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Summary

One of the fundamental problems in the field of computer vision is the task of classifying

objects, which are present in an image or sequence of images, based on their appearance.

This task is commonly referred to as the object recognition problem. A system designed to

perform this task must be able to learn visual cues such as shape, colour and texture from

examples of objects presented to it. These cues are then later used to identify examples of

the known objects in previously unseen scenes. The work presented in this thesis is based

on a statistical representation of shape known as a pairwise geometric histogram which
has been demonstrated by other researchers in 2-dimensional object recognition tasks. An
analysis of the performance of recognition based on this representation has been conducted

and a number of contributions to the original recognition algorithm have been made. An

important property of an object recognition system is its scalability. This is the. ability

of the system to continue performing as the number of known objects is increased. The

analysis of the recognition algorithm presented here considers this issue by relating the

classification error to the number of stored model objects. An estimate is also made of the
number of objects which can be represented uniquely using geometric histograms. One of
the main criticisms of the original recognition algorithm based on geometric histograms

was the inability to recognise objects at different scales. An algorithm is presented here

that is able to recognise objects over a range of scale using the geometric histogram

representation. Finally, a novel pairwise geometric histogram representation for arbitrary

surfaces has been proposed. This inherits many of the advantages of the 2-dimensional
shape descriptor but enables recognition of 3-dimensional object from arbitrary view-
points.
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Chapter 1

Introduction

1.1 Background

Techniques for the automatic interpretation of image data are providing solutions to a very
diverse range of problems. Production lines can be monitored automatically in industrial
environments allowing manufactured items to be inspected for faults and providing visual
feedback for automatic assembly. Medical images used in the diagnosis of disease and
injury can be analysed, providing a valuable tool for doctors and surgeons. Image data
collected by satellite can be analysed to provide data on crop growth and measure the
the extent of pollution. With the growth of multimedia there is a need to organise large
image and video archives efficiently and provide mechanisms for searching them. Image
interpretation techniques are beginning to be used to achieve this. These are just a few
examples of the potentially endless number of applications and as the sophistication of
the technology develops it will playa more significant role in all aspects of our lives.

One of the fundamental problems of image interpretation is the automatic classification of
objects which are present in image data. This is a process commonly referred to as object
recognition. An object recognition system must learn visual cues, such as shape, colour
and texture, from examples of objects presented to it. These visual cues are later used
to identify examples of these objects in previously unseen images. A general architecture
which most object recognition systems conform to is presented in Figure 1.1. Prior to

recognition there is a training period in which visual cues are extracted from the example

objects the system is expec,ted to learn. These are recorded as an object description or
representation. Recognition is then achieved by comparing model representations and
representations constructed from the image of a scene in an appropriate manner.

1
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Training Recognitionr------------- r-------------
Model Image Scene Image

1
I
I
I
I
I Model Representation Scene Representation

:-------~--- /
~-~--- ~ ,-------
I I

Matching

1
Scene Description I

11 - __ - 1

Figure 1.1: A typical architecture for object recognition systems

There are a variety of visual cues which can be used in the description of an object. It is
likely that a general purpose vision engine will comprise specialised modules for tasks such
as texture and shape based recognition with final classification of scene objects based on
fusion of these different modalities. Although cues such as texture and colour are useful
(if we want to distinguish between a red brick and a blue brick then colour is the only
information needed) the work presented in this thesis concerns the recognition of objects
using shape only. Shape is an attractive property of an object to use because it is highly
descriptive and is easily quantified using the language of geometry. Central to the work
presented in this thesis is the issue of system integration. An object recognition algorithm
serves no purpose on its own and must be integrated into a larger system to provide any
useful function. As just stated, it is also desirable to be able to integrate the data from
different vision modules (and maybe other modes of sensory input) to take advantage of
all of the information available about a scene in order to produce a system which is reliable
and able to operate in a wide variety of environments. To enable this sort of integration
the quality of the data produced by each vision module must be known so that the system

can weight its significance in decision making.

Although the problem of object recognition is relatively simple in principle a straightfor-
ward solution is hindered because the appearance of an object can vary significantly from
one image to the next. The key to developing a successful object recognition system is to

develop object descriptions which are insensitive to this variation in appearance whilst still
providing enough information to distinguish different objects reliably and efficiently. The
appearance of an object in an image can vary for a variety of reasons and it is important
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to be aware of these when assessing the usefulness of any particular object representation.
The most significant factors which affect appearance can be roughly grouped into four

different categories.

• Lighting effects

• Change in the position of an object relative to the camera

• Image acquisition problems

• Object damage and deformation

The wayan object appears in an image is directly related to the structure of the object,
the way that the object's surfaces interact with incident light and the lighting conditions.
If the relative position, intensity and colour of light sources is varied the appearance of
the object can vary significantly. To minimise the effect this variation has on object
descriptions, shape features such as edges and corners, which can be detected under a
whole range of lighting conditions, are often used in the construction of representations.

As an object moves relative to the camera, or if the camera moves relative to the object,
the image of the object changes. If the object is always viewed from the same direction
then this change can be described as translations, rotations and scaling of the image
data (ignoring the effects of perspective foreshortening). Object representations which are
insensitive to these changes in the image data are said to possess translation, rotation
and scale invariance respectively. If the direction in which an object is viewed changes,
the change in the appearance of the object is more complex and depends upon the 3-
dimensional structure of the object and its distance from the camera.

The process of acquiring and storing images digitally is subject to various imperfections
whi~h affect the final quality of the image data. Light reflected from the surface of an
object is first focussed onto a sensor to produce an image using one or more lenses. Lenses
can never be manufactured perfectly and as a result introduce some optical distortion.
The function of the light sensor is to convert the level of incident light into electrical
signals. As in all electronic systems, these signals are subject to a variety of sources of
noise including thermal noise and cross-talk from other electrical signals and this will effect

the final image data. Finally the electrical signals are sampled and quantised so that they

can be represented digitally. The spatial sampling of the image data into an array cannot
capture high spatial frequencies (a particular problem at shape edges) and can introduce
a~tifacts because of aliasing. Further information is lost by the process of quantising the
data to a finite number of intensity levels.



Chapter 1. Introduction
4

The actual shape of an object may change over time for a number of reasons. It may be
composed of a number of moving parts which affect the shape of the object as they move
or the object may be deformable and not have a well defined shape at all. Physical objects
are also subject to wear and damage which affect their shape.

The task of recognition is complicated further because objects in real scenes rarely appear
is isolation. Usually there will be other objects present and the background will contain
lots of detail. This extraneous visual data is usually referred to as scene clutter. To be able
to classify objects reliably in real scenes it is necessary to either isolate (or segment) each
object from the scene, which is a substantial problem, or to adopt a matching strategy
which is insensitive to this extra information. A more serious problem arises when objects
obscure each other so that they are only partially visible (the problem of occlusion). If
an object is described using some global property of its shape then recognition will be
unreliable under conditions of occlusion.

1.2 Aims and Objectives

The motivation for the work presented in this thesis is this development and analysis of
object recognition using pairwise geometric histograms. This novel representation, which
was first proposed by Evans [Evans et a193, Evans 94], enables efficient and reliable clas-
sification of 2-dimensional rigid shape data, solving many of the problems outlined earlier.
In brief, this representation is formed by recording the geometrical relationship between
pairs of shape primitives (Evans uses line segments) in the form of a frequency distri-
bution, known as a pairwise geometric histogram. By careful selection of the geometric
measures which are recorded, a concise shape descriptor with good invariance properties
and insensitivity to noise can be obtained. A full description of this representation will be
presented in Chapter 3.

This shape representation and its accompanying matching algorithms provides a strong
basis for a general purpose recognition system based on shape. The research conducted
here aims to provide some important improvements to the original algorithm, allowing it
to be applied to a wider range of problems, and to provide an analysis of its performance to
enable designers to integrate it more easily into a system. It is also demonstrated how the

representation can be extended for 3-dimensional surface features to enable 3-dimensional

surface based recognition.

One of the most important properties of any classification system is its reliability but
all too often the designers of object recognition algorithms fail to provided a sufficient
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analysis of this, only demonstrating the technique on a few selected test images. On their
own, object recognition algorithms serve no purpose and must be integrated into a larger
system. To do this in a way which will provide robust performance, a quantitative measure
of its reliability must be known. In fact a quantitative measure of reliability has many
other uses which will be discussed later. This has motivated an analysis of the reliability
of object recognition using pairwise geometric histograms.

Another important property of a classification algorithm, and again an issue which is
frequently neglected, is scalability - the ability of a classification algorithm to perform
successfully as the number of object classes is increased. Algorithms which become im-
practical to use for more than a few different object classes cannot provide a generic
object recognition solution. When evaluating the scalability of a particular algorithm
three factors must be considered.

• The relationship between reliability and the number of object classes

• The relationship between the computation needed to perform recognition and the

number of object classes

• The number of different objects which can be represented uniquely (capacity)

To assess the scalability of the geometric histogram algorithms these issues will be ad-
dressed. The relationship between reliability and the number of object classes will become
evident from the analysis of reliability, which has already been identified as an important
issue in its own right. The relationship between the number of object classes and the com-
putation needed for matching is linear, which is good for scalability, and the algorithm
also has the advantage that it can be implemented on an array of simple, homogeneous
processors to improve performance. This issue of computational complexity is relatively
straightforward will not be considered any further. This leaves an interesting question
regarding the number of objects which can be represented uniquely. To answer this a
number of approaches for estimating the capacity of the pairwise geometric histogram

representation have been investigated.

In order to accumulate evidence for the presence of a model in a scene and to determine
the models position a generalised Hough transform was adopted as part of the original

recognition algorithm. The Hough transform is noted for its robustness and performs well

in this application but significant improvements can be gained by taking proper account
of variability in the position of shape primitives. This has motivated the development of
a probabilistic Hough transform which determines. the most likely position of models in a
scene and provides an estimate of the error on this estimate.
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The geometric histogram representation used by Evans is invariant to translations and
rotations of shape data but not to changes in shape scale. This lack of scale invariance
prevents the recognition of objects at arbitrary distances from the camera (which then
appear at arbitrary scale). To extend the range of possible applications of this algorithm
this issue has been addressed.

Although the majority of the work presented in this thesis concerns the representation and
classification of 2-dimensional shape, the pairwise geometric histogram representation can
be extended to represent 3-dimensional features. Such an extension for the representation
of 3-dimensional surfaces has been developed, enabling surface based recognition of 3-

dimensional objects.

