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Summary 

Mice lacking the functional gene for the anti-inflammatory protein IL-Ira (fllrn) were 

generated. This thesis is an investigation of the inflammatory phenotypes which 

spontaneously arise in III rn-I
- mice. Three inflammatory diseases have been found in 

fllrn-I
- mice; an arteritis of the aorta and major arteries, a rheumatoid arthritis (RA)-like 

disease, and a psoriatiform disease of the skin on the ears and tails, which is first 

described in this work. All three diseases were investigated using immunohistochemistry 

and it was found that they have many similarities with human diseases including giant 

cell arteritis, Takayasu's arteritis, rheumatoid arthritis, and psoriasis. An inflammatory 

infiltrate composed of activated macrophages, activated CD4+ T-cells, dendritic cells and 

neutrophils were a feature in all three diseases, as was activated endothelium. The 

psoriatiform disease had a mixed Thl/Th2 type cytokine profile, whilst the arteritis and 

arthropathy contained mainly Thl. Development of the phenotypes appears to be strain 

specific, since in this study only fll rn-I
- mice bred on a Balb/c background develop the 

psoriatiform and RA-like diseases. 

This work provides evidence that III rlf'- mice may provide suitable models for several 

human inflammatory diseases, including giant cell arteritis, Takayasus' arteritis, 

rheumatoid arthritis and psoriasis. The importance of the role of endogenous IL-Ira is re­

iterated, and a possible central role for dendritic cell activation by IL-I in these disease 

mechanisms is proposed. 
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Section 1: Introduction 



1.1: Interleukin-l (IL-l) 

1.1.1: The inflammatory response 

Inflammation is a response by living tissue to infection or injury. It involves the release 

of multiple inflammatory mediators from numerous cells. As a part of the innate immune 

system, its overall effect is beneficial although some inflammatory reactions can have 

detrimental results on the host. The inflammatory mediators released at the site of the 

inflammatory response, which include pro-inflammatory cytokines, cause multiple 

physiological changes within the tissue. These changes include dilation of blood vessels 

and increased blood flow to the area, constriction of the efferent veins, activation of the 

endothelium of the vessels, recruitment and activation of leukocytes, and up-regulation of 

the synthesis and release or expression of other pro-inflammatory mediators. These 

events result in the classical symptoms of inflammation - pain, oedema, redness and heat. 

Many of the local reactions are potentially mediated by the pro-inflammatory cytokine 

IL-I, which is inhibited by its naturally occurring antagonist IL-I receptor antagonist, IL-

1 ra. This thesis is an investigation of the effects of elimination of the IL-I ra gene, III rn, 

in mice. 

1.1.2: Structure and processing ofIL-l 

There are two distinct but structurally homologous forms of the IL-I protein, IL-I a and 

IL-IP, collectively known as IL-I. Another homologue, IL-Ira, acts as a natural inhibitor 

of the pro-inflammatory actions of IL-I a and IL-I 13. IL-I ra acts by binding competitively 

but non-productively to the type IlL-I receptor [Hannum et al., 1990]. 
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The genes for the agonists were cloned by screening an LPS stimulated human 

macrophage cDNA library and isolating the two distinct cDNAs for the proteins pro-IL­

l ex. and pro-IL-1 rl The amino acid sequences for human mature IL-1 ex. and IL-1 (3 showed 

only a 26% identity [March et al., 1985] The cloning and sequencing of a mouse IL-l ex. 

cDNA based on the protein purified by Mizel [Mizel & Mizel, 1981] was also published 

[Lomedico et al., 1984]. It showed 62% identity to the human IL-Ia but only 30% to 

human IL-l (3, demonstrating an ancient divergence. Complete nucleotide sequences of 

the genes for both human IL-1 ex. [Furutani et al., 1986] and IL-l (3 [Clark et al., 1986] 

showed that they both contain 7 exons. The mouse genes have similar structures [Gray et 

al., 1986; Telford et al., 1986]. Neither the IL-1ex. nor IL-l(3 polypeptides possess the 

hydrophobic signal common to most secreted proteins. [Auron et al., 1984; March et al., 

1985]. 

Although the predicted primary translation products are ofMr 30,606 and 30,479 for pro­

IL-1 ex. and pro-IL-l (3 respectively, the mature -17kDa forms consist only of the carboxy 

terminal ends. These are biologically active. The precursor of IL-l a, but not of IL-l (3, is 

also biologically active. [March et al., 1985; Mosley et al., 1987]. It was subsequently 

demonstrated that precursor forms of mouse IL-1 ex. [DeChiara et al., 1986; Lomedico et 

al., 1984] and IL-l (3 [Gunther et al., 1989] are also processed to the mature form. 

The 271 aa pro-cytokine for IL-la can be cleaved in vitro in a calcium dependent manner 

by cal pain, a neutral cysteine protease, into a 159 aa mature segment and 112 aa pro­

sequence [March et al., 1985; Kobayashi et al., 1990; Watanabe & Kobayashi, 1994]. IL-

3 



1 ~ converting enzyme (I CE, caspase-l) has also been suggested to process pro-IL-l a, as 

ICE deficient mice display an impaired production of mature IL-l a [Li et al., 1995]. 

The 31 kDa 269 aa IL-l ~ precursor is cleaved intracellularly into a 116 aa pro segment 

and a 153 aa mature segment [March et al., 1985; Thornberry et ai., 1992]. Different 

mechanisms have been postulated, the most recent of which is through the action of the 

protease ICE [Thornberry et al., 1992]. Its activity was first reported in 1989 [Black et 

al., 1989; Kostura et al., 1989], and its specificity for IL-l~ was demonstrated [Sleath et 

al., 1990]. The cDNA for the enzyme was subsequently cloned [Cerretti et al., 1992]. The 

primary translation product is an inactive precursor molecule of 45kDa [Miller et al., 

1993] that is activated by processing into subunits of 10kDa and 20kDa. The heterodimer 

is capable of cleaving pro-IL-l~ [Wilson et al., 1994]. ICE deficient mice lack the 

capacity to release mature IL-I ~ [Kuida et al., 1995; Li et "al., 1995], display an impaired 

production of IL-l a [Li et al., 1995], and are also unable to mount an efficient 

inflammatory response to clear Shigella flexneri infection [Sansonetti et al., 2000]. 

However, the importance of IL-l ~ processing in this last process is debatable because 

I CE also cleaves the precursor of IL-18, a member of the IL-I family, into a biologically 

active mature form [Gu et al., 1997]. IL-18 has recently been shown to be essential for 

the same response [Sansonetti et ai., 2000]. 

Pro-IL-l ~ also appears to be secreted or possibly shed passively from dying cells 

[Hazuda et al., 1988]. Extracellular activation by other proteases has been proposed, such 

as by a bacterial cysteine protease (from Streptococcus pyogenes) [Kapur et al., 1993] 
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and by matrix metalloproteinases [Schonbeck et al. 1998]. Other proteinases were mainly 

proposed before the discovery of ICE, and their physiological relevance is difficult to 

assess. ICE remains the most likely candidate for the processing of pro-IL-l 13. 

Despite the limited amino acid homology between IL-1a and IL-1J3, their three 

dimensional structures, as determined by X-ray crystallography, are remarkably similar. 

IL-1a and IL-1J3 consist ofa single domain, with pseudo 3-fold symmetry, of twelve anti 

parallel beta strands, six of which form a barrel, and six form a cap, closing the end 

[Preistle et al., 1988; Priestle et al., 1989; Finzel et al., 1989; Veerapandian et al., 1992; 

Graves et al., 1990]. Mouse IL-1J3 is structurally very similar to the human cytokine 

[Huang et al., 1988; Van Oostrum et al., 1991]. Mouse IL-IJ3 and human IL-IJ3 are both 

active on receptors from the other species [Sims et al., 1993] and interact through 

conserved regions around the rim of the J3-barrel [Veerapandian et al. 1992; Labriola­

Tompkins et al., 1993]. 

1.1.3: Sources of IL-! 

IL-! is produced predominantly by macrophages, but also a variety of other cell types 

including vascular endothelial cells [Miossec et al., 1986], keratinocytes [Partridge et al., 

1991], synovial fibroblasts [Dalton et al., 1989], glial cells [Fontana et al., 1982] and 

epithelial cells [Waterhouse et al., 1999]. A diverse range of both endogenous and 

exogenous agents have the ability to stimulate the production of IL-1. The best studied 

stimulus is the bacterial cell wall component LPS which rapidly activates IL-! production 

by macrophages, monocytes and endothelial cells. The signal appears to be mediated 
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through the LPS binding protein CD14 [Wright et al., 1990] and the Toll-like receptor, 

TLR4 [Chow et al., 1999]. 

Monocytes, macro phages and fibroblasts 

Although IL-l production can be activated by microbial products (by signalling through 

the Toll-like receptors, TLRs), macrophages also respond to endogenous activators to 

produce IL-l. IL-l has the ability to induce its own synthesis, either directly [Dinarello et 

al.; Dalton et al., 1989] or via other cytokines such as interferon gamma (lFNy) and 

tumour necrosis factor alpha (TNF-a), whose production is stimulated by IL-I. These 

cytokines can augment stimulation of further IL-l production by LPS [Partridge et al., 

1991; Miossec & Ziff, 1986; Arenzana-Seisedos et al., 1985; Nawroth et al., 1986]. 

The extracellular matrix (ECM) proteins collagen and fibronectin can activate IL-l 

production in macrophages during tissue damage [Schiffer et al., 1999]. During the 

inflammatory response, ECM proteins playa regulatory role at the site of tissue damage 

by regulating cell growth and differentiation, and the inflammatory activities of 

immunocompetent cells [Pakianathan, 1995]. The interactions between infiltrating 

leukocytes and ECM proteins may therefore influence the local inflammatory response. 

When monocytes bind through integrins in vitro, expression of IL-~ and IL-8 (neutrophil 

chemotactic factor) is induced [Rosales & Juliano, 1995]. 
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Keratinocytes 

IL-la is produced constitutively in the skin [Ansel et al., 1988; Partridge et al., 1991]. 

Ultraviolet irradiation (UVR) stimulates IL-l production in cultured human keratinocytes 

[Kupper et al., 1987] and in a murine keratinocyte cell line [Ansel et al., 1988]. The 

increase of both IL-l mRNA and protein in keratinocytes exposed to UV irradiation 

probably contributes to skin tissue damage following solar irradiation. IL-I a induced by 

UVR was shown to upregulate expression of the type 1 IL-l receptor on keratinocytes, 

making them more responsive to IL-l. The increased responsiveness was demonstrated to 

be necessary for upregulation of intercellular adhesion molecule-l (lCAM-l, a cell 

surface adhesion molecule which binds to lymphocytes) expression on keratinocytes 

following IL-Ia stimulation [Krutmann & Grewe, 1995]. Thus, UVR increases 

production of IL-I a, which leads to upregulation of I CAM -1 thereby increasing 

keratinocyte-Ieukocyte interactions. 

Endothelial cells 

Stimulation of human umbilical vein endothelial cells (HUVEC) with LPS, either directly 

or indirectly, induces the release of IL-113 in vitro. Both the direct and indirect pathways 

are dependent on CDI4. The direct pathway, which is serum dependent, involves the 

binding of LPS to the LPS binding protein (LPB). The complex then interacts with 

soluble CD 14, and the complex then interacts with TLR4 on the endothelial cell surface. 

The indirect pathway involves the LPS induced release of IL-l from macrophages, 

following its interaction with membrane bound CD 14 on the mononuclear cell surface, 
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which can then activate endothelial cells directly resulting in the further release of IL-! 

[Pug in et ai., 1993]. 

Mast cell tryptase stimulation of HUVEC induces expression of mRNA for both IL-l ~ 

and IL-8 [Compton et ai., 1998]. Upon activation by antigen binding to IgE, mast cells 

release various inflammatory mediators such as proteases, histamine and cytokines. 

Tryptase, a serine protease, is released in large quantities by mast cells upon 

degranulation, and it appears to have potent effects on surrounding cells, including 

causing microvascular leakage (possibly by causing the release of histamine) and 

neutrophil accumulation at injection sites in guinea pigs [He & Walls, 1997; He, 1997], 

induction of type 1 collagen synthesis in fibroblasts [Cairns & Walls, 1997; Gruber, 

1997], and stimulation of release of the chemokine IL-8 and upregulation of ICAM-I 

expression on epithelial cells [Cairns & Walls 1996]. Despite detecting an increase in IL­

I ~ mRNA expression in tryptase treated HUVEC, Compton et ai. could not detect IL-l ~ 

in supernatants. They suggest that tryptase may prime endothelial cells for release of IL-

1 ~ after a secondary stimulus, or the endothelial cells may require simultaneous 

stimulation by several different stimuli. The artificial experimental conditions used make 

it difficult to tell if this is the case but it seems possible, since at sites of mast cell 

activation endothelial cells will be exposed to more than one stimulus. In addition, 

histamine released by mast cells upon degranulation has a number of effects, one of 

which is to activate immature dendritic cells transiently, inducing the expression of IL­

I~, IL-6, IL-8, monocyte chemoattractant protein-I (MCP-I) and MIP-la [Caron et ai., 
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2001] and the enhancement of synthesis of IL-l ~ in IL-l ex stimulated peripheral blood 

mononuclear cells (PBMC) [Vannier & Dinarello, 1993]. 

1.1.4: Biological effects of IL-l 

One of the earliest observations associated with IL-l was that it causes the proliferation 

of T-cells in mixed lymphocytic cell cultures [Gordon & MacLean, 1965; Gery & 

Waksman, 1972; Watson et al., 1979]. It has since been shown that IL-l has numerous 

local and systemic effects. It activates multiple cell types including T -cells, which can 

then produce other cytokines, such as IL-2 [Gillis & Mizel, 1981] and IL-6 [Helle et al., 

1988]. In response to IL-l, B-cells are activated and proliferation is induced [Lipsky et 

al., 1983]; fibroblasts produce IL-6 and IL-ll [Mino et al., 1998], collagenase and 

prostaglandin E2 (PGE2) [Balavoine et al., 1986; Postlethwaite et al., 1988], and synovial 

cells [Mizel et al., 1981; Dayer et al., 1986] and endothelial cells [Bevilacqua et al., 

1985] are activated. Chemokines such as IL-8 and MCP-l are also produced following 

IL-l stimulation [Sica et al., 1990]. 

It has recently been shown that IL-l also enhances T-cell dependent antibody production. 

II rIo mice (deficient in both IL-l a and IL-l~) on a Balb/c background were challenged 

with sheep red blood cells (SRBC) and the resulting antibody titres measured. In IL-l 

deficient mice, antibody production was reduced, an effect which could be reversed by 

the administration of an agonistic anti-CD40 monoclonal antibody. This implies an 

essential role for CD40 ligand (CD40L, CD 154), produced in response to IL-l, in 

antibody production. Antigen presenting cells (APCs) from IL-l null mice were 
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incapable of activating SRBC specific T-cells, and it was subsequently demonstrated that 

IL-l induces CD40L, a molecule expressed on the surface of activated T -cells which is 

involved in T-cell priming and which binds to CD40 on B-cells [Nakae et al., 2001]. 

IL-l also has numerous effects on dendritic cells (DC). One primary effect is to trigger 

the maturation and migration of DC to the draining lymph nodes where they can 

encounter and prime naIve T-cells [Cumberbatch et al., 1997]. IL-l enables Langerhans' 

cells (DC resident in the epidermis) to dissociate from epidermal keratinocytes by 

causing a decrease in the expression of E-cadherin, a DC adhesion molecule [Jakob & 

Udey, 1998], thus allowing them to migrate. 

1.1.5: Systemic effects of IL-l 

On a systemic level, one of the early responses to infection or injury is a complex set of 

reactions known as the acute phase response (APR). APR is characterised by fever and 

the release of proteins by the liver termed the acute phase proteins (APP). These include 

human C reactive protein (CRP), the serum amyloid A (SAA) proteins and serum 

amyloid P (SAP). IL-l released by activated macrophages is a potent inducer of the 

hepatic APR [Bornstein, 1982]. Early research by Bornstein et al. demonstrated that a 

single intravenous dose of purified IL-l in the rabbit resulted in increased plasma 

concentrations of C-reactive protein, haptoglobin and fibrinogen after 24 hours 

[Bornstein, 1982]. 
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The murine "SAA inducer" released by macrophages in response to LPS, which triggered 

SAA release from hepatocytes, was identified as IL-l in 1981 [Sztein et al., 1981]. 

Induction of murine SAA by IL-l was demonstrated in mice injected with murine 

recombinant IL-l. Levels of SAA mRNA rose in a dose dependent manner, and IL-l 

could also stimulate SAA production in C3HIHeJ mice, which are resistant to endotoxin, 

demonstrating that IL-! and not endotoxin was the stimulus. mRNA levels for 

apolipoprotein E, a constitutive hepatic protein which is not involved in the APR, were 

also measured and were not affected by IL-l administration [Weinstein & Taylor, 1987]. 

This supported earlier observations by Kampshmidt et al. who demonstrated the release 

of acute phase proteins after injection with partially purified IL-l in C3H/HeJ mice 

[Kampschmidt et al., 1980], and by Ramadori et al. who showed that IL-l upregulates 

SAA mRNA levels and downregulates albumin gene expression (a negative acute phase 

protein) in vivo in C3HIHeJ mice and in vitro in primary mouse hepatocyte cultures 

[Ramadori et al., 1985]. 

Fever induction by IL-l is due to its ability to act on the hypothalamic-pituitary-adrenal 

axis (the "HPA" axis). It alters the temperature set-point in the hypothalamus by 

stimulation of PGE2 release from endothelial cells. [Reviewed in Dinarello & Wolff, 

1982 ]. In rats, elevated temperature in response to IL-l is caused at least in part by 

activation of thermogenesis in brown adipose tissue [Dascombe et al., 1989]. PGE2, a 

potent vasolidator, is also released from fibroblasts and synovial cells [Mizel et al., 1981; 

Dayer et al., 1986; Balavoine et al., 1986; Postlethwaite et al., 1988] along with 

collagenase in response to IL-I. This release is involved in the pathogenesis of 
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rheumatoid arthritis, discussed in section 1.2.13. Many of the febrile responses to IL-I 

are now known to be indirect, via IL-I-induced IL-6. For instance, IL-6 deficient mice 

are incapable of producing fever in response to intraperitoneal injection of LPS or IL-l ~ 

or intracerebroventricular injection of IL-l~, but do have a fever response to 

intracerebroventricular injection of IL-6 [Chai et al., 1996]. Circulating IL-6 has also 

been shown to mediate the febrile response to localised LPS-induced inflammation in 

rats, which can be abolished by pre-treatment with IL-6 antiserum [Cartmell et al., 2000]. 

IL-l, along with IL-6 and TNFa produced after LPS stimulation in mice, can also induce 

the release of corticotropin-releasing hormone (CRH) from the hypothalamus. CRH 

stimulates the secretion of corticotropin from the pituitary which causes the release of 

corticosterone from the adrenal cortex [Besedovsky et al., 1986; Perlstein et al., 1993]. 

The glucocorticoids then act in a negative feedback, as will be discussed in section 1.1.7. 

IL-l ~ is an inducer of hepatic nitric oxide (NO) synthesis. NO is an antimicrobial, 

antiviral and antiparasitic effector molecule of the immune system [Reviewed in Schmidt 

& Walter, 1994], and is produced in large amounts by inducible NO synthase (iNOS) 

during inflammation. IL-la and IL-l~, as well as IFNy and TNF-a, are endogenous 

activators of iNOS transcription [Geller et al., 1995; Ding et al., 1988]. IL-l also 

increases synthesis of nitric oxide synthase (and therefore nitric oxide) in vascular 

smooth muscle cells [French et al.. 1991], thereby reducing vascular contractility. 

Vasodilation mediated by NO and PGE2 results in increased blood flow at areas of 

inflammation. 
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1.1.6: Local effects oflL-l 

Many of the local reactions in the inflammatory process are potentially mediated by IL-l. 

For example, circulating leukocytes must attach to and extravasate through the vessel 

walls, then localise into the damaged tissue. IL-l can stimulate vascular endothelial cells 

to become more adhesive for circulating leukocytes [Bevilacqua et al., 1985] through 

several pathways. 

IL-l upregulates the expression of the vascular adhesion molecule E-selectin (CD62E) on 

endothelial cells [Kupper & Groves, 1995]. E-selectin expression is also induced by 

1NF-a [Weller et al., 1992]. There are two other selectins, L- and P-selectin (CD62L and 

CD62P). L-selectin is expressed continuously on the leukocyte cell surface while P­

selectin is stored in granules (Weibel-Palade bodies) in platelets and endothelial cells and 

is rapidly transported to the cell surface in response to histamine, components of the 

complement pathway, TNF-a or IL-l [Weller et al., 1992]. L- and P-selectin weakly 

interact with their carbohydrate ligands, such as the mucin-like molecules MadCAM-l, 

GlyCAM-l and CD34 for L-selectin, and P-selectin glycoprotein ligand-l (PSGL-l), to 

cause the "rolling" motion of leukocytes observed along the vessel wall [Shimuzu & 

Shaw, 1993; Borges et aI., 1997; Baumhueter et al. 1994; Sako et al., 1993]. E-selectin 

then creates a stronger adherence of the leukocytes to the vascular wall by binding to its 

ligand sialyl Lewisx (sLex) [Sako et al., 1993]. 

IL-l stimulates the release of chemotactic factors (chemokines) from many cell types 

including vascular endothelial cells, which recruit leukocytes into the area and then 
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increase the low-affinity interactions between adhesion molecules on the endothelial cells 

and their ligands on leukocytes [Grabovsky et al., 2000]. Chemokines whose production 

is stimulated by IL-l (and TNF) include IL-8 and MCP-l [Sica et aI., 1990]. IL-8 and 

MCP-l in turn activate integrins on the leukocytic cell surface [Jiang et al., 1992; 

Gerszten et al., 1999; Seo et al., 2001]. 

The integrins involved in leukocyte adhesion are primarily P2(CD 18)-integrins. The P2-

integrins are four heterodimers, LF A-I (CD 11 alCD 18), Mac-l (CD 11 b/CD 18), p 150,95 

(CD 11 c/CD 18) and CD 11 dlCD 18. Integrins bind with a high affinity to endothelial cell 

adhesion molecules such as rCAM-! (CD54), which although present at low levels on the 

surface of normal endothelial cells, has greatly increased expression in response to 

stimulation by IL-l [Dustin et al., 1986; Bochner et al., 1991] and other pro­

inflammatory cytokines. 

After firm attachment of the leukocytes to the endothelial cells they must migrate across 

the endothelium, a process known as diapedesis. Most of the leukocytes squeeze through 

the endothelial cell junctions, regulated largely by homophillic interactions of 

platelet/endothelial cell adhesion molecule-l (PECAM-l or CD31), which is expressed 

diffusely on the surfaces of migrating leukocytes and on the borders of endothelial cells 

[Muller & Randolph, 1999]. Transendothelial migration (TEM) is also thought to be 

controlled by IL-l induced chemokine gradients across the endothelium, directing the 

leukocytes across and into the target tissue [Weber et al., 1999]. 

14 



IL-l can also induce the expression of matrix metalloproteinases (MMPs) from 

monocytes, fibroblasts and endothelial cells [Zhang et al., 1998; Rajavashisth et al., 

1999]. MMPs are a large family of proteases which between them can degrade all 

components of the extracellular matrix, and are naturally inhibited by the tissue inhibitors 

of metalloproteinases (TIMPS) [reviewed in Brew et al., 2000]. The chemokine MCP-l 

can also enhance the synthesis of MMP-l (interstitial collagenase) in fibroblasts in vitro, 

mediated by IL-1a., since addition ofIL-lra prior to MCP-l almost completely inhibits 

MMP-1 production by fibroblasts [Yamamoto et al., 2000]. Localised degradation of 

ECM components by IL-l induced MMPs may facilitate the migration of leukocytes to 

the target area. 

Thus, IL-I acts at a local level as a mediator of the change from low affinity "rolling" of 

leukocytes along the vessel wall to firm adhesion following activation of the 

endothelium, then diapedesis through the intercellular junctions and extravasation into 

the damaged tissue. 

Despite the numerous biological effects of IL-l, few essential functions have been 

identified. IL·l null mice develop normally, are viable and do not as yet appear to 

develop any spontaneous disease, although their responses to challenges such as LPS 

[Fantuzzi et al., 1996], turpentine [Zheng et al., 1995; Horai et al., 1998], and 2,4,6-

trinitrochlorobenzene (TNCB) (which induces contact hypersensivity) [Nakae et al., 

2001], are altered compared to wild type mice. 
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1.1.7: Regulation oflL-l expression 

IL-l ~ expression is very rapid after stimulation of monocytes (for example with LPS), 

and is regulated on several levels. A number of transcription factors have been shown to 

playa role in regulation of the ILl B gene, including NFKB, NF-IL6, CREB and Spi-l 

[Godambe et at., 1994; Tsukada et at., 1994; Kominato et at., 1995]. Glucocorticoids 

negatively regulate the expression ofIL-l [Snyder & Unanue, 1982]. This occurs at the 

transcriptional level by glucocorticoids inhibiting the activity of the ILl B upstream 

induction sequence (VIS), which is the regulatory region controlling the induction of 

ILl B located between positions -3134 and -2729 upstream of the transcription start site 

[Auron & Webb, 1994]. 

Other cell products arising from IL-l activity on target cells can also regulate IL-l 

expression in a negative feedback loop - for example, nitric oxide (NO). Stimulation of 

mouse RAW 264.7 cells (a murine macrophage cell line) with LPS and concomitant 

inhibition of iNOS results in an increase in IL-l ex and IL-l ~ secretion. Also, addition of a 

NO-generating compound reduces concentrations of IL-l ex and IL-l ~ in supernatants 

[Obermeier et at., 1999]. As protein levels correlate with mRNA expression under these 

experimental conditions, this suggests another possible control at the transcriptional level. 

NO has been shown to inhibit NFKB, which controls transcription of IL-I, by stabilising 

IKB and preventing its dissociation from NFKB (a process necessary for NFKB 

activation) [Peng et at., 1995]. 
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1.1.8: Interleukin-l receptor antagonist (IL-lra) 

Identification of IL-lra 

The potent effects of IL-l on host physiology suggest a requirement for its tight 

regulation in order to avoid potential damage. As well as regulation of IL-l activity at the 

level of synthesis, there were reports of inhibitors which could regulate the activity of IL­

l directly. In 1987 Seckinger et al. [Seckinger et al., 1987a] reported that urine from 

febrile patients contained an inhibitor oflL-l biological activity, measured as PGE2 and 

collagenase production by fibroblasts and synovial cells. They partially purified the 

inhibitor and found it to be 18 - 25kDa. Hannum et al. [Hannum et al., 1990] purified 

three monocyte derived proteins from IgG stimulated cells with an IL-l inhibitory 

activity which they termed protein inhibitors x (18kDa), a (22kDa) and J3 (22kDa). After 

partial sequencing they showed them to be glycosylation variants of the same protein, 

which bound to the IL-l receptor with no detectable consequences. Seckinger et al. tested 

the mechanism of inhibition in EL-46.1 cells (a murine thyroma line that produces IL-2 

in response to IL-l). They observed that IL-l activity was still inhibited after EL4-6.1 

cells were pre-incubated with the inhibitor and washed, which suggested that the inhibitor 

was bound to a surface structure. They postulated the most economical hypothesis, that 

the inhibitor binds to the IL-l receptor [Seckinger et al., 1987b]. They named the activity 

interleukin-l receptor antagonist (IL-lra). 

1.1.9: Forms ofIL-lra 

It is now known that IL-l ra is a homologue of IL-l a and IL-l J3, and that it exists in at 

least four forms, which are all products of a single gene. The 22kDa secreted form (sIL-
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Figure I: Different forms ofIL-lra arise from alternative translational start sites and alternative splicing of a single gene 
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I ra) of the protein shares 26% amino acid identity to IL-I B, and 19% identity to IL-l a. It 

is synthesised as a protein of 177 amino acids, which includes a conventional signal 

sequence of 25 amino acids that is removed to leave I52aa - the 22kDa protein 

[Eisenberg et al., 1990]. The other three forms are intracellular. Two of these, ielL-lra 

and ielL-IraIl (l8kDa and 25kDa) lack signalling sequences and remain in the cytoplasm 

of activated cells. They are transcribed from an upstream promoter [Haskill et al., 1991; 

Butcher ~t al., 1994; Muzio et al., 1995]. The third, I6kDa ielL-Ira (ielL-IraIlI) has been 

identified in neutrophils and monocytes [Mal yak et al., 1998b]. It binds to the IL-I 

receptor with a lower affinity than that of sIL-I ra or ielL-I ra [Malyak et al., I998a]. 

ielLIraIII is derived from a translation initiation site at the second AUG of sIL-Ira 

mRNA (Figure 1). 

1.1.10: Induction oflL-lra expression 

Various stimuli induce expression of IL-I ra - some also induce expression of IL-I, such 

as LPS [Andersson et al., 1992] and others, for example adherent IgG [Arend et al., 

1991] or granulocyte/macrophage-colony stimulating factor (GM-CSF) [Poutsiaka et al., 

1991], stimulate production of IL-l ra but not IL-I. This indicates separate regulatory 

mechanisms for the induction of expression of IL-! and IL-Ira. Human monocytes, 

stimulated with LPS, can produce IL-! and IL-! ra simultaneously, as has been seen in 

double staining of cells visualised by fluorescence microscopy [Anderson et al., 1992]. 

Th! type T cells preferentially produce pro-inflammatory cytokines such as IL-I2 and 

IFNy. They induce IL-l B production rather than IL-l ra production in the monocytic cell 

line THP-I after stimulation of the THP-I cells with the membranes of antigen activated 
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Thl primed cells. In contrast, Th2 cells, characterised by production of anti-inflammatory 

cytokines including IL-4, IL-5, IL-lO and IL-I3, preferentially induce production of IL­

Ira over that of IL-~ in the same experiment [Chizzolini et al., 1997]. In primary 

hepatocytes and hepatoma HepG2 cells, stimulation with IL-4 or IL-I3 in combination 

with IL-I ~ augments the effect of IL-Ira production in response to IL-I ~ [Gabay et al., 

1999]. IL-4 stimulation also increases IL-Ira production in human PMN activated by 

LPS [Marie et al., 1996]. These results suggest co-operation between Th2 type cytokines 

and IL-Ira in their anti-inflammatory activities. 

There is also evidence that IL-I ra down-regulates the acute phase response through 

antagonising IL-I. For example, when IL-Ira is co-injected with silver nitrate (silver 

nitrate induces an inflammatory response) into C57BL/6 mice, induction of hepatic 

mRNAs for the acute phase proteins SAA and SAP is partially blocked, and circulating 

protein levels decreased [Grehan et al., 1997]. 

1.1.11: IL-Ira in health and disease 

IL.} ra appears to act solely as a natural anti·inflammatory inhibitor of IL·} by 

competitively binding to the type } IL·} receptor without initiating any signal 

transduction. Strong evidence for a requirement for endogenous IL·} ra comes from 

transgenic mouse models, in which the gene for IL-l ra is non-functional. These animals 

suffer from inflammatory diseases including arteritis, rheumatoid arthritis and, as we first 

describe here, a psoriasis-like disease, as discussed in section 1.2. 
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IL-l ra can be detected in the plasma of healthy individuals [Hunne & Santtila, 1998] and 

in normal cells - for example intestinal epithelial cells (lECs) from normal mucosa 

constitutively produce low levels ofieIL-Ira, but no IL-l [Bocker et a/., 1998]. 

Significantly elevated levels of both IL-Ira mRNA and serum protein have been 

demonstrated in patients with active stage polymyositis and dermatomyositis (PMlDM) 

(infla~matory muscle diseases) [Son et a/., 2000], and in diseased human coronary 

arteries, where the protein co-localises with IL-I P in the endothelium. In vitro stimulation 

of HUVEC and human coronary artery endothelial cells with LPSIPMA or TGF-p in 

vitro leads to accumulation ofieIL-lra mRNA [Dewberry et al., 2000]. 

IL-l ra also appears to be neuroprotective. After focal cerebral ischaemia by middle 

cerebral artery occlusion (MCAo) in the rat, low amounts recombinant human IL-Ira 

(rhIL-lra) injected directly into the brain, and higher amounts ofrhIL-lra administered 

peripherally, can significantly inhibit infarct size and cerebral oedema formation [ReIton 

et al., 1996]. The expression of IL-l ra mRNA is rapidly induced in the rat brain 

following focal cerebral ischaemia and blocking of IL-lra by anti-rat IL-Ira antiserum 

before MCAo greatly increases ischaemic brain damage [Loddick et al., 1997]. 

Conversely, overexpression of IL-l ra via gene transfer can reduce brain injury after focal 

cerebral ischaemia in the mouse. 
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1.1.12: Therapeutic potential of IL-lra 

A well-studied therapeutic use ofIL-lra has been in the treatment of rheumatoid arthritis 

(RA). As discussed in section 1.2.13, there is a large body of evidence implicating IL-I in 

the pathogenesis of RA in humans, rabbits, rats and mice. In animals, arthritis has been 

treated with IL-I ra in several models. Gene therapy using IL-I ra delivered in a 

recombinant adeno-associated virus vector (rAA V) suppressed LPS induced arthritis in 

rats [Pan et al., 2000]. In type 2 collagen induced arthritis (CIA) in mice, an animal 

model for RA, administration of IL-Ira reduces incidence of CIA, and suppresses 

antibody response to IL-l when administered to animals with established disease 

[Wooley et al., 1993]. Importantly, mice deficient in IL-Ira spontaneously develop 

arthropathy resembling RA [Horai et al., 2000; this work] as discussed in sections 1.1.13 

and 1.2. 

In humans, clinical trials involving subcutaneous injection of human recombinant IL-I ra 

into patients improves RA symptoms and significantly reduces the rate of joint damage as 

compared to patients receiving a placebo [Bresnihan et al., 1998; Jiang et al., 2000]. 

Therefore, various cell and tissue types in the normal, healthy individual produce IL-I ra 

and this production is upregulated during infection or inflammation. Blocking of IL-l ra 

generally exacerbates disease, whereas multiple inflammatory conditions have shown 

improvement after treatment with IL-l ra. Clinical trials have been performed or are 

underway to test the efficacy of using IL-I ra therapeutically in humans. 
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Figure 2: The generation of three different Illrn null alleles in the mouse 
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1.1.13: IL-lra transgenic and IL-lra deficient mice 

Three groups have produced mice with altered expression ofIL-lra (Figure 2). Hirsch et 

af. (New York) have produced both IL-lra null and overproducing mice [Hirsch et aI., 

1996]. Transgenic mice were made that contained sIL-l ra under control of its 

endogenous elements in a 9kb DNA fragment. The IL-lra null mice have a deletion in the 

open reading frame from the beginning of exon 3. 

IL-I ra null and overexpressing mice were viable and appeared normal, although the mean 

body weight of IUrn-l
- mice was lower compared to wild type littermates. There seems to 

be no obvious reason for this finding, but the authors postulate that IL-l somehow plays a 

role in normal growth and development. IL-I ra null mice were highly susceptible to LPS 

injection, and IL-lra overexpressors were less susceptible than wild type controls to LPS­

induced shock. After challenge with LPS, circulating levels of IL-l a and IL-l ~ were 

lowered in IL-lra null mice compared with wild-type controls, and higher in IL-Ira 

overexpressors as compared to wild type controls. This suggests that IL-l ra somehow 

positively regulates IL-l expression during endotoxic shock. The most obvious way is 

through antagonising direct or indirect (for example, through the HPA axis) negative 

feedback on IL-l expression. 

Following infection with the intracellular bacterium Listeria monocytogenes, IL-lra null 

mice showed increased survival, and IL-lra overproducers showed decreased survival, in 

relation to wild type littermates. This suggests that in the absence of IL-l ra, macrophages 

are more sensitive to activation by IL-l, and in this case it is an advantage since the 
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increased activation of the macrophages enables the animals to clear the bacteria more 

efficiently. IL-l plays an important role in the clearance of infection by 

L.monocytogenes. In further experiments, Irikura et al. demonstrated that during primary 

listeriosis, IL-l ra appeared to play a regulatory role with respect to macrophage 

activation. IL-lra overproducing mice showed decreased class II major histcompatibility 

complex (MHC) expression on macro phages, implying that IL-l is necessary for 

macrophage activation in listeriosis [Irikura e/ al., 1999]. 

Horai et al. (University of Tokyo) have also produced IL-l ra null mice as well as mice 

deficient in IL-la, IL-lP or both IL-la and P [Horai e/ al., 1998]. For the IL-Ira null 

mice, they produced a construct in which a 5.3kb DNA fragment of the gene containing 

exons 1-4 was deleted and a neomycin resistance cassette inserted in its place. 129/Sv 

derived chimeras were crossed with female C57BLl6, and the FI generation was inbred 

to produce homozygous null F2 mice. Again, IL-I ra null mice were viable and appeared 

healthy, but had lower body weight than wild type littermates, which became more 

apparent with age. When injected with turpentine, which causes a local inflammation and 

fever, IL-Ira null mice had a higher body temperature than control mice and still had an 

increased body temperature one week after injection. IL-I has been implicated as a 

mediator of turpentine induced fever by activation of the HPA axis (see section 1.1.5). 

Horai e/ al. showed that IL-I P deficient mice (but not IL-l a) displayed no rise in body 

temperature after injection with turpentine, and also that there was no rise in serum 

corticosterone level as compared to control mice 8 hours after injection. This would 

suggest that Il-IP deletion is epistatic to IL-Ira deletion (the two genes lie on the same 
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phenotypic pathway). There was however a similar initial increase in corticosterone 

levels between wild type and IL-! (3 null mice post injection, suggesting that IL-! is not 

uniquely required to activate the HP A axis. That data coupled with that for IL-l ra suggest 

an essential role for IL-! in mediating turpentine induced fever, and IL-! ra in regulating 

that induction. 

In further experiments with the II I rn'l' mice, Horai et al. backcrossed the knockout mice 

extensively onto C57BLl6J, DBA/l and Balb/cA backgrounds to investigate the effects 

of strain differences. They discovered that the 11lrn'I' mice on a Balb/cA background (but 

not C57BLl6J or DBAI!) developed a spontaneous arthropathy resembling rheumatoid 

arthritis [Horai et al., 2000]. From 35 days of age, the animals' joints and especially the 

hind ankles, became swollen, red and stiff. Histological examination revealed many 

characteristics of RA; synovial inflammation with proliferation of synovial lining cells, a 

mixed inflammatory infiltrate containing lymphocytes and neutrophils which formed a 

pannus, activation of osteoclasts, and bone erosion where the bone was replaced with 

fibroblastic cells. By 91 days of age, all /lIrn'I' mice on a Balh/cA background had 

developed the RA-like disease, whereas none of the or the wild type, heterozygous or any 

C57Bl/6J mice had by 112 days of age. By 336 days of age, 217 remaining C57B1I6J 

fllrn'l' mice had developed arthropathy. Unsurprisingly, by 112 days, there was a marked 

(! O-fold) increase in IL-l (3 mRNA levels in the arthritic joints of Balb/cA knockout mice, 

and there was also an increase ofIL-6 and to a lesser extent TNF-a mRNA levels. This 

suggested that the unopposed IL-! could induce expression of other proinflammatory 

cytokine genes in the arthritic joints. 
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Horai et al. showed a significant increase in antibody levels against the autoantigens 

dsDNA and type 2 collagen, and IgG class RF in the III rn-I- mice on a Balb/cA 

background as compared to wild type and heterozygous mice. No elevation in 

autoantibody levels were seen in C57BLl6J Illrn-I-mice. Their data shows that there is a 

very low basal expression of IL-l in the joints which is presumably normally antagonised 

by IL-lra, and also that Illrn-I
- mice develop inflammatory conditions which are 

background specific, results which have been supported by our own observations. 

The third group to prepare III rn-I
- animals is our laboratory at the University of Sheffield 

[Nicklin et al., 2000], in collaboration with the University of Edinburgh. The main body 

of this work characterises the spontaneous inflammatory diseases (arteritis, a psoriatiform 

disease and an RA-like disease) observed in these animals, and their phenotypes are 

discussed in sections 3 and 4. 

