. 

Old I 

New II II 

Figure 5.6. Schematic diagram showing the revised exon numbering and the 

resultant location of the lTD and the Asp835 mutations 

21 

The novel nucleotides and corresponding amino acid sequences of the 3' end of exon 2 and 

5' end of exon 3 were used in the BLAST homology search to look for sequence homology. 

No significant homologous sequences, however, were found with any other previously 

reported protein sequence. 
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5.2.3 FL T3 transcription factor binding sites 

To date, the 5' region of the FLT3 gene has not been fully analysed. However, an initial 

study, using primer extension analysis, identified a major and minor transcription initiation 

site 61bp and 57 bp respectively, upstream of the translation start site (Liu et ai, 1997). 

Furthermore, nucleotide sequence analysis of the 5' region revealed that the FLT3 5' 

flanking region lacks typical TATA and CAAT boxes, as do c-kit and c-fms. In this study, 

200 bp of the 5' flanking sequence of the FLT3 gene was analysed using PatSearch V1 .1 

(http://transfac.gbfde) (Heinemeyer et ai, 1998) for consensus transcription factor binding 

sites. No sites corresponding to TATA or CAAT sequences were identified in the 200bp 

fragment upstream of the reported translation start site (Small et aI, 1994; Liu et aI, 1997). 

However, seven likely transcription factor binding sites that show 100% match with the 

specified consensus sequence, were located within the 200 bp fragment (see table 5.2). It is 

noteworthy to mention that one of the seven likely transcription factor binding sites was a 

predicted AML1 binding site (TGCGGT) that was located 109bp upstream of the initiation 

codon (Figure 5.7). 

TGCCCAACCT CTCCGCTCCC GCCTCGGTCC CTGCCTCTGG GGAGAGGGTT 
CCTCCCCCCT TCCACTTTGC ACCAGTCCGA GGGAATT TGC GGTCGGTGAC 
GCGCATCCTT AAGAGAGCCA CCTGCAGCGC GAGGCGCGCC GCTCCAGGCG 
GCATCGCAGG GCTGGGCCGG CGCGGCCTGG GGACCCCGGG CTCCGGAGGC 
C ATG GCG CGG C 

Figure 5.7. Nucleotide sequence of 5' flanking sequence of the FLT3 gene 

showing predicted transcription factor binding sites (Blue) and a translation start 

site (Red). Sequences in pink represent nucleotide sequence shared by two likely 

transcription factor binding sites. 

ATG = Translation start site 

ote: The minimum match percentage was set to 100010 match to discard any 

match that might occur by chance. 
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Table 5.2 Possible transcription factor binding sites within the 200bp fragment 
5' to the FLT3 gene initiation site. 

SITE Pattern Site at 
position* 

AP2 CCCMNSSS -13 
I I I I I I I I 
CCCCGGGC 

GCF SCGSSSC -62 
I I I I I I I 
GCGCGCC 

GCF SCGSSSC -60 
I I I I I I I 
GCGCCGC 

GCF SCGSSSC -29 
I I I I I I I 
CCGGCGC 

GCF SCGSSSC -26 
I I I I I I I 
GCGCGGC 

CREB GNTGACGY -100 
I I I I I I I I 
GGTGACGC 

AMLI TGCGGT -109 
I I I I I I 
TGCGGT 

The minimum matching window was set to a value of 6 to exclude sequence 

generated by chance. 

AP2 = The mammalian transcription factor AP-2 is a sequence-specific DNA­

binding protein expressed in neural crest lineages and regulated by retinoic acid 

GCF = A factor that interacts with GC-rich sequences and positively regulates 

both housekeeping genes and cellular oncogenes. 

CREB = cAMP response element binding protein. 

AML1 = The leukaemia-associated transcription factor, acute myeloid leukaemia 1. 

M = A or C , s = C or G 

N = A, C, G, or T 

y = Cor T 

* Numbering from the A of the A TG translation start site. 
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5.3 Discussion 

Data has been presented of the genomic organisation of the extracellular and transmembrane 

coding domains of the human FLT3 receptor. This work, together with the data of Agnes et 

aI, (1994), demonstrates that the entire FLT3 gene comprises 24, rather than the previously 

assumed 21 exons. The ligand binding and receptor dimerization sites are encoded by the 

first 8 exons of FLT3, which have the least degree of homology with other RTK class III 

receptors. Thus, it appears that the five extracellular immunoglobulin-like repeats are 

encoded by the first 12 exons of the FLT3 gene. Exon 13 encodes the C' terminus of the 

extracellular part and the central hydrophobic TM domain, while the JM region is encoded 

byexon 14. Exons 15-22 encodes the TKI and TK2 and the KI domains while the last two 

exons (23-24) encode the protein's C-terminus. 

5.3.1 FL T3 identity with other RTK III 

As presented in section 5.2.1, the identity between FLT3 and other RTK class III (e-kit, e­

lms) decreases in the extracellular part of the receptor, an observation that was previously 

reported by a number of researchers (Rosnet and Birnbaum, 1993; Rosnet et ai, 1993a; 

Agnes et ai, 1994). However, it is well known that RTKs class III ligands are peptide 

regulatory factors that bind to the receptor as associated dimers (Pandit et ai, 1992; Rosnet 

and Birnbaum, 1993). Furthermore, RTK class III ligand dependent activation takes place 

through binding of a dimerized ligand to their cognate receptor (Ullrich and Schlessinger, 

1990; Rosnet and Birnbaum, 1993); a fact that may explain the decreased identity between 

RTK III extracellular domains as a result of cognate ligand specificity. 

However, this ligand -receptor specificity is not applicable in the intracellular part, as there is 

no direct interaction between the ligand and its receptor. The greater homology for the 

intracellular domain is the result of conservation of the kinase activity as the result of the 
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evolution from a common ancestral gene by cis and trans duplication (Rosnet et ai, 1991 b; 

Andre et ai, 1992)( chapterl). 

5.3.2 Structural analysis of the FLT3 gene 

In relation to the position of mutations identified in the FLT3 gene, the data indicates that the 

prognostically important FLT3 lTD mutations (see chapter 6) are located in exons 14 and 15 

rather than exons 11 and 12 as previously assumed. Furthermore, the recently identified 

point mutations affecting Asp835 (see chapter 6) are located in exon 20 rather than ex on 17. 

The complete genomic structure of the FLT3 gene will be of great interest for groups 

considering carrying out a full mutational analysis of the FLT3 gene. Such a step is 

important, especially after the finding of Fenski and colleagues (2000) who demonstrated a 

lack of correlation between constitutive activation of FLT3 and lTD mutations (Fenski et ai, 

2000). Fenski et al suggested that other mechanisms of activation must be operational; a 

hypothesis supported by the recent finding of the FLT3 Asp835 mutation in AML patients 

(see chapter 6) (Abu-Duhier et ai, 2001 b; Yamamoto et ai, 2001). Therefore, for the first 

time the exact location, size and sequence of FLT3 gene is available to carry out more 

investigation and mutational analysis for the gene most commonly mutated in AML. 

5.3.3 Transcription binding sites in the 5' FLT3 gene 

Prediction of transcription factor binding sites is a basic step for the analysis of gene 

regulatory networks. It is generally agreed that proteins other than RNA polymerase are 

required for transcription. These are called transcription factors. In this study, a 200bp 

fragment in the 5' region of the FLT3 gene was analysed to identify predicted transcription 

factor binding sites. Analysis of the 5' region revealed the presence of 7 possible 

transcription factor binding sites (AMLl, CREE, AP-2, GC (4 sites)). Some of these 

transcription factor binding sites appear to be important, for example the cAMP response 
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element binding (CREB) protein has been identified as a crucial factor mediating a 

transcriptional response to elevated levels of cAMP and Ca2+ (Latchman, 1997). 

Furthermore, it was suggested that CREB may play a role in causing alterations of gene 

expression important to angiogenesis in the KDRlFlk] gene (Mayo et aI, 2001). However, 

the role of CREB protein need to be examined in FLT3. AP-2 is a sequence-specific DNA­

binding protein expressed in neural crest lineage and regulated by retinoic acid. It was 

demonstrated that the expression of c-kit is regulated by the AP-2 transcription factor (Bar­

Eli, 1999). It is therefore suggested to investigate the mechanisms of FLT3 transcriptional 

regulation starting by isolation the 5' flanking region of the human FLT3 gene and 

characterizing its promoter activity in haematopoietic cells. 

In haematopoiesis, a functional analysis of wild-type AML] and its fusion proteins is 

yielding important information on the mechanisms of transcription (Zhang et aI, 2001). In 

human leukaemia, the AML] gene is the most frequent target of chromosome translocations 

e.g. t(8;21), t(12;21) and t(3;21) (Cherry et at, 2001). The AML] gene encodes a 

transcription factor that regulates a number of target genes that are essential for normal 

haematopoiesis (Downing, 2001). Initial examination of human c-fms expression revealed 

that it is upregulated upon myeloid commitment during haematopoiesis. This suggests an 

important role for the transcription factor during myeloid cell differentiation (Shapiro and 

Look, 1995). Further analysis of the c-fms promoter region revealed that AML] and other 

transcription factors i.e. CIEBP and PU], bind directly to the c-fms promoter region, 

indicating that the human c-fms gene is a direct target of AML] (Zhang et at, 2001). 

Furthermore, transient transfection analysis of the functional promoter demonstrates that 

AML], in conjunction with its heterodimer partner CBFf3, can activate this promoter. CIEBP 

and AML] are important factors for regulating a critical haematopoietic growth factor 

receptor, the c-fms receptor, suggesting a mechanism for how the AML] fusion protein could 
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contribute to acute myeloid leukaemia (Zhang et ai, 1994; Zhang et ai, 1996). These 

previous studies shows that AML] plays an important role in regulating the promoter activity 

of the c-fms gene (Zhang et ai, 2001). An initial study was performed showing that AML] 

did actually stimulate FLT3 expression (Qian and Small, 1996). Consequently, a similar role 

for AML] could be assumed within the 5' region of the human FLT3 gene due to the 

presence of a binding site for AML] and the close relationship between RTK class III. In 

addition, AML] alteration could contribute to impaired differentiation of haematopoietic 

cells (Yergeau et ai, 1997), which seems to be important in the "two-hit" model proposed for 

the development of AML (see chapter 7) (Gilliland and Griffin, 2002). This speculation, 

however, requires further mutational and functional analysis to be carried out in the 5' region 

of the FLT3 gene to uncover this valuable information. 
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Mutation analysis of the FLT3 receptor 

6.1 Introduction 

6.1.1 Normal function ofFLT3 receptor 

It is established that a number of cell growth factors, acting through specific receptors 

strictly regulate the proliferation and differentiation of normal haematopoietic cells (Nicola, 

1989). It is also confirmed that proteins with tyrosine kinase activity, not only play an 

important role in the transduction pathways for cell growth and differentiation of normal 

cells but also carry potential transforming activity. 