1.3 Organisation of the Thesis

In the next chapter a selection of the most important algorithms for 2-dimensional shape
recognition are described and compared. It is intended that this selection will cover all of
the important principles used to date and that other algorithms can been seen as extensions
or variations on these. The chapter concludes with a summary of the important properties
of each algorithm, highlighting the principles which are most useful for recognition.

The representation and recognition of shape using pairwise geometric histograms is re-
viewed at the beginning of Chapter 3 and results are presented to demonstrate the ef-
fectiveness of this shape descriptor for classifying shape primitives. This is followed by
a formulation of the probabilistic Hough transform which is used to find arrangements
of shape primitives in scene data which are consistent with model objects, providing a
number of advantages over the original scheme. Results of using the probabilistic Hough

transform are presented.

In Chapter 4 an analysis of the reliability of shape classification using geometric histo-
grams is developed. Although techniques for error estimation in classification problems
are common, the aim of this work is to make the relationship between reliability and the
number of stored models explicit. To achieve this a novel estimation scheme is proposed
and this is used to estimate the probability that shape primitives are misclassified for
two different classes of shape data. The original recognition scheme is found to become

unreliable as the number of models becomes very large so a modification to the algorithm

is recommended which ensures reliable recognition for any number of stored models.

The issue of representation capacity is investigated in Chapter 5. To determine the number
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of unique classes that can be represented it is necessary to partition the continuous class
domain into enumerable units and to determine the proportion of the domain which is
likely to be occupied after training. Two different approaches are taken to solve these
problems, one based on geometrical intuition and the other on a statistical model, and
these are used to estimate the capacity for different classes of shape data. The geometric
approach provides a bound on capacity and the statistical approach provides an estimate
of the capacity itself.

The representation of shape data over ranges of scale is considered in Chapter 6. This
addresses one of the main criticisms of the original pairwise geometric histogram approach.
Experimental results are presented to demonstrate successful recognition of shape over
ranges of scale and the algorithm is also used to track an object over a sequence of images
as it approaches a fixed camera.

Chapter 7 presents a novel representation for 3-dimensional surface data which is based on

a new pairwise geometric histogram descriptor. This 3-dimensional representation inherits
many of the advantages of the 2-dimensional representation but enables full, 3-dimensional
object recognition. Experimental results are presented to demonstrate the effectiveness of

this novel scheme.

In chapter 8 the main contributions provided by the thesis are reviewed and the conclusions
of each piece of work discussed. A number of suggestions for continued research are also

presented.



Chapter 2

Representation and Classification
of 2-Dimensional Objects

2.1 Introduction

Since the development of digital computers capable of storing and manipulating images,
a large number of researchers from a surprisingly diverse range of fields of expertise have
worked on the object recognition problem (the problem of identifying objects known a pri-
ori in previously unseen images). This has produced an equally di~erse range of potential
solutions with differing merits and ranges of applicability. The purpose of this chapter is to
describe the most important solutions that have been published and ultimately to identify
which of the underlying principles are of general importance, with a view to building on

these.

Broadly speaking, the object recognition algorithms reported in the literature fall into
either of two categories - those which require scene images to be divided into regions of
interest prior to classification (a process commonly referred to as image segmentation)
and those which focus on image features such as corners, edges, holes, arcs etc. In fact,
the distinction between regions of interest and features is not that precise but typically
a region of interest will be defined by some global characteristic and may contain many
features which themselves are defined locally. Representations based on regions of interest

may be further divided into those which use the region's shape or topology, those which

use the shape of the region's contour and those which use information contained within
the region itself. This categorisation of representations is depicted in Figure 2.1.

8
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Figure 2.1: The different categories of object representations based on segmented image
regions and detected image features.

2.1.1 Image Segmentation

One of the fundamental problems facing the designer of an object recognition algorithm is
distinguishing between data which is relevant to the classification of an object (for example
the pixels belonging to an object under investigation) and data which is not relevant (pixels
belonging to the background or other objects). To some extent this problem can be avoided
by designing classifiers which are insensitive to irrelevant scene data (scene clutter) but
a more direct approach is to search for regions of a scene image which are believed to
contain single objects or object parts and then to classify these regions in isolation.

Techniques for segmenting images into regions of interest are usually based on the premise
that objects, or object parts, exhibit global characteristics which can be identified in im-
ages. A simple example might be the segmentation of machine parts appearing against
a light background. The global characteristic common to these objects is that they are
darker than the background and as such pixels can easily be classified as object or back-
ground by considering only their intensity. Figure 2.2 (a) contains a simple shape on a
uniform background which is easily segmented by thresholding, as shown in Figure 2.2
(b). The region can also be segmented by detecting its bounding contour as shown in

Figure 2.2 (c).

In more realistic scenes which may contain multiple objects possibly occluding each other,

background clutter and other artifacts such as shadows, the segmentation process is much

more demanding. Researchers have used additional information such as texture, colour,

depth and motion to varying degrees of success but no generic solution has yet been found.
Robust segmentation of objects from real scenes has proved to be somewhat paradoxical
in that the only sure way to segment out a complete object is to have first recognised it.
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Figure 2.2: Examples of region, boundary and line feature segmentation. (a) The original
image. (b) The image is segmented by simple grey-level thresholding. (c) The image is
segmented by a bounded contour. (d) Line segment features.
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2.1.2 Feature Detection

Features such as edges and corners provide a valuable source of information about the
content of an image as they correspond directly with physical structures in the real
world. Features represent a local property of a shape's geometry and can usually be
recovered even if some of the shape is obscured or corrupted by excessive noise. As a
consequence of the way in which light falls on an object, physical structures will generally
appear as discontinuities in the intensity of pixels in an image. Most feature detection
techniques identify these discontinuities using differential operators which quantify im-
age gradients [Sobel 70, Canny 86, Harris & Stephens 88]. More complex features such
as holes and curves may be detected by fitting geometric models of these structures to
the image gradients. Figure 2.2 (d) presents the result of line fitting applied to the edge
information recovered from Figure 2.2 (a) using the Canny edge detector.

In the remainder of this chapter a broad selection of the object recognition algorithms

found in the literature are described and grouped according to the different categories
identified above. Although the list of algorithms covered is not exhaustive and not all
variants are discussed, it is hoped that all of the important principles used throughout the

object recognition field can be found here.

2.2 Shape and Topology Based Representations

Given an image region which corresponds to an object or part of an object, the shape
and topology of the region provides important clues as to its class. The representations
discussed in this next section are constructed by measuring shape and topology directly
and recording this in an appropriate manner.

2.2.1 Shape Descriptors

The shape of arbitrary image regions can be described by a range of features derived from
distance and area measurements taken directly from the image data. When grouped to
form feature 'Vectors they can be. used to classify image regions using standard pattern

recognition techniques. Although these features do not provide a complete description of

the region shape (in the sense that the image region cannot be reconstructed from the
description) an efficient and reliable classifier can be implemented for simple recognition
tasks by careful selection of the appropriate features [Strachan et alga]. A number of the
most common features used in region classification are described here along with their
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invariance properties.

Distance

Simple distance measures, such as the lengths of the maximum and minimum chords across
a shape or the shape's perimeter, provide rotation and translation invariant features. More
usually, ratios of distances will be used as these also provide invariance to the scale of the

shape.

Area

The area of a shape provides a rotation and translation invariant feature and may be
normalised using some recoverable distance to also provide invariance to scale.

Eccentricity

The eccentricity of a region is a measure of the tendency of the region to be long and thin.
A number of alternative formulations for this metric have been proposed but the simplest,
and most intuitive, is defined as the following ratio:

Length of maximum chord across the region
eccentricity = . . (2 1)Length of maximum chord perpendicular to the first .

This ratio of distances provides invariance to rotation, translation and scale.

Rectangulari ty

The similarity of the shape of an image region to that of a rectangle is defined by its
rectangularity. This is simply the ratio of the area of the image region to the area of the

smallest rectangle which bounds the image region:

I
. Area of image region

rectangu artty = .Area of smallest boundmg rectangle (2.2)

By taking the ratio of areas, the rectangularity is invariant to rotation, translation and

scale.
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Compactness

13

The tendency of an image region to be confined is measured by its compactness. Circular

regions are the most compact and the least compact class of shapes are fractal structures.

A common formulation of compactness is defined as:

(Perimeter length of image region) 2

compactness = ..
Area of Image region

(2.3)

The ratio of a squared distance to an area provides scale invariance in addition to invariance

to rotation and translation.

2.2.2 Shape Skeletons

The topology of a shape can provide important clues about its class. A shape's topo-

logy can be recovered by thinning until it becomes a unit pixel width network and then

describing the resulting skeleton as a connected graph. A shape and its skeleton are presen-

ted in Figure 2.3. Recognition is achieved by comparing topological graphs constructed

from models with graphs constructed from scenes using well established graph matching

techniques.

Original Image Extracted Skeleton

Figure 2.3: The topology of the hand can be recovered by first thresholding the image

and then stripping away pixels until a thin skeleton remains.

Thinning strategies generally work on the principle of stripping away successive layers of

shape boundary points on the condition that the removal of a point does not change the
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connectedness of the shape. This can be done using either erosion morphological operators

or fire-front type algorithms (a good example is presented by Xia [Xia 89]).

Topological networks posses all of the invariant properties required of a general vision
system although for most applications a purely topological description is too ambiguous

and some structural constraints have to be added. These structural constraints may well

compromise the invariance properties of the description.

The topology of a shape is largely unaffected by random noise although its presence can

introduce short spurs into the shape skeleton. These are easily removed by pruning.

By their nature, thinning algorithms are sensitive to occlusion (to a thinning algorithm
an occluded shape looks like a different shape with different topology) and in general

recognition schemes based on skeletons cannot cope with occluded schemes.

2.3 Contour Based Representations

In applications where objects, or object parts, can be successfully segmented from a scene

image the shape of the contour around the object can be used for classification. When ex-

tracted from a region of interest, the raw contour C comprises a string of edge pixels

(edgels) defined by their position in the image and possibly their orientation and/or

the local edge gradient. Although the contour around an image region occupies the 2-
dimensional image plane it is essentially a 1-dimensional structure and can be expressed

parametrically as a function of single variable.

(2.4)

Where n is the total number of pixels along the contour, (Xi, Yi) is the position of the ith

pixel along the contour, ,pi is the direction of the normal to the contour at the ith pixel

and Vi is the magnitude of the edge gradient at the ith pixel.