The animals were generated by the creation of a replacement construct (as were the other 

two colonies), which replaced parts of ex on 3 and exon 4 with a cassette containing the 

G418 resistance gene and a ~-actin promoter (f3-Neo) in reverse orientation, disrupting 

the reading frame and generating a null allele. 12910la embryonic stem (ES) cells 

containing the construct were injected into C57BLl6 blastocysts which were implanted 

into pseudopregnant females. Two sets of chimeric offspring were obtained from distinct 

ES colonies. An animal from one set was backcrossed twice onto a 12910la background, 

before mating with outbred Swiss MFI albino females. An animal from the other set was 
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directly mated with MF I. Mice homozygous for the null allele were generated by 

inbreeding. Lines were inbred from these original animals, and the heterozygosity of the 

III rn locus was maintained during the inbreeding process. Animals were initially 

genotyped by Southern blotting, and subsequently genotyped by PCR performed on DNA 

extracted from routine ear clippings. Animals from these sublines were also backcrossed 

onto Balb/c and C57BL/6 backgrounds. All mice are viable, but early death amongst 

1Ilrn-l- mice was observed. The analysis of the phenotypes is described in this work 

(section 1.2, section 3 and section 4). 

1.1.14: IL-l Receptors 

IL-I a and IL-l P both compete for the same receptor [Dower et al., 1986; Kilian et aI., 

1986], which explains their shared biological activities. There are two distinct IL-l 

receptors which are products of different genes, [Chizzonite et al., 1989], the IL-l type 1 

receptor (IL-IR1) and the type 2 receptor (IL-IR2). 

The extracellular portions of both IL-I receptors are encoded with similar intronlexon 

structures in the human, suggesting both genes arise from a common ancestor [Sims et 

al., 1995]. The receptors are predominantly expressed on different cell types - for 

example IL-l Rl is the major IL-l receptor on T -cells, epithelial cells and fibroblasts, 

whereas B-cells predominantly express IL-IR2 [Chizzonite et at., 1989; Bomsztyk et at., 

1989]. 
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Figure 3: Homology between Drosophila Toll and IL-l signalling pathways 
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Figure 3: Homology between Drosophila Toll and IL-lsignalling 
pathways 
The signalling cascades through the type I IL-l receptor in humans and 
through Toll in Drosophila are very similar. In Dro ophila, after 
binding of the ligand SplUzle to the Toll receptor [Morisato & 
Anderson, 1994], Pelle and Tube (a functional homologue of Myd88) 
are the intermediate signaJ transducers required in Dorsal (NF-KB-like) 
activation signalling through Toll (IL-J Rl-like) [Galindo et 01, 1995). 
Pelle (IRAK-like) becomes activated and then, via the Drosophila 
homologue of TRAF-6, dTRAF-6, [Means et of., 2000] it induces a 
protein kinase cascade involving DLAK (Drosophila LPS-activated 
kinase, structurally related to IKK) [Kim et aI., 2000]. DLAI< 
phosphorylates Cactus (TKB-like) [Geisler et 01, 1992]. ()J1 

phosphorylation, IKB and Cactus dissociate from NFKB and Dorsal 
respectively, which translocate to the nucleus to increase gene 
expression of inflammatory and immune mediators. Dorsal and NFKl3 
are both members of the Rei family of inducible transactivators. 



Binding of IL-I to the type 1 receptor initiates biological effects. Mice deficient in the 

type 1 IL-l receptor have no abnormal resting phenotype [Glaccum et al., 1997] but they 

fail to respond to IL-l and show an overall reduced inflammatory re~ponse [Labow et al., 

1997]. Illrr'- mice are however quick to resolve cutaneous infection by the protozoan 

parasite L~ishmania major by an enhanced Th2 response, indicating a role for IL-l in 

normal regulation of ThllTh2 responses [Satoskar et al., 1998]. 

The type 1 receptor is an 80kDa transmembrane protein consisting of an extracellular 

portion, 319 aa in length and composed of three immunoglobulin-like domains [Sims et 

al., 1988; Sims et al., 1989], a 22 aa transmembrane region and a 217 aa cytoplasmic 

Drosophila Toll-like domain, TIR (TolllIL-l receptor homologous region) [Medzhitov & 

Janeway, 2000]. The intracellular domains ofIL-IRl and the Toll receptor show a 25% 

amino acid identity [Gay & Keith, 1991]. The protein Toll is involved in dorsoventral 

polarity in the Drosophila embryo [Hashimoto et al., 1988], and antifungal responses 

[Lemaitre et al., 1996]. The signal transduction pathways downstream ofIL-IRI and Toll 

are strikingly similar (Figure 3). There are at least 9 members of the IL-l-like receptor 

family [reviewed in Sims, 2002], and at least 10 other human and mouse Toll-like 

receptors (TLRs) [Reviewed by O'Neill & Greene, 1998, and Akira et al., 2001]. 

The type 2 receptor was first cloned from B cells, where it is the predominant binding 

receptor for IL-l, but is also present on other cell types, including monocytes, 

keratinocytes, peripheral blood T - cells and the hepatoma cel1line HepG2 [McMahan et 

ai., 1991]. Like IL-IRl, it has an extracellular ligand-binding portion, 334 aa in length, 
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Figure 4: Signal transduction does not appear to occur following binding of IL-I 
to the type 2 receptor, or following IL-Ira binding to IL-IRI 
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Figure 4: Binding of IL-Ia or IL-l~ to the extracellular domain of the type 1 receptor, IL­

IRI , results in the recruitment of the IL-l receptor accessory protein, IL-lRAcP. 

Heterodirners of the intracellular domains of IL-l R I and IL-I RAcP subsequently recruit 

further adaptor and kinase molecules required for IL-l signalling. 

When IL-lra binds to the extracellular domain of IL-IRI, ILlRAcP is not recruited to the 

complex, the cytoplasmic heterodimer is not formed, and no signal transduction is achieved. 

IL-la or IL-I~ binding to the extracellular domain of the type 2 decoy receptor, IL-IR2, 

results in recruitment of IL-I RacP. However, since fL-1 R2 has a truncated intracellular 

cytoplasmic domain, again the heterodimer is not formed and there is no subsequent signal 



consisting of three immunoglobulin-like domains and a short 22 aa transmembrane 

region, but only has a 29 aa cytoplasmic domain and no Toll-like domain [McMahan et 

al., 1991]. No evidence has been obtained to suggest that IL-IR2 is a signalling receptor. 

IL-l initiates biological effects only by binding to the type 1 receptor as judged by 

induction of NFKB by IL-l on murine cell lines, bearing predominantly either IL-l R 1 

(EL4.NOB.l) or IL-lR2 (70Z/3) [Stylianou et al., 1992]. Subsequent experiments 

showed that using monoclonal antibodies capable of blocking binding to both receptors, 

it was possible to block responses to IL-l completely when directed against the type 1 

receptor, but that no inhibitory effect was seen upon blocking of the type 2 receptor [Sims 

et al., 1993]. Occupancy of only a few type 1 receptors per cell is enough to elicit a 

response [Re et al., 1996]. 

1.1.15: IL-I Receptor accessory protein 

A second subunit of the IL-l receptor complex, the IL-l receptor accessory protein (IL­

lRAcP) is required for signalling via IL-IRI (Figure 4). A monoclonal antibody, isolated 

by Greenfeder et al., blocked the binding and bioactivity of human and murine IL-l ~ to 

the receptor in murine cells. The antibody recognised a protein distinct from both the type 

1 and type 2 IL-l receptors. The target of the antibody was identified as a novel protein 

required for IL-l responses, the IL-l receptor accessory protein [Greenfeder et al., 1995]. 

Cell lines which did not express IL-IRAcP were unresponsive to IL-l [Wesche et al., 

1996]. Transfection ofIL-IRAcP cDNA into non-responsive cells restored their ability to 

initiate biological activity after stimulation with IL-l, indicating requirement for the 
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second subunit [Korherr et al., 1997; Hofmeister et at., 1997]. Mice lacking IL-1RAcP 

and IL-1RAcP-deficient fibroblasts fail to produce a biological response when challenged 

with IL-l, although IL-la and IL-lP still bind to IL-lRl. IL-lRAcP shows a structure 

similar to that ofIL-lRl. 

Murine IL-I P shows a 70 fold reduction in affinity for the type 1 receptor in IL-l RAcP 

deficient fibroblasts, demonstrating that the presence of IL-I RAcP is also required for 

high affinity binding ofIL-l to IL-l Rl [Cullinan et al., 1998]. IL-l RAcP stabilises the 

IL-IIIL-IRI complex by protecting IL-l in the ligand-binding site ofIL-IRI [Wesche et 

al., 1998]. Immunoprecipitation studies showed that IL-l can be cross-linked to both IL­

lRI and IL-IRAcP, but that IL-lra can only be seen cross-linked to IL-IRI and not the 

accessory protein, which suggests that IL-lra does not bind to the IL-IRAcP or form a 

trimeric complex with IL-IRI and IL-IRAcP [Greenfeder et al., 1995]. 

1.1.16: IL-l Signalling (NFKB pathway) 

The most well characterised signalling pathway resulting from formation of the trimeric 

IL-IIIL-IRIIIL-IRAcP complex leads to the activation of the transcription factor NFKB 

(nuclear factor KB) (Figure 3). After binding to the IL-IRlIL-I complex, the two 

intracellular Toll-like domains ofIL-IRI and IL-IRAcP are brought into close contact. 

The resulting scaffold of the cytoplasmic tails ofIL-I RIIIL-I RAcP recruits the adapter 

protein Myd88. The C ter~inal domain of Myd88 binds with high affinity to the 

heterocomplex (but not to IL-IRI or IL-IRacP alone) following IL-l binding, and it then 
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functions as an adapter to recruit unphosphorylated IL-! receptor associated kinases 

(IRAK 1 and IRAK2)[Wesche et al., 1997]. 

Another molecule, Myd88-adapter-like (Mal) has recently been shown to be required for 

signal transduction through TLR-4. Mal associates with TLR-4, possibly in a dimer with 

MyD88, and activates NFKB by recruiting IRAK2 (but not IRAKI). Mal is therefore an 

additional component to MyD88 in TLR-4 mediated signalling, and its discovery 

explains why, in cells from MyD88 deficient mice, NFKB and JNK are still activated 

after stimulation with LPS (which signals through TLR-4). Mal is not, however, involved 

in IL-! or IL-IS signalling [Fitzgerald et al., 2001]. 

After association with the MyD88/1L-IRlcomplex, both IRAKs are phosphorylated [Cao 

et al., 1996] and IRAK-l then appears to disassociate from the complex to interact with 

the downstream adapter TRAF-6 (TNF-receptor-associated-factor-6) [Muzio et al., 

1997]. 

Two MAP3K (MAP kinase kinase kinase) related proteins, TAK-l (TGF-~ activated 

kinase) and NIK (NFKB inducing kinase) then act downstream of TRAF-6. TAK-l 

associates with TRAF-6 as demonstrated by immunoprecipitation and then associates 

with and phosphorylates NIK [Ninomiya-Tsuji et al., 1999]. 

The ubiquitous transcription factor NFKB (nuclear factor KB) exists in a latent state 

bound by the inhibitory proteins collectively known as IKB (inhibitor ofKB) which mask 
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its nuclear localisation signal. In response to signalling by the kinases collectively termed 

IKK (lKB kinase), which interact with NIK [Regnier et al., 1997; Mercurio et al., 1997; 

Woronicz et al., 1997], IKB is phosphorylated, which serves as a signal for its capture 

and destruction by proteosomes [DiDonato et al., 1997; Zandi et al., 1997]. NFKB is thus 

released. 

However, other experiments have shown that NIK is not necessarily required for the 

activation ofNFKB. In cultured human macrophages, the adenoviral mediated expression 

of kinase deficient NIK did not affect NFKB activation following stimulation by IL-l a or 

TNF-a, although it was necessary for NFKB activation following LPS stimulation. In 

addition, kinase deficient NIK did not affect the spontaneous secretion of TNF-a from 

rheumatoid arthritis derived synoviocytes [Smith et al., 2001]. 

Upon degradation of IKB, it dissociates from NFKB. NFKB then translocates into the 

nucleus to increase gene expression of numerous inflammatory and immune mediators 

[Beg et al., 1993]. Inflammatory mediators induced by NFKB include the cytokines IL-l, 

IL-2, IL-6, IL-8, TNF-a and GM-CSF, acute phase proteins such as the C3 component of 

complement and SAA, and cell adhesion molecules such as ICAM-l, E-selectin and 

VCAM-l [reviewed in Kopp & Ghosh, 1995]. 

1.1.17: IL-l Signalling (MAP kinase pathways) 

IL-I can induce at least three MAP kinase pathways as well as the NFKB pathway. The 

MAP kinase pathways identified result in activation of JNK (Jun N-terminal kinase) 
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which is also known as SAPK (stress activated protein kinase), p38 and ERK2. These 

kinases activate several transcription factors and transcription factor subunits. The most 

well characterised is the JNK pathway, which phosphorylates the N-terminal domain of 

c-jun, a subunit of the AP-I (activator protein 1) transcription factor. This is involved in 

IL-2 gene regulation amongst others [reviewed in Brooks & Mizel, 1994]. 

1.2: Illrn-I
- mice, University of Sheffield 

1.2.1: Spontaneous inflammatory diseases in IL-lra null mice from the University of 

Sheffield 

As discussed in section 1.1.14, three groups have produced mice deficient in IL-l ra. Our 

original colony of IL-l ra null mice ("Sf') is derived from inbreeding a cross between a 

I29/0la chimaera and an outbred MFI mouse. The IL-Ira null mice suffer from 

inflammation of the aorta and its main branches [Nicklin et al., 2000]. Two lines, derived 

from this original cross (Sf2 and SfJ) are studied in this work. 

Backcrossing of fllrn-Io onto a Balb/c background produces IL-Ira null mice which 

develop a spontaneous RA-like condition, particularly in the hind limbs. This is in 

agreement with Horai et al. [Horai et al., 2000]. Our Balb/c backcrossed fllrno'o mice also 

suffer from arteritis and an additional psoriasis-like disorder of the skin on their ears and 

occasionally tails. The arterial inflammation is also seen in cadavers of mice from the 

Horai group [Nicklin, Hughes, Iwakura, unpublished data]. The three diseases, and 

relevance of IL-! to their aetiology are discussed below. 
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1.2.2: Vasculitis 

In the human there at approximately 20 different disorders which can be classed as 

vascuilitides, including giant cell arteritis (GCA), vasculo-Beh~tet's disease, polyarteritis 

nodosa, Kawasaki's disease, Churg-Strauss syndrome and Takayasu's arteritis (TA). 

Blood vessels affected in human vasculitides range from the smallest blood vessels in the 

skin (for example in Churg-Strauss) to the aorta (GCA, TA). Vasculitis also commonly 

occurs as a secondary feature of other diseases such as RA and systemic lupus 

erythmatosus (SLE) [Savage et al., 1997]. GCA and TA are here discussed in more detail 

as they affect the aorta, in a similar manner to the arteritis observed in our Illrn-'- mice. 

1.2.3: Giant cell arteritis 

GCA (also known as temporal artertitis) is the most common of the arteritides in adult 

humans, with an incidence of -200/millionipopulationiyear [Savage et al., 2000]. It 

preferentially affects the medium and large sized branches of the upper aorta, particularly 

in the extracranial arteries [Hunder & Michet, 1985]. Sufferers, who are consistently aged 

over 50, display a range of symptoms including headache, joint pain, facial pain, fever 

and impaired vision. Patients respond well to glucocorticoids, but if left untreated 

complications can include blindness, stroke, aneurysms or ischaemia resulting from 

arterial stenosis [Huston et al., 1978; Hunder et al., 1990; Kaiser et al., 1998]. The 

inflammatory lesions in GCA are often granulotomous, and tend to occur in a 

discontinuous pattern, "skipping" areas of the vessel. 
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Arrangement of the arterial vessel wall 

There are three concentric layers in large arterial vessel walls - the intimal layer (closest 

to the lumen), the medial layer and the adventitial layer. The intimal layer consists of 

endothelium, and connective tissue layers including several layers of well-defined elastin, 

the internal elastic lamina (IEL). The medial layer is composed of circular arrays of 

smooth muscle cells, and the adventitial layer, furthest into the tissue, contains small 

blood vessels known as the vasa vasorum which supply the muscle around the main 

vessel. The medial-adventitial junction also contains an elastic layer, the external elastic 

lamina, but it is not as distinct as the intimal-medial junction. 

1.2.4: Characterisation of GCA lesions and the involvement of IL-l 

The infiltrates in GCA are composed mainly ofCD4+ T-cells and macrophages which are 

found in all layers of the arterial wall, but the inflammation tends to be focused at the 

area of the internal elastic lamina. Multinucleated giant macrophages are frequently 

observed. Neutrophils tend to be less abundant within GCA lesions. Mast cells are also 

frequently present, and are almost exclusively found in the adventitia rather than in the 

medial or intimal layers [Banks et al., 1983]. Aortic aneurysms can occur in GCA due to 

necrosis of the smooth muscle cells and degradation of the elastic layers of the vessels. 

Fragments of elastin have been identified within giant cells [Banks et al., 1983]. 

The fragmentation of the intimal elastin layers may be due to the action of several 

products of CD68+ (microsialin) macrophages. Although classically used as a 

macrophage marker, CD68 may also be expressed by some myeloid-derived dendritic 
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cells [Thompson et al., 2002]. There appears to be two subsets of CD6S+ cells active in 

GCA lesions - one set, which expresses iNOS and secretes MMP-2 (Gelatinase-A) 

[Weyand et al., 1996], and elevated levels of MMP-9 (Gelatinase-B) [Nikkari et al., 

1996], localises preferentially to the intimal layer and intimal-medial junction (the site of 

tissue destruction), whereas another subset which secrete IL-l (3, IL-6 and transforming 

growth factor (3-1 (TGF(3-1) but which do not secrete MMP-2 nor express iNOS, co­

localise to the adventitia with IFNy producing CD4+ T-cells [Wagner et al., 1994; 

Weyand et al., 1996]. 

The localisation of cells that are probably macrophages and activated CD4+ T-cells to the 

adventitia, with concurrent upregulation of chemokines and adhesion molecules induced 

by IL-l P in this area suggests that inflammatory cells are recruited into the lesional area 

via the vasa va sorum in the adventitia rather than through the main vessel wall. MCP-l 

production, probably stimulated by IL-l and IFNy, has been shown associated with 

mononuclear cells in all layers of the vessel wall, and also with endothelial cells, giant 

cells and some smooth muscle cells [Ellingsen et al., 2000]. The levels of MCP-l 

production differed between the three layers in this study, with higher numbers of cells 

staining positively for MCP-l in the intimal and adventitial layers than the medial layer. 

Since a gradient of chemokine concentration is required for chemotaxis, the differing 

levels of MCP-l production seen may indicate leukocyte trafficking between the 

adventitia and intima. 
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As well as fragmentation of the IEL (resulting in aneurysm), intimal growth, which can 

lead to vascular occlusion and stenosis, is observed in GCA. In atherosclerosis, this 

growth is associated with the release of platelet-derived growth factor (PDGF), a potent 

chemoattractant for vascular smooth muscle cells (VSMCs), from macrophages and giant 

cells along the medial intimal junction [Kaiser et al., 1998]. Intimal thickening is due to 

migration of VSMCs from the media into the intima where they proliferate and secrete an 

excess of matrix proteins such as collagen [McCaffrey et al., 1995]. This process is 

mediated by PDGF [Ross et al., 1986; Jawien et al., 1992]. IL-la and IL-l~ are potent 

mitogens for VSMCs, inducing their proliferation [Libby et al., 1988; Beasley & 

Cooper., 1999], due to their induction of the release of PDGF [Ikeda et al., 1990; Raines 

et al., 1989]. Human VSMC themselves produce IL-l in an autocrine loop following 

stimulation with IL-l [Warner et al., 1987]. 

The intimal hyperplasia is associated with the formation of new vasa vasorum. The vasa 

vasorum are normally restricted to the adventitial layer, but in GCA microvasculature is 

seen forming in the media and intima. The degree of angiogenesis correlates with medial 

thickening, destruction of the IEL and with the release of vascular endothelial growth 

factor (VEGF) from the giant cells and macrophages clustered along the medial intimal 

junction. The amount of neovasculature also correlates closely with the levels of IFNy 

production within the lesion [Kaiser et al., 1999]. 
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1.2.5: Possible causes of GCA 

The initiating factors and mechanisms of GCA progression are not well defined. Some 

lines of evidence suggest that GCA is a T-cell driven, autoimmune disease. CD4 + T -cells 

have been shown to be critical in the disease process. Brack et al., using xenografts of 

human GCA temporal artery biopsies onto SCID mice, showed that the elimination of 

tissue infiltrating T -cells from the arterial grafts results in the eradication of vasculitis 

development, and adoptive transfer of CD4+ T-cells from diseased human tissue into 

SCID mice results in upregulation of pro-inflammatory mediators [Brack et al., 1997a, 

1997b]. 

Analysis of the T-cell receptor (TCR) molecules present on tissue infiltrating T -cells 

from GCA lesions showed that T -cells with identical beta chains could be isolated from 

distinct areas of lesions, suggesting that the CD4+ T-cells involved in lesion formation in 

GCA may recognise an antigen or autoantigen within the vessel wall. However, these 

results were from only one temporal biopsy [Weyand et al., 1994]. In support of this 

work, IFNy producing CD4+T-cells from the adventitia were immunohistologically 

stained for the IL-2 receptor a.-chain (CD25) and tal in. The a.-chain of the IL-2 receptor 

is expressed after TCR-mediated stimulation, and talin is a cytoskeletal protein which is 

reorganised in T-cells after interaction with antigen presenting cells (APCs). It was 

shown that the majority of the IFNy producing T-cells expressed CD25, some had 

reorganised tal in, and a subset was also undergoing proliferation as identified by 

expression of the Ki-67 nuclear antigen [Wagner et al., 1996]. Ki-67 is a protein 

expressed in all stages of the cell cycle apart from GO, so it can be used as a marker of 
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actively proliferating cells. Thus, a fraction of the T -cells present in the lesional areas of 

OCA appear to have been activated by stimulation of their antigen specific receptors. 

Putative antigens in GCA 

There are many possible exogenous antigens, which might trigger an inflammatory 

disease in the aorta that may then develop into a chronic autoimmune disease. One of 

these is Chlamydia pneumoniae. The bacterium has been identified in atherosclerotic 

lesions [Ong et al., 1996], and associated with coronary artery disease [Dahlen et al., 

1995]. C. pneumoniae was detected by both immunohistochemistry and PCR in 8 out of 9 

temporal artery tissues from patients with OCA, whereas control specimens were all 

negative. The eight positive results all came from patients with upper respiratory tract 

symptoms, which are often reported in OCA sufferers. The bacteria localised to the 

adventitial layers of the vessels, and when serial sections were stained for dendritic cells 

it was shown that dendritic cells were also predominantly found in the adventitia, 

localised with or near the bacteria [Wagner et al., 2000]. Dendritic cells, as well as being 

efficient antigen presenting cells, are capable of stimulating naIve T -cells [VanVoorhis 

et al., 1983]. Immune responses to Chlamydia infection are T-cell dependent, and in 

these infections monocytes are stimulated to produce IL-l P [Rothermel et a1., 1989]. 

Therefore, in OCA, C. pneumoniae present in the vessel walls may act as an antigen that 

is presented by dendritic cells, which also stimulate naIve T -cells. Production of IL-I ~ by 

monocytes is induced, which may further stimulate dendritic cells, and the response is 

enhanced. However, other infectious agents have also been implicated in OCA such as 
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parvovirus B 19 [Gabriel et al., 1999] and Mycoplasma pneumoniae [Elling et al., 1996]. 

It is a possibility that infection generally is a risk factor in the development of GCA. In a 

study of GCA in Olmsted County, Minnesota, it was found that the incidence of GCA 

tended to have cyclical peaks every 6-7 years [Salvarani et al., 1995] which could 

indicate concurrence with unidentified infections which also tend to occur in cycles 

within a community. It is also possible that the elderly patients with GCA are more 

susceptible to infection, and that it is not an initiating factor but rather a result of GCA. 

Our IL-l ra null mice which suffer from arteritis are housed in specified pathogen free 

conditions, which although not sterile are free of several microorganisms, including 

mouse Chlamydia. 

1.2.6: Genetic susceptibility to GCA 

The involvement of possible antigen presentation by dendritic cells and macrophages, 

along with evidence that GCA is a T-cell driven disease, suggests a possible role for HLA 

(human leukocyte antigen) gene polymorphism in susceptibility to arteritis. HLA genes 

are numerous and highly polymorphic, and code for the components of the human major 

histocompatibilty complex (MHC). T-cells recognise peptide fragments bound to the 

MHC on antigen presenting cells, which makes analysis of the MHC and its interactions 

central to much immunological investigation. 

GCA has been shown to be associated with specific variants of the HLA-DRB 1 locus, 

which codes for the HLA-DR f31 chain of the MHC class II complex [Weyand et al., 

1992]. The HLA-DRf31 chain associates with the HLA-DRa chain to form a complex 
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which presents peptides to CD4+ T-cells. The HLA-DRBI variants associated with GCA 

all relate to a region on the J3-pleated sheet of the antigen presentation site. Therefore the 

fonnation of specific peptide binding grooves on the MHC class II molecules may affect 

antigen presentation in individuals carrying the alleles. 

Genetic studies on the susceptibility to other vascular disorders have suggested that a 

variation in the IL-l ra locus itself might playa role. It was shown that carriage of the rare 

allele (allele 2) of ILl RN in humans shows a strong association with single vessel 

coronary artery disease [Francis et al., 1999]. IL-IRN*2 carriage is also associated with a 

number of other inflammatory diseases including psoriasis [Tarlow et al., 1997], alopecia 

areata [Tarlow et al., 1994], Graves' disease [Blakemore et al., 1995], SLE [Blakemore 

et al., 1994], and polymyalgia rheumatica (PMR) [Boiardi et al., 2000]. PMR is often 

found (in up to 50% of cases) in patients with GCA, and has similar symptoms but no 

temporal artery lesions [Gonzalez-Gay et al., 1999]. In SLE, IL-IRN*2 carriage together 

with MHC class II variants DR17 and DQ2 increases the risk of development of SLE by 

seven fold [Tjernstrom et al., 1999]. However, it currently seems likely that IL-I RN*2 

acts more as a marker for disease susceptibility rather than having a functional 

consequence, since where tested, (in keratinocytes), levels of IL-lra mRNA production 

do not appear to differ with IL1RN genotype [Clay et al., 1996]. 

There are contradictory reports, however, that protein levels ofIL-lra are both elevated 

[Danis et al., 1995] and lowered [Dewberry et al., 2000] in association with IL-IRN*2. 

IL-IRN*2 has also been shown to be associated with increased production ofIL-IJ3 from 
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monocytes after stimulation with phorbol dibutyrate [Santtila et al., 1998]. The 

mechanism for this association has not been investigated. 

It is likely that a number of factors are involved in the development of GCA. Ageing, 

genetic susceptibility and possibly a trigger (such as an infection) for onset of the disease 

may all contribute to pathogenesis of GCA. 

1.2.7: Takayasu's arteritis 

Takayasu's arteritis was first described in 1908 by Mikito Takayasu. It is also 

occasionally referred to as "pulseless disease" since patients with TA can have a 

peripheral pulse which is difficult to detect, due to stenosis of the arteries involved. T A 

typically affects females under 40 years of age. It is a rare disease, with 2-3 cases per 

million people each year in Caucasian populations although it has a higher incidence 

amongst Oriental, Asian and Indian populations [Arend et al., 1990; Lie, 1998]. It 

involves the aorta (particularly the aortic arch) and its major branches [Numano et al., 

2000], although about 10% of patients also have coronary artery disease [Byrne et al., 

2001]. 

Patients initially present with systemic symptoms such as fever, weight loss and fatigue. 

During this phase, T A often goes undetected or is misdiagnosed due to the generalised 

nature of the symptoms [Sharma et ai., 1996]. The systemic phase is followed by the 

occlusive phase, where the pulse becomes difficult to detect and patients experience 
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symptoms caused by narrowing of the affected arteries such as claudication (aching on 

exertion) in the limbs [Kerr et al., 1994]. 

1.2.8: T A lesions 

T A is histologically similar to GCA. The medial and adventitial layers become dense and 

fibrous, and this change is accompanied by inflammatory infiltrates. These consist of 

numerous T-cells, CD68+ cells (macrophages) and dendritic cells within the aortic vessel 

walls. Lymphocytes tend to co-localise with dendritic cells, particularly around the 

neovessels seen in the adventitia, and granulocytes also accumulate in the adventitial 

layer. Neovascularisation is seen within the adventitia and the intima [Inder et al., 2000]. 

Lesions tend to end in fibrosis, and fresh active lesions can be seen in close proximity to 

older fibrotic ones [Hotchi, 1992]. Healed arteritis in T A is indicated by the presence of 

extensive scarring in the media [Lie, 1990]. 

1.2.9: Possible aetiology of T A 

Although the initiating factors and mechanisms of T A are yet to be defined, some 

research suggests an immune response to an antigenic factor within the vessel wall, 

which may be an autoantigen. For instance, there was found to be a significantly raised 

level of an antibody that binds an aorta-specific antigen in T A patients compared to 

normal controls and patients with RA or SLE. Following collagenase treatment of the 

aorta, anti aorta antibody titres fell almost to the level of that in normal controls, 

suggesting that collagen in the vessel wall may be acting as an autoantigen [Dhingra et 
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ai., 1998]. However, anti-aorta antibodies were not found in the sera of35 TA patients in 

another study [Baltazares et ai., 1998]. 

Other work has shown the presence of high levels of anti-endothelial cell antibodies 

(AECA) in the sera of patients with TA, as measured by ELISA using HUVEC as a target 

[Sima et al., 1994; Eichorn et al .• 1996; Nityanand et ai., 1997]. The presence of AECA 

has also been demonstrated in RA [Bodolay et ai., 1989], SLE [Rosenbaum et ai., 1988] 

and Wegener's granulomatosis [Ferraro et ai., 1990]. AECA from patients with 

Wegener's granulomatosis can stimulate endothelial cells to produce MCP-l, IL-l(3, IL-6 

and IL-8, as well as upregulate expression of adhesion molecules (E-selectin, ICAM-l 

and VCAM-l (vascular cell adhesion molecule-I, found on activated endothelium)) [Del 

Papa et al., 1996]. 

Blank el al. prepared six monoclonal AECA (mAECA) from a TA patient that together 

recognised all of the epitopes on HUVEC targeted by the patients' whole IgG-AECA. 

They showed immunohistochemically that the autoantibodies bound specifically to 

HUVEC, and to human aortic endothelial cells. Immunoprecipitation revealed that a wide 

range of HUVEC target molecules were recognised by the mAECA. Four of the mAECA 

were capable of activating the HUVEC, as measured by IL-6 production. In addition, E­

selectin, ICAM-l and VCAM-l expression and NFKB activation were all increased 

following incubation with the antibodies [Blank et ai., 1999]. After incubation with 

mAECA, there was increased monocyte adherence to HUVEC due to the elevated levels 

of adhesion molecules. 
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Interestingly, none of the six mAECA isolated showed significant anti-microvascular 

activity as they did not bind to TrHBMEC (bone marrow endothelial cells), unlike 

positive controls from a patient with a vasculitis of the microvasculature [Blank et al., 

1999]. This observation is compatible with the fact that TA affects large arteries (the 

aorta), and suggests that TA is an antibody driven disease. AECA may well playa key 

role in T A by activating endothelial cells. The enhancement of NFKB activation 

following AECA activation of endothelial cells may lead to increased production of IL-l, 

which in turn further upregulates expression of endothelial cell adhesion molecules, 

induces production of chemokines, and activates T lymphocytes, thus increasing damage 

to the affected area. 

It seems plausible that IL-l could induce endothelial cell antigens that are recognised by 

AECA in arteritides such as T A. AECA may then play a part in at least perpetuating the 

disease. 

Seko et al. proposed another possible mechanism for vascular injury in I A involving 

direct damage to the vascular wall by the release of perf orin from natural killer (NK) 

cells, cytotoxic T-Iymphocytes (CTLs, CD8+ T-cells) and gammadelta (y:8) T-cell 

receptor (TCR) T-cells [Seko et al., 1994]. The majority of T-cells recognise antigen 

through their a:(3/CD3 TCR complexes but a subset of T-cells, y:8 T-cells (representing 

<5% of the T-cell population). possess an alternative form of the TCR (y:8/CD3). Whilst 

a:(3+ T-cells also tend to have the CD4 or CD8 coreceptors, y:o I-cells do not. y:o T-cells 
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may be able to recognise antigen directly without assistance from APCs, and they are 

found abundantly within epithelial tissues. Peripheral blood y:o T-cells have also been 

shown to constitutively express perf orin protein in their cytoplasmic granules [Nakata et 

at., 1990]. Seko et at, using immunohistochemistry, showed that there was a roughly 

equal number of a:f3 TCR (CD4+ or CD8) T-cells to y:o T-cells in the infiltrate ofTA 

lesions. They also demonstrated the presence of a 65kDa heat shock protein (HSP-65) in 

the aortic tissue. HSPs are produced by cells in response to various stresses such as a rise 

in temperature, UV radiation or viral infection. Recognition of HSP-65 by y:o T -cells 

may playa part in autoimmunity as they have been shown to respond to mycobacterial 

HSP (HSP-65) in the presence of APCs in vitro [Haregewoin et at., 1989]. Therefore 

killer cells may release perf orin in response to recognition of autologous HSP-65, directly 

injuring the vascular wall by forming pores in the plasma membranes of target cells, 

perforating them so that cells die by colloid-osmotic lysis [Liu et at., 1996]. 

Subsequent analysis of the TCR V-a and V-f3 genes in the infiltrating a:f3 T-cells in TA 

showed that their usage was restricted [Seko et at., 1996]. This indicates that a dominant 

antigen may be being presented on the MHC molecules of APCs in T A. 

1.2.10: Genetic susceptibility to TA 

Further evidence for cell mediated autoimmunity in T A comes from studies which 

suggest that specific HLA molecules are associated with the disease, although there are 

discrepancies in the reports. A positive association is seen with the HLA-B5 molecule, an 

HLA class I antigen in North Indian patients [Mehra et at., 1996], and with both of its 
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two subtypes HLA-B51 and HLA-B52 [Mehra et al., 1998]. HLA-B52 has also been 

proposed as a susceptibility marker for TA in Mexico [Vargas-Alarcon et al., 2001], 

Thailand [Charoenwongse et al., 1998] and Japan (as well as HLA-B39) [Kimura et al .• 

1996; Kitamura et al .• 1998]. 

HLA-DRB 1 and HLA-DPB 1 were also found to be associated with T A in Japan [Kimura 

et al.. 1996], but this is probably due to DRB 1 and DPB 1 being in strong linkage 

disequilibrium with HLA-B52 in the Japanese population. 

However, in another study involving 21 T A patients. HLA typing showed no significant 

differences between the patients and normal controls [Kerr et al., 1994]. 

Polymorphisms in a HLA-linked gene, MICA (MHC Class I chain-related A) have also 

been associated with TA [Kimura et al., 1998]. Stress-induced MICA and MICB 

molecules have been shown to be recognised by y:8 T -cells in human intestinal 

epithelium [Groh et al., 1998]. In the Japanese population, MICA was shown to be in 

strong linkage disequilibrium with HLA-B [Kimura et al., 1998], so it is possible that 

polymorphisms in MICA and not HLA-B are susceptibility markers for TA. An 

additional argument against HLA-B involvement is that y:o T-cells do not use MHC class 

I restriction in their targeting of HSPs, so if an immune reaction against HSPs is a cause 

ofTA. this means any association with HLA-B5 is irrelevant. 

T A, like GCA. appears to be a multifactorial disease with the possible involvement of 

autoimmunity. IL-l may play an inflammatory role at various stages of the pathology, 
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Figure 5: S~hemati~ diagram of shear flow at an arterial bifurcation 
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from upregulation of adhesion molecules, integrins and chemokines to the induction of 

release of MMPs which destroy the IEL. It may also induce endothelial cell antigens 

recognised by AECA. Although the two diseases are histologically similar and appear to 

have similar pathologies, GCA affects the temporal arteries of patients aged over 50, 

whereas T A affects predominantly young females. 

1.2.11: The influence of shear stress on vascular lesion development 

The inflammatory arterial disease seen in our 111rn-l
- mice occurs mainly at specific sites, 

such as branches and bifurcations, which are also more susceptible to the development of 

atherosclerotic lesions in humans [Zarins et al., 1983]. Atherosclerosis is a widely 

prevalent inflammatory disease which involves the medium and large arteries [Berliner et 

al., 1995; reviewed in Ross, 1999]. 

In arterial sites, such as branches and bifurcations, which are prone to lesion 

development, there is an alteration in blood flow, with a decrease in the normally high 

shear stress and an increase in turbulence (Figure 5). Evidence for the contribution of low 

shear stress to atherogenesis comes partly from the use of "drag reducing polymers" 

(DRPs), such as Separan AP-30, in animal models of atherosclerosis. DRPs have been 

shown to reduce lesion size in hyperlipidemic rabbits and guinea pigs [Faruqui et al., 

1987; Ertepinar et al., 1990]. This was later demonstrated to be a result of increasing 

shear in areas, which are normally exposed to low, chaotic shear stress [Sawchuck et al., 

1999]. In human patients, measurement of wall shear stress in the carotid arteries of 

hypertensive patients also revealed that the number of lesions and the intima/media 
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thickness in the arteries were significantly negatively correlated to shear stress levels 

[Jiang et al., 1999]. 

The exact mechanisms by which shear stress affects the development of vascular lesions 

are unclear, however several pathways have been proposed. Nagel et ai, using a fluid 

shear stress model to replicate flow at arterial bifurcations, demonstrated that endothelial 

cells under disturbed laminar shear stress (replicating chaotic blood flow) displayed 

elevated levels of nuclear localised NFKB, early growth response-l (Egr-l, a 

transcription factor) and c-Jun and c-Fos which dimerise to form AP-l. They identified 

transcriptional regulatory elements, which they termed "shear stress response elements" 

(SSREs), within the promoter regions of some endothelial cell genes (such as the genes 

for ICAM-l and PDGF-B). The transcription factors NFKB, AP-l and Egr-l can interact 

with the SSREs, regulating expression of SSRE containing genes presumably as well as 

others with which they are known to interact, such as the genes for IL-l and MCP-l 

[N agel et al., 1999]. Thus it seems shear flow can modulate the expression of various 

genes, at least partly by upregulating expression of transcription factors. 

Endothelial dysfunction is often characterised by decreased vasodilation. High shear 

stress is known to be a potent inducer of the vasodilator NO by upregulating eNOS 

(endothelial nitric oxide synthase) [Topper & Gimbrone, 1999]. NO downregulates IL-la 

and IL-l P express·ion, possibly by inhibiting the nuclear translocation of NFKB [Peng et 

al., 1995]. Therefore in areas of low shear stress, less NO is produced, resulting in 

decreased vasodilation and less regulation of IL-l. Production of NO at areas of high 
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shear stress may be vasoprotective, and the decreased NO production in areas of low 

shear stress may contribute to vascular lesion development. 

Increasing shear stress has also been demonstrated to inhibit smooth muscle cell 

proliferation in vitro, whereas SMC proliferation increases with lower shear stress 

[Sterpetti et al., 1993]. As shear stresses are felt directly only by endothelial cells lining 

the vessels, they must release a factor which induces SMC prolferation under low shear. 

A study by Rectenwald et al. confirms the importance of low shear stress induced IL-l in 

neo-intimal hyperplasia (NIH). Experimentally induced low shear stress in the common 

carotid arteries of mice lacking IL-l Rl results in attenuated NIH as compared to wild­

type controls. In addition, they showed by RT-PCR that IL-la mRNA expression is 

induced after experimental low shear stress induction in the carotid arteries in wild-type 

animals [Rectenwald et al., 2000]. 

The contribution of low, turbulent shear stress to atherosclerotic lesion development 

seems likely to be substantial, but the complex mechanisms still need to be elucidated. It 

is possible that IL-l plays a role in low shear stress induced vascular lesion development, 

by being upregulated by low-shear induced nuclear translocation of NFKB and exerting 

its various effects on surrounding endothelial cells and leukocytes. 