FLT3 is thought to playa crucial role in haematopoiesis, for example, it is preferentially 

expressed on primitive CD34+ haematopoietic stem cells, while it's ligand (FLT ligand, FL) 

is synthesised by bone marrow stromal cells (Lyman et ai, 1993). Furthermore, FL is known 

to stimulate primitive haematopoietic cells by binding to FLT3 receptor and causing receptor 

dimerization, leading to the activation of the receptor tyrosine kinase and receptor 

autophosphorylation (Hannum et ai, 1994; Graddis et ai, 1998). Activated signals are 

transduced by the phosphorylated FLT3 through association with various cytoplasmic 

proteins, including ras GTPase-activation protein, phospholipase C, and Src family tyrosine 

kinases (Lyman et ai, 1993). In addition, stimulation with an agonist antibody against FLT3 

gives rise to an expansion of both myeloid and lymphoid cells (Zeigler et ai, 1994), while 

antisense oligonucleotides against FLT3 block the formation of mature myeloid progenitor 

cells in long term bone marrow cultures (Small et ai, 1994). FLT3 plays a regulatory effect 

due to the interaction of FLT31F1k2 with its ligand on pluripotent stem cells, immature 

lymphocytes and early progenitor (Matthews et ai, 1991a). 
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6.1.2 FLT3 Internal tandem duplication 

Recently, an internal tandem duplication (ITO) in the juxtamembrane (JM) domain of the 

FLT3 gene was identified in a small group of AML patients (Nakao et aI, 1996). The lTD, 

located within the 1M region, was demonstrated to be a somatic mutation of the FLT3 gene 

occurring in 17% of AML patients (Nakao et aI, 1996). In a subsequent study involving a 

large number of haematological malignancies, ITO mutations were restricted to AML and 

myelodysplastic syndrome (MDS) (Yokota et aI, 1997). FLT3 ITO has now been shown to 

be present in a high percentage of AML cases (20%), regardless of the F AB classification 

(Yokota et aI, 1997; Xu et aI, 1999; Rombouts et aI, 2000) and in MDS (5%) (Kiyoi et aI, 

1998) but never in CML, or normal haematopoietic tissue (Yokota et aI, 1997; Ishii et aI, 

1999). FLT3 ITO has been rarely reported in patients with acute lymphoblastic leukaemia, 

where interestingly aberrant myeloid antigen expression may be present (Xu et aI, 1999; 

Nakao et aI, 2000; Xu et aI, 2000). 

A relationship between the FLT3 ITO and peripheral white blood cell count and high lactate 

dehydrogenease level was noticed in acute promyelocytic leukeamia (M3) (Kiyoi et aI, 

1998), while the appearance of FLT3 ITO mutations during transformation of MDS, or at 

relapse in AML, suggest that lTD mutations could have a role in promoting leukaemic 

progression (Horiike et aI, 1997; Nakano et aI, 1999). 

The patient-specific duplicated sequence insertions are always in open reading frame and 

result in mutant FLT3 with extended 1M domains (Nakao et aI, 1996). Although there is a 

variation of length and location between the lTD in different patients, the altered FLT3 

mutation is always transcribed in-frame and encodes mutant FLT3 with an extended 1M 

domain (Nakao et aI, 1996). The FLT3 ITO appears to result in constitutive dimerization of 
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the receptor and autophosphorylation of specific tyrosine residues irrespectively of the type 

of mutation (Kiyoi et ai, 1998; Hayakawa et ai, 2000). 

6.1.3 Pathogenic role of FL T3 lTD 

The previously discussed data suggests a pathogenic role for FLT3 In acute myeloid 

leukaemia (Yokota et ai, 1997; Fenski et ai, 2000; Rombouts et ai, 2000). The ITO mutation 

is in open reading frame and results in a protein that acts in a dominant fashion, stimulating 

the growth of the leukemic cells (Yokota et ai, 1997). In another study, FLT3 receptor was 

demonstrated to cause proliferation of AML cells in vitro, by stimulating the proliferation 

and inhibiting apoptosis of AML cells (Lisovsky et ai, 1996), thus blocking the cellular 

apoptotic response to conventional chemotherapy (Meshinchi et ai, 2001a). 

Finally, functional FLT3 expression in most cases of AML, as well as in the majority of 

immortalised human myeloid and monocytic cell lines (Birg et ai, 1992; Rosnet et ai, 1993a; 

Meierhoff et ai, 1995; Drexler, 1996), emphasises the pathological role for FLT3 in acute 

myeloid leukaemia. 

6.1.4 FLT3 Asp835 mutation 

A number of previous studies have documented mutations in tyrosine kinase receptors in the 

kinase domain, such as those affecting codons 814 and 816 in mouse and human c-kit 

respectively (Furitsu et ai, 1993). Such c-kit mutations are present in human and mouse mast 

cell lines, as well as being associated with human systemic mastocytosis and its associated 

leukaemia (Furitsu et ai, 1993; Longley et ai, 1999; Sotlar et ai, 2000). 

Recently it was reported that expression of the FLT3 gene containing an ITO in COS-7 cells 

resulted in constitutive autophosphorylation of the receptor (Kiyoi et ai, 1998), however, 
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6.2 Results 

6.2.1 Molecular analysis of the FLT3 gene 

6.2.1.1 Exon 9 and exon 11 

Due to the great similarity between RTK class III, screening of the homologus regions of the 

mutation hot spots previously reported in the c-fms gene at codon 301 (exon 7) and at codon 

413 (exon 9) was carried out for the FLT3 gene i. e. codon 350 in exon 9 and codon 450 in 

ex on 11. 

As described in chapter 2, ex on 9 was amplified by PCR of genomic DNA from all groups of 

AML (n=123) (A, B, Cl , C2) except group D (n=185) and all cases of IMF patients (n=40) 

(see chapter 2 for details). None of the patients analysed showed abnormal CSGE patterns 

(Figure 6.1). 

1 2 3 4 B c 

Figure 6.1 CSGE analysis of FLT3 exon 9 demonstrating the profiles obtained 

for four AML patients (lanes 1-4) and a blank (B) and a gel control (C). 
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imilarly PCR of genomic DNA from 123 (group A, B, Cl and C2) cases of AML and 40 

cases of IMF were amplified using primers for exon 110f the FLT3 gene. 42 out of 123 

AML cases and 10 out of forty cases of IMF and 27 out of 70 normal individuals had 

abnormal patterns on CSGE (Figure 6.2). This pattern was the same in all individuals. 

equence analysis identified the presence of a C~ T substitution a position 1300-3 of the 

FLT3 gene (Figure 6.3). 

1 2 3 4 

Figure 6.2 CSGE analysis of exon 11 

shows CSGE variants. Lanes 1 and 3 show 

abnormal CSGE profiles in 2 AML 

patients. Lanes 2 and 4 show normal CSGE 

patterns in AML patients. 

TG C A TG CA TG CA TGCA 

III! C~T 

substitution 

1 2 3 4 

Figure 6.3 Direct DNA sequence of exon 11 from control and patient samples 

showing the control individual homozygous CC (sequence 1) homozygous IT 

(sequence 2) and heterozygous C~ T substitution at position 1300-3 in two 

patients (sequences 3 and 4) 
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6. 2.1.2 Exon 14 and 15 lTD 

The genomic D A of 151 patients (111 AML from groups (A, B, Cl), and 40 1M F) with 

myeloproliferative disorders was screened for mutations, in exons 14 and 15 of the FLT3 

gene using specific primers (see section 2.3.4.1). 14 AML but no IMF patients showed an 

abnormal profile following PCR amplification and polyacrylamide gel electrophoresis of 

exon 14 and 15. The abnormal profile represents the previously reported internal tandem 

duplication. PCR products of four patients representing different sizes of lTD (27-111 bp) 

are shown in figure 6.4. 

500 bp 

328bp 

M 1 2 3 4 5 6 

Figure 6.4. Polyacrylamide gel illustrating profiles obtained following 

amplification from genomic DNA of four AML patients with a FLT3 ITD (lanes 

1-4), a normal individual (lane 5) and a 'no template' control (lane 6). An arrow 

indicates the 500bp band in the marker lane (M). The DNA sequence of each of 

the four ITDs was determined and is shown in figure 6.6. The band of 328bp in 

each individual (lanes 1-5) represents wild-type FLT3 sequence. Additional 

larger bands represent the lTD in each of the four AML patients, plus 

heteroduplexes formed between wild-type and ITD DNA strands in each patient. 
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CSGE was performed to confirm the presence or absence of any other mutations in exon 14 

and 15. CSGE analysis often AML patients with an ITD is shown in figure 6.5. 

1 2 3 4 56 7 8 9 10 

Figure 6.5 CSGE analysis of exons 14-15 of the FLT3 gene 

demonstrating the profiles obtained for a normal individual (N) and 

abnormal CSGE profiles (lanes 1-10) in AML patients. 

After sequencing four selected AML patients, three patients showed a simple ITO and one 

showed an lTD plus insertion. Sequencing gels representing a normal individual and an 

AML patient with an lTD are shown in figure 6.6. All four patients shown in figure 6.4 were 

sequenced and the ITD sequence was identified for each of them (Figure 6.7). None of the 

forty patients with IMF showed abnormal profiles on the polyacrylamide gel or CSG for 

exon 14 and 15. Furthermore, none of the 70 normal individuals had an abnormal profile on 

GE. 

132 



Cfiapter 6: :Mutation anafysis oftlie CFLrtJ receptor 

(A) 

lTD { 

lTD 

(B) 

ACGTACGT 

Patient 
5031 

Patient 
3627 

lTD 

igure 6.6. ( ) DNA sequence analysis gel of the lTD in exon 14-15 

demonstrating normal sequence and an ITD sequence in an AML patient 

(5118). (B) DNA sequence analysis gel of the lTD in two patients with an 

lTD. ee fig 6.7 for lTD sequence of each patient. 
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6.2.1.3 Exon 20 

In this stage of patient analysis, due to the fact that some AML patients were not suitable to 

be statistically analysed (no PCR product in previous tests (lTD), no PCR product in the 

current test (Asp835) or poor risk criteria) another 12 patients were added. Therefore, this 

group i.e. group ABC20 (n=97) patients with AML, were analysed for sequence alterations 

in ex on 20 of the FLT3 gene. Due to the lack of sufficient information about the intronic 

sequence, a 194bp fragment comprising 101 bp of the 3' end of exon 20 and 93bp of the 5' 

end of intron 20 was amplified. This was subjected to analysis by CSGE. 