Although this contour description may, at least in principle, be used directly for matching
unseen contours with known model contours it lacks the necessary properties to promote

efficient and reliable recognition. A good contour description for efficient recognition is one

which is both compact and invariant to the position, orientation and scale of the contour

but the raw contour description has none of these properties. For reliable recognition the

contour description must be repeatable and insensitive to the types of noise encountered

in typical scene images but again this is not a property of C. To address these problems
a number of alternative contour descriptors have been proposed.
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2.3.1 Chain Codes

The chain code, Cchain, is a contour descriptor which has been developed to remove the
dependency of the descriptor on the position of the contour within an image [Freeman 61].
Instead of defining a contour pixel by its position within the image it is defined by its
position relative to the previous edge pixel in the contour. Because an edgel can be in any
one of eight! possible pixel locations relative to its previous neighbour each edgel may be
uniquely defined by an integer between 1 and 8, and the complete contour described by a

string (or chain) of integers in this range.

c: E 1,2,3,4,5,6,7,8 and 1:::; i :::;n - 1 (2.5)

Each chain element, c, is derived from the position of the ith and (i - l)th pixel.

c(i) = F (Xi - Xi-I, Yi - Yi-d (2.6)

Where F(~x, ~Y) maps the position of the current pixel relative to its neighbour to an
integer in the range 1 to 8. An example is provided in Figure 2.4 for a section of contour.

8 2

3

6 4

5

Cc/will = [3,3,4,4,4,3,4,3,4,4,3,4,4,4,5,5,4,5,5,5,5,5,5,5,5 ]

Figure 2.4: A section of a shape contour and its associated chain code.

By describing contours in this manner boundaries found in unseen images can be classified
by comparing them to model boundaries using string matching techniques. This approach
has the advantage that broken or occluded contours can still be classified by treating their
chain codes as sub-strings of those describing the stored model contours. This relative

1Assuming 8-connectivity is used when forming the contour
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description of contour pixels is invariant to translations of the contour within the image.

However, the descriptor is still dependent on the scale and orientation of the shape and is
therefore of limited general applicability. A useful extension of this coding which removes

the dependency on the orientation of the contour is to record the first derivative (modulo-

8) of the chain code so that each chain element represents the change in direction of the

contour rather than its absolute direction. A more serious problem with this type of

descriptor is its sensitivity to even moderate amounts of scene noise. This arises because

of the discontinuous mapping, F(Ax, Ay}, between pixel positions and chain codes with

the consequence that small variations in pixel positions due to noise can produce abrupt

changes in the descriptor.

2.3.2 The Polar Parameterisation

A useful shape descriptor is obtained by transforming the position of contour pixels from

Cartesian coordinates to a polar coordinate system whose origin lies on the contours
centroid (x, y). Each pixel along the contour Cpolar is defined by its radial distance from

the centroid, r, and its angular displacement around the contour from some arbitrary

reference, e.

o s is n. (2.7)

Where

(2.8)

and

(2.9)

By interpolating between adjacent boundary pixels the contour can be described as a
continuous function of r in () as depicted in Figure 2.5.

Cpolar = r(O) (2.10)

One advantage of this type of contour description is that it is independent of the position
of the contour within an image and, importantly, rotations of the the contour produce a
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r(a)

o 27t7t

Figure 2.5: Describing a shape contour in polar coordinates.

shift in the descriptor along the 8-axis. This promotes efficient matching between scene

and model contours using a 1-dimensional shift correlation. A further advantage of this
representation is that small changes in the position of contour pixels due to scene noise

only result in small changes in the descriptor enabling reliable recognition in moderately

noisy scenes.

Like all representations which rely on centroid measurements the (r,8) parameterisation
becomes distorted if the position of the centroid changes. This seriously impairs shape

recognition in scene images exhibiting occlusions or significant background clutter where

repeatable recovery of a shape's centroid is not possible. A particular problem with the

(r,8) description is that for all but the most simple shapes, the profile becomes multi-

valued (for some values of 8 their may exist a number of different values of r). It has been

suggested that multiple r values can be avoided by discarding all but either the smallest or

the largest r values at each value of 8 but this significantly reduces the descriptive power
of the representation and leads to ambiguities.

2.3.3 The Tangential Parameterisation

The tangential representation is an alternative contour parameterisation which is position

invariant without the need to recover the contour's centroid and which cannot become

multi-valued so that arbitrary contours can be represented completely and without ambi-

guity. Starting at any arbitrary point along the contour the orientation of each boundary

edgel, relative to the orientation of the first edgel, '1/;, and the distance travelled along

the contour, s are recorded. This is a measure of the degree of bending of the contour at

a distance s from the start. An example is given in Figure 2.6 for the simple case of a
circular contour.



Chapter 2. Representation and Classification of 2-Dimensional Objects 18

(2.11)

Like the polar representation the contour can be described as a continuous function by

interpolating between adjacent pixels, as shown in Figure 2.6.

Ctan = 1/J{s)

,
"""",,-,' .(,

" ," ,._,,_:J_ _-'~
""

1t

1t/2
PO~-----L..----....;........s

-1tI2

-1t

(2.12)

Figure 2.6: A two dimensional shape and its tangential representation. P is the perimeter

of the boundary.

By measuring the orientation of contour pixels relative to the orientation of the first pixel,

the dependency of the descriptor on the orientation of the contour is removed. However,

variation in the selection of a starting point along the boundary produces a shift in the

descriptor along the s-axis and along the 1/I-axis. Matching can proceed as a 2-dimensional

shift correlation but more usually, to improve efficiency, the mean value of 1/1 is removed

from the descriptor and matching is performed as a L-dimensional shift correlation along

the s-axis. The drawback of this improvement is that the mean value of 1/1 is sensitive

to occlusions. A significant problem with this contour representation is that estimates of

the distance travelled along the contour tend to be over-estimated and variable depending

upon the way the original image is quantised.

2.3.4 Fourier Descriptors

It is well understood that any periodic function can be expressed as Fourier series and

Cosgriff [Cosgriff 60] recognised the merit in applying this to functions describing contours

in images. Any contour parameterisation which is periodic (or can be made periodic) can

be described by an infinite series of Fourier coefficients but usually only a small number

of these coefficients are necessary for classifying the contour's shape, producing a concise

contour description.



Chapter 2. Representation and Classification of 2-Dimensional Objects 19

Although the polar parametrisation is a naturally periodic function, variants of the tan-
gential function are more usually used as the basis for Fourier descriptors because of their
ability to describe arbitrary contours without ambiguity. The tangential function itself is
not periodic because the measure of bending, "p, decreases/ by 27r for each circuit of the
closed contour, but this is easily rectified by defining a variant, "p* (8).

1/;*(8) = "p(s) + (f) 27r (2.13)

Where L is the length of the closed contour.

It is interesting to note that "p* (8) == 0 when the contour shape is perfectly circular so
this variant can be interpreted as a measure of the deviation of the shape of the contour
from that of a circle. The period of this contour description is the length of the closed
contour, L, but to apply the Fourier expansion this must first be normalised to a period

of 27r. This may be done by defining a new boundary length t which varies from 0 to 211"

as 8 varies from 0 to L.

(2.14)

A periodic contour description with period 211"is obtained by substituting t into expres-

sion 2.13.

¢*(t) = 1/; (~;) + t (2.15)

This periodic contour description can then be expressed as a Fourier series.

00

"p*(t) = Po +L Ak cos(kt - Ok)
k=l <

(2.16)

The shape contour is now fully described by the Fourier coefficients Ak and Ok and the
mean value Po. The details of how these coefficients are determined from expression 2.16
are not included here but can be found in any standard Fourier series text, although a good

example specifically for shape contours is reported by Zahn et al [Zahn & Roskeis 72]. Like
the tangential parameterisation discussed earlier the mean value Po reflects the choice of

a boundary starting point and is not useful as an invariant descriptor but the harmonic

2When the contour is followed in a clockwise direction
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amplitudes, Ak, and some functions of the phase angles, CXk are invariant to translations ,
rotations and scalings of the shape contour.

An interesting property of Fourier descriptors is that the lower order Fourier coefficients
describe the macroscopic behaviour of the contour's shape whilst higher order coefficients
describe more detailed variations in the shape of the boundary. Truncating the coefficients
used to describe a particular shape boundary not only results in a concise shape descriptor
but results in a descriptor which is very insensitive to small variations in the boundary
due to noise. Unfortunately more serious degradation in a contour's shape, perhaps as
a result of object occlusions, dramatically changes the Fourier description both because
the macroscopic behaviour of the contour changes significantly and because the contour
length, L, used in determining the Fourier coefficients cannot be recovered.

2.4 Region Based Representations

The shape of the contour which bounds an image region is only one of the properties
of the region which can be used for classification. Other characteristics such as texture
and colour provide further information which may be used to construct more descriptive
object representations. A number of representational schemes which make explicit use of

the intensity of pixels within some image region, usually obtained by segmentation, are
discussed in this section. Given an image region, R, this region may be described by the
intensity and position of each of the pixels which it contains.

R = I{x,y) (x,y) ER (2.17)

Like the raw contour descriptor introduced earlier, R can be used for matching directly
and this is the basis of the block matching scheme discussed next. However, it possesses
none of the desired invariance properties and this has motivated the development of more
sophisticated algorithms, some of which will be discussed subsequently. Although all of
these algorithms can be used to represent raw intensity images, it is more usual to use
edge-enhanced images as this provides a degree of insensitivity to lighting variations.

2.4.1 Template Matching

Given an image region describing a model object it is possible to detect instances of this
model in a scene by placing it at every possible location and measuring the similarity
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between corresponding model and scene pixel intensities. Given a model region M(i,j)
and a scene image S(x, y) this can be expressed formally as:

M N
c(x,y) = L:L:[M(i,j) -S(x+i,y+j)]2

i=l j=l
(2.18)

Where the model region is a block with a width ofM pixels ,and a height of N pixels, and
c(x, y) is a measure of the similarity between the model and the scene when the model is
placed at (x, y) (c = 0 implies a perfect match).

Using raw pixel intensities to represent objects allows arbitrary shape to be described
and because pixels are compared individually matching can be performed reliably when
an object might be partially obscured. The representation possesses no invariance prop-
erties so if objects are free to translate, rotate and scale an excessively large amount of

computation is needed to detect them.

2.4.2 The Log-Polar Mapping

Using grey-level templates to represent image regions makes good use of the information
provided but this type of descriptor does not promote efficient recognition because of
its lack of invariance properties. Sensitivity to changes in lighting conditions can be
reduced by using edge-enhanced images but this still leaves a representation which is
sensitive to changes in the scale and orientation of image regions. The log-polar descriptor,
RI I addresses this limitation by mapping pixels (edge-enhanced or otherwise) intoogpo ar,

a domain where changes in scale and orientation in the image space manifest themselves
as translations in the log-polar space. This permits a relatively efficient 2-dimensional

shift-correlation to be used for classification.