1.2.12: Pathology and aetiology of rheumatoid arthritis (RA) 

RA is a well documented and prevalent chronic disease, although its cause remains 

unknown. RA affects nearly three times as many women as men, and mostly occurs 
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between the ages of 29 and 50 [Schiff, 2000]. Symptoms include joint stiffness and pain, 

tenderness and swelling of the affected joints. It is characterised by an inflammatory 

infiltrate in the synovial joints, with formation of a pannus that eventually leads to 

cartilage and bone destruction in the joint. The synovial lining of the joint space (which 

normally consists of macrophage-like cells and fibroblasts) becomes thickened 

(hyperplastic) as the synovial lining cells proliferate at an increased rate [Mohr et af., 

1975] and more macrophages and lymphocytes are recruited from the peripheral blood 

[Henderson et al., 1988]. The synovial infiltrate is composed mainly of activated T -cells 

intimately associated with APCs, PMNs, mast cells, B-cells and plasma cells [Tak et al., 

1997]. The destructive pannus which forms is composed mainly of fibroblast-like 

synoviocytes and macrophages [Bresnihan, 1999]. The cartilage-pannus junction is the 

site of cartilage erosion; in this area mast cells [Bromley et al., 1984] and PMNs are 

observed as well as macrophage- (type A synoviocytes) and fibroblast-like (type B 

synoviocytes) synovial cells [Shiozawa et al., 1983]. The synovium becomes increasingly 

vascular, and the observed neovascularisation has been associated with the expression of 

VEGF in synovial macrophages and endothelial cells of the small vessels found within 

the pannus, possibly induced by IL-l or TNF -a [Paleolog, 1996]. The macrophages 

activate T -cells which stimulate synovial fibroblasts to produce inflammatory cytokines 

including IL-l [Breedveld, 1998], which induce the release of MMPs from synoviocytes 

[Zvaifler & Firestein, 1994]. MMPs found in RA synovium include MMP-l and MMP-

9, which are induced by IL-t, as well as MMP-13 (collagenase 3, which degrades type II 

collagen and aggrecan) and MMP-15 (membrane-type 2 MMP (MT2-MMP) which 

activates proMMP-2 and proMMP-13, and is involved in TNF-a processing) [Konttinen 
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et al., 1999]. IL-I a and ~ can also induce MMP-13 secretion from fibroblasts in vitro 

[Uria et al., 1997]. 

Activated B-cells are also involved in RA. Most RA patients have IgM autoantibodies 

that recognise the Fc region of IgG. These autoantibodies are known as rheumatoid factor 

(RF) and their presence lends support to RA being an autoimmune disease. The precise 

contribution of RF to the pathogenesis of RA remains to be elucidated, and it has also 

been demonstrated in other diseases such as Sjorgen's syndrome [Feldmann et al., 1996]. 

Genetic susceptibility to RA 

There has been great deal of research into genetic susceptibility to RA, since there is a 

degree of familial clustering [del Junco et ai., 1984]. The HLA-DR locus has been shown 

to have a large contribution to predisposition to RA, as a large number of Caucasian RA 

patients are HLA-DR4 or HLA-DRI positive compared to controls [Ollier et ai., 1984; 

Gao et al., 1990; Schiff et al., 1982]. For example, in an investigation using 100 controls 

and 139 seropositive RA patients, the relative risk (odds ratio) of carriage of HLA-DR4 

and development of RA was calculated as 10.5 [Wordsworth et al., 1989]. In another 

investigation of HLA-DR4 in 52 RA patients and 59 controls, the DR4 subtype Dw4 was 

found in 86.5% of the patients and 55.9% of the controls, giving an odds ratio of 5.07 

[Gao et ai., 1990]. HLA-DRI was found in 30.6% of 49 Jewish RA patients as opposed 

to 11.1% of 90 controls (p = <10-3
) [Schiff et al., 1982]. HLA-DR genes encode MHC 

class II molecules with non-polymorphic a-chains and polymorphic ~-chains. 

Sequencing ofHLA-DR subtypes associated with RA (DR4 subtypes Dw4(DRBI *0401), 
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Dw14(DRBl *0404), Dw14a(DRBl *0408), Dw15(DRBl *0405) and DRl) has revealed 

that they share amino acid similarities at residues 70-74 of their HLA-DR (31 exons 

[Sherrit et al., 1996], suggesting that DRBI is an influential susceptibility locus within 

the HLA class II region [Wordsworth et al., 1989]. 

This supports the theory of carriage of an HLA "shared epitope" being related to RA 

susceptibility in humans [Gregerson et al., 1987]. The conserved amino acids are thought 

to convey disease susceptibility by acting as a binding epitope for a specific peptide 

(which may be a self-peptide), or by acting as an immuogen itself. 

Other HLA genes have also been proposed to influence susceptibility to RA, such as 

those encoding HLA-DQ. There is strong linkage disequilibrium between the loci DQBI, 

DQAl and DRBI and it has been suggested that that the extended HLA-DQ-DR 

haplotype contributes to RA susceptibility rather than DRB 1 haplotype alone [ZaneIIi et 

al., 1998]. HLA genotype appears to contribute >30% of the genetic component of the 

disease [Deighton et al., 1989] and the influence of other possible susceptibility loci are 

under examination including polymorphisms in the IL-l gene cluster [Cox et al., 1999; 

Jouvenne et al., 1999; Cantagrel et al., 1999]. 

T-cell involvement in RA 

T -cells are implicated as a playing a major role in RA, since the only role of HLA-DR 

molecules is to present antigen to T -cells. There are, however, conflicting reports as to 

their importance in RA pathology. Despite their large numbers in the synovial infiltrate, it 
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has proved difficult to detect their activation markers. For instance, although most 

synovial T-cells express MHC class II antigens, very few also express the IL-2 receptor 

[Pitzalis et al., 1987]. On the other hand there is an abundance of macrophage activation 

markers such as TNF -a and IL-l production [Salmon & Gaston, 1995]. Of the T -ceIIs 

present in the infiltrates, most tend to display a Thl type cytokine profile [Simon et al., 

1994]. A small proportion ofCD4+ T-cells within the perivascular areas express IL-2 and 

IFNy (but also IL-4 to a small extent). CD8+ T -cells are distributed throughout the 

synovium [Steiner et al., 1999]. 

One of the earliest observations in the pathogenesis of RA is that endothelial ceIIs swell 

and form high endothelial venules, with elevated expression of adhesion molecules which 

leads to increased cell migration [Iguchi & Ziff, 1986]. P- and E-selectin facilitate the 

migration of Thl rather than Th2 T -cells [Austrup et af., 1997], leading to heightened 

recruitment of Th 1 T -cells into the inflamed joint. It is possible that only a small number 

of activated T -ceIIs are required to maintain the disease. 

Putative auto antigens in RA 

In the search for an autoantigen in RA, several candidates have been suggested. One is 

human cartilage glycoprotein-39, HC gp39, which is secreted from chondrocytes. PBMC 

from RA patients proliferate in response to HC gp39, and it induces arthritis upon 

injection in incomplete Freunds adjuvant in Balb/c mice [Verheijden et al., 1997]. Type 

II collagen is also a potential autoantigen. Type II CIA is a well established model of RA 

in rodents and monkeys [Trentham et al., 1977; Courtenay et al., 1980; Yoo et al., 1988]. 
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Immunisation of animals with type II collagen in complete Freunds adjuvant results in a 

severe arthritis that affects several joints in the same animal. The arthritis is similar to 

that seen in humans, with joint swelling, synovial hyperplasia, formation ofi:mnnus and 

cartilage and bone erosion [Courtenay et al., 1980]. 

CIA in animal models is strain dependent, and only animals of certain MHC class II 

genotypes develop the disease [Wooley et al., 1981] suggesting that only certain MHC 

molecules are capable of presenting type II collagen. The mouse MHC cluster is 

generally known as H-2 (histocompatibility-2). For example, Balb/c mice, which are H­

i, are not susceptible to type II CIA, whereas DBAII mice (H-2q) are highly susceptible. 

This is in accordance with the observed link between RA susceptibility and certain HLA 

haplotypes in humans. Extracts of articular cartilage specimens from RA patients were 

found to contain antibodies to both native and denatured type II collagen as well as RF 

[Jasin, 1985]. Synovial cells from RA lesions secrete the antibodies, most frequently in 

patients who are also seropositive for RF [Tarkowski et al., 1989]. Testing of T-cell 

clones from RA synovial joints over a period of 3 years showed a persistence in the 

specificity of these clones to type II collagen [Londei et al., 1989], which suggests the 

continual stimulation of T -cells in the RA joint by APes bearing the autoantigen. 

Recently, it was shown that 64% ofRA patients, but not controls, had increased levels of 

anti-GPI IgG in their serum and synovial fluid [Schaller et al., 2001]. GPI, glucose-6-

phosphate isomerase, was initially identified as an autoantigen in spontaneous 

inflammatory arthritis in KlBxN TCR transgenic mice, which shares many features of 
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human RA. In this model, animals develop joint specific arthritic disease despite having 

systemic autoreactivity to the MHC class II allele I_Ag7 [Kouskoff et al., 1996]. Transfer 

of anti-GPI antibodies into healthy mice induces arthritis [Korganow et al., 1999]. It is 

possible that infectious organisms may express GPI that has homology to host GPI, 

leading to cross-reactivity with self-GPI. 

Although the cause of RA remains unknown, it is likely to be multifactorial, with a 

substantial genetic element to susceptibility, and the possible influence of environmental 

factors such as infections which may lead to autoimmune cross-reactivity. 

1.2.13: Involvement ofIL-l in RA 

IL-] in human RA 

IL-l involvement in the pathogenesis of RA is well established. Its presence and activity 

has been measured in joints affected by RA in many studies. Synovial fluid from patients 

with RA contains IL-l [Wood et al., 1983; Nouri et al., 1984] which is biologically 

active [Hopkins et al., 1988]. IL-l activity has been demonstrated in the culture 

supernatants from the synovium of RA patients, where the IL-l production correlated 

with degree of joint damage and inflammation [Miyasaka et al., 1988]. 

Plasma levels of IL-I p are increased in RA patients compared to control individuals, and 

the level of circulating IL-l P appears to positively correlate with clinical signs of the 

disease [Eastgate et al., 1988]. TNFa and TNFP mRNA are found, along with IL-la and 
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IL-lf3 mRNA, in mononuclear synovial cells isolated from RA patients [Buchan et al., 

1988]. 

TNF and IL-l proteins both induce the activation and proliferation of synovial fibroblasts 

in vitro [Gitter et al., 1989], and they also both induce collagenase production from 

synovial cells [Mizel et al., 1981; Dayer et al., 1985; Dayer et al., 1986], stimulate bone 

resorption in vitro [Gowen et aI., 1983; Bertolini et al., 1986] and inhibit proteoglycan 

synthesis in articular chondrocytes [Saklatvala, 1986]. Proteoglycan is a structural 

component of the cartilage which allows it to withstand mechanical forces by providing 

compressible and elastic properties. 

IL-l stimulates collagenase and PGE2 production in human synovial cells [Mizel et al., 

1981; Dayer et al., 1986] and fibroblasts [Postlethwaite et al., 1988]. Treatment of 

synovial fibroblasts from human RA pannus with IL-la., IL-l{3 or TNF-a. in vitro 

stimulates them to produce strornelysin and collagenase [MacNaul et al., 1990]. 

Collagenase and strornelysin mRNA are expressed at the synovial lining in RA patients 

[Gravallese et al., 1991]. 

IL-l in animal models of RA 

A line of transgenic mice, that express human TNF-a. protein in their joints and other 

tissues, develops chronic polyarthritis [Keffer et al., 1991]. The additional requirement of 

IL-l to TNF -a. in disease development was demonstrated. Administration of a blocking 

antibody to IL-IRI resulted in prevention of development of the disease [Probert et al., 
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1995]. TNF -ex levels were also decreased in these experiments, demonstrating a positive 

loop of TNF induction by IL-l. Other experiments have shown that TNF -ex induces IL-l 

production in synoviocytes from RA patients, since anti-TNF-ex treatment results in a 

decrease in IL-l production [Brennan et a1., 1989]. 

Animal models of arthritis have consistently shown that administration of IL-l into the 

joint space either induces or exacerbates the disease. For instance, administration by 

mini-osmotic pumps of recombinant human IL-l ~ to DBAII mice (H-2q) previously 

immunised with type II collagen significantly exacerbates the type II CIA. Onset of the 

disease is earlier and histological examination reveals a more severe inflammatory 

reaction [Hom et a1., 1988]. 

Intra-articular injection of human and porcine IL-l into the knees of rabbits results in a 

rapid accumulation of leukocytes in the joint space and loss of cartilage proteoglycan 

[Pettipher et a1., 1986; Dingle et a1., 1987]. Similar effects are seen when murine 

recombinant IL-1 is injected intra-articularly into C57BL/1O mice, which are exacerbated 

after repeated injections of IL-l [Van de Loo & Van den Berg, 1990]. In addition to 

proteoglycan breakdown, dose-dependent inhibition of proteoglycan synthesis is 

observed. 

Transgenic mice (on a C3H1HeJ background) which constitutively produce human IL-1ex 

under the control of the cytomegalovirus enhancer gene develop an arthritic disease and 

by 56 days of age, hyperplastic synovium and the formation of destructive pannus is 
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observed. The hyperplastic synovial membrane is composed mainly of macrophages 

expressing human IL-l a., which is also expressed by the synovial fluid monocytes and 

the synovial lining fibroblasts [Niki et al., 2001]. 

Chemokines and adhesion molecules in RA 

Synovial fluid from RA patients is chemotactic for both T -cells and B-cells, and the 

chemotactic qualities of the fluid are largely removed by treatment with anti-IL-I 

antibody [Miossec et al., 1986]. High levels of the chemokine MCP-l, whose mRNA 

expression and secretion from fibroblast-like synovial cells is induced by IL-l, have been 

detected in the synovial fluid of RA patients. MCP-l injected into the knee joints of 

rabbits induces the accumulation of mononuclear cells in the synovial lining, 

demonstrating that MCP-l is an important chemotactic factor in RA for the migration of 

macrophages into the synovium [Akahoshi et al., 1993]. 

IL-l(3, TNF-o. and IFNy all induce ICAM-l and VCAM-l expression on cultured 

fibroblast-like synoviocytes derived from the synovial lining of RA patients [Morales­

Ducret et al., 1992]. VCAM-l mediates the recruitment ofT-cells into the synovium by 

interacting with its ligand, the integrin VLA-4 (o.4f31) on T-cells [Morales-Ducret et al., 

1992]. Therefore the cytokines present in RA tissue, induding IL-l, enhance expression 

of adhesion molecules and thereby facilitate the recruitment of leukocytes into the 

synoVlUm. 
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Blocking the action of IL-I in RA in vitro 

Further evidence for the involvement of IL-l in RA comes from studies in which disease 

incidence and severity can be ameliorated by administration of IL-l inhibitors, such as 

IL-lra or blocking antibodies to IL-l. Antibodies to IL-l(3, IL-6 and TNF-a inhibit 

cartilage degradation in vitro by fibroblasts obtained from RA patients, demonstrating 

their activity in activating fibroblasts to release metalloproteinases [Scott et al., 1997]. 

Blocking the action of IL-I in RA in vivo 

In LPS induced arthritis in rabbits, injection of rabbit IL-lra partially ameliorates the 

disease. There is a marked decrease in leukocyte infiltration and articular cartilage 

destruction [Matsukawa et al., 1993]. In the murine type II CIA model, neutralisation of 

IL-l by rabbit anti-mouse IL-l a and IL-l f3 antibodies during established disease results 

in significant suppression of disease activity [Joosten et al., 1999]. Anti-IL-la and IL-lf3 

antibodies in combination injected before onset of established CIA completely prevents 

disease [Van den berg et al., 1994]. Intraperitoneal injections oflL-lra into mice 14 days 

after administration of type II collagen results in a delay in the onset of CIA and a 

reduction in disease severity, along with a reduction in serum levels of the anti-type II 

collagen antibody [Wooley et al., 1993]. 

Following antibody neutralisation of IL-l in established CIA, there is a marked decrease 

in serum cartilage oligomeric matrix protein (COMP), a marker released from cartilage 

during cartilage turnover, demonstrating IL-l involvement in cartilage breakdown in 

CIA. Bone erosion, as indicated by radiological analysis, is also prevented in anti-IL-l 
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treated animals. On the other hand, blocking of TNF -a by administration of soluble TNF 

binding protein does not affect serum CaMP levels or bone erosion. It does however 

reduce the influx of inflammatory cells [Joosten et al., 1999]. This data suggests that 

TNF-a is important in the initial influx of inflammatory cells into the synovial space, 

whilst the role of IL-l is primarily involvement in cartilage and bone destruction in CIA. 

Although neutralisation with anti-IL-l ~ results in a marked suppression of arthritis in 

CIA, and only a small effect is seen with anti-IL-la, the optimal suppression is achieved 

using anti-IL-la and anti-IL-l{3 together. This suggests that although IL-l{3 plays the 

greater role in the progression ofRA, both forms are involved [Joosten et al., 1996]. 

In IL-! ra transgenic mice, overexpression of IL-! ra leads to a reduction in the incidence 

and severity of CIA, whereas deletion of III rn results in a significantly earlier onset of 

disease with heightened severity, indicating a role for endogenous IL-lra in protection 

against CIA [Ma et al., 1998]. IL-lra null mice on a BaIb/C background develop a 

spontaneous RA-like disease [Horai et al., 2000, this work] (see section 1.1.14). 

Interestingly, these mice are not susceptible to CIA. 

IL-1 ra in clinical trials as therapy for RA 

The beneficial effects of using IL-l ra in animal models has led to clinical trials in human 

RA patients. In one trial involving 472 patients with active RA, daily subcutaneous 

injections of IL-l ra significantly reduced the symptoms of RA by 24 weeks [Schiff, 

2000]. Treating human RA patients with recombinant IL-lra results in a decrease in the 

numbers of infiltrating macrophages in the inflamed synovial tissue, and a decrease in the 
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number of endothelial cells expressing E-selectin and the number of mononuclear cells 

expressing VCAM-l and ICAM-l. Clinically, in this study some patients who received 

IL-lra also had an arrest in the progression of joint damage [Cunnane et al., 2001]. Anti­

TNF-a. therapy (using a monoclonal antibody) also improves the symptoms ofRA [Elliot 

et al., 1994] in part due to the reduction of induction of IL-l. 

IL-l, acting in conjunction with other cytokines such as TNF-a., plays a major role in 

several aspects of RA. Anti IL-l treatment is very effective at preventing disease 

progression in animal models of RA and humans, supporting the hypothesis that IL-l is a 

key mediator of inflammation-induced damage in RA. 

1.2.14: Psoriasis: Psoriatic lesions 

Psoriasis is a chronic skin disease, which is characterised by inflammation and scaling of 

the skin, affecting up to 2% of the Caucasian population. Plaque psoriasis (psoriasis 

vulgaris) is the most common form, with the plaques being patches of thick, reddened 

skin covered in silvery scales. The major cause of the psoriasis plaque is altered 

epidermal keratinocyte differentiation and hyperproliferation of the keratinocytes, leading 

to a thickened epidermis ("acanthosis"). The hyperproliferative keratinocytes form 

characteristic elongations which reach down into the dermis, known as "rete ridges" or 

"rete pegs". Histopathology reveals a mixed dermal inflammatory infiltrate composed of 

T-cells, monocytes and macrophages [Bjerke et al., 1978]. Neutrophils infiltrate the 

epidermis and may aggregate underneath the stratum corneum (the horny, top layer of 

skin) at the top of rete ridges to form sterile Munro microabscesses. There is 
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hyperkeratosis, a thickening of the stratum corneum, and also retention of nuclei in the 

stratum corneum ("parakeratosis"). The dermal papillae are elongated and club shaped 

and fit in between the rete ridges of the epidermis [Baden, 1984]. There is also increased 

vascularity of the dermis with a change in shape of the small vessels to a more tortuous 

morphology [Barker, 1991]. 

T-cell involvement in psoriasis 

In active lesions, T-cells tend to be CD4+ [Baker et af., 1984]. CD4+ T-cell clones derived 

from the epidermis of psoriasis patients have a Th 1 phenotype [Vollmer et af., 1994, 

Schlaak et af., 1994]. In skin biopsies from psoriasis patients, mRNA for IFNy but not IL-

4 or IL-IO can be detected [Schlaak et af., 1994]. peR and immunostaining also show 

elevated levels of Thl-type cytokines in lesional skin, with production of IL-l, IL-2, 

IFNy and TNF-a. and no significant levels ofIL-4, IL-5 or IL-I0. Increased levels ofIL­

I ex and IL-I f3 have also been shown in non lesional psoriatic skin [Uyemura et af., 1993]. 

This may indicate an early role for IL-l in psoriasis lesion development. 

Vollmer et af. detected the production of IL-5 in T-cell clones derived from lesional 

psoriatic skin. The production of IL-5 from T-cells does not fit in with a Thl cytokine 

profile. This may suggest that a novel subset of T -cells is involved in psoriasis, which 

produce a complex cytokine profile and are able to enhance keratinocyte proliferation 

since this profile was observed in T-cell clones whose supernatants were capable of 

acting as mitogens for keratinocytes in vitro [Vollmer et al., 1994]. Another study 

suggests a mixture of Th 1 and Th2 T -cells in psoriasis lesions. Measurement of IFNy and 
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IL-4 production T-cell clones prepared from the psoriatic plaques of two patients 

revealed the presence of ThO, Thl and Th2 T-cell subsets [Barna et al., 1994]. However, 

the Th2 type cytokines measured in these studies may be involved in the resolution of the 

plaques. 

Psoriasis is generally agreed to be a T-cell driven disease, since cyc1osporin is an 

effective treatment [Griffiths et al., 1989] and blocking T-cell binding to LFA-3 

(leukocyte function associated antigen-3, an adhesion molecule) on APCs appears to be 

an effective therapy for psoriasis in clinical trials [Magilavy, 1999]. 

1.2.15: Causative factors in psoriasis 

Genetic susceptibility to psoriasis 

Like GCA, T A and RA, the cause of psoriasis is unknown. It, too, appears to have a 

genetic input into susceptibility to the disease. Monozygotic and dizygotic twins have a 

concordance rate of -40% and -10% respectively [Farber et al., 1974]. There are two 

cohorts with different average ages of onset for psoriasis, type 1 with a mean age at onset 

of 16-20, and type 2 with a mean age at onset of 55-60. Various HLA antigens have been 

suggested to be associated with psoriasis, particularly those of class I. The early onset 

psoriasis displays more familial inheritance than the late onset type, and appears to be 

linked with the HLA class I antigen CW6 [Henseler et al., 1985; Schmitt-Egenolf et al., 

1993]. 

63 



The S gene (encoding corneodesmosin), located only 160kb from HLA-C within the 

MHC, has also been suggested to be linked to psoriasis [Tazi Ahnini et 01., 1999a]. 

Corneodesmosin is expressed during keratinocyte differentiation and its cleavage appears 

to playa major part in desquamation. Polymorphisms in allele 5 (at +619, +1240 and 

+1243) have been linked to psoriasis [Tazi Ahnini et 01., 1999a; lenisch et 01., 1999; 

Allen et 01., 1999]. Analysis of the relative contributions of the S gene and HLA-CW6 

shows that they both independently exert effects on susceptibility to psoriasis [Tazi­

Ahnini et 01., 1999b]. 

Five different loci are so far thought to contain psoriasis susceptibility genes, PSORI on 

6p21.3 (which includes the S gene), PSOR2 on 17q, PSOR3 on 4qI2-q13, PSOR4 on 

lcen-q21 and PSOR5 on 3q21 [Henseler, 1997]. In a Chinese population, the A5.! allele 

of the MHC-associated MICA gene was also found to be significantly associated with 

psoriasis [Cheng et 01., 2000]. 

Psoriasis is now believed to be a complex disease, with the input of several genetic 

factors and an additional environmental influence such as infection. It is possible that 

trigger factors such as psychological stress, skin injury from sunburn or surgery, bacterial 

infection such as streptococcal infection (with bacterial endotoxin acting as a 

superantigen), yeast or viral infection [reviewed in Ortonne, 1999] induce the onset of 

psoriasis in genetically susceptible individuals. 
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1.2.16: IL-l in psoriasis 

Endothelial cells 

IL-l a derived from the stratum corneum of normal skin upregulates the expression of the 

endothelial cell molecules ICAM-l, VCAM-l and ELAM-l (endothelial leukocyte 

adhesion molecule-I) when injected intradermally into healthy skin [Groves et al., 1992]. 

Keratinocytes 

Keratinocytes of the epidermis proliferate at the basal layer, after which they migrate up 

through the epidermal layers where they stop dividing and undergo various 

morphological and biochemical changes. The top layer of the epidermis, the stratum 

corneum, is made up of layers of dead, terminally differentiated keratinocytes. As the 

cells progress through the various stages, they express different keratins. Keratins are a 

family of proteins expressed in pairs, which form 8-10nm structural filaments in the 

cytoplasm of all epidermal cells. Normally, cells at the basal layer express K14 and K5. 

Cells undergoing terminal differentiation express Kl and KIO. During hyperproliferation 

however, as in psoriasis, there is a reduction in Kl and KI0 expression and K6 and K16 

are expressed at high levels in the suprabasal layers of hyperproliferative epidermis 

[Weiss et al., 1984; Stoler et al., 1988]. K6 and K16 mRNA is expressed at low levels in 

normal epidermis without production of the proteins, except for around the outer root 

sheath of hair follicle and on the nail bed [Stoler et al., 1988]. 
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Upon injury, cytoplasmic IL-la or pro-IL-l P is released from keratinocytes [Murphyet 

al., 2000]. As keratinocytes do not contain active ICE [Mizutani et al., 1991a], the IL-I~ 

released is presumably processed in an ICE-independent manner. One candidate is 

stratum corneum chymotryptic enzyme (SCCE) which has chymotrypsin-like activity. 

Chymotrypsin and chymotrypsin-like proteases have been shown to be capable of 

processing pro-IL-l ~ to the mature form in vitro [Mizutani et al., 1991 b]. Biologically 

active IL-l P is present in psoriatic scales, as measured by ELISA and its ability to induce 

E-selectin expression on HUVEC [Lundqvist & Egelrud, 1997]. 

Although most of the IL-l activity observed in psoriatic lesions is attributed to IL-l a, in 

vitro IL-I P induces the psoriatiform epidermal phenotype in skin organ cultures derived 

from healthy skin and non lesional psoriatic skin. The phenotype includes induction of 

keratin 16 and keratin 17 markers on keratinocytes, and induction of expression of 

ICAM-l and HLA-DR on basal keratinocytes [Wei et al., 1999]. 

IL-l activates keratinocytes, causing them to proliferate and become migratory [Kupper 

& Groves, 1995] and express K6 and K16, ICAM-l, integrins and fibronectin [Komine et 

af., 2001; reviewed in Freedberg et al., 2001]. GM-CSF produced in T-cells after IL-l 

stimulation, is also capable of inducing keratinocyte proliferation [Hancock et al., 1988]. 

IL-l stimulated cultured human fibroblasts secrete the mitogen keratinocyte growth 

factor which stimulates keratinocyte growth and proliferation [Werner & Smola, 2001]. 

IL-l and IL-I-induced TNF-a from keratinocytes can maintain keratinocytes in the 

activated state [Nickoloff & Turka, 1993] by stimulating NFKB and CIEBP which act as 
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a complex to induce K6 expression [Komine et al., 2000; La & Fischer, 2001; Komine et 

al., 2001]. 

IL-l released from keratinocytes in the epidermis downregulates the expression of E­

cadherin on Langerhans' cells (epidermal dendritic cells], inducing their migration into 

the dermis and draining lymph nodes. E-cadherin mediates the adhesion of Langerhans' 

cells to keratinocytes, and the downregulation induced by IL-l allows the Langerhans' 

cells to migrate out of the epidermis [Jakob & Udey, 1998]. IL-la in combination with 

GM-CSF has been shown to enhance the epidermal Langerhans' cell dependent 

activation of T -cells in murine skin in vitro [Heufler et al., 1988]. 

IL-l also acts on other cells in the skin. TNF -a, IL-l p, IFNy, CD40 ligand or IL-17 can 

all induce the expression of the chemokine macrophage inflammatory protein-3 alpha 

(MIP-3a, CCL20) in vitro on cultured primary keratinocytes, dermal fibroblasts, dermal 

microvascular endothelial cells and dendritic cells. MIP-3a expression is upregulated on 

keratinocytes in psoriasis. The receptor for MIP-3a, CCR6, is also found expressed in 

increased amounts as compared to normal skin on the surface of skin-homing memory T­

cells from psoriatic skin [Homey et al., 2000]. Upregulation of the chemokine MIP-3a by 

IL-! could increase T-cell recruitment into the psoriatic lesions. 
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1.2.17: Animal models of psoriasis 

There is no known naturally occurring animal disease, which has all of the 

immunopathogenic and phenotypic hallmarks of human psoriasis. Several animal models 

of psoriasis now exist which reflect various aspects of the disease. They can be split into 

four groups of spontaneous mutations, transgenic animals, xenotransplantation models 

and T-cell transfer models. Examples of some of these models are given below. 

Spontaneous mutations 

Spontaneous mouse mutation models include flaky skin mouse (fsn) and the chronic 

proliferative dermatitis (cpd) and asebia (ab/ab) mutations. Of these, flaky skin mice 

have the phenotype most like that of human psoriasis with epidermal hyperproliferation, 

a mixed inflammatory infiltrate composed of monocytes, macrophages, mast cells, T­

cell~ and neutrophils, epidermal microabcesses with neutrophil accumulation, expression 

of ICAM-l and GM-CSF, and dilated dermal vasculature [Morita et al., 1995; Schon et 

al., 2000]. The lesions are found over the whole body surface, and are particularly 

pronounced on the dorsal skin. IL-l ~ levels are markedly increased in psoriatiform 

lesions in flaky skin mice, and administration of a blocking monoclonal antibody against 

IL-I ~ results in a decrease in epidermal thickness, numbers of infiltrating CD4+ and 

CDS+ T-cells, and a decreased number of Munro microabcesses [Schon et al., 2001]. 

Unlike human psoriasis however, it seems T -cells do not playa role in the development 

of the flaky skin phenotype, since fsn mice backcrossed onto SCID mice still develop the 

disease [Schon, 1999]. 
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Transgenic models 

There are several transgenic mouse models for the study of psoriasis. For instance, mice 

which overexpress IL-I a in the basal epidermis display dermal infiltrates of monocytes 

and macrophages, upregulation ofICAM-I and limited acanthosis [Groves et al., 1995]. 

Lesions in these mice are found on the head, trunk, and limbs and hair growth is sparse. 

Transgenic mice which overexpress IL-IRI on the basal epidermal keratinocytes show an 

increased level of epidermal thickening in comparison to control mice, and a large 

inflammatory dermal infiltrate when stimulated with PMA on the skin. [Groves et al., 

1996]. When these animals are crossed with the IL-l a overexpressors, mice which 

expressed both trans genes develop a spontaneous skin inflammation with acanthosis and 

a dermal inflammatory infiltrate [Groves et al., 1996]. 

Xenotransplantation models 

Psoriatic plaques from human disease can be successfully xenotransplanted onto SCID 

mice and maintained for several months [Nickoloff et al., 1995]. Histologically the 

resulting lesions are very similar to human psoriatic plaques, with hyperkeratosis, Munro 

microabcesses, increased vascularity and dermal infiltrates composed of mononuclear 

cells, CD4+ and CDS+ T-cells, and dermal dendritic cells. Further experiments showed 

that after grafting non-Iesional skin from psoriasis patients onto SCID mice, injection of 

blood derived autologous immunocytes, activated by IL-2 and superantigens, caused the 

plaques to become psoriatic. The changes observed included marked acanthosis, 

parakeratosis, elongation of rete ridges, Munro microabcesses and dermal and epidermal 

infiltrates [Wrone-Smith & Nickoloff, 1996]. These data suggest that psoriasis is caused 
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by dysregulation of the immune system and requires a circulating immune factor or cell, 

rather than being due solely to abnormal epidermal keratinocytes. 

T-cell transfer models 

Transfer of naive mouse CD4+ T-cells with a minor histcompatibility mismatch into 

SCID mice results in a skin disorder affecting most of the body surface which has various 

phenotypic similarities to human psoriasis including lymphocytic infiltrates (with 

abundant CD4+ T-cells) in the dermis and epidermis, accumulation of dermal neutrophils, 

acanthosis, hyperkeratosis and an increase in vascularity. Expression of K6 is observed 

on the hyperproliferative keratinocytes, and an increase in ICAM-l and MHC class II 

expression is also seen within the epidermis. TNF-a, IFNy, IL-6 and IL-la expression 

are also upregulated [Schon et al., 1997]. 

It seems clear that IL-l can play several roles in psoriasis pathogenesis. It acts as a 

pro inflammatory mediator, upregulating leukocyte recruitment and production of 

cytokines, and it also activates keratinocytes and induces the production ofTNF-a, which 

maintains the keratinocytes in an activated state. 

1.2.18: Psoriatic arthritis 

The distinction between psoriatic arthritis (PsA) and arthritis with concurrent psoriasis is 

not clear, although clinicians agree that not all patients presenting with psoriasis and 

inflammatory arthritis have psoriatic arthritis, which is a separate disease [Patel et al .• 

2001]. PsA affects about 0.02-0.1% of the UK population [O'Neill and Silman, 1994]. 
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Up to 20 years can separate the onset of the psoriasis and the arthritis, and some PsA 

patients never present with skin manifestations [Pitzalis 1998]. One way of distinguishing 

PsA from RA is by the appearance of the vasculature in early synovitis. In PsA patients 

(and reactive arthritis patients), the synovial vessels have a much more tortuous and 

bushy appearance than those in RA [Reece et al., 1999]. In addition PsA patients are 

usually sero-negative, and have asymmetrical arthritis which often affects the spine, 

unlike RA [Gladman & Brockbank, 2000]. The bone and joint destruction in PsA is less 

complete than in RA, as there is a lower release of aggrecan and COMP, reflecting a 

lower cartilage turnover [Mans son et al., 2001]. In general however the psoriatic and 

arthritic symptoms and pathologies are very similar in PsA to psoriasis and RA. 

Generally the distinction between PsA and RA with psoriasis remains unclear. 

1.3: Summary and hypothesis 

IL-l is a pleiotropic, pro-inflammatory cytokine that exerts its effects after binding to the 

type 1 IL-l receptor. Its action is inhibited by IL-lra, which binds to IL-IRI without any 

resulting signal transduction, possibly due to the failure of the IL-lraJIL-lRI complex to 

recruit the essential IL-l receptor accessory protein subunit. 

IL-l acts upon many cell types, inducing their growth and proliferation, or inducing or 

upregulating the expression, production and secretion of adhesion molecules, 

chemokines, and other cytokines. Many of the proteins induced or upregulated by IL-l 

are also pro-inflammatory, such as TNFa.. A large part of the action of IL-l in 

inflammation is the upregulation and induction of expression of various adhesion 
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molecules and integrins on endothelial cells and circulating leukocytes, as well as the 

induction of the secretion of chemokines that recruit leukocytes to the inflamed area. 

Due to the central role that IL-I plays in inflammation, we hypothesised that the 

generation of mice lacking the natural inhibitor to IL-I, IL-I ra, would suffer from 

inflammatory disease as a result of the unopposed action of IL-l. IL-I has been 

implicated as playing major roles in several inflammatory diseases including vasculitis, 

RA and psoriasis. 

Here, the susceptibility of fllrn-I
- mice to inflammatory disease is investigated, and the 

phenotypes of the spontaneous inflammatory diseases observed in Sf3 and Balb/C fllrn-I
-

mice are characterised, in order to compare them with human diseases and consider their 

possible use as models for these diseases. The arterial disease is characterised 

histologically to compare it with human diseases such as GCA and TA. A time course 

study of the development of arterial lesions was undertaken, to test the hypothesis that 

endothelial cell activation due to turbulent blood flow is a key initiating factor in 

development of the disease, and to investigate the progression of the disease to attempt to 

elucidate a mechanism of disease development. Since SAA levels are increased during an 

inflammatory response, it was also hypothesised that measurement of SAA levels could 

provide a prognostic marker for development of arteritis in fllrn-I- mice. Due to the 

observed genetic influence of the MHC on autoimmune inflammatory diseases in 

humans, it was also hypothesised that there is a possible contribution of H-2 into 
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inflammatory disease susceptibility in III rn-I
- mIce, and this was investigated by 

haplotyping animals of different susceptibilities at loci across the H-2 cluster. 

A histological study of the psoriatiform disease observed in our Balblc III rn-I
- animals 

was undertaken, to compare the features with those found in human psoriatic lesions and 

to attempt to elucidate the mechanism of disease development. Finally, a histological 

comparison of the arthropathy found in our Balblc III rn-I
- mice with that previously 

observed in Balblc III rn-/- mice [Horai et al. 2000] was also performed, to attempt to 

evaluate the hypothesis that the development of RA in Balblc mice is due to the result of 

the interaction of the Balblc genetic background and not environmental factors with III rn 

deficiency. It is proposed that IL-l, with no competition for its receptor in the form ofIL­

Ira, plays a central role in the pathogenesis of the three diseases in IL-Ira deficient mice. 
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Section 2: Materials and Methods 
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2.1: Animals 

2.1.1: Lines of mice used in studies 

IlIm-'- mice were generated as previously described [Nicklin et al., 2000]. Illm-'-, +/- and 

+/+ mice were bred on two genetic backgrounds. The first (as described previously) was 

derived from crossing a 12910la-bearing chimera (heterozygote) with an outbred MFl 

female. Subsequently several lines were established and were sib-sib inbred. One of these 

was used in this study ("Sf3"). Several mice from another line ("Sf2") were also used in 

the arteritis study, but this line could not be sustained. All the mice from the stock 

described here (unless otherwise stated) are from the tenth or greater inbred generation. It 

is possible to calculate the likely degree of residual heterozygosity in these animals 

compared to FI as 10.7% at FlO (the earliest generation used) and 4.6% at F14. /LIm-'­

Sf3 mice were also then bred onto a Balb/c background and then inbred, to create Balb/c 

Il1m-'- animals. Animals used here were from generations N5 to N9. Mice were fed a 

standard diet, and were identified by ear punches. 

2.1.2: Housing and care of mice 

Animals were housed in specified pathogen free (SPF) conditions in the University of 

Sheffield. Sera from mice from the colony have been tested for evidence of infection by 

viruses including adeno-, cytomegalo-, ectromelia, hantaan, hepatitis, K-, lymphocytic 

choriomeningitis, minute, parainfluenza-, pneumonia, polyoma-, Sendai virus, Theilers' 

virus, mouse rotavirus, and reovirus 3. The sera were also tested for bacteria including 

Clostridium piliformis, Mycoplasma pulmonis, and mouse Chlamydia. The intracellular 

eukaryotic parasite Encephalitozoon cuniculi was also tested for. All were found 
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negative. Mice from both our colony and from the colony generated by Hirsch et al. were 

also tested for evidence of infection by Helicobacter spp. and found to be carriers of H. 

hepatic us (see section 3.3.6). 

The project was covered by the necessary Project and Personal Home Office licences. 

2.1.3: Culling and dissection of animals 

Mice that died suddenly were dissected by a longitudinal cut along the thoracic and 

abdominal cavities and fixed in 3.7% neutral buffered formaldehyde (10% formaldehyde, 

0.03 M sodium dihydrogen orthophosphate dihydrate, 0.06 M sodium phosphate). Mice 

killed prospectively and animals which appeared to be ill (typically displaying a poor 

coat, hunching, "wheezy" breathing or swollen limbs) were humanely culled either by 

cervical dislocation or, if a serum sample was required, by overdosing on anaesthetic 

(Pentabarbitone forte). Blood samples were taken either from the tail vein or by cardiac 

puncture whilst the animals were under terminal anaesthesia. Animals culled due to ill 

health were dissected along the thoracic cavity and stored in 3.7% neutral buffered 

formaldehyde until examination. 

