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Summary Ivan D Meir 

Simultaneous Solutions to Diagonal Equations over the p-adic 
Numbers and Finite Fields, and some Connections with 

Combinatorics 

The first part of this thesis is devoted to solving simultaneous diagonal equations over the p

adic numbers. It is known that a system of r additive equations of degree k with greater than 

2rk variables has a non-trivial p -adic solution for all p > k2r+2. In particular, for two diagonal 

equations with greater than 4k variables we have a non-trivial p-adic solution for all p > k6 • 

In part II we improve this to p > 3k4. A considerable modification of the standard method 

of exponential sums is introduced which uses the Hasse-Weil sum estimate for multiplicative 

characters. We also consider the same system with more than crk variables, c > 2, and show 

the existence of a non-trivial solution for all p > r 2 k2+ c~2 if r =f 1, and p > k2+ c~l if r = 1. 

In Chapter 3 we conjecture a generalisation of the Hasse-Weil estimate to polynomials in 

greater than two variables and discuss the possibility of applying this to r diagonal equations, 

where r > 2. 

In part Ill, we first establish a new and unexpected connection between equations over finite 

fields and Ramsey theory, by relating the problem of finding monochromatic triangles to 

finding a solution of two diagonal equations with exactly three variables non-zero. This is 

also generalised to hypergraphs with monochromatic r-sets. We then look at the Paley graph 

(or quadratic residue graph) and consider various related graphs, including a new hypergraph 

generalisation. We then use the conjectured generalisation of the Hasse-Weil estimate to 

improve a result of Bollobas on sub graphs contained within the Paley graph, which is applied 

to give new results concerning quadratic residue difference sets. 
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Chapter 1 

Survey 

1.1 Introduction 

Parts 1 & 2 of this thesis are devoted to looking at solutions of equations over the p-adic 

numbers and finite fields; however I begin with a brief survey of the theory of equations over 

the integers and rationals also. This is done for completeness, and also as a partial motivation 

for our original question. For this survey I have drawn extensively from articles by Le Veque 

and Lewis in the excellent volume 6 of the MAA Studies in Mathematics series [42J. 

(For reasons beyond the author's control, to show that two integers are not congruent it has 

been necessary to use the symbol 1=/=' instead of Inot-equivalent to '.) 

1.2 Diophantine equations 

Any equation in one or more unknowns is called a diophantine equation if one asks for solutions 

in integers or sometimes rationals. 

The study of diophantine equations, and its name, goes back to the Greek mathematician 

Diophantus of Alexandria (c. 250 A.D.) whose work involved the solution of many problems 

involving integer or rational numbers. He did not develop a general or systematic approach to 

the subject but showed that here was an area worthy of study. Diophantus' work, through a 

second translation by C. Bachet, was much studied by Pierre de Fermat. He showed that the 

equation x4 + y4 = z4 has no solution in non-zero integers, solved completely the problem of 
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representing integers as the sum of two squares, and he claimed without publication a proof 

that every integer is the sum of four squares. lIe was also the originator of the famous Fermat's 

last theorem; the equation xn + yn = zn has no solution x, y, z with xyz =1= 0 for n ~ 3. This 

has recently been proved by the Princeton mathematician Andrew Wiles, using the theory of 

elliptic equations and modular forms. 

Following Fermat, mathematicians such as Euler, Lagrange, Gauss and Kummer all made 

further contributions to the the subject. Although their work was mainly limited to quadratic 

equations, such as the Pell equation, x 2 - dy2 = c, or to equations of special form, such 

as Fermat's equation, much of modern number theory has flowed from their investigations. 

Implicit in the work of Gauss, for example, are many indications of modem developments such 

as elliptic curves and the Riemann hypothesis over finite fields. Also the difficulties encountered 

by Kummer in studying Fermat's equation, led to far-reaching developments in algebra and 

the theory of algebraic numbers which are now potent tools for attacking other diophantine 

problems. 

1.2.1 Binary equations 

A binary equation is an equation of the form f(x, y) = 0, where f is a polynomial in two 

variables. In geometrical terms such an equation f(x, y) = 0 is represented by a certain curve, 

if x and y take real values, or by a Riemann surface, if x and y may take complex values. 

An important concept in algebraic geometry is birational transformation. For curves these 

transformations take the form 

x - <p(z, u), 

y - 7I'(z, u), 

where t/> and 1/J are rational functions of z and u, and when f(x, y) = 0, z and u are also rational 

functions of x and y, 

z - <I>(x,y), 

u - 'lJ(x,y). 

6 



There is a 1-1 correspondence between points on the transformed curves which means that 

information about the new curve should have implications for the old. The form and degree of 

the equations may change, but there is a number called the genus of the curve, a non-negative 

integer, which remains unchanged under birational transformations. (It is the topological genus 

of the Riemann surface of f.) Mathematicians have found that classifying curves by genus also 

classifies them very well according to their diophantine properties. Curves of genus 0 are 

especially simple: If f(x, y) = 0 is of genus 0, then it is parametrizable by rational functions of 

a variable t, that is, f(x, y) = 0 can be written in parametric form as x = get), y = h(t), with g 

d h I 2 2 h . I .. 2t 1 - t2 

an rational. For examp e, x + y = 1 as ratIOna parametrIZatIOn x = 1 + t2 ' Y = 1 + t 2 • 

Unfortunately, because g and h may have non-rational coefficients, this does not directly 

give us integer or rational solutions. Hilbert and Hurwitz [39] used the parametrizability of 

curves of genus 0 to relate rational points on curves of genus 0 to first and second degree 

curves. In modern terminology we have the following statements: 

1. A curve of genus 0 defined over Q is birationally equivalent over Q either to the line or 

to the conic. 

2. A conic defined over Q is birationally equivalent to the line if and only if it has a rational 

point. 

Hence the theory of rational solutions is reduced to deciding when a conic dermed over Q 

has a rational point. In fact, conditions for the existence of a rational point on a conic had 

been given by Legendre. It was reformulated by Hasse using the field of p-adic numbers, Qp, 

into the following result which anticipates our later discussion of the Hasse Principle: 

A necessary and sufficient condition for the existence of a rational point on a conic C defined 

over Q is that there is a point on C defined over the real field IR and over Qp for every prime 

p. 

The question of solutions in integers remained open until the later work of Thue. He [60] 

concerned himself with diophantine equations of the form 

n + n-l + + n aox alx Y . . . anY = m, ao =1= o. 

7 



This can be written in the form 

where 01, ••• , an signify a complete set of conjugate algebraic numbers. Thus, if the equation 

is soluble in positive integers x, y, then the nearest of the numbers 01,,'" an to x/y, say a, 

satisfies 

Ix - ayl «1, 

where a« b means a < be for some positive constant e. Now for y sufficiently large and 0:/:= OJ, 

we have 

Ix - ajyl = I(x - oy) + (0 - OJ)yl »y, 

giving 

Ix - ayl« II Ix - ajyl-1 « l/yn-l ~ 10 - x/yl « l/yn. (1.1) 
Ctj~(l 

Thue then reasoned that one might be able to show that (1.1) cannot have infinitely many 

integer solutions-this is a problem of diophantine approximation. This Thue achieved using a 

very complicated argument. 

Curves of genus 0 and 1 were investigated by Poincare. He analysed the conditions for a 

curve of genus 0 to have finitely or infinitely many rational points. lIe also considered the very 

important class of elliptic curves, curves of genus 1 with a rational point, and showed that they 

are birationally equivalent over Q to the form 

(1.2) 

However, even today the rational solutions of (1.2) are still not decided. 

Poincare's investigations also included the following far-reaching and ambitious theory. Al

though only curves of genus 0 have rational parametrization, by replacing rational functions 

by transcendental functions we can give a similar representation for curves of positive genus, 

considering a set of 9 points if the curve is of genus g. The 'coordinates' of the set are those 

parameters which yield a certain set of 9 points, and it turns out that if two such sets are 
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rational, in a certain sense, then we can produce a third rational set by termwise addition of 

the coordinates; one calls the third set the sum of the other two. In the case of the elliptic 

curves this is the classical 'chord and tangent process'-if P and Q are two rational points, 

then the line joining P and Q intersects the curve in another rational point. 

The next major development came when L. Mordell attempted to prove that a certain 

equation of genus 1 has only finitely many solutions. His final result was very different from 

his initial intentions. Poincare had shown how to add two points PI, P2 on a curve of genus 1 

to obtain a third point. In this way we can get SPI + tP2, where s, t are any integers. More 

generally we can start with n rational points PI, ... , Pn and obtain the further rational points 

SIPl + ... + SnPn. It could be possible that no matter how one chooses the points PI, ... ,Pn 

there are rational points which are not obtained in this manner. What Mordell showed [48] 

was, if the curve had a cubic or quartic equation with integral coefficients and was of genus 

1, then there is invariably a finite collection of rational points on the curve such that every 

rational point can be expressed as a linear combination of them. In group-theoretic terms we 

say that the group of points is finitely-generated. This had been conjectured but not proved 

by Poincare. 

A. Weil [63] vastly extended Mordell's theorem by showing that it holds for arbitrary curves 

of genus 1 whose equations have algebraic coefficients, and for points with coordinates in a 

fixed algebraic number field. He also obtained the analogous result for curves of higher genus, 

in which 'rational point' is replaced by 'rational set of 9 points'. 

In 1921 C. Siegel strengthened Thue's results on (1.1), proving the Thue-Siegel theorem, 

and made a number of new applications to diophantine equations. In 1929 he published a 

major work [56] combining his refinement of Thue's inequality together with the Mordell-Weil 

theorem. Siegel showed that no curve of positive genus has infinitely many integer points on 

it, and with the Hilbert-Hurwitz-Poincare analysis he gave an explicit characterisation of those 

curves of genus 0 with infinitely many integer points. 

An important recent result in this area has been Falting's proof of the Mordell conjecture 

that there are only finitely many rational points on a curve of genus greater than 1. This shows 

that Fermat's equation has only finitely many solutions for each n. 
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1.2.2 p-adic methods 

It is in the study of curves of genus 1 that we see the introduction of p-adic methods. One 

powerful method of testing whether an equation has rational solutions is to ask whether it 

has solutions in some larger field containing the field of rational numbers. For example the 

equation x2 + y2 = -1 has no rational solutions because it has no real solutions. Besides 

the real field we have others, such as the p-adic field (which contains the rational field), in 

which it is sometimes quite easy to show that an equation has no solution. We remark that 

an equation j(Xl' ... , xn) = 0 has a p-adic solution, where p is prime, if and only if, for each 

positive integer N, there are integers al(N), a2(N), ... , an(N), not all divisible by p such that 

j(al(N), ... , an(N)) is divisible by pN. Since 0 is divisible by every integer, the existence of a 

p-adic solution (for every p) is necessary if the equation is to have a solution in integers, as is 

the existence of real solutions. We have seen this earlier in Hasse's version of the local-global 

principle for conics. 

The main motivation however, for studying p-adic solutions is the possibility of this working 

the other way around: if there are real solutions and p-adic solutions for every p, then the 

equation has a solution in integers; when this is the case, we say that the Hasse principle 

applies. This is known to be true, for example, for all quadratic equations and for all curves 

of genus 0, but it is not always valid. H. Reichardt (1942) and Lind (independently) gave the 

example of the curve x4 - 17 = 2y2 of genus 1 , which has p-adic solutions for all p, and real 

solutions, but no solutions in integers. Many more examples have subsequently been given. 

Even if a Hasse principle holds, it would seem to replace the problem by having to demon

strate p-adic solvability for each of infinitely many primes. Fortunately, by Theorem 3 below 

of Lang-Weil, p-adic solvability is automatic for all sufficently large primes. For each prime, 

solvability can be decided one way or another in a finite number of steps, so that in theory the 

Hasse principle is completely effective when it applies. 

1.2.3 Fermat's method of descent 

If a finite number of rational points on the curve are known, then the p-adic method is usually 

of no use in showing that there are no others. In this case we can sometimes use a device 

invented by Fermat, the 'method of infinite descent'. The method involves finding a birational 
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transformation r of the curve into itself such that every rational point p on the curve is of the 

form r(q), where q is another rational point. Then one finds a way of associating with each 

rational point p a certain positive integer H(p) which in some way measures the 'complexity' of 

the point, and is such that if p = r( q) is different from any of the rational points already known, 

then H(q) < H(p). Then if there were additional solutions, there would be one for which II(P) 

is smallest-but this is impossible, since H(q) is even smaller. Fermat originally applied this 

technique to prove that there are no integer solutions of 

X#O,Y#O. 

He remarked that it is enough to disprove 

which is an elliptic curve, although not in canonical form. 

This can also be applied to curves of arbitrary genus, but here there is a problem of finding 

a suitable transformation. This is easy for curves of genus 1, and the method can be pushed 

much further. There is much current research done in this direction. 

1.3 Equations in Many Variables 

For equations with more than 2 variables, no general method or approach, similar to the ones 

we have just seen for curves, is known. It is is this area, however, that the developments 

most related to this thesis have occurred, therefore it is here that we shall concentrate. The 

starting point is along somewhat different lines than before: one considers a whole family of 

equations of similar form, but having different numbers of variables, and asks whether those 

having sufficiently many variables must always be solvable, and if so, how many variables are 

necessary. This approach is exemplified by the conjecture of E. Waring [62J (1770) that for each 

exponent k, the equation 

Xl> O, ... ,Xs > 0 (1.3) 
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is solvable, for each positive integer n, if s is sufficiently large. 

This was proved by Hilbert in 1909. If g(k} is the smallest value of s for which (1.3) is 

solvable for every positive n, then the determination of g(k) is now nearly complete. The 

exact value can be computed for each k ~ 5, and for all but finitely many positive integers k, 

g(k) = 2k + A - 2, where A is the largest integer not exceeding (~)n; see Vaughan [61]. 

Now let G(k) denote the smallest value of s for which (1.3) is solvable for every sufficiently 

large n. The function G(k) is more natural for this problem since it excludes the possibility of a 

few small integers n requiring abnormally many kth powers, thereby artificially increasing the 

size of g(k). Questions concerning G(k) are much more difficult, and few exact values for G(k) 

are known. 

G. H. Hardy and J. E. Littlewood conjectured that G(k) < 2k + 1 when k is not a power 

of 2, and that G(k) < 4k when it is. It is here that Hardy and Littlewood introduced their 

famous 'circle method'. Their technique was to develop an approximate formula for the number 

of solutions of (1.3) and to deduce that this was positive for s sufficiently large. 

There are two components in the principal term of the approximate formula, one factor 

(the singular integral) corresponding to the real solutions of (1.3), and the other (the 'singular 

series') to the number of p-adic solutions for the various primes p. Since the approximate formula 

consists of the principal term plus an error term, it is necessary to verify that the p-adic solution 

factor, which is independent of n, is different from 0; this is possible exactly when n is greater 

than the upper bound for G(k) conjectured by Hardy and Littlewood. The still larger bound for 

s is necessary to prove that the error term is of smaller order of magnitude than the principal 

term. 

Similar methods can be used for many variations on Waring's problem. The first part of 

this thesis is devoted to studying one of these over the p-adic numbers: 

1$i$r (1.4) 

In fact in order to find integer solutions to (1.4) we must first obtain p-adic solutions and then 

use the Hardy-Littlewood method to give us solutions in integers. 

For example, Davenport and Lewis [23] (1963) proved the following result: Let ClI ••• , CB 
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be non zero integers, not all of the same sign if k is even, and suppose that s > k2 • Then the 

equation CIX~ + ... + csx! = 0 has infinitely many solutions in non-zero integers Xl,"" xs. In 

this case, in contrast to ·Waring's problem, it is the p-adic component of the question which 

provides the lower bound on s, rather than the associated formula for the number of real 

solutions. 

A set of values of the variables for which a certain polynomial vanishes is called a zero of 

the polynomial, and since clearly f(O, 0, ... ,0) = 0 if f(Xl, .•• ,xn ) has no constant term, it is 

customary to refer to (0,0, ... ,0) as the trivial zero of a form. 

A. Meyer proved in 1884 that every quadratic form with integer coefficients assumes the 

value 0 for integer values of the variables XI, ••• ,Xn , not all zero, if n > 5 and the form vanishes 

for real values of the variables, not all zero. 

It was generally felt that a form of fixed degTee, or a system of forms of fixed degrees, 

should have an integer zero if they have a real zero, for sufficiently many variables. E. Artin 

pointed out in the 1930s that, for each degree d, there are 'norm forms' in d2 variables which 

have only the trivial zero; these are forms like x2 - 2y2 = (x - .J2y)(x + .J2y) which split 

into linear factors with irrational coefficients, and whose vanishing at a non-trivial point would 

be impossible (i.e if x2 - 2y2 = 0 then ~ = ±.J2, which is false since .J2 is irrational). It 
y 

follows that for every set of degrees d1, ••• , dr, there are forms iI, ... , fr having those degrees 

and not having a common non-trivial zero, if there are at most d~ + d~ + ... + d~ variables. 

Artin conjectured that this number of variables, plus 1, is sufficient to guarantee the existence 

of a non-trivial zero, in integers or in p-adic numbers, so long as the system has a non-trivial 

real zero. Meyer's theorem is exactly the case r = 1, d = 2, and the p-adic conjecture was 

proved for a single cubic form by Lewis [43] and for two quadratics by V. Demyanov [29]. For 

simultaneous quadratic forms see Birch, Lewis and Murphy [9]. 

In 1944 R. Brauer proved a qualitative form of the p-adic Artin conjecture, namely that a 

system of forms of fixed degrees has a p-adic zero provided the number of variables is sufficiently 

large. R.Brauer [14] was the first to obtain a general result for integer solutions of forms of high 

degree. B. Birch [8] modified and extended Brauer's result to show that an arbitrary system of 

forms of odd degree with sufficiently many variables has a zero in integers. The Brauer-Birch 

method needs a large number of variables to imply a rational zero: they need over 500 variables 
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to infer that a cubic form has a rational zero. Thus it is natural to seek methods which require 

fewer variables. It should be noted however that the existence of such a bound is a special 

property of forms of odd degree. The form 

has no rational zero regardless of the size of N although it is indefinite and has p-adic zeros, 

for every p, when N ~ 5. 

In his paper, Brauer proved that there exists a function cpp(d) such that every form of 

degree d in m ~ cpp(d) variables with coefficients in a p-adic field has a zero in that field. It 

was conjectured by Artin that one could take cpp( d) = d2 + 1. This is the case for d ~ 3, but 

the conjecture is false for infinitely many d. 