Initial observation highlighted the presence of an abnormal band in some AML samples. 

Although it was possible to distinguish diffuse bands from the normal band, a reliable result 

demonstrating the presence of either one or two band was not possible (Figure 6.9). Further 

tests were needed to identify the type and numbers of changes present in exon 20. 

1 2 3 4 5 C 

Figure 6.9. CSGE analysis of exon 20 of the 

FLT3 gene demonstrating diffuse bands (lanes 1 

and 2) and normal bands (lanes 3, 4, 5) and a 

gel control sample (C). 

Initial sequencing of DNA from three samples, representing two AML patients with diffuse 

bands and one individual with a normal CSGE pattern, revealed the presence of a 

GAT ~CAT change at nucleotide 2503 predicted to result in an Asp835His mutation in one 

AML sample (5104). This nucleotide change was not present in the other AML sample 
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(50 18) or in the normal individual (Figure 6.10). However, an A~G intronic change was 

identified 57bp from the 3' end of exon 20. This intronic change was identified in AML 

patient 50 18 (Figure 6.11). 

( 

A CGTA C GT AC GT 
Figure 6.10. DNA sequencing gel 

showing wild type sequence m a 

normal individual, AML patient 

without any mutation (5018) and 

abnormal sequence with a single-base 

substitution GA T ~CAT at codon 

835 predicted to result in an amino 

acid change Asp835His in patient 

5104. 
ormal 

Figure 6.11. 

patient 
5018 

patient 
5104 

G~C 

equencmg gel showing the 

sequence of exon 20 of the FLT3 gene with a 

single-base substitution A~G (57bp from the 

3' end of exon 20) in patient 5018 and a wild­

type sequence (normal). 

Patient 
5018 

ormal 
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Analysis of the sequences involved in the nucleotide alterations afkcting c(ld(ln X l'i 

demonstrated that any sequence aiteration atlecliflg I he codon \\ (lIi1d desllo\ I he resl ricl iOll 

enzyme site for EcoRV In additioll , the Ilucleotlde 25-11 I q .\ (; ch;lnge destl()ved a sill' 

for Niall!. Therefore, in order to screen the <n samples fl.)!" all possible codon X)'i l1lutati(lns, 

the 194bp fragment was digested with LcoR \ ' (Figure () 12) \\hile \il;lIl1 \\as llsed 10 screell 

for the intronic A to G change (Table 6 I and Figure () I .) ) 

200 bp 

M 2 3 

Figll r'e 6.12. Polyacrylamide gel 

demonstrating the prnduct ohtained "ncr 

restriction en/.\me anahsis using 1':coRV 

enzyme Lane 1 sIH)\\s all .\ I'dl . patil'nt 

without an Asp~3S mutation, lancs 2, .), -t 

and" sho\\ ·\sp~n" lllutalion:-. (lane" is 

an ,\1\11. patient "ith an !\spX35 delction) 

Table 6.1. Fragments, f1'eqllcnc~ ' and si/cs i'or PCR 
products using Naill . 

Fra.,3ment size (bp) 
~ __ ~ __ ~-L __ ~~ ____ ~ 

38, 71 , 8" 
l 71 , 123 

• .'>~ .-1 123 bp .. SS bp '-1 71 hn .. 38 hn 
M 2 3 

Figure 6.13. Polyacrylamide gel stained \\ith sil\"Cr stain dClllonstrating Ihe product 

obtained after restriction enz\,lllc analysis using 1\IIalli l lndigestcd PCR product is 

shown in lane I , heterozygous polymorphism A/G in lane 2, hOlllo/.ygOLJS Al A in 

lane 3 and homozygous GIG in lane-t 
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(lial'tcr fl: :l1utatloll l1l1afyS1S (~r tnc 11.7 l rCtCll/Of 

Changes detected \\ith EcoR\' \vere confirmed bv direct DNA sequencIng (Figure 61.+) 

'ie\en A\1L samples (7 '::;° 0 ) possessed a codon SJ5 mutation~ AspSJ5Tyr (n 5L AspSJ511is 

(n I) and AspSJ) del (n I) Fiw of these cases \\ere classified as AMI. 1\1-L orv"hich three 

dcmonstrated ill\(16) (see Table 6:2) FL T3 ITO Illutations had bcen idcntiticd in 15 

patients. ho\\e\er no case possessed both an ITO and\spSJ5 mutation Codon S35 

mutations \\ ere not detected in the 70 control ~al11ples using EcoR \" anal~'sis 

.\) T G C A T G C A 
~ 
~ ,...., 
-l 

Ala ~ ') 
~ ::J Ala 

Arg -.; > Arg 
Dell'! Ion of( 1·\ I ,...., { S} Ile >- Asp 

~ 
~ 

Ile 
Met ..... -l --i 'j Met 

Patient !\Jormal 
030 

-----------------------------------------------------------------------------

8 ) 
830 831 832 833 834 835 836 837 838 839 840 

Wild type Phe Gly Leu Ala Arg Asp Ile Met Ser Asp Ser 
5'TTT GGA TTG GCT CGA GAT ATC ATG AGT GAT TCC 3' 

Asp 835 del Phe Gly Leu Ala Arg Ile Met Ser Asp Ser 
1 Patient 5 ' TTT GGA TTG GCT CGA ATC ATG AGT GAT TCC 3' 

(deletl.on GAT ) 
Asp 835 Tyr Phe Gly Leu Ala Arg Ile Met Ser Asp Ser 
5 Patients 5 ' TTT GGA TTG GCT CGA TAT ATe ATG AGT GAT Tee 3' 

Asp 835 Hl.S Phe Gly Leu Ala Arg Ile Met Ser Asp Ser 
1 Patient 5'TTT GGA TTG GCT CGA CAT ATC ATG AGT GAT TCC 3' 

Figu re 6.1.... A). Sequencing gel sho\\ i ng abnormal sequence \\ it h codon 835 

deletion in patient U:;O and a \\ild-t~pe sequence (normal) B) Point mutations 

in e'\on :2 0 of the U /3 gene in three patients \\ ith -\ \ lL The deletion in patient 

I is indicated in parcnthe..,es underneath the resulting no\ el sequence l30ld 

underlined te,! indicate ... Illutated nucleotides and resultant amino acids 
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Table 6.2. Patients characteristics of seven AML cases possessing an Asp835 

Patient Sex Age FAB Cytogentics Mutation Survival 

(months) 

030 F 73 M4 46.XX[30] Asp835del o + 

1920 M 32 M4 47.XY.inv( 16 )(p 13q221.+22/46.XY(*) Asp835Tyr I + 

5041 F 48 M4 46.XX[30] Asp835Tyr 3 + 

5269 M 51 M4 46,X.-Y .+8,inv( 16 )(p 13q22 )[20] Asp835Tyr 50 

5370 M 24 M6 46,XY ,add(5)(q31 ),del(5)(q22q34)[ 14] Asp835Tyr 48 

040 M 62 M4 46,XY,inv( 16 )[3]14 7,XY ,inv( 16),+22[21]/46,XY[3] Asp83STyr 3 + 

5104 M 32 M3 46,XY,t( 15; 17)(q24;q21 )[5] Asp835His I + 

Analysis date January 200] 

The nucleotide 2541 +57 A>G change was shown to be a polymorphic change, with an allelic 

frequency of 0.24 for the G and 0.76 for the A allele in the 70 control samples. The Asp835 

residue was noted to be highly conserved amongst the class III RTKs (Figure 6.15). 

807 835 
FLT3 (H) CVHRD LAARN VLVTH GKVVK ICDFG LAR 12 I MSDSN (Abu-Duhier et a12001) 

810 838 

FLT3 (M) CVHRD LAARN VLVTH GKVVK ICDFG LAR 12 I LSDSS (Fenski et ai, 2000) 
788 816 

c-ki/ (H) CIHRD LAARN ILLTH GRITK ICDFG LAR 12 I KNDSN (Longley et ai, 1999) 
786 814 

c-kit (M) CIHRD LAARN ILLTH GRITK ICDFG LAR 12 I RNDSN (Tsujimura et ai, 1994) 
789 817 

c-ki/ (R) CIHRD LAARN ILLTH GRITK ICDFG LAR D I RNDSN (Tsujimura et ai, 1995) 
774 802 

c-fms (H) CIHRD VAARN VLLTN GHVAK IGDFG LAR 12 I MNDSN (Glover et ai, 1995) 
772 800 

c-fms (M) CIHRD VAARN VLLTS GHVAK IGDFG LAR 12 I MNDSN YVVKG N (NI) 

Figure 6.15. Cross-species comparison of amino acid sequence of RTK class III 

receptors demonstrating the location of the highly conserved aspartic acid resides. 

References indicate known activating point mutations. 

H= Human, M=Mouse, R=Rate, NI=Not identified. 
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185 extra AML samples (group D) were added to the study to increase the number of the 

AML samples to detennine if there was any significant difference in survival for a larger 

group of patients. Seven patients were confinned to have Asp835 mutations using EcoRV 

restriction enzyme digest and by automated DNA sequencing. 

6.2.2 Survival analysis 

6.2.2.1 lTD mutation 

The Kaplan-Meier (KM) method (Kaplan and Meier, 1958), was used to calculate the 

survival differences between the two groups of AML patients (patients with and without 

mutations), and were compared by the Mantel-Cox test. Stat-view software (Abacus 

Concepts, Inc), available in the Division of Genomic Medicine was used to measure survival. 

The AML patients were separated into two groups according to the cytogenetic data: a good 

risk group (n=62) defined as those with an inv(16) (n=37), t(8;21) (n=15) or t(15;17) (n=lO) 

and a standard risk group (n=44) which included patients who lacked good and/or poor risk 

karyotypes. Five patients were excluded from the analysis because they were poor risk 

patients, defined as monosomy 7 and/or 5, 5q-, anomalies of 3q and complex re­

arrangements. The analysis shows that the FIT3 lTD mutation is a strong prognostic factor. 