Mice killed prospectively were kept on ice and dissected within 1 hr. Prior to dissection, 

the outward appearance of the animal under examination was checked for obvious signs 

of ill health, such as swollen limbs, reddened ears, or a poor coat. The animal was then 

pinned and opened by making an incision through the skin and peritoneal lining from a 

point anterior to the urethral opening. A cut was then made with scissors up the mid­

ventral line of the animal until there was a cut from the groin to the chin. Two further 
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incisions were then made from the start of the first incision down toward the knees. The 

skin and muscle layers were then reflected back to reveal the inner anatomy of the 

animal. The appearance of the major organs (heart, lungs, liver, spleen etc) was examined 

for obvious abnormalities in size or colour, then the desired organs or other parts of the 

animal were removed. 

The organs and parts removed were either snap frozen in liquid nitrogen followed by 

storage at -70°C, or they were fixed in 3.7% neutral buffered formaldehyde. Blood 

samples taken were centrifuged at 16,000 x g for 15 min and the serum removed and 

stored at -20°C. 

2.2: Preparation of genomic DNA 

2.2.1: Preparation of genomic DNA from mouse ear clips 

To obtain genomic DNA for genotyping, circles of skin, 2 mm in diameter, were saved 

from the routine ear punch mouse identification procedure and digested in a proteinase K 

digestion mixture at 53°C. 0.5 ml microfuge tubes containing the skin samples were first 

pulsed in a microfuge to ensure the sample was at the bottom of the tube, then 100 J,tl of 

proteinase K digestion mixture (containing 0.1 M sodium chloride, 0.01 M Tris pH 8.0, 

0.025 M diaminoethanetetra-acetic acid (EDTA) pH 8.0, 0.5% sodium dodecyl sulphate 

and 100 J,tg proteinase K) were added to each sample. The samples were incubated with 

shaking at 55°C for 24 hr then mixed by vortexing, pulsed in a microfuge and returned to 

the incubator for a further 24 hr. 
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After incubation, the digest mixture was diluted by the addition of 1 00 ~l sterile water 

and mixed by vortexing. Deproteinisation of the solution was achieved by the addition of 

an equal volume of phenol, mixing by vortexing of the contents until an emulsion 

formed, then centrifugation in a microfuge at 16,000 x g for 5 min. The aqueous phase 

was transferred to a clean tube, then an equal volume of chloroform was added to remove 

any traces of phenol. An emulsion was formed by vortexing, which was again centrifuged 

in a microfuge at 16,000 x g for 5 min at room temperature. The DNA was then 

precipitated by taking the aqueous phase into a tube and adding 0.1 volume of 3 M 

sodium acetate and 2.5 volumes of 100% ethanol, followed by mixing, chilling in a-70°C 

freezer for 15 min and then centrifuging in a microfuge for 15 min at 16,000 x g. The 

resulting DNA pellet was washed with 70% ethanol, allowed to dry and then resuspended 

in 30 Jotl TE (6 mM Tris hydrochloric acid (Tris-HCI), 4 mM Tris base, 1 mM EDTA). 

The DNA samples were stored at -20°C until needed. 

2.2.2: Preparation of high molecular weight genomic DNA from mouse splenocytes 

oj Isolation and proteolysis of splenocytes 

Spleens were removed from freshly killed mice and were washed in 10 ml cold saline 

(0.9% sodium chloride) in a universal vial. Each spleen was tipped into a petri dish and 

bathed in 10 ml cold saline, then cut into pieces with a sterile scalpel and the portions 

ground between the ends of two microscope slides. The ground tissue was rinsed off into 

a petri dish with cold saline. The resulting tissue and cell suspension was placed into a 15 

ml tube. 
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The larger pieces of tissue were allowed to sediment for 60 s, and the cell suspension was 

taken into a 15 ml tube. This was centrifuged at 16,000 x g at 4°C for 15 min and the 

supernatant removed. The pellet was resuspended in the dregs of the saline by tapping 

and 4 ml of splenocyte DNA digestion buffer (0.1 M sodium chloride, 0.005 M Tris base, 

0.005 M Tris-HCI, 0.025 M trisodium EDTA, 0.5% SDS, 10 mg proteinase K) added to 

each pellet. The cells were incubated at 55°C for 17 hr to allow digestion. 

b) Protein extraction and dialysis of splenocyte DNA 

An equal volume of phenol was added to the extract polypeptides from the digestion 

mixture and emulsified by vortexing. Phases were separated by centrifugation at 16,000 x 

g for 10 min and the resulting viscous aqueous phase (containing DNA) was removed 

with a disposable pasteur pipette into a universal vial. 

For the dialysis, one length of -30 cm of SpectraIPor molecular porous membrane (size 

6,000-8,000) was cut for each sample. The dialysis tubing was prepared by soaking in 1 I 

2.5% ammonium bicarbonate solution which was brought to the boil and simmered for 10 

min. Liquid was decanted and the tubing rinsed several times in de ionised water. DNA 

samples were dialysed with stirring in dialysis tubing against two changes of TE buffer 

(500 ml) over 24 hr. 50 JlI of each sample was taken into a 1.5 ml microfuge tube, diluted 

1 :20 in TE. Using these aliquots, the absorbence at 260nm was measured in a 

spectrophotometer to determine the DNA concentration in each sample. 
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2.3: Genotyping of mice by polymerase chain reaction (peR) 

2.3.1: Oligonucleotide primer design and preparation 

Oligonucleotide primers were designed using MacVector software version 4.5.3 

(Eastman Kodak Co.) from the genomic DNA sequences of the genes of interest. 

Sequences were obtained from the Genbank database at the National Centre for 

Biotechnology Information (NCBI) (http://www.ncbLnlm.nih.gov).Primer design was 

based on several constraints, including a primer length of 18 to 30 bases, a GC content of 

approximately 50% and a final product size of 100 bp to 1000 bp. Primer pairs were 

checked with Mac Vector software for similar predicted annealing and melting 

temperatures, and were also checked for their potential to anneal to each other, Primers 

were rejected if they had a high potential to form dimers. To check primer specificity, the 

basic local alignment search tool (BLAST) at the NCBI was used. Primers were rejected 

if they could potentially bind to inappropriate sequences in the mouse genome. 

The primer oligonucleotides were synthesised within the Division of Genomic Medicine 

on a 394 DNA/RNA synthesiser (ABI Applied Biosystems) and were supplied 

desiccated, and re-suspended before use in 400 J..ll of sterile distilled water. 200 J..ll of the 

solution were stored at -20°C for future use, and the remaining 200 J..ll precipitated with 

ethanol. The resulting pellet was washed with 70% ethanol, air dried and resuspended in 

200 J..lI sterile distilled water. 

The primer concentration was calculated from the extinction coefficient by diluting an 

aliquot 1 :500 in water and taking spectrophotometric readings at 260nm (Eppendorf 
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Biophotometer). A working concentration of 20 J..lM was used for subsequent PCR 

reactions. Working dilutions and stock primers were stored at -20°C. 

2.3.2: Agarose gel electrophoresis 

Agarose was dissolved with heating in a microwave in 1 x TAE buffer (40 mM Tris 

acetate, 1 mM EDTA) or 1 x TBE buffer (90 mM Tris, 90 mM boric acid, 1 mM EDTA), 

cooled to -50°C, and 0.5 J..lglml ethidium bromide added. The agarose mixture was 

poured into a tray with combs providing the required number of wells in place and 

allowed to set. Electrophoresis was run in 1 x T AE or TBE buffer and the samples and 

DNA size markers (<PX174/HaeIII or pt7) loaded into the wells in 1 x loading buffer (5 x 

buffer contains 80% glycerol, 60 mM EDTA, 0.1 % xylene cyanole FF). The gels were 

run at a constant 10 V /cm, and the DNAIethidium complexes were visualised by orange 

fluorescence under illumination at 320run. 

2.3.3: Optimisation of polymerase chain reactions 

PCRs were optimised in 25 J,ll reactions, containing 250-500 ng genomic DNA extracted 

from ear clips (as described in section 2.2.1),0.5-3 J,lm each primer, 1-6 mM magnesium 

chloride, 0.2 mM dNTPs (from a stock 2.5 mM mixture of dATP, dCTP, dGTP and 

dCTP in equal amounts), 1 x buffer, as supplied by manufacturer (20 mM Tris-HCI pH 

8.4/0.1 mM potassium chloride) and 0.625 units of Thermus aquaticus (Taq) DNA 

polymerase. The mixtures were overlaid with 2 drops of paraffin oil to prevent 

evaporation. All reactions, unless otherwise stated, had an initial denaturation step of 5 

min at 94°C, followed by 1 minute at 94°C, 1 minute at a range of annealing 
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temperatures around the predicted optimum, and either 1 or 2 min elongation at 72°C. All 

reactions underwent 35 cycles (unless otherwise stated) in a DNA thermocycler machine 

(either a Trio-Thermoblock (Biometra) or a DNA Thermal Cycler 480 (Perkin Elmer)). 

PCR products were then electrophoresed on agarose gel. 

2.3.4: ll1rn genotyping by peR 

To detect the wild type Illrn gene, a 25 J,ll PCR reaction was used as in section 2.3.3, 

containing 2 mM magnesium chloride and 1 J,lM each of the forward (5' TCT TGA GGG 

ATT AGC TGG ACA AAC 3') and reverse (5' TGG TGG TTT CAT CAA AAA GCC C 

3') primers. This reaction amplifies a region between +4187 and +5035 of the wild type 

mouse III rn sequence, which is partly deleted in the null allele, so that the reverse primer 

site is not present. The product is 848 bp. 

For the null allele, 2 mM magnesium chloride and 2 J,lm each of the forward (5' CGG 

CAT CAG AGC AGA TTG TAC TG 3') and reverse (5' TTG GTC TGG ACT GIG 

GAA GTG CAG 3') primers were used. This reaction amplifies a region between +2263 

within the sequence of the cloning vector pBR322 (part of the replacement vector 

construct used to generate the null allele) to +4912 of the wild-type sequence. All 

reactions were cycled using 1 minute annealing at 60°C and 1 minute primer extension at 

72°C. All samples were electrophoresed on a 1 % TBE agarose gel. The product is 412 

bp. 
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2.3.5: Haplotyping H-2 by peR 

i) H2IEb (MHC Class 1/) 

a) Primary peR reaction 

A microsatellite of two repeating tetranucleotides (TGGA and GGCA) exists in the 

murine H2IEb gene (encoding the f3-chain ofMHC class II) at the 3' end ofintron 2. The 

number of each repeat varies between haplotypes, therefore allowing distinction between 

H2IEb haplotypes by the size of PCR product [Saha et al., 1993]. 

To amplify the micro satellite in the murine H2IEh gene, a 25 J.tl PCR reaction was used 

containing 2 mM magnesium chloride and 1 J.tM each of the forward (5' ATT CCT CCT 

GAG AGT GGA GCT GAC 3') and reverse (5' TGC GTC TTT GTG GGG TAC ACA G 

3 ') primers. The primers amplify a region that includes the micro satellite. The mixture 

was cycled with a 1 minute annealing step at 58°C and 1 minute primer extension at 

72°C. The products were electrophoresed on a 2% T AE agarose gel. 

Using this method, the H2IEb alleles can be distinguished corresponding to the H-2 

haplotypes: h, d, f j, k, p, q, r, S, U, v, and w. Haplotype h (e.g., for C57BLl6) gives a 

product of 240bp in this reaction. Results were used in a Kruskall-Wallis analysis of 

variance test, to determine statistically whether any particular haplotypes influence 

susceptibility to disease. 
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b) Amplification of a microsatellite in the mouse H2IEb gene using secondary 

radiolabelled peR 

In order to obtain higher resolution of the PCR products resulting from the primary 

H2IEb PCR reactions, a secondary PCR was performed with radiolabelled primers, and 

the primary PCR products as templates. The forward primer (10 pmol) for the H2IEb 

PCR was 5' end labelled with 32p using T4 polynucleotide kinase (see section 2.5.1) and 

was diluted to 100 ,.d with sterile water and stored at -20°C for up to 4 weeks. 

Dephosphorylation of 5 J ends of a tPX1741HaeIII DNA size marker 

In order to create a radiolabelled DNA size marker for the secondary radiolabelled PCR 

reaction, the 5' ends of cI>X 1 741HaeIII were first dephosphorylated using calf intestinal 

alkaline phosphatase (ClAP). 

The number of 5' ends in 1 J..lg of cI>XI74IHaeIII were first calculated. For the 

dephosphorylation reaction, 1.6 J..lg cI>XI74IHaeIII, I x supplied ClAP reaction buffer (50 

mM Tris-HCl pH 9.3, 1 mM magnesium chloride, 0.1 mM zinc chloride, 1 mM 

spermidine) and 0.05 u of ClAP were incubated together at 37°C for 20 min, then 56°C 

for 20 min to ensure access to the 5' ends. Another 0.05 u of ClAP was then added and 

again the mixture incubated at 37°C for 20 min followed by 56°C for 20 min. The 

reaction was stopped by the addition of 300 J..lI of ClAP stop buffer (10 mM Tris pH 7.5, 

I mM EDT A, 200 mM sodium chloride, 0.5% SDS). 
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Phenol:chloroform (350 Ill) (a solution of 50% buffered phenol, 48% chloroform and 2% 

isoamyl alcohol overlaid with an equal volume of 50 mM Tris-HCl pH 8.0) was added 

mixed by vortexing. Phases were separated by centrifugation at 16,000 x g for 5 min, 

after which the DNA was ethanol precipitated from the aqueous phase. The resulting 

pellet was washed with 70% ethanol, dried, and resuspended in 5 J.11 water. 

The 5' dephosphorylated <I>XI74IHaeIII was then end-labelled using T4 polynucletide 

kinase as described in section 2.5.1. The purified radiolabelled marker was stored at 

-20°C in a lead container for up to 4 weeks. 

Creation of an alternative DNA size marker for radiolabelled secondary H2JEb PCR 

(PNEB193/HpaJI) 

In order to size the radiolabelled secondary H2JEb PCR products more accurately, an 

alternative DNA size marker was created. 1 J.lg of the pNEB 193 plasmid was digested 

with 10 u of Hpall in 10 J.lI sterile water containing 1 x Hpall buffer (6 mM Tris-HCl 

(pH 7.4), 6 mM magnesium chloride, 6 mM sodium chloride, 1 mM DL-Dithiothreitol 

(DTT» for 1 hr at 37°C. Digestion of pNEB 193 with HpaIJ results in 14 fragments, of 

sizes 489,453,404,331,242, 190, 147, 127, 110,67,48, 34, 26, and lInt. The 

fragments were then radiolabelled by adding 2 III of y_[32p] dCTP and 5 u of Klenow 

fragment (a 5' - 3' DNA polymerase, used to fill in 5' overhanging ends with 

radiolabelled dNTPs) and incubating at room temperature for 10 min. 1 J.lI of 0.2 mM 

dNTPs was then added and the mixture again left at room temperature for 10 min. The 

enzyme was inactivated by heating to 75°C for 10 min. The solution was then diluted into 
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50 /-11 of sterile water and purified through a Sephadex G50 spm column. The 

radio labelled DNA size marker was stored at -20°C in a lead container until use. 

Secondary radio labelled PeR/or H2IEb 

0.2 pmol of labelled forward oligonucleotide primer and 5 pmol of the unlabelled reverse 

primer were added to 1 /-11 of product from the primary PCR reaction. The mixture was 

then made up to 10 /-11 with 2 mM magnesium chloride, 1.25 units of Taq polymerase, 1 x 

Taq polymerase buffer and 0.2 mM dNTPs. The reaction was cycled with an initial 5 min 

at 94°C followed by 1 minute at 94°C, 1 minute at 60°C and 1 minute 72°C for 10 cycles. 

The 10 /-11 of PCR product mixture was then ethanol precipitated to concentrate the 

mixture. This was achieved by adding 10 /-1g glycogen as a carrier for the nucleic acid 

precipitation, 0.4 volumes 3 M sodium acetate and 4 volumes of 100% ethanol to each 

reaction. The mixtures were cooled at -70°C for 10 min then centrifuged in a 

micro centrifuge at 16,000 x g for 10 min. The supernatant was decanted and the pellet 

redissolved in 5 J.ll 8 M urea/l x TBE. Urea is used to denature the nucleic acids, so that 

they run on electrophoresis as single strands. 

Size determination 0/ radiolabelled secondary peR products on an 8% polyacrylamide 

gel 

An 8% polyacrylamide solution containing 30:1 acrylamidelBis-acrylamide and 8 M urea 

was prepared and stirred with mixed bed resin deionising beads. The solution was 

86 



Figure 6: Simplified physical map of the murine B-2 
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decanted into a clean flask. 1 x TBE was added and the gel stored until use in dark glass 

bottle at 4°C. 

50 ml of the polyacrylamide mixture, containing 45 III N,N,N' ,N'­

Tetramethylethylenediamine (TEMED) and 450 III of 20% ammonium persulfate was 

used to pour each gel. The polymerised gel was clamped upright in a gel rig and an 

aluminium plate clamped onto the front to improve heat distribution across the gel. The 

gel was warmed by pre-running with 1 x THE buffer at 38 watts for 30 min. Prior to 

loading, the samples were heated at 100°C for 2 min, then 0.5 III formamide loading 

buffer (xylene cyanole FF 1 mg/ml, bromophenol blue 1 mg/ml, 0.01 M EDTA in 

deionised formamide) was added to each. Radiolabelled marker (2 Ill) was loaded 

alongside the samples. The gel was electrophoresed at 38 W for 2 hr. After running, the 

gel was fixed in 10% acetic acid/10% methanol. It was then lifted onto filter paper, 

covered in P.V.C wrap and dried in a gel drier (Model 583, Bio-Rad) at 80°C for at least 

1 hr. The dried gel was placed on autoradiograph film in a shielded cassette, and stored at 

-70°C for 1 week until developing. 

ii) Bap/otyping 0/ other genes within B-2 

Mice were haplotyped, using PCR, for 4 markers across the H-2 cluster, 3 of which lie in 

MHC Class I genes (H2K, H2M2, H2Q4) and one that lies within the H2M (MHC Class 

I) cluster, but encodes murine oligodendrocyte glycoprotein, which is not an MHC 

molecule (Mog) (Figure 6). Markers were found using by searching for PCR 
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polymorphisms within the H-2 cluster on chromosome 17 on the Jackson Laboratory 

mouse genome informatics website (http://www.informatics.jax.orgD. 

All peR reactions were in 25 J.11 and underwent 35 cycles of amplification with a 1 min 

primer extension step at 72°C, and were electrophoresed in 2% T AE agarose gels. 
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Table 1: PCR conditions for haplotyping across the murine B-2: 

Gene Region amplified Forward (F) and reverse (R) Primer Magnesium Annealing End product 
primers con en. (J.Ll\f) chloride temp. size 

concn. 
{mM) 

H2K (CA)n within the (F) 5'ACT CAG GAC TCA GAA 1 1 56°C e.g. 120bp (H-
promoter region TGA AGA TCC3' 2~), 104bp 

(R) 5' A IT CCT AGA TGA AAA (H-2~), 
GTC TGT GGC3' 

H2M2 (CA)n within intron 3 (F) 5' ACC TCT CAC CTC TCT 2 2 58°C e.g. 142bp (H-
CTGTG3' 2M2d), 126bp 
(R) 5' TGG AGA GAC GTC CTA (H-2M2b

) 

TGATG3' 
H2Q4 {ITC)n >< (CT)n (F) 5' CCT GCA GGA ATA TCA 2 2 56°C * 

ATAGTG3' 
(R) 5' ATA CAG AGA AAC CCT 
ATCTCAA 3' 

Mog Microsatellite located (F) 5' GGT GTC CAC AAT CCA 2 2 58°C -164 bp or 
near the 3' end of intron AATTCC3' -155bp 
2 (R) 5' CTC CCC AAA TIT TAT 

TCAGTG3' 

* Different haplotypes can be distinguished using this reaction if tested simultaneously, however there is no method of identifying 

single haplotypes 
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2.4: Analysis of peR products 

2.4.1: Extraction of DNA from agarose gel 

After running PCR products on a T AE agarose gel, the band of interest was visualised 

under UV light at 320nm and excised from the gel with a scalpel. The agarose gel slice 

was chopped finely, then centrifuged through silanised glass wool at 4000 x g for 5 min. 

The eluate was then ethanol precipitated. The resulting DNA pellet was washed in 70% 

ethanol, air dried and resuspended in 10 III water. 

2.4.2: Automated DNA sequencing 

DNA samples were sequenced in the Division of Genomic Medicine. Template DNA 

(0.25 Ilg-0.5 J.1g) was amplified using the AB! PRISM Ready Reaction DyeDeoxy 

Terminator Cycle Sequencing kit (PE Applied Biosystems) according to the 

manufacturers instructions. The samples were separated by electrophoresis on a 6% 

polyacrylamide gel and analysed on an ABI 377 DNA sequencer (PE Applied 

Biosystems) using PRISM DNA sequencing software version 3.2 (PE Applied 

Biosystems). 

2.5: Radiolabelling DNA with 32p 

2.5.1: Radiolabelling 5' ends with 32p: 

To catalyse the transfer of radiolabelled phosphates to the 5' terminus of a 

polynucleotide, T4 polynucleotide kinase (PNK) was used. The oligonucleotide or DNA 

size marker to be end labelled (10 pmol), 10 units of T 4 PNK and 1 x supplied kinase 

buffer (70 mM Tris-HCI pH 7.5, 10 mM magnesium chloride,S mM DTT, 0.1 mM 
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EDTA,O.1 J.1M ATP, 50% (v/v) glycerol) were added together in a 10J.11 reaction. 3J.11 y­

e2p] ATP were added and the mixture incubated at 37°C for 30 min, then 68°e for 20 

min to inactivate the kinase. Unincorporated nucleotides were removed by centrifugation 

through a Sephadex G50 spin column at 1200 x g for 5 min. 

2.5.2: Random heptamer labelling of oligonucleotide probes with T7 Quickprime 

kit: 

DNA probes were labelled with a-e2p] dCTP (NEN), with random heptamer primers. 10 

J.11 of the supplied T7 reagent mix (containing buffer, dNTPs and random heptamers), 50 

ng/50 J.11 reaction of the oligonucleotide probe, 1 J.11 T7 DNA polymerase and 5 J.11 a-e2p] 

dCTP per reaction were mixed on ice, and incubated in a 37°e water bath for 15 min to 

allow the polymerase extension from the heptamer primers. Following incubation, 2 J.11 of 

0.5 M EDTA and 50 J.11 sterile water were added and the mixture heated to 100°C in a 

boiling water bath for 1 min to stop the reaction. Unincorporated nucleotides were 

removed by centrifugation through a Sephadex G50 spin column. 

2.6: Genotyping of mice using Southern blot analysis 

2.6.1: Preparation of samples for Southern blot gel 

For each sample, 10 J.1g of high molecular weight DNA extracted from splenocytes was 

placed into a 1.5 ml microfuge tube and diluted to 176 J.11 with TE. Buffer, 20 J.11 10 x 

ApaI buffer (6 mM Tris-HCl (pH 7.4), 6 mM magnesium chloride, 6 mM sodium 

chloride, 1 mM DTT) and 40 u of ApaI were added, mixed gently and incubated at 37°C 

overnight to allow ApaI digestion. The remainder of the dialysed DNA was stored at 4°C. 
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Following ApaI digestion, an equal volume of phenol:chloroform was added to each 

sample and mixed by inversion for 30 s, the mixture centrifuged at 16,000 x g for 5 min, 

and the aqueous phase transferred to 1.5 ml microfuge tubes. DNA was precipitated using 

ethanol. The pellets were washed with 70% ethanol, dried and resuspended in 25 J,ll TE. 

2.6.2: Electrophoresis of high molecular weight genomic DNA 

5 J,ll of sample buffer (60 mM EDTA pH 8.0, 60% glycerol, bromophenol blue) was 

added to each sample and to 0.5 J,lg of a HindlII digested A DNA size marker. All tubes 

were heated at 55°C for 5 min to disrupt any newly formed double strands, prior to 

loading onto a 0.7% TBE agarose gel. The gel was run at 20V for 40 hr, with a change of 

buffer after 20 hr. 

The gel was then stained with ethidium bromide by incubating the gel in a tank of 1 x 

TBE containing 0.5 J,lg/ml ethidium bromide for 1 hr. The gel was then examined under 

UV light at 320nm to monitor the size range of the DNA in the gel. The gel was 

subsequently washed for 15 min in 0.4 M hydrochloric acid (to partially depurinate the 

DNA), rinsed in sterile water then washed for 2 x 15 min in 0.5 M sodium hydroxide to 

hydrolyse the DNA at depurinated sites and denature the double stranded DNA. 

2.6.3: Southern blotting 

A glass plate was placed over a reservoir of 0.5 M sodium hydroxide in a large tray and 

filter paper laid onto the glass with wicks hanging down either side into the sodium 

hydroxide. The gel was placed upside down onto the filter paper, and Saran wrap laid 
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over the gel with a window cut out over the running area of the gel. Zetaprobe OT, a 

positively charged nylon membrane soaked in sterile water was laid over the window 

onto the gel and covered with 2 layers of filter paper soaked in 0.5 M sodium hydroxide, 

followed by an 8 cm thick layer of paper towels, topped with a glass plate. The stack was 

left overnight. The following day, the membrane was washed briefly in 200 mM sodium 

phosphate (1 M sodium phosphate buffer consists of 0.2 M N aH2P04/0A M Na2HP04) to 

neutralise the DNA, then dried in an oven, between two sheets of filter paper, at 80°C. 

When dry, the membrane was sealed in a plastic bag until probing. 

2.6.4: Probing of Southern blot 

The membrane was rolled up into a hybridisation bottle containing 20 ml of hybrid is at ion 

solution (500 mM sodium phosphate, 7% sodium dodecyl sulphate). The membrane was 

pre-hybridised by rolling at 65°C overnight. 

The oligonucleotide probe was randomly labelled with a-e2pJ dCTP using a T7 

Quickprime kit (section 2.5.2) A further 50 III of sterile water were added and the mixture 

centrifuged at 1200 x g through a Sephadex 050 spin column to remove unincorporated 

dCTP. The radiolabelled probe was heated to 100°C in a boiling water bath for 5 min to 

denature any newly formed double stranded DNA. 50 Ilg of mouse CoIl DNA was added 

(to suppress the hybridisation of repetitive DNA sequences). 

The labelled probe, 10 pmol, was then mixed into 10 ml hybridisation solution (pre­

warmed to 65°C). The hybridisation bottle containing the membrane was drained and the 
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hybridisation fluid containing the labelled probe was passed through a 0.2 JAm filter into 

the bottle. This was found necessary, in order to avoid the appearance of a radioactive 

background on the blot. The membrane was then hybridised with the probe for 16 hr. 

The membrane was then washed in hybridisation solution at 65°C for 3 x 20 min, then 

sealed into a plastic bag. 

2.6.5: Visualisation of Southern blot using a phosphorimager 

Screens (molecular imaging screen, Bio-Rad) were erased for 15 min in a GS-250 screen 

eraser (Bio-Rad) prior to use. The blot was left overnight to irradiate the screen in a 

sample loading dock (Bio-Rad). The screen was scanned using a GS-250 molecular 

imager (Bio-Rad) and the scan visualised on a computer using Molecular Analyst 

software version 2.0.1 (Bio-Rad). 

2.7 Cell culture 

2.7.1: Culture ofRA W 264.7 mouse macrophage cells 

Stocks of RA W 264.7 cells (ECACC) were kept frozen in liquid nitrogen. Aliquots were 

thawed and cultured in RPMI1640 medium containing 100 u/ml penicillin, 100 J.1g/ml 

streptomycin and 10% heat inactivated foetal calf serum. Cells were grown at 37°C/5% 

C02 and passaged every 6 days. 

2.7.2: Stimulation of cells with LPS 

In order to activate them, RAW 264.7 cells were stimulated with LPS by replacing LPS­

free medium with that containing 100 nglml Escherichia coli LPS. Cells were stimulated 
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for 4 and 18 hr. Separate aliquots of cells were not stimulated with LPS as negative 

controls. 

2.8 Immunohistochemistry for frozen sections 

2.8.1: 3-Aminopropyltriethoxysilane (APES) coating of slides 

It is necessary to coat slides in APES or a similar compound in order to make slides more 

adherent for frozen sections. This process ensures that sections are not washed off slides 

during the staining procedure. Microscope slides were dipped for 15 s each in 95% 

ethano1l2% APES, 95% ethanol and deionised water, dried at 37°C and subsequently 

stored at room temperature. 

2.8.2: Cutting frozen sections - operation of cryostat 

Sections were cut with a 16 cm blade (Leica) in a cryostat (cryocut-E, Reichart-Jung), 

pre-cooled to -25°C. The section was embedded in optimum cutting temperature (O.C.T) 

compound on a pre-cooled chuck, which was then mounted in the chuck holder after the 

O.C.T block containing the tissue had completely frozen. 

The block was trimmed at depths of 20 J.lm until the desired area of tissue was reached. 

At this stage, 4-5 sections were cut at 6 J.lm to smooth the block. 6 J.lM sections could 

then be taken, by collecting on room temperature APES coated slides. The slides were 

labelled and stored in microscope slide boxes at -70°C. 
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2.8.3: Cutting frozen sections from un decalcified joints 

It was necessary to cut sections from undecalcified joints in order to allow 

immunohistology of sensitive antigens. This process uses a powerful cryo-microtome 

(School of Dentistry, University of Manchester) capable of cutting thin sections of 

samples containing undecalcified bone, which would otherwise shatter within the sample 

or damage the blade of a normal cryostat. 

Specimens were mounted by first cooling a chuck, inside a metal case, in liquid nitrogen 

for 2 min. The chuck was covered in 1.6% carboxymethyl cellulose, which was allowed 

to cool. The sample was then placed in the desired position onto the cold carboxymethyl 

cellulose, and was then covered with more paste by syringing it over the sample. When 

the paste had frozen, the chuck and case were removed from the liquid nitrogen and the 

case removed. The partially formed block was held upside down in metal tongs and 

dipped in the liquid nitrogen, followed by dipping in more paste, and the process repeated 

until a smooth block was achieved. The specimen was allowed to warm slightly before 

placing in the cryostat (Cryo-microtome 450-MP, PMV (Stockholm» which was pre­

cooled to -20°C. Slides were coated in a thin layer of Sellotape glue which was allowed 

to dry for 2 min, after which they were labelled and placed inside a slide rack inside the 

cryostat to cool. 

The block was trimmed, and 10 Jlm sections were then collected. To collect the sections, 

a thin layer of water soluble glue was scraped across the top of the block using the edge 

of a clean slide. A cut piece of cigarette paper (Rizla) was then pressed onto the top of the 
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section leaving a small overhang over the blade. The overhang was held with tweezers 

and the block moved through the blade to cut the section. As it was being cut, the section 

was guided over the blade with the tweezers. The section was then pressed down onto a 

glue-coated slide in a smooth motion. The slides were stored at -70oe until required. 

2.8.4: Haematoxylin and eosin staining of frozen sections 

To examine the general cellularity of frozen tissue sections, they were stained with 

haematoxylin and eosin. Slides at room temperature were submerged in Gill's No.1 

haematoxylin for 5 min. The slides were rinsed in running tap water for 1 minute, then 

submerged in Scott's solution (20 gIl of sodium bicarbonate and 3.5 gIl of magnesium 

sulphate 7-hydrate) for 30 s. The slides were then rinsed in running tap water for 1 min, 

submerged in aqueous 1 % Eosin Y for 5 min, rinsed in running tap water for 1 min and 

dehydrated by submerging in 70% ethanol, 95% ethanol and 100% ethanol for 1 min 

each. Finally, the slides were cleared by submersion in xylene for 1 minute and coverslips 

mounted using Eukitt mounting medium. 

Cell nuclei stain blue/purple while eosin stains acidophilic tissue components pink/red 

colours. 

2.8.5: Haematoxylin and eosin staining of undecalcified frozen joint sections 

Slides were allowed to reach room temperature. They were then stained with 

haematoxylin and eosin as above but not dehydrated. It was found that dehydration 

through an ethanol series had an adverse effect on the glue, causing it to become cloudy. 
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Instead, after staining with eosin, the slides were rinsed in running tap water for 1 min 

then air dried and coverslips mounted using a glycerol-based aqueous mounting medium 

(Aquamount, BDH). 

2.8.6: Connective tissue staining of frozen sections 

To identify elastin and collagen in sections simultaneously, the elastic/van Gieson 

staining technique was employed. Slides were allowed to reach room temperature, after 

which they were incubated with 5 gIl potassium permanganate on a rack at room 

temperature for 5 min. The slides were rinsed with distilled water then decolourised by 

incubating with 1 % oxalic acid for 2 min at room temperature. The slides were then 

rinsed in running tap water for 2 min followed by dehydration by rinsing with 95% 

ethanol and incubation in Miller's solution at room temperature for 1.5 - 4 hr. 

The slides were then rinsed briefly in 95% ethanol, then 75% ethanol, then washed in 

running tap water for 1 min. They were then counterstained on a rack with van Gieson 

solution (2.5 gil acid fuschin, picric acid to saturation) at room temperature for 5 min, 

blotted dry using filter paper and dehydrated by submerging in 100% ethanol for 1 min, 

then cleared by submerging in xylene for 1 min. Specimens were mounted using Eukitt 

mounting medium. This protocol stains elastin black, collagen red and muscle yellow. 
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2.8.7 Immunohistochemical staining of frozen sections - optimisation of stains 

PBSIO.l% saponin 

All incubations and washes unless otherwise stated were in fresh PBS/~. I % saponin. 

Saponin acts as a detergent allowing intracellular antigens to be detected. Although some 

antigens were on the cell surface, saponin did not appear to have any effect on the 

staining for these antigens. Saponin was therefore used in all staining procedures for ease 

of performing multiple stains simultaneously. PBS/~. I % saponin consists of 8 gil sodium 

chloride, 0.2 gil potassium chloride, 0.9 gil anhydrous disodium hydrogen phosphate, 0.2 

gil potassium dihydrogen phosphate, and I g saponin. The solution was stirred for at least 

20 min before use to disperse the saponin. 

To optimise immunohistochemical stains, the procedure given in section 2.8.8 was 

carried out on appropriate positive control slides, as listed in table 2. At the point of 

incubation with primary antibody, a range of concentrations of the primary antibody was 

used in order to determine optimal concentration - i.e., the concentration of antibody 

which gave the clearest specific staining without inappropriate background staining. 

Negative control slides were co-incubated with PBS/~. I % saponin in place of primary 

antibody. The optimal concentrations for each primary antibody are given in table 2. 
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Table 2: Antibodies, positive controls and sera for mouse immunohistochemistry 

Primary Clone Supplier Target antigen Concn. Positive Normal Biotinylated Con en. 
antibody for use controls serum used secondary for use 

(f.Lg/ml) in block antibody (f.Lg/ml) 
Rat anti- 30311.11 R&D IL-I(3 2.5 LPS stimulated Rabbit Rabbit a-rat 2.5 
mouse IL-I (3 RAW 264.7 (Vector) 

cells 
Rat anti- CI:A3-1 Caltag Macrophages I Mouse spleen Rabbit Rabbit a-rat 2.5 
mouseF4/S0 (Vector) 
Rat anti- H129.19 Pharmingen CD4+ Tcells 0.5 Mouse Rabbit Rabbit a-rat 2.5 
mouseCD4 spleen/thymus (Vector) 
Rat anti- 53-6.7 Pharmingen CD8+ T cells 0.5 Mouse Rabbit Rabbit a-rat 2.5 
mouseCDSa spleen/thymus (Vector) 
Rat ant- XMG1.2 Pharmingen IFNy I Mouse thymus Rabbit Rabbit a-rat 2.5 
mouseIFNy (Vector) 
Rat anti- BVD6- Immuno IL-4 2 Immunised Rabbit Rabbit a-rat 2.5 
mouseIL-4 24G2 Kontact mouse spleen (Vector) 
Rat anti- TRFK5 Caltag IL-5 2 Immunised Rabbit Rabbit a-rat 2.5 
mouse IL-5 mouse spleen (Vector) 
Rat anti- MEC 7.46 HyCult PECAM-I 0.5 Heart tissue Rabbit Rabbit a-rat 2.5 
mouse (endothelial cells) (Vector) 
CD31 

Rat anti- lOE9.6 Pharmingen E-selectin 10 Rabbit Rabbit a-rat 2.5 
mouse (Vector) 
CD62e 
Rat anti- ID3 Pharmingen B cells 1.6 Mouse spleen Rabbit Rabbit a-rat 2.5 
mouseCDI9 (Vector) 
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Primary Clone Supplier Target antigen Concn. Positive Normal Biotinylated Concn. 
antibody for use controls serum used secondary for use 

(J1g1ml) in block antibody (J1g/mI) 
Rat anti- 7/4 Serotec N eutrophils 0.33 Rabbit Rabbit a-rat 2.5 
mouse (Vector) 
neutrophils 
Rat anti- NLDC-145 Serotec Dendritic cells, SIN. Mouse skin Rabbit Rabbit a-rat 2.5 
mouse thymic epithelial 1:100 (Vector) 
DEC205 cells, follicular dilution 

DC's ofB cell used 
follicles 

Hamster 2H5 Serotec MCP-l 5 Induced Goat Goat a- 5 
anti-mouse granuloma in (Sigma) hamster 
MCP-l mouse thigh 

tissue 
Hamster 3E2 Pharmingen ICAM-l 10 Induced Goat Goat a- 5 
anti-mouse granuloma in (Sigma) hamster 
CD 54 mouse thigh 

tissue 
Rabbit anti- Polyclonal Covance Keratin 6 5 Mouse skin, Goat Goat a-rabbit 5 
mouse mouse tongue (Sigma) 
keratin 6 
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For staining frozen joint sections, antibody concentrations were increased since 

the adhesive used and fixing step seems to mask some antigen. In these sections, 

a-IL-Ip was used at 5 J,lg/ml, a-F4/80 at 2 J,lg/ml, a-CD4 at 2 J,lg/ml, a-CD8a at 2 

J,lg/ml, a-IFNy at 2 J,lg/ml, and a-IL-4 at 5 J,lg/ml. The secondary antibody (rabbit 

a-rat) was used at 5 J,lg/ml. 

2.8.8: Immunohistochemical staining of frozen sections - staining procedure 

with Vector ABC reagent kit 

Slides stored at -70°C freezer were allowed to reach room temperature. They 

were fixed in acetone at room temperature for 10 min and dried on a rack. Frozen 

joint sections were fixed for 20 min in methanol at 4°C, as acetone was found to 

destroy the adhesive. 

The slides were rinsed briefly with PBS then washed 3 x 3 min. In order to 

quench endogenous peroxidase by auto-oxidation, the slides were then incubated 

for 20 min at room temperature in 0.9% v/v hydrogen peroxide (1.2% hydrogen 

peroxide for frozen joint sections). If sections were to be stained using the alkaline 

phosphatase method, the quenching step with hydrogen peroxide was omitted. 

After quenching, the slides were washed 3 x 3 min. To avoid loss of reagents from 

the slides, a hydrophobic barrier was created around each sample with a paraffin 

pen (PAP pen, Hybaid). Frozen joint sections were dried only on the back of the 

slide, to avoid disturbing the glue holding the section in place. To block 

inappropriate reactivity to the secondary antibody, the slides were then incubated 

for 30 min at room temperature in a humidified chamber with 200 J,ll per slide of 

7% appropriate normal serum (10% for frozen joint sections) (see table 2). The 
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serum used corresponded to the species in which the secondary antibody was 

made. 

The slides were then blocked for inappropriate staining of endogenous biotin 

within the sections. The slides were drained and 1 drop of avidin from an 

avidinlbiotin blocking kit (Vector) was added to each slide. After 15 min 

incubation at room temperature the slides were rinsed with PBS and 1 drop of 

biotin from the same kit was added to each slide. After 15 min incubation at room 

temperature, the slides were rinsed with PBS and washed 3 x 3 min. This 

procedure binds any endogenous biotin in the tissue (which would otherwise 

create false positive results by reacting with the ABC complex) with avidin, then 

blocks any remaining biotin binding sites on the avidin with biotin. 