By means of ultraproducts and some sophisticated extensions of valuation theory, Ax and 

Kochen [6] have proved that if n > 4 + ... + d;', a system of forms in n variables with p

adic coefficients has a p-adic zero for all sufficiently large P > PO. Unfortunately their proof is 

ineffective. However, our Theorem 26 in Chapter 5 shows that for the case of diagonal equations 

we have Po ~ r2k2+~, r =/=-1, k > 2. 

The first counter-example to Artin's conjecture was given by Terjanian [58]. lIe observed 

that 

G(x) - G(Xl,X2,X3) 

- xt + x~ + x~ - x~x~ - x~x5 - x~x5 - (XIX2X3)(XI + X2 + X3) 

. { 1 (mod 4), 
IS such that G(x) == 

o (mod 16), 
Hence 

if some Xi is odd 

if all Xi are even. 

F = G(x)+G(y) + G(z) + 4G(u) + 4G(v) + 4G(w) 

is a form in 18 >(42+1) variables which has only the trivial solution in Q2. 

Browkin [15] has shown the existence of a function A(p) s.t. lim~oo A(p) = 0 and the 

existence of forms Gp over Z of degree d in n > d3 -)..(p) variables having only the trivial solution 

14 



1.3.1 Equations over the p-adics and finite fields 

Artin's conjecture for p-adic numbers is an example of one extreme in the theoryj take a large 

number of variables and look to prove p-adic solubility for all p. The other is to take a smaller, 

fixed number of variables and to find a bound P such that the equations have a p-adic solution 

for all p > P. This is the problem that we consider in part II of thls thesis. Now a prerequisite 

to finding p-adic solutions is to find solutions (mod p). We also have the following theorem 

derived from the methods of Hensel and Newton. The statement and proof have been taken 

from the article by D. J. Lewis in [42]. 

Theorem 1 Let!I, ... , fr be polynomials with integer coefficients. If al, ... , am are integers 

such that ftJ(al, ... , am) = 0 (modp), V = 1, ... , r and the vectors (uu, ... , Ulm ), ••• , (url! ... , urm ), 

where Uij = (afi/axj) (at, ... , am), are linearly independent modulo p, then for each T ~ 1 the 

set of congruences {fv = 0 (mod pT)} has a solution aIT, ... , amT, where aj == ajT (mod p), 

j=I, ... ,m. 

Proof. The proof is by induction on T. By hypothesis the result is true for T = 1. Suppose 

the result is true for T ~ Nj then 

and 

Put ajN+l = ajN + pN Vi, j = 1, ... , m. Then 

m 

ftJ(alN+l, ... ,amN+l) _ fv(alN, ... ,amN)+pNLUvjYj (mod pN+l) 
j=l 

fTl 

_ pN(bvN + LUvjYj) (mod pN+l). 
j=1 

Since the matrix (Uij) has rank r (mod p), the set of linear congruences btJN + E1!=l UtJjYj ;; 0 

(mod p) is soluble, and consequently we have the desired result for T = N + 1. • 
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Thus, given a mod p solution that is non-singular in some sense, we can generate non-trivial 

p-adic solutions. 

Thus we have swapped looking for zeros in '1./ pn, a ring with divisors of zero, with the 

field Zip. Also, as C. Chevalley [17] has shown, finite fields are nearly algebraically closed. 

Chevalley's theorem states: 

Theorem 2 Every homogeneous polynomial over a finite field IF of degree d in m > d variables 

has a zero in 1F. 

Questions concerning zeros in Zip can be approached by means of exponential sums, the 

method we shall introduce in Chapter 3. This method is indispensible for the results proved in 

this thesis. 

The theory of equations over finite fields is a very difficult and technical area, the main 

result being the Riemann hypothesis for varieties over finite fields, conjectured by Weil [64] and 

proved by Pierre Deligne [28] in 1974. We shall discuss some of these developments in Chapter 

3. 

For equations f(x}, ... , x n } = 0 and systems of such equations, the first general result 

of importance was that of Lang and Weil [41], which can be conveniently stated in terms of 

projective varieties, (in simple terms the solution space of a set of homogeneous polynomials). 

Here, 1F q is the finite field of q elements where q = pr for some prime p. 

Theorem 3 If V is an absolutely irreducible variety in the n-dimensional projective space over 

lFq and V is of dimension r and degree d, then the number Nt oflFq-mtional points o/V satisfies 

Here, absolutely irreducible means that the variety cannot be decomposed into further va

rieties. Projective space is just affine space together with points at infinity, basically the set of 

1-dimensional subspaces of ~+1. 

The form of this estimate is typical. In order to give a lower bound for q, we take the 

difference between the number of solutions and the 'average' number of solutions, and show 

that this is o(qr). This theorem was proved using the Riemann hypothesis over finite fields for 
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curves, but for diagonal varieties, as we show in chapter 5 a similar theorem can be proved using 

elementary methods. As we shall see in chapter 3 the Riemann hypothesis over finite fields is 

also related to multiplicative character sum estimates. We now look at diagonal equations over 

the finite fields and review some results. 

1.3.2 Diagonal equations 

Let us consider a set of r additive equations 

(1.5) 

with coefficients in Z. First we look at a number of examples which help us to see what is 

possible in this area. 

We note that the condition p == 1 (mod k) is important since otherwise all residues are kth 

powers mod p and (1.5) reduces to a set of linear equations which can easily be solved. 

Example 4 Let p be any prime with p == 1 (modk) , and let 8 be a kth power non-residue. 

Then the equation 
k 

:L:pi-l(x: - 8yf) = 0 (1.6) 
i=l 

in n = 2k variables has no non-trivial solution in p-adic integers. 

Proof. If (1.6) has a solution in p-adic integers then there exists a smallest integer N > 0 such 

that pN is the highest power of p dividing ~:=l pi-l(xf - 8yn with Xi, Yi not all divisible by 

p. Then this implies that x~ - 8yf is divisible by p, an impossibility unless Xl == YI = 0 mod 

p, since 8 is a k-th power non-residue. If Xl == YI == 0 mod p then there must exist another 

pair Xi, Yi not both not divisible by p. Substitute Xl = px~ and YI = py~ into (1.6) and divide 

through by p. We then have another set of Xi, Yi not all divisible by p such that pN-l is the 

highest power dividing ~:=1 pi-l (x: - 8yf), contrary to our initial assumption regarding N .• 

Thus if we take r disjoint copies of (1.6) this gives us r equations in 2rk variables which 

have no non-trivial solution in p-adic integers, for infinitely many primes p. This shows that in 

order to get a bound for p we must take n > 2rk. 
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Example 5 Let k be an exponent such that k = p - 1 for some prime p. Then the equation 

k k 

I)i-l Lxfj = 0 (1.7) 
i=1 j=1 

in k 2 variables has no non-trivial p-adic solution. 

Proof. xk == x p
-

1 == 0 or 1 (mod p) so ~J=l xfj == 0 (mod p) implies Xij == 0 (modp) for 

1 ::::; j ::::; k. This being shown, the proof proceeds as above .• 

As before, r disjoint copies of (1.7) gives us r equations in rk2 variables which have no 

non-trivial p-adic solution. Thus, any bound on the number of variables which gives a solution 

for all p, must be at least n > rk2• Let us now look at some more specific results. 

1.3.3 One additive equation, r = 1 

If k = 2, we have p-adic solvability for every prime p provided n ~ 5 = 2.2 + 1. This is best 

possible using example 4. For k = 3, Lewis [44] showed that we have a non-trivial solution if 

n ~ 7 = 2.3 + 1. This is again best possible from example 4. In the case k = 5, Gray [37] showed 

that we have a solution in every p-adic field provided n ~ 16 = 3.5 + 1. This is best possible as 

5 

L lli-l(xf + 2yf + 4z;) = 0 (1.8) 
i=l 

has no non-trivial solution in ll-adic integers. 

Davenport and Lewis [23] showed that for any k > 1 the equation (1.5) has a non-trivial 

solution in p-adic integers provided that n ~ k 2 + 1. 

1.3.4 Two additive equations, r = 2 

For k = 2, two quadratic equations (not necessarily additive) have a non-trivial solution in 

p-adic integers for all primes p provided n ~ 9 (see Demanyov [29]), and this is best possible. 

When k = 3, Davenport and Lewis [24] showed that two additive equations have a non 

trivial solution in p-adic integers for every prime p provided that n ~ 16. Also they gave the 

18 



example 

¢(Xl, . .. , X5) + 7¢(y}, ... , Y5) + 49¢(zI, .. . , Z5) - 0, 

t/J(Xl! ... , X5) + 7t/J(Yl, ... ,Y5) + 491/J(zt, ... ,Z5) - 0, 

where 

¢(X}, ... , X5) - X~ + 2x~ + 6x~ - 4x~, (1.9) 

0"( ) X3 + ')X3 + 4x3 + X 3 
'f' X}, ... , X5 - 2 - 3 4 5' 

which has no solution in the 7-adic field. Cook [19] however has shown that for all p # 7, we 

have a p-adic solution for n ~ 13. This is best possible in view of example 4 which gives us 

infinitely many primes p (p == 1 mod 3) for which we have counterexamples, for n = 12. 

If k = 5, Cook [20] has shown that n ~ 31 variables are sufficient, except possibly for p = 11, 

in which case he could only show n ;::: 41 for a solution; see Cook [21]. Consideration of two 

disjoint copies of (1.8), in a total of 30 variables show that the best possible result covering all 

primes would be n ~ 31. 

Davenport and Lewis [26] showed that 

if k odd 

if k even 

are sufficient for a pair of additive equations in n variables to have a non-trivial p-adic solution. 

1.3.5 r ~ 3 additive equations 

For 3 additive equations there are fewer results. Artin's conjecture asks whether 3k2+ 1 variables 

are sufficient to ensure non-trivial p-adic solutions for every prime p. In the case k = 2 this was 

proved by Ellison [31]. When k = 3, Stevenson [57] showed that except perhaps for p = 3,7 

n ~ 28 variables are sufficient. Atkinson [2] showed that 25 variables are sufficient for non

trivial p-adic solvability except possibly for p = 3,7. Atkinson, Briidern and Cook [3] proved that 

n ~ 22 variables give a non-trivial p-adic solution except (possibly) for p = 3,7,13,19,31,37 
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and 43. 

Davenport and Lewis [25] showed that r simultaneous additive equations have p-adic so

lutions in greater than [9r2klog3rk] variables when k is odd, and [4Sr2k31og 3rk2] variables 

when k is even. These results have been improved upon by Schmidt [55] and Low, Pitman and 

Wolff [46]. 

Finally we quote a result of Atkinson, Brudern and Cook [4], which relates strongly to my 

Theorem in Chapter 5: 

Theorem (Atkinson Briidern and Cook) 

Let r, k, n be positive integers with k > 1 and n > 2rk. Then the system of equation3 

i = 1, ... ,r (1.10) 

with coefficients aij E iE, has a non-trivial p-adic 8oluUon for all p > k2r+2. 
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Chapter 2 

P-adic normalization 

As indicated in Chapter 1, the field of p-adic numbers is not very easy to work with and it is 

preferable to reduce our search to solutions over the finite field lFp • This we do using Hensel's 

Lemma which for a system of r diagonal equations 

i = 1, ... ,r (2.1) 

adopts the following form: 

Lemma 6 Let p denote a fixed odd prime number. Let pT be the exact power of p which divides 

k. Then the equations (2.1) will have a non-trivial solution provided that the congruences 

i = 1, ... ,r (2.2) 

have a solution of rank r, where a solution x = (XI, ... , Xn) has rank s if the matrix (aijXj) has 

rank s mod p. 

The proof is almost identical to that of Theorem 1 of the introduction. It is essentially 

Lemma 9 of Davenport and Lewis [251. 

Now we use the technique of p-adic normalization in order to solve the congruences (2.2). 

This technique is closely connected with the counterexamples in Chapter 1, and attempts to 

draw out powers of p from the equations. 
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Two systems of additive forms It, ... ,fr and 91, ... ,9r are said to be p-equivalent if one 

system can be obtained from the other by a combination of the operations 

where v(I), ... , v(n) are integers; and 

where the Oij are rational integers with det( Oij) # O. If It, ... , fr have a simultaneous non

trivial zero in the p-adic field then so does any p-equivalent system. Following Davenport and 

Lewis [25] we introduce the parameter 

e(ft, ... , fr} = II det A;, 
J 

where AJ = (aij), I ~ i ~ r, j E J, is an r x r submatrix of A and J runs over all r-element 

subsets of {I, 2, ... , n}. As in Davenport and Lewis [25] a p-adic compactness argument shows 

that we may assume that ()(ft, ... , fr) # ° since if () = ° we can choose sequences of forms 

fr,···, f: converging to It, ... , fr p-adically and with (Jur,···, f~) # 0. 

We may now assume that e f. 0, a property that is preserved under p-equivalence. From all 

the systems of forms that are p-equivalent to It, ... ,Jr, and so have 0 'I 0, and have integral 

coordinates we select a system FI , ... , Fr for which the power of p dividing e(FI , ••• , Fr } is 

least. Such a system of forms is said to be p-normalized. Then we have the following lemma, 

which is lemma 11 of Davenport and Lewis [25]. 

Lemma 7 Suppose that F I , ... , Fr is a p-normaZ,ized system, with () =1= 0. Then we may write 

(after renumbering the variables) 

where 

F k k 
i,O = 0llXI + ... + 0lmxm' 
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Oij E Z and each of Xl, ••• ,Xm occurs in at least one of Fl,O, ... ,F r,O with a coefficient not 

divisible by p. Also 
n 

m >- k· 

Further, if we form any v linear combinations of the Fl,o which are independent mod p, and 

denote by qv the number of variables which occur in at least one of these combinations with a 

coefficient not divisible by p, then 

> 
vn 

qv _ rk' 1 ~ v ~ r - 1. 

Thus we have reduced the p-adic problem to finding a non-singular solution to a set of 

congruences whose coefficient matrix is reasonably non-singular as defined by the inequalities 

for the qv's. 

In the next chapter we shall look at the next step in the solution, namely solving the 

congruences by counting solutions with exponential sums. 
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Chapter 3 

Exponential Sums and the Riemann 

Hypothesis 

3.1 Counting solutions with exponential sums 

In this chapter we shall introduce the standard method of exponential sums for counting the 

number of solutions to equations defined over a finite field. 

Let {h(x), ... , fr(x)} be any set of polynomials Pq --+ IFq, and let N be the number of 

distinct simultaneous solutions to 

i = 1, ... ,r 

over IF q. Then the key to evaluating N is contained in the following lemma: 

Lemma 8 

r 

{N= L L II 1/1 (Udi(X)) , 
XEF~ UE~ i=l 

where 1/1 is a non-principal additive character ofIFq• 
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Proof. It is a well-known fact that 

o if x =1= 0 

q if x = 0 

Hence, if we split over x E~ into two parts: those x which are zeros of the Ii's and those which 

are not, the former count qr, the latter o. Hence the result .• 

Now if we take the Ii'S to be diagonal equations 

we can use this result to obtain a very elegant expression for N. 

Theorem 9 Let N be the number of distinct solutions to the system of diagonal equations 

i = 1, ... ,r (3.1) 

then 
n 

qr N = L II T(Lj(u)) (3.2) 
UEJFq j=l 

Proof. We begin with 
r 

qrN= L L II1jJ(udi(x)) 
xEJFq' uEJF~ i=l 

from lemma 8. Introducing diagonal equations as defined in (3.1) gives 

r 

L L II 1/1 (ui [ailx~ + ... + ainx~]) 
XEFq' uEl<1 i=l 

n r 

L L II II 1jJ (uiaijxJ) 
UEJFq XEFq' j=l i=l 
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2: IT 2: 1/J (x1 t Uiai j ) 
UEF; j=1 XjE][<'~ i=1 

~ u~fl~~ ¢ (Xk~~jU;) 
n 

2: II T(Lj(u}}. 
uEF;j=1 

• 
We can then proceed by isolating the term from the sum due to U = 0, giving, on dividing 

by q", 

(3.3) 

Most methods then take the modulus of both sides and try to show that IN - qn-rl = o(qn-r), 

implying that N > 0 for large enough q. For example, observing that in general n - r is the 

dimension of the solution space of (3.1), we see that the theorem of Lang-Weil would give us, 

under suitable conditions on the aij, 

IN n-rl < n-r- 1 
- q _ cq 2, 

for some constant c, giving us a solution for q > c2• 

In chapter 4 we demonstrate a new method which uses multiplicative instead of additive 

characters. (A multiplicative character X of 1F q is a homomorphism from the multiplicative 

group 1F; to C, together with the condition X(O) = 0). We use it to solve a pair of additive 

equations, but it can easily be extended to cover more than two. 

Basically we introduce multiplicative characters into (3.3) using the following lemma: 

Lemma 10 If p does not divide A then 

k-l 

T(A) = 2:xr (A)r(x}, 
r=1 
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where X is a non-principal character of order k, and T is the Gaussian sum 

T(X) = tx(x)e(=). 
x=1 p 

This is Lemma 4.3 of Vaughan [61]. 

We can then use the fact that 

and the celebrated Hasse-Weil character sum estimate to give a very sharp estimate for the 

difference. For more than two equations we need a character sum estimate similar to the Hasse

Weil, but in more than one variable. As we shall see later this generalised Hasse-Weil estimate 

has applications, not only for diagonal equations, but also in Graph Theory. We examine the 

possibilities of such a result next. 

3.2 Extending the Hasse-Wei! estimate 

The Hasse-Weil character sum estimate is the following theorem: 

Lemma 11 (Hasse-Weil) Let p be a prime number and let X be any non-principal character 

(mod p) of order k, where k divides (p -1). Let B(x) be a polynomial of the form 

where the ai are all distinct (mod p), and 0 < Gi < k. 

Then, 

L X(B(x)) :S (t - 1)JP 
xmodp 

where the summation is over a complete set of residues mod p. 

For an elementary proof see [45], chapters 5 and 6. 
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The Hasse-Weil character sum involves estimating a sum of the form 

L:x(f(x)) 
IFq 

where X is a multiplicative character of order k and f is a polynomial given by a product of 

powers of t linear forms in one variable. An obvious generalisation of this to more than one 

variable would be to take f to be a product of powers of linear forms in n > 1 variables say. In 

this chapter we wish to look at this case and conjecture a suitable theorem. 

3.3 Zeta functions and the Riemann hypothesis over finite fields 

Let S = {It = 0, ... , fr = O} be any set of polynomial equations over a finite field lFq , q a power 

of some prime p. Let H(K) be the solution set of S over some field K containing lFq • Then 

define Ns = #(H(lFqa )), lFqa being a finite algebraic extension of lFq of degree s. 