The log-polar representation is constructed by sub-pixel interpolation of the original image
data using the mappings given by expression 2.20 and 2.21. Like the polar contour para-
meterisation, discussed earlier, the log-polar representation is only useful if the centroid

(x', y') can be recovered.

Rlogpolar = J(p, fJ) (p, fJ) E Rlogpolar (2.19)

Where p is the logarithm of the radial distance, r, of (x, y) from the region centroid,

(x', y').
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p = log(r) (2.20)

()= tan-1 (y - y' )
X -x' (2.21)

Both Wechsler et al [Wechsler & Zimmerman 88] and Rak et al [Rak 91] take the Fourier.
Transform of the log-polar space and use its magnitude as an invariant measure. This

works because the magnitude of the Fourier Transform is invariant to translation.

Wechsler et al identify the problem that small variations in located centroid result in

dramatic variations in the resulting log-polar representation. Unfortunately, random noise
and occlusion produce such variations.

The nature of the mapping is that many samples are taken at the centre of the image where

the radial lines are closer together but the resolution falls off moving out from the centre.

This has two consequences. Firstly the method is really only suitable for objects which
are significantly smaller than the image size so that the resolution of the representation

is sufficiently high. Secondly, because outlying objects have only a minor effect on the
representation due to the low sampling, the object under analysis does not have to be

segmented out from the image, providing that it can be centred correctly.

2.4.3 Moment Invariants

The use of moments as invariant binary shape representations was first proposed by

Hu [Hu 62], who successfully used this technique to classify handwritten characters. The
regular moment of a shape in an M by N binary image is defined as:

Upq = LLxPyq[(x,y)
y x

{2.22}

Where [(x, y) is the intensity of the pixel at the coordinates (x, y) and p + q is said to be
the order of the moment.

To remove the dependency of high order moments on the position of a shape within an

image, measurements are made in relation to the shapes centroid (x', yl). The coordinates

of the centroid are determined using the first order moments.

I UlO
X =-

vee
and I UOl

Y =-Uoo (2.23)
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Relative moments are then calculated using the equation for central moments which is
defined as:

N-l N-l

upq = L L (i - x')P(j - y')qI(i,j)
j=O i=O

(2.24)

Individual moments values do not have the descriptive power to uniquely represent ar-

bitrary shapes, nor do they posses the required invariance characteristics. However, sets

of functions based on these moments can be determined which do have this power. Hu

derived a set of seven rotational invariant moment functions which form a suitable shape

representation (or feature vector).

(2.25)

(2.26)

(2.27)

(2.28)

Ms - (U30 - 3U12)(U30 + U12) ((U30 + U12)2 - 3(U21 + U03)2)

+ (3U21 - U03)(U21 + U03) (3(U30 + U12)2 - (U21 + U03)2) (2.29)

M7 - (3U21 - U03)(U30 + U12) ((U30 + U12)2 - 3(U21 +U03)2)

(U30 - 3U12)(U21 +U03) (3(U30 + U12)2 - (U21 +U03)2) (2.31)

Classification is achieved by matching a shape vector extracted from an image with pre-

viously encountered shape vectors fr~m the training set. The shape representation can be
improved to exhibit scale invariance by a process of normalisation.
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Moment invariants do not inherently possess translational invariance and this variability is
removed by centring the coordinate system on a shape's centroid. Unfortunately, moment
calculations are sensitive to the position of a shape's centroid and attempts to determine
this are marred by random noise, poor segmentation and occlusion. Hence, moment
invariant schemes are not robust to these types of problem.

2.5 Shapes as Feature Groupings

The use of image features to represent objects promotes a shape descriptor which can
be reliably recovered in noisy scenes, can represent arbitrary shape by carefully selection
of appropriate features and provides a powerful, possibly complete, description of the
shape. Object recognition strategies based on image features typically comprise two dis-
tinct stages. Initially features are recovered from the scene image data and then a search
is conducted to find groups of features which are consistent with stored models. A number
of techniques for finding consistent groupings of features have been investigated but the

most important are discussed here.

2.5.1 Relational Graph Matching

Model features are well defined by their geometrical relationship to each other and the
technique of relational graph matching exploits this to find consistent feature groupings.
Given a set of model features, M, and a set of detected scene features, S, each possible
pairing between a model feature and a scene feature is considered to be a possible match.
These pairings can be represented as nodes in a, so far unconnected, graph as shown in
Figure 2.7 (a). Each node of the graph then represents a mapping from the model to the

scene.

To find consistent feature groupings each pair of graph nodes is considered in turn and the
mappings they represent compared. If these mappings are the same, within some specified
tolerance, an arc is formed between the pair of nodes. When this has been completed for
all node pairs, consistency between groups of model and scene features manifest themselves
as fully connected networks of graph nodes, referred to as cliques.

The invariance properties of this type of representation depend upon the geometrical

relationships recorded between features but generally it is possible to attain translation,
rotation and scale invariance. The computational complexity of this approach is a serious
disadvantage and arises because of the large number of mappings which can exist between
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Figure 2.7: Relational graph matching. (a) A graph node is constructed for each model

and scene feature pair. (b) Geometrically consistent pairs are labelled by a connecting

arc. Consistent groups manifest themselves as fully connected groups or cliques.

scene and model features and the complexity of the clique detection techniques. This
problem can be minimised by directing the search for features within some local area as

in the Local Feature Focus method suggested by Bolles et al [Bolles & Cain 82].

2.5.2 The Interpretation Tree

Consistency between model and scene features can be found much more efficiently if

the relational graph is reorganised as a search tree. The use of a search tree to

search the relational graph, referred to as the interpretation tree, was first proposed in

[Gaston & Lozano-Perez 84], although the sensor data used in this first example was tact-

ile rather than visual. The approach has since been used for many visual recognition tasks

using a range of different image features [Grimson & Lozano-Perez 87, Grimson 90].

The interpretation tree is constructed such that each possible pairing between scene and

model features is represented by a unique path through the tree. A simple example is

illustrated in Figure 2.8 for a set of model features M = {mo,ml,m2} and a set of scene

features S = {so,Sb S2}' At each node of the tree a check is made to ensure that the model

to scene pairings described by the path from the tree root to the node are self consistent.

If not then the tree below the node in question is pruned away.

As the tree is descended, more constraints become available for consistency checking. At
the first layer only a single model feature to scene feature pairing is specified so consistency
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Figure 2.8: The interpretation tree provides an efficient scheme for finding consistent
model-to-scene feature pairings.

can only be determined using properties of the features themselves, usually referred to as
unary constraints. For example, when utilising line features the scene and model line
lengths might be used to decide whether or not a particular pairing is consistent. At the
second layer of the tree, however, relationships between pairs of model features can be used
to provide stronger constraints for consistency checking. These are usually referred to as
binary constraints. The final objective is to reach one of the leaf nodes of the interpretation
tree, at which point a consistent set of feature pairings has been determined.

2.5.3 Geometric Hashing

Geometric Hashing was first proposed by Lamdan and Wolfson [Lamdan & Wolfson 88] as
an alternative to the feature matching approaches already discussed. The approach differs
in that no explicit matching between scene and model features is conducted, thus avoiding
the computational explosion this produces. Instead, invariant measures are derived from
scene features and these are used to index a precompiled hash table of models. Votes are
then cast for the indexed models and recognition is achieved by finding models which have
received a significant number.

The invariant measurements used to index the hash table are derived by transforming
features into an invariant frame of reference, which itself is determined from a small number

of the features. In the original work proposed by Lamdan and Wolfson, an arbitrary pair

of point features are mapped to the coordinates (0,0) and (1,0). The same mapping is
then applied to all of the other points and the resulting coordinates are used to index
the hash table. This approach has also been applied to arbitrary views of 3-dimensional
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objects by using more features to define an affine invariant frame of reference.

Compilation of the hash table can be computationally expensive because of the number
of combinations of features that can be selected to define the invariant frame. The com-
pilation is performed off-line though and allows models to be indexed very quickly during

recognition.

2.5.4 The Hough Transform

The Hough transform was first devised in 1962 as a means of detecting the paths of high

energy particles [Hough 62] but has since evolved and been applied to many different image
processing and computer vision tasks. In essence, the Hough transform maps complex

patterns of pixels or features from the image domain into compact features in some selected

parameter space. This greatly simplifies the task of searching for complex patterns in an

image when working in the parameter space.

Probably the most straightforward application of the Hough transform is in the detec-

tion of straight lines in images {or strictly, the detection of collinear edge pixels}. Al-
though there are some earlier versions, the accepted formulation was first presented by
Duda [Duda & Hart 72]. In this formulation, lines are described using the P-O equation,

as shown in Figure 2.9.

P = x cos 0 + y sin 0 {2.32}

Where P is the length of the normal from the line being detected to the origin and 0 is

the angle between the normal and the positive x-axis.

,
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Figure 2.9: A line in image space defined by the two parameters P and O.

Each edge pixel in an image can potentially lie along an infinite number of lines passing
through it, and the parameter values associated with these lines describes a sinusoid in P-O
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space. If a sinusoid entry is accumulated into a quantised, 2-dimensional parameter space
for each detected edge pixel, collinear pixels result in sinusoids which intersect at the same
point producing a detectable peak. The position of the peak determines the parameters
of the line the edge pixels lie along and the height of the peak gives the number of pixels
which lie along that line.

A number of developments of this basic scheme have been devised for the recognition of

parameterised shapes such as circles and ellipses but the most the significant improvement

in the field of object recognition has been the development of the generalised Hough
transform [Ballard 81]. This formulation of the Hough transform allows arbitrary objects

to be recognised in scenes from their edge features and is robust to partial occlusion

of the object data and the presence of scene clutter. Central to the technique is the

parameterisation of an object's edge pixels in terms of some arbitrary reference point in the

image plane. For each edge pixel, the vector p(r, a) from this edge to the reference point is

recorded in a table as a function of the orientation of the edge, ¢. There may be a number

of edge pixels with the same orientation so each row of the table, commonly referred to

as the R-table, may contain multiple entries. Figure 2.10 shows the measurements made
to construct the R-table.

,. , .....q,
4 _

,
Figure 2.10: The generalised Hough transform. The shape boundary is parameterised in

terms of the vector, p{r, a), which defines an arbitrary reference point from each edge
pixel.