The appropriate primary antibody (see table 2) in 200 J,ll, at the optimal 

concentration, was added to each section and the slides incubated either for 15 hr 

at 4°C, or for 2 hr at room temperature, both in a humidified chamber. 

Following incubation with primary antibody, the slides were washed 3 x 3 min 

and incubated in a humidified chamber at room temperature with the appropriate 

biotinylated secondary antibody (all supplied by Vector) for 30 min (see table 2). 

At this point the ABC reagents (VECTASTAIN Elite ABC kit, Vector) were 

mixed and incubated at 4°C for 30 min to form an avidin DH biotinylated 

horseradish peroxidase H complex. The avidin binds to the biotinylated secondary 

antibody, whilst the peroxidase reacts with the chromagen DAB to produce a 

brown precipitate. To mix the ABC reagents, the amount required was first 
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calculated (100 J.11 per slide). The appropriate amounts of reagent A and reagent B 

were added to PBS/O.I % saponin as follows: 

For diaminobenzidine tetrahydrochloride (DAB) staining (brown/black staining of 

positive cells), 2 J.11 each of reagent A and reagent B were added to each 100 J.11. 

For alkaline phosphatase staining (red staining of positive cells) the 

VECT AST AIN ABC-AP kit (Vector) was used, and in this case 1 J.11 each of 

reagent A and reagent B were added to each 100 J.11. This combines avidin DH 

with biotiny lated alkaline phosphatase H. The phosphatase catalyses the 

hydrolysis of the phosphate-containing Vector Red (Vector) substrate to form a 

red product. 

After incubation with the biotinylated secondary antibody, the slides were washed 

3 x 3 min. 100 J.11 of the ABC reagent was added to each slide and these were then 

incubated in a humidified chamber at room temperature for 30 min. The slides 

were then washed 3 x 3 min, then 2 x 3 min in PBS. The slides were then 

incubated with and 200 J.11 of substrate solution at room temperature. 

For DAB staining, 1 drop of buffer, 2 drops of DAB substrate reagent and 1 drop 

of hydrogen peroxide substrate reagent as supplied (Vector) were added to each 5 

ml of water. If a black rather than brown stain was required, 1 drop of the supplied 

nickel II chloride solution was also added. The slides were incubated with the 

substrate for 5-10 min. 
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For alkaline phosphatase staining, 2 drops each of Vector Red substrate reagents 

1, 2 and 3 were added to 5 ml of 100 mM Tris-HCl, pH 8.2-8.5. 1 drop of the 

phosphatase inhibitor levamisole (Vector) was also added to each 5 ml of solution 

to block inappropriate staining. The slides were incubated with the substrate for 

20-30 min. 

The slides were rinsed with deionised water, then washed in deionised water for 1 

min. They were then rinsed in running tap water for 1 min. Slides were 

counterstained with Gill's haematoxylin for 1 min, washed in running water for 1 

min, allowed to turn blue in Scotts' solution for 10 s, rinsed in running tap water 

for 1 min then dehydrated through an ethanol series (1 min each in 70%, 95% and 

100% ethanol). The slides were cleared in xylene for 1 min then mounted in 

Eukitt mounting medium. 

Frozen joint sections were not dehydrated; after rinsing in running water 

following incubation in Scotts' solution, the sections were air dried and mounted 

in a glycerol based aqueous mounting medium. 

2.9: Immunohistochemistry for formaldehyde fixed sections 

2.9.1: Preparation of tissue samples for paraffin embedding 

Tissue was fixed for >24 hr in 3.7% neutral buffered formaldehyde, or dissected 

from formaldehyde fixed cadavers. The tissue was placed inside a cassette and 

processed to paraffin automatically in a Citadel 2000 tissue processor (Shandon). 

If the required samples contained bone, they were decalcified in daily changes of 

0.53 M EDTA/sodium hydroxide (pH 8.0) for> 1 week prior to processing to 
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paraffin. Before decalcification, fur and skin were removed from the tissue in 

order to allow the decalcifying solution to permeate the tissue. 

2.9.2: Preparation of paraffin wax blocks 

Processed tissue samples were incubated at 65°C in a Tissue-Tek thermal console. 

Each specimen was orientated in a metal mould and molten paraffin (at 65°C) 

dispensed into the mould using a Tissue-Tek dispensing console, before cooling 

on a Tissue-Tek cryo-console at -5°C for 10 min, and removing blocks from the 

mould for storage at room temperature. 

2.9.3: Sectioning of paraffin blocks - operation of microtome 

The face of the block to be cut was chilled before being placed in the block holder 

of the microtome (model 820, American Optical Corporation). Disposable 

microtome blades (Feather) were used. The block was then trimmed by removing 

20 Jlm thick sections until the desired area of tissue was exposed, when 6 Jlm 

thick sections were cut, floated on deionised water at 50°C and collected onto the 

surface of microscope slides. Sections were labelled, dried at 37°C overnight then 

subsequently stored at room temperature. 

2.9.4: Histological staining of paraffin embedded sections 

Sections were deparaffinised in xylene for 2 x 5 min, rehydrated by soaking in 

100% ethanol for 2 x 5 min, 95% ethanol for 5 min, 75% ethanol for 5 min and 

running tap water for 1 min. For haematoxylin and eosin staining, the slides were 

then placed in Gill's haematoxylin. The procedure thereafter followed that for 
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frozen sections (section 2.8.4). Alternatively, the connective tissue staining 

method was followed (section 2.8.6). 

2.9.5: Naphthol AS-D chloroacetate esterase staining in paraffin embedded 

sections 

This technique detects a specific cellular esterase contained within neutrophils and 

the granules of mast cells. Naphthol AS-D chloroacetate esterase causes the 

enzymatic hydrolysis of naphthol AS-D chloroacetate (naphthol 3-hydroxy-2-

naphthoic acid o-toluidide) to a naphthol compound. This then reacts with a 

diazonium salt, forming insoluble red deposits at the sites of enzyme activity. 

Neutrophils and mast cells can be identified in formaldehyde fixed, paraffin 

embedded sections [Yam et al., 1971; Li et al., 1973]. Sections were 

deparaffinised and rehydrated. Meanwhile 80 ml of deionised water were warmed 

to 37°C in a water bath. Immediately before use, 2 ml 0.1 M sodium nitrite 

solution was added to diazotise 2 ml fast red violet LB base solution (15 mg/ml 

fast red violet LB base in 0.4 M hydrochloric acid) in a universal vial and 

incubated for 2 min at 37°C. This solution was then diluted with the 80 ml 

warmed deionised water. TRIZMAL 6.3 buffer concentrate (10 ml) and 2 ml 

naphthol AS-D chloroacetate solution (8 mg/ml) were added. The mixture was 

poured over the slides, which were then incubated at 37°e in the dark for 15 min. 

The slides were then washed in deionised water for 2 min, and counterstained 

with haematoxylin for 2 min. Slides were rinsed in tap water, air dried and 

coverslips mounted using an aqueous mounting medium. 
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2.9.6: Toluidine blue staining of formaldehyde fixed paraffin embedded 

sections 

Toluidine blue forms a characteristic purple complex with sulphated glycoproteins 

that are abundant in mast cells and basophils. Sections were deparaffinised and 

rehydrated, and stained in 0.01 % aqueous toluidine blue solution for 30 s before 

rinsing in running water. Sections were dehydrated by dipping in 70%, 95% and 

100% ethanol for 3 s each, then cleared by dipping in xylene and mounted. Mast 

cells appear violet, with a blue staining background. 

To compare numbers of mast cells between skin sections, numbers were counted 

under a light microscope and divided by the approximate area of the skin visible 

in each field. 

2.10: Analysis of RNA 

2.10.1: Preparation of RNA from cells 

Cells, from tissue culture, were pelleted by centrifugation and resuspended in a 

small volume of medium. 3 ml of RNAZol B was added to each cell suspension 

and mixed. The cell suspensions were transferred to sterile tubes on ice and 0.1 

volume of chloroform added. The mixtures were vigorously mixed by vortexing 

for 30 s, then left on ice for 20 min, and centrifuged at 16,000 x g for 10 min at 

4°C. The resulting aqueous phases were transferred to sterile tubes. Isopropanol, 

one volume, was added to each tube and the mixtures centrifuged at 16,000 x g 

for 15 min at 4°C. The resulting pellets were washed in 70% ethanol, allowed to 

dry and resuspended in 100 J.11 sterile water. 1 J.11 of the RNA sample was diluted 

1 :500 in sterile water. The concentration was measured spectrophotometrically at 

260nm. 
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2.10.2: mRNA separation and Northern blot 

a) Running of agarose gel and capillary transfer to membrane 

A 250 ml gel tank and tray were soaked in 1 M sodium hydroxide for 30 min then 

rinsed out with sterile water. Baked glassware was used to make up a 1.2% 

agarose gel containing 0.1 M deionised formaldehyde and 5 milO x 3-[N­

Morpholino]propanesulfonic acid (MOPS) at pH 7.0 (500 ml lOx MOPS: 41.8 g 

MOPS/6.8 g sodium acetate/1.86 g disodium EDTA/3.2 g sodium hydroxide). 10 

Ilg of each RNA sample were made up to 5 III with sterile water. 20 III loading 

buffer (12.5% 10 x MOPS, 9% formaldehyde, 62.5% formamide, 2.5% water, 

bromophenol blue) were added to each sample and appropriate RNA size marker. 

Samples were heated to 700 e for 2 min then loaded into the gel. The gel was run 

for 2 hr at 70 volts in a tank containing a buffer composed of 1 x MOPS and 0.1 

M deionised formaldehyde in water. After running, the gel was washed for 30 min 

in sterile water to remove formaldehyde, then washed for 30 min in 20 x sodium 

citrate buffer (SSC) (OJ M trisodium citrate/3 M sodium chloride). A stack was 

then created, as for Southern blotting (section 2.6), with the difference that lOx 

sse was used in the capillary transfer, and the stack was topped with a weight of 

-400 g. RNA transfer was allowed to proceed for 12 hr. 

The stack was dismantled and the membrane washed in 2 x SSC, then baked 

between two sheets of filter paper for 30 min at 80°C. The blot was stored flat and 

sealed until probing. 
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b) Probing Northern blot 

An IL-l f3 mouse coding region probe was radiolabelled with a-e2p] dCTP using 

the T7 Quickprime kit (section 2.5.2). The blot was rolled up into a hybridisation 

bottle, where it was pre-hybridised with 20 ml hybridisation solution at 65°C. The 

procedure as for probing Southern blots (section 2.6) was then followed. After 

probing, the damp blot was sealed in a plastic bag and placed on autoradiograph 

film in a light proof cassette at -70°C and developed after 24 hr. 

2.11 Detection of Helicohacter species infection in mice 

2.11.1: peR to detect Helicobacter spp. infection in mouse 

Helicobacter is not amongst the pathogens routinely investigated by the 

University of Sheffield SPF field laboratories. To detect if there was any 

Helicobacter infection, a PCR assay was employed [Riley et al., 1996] to detect 

bacterial rRNA in faecal DNA. A 50 J..tl PCR reaction was used which contained 

roughly 1 J..lg DNA extracted from murine faeces, 4 mM magnesium chloride as 

supplied, 1 x buffer as supplied, 0.2 mM dNTPs, 2.5 units Taq DNA polymerase 

and 0.5 J..lM each of the forward (5' CTA TGA CGG GTA TCC GGC 3') and 

reverse (5' ATT CCA CCT ACC TCT CCC A 3') primers. This reaction amplifies 

a stretch of the 16S rRNA gene which is conserved across members of the genus 

Helicobacter. The mixture was cycled with an initial DNA denaturation step at 

94°C for 5 min, followed by a 2 s denaturation step at 94°C, 2 s annealing at 53°C 

and 30 s primer extension at 72°C. After 35 cycles, giving an end product of 375 

bp for positive reactions, the samples were cooled to 4°C then stored at 4°C until 

running on a 2% T AE agarose gel. 
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2.11.2: MboI digestion of Helicobacter spp. peR products 

To determine which species of Helicobacter was present in the tested mice, the 

peR products were digested with the restriction enzyme Mbo!. Using this method, 

H hepatic us yields fragments of 348 bp and 27 bp, H muridarum yields the 

unfragmented product of 375bp, and H biUs gives fragments of 348 and 27 bp 

which can be further fragmented by the restriction enzymes HhaI and MaeI to 

yield fragments of251 bp, 71 bp, 27 bp and 26 bp [Riley et al., 1996]. 

The PCR product, 25J.11, was run on a 2% TAE agarose gel to ensure the reaction 

had worked and the other 25 J.11 stored at 4°C. When the reaction had been 

confirmed, the remaining 25 J.11 was diluted with 65 J.11 sterile water and the DNA 

purified by phenol/chloroform extraction, followed by ethanol precipitation. The 

resulting pellet was resuspended in 10 J.11 TE. The sample was split into two 

aliquots of 5 J.11 and to one set 9.8 J.11 water, 2 J.1g BSA, 2 J.11 10 x NEB buffer 3 

(100 mM sodium chloride, 50 mM Tris-HCI, 10 mM magnesium chloride, 1 mM 

DTT pH 7.9) and 3J.11 (15 u) MboI were added. The other set were used as controls 

and had no enzyme added. These were incubated at 37°C for 3 hr, and the reaction 

stopped by the addition of 4 J.11 loading dye containing 80% glycerol/60 mM 

EDTA. The samples run on a 2% TBE agarose gel containing 0.5 J.1g/ml ethidium 

bromide and bands were visualised under ultraviolet radiation at 320nm. 
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2.12: Measurement of serum amyloid A (SAA) in mouse serum 

2.12.1: Enzyme linked immunosorbent assay (ELISA) to detect levels of SAA 

in mouse serum 

To attempt to measure the acute phase response in mice suffering from arteritis, 

levels of SAA in samples of mouse serum were measured using an SAA ELISA 

kit (Biosource) as per the kit instructions. Working solutions of the supplied wash 

buffer and diluent were prepared, then the supplied conjugated anti-SAA 

monoclonal antibody was prepared by diluting in diluent. Standards (at 3.8 J.1g/ml, 

1.9 Jlg/ml, 0.950 Jlg/ml, 0.475 J.1g/ml, 0.233 J.1g/ml and 0 J.1g/ml) were prepared as 

per instructions, as well as 1 :50 dilutions in (diluent buffer) of each serum sample. 

The supplied wells (pre-coated with a monoclonal antibody against mouse SAA) 

were washed twice with the working wash buffer. 50 J.11 of conjugated anti-SAA 

was added to all wells except blank controls, to which 100 J.11 of diluent was 

added. 50 JlI of either standards or samples (all in duplicate) were then added to 

the wells (except blank controls). The wells were then covered with the supplied 

adhesive plastic over and incubated at 37°C for 1 hr. 

Following incubation, the wells were emptied and washed 3 times with working 

wash buffer. A working PNPP (4-nitrophenyl phosphate) substrate solution was 

then prepared (1 mg/ml) in the supplied PNPP substrate buffer. 100 J.11 of PNPP 

solution was then added to all wells, and the wells covered and incubated at 37°C 

for 1 hr. 50 J.11 of the supplied stop solution (3 M sodium hydroxide) were added 

to all wells, and the absorbence read for each well at 405nm on an ELISA plate 

reader (MRX, Dynatech Laboratories). Results were analysed using Biolynx 
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software (Dynatech Laboratories) version 2.20, and levels of SAA in each sample 

calculated from a graph constructed from the standards. 
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Section 3: Results 
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Figure 7: Southern blot analysis of two lines of lllm-l- mice 
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Figure 7: Apal digestion of high molecular mass genomic DNA from two lines of III m·l• mice, followed by 

Southern blot analysis using a radiolabelled 3' flanking probe, demonstrates that both lines contain the 

same null allele. 



3.1: Southern blot analysis of two lines of Illrn-I- mice 

The colony ofIL-lra deficient mice at the University of Sheffield is derived from 

the progeny of a single chimaera and an outbred MF 1 female. In order to confirm 

that arteritis would arise in a second line, another chimaeric mouse was derived 

from a second 0418 resistant embryonic stem cell colony. The mouse was 

backcrossed twice onto 129/01a, then mated with a second outbred MFI mouse. 

III rn-I
- progeny from this second mating were also confirmed as having arteritis 

[Nicklin et al., 2000). 

To compare the null alleles carried by the two lines, high molecular weight DNA 

was extracted from the spleens of mice from both lines. The DNA was then 

digested with Apal and the restriction fragments probed on a Southern blot with a 

radiolabelled 3' flanking probe (containing nucleotides -13,300 to -14,600). 

Hybridisation of the probe to the Southern blot confirmed that the two lines 

contained the same null allele (Figure 7). Since Illrn-I
- animals from both lines 

suffer from arteritis, and both contain the same null allele, it is reasonable to 

assume that the illness is due to the known null allele, and not an erroneously 

selected susceptibility gene. 

Further evidence is currently being gathered through investigating whether a null 

allele in the IL-l type 1 receptor gene (Ill r1) is able to suppress the III rn-I
-

phenotype, by crossing III rn-I
- mice with III r r l

- animals. This study is in 

progress. 
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Figure 8: Examples of positive controls for immunohistochemistry 

Figure 8: Examples of positive control stains forimmunohistochemistry on frozen sections of mouse tissue. 

a) CD4+ cells, mouse thymus. b) CD8+ cells, mouse th mus. c) IFN( cells, mouse th mus. d) F4/80+ cells, 

mouse spleen. e) MCP-l production, induced granuloma in mouse thigh muscle. /) keratin-6, mouse 

tongue. In all cases brown indicates positive staining, all counterstained with haemato ' lin (purple/blue). 

Scale bars in a-d and f = 200 ~ scale bar in e = 40 J.U11 . ScaJe bars throughout aU figures are approximate. 



Figure 9: Northern blot probed for IL-l~ 
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Figure 9: Northern blot prepared from 10 Ilg RNA extracted f m RAW 264.7 cell which had been either 

stimuJated with 0.1 ",giml L r left un limulated (cultured in free media). The blot was probed 

using a radiolabelled IL-l f.\ mouse codjng region p be. Lane A, un timulated RAW 264.7 cells. Lane B. 

RAW 264.7 cells after 4 hr stimulation with L . Lane • RAW 264.7 cells after .18 hr stimulation with 

LPS. IL-l f.\ RNA i detectable in RAW 264.7 cell ~ II wing tjmulati n, but n t before. 



3.2: Optimisation of immunohistochemical stains 

3.2.1: Positive controls 

Several of the monoclonal antibodies used in this study had not been previously 

reported as suitable for immunohistochemical staining of frozen mouse tissue. In 

addition, antibodies which were previously used in protocols elsewhere still need 

to be optimised. Stains were optimised on an appropriate frozen tissue section. 

Most antibodies which had not been reported as used in staining frozen mouse 

tissue in the trade literature worked well after optimisation, as did those which had 

been used previously by other workers (Figure 8). 

3.2.2: Positive control for IL-lf} 

As a positive control for the anti IL-I~ antibody, RAW 264.7 (mouse 

macrophage) cells were grown on coverslips, stimulated with LPS then stained for 

'. 
IL-I~. Negative controls were provided by simultaneously growing RAW 264.7 

cells on coverslips in LPS-free medium. To test IL-I~ RNA production in these 

cells with and without LPS stimulation, to ensure they would make a viable 

positive control, a Northern blot assay was performed. RNA was extracted from 

RA W 264.7 cells 0 hours, 4 hours and 18 hours post stimulation with 100 ng/ml 

LPS. The RNA was used to create a Northern blot which was probed for IL-J~ 

RNA, using a radiolabelled probe. The resulting autoradiograph shows production 

of IL-J ~ RNA in RAW 264.7 cells following LPS stimulation (Figure 9). For a 

positive control, the cells were stained for the macrophage antigen F4/80. Note 

that the expression of F 4/80 is uniform, but IL-I ~ is strong in some cells, but not 

in others (Figure 10). 
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Figure 10: RAW 264.7 cells used as positive controls for IL-lf3 staining 
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Figure 10: RAW 264.7 cells, either stimulated for ~ hr \ Ill' I J.lglntl P or un imulaled (controls) were 

stained for F4/80 (positive control), IL-I~, or ~ (n gativ control). 3) and b are wined for F4/S0, c) 

and d) for IL-l ~, and e) and f) for 04. All cell In po Illv I for 4/80, none oin for 04, and -30% 

stain positively for IL-l ~ following LP stimul lion Ie bar applic 10 a-f. 



Following this confirmation, RAW 264.7 cells were grown on coverslips, and 

either stimulated with LPS for 4 hours or left unstimulated. They were then 

stained with the anti-IL-I (3 antibody. This procedure worked well (Figure 10), 

even after coverslips covered in LPS stimulated RA W 264.7 cells had been stored 

for several weeks in 100% ethanol at 4°C. Unstimulated cells did not stain for IL­

l (3, nor did any cells stain for CD4 (used as an additional control). LPS stimulated 

RA W 264.7 cells thus served as positive controls for IL-I (3 staining. 

3.3 Arteritis in III rn.,l-mice 

3.3.1: Introduction 

Illrn-I
- mice spontaneously develop arteritis, particularly in the aorta and its main 

branches. Lesions are often located at areas of turbulent blood flow such as 

flexures and bifurcations [Nicklin et al., 2000]. The predilection for arteritic 

lesions to develop at these sites in our Ilim-I
- mice is similar to that of GCA, TA 

and atherosclerotic lesion development in the human. III rn-I
- mice tend to die 

suddenly, from organ infarction, particularly myocardial, and less often as a result 

of internal haemorrhage from ruptured aneurysms. 

The hypothesis being tested is that inflammatory arterial lesions arise in Illm-I
-

mice as a result of the unopposed action of IL-I. The aim of this investigation was 

to further characterise the inflammatory lesions observed in arteritic Illm-I
- mice 

[Nicklin et al., 2000], in order to obtain insight into the mechanisms by which 

arterial lesions result from the activity of IL-I. A further aim was to compare the 

disease with inflammatory lesions in human arteritides such as giant cell arteritis 

(GCA) and Takayasu's arteritis (TA), to test the hypothesis that the pathology of 
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the III rn-t
- mice may provide a suitable animal model for the study of human 

inflammatory artery disease. 

3.3.2: Animals used in arteritis studies 

Animals killed prospectively appeared outwardly healthy. Animals culled because 

of ill health and later confirmed as suffering from arteritis typically had poor 

coats, appeared hunched and lethargic, or had audible breathing. 

In total, aortic roots from 70 animals were examined (40 from the Sf3 line that we 

are developing, 9 from the S12 line, and 21 Balb/c). 64170 aortic roots were frozen 

and sectioned, and 6170 were formaldehyde fixed, paraffin embedded, and 

sectioned. 

Of the 64 animals examined in frozen sections, 8 were l11rn+t+ Sf3, 4 were l11rn+l-

Sf3, and 28 were ll1rn-l
- Sf3 animals. 6 were ll1rn+l+ Balb/c, 2 were l11rn+l-

Balb/c, and 7 were ll1rn-l
- Balb/c. 2 were l11rn+l+ S12, and 7 were l11rn-t- S12. 

3.3.3: Characterisation of arteritis in Il1rn-t
- mice - immunohistochemical 

study 

In all cases the aortic root was studied as it proved to be a frequently affected area, 

particularly around valves (an area of turbulent blood flow). Some formaldehyde 

fixed paraffin embedded sections were used, but the majority of the study used 

immunohistochemical staining techniques with frozen sections. Though the 

histology of these sections is less clear, they allowed us to define cell types, 

cytokines, chemokines and adhesion molecules present at the lesional site. In 

addition, a time course study was performed to attempt to define initiating factors 
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in the disease and to examine the progress of the lesions. It was hoped that by 

identifying the earliest features of the lesions, it would be possible to provide 

insights into how lesions develop in the arteries of III rn-/- animals, and also to 

compare the lesions in more detail to those found in human GCA and TA. 

General cell distribution 

Frozen sections were stained with haematoxylin and eosin to locate lesions and to 

examine the general cellularity of the area. In affected III rn-I
- animals, 

haematoxylin and eosin staining of the aortic root revealed a large cellular 

infiltrate around affected vessels, particularly within the adventitial and medial 

layers. These results are similar to those described previously elsewhere in the 

arterial system [Nicklin et al., 2000]. The boundaries of the infiltrate were often 

clearly defined (Figure 11). Lesions were frequently observed in areas of the 

vessels containing valves, which are sites of turbulent blood flow (Figure 12). 

Staining of formaldehyde-fixed paraffin embedded sections with haematoxylin 

and eosin gave a better impression of the structural morphology of the lesions 

(Figure 13). Lesions were seen in 4/6 paraffin embedded sections from Illrn-/­

mice. 

The haematoxylin and eosin stained sections were scored for the extent of cellular 

infiltrate as follows: 0 denotes no cellular infiltrate, and 1 denotes a small 

infiltrate of activated immune cells «50) in the outer layer of the vessel wall. A 

score of 2 denotes a larger, more densely packed infiltrate, comprising 

approximately 25-50% of the area of the vessel, within the outer/mediallayers. 3 
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Figure 11: Demarcation oflesional area 

Figure 11: Haematoxylin and eosin stains of frozen aortic root sections from fllrn-I- mice show clear 

demarcation of the lesional area (A) from surrounding tissue. L = vessel lumen, e = endothelium, m = 
media. Sections are from the aortic root lesions of flJrn-l- mice aged a) 155 days (female), b) 125 days 

(male) and c) 203 days (male). Scale bar = 200 /lm. 



Figure 12: Arteritic lesions close to valves 

Figure 12: Haematoxylin and eosin stained aortic root lesions, from 3 JlJrn-l- mice, demonstrating their 

frequent appearance around valves (V). L = vessel lumen, e = endothelium, m = media, arrows = 

inflammatory infiltrate. The examples shown are aortic root sections from Jllrn-l- mice aged a) 221 days 

(female), b) 174 days (male) and c) 179 days (female). Scale bars = 200 j.lm. 



Figure 13: Formalin fixed, paraffin embedded aortic root sections 

d 
200~m 

Figure 13: Haematoxylin and eosin staining of paraffin embedded sections of aortic root from lllrn-
I
- animals showing 

inflammatory infiltrates around the large vessels. L = vessel lumen, e= endothelium, m = media. a) aortic root section 

from a 199 day old male 1Ilrn-l- mouse. b) higher power magnification of boxed area in a. c) aortic root section from a 

174 day old female I1Jrn-l- mouse. d) aortic root section from a 172 day old male 11Jrn-l- mouse. 



Figure 14: Examples of cellular infiltrate scores on haematoxylin and eosin stained 
frozen aortic root tissue 

23 day old male 9 day old female 

Figure 14: E am pies of cellular infiltrate scores for 

aortic root lesions 

a) cellular infiltrate score 0 (no cellular infiltrate). b) 

cellular infiltrate score 1 (a small infiltrate of activated 

immune cells «50) in the outer layer of the vessel 

wall). c) cellular infiltrate score 2 (a larger, more 

densely packed infiltrate, comprising approximatel 

25-50% of the area of the vessel, within the 

outer/medial layers), d) cellular infiltrate score 3 (a 

large infiltrate, >50% of the vessel area) with cells 

infiltrating aU la ers of the vessel waU). e) 1I1m+1+ 

aortic root score O. All haemato)'''ylin and eosin 

stained. Scale bar = 200 Ilm except in b = 401lm. L = 
vessel lumen, e = endothelium, m = media. 



Figure 15: Examples of scores of elastin damage 
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Figure 15: staining of connectivc ti ue u ing the cia tic/van Gieson technique. Elastin stains black, 

collagen red and muscle yellow. a) elastin damage score . b) ela tin damage score 1. Outer layers of 

elastin are fragmented (arrows). c) elastin damage score 2, where elastin degradation is evident in all layers 

at one point of the vessel wall (arrow). d) and e), elastin damage score . In d), there is complete 

degradation of elastin at several points of the vessel wall (arrows) and e cess collagen deposition (thick 

arrows). In e), there is evidence of repair with e cess collagen deposition (thick arrows) and thickened, 

disorganised elastin layers (arrows). L = essel lumen, e = endothelium, m = media. 



Figure 16: Myocardial scar in IlJrn-l-mouse 
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Figur 16: Myocardial scar in a J 6 cia old fem Ie II/ rn m u , lIlciJ \lng a re iou non-lethal 

inflammatory cent. a) haemato. lin nd co to tam, b) conn I\e \I u tallt Je bar - 200 J.lm. 



denotes a large infiltrate (>50% of the vessel area) with cells infiltrating all layers 

of the vessel wall (Figure 14). 

III rn +1· mice appeared to be mildly affected by arteritis, with 3/4 of the animals 

from which frozen sections were taken scored scoring 1 for cellular infiltrate. 

In Illrn+l+ mice, no inflammatory infiltrates were observed, in any animals. All 

results were in keeping with previous observations [Nicklin et at., 2000]. 

Connective tissue 

Frozen sections were also stained for connective tissue in order to examine 

damage to the elastin layers of the vessel walls, and to detect signs of repair to 

damaged connective tissue. 

Connective tissue staining showed that the elastic layers of the outer elastic 

laminae and internal elastic laminae were often partially fragmented or completely 

destroyed in affected animals (Figure 15), whilst in some lesions from older 

animals there was evidence of repair to the damaged elastin with excess collagen 

deposition and fibrosis, as well as thickened and disorganised elastin layers 

(Figure 15), suggesting that repair of the vessel walls follows degradation caused 

by the inflammatory infiltrate. Destruction of the elastic layers is presumably due 

to the production of MMPs and other proteases from cells (such as macrophages 

or neutrophils) within the infiltrate. In some cases there was also evidence of 

myocardial scarring, indicating a previous non-lethal inflammatory event (Figure 

16). These results confirm earlier published results [Nicklin et at., 2000]. 
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Figure 17: Large inflammatory infiltrates with relatively little elastin damage 

Figure 17: a) & c) haematoxylin and eosin stained aortic root Ie ion . b) & d), the me aortic root lesions 

stained for connective tissue. From cases such a thi , it appear that inflammatory infiltrates precede 

elastin damage. a and b) aortic root lesion section from a I I da old malc 111m"· mouse. c and d) aortic 

root lesion sections from a 75 day old female III rn ( mou . calc bar = 200 ~m . 



Figure 18: Specificity of lesion development for large muscular arteries 

Figure 18: Connective tissue staining shows the predilection for Ie ion d elopment at the large muscular 

arteries. Note complete degradation of the cia tin la er at sc eral point of the large artery (thick arrows) 

as well as excess collagen deposition (red staining). omJXlre to neighbouring vein (thin arrow) which 

remains unaffected. The example shown is a section of an aortic root Ie ion from a 155 day old female 

JIJrn-l - mouse. Scale bar = 5 J.Ul1. 
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Figure 19: Lack of cellular infiltrate or ela tin damage in Il1rn +1+ aortic roots 
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Figure 19: Aortic rool from 111m mice ho\\- no cellular inJiItr.1I or cia tin damage. a) and b) 

haemalox lin and eo in an connectivc Ii u lalning 0 lh a rtlC rool fr m I I da old female 1J lrn+1+ 

mouse. c) and d) haemalo lin and eo In and conn It.. II. u lalOJng of lh aortic rool from a 108 da 

old male 111m mouse. e) and f) haemalo Itn and co In lain OrtlC rool from a ond, female, 108 

day old 111m mouse. In aU notc the lack of cellular Infiltrol nd lh un mag d cia tin la ers . .. ruch 

remain clearly organised and unfragmenled Also nOle I k of 

J.Lm. 

collage d po ilion calc bar = 200 • 



In support of the hypothesis that the infiltrate arises from the adventitial layer, in 

some lesions it was possible, in some cases, to observe a large infiltrate within the 

outer layers of the vessel wall, but no degradation of the internal elastic laminae, 

and a lack of inflammatory cells at the lumenal surface of the aorta (Figure 17). 

Neighbouring veins and arterioles were unaffected by the inflammation, 

demonstrating the specificity of the inflammatory disease for the large muscular 

arteries (Figure 18). 

All III rn +/+ mice examined had undamaged vessel walls. In all cases the elastin 

layers were clearly defined and organised in concentric layers, with no evidence 

of fragmentation. There was also no evidence of excess collagen deposition in any 

III rn +/+ animal (Figure 19). 

Scores for elastin damage were also given on these sections as follows: 0 denotes 

no damage to elastin, a score of 1 denotes fragmentation of the outer layers, 2 

denotes complete degradation at one point of the vessel wall, and 3 denotes 

complete degradation at > 1 point of the vessel wall and/or evidence of repair 

(Figure 15). 

All scores (for cellular infiltrate and elastin degradation) were performed blind to 

the animals' genotype or age. The scores, and subsequent immunohistochemical 

analysis, all refer to the most affected area of the vessel seen. 
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Table 3: Animals used in arteritis study 

Mouse Back- 111m Age at Sex Cellular Elastin Used in 
I.D ground genotype death infiltrate degradation time 
number (days) at site of at site of course 

section section study 
134-08 Sf3 -1- 23 M 0 0 * 
137-03 Sf3 -1- 24 M 1 0 * 
138-03 Sf3 -1- 24 F 0 n/d * 
150-01 Sf3 -1- 56 M 1 0 * 
150-05 Sf3 -1- 56 M 1 n/d * 
154-04 Sf3 -1- 59 F 1 2 * 
154-08 Sf3 -1- 59 F 1 n/d * 
144-04 Sf3 -1- 75 F 2 1 * 
144-05 Sf3 -1- 75 F 1 1 * 
151-01 Sf3 -1- 81 M 0 0 * 
151-02 Sf3 -1- 81 M 3 3 * 
133-02 Sf3 -1- 105 M 3 3 * 
133-08 Sf3 -1- 105 F 0 n/d * 
149-01 Sf3 -1- 106 M 2 n/d * 
149-03 Sf3 -1- 106 M 0 1 * 
115-01 Sf3 -1- 125 M 3 3 * 
115-02 Sf3 -1- 125 M 3 1 * 
104-02 Sf3 -1- 128 F 3 3 

123-03 Sf3 -1- 131 M 3 3 * 
123-05 Sf3 -1- 131 M 3 n/d * 
140-01 Sf3 -1- 154 M 3 2 * 
140-02 Sf3 -1- 154 M 0 n/d * 
154-02 Sf3 -1- 163 M 3 n/d * 
110-04 SD -1- 179 F 3 3 

110-05 Sf3 -1- 179 F 2 n/d 

134-06 Sf3 -1- 203 M 2 n/d * 
104-05 Sf3 -1- 221 F 3 3 

104-07 Sf3 -1- 221 F 3 3 

134-10 Sf3 +1- 23 F 0 n/d * 
150-06 Sf3 +1- 56 M 1 n/d * 
149-04 Sf3 +1- 106 F 1 n/d * 
115-03 Sf3 +1- 125 M 1 n/d * 
137-01 Sf3 +1+ 24 M 0 0 * 
137-02 Sf3 +1+ 24 M 0 0 * 
148-03 Sf3 +1+ 108 M 0 0 * 
148-06 Sf3 +1+ 108 F 0 0 * 
145-02 Sf3 +1+ 151 M 0 0 * 
145-03 Sf3 +1+ 151 F 0 1 * 
153-06 Sf3 +1+ 193 F 0 n/d * 
151-09 Sf3 +1+ 220 F 0 n/d * 
108-02 Sf2 -1- 57 M 3 1 

98-05 Sf2 -1- 155 F 3 3 

98-06 Sf2 -1- 155 F 3 3 

98-07 Sf2 -1- 155 F 3 3 

121 



Mouse Back- 111m Age at Sex Cellular Elastin Used in 
I.D ground genotype death infiltrate degradation time 
number (days) at site of at site of course 

section section study 
108-03 Sf2 -1- 165 F 3 3 
106-01 Sf2 -1- 174 M 3 2 
106-03 Sf2 -1- 174 M 3 n1d 
108-04 Sf2 +1+ 165 F 0 n1d 
106-02 Sf2 +1+ 174 M 0 0 
B8IC-Ol Balb/c -I- llS M 2 n1d 
B81C-02 Balb/c -I- llS M 2 n1d 
B81C-04 Balb/c -I- llS M 1 n1d 
B613-04 Balb/c -1- 132 F 0 n1d 
B81A-02 Balb/c -1- 155 M 3 3 
B611-04 Balb/c -1- 172 M 2 n1d 
B61O-06 Balb/c -1- 174 M 0 n1d 
B61O-07 Balb/c -1- 174 F 3 n1d 
B515-03 Balb/c -1- 199 M 0 0 
B515-11 Balb/c -1- 199 F 0 0 
B819-01 Balb/c -1- 216 M 3 3 
B819-07 Balb/c -1- 216 F 3 3 
B819-08 Balb/c -1- 216 F 2 n1d 
B81B-07 Balb/c +1- 136 F 0 n1d 
B8IA-09 Balb/c +1- 155 F 1 n1d 
B8IA-1O Balb/c +1+ 155 F 0 n1d 
B8IA-ll Balb/c +1+ 155 F 0 n1d 
B8IA-12 Balb/c +1+ 155 F 0 n1d 
B818-02 Balb/c +1+ 171 M 0 n1d 
B818-04 Balb/c +1+ 171 M 0 n1d 
B819-05 Balb/c +1+ 216 M 0 n1d 
n1d =stain not performed 

Composition o/the inflammatory infiltrate 

Frozen sections were immunohistochemically stained to identify cell types and 

products present within the cellular infiltrate, in order to attempt to establish the 

mechanisms by which the lesions arise. Cell types identified included 

macrophages (by detection of the macrophage specific antigen F4/80), CD4+ T-

cells, CD8+ T -cells, dendritic cells (by identification of the dendritic cell antigen 

DEC205), B-cells (by detecting CD 19), and neutrophils (by identifying the 

neutrophil antigen 7/4). 
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To further define the activation status and ThllTh2 polarity of the CD4+ T-cells, 

IFNy (Thl), IL-4 (Th2) and IL5 (Th2) were also detected. 

Since the hypothesis is that the arterial lesions arise as a direct effect of the 

unopposed action of IL-l, cell localised IL-l p was also identified by 

immunohistochemistry within the infiltrates. 

To reveal activated endothelium, possibly as a result of activation by IL-l, the 

antigens CD31 (PECAM-l, to detect all endothelial cells) and CD62E (E-selectin, 

to detect activated endothelium) were identified. In some cases, sections were 

double-stained for CD311E-selectin. 

In addition, the inflammatory markers MCP-l, a chemokine that induces the 

migration of T-cells into the affected area, and the adhesion molecule ICAM-l 

(on leukocytes) were detected. 

Paraffin embedded sections were stained with toluidine blue to identify 

basophils/mast cells, to compare with toluidine blue stained ear skin sections in 

which there are large numbers of mast cells (see section 3.4.2). In addition, 

increased numbers of mast cells (and their degranulation) have been reported in 

vasculitides such as in a mouse model of IL-l P/TNF -ex induced vascular 

inflammation in the brain [Rhodin et a/., 1999], and in various cutaneous 

inflammatory diseases such as necrotising vasculitis [Soter, 1976] and Behgets' 

disease [Lichtig et a/., 1980]. 
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Figure 20: F4/80+ macrophages and CD4+ T-cells in a lesion scoring 1 for cellular 
inmtrate 

Figure 20: Lesion scoring I for cellular infiltrate in the aortic root of a 59 day old 111 rn-l- mouse. Sections 

are stained for a) F4/80+ cells, b) TL-l~+ cells, c) CD4+ cells, d) TFNl cells. Arrows indicate examples of 

positively stained cells, which appear brown. There are <50 CD4+ or F4/80+ cells per section, some of 

which are activated Scale bar = 40 j.U11 . 



Figure 21: F4/80+ macrophages and CD4+ T-cells in a lesion scoring 3 for cellular 
infiltrate 

Figure 21: Aonic root from a 174 day old male 111m"" mouse scoring 3 for cellular infiltrate. Sections are 

stained for a) F4/80+ macrophages, b) IL-I ~+ cells, c) CD4+ T -cells, and d) IFNl cells. In all cases a brown 

colour indicates a positively stained cell . In aortic rOOlS scoring 3 for cellular infiltrale the inflammatory 

cells are visible in all layers of the vessel walls, including the intimal la er (closest to the lumen) and may 

be present on the lumenal surface (examples indicated by arrows) . Scale bar = 200 ~m. 