Given any such sequence of {Ns} we can consider a type of generating function, encoding 

the information in {Ns } in the form of a power series. This is known as the Hasse-Weil zeta 

function of S, defined by 

(

00 T S
) 

exp ~ Ns-;- E Q [[TJI. 

This is usually written as Z(HjlFq;T). \Ve have the following theorem proved by Dwork [30] 

using ~adic analysis. 

Theorem 12 {Dwork}. The zeta-function of any affine (or projective) variety is a ratio of two 

polynomials with coefficients in Z and constant term 1. 

Dwork's theorem has profound implications for the solution of polynomial equations over 

finite fields. It implies that there exist a finite set of complex numbers 01, ••• , On such that for 

all s = 1,2,3, ... we have Ns = L~=1 oi - Li=t+l al. In fact the o:'s are the roots and poles 

of the zeta function. (See Katz [40]). Much more information can be obtained about these, 

including bounds on t and u. In fact in 1949 [64] , Wei I conjectured the following: 

Let X be an n-dimensional projective non-singular variety over lFq. Then 

1. Z(XjlFq, T) is a rational function of T. 
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P1(T) P3(T) ... P2n- 1(T) bi 
2. Moreover, Z(X/rrlq, T) = poeT) P2(T) ... P2n(T) ,where ~(T) = j~l (1-a ijT), 

q!, the last equality being the 'Riemann hypothesis' in this setting. 

3. Under a ~ qn/a , the aij are carried bijectively to the a2n-ij. In terms of the complex 

variable 8, this is a functional equation for s ~ n - s. 

4. In case X is the 'reduction modulo p , of a non-singular projective variety X in charac

teristic zero, then bi is the i'th topological Betti number of X as a complex manifold. 

These conjectures have now been proved in full, the extremely difficult 2. having been 

settled by Pierre Deligne in 1974 [28]. 

3.4 The case of character sums 

Let E be an extension field of rrl q of degree s, then E = IF q •• We note that X can be lifted to a 

multiplicative character X(s) of the extension E by setting X(s)(,B) = X(NE/Fq(,B)) for (3 E E. 

A zeta function can be defined and corresponding Weil conjectures formulated for character 

sums, giving us E'YEFq X(s)U(-Y)) = E~=l a: - Ei=t+l a: for some c and complex numbers a,. 
In fact Perelmutter [50], [511 has looked at the case k = 2 when I and its leading form fa, the 

terms of degree d in I, satisfy certain natural conditions: 

1. Over iFq the system of equations {/(x) = 8££7) = ... = 8£t) = o} has no solution. 

2. Over iFq the system of equations {Ia(x) = 8~~(~) = ... = 8~~~) = o} has no solution other 

than the trivial one Xl = ... = Xn = O. 

The geometric significance of these conditions is that the variety defined by I is non-singular 

and also has no singular points at infinity. In this case he obtains 

LXU(Xb"" xn)) ::; (t - l)nq~ 
F~ 

for the character sum. Unfortunately if I is a product of powers of linear fonns it does not 

satisfy these conditions. In fact the variety one considers is singular, preventing the direct 
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application of the Weil conjectures. However, in a personal communication, Professor N. Katz 

has suggested that, using the techniques of perverse sheaves and l-adic Fourier transforms, one 

should be able to prove I E')'EIF q X( s) (f ( 'Y) ) I ~ cq 8; for some constant c, and almost all forms I 

of the type we are considering. This means that if E')'EiF
q 
x(s)(fb)) = E!=l a: - Ei=t+l a:, 

the a~8 must satisfy lail ~ q~. This constitutes the first step in deriving our character sum 

estimate. The second requires a bound on the constant c. 

The constant c will almost certainly depend on the linear dependence between the forms. 

Let us consider I(x) = rr~=l li(Xi), where Ii = rrj~l (Xi - aij t ii , 0 < rij < k and aij all distinct 

for fixed i. Thus each Ii is a polynomial in Xi, a product of nj linear forms in 1 variable with 

rij =1= 0 mod k. Also by the Hasse-Weil character sum estimate we have 

Thus we obtain 
I q 

L x(f(x)) = II L X (fi(Xi)) 
XEIF~ 

with nl + n2 + ... + nl = n where I is a product of n linear forms, in 1 variables. In order to 

produce a uniform bound depending on nand 1 only we use the arithmetic mean - geometric 

mean ineqUality giving 

So, 

(
n)l I L x(f(x)) ~ T q2. 

XEF~ 

We wish this to be consistent with the case where I is the product of t disjoint polynomials, Ii, 
where each Ii is the product of ~ powers of linear forms in li variables. In this case, applying 

the estimate for each Ii separately gives 

x~ x(f(x)) = D.I~> (fi(X)) I " n (~ r ql 
q 
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where 1 = II + ... + Lt. For this result to be consistent with applying the conjecture to the whole 

of f as a product of n = nl + n2 + ... + nl linear forms, in 1 variables, we need 

IT (:)Ii $ (~)l 
~=l ~ 1 

(3.4) 

This is obtained by using the inequality of the means with the values 1:, each taken li times, 

1 $ i $ t, giving 

and hence 3.4. Thus we take (1)1 as a uniform bound on the constant c. We note however that 

for polynomials f whose linear forms are not as singular as our example, the value of c will 

probably be much lower. 

We call f non-degenerate with respect to the multiplicative character X if the character sum 

LF!.' X(f(Xl, ... ,xn )) cannot be reduced by a non-singular rational change of variables to one 
q 

in fewer variables. As the following example shows, if the conjecture concerning the O~8 is to 

be correct We must make the additional assumption that f is non-degenerate with respect to X. 

Example 13 

LX(X(X + y)(x + 2y)(x + 5y)) = L X(Y(x + y)(x + 2y){x + 5y)) 
X,7/ X,7/,i0 

'" 4x x x = ~ X(Y (-+1)(-+2)(-+5)) 
x,u,iO y y y 

= L X«u + 1)(u + 2)(u + 5)) 
'1£,7/7"00 

= (q - 1) LX«u + 1)(u + 2)(u + 5)). 
'1£ 

since X(Y4) = 1 as X is of order 2. Thus using the IIasse- Weil esimate we can only obtain 

LX(X(X + y)(x + 2y)(x + 5y)) = (q - 1) LX«u + 1)(u + 2)(u + 5)) 
~ '1£ 

1 $ 2(q -1)q2. 

Thus we have incurred a factor of ..;q for the variable y which we managed to eliminate. 
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3.5 The main conjecture 

Conjecture 14 Let X be a multiplicative character of 1Fq of order k > 1 and let I E «I> be a 

polynomial in m variables which is non-degenerate, and is the product 01 d distinct linear lorms 

with multiplicities rI, ... , rd over iFq, such that 0 < ri < k. Then we have: 

( d)m Tn L X(J(-r)) ~ m Q2. 
'YEFq 

3.5.1 Non-degeneracy of f 

Let us consider a polynomial I = I1~=1 1[', where Ii = 2:j=1 aijXj + ain+1' We wish to relate 

the degeneracy of I to the matrix A = (aij). 

1 is non-degenerate if and only if A has rank n + 1 and the set of column vectors cannot be 

decomposed into r sets, with r ~ 2, whose spans intersect only in the zero vector. This basically 

means that there is no row operation on the matrix which takes it to a form consisting of r 

disjoint blocks with r ~ 2. Alternatively we can say that there is no rational transformation of 

coordinates that takes I to a form J' where J' is a product of two or more disjoint forms. 

1 0 1 0 0 0 

Example 15 The matrix A = 
0 1 1 0 0 0 

would represent a degenerate polynomial 
0 0 0 1 0 1 

0 0 0 0 1 2 
since the first three vectors lie in one 2-dimensional subspace and the remaining three lie in 

another disjoint 2-dimensional subspace. 

We also note that from the rank-nullity theorem for linear transformations, the rank of A is 

equal to n+l-dimK, where K is the solution set of Fi = 0, 1 ~ i ~ t, where the homogeneous 

linear form Fi is given by 
n+l 

F;, = L aijXj. 
j=1 

3.5.2 Homogeneous polynomials 

We will now consider the case where 1 is a homogeneous polynomial, as this will be useful for 

our applications to graph theory in a later chapter. 

32 



Connected forms 

We call a homogeneous form connected if it is not equal to the product of two disjoint forms. 

Thus we see that the condition for I to be non-degenerate can be expressed as: I is non

degenerate if and only if A has rank n + 1 and I is connected. 

If a form is not connected then it is disconnected and it has a unique expression as a product 

of connected forms. Each form is then called a component and the total number of components 

is called the connectivity of f. If a form I is connected we say it has connectivity 1. 

Estimate for a connected homogeneous form 

Let I = n~=l 1[', where I is connected and the Ii = 1:j=1 aijXj, a product of powers of linear 

homogeneous polynomials. As before, the most important fact about I is the rank of A = (aij). 

If rank A = n - p then there is a non-singular linear transformation which is a bijection and 

takes A to a matrix with the bottom p rows zero. Thus f(XIt ... ,xn ) = g( WIt ... , wn ) where 

9 = n~=l gr', and gi = Ej::f bijwj. Also we may assume by elementary row operations and 

relabling that gn-p = wn - p. 

Hence, 

E x(f(x)) = E X(g(w)) = qP L x(g(w/)), 
XEIF~ WEIF~ 

where w' = (WI, ••• , Wn - p). 

We now split ~-p into two disjoint sets, 

WI - {(w}, ... , wn - p) E Pq-p : Wn - p =1= o} 
W2 - {(w}, ... ,wn - p ) E Pq-P: wn - p = o}. 

Then, since g( w) = 0 for all W E W2, 

L X(g(w)) - L X(g(w)) + L X(g(w)) 

L X(g(w)). 
WEWI 
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Now if wn - p i- 0, 
n-p 

w-
gi = wn - p L aij-J-. 

j=1 wn - p 

If we make a change of variables 

Wj . 
Vj = --,1 $ J $ n - p - 1, vn - p = wn - p 

wn - p 

h (}I h( ) L~-I r, nt - 1 hr - d h "n-p-l t en 9 w WI = v}, ... , v n - p where h = vn_~- i=1 / an i = l..Jj=1 aijVj + ain-p' 

Henee, 

I t-l 

L X(g(w)) - L X(h(v}) = L X(VE~=I r, II h~') 
WEWt 

If we let R = L!=1 Ti then 

i=1 

if Ri-O (modk) 

if R == 0 (modk) 

';=1 

Now obviously sinee 9 has rank n - p and is connected, 9 is non-degenerate. lIenee n:=1 h~' is 

non-degenerate so we may apply the conjecture with m = n - p - 1 and d = t - 1 to give 

p 

L'" 
t-l (t -1 )n-p-1 n-e-t x(II h;') < q 2 • 

1 ~--1 - n - p - 1 
tln - e -l= • 

p 

L 

lIenee 

L X(g(w)) 
WEWt < { 

0 

( _ 1) (-1=.L)n-p
-l n-r 1 if q n-p-l q R == 0 (modk) 

if Ri-O (modk) 
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This gives 

~ x(J(x)) - { 0 if R =1= 0 (modk) 
xEFq' < (q -1) (--1=.L)n- p-l !!.±..e.=.l (3.5) 

n-p-l q 2 if R == 0 (modk) 
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Part II 

Diagonal p-adic Equations 
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Chapter 4 

Pairs of Additive Equations l 

4.1 Introduction 

It is well known that the number of solutions of polynomial congruences can be estimated using 

exponential sums. This is usually an essential prerequisite to establishing non-trivial p-adic 

solutions to sets of forms via Hensel's Lemma. In this chapter we are concerned with the prob

lem of establishing good bounds on the primes p for which a p-adic solution is possible for a 

fixed number of variables. As we have noted in the survey, with regard to the latter problem, 

Atkinson, Briidern and Cook [41 proved the following result which we repeat for convenience: 

Theorem (Atkinson,Briidem and Cook) 

Let r, k, n be positive integers with k > 1 and n> 2rk. Then the system of equations 

i = 1, ... ,1' 

with coefficients aij E Z, has a non-trivial p-adic solution for all p > k2r+2. 

In the case of two additive equations, r = 2, the theorem guarantees a non-trivial solution 

for all p > k6 , with n > 4k variables. See also [51. 

IThe contents of this chapter have been accepted for publication in the Journal of Nwnber 
Theory. 
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The aim of this chapter is to improve the bound to p > 3k4. The result involves a considerable 

modification of the standard method of exponential sums. We use a character sum estimate 

for a polynomial in one variable. This follows from the results of 1I.lIasse on the analogue 

L-functions belonging to a certain algebraic number field, and the deep theorem of A.Wei! that 

the congruence zeta function that this L-function divides has all its roots on the critical line. 

The main theorem is: 

Theorem 16 Let n, k be positive integers with k > 1, n> 4k. Then the system of equations 

f(x} = alx~ + ... + anx~ = 0 

g(x} = blX~ + ... + bnx~ = 0 
(4.1) 

with coefficients ai, bi E Z, has a non-trivial p-adic solution for all p > 3k4. 

As usual we must begin by reducing the solution in p-adic integers to a solution of certain 

congruences mod p. This we do in the preliminaries to Theorem 16, in which we follow very 

closely the preliminaries in [5]. 

4.2 Preliminaries to Theorem 1 G 

We begin by recalling the normalization procedure introduced in chapter 2. With a pair of 

additive forms f, 9 (4.1) we associate the parameter 

() = Ou, g) = II (aibj - biaj). 
ifoj 

For a given pair of forms with ()U, g) =1= 0 and a fixed prime p, there is a related p-nonnalized 

pair of fonns U*, g*) . Further the equations f = 9 = 0 have a non-trivial p-adic solution if and 

only if the equations r = g* = 0 do. Also, by the p-adic compactness argument in Davenport 

and Lewis [24], it is sufficient to prove Theorem 16 with the additional assumption that () =1= 0, 

and use the following property which is essentially Lemma 2 of Davenport and Lewis [24], and 

our Lemma 7 from Chapter 2. 
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Lemma 11 Let f and g be a p-normalized pair of forms. Then we may write 

f = fo+ph 

g - go +pgl. 

lIere fo, go are forms in m 2: n/k variables, each of which occurs in at least one of fo, go with a 

coefficient not divisible by p. Further, if q denotes the minimum number of variables occurring 

explicitly in any form >.fo + ILgo (>', IL not both divisible by p) with a coefficient not divisible by 

p, then q 2: n/2k. 

Our next lemma is a version of Hensel's Lemma given as Lemma 6 in Chapter 2; it is Lemma 

7 of Davenport and Lewis [26J. 

Lemma 18 If odd p does not divide k and the congruences 

fo = alx~ + ... + amx:n == 0 (modp) 

90 = blX~ + ... + bmx~ = 0 (modp) 
(4.2) 

have a solution ~ = (6, ... , ~m) for which the matrix 

has runk 2 (mod p) then the equations fo = 90 = 0 have a non-trivial solution in p-adic integers. 

In the proof of Theorem 16 we have p > 3k4 , so (p, k) = 1. It is therefore sufficient to show 

that the congruences (4.2) have a solution of rank 2. We may also suppose that p == 1 (modk) 

since otherwise all residues are kth powers and the congruences (4.2) reduce to two linear 

equations and the solutions are obtained by simple linear algebra. 

Since n > 4k, Lemma 17 gives the bounds m 2: 5, q 2: 3. We partition the variables 

Xtt ••• , Xm into blocks such that in each block the ratios ai/bi are equal (mod p). Let p be the 

length of the longest block of common ratios ai/bi. \Ve note that replacing fo,90 by suitable 

linear combinations we may take ai/bi = '1/0' for these p variables. Further, let t be the length 

of the second longest block of common ratios. We may take the ratios in this block to be ' 0/1'. 
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We assert that if t ~ 3 then the congruences (4.2) have a common solution of rank 2. We 

know that a single congruence ax" + by" + cz" = 0 (mod p), (p, abc) = 1, has a non-trivial 

solution for all p > k4 (see Theorem 1 of Chowla [18] ), so our assertion follows from the fact 

that the congruences (4.2) contain two distinct congruences in 3 variables. Now we assume that 

t ::; 2 and reduce m from its initial value to 5 by discarding variables from the longest block of 

common ratios. We end up with a pair of congruences (4.2) satisfying 

m = 5, q ~ 3 and p ::; 2, (4.3) 

since p = m - q. To ensure a non-trivial p-adic solution we require that the solution is of rank 

2. We split the proof into two parts, p = 1 and p = 2. 

4.3 Important definitions and lemmas 

Definition 19 Let A = uai + vbi be a linear form in u, v and define 

p 

T(A) = L ep (AX")' 
x=l 

where 

(
27riX) ep(x) = exp p . 

Lemma 20 If p does not divide A then 

"-1 
T(A) = L Xr(A)T(X), 

r=1 

where X is a non-principal character of order k, and T is the Gaussian sum 

p 

T(X) = L x(x)ep(x). 

This is Lemma 4.3 of Vaughan [61]. 

It is well known that 

x=l 

IT(X)I = -/p, for 1 ::; r ::; k - 1. 
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Lemma 21 (Hasse-Weil) Let p be a prime number and let X be any non-principal character 

(mod p) of order k, where k divides (p - 1). Let B(x) be a polynomial of the form 

where the ai are all distinct (mod p), and 0 < 0i < k. 

Then, 

L X(B(x)) ~ (t - 1)v'P, 
xmodp 

where the summation i.5 over a complete set of residues mod p. 

For an elementary proof see [45], chapters 5 and 6. 

Lemma 22 Let X be a non-principal character of order k, ai, bj E il, with aibj - ajbi =1= 0 (mod 

p) for i =1= j, and ai =1= 0 (modp) for i = 1, ... , t. Let rI, ... rt be integers such that 0 < ri < k. 

Then 

(4.6) 

Proof. 

Since X is multiplicative and ai =1= 0 (modp) we have 

where the C;'s are distinct because aibj - ajbi =f 0 (mod p), and bi/ai is interpreted modp. 

So, 

~} (g(aMbi)"') = X (g a;') ~x (g(H~)"') 

- ~x Lg (H~r') = lEx (g (H~)"') -x (g <')1 
~ lEx (g (A+~)"')I + 1 

< (t -1)v'P+ 1 
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by Lemma 21.. 

Lemma 23 Let 8n = E~:'~ IT(u)ln , with T as (4.4). Then 

See [5] p.446. 