The mean survival for patients without the mutation was 29.1 months compared to 12.8 

months for patients with an lTD mutation. Therefore, patients lacking the ITO mutation 

survived longer than patients with the mutation. In addition, the data shows that the 

incidence of FIT3 mutations is lower in the good risk group (6.5%) compared to (22.7%) in 

the standard risk group. The FIT3 lTD was of prognostic significance for patients in both 

the good and standard risk groups (Figure 6.16). 
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6.2.2.2 Codon 835 mutations 

Similarly, survival analysis was carried out for the 97 AML patients (group ABe20) 

screened for both the ITO and Asp835 mutation. 15 AML patients with ITO were excluded 

from the analysis because it had already been shown that lTD was of adverse prognostic 

significance. Kaplan-Meier cumulative survival analysis was carried out for 75 AML 

patients lacking a FLT3 ITO and compared to seven AML patients possessing a FLT3 codon 

835 mutation. The Asp835 mutations alone were not shown to be of prognostic significance 

(Figure 6.17), although a larger number of patients need to be studied. However, the lack of 

prognostic significance for Asp835 mutations has been confirmed in 429 cases of AML 

(Yamamoto et ai, 2001), as well as by two other groups (lnami et ai, 2001; Frohling et ai, 

2002), who examined, respectively 170 and 224 AML patients. 
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,. C .... '. .,. ,,- '.::;':;,,"",.> ..... ,:> •• '" u,., ,.~ . .:t".".''C'.';. ".",;", __ ".;.".1' :;r",:<.,,~ H; ",;;;~B_I~~.1~Ii[l 

Median age 37.7 41.8 

t(8;21) I 15 

inv(16) 2 35 

t(15; 17) I 9 

5q- 7q- 0 5 

Median survival 10 23 

FAD type (total) 14 97 

MO 0 7 

Ml 5 7 

M2 0 29 

M3 1 9 

M4 5 30 

M5 3 9 

M6 0 6 

Good prognosis 4 58 

Standard prognosis 10 34 

Poor prognosis 0 5 

Male 7 59 

Female 7 38 
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6.3 Discussion 

6.3.1 Exon 9 and exon 11 

FLT3 is a tyrosine kinase receptor with strong sequence similarity to c-fms and c-kit and 

other members of the RTK type III subfamily with a similar overall structure (Yarden and 

Ulrich, 1988). Interestingly, a number of c-kit mutations have been reported in the 

extracellular, juxtamembrane and tyrosine kinase domains of the receptor. An earlier study 

from our laboratory reported the presence of exon 8 in frame deletion plus insertion 

mutations in AML with inv(16), involving the highly conserved Asp419 codon (Gari et al, 

1999). In the human mast cell leukaemia cell line HMC-l; Val560Gly and Asp816Val 

mutations have been reported in the tyrosine kinase domain (Furitsu et al, 1993). 

Furthennore Nagata and Longley, in two different studies reported the presence of 

Asp816Val mutation in cells from patients with aggressive mast cell disease (Nagata et aI, 

1995; Longley et ai, 1996). Additionally Asp816Tyr substitution was reported recently in c­

kit (Beghini et aI, 1998). Importantly, the identification of this substitution provided the first 

direct evidence for such mutations leading to the development of human acute leukaemia 

(Beghini et ai, 1998; Beghini et ai, 2000b). 

Similarly, mutations in codon 301 in the c-fms gene are believed to lead to a confonnational 

change that mimics ligand binding, resulting in constitutive tyrosine activity (Ridge et ai, 

1990). Therefore, the homologous location in the FLT3 gene, namely codon 350 in exon 9, 

was screened in our study to identify possible pathologically important mutations in this 

location. None of the AML or the IMF patients showed any mutations in exon 9, a result 

that excludes the presence of similar mutations to the codon 301 changes found in c-fms in 

both group of patients. Furthennore, in the homologous location to the codon 413 mutation 

found in the c-fms gene i.e codon 450 in ex on 11 of the FLT3 gene, a C~ T polymorphism 
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was identified in the FLT3 gene in the two patients groups (AML and IMF) as well as in the 

normal individuals at position 1300-3, a result that excludes the likelihood of an abnormal 

effect of this nucleotide change in the AML or the IMF patients. 

6.3.2 lTD in AML and IMF patients 

Little is known so far about the pathogenic consequences of the FLT3 lTD, however, 

expression of mutant FLT3 (containing lTD) in COS-7 cells was reported to induce 

constitutive autophosphorylation of the receptor (Kiyoi et ai, 1998). Surprisingly, in a study 

carried out by Fenski et al (2000), it was not possible to correlate the constitutive 

autophosphorylation of the receptor with the lTD in some AML samples. Therefore, it was 

suggested that other mechanisms of activation might be operational, resulting from either 

mutation elsewhere in the gene or from autocrine mechanisms. 

The presence of the FLT3 ITO mutations in exon 14 and 15 have been reported previously 

by other groups (Nakao et ai, 1996; Kiyoi et ai, 1997). In the study performed by Nakao et 

aI, (1996) further analysis of DNA samples obtained at complete remission shows that three 

patients, initially harbouring a FLT3 ITO mutation, had no lTD mutations, a fact that 

confirms the somatic origin of this mutation. In the present study, it was shown that in these 

AML patients (Number: 5117, 5118 and 5031) the nucleotide sequence analysis revealed an 

in-frame insertion and amino acid duplication of almost perfect copies of flanking sequence 

derived completely from within ex on 14. Furthermore, a close inspection of the lTD in a 

further AML patient (Number: 3627) indicated that the lTD spanned the exon 14-intron 14 

boundary and that the duplicated sequence was similar to the template sequence from which 

it originated, differing by just three bases, including a T ~A transversion 8 bp from the 3' 

end of the inserted sequence. It would appear that the T ~A transversion is in a sequence 

derived from the original exon 14-intron 14 splice site consensus sequence. In fact, this 
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transversion interrupts an important GT dinucleotide consensus sequence, present in normal 

donor splice sites. Interestingly, if this important regulatory sequence was not disrupted, it 

would be expected that any similar event would result in a 'mutated' FLT3 gene sequence 

capable of utilizing this duplicated splice site in preference to the normal site, and in such a 

case an entirely normal protein would be produced. Alternatively, it might be possible that a 

previously benign duplication event may undergo a secondary mutation (within the 

duplicated splice site) that, due to the growth advantage present as an outcome of both 

mutations, causes proliferation of this clone. On the other hand, it is possible that an inserted 

copy of the disrupted splice site will produce an altered allele that will cause the production 

of a mutated protein with the potential to cause uncontrollable growth of the clone in which 

it originates. 

Data from the current study shows that FLT3 lTD occurs in 12.6% of adults with AML at 

diagnosis, a frequency somewhat lower than the 20-25% published by other groups (Nakao 

et ai, 1996; Yokota et ai, 1997; Kiyoi et ai, 1999; Kottaridis et ai, 2001). However, it was 

noticed that patients in the good risk group (according to the cytogentic definition) had a 

lower incidence of the lTD than standard and high risk groups. This low incidence of the 

lTD mutations in the good risk group has been recently confirmed (Frohling et ai, 2002; 

Thiede et ai, 2002). Our interpretation of this low percentage of positive lTD in our AML 

patients is due to the presence of a high proportion of patients within the good risk group, 

when compared to other reports with high percentages of the FLT3 lTD mutation. 

6.3.3 Prognostic significance of the lTD 

It is clear that FLT3 lTD mutations are associated with an adverse prognosis and that this is 

independent of standard karyotype findings (Abu-Duhier et ai, 2000). Out of the 106 AML 

cases analysed, fourteen cases were identified having FLT3 lTD and possessed a 
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significantly lower survival when compared with patients without a FLT3 lTD. Thirteen out 

of the 14 patients with a FLT3 lTD died within 18 month of diagnosis. A similarly 

significant difference in survival has been also noticed by other groups (Kiyoi et ai, 1999; 

Kottaridis et ai, 2001; Gilliland and Griffin, 2002) especially in patients under the age of 60 

(Kottaridis et ai, 2001; Whitman et ai, 2001; Frohling et ai, 2002; Thiede et ai, 2002). For 

example, Kottaridis et ai, (2001) noted 2311854 (27%) patients to be positive for lTD. FLT3 

lTD mutations correlated with high leukocyte and blast cell counts, decreased remission 

induction rates (p=0.005), and decreased disease free survival (DFS), event free survival 

(EFS) and overall survival (OS) (p< 0.001 for each). Furthermore, FLT3 lTD has been 

shown to be an adverse prognostic factor in two paediatric studies (lwai et ai, 1999; 

Meshinchi et ai, 2001 b). Overall, it would appear that AML patients possessing a FLT3 lTD 

should be regards as having high risk disease, irrespective of cytogenetic and alternative 

therapy should be considered. 

An interesting finding in the recent study by Kottaridis et ai, (2001), is the marked variation 

in the incidence of FLT3 lTD among FAB groups. The frequency was the highest in AML 

M3 i.e. t(15;17) at 36% and only 9% and 7% in t(8;21) and inv(16) respectively. A similar 

trend was noted in the present study but the lower percentage in M3 may reflect the small 

number studied for example, 10% of the t(15;17) and 6.3% and 5.4% oft(8;21) and inv(16) 

respectively. Importantly, the FLT3 gene appears to be the most commonly mutated gene 

identified to date in AML. This findings gives impetus to the search for specific kinase 

inhibitors for the treatment of AML (Abu-Duhier et ai, 2001 b; Kottaridis et ai, 2001). 
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6.3.4 Asp835 screening in AML and IMF patients 

Previous studies have demonstrated that several c-kit mutations are associated with mast cell 

leukaemia and AML. Theses are located in two distinct regions, the JM domain and at 

Asp816, within the activation loop (A-loop) (Yamamoto et aI, 2001). As mentioned earlier, 

Asp835 of the FLT3 gene corresponds to Asp816 of c-kit. Furthermore the presence of an 

activating Asp816 mutation within the A-loop of c-kit has been reported in AML as well as 

in human mast cell leukaemia cell line HMC-l (Furitsu et ai, 1993; Beghini et ai, 2000a). 

To identify additional FLT3 gene mutations, exon 20 was screened. The result indicates that 

Asp835 mutations occur in approximately 7% of AML patients. Recently the frequency of 

this mutation has been confirmed by two different groups (lnami et ai, 200 I; Yamamoto et 

ai, 2001). It is noteworthy that no patient possessed both a FLT3 lTD and an Asp835 

mutation, that is they were mutually exclusive. Therefore, in the total of 97 AML cases 

screened for both mutations, 23% possessed FLT3 mutation. However, in the study carried 

out by Yamamoto et ai, (2001) one AML patient had both an Asp835 and an ITO. Further 

investigation revealed that these mutations occurred on different alleles. Similarly, although 

two different Asp835 mutations were identified in a further AML patient, each occurred on 

different alleles (Yamamoto et ai, 2001). 