Figure 22: Activated macropbages in arteritic lesions 

L .... 

a 

Figur 22: Acti atcd macrophage, as judged by IL-l13 

production, are present in large numbers within the aortic 

root lesion of Illrn-l- mice_ a, c, and e are stained for 

F4/S0' cells (macrophages) and b, d, and f are stained for 

IL-I13 cells. A brown colour indicates a positive slain. a­

b, 155 da old female II J rn-l- mousc. c-d, aortic root from 

128 da old female IIJrn-l- mousc. e-f, aortic root lesion 

from a J 79 da old female III rn -I- mousc. g) aortic root 

lesion from a 125 da old male Illrn-l - mouse double 

stained for F4/ 0 (red) and fL-l13 (black). L = vessel 

lumen. cale bar a-f = 2 ~ g = 40 )lm. 



Figure 23: Activated macrophages and CD4+ T -cells tend to co-localise in arteritic 
lesions 
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f 
Figure 23: Aortic root from 179 day old female III m -I- mou e howing co-Iocali ation of activated 
macrophages and 04+ T-cell. a) 4/80+ cells, b) Ilr I ~+ cell, c) 04+ cells, d) IFNy+ cells. The relatively 
low number of C08+ cells i shown in e). Thi animal was one of the three that showed higher IL-4 
production (in 10-100 cells), hown in f) . In all ca e brown colouration indicate po itive staining. Scale 
bar = 200 f.lm. 



Figure 24: Co-localisation of production of IFNy and IL-lP in aortic root lesions of 
III Tn -/- mice 

Figure 24: Cells producing IFNy and IL-l~ tend to co-localise in aortic root lesions of 1I1rn-l- mice. The 

examples above are sections from the aortic root lesion of a 128 day old female 1I1rn-l - mouse. Brown 

staining indicates a) IFN/ cells, and b) ll..-lP+ cells. L = vessel lumen. Scale bar = 200 IJ-m. 



Figure 25: Sparse production of IL-4 or IL-5 in Illrn-I- aortic root lesions 

Figure 25: Aortic r t Ie ion in ILl rn'" mi e C nLain very few ell that produce IL-4 or IL-5. a-d are 

erial eclion of an a rtic r t Ie i n fr m a 158 day old male ILl ,,1" m u e. Br wn taining indicates a) 

04+ cells, b) I y+ cell , c) ILA+ cell , and d) I 5+ cell. 04+ T ell appear to be of the Thl type 

rather than Th2, a there i abundant pr uCli n of I y utlittle r n I r I 5. cale bar = 200 !J.m. 



Figure 26: Aortic root lesions with >5 IL-4 -producing ceUs/section 

a 

b 

Figure 26: Of all Jllrn~- miee examined, 3 had aortic root lesions in whieh >5 cclls were producing ITA. a) 

128 day old female, b) 221 day old female. The third e, ample is shown in Figure 23 (179 day old female). 

Scale bar = 200 jiIll. 



Macrophages 

Arterial lesions of score 1 contained <50 cells per section staining positive for 

F4/S0, of which at least some were activated and producing IL-lf3 (Figure 20). No 

other inflammatory cells or markers were seen within these infiltrates, (other than 

T-cells, see below), which were not dense, and which localised to the outer layers 

of the vessel wall. Inflammatory lesions of score 2 and above contained large 

numbers of activated macrophages that contained IL-l f3, although not all of the 

macrophages present were IL-l f3 producers (Figure 21). The macrophages located 

to the adventitial and medial layers of the vessel walls, and in more advanced 

lesions (score 3) had also infiltrated through the intimal layers and could be seen 

on or near the lumenal surface (Figure 21). In most cases however, those that 

contained IL-l f3 appeared to localise mainly to the outer layers (Figure 22). 

T-cells 

Arterial lesions of score 1 contained <50 cells per section staining positive for 

CD4, of which at least some were activated and producing IFNy. Within infiltrates 

scoring 2 or above there were also large numbers of activated CD4+ T-cells 

producing IFNy, localising in the same areas as the 11-1 f3-producing macrophages 

(Figures 21, 23 and 24). Generally <5 cells per 6 J..lm section produced IL-4 or IL­

S (Figure 25), with the exception of lesions in 3 mice in which 10-100 cells 

stained positively for IL-4 (but no IL-5) (Figure 26). The lesions in which IL-4 

production was seen were in the aortic roots of older mice, aged 128, 179 and 221 

days. CDS+ T -cells, although present within the lesions at the same locations as 

CD4+ T-cells, were far fewer in number «-10% of the number ofCD4+ T-cells) 

(e.g, see Figure 44). Therefore, the vast majority ofT-cells present were activated 
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Figure 27: Neutrophils in aortic root lesions of Il1m-l - mice 

Figure 27: Sections of lesional aortic root from three maJc II lrn-l- mice aged a) 105 days, b) 131 days and 

c) 174 days, stained for neutrophils. Brown colouration indicates cells taining positively. Neutrophils are 

abundant throughout advanced lesions and form an arca which is clearly demarced from non-lesional 

tissue. ScaJe bar = 200 ~m. 



Figure 28: DEC 20s+ dendritic cells in tbe arteritic lesions of IlIm-l- mice 

Figure 28: Dendritic cell s are abundant in the arteri lic Ie ion of 11 J rn-l- mice. The example shown is from 

the lesional aortic root of a 179 da old female 11 J rn-l- mousc. A brown stain indicates cells that are stained 

positively for DEC205, a dendritic cell marker which is upregulated on activated DC. L = vessel lumen. 

Scale bar = 200 ~. 



Figure 29: Toluidine blue staining of paraffin embedded inflamed heart sections 
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Figure 29: Toluidine blue staining of 

embedded sections of inflamed mouse 

reveals the presence of a small number of n: 

cells (arrows) around the inflamed areas and in 

vicinity of adjacent small blood vessels (Y). 

sections are from the aortic roots of a) a 199 

old male IlJrn-l- mouse, b) a 172 day old 

Iflrn-l- mouse, and c) a 199 day old female 111",,­

mouse. Scale bars = 40 ~m. 



Figure 30: CD19+ B-cells are relatively rare in the arteritic lesions of lllrn-I
- mice 

Figure 30: CD19+ B-cells are relatively rare within the arteritic lesions of JlJrn-l- mice. Advanced lesions 

from two IIIrn-l- mice are shown, aged a) 179 days and b) 131 days. Cells staining positively are indicated 

by arrows. A = lesional area, L = vessel lumen. Scale bar = 200 Jim. 



Figure 31: Chemokines and adhesion molecules in advanced arteritic lesions 
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Figure 31 : Chemokine and adhesion molecule production and expression in ad anced aortic root lesions of 

JlJrn-l· mice. a, b, c) MCP-I+ cells (stained in brown). d, e) CD54 (TCAM-I t cells (stained in brown). cis 

a higher power magnification of the section shown in b. Scale bar in a b, d, e = 200 ~m, scale bar in c = 40 

J..lm 



Figure 32: Activated endothelium on both the lumenal surface and within the 
microvasculature of arteritic lesions 

d 

Figure 32: Sections stained for a) CD31 + cells and b) CD62e+ (E-selectin) cells. c) and d) are higher power 

magnifications of the boxed areas in a) and b). b) shows acti atcd endothelium both on the lumenal surface 

of the large vessel (thin arrow) and within the microvasculature (thick arrow). In all cases brown indicates 

a positive stain. Sections are taken from the lesional aortic root of a 179 day old female III rnol
• mouse. 

Scale bar in a and b = 200 I-lm, scale bar in c and d = 40 I-lffi. 



CD4+ T -cells with a Th 1 type cytokine profile. However, not all of the CD4+ T­

cells present within the lesions showed evidence of IFNy production. This could 

indicate memory CD4+ T-cells relocating to the tissue. 

Abundant neutrophils and dendritic cells were also present within the frozen 

sections of the lesions scoring 2 or 3, again with clear demarcation from 

unaffected tissue (Figure 27, Figure 28). The neutrophils appeared in similar 

numbers throughout the lesional area, without localising to any particular layers of 

the vessel wall. Toluidine blue staining of paraffin sections also demonstrated the 

presence of small numbers of mast cells within the inflammatory infiltrate and 

adjacent to surrounding microvasculature and small veins (Figure 29). B-cells 

were present but were observed in far less abundance than CD4+ T-cells, 

macrophages, dendritic cells or neutrophils within the frozen sections (Figure 30). 

Production of MCP-l (Figure 31) was observed within lesions scoring 2 or 3, 

within the medial and adventitial layers in the same areas as the macrophages, 

which are a major source of the chemokine. Expression of ICAM-l (Figure 31) 

was also observed within similar areas of the lesions, which suggests its cytokine­

induced expression on the surfaces of the infiltrating antigen presenting cells, and 

possibly on the endothelial cells of the microvasculature. The expression of E­

selectin on CD31 + endothelial cells, both on the lumenal surface of the affected 

aorta, and on the endothelial cells of the vasa vasorum within the adventitial layer 

and on microvasculature in the surrounding tissue (Figure 32), also indicates 

endothelium activated by cytokines. Again, E-selectin and ICAM-l expression 

were only seen in lesions scoring 2 or 3. 
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Figure 33: Aortic roots from 111m +1+ mice contain circulating F4/80+ macrophages 
and CD4+ T-cells which are not activated 

a b 

e 

Figure 33: Circulating CD4~ T -cells and F4/ + macrophage in flJrn+1+ aortic roots are not activated. a) 

and b) aortic root of a 108 day old 111m 1+ mouse stained for 04 and IFNy . c) and d) Aortic root of a 

second ]08 day old J/Jrn+1+ mouse stained for F4/8 and IL-If3. e) circulating C04+ T-cells in the 

bloodstream of a 108 day old IIIrn+l+ mouse. f) F418 macrophage re iden! in the heart tissue of a 108 

day old Il1m+l
+ mouse. Examples of cells staining po itivel arc indicated by arrows. Scale bar a-d = 200 

Ilm, scale bar e and f = 40 Ilm. 



Figure 34: Un inflamed aortic root from a 151 day old 111m +1+ mouse 

Figure 34: Immunohistochemical staining of aortic root from a 151 day old female III rn +1+ mouse. Sections 
are stained for a) CD4, b) F4/S0, c) TFNy, d) IL-J~, e) lL-4, f) MCP-l , g) CD31 , h) E-seJectin. All show 
few or no cells staining positively, apart from CD31 (PECAM-l , endothelial cells). Scale bar = 200 ~m. 



Activated endothelium on the vasa vasorum would suggest that the cellular 

infiltrate locates to the lesional site via the microvasculature within the adventitial 

layer, rather than being recruited from the main vessel. This is in accordance with 

observations that the infiltrate appears concentrated in the adventitial layer prior to 

destruction of the elastin layers within the intima. This seems to be histologically 

similar to observations in sections from temporal arteries of human GCA patients, 

which also suggest that the inflammatory infiltrate arrives at the lesion via the 

vasa vasorum deep within the adventitial layer. 

IIJrn+l
- mice (4/6) were mildly affected with the disease. They had small cellular 

infiltrates (of <50 cells) which were composed of activated CD4+ T-cells and 

macrophages. No other inflammatory markers were seen in these mice. 

II J rn +/+ littermates of affected III rn-l- mice displayed no outward signs of illness, 

and immunohistochemical examination of aortic roots from wild type animals 

demonstrated a lack of inflammatory artery disease at this site. In all wild type 

sections examined, a small number of CD4+ T -cells and macrophages were 

observed throughout the tissue. No cells stained positive for IL-I (3, IFNy, IL-4 or 

IL-5 suggesting that these circulating macrophages and T-cells were not activated 

(Figure 33, Figure 34). This suggests that there is no strain-specific tendency for 

inflammatory lesions to form in the aorta. All other immunohistochemical stains 

were also negative (Figure 34), other than that for CD31 (endothelial cells). 
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Lesions in III rn't' mice on both the SO and Balb/c backgrounds were 

histologically and immunohistologically similar, All markers were detected in 

both strains in animals of a similar stage of disease. 

3.3.4: Arteritis time course study 

To attempt to characterise the initiating factors and progression of the disease, an 

immunohistochemical time course study was performed on frozen sections of 

aortic roots dissected from sn mice. 

The time course study consisted of 35 animals, with 8 III rn +1+, 23 III rn'I' and 4 

Illrn+I' animals. The family tree of the animals used is shown in Figure 35. 

Animals were culled in 5 age ranges, each divided by -25 days (see table 4). 

Table 4: Animals used in arteritis time course study 

Set Days of Nos. of Nos. of Nos. of Illrn+/+ Illrn+/' Illrn'/' 

age Illrn+/+ IlIrn+/' fllrn'/' cellular cellular cellular 

animals animals animals infiltrate infiltrate infiltrate 

scores scores scores 

1 23-24 2 1 3 0,0 0 0,0,1 

2 56-59 ° 1 4 1 1,1,1,1 

3 75-81 0 0 4 0,1,2,3 

4 105-108 2 1 4 0,0 1 0,0,2,3 

5 ~125 4 1 8 0,0,0,0 1 0,2,3,3,3, 

3,3,3 

Serial frozen sections were stained immunohistochemically (as section 3.3.3) to 

evaluate cellular processes occurring over time. 
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Figure 36: Aortic root from a 24 cia old male 1I1m'/' mouse which scored 1 for cellular infiltrate. a) 

haematoxylin and eosin staining. Aortic rool section were tained for b) D4 c) IFNy, d) F4/80, and e) IL­

ip. Examples of positively stained cells arc bOWD by arrows. 1) & g) haematoxylin and eosin and 

connective tissue staining on an unaffected aortic root from a 2 cia old male JlJrn'/- mouse (see figure 37 

for further immunohistochemical analy is of thi e ample). cale bar a-e = 40 t!m. Scale bar f and g = 200 

t!m. 



Figure 36: Aortic root from a 24 day old lllrn-l- mouse scoring 1 for cellular 
inmtrate 

d --



Figure 37: Immunohistochemical staining of the aortic root from a 23 day old male 111 rn-I- mouse reveals a 

lack of inflammatory markers. Sections are stained for a) F4/80, b) IL-l~ , c) CD4, d) IFNy, e) CD3l, f) 

CD62e (E-selectin), g) IL-4, h) negative control. Some circulating F4/80+ and CD4+ cells can be seen 

(arrows) but are not concentrated on any particular areas and are not activated. Endothelium (CD31l is 

also not activated as judged by the lack of cells staining positi el for E-selectin. Scale bar = 200 Ilm. 



Figure 37: Un inflamed aortic root in a 23 day old Rlm-I- mouse 
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Figure 38: Small cellular infiltrate in aortic roots from 56-59 day old Illrn-l- mice 

Figure 38: Aortic root from 6- 9 da old 111m"· mice ha e mall cellular infiltrates. a and b) sections 

from a 59 da old female II1m
J 

mou "hich wa a igned u Hular infillrate score of 1 and an elastin 

damage score of 2. The cia tin appear to completel degraded at one point of the e sel wall (arrow in 

b). although there is onl a mall celluJar infiltrate (arro\ in a). c and dare haematox lin and eosin stained 

section of aortic root from two male 6 da old III m mice Th arca of the mall cellular infiltrates are 

indicated barrow . calc bar a & b 2 0 /-lIn. c & d 40 /-lm 



Figure 39: Activated rnacrophages and CD4+ cells in aortic root lesions of a 56 day 
old Illrn-I- mouse 

a b 
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Figure 39: Acti ated F4/80+ cell (macrophage and 4' -cell in the aortic root lesion of a 56 day old 

male film"'· mousc. In each, brown staining indicate a) 4/80' cell , b IL-I~+ cells, c) CD4+ cells, and d) 

JFNt cells. This animal scored I for cellular infiJtrate. calc bar = 40 f-lm. 



Figure 40: Lack of inflammatory markers, other than small numbers of activated 
F4/80+ and CD4+ cells, in aortic root lesions of 56-59 day old Il1rn-l - mice. 

d 

Figu re 40: Other than a small number of activated D4't and F4/801- cells ( ee figure 39), the aortic root 

lesions of 56-59 day old mice, scoring I for cellular infiltrate, contain few or no other inflammatory 

markers. a) aortic root lesion from a 5 da old male fllrn.!- mouse, tained for neutrophils. b) aortic foot 

lesion from a second 56 day old male III rn-l- mouse, tained for MCP- I. c) aortic root lesion from a 59 day 

old female fIJrn-l- mouse, stained for DEC205+ cell (dendritic cell ), d) aortic foot lesion from a 56 day old 

1IJrn-'- mouse stained for CD62c+ cells (E-selectin). calc bar a, b, and d = 40 ~m . Scale bar in c = 200 

~m. 



The course of arteritic lesion development 

Within Set 1, the youngest group of animals (23-24 days old), a small 

inflammatory infiltrate was seen in 1 of 3 Il1rn't' animals, with a score of 1 

(Figure 36). The infiltrate consisted of <50 CD4+ T -cells, of which <25% were 

producing IFNy. There were also a small number of CD4+ T-cells and 

macrophages present throughout all of the sections examined, with roughly equal 

numbers in Il1rn +/+ and /Lirn'/' mice. No elastin damage was seen in any animals 

(Figure 36). Aside from within the small infiltrate, there was no production of 

IFNy, IL-l{3, IL-4 or IL-5 suggesting the macrophages and CD4+ T-cells present 

throughout the tissue were not activated (Figure 37). No neutrophils, dendritic 

cells, B-cells, or other inflammatory markers were seen in any sections from this 

age group (Figure 37). 

In Set 2 (56-57 days old), there were small infiltrates (score 1, <50 cells) visible 

with haematoxylin and eosin in 4/4 Il1rn't' mice and 111 Il1rn+t, mouse, but elastic 

Van Gieson staining showed that the elastic layers of the vessel walls were all 

intact apart from one Il1rn't' animal in which the elastin appeared to be completely 

degraded at one point (Figure 38). CD4+ T-cells within the adventitial layer of the 

vessels were activated since they were producing IFNy (Figure 39). CD8+ T-cells 

were rare or absent «5 cells/section). F4/80+ macrophages were localised in the 

same areas of the vessel wall as the CD4+ T-cells (Figure 39). The macrophages 

were also activated as judged by their production of IL-! f3 (Figure 39). There 

appeared to be larger numbers of CD4+ T-cells present than macrophages within 

these early lesions. There did not appear to be any MCP-l or E-selectin positive 

staining (Figure 40), and neutrophils and dendritic cells were also absent (Figure 
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Figure 41: Little 1L-4 production in the aortic root lesion of a 59 day old Illrn-I-
mouse 
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Figure 42: Aortic root lesions in 75-81 day old mice 

d 

Figure 42: Sections of aortic root lesions from 75-81 day old mice stained with haematoxylin and eosin 

and for connective tissue. a) and b) aortic root lesion in a 75 day old female IlJrn-l- mouse scoring 2 for 

celJular infiltrate and 1 for elastin damage. c) and d) aortic root lesion in an 81 day old male IlJrn-l- mouse 

scoring 3 for both cellular infiltrate and elastin damage. In d, thin arrows indicate remaining fragments of 

elastin which has been mostly destroyed, thick arrows indicate collagen deposition. In all cases, L = vessel 

lumen, A = lesional area. Scale bar = 200 lim. 



Figure 43: Activated macrophages in aortic root lesions from 75-81 day old Illrn-I-
mice 

Figure 43: Activated macrophages in aortic root lesions of two 75-81 day old 1I1rn-i - mice. a) and b) show 

F4/80+ and n..-lP+ cells respectively stained in brown, in the aortic root lesion of a 75 day old female 1I1rn­

i- mouse with a cellular infiltrate score of 2. c) and d) show F4/80+ and n..-l~+ cells respectively stained in 

brown, in a more advanced (score 3) aortic root lesion from an 81 day old male 1I1rn-i- mouse. Scale bar = 

200 jllll. 



Figure 44: Activated CD4+ T-cells in aortic root lesions of 75-81 day old Il1m-l
- mice 
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Figure 44: Activated CD4+ T -cells in aortic root lesions of two 75-81 day old III m -I- ntice. a) shows CD4+ 
cells stained in brown, and b) is double stained, showing CD4+ and IFNt cells in black and red 
respectively. a and b are in the aortic root lesion of a 75 day old female 1I1m-l- mouse with a cellular 
infiltrate score of 2. c) and d) show CD4+ and IFNy+ cells respectively stained in brown, in a more 
advanced (score 3) aortic root lesion from an 81 day old maJe llJrn-l- mouse. e) is a section from the same 
mouse as in c) and d), stained for CDS. Even in very inflamed aortic roots such as this, CD8+ T -cells 
remain relatively rare. ScaJe bar = 200 /lID. 



Figure 45: Chemokine and adhesion molecule production and expression in the 
aortic root lesions of Illrn-I- mice aged 75-81 days 
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Figure 45: Chemokine (MCP-I) production and adhesion molecule (CD54, ICAM-I) expression in the 
aortic root lesions of IlJrn-l - mice aged 75 days. a) shows MCP-l+ cells (in brown) in Ole aortic root lesion 
of a female IlJrn-l- mouse, b) is a higher power magnification of fue boxed area in (a). c) shows, in brown 
ICAM-I+ cells in the same lesion, d) is a higher power magnification of the boxed area in (c). e) shows 
ICAM-l expression in a second 75 day old female IlJrn-l- mouse, f) is a higher power magnification of the 
boxed area in (e). Scale bar in a, C, e = 200 ~rn, in b, d, f = 40~m. 



Figure 46: Neutrophils and dendritic cells are present in the aortic root lesions of 
Illrn-I- mice aged 75-81 days 

Figure 46: Neutrophils and dendritic cells are both found in the aortic root lesions of I1Jrn-l- mice aged 75-

81 days. a) is the aortic root lesion from a 75 day old female mouse stained for neutrophHs (brown), and b) 

is a section from the aortic root lesion of a second 75 day old female mouse stained for the dendritic cell 

marker DEC205 (DEC205+ cells in brown). Scale bar = 200 ~m. 



40). Cells staining positive for IL-4 and IL-5 were also not in evidence (Figure 

41). 

By Set 3 (75-81 days old), the lesions had further developed in 1I1rn-'- mice, 

although there was a range oflesion severity within this group. One 1I1rn-'- mouse 

appeared unaffected (score 0), one was similar in appearance to 1I1rn-'- mice in set 

2 (score I), and two had further advanced lesions (scores 2 and 3). Of these two, 

the cellular infiltrates visible on haematoxylin and eosin staining were larger in 

size (>25% of the vessel area), and appeared to have an increase in density of the 

cells than lesions scoring 1 for cellular infiltrate (Figure 42). In the mouse that 

scored 2, the infiltrate was still localised to the outer layers of the vessel walls. In 

the mouse that scored 3, there was heavy infiltration of all layers of the vessel 

wall. 

Elastic van Gieson staining showed that the animal with no cellular infiltrate also 

had no degradation of the elastin, whereas the mice that scored 1 and 2 both had 

some fragmentation of the outer layers. The animal scoring 3 for cellular infiltrate 

had advanced elastin damage, with complete degradation in parts and also 

evidence of repair (Figure 42). 

In the inflammatory infiltrates of the mice scoring 2 and 3, there were abundant 

macrophages producing IL-If3 (Figure 43), large numbers ofCD4+ T-cells, most 

of which were producing IFNy (Figure 44), there was evidence of MCP-l 

production, and ICAM-I expression (Figure 45), and large numbers ofneutrophils 

and dendritic cells (Figure 46). There was however little or no staining for IL-4 or 

129 



Figure 47: Few cells produce IL-4 or IL-5 in aortic root lesions of 75-81 day old 
Illrn-I- mice 

Figure 47: Few cells produce ITA or IL-5 in the aortic root lesions of75-81 day oldJIJrn-l- mice. a) and b) 

are sections from the aortic root lesion of a 75 day old female mouse and are stained for a) IL-4 and b) IL-

5. An example of a positive stain (in brown) is indicated by the arrow in (a). c) is a section from the aortic 

root lesion of a 81 day old male mouse with a cellular infiltrate score of 3, stained for IL-4. Scale bar = 200 

~m. 



Figure 48: Activated endothelium in aortic root lesions from 75-81 day old mice 

Figure 48: Sections from an aortic root lesion in a 75 day old female J/J m -I- mouse are shown, stained with 

CD31 and CD62e. a) CD31+ cells, b) CD62e (E-selectint cells, c) and d) higher power magnifications of 

boxed areas in a & b. The endothelium of the microvasculature is activated in this mouse, as judged by the 

expression of E-selectin. Scale bar a & b = 200 J..lm, c & d = 40 J..lm. 



Figure 49: Damaged aortic roots in RIm-l - mice aged 105-108 days 

d 

Figure 49: Advanced aortic root lesions in IlJrn-l- mice aged 105-108 days. a, b and c are aortic root 

sections from a male 1IJrn-l- mouse aged 105 days. d is a section from a male fl1rn-l- mouse aged 106 days. 

a and d are stained with haematoxylin and eosin (A = lesional area). b and c are stained for connective 

tissue. In b), the thin arrow indicates an area of complete elastin degradation, while the thick arrow 

indicates an area of collagen deposition (red colour). In c), the tItick arrow again indicates an area of 

collagen deposition, and arrowheads indicate thickened and disorganised elastin layers. Scale bar = 200 

Ilm. 



Figure 50: Activated Th1 type CD4+ cells in the aortic root of a 105 day old Illrn-I-

mouse 
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Figure 50: Activated Th 1 type CD4+ T-ceJls in the aortic 

root lesion of a male 105 day old IIJrn-l - mouse. a) and b) 

are seriaJ sections stained for CD4+ and IL-4+ celJs. There 

appears to be very little if any IL-4 production. c) and d) are 

serial sections stained for CD4+ and IFNl celJs, showing 

production of IFNy (examples indicated by arrows). e) is a 

serial section to a and b, stained for CD8+ cells (examples 

indicated by arrows) . There very few CD8+ cells as 

compared to CD4+. Scale bar = 200 ~m. 



Figure 51: Neutrophils and activated macrophages in the aortic root lesion of a 105 
day old ll1rn-l - mouse 

Figure 51: Sections stained for a) F4/80+ cells (macrophages) and b) IL-II3+ cells reveal activated 

macrophages in the aortic root lesion of a 105 day old JlJrn-l- mouse. A section of aortic root lesion from 

the same mouse stained for neutrophils reveals their presence in large numbers (c). Scale bar = 200 ~m. 
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Figure 52: Activated endothelium in the aortic root lesion of a 105 day old Illm-/­
mouse 

d 

Figure 52: Lesional aortic root sections from a male 105 day old JlJrn-l- mouse double stained for CD3l 

(endothelial cells, black) and CD62e (E-selectin, red). The double staining demonstrates the co-localisation 

of CD31 and CD62e to the same cells. c) is a higher power magnification of the boxed area in a. In this 

example, the microvasculature surrounding the main vessel (L = vessel lumen) is activated. Scale bar in a 

= 200 ~ scale bar b-d = 40 f.Lm. 



Figure 53: Cellular infiltrates and elastin damage in aortic roots of Illrn-I
- mice aged 

>125 days 

Figure 53: 7/8 III m -I- mice aged over 125 days had aortic root Ie ions with a cellular infiltrate score of 2 or 
3, whilst 3/4 had elastin damage scores of 3. One mouse (shown in a-d) aged 125 days, had a cellular 
infiltrate score of 3, with inflammatory cells permeating all layers of the vessel wall, but an elastin damage 
score of only l. a) haematoxylin and eosin stain, b) stained for connective tissue. Arrows indicate where the 
outer elastin layers are fragmented. c) and d) show aortic root sections of the same mouse stained for 
F4/80+ and fL-! ~+ cells respectively. Activated macrophages can be seen in all layers of the vessel wall, 
including at the lumenal surface (arrows). e) and f) are aortic root sections from a 125 day old III m ·l• 
mouse with celllular infiltrate and elastin damage score of 3, stained with haematoxylin and eosin and for 
connective tissue. Scale bar = 200 /A-m. 



Figure 54: Undamaged aortic root in one 154 day old lllrn-l- mouse 

c 

Figure 54: The aortic root from one male //1 rn-I• mouse aged > 125 days old (154 days old) appeared 

unaffected by arteritis. a) and b) haematoxylin and eosin stained sections of aortic root, with no visible 

cellular infiltrate. c) and d) aortic root from the same mouse stained for CD4+ and F4/80+ cells. Only 

similar numbers of bystander cells to those seen in \i 'Id-type mice stain positively (arrows). Scale bar = 

200~. 



IL-5 « 5 cells) (Figure 47). CDS+ T-cells, although present, were rare in 

comparison to CD4+ T-cells «10% of the CD4+ T-cells) (Figure 44). E-selectin 

expression on CD31 + endothelial cells of the microvasculature was also visible at 

this stage of lesion development (Figure 4S). 

At 105-1 OS days old (Set 4), 2/4 fllrn-I
- mice appeared unaffected, 1 mouse scored 

2 for cellular infiltrate and 1 mouse scored 3 (Figure 49).2/2 fl1rn+l+mice were 

unaffected and 111 fllrn +1- mouse scored 1. The lesions appeared similar to those 

in previous sets with the same cellular infiltrate scores (Figures 50, 51 and 52). A 

full survey of the major arterial system was not undertaken, so it is possible that 

any of these mice had lesions away from the aortic root. Previous findings 

[Nicklin et al., 2000] would indicate that in the older animals, this is likely to be 

the case. 

In the oldest age group, > 125 days old (Set 5), complete degradation of all elastic 

layers of the vessel wall could be seen at the most affected site in 3/4 fl1rn-l
-

animals checked, with cellular infiltrate permeating all layers of the vessel wall at 

the areas of elastin destruction. One IlIrn-l
- animal had less severe damage to the 

elastin (score 1), although it had a severe inflammatory infiltrate (score 3) (Figure 

53). A score of 0 for cellular infiltrate was given to 1 of the 8 fllrn-I
- mice within 

this set (Figure 54), whilst 6 scored 3. In older animals of this age group there was 

also evidence of repair, with fibrosis, excess collagen and new and repaired elastin 

layers which were thickened and disorganised. 
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c 

Figure 55: Activated CD4+ T-cells in aortic root lesions from fllrno'o mice aged >125 
days 

d 

Figure 55: 04+ T-cclls in aortic root Ie ion f two male III m olo mice aged 131 day 0 a) and c) are 

ections Lained for 04. b) i tained for I y, and d) i Lained for 08. In all ca es, brown SLajning 

indicates po itively Lained cell . The production of IFNy ugge ts the 04+ cell are of the Th I type (a 

and b). 08+ T-cell are relatively rare in compari on to 04+ T-cell (c and d). Scale bar = 200 !J.m. 



Figure 56: Activated macrophages in the aortic root lesion of an III m-I
- mouse aged 

>125 days 

b 

Figure 56: Activated macrophage ecreting IL- I ~ in the aortic root Ie ion of a male 131 day old III m -I• 

mouse. Sections are stained for a) 4/80 and b) I L-I~. Brown staining indicates 4/80+ or IL- I ~+ cells. 

Scale bar == 200 !Am. 



Figure 57: Dendritic cells and abundant neutrophils in aortic root lesion of l11rn-'­
mouse aged> 125 days 

b 

Figure 57: Aortic root Ie ion from a male 131 day old III m -I- mou e. a) brown taining indicates cells 

staining positively as neutrophils, which are abundant and found in all area of the lesion. b) aortic rroot 

lesion from a 131 day old III m -I- mou e, stained for 0 205, a dendritic cell marker. Brown staining 

indicates DEC205+ cells. L = ve el lumen, A = Ie ional area. calc bar = 200 fA.m. 



Figure 58: Activated endothelium in aortic root lesions from III rn-/-mice aged> 125 
days 

c 

Figure 58: Activated endothelium in the aortic root Ie ion fr m two /lI m'" mice aged> 125 days. In a and 

b (male /lIm'" mou e aged 131 days), brown taining indicate a) 031 + (endothelial) cell s, b) C062e+ (E­

selectin) cells. Examples of 062e+ cell are indicated by arrow. c) aortic rool Ie ion from a 125 day old 

III m'" mouse, double stained for 031 (brown/black) and D62e (red). In thi example, endothelial cells 

on the lumenal surface of the vessel are activated and expre ing - electin (arrows). L = vessel lumen. 

Scale bar in a & b = 200 f.lm, c = 40 f.lm. 



Figure 59: ICAM-1 production in the aortic root lesion of an Illrn'" mouse aged 
>131 days 

a 200J.'m 

Figure 59: The adhesion molecule ICAM- I is produced in the advanced arterilic lesions of Illm'" mice. 

The example above shows the aortic root lesion of a male III m '" mou e aged 13 1 days. b) is a higher power 

magnification of the boxed area in a). Examples of 054+ ( I AM- I) cell are indicated by arrows. L = 
vessel lumen. 



Figure 60: Chemokine production in aortic root lesions of III rn-I
- mice aged> 125 

Figure 60: M P- I production in aortic root Ie ion from two male III m -I- mice, both aged 131 days. 

Examples of cells staining positively (brown) for M P- I are indicated by arrows. cale bar = 200 Ilm. 



Aortic root lesions from this age group which scored 2 and 3 contained the same 

cell types and activation markers as lesions in younger mice (i.e. abundant CD4+ 

T-cells producing IFNy (Figure 55), abundant macrophages producing IL-ltl 

(Figure 56), large numbers of neutrophils and dendritic cells (Figure 57), 

expression of E-selectin on endothelial cells (Figure 58), ICAM-l expression 

(Figure 59), MCP-l production (Figure 60), few CD8+ T-cells (Figure 55), few B­

cells). 

In all age sets, even at > 150 days old, III rn +/+ mice appeared histologically 

normal. There was no cellular infiltrate and in all cases the elastin layers of the 

vessel walls were intact, unfragmented, and there was no evidence of any repair 

processes (see Figure 19). In each case there were a small number of circulating 

CD4+ T-cells and macrophages present, but they did not localise to the adventitial 

layers of the vessel walls, rather they were spread throughout the tissue (see 

Figure 33). These cells were not activated since there was no detectable 

production of IFNy or IL-I~, or any other inflammatory cells or markers (see 

Figure 34). We conclude that they are bystanders. 

Illrn+/- appear to suffer from less severe arteritic lesions. 3/6 mice examined had 

lesions with a cellular infiltrate score of 1, whilst only 116 had a more severe 

infiltrate. In this animal, which was the oldest heterozygous animal examined, 

there was also a myocardial scar, indicative of a previous inflammatory event. 

This result is concurrent with previous observations [Nicklin et at., 2000]. It 

appears that a single functional III rn allele is enough to provide a decreased 

131 



amount oflL-lra production, but not to give complete protection from disease in 

the SfJ background. 

The inflammatory aortic root lesions found in III rn-/- mice appear to progress 

from an initial small infiltrate of activated CD4+ T -cells (Th 1 type) and 

macrophages, to a larger infiltrate composed of several different activated cell 

types and with the expression of chemokines and adhesion molecules. The 

infiltrates appeared to arise from the outer adventitial layers of the vessel walls, 

and progress towards the lumen of the vessel. Initially there was no visible 

damage to the elastin layers of the vessel walls, but as the lesions progressed and 

the infiltrates moved closer to the lumen the elastin became fragmented (from the 

outer layers inwards) and was eventually completely destroyed. In older lesions, 

the infiltrates, although remaining active, seemed smaller in comparison to lesions 

in younger mice, and the vessel walls had evidently undergone some repair 

processes, becoming fibrotic. 

In all cases, aortic roots from III rn +/+ mice were unaffected, even at an advanced 

age. 

The cell types and cytokine profiles present within the lesions, the advancing of 

the infiltrate from the outer layers of the vessel wall inwards, the elastin damage 

and the fact that older lesions were repaired and fibrotic, are all comparable to 

inflammatory arterial lesions found in the human. 
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3.3.5: Carriage of H-2 haplotype in relation to sensitivity to arteritis 

Two lines of III rn-I
- mice seemed to emerge in the early stages of inbreeding the 

colony, with differing and apparently heritable ages of onset of disease. One line 

appeared to be much more sensitive to the disease, and had a mean death age of 

103 days. The other line seemed more resistant and survived for> 1 yr, although at 

death, or culling at a late age, arterial inflammation was clearly present. It seemed 

plausible that the H-2 haplotypes of the mice may be influencing their sensitivity 

to arteritis. In humans, the genetic basis for susceptibility to many diseases, 

including arteritis and RA, appears to lie within the MHC cluster, and several 

autoimmune mouse models such as NOD (non-obese diabetes), CIA and EAE 

(experimental autoimmune encephalitis) are highly H-2 dependent. As the cellular 

components of the infiltrate resemble those involved in autoimmunity, and 

arteritis appears to be strain specific, it was postulated H-2 haplotype may playa 

role in disease sensitivity. Due to the parentage of the colony, there were three 

possible alleles for H-2 haplotype within the colony; one from the inbred 12910la 

parent of the ES cell carried in the chimaera (which is reported to be at least partly 

H-2 haplotype H2b
) and two from the outbred Swiss mouse MF 1. DNA from all 

individuals was not available, so their genotypes needed to be inferred 

retrospecti vely. 

The aim was to deduce which H-2 haplotypes were present within the colony, 

then investigate whether the animals' H-2 haplotypes correlated with the age of 

onset of detectable illness as a result of arteritis. In this case, the end-point was 

always a report of malaise, noisy breathing (indicative of aortic stenosis), apparent 

organ infarction or sudden death. 
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Experimental procedure 

PCR amplification was used to genotype five known polymorphisms across the 

H-2. The initial experiments were to genotype the mice at the H2IEb locus within 

the H-2 Class II region where there is a polymorphic microsatellite that contains 

varying numbers of tandem repeats of the tetranucleotides TGGA and GGCA, 

according to H-2 class II haplotype. By amplifying this region using PCR and 

sizing the products, it is possible to distinguish between several different H-2 

class II haplotypes. 

Polymorphic markers in genes spread across the H-2 were then tested in a similar 

manner, to deduce whether H-2 class I genes exerted any influence over 

susceptibility to arteritis. These were in H2K, H2Q4, Mog and H2M2. Mog, which 

encodes myelin oligodendrocyte glycoprotein, is not a classic H-2 class I gene but 

lies within the H2M cluster (see Figure 6). 

The initial genotyping by amplification of the microsatellite within the H2IEb 

gene gave only two products, when three were possible. To test whether there was 

simply poor separation of two products which may be very close in size, 

secondary PCRs were performed with radiolabelled primers, using the primary 

PCR products as templates. The radio labelled PCR products were run on 8% 

polyacrylamide gels, which were then placed on autoradiograph film to visualise 

the secondary PCR products. 

134 



Figure 61: Polyacrylamide gel electrophoresis of radiolabelled H2IEb peR 

DNA size marker L Samples 

pNEB193/HpaII A AlA BIB -ve NB 
control 

331 bp 

• A 

242 bp 

• B 

Figure 61: Polyacrylamide gel electrophoresis of radiolabelled PCR products from amplification of a 

microsate]Jjte in H21Eb shows separation of only two products (A) and (B). Samples used appeared to be 

homozygous for the upper band A, the lower band B, or heterozygous after agarose gel electrophoresis of 

the primary PCR products. 



Figure 62: Sequence of larger peR product of H2IEb (haplotype H·2U
) microsatellite locus 

A 

,.Wtl :J 

ABI/ '!.... ~;clrtOn~ ~ 
PRISM 

. '-~)\ " 

~:!'JS Jil ~a. f.191l' ' :f • .' 
\'IN t' ,-II"" ;::lj ~ ;0.0: 

B gatccagtct ggatggatgg atggatggat ggatggatgg atggatggat ggatggatgg aggcaggcag gcaggcaggc aggcaggcag 
gcaggcaggc agccta 

Figure 62: The sequence of the area highlighted in A corresponds to that highlighted in B. B is the microsatellite sequence for H2IEb", obtained from the 

nucleotide database at hup:/Iwww.ncbLnlmlnih.gov, accession no. U78804. 



Figure 63: Sequence of smaller peR product of H21Eb (haplotype H_2b
) microsatellite locus 
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Figure 63: The sequence of the area highlighted in A corresponds to that highlighted in B. B is the microsatellite sequence for H2IEbb, obtained from the 

nucleotide database at http:Uwww.ncbi.nlmLnih.gov.accessionno.M14236. 