Lemma 24 Let p = 1 (mod k) , p > k4. If abc =j:. 0 (mod p) , then the congruence 

axk + byk + czk == d (mod p) 

has a solution with xyz =j:. 0 (mod p). 

Proof. 

We COllllt the number Nl of solutions of (24) using exponential sums, 

(-du) 
pNI = ~T(au)T(bu)T(cu)e p . 

Separating out the term u == 0 (mod p) , 

IpNl - p3
1 ~ L IT(au)T(bu)T(cu) I 

u;to 
p-l 

- L IT(au)T(bu)T(cu)1 
u=1 

1 

< { % IT( au) I' % IT(bu) I' % IT( cu)l' r 
As u fllllS through 1,2, ... ,p - 1 so do au, bu and cu. Thus each sum 

p-l p-l p-l 

L IT(au)13 = L IT(buW = L IT(cu)13 = 83. 
1£=1 u=1 u=1 

So we have 
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When x = 0 (mod p), the congruence (24) becomes 

byk + czk == d (mod p). 

For any given value of y there are at most k solutions for z, so the number of solutions of (24) 

with xyz == 0 (modp) is at most 3kp. 

Thus for a solution to (24) with xyz =f. 0 (modp) we require 

1 1 2 
p"2 - 3kp-"2 > (k - 1) . 

Since p > k4 we have, for k ~ 2, 

1 1 2 3 2 p"2 - 3kp- 2 > k - - > (k - 1) . 
k 

Thus p > k4 is sufficient for a solution .• 

4.4 Theorem 16 : the case p = 1 

In this case any non-trivial solution has rank 2 (modp). We begin by using elementary row 

operations to put the congruences in the form 

10 = xf + 
go = x~ + b3X~ + ... + bmx~ == 0 (mod p). 

The number N of solutions to the congruences (4.10) is given by 

u,v 

Taking across the term due to u = v = 0, we have 

p2 N - p5 = L T(A l )··· T(A5). 
(u,v);t(O,O) 
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We now separate the sum into terms for which one of the Ai'S is zero (mod p), denoted by 

E},and terms for which none of the Ai'S are zero (mod p), denoted by Eo . The estimate of 

EI is done in the standard way using Lemma 4.8. The estimate for Eo, however, is new and 

requires Lemma 22. 

4.5 Estimate for ~o 

We substitute the expression for T given in Lemma 20 into Eo, 

Eo -
u,v rl, ... ,r5 

A.tO (p) l~r.~k-l 

rl~r5 [ ~ X(A~1"'A~5)T(Xl)'''T(X5)1 
1~r.9-1 Aito (P) 

rl~r5 T(X'l)"'T(X
rs

) [ ~ X(A~1"'A~5)l' 
1~ri9-1 A.to (p) 

\Ve now fix Tl, ••• ,rs and evaluate the inner sum. 

~ X (]] (aiu + biv r' ) 
A.to (p) 

L: X (vr1 + .. +rs rr(ai~ + birO) . 
u,V i=l v 

Ai1° (p) 

Note that u/v is well defined here since v = A2 1= 0 (mod p). The conditions Al 1= 0 (mod 

p), A21= 0 (mod p) show that we may replace the summation by E!:~ E~:~. We may ignore 

the restriction Ai =J 0 (mod p), since if Aj == 0 (mod p) for some j then X (n~=l A~o) = 0 and 

there is no contribution to the sum. Thus we take the sum over 1 :5 u, v :5 p - 1. The change 

of variables v -+ v, ~ -+ ), is non-singular on Z· X Z· so v p p' 
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~ ~ % +., ++'0 g (aM ~r') 

- ~X (v·'+···+·') % X (g(aiH bi)") . (4.12) 

We now separate the two cases 1'1 + ... + 1'5 f. 0 (mod k) and 1'1 + ... + 1'5 = 0 (mod k). 

1. R = 1'1 + '" + 1'5 f. 0 (mod k). Since X has order k, XR f. xo. IIence, 

p-l p-l p-l 

LX (vrl+···+r5) = LX (v R) = L XR (v) = O. 
v=l v=1 v=1 

lIence So = 0 for these values of 1'1, ••• ,1'5' 

2. R = Tl + " . + 1'5 = kw for some w, and so X (vrl + ... +r5) = X (vkW) = I, since X has order 

k. Thus, 

Now a2 == 0 (mod p), and b2 == 1 (mod p), so 

5 5 

II(ai A + biro = II (ai A + biro. 
i=l i=l,i1'2 

Since p = I, no other ai == 0 (modp) and we may apply Lemma 22 with t = 4 to give 

So ~ (p - 1)(3yp + 1). 

We can now complete the evaluation of \'Eol : 

'Eo - rl~r5 r(x
l ) "'r(Xr

5) [ ~ X (Ail "'A~Ii)l 
1$ri9-1 AttO (P) 

- L r (Xrl ) ... r (X6) SO 
rl, .. ·,r6 

l$riSk-l 
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6 

But for each set of values of (TI' ... ,T5), I'T (Xl) ... 'T (X6) I = p"2 by (4.5). Now 

Eo= 'T (Xl) ... 'T (XII) So 
rl +···+r5=0 (k) rl +···+r5fO (k) 

Hence, 

ll::ol 
5 

< p2 L: 5 

ISol + p"2 ISol· 
rl+···+r5=0 (k) 

L ISol 
rl+···+r5=0 (k) 

It is easy to see that 

Thus, 

(4.13) 

4.6 Estimate for ~1 

First we assume that u == Al == 0 (mod p) . We need to estimate the contribution to the sum 

on the right hand side of (4.11) with u == 0 (mod p). This is done in the standard way, since 

bi i= 0 (mod p) for 2 :::; i :::; 5. 

p-I 5 

E - (p-l)L:IIT(biv) 
v=I i=2 
p-I 

< (p - 1) L IT(vW = (p - 1)S4 
v=I 

since bi i= 0 (mod p) for 2 :::; i :::; 5. So, using (4.8), 
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Now we need to multiply by 5 since any Ai could be zero (mod p). Thus we see that 

We can now finish the case p = 1. From (4.11), (4.13) and (4.14), 

IpN - p51 < IEol + IEII 

For N > 0 we need 

or equivalently, 

Now, for p > 3k4 , 

< p~ (p - 1)(3y'P + 1)(k - 1)4 + 5p4(k _1)3. 

< 3(k _ 1)4 + (k - 1)4 
v':3k2 

< 3(k-l)4+k2. 

p-l 
Also, -- < 1, so for p > 3k4 

p ! 

(P;1)(3+ ~)(k-l)4+5(k-l)3 
< 3(k-l)4+k2+5(k-l)3 

- 3k4 - 7 k3 + 4k2 + 3k - 2 

< 3k4 < p. 

Thus we have a solution for all p > 3k4 • 
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4.7 Theorem 16: the case p = 2. 

We begin by using elementary row operations to put the congruences in the form 

/0 = x~ + a2x~ + a3x~ + ... + asxg == 0 (mod p) (4.15) 
90 = b3X~ + ... + bsxg == 0 (mod p), 

where possibly a4 == 0 (mod p), as i= 0 (mod p) and b3b4bS i= 0 (mod p). 

Lemma 25 Let p == 1 (modk). 1fr = 2 then the congruences {4.15} have a solution of rank 1! 

(mod p), provided that p > k4. 

Proof. We begin by solving 

with X3X4X5 =J. 0 (mod p) using Lemma 24. This solution involves 2 linearly independent 

columns of coefficients. 

Let A = a3x~ + a4x~ + a5xg. If A == 0 (mod p), take Xl = X2 = 0 to give the required 

solution. If A =J. 0 (mod p), multiply X3, X4, X5 by ~ and solve 

with XIX2e i= 0 (modp) using Lemma 7, which also gives us the required solution .• 

Thus we may now combine our two results for p = 1 and p = 2. We have shown that the 

congruences (4.2) have a solution of rank 2 (mod p) for all p > 3k4. lIenee by Lemma 18 the 

equations (4.1) have a non-trivial p-adic solution for all such p, and so Theorem 16 is proved. 

4.8 Extensions to r > 2 equations 

The same technique of counting numbers of solutions using multiplicative sums can also be 

used to solve r > 2 simultaneous equations. We can write 

qrN= LT(At} ... T(A2r+d 
uEJI<~ 
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as before, and then use lemma 20 to introduce multiplicative characters. The only difficulty 

concerns values of the u for which certain Ai vanish and hence T(Ai) = q. These must be dealt 

with before using lemma 20, by partitioning the sum over the values of u E W;. The polynomial 

character sums arising can then be estimated using our main conjecture for the generalised 

Hasse-Weil character sum estimate. In fact, it turns out that the estimate for homogeneous 

polynomials that follows from this is more appropriate. We have not attempted to complete 

this calculation but believe that this is the most appropriate method for attacking these kind 

of problems for diagonal equations. 
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Chapter 5 

Simultaneous Additive Equations 

5.1 Introduction 

We restate for convenience the result of Atkinson, Briidern and Cook [4] for systems of additive 

equations over the field of p-adic numbers: 

Theorem (Atkinson Briidern and Cook) 

Let T, k, n be positive integers with k> 1 and n> 2rk. Then the system of equation.'i 

i = 1, ... ,T (5.1) 

with coefficients aij E IE, has a non-trivial p-adic solution for all p > k2r+2. 

In this chapter the same problem is considered for equations in n > crk variables where c 

is a positive integer and c ~ 3. A similar approach to that of the above authors is adopted, 

differing mainly in the exponential sum arguments, and the handling of singular solutions. 

Theorem 26 Let T, k, n, c be positive integers with k > 1, n > crk and c > 2. Then the 

system of equations (5.1), with coefficients aij E IE, has a non-trivial p-adic solution fOT all 
2k2+-L . 2+--L P > T c-2 if T =f. 1, and p > k c-l if T = 1. 

As usual, p-adic solutions are obtained by a Hensel's Lemma argument from non-singular 

solutions to certain congruences. However, the congruences (mod p) are solved by an induction 
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argument on r. In our proof, as in [4], not only homogenous congruences, but also inho

mogeneous congruences must be considered. This auxiliary result on congruences may be of 

independent interest so it is described in detail. 

5.2 Preliminaries to Theorem 26 

Let B = (bij ) be an r x m matrix over the field K. For 0 :$ d :$ r we denote by JL(d, B) 

the maximum number of columns from B which can lie in a d-dimensional subspace of Kr. 

In particular, if m = cr + 1 and JL ( d, B) :$ cd holds for all d :$ r - I, then we call B highly 

non-singular. 

For bij , c4 E Z, a solution x to the congruences 

bil X1 + ... + bimX~ == d i (mod p), i = 1, .. . ,r (5.2) 

is said to be of rank p if the matrix (bijxj) has rank p in lFp, and is non-singular if it has 

maximal rank. 

Tbcorem 21 Let m = cr + 1, bij, di E Z be such that B = (bij) is highly non-singular in the 

field IFp. Then the system of congruences (5.2), mod p, has a non-singular solution mod p for 

all primes p > r 2k2+ C~2 if r i- 1, and p > k2+ C~l if r = 1. 

We shall only require Theorem 27 in the case K =IFp for the proof of Theorem 26; however 

the result also holds in the more general setting of a finite field K = lFq (q = pI) and we outline 

this generalisation in Section 5.6. 
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5.3 Proof of Theorem 27 

Lemma 28 (Aigner) Let A be an r X m matrix over a field K and let t be a positive integer. 

Then A includes t disjoint r X r sub matrices which are non-singular over K if and only if 

m - JL(d, A) ~ t(r - d) (5.3) 

hold3 for all d =:; r - 1. 

Corollary 29 If A contains a set T of c independent columns, then we can choose the t di..'ljoint 

Bub matrices to include these. 

Aigner [11 gives a proof of the lemma. 

Proof of corollary 

Let us assume that at least one of the c columns cannot be included in the t disjoint 

8ubmatrices. Then there must be a smallest set S of excluded columns. Choose an element v 

from this set and one of the submatrices, It. Then since It is non-singular, it has rank r and 

v may be expressed as a non-zero combination of certain columns in It. Also these columns 

cannot all be in T since T is an independent set. Exchanging v with one of these columns 

not in T still gives a matrix It' of rank r, and a smaller set S' = S\ {v}. Thus, we have a 

contradiction to the assumption of a smallest set. Hence our initial assumption is false and the 

corollary holds .• 

It follows immediately from the lemma that if II is an r x (cr + 1) highly non-singular 

matrix, then II contains c r X r non-singular matrices. Renumbering the variables and using 

row operations, the matrix of coefficients II in the congruences (27) may be brought to the 

shape II = [I, Bol where I is the r X r identity matrix and Bo is r X «c - l)r + 1). With this 
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matrix of coefficients and u = (Ul,' .. , u r ) we associate linear forms 

(5.4) 

where m = cr + 1. Then 

Aj = Uj for j = 1, ... , r. (5.5) 

For 1 ::; v::; r we define qv(B) as the minimal number of components with a non-zero entry 

in at least one out of any v linearly independent linear combinations of the rows of n. Thcn for 

any r X m matrix B we have 

p,(d, B) + qr-d(13) = m. (5.6) 

Note that the r X (cr + 1) matrix 13 is highly non-singular, if and only if, qi(13) > ci for 

i = O, ... ,r-1. 

We classify the points u 1= 0 into subsets pr (T = 0, ... r -1) where Ur+ 1 is the first non-zero 

variable amongst the UI, ••. U r • Thus 

Pr = { u ElF; : ul = ... = U r = 0, u r +1 =I- O}, 0 ::; T ::; r - 1. (5.7) 

For a fixed T with 0 ::; T ::; r - 1, let A~ (j = 1, ... , m) denote the restrictions of the forms AJ 

to the vector space P~ = Pr U {O}. In this subspace the forms A~, ... , A~ have an (r - r) x m 

matrix 

where 131 consists of the last r -T rows of 130. If we take any v independent linear combinations 

of the rows of n', then we are simply taking the same independent linear combinations of the 

rows of n, so qtJ (13') ~ qv (13) for v = 1, ... r - T. Thus, 

qv (B') > cu for v = 1, ... , r - r - 1. 

The first non-zero column corresponds to Ur+l and the remaining cr - T columns give an 

(r - r) X (cr - T) matrix 13" satisfying qv (13") ~ cu. Therefore, by Aigner's criterion, these 

cr - r columns will contain c disjoint non-singular (r - r) x (cr - T) matrices which we can 
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arrange to contain the columns corresponding to U T +}, ••• ,Ur by corollary (29). We can now 

renumber columns r + 2, ... cr + 1 to give c disjoint sets of r - r elements 

Vi = {(i - l)r - (i - 2)r + 2, ... , ir - (i - I)r + I}, i=I, ... ,c (5.8) 

such that for i = 1, ... , c the restrictions A~ to ~T of the linear forms A1J , v E Vi, are sets of 

linearly independent forms. 

Theorem 27 will now be proved by counting the number of solutions to (5.2) with the first 

r variables non-zero. Since the corresponding forms Ai, i = 1, ... , r form a matrix of rank r 

(!,.x,.), this automatically guarantees a non-singular solution. The solutions are counted using 

exponential sums, 

p-1 ( k) T*(u) = Le ux 
x=l P 

(5.9) 

P (uxk) T(u)=Le -
x=1 p 

(5.10) 

For u =1= 0 (mod p) we have, from Lemma 12 of Davenport [22], 

IT*(U)I ~ (k - l)JP + 1 < kJP (5.11) 

IT(u)1 :::; (k - l)JP < kJP (5.12) 

Let 
P P 

Sc = L IT(u)I C
, S; = L IT*(uW . (5.13) 

u=l u=l 

Lemma 30 We have 

(5.14) 

(p - I)C < S; ~ (p - l)p~ kc- 1 + (p -1)c. 

Proof. Let l'c = L~:i IT(uW. This is the same as Se but summing from 1 to p - 1 instead 

of p. Now P- 1S2 equals the number of solutions to the congruence Xk == yk (modp). For each 
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x 1= 0 (modp) there are k solutions for y so 

82 = peep - 1)k + 1}. 

Sinee 1'2 = 82 - p2 we have 

T 2 = p( (p - 1) k + 1) - p2 = (k - 1 }p(p - I) 

< kp(p -1}. 

Similarly on defining 1'~ = L~:'~ IT*(uW we have 

1; = peep -1)k) - (p _1)2 < kp(p -1). 

lienee using (5.11) we find 

p-1 

o < Ie = 2: IT(uW < 12 (kJP)C-2 < (p_1}p~e-l 
'lI=1 

p-1 

o < 1'~ = 2: IT*(uW < 1; (kJPt- 2 < (p -1}p! kc
-

1
, 

'lI=1 

and finally using the formulas 

we obtain (5.14) .• 

(5.15) 

We first consider the ease r = 1. Then any non-trivial solution is non-singular. lienee the 

number N of non-singular solutions to (5.2) is given by 

Separating out the term Ul = 0, taking the modulus of both sides and applying the triangle 
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inequality we have, 

(5.16) 
ul#O (modp) 

p-l 

L IT*(bl1Ul)T(bI2UI)'" T(blc+1 U I)1 (5.17) 

As tL runs through 1, ... , p - 1 so does (bliUI), i = 1, ... , m. Thus (5.18) implies 

c+l 
< (p -1)p-2 kC

• 

by 5.15. Thus for N > 0 we require 

which is equivalent to p > k2+~. 

Now if r > 1, then the number N of incongruent solutions to the r congruences (5.2) with 

the first r variables non-zero is given by 

(5.19) 

Separating out the term u == 0, taking the modulus of both sides we have 

pr N - (p - 1rpm-r ;5, L IT*(AI)'" T*(Ar)T(Ar+d'" T(Am)l. (5.20) 
u:;i!Omodp 

\Ve classify the points u =J:. 0 into the subsets PT, 7' = 0, ... , r - 1, and let ~.,. denote the 

contribution to the right-hand side of (5.20) coming from the points u E PT' Then 
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and using the trivial estimate for IT*(u)l, 

Er ::; (p - lr L IT*(Ar+l)'" T*(Ar)T(Ar+d'" T(Am)l· 
UEp,.. 