Given a scene image, each detected edge pixel is used to index the R-table for each stored

model to provide a hypothesis of the position of the model's reference point, and this

hypothesis is accumulated in a 2-dimensional, quantised parameter space. Edge pixels

consistent with a particular model generate consistent hypotheses producing a peak in the

parameter space. The height of this peak relates to the number of edge pixels consistent

with the model and the position of the peak provides an estimate of the position of the
model in the image. <
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The generalised Hough transform possesses translational invariance but not scale or rota-
tional invariance. To detect shapes at different orientations and scale, an explicit search
must be made for each instance by applying a suitably transformed R-table. The table
is transformed for scale variations by simply scaling the r values accordingly whilst it is
transformed for orientation variations by shifting the r values along the ¢>-axis.The result
is a four dimensional parameter space with two axes for image position, an axis for orient-

,
at ion and an axis for scale. Significant peaks in this four dimensional space then indicate
the presence of an object along with its position, orientation and scale within a scene.
The disadvantage of this approach is the amount of computation and storage needed to
search and store the large parameter spaces although significant work has been conducted
to avoid this problem. This is typically done by constructing coarse parameterisations
and then focusing on dense areas of the parameter space [O'Rourke 81], or by decoupling
the parameters and searching through the resulting lower dimensional spaces.

2.6 Affine and Projective Invariance

For the majority of 2-dimensional recognition problems it is reasonable to assume that
objects are constrained to lie in a plane, but relaxing this constraint can open up addi-
tional applications. A good example is in an industrial environment in which objects are
represented using their 2-dimensional appearance but may lie on top of one another so

that they are not constrained to a fixed plane.

When the depth across an object is small compared to its distance from the camera the
mapping from world coordinates to image coordinates can be approximated using an affine
transformation. This is the assumption of weak perspective. A number of researchers have
proposed affine invariant representations but when the assumption of weak perspective
cannot be made a more general, projective transformation must be used. In the next
section a projective invariant shape representation scheme is presented.

2.6.1 Projective Invariants

A shape representation for two dimensional planar objects which is invariant to pro-

jective transformations as well as changes in pose and scale is presented by Rothwell et
al [Rothwell et a192]. The representation relies upon the fact that points of tangency on
a two dimensional planar object are preserved under different projections and also that
the mapping of any four points from one plane to another is sufficient to determine the
transformation matrix T which fully defines that transformation. Consequently, by map-
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ping four points of tangency from a planar object to four fixed but arbitrary points in
a second plane, this second plane will possess the required invariant properties, and by

determining the transformation matrix T from the four mappings all points on the planar
object can be mapped onto the invariant plane.

In this scheme, planar object concavities are used to determine four tangency points,

referred to as distinguishing points, as shown in Figure 2.11. The first two distinguishing

points (A and D) are located by the bitangent that marks the entrance to the concavity.

The other two distinguishing points (B and C) are located by the tangents to the inner

curve of the concavity which pass through each of the first two distinguishing points.

A D

Figure 2.11: For this projective invariant, two distinguishing points (A and D) are located

by the bitangent that marks the entrance to the concavity. Two other distinguishing

points (B and C) are located by the tangents to the inner curve of the concavity which
pass through each of the first two distinguishing points

These four points are then mapped to the corners of a unit square on the invariant plane,

which is referred to as the canonical plane, and then the same transformation is used to

map all other boundary points within the concavity onto this plane. The mapping of the

concavity shown in Figure 2.11 to the canonical plane is shown in Figure 2.12 below.

Rothwell uses this mapping to construct an invariant object representation by projecting

planar objects onto the invariant plane and then taking a number of area and moment

measurements which then constitute invariant feature vectors. The use of local object

concavities provides some robustness to partial object occlusions although the need for

concavities limits the scope of objects that can be represented in this way. Although an

extension of the approach to 3-dimensional objects would be desirable it would appear to

be impossible as Burns [Burns et al 93] has proved that this type of projective invariant
cannot exist for arbitrary 3-dimensional structures.
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Figure 2.12: The mapping of the concavity in Figure 2.11 onto the canonical plane.

2.7 Representing Deformable Shape

The object representations considered so far in this chapter have been limited to the

description of rigid shape, and certainly this is an important class of problem. Recently

though, interest in representations for deformable objects has grown significantly with key

areas such as medical imaging and face recognition providing much of the motivation.
Although the work presented in this thesis concerns the recognition of rigid shape, a
summary of shape representations would be incomplete without a brief look at deformable

shape.

2.7.1 Point Distribution Models

Cootes [Cootes & Taylor 92] has presented a deformable shape representation which mod-

els the way in which the position of landmark points located on an object vary as the

object deforms. Given a set of examples of the object which exhibit the expected modes

of deformation, landmark points are placed on each example (usually by hand) and the

movement of these points, between examples, is measured. Figure 2.13 shows a pair of

examples from a training set with labelled landmark points. To be able to find corres-

pondences between landmarks in different examples, or later between the model and scene

data, they must be placed on recoverable features such as edges or corners.

If the position of all of the landmark points (Xi, Yi) are concatenated into a vector x, such
that:

(2.33)
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Example 1

32

Example 2

Figure 2.13: Two examples from a training set with labelled landmark points, exhibiting

some deformation.

Then the positions of landmark points across the range of examples can be expressed as:

x=x+Pb (2.34)

Where x is the mean position of the points, P is the matrix of eigenvectors of the co-
variance matrix which describes how points vary from their mean and b is a vector of
weights or model parameters. If the variation of landmark point positions exhibit any
linear correlation, which is usually the case, then only a few model parameters are ne ded

to describe the modes of deformation in the training set. This results in a relatively con-

cise representation of deformable shape and a small space in which to search for model

parameters during recognition.

Given an estimate of the pose and scale of an object within a scene, the point distribution
model can be placed over the scene and th landmark points iterativ ly moved towards

image gradients. The incremental change in th position of each point at ach iteration can

be resolved to give a global change in the pose and scale of the model and a change in the

model parameters, constrained by the mod s of variation seen in the training examples.

Strictly speaking, this is a model fitting algorithm rather than an object recognition al-

gorithm although the goodness of fit of the model can be used to decide whether or not

a particular object is present. The technique is more suited to discriminating between

similar objects from different classes, a good example of which is the recognition of
faces [Lanitis et al 94]. In this application the model is trained on many examples from
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each class and classification of test objects is based upon the fitted model parameters.

The need to have an initial estimate of the pose and scale of an object before using a
point distribution model severely limits its use as a general solution to deformable object
recognition - if the pose and scale is already known then the object recognition problem

is largely solved. The technique does have applications in more constrained environments

when locating and inspecting an object ~hich is expected in a scene. The use of image

gradients to position landmark points provides insensitivity to changes in lighting and the

use of global shape constraints provides ;ome robustness to occlusion, clutter and image

noise. Overall, the approach is an interesting solution for the representation of shape
deformation.

2.8 Conclusions

The motivation behind this chapter has been to identify both the successful and unsuc-

cessful approaches for shape based object recognition by critically reviewing some of the

important contributions in the field to date. As a means of comparing the algorithms
discussed, each has been assessed in. terms of four significant properties, namely: reliabil-
ity in the presence of typical scene noise including occlusion and clutter; good invariance

characteristics to promote efficient recognition; the scope to represent arbitrary shape and

sufficient descriptive power to represent large numbers of shapes uniquely. An accurate
assessment like this is difficult without quantitative results but these are rarely provided

by algorithm designers - in fact, this problem has motivated an analysis of reliability

and descriptive power in chapters 4 and 5 respectively. Instead, each algorithm has been

judged as being reliable, invariant, etc. and although this maybe somewhat subjective it

does highlight the relative advantages of the different approaches. Table 2.1 presents the
results of this analysis for each of the considered algorithms.

Probably the most important property required of a generic object recognition algorithm,

and yet the one which few of the algorithms discussed have achieved, is reliability in a

realistic environment exhibiting pixel noise, clutter and occlusions. The problem with

most of the representations which fail in this respect is that they are based on global

measurements which change if any part of the shape data changes. In the case of shape

descriptors and Fourier descriptors the global shape is measured directly but in other cases,

such as the polar parameterisation, measures are dependent on the recovery of the object

centroid which itself is a global measure. Although the chain code is constructed from local

measurements its lack of reliability can be attributed to the fact that the representation
changes abruptly even for small changes in the shape data. The shape skeleton is also
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Reliable Invariant Good Scope Descriptive

Shape Shape descriptors - • • -
Shape skeletons - • - -

Contours Chain codes - - • •
Polar param. - • • -
Tangential param. • • • •
Fourier descriptors - • • •

Regions Template matching • - • •
Log-polar mapping - • • •
Moment invariants - • • •

Features Relational graphs • • • •
Interpretation tree • • • •
Geometric hashing • • • •
Hough transforms • • • •

Table 2.1: A summary of some of the most important aspects of the reviewed algorithms.

A • indicates that this algorithm has good properties of the respective type

constructed from local information but it only takes small amounts of scene clutter and

occlusion to prevent the thinning procedure from recovering the correct topology.

The template matching scheme promotes reliable recognition whilst providing good de-
scriptive power but its lack of invariance properties renders it computationally unattract-
ive. Of the contour representations the tangential parameterisation is the most attractive,

exhibiting all of the desired properties. The disadvantage of this approach is that, like all

of the contour and region based representations, it depends upon good prior segmentation

of the image.

The class of representations which outperforms all others in this analysis are those based
on image features. Image features, by their nature, are local descriptions of shape and can

be recovered in realistic scenes and by basing representations on relative measurements

between features, good invariance properties can also be attained. By selecting appropriate

features it is possible to represent all types of shape providing good scope and descriptive

power. The disadvantage of feature based representations is that matching scenes to

models can be computationally very expensive when considering all model-feature to scene-

feature mappings. In the next chapter, however, a strategy for limiting the number of

mappings between model and scene features is introduced providing a feature based object

recognition strategy with all of the properties discussed here but which is also efficient for
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matching.
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Chapter 3

Object Recognition using Pairwise
Geometric Histograms

3.1 Introduction

Many of the object recognition techniques reviewed in the last chapter provide a good

solution in sufficiently constrained environments, and this is reflected by their adoption

in many practical systems. In general though, we would like to be able to relax many of

these constraints, opening up many more areas of application and ultimately find a generic
solution which is an equal to (or even superior to) our own vision systems. Although such
a generic solution appears to be a very long way off, a great deal of useful experience has

been gained during the development of the existing techniques. It is unlikely that any

one approach will be appropriate for all types of scenes, under a range of different viewing

conditions and a generic solution is likely to involve fusion of the results of specialised vision
modules. Current research must focus on these specialised modules, and in particular on

visual properties which carry a large amount of information such as shape.