Figure 64: Comparison of peR products from H2IEb micro satellite amplification 
between strains 

Figure 64: Comparison of PCR products from mjcrosatellite amplification in the H2JEb gene between 

strams. A) Sf] H21Ebulu, B) Sf] H2fEbulb
, C) Sf) H2fEbblb, D) C57BLl6 H2fEbblb

, E) Balb/c H2fEb cYd
, F) 

DBNI H2JEbq/Q, G) negative control. These results demonstrate that the b allele from Sf) mice appears to 

be the same as the b allele [rom C57BLl6 mice, and that both the SD b and u alleles are distinct from 

H21Eb d and q alleles. 



Figure 65: H-2 and Longevity 

Longevity, d 

chimaera MFl 500 1-1 --~ 

250 1-1 __ ~ 

Litter 10 Litter 15 

Figure 65: Carriage ofH2IEb haplotypes in relation to longevity. Litters 10 and 15 (which were also genotyped for markers at H-2K, H-2Q4 and 
Mog) are labelled. 

Allele b (129) 0 A/Jele b (MF!) • Allele u 



Figure 66: Radiolabelled peR amplification of H2IEb micro satellite 

10-1 10-2 10-3 10-4 10-5 15-3 15-4 15-5 15-7 PNEBI931 4-8 4-5 
f/paU 

Figure 66: RadiolabelJed peR amplification of a mjcrosalellile in the 1f2lEb gene shows that IlJrn-l
-

animals from one sensitive (litter 10) and one non-sensili e (litter 15) liller are all of the same haplotype, 

H21Ebbib allhis locus. Mice 4-8 and 4-5 were of haplotype fl21 Ebulo. 



Figure 67: Amplification of microsatellite markers across H-2 by peR 
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Figure 67 : Amplification of microsateUite markers across H-2 demonstrates that all animals from one 

sensitive (litter 10) and one non-sensitive (litter 15) litter are of the same genotypes at these loci. a) marker 

in H-2K, b) marker in H-2Q4, c) marker in Mog. * were animals which were heterozygous at H21Eb. The 

peR products for H-2K are double bands (the heterozygotes have four bands). 



Again, only two products were found (Figure 61). Since one of the alleles was 

known to be b from the 129 strain, it was concluded that the outbred MFI mouse 

also carried the b allele and one other. 

Sequence identification of H2IEb alleles 

To confirm the presence of a band corresponding to the H2IEbb allele, and to 

deduce the haplotype represented by the other peR product, the bands were 

excised from TAE agarose gel, and the DNA purified and sequenced. The number 

of tetranucleotide repeats in each sequence were compared with those in H2IEb 

sequences from mice of different strains (Genbank 

(http://www.ncbLnlm.nih.gov)), and the H-2 class II haplotypes of the matching 

strains were then identified [Roderick & Guidi, 1990]. It was shown that the 

haplotypes were H2IEbb (Figure 63) and H2IEb u (Figure 62). H2IEbb was also 

confirmed by genotyping alongside a C57BL/6(Harlan) mouse (a classic H_ 2b 

strain) (Figure 64). 

Animals from the first 18 litters, which had died spontaneously, and the founder 

MFI mice were all genotyped at the H2IEb locus. This included 92 animals in 

total, 53 of which were III rn-I
-. All III rn-I

- mice from one sensitive and one non­

sensitive litter were of the same haplotype, H2 b/b (Figure 65, Figure 66). 

Moreover, it could be deduced from the family tree that two of the most extreme 

litters had inherited both of their H2b alleles from the founding chimaera. When 

Illm-I
- mice from these litters were then genotyped at H2K, Mog and H2Q4, it 

was again found that all animals were of the same haplotype (Figure 67). The 

H2K PCR gave double banded products for homozygotes, whilst heterozygotes 
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annealed to another site on the genome, however the important feature is that all 

mice from both litters were of the same haplotype at this locus. The 

polymorphism at H2M2 was uninfonnative, in that it did not distinguish between 

the two known haplotypes. It was thus shown that there had been no 

recombination between the H-2 markers tested. 

Kruskall-Wallis test 

To test statistically whether H-2 haplotype at H2lEb contributes to age of death, a 

Kruskall-Wallis test (a one-way analysis of variance by ranks) was perfonned. 

This tests whether differences amongst samples signify population differences, or 

whether they represent nonnal variance found between samples from the same 

population. 

The H2IEb genotypes for 53 llIrn-l
- mice were tested. The ages of death were 

ranked from highest (1) to lowest (53), and these ranks were then placed in three 

groups (for H2 bIb, H2 ulb and H2 U/U
). The mean rank of each group was then 

calculated. 
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12 k _ _ 2 

KW= ~n.(R. -R) 
N{N+l)f:: J J 

Where k = number of samples or groups 

nj = number of cases in the jth sample 

N = number of cases in the combined sample (sum ofnj's) 

Rj = sum of the ranks injth or group 

Rj = average of ranks in the jth sample or group 

R = (N + 1 )/2 - the average of the ranks in the combined sample 

In this case, KW = 2.35. Applied to the Chi-square table at 2 degrees of freedom 

(k-l), 2.35 is not significant at the 5% level (p = 0.309). 

It can therefore be shown that the three haplotypes H2IEb u/u, H2lEb u/b and 

H2lEbb/b are not significantly associated with age of death. 

Only two H-2 haplotypes were found (H2b and H2U) rather than the expected 

three, therefore it is assumed that the outbred MFI mouse was of haplotype 

H2IEbb/U
• From these results, it seems unlikely that H-2 haplotype influences age 

of death from arteritis, since IlIrn-l
- mice from sensitive and non-sensitive litters 

were all H2lEbb/b
• This is supported statistically by the results of the Kruskall­

Wallis test. Moreover, l11rn-l
- mice on a C57BLl6 background do not appear to 

develop spontaneous arteritis [Nicklin el a/' J 2000]. C57BLl6 mice are also H-2 

haplotype H21Ebb
• In addition, III rn-I

- Balb/c mice, which are H21Ebd
, also 

develop arteritis. It is statistically likely that there is a single modifier gene 

involved in sensitivity in arteritis in IL-lra null mice [M. lIes, personal 

communication] but from these results it does not appear to lie within the H-2. 
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3.3.6: Helicobacter infection in III rn-l- mice 

Bacterial infection in heart disease 

Various studies suggest that Chlamydia, H pylori and other micro-organisms may 

increase patient risk of development of inflammatory arterial disease [Muhlestein 

et al., 1998; Folsom et al., 1998]. Our colony of fllrn- I
- mice, which suffer from 

arteritis, is housed under SPF conditions and have been shown to be free of 

infection by mouse Chlamydia. Murine Helicobacter infection however is not 

routinely assayed and is known to be widespread amongst laboratory mice. 

In order to examine mice from our colony for evidence of infection by 

Helicobacter species, a PCR assay was performed which is designed to amplify a 

stretch of the 16S rRNA gene which is conserved across members of the genus 

Helicobacter [Riley et al., 1996]. It is then possible to distinguish which species 

of Helicobacter is present by the use of restriction enzyme digests. 

Genomic DNA from fllrn- I- and fllrn+ l+ mice from our Sf3 colony and from the 

C57BL/6 flIrn- l- colony in New York [Hirsch et al.], which are unaffected by 

arteritis, was assayed by PCR for evidence of infection by Helicobacter spp. All 

mice tested, both from our colony and from the Hirsch colony were infected with 

murine Helicobacter. 

To determine which Helicobacter species was present in the colonies, restriction 

digest analysis was performed. From this result, it became clear that all mice 
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Figure 68: peR amplification and restriction enzyme analysis of Helicobacter spp. 
rRNA 

B -ve -ve 

SO mice 

Figure 68: PeR amplification of Helicobacter rRNA demonstrated evidence of lIelicobacter spp. infection 

in aU animals tested, both from our colony and that of Hirsch et al. Which do not de elop arteritis. A) peR 

products B) PCR products digested with Mbo 1, showing some undigested (375 bp) and digested (348 bp) 

product. This result indicates Helicobacter hepaticus infection. - e) PCR negative controls +ve) positive 

control for H.hepaticus rRNA supplied by L.Rcily. 



tested were positive for infection by the murine Helicobacter hepaticus (Figure 

68). 

Since all mice, even those which show no evidence of arteritis, were infected with 

Helicobacter hepatic us, it was concluded that Helicobacter infection does not 

playa causative role in the development of arteritis in I11rn'I' mice, 

3.3.7: Measurement of the acute phase response in arteritis by measuring 

levels of SAA 

Secretion of serum amyloid A is strongly enhanced (up to lOOO-fold) during the 

acute phase response in the mouse [Kushner, 1982; Weinstein & Taylor, 1987; 

Meek et al., 1989]. The gene responds to circulating IL-l and IL-6 [Weinstein & 

Taylor, 1987]. It is increased non-specifically as a result of inflammatory stimuli 

(see section 1.1.5). In order to determine whether serum levels of SAA could be 

used as a diagnostic marker for the presence of arteritic disease in II J rn,l- mice, 

serum SAA levels were measured by ELISA in animals which were also 

examined histologically for arteritis. 
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Table 5: SAA levels in comparison to lesion development 

Mouse I.D Age at death Il1rn Cellular Elastin SAA 
number (days) genotype infiltrate degradation (J.Lglml) 
134-08 23 -1- 0 0 15.8 
137-03 24 -I- I 0 12.7 
150-01 56 -I- I 0 12.9 
150-05 56 -I- I 13.1 
144-05 75 -I- I 1 16.3 
151-01 81 -1- 0 0 12.8 
151-02 81 -1- 3 3 35.1 
133-02 105 -1- 3 3 24.8 
133-08 105 -1- 0 35.1 
149-01 106 -1- 2 12.9 
149-03 106 -1- 0 1 15.4 
140-01 154 -1- 3 2 35.4 
140-02 154 -1- 0 14.6 
154-02 163 -1- 2 13.1 
150-06 56 +1- 1 13.5 
149-04 106 +1- 1 14.0 
137-01 24 +1+ 0 0 13.3 
137-02 24 +1+ 0 0 13.9 
148-03 108 +1+ 0 0 14.0 
148-06 108 +1+ 0 0 14.3 
145-02 151 +1+ 0 0 22.4 
145-03 151 +1+ 0 1 13.8 
153-06 193 +1+ 0 14.0 
151-09 220 +1+ 0 14.3 

SAA levels appear to rise detectably only in ll1rn-l
- animals with advanced lesions 

(cellular infiltrate score of 3), although a slight increase was seen in 1 mouse 

which scored 1. In the oldest Illrn-I
- mouse tested, SAA levels were low, although 

the animal only had a cellular infiltrate score of 2. In all cases where the SAA 

level was raised, and the animals were found histologically to have advanced 

lesions, the animals did not appear outwardly ill and were apparently healthy 

when culled. Compared with reported levels of SAA activation [Kushner, 1982; 

Weinstein & Taylor, 1987] during inflammation, these elevations are small. SAA 

would appear to be of no value in investigating the onset of the disease. 
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3.4: Psoriatiform disease in Balb/c [l1rn-l
- mice 

3.4.1: Introduction 

As discussed in section 1.2.16, IL-l potentially plays various roles in the 

development of psoriasis in humans. SfJ Il1rn-l
- mice were backcrossed with 

Balb/c. After observing that a number of the Balblc Il1rn-l
- mice, as early as F2, 

were suffering from reddened, scaly outer ears which appeared to be slightly 

thickened, a study was undertaken to investigate whether the mice were 

spontaneously developing a psoriasis-like disease. 

3.4.2: Retrospective histological study of formaldehyde fixed ear skin sections 

Experimental procedures 

A retrospective study of the ears from Balb/c Illrn';-, Illrn+l - and Illrn+l + mice, 

and some SfJ III rn-I
- mice, which had been fixed in formaldehyde was 

undertaken. 7 Balblc Illrn-I
- mice were from an F2 of Balblc and an Illrn-I- SfJ. A 

further 47 animals (31 III rn -1-, 9 III rn +1-, 7 III rn +1+) were inbred (from N 5 - N9 

Balb/c Illrn+l
- parents). 

Outer ears were removed from formaldehyde fixed cadavers and were embedded 

in paraffin, sectioned and stained with haematoxylin and eosin to elucidate 

whether any of the signs of a psoriatiform disease (such as epidermal thickening, 

dermal infiltrate, acanthosis and the formation of epidermal rete pegs and Munro 

microabcesses) were present in ears which were reddened and scaly. Outwardly 

affected ear skin sections were compared immunohistologically with those from 

Illrn-I
- mice which appeared unaffected, and with apparently unaffected ears from 

Illrn+l-and +1+ mice. Formaldehyde fixed, paraffin embedded ear sections were 
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Figure 69: Psoriatiform features in inflamed ear skin sections from Balb/c Rlrn-I-
mice 

216 day old female 

Figure 69: a) Haematoxylin and eosin staining of sections of inflamed car from Balb/c 1Ilm-l- mice reveals 

several hallmarks of psoriasis including acanthosis (thickened epidermis) (arrows), dermal cellular 

infiltrates (*), formation of epidermal rete pegs (thin arrows), elongation of dermal papillae (arrowheads), 

neutrophilic epidermal infiltrates (N), Munro microabcc ses (M). 

b) Higher power magnification of hematoxylin and eosin stained 111 m -I- epidermis showing neutrophil 

aggregation beneath the stratum corneum (N) and parakeratosis (retention of nuclei in stratum corneum) 

(arrow). c) Hematoxylin and eosin stain of 111m +1+ ear section for comparison. Note lack of dermal 

infiltrate, rete peg formation, epidermal infiltrates or acanthosis (epidermis is normal, <5 cell s thick 

(arrow». Scale bars in a & c = 200 ~ Scale bar in b = 40 ~m 



Figure 70: Epidermal neutrophilic infiltrate as identified by chloroacetate esterase 
activity 

a 83 day old female fllm-l· 

c old male JlJm-l' 

a) Haematoxylin and eosin stained inflamed ear tip, showing epidermal infiltrates (arrows) 
b) Same ear tip as in (a) stained for chloroacetate e terase activity (red staining). Note neutrophils within 

epidermis (arrows) and in dermal infiltrate (arrowheads). 
c) Higher power magnification of epidermal infiltrate. Note neutrophils visible within epidermis (arrows) 

and dermis (arrowheads) as well as underneath stratum corneum e-). 
d) As c). Also note mast cells within the dermis (arrow) 
e) Ear section from a wild-type animal. Note lack of neutrophils in dermis or epidermis, but some mast 

cells within dermis (arrows) 
f) Positive control for chloroacetate esterase staining - human bone marrow smear from leukaemia 

patient 
Scale bars a & b = 200 ).un, c-f 40 ).lm. 



Figure 71: Haematoxylin and eosin scored ear skin sections 

a) IlJrn+l+ score 0 b) llJm-l
- score 0 

c) ll1rn-l
- score 1 d) llJrn-l

- score 2 

2()5 day old male 131 day old 

e) llJm-l
- score 3 f) Sf3 !llm-I - score 0 

Figure 71 : Examples of scored haematoxylin and eosin stained ear sections: a) and b) 0 for unaffected 
(epidermis < 5 cells thick) (arrow). c) 1 for a thickened epidermis of >5 cells thick (arrow). d) 2 for a 
thickened epidermis with the formation of epidennal rete pegs (arrows). e) 3 for the additional epidennal 
neutrophilic infiltration. In this example the extended rete pegs (arrows), the elongated dermal pappillae 
(arrowheads), dennal infiltrate (*), increased number of small blood vessels (v) and the formation of a 
neutrophil-containing Munro rnicroabcess underneath the stratum corneum (M) are aU clearly visible. f) 
Sf3 fllrn-I- ear, score O. Scale bar = 200 ~m. 



stained with toluidine blue to detect mast cells, since mast cell numbers are 

elevated in human psoriatic skin. They were also stained for chloroacetate esterase 

to detect neutrophils, since neutrophilic epidermal infiltrates and formation of 

neutrophil-containing Munro microabcesses are also a feature of human psoriatic 

skin. 

Haematoxylin and eosin staining of formaldehyde fixed paraffin embedded ear 

sections revealed structural and cellular changes associated with psoriasis-affected 

skin in 617 III rnol
- F2 and 24/31 N5-N9 Balb/c mice examined. These changes 

included dermal cellular infiltrates, acanthosis (thickening of the epidermis due to 

keratinocyte hyperproliferation), formation and elongation of epidermal rete pegs, 

elongation of the dermal papillae, neutrophilic epidermal infiltrates and the 

formation of Munro microabcesses as neutrophil aggregates beneath the stratum 

corneum, and an overall thickening of the ear (Figure 69). 

The presence of large numbers of neutrophils was confirmed by staining 

formaldehyde fixed, paraffin-embedded sections for chloroacetate esterase. 

(Figure 70). 

The extent to which the disease had affected the skin was noted by clinically 

scoring the haematoxylin and eosin stained paraffin embedded sections of ears. 

Scores were as follows: 0 for unaffected (epidermis < 5 cells thick), 1 for a 

thickened epidermis of >5 cells thick, 2 for a thickened epidermis with the 

formation of epidermal rete pegs, and 3 for the additional epidermal neutrophilic 

infiltration. (Figure 71). Of the 31 Balblc III rno1o mice, 7 mice scored 0, 5 mice 
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scored 1,3 mice scored 2 and 16 mice scored 3. 717 Illrn+l+ mice scored 0, whilst 

719 and 2/9 III rn +1- mice scored 0 and 1 respectively. Of 5 Sf3 mice examined (3 

Illrn-I
-, 2 Illrn+/), all scored O. This number is relatively small, but more 

importantly, there is a lack of external signs of psoriatiform disease throughout 

the Sf3 colony. 

Table 6: Animals used in psoriasis study 

Mouse Sex Back- 111m Age at Signs of Ear Mast 
I.D ground genotype death illness score cells I 
number (days) mm1 

Jappmx.) 

123-03 M Sf3 -1- 131 0 -
123-05 M Sf3 -1- 131 0 -
135-02 F Sf3 -1- 203 0 -
134-06 M Sf3 +1- 203 0 -
135-05 F SO +1- 203 0 -
IB07-02 M F2 -1- 117 1 81 
IB05-03 M F2 -1- 120 2 127 
IB08-08 F F2 -1- 211 BE 3 188 
IB08-11 F F2 -1- 211 3 110 
IB04-02 M F2 -1- 216 BE 2 247 
IB06-07 M F2 -1- 216 0 82 
IB07-03 M F2 -1- 220 3 72 
IB513-05 M N5-N9 -1- 103 2 85 
IB8IA-Ol M N5-N9 -1- 71 BE 1 109 
IB57-13 F N5-N9 -1- 80 LF,BH 1 133 
IB46-03 F N5-N9 -1- 83 BE,BH 3 116 
IB515-08 F N5-N9 -1- 93 0 165 
IB515-09 F N5-N9 -1- 93 LH 0 119 
IB67-05 M N5-N9 -1- 93 LH 0 70 
IB67-09 F N5-N9 -1- 93 RH 0 143 
IB513-01 M N5-N9 -1- 103 3 156 
IB61O-09 F N5-N9 -1- 108 3 89 
IB8IC-Ol M N5-N9 -I- llS BH 1 107 
IB8IC-02 M N5-N9 -I- llS RE,LH 2 * 
IB8IC-04 M N5-N9 -1- 115 0 107 
IB511-02 M N5-N9 -1- 120 BE 3 115 
IB811-04 F N5-N9 -1- 130 BE,BH 3 255 
IB613-04 F N5-N9 -1- 132 BE,BH 3 171 
IB511-06 F N5-N9 -1- 147 RE 0 108 
IB511-09 F N5-N9 -1- 147 0 88 
IB81A-02 M N5-N9 -1- 158 LE,BH 3 * 
IB57-01 M N5-N9 -1- 160 3 44 
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Figure 72: Toluidine blue staining of paraffin embedded ear skin sections 

~ 

, " -.. 
' . -

r 

a 71 day old male b 147 day old female 

. , 
c 80 day old female d lQ3 ~ay old male 

:. . 

e 199 day old female f 

Figure 72: Toluidine blue stains mast cells and basophils violet, and background blue in paraffin embedded 

sections. a) 1I1rn+l+ ear, score O. b) 1I1rn"" ear, score O. c) 1I1rn"" ear score 1. d) ll1rn'/' ear, score 2. e) 1I1rn' 

I· ear, score 3. f) as e), higher power magnification. Mast cell numbers appear to increase with ear score. 

Scale bar a-e = 200 ~m, f = 40 ~. 



Mouse Sex Back- 111m Age at Signs of Ear 
I.D ground genotype death illness score 
number (days) 
IB67-06 M NS-N9 -1- 171 LE 1 
IB611-04 M NS-N9 -1- 172 BE 3 
IB61O-06 M NS-N9 -1- 174 BE 3 
IB61O-07 F NS-N9 -1- 174 BE,RH 3 
IBS7-09 F NS-N9 -1- 187 BE,RH 3 
IBSIS-03 M NS-N9 -1- 199 BE,BH 3 
IB515-11 F NS-N9 -/- 199 BE,RH 3 
IB819-01 M NS-N9 -/- 216 RE,RH 1 
IB819-07 F NS-N9 -/- 216 LE 2 
IB46-01 M NS-N9 -/- 265 BE 3 
IB57-04 M NS-N9 -1- 335 BE 3 
IB81B-07 F NS-N9 +/- 136 1 
IB81A-09 F N5-N9 +1- 155 0 
IB819-02 M N5-N9 +/- 216 LE 0 
IB819-03 M N5-N9 +/- 216 0 
IB819-04 M N5-N9 +/- 216 1 
IB819-05 M N5-N9 +/- 216 0 
IB819-06 F N5-N9 +1- 216 0 
IB819-08 F N5-N9 +/- 216 0 
IB81A-04 M N5-N9 +1- 224 0 
IB8IA-tO F N5-N9 +/+ ISS 0 
IB8IA-11 F NS-N9 +/+ IS5 0 
IB81A-12 F NS-N9 +1+ 155 0 
IB818-02 M N5-N9 +/+ 171 0 
18818-04 M N5-N9 +1+ 171 0 
IB818-08 F N5-N9 +/+ 191 0 
IB818-09 F N5-N9 +1+ 191 0 

*Mast cell count not taken as only frozen sectIOns were available 

LE = left ear appeared scaly 

RE = right ear appeared scaly 

BE = both ears appeared scaly 

LH = left hind joint swollen 

RH = right hind joint swollen 

BH = both hind joints swollen 

LF = left front joint swollen 

Mast 
cells 
Imm2 

173 
83 
144 
266 
101 
112 
173 
117 
37 
129 
154 
74 
* 
96 
78 
61 
112 
78 
89 
t07 
78 
73 
57 
79 
* 
75 
72 

Paraffin embedded sections were stained for mast cells using toluidine blue, to 

detect whether their numbers were e1eyated in psoriatiform skin as compared to 

unaffected skin (as is the case in human psoriasis) (Figure 72). Initial observations 

suggested that mast cell numbers were increased in inflamed ear sections as 

opposed to uninflamed, and this observation was supported by counting the 
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numbers of mast cells under a light microscope (see table 6). The numbers of mast 

cells counted per mm2 in the ear skin sections of N2-N5 mice scoring 0 were 

compared to those scoring 3 by using the Mann-Whitney test. The numbers of 

mast cells in ear skin sections scoring 3 were significantly greater than those 

scoring 0 at the 5% level (p = 0.0014). 

3.4.3: Characterisation of psoriatiform lesions by immunohistochemistry 

Frozen sections from 4 Balb/c Illrn+l+ and 5 Illrn-I
- mice were examined 

immunohistochemically to detect the presence ofCD4+ T-cells, CD8+ T-cells, B­

cells, macrophages, dendritic cells and endothelial cells. This was done to 

compare the cell types present within the dermal and epidermal inflammatory 

infiltrates to those found in human psoriatic skin, and to compare vascularity of 

unaffected and affected sections (by identifying endothelial cells lining the small 

vessels). E-selectinstaining was used to detect whether the endothelial cells were 

activated. IFNy, IL-4 and IL-5 were detected to discover the activation status and 

ThllTh2 polarity of the CD4+ T-cells, and IL-lP was identified both to confirm 

the activation status of the macrophages and to test the hypothesis that the disease 

is caused by the action of unopposed IL-I. The adhesion molecule ICAM-l and 

the chemokine MCP-l were detected as their expression is upregulated during 

inflammation, and finally keratin 6 was identified as a marker for 

hyperproliferative keratinocytes, where it is expressed at high levels [Weiss et al., 

1984; Stoler et al., 1988]. Keratin 6 mRNA is normally only expressed at low 

levels in normal epidermis without production of the proteins, except for around 

the outer root sheath of hair follicle, on the nail bed [Stoler et al., 1988] and in the 

oral mucosa [Wong et al., 2000] . 
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Figure 73: Immunohistochemical stains of inflamed ear sections from two separate Balb/c 111rn,I, mice are 

shown (216 day old female and 158 day old male). In all cases brown staining indicates a positive reaction. 

AJI are counterstained with haematoxylin. a & b) CD4+ cells (T -cells), c & d) CD8a+ cells (T -cells), e & f) 

F4/80 + cells (macrophages), g & h) DEC-20S+ ceJls (dendritic ceJls), i & j) CD19+ cells (B-cells). Scale 

bars = 4O~. 



Figure 73: Psoriatiform BaJb/c IlJrn-'- ear sections contain a mixed dermal infiltrate 

1 



Figure 74: Mixed cytokine profile within dermal infiltrate of inflamed Balb/c ear 
skin sections 

Figure 74: Immunohistochemical stains of inflamed ear sections from two separate 8alb/c JlJrn-l- mice 

(216 day old female and 158 day old male) are shown. In aU cases brown staining indicates a positive 

reaction. All are counterstained with haematoxylin. Sections are stained for cytokines as follows: a & b) IL­

l~, c & d) IFNy, e & t) IL-4, g & h) IL-5. ScaJe bar = 40 j.Lm 



Figure 75: Chemokine and adhesion molecule expression in inflamed dermis of 
Balb/c Illrn-I- ear skin sections 

Figure 75: Immunohistochemical stains of inflamed ear sections from two separate Balblc J1Jrn-l - mice 

(216 day old female and 158 day old male) are shown. [n all cases brown staining indicates a positive 

reaction. AJI are counterstained with hacmatoxylin. Sections are stained for a & b) MCP-l+ cells, c & d) 

ICAM-l+ cells. Scale bars = 40 ).UTl . 



Figure 76: Increased vascularity and activation of endothelial cells within the 
dermis of inflamed Balb/c Illm-'- ear sections as compared to Illm+l

+ 

Figure 76: Immunohi lochemical stain of inflamed ear cetion from one 8alb/c /lIm-l- (216 day old 

female) and one /lIm+l+ (19 1 day old female) mou e are h wn. In all ca e brown sta ining indicates a 

positive reaction. All are counterstained with haematoxylin. a) III rn+l+ 031 + cell (endothelial cells), b) 

/lI m -I- C031 + cell ,c) III m +l+ 062E'" cell ( electin), d) III m -I- 062 + cell . scale bars = 40 !J.m. 



a 

c 

Figure 77: CD4+ T-ceUs infiltrating into the epidermis of lesional skin in Illm-l -

Balb/c mice 

b 

Figure 77: CD4+ cells (arrows) infiltrating into the epidermis of lesionaJ skin from 1IJrn-l- BaJb/c mice. 

Examples shown are from three different JlJrn-l- anjmals a) 216 day old female, b) 158 day old male, c) 

115 day old male. Scale bar = 40 Ilm. 



a 

c 

Figure 78: Epidermal Langerhans' cells appear to be activated and more numerous 
in psoriatiform ll1rn-l- Balb/c ear skin than in 111m +1+ 

b 

Figure 78: Epidermal Langerhans' cells appear acti ated an 

more numerous in psoriatifonn Il1rn-l - Balb/c skin than in 

II1rn+l+. a) and b) DEC20S+ epidennal Langerhans cell in 

wild-type (171 day old maJe) Balb/c ear skin (arrows). • and e) DEC20S+ epidennal Langherhans' cells in psoriatiforn 

II1rn-l- (158 day old maJe) Balb/c ear skin (arrows). 

elongation of dendritic processes indicating acti\'uti 

(arrowheads) in lesional skin. Scale bar = 40 ~m. 



Sections of ears from III rn-'- mice which had outwardly appeared red and 

thickened were histologically confirmed as being inflamed. Dermal infiltrates 

were found to be composed of CD4+ T-cells, CD8+ T-cells, macrophages, 

dendritic cells, neutrophils and B-cells (Figure 73). 

Within the dermal infiltrate, there was production of IL-l f3 and IFNy, and also IL-

4 and IL-5 (Figure 74) (unlike in the inflammatory infiltrates of the arteritis in 

Illrn-'- mice), demonstrating a mixed ThlITh2 type response. A comparison of 

figures 25 and 74 show infiltrates in the heart and ear of same animal, a 158 day 

old male 8alb/c 111 rn-'- mouse (lB8IA-02). In the aortic lesion infiltrate, there is 

very little positive staining for IL-4 or IL-5 whereas both are found within the 

inflamed dermis. In the same animal, there is also little or no positive staining for 

IL-4 (unlike IFNy) within the pannus of a rheumatoid arthritis like disease which 

it had developed (Figure 85), as well as the arteritis and psoriatiform disease. 

MCP-l production and ICAM-I expression (Figure 75) were both enhanced 

within the inflamed dermis, further demonstrating the inflamed status of the skin. 

An increase in vascularity within the dermis, along with activation of endothelial 

cells as judged by abundant E-selectin expression (Figure 76) was also seen in 

these sections. 

CD4+ T-cells and neutrophils were observed infiltrating into the epidermis (Figure 

77). Numbers of dendritic cells within the epidermis (Langerhans' cells) also 

appeared increased in inflamed ear sections (Figure 78). Epidermal infiltrates and 
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Figure 79: Transverse epidermal skin sections of affected and unaffected mice 
stained for keratin 6 

171 day old male 11Irn+l+ 

.. 

Figure 79: Immunohistochemical staining for keratin 6 in IIJrn+l+ (a) and JlJrn-l- (b) mice. In the wild-type 

mouse, cells staining positively for keratin 6 are restricted to those surrounding hair follicles (arrows). In 

the IL-lra deficient mice, keratinocytes in all layers of the epidennis express keratin 6, indicating a 

hyperproliferative state. Scale bar = 40 ~. 



Figure 80: /LIm +1+ Balb/c mice have a low level of inflammation in the ears 

Figure 80: Immunohistochemical stains of inflamed ear sections from one Balb/c J/Jrn+l+ (191 day old 

female) mouse are shown. In aU cases brown staining indicates a positive reaction. All are counterstained 

with haematoxylin. Sections show a) F4/80+ cells, b) IL-l~+ cells, c) CD4+ cells, and d) IFNl cells. 

Activated F4/80+ and CD4+ cells are present in the dermis of the ears in Jllrn+l+ mice. Scale bar = 40 ~m. 



Figure 81: IlJrn+1+ Balb/e miee have no IL-4 or IL-5 production within the ears 

a 

Figure 81: Immunohistochemical stains of inflamed ear sections from one Balb/c il J rn +1+ mouse (191 day 

old female) are shown. In all cases brown staining indicates a positive reaction. All are counterstained with 

haematoxylin. a) stained for IIA, b) stained for IL-5 . Scale bar = 40 I-lm. 



an increase in numbers and activation of Langerhans' cells are also observed in 

human psoriatic skin. 

Keratin 6 expression was upregulated in inflamed ear sections (Figure 79). This 

protein was expressed in all layers of the inflamed epidermis. In unaffected 

sections, its expression was restricted to the basal keratinocyte layer, and 

surrounding hair follicles. This demonstrates the hyperproliferative state of the 

keratinocytes within the inflamed epidermis, possibly due to the action of IL-l. 

Ear sections from wild-type Balb/c mice also showed positive staining for 

macrophages (F4/S0), CD4+ T-cells, IL-l~ and IFNy (Figure SO) within the 

dermis, but were negative for IL-4 and IL-5 (Figure 81), indicating that 

inflammatory processes in the ear were normal, but cells staining positively were 

fewer in number than in inflamed ears. A possible explanation for the presence of 

activated macrophages and T -cells in the dermis of wild-type ear skin is that the 

ear routinely undergoes mild physical trauma or routinely suffers the incursion of 

bacteria from the epidermis. A similar pattern was observed in SfJ fllrn+l+ mice 

which do not develop the disease, suggesting that the sensitivity of Balb/c fl1rn-l
-

mice to the pathology is not the result of a weak epithelial barrier to incursion in 

Balb/c. 

In addition, some cells within the epidermis of wild-type ear sections stained 

positively with the dendritic cell marker DEC205 as expected, due to the presence 

of Langer hans' cells in normal epidermis (see Figure 7S). 
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Figure 82: Inflamed skin at the base of the tail in a Balb/e Illrn-'- mouse 

" 

J 

a 
~ --- b 

Figure 82: a) Haematoxylin and eosin stained tail skin, J1Jrn+l+ mouse (191 day old femaJe). b) tail skin 

stained for chloroacetate esterase, same 11lrn+l+ mouse. c) haematoxylin and eosin stained tail skin from 

IIJrn-l
- mouse (335 day old male, IB57-04). Note formation of Munro microabcess (arrow). d) as c, higher 

power magnification. e) section from same lllrn-l- tail, stained for chJoroaceteate esterase activity 

(neutrophiJs). f) as e, higher power magnification. Note red-staining neutrophiJs (arrow). Scale bars a, b, c, 

e = 200 ~m, d & f = 40 ~m. 



Figure 83: Haematoxylin and eosin stained paraffin embedded skin sections from 
Illrn-I- and Illrn +1+ Balb/c mice 
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Figure 83: Haematoxylin and eosin staining of paraffin embedded sections of skin from the flex'UTe of the 

elbow, the back (dorsal), and belly (ventral) revealed no lesions in the animals examined. a) & b) - elbow. 

c) & d) dorsal skin. e &1) ventral skin. a, c & e are all from the same Jllrn-l- mouse (IB57-04, 335 day old 

male), ear score 3. b, d, & f are from the same IlJrn+l+ mouse (IBSIB-09, 191 day old female), ear score O. 

Scale bar = 200 J..Ull. 



A proportion of Balb/c Il1rn-l
- mice spontaneously develop a psoriatiform disease 

which histologically and immunohistologically appears to be similar to human 

psoriasis. The disease appears only in III rn-I
- mice, but appears to be strain 

specific. Additionally, in 113 Balb/c Illrn-I
- mice examined, psoriatiform lesions 

that were histologically similar to those found on the ears, were found at the base 

of the tail (Figure 82). In all 3 of these cases, as well as in skin sections from 4 

111m +1- and 1 III rn +1+ mouse, no lesions were found elsewhere (either on dorsal 

skin, ventral skin or from the flexure of the elbow) (Figure 83). 

3.5: 1l1rn-l- mice on a Balb/c background spontaneously develop a 

rheumatoid arthritis-like disease 

3.5.1: Introduction 

Il1rn-l- mice deeply backcrossed onto a Balb/c background (but not C57BLl6 or 

Sf3 backgrounds, nor the F2 of an Sf3 x Balb/c cross) spontaneously develop an 

RA-like disease. This phenotype was previously observed in another colony of 

1I1rn-l - mice on a Balb/cA background [Horai et a/., 2000], despite the fact that the 

structure of the null alleles differs between the two laboratories, and strains used 

are slightly different (see section 1. 1. l3). The age of onset of disease differs 

between the two colonies. The colony established by Horai et al begin to show 

signs of the disease at 30 days old, whereas age of onset in our colony is later, 

with animals beginning to develop swollen joints at around 70 days. This 

difference may result from allelic differences, but more likely results from 

uncontrolled environmental differences or from differences in genetic background 

(our background is Balb/c(Harlan), Horai et al use Balb/cA). 

149 



3.5.2: Clinical signs of athropathy 

III rn-I
- mice on all backgrounds were routinely checked for swollen limbs or 

unusual gait. The ratio of males to females suffering from the disease was noted, 

since in the human RA affects women/men in the ratio 2.5: 1 [Lawrence et al., 

1998]. 

Outwardly, Balb/c Illrn-/- animals suffering from the RA-like disease had swollen 

hind ankles (either one ankle or both) in comparison to unaffected joints. The 

swollen joints were reddened in colour in the live animals. Gait was affected in 

animals with swollen joints - in advanced cases the mice limped or dragged the 

affected limb(s) which appeared to be stiff and immobile. The forelimbs appeared 

to be less affected. 

No Illrn-I- mice from the Sf3 background, from a total of over 400 mice bred over 

5 years, outwardly appeared affected by the disease, even at an advanced age. 

There is also no evidence of the disease in III rn-I
- mice bred onto a C57BLl6 

background, in agreement with Horai et al. 

3.5.3: Histological analysis of decalcified joint sections 

In order to establish whether the arthropathy observed in our Balb/c Illrn-/­

animals histologically resembles human RA and the RA-like disease found in 

other Balb/c III rn-I- mice [Horai et al., 2000], histological analysis of 5 joints was 

performed. Two were ankle joints from Balb/c Illrn-I
- mice which had been 

recorded as appearing swollen, 1 was an outwardly normal ankle joint from a 
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Figure 84: Haematoxylin and eosin stained decalcified, paraffin embedded joint 
sections 

Figure 84: Haematoxylin and eosin staining of decalcified Balblc joints (ankles). a & c) 11 J rn +1+ animal 

(155 day old femaJe) . b & d) arthritic IIJrn-l- animal (132 day old female) . Note inflammatory infiltrates 

(arrows), pannus invading the synovial joint space (thick arrow), and destruction of chondrocytes at the 

joint (*). Scale bars a and b = 500 ~m, c and d = 200 ~. 

.. 



Balb/c III rn +/+ animal, one was an outwardly normal ankle joint from an III rn·/· 

Sf3 mouse, and one was an apparently unaffected wrist joint from an III rn·/· 

Balb/c mouse with swollen ankles. Decalcified joints were formaldehyde fixed, 

paraffin embedded and sectioned, and used for haematoxylin and eosin staining to 

observe any structural or cellular changes which may be similar to human RA, 

such as destruction of cartilage and pannus formation. 

In one of the ankle joints from the affected Illrn·/· Balb/c mice, there was an 

inflammatory infiltrate (pannus) around the ankle joint, which in parts infiltrated 

almost all of the tissue across the joint. There was visible destruction of the 

cartilage and bone within the joint (Figure 84). The other ankle joint from an 

Illm·/· animal appeared histologically normal. The ankle joints from the Balb/c 

wild-type animal and the Illrn·/· Sf3 mouse appeared histologically unaffected by 

the arthropathy. There was no inflammatory infiltrate and the cartilage and bones 

appeared healthy, with no visible erosion (Figure 84). This was also the case with 

the wrist joint from the affected Balb/c III rn·t• mouse. 

3.5.4: Immunohistochemical analysis of undecalcified joints 

Undecalcified frozen joints from 6 animals were sectioned and 

immunohistochemically stained to identify T -cells (CD4+ and CD8+) and 

macrophages (F 4/80+), and their products IFNy, IL-4 and IL-l ~ to determine 

whether they were activated and whether the CD4+ T-cells were of a Thl or Th2 

type. In addition, it was expected that 11-1 ~ would be present in the affected joints, 

if the disease is a result of the action of unopposed IL-l. The six joints were from 

the hind limbs (ankles) of four IlJm·l . and two Illrn+l+ mice, all Balb/c. Of the 
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Figure 85: Pannus in arthritic Balb/c Illrn-I
- mouse joint 

Figure 85: Immunohistochemical staining of pannus fonned in joints of a Balb/c IIIrn·l• mouse (158 day 

old male). a) CD4+ cells, b) F4/80+ cells (macrophages), c) IFNl cells, d) IL-lP+ cells, e) IL-4, rare +ve 

cells. t) haematoxylin and eosin stained pannus from a decalcified joint (132 day old femaJe) . Note 

vascularity within the pannus (arrows). Scale bars a - e = 200 Ilm, f = 40 Ilm. 



Figure 86: Activated macropbages in inflammatory infiltrate of a Balb/c Rlrn-I
- joint 

Figure 86: Undecalcified joint sections from a 158 da old male /IJrn-l· mouse stained for a) F4/80+ cells 

(macrophages), and b) IL-l~+ cells. caJe bar - 40 ~un. 