Further, on pr we have UT+l =1= 0 mod p and so, from (5.11) 

{5.21} 

For i = 1, ... , c the mappings (uT+I. ... , ur ) 1---+ (A~ : v E Vi), where Vi is defined in (5.8), 

are non-singular. We now define 8i, 1 ::; i ::; c, where Qi of the T's are T and {3i of the T's are 

T*. 
r 

8 i = L II IT(A:)r = L II IT(ujW = S~iS:~ 
p,.. vE Vi rJ ,.. j=r+ 1 

(5.22) 

Sinee the columns in VI, ... , Vc contain exactly r - t - 1 with T*, and (c - l)(r - 7") + 1 with 

Twe have 

c 

L Qi - ( C - 1) (r - 7") + 1 
i=l 

c 

L ,si - r - t - 1. 
i=l 

lienee, 

8 1", 8 e = IT S~iS:l'i = SJ2=~=l Qil S;[2:~=l I'il 
i=l 

S(c-l)(r-r)+lS·(r-t-l) 
c c· 

(5.23) 

(5.2·1) 

The estimation of Er is now easily completed. For T*(ur+d we have the estimate (5.21), and 

for all other T(Av) with v in none of the VI, ... , Vc we use the trivial bound. Thus, by an 

extension of Holder's inequality (see [38], theorem 11, p.22) 

Er < «k - 1) vP + 1) p(c-l)r(p - l)r(8 1 ••• 8c)~ 
1 ::; «k - 1)..;p + 1) p(c-l)r(p - lr (s~c-l)(r-r)+ls*(r-t-l») c • (5.25) 

57 



From (5.20) we now have 

From (5.14), we have S; > (p - I)C and Sc > pC, so (5.26) becomes 

r(c-I)+I r-I 

IpT N - (p - lrpm-TI ~ «k - 1) vIP + 1) rSc C S;-c (5.27) 
r-I r(c-Il+1 

< «k_l)yIp+l)r(p~(p_l)kC-l+(p-l)c)-c (p~(p_l)kC-l+pC) C I 

using (5.14). Thus we see that for N > 0, we require 

r-I r(c-I)+! 

r«k -1) yip + 1) (p~(p _1)kC- 1 + (p _l)c)-c (p~(p _1)kC- 1 + pc) c 

< (p _1rp(c-l)T+l. (5.28) 

Dividing through by (p - It-1p(c-l)r+l!, this is equivalent to 

This inequality is difficult to work with, so we replace it by 

r r(c-I) 

( 1) (~kC-l )c ( l)k
C
-

1 
) c 

r k-l+ vIP (:_I)C-l +1 P-p~ +1 <v(k)JP (5.30) 

where v(k) = (1 - 1/k2+ c:2 ) which implies (5.29) because 

and p > r 2k2+ C:'2. 

We now assume p > r2k2+ c:2 and show that it leads to (5.30). 
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• 2 2+-2..... . kc- 1 1 
FlrSt, P > r k c-2 lmplIes -~- < --. Thus 

and 

IIence, 

P2-1 rc- 2 

(p- 1)kC
- 1 1 

~---:~~- + 1 < --c=2 + 1 
p2 r 

p~kc-l -:-(p=------,"l )-c--"'l + 1 ( P )C-l kc- 1 

- -- -c-+ 1 
p - 1 p2"-l 

( )
C-l 1 

< -p- --+1. 
p -1 r c- 2 

By the exponential inequality 

we have 

< exp (C~J-l ;-3) 
(C-1) exp crc- 3 • 

Thus 

r(k-l+~) ((_P )C-l_l +l)~ (_1 +1)r~ ..;p p - 1 r c- 2 r c- 2 

< r(k-l+~)exp((-P )C-l_l +~) . ..;p P - 1 crc- 3 crc- 3 
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So, for (5.30) to hold we need 

r k-l+- exp -- --+--( 
1 ) (( p ) c-l 1 C - 1 ) 

..;p p - 1 crc- 3 crc- 3 < v{k)rkl+~ 

~ex -- --+--(( P )C-l 1 C-l) 
P P - 1 crc- 3 crc- 3 < 

v{k)kk~ 
k-l+)P 

< 
k ( v(k)k ) ,~, 
k-l+~ 

(5.32) 

Now, 
p 1 1 16 

--=--1 <--1 =-
p - 1 1 - - 1 - - 15 

p 16 

since p > r2k2 ~ 16. This gives us 

( 
C - 2 (( p ) c-l ) ) ( c - 2 (( 16) c-l )) exp crc- 3 p _ 1 + c - 1 < exp crc- 3 15 + c - 1 . {5.33} 

Let us denote the RHS of (5.33) by f(c,r). Then we have 

f(c,r) = exp (:~~~ (G:r + C-l)) (5.3·1) 

_ exp (r2(C;2) ((11
5
6rr-1 

+ ~:;)). (5.35) 

From (5.34) f is a decreasing function in r, and from (5.35) f is a decreasing function in c. 

Therefore to find an upper bound on f we just evaluate f(3,2) = 2.846 ... 

If c ~ 4 then 

k ( v(k)k 1 )C-2 > 
k-l+-yip 

k k+l k-1
1 ( )

C-2 

k k-l+ 2k 

because v(k) > (1 - l/k2), p > 4k2 and k ~ 2. Hence in this case f(3,2) = 2.846 ... < 2.88 < 
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right hand side of (5.32). Thus (5.32) holds and we have a solution for all c ~ 4. 

If c = 3 and k = 2, 

k ( v(k)k ) c-2 _ 

k-1+.)p 

> 

v(k)k2 

k-1+-jp 

v(k)22 

2-1+l 

> (1 - 2.) 16 = 3 
16 5 

because v(k) = 1 -1/k4 ~ 1-1/16 and p > 16. Hence, here also 1(3,2) = 2.846 ... < 3 < RIIS 

of (5.32). 

If c = 3 and k > 2, 

k ( v(k)k ) c-2 _ 

k-1+~ 

= 

> 

lI(k)k2 

k-1+-jp 

v(k)k 
1 1 1 

- k + kJP 
3 X 15 
__ 1'='16,- = 3.85714 
1 + 3x16 

because v(k) = 1 - 1/k4 ~ 1 - 1/16 and p > 16. Hence, here also 1(3,2) = 2.846 ... < 3.8 < 
RIIS of (5.32).and we have a solution for all c > 2. 

5.4 p-adic normalization 

We recall the basic results of the p-adic normalization introduced by Davenport and Lewis [25], 

but refer to [25] for the details. With the forms F1 , •.. ,F r we associate the parameter 

where AJ = (aij) , 1 ~ i ~ r, j E J, is an r x r· submatrix of A and J runs over all r-elerncnt 

subsets of {1, 2, ... , n}. By the arguments of §4 of Davenport and Lewis [25] it suffices to prove 

Theorem 26 for systems of forms with () =1= O. Moreover, for fixed p, the equations (5.1) have a 
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non-trivial solution, if and only if, a related p-normalized system does. Further, p-normalizcd 

systems have the following properties. 

Lemma 31 Suppose that FI, ... , F r is a p-normalized system, with () =1= O. Then we may write 

(after renumbering the variables) 

where 

(5.36) 

Ojj E Z and each of Xl, ••• , Xm occurs in at least one of Fl,O, •.. , F r,O with a coefficient not 

divisible by p. Also 

n 
m >- k' (5.37) 

Further, if we form any v linear combinations of the Fl,o which are independent mod p, and 

denote by qv the number of variables which occur in at least one of these combinations with a 

coefficient not divisible by p, then 

vn 
qv ~ rk' 1 ~ v ~ r - 1. (5.38) 

This is lemma 11 of Davenport and Lewis [251. The numbers qv defined in this way cor

respond to the invariants qv(A) = qv defined in section 2. We note that for n > crk the 

inequalities (5.37) and (5.38) give 

m> cr, and qv > cu, for 1 ~ v ~ r - 1 (5.39) 

Lemma 32 If p does not divide k and the congruences 

l=l, ... ,r 

have a solution of rank r (modp), then the equations 
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have a non-trivial p-adic solution. 

This version of Hensel's Lemma is a particular case of Lemma 9 of Davenport and Lewis 

[25]. 

Now for p > r2k2+~ or p > k 2+ C:l, we always have p t k so Theorem 26 follows from the 

following: 

Proposition 33 Let Fi,o be given by (5.36) and suppose that (5.39) holds. Then, for all 

db"" dr E Z and primes p satisfying p > r2k2+ c:'2 if r =J. I, p > k2+*, if r = 1, the 

congruences 

Fi,O == dl mod p, 1 ~ f ~ r, 

have a solution of rank r (mod p). 

5.5 An inductive strategy 

We prove the Proposition by induction on r. We recall (5.6) and (5.39), then writing p(d) for 

p(d, A), we have 

f-L( d) < cd + m - cr (5.40) 

When r = 1 the Proposition is an immediate consequence of Theorem 27. We now suppose 

that the Proposition holds for systems with fewer than r congruences. If m = cr + 1, then 

(5.40) becomes p(d) ~ cd, so A = (Qij) is highly non-singular and the Proposition follows from 

theorem 27. 

We may now suppose that m > cr + 1. I shall show that either we can discard a column of 

A (that is, set the corresponding column to zero) and still satisfy (5.40) but with m replaced 

by m - 1; or we can solve the congruences by appealing to the induction hypothesis. This will 

prove the proposition, since after a finite number of steps either we reach the case m = cr + 1 

(when there is a solution) or we obtain a solution by the induction hypothesis. 

First we Suppose that 

p( d) < cd + m - cr - 1 (5.41 ) 

holds for all d with 1 ~ d ~ r -1. Then we may discard any column and still have (5.40) (with 

63 



m replaced. by m - 1). 

Now we may suppose that for some d with 1 ~ d ~ r - 1 we have JL( d) = cd + m - cr - 1. 

Then for v = r - d we have 

(5.42) 

where q1) = q1)(A) and A is the matrix of coefficients in (5.39). Let t be the largest value of v 

for which (5.42) holds and put d = r - t. Applying row operations and relabelling, the system 

of congruences is equivalent to a system 

+bdmX~ == ed 

bd+lfjX~ + . .. +bd+lmX~ == ed+l 

where 77 = m - ct. 

The last r - d congruences contain c(r - d) + 1 variables and this subsystem is highly non

singular (since we still have qi > ci in the subsystem). Thus by Theorem 27 the subsystem has 

a solution {fj' •.• ,em of rank t. The system of congruences now becomes 

(5.43) 

This subsystem contains 

77 -1 = m - c(r - d) -1 > cd (5.4·i) 

variables. Suppose that some v linear combinations have q~ ~ cv. Adjoining the last r - d forms 

to those linear combinations we have t+v independent linear combinations in at most ct+ 1 +cv 

variables, contrary to t being the largest value for which (5.42) holds. Therefore the subsystem 

(5.43) satisfies the conditions (5.39) of the Proposition, so by the induction hypothesis there 

is a solution of rank d. Combining this with ~fj, ... , ~m the whole system has a non-singular 
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solution, which completes the proof of Theorem 26. 

5.6 Finite fields 

Now K = 1Fq, where q = p/,and B =(bij ) is highly non-singular over K. We recall from Lemma 

2D of Schmidt [54, p. 43] that all additive characters on 1F q are given by 

( ) _ (tr(ux)) 'lIu x - e , 
p 

where u E 1Fq and tr denotes the trace. We can now redefine T, T*, Se, S; as 

T*(u} = L e (tr(ux
k
)) 

XElFq p 
(5.45) 

T(u) = L e (tr(ux
k
)) 

XElF' p 
q 

(5.46) 

and 

Se = L IT(uW , S; = L IT*(uW· (5.47) 
UElFq 

IT N now denotes the number of solutions of the system of equations 

i = 1, ... ,T, (5.48) 

with di E 1Fq, then 

. ( tr(u
p
' d)) . qrN= L T*(At}···T*(Ar}T(Ar+t}···T(Am)e 

UE~ 

(5.49) 

The analogues of (5.11) and (5.12) follow from Theorem 3D of Schmidt [54, p. 49] giving 

us 

IT*(u)1 ~ (k -1)JQ + 1 < kJQ (5.50) 

and 

IT(u)1 ::; (k - I)JQ < kJQ. (5.51) 
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Now q-lS2 equals the number of solutions of xk = yk in lFq• For each x =1= 0 there are k 

solutions for y so 

82 = q((q - l)k + 1). 

Similarly we obtain 

8; = q(q -l}k. 

The estimates for Se and S; follow from the estimates for 8 2 and 8; with p replaced by q as 

does the rest of the argument, and we obtain a non-singular solution to the equations provided 

that 

q > r2 k2+ C:2, 

q > k2+ C:l, 

r=l=l 

r = 1. 

5.7 Applications to Artin's conjecture 

For the equations (5.1) Artin's conjecture is the case c = k. Thus for r > 1 our theorem 

gives a non-trivial p-adic solution for p > r2k2+6, r =f 1. Thus for cubic equations we have 

p > r2
3

4 = 91r2, for quartic equations we have p > r 243 = 64r2 and for quintic equations we 

have p > r252+~ ~ 73.2r2. 
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Part III 

Graph Theory 
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Chapter 6 

Basic Preliminaries 

In this chapter we review some basic definitions and concepts that will be useful to us in this 

part of the thesis. 

6.1 Definitions 

IT Y is a set, then the power set of Y is the set of all subsets of Y. It is denoted by P(Y). 

A graph G consists of a set V (or V(G)) of vertices, a set E (or E(G)) of edges, and a 

relation of incidence that associates with each edge two vertices, called its ends. A graph is 

simple when it has no loops and no two distinct edges have exactly the same pair of ends. In 

this thesis all graphs we consider shall be simple. 

A set system (on Y) is a pair (Y,F), where Y is a set and F C P(Y), and an r-graph or 

r-uniform hypergraph is a pair (Y,~) where ~ c y(r). An element of ~ is a hyperedge or simply 

an edge of the hypergraph. Thus we see that a graph, as defined in the paragraph above, is a 

2-graph. 

IT r is a graph then the degree or valency of a vertex X is the number of edges on X or, 

equivalently, the number of vertices 'adjacent to ' X. 

IT each vertex has the same degree d, then the graph is said to be regular, of degree d. 

Let r be a regular graph of degree k, with v vertices. If there are integers A, IL, such that: 

1. if P, Q are adjacent vertices, then there are exactly). vertices X adjacent to both P and 

Q. 
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2. if P, Q are non-adjacent (distinct) vertices, then there are exactly J.L vertices X adjacent 

to both P and Q. 

Then r is a strongly regular graph with parameters (v, k, )..,J.L). 

We use Kn to denote the complete graph on n vertices. 

An n x n matrix H is a Hadamard matrix of order n if each entry is 1 or -1, and nnT = nI. 

6.2 Ramsey theory 

In 1930 F.P.Ramsey published a paper on logic which contained the following theorem [531: 

Theorem 34 Let r ~ 1 and qi ~ r, i = 1,2, ... , s be given. There exists a minimal positive 

integer N(q}, Q2, ••• , qs; r) with the following property. Let S be a set with n elements. Suppose 

that all (;) r-subsets of S are divided into s mutually exclusive families T}, •.. ,Til ('colours~. 

Then ifn ~ N(q1, Q2, ••• , qs;r) there is an i, 1 ~ i ~ s, and some qi-subset of S for which every 

r-subset is in Ti • 

This seems a rather technical statement and as all our applications will be to hypcrgraphs 

and graphs we shall re-interpret the result for these structures. Basically Ramsey's Theorem 

states that if you colour the edge sets of the complete r-uniform hypcrgraph on n vertices with 

8 colours then if n ~ N(q1, Q2, ••• , Qs; r) you will always find, for some i, a monochromatic 

suh-hypergraph of colour i and size qi. For example N{3, 3; 2) = 6 means that if you colour the 

edges of K6 with either red or blue you will find at least one monochromatic triangle. 
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Chapter 7 

Diagonal Equations and Graph 

Theory 

In this chapter I should like to investigate the connections between the theory of graph colourings 

and the preceding theory of diagonal congruences. 

7.1 Introduction 

Let us begin with a problem concerning the solution of diagonal congruences with a fIxed 

number of variables non-zero. Consider two diagonal equations over the finite field 1F ql q a 

prime power 

f - alx~+· .. +anX~=O 

9 - b1 x~ + ... + bnx~ = 0 

(7.1) 

whose columns happen to be in general position, i.e. aibj - biaj =f:. 0 for all i,j. The question 

is : does (7.1) have a solution with exactly 3 variables non-zero? It is perhaps quite surprising 

that the solution to this question lies in the world of combinatorics and Ramsey Theory. In 

fact for q greater than some bound it can be shown that there is a direct equivalence between 

the problem of finding monochromatic triangles in graphs and obtaining a solution in exactly 

3 variables. 
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7.2 Algebraic preliminaries 

Let q be a prime power, k a positive integer greater than 1 and q == 1 (modk). Then the group 

F; contains a subgroup consisting of kth powers, R = {Xk : x E 1F~ }, with I RI = ~. This 

subgroup can then be used to decompose 1F; into a disjoint union of k cosets: 

k k 

1F~ = U gi R = U Ai 
i=l i=l 

where 9 is an element of 1F~ such that !I ¢:. R for j = 1, ... , k -1 and Ai = gi R. 

7.3 The associated graph 

As in the introduction let us consider the pair of equations 

f - alx~+ ... +anX~=O 

9 - blX~+···+bnx~=O 

(7.2) 

with independent columns over lFq , q = pS, P prime, q == 1 (modk) if k is odd, and q == 1 

(mod2k) if k is even. We also note that the condition of independent columns requires that 

q2:n+l. 

We shall show how the coset decomposition of 1F~ gives us an edge colouring of the complete 

graph on n vertices in k colours. 

Take the complete graph on n vertices and label each vertex from 1, ... , n. Then to the 

vertex i we associate the column ( : ) . We then 'colour' the edges of the graph with the 

numbers from 1, ... , k by the rule: 

edge i - j is assigned colour t if and only if aibj - biaj EAt. 

This makes sense since for the values of q we have defined -1 is a kth power, and hence edge 

i - j is assigned the same colour as edge j - i. 
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Example 35 Consider the equations 

f = x~ + +x~ = 0 

g = x~ +x~ = 0 

Then the three cross products aibj - biaj are 1,1, -1, so the equation graph is K3 with each 

edge coloured 1. 

Now let us return to the problem mentioned in the introduction. What does it mean for 

(7.2) to have a solution with exactly 3 variables non-zero? 

Let us assume that we have a solution with only the variables r, s, t non-zero. This means 

we have a solution with all variables non-zero to 

(7.3) 

Now simple linear algebra tells us that this solution must be given by 

This is possible if and only if asbt - bsat, atbr - btar , arbs - bras are all in the same coset Au of 

the group R of kth powers. On the graph this corresponds to the edges r - s, 8 - t and t - r 

all having colour u. Thus we have a monochromatic triangle and the following theorem holds 

Theorem 36 The equations (7.2) have a solution with exactly three variables non-zero if and 

only if the associated graph of the equation has a monochromatic triangle. 