It is quite clear that one of the primary requirements of a generic object recognition

strategy is insensitivity to large changes in the image data due to occlusions and scene

clutter. It was concluded in the last chapter that algorithms based on image features

can help promote such insensitivity (because image features tend to be defined locally)

but it was also seen that current feature based approaches suffer from the large number

of mappings that can exist between scene and model features. In the next section the

use of image features is discussed in a little more detail and it is shown how the number

of mappings between scene and model features can be greatly reduced by employing an

36
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appropriate feature representation.

The use of Pairwise Geometric Histograms as a robust, statistically based descriptor of

image features was first presented in the work of Evans [Evans 94]. These descriptors
allow scene image features to be classified according to known model features, simplifying

the task of identifying arrangements of scene features which are consistent with stored

models. This promotes a complete object recognition strategy which is both reliable and

efficient. In section 3.3 the construction of pairwise geometric histograms for representing

line features is explained, and some of the important properties of this representation are
discussed.

An important factor in the design of any classifier is the selection of a similarity metric
which allows meaningful comparison between training data and unseen data. A generally

accepted technique is to use the likelihood of observing some data given each of the classes

that data may have been drawn from as the measure of similarity between the data and

each of those classes. This has led to the use of statistical metrics such as the mean absolute

distance (MAD), ~:2and the Malhalanobis distance. This issue is discussed in more detail
in section 3.4 and a metric appropriate for classifying scene image features based on the
similarity of geometric histograms is derived. The performance of this classification scheme
is then demonstrated in section 3.5 for a range of test images exhibiting realistic levels of
occlusion and clutter.

In the original work by Evans [Evans 94], a generalised Hough transform is used to collate

evidence from classified features about the presence of particular objects in a scene, whilst
simultaneously identifying their likely positions. Although this technique performs ad-

equately, a number of advantages are gained by replacing this with a probabilistic Hough

transform - a maximum likelihood formulation of the Hough transform presented by Steph-

ens [Stephens 90]. This allows variability in the relative pose of features to be modelled

allowing the position of objects to be determined to a much greater accuracy and removing

the dependency of the position estimate on the quantisation of the parameter space to be

removed, increasing robustness. The probabilistic Hough transform not only identifies the

most likely position of an object within a scene but explicitly provides information about

the expected error on the position. Knowledge of this error is essential if the algorithm is

to be robustly integrated into a larger system. In section 3.6 the use of the probabilistic

Hough transform in this application is described and in section 3.7 experimental results
are presented.
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3.2 Shape Features for Object Recognition

Image features such as corners, line segments and curved sections provide a good basis for

object recognition because they can be recovered over a wide range of viewing conditions

and object transformations. These types of features also promote successful recognition

under conditions of scene occlusion and clutter because they are defined locally. The main

criticism of feature based techniques is the need to exhaustively consider many possible

mappings between features recovered from a scene with stored model features. Consist-

ency between scene and model features is usually identified by searching through many

combinations of pairings between scene and models using graph matching or by accumu-

lating evidence using Hough transform type methods. When using graph matching to
explore model-to-scene consistency a combinatorial explosion of mappings occurs render-

ing the technique impractical for more than a few relatively simple models. Even when

using Hough transform based approaches, which are computationally more efficient than

graph matching [Davies 90], the amount of processing necessary can still be very large

and, perhaps more significantly, the parameter space, which is searched to find agreement

between models and scenes, quickly becomes noisy and reliability suffers.

Considerable improvements in efficiency and reliability can be gained by introducing con-

straints which limit possible mappings between scene and model features. For example,

when considering corner features the local image curvature may be used as a distinguish-
ing characteristic of the corner and only pairings between scene and model corners with
similar local curvature need to be considered. By introducing further constraints the num-
ber of potential pairings is pruned even more with a further increase in performance. In

the work that follows, this approach has been extended to the extent that each feature is

represented by a (near) unique descriptor based upon local geometry. The result is that

only a single mapping (or at least very few mappings) exist between scene and model
features promoting efficient and reliable recognition.

This approach can be adopted, at least in principle, to represent and classify all types

of image feature although the work here is limited to the representation of straight line

segments as first investigated by Evans [Evans 94]. The choice of line segments as the

basic shape primitive means that the class of shapes to be represented is not restricted,

as would be the case with corners for example ". Even shapes comprising of only curves

can be approximated to a specified precision by straight lines and, as will be seen shortly,

errors introduced by this approximation can be accounted for.
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3.2.1 Approximating Image Data with Straight Line Segments

The straight line approximation algorithm which has been used is a development of the

recursive-split algorithm described by Ballard and Brown [Ballard & Brown 82]. Im-

age data of models during training and of scenes during recognition is first processed

by a suitable edge detection scheme which produces strings of connected edge pixels -

Canny [Canny 86] has been used here although any edge detection and linking scheme

could be adopted. In Ballard and Brown's scheme, each edge string is then repeatedly
approximated by increasingly shorter line segments until the maximum perpendicular dis-

tance from any line to the edge string is below some specified threshold, A. This is achieved
by repeatedly splitting line segments with a maximum perpendicular distance greater than
the threshold at the point of maximum distance. The development introduced here is to

place a threshold on the ratio of a line segment's length to its maximum perpendicular dis-

tance to the edge string rather than on the maximum perpendicular distance alone. The

result of this modification is that inaccuracies in representing edge strings are proportional

to the absolute size of the image structures so that fine details are represented more closely
without the need to over represent coarser details. This approach was designed so that
it would be invariant to the scale of the image data in the sense that the same image at

different scales should be approximated by the same number of line segments. An example
of the line segmentation process is shown in Figure 3.1.

(a) (b)

Figure 3.1: Approximation of edge strings by straight line segments. (a) The original
image data. (b) The polygonised data.
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3.3 Statistical Representation of Shape

Although image features can be characterised to some extent by intrinsic attributes such

as local image gradients and curvatures, the context of the surrounding shape geometry

provides the basis for a much more powerful descriptor. By recording the geometrical
relationships between a feature and each of the surrounding shape features or primitives

the feature is fully defined in terms of its shape context. By carefully selecting appropriate

measures and storing these measurements in the form of a frequency histogram, a concise

shape descriptor which promotes efficient and robust feature classification can be produced.

This frequency histogram is referred to as a pairwise geometric histogram because it records
geometric measures made between pairs of image features.

The selection of geometrical measurements with which to form a particular type of pair-

wise geometric histogram is motivated by two, possibly opposing, requirements. On the

one hand it is desirable to make measurements which together, fully define the relationship

between a pair of features, producing a unique descriptor. On the other hand, it is import-

ant to select measures with good invariance properties to promote efficient classification
and which are stable under expected noise conditions to promote robustness.

The geometric relationship between a pair of line segments is well defined by the relative

angle between them and the range of perpendicular distance obtained when the endpoints

of the second line are projected onto the first. These relationships are depicted in Fig-
ure 3.2. Although this does not fully constrain the relationship between the pair of lines
(the second line is free to translate parallel to the first) it is invariant to rotations and
translations of the line pair. Importantly, these measures also exhibit stability if any of

the lines become fractured which frequently occurs in real images. Entries made in the

histogram for these measurements are weighted by the product of the lengths of the two

line segments. This assigns an equal amount of significance to each edge pixel of the shape

and ensures that fragmented entries add up correctly. Figure 3.3 (a) depicts the histogram

entry made for the line pair in Figure 3.2 and Figure 3.3 (b) depicts the multiple entries

made if the second line becomes broken. Clearly these representations are very similar.

3.3.1 Accounting for Measurement Errors

Naturally, the measurement of image features is prone to measurement errors and further

error is introduced by the approximation of edge strings by straight line segments. Unless

some account is taken of these, the resulting pairwise geometric histogram will not be
truly representative of the shape data it describes. Ideally, a set of training examples of
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Figure 3.2: The relationship between a pair of line segments may be represented by their

relative orientation, a, and the range of perpendicular distance from do to dq•
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Figure 3.3: The effect of line fragmentation. (a) The single histogram entry made for the

relationship between the line pair in Figure 3.2. (b) The multiple entries made for the same

line pair when the second line is fragmented add to give almost the sam r presentation.
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each shape line segment should be used to construct each geometric histogram so that
the distribution of the feature measurements is recorded. An alternative to this approach
which gives approximately the same result but only requires single training examples is to

assume that each example represents the mean shape. The expected error is then encoded
on feature measurements directly into the frequency histogram by blurring (convolving)

with the error function, which may be determined prior to training.

It has been shown by Riocreux [Riocreux, Thacker & Yates 94, Thackeret al 95] that the

line approximation algorithm introduces a uniform orientation error for curved edge strings

with a maximum width of 4,\, where A is the splitting threshold described in section 3.2.l.

To allow for further variability due to noise and shape deformation the magnitude of the

error may be increased above this. Selecting a suitable error function for perpendicular
distance measurements is less clear but a uniform distribution is a reasonable choice as this

corrects for line fragmentation and allows for some lateral shift of lines. The scale of this

error is chosen to be of the order of the bin width along the perpendicular distance axis

of the histogram. An example of a fully constructed histogram with appropriate blurring
which represents the line primitive highlighted in Figure 3.4 (b) is shown in Figure 3.4
(a).

Ca) (b)

Figure 3.4: (a) A fully constructed pairwise geometric histogram for the line primitive in
(b) .

There are a number of interesting properties of this form of shape representation which

are worth highlighting at this point. By normalising the histogram so that the integrated

contents sum to one, a joint probability density function of geometric measurements is

obtained. This statistical interpretation permits the use of statistically based classification

techniques which are discussed in the next section. An important property of the geometric

histogram used here is the proportion of the bins which are empty. This is described as
sparseness. Typically, for the shape data used in this thesis, more than half of the bins
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are empty. This promotes robust classification in cluttered scenes as clutter data in scene
histograms is unlikely to correlate with model data in model histograms.

3.3.2 Selecting Histogram Parameters

Prior to constructing geometric histograms it is necessary to decide on the histogram

scale and resolution. The choice of maximum perpendicular distance, dmax is driven by

two opposing requirements. On one hand the dmax should be small so that the pairwise
geometric histogram represents local shape and is robust to missing data and occlusion.

On the other hand dmax should be large enough so that enough shape information is

present in each pairwise geometric histogram so that they are distinct from each other. In

practice a good rule of thumb is to ensure that about half of a shape is encoded into each
histogram.

Again, the selection of the histogram resolution is driven by opposing requirements. If
the resolution of the pairwise geometric histogram is high then it will precisely describe
the shape primitive features. However, this is at the expense of requiring a large amount
of memory to store and large amount of computation to match. On the other hand if
the histogram resolution is coarse, then storing and matching will be less expensive but

the shape primitives will only be approximately represented. Evans [Evans 94] suggests

that the histogram bin size should be similar to the width of the errors functions. A more

principled choice can be made, however, ~y looking at how the performance is effected
by the pairwise geometric histogram resolution and setting the resolution appropriately.
This is considered later in chapter 4.