Asp835 is highly conserved in RTKs and is thought to play an important role in receptor 

activation. It is hypothesised that Asp835 mutations can cause constitutive activation by 

causing an active conformation in the A-loop, similar to the constitutive activation caused by 

the substitution of Asp to Tyr or Val in c-fms (Asp802) and murine FLT3 (Asp838). It is 

likely, therefore, that the aspartate within the A-loop is a key regulatory amino acid within 

the RTKs (Morley et ai, 1999; Fenski et ai, 2000). None of the IMF patients, or normal 

individuals screened had an Asp835 mutation. This finding agrees with that of Yamamoto et 
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ai, (2001) which also showed that in one patient with Asp835 at initial diagnosis, the 

mutation was lost at CR. Therefore, these results confirmed that Asp835 mutation of FLT3 

are somatic mutations associated with leukaemia. 

6.3.5 Survival analysis 

6.3.5.1 lTD 

Kaplan-Meier analysis showed that the FLT3 ITO mutation was a strong adverse prognostic 

factor. In fact, the effect of the mutation were so significant that all patients, except one, 

died within 18 month of diagnosis. Patients lacking the mutation survived significantly 

longer (29.1 months) than those with an ITO (mean 12.9 months; p=0.0002). 

Earlier studies on AML patients showed that cytogenetic data is the most important 

prognostic factor in AML (Grimwade et ai, 1998). In the current study, patients were 

separated into two groups; a good risk group (n=62) and a standard risk group (n =44). The 

percentage of the FLT3 ITO mutations were lower in the good risk group (6.5%) compared 

to the standard risk group (22.7%) and was of prognostic significance for the two cytogenetic 

groups. As mentioned earlier, this variation in the incidence of the FLT3 ITO mutation was 

also noticed in different cytogenetic groups (Kottaridis et ai, 2001). 

6.3.5.2 Asp835 

An Asp835 mutation was present in approximately 7% of AML patients (7/97), an incidence 

significantly lower than that of the ITO in 13.2 % (14/106). The Asp835 mutation alone was 

not found to be of prognostic significance in the initial cohort of 97 AML patients. 

Therefore. 185 further AML samples selected randomly have been screened to clarify if this 

low frequency of Asp835 mutation among the patients was due to our selection bias for good 

risk patients. In fact the percentage of Asp835 was lower (3.8%; 7 of 185) in this new group 
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of AML patients that was randomly selected. Therefore, it is expected that there is no 

prognostically significant effect of the Asp835 change in AML, a fact confirmed later by the 

finding of Yamamoto et al. (2001). 
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General Discussion 

Different groups of AML patients (A, B, C, and D) and a group of local IMF patients were 

investigated for the presence of genetic alteration in c-fms and selected exons of the FLT3 

gene. The establishment of CSGE analysis for the c-fms gene was carried out in this study. 

Furthermore, novel and previously identified polymorphic nucleotide alterations in the c-fms 

gene were investigated. In total, twelve different apparently polymorphic alterations were 

identified, five alterations that resulted in silent amino acid changes and 7 intronic nucleotide 

alterations. Three of these changes have been previously reported as polymorphisms. 

Furthermore, important mutations that have been previously identified in the c-fms gene (i.e 

301 and 969 mutation) were also investigated. In addition, three novel nucleotide changes 

resulting in amino acid substitution were identified in exons 6, 8 and 9. In exon 6, a G-; T 

substitution that predicts an amino acid change at codon 245 (Ala245Ser) was identified in 

two AML patients. None of the IMF or the normal individuals screened had this change. 

Exon 8 showed an A-;G substitution in 13 patients (5 AML and 8 IMF) at position 1385, 

which predicts an amino acid change at codon 362 (His362Arg). However, normal 

individuals were also identified with the same change in exon 8 of the c-fms gene. In exon 9, 

a novel G-;A substitution at codon 413 (Gly413Ser), was identified in four patients (2 AML 

and 2 1M F) out of the 143 patients (103 AML and 40 IMF) screened for exon 9 (2.8%). 

None of the normal individual screened had this change. Furthermore, none of the patients 

and normal individuals analysed had the 301 or the 969 mutation in c-fms. 

In the other part of the study, which concerns the FLT3 gene, it was shown, together with the 

data of Agnes et aI, (1994) that the entire FLT3 gene comprises 24, rather than the previously 

assumed 21 exons. In addition, the homologous location for codon 301 of the c-fms gene, 

namely codon 350 in exon 9 of the FLT3 gene, was screened to identify possible 
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pathologically important mutations in this location. None of the AML or the IMF patients 

showed any mutations in exon 9, a result that excludes the presence of similar mutations to 

the codon 301 changes found in c-fms in both group of patients. Furthermore, the 

homologous location to the codon 413 mutation found in the c-fms gene i.e codon 450 in 

exon 11 of the FLT3 gene was also investigated, similarly no mutation was identified in the 

FLT3 gene. The homologous for codon 969 of the c-fms was not located in the FLT3 coding 

sequence, therefore, no mutation analysis was performed. 

Furthermore, the FLT3 lTD was investigated in the AML and IMF patients. The data from 

this study showed that FLT3 lTD occurs in 12.6% of adults with AML at diagnosis and that 

AML patients possessing a FLT3 lTD should be regarded as having high risk disease, 

irrespective of cytogenetics. This study also identified the presence of an Asp835 mutation 

that occurs in approximately 7% of AML patients. None of the IMF patients, or normal 

individuals, screened had the Asp835 mutation. However, the Asp835 mutation was not 

found to be of prognostic significance in this group of AML patients, a result that was 

confirmed by others afterwards. 

In general, this study has provided further evidences that class III R TKs are linked to the 

pathogenesis of a number of haematological malignancies. Indeed, FLT3 is believed to be 

the target gene most commonly mutated in AML. Furthermore, the presence of the FLT3 

ITO appears to be the strongest independent prognostic factor in AML. Mutations of other 

RTKs of class III have also been linked to leukaemia, including c-kit, PDGFR{J and c-fms. 

It is likely that the identification of additional pathogenically important RTKs will increase 

in the future. In addition, it is promising that targeting RTKs with specific inhibitors can 

lead to clinical improvement (Druker, 1999) and this approach may eventually lead to the 
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development of disease-specific therapy customized to the pattern ofRTK expression of any 

given leukaemic clone (Gupta el ai, 2002). 

An association between the presence of FLT3 ITO and poor prognosis has been reported in 

AML (Kiyoi el al. 1999; Rombouts et al. 2000). For example, in a survival study in patients 

under the age of60 years, the FLT3 lTD mutation was the strongest prognostic factor (Kiyoi 

et al. 1999; Kondo el al. 1999~ Kottaridis et al. 200 I). In childhood AML, a similar result 

was also reported (Kondo el al. 1999) while a significant reduction in the remission rate in 

the FLT3 ITO population has been documented (Rombouts et ai, 2000). Furthermore, a 

recent study reported that FLT3 lTD was the most important factor predicting relapse 

following complete remission (CR) (Kottaridis et al. 2001). A similar paediatric AML study 

reported that no child with a FLT3 mutation achieved complete remission (Meshinchi el al. 

2001). FLT3 ITO is thought to be the most common mutation described in AML (Abu­

Duhier et al. 2000). However, the most common cause for treatment failure in AML is 

relapse (Kottaridis el ai, 2(01). therefore, identifying patients with a high risk of relapse 

would be very helpful, and could lead to the introduction of alternative therapy for such 

patients (Kottaridis et al. 2001). 

Recently, ideas have been built up with regard to the role of FLT3 mutations in leukaemia, 

although the mechanism of FLT3 activation has not been, so far, fully elucidated. However, 

insights into the role of FLT3 mutation can be gleamed from the study of other non-receptor 

and receptor tyrosine kinases, such as Eph (Ephrins) (Stapleton et ai, 1999; Binns et ai, 2000; 

Hubbard, 2001; Wybenga-Groot et ai, 2001), Epidermal growth factor receptor 2 (Burke et 

ai, 1997; Burke and Stem, 1998), insulin-like growth factor-1 receptor (IGFIR) (Favelyukis 

et al. 200 1), fibroblast growth factor receptor 1 (Mohammadi et ai, 1996; Mohammadi et ai, 

1997) and EGF receptors (Weiss and Schlessinger, 1998). As discussed in chapter I, it 

appears that the kinase domain is maintained in an inactive conformation by the effect of the 
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domain within the receptor tyrosine kinase. The A-loop folds into the active sites preventing 

access of ATP and substrates. However, it is believed that the activated A-loop folds out of 

the active site as the result of phosphorylation of critical amino acids thereby allowing access 

to A TP and substrate. Favelyukis et aI, (2001) have shown that intermolecular 

autophosphorylation of specific residues in the A-loop of IGF 1 R stabilizes the loop in a 

conformation that facilitates catalysis. Furthermore, prevention of autoinhibition has been 

shown, by substitution mutation, to reside at a highly conserved aspartic acid residue which 

increases the ability of the unphosphorylated kinase to bind to the ATP (Till et aI, 200 I). In 

addition, the JM domain is another auto inhibitory domain in a subset of RTKs. In the Eph 

receptor for example, it has been shown that, in addition to the autoinhibitory activity of the 

A-loop, the JM domain contains a second auto inhibitory domain regulated by tyrosine 

phosphorylation (Binns et aI, 2000). The mechanisms of autoinhibtion were determined by 

structural analysis of the JM and kinase domain of an auto inhibited unphosphorylated form 

of EphB2 (Wybenga-Groot et aI, 2001). It was shown that the A-loop in the receptor was 

blocked from achieving an activated conformation due to the presence of a helical 

conformation in the JM domain. Phosphorylation of the conserved JM tyrosine residues, 

however relieved the association of the JM segment with the kinase domain and liberated 

phosphotyrosine sites for binding with the SH2 domain of target proteins (Wybenga-Groot et 

ai, 2001). 

It has been suggested, therefore, that activation in some class III RTKs (i.e. c-kit and FLT3) 

could result from mutations in the JM region which may cause the JM domain to fall away 

from the kinase, permitting kinase activation, transphosphorylation, and initiation of 

signalling (Gilliland and Griffin, 2002). Furthermore, this model of activation could explain 

how different types of mutation within the JM domains of different RTKs leads to receptor 

activation (Gilliland and Griffin, 2002). 
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As discussed earlier, it has been established that either length mutations in the 

juxtamembrane domain (i.e. ITO) or activating mutations within the A-loop (Asp835), result 

in constitutive activation of the FLT3 kinase. Furthermore, ST AT5 and RASIMAPK 

pathway have been shown to be activated by FLT3 lTD mutation (Hayakawa et ai, 2000; 

Mizuki et ai, 2000). Recently, Kelly et ai, (2002) using a bone marrow transplant (BMT) 

assay have shown that retroviral transduction of FLT3 ITO mutation into primary murine 

bone marrow cells results in a myeloproliferative phenotype (Kelly et ai, 2002b). 