7.4 Monochromatic triangles 

We know that Ramsey's Theorem guarantees the existence of N(w}, W2,"', Wki 2), the least 

integer n with the property that for every k-colouring of the edges of Kn , there exists an i, 
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1 ~ i ~ k, and a complete subgraph Kw. of Kn having all edges coloured by the ith colour. 
I k 

We are interested in the special case WI = W2 = ... = Wk = 3. Denote N("w, w,: .. , wi 2) 

by r(wi k). Then if s ~ r(3j k), every edge colouring in k colours of the complete graph on 8 

vertices possesses a monochromatic triangle. 

Thus if n ~ r(3j k), the pair of equations (7.2) has a solution with exactly 3 variables 

non-zero. Bounds for r have also been derived: 

Theorem 37 

3t + 3 
-2- ~ r(3jt) ~ It!eJ , t ~ 4 

Proof. See [35, pp.127-128]. 

Now we know that Chevalley's Theorem (Chapter 1, Theorem 2) gives a non-trivial solution 

to (7.2) for all n > 2k, making the bounds for r seem surprisingly high. This difference could 

be said to be a result of two factors: 

1. JrDin comes from looking at all possible edge colourings of the complete graph, not 

just the ones arising from equations. Therefore our equation may be soluble with 

exactly three variables non-zero for a much smaller value of n. 

2. Chevalley's theorem asks for any non-trivial solution, not just one with exactly thrre 

variables non-zero. Hence it may be the case that the latter solution is much harder 

to obtain than the former. 

The first point really comes down to the question: 'Does every graph colouring arise from 

some pair of additive equations?'. If we assume conjecture 14 on the generalised IIMse-Weil 

sum estimate the answer is yes for q > 4n2kn+l, since q has to be large enough to enable the 

equations to encode enough information about the colourings. We shall demonstrate this in 

chapter 9 . Let me illustrate my statement with a rough heuristic estimate: 

First let us restrict our attention to the particular equation 

x~ + ... +x~ - 0 (7..1) 
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with all the ai's distinct so that we have independent columns. Then the colouring procedure 

is simple: 

i - j has colour t ¢:::::? ai - aj E At 

Now we make two estimates 

1. Total number of colourings ~ k(~). 

2. Total number of equations ~ qn. 

Thus for every colouring to have an equation we require 

Returning to the second point, we now see that for large q at least, this is what must explain 

the comparatively high bounds for r. 

7.5 A bound for q 

We shall prove the following theorem in Chapter 9, assuming conjecture 14: 

Theorem 38 Let Cij be an arbitrary colouring of the complete graph on n vertices. If conjectU7'e 

14 i8 true then there is an equation of degree k which corresponds to this graph colouring if 

k~3 

k=2 

(7.5) 

(7.6) 

Thus we see that we have a direct equivalence between the graph colouring and the equations 

expressed in the following theorem: 

Theorem 39 Let N~:(k) be the minimum value of n such that the equations (7.f) have a 

solution with exactly:3 variables non-zero for all q and all values of the ai's; then 
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Proof. Theorem 36 shows that ~~n(k) ~ Nmin(k). Now if n < Nmin(k) there exists a k

colouring on n vertices with no monochromatic triangle. By theorem 38, if q > 4n2 kn, there is 

an equation with n variables which corresponds to this graph and hence has no solution with 

exactly 3 variables non-zero. This shows that ~~n(k) ~ Nmin(k) and the result follows. 

An alternative form of this asking for non-trivial solutions is 

Theorem 40 Let N~nn(k) be the minimum value ofn such that the equations 

=0 (7.7) 

blX1 + ... + bnx~ = 0 

q-l q-l 3 q-l 0 
xl + ... + xn - xn+1 = 

have a non-trivial solution for all q and all values of the ai's, aibj- ajbi =1= 0, then 

Proof. We simply have to show that any non-trivial solution of the equations (7.7) has exactly 

3 variables non-zero from X!, ••• , X n . Since IF; is a cyclic group of order q - 1, the values of 

x
q

-
l

, x E 1Fq are 0 or 1. Now, since aibj_ajbi =1= 0 for alll~ i,j ~ n we must have n + 1 Sq. 

ThUB a non-trivial solution to x~-l + ... + x~-l - 3x~+i = 0 cannot have Xn+1 = O. lIenee we 

are solving xr 
1 + ... + x~-l = 3 which implies exactly 3 out of Xl, ... ,Xn are non-zcro. 

7.6 Generalisation to more than two equations 

Consider a set of r diagonal equations over IF q : 

1 SiS r, (7.8) 

with q == 1 (modk) if k is odd, and q == 1 (mod2k) if k is even. Also let each r x r submatrix 

have non-zero determinant. 

Then in this case we wish to look at solutions with exactly r + 1 variables non-zcro. Now 

let us look at the graph colouring. 
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7.6.1 The associated graph colouring 

\Ve wish to define a colouring of the faces of the complete graph Kn on n vertices. By face 

I mean a set of r vertices of Kn. Using the definitions in Chapter 6, we see that this can be 

considered as a colouring of the hyperedges of the r-graph on n vertices. 

As before take Kn and label the vertices from 1, ... , n . Then to the vertex j we associate 

the column (alj, ... , arj)T . Each face is defined by the r vertices that lie in it. We then colour 

the faces according to the rule: 

the face with vertex set S is assigned colour t if and only if 

the determinant of the r x r submatrix defined by S lies in At. 

This makes sense again since any permutation of the vertices multiplies the determinant by 

±l and for our values of q, -1 is a k-th power. 

Example 41 Consider the equation 

f=x~ + 

g= 

h= 

+x! =0 

x~ + +x! = 0 

x~ +x! = o. 

Then the four determinants are 1,1,1,1, so the equation graph is 

1 

2 

4 

3 

with each face coloured k. 
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Now let us return to the problem of solving an equation with exactly r + 1 variables non

zero. First consider the r X (r + 1) matrix formed by the columns of these variables. Then the 

equivalent condition is that the r + 1 deterrrlinants of the r + 1 (r x r) submatrices all have 

values in the same coset, Au say. On the graph this corresponds to the r + 1 faces all having 

colour u. Thus we see that the following theorem holds 

Theorem 42 The equations {7.8} have a solution with exactly r + 1 variables non-zero if and 

only if the associated r-gmph of the equation has a monochromatic set of r + 1 verlices. 
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Chapter 8 

The Paley Graph 

Let us now define the Paley graph and see how this can be generalised to colourings and to 

hypergraphs. Then, as a consequence of the above work we shall prove some theorems about 

subgraphs and subcolourings. 

8.1 Main properties of Pq 

The Paley graph, Pq , where q is a prime power, pS, is defined only for q == 1 (mod 4). This 

means that -1 is a quadratic residue in lFq• It possesses q vertices corresponding to the elements 

of IF q. The traditional definition is phrased by saying that two vertices a, b are joined if and only 

if a - b is a quadratic residue. This makes sense because -1 is a square in lFq • 

The original construction of Paley was not of Pq but of the related Paley tournament J1q, 

and his main interest was that Pq could be used to construct Hadamard matrices of order q+ 1, 

where q == -1 (mod4). Pq is simply defined by saying that an arc from a to b exists if and only 

jf a - b is a quadratic residue. Obviously this only makes sense jf q == -1 (mod4), in which 

case -1 is a quadratic non-residue. 

The Paley graph Pq can also be used to define a (q + 1) x (q + 1) orthogonal matrix which 

is close to a Hadamard matrix. What is also remarkable about Pq is that it p06s('sses many 

beautiful properties which makes it closely resemble a random subgraph of the comph·te ~8ph 

in which each edge occurs with probability 1/2. For example one sees that the d<'gree of ewry 

vertex is about q/2. We shall now introduce some of the properties of the Paley graph and 
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tournament and some related combinatorial constructions. 

Theorem 43 The graph Pq is a doubly transitive, self-complementary, strongly regular graph 

with parameters {(q - 1}/2, (q - 5}/4, (q - 1)/4}. That is to say, Pq is (q -1}/2 - regular, any 

two vertices have (q-5}/4 common neighbours and any two non-adjacent vertices have (q-l}/4 

common neighbours. For any two vertices a and b, there are precisely (q - 1}/4 vertices c =I- b 

joined to a and not joined to b. 

We repeat for completeness the proof in Bollobas [11], p 316. 

Proof. Multiplication of the edge set by a quadratic non-residue maps Pq into its complement, 

80 Pq is self-complementary. 

Given edges uv and u'v' there is a linear function ¢ : lF~ -lF~, ¢(x) = ax + b, mapping u 

to u' and v to v'. Then x(a) =x(a)x (u - v) = X (a(u - v)) = X (u' - v') = 1, so ¢ gives an 

automorphism of Pq , mapping u to u' and v to v'. Hence Pq is doubly transitive. 

Let xE V(Pq}, U = r(x}, W = V(Pq}\(UU {x}} and q = 4k+ 1. We know that each vertex 

y E U is joined to the same number of vertices in W, say I, and also that each vertex z E W is 

not joined to precisely I vertices in U. Then 

IUIIWI = (2k}2 = 2kl + 2kl, 

80 I = k. Therefore any two adjacent vertices have k - 1 common neighbours and any two 

non-adjacent vertices have k common neighbours. Since Pq is self-complementary, for any two 

non-adjacent vertices there are k - 1 other vertices joined to neither of them, and for any two 

adjacent vertices there are k vertices joined to neither of them. 

Finally, for any two vertices a, b there are 2k vertices, distinct from a and b, joined to 

precisely one of them. Since Pq has an automorphism interchanging a and b, of these 2k 

vertices k are joined to a and not to b, and k arc joined to b and not to a .• 

A tournament T is arc-homogeneous if, for each pair of arcs uv and xy, there is an auto

morphism of T taking u to x and v to y. Goldl)erg [34J proved the following result which was 

rediscovered independently by Berggren [7J. 

79 



Theorem 44 The automorphism group of the quadratic residue tournament Pq consists of all 

permutations 7r with 

where Q is an automorphism of the field lFq and a, c are elements oflFq with a =1= O. 

Fried [33] has observed that, for any arcs ij and hk in Pq , the permutation 

(k - h) ( (k - h) _) 
7r(x) = (j _ i) x + h - (j _ i) , 

sends i to hand j to k. Further, it is easy to see that (k - h)!(j - i) is a quadratic residue, 

and therefore 7r is an automorphism of Pq• Thus every quadratic residue tournament is arc

homogeneous; Berggren [7] has established that they are the only ones. 

Theorem 45 A tournament with n (:2: 3) vertices is arc-homogeneous if and only if it is a 

quadratic residue tournament. 

As we mentioned above Paley's original construction was of the Paley tournament, which 

he used to construct Hadamard matrices. Let A = (aij) be the adjacency matrix of the Paley 

tournament Pq • Then 

aij = XCi - j) 

where X is the quadratic residue character, and i, j are elements of lFq. Let B = A - I, where 

I is the identity matrix of order q. A Hadamard matrix II of order q + 1 can be formed by 

adding a border of l's as the first row and column to the matrix B. This follows easily from 

the analogue of theorem 43: 

Theorem 46 The tournament Pq is arc-homogeneous. Also it is equal to the graph formed by 

reversing the directions of all its arcs, and is strongly regular in the following sense: If a and b 

are vertices of Pq then (ab) means there is an arc from a to b. For any two vertices satisfying 

(ab) there are k vertices e with (be) and (ca) and k -1 vertices e with (eb) and (ca). Since Pq 

is self-complementary, for any two vertices satisfying (ab) there are k vertices e with (cb) and 

(ae) and k - 1 vertices e with (be) and (ac). 
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Proof. Multiplication by a quadratic non-residue maps Pq into the graph formed by reversing 

the directions of all its arcs. 

Given arcs (uv) and (u'v') there is a linear function </> : 1F~ -+ 1F~, </>(x) = ax + b, mapping 

u to u' and v to v'. Then x(a) =x(a)x (u - v) = X (a(u - v)) = X (u' - v') = 1, so </> gives an 

automorphism of Pq , mapping u to u' and v to v'. Hence Pq is arc homogeneous. 

Let xE V(Pq), U = {YE V(Pq) : (XY)} , ~V = V(Pq)\(U U {x}) and q = 4k - 1. We know 

that each vertex Y E U satisfies (yw) for the same number of vertices w E W, say l, and also 

that each vertex w E W satisfies (wz) for precisely l- 1 vertices z E U. Then 

IUII~VI = (2k - 1)2 = (2k - 1)1 + (2k - 1)(1 - 1), 

so 1 = k. Therefore for any two vertices satisfying (ab) there are k vertices e with (be) and (ca) 

and k - 1 vertices e with (eb) and (ca). Since Pq is self-complementary, for any two vertices 

satisfying (ab) there are k - 1 vertices e with (be) and (ae). 

Finally let xE V(Pq ), y E U = {YE V(Pq ) : (xy)}. Then there are k - 1 y' E U with (yy') 

and k -1 with (y'y). Thus for any two vertices satisfying (ab) there are k -1 vertices e with 

(ae) and (eb). 

This gives an explicit construction of Hadamard matrices of order q + 1 whenever q is a 

power of a prime and q == 3 (mod 4). 

Theorem 47 Let A be the adjacency matrix of the Paley tournament Pq• Let A - I, where I 

is the identity matrix of order q. A Hadamard matrix H of order q + 1 can be formed by adding 

a border of 1 's as the first row and column to the matrix B. 

Proof. X( -1) = -1, therefore A is skew symmetric and A + AT = O. Let B = A - I, where 

I is the identity matrix of order q. Then 

BBT=(A-I)(A-I)T=(A_I)(AT_I) _ AAT-AT-A+I 

_ -A2+1 
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Now the ijth element of A 2 is given by 

(A2)ij = # {c E Pq : (ic) & (cj) or (jc) & (ci)} - # {c E Pq : (ic) & (jc) or (cj) & (ci)} 

By Theorem 46 this reduces to 

and 

Hence, 

( A 2) ij - k - 1 + k - (k - 1) - (k - 1) 

- 1, i =1= j 

(nnT)ij - -1, i =1= j 

(nnT)ii - q 

Now the Hadamard Matrix H is obtained from n by adding a column of 1 's and a row of 1 'so 

Thus it is easy to see that 

(HHT)ij - (nnT)ij + 1 = 0, i =1= j, 1 ~ i,j ~ q 

(HHT)ii - (nnT)ii + 1 = q+ 1, 1 ~ i ~ q 

Since each vertex of Pq has the same number of arcs entering as leaving, the remaining elements 

of H can be calculated to give HHT = (q + 1}1. Thus H is a Hadamard matrix .• 

Alternative Proof: A simpler, but less graph-theoretic proof proceeds as follows: 

Proof. We calculate A 2 using the quadratic characters, X. Then 

q q 

(A2)ik = LX(i - j)X(j - k) = LX(j)X(i - j - k) 
j=l j=l 

q q 

- LX(j)X(i - k - j) = Lx(i)X(l- j) 
j=l j=l 
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q-1 1 1 q-1 

- LX(-:}X(I- -:} = LXU -I} 
j=1 J J j=1 

q-2 q-l 

- LX(j) = LXU) - X(-I} = 1, i =1= k 
j=O j=O 

The rest of the proof then follows as before .• 

One reason why random graphs are useful is that they possess subgraphs of various kinds. 

This is investigated in the next chapter. 

8.2 The generalised Paley c-graph 

Before we begin I should like to define what I mean by a colour-graph or c-graph. A c-graph 

is an ordinary graph with an associated colouring of the edges. Also a sub c-graph is simply a 

subgraph of a c-graph with the induced colouring. 

The generalised Paley c-graph P: has q vertices corresponding to the q elements of 1F q. As 

for the Paley Graph we need conditions on q to ensure -1 is a kth power, q == 1 (modk) if k is 

odd and q == 1 (mod2k) if k is even. To the graph we associate a k-colouring given by 

edge i - j is assigned colour t if and only if i - j EAt. 

Now a subc-graph is simply a subgraph of a c-graph with the induced colouring. Let us now 

consider what analogies we can draw, and hopefully prove, between the graph Pq and the c

graph P;. First of all P; again seems to resemble a random graph, only this time it is a 

random c-graph where each edge colour occurs with probability 1/ k. As we found above, is 

there a number s such that every c-graph with s vertices is contained in P: ? The expected 

value for s is (1 +o(I))~!~gkq. In the chapter on r-fullness we shall investigate this further. 

Looking back at the pairs of equations and their associated graph in chapter 6 we see that 

the Paley graph is really the graph of an equation with ai = 1 and bi = i, 1 ::; i ::; p. Thus 

the question naturally arises whether it is possible to generalise Pq using this observation. The 

answer is yes as we shall see in section 8.3.1. 
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8.3 Points at infinity, Pq, Pq and Hadamard matrices 

Let us now see what happens if we add an extra point to the graphs Pq and Pq • At first glance 

there seem to be no remaining elements of 1F q to use. Instead we add what will be called a 'point 

at infinity', 00. This point has the property that every vertex is connected to it by an edge in 

Pq , and there is an arc from it to every other point in Pq • Later, when we have defined the 

extended Paley graph and tournament, the terminology will be seen to be appropriate. Now 

note here that the introduction of 00 corresponds to adding an extra row of l's and a column 

of l's to the adjacency matrix of Pq • This is crucial step in constructing a Hadamard matrix. 

8.3.1 A new graph 

We shall now define a new graph Mq of degree q where q is a prime power and q = 1 (mod 4). 

Le( :~i)' bi E 1F q ,1 ~ i ~ q + 1 be such that aibj - ajbi i- 0 for all i =1= j. Then Mq has vertex set 

b
i 

and vertex i is joined to vertex j if and only if aibj - ajbi is a quadratic residue. We 

note the obvious fact that Mq is not unique and depends on the vertex set selected. 

If q == 3 (mod4) then we can define an extension of the Paley tournament, Mq : the vertex 

set of Mq is the same as Mq and there is an arc from vertex i to vertex j if and only if aibj - ajbi 

is a quadratic residue. 

Let A = (aij) be the adjacency matrix of the tournament Mq • Then 

where X is the quadratic residue character, and i, j are elements of 1Fq• Let B = A - I, where 

I is the identity matrix of order q. This is a Hadamard matrix of order q + 1. Unfortunately 

B does not really give US a new Hadamard matrix, since it can be obtained from our Paley 

matrix by multiplying certain rows and columns by -1. However, this method does make Paley's 

construction less artificial and gives clues to higher dimensional generalisations. 