3.3.3 Controlling Histogram Invariance Properties

By virtue of the relative nature of the measurements recorded in pairwise geometric histo-
grams this shape representation is invariant to rotations and translations of the shape data.

Depending upon exactly how angle and distance measures are defined, other invariance
properties mayor may not also exist.

The simplest type of histogram is constructed by restricting angles to the range 0 to 11' and

distances to the range 0 to dmax• This histogram is invariant to reflections of the shape data

about the reference line and is described as mirror symmetric. Mirror reflection invariance

is not always desirable and can be removed by using the handedness of angles (clockwise

or anti-clockwise) to extend the range of angle measurements to -11' to 11'. This doubles the
area of the histogram which in turn doubles the computation needed for matching but also
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increases the sparseness which improves robustness of matching in cluttered scenes. This

type of geometric histogram is named rotate symmetric. The area of the histogram can be
doubled again, further improving the descriptive power of the representation, by directing

the reference line towards the point where the line pair intersect and using this to define
a reference frame. Measures of distance can then be signed depending upon whether they

are to the left or right of the directed reference line, extending the distance range to -dmax

to dmax• This type of geometric histogram is named directed and is the type used in the

experiments presented in this thesis. These 3 histogram types are shown in Figure 3.5. A

full description of further histogram types is described by Riocreux [Thackeret aI95].

dmax ,----,----,

d~Dd~[IJ O~~

o 1t -1t 0 1t
-d max L-_--.L.. __ ....I

-1t o 1t

(a) (b) (c)

Figure 3.5: Some of the different geometric histogram types. (a) Rotation, translation

and mirror reflection invariant. (b) Rotation and translation invariant. (c) Rotation and

translation invariant.

3.4 Classification of Scene Image Features

Geometric histograms promote robust and efficient classification of scene image features

by providing a concise feature descriptor which explicitly records statistical variability in

the shape data. Central to the classification of any data is the need for a similarity metric

which provides a quantitative measure of similarity between seen and unseen data. A

good metric is one which degrades gracefully as the data degrades and should take proper

account of the errors on the data being compared.

3.4.1 Defining Similarity

Because pairwise geometric histograms are essentially binned conditional probability dens-

ity distributions it is appropriate to use conventional metrics for comparing probability

distributions as a measure of histogram similarity. The standard technique for deciding

whether two sample distributions are drawn from the same underlying distribution is the
X2 test. Given two sample distributions S = ~Sl"'" SN} and M = {mI, ... ,mN}, the X2
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statistic is defined as follows.

(3.1)

The term Si + mi is used as an estimate of the error on the measurement of (Si - mi)2 so

X2 is essentially a sum of square differences in which each component is normalised by the

expected measurement error. In practice this estimate on the measurement error is only

valid when the two distributions are very similar and a better metric should be adopted.

To clarify this situation it is worth going back to first principles. Given a random variable
X, a statistical measure of the distance D between the endpoints X = x and X = x + 8x
of a short line is obtained by normalising by the standard deviation a,

D = 8x
(J'

(3.2)

In general, the statistical distance between any two points X = 8 and X = m can be
determined by the definite integral:

D = I" dx
JB (J'

(3.3)

For N independent measurements the statistical distance is given by a sum of squared
components:

(3.4)

It is well known that binned data conforms to a Poisson distribution and that the variance

of a Poisson variable is equal to its mean. A statistical distance metric for binned data is
then obtained by substitution of (J'i = y'Xi.

(3.5)

(3.6)

Removing the constant factor in this expression gives the statistical metric proposed by
Matusita [Matusita 55] which is known as the Matusita distance.
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(3.7)

Expanding this expression gives:

Dmatusita = 2:Si +2:mi - 2:Vsi..;mi,
i i

(3.8)

If both m and s are normalised, or when using this metric to compare a single scene

pattern with a set of normalised model patterns, this is simply:

Dmatusita = const - 2:Vsi..;mi,
i

(3.9)

Removing the constant results in the Bhattacharyya distance.

Dbhattacharyya = 2:Vsi..;mi (3.10)

The Bhattacharyya metric, then, is both a statistically valid and computationally efficient

metric for comparing geometric histograms. It is computationally efficient as it requires

only one multiply and one square root if model histograms are square-rooted during train-
ing.

3.4.2 Nearest-N eighbour Classification

Pattern classification strategies tend to partition the pattern space into class regions and

test patterns are classified according to the region in which they fall. Class boundaries

can either be defined explicitly, as is the case with discriminant functions which describe
partitioning hyper-surfaces, or can be implied by the presence of exemplars as is the case
with nearest-neighbour classifiers.

The classification of scene features using geometric histograms is performed here using a

nearest-neighbour classifier. During training the pattern space is populated by normalised

model pairwise geometric histograms and scene data is later classified according to the

closest model. It is well understood that the optimal classifier in terms of reliability is the

Bayes classifier where boundaries describe regions of pattern space where the probability

of data coming from two or more classes is equal. Providing that the training data lies
close to the class means the use of the Bhattacharyya distance, which properly accounts
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for errors in the data, results in a nearest-neighbour classifier which is equivalent to a
Bayes classifier.

In practice, the excessive amounts of noise encountered in real images means that clas-
sification based solely upon the nearest-neighbour is found to be unreliable once large

numbers of model shapes are being stored. A better strategy is to not only form a single

classification based on the nearest-neighbour but to form multiple classifications based on

a number of the nearest-neighbours. These additional classifications can be removed later

when looking for a consistent set of primitives to form shape classifications. This issue is
considered in detail later in chapter 4.

3.5 Experiments: Classification of Line Segments

The experiments presented here have been devised to demonstrate the effectiveness of

using pairwise geometric histograms to classify scene line segments in real scenes which

exhibit clutter and occlusion. The test images selected for these experiments contain
several planar shape templates and a number of views of mechanical parts. The original

images are presented in Figures 3.6 and 3.7 for the planar objects and mechanical parts
respectively. The advantage of using some planar objects is that they can be arranged to

overlap each other to produce good examples of occlusion. Objects are rarely planar in

practice which is why mechanical parts have also been used to form more realistic scene
data. Further examples can be found in Evans' thesis [Evans 94].

The dinosaur templates and mechanical parts shown in Appendix A Figures A.I and A.3

were used as the training data for all of these experiments and they have been represented
using the directed histogram type with a resolution of 40 distance bins and 64 angle

bins. Figures 3.8 and 3.9 show the polygonised data derived from the test scenes after

classification. The models present in each scene have been assigned a colour and line

segments classified as belonging to that model have been drawn in this colour. Lines

classified as belonging to a model not present in the scene have been drawn in black.

It can be seen from these examples that there are generally two cases where line segments

are incorrectly classified. The first case is close to the point where occluding shapes meet

such as the head of the Brontosaurus (green) and the uppermost wing of the pterodactyl

(red) in Figure 3.8 scene 3. This is because in the vicinity of the occlusion the shape

information in the scene is quite different to that in the training data and incorrect features

may well give a better match. It is important to note, however, that away from the
occluding regions the classifications are very reliable. The second problem is that the
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Scene I

Scene 3

Scene 2

Scene 4

Figure 3.6: These four test images contain planar shape templates which have been ar-

ranged to produce examples of scene clutter and occlusions.
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Scene 1

Scene 3

Scene 2

Scene 4

Figure 3.7: These four test images contain views of m chanical parts arranged to form

relatively clutter scenes.
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orientation and position of very short lines is much more variable than that of longer
lines which leads to poor classification. Many incorrectly classified short line segments
can be seen in all of the test images. This does not seriously impair performance as the

significance of classified lines on the further stages of the algorithm is proportional to their
lengths and, in practice, a threshold may be used to discard lines below a certain length

to speed up the algorithm with little or no loss in performance. It is possible that scene

clutter may influence some of the misclassifications although there is no direct evidence

of this in any of the test scenes. The poor classification of the tail of the Stegosaurus

(blue) in Figure 3.8 scene 1 may be a result of the shortness of the line segments used

to approximate the fine detail on this part of the shape although certainly there will be
some contribution to the scene histograms constructed for these lines from the nearby
Antrodemus model (green) which may correlate well with incorrect training examples.

3.6· Hypothesis Combination and Determining Object Pose

Classified line segments provide useful information about the content of a particular scene

but do not explicitly state whether or not known objects have been recognised. What each

classified line provides is a hypothesis of the scene content and decisions as to the whether

an object is present or not are made by combining hypotheses, in an appropriate manner,

to find an acceptable level of agreement. Originally this has been done using a generalised
Hough transform which coarsely identified consistent geometrical arrangements of line

segments. This has now been improved by introducing a. probabilistic Hough transform
which is described and tested in the next two sections.

In order to do any geometrical reasoning about shape features it is useful to define a

reference frame for each of the stored models shapes, centred at any arbitrary position,

so that all of the features can be measured in relation to this frame. The position of
a shape hypothesised by classified scene lines can then be estimated using the relative

position of each model shape line within this reference frame as shown in Figure 3.10 (a).

Unfortunately, the position of a shape hypothesised by each single classified scene line

is unreliable because of the effect of scene line fragmentation. This problem is shown in

Figure 3.10 (b). In fact, the actual shape position must lie along a line, shown as dashed

in Figure 3.10 (c), which is parallel to the scene line and passes through the hypothesised

position. A more constrained hypothesis for the position of a. shape is obtained by finding

the intersection, see Figure 3.10 (d), of the parallel line constraints from pairs of scene
lines which have been classified according to the same shape.
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Scene 1

Scene 3

Scene2

Scene4

Figure 3.8: The polygonised test data formed by approximating the dge strings d t cted
in the original images by straight line segments. In each sc ne, each colour represents a

different model from the training set and classified line segments are coloured accordingly.
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Scene 1

Scene3

Scene2

@

52

Figure 3.9: The polygonised test data formed by approximating the edge tring det et d

in the original images by straight line segments. In each scene, each colour r pr sent a

different model from the training set and classified line segments ar colour d accordingly.

Scene 4
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Line 1
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Figure 3.10: The constraint on model location imposed by matched line features. (a)

Defining shape position using a reference point (b) Hypothesis error as a result of line

fragmentation (c) Weakened constraint due to scene line fragmentation. (d) Improved

constraint imposed by pairs of scene lines.