Furthermore, a leukaemic phenotype occurred in syngenic recipient mice following the 

injection of 320 or BalF3 cells stably transfected with constitutively activated FLT3 (Kelly 

et ai, 2002b). Similarly Asp835 mutations in FLT3 result in constitutive kinase activation 

(Yamamoto et ai, 2001). 

7.1 Is there a cure? 

Due to the high frequency and poor prognosis of FLT3 mutations in AML, there is intense 

study to develop suitable inhibitors that can safely be used in a leukaemic patients. The 

recent reports of STI57 I (Signal transduction inhibitor 571) as an bcr-abl kinase inhibitor in 

CML have encouraged a similar approach towards the inhibition of FLT3 (Reilly, 2002). 

Initial work has been carried out using cell cultures and murine models of leukaemia 

mediated by FLT3 lTD (Levis et ai, 2001; Naoe et ai, 2001; Tse et ai, 2001). Two 

tyrophostin drugs have been shown to possess FLT3 inhibitory activity, namely AG 1296 and 

AG1295 (Levis et ai, 2001; Tse et ai, 2001). AG1296, a selective inhibitor of FLT3, KIT 

and PDGFRP, inhibits the growth ofBalF3 transformed by FLT3 ITO (Tse et ai, 2001). It 

has also been shown that ST AT5AIB activation and other downstream molecules, can be 

inhibited, together with FLT3 ITO autophosphorylation, by AG1296 (Tse et ai, 2001). In 
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addition, a related compound AG1295 can also inhibit FLT3, and has been shown to have 

activity against primary AML blasts harbouring FLT3 lTD (Tse et ai, 2001). 

Therefore, tyrophostin, although too toxic to be considered for clinical use in humans, 

provides clear evidence that FLT3 inhibition may be an effective approach for treatment of a 

subset of leukaemic patients (Gilliland and Griffin, 2002). Currently, there is intensive 

activity to find a suitable inhibitor for mutated FLT3 in humans. Recently, a few promising 

reports have emerged. For example, CEP-701 (Cephalon compound), an orally bioavailable 

inhibitor of both FLT3 lTD and the A-loop mutants, has been shown to have activity in a 

murine model that involved injection of FLT3 lTD transfected BalF3 cells (Allebach et ai, 

2001). More importantly, primary AML cells containing FLT3 lTD, also appear to respond 

(Levis et ai, 2002). Furthermore, CT53518, a known PDGFRp and c-Idt inhibitor, has also 

been shown to inhibit FLT3 lTD, although it has no activity against the Asp835 A-loop 

mutants (Yu et ai, 2001). 

SU5614, developed by SUGEN Inc, has also been also been shown to posses inhibitory 

activity for FLT3 in that it selectively induces growth arrest, apoptosis and cell cycle arrest in 

BalF3 and FLT3 mutated AML cell lines. In addition, SU5614 reverses the anti-apoptotic 

and proliferative activity of FLT3 ligand (FL) in FL-dependant cells. Interestingly, SU5614 

has not shown cytotoxic activity in leukaemic cell lines which express either a non-activated 

FLT3 or a total lack of FLT3 protein. STAT3, STAT5 and MAPK are also downregulated 

by SU5614 (Spiekermann et ai, 2002b). Two other SUGEN Inc, inhibitors (SU11248 and 

SU5416) have been reported to have activity in inhibition of FLT3 lTD transformed 

cells in vitro and in vivo (O'Farrell et ai, 2001; Yee et ai, 2002). PKC412, from Novartis 

Pharmaceuticals, is a benzoylstaurosporine that was originally developed as a VEGFR 

inhibitor, and was tested with minimal toxicity in a phase I trial in solid tumour patients. In 

addition to its effect on VEGER, PKC412 is an inhibitor of several kinases including protein 
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kinase C (PKC) and spleen tyrosine kinase (SYK), and is an effective submicromolar 

inhibitor of FLT3 lTD in cell culture and murine model ofleukaemia (Weisberg et ai, 2002). 

Overall, FLT3 mutations occur in about 30% of AML cases. N-RAS and K-RAS mutations 

account for another 20% of AML cases (Gilliland and Griffm, 2002), while A-loop 

mutations have been reported at codon 816 in c-kit in 5% of cases (Beghini et ai, 2000), and 

c-kit exon 8 insertion/deletions mutation can also occur (Gari et ai, 1999). However, there 

are several lines of evidence indicating that additional mutations are required for the 

development of an AML phenotype. For instance, in a murine bone marrow transplant 

assay, mutant FLT3 expression was not sufficient by itself to cause AML. However, mutant 

FLT3 shows a transforming activity similar to other constitutively activated tyrosine kinase 

such as BCRfABL, TELIABL, TELIPDGFR and TELlJAK2 (Gilliland and Griffin, 2002). It 

has been noticed previously that these fusions are associated with chronic myeloproliferative 

phenotypes in humans and result in a myeloproliferative disorder when expressed in animal 

models. Although the constitutively activated tyrosine kinase is required for the 

myeloproliferative phenotype, it does not, by itself, cause AML, which is characterized by 

impaired differentiation of haematopoietic progenitors. Therefore, it has been suggested that 

additional mutations are required, in addition to activating mutations in FLT3 for the 

development of AML (Gilliland and Griffm, 2002). 

This hypothesis is supported by the finding that FLT3 mutations are frequently accompanied 

by other gene re-arrangements and point mutations that result in maturation block. For 

example, FLT3 lTD has been reported in patients with t(8;21), inv(16), t(15;17), l1q23 gene 

re-arrangements involving MLL, and MLL internal tandem repeat mutations (Kiyoi et ai, 

1997; Jamal et ai, 2001; Kottaridis et ai, 2001; Nomdedeu et ai, 2001; Thiede et ai, 2002). 

These translocations result in expression of fusion genes, including the AMLIIETO, 

CBFfJlSMMHC and PMVRARa, which although not sufficient to cause leukaemia by 
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themselves (Castilla et ai, 1999), contribute to impaired differentiation of haematopoietic 

cells (Castilla et ai, 1996; Yergeau et ai, 1997; Okuda et ai, 1998). 

The above data support the concept of "two-hit" model for AML in which the FLT3 ITO 

enhances proliferation and/or survival through activation of the STAT, RAS/MAPK and 

PI3K1AKT pathways, while the expression of fusion proteins such as AMLJIETO result in 

impaired differentiation and produce the AML phenotype (Dash and Gilliland, 2001). 

It, therefore, thought that the use of drug combinations that inhibit class I (mutations that 

result in constitutively activated tyrosine kinase, and do not affect differentiation) and class 

II (mutations that result in impaired haematopoietic differentiation, but are not sufficient to 

cause leukaemia) mutations may be very successful in the treatment of AML. For example, 

drugs that inhibit FLT3 may be highly effective in combination with ATRA for treating APL 

associated with the PMLlRARu gene rearrangement (Gilliland and Griffin, 2002). 

These recent finding of new, and important, RTK class III mutations are providing a greater 

understanding of the pathogenesis of AML. Furthermore, combining this data with our 

growing knowledge of the different signalling components and the various pathways 

activated by oncogenic tyrosine kinases may provide us with a better understanding of the 

variety of biological processes that are controlled by these kinases. 

Although there are more mutations being discovered within the FLT3 gene such as the one 

recently reported in the A-loop at codon 840 (Spiekermann et ai, 2002a), a relevant question 

is what are the class I mutations in AML patient that lack a FIT3 or c-kit mutation. This is 

being investigated in our laboratory for patients with inv( 16). A total of 110 cases of AML, 

exhibiting either inv(l6) or t(8;21), were screened for c-kit (ex on 8 insertion/deletion and 

Asp816) and FLT3 (ITO and Asp835) gene mutations. Approximately 40% of AML and 

inv( 16) possessed a class I mutation involving either the c-kit or the FLT3 gene, a finding 
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that supports the two-hit pathogenic model for CBF AML. The nature of the class I mutation 

in the remaining 60% ofinv(16) cases, to enable the development of full-blown leukaemia is 

presently unknown. Interestingly, however the RAS gene mutations, have been reported in 

48% patients with inv(16) (Schnittger et ai, 2001). 

It is noteworthy that a large number of intracellular signalling proteins bind the 

phosphotyrosine on the activated RTKs, including the GTPase-activated protein (GAP), 

phospholipase C-y (PLC-y), phosphotidylinositol 3'-kinase (PI3K), growth factor receptor 

binding protein 2(Grb2) and Src-like non-receptor tyrosine-kinases (Alberts et ai, 1994; 

Porter and Vaillancourt, 1998; McCubrey et ai, 2000). In addition, the activation of these 

proteins is known to initiate the serine/threonine phosphorylation cascades, resulting in 

activation of the transcription factors and modulation of cellular processes by gene 

transcription (McCubrey et ai, 2000). For instance, Ras signalling cascades are known to be 

involved the activation of serine/threonine kinases (McCubrey et ai, 2000). There are three 

human Ras genes (H-ras, N-ras and K-ras) that localize to the inner surface of the plasma 

membrane and function as GDP/GTP-regulated switches (Campbell et ai, 1998). 

Furthermore, Ras proteins are known to be crucial to a number of signalling pathways 

including those mediated by RTKs. Autophosphorylation of specific tyrosine residues could 

be initiated by ligand binding causing the existence of phosphotyrosyl binding sites for the 

SH2 domain of adaptor proteins such as Shc and Grb2 which, through their interaction with 

other proteins, then activate Ras (Prendergast and Gibbs, 1994; Campbell et ai, 1998). 

Therefore Ras activation will transfer the signal to Raf serine/threonine kinases and then 

down a cascade of cytoplasmic proteins (Campbell et ai, 1998). The activity of an 

antiapoptotic protein of the Bcl-2 family was found to be influenced by the serine/threonine 

kinases (Blagosklonny et ai, 1999; McCubrey et ai, 2000). It was demonstrated that in 
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normal cell cycle Bcl-2 becomes serine/threonine phosphorylated at several sites during the 

G2 to M phase transition (Haldar et ai, 1997; McCubrey et ai, 2000). 