Figure 87: Thl type CD4+ T-ceUs within infiltrate of an arthritic Balb/c ll1rn-l- joint 

Figure 87: Undecalcifiedjoint sections from a 158 day old Illrn-l- mouse. a & b) CD4+ cells within the 

inflammatory infiltrate of the arthritic joint. c & d) IFNt cells in same areas as CD4+ cells. e & f) lack of 

llA+ cells. Scale bar = 40 ~m 



III rn-I
- mice, one joint was severely swollen, and three were slightly swollen. 

Neither wild-type mouse outwardly appeared affected. 

Immunohistochemical staining of undecalcified joints revealed the presence of 

large numbers ofF4/80+ macrophages within the pannus (Figure 85) and abundant 

IL-l ~ production (Figure 85, Figure 86) in the most severely affected joint. The 

presence of large numbers of macrophages within the infiltrate is consistent with 

the pannus seen in human RA joints. The production of IL-l~ is also consistent 

with human RA where biologically active IL-l ~ is abundant in synovial fluid 

from the inflamed joints [Wood et al., 1983; Hopkins et al., 1988]. 

CD4+ T -cells, although numerous, were less abundant than macrophages (Figure 

85) in the most affected joint. Although there was a visible production of IFNy 

within the infiltrate, IL-4 production was rare in the very swollen l11rn-l
- joint, and 

absent in all other joints tested (Figure 85, Figure 87). Therefore, the majority of 

the CD4+ T-cells present were of a Thl type. In human RA, T-cells within the 

pannus also display a ThI-type cytokine profile [Simon et al., 1994]. CD8+ T­

cells, although present within the inflammatory infiltrate of the most affected 

joint, were far fewer in number than either CD4+ T-cells or macrophages. The 

slightly swollen joints from the three other l11rn-l
- mice appeared histologically 

normal. 

In 111rn+l+ mice, there was no visible pannus formation, and immunohistochemical 

stains for IL-l~, IFNy and IL-4 were all negative. A very small number of T -cells 
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Figure 88: Immunohistochemical staining of a Balb/c 111m +1+ joint 

'I 

Figure 88: Immunohistochemical staining of JlJrn+l+ joint (155 day old female). a) F4/80 staining. Note 

macrophage-like synovial cells which are F4/80+ (arrow). b) IL-I~ , c) CD4+, d) IFN/ e) IL-4, f) negative 

control. Scale bar = 200 1ll1l. 
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and macrophages were detected throughout the joint, and macrophage-like 

synovial lining cells were also detected with the F4/80 antibody (Figure 88). 

These results are preliminary, and further undecalcified frozen joints will be 

immunohistochemically stained to ascertain whether these results can be 

supported. 

3.6: Illrn-l
- mice on a Balb/c background can develop arteritis, a 

psoriatiform disease and an RA-like disease simultaneously 

III rn-I
- mice on a Balb/c background can suffer from arteritis, a psoriasis-like 

disease and an RA-like disease, either independently or as a combination of two 

or three of the diseases. On the other hand, III rn-I
- mice on the Sfl background 

suffer from arteritis but not the psoriatiform or RA-like diseases. C57BLl6 appear 

not to suffer from any of these diseases [Nicklin et al. 2000; Horai et al., 2000]. 

Of 20 Balb/c Illrn-I
- mice examined for arteritis, 9/20 were suffering from all 

three diseases if arthritis was judged by an external examination, 10/20 were 

suffering from the psoriatiform disease and arteritis, and 1120 had the psoriatiform 

disease but neither RA nor arteritis. In these cases however presence or absence of 

the RA-like disease was only confirmed histologically in 3 animals (out of 4 

examined). The others were judged as having the RA-like disease if their limbs 

were reddened and swollen, and/or their gait was affected. 

Although it is unclear whether the animals are suffering from psoriatic arthritis or 

psoratiform disease and arthropathy concurrently, it seems more likely to be the 
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latter case. Whereas the psoriatiform disease is seen as early as F2 in these 

animals, with the same incidence as in deeply backcrossed animals, the 

arthropathy only occurs in the deep backcross. Moreover, some animals develop 

the psoriatiform disease but not the arthropathy, and vice versa. The arteritis 

appears in all generations. It is postulated that the Illrn-/- mice actually have three 

distinct inflammatory diseases with a genetic component which makes them strain 

specific. 
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Section 4: Discussion 
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4.1: Mice lacking IL-lra spontaneously develop inflammatory 

diseases 

Mice which lack interleukin-I receptor antagonist, whose only known function is 

to oppose the activity of the pro-inflammatory cytokine IL-I, spontaneously 

develop at least three chronic inflammatory diseases with high penetrance. These 

include an inflammatory disease of the major arteries, a psoriatiform disease of 

the exposed skin on the ears (as first shown in this work), and a rheumatoid 

arthritis-like disease of the joints. Of the three, the psoriatiform and RA-like 

diseases are seen in animals on a Balblc background, and not in SfJ animals. In 

addition, C57BLl6 fllrn-I
- mice do not appear to develop any of the three diseases. 

The lack of obvious exogenous antigens suggests that these are autoimmune 

diseases with genetic influences on susceptibility, but we would not discount the 

possibility of a strain-specific exogenous trigger. 

4.2: Arteritis 

4.2.1: Inflammatory artery disease in Il1m-l
- mice 

Characterisation of the inflammatory arterial lesions which spontaneously develop 

in mice lacking IL-I ra demonstrated their similarity to inflammatory arterial 

lesions in human giant cell arteritis (GCA) and Takayasu's arteritis (TA) in the 

following respects. The murine lesions localise to the same areas of turbulent 

blood flow in the major elastic arteries as those in the human [Hunder et al., 1985; 

Numano et al., 2000]. Immunohistologically, the similarities to GCA and TA 

include the presence of a large inflammatory cellular infiltrate surrounding the 

affected vessel, which consists of large numbers of activated macrophages, 

activated Thl-type CD4+ T-cells, neutrophils and dendritic cells [Banks et al., 
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1983; Wagner et al., 1994; Weyand et al., 1996; Inder et al., 2000]. 

Multinucleated giant cells have not been observed thus far in the lesions of our 

III rn-I
- mice, but giant cells have been seen in the heart lesions of other murine 

diseases, such as experimentally induced autoimmune myocarditis [Afanasyeva et 

al., 2001]. Examination of larger numbers of paraffin embedded sections may 

demonstrate the presence of giant cells in the future. 

The infiltrate, as in GCA and TA [Wagner et al., 1994; Weyand et al., 1996] 

appears to arrive at the lesional area via the vasa vasorum, the microvasculature 

deep within the adventitial layer, rather than via the main vessel. Evidence for this 

arises from the observations that inflammatory infiltrates are apparent before 

elastin degradation (see Figure 17), and in earlier lesions the infiltrate is observed 

only within the outer layers of the vessel walls, progressing towards the lumen of 

the large vessel as the lesion develops (see Figure 21). The elastic layers of the 

vessel wall become damaged and fragmented, but there is also evidence of repair. 

The repair process is also seen in TA lesions where younger inflammatory lesions 

can be found near to older, fibrotic ones [Hotchi, 1992]. The lesions are also 

specific to the large elastic arteries (as are GCA and TA); neighbouring veins and 

small arteries are unaffected. It appears that Illrn-l
- mice may make an appropriate 

animal model for the study of human arteritides such as GCA and T A, whose 

causes and aetiologies are currently unknown. Presently, the only animal models 

for the study of GCA are xenotransplantation models, where temporal biopsies 

from GCA patients are engrafted onto NOD-SCID mice [Brack et al., 1997a, 

1997b], or infection-induced arteritides [Blessing et al., 2000; reviewed in Dal 

Canto & Virgin, 2000]. Our Illrn-I
- mice develop a GCA/TA-like disease 
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spontaneously and with a high penetrance. They may provide a more useful model 

than xenografts or infection based disease, since the initiating factors (other than 

bacterial or viral infection) in disease development could be studied. 

From the initial study presented here, it seems that serum amyloid A levels are 

not useful as a marker for the presence of destructive arterial lesions. Although 

levels were raised in animals with destructive arteritic lesions, the levels were not 

as high as expected. For example, 2 days after experimental injection of mice with 

10 Jlg ofLPS, plasma SAA levels rise from a mean of 470 Jlg/ml to a mean of300 

mg/ml [Yamada et al., 1999]. The baseline levels ofSAA in this study are high in 

comparison to another in which SAA levels rise from a baseline of < 5 Jlg/ml to .... 

170 Jlg/ml 49 hours post injection of CpG-DNA [Schmidt et al., 1999]. In another 

study which involved monitoring SAA mRNA levels in mice following 

intraperitoneal injection of IL-l13, SAA mRNA levels were increased in a dose­

responsive manner by up to 16-fold [Weinstein & Taylor, 1987]. The peak level 

of SAA measured in our animals was only 35 Jlg/ml, which is physiologically 

insignificant, and represents only a 2-fold increase from the baseline. 

4.2.2: Initiating factors in development of arteritis 

Although the initiating factors are still unclear, it can be seen that the lesions 

develop rapidly. From 56-57 to 75-81 days in the time course study, in which 

there was a maximum of 25 days age difference, there was a development in the 

size and inflammatory capacity of the lesions. Therefore, large lesions can clearly 

be seen in young adults. During the 75-81 day age group there was also the first 

positive staining for the chemokine MCP-1 and E-selectin (indicating activated 
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endothelial cells). Although it may be expected that E-selectin expression on 

endothelial cells would precede the larger infiltrate, it could be that this was in 

fact the case and was missed by having a 25 day gap between age groups. 

Alternatively, it is possible that E-selectin was being expressed at the early 

lesional sites in the younger lllrn-t- animals but was at too Iowa level, or at too 

few sites, to be detected by this technique. 

From the immunohistochemical staining performed, it appears CD4+ T-cells are 

possibly the first to arrive at the lesional sites of turbulent blood flow, since in the 

earliest detectable lesions they appeared in larger numbers than the activated 

macrophages. This could indicate an interaction between activated CD4+ T-cells 

and mature dendritic cells within the lymph nodes. It is possible that IL-l 

produced in response to turbulent blood flow in the absence of IL-I ra causes the 

inappropriate maturation of dendritic cells, which migrate to the lymph nodes and 

present autoantigen to T -cells which are then directed to the vascular wall. 

Possible dendritic cell involvement is discussed further in section 4.6. 

Lesions localise to areas of turbulent blood flow such as around valves, and in 

early lesions activated CD4+ T -cells and macrophages can be seen accumulating 

at these sites. Therefore, it seems likely that turbulent blood flow, which creates 

low, fluctuating shear stresses may be the causative factor in arterial lesion 

development in III rn-t- mice. At these same sites, there may be the deposition of 

both endogenous and exogenous debris. In wild-type mice, the balance of IL-I 

and IL-Ira available to the receptors remains undisturbed. Both IL-I and IL-Ira 

are produced simultaneously, and compete for the type 1 receptor. However, with 
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the removal of IL-l ra from the balance, there is no competition and all IL-I R I 

present within the area is available for binding by IL-l. In wild-type mice, the 

mild damage occurring as a result of turbulent blood flow may cause the 

recruitment of macrophages and dendritic cells to the area. However, any possible 

autoantigens processed by the DCs would not be presented, since they would not 

frequently be matured and thus would not often migrate to the lymph nodes to 

activate CD4+ T-cells with autoantigen. If this was the case, a small number of 

activated macrophages would be expected at the sites of turbulent blood flow in 

III rn +1+ animals as well as III rn-I
-. Again it is possible that this occurs at an 

undetectable level, or it may be that the action of IL-I ra is rapid and prolonged, 

and any initial activation of macro phages has been missed in this study. 

With the removal of IL-Ira from the system however, a rapid sequence of 

inflammatory events could occur via the action of unopposed IL-l. These may 

include the inappropriate maturation of dendritic cells which could present 

vascular autoantigens to T-cells following their migration to the lymph nodes (see 

section 4.6), upregulation of adhesion molecules, production of chemokines 

inducing further recruitment of leukocytes to the area, and self-upregulation. 

Therefore, it is proposed that arterial lesions in 111m-l- mice initially develop as a 

result of chaotic shear stresses caused by turbulent blood flow, and steadily and 

rapidly increase in size and destructive capacity due to the unopposed action of 

IL-I. 
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4.2.3: Bacterial infection in heart disease 

Various studies suggest that Chlamydia, H. pylori and other micro-organisms may 

increase patient risk of development of inflammatory arterial disease [Muhlstein, 

1998; Folsom et al., 1998]. Our colony of 1I1m-l
- mice, which suffer from arteritis, 

is housed under SPF conditions and have been shown to be free of infection by 

mouse Chlamydia, and a set of other pathogens (see section 2.1.2). Murine 

Helicobacter infection however is not routinely assayed and is known to be 

widespread amongst laboratory mice. 

This investigation revealed evidence of infection by Helicobacter hepatic us in 

mice of all genotypes, both from our laboratory and from the colony of Hirsch et 

al. 

Since the C57BLl6 1I1rn-l- mice of Hirsch et al. do not develop arteritis, it appears 

that infection by H hepaticus alone is not enough to induce the formation of 

inflammatory arterial lesions in III m-I- mice. However, the possibility that it may 

be insufficient but required for multifactorial disease development cannot be 

excluded. Future work to eliminate the possibility of pathogens as causative 

agents will involve sterile rederivation of 1I1m-l
- mice (collaborative study with 

Leo Joosten and Wim Van den Berg, University of Nijmegan, the Netherlands). 

From the model for arterial lesion development in 1I1m-l- mice proposed here, 

rederivation of III rn-I- mice into a sterile environment should not affect the 

incidence of arteritis. 
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4.2.4: The influence of H-2 haplotype on lethality of arteritis 

fUrn,l, SfJ mice appeared to segregate into two lines, one of which suffered from 

an increased lethality of the arteritis. The lines had apparently heritable ages of 

signs of disease onset [Nicklin et al., 2000]. Mice from the non-sensitive line, 

although still developing arteritis as confirmed by histology, all had a death age of 

>350 days whereas the sensitive line had a mean death age of 103 days. It seemed 

likely that MHC haplotype may influence sensitivity to the disease, however 

genotyping of fllrn'l' mice from both lines at 4 points across the murine MHC (H-

2) revealed that they shared the same H-2 haplotypes. In addition, the haplotype, 

H2b
, is shared by C57BLl6 mice, which do not develop arteritis. Although it 

remains statistically likely that a single modifier gene confers sensitivity to 

arteritis, this study does not suggest that the H-2 haplotypes H2u and H2b give 

differential susceptibility, nor that H2b is a susceptibility factor. 

4.3: Psoriasis 

4.3.1: Balb/c mice lacking IL-lra suffer from a psoriasis-like disease 

All of the histological hallmarks of human psoriasis investigated were present in 

inflamed III rn'l' ear sections. These included a mixed dermal inflammatory 

infiltrate, acanthosis (a thickening of the epidermis) and expression of keratin 6, 

indicating keratinocyte hyperproliferation, the formation and elongation of 

epidermal rete pegs, the elongation of the dermal papillae between the rete pegs, 

neutrophilic epidermal infiltrates and the formation of Munro microabcesses with 

neutrophil aggregation beneath the stratum corneum, an increase in vascularity, 

upregulation of adhesion molecules (ICAM-I) and E-selectin expression, and the 

presence of a large number of dermal mast cells. 
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One difference from the inflammatory infiltrate seen in arteritic lesions was the 

presence of the Th2 type cytokines IL-4 and IL-5 as well as IFNy and IL-l p. IL-4 

and IL-5 are generally not found in arteritic lesions of III rn-I
- mice, even in the 

same animals. This is not in disagreement with data on human psoriatic lesions, 

where analysis of T-cell clones derived from psoriatic plaques revealed the 

presence of ThO, Thl and Th2 T-cell subsets [Barna et al., 1994]. In another 

study, the production ofIL-5 in I-cell clones derived from lesional psoriatic skin 

has been detected. Ihis profile was observed in I-cell clones whose supernatants 

were capable of acting as mitogens for keratinocytes in vitro, indicating a possible 

novel subset ofT-cells in the pathology of psoriatic lesions [Vollmer et al., 1994]. 

Illrn-I
- mice on an Sf] background, housed in the same laboratory as the Balb/c 

mice, only exceptionally rarely appear to develop the disease. This suggests a 

genetic influence on disease susceptibility. Human psoriasis is multifactorial in 

origin, but also shows a genetic contribution to disease development. It shows a 

strong association with, for example, the MHC gene HLA-CW6. Balb/c mice 

have an overall MHC genotype of H_2d, unlike the Sf] and C57BLl6 mice, which 

may in part play a role in the development of psoriasis and arthritis in Balb/c 

mice. Further experiments are currently in progress to identify genetically 

predisposing factors, involving the crossing of C57BLl6 Illrn-I
- mice with Balb/c 

III rn-I- mice and correlating the progress of the inflammatory diseases in the F2 

with carriage of H-2 alleles, and later with a whole genome search. This should 

reveal whether the H_2d haplotype has a major role in determining sensitivity to 

arthritis, arteritis, and psoriasis in Illrn-I
- mice. 
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Various other animal models for psoriasis exist (see section 1.2.17). However, 

despite collectively displaying all of the hallmarks of human psoriatic disease, 

none of these examples seem to be complete models of human psoriasis. For 

example, T -cells do not appear to playa role in the development of the flaky skin 

phenotype, which is otherwise a good model [Schon, 1999]. The psoriatiform 

disease which spontaneously arises in our Balb/c III rno'o mice compares very 

favourably to other models, and all the key features of human psoriasis examined 

so far have been present. More detailed studies, such as the effect of treatment 

with cyclosporin A, or adoptive T-cell transfer into SCID mice, may offer further 

support to the value of IL-l ra deficient mice on a Balb/c background being a 

useful animal model in the study of human psoriasis. 

4.4: Rheumatoid arthritis 

4.4.1: Rheumatoid arthritis in Balb/c Il1rn
o
'o mice 

Initial experiments suggest that the arthropathy which develops spontaneously in 

Balb/c III rn% 

mice is an erosive arthritis similar to human RA. Both involve 

destruction of the bone and cartilage by an inflammatory pannus which contains 

predominantly activated macrophages producing IL-l p. CD4+ displaying a Th-l 

type cytokine profile are also abundantly present within the inflamed area. The 

disease appears to be strain specific to III rno'o mice on a Balb/c background, 

suggesting a strong genetic contribution to susceptibility to the disease. 
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4.4.2: Comparison to RA in another colony of Balb/c III rn-I- mice 

Horai et a1. describe a chronic erosive arthropathy in their Balb/c fllrn-I
- mice 

[Horai et al., 2000]. They showed, by histology, synovitis and articular erosion 

with the formation of a lymphocyte- and neutrophil-containing pannus. They also 

described other features similar to human RA such as the proliferation of synovial 

lining cells and activation of osteoclasts. Histologically, arthritic joints from our 

Balb/c fllrn-I
- mice are similar in appearance. Pannus formation, degradation of 

bone and cartilage, and activated inflammatory cells are all evident. 

ELISA determination of serum autoantibody levels by Horai et a1. revealed 

increased levels of anti-IgG, anti-type II collagen and anti-OS DNA in the 

affected mice, although autoantibody levels did not correlate with disease 

severity. No antinuclear antibodies were found in the sera from three SfJ f11rn-l
-

mice in our colony [Nicklin et al., 2000] although autoantibody levels in our 

Balb/c fllrn-I
- mice have not been measured. 

Horai et al. also showed, by densitometric analysis of Northern blots, augmented 

mRNA levels ofIL-l~, IL-6 and TNF-a in the affected joints, although TNF-a 

levels were only increased 1.2-1.5-fold compared to fllrn+l+ mice. These results 

are not surprising, since the large increase in mRNA levels were seen at 112 days 

old, when the arthropathy was well established. The Balb/c f11rn-l
- mice of Horai 

et a1. begin to develop the disease by 35 days of age, with 100% of the animals 

being affected by 91 days of age. Our Balb/c fll rn-I
- mice tend to develop the 

disease at a later age. This is the only difference detected thus far between the two 

colonies, since the Balh/c fll rn-I
- mice of Horai et al. also develop arteritis, as 
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confirmed by examining cadavers kindly supplied by Y. Iwakura, and their ears 

also appear scaly (personal communication). The difference in age of onset may 

be due to the slight differences in genetic background. Horai et a1. used a Balb/cA 

background whereas our mice are on a Balb/c(Harlan) background. There is also 

the possibility of environmental factors, such as differing microbial flora within 

the two facilities. 

Another explanation for the phenotypic differences might be that the construction 

of the null allele may influence phenotype. Whereas in our colony only parts of 

exons 3 and 4 are deleted, the entire coding region was deleted by Horai et al. 

Overall however, the two colonies appear to have the same inflammatory 

phenotypes (apart from a later age of onset of arthritis in our colony). Whether the 

two arthropathies are similar in cell type and cytokine composition remains to be 

seen, since the immunohistochemical analysis of arthritic joints from Balb/c 111m" 

I" mice presented in this study is unique. Further immunohistochemical analysis of 

the cell types and their products present within the arthritic lesions should give 

additional indications of similarities to human RA. 

4.5: Psoriatic arthropathy or psoriasis and arthritis? 

There is only one reported case of a human with psoriatic arthritis (PsA) and 

Takayasu's arteritis (TA) concurrently [Fukuhara et a1., 1998], whereas in the 

Balb/c IlJrn"'" mice of our colony we have seen 8/9 of the cases with overt 

arthopathy examined for psoriasis and arteritis having the three diseases 

simultaneously. In addition, some features of the arthropathy observed in our 

animals may not necessarily agree with a diagnosis of PsA; for example the spine 
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does not appear to be affected, and the destruction of the joint seems more 

complete than may be expected in PsA where there is a lower cartilage turnover 

than in RA [Mansson et al., 2001]. Further tests, such as measurement of 

rheumatoid factor (generally absent in PsA) and examination of the 

microvasculature of the synovium (which appears more tortuous in PsA 

arthropathy) [Reece et at., 1999] may help to elucidate whether the mice suffer 

from PsA, or psoriatiform and RA like diseases separately. The distinction 

however is often unclear even in human patients, and the clinical significance of 

making such a distinction in terms of treatment seems low. 

An additional argument against a diagnosis of PsA in our mice is that Ilirn·l
- mice 

on a Balb/c background develop the psoriatiform disease as early as the F2, where 

the arthritis is not observed. This suggests that the two diseases are under separate 

genetic controls, implying separate diseases. 

4.6: Aetiology of inflammatory diseases in [l1rn-l
- mice - a possible 

central role for dendritic cells 

Sources of IL-l 

It is assumed that for the three diseases, in each case an initial source of 

biologically active IL-! is required to begin the inflammatory cycle. In arteritis, it 

is proposed that low, chaotic shear stresses induce the release of IL-! from 

vascular smooth muscle (SMC) and endothelial (EC) cells. IL-! could be 

upregulated by low shear induced nuclear translocation of the transcription factor 

NF-KB (which acts on the !LiA and !LiB genes) [Nagel et al., 1999], as a result of 

low amounts of regulatory nitric oxide (NO production by endothelial nitric oxide 
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synthase is induced by high shear stress) [Peng et al., 1995], or by the deposition 

of inflammatory debris at the sites of low blood flow. 

In the skin, IL-la is produced constitutively in epidermal keratinocytes [Ansel et 

al., 1988; Partridge et al., 1991]. In addition, in our animals Illrn+ l+ mice on 

Balb/c and Sf3 backgrounds showed the presence of CD4+ and F4/80+ cells within 

the dermis, with detectable IL-I P and IFNy production, without any further 

disease development. This indicates a constant, low level of inflammation within 

the exposed skin of the ears, possibly due to continual mild physical trauma. In 

the wild-type mice, this low level of inflammation is presumably kept in check by 

the action of IL-Ira. However, with the removal of IL-Ira, IL-I is more potent 

and may initiate further IL-l release from keratinocytes and other cells, thus 

beginning the inflammatory cascade. 

Low levels of expression of both IL-la and IL-IP mRNA can be measured in the 

joints of III rn +/+ mice [Horai et al., 2000]. This expression may be due to 

mechanical stresses. Again, it is proposed that in wild-type mice, an IL-IIIL-ira 

balance is maintained which does not favour the progression of an inflammatory 

response. The removal of IL-Ira from the system allows the constitutively 

produced IL-I to commence an inflammatory cycle. 

Experiments involving the breeding of animals lacking both IL-Ira and IL-IRI 

are currently underway. Since the hypothesis is that the inflammatory diseases are 

due to the unopposed action of IL-l, then mice lacking the type I receptor as well 
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as IL-Ira should not suffer from the inflammatory diseases observed in Illrn·/· 

mIce. 

The action of IL-I on dendritic and other cells 

Extensive studies using dendritic cells (DC) in recent years have proved them to 

be key players in the immune response, with co-stimulatory and 

cytokine/chemokine producing functions as well as antigen processing and 

presentation. IL-I has been shown to have several effects on DCs which would be 

relevant in these disease models. 

DC activation in the skin will be considered first, since the epidermis contains a 

specific subset of DC. A critical first step in cutaneous inflammation is the 

migration of activated epidermal DC (Langerhans' cells, LC) to the draining 

lymph nodes where they encounter and prime naIve T -cells. IL-l has been 

demonstrated to trigger the maturation and migration of LC in various studies. In 

a model using LC-like DC expanded from murine skin, IL-l induced their 

dissociation from keratinocytes and increased the expression of MHC class II 

molecules, CD40 and CD86 (a co-stimulatory molecule) on the DC surfaces. It 

was shown that IL-l enabled the DC to dissociate from the epidermal 

keratinocytes by causing a decrease in the expression of E-cadherin, a DC 

adhesion molecule [Jakob & Udey, 1998]. Intradermal injections ofIL-I cause a 

decrease in the number of LC in the epidermis and an increase in their numbers 

found in draining lymph nodes [Cumberbatch et al., 1997], and in ICE and IL-lf3 

null mice, LC are not activated and do not migrate to the draining lymph nodes 

following the application of contact allergens [Antonopoulos et al., 2001; 
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Shomick et at., 2001]. IL-lf3 produced by LC following their activation provides 

signalling for activation and migration of further LC [Cumberbatch et at., 2001]. 

In the skin, IL-l also has various effects on keratinocytes, such as inducing the 

expression of the hyperproliferative markers keratin 6 and keratin 16 [Weiss et at., 

1984; Stoler et at., 1988], upregulating expression of ICAM-l [Groves et at., 

1992], and the induction of production of the chemokine CCL27 (CT ACK) 

[Homey et at., 2002]. The receptor for CCL27, CCRlO, is found on circulating 

skin-homing CLA + (cutaneous lymphocyte-associated antigen) T-cells, dermal 

microvascular endothelial cells and fibroblasts. In vivo intracutaneous CCL27 

attracts lymphocytes to the injection site [Homey et at., 2002]. 

As well as its effects on LC specifically, the action of IL-l on DC (including LC) 

has several outcomes. DC express CD40 on the cell surface, and ligation of CD40 

by its ligand CD40L, in conjunction with IL-lf3, induces activation of both 

immature and mature DC causing them to release IL-12 [Wesa & Galy 2001]. IL-

12 in tum induces CD4+ T-cells to produce a Thl type cytokine profile, including 

the production ofIFNy [Manetti et at., 1993]. IL-lf3/CD40L (CD40L is expressed 

on the surface of activated T-cells) can then synergise with IFNy to induce a 

higher rate of IL-12 production from DC [Wesa & Galy 2001]. IFNy also 

increases the expression of CD40 and E-selectin on human dermal microvascular 

endothelial cells, increasing lymphocyte trafficking into the area of inflammation 

within the skin [Singh et at., 2001]. 
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Figure 89: Model of proposed involvement of dendritic cells 
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Reauitment offurther 
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Figure 89: Ligation of CD40 on the DC cell surface by CD40L in conjuction with IL-l ~ induces DC 
to release IL-12. IL-12 induces the release of IFNy from T -cells which synergises with IL-l/CD40L to 
induce further production of IL-12 from DC. IL-l induces the maturation of DC, and it may be in the 
case oflL-Ira deficient mice that unoPlXlsed IL-l causes an innapropriate maturation of DC, causing 
them to present self-antigens to T -cells , thereby activating them, via MIle class II. 
In aT -cell independent system, IL-I ~ can increase the expression and de novo synthesis of CD40L on 
DC, vascular smooth muscle cells, macrophages and endothelial cells which aU also eX'Press CD40. 
DC, vascular SMC and EC can release further IL-I ~ following CD40 ligation, and on EC, it can also 
lead to augmented expression ofE-selectin, ICAM-l and VCAM-l (as well as these molecules being 
upreguJated directly by IL-l~) . PG~ released from synovial cells following stimulation with IL-IP can 
cause DC to release IL-l~ and upreguJates expression of CD40. Activated DC also release chemokines, 
as do activated macrophages, resulting in an increase in leukocyte extravasation into the inflamed area. 



In a recent study, Luft el al. showed that IL-lf3 enhanced the CD40L mediated 

cytokine secretion by DC in a T-cell independent manner, since no T-cells or T­

cell cytokines, originally thought to be essential for DC cytokine release following 

CD40 ligation, were present in their assay systems [Luft el al., 2002]. CD40L has 

been found to be rapidly upregulated on non-T -cells such as activated platelets 

[Henn el al Nature 1998], eosinophils [Gauchat el al., 1995], and on DC 

themselves [Pinchuk el al., 1996; Salgado et al., 1999] during inflammation or 

following stress. Importantly, from the point of view of this work, functional 

CD40L, co-expressed with CD40, has also been found on human vascular smooth 

muscle cells, endothelial cells and macrophages in atherosclerotic plaques in situ. 

Stimulation with IL-l~, TNFu or IFNy increased the cell surface expression and 

de novo synthesis of CD40L in all three cell types [Mach et al., 1997]. In 

addition, vascular wall smooth muscle cells and endothelial cells, stimulated 

through CD40L, release biologically active IL-l [Schonbeck el al., 1997]. CD40 

ligation has also been shown to augment the expression of E-selectin, ICAM-l 

and VCAM-l in aortic endothelial cells [Karmann el al., 1995] (Figure 89). 

These initial T-cell independent activation and cytokine secretion mechanisms, 

particularly for DC, may explain in part why antigens or autoantigens cannot be 

detected in some inflammatory diseases, since antigen specific T -cells are not 

required for these pathways of cytokine release. However, IFNy released from T­

cells certainly appears to augment many of these processes, and production of 

IFNy is seen in all three inflammatory diseases in our 1I1rn-'- mice. 
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On the other hand, maturation of DC involves a change from being efficient at 

capturing and processing antigen, to having immunostimulatory capabilities. 

Inappropriate maturation of DC by IL-l or by IL-l upregulated by CD40L-CD40 

interactions with T -cells or non T -cells, may cause the DC to present autoantigens 

to naIve T -cells in the lymph nodes in the absence of any maturation/migration 

induced by exogenous antigen uptake. Moreover, in humans the association of 

certain MHC haplotypes with RA, GCA, TA and psoriasis does point to the 

importance of antigen presentation in disease development. As DC are 

"professional" antigen presenting cells, this supports the hypothesis that they play 

a central role. 

Experiments which may be useful to study the role of T -cells in the development 

of the inflammatory diseases in our II1m-'- mice would include crossing the SCID 

mutation into the colony, crossing Illrn-'- with CD40L (CD154) null mice, and 

using complement fixing antibodies against CD4+ T-cells. Use of the SCID 

mutation would eliminate functional B-cells as well as T -cells, thereby enabling 

study into the effects of removing both humoral and cell-mediated immune 

reactions from the IL-Ira null mice. Unless there is as yet identified autoantibody 

production in our IL-l ra deficient mice, the effects of crossing in the SCID 

mutation may be similar to those achieved by using antibodies against CD4+ T­

cells, or even by performing neonatal thymectomies on the Illrn-'- mice (which 

would prevent the development of all mature T-cells). Crossing Illrn-'- with 

CD40L deficient mice may have a far more generalised effect, since several cell 

types have CD40L on the cell surface. Comparison of these animals to III m-t-

mice treated with anti-CD4 antibodies may help to elucidate the importance ofT-
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cell derived CD40L interactions with CD40, in comparison to other CD40L­

bearing cells, in the mechanism of disease development. 

Further release of IL-l f3 by DC, as well as an increase in cell surface CD40 and 

MHC class II molecules and release of IL-6, TNF-a. and IL-12, follows 

stimulation of DC with prostaglandins, especially PGE2 [Steinbrink et al., 2000]. 

PGE2 production is induced by IL-l in human synovial cells [Mizel et al., 1981; 

Dayer et al., 1986] and fibroblasts [Postlethwaite et ai., 1988]. This may have 

importance in the arthritic disease; IL-l could stimulate PGE2 production from 

synovial cells, which could act, along with IL-l f3, on DC to increase cell surface 

CD40 allowing increased interactions with CD40L on T - and other cells, and to 

increase the production of further IL-l f3 and TNF -a., which has been proved to be 

a major cytokine involved in RA. Both DC progenitors and myeloid DC growth 

factors can be detected in RA synovial fluid, which may act as a reservoir for 

active DC [Santiago-Schwarz et al., 2001]. 

Therefore, it is proposed that from an initial release of IL-l by, for example, 

stressed endothelial cells, which would be kept in balance by IL-l ra in a wild-type 

mouse, an inflammatory cascade occurs which involves DC in a central role. 

Initial maturation of DC by IL-l could lead to chemokine and pro-inflammatory 

cytokine release by DC, chemokine and IL-l up-regulated adhesion molecule and 

selectin mediated recruitment of macrophages (providing the bulk of IL-l f3 

secretion) and IFNy producing T -cells. The further secretion of IL-I f3 by 

macrophages and IFNy production in T -cells would augment the inflammatory 

processes, including macrophage activation and increased DC maturation by IL-I, 
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and IL-l acting in conjunction with CD40L. DC maturation would in tum lead to 

increased cytokine and chemokine release, and stimulation of further T -cells to 

proliferate and polarise to a Thl phenotype by DC production ofIL-12. 

Meanwhile, chemokines (for example, MCP-l as seen in this study) may also be 

released by other cells including macrophages, monocytes, fibroblasts and 

keratinocytes, which would act as chemoattractants for further macrophages, 

neutrophils and T-cells. Neutrophils are observed in abundance in the 

inflammatory diseases in fllrn-'- mice (Figure 89). 

In the psoriatiform disease, the overproduction of IL-l may lead to dysregulation 

of keratinocyte proliferation, causing them to hyperproliferate resulting in the 

characteristic psoriatic epidermis. In the arteritis and RA-like disease, destruction 

of the tissues, bone and cartilage is presumably due to the release of matrix 

metalloproteinases from activated macrophages. Further studies on the release of 

MMPs at these sites should increase our understanding of precise damage 

mechanisms. Analysis of lesional and non-Iesional tissue by quantitative real-time 

reverse transcriptase peR could be used to study the comparitive levels of MMP 

mRNA within the tissues, and also to identify the major proteinases present within 

lesions. 

These complex and destructive processes may all stem from a low level of IL-l 

initially produced, which in a system lacking IL-l ra, is a high effective level. 
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4.7: Conclusions 

Since the three inflammatory diseases found in our fllrn-I
- mice histologically and 

immunohistochemically resemble human diseases including giant cell arteritis, 

Takayasu's arteritis, psoriasis and rheumatoid arthritis, it is proposed that they 

may make appropriate models for the study of these diseases. 

It would appear that the inflammatory diseases which develop in fllrn-f
- mice are 

indeed a direct result of the unopposed action of IL-I, although other factors, such 

as genetic background, also play a role in specific disease development. It is 

possible to propose mechanisms by which an imbalance in the IL-1/IL-l ra 

dynamic would cause the development of each specific inflammatory response, 

although direct evidence to support these models is still required. Further 

experiments, such as rederivation into a sterile environment, crossing fllrn-/­

animals with, for example, CD 154 null mice, correlating disease phenotype with 

the carriage of H2d and H2b alleles in C57BLl6 x Balb/c crosses, and examining 

the phenotypes of fllrn-/-/fll Rrf
- mice should provide further evidence in support 

of the proposed models. The exact mechanisms of how joint or organ specific 

inflammatory responses arise in an animal that systemically lacks IL-Ira remain 

to be elucidated, but these animal models provide a starting point for solving these 

and other problems. 

The presence of a variety of striking inflammatory diseases in mice which lack 

functional IL-l ra reinforces the importance of the maintenance of a systemic 

balance between pro- and anti- inflammatory cytokines. 
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List of suppliers 

y_[32p] ATP 

3-Aminopropyltriethoxysilane (APES) 

Acid fuschin 

Acrylamide 

Agarose 

Ammonium bicarbonate 

Ammonium persulfate 

Anhydrous disodium hydrogen phosphate 

Apal 

Apal buffer 

Autoradiograph film 

Bis-acrylamide 

Boric acid 

Bromophenol blue 

BSA 

Chloroform 

ClAP 

Cotl DNA 

Diaminoethanetetra-acetic acid (EDT A) 

Eosin Y 

Escherichia coli LPS 

Ethanol 

Ethidium bromide 

Eukitt mounting medium 

Fast red violet LB base solution 

Filter paper 

Formaldehyde 

Formamide 

Gill's No.1 hematoxylin 

Glycerol 

Glycogen 

Heat inactivated foetal calf serum 

Hindlll digested A. DNA size marker 

Hpall 

Hydrogen peroxide 

Isoamyl alcohol 

Klenow fragment 

NEN 

Sigma 

BDH 

Sigma 

Promega 

Sigma 

Gibco 

BDH 

Prom ega 

Prom ega 

Kodak 

Gibco 

Gibco 

Sigma 

Promega 

Fisher Scientific 

Promega 

Gibco 

BDH 

Sigma 

Sigma 

Gibco 

BDH 

Agar 

Sigma 

Whatman 

BDH 

Sigma 

Sigma 

Sigma 

Gibco 

Gibco 

New England Biolabs 

Promega 

BDH 

BDH 

Prom ega 
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Magnesium sulphate 7-hydrate 

Mbol 

Microscope slides 

Miller's solution 

N,N,N',N'-Tetramethylethylenediamine (TEMEO) 

Napthol AS-O chloroacetate solution 

Optimum cutting temperature (O.C.T) compound 

Oxalic acid 

Paraffin oil 

Penicillin 

Phenol 

Picric acid 

pNEB 193 plasmid 

Potassium chloride 

Potassium dihydrogen phosphate 

Potassium permanganate 

Proteinase K 

RPMI 1640 medium 

Saponin 

Saran wrap 

Sellotape glue 

Sephadex G50 

Sodium acetate 

Sodium bicarbonate 

Sodium chloride 

Sodium chloride 

Sodium chloride 

Sodium dihydrogen orthophosphate dihydrate 

Sodium dodecyI sulphate 

Sodium nitrite solution 

Sodium phosphate 

Sodium phosphate 

Spectra/Por molecular porous membrane 

Streptomycin 

T4 polynucleotide kinase (PNK) 

T7 Quickprime kit 

Thermus aquatic us (Taq) DNA ploymerase 

Thermus aquaticus (Taq) DNA ploymerase buffer 

Toluidine blue 

Tris 

BDH 

New England Biolabs 

Chance-Propper Ltd 

NuStain 

Sigma 

Sigma 

Tissue-Tek 

BDH 

Sigma 

Gibco 

Gibco 

BDH 

New England Biolabs 

BDH 

BOH 

BDH 

Promega 

Sigma 

Sigma 

Dow 

Duro-Tak,ICI 

Pharmacia Biotech 

Sigma 

Sigma 

BOH 

BOH 

Sigma 

BOH 

Melford Laboratories Ltd 

Sigma 

Sigma 

Sigma 

Spectrum Medical Industries 

Gibco 

Promega 

Pharmacia Biotech 

Gibco 

Gibco 

BOH 

Gibco 
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Trisodium citrate 

TRIZMAL 6.3 buffer concentrate 

Urea 

Xylene 

Xylene cyanole FF 

Zetaprobe GT membrane 

Sigma 

Sigma 

BOH 

Genta Medical 

BOH 

Biorad 
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