8.3.2 Some properties of Mq and Mq 

We give a proof that Mq can be used to construct Hadamard matrices: 
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Theorem 48 Let ai, bi E 1Fq ,1 ~ i ~ q + 1, q = 3 (mod 4), be such that aibj - ajbi '# 0 for all 

i '# j. Form the matrix M = (mij) = x(aibj - ajbi). Then the matrix H = M - I, where I is 

the identity matrix of order q + 1 is a Hadamard matrix. 

Note that M is the adjacency matrix for Pq with an extra point, forming a new tournament 

that contains vertex points corresponding to the q + 1 points of the projective line lP(1Fq). 

Proof. X( -1) = -1 and mii = 0 therefore M is skew symmetric and M + MT = O. Hence 

HHT _ (M - I)(M - I) T = (M - I) (MT - I) = MMT - MT - M + I 
_ -M2+I. 

q+l 

(M2)ik = L x(aibj - ajbi)x(ajbk - akbj). 
j=1 

NOW. if we multiply each vector ( : ) by a non-zero scalar .>.; and evaluate the above sum we 

obtam 

q+l 

L X(AiaiAjbj - AjajAibi)x(AjajAkbk - AkakAjbj ) 
j=1 

q+l 

- LX(AiAJAk)x(aibj - ajbi)x(ajbk - akbj) 
j=1 

q+l 

- X(AiAk) L x(aibj - ajbi)x(ajbk - akbj) 
j=1 

- X(AiAk) (M2
)ik· (8.1) 

Since { ( : ) : 1 :;; i :;; q + 1 } is a complete list of representatives of li'(F,l, by mUltiplying 

the vec~rB by Bultable Bealars .>.; we obtron the Bet { ( ; ) , ( ~ ) , ( ~ ) '-'" ( : ) }. 

Since we seek to prove M~k = 0 i =1= j then we may take 

{ ( : ) : 1 :;; i:;; q + I} ~ { ( ; ) , ( ~ ) , ( ~ ). "" ( : ) }. 
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so 

q+l 
~ " " II " L....Jx(aibj - ajbi)x(ajbk - akbj) 
j=1 
q+I 

- Lx(det(L)(aibj - ajbi))x(det(L)(ajbk - akbj)) 
j=1 
q+l 

- L x(det 2(L)(aibj - ajbi))x(ajbk - akbj) 
j=1 
q+I 

L x(aibj - ajbi)x(ajbk - akbj). 
j=1 

Now there exists a non-singular matrix L which sends ( : ) to ( : ) and ( :: ) to ( ~ )-

Thus in evaluating M;k we can take ai = bj = 0 and bi = aj = 1. Thus 

Hence 

q+l 

M;k = LX(-I)x(bk) = o. 
j=l 

giving HHT = (q + 1)1 and H is a Hadamard matrix. 

Our construction includes the one from Pq as the special case ai = 1, bi = i, 1 ~ i ~ q. 
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8.4 A hyper Paley graph 

The above ideas suggest that we may be able to generalise the Paley graph to hypergraphs. We 

have seen that the usual defini tion of Pq can be replaced by taking a vertex set 

and saying that two vertices are connected if the determinant formed by their vectors is a 

quadratic residue. In this case the linear transformation c/J : IFq -IFq, c/J(x) = ax + b becomes 

(8.2) 

The difficulty in finding an appropriate generalisation to hypergraphs is that it is difficult to find 

large sets of vectors E IF~ which are in general position (any set of r vectors are independent) 

and which also possess good automorphism properties. We shall settle for a set of vectors 

which have some faces with vanishing determinant, but which have automorphisms similar to 

the above example: 

The r-graph generalisation of the Paley graph I denote by P;. This is a graph with {-I, q == 

1 (mod 4), vertices and whose vertex set is a set of qr-l column vectors (1, alj,"" a(r-l)j) T E 
IF; I 1 :; j :; qr-l such that no two vectors are proportional. A set of r vertices S is a face 

or hyperedge of the r-graph if the determinant of the r X r matrix defined by S is a quadratic 

residue. For this to make sense we need q == 1 (mod 4) as before. Any collection of r vertices 

that is not a face we shall call a non-face. Any non-face whose vertex vectors are dependent we 

shall call dependent, and whose vertex vectors are independent we shall call independent. We 

have the following theorems: 

Theorem 49 Given two faces or two independent non-faces there is an automorphism of P; 
taking one to the other, given by 'fI : IF~ _ IF~, 'fI(x) = Ax, with A = (aij) and an = 1, ali = 0, 

2:; i :; r. 

This is analogous to (8.2). 
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Proof. Let Fl and F2 be r x r matrices consisting of column vectors from two faces or two 

independent non-faces. Then we wish to find a matrix A = (aij) of the required type with 

AFl = F2. Since Fl and F2 are both non-singular such a matrix does exist, and is equal to 

F2Fll. Also, A is unique and its top row only determines the top row of F 2, which consists of 

alIi's. Since 

au = 1, ali = 0, 2:::; i :::; r (8.3) 

is a valid solution to this, and A is unique, (8.3) must hold, and A is of the correct form. Also as 

Fl and F2 represent 2 faces or two independent non-faces x(detA} = x(detF2)/x(detFl) = 1, 

so if r.p : ~ -+ ~, r.p(x} = Ax, then r.p is an automorpism of p;. Hence the result holds. 

Theorem 50 P; is regular and every face (independent non-face) of P; has exactly the same 

number of adjacent faces and the same number of non-faces as every other face (independent 

non-face). 

Proof. This follows from Theorem 49 since for any two faces or independent non-faces there 

is an automorphism between them which obviously preserves numbers of adjacent faces and 

non-faces. 
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Chapter 9 

Subgraphs of the Paley Graph 

9.1 Introduction 

Bollobas [11], P 317, calls a graph r-full if it contains every graph of order r as an induced 

subgraph. His theorem 11 shows that if r 2 2, and q == 1 (mod4) is a prime power satisfying 

q > {(r - 2}2r - 1 + I} ql/2 + r2r- 1• 

Then the graph Pq is (r + 1}-full. In particular, if q > r222r- 2 then the condition holds. 

We shall now see how some of these theorems can be improved and extended. 

9.2 The sub graphs of Pq 

Theorem 51 Let q = pm where p is a prime, q = 1 (mod4) , m 2 1. Then if conjecture 14 is 

true and s satisfies 

Pq contains every gmph on s vertices as a subgraph. 

Proof. This follows directly from theorem 38 .• 

This is a considerable improvement on the result of Bollobas. This seems to be because we 

use the more powerful generalised Hasse-Weil estimate whereas Bollobas uses the one variable 

Hasse-Weil theorem. 
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Theorem 52 Let q = pm where p is a prime, q = 1 (modk), k odd, q = 1 (mod2k), keven, 

m ~ 1, k ~ 3. Then if conjecture 14 is true and s satisfies 

Pq contains every c-graph on s vertices as a subc-gmph. 

Proof. This follows from theorem 38 .• 

Thus we have a sub c-graph very close to the expected size. 

9.2.1 The clique number 

The concept of r-fullness is closely connected to the clique number of a graph. This number, 

cl{G) is defined as the size of the largest clique or complete subgraph of G. Obviously if G is 

r-full then we must have cl{G) ~ r. 

The actual clique number of the Paley graph Pq is unknown if q is prime, though if q is a 

perfect square the clique number is ...;q. For Pq the clique number is at least as large as the 

smallest non-residue s, since then {1, 2, ... , s - I} form the vertex set of a clique. Montgomery 

[47] proved, assuming the Riemann Hypothesis for all L-functions of real characters, that this 

has value sometimes at least €lnnlnlnn for some to > O. The results of [10J, [13] and [36] or 

Bollobas' result show that cl{Pq) > ! ln2 q. Thomason [59] mentions the possibility of obtaining 

cl{Pq ) > In2 q by replacing Weil's estimates by those of Deligne, but says that " ... this would be 

a formidable undertaking". This is what we are attempting to do in this section. In fact we 

shall demonstrate the result assuming conjecture 14, which is hopefully a consequence, albeit 

not an easy one, of Deligne's great work. 

9.3 Difference sets 

We shall apply theorem 38 to prove some estimates for squares and non-squares in difference 

sets in a finite field IF q. 

A residue difference set in IF q is a set {a 1,"" ak} , ai E IF; , q = 1 mod 4 such that 
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2. X(O-i - aj) = 1, 1 ~ i < j ~ k 

where X is a multiplicative character of order 2. If we denote the maximal cardinality of 

a residue difference set in IFq by m q, for the case of q prime, Buell and Williams [16] proved 

that mq > ! In p for all p. Let us consider the graph G on n + 1 vertices formed by taking the 

complete graph on n vertices and adding a vertex x which is connected to all the n vertices. 

By our result in chapter 9 we know that G is contained in Pq for all q ~ (n + 1 )22"+3. Thus we 

have a set of n + 1 values x, bI, ... , b" E IFq s.t 

1. X(bi - x) = 1, 1 ~ i ~ k, 

If we now take a new set, ai = bi - x then ai is a difference set in IFq• Thus we have a set 

with n members for all n with q ~ (n + 1)22n+3. This gives us mq > c~nl where c - 1 as q 

-00. 

Various extensions of the residue difference set can be defined. Following Fabrykowski 

[32] we take Rl(q), R2(q), R12 (q) (= mq) to be the maximum cardinality of a set satisfying 

conditions 1, 2 and both 1 and 2 respectively. Then it is easy to see that we may employ the 

same method as before to prove that R2(q) > c~lll where c _ 1 as q - 00 . In fact these same 

methods can be used for the conditions 

or any reasonable combination of them. For p prime Buell and Williams prove that mp > ¥ 
and Fabrykowski proves the stronger result that mp = R12(p) > ~, P ~ 29. 

9.4 A bound for q 

We shall now prove theorem 38 from chapter 7 assuming conjecture 14: 
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Theorem 53 38 Let Cij be an arbitrary colouring of the complete graph on n vertices. If 

conjecture 14 is true then there is an equation of degree k which corresponds to this graph if 

q > 4n2kn+1, 

q > n 22n+2 , 

k~3 

k=2. 

(9.1) 

(9.2) 

Let us first take an arbitrary colouring. Let Cij be the colour of edge i - j on the complete 

graph of n vertices. Thus for the colouring to be realised by some equation we must find 

at, ... ,an, such that 

1 ~ i < j ~ n, 

and this in turn amounts to finding al, ... ,an such that 

1 ~ i < j ~ n, (9.3) 

with ACij and R defined as in Chapter 7. 

We first introduce and prove two fundamental lemmas: 

Lemma 54 Let X be a non-principal character ofWq of order k. 

Let a E lF~, then 

k {k if 
Lx(ar = 
r=l 0 if 

aER 

a¢. R. 

Proof. If a E R, then a = xk for some x E W; and x(a} = 1 because X is of order k. lIence 

E~=l x(at = k. If however a ¢. R, then x(a) =1= 1 and 

tx(a)r = x(a)k+l - x(a} = 0 
r=l x(a} - 1 

since x(a)k+l = x(a), again because X is of order k .• 

In order to complete our result we need to give an estimate on the modulus of sums like 

f = E!l=l,,·E!n=lX [ni<j(a i - ajf'j]. The problem here lies in determining whether our 

conjecture 14 may be applied or whether the sum needs to be reduced further before it can be. 
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If f contains d variables we associate each sum with a graph G / on d vertices given by 

vertex i is connected to vertex j if rij =1= O. 

The crucial problem is to determine the rank of the sum matrix from the structure of the 

graph. We can then use use combinatorial estimates to sum over the sub graphs of the graph 

on n vertices. 

We note that G / is connected if and only if f is connected. Also the connectivity of f is 

equal to the connectivity of G /. 

Lemma 55 Let X be a multiplicative character of'iq of order k. Let rij, 1 :$ i < j :$ n be a 

set of integers with 1 :$ rij :$ k. Also, let us assume that the polynomial F = TIi,t:j(ai - ajtJ 

depends on exactly v of the a~s, v ~ 2, and that exactly e of the rij are not equal to k. Let 

rl. ... ,r c be the sum of rij over each component of F and let us assume that the connectivity of 

F is equal to c. Then, assuming conjecture 14, we have in the case ri == 0 (mod k), 1 :$ i :$ c, 

( 
e - c )V-2C n-tl±2c < -- q 2 

- v -2c 

and, in the case when some ri =1= 0 (mod k) 

We note that TIi<j(ai - ajfii will not depend on ai, for example, only if rij = k, for all 

1:$ j :$ n. 

Proof. Let the c components of F have eI, ... ,ec edges respectively and VI, ••• ,Vc vertices. 

We note that el + '" + ec = e and VI + ... + Vc = v. Also let TI, •.. , rc be the sum of rij 

over each component. Then to estimate the character sum we need only estimate the sums for 

each component and multiply the results. Let Ii be the i-th component of F. Now the rank 

of the homogeneous form F is equal to Vi - "li where "li is the dimension of the solution set of 

the equations {ai - aj = 0 : rij =1= k}. Since Ii is connected, this solution set has dimension 1. 

Hence rank Fi = n - 1. 
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We may then apply (3.5) with t = ei, p = 1, n = Vi giving 

I

'"' 1 = { 0 if rni: 0 (modk) 
L..tx(Fi) vi-2 "i+2 

~ (~!:::n q 2 if ri == 0 (modk) 

If ri = 0 (mod k), 1 ~ i ~ c, then multiplying these estimates gives, 

< 
_ rrc (ei - 1) v.-2 !i±! qn v __ q 2 

i=l Vi - 2 

_ q2n-~±2c IT (e~ = 1)11.-2 
i=l v, 2 

2n-~±2c ( e - c ) tI-2c 

< q v-2c ' 

by inequality (3.4), where the qn-v arises from summing over the additional n - v variables. 

If ru =1= 0 (mod k) for some 1 ~ u ~ c then we have 

by (3.5) and hence 

• 
Corollary 56 If k = 2 then since ri = ei, the number of edges, ei in each component must be 

even for the sum in lemma 55 to be non-zero. 

Proof. This follows from the above lemma since if the number of edges , ei in a component is 

odd, and k = 2, then ei =1= 0 (modk) and the sum must be zero by lemma 55 .• 

9.5 Preliminaries to theorem 38 

We first note two inequalities that we will use often in what follows: 
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If x,n # 0 and n E Z 

eX> 1 +x, 

If x is positive and not equal to 1, then 

xr_l > r(x-l) 

xr_l < r(x-l) 

(r> 1), 

(0 < r < 1). 

(9.4) 

(9.5) 

(9.6) 

Lemma 57 Let ai, n, r, n be positive integers with at + ... + an = r, ai ~ b ~ 3 and n ~ 2. 

Then 

Proof. 

Now 

1 
- [r(r - 1) - (r - 2(n - 1»(r - 2(n - 1) - 1)] 
2 

- ~ [2(2n - 2 + 1 - l)r - 2(n - 1) (2(n -1) + 1»] 

(9.7) 

2(n - l)r - en
;- 1). (9.8) 

Also, because ai ~ 3, (ai - 3)(aj - 3) ~ O. Writing this as aiaj ~ 3ai + 3aj - 9 and summing 

over all 1 :::; j < i :::; n gives 

( ) 
9n(n - 1) 

= 3n-lr- 2 . (9.9) 
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This gives 

by (9.7), (9.8) and (9.9). 3n ~ r implies that (r - (5ni 2
)) ~ 0 for n ~ 2 giving 

Lemma 58 

LX(XI - X2r(X2 - X3)S(X3 - xt}t = 0 
x 

if r + s + t =I 0 mod k. This follows from lemma 55. 

Lemma 59 Let ben, k) = (~~n!. Then if q ~ n22n+2 or q ~ 4n2kn+1 we have ben, k) ~ .96 for 

n~3. 

b(n,k) = IT (1-~) ~ IT (1- n2;n+2) ~ IT (1- n 2;+2) 
r=O r=O r=O 

by inequality (9.6). 

- g (1 - n2~+2 ) = (1 - n2!+2) n 

1 
> 1- 2n +2 

By a similar argument, if q ~ 4n2 kn+1 we have b( n, k) ~ 1 - 4k!+t • 

Since 1 - 4k!+t ~ 1 - 2n\2, we have ben, k) ~ 1 - 2n\2 ~ .96 for n ~ 3. 
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v ~ 
- 6 

n-v+1 (2(n+1)2)4 n-v+1 (k(n+1)2) Lemma 60 Let u(n, v) = 2 and s(n, v) = 1 2 
n+l n n+ n 

Then for fixed n, u and s take their minimum values for v = n or v = 3. 

Proof. Partially differentiating both functions with respect to v shows u and s possess only 

one local maximum between v = 3 and v = n. Therefore the minimum values of u and s occur 

at the endpoints of the interval 3 ~ v ~ n .• 

9.5.1 Properties ofr(v,c,n) and r'(v,c,n) 

The following theorems are concerned with properties of r(v, c, n) and r' (v, c, n). These functions 

are defined on page 104 in the proof of the main theorem. We repeat the definitions here for 

convenience: 

r(v, c, n) - (:) «·-::tcr\(·-~+') (n22n+2fi'" 

r' (v, c, n) - ( :) «:-~::) r\(·-~"+') (n22n+2 fi'" 

Lemma 61 

Proof. 

v 
'4 

r(v, c, n) >n-v+1(2(n+1)2) 
r(v, c, n + 1) - n + 1 n2 

-v±2c -v±2c 2 
r(v,c,n) _ (~)(n22n±2) 2 _n-v+1( n2 ) 

r(v,c,n+1) - (ntl) «n+ 1)22n±3)-vrc - n+1 2(n+1)2 

v-2c v- 2liJ 
= n-v+1 (2(n+1)2)-2- > n-v+1 (2(n+l)2) 2 

n + 1 n2 - n + 1 n2 
v 

~ n-v+1 (2(n+1)2)4 
n+1 n2 

• 
Lemma 62 r' (n, c, n) > ~e-12c±! n - 2c > ~e-12ltl if n > 13. 

r'(n+l,c,n+l) - 2 (n-2c+l) - 7 -

Proof. 
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, (("_~C+2))n-2C 2(n-2ct2~n-2ctl) (n)2 2nt2) -nrc 
r (n, c, n) n-2c 

r' (n + 1, c, n + 1) = -(-(-"_~2'-c+-3-))-n---'2Lct-l::--(-n-_-2c-t-3)-(n-_-2-ct-2-)-(---2--)--=n"'"'i"\'i:2c:-T1 • 
- 2 _ 2 2 (n + 1) 2nt3 
n-2ctl 

Letting u = n - 2c we have, 

( ,,-~c+2))n-2C (trl)U 
n-2c _ u _ 2(u + l)u+1 (u + It 

( ,,_~c+3))n-2ctl - ((U!3))U+1 - (u+2)uu (u+3t+1 
n-2ctl utI 

= 2 (U + l)utl _u_ (U + l)utl _1_ 
U u+2 u+3 u+l 

> 2ee-2 U 
- (u+1)(u+2) 

= 2e-
1 

(u + I)U(U + 2)' since it is well known that 

( 
l)utl 1+;: >e 

and also 

( 
2 )ntl 

e2 > 1+-
n+l 

from inequality (9.5). 