In general activation or over expression of RTKs were seen in several cancers including 

leukaemia (Drexler, 1996; Porter and Vaillancourt, 1998). The involvement of 

serine/threonine signalling pathways in leukaemogenesis is a complex process that is not yet 

fully understood (McCubrey et ai, 2000). However, mutations and uncontrolled activation 

of Ras have been documented in different type of human leukaemia (Janssen et ai, 1987; 

Ahuja et ai, 1990; Hirsch-Ginsberg et ai, 1990; Imamura et ai, 1993; Sawyers et ai, 1995; 

Beaupre and Kurzrock, 1999). It was thought therefore, that termination of the pathways 

enhancement that lead to cellular proliferation and the dysfunctional suppression of the 

pathways leading to apoptosis and cell cycle arrest play an important role in the pathogenesis 

of leukaemia (Porter and Vaillancourt, 1998; McCubrey et ai, 2000). Tyrosine kinase 

inhibitors were introduced for leukaemia therapy due to their activity in different cellular 

pathways in the cellular signalling cascade. There are two classes of tyrosine kinase 

inhibitors that are being developed: inhibitors of the tyrosine kinase ATP binding site and 

inhibitors of the substrate binding site (Levitzki and Gazit, 1995; Klohs et ai, 1997; Levitt 

and Koty, 1999). Furthermore, other methods, although less specific, were also introduced 

for kinase inhibition. These include down regulation of kinase expression using antisense 

molecules and inhibition of ligand binding using monoclonal or polyclonal antibodies (figure 

7.1) (Ravandi et ai, 2002). 
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Figure 7.1. Targets for modulation of RTK signalling. Possible targets of the 

tyrosine kinase receptor pathways that can be interrupted by a number of 

agents under development. 

Adapted/rom (Ral'Ondi et 01. 2002). 
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7.2 Future work 

In relation to the c-fms gene analysis, large-scale epidemiological studies might be needed to 

assess the importance and influence of each polymorphism (Schork et aI, 2000). In addition, 

further analysis at the RNA level would be required for the TT ~AG change at position 

1189+67 -68 in intron 6 due to its potential functional relevance (discussed in chapter 3). A 

larger group of patients should be analysed in order to clarify the occurrence of the identified 

alteration in different F AB groups of AML. While, functional analysis for the effect of some 

of these alterations should be performed in order to gather a clear idea concerning its effect 

in AML and IMF. 

Recently, an important question was raised regarding the presence of activating mutations in 

FL T3 in other myeloproliferative disorder such as IMF (Kelly et aI, 2002b). This study has 

provided the result of FLT3 analysis in a group of IMF patients and showed that no FLT3 

ITO or codon 835 mutations were present in this group of patients (Abu-Duhier et at, 2002). 

However, it would be interesting to carry out mutational analysis for the entire FLT3 gene to 

identify any other mutations that might cause receptor activation. 

In addition, prediction of transcription factor binding sites was an essential step for the 

analysis of gene regulatory networks. Seven possible transcription factor binding sites were 

predicted for FL T3 in this study, however, it is tremendously important to perform an in 

vitro transcription studies to confirm the role of these transcription factor binding sites. 

Furthermore, it is also important to screen the promoter region of the FL T3 to identify any 

variation that could change the transcriptional activity of the FLT3. 

In general, there are many interesting questions that still need an answer, for instance, what 

other tyrosine kinases that are activated in AML patients that do not have FLT3 or c-kit 
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mutation, similarly this question might be valid for other myeloproliferative disorders. 

Furthermore, another question was brought up recently in regards to the identification of 

signalling pathways used by tyrosine kinase oncogene that are either unique or shared, and 

required for transformation (Scheijen and Griffin, 2002). 

Furthermore, more in vitro and clinical studies for signalling proteins would expand our 

knowledge of the complex cellular communication pathways and lead into the identification 

of more specific and possibly less toxic therapy for leukaemia. 

It is possible that in the future, all leukaemia patients will have detailed genotypic analysis to 

identify the full spectrum of tyrosine kinase mutations, rearrangements, single nucleotide 

polymorphisms in genes that will influence the outcome or response to therapy. Eventually, 

these data may collectively help us to produce a "finger print" for each leukaemic patient, 

which ultimately will determine treatment and prognosis (Kelly et ai, 2002a). 
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Appendices 

Appendix . Detail of ML patient in group A repre enting all FAB cia sification. 

Number Age Survival Sex FAB Mutation Cytogenetics 
5003 19 10 F M1 ITO OCA 
5004 48 61 M M3 t(15;17) 
5010 39 1 M M3 t(15;17) 
5012 45 1 F M5 OCA 
5013 23 29 F M2 inv(16) 
5017 52 60 M M3 1(15;17) 
5018 42 60 F M1 OCA 
5021 55 2 M M1 46;XY 
5022 18 29 M M5 OCA 
5023 43 9 M M4 inv(16) 
5024 16 16 F M4 OCA 
5025 52 24 M M4 c-kit inv(16) 
5026 56 2 M M1 inv(16) 
5027 51 24 M M3 t(15;17) 
5030 42 5 M M1 OCA 
5031 49 8 F M4 ITO 46;XX 
5032 49 60 F M1 46;XX 
5033 23 60 F M5 46;XX 
5034 54 2 F M2 t(8 ;21 ) 
5035 17 28 M M6 46;XY 
5040 37 10 F M4 OCA 
5041 48 3 F M4 835 46;XX 
5047 34 58 F M2 c-kit t(8;21 ) 
5050 51 58 F M4 46;XX 
5051 19 18 F M3 ITO t(15;17) 
5052 47 2 F M2 46;XX 
5054 57 4 M M4 46;XY 
5057 45 42 F M3 t(15;17) 
5059 58 57 M M2 46;XY 
5061 36 11 M M5 ITO 46;XY 
5063 40 57 M M2 46;XY 
5072 56 56 F M2 OCA 
5073 33 56 F M4 inv(16) 
5074 48 10 F M2 OCA 
5077 56 0 F M4 ITO 46;XX 
5079 42 7 M M4 ITO 46;XY 
5081 42 56 M M2 inv(16) 
5086 54 56 F M3 t(15;17) 
5093 49 10 F M3 t(15;17) 
5095 49 56 M M2 46;XY 
5097 58 56 M M4 c-kit inv(16) 
5101 52 6 F M1 ITO 46;XX 
5104 32 1 M M3 835 1(15;17) 
5105 48 0 F M5 OCA 
5117 35 0 F M5 ITO 46;XX 
5118 29 9 M M1 ITO OCA 
5124 15 55 F M3 t(15;17) 
5132 34 55 M M5 ITO OCA 
5158 59 11 M MO OCA 
5160 24 7 F M5 OCA 
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Appendix A. Details of AML patients in group A representing all FAB classification 

Number Age Survival Sex FAB Mutation Cytogenetics 
5174 42 18 M MO t(9; 11) 
5191 54 0 M M5 OCA 
5195 33 53 M M5 OCA 
5200 32 52 M M6 46;XY 
5228 53 1 F MO OCA 
5308 49 33 M M6 46;XY 
5318 23 4 M MO 46;XY 
5370 24 48 M M6 835 OCA 
5528 58 14 M M6 OCA 
5532 52 20 M M6 OCA 

See appendix D for abbreviations details 
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Appendix B. Details of AML patients in group B (patients with inv(16) or t(8;21) 
(cytogenetic abnormality). 

Number Age Survival Sex FAB Mutation Cytogenetics 

1468 51 18 M M4 

1511 45 74 F M4 inv(16) 
1514 53 74 M M4 t(8 ;21) 
1521 41 74 F M2 t(8 ;21) 
1592 42 19 M M2 c-kit inv(16) 
1622 26 72 M M4 inv(16) 

1645 44 34 M M2 t(8;21 ) 
1695 26 12 F M4 inv(16) 

1704 47 69 F M2 t(8;21 ) 
1735 40 14 M M4 ITO inv(16) 
1799 31 8 M M2 t(8 ;21) 

1920 32 1 M M4 835 inv(16) 
1947 29 32 M M4 inv(16) 
3570 56 15 F M4 c-kit inv(16) 

3627 74 10 F M1 ITO inv(16) 
3710 56 0 M M1 inv(16) 

5134 53 55 F M2 c-kit inv(16) 

5153 46 11 F M4 inv(16) 
5224 29 51 M M2 t(8 ;21) 

5269 51 50 M M4 835 inv(16) 
5341 41 0 M M4 c-kit inv(16) 
5369 48 11 M M2 t(8;21 ) 
5400 62 4 M M4 inv(16) 
5449 16 19 M M1 ITO t(8;21 ) 

5607 20 40 M M2 t(8;21 ) 
5615 30 16 M M2 t(8;21 ) 
5620 57 26 M M4 inv(16) 
5722 49 37 F M4 inv(16) 
5771 37 36 M M2 t(8;21 ) 
5859 40 6 F M4 c-kit inv(16) 

5970 38 25 M M4 inv(16) 

6162 35 18 F M4 c-kit inv(16) 

6185 23 37 F M2 t(8;21 ) 

6202 38 37 M M4 inv(16) 
6262 58 2 M M4 inv(16) 
6286 31 23 F M2 inv(16) 

6294 34 23 M M4 inv(16) 

6357 32 21 F M4 c-kit inv(16) 

6428 49 19 F M5 inv(16) 

6442 51 20 M M4 inv(16) 

6552 49 12 M M1 c-kit inv(16) 

6581 39 15 M M2 inv(16) 

6621 21 13 M M inv(16) 
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Appendix C. Details of AML group Cl and C2 

AML group Cl (patients from RHH) 

Number Age Survival Sex FAB Mutation Cytogenetics 

GB310798 30 18 M M2 46;XY 

TB050899 56 6 M MO 46;XY 
MG040397 30 36 M M5 46;XY 
TH050697 59 33 M M2 OCA 

SJ170898 49 17 M M2 t(8 ;21 ) 

DL030297 23 31 F M2 t(8 ;21 ) 

LP051197 28 12 M M4 ITO OCA 

JR071197 44 28 F M2 46;XX 

AML group C2 (patients from RHH) 

Number Age Survival Sex FAB Mutation Cytogenetics 

WA050598 79 2 M MO 46;XY 

PC080997 49 27 M M4 46;XY 

VG070598 73 0 F M4 835 46;XX 

PG131197 26 3 M M4 835 inv(16) 

NG270898 70 3 M M1 46;XY 

JH130598 65 17 M MO 46;XY 

JJ060499 74 9 M M1 46;XY 

AK110199 84 11 M M1 46;XY 

EL080997 85 1 F M1 OCA 

AW011097 28 0 M M5 ITO OCA 

SW240899 69 4 F M1 ITO 46;XX 

DW110898 71 2 M M2 t(8 ;21) 

199 



lLppend1:ces 

Appendix D. Detail of all ML patient (group A, B, Cl and C2) included in the study 

Number Age Survival Sex FAB FL T3 mutations c-fms c-kit Cytogenetics 
ITO Asp835 

1468 51 18 M M4 NPCR NO NPCR Neg 

1511 45 74 F M4 NPCR NO NPCR Neg inv(16) 

1514 53 74 M M4 Neg Neg Neg Neg t(8 ;21 ) 

1521 41 74 F M2 Neg NPCR NIS Neg Neg t(8;21 ) 

1592 42 19 M M2 Neg Neg Neg Exon 8 inv(16) 

1622 26 72 M M4 Neg Neg Neg Neg inv(16) 

1645 44 34 M M2 Neg Neg Neg Neg t(8 ;21 ) 

1695 26 12 F M4 Neg Neg Neg Neg inv(16) 

1704 47 69 F M2 Neg Neg Neg Neg t(8 ;21 ) 

1735 40 14 M M4 ITO Neg Neg Neg inv(16) 

1799 31 8 M M2 Neg Neg Neg Neg 1(8;21 ) 

1920 32 1 M M4 Neg 835 NPCR Neg inv(16) 

1947 29 32 M M4 Neg NPCR NIS Neg Neg inv(16) 

3570 56 15 F M4 Neg Neg Neg Exon 8 inv(16) 

3627 74 10 F M1 ITO Neg Neg Neg inv(16) 

3710 56 0 M M1 Neg Neg Neg Neg inv(16) 

5003 19 10 F M1 ITO Neg Neg Neg OCA 

5004 48 61 M M3 Neg Neg Neg Neg t(15;17) 

5010 39 1 M M3 Neg Neg Neg Neg t(15;17) 

5012* 45 1 F M5 Neg NIS NO Neg Neg OCA 

5013 23 29 F M2 Neg Neg Neg Neg inv(16) 

5017 52 60 M M3 Neg Neg Neg Neg t(15;17) 

5018 42 60 F M1 Neg Neg Neg Neg OCA 

5021 55 2 M M1 Neg Neg Neg Neg 46;XY 

5022 18 29 M M5 Neg Neg Neg Neg OCA 

5023 43 9 M M4 Neg Neg Neg Neg inv(16) 

5024* 16 16 F M4 Neg NIS NO NPCR Neg OCA 

5025 52 24 M M4 Neg Neg Neg Exon 8 inv(16) 

5026 56 2 M M1 Neg Neg 245 (E6) Neg inv(16) 

5027 51 24 M M3 Neg NPCR NIS Neg Neg t(15;17) 

5030* 42 5 M M1 Neg NIS NO NPCR Neg OCA 

5031 49 8 F M4 ITO NPCR NIS Neg Neg 46;XX 

5032 49 60 F M1 Neg NPCR NIS Neg Neg 46;XX 

5033 23 60 F M5 Neg Neg Neg Neg 46;XX 

5034 54 2 F M2 Neg NO Neg Neg 1(8;21 ) 

5035 17 28 M M6 Neg Neg NPCR Neg 46;XY 

5040 37 10 F M4 Neg Neg Neg Neg OCA 

5041 48 3 F M4 Neg 835 Neg Neg 46;XX 

5047 34 58 F M2 Neg Neg Neg Exon 8 1(8;21 ) 

5050 51 58 F M4 Neg Neg Neg Neg 46;XX 

5051 19 18 F M3 ITO Neg Neg Neg 1(15;17) 

5052 47 2 F M2 Neg Neg Neg Neg 46;XX 

5054 57 4 M M4 Neg Neg Neg Neg 46 ;XY 

5057 45 42 F M3 Neg Neg Neg Neg t(15;17) 

5059 58 57 M M2 Neg Neg Neg Neg 46;XY 

5061 36 11 M M5 ITO Neg Neg Neg 46;XY 

5063 40 57 M M2 Neg Neg Neg Neg 46;XY I 
5072 56 56 F M2 Neg Neg NPCR Neg OCA 

5073 33 56 F M4 Neg Neg Neg Neg inv(16) 

5074 48 10 F M2 Neg Neg Neg Neg OCA 
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Appendix D. Detail of all AML patients (group A, B, Cl and C2) included in the study 

Number Age Survival Sex FAB FL T3 mutations c-fms c-kit Cytogenetics 
lTD Asp835 

5077 56 0 F M4 lTD Neg Neg Neg 46;XX 

5079 42 7 M M4 lTD Neg Neg Neg 46;XY 

5081 42 56 M M2 Neg Neg Neg Neg inv(16) 

5086 54 56 F M3 Neg Neg Neg Neg t(15;17) 
5093 49 10 F M3 Neg Neg Neg Neg t(15;17) 

5095 49 56 M M2 Neg Neg NPCR Neg 46;XY 

5097 58 56 M M4 Neg Neg NPCR Exon 8 inv(16) 

5101 52 6 F M1 lTD Neg NPCR Neg 46;XX 

5104 32 1 M M3 Neg 835 413 Neg t(15;17) 

5105 48 0 F M5 NPCR Neg Neg Neg OCA 

5117 35 0 F M5 lTD Neg Neg Neg 46;XX 

51 18 29 9 M M1 lTD Neg Neg Neg OCA 

5124 15 55 F M3 NPCR ND NPCR Neg t(15;17) 

5132 34 55 M M5 lTD Neg Neg Neg OCA 

5134 53 55 F M2 Neg Neg Neg Exon 8 inv(16) 

5153 46 11 F M4 Neg Neg Neg Neg inv(16) 

5158 59 11 M MO Neg Neg Neg Neg OCA 

5160 24 7 F M5 Neg NPCR NIS Neg Neg OCA 

5174 42 18 M MO Neg Neg Neg Neg t(9 ;11) 

5191 54 0 M M5 NPCR ND NPCR Neg OCA 

5195 33 53 M M5 Neg Neg NPCR Neg OCA 

5200 32 52 M M6 Neg Neg NPCR Neg 46;XY 

5224 29 51 M M2 Neg Neg Neg Neg t(8 ;21 ) 

5228* 53 1 F MO Neg NIS ND Neg Neg OCA 

5269 51 50 M M4 Neg 835 Neg Neg inv(16) 

5308 49 33 M M6 Neg Neg 245(E6) Neg 46;XY 

5318 23 4 M MO Neg Neg Neg Neg 46;XY 

5341 41 0 M M4 Neg Neg 413 Exon 8 inv(16) 

5369 48 11 M M2 Neg Neg Neg Neg t(8 ;21 ) 
5370 24 48 M M6 Neg 835 NPCR Neg OCA 
5400 62 4 M M4 Neg Neg Neg Neg inv(16) 

5449 16 19 M M1 lTD Neg Neg Neg t(8 ;21 ) 

5528* 58 14 M M6 Neg NIS ND Neg Neg OCA 

5532 52 20 M M6 NPCR Neg Neg Neg OCA 

5607 20 40 M M2 Neg Neg Neg Neg t(8 ;21) 

5615 30 16 M M2 Neg Neg Neg Neg t(8 ;21) 

5620 57 26 M M4 Neg Neg Neg Neg inv(16) 

5722 49 37 F M4 NPCR ND NPCR Neg inv(16) 

5771 37 36 M M2 Neg Neg Neg Neg t(8 ;21 ) 

5859 40 6 F M4 Neg Neg Neg Exon 8 inv(16) 

5970 38 25 M M4 Neg Neg Neg Neg inv(16) 

6162 35 18 F M4 Neg NPCR NIS Neg Exon 8 inv(16) 

6185 23 37 F M2 Neg Neg Neg Neg t(8 ;21 ) 

6202 38 37 M M4 Neg NPCR NIS Neg Neg inv(16) 

6262 58 2 M M4 Neg Neg NPCR Neg inv(16) 

6286 31 23 F M2 Neg NPCR NIS NPCR Neg inv(16) 

6294 34 23 M M4 Neg NPCR NIS Neg Neg inv(16) 

6357 32 21 F M4 Neg NPCR NIS Neg Exon 8 inv(16) 

6428 49 19 F M5 NPCR NPCR NIS Neg Neg inv(16) 

6442 51 20 M M4 Neg NPCR NIS Neg Neg inv(16) 
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Appendix D. Details of all AML patients (group A, B, Cl and C2) included in the study 
Number Age Survival Sex FAB 

6552 49 12 M M1 
6581 39 15 M M2 
6621 21 13 M M 

GB310798 30 18 M M2 
TB050899 56 6 M MO 
MG040397 30 36 M M5 
TH050697 59 33 M M2 
SJ170898 49 17 M M2 
oL030797 23 31 F M2 
LP051197 28 12 M M4 
JR071197 44 28 F M2 
WA050598 79 5 M MO 
PC080997 49 27 M M4 
VG070598 73 0 F M4 
PG131197 26 3 M M4 
NG270898 70 3 M M1 
JH130598 65 17 M MO 
JJ060499 74 9 M M1 
AK110199 84 11 M M1 
El080997 85 1 F M1 
AW011097 28 0 M M5 
SW240899 69 4 F M1 
OW110898 71 2 M M2 

lTD= Patient with internal tandem duplication 
Neg =Negative 
NPCR= No PCR product 
ND= ample was not don for a specific mutation 
NI = ot included in the statistical analysis 
OCR= other cytogenetic abnormalities 

FL T3 mutations c-fms c-kit Cytogenetics 
ITO Asp835 
Neg Neg Neg Exon 8 inv(16) 
Neg Neg Neg Neg inv(16) 
Neg NO Neg Neg inv(16) 
Neg Neg NO NO 46;XY 
Neg Neg NO NO 46;XY 
Neg Neg NO NO 46;XY 
Neg Neg NO Neg OCA 
Neg Neg NO NO t(8;21 ) 
Neg NO NO Neg t(8;21 ) 
ITO Neg NO NO OCA 
Neg Neg NO NO 46;XX 
NIS Neg NO NO 46;XY 
NIS Neg NO NO 46;XY 
NIS 835 NO NO 46;XX 
NIS 835 NO NO inv(16) 
NIS Neg NO NO 46;XY 

NPCR NIS Neg NO NO 46;XY 
NIS Neg NO NO 46;XY 
NIS Neg NO NO 46;XY 
NIS Neg NO NO OCA 

ITO NIS Neg NO NO OCA 
ITO NIS Neg NO NO 46;XX 

NIS Neg NO NO t(8;21 ) 

* = Patients that were excluded from the statistical analysis because they were patients with poor risk 
criteria 
Note: all samples marked with ND were not included in the statistical analysis for that mutation. 
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