Also, 
(n-2ct2)(n-2c+1) -nt2c -n±2c 

2 2 (n)22n+2) 2 ( ()2 t2 ) 2 -:--~-:--___ ~ __ ..L-_.,...,,--,,- = 2-(n-2ct2) n 2
n 

(n-2c+3)(n-2c+2) -n+2c-l (n + 1)2 2n+3 
2 2 ( (n + 1)2 2nt3) 2 

= (_n_)-nt2c (n + 1)2C-l 
n+1 

~ (1 + ~) ~ 2c-! (n + 1) 
3 1 

~ "22C-2 (n + 1) by inequality (9.6). 
, 

So, I r (n, c, n) > ;!2c-~ (n + 1)2e-l~_....,.U....,--_....,. 
r(n+1,c,n+1) - 2 (u+l)(u+2) 

3 1 1 U = -e- 2ct2(n+ 1)-----
2 (u+1)(u+2) 
3 lIn - 2c 

=-e- 2c+ 2(n+1)--------
2 (n - 2c + 1)( n - 2c + 2) 

> 3 -12c+! n- 2c -e 2 ~-----:-
- 2 (n - 2c + 1)' 

If n ~ 13 then n - 2c ~ n - 2~ = I ~ 6. 
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Hence (n + 1) n - 2c > ~. Thus r(n, c, n) ~ ~e-12c+! • 
(n-2c+1)(n-2c+2) - 7 r(n+1,c,n+1) 7 

!!.±! 
, n + 1 ( 3 2) 2 1 2+.2 . Lemma 63 r (n+1, --,n+1) = ~ + ( ) + 2 2-sn 

8 and 1,S a decreas-
4 2 n+1 (n+1) 

ing function for n ~ 4. 

Proof. 

, n (n-2 4 +2) 4 (n-2j+2)(n-2j+l) -n+2j 

( 

n ) n-2!! 
r (n - n) = 2 2 2 (n22n+2) 2 , 4' 2n n- 4" 

= ( (n-2(!)+2) )n-2(~) 2(n-2(i)+2)(n-2(~)2+1)-(n+2)(n-2(i)) 
n(n-2(~)) 

n 

= (! + ~ + ~)"2 2-~(n+2)(n-4). 
4 2n n2 

Ob ' 1 . 1 3 2 3 d 2 !n2+l! . d . 
VIOUS y, smce - + ( + 2 < - < 1 for n > 4, an -8 8 IS ecreasmg, 

4 2 n + 1) (n + 1) - 4 -
r' (n + 1, nt 1 , n + 1) is a decreasing function for n ~ 4 .• 

9.5.2 Properties of f(v, c, n) and l' (v, c, n) for k > 2 

The following theorems are concerned with properties of f(v, c, n) and j' (v, c, n). These func

tions are defined on page 107 in the proof of the main theorem. We repeat the definitions here 

for convenience: 

I( v, c, n} - (k - It' (: ) k("-',+'} (4n' kn+ ') -'f" C'-,::t c r" 
l (v, c, n) - (k - It' (: ) k('-',""} (4n' kn+ f'f" C:-J:: r" 

Lemma 64 

tI 

"6 
f(v,c,n) > n-v+1 (k(n+1)2) 

f(v,c,n+ 1) - n+ 1 n2 
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\I 

> n-v+l (k(n+l)2)6 
- n+l n2 .• 

Lemma 65 1'( J' (n, c, n) ) > 6kc- 1e- 1 n - 2c > (3e- 1) ifn > 4 and> 10 e- 1 ifn > 5. 
n + 1, c, n + 1 - n - 2c + 1 - - - 3 -

(n-2c+2) -nt2c (n-2c+2)) n-2c 
I k 2 (4n2kntl) 2 _ 2 _ f (n, c, n) n-2c 

1'(n+ 1,c,n+ 1) - (,'-2C+3) ( 2) - nti c
-

1 (n-2C+3))n-2ctl' 
k 2 4 (n + 1) knt2 n-ictl 

Letting u = n - 2c we have, 

(
(',-;c+2))n-2C (tfl)U 

_ n-2c _ u 2(u+l)utl (u+lt 

(
(n_;C+3))n-2ctl = (U!3))Utl = (u + 2)uu (u + 3)Utl 
n-2ctl uti 

= 2 (U + l)utl _u_ (U + l)utl _1_ 
u u+2 u+3 u+l 

> 2ee-2 u 
- (u+1)(u+2) 
= 2e- I · u as in lemma 62. 

(u+l)(u+2) 
Also, 

(n-2c+2) -nt2c (n-2ct2)(n-2ctl) -nt2c 
k 2 (4n2kntl) 2 k 2 (4n2kntl) 2 

k(n-~c+3) (4 (n + 1)2 knt2) -nt;c-l - k (n-2ct3~n-2ct2) (4 (n + 1)2 knt2) -
ntic

-
1 

= k-(n-2ct2} ( n
2
k

nt1 
) -nt

2c 

(4 (n + 1)2 knt2)! 
(n + 1)2 knt2 

= 2kc- 1 (~)-nt2c (n+ 1) 
n+l 

n 

~ 2kc
-

1 (1 + ~) 3" (n + 1) 
8 

~ akC- 1 (n + 1) by inequality (9.6). 

f '(n c n) u 8 16 n - 2c 
Hence, I ' , > 2e-1 kc- 1 (n + 1) > _kc- 1e- 1 . 

f (n + 1, c, n + 1) - (u + 1)( u + 2) 3 - 3 n - 2c + 1 

Now if n > 4, n - 2c > ~ so 
- - 3' 

I J' (n, c, n) > i 16 kc- l -I = 64 kc-1e-1 > 3kc-1e-1 > 3e- 1 
f (n + 1, c, n + 1) - 7 x 3 e 21 - -

5 
IT n ~ 5, n - 2c ~ a' so 

J'(n,c,n) > ~ 16 kc- 1 -1 _ 10 kc- 1 -1 > 10 -1. 
f'(n+l,c,n+1)-8 X 3 e -3 e -3 e 
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!l±..! 
Lemma 66 f'(n+1, n; 1 ,n+l) = Tnt

l 
(k-lfntl k-t(n+l)2+i(n+1)+1 (1 + 2(n~1) + (n!I)2) 3 

and t' (n + 1, n ~ 1, n + 1) is a decreasing function of k and n, for n ~ 4. 

Continuing we obtain 

lnJ n n I 2 I (1 3 3 ) ~ f(n, 3" ,n) = T3(k -1fS k- gn +3 n +1 '6 + 2n + n2 . 

!l±..! 
2- nt l 

(k _ 1)-ntl k-~(n+1)2+i(n+I)+1 (! + 3 + 3 ) 3 

6 2(n+1) (n+1)2 
1 3 3 44 In + 1J . . If n ~ 4, - + ( ) + 2 ~ - < 1, hence f(n + 1, -- ,n + 1) 18 a decreasmg 
6 2 n+1 (n+1) 75 3 

function of n for n ~ 4 .• 

9.6 Proof of theorem 38. 

Using lemma 54 we can see that 
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will equal 0 if edge ij does not have colour Cij, and 1 if edge ij does have colour Cij. Thus we 

have a characteristic function for one of the edges. Hence 

= t t IT [(a i - aj)rii] 
r12=l' •. r .. -ln=l i<j X QCij 

[ 

1, if each edge ij has colour Cij, 

0, otherwise. 

Now, letting at, ... , an run through all possible values we see that the total number N of 

suitable colourings arising out of all possible colourings is given by 

Taking the term corresponding to Tij = k, 1 ~ i < j ~ n to the left-hand side we obtain 

and hence we have a solution if 

The left-hand side is equal to 

In modulus this is 
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by the triangle inequality. 

As above, to each term IE~l=l'" E!..=l X [rri<j(ai - ajti] I in the above sum we associate 

a sub graph of the complete graph on n vertices. The number of subgraphs with exactly v 

vertices, c components, e edges is given by saying that for v fixed vertices and c components 

an upper bound on the number of possible edges is given by (V-;C+2), using lemma 57. Thus 

we simply choose the e edges from these and multiply by (:) for the choice of vertices giving 
n (V-2C+2) 

(v) ( ~ ). For each such a subgraph the number of terms in the sum is given by (k _l)e-c as 

the indices in each component must sum to zero. Thus we have in total (k _l)e_C(:)((V-~C+2)) 

terms. For k :2: 3, since each component must have :2: 3 vertices the number of components for 

a graph on v vertices is at most l~J . By lemma 56, if k = 2, each component must have :2: 4 

vertices. 

Hence for k = 2 the total sum is 

n liJ (V-22c+2) (n) ((V-2C+2)) 2n-tl±2c ( e _ c )V-2C LL L (k_1)e-c 2 q 2 -

v=3 c=l e=c V e v - 2c 

For k ~ 3 the total sum is 

n l~J (v-22c±2) (n) ((V-2C+2)) 2 _ 2 (e _ c )V-2C LL L (k_1)e-c 2 q~--
v=3 c= 1 e=c V e v - 2c 

9.6.1 The case k = 2 

Taking first the case k = 2 we note that for the equations to have a solution we require that 

the expression be less then (~)n! for q :2: n22n+2. Thus dividing by qn and using q :2: n2~+2 we 

have 
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n liJ 
- I: I: r(v, c, n) 

v=3c=1 

using the fact that e ~ (V-;C+2) and the inequality 

o ~ a ~ b ~ N. (9.10) 

Thus, for a solution we need G(n) or g(n) < (~tnl when q ~ n22n+2. By lemma 59 we know 

~ that qn ~ .96 when q ~ n22n+2. We will show that g(n) < .96 for all n ~ 3. We define 

r( v, c, n) - ( :) «"-y:t c r\('-~o+,) (n22n+2ft" 

r' (v, c, n) - ( :) C:-~::) r\('-~o+,) (n22n+2r"t'o 

noting that r' (v, c, n) ~ r{v, c, n). We shall split the sum g(n + 1) into various parts: 

n+1liJ n liJ l ~ J 
g(n+l) - LLr(v,c,n+l)=I:I:r(v,c,n+l)+ L r(n+l,c,n+l) 

v=3c=1 v=3c=1 c=l 

n liJ ln~lJ 
- I:I:r(v,c,n+l)+ L r(n+l,c,n+l) 

v=3 c=l c=l 

n liJ l~J 
~ I:I:r(v,c,n+l)+ L r'(n+l,c,n+l) 

v=3 c=l c=l 

Now we also define 
liJ 

d(n) = L r' (n, c, n) 
c=l 

which satisfies 

l~J 
d(n+l) - I: r'(n+l,c,n+l) 

c=l 
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L~J , , n + 1 
:s L: r (n + 1, c, n + 1) + r (n + 1, -4-' n + 1) 

c=l 

as we may remove the LJ since the last term occurs only if l ntl J = ntl. 

Lemma 67 Let d( n), and g( n) be defined as above, and 

r(v,c,n+l} <a 
rev, c,n) -

r'(n+ l,c,n+ 1) < b 
r'(n, c, n} -

, n+ 1 ) 
r(n+l'-4-,n+l :Sc 

lor all n ;::: Nand 0 < a, b, c < 1. Then if c < e( 1 - a)( 1 - b), with 0 < e < 1 and D, G are 

defined by D = e(1 - a) and G = e, we have, 

den) < D ~ den + 1) < D 

and 

g(n) < G ~ g(n+ 1) < G 

lorn;::: N. 

Proof. If d( n) < D, then 

den + 1) 
L~J , n+l 

< L: r (n+ l,c,n+ 1) +r(n+ 1, -4-,n+ 1) 
c=l 

L~J 
< b L:r'(n,c,n) +c 

c=l 

< bD + c = be(1 - a) + c 

< be(l- a) + e(1 - a)(I- b) = e(1 - a) = D. 

If g(n) < G, then 
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• 

n liJ l~J 
g(n+1) ~ LL r(v,c,n+1)+ L r'(n+1,c,n+1) 

tJ=3 c=l c=l 

n liJ 
< a L Lr(v,c,n) +D = ag(n) +D 

tJ=3c=1 
< aG+D=G . 

If n ;::: 13, from lemmas 60,61, 62 and 63 we have, 

rtJcn+1<91= 
r tJ,c,n _. a 

r' (n;t-1,c,n+1) < .75 = b 
r (n,c,n) -

r( n + 1, l nt 1 J ' n + 1) ~ 8.7 X 10-10 = c 

We then apply lemma 67 for N = 13 with e = .95 and a, b, c defined as above. 

This gives G = .95, D = .95 x (1- .91) = .0855. 

The conditions of the lemma are satisfied as e(l- a)(l - b) = .95 x (1- .91) x (1 - .75) = 

.021375 > 8.7 X 10-10 = c. 

We then use the explicit formulas for 9 and d to check that d(13) < .085 and g(13) < .95. 

This gives us a solution for all n ;::: 13. We then verify that g(n) < .96 for 3 ~ n ~ 12 . 

9.6.2 The case k ~ 3 

For k ;::: 3 the total sum is 

n liJ (tI-;c+2) (n) ((tJ-2C+2)) 2n-tl±2c ( e _ c )tJ-2C 
L L L (k _l)e-c 2 q 2 - • 

v e v-2c tJ=3 c=1 e=c 

For the equations to have a solution we require that the expression be less then (~)n! for 

q;::: 4n2kn+1. Thus dividing by qn and using q;::: 4n2kn+1 we have, 
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(q\nl 1 
Thus, for a solution we need G(n) or g(n) < ~ when q ~ 4n2k n+ . By lemma 59 we know 

i!E! that qn ~ .96 when q ~ 4n2 k n +1. We will show that g(n) < .96 for all n ~ 3. We define 

f(v,c,n) - (k - W'(: )k("-;'+') (4n'kn+1f"i" ('-J:'~c- c f" 
ltv, c,n) - (k - W' (: )k("-~<+') (4n'kn+1f"t" (:-~::) f" 

noting that j'(v,c,n) ~ f(v,c,n). We shall split the sum g(n+ 1) into various parts: 

n+d~J n l~J l ntt J 
g(n+l) - EEf(v,c,n+l)=EEf(v,c,n+1)+ E f(n+l,c,n+l) 

tI=3 c=l tI=3 c=l c=l 

n l~J l~J 
- E E f(v,c,n + 1) + E f(n + I,c,n + 1) 

tI=3 c=l c=l 

n l~J In!lJ 
:$ E E f( v, c, n + 1) + E j' (n + 1, c, n + 1) 

tI=3 c=l c=l 

Now we also need to define 
l~J 

d(n) = E j' (n, c, n). 
c=l 

We see that d(n) satisfies 

l~J 
d( n + 1) - E / (n + 1, c, n + 1) 

c=l 

l1jJ I I n+I - E f (n+ I,c,n+ 1) + f (n+ 1, -3-,n+ 1) 
c=l 
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L~J , , n + 1 
~ L f (n+ 1,c,n+ 1) + f (n+ l'-3-,n+ 1) 

c=l 

since the last tenn occurs only if l nr J = nil. 

Lemma 68 Let d( n), and g( n) be defined as above, and 

f ( v, c, n + 1) < a 
r(v,c,n) -

j' (n + 1, c, n + 1) < b 
r'(n,c,n) -

, n+1 ) f (n+1'-3-,n+1 ~c 

for all n ~ Nand 0 < a, b, c < 1. Then if c < e(l - a)(l - b), with 0 < e < 1 and D, G are 

defined by D = e(l - a) and G = e, we have, 

den) < D ~ den + 1) < D 

and 

g(n) <G~g(n+1) <G 

forn ~ N. 

Proof. See proof of lemma 67 • 

Calculations for k ~ 10 

If k ~ 10, from lemmas 60,64, 65 and 66 we have, 

v,c,n+1 < 8 - e > 4 f v,c,n -' - a lor n _ 
I 

I (n+1,c,n+1) < (3 -1)-1 < 91 - b [, > 4 
t'(n,c,n) - e _. - orn_ 

fen + 1, l nil J ,n + 1) ~ 2.6 X 10-3 = c 

We may then apply lemma 68 with a, b, c as above and e = .95. 

Then we have D = .95 x (1 - .8) = .19, G = .95. 

The conditions of the lemma apply as 

e(l- a)(l- b) = .95 x (1- .8) x (1- .91) = .0171 > 2.6 x 10-3 = c. 
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den) is a decreasing function of k and d(3) < .19, d(4) < .19 for k = 10. 

Also g(3) = 1(3,1,3) = (k~l) k ::; .95 and g(4) = 1(3,1,4) + 1(4,1,4) < .95. Hence the 

result follows from lemma 68. 

Calculations for 3 ::; k ::; 9 

If 3 ::; k ::; 9, then from lemmas 60,64, 65 and 66 we have, 

k=9, ::; .71 = a for n 2: 5 

k=8, ~ .79 = a for n ~ 5 

k=7, ::; .88 = a for n 2: 5 

k=6, ::; .86 = a for n 2: 6 

k=5, ::; .90 = a for n 2: 7 

k=4, ::; .92 = a for n 2: 9 

k - 3 v,c 1'1+ 1 94 £ 3 - , I v en::;' = a lor n 2: 1 
I ' , 

I (n+1,c,n+1) < (10 _1)-1 - 82 - b £, > 4 
t(n,c,n) - 3 e - . - or n _ . 

I(n + 1, ll'lj"l J ,n + 1) ::; 5.3 X 10-3 for n 2: 4, k 2: 3. 

For all these values we have a::; .94, so we again use lemma 68 with 

D = .95 x (1 - a) ~ .057, G = .95. 

The conditions of the lemma are satisfied as e(l - a)(1 - b) 2: .95 x (1 - .94) x (1 - .82) = 

.01026 > 5.3 x 10-3 = c. 

We verified by direct calculation that den) < .057 for the first value of n in each range. 

Then we checked that the values of n not covered by the above satisfy g(n) < .95. This however 

does not work for k = 3 where the smaller values of n = 3, ... ,7 must be checked using G(n), 

not g(n). Hence the result follows from lemma 68. 
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