3.6.1 The Probabilistic Hough Transform

The probabilistic Hough transform has been presented [Stephens 90] as a robust statistical

method for combining measurements or hypotheses to find the most likely value of given

parameters. Instead of incrementing the bin in the Hough transform which most closely

accounts for each measurement, as in standard Hough transforms, a kernel derived from

the error on each measurement is properly integrated into the Hough space. This way the
Hough transform is treated as a sampled, continuous function. An implementation of the

probabilistic Hough transform is used here to determine the location of shapes in a scene
and by appropriate weighting of the Hough transform entries a level of evidence for the
presence of the shape is simultaneously derived.

Given a set of hypotheses, Pi(X, y), of a shape's position derived from each pair of scene

lines which have been classified as belonging to that shape, we wish to determine the shape

position which most likely accounts for these hypotheses. If each hypothesis is subject to

some error, P(pilp), then the probability of making a measurement Pi given that the
shape is actually at P, and the error on each hypothesis is independent is simply:

P(Pl ... Pnlp) - P(pdp)P(p2Ip)··· P(PnIP)

- IIP(pilp) (3.11)

This function of P is called the likelihood function and it is intuitive to base the estimate
of the shape position f> on the value of P where this function is a maximum.
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p = max IIP(pilp)
i

(3.12)

When the error function P(Pilp) is represented by a Gaussian distribution it is easier

to calculate the logarithm of the likelihood function rather than the likelihood function

itself. This is because the logarithm of a Gaussian is simply a quadratic function and

the series of products is replaced by a series of additions. This then is the probabilistic

Hough transform, H(p), and is implemented by binning the parameter space into an
accumulator array and then repeatedly adding the logarithm of the hypothesis errors for

each measurement into the array.

(3.13)

In general the pdf used to describe the error on some hypothesis given some parameter

does not account for measurements which are completely wrong, commonly known as

flyers, and these flyers can grossly distort the maximum likelihood calculation. A common

approach to avoid this problem is to add tails to the error pdfs to allow a finite probability

of measurements being made which are well beyond the confines of the expected error.

3.6.2 Modelling the Shape Position Hypothesis Error

The entry made in the PHT for each pair of labelled scene lines is derived from the error

on the position of the shape hypothesised by those lines, as described by Expression 3.13.

The source of this hypothesis error is a variation in the relative position and orientation

of scene lines as compared to their counterparts in the stored models. This variation

may be introduced by a number of factors including camera noise, occlusion, changes in

lighting and artifacts of the line approximation algorithm and building an accurate model
of these processes is generally not possible. Instead a simple model of line variation is

adopted here which is found to significantly increase both the robustness and accuracy

of the shape recognition and location process - the validity of this model is verified later

in Section 3.6.3. The error model that has been used here assumes that the positions of

scene line end points are subject to an isotropic, normally distributed variation which can

be described by a covariance matrix Eend.

(3.14)
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Figure 3.1l: The variability in the pose of line segments can be approximately modelled
by assuming normally distributed line endpoint errors. The resulting error on the position

of the object reference point can then be determined using error propagation.

For each pair of lines this end point error manifests itself as an error in the point of

intersection of the parallel constraints, as depicted is Figure 3.11. If th position of the

line end points are PAl and PA2 for "Line A" and PBl and PB2 for "Line B" then the

point of intersection, Pi) is described by a function Pi(PAl,PA2,dA,PBl,PB2,dB). A full
derivation of this can be found in Appendix B. If the error on the intersection point is

described by the covariance matrix '.Eint and Pi 0 is assumed to be approximately lin ar

locally then '.Eint can be expressed as:

(3.15)

Where V'Pi is the matrix of partial derivatives (the Jacobian matrix) of Pi with r sp t

to the position of the line endpoints (again see Appendix B for a full d rivation of this).

For the assumption of normally distributed endpoint errors 'Eint d scrib an ori nt d
bivariate normal distribution of the form:

(3.16)

Where X? is the distance between P and Pi weighted by the magnitud f th rrors. n

fact, X is the distance from P in standard deviations.

(3.17)

Taking the logarithm of this gives an oriented quadratic surface, a cross s ction f which
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is shown is Figure 3.12 (a).

(3.18)

This is used to form a robust kernel, Hi(P), by allowing an equal probability of finding
a measurement outside of 3 standard deviations, as shown is Figure 3.12 (b). Integrating
this kernel into the Hough space is unnecessarily time consuming because of the constant
background level so the whole function is shifted by this constant amount to produce a
localised function.

()
.{

9.0 -~? if X < 3
Hi P = 0.0 otherwise

(3.19)

----In[ I1J
, 21t 11:;11112

3.0 3.0

(a) (b)

Figure 3.12: Formation of a robust kernel from the log likelihood function. (a) A cross
section through the quadratic surface defined by In [P(pilp)] (b) A cross section through
the robust kernel derived from the surface in (a).

Although this shift is different for each hypothesis, the overall effect is simply to shift the
height of the final Hough space surface, with no effect on the actual shape of the surface.
Finally the magnitude of the kernel is weighted by the product of the length of the lines
used to derive the hypothesis. This is necessary for entries to add together properly such
that the entry for a pair of line segments is equivalent to the sum of the entries for pair
of edge pixels which the lines approximate (except of course that pose error on individual
edge pixels is greater resulting in a more spread entry). This weight also allows the height
of the peak to be interpreted as a measure of the proportion of the shape present in
the scene. The probabilistic Hough transform is then constructed by accumulating the
weighted kernels.



Chapter 3. Object Recognition using Pairwise Geometric Histograms 57

(3.20)

3.6.3 Validating the Line End Point Error

The use of a normally distributed line end point error to model the variability in the relative

pose of line segments leaves two important questions to be answered. First we would like

to know whether this model is an acceptable one given the actual pose variation and

secondly we would like to know what the magnitude of this error is. These questions can

be answered by examining the distribution of the error on hypothesised shape positions,

normalised by the error predicted by the model, for an arbitrary test scene. This is the

distribution of X for each of the hypotheses. Figure 3.13 shows the distribution of X for the

location of the Pterodactyl in Figure 3.8 scene 1 with an end point error of 1 pixel assumed.

The approximately Gaussian shape of this distribution suggests that the endpoint error

model is an appropriate one and the width of the distribution gives an estimate of the
magnitude of the end point error. A point to consider when setting the magnitude of

the end point error is that entries in the Hough transform must extend over several bins
to be represented properly. This is effectively a sampling rate criterion. It is perfectly

acceptable to choose errors which are higher than those measured so that the resolution
of the Hough space can be controlled.
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Figure 3.13: Validating the line end point error model and measuring the magnitude of
the error by examining the distribution of X for a set of hypotheses.
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3.6.4 Estimating the Location Uncertainty

By using the probabilistic Hough transform the variability in the pose of scene lines can be

accounted for and the most likely shape position determined as outlined above. Of course

there will be an element of uncertainty associated with the determined shape position

and a quantitative estimate of this uncertainty is needed. The position alone is really

meaningless without some knowledge of the error.

The error on the estimated shape position f> is simply the width of the peak in the Hough
transform and is quantified by finding the covariance matrix, Ep which describes the peak

shape. As the peak is constructed by summing quadratic kernel entries, its shape is also
quadratic and this can be measured by surface fitting.

S(x, y) = a + bx + cy + dx2 + exy + Jy2 (3.21)

As the surface describes a log-probability function, its height away from the peak can be
expressed as a X2 and this is used to relate the covariance matrix lJp to the surface fit
parameters.

(3.22)

Where.

p=[:] (3.23)

When this is expanded the coefficients of the inverse covariance matrix are found to be:

(3.24)

This is easily inverted to obtain the error on the estimated shape position lJp•

1 [J _!]lJ - 2
P _ df _ e; _~ d (3.25)
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3.6.5 The orientation Hough transform

Significant peaks in the probabilistic Hough transform suggest the presence of known mod-

els in the scene data and the positions of these peaks indicate the most likely positions

of those models, but no attempt has been made at this stage to determine their likely
orientation. This is done separately for each identified model by isolating the lines which

have contributed to the Hough peak and accumulating the difference in the orientation

between these lines and the associated model lines. Isolating lines which have contributed

to a particular peak is a matter of finding those lines whose parallel constrain,t passes

within 3 standard deviations. A l-parameter Hough transform is employed to accumulate
the relative angle between the scene and model line data and the estimate of the model

orientation is based upon the position of the peak in this space. The normally distrib-
uted line end point error implies that orientation estimates will also be subject to normal

errors and these can be accounted for by making appropriate quadratic entries into the

I-parameter Hough transform. As with the location Hough transform this improves ro-
bustness, allows orientations to be determined to sub-bin accuracy by interpolation and
provides a meas~re of confidence in the estimate.

3.7 Experiments: Hypothesis Combination and Determin-
ing Object Pose

The experiments presented here demonstrate the effectiveness of the probabilistic Hough

transform for combining evidence from classified line segments allowing decisions to be

made about the presence and pose of known objects. The first of these experiments

combines evidence from the classified line segments for the test images presented in section

2.5. Further results are then provided which quantify the uncertainty in recovered shape

positions and it is shown that this uncertainty can be estimated from the shape of the
peak in the Hough transform.

3.7.1 Demonstration'

In Section 2.5 a number of test images of planar shape templates and views of mechanical

parts were selected to demonstrate how pairwise geometric histograms can be used to

classify scene line segments according to the line segments found in stored models. The

results of this classification (see Figures 3.8 and 3.9) are used here to identify known shape

models in the test scenes. A probabilistic Hough transform has been constructed for each
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of the known models and entries made for all appropriately labelled scene lines. Models

for which enough evidence can be found in each of the scenes have been presented at their
most likely pose in Figures 3.14 and 3.15.

In these examples the probabilistic Hough transform has successfully detected all of the

models present in each of the scenes and determined what at least qualitatively appear to

be good estimates of the shape poses. Most of the misalignment between the scene data
and the overlaid models is explained by the variability in the scene data due to change of

lighting, slight scale variation where templates are placed on top of each other and slight

perspective effects for the mechanical parts. There are a number of specific problems which

are worth highlighting however. In Figure 3.14 scene 3 the Brontosaurus' head (green) is
poorly aligned with the scene data but by looking at the classified data in Figure 3.8 it

can be seen that the head of the Brontosaurus has been poorly classified, providing little
constraint on the position of the model. Another potential problem is the Stegosaurus

model (red) in Figure 3.14 has been poorly localised along its length. In fact the model is

poorly constrained in this direction because most of the vertical lines are very short and
thus prone to a large error in position and orientation. This is a prime example of why it

is important to be able to predict the uncertainty in the recovered shape positions.

3.7.2 Estimating location uncertainty

In the theoretical discussion above it was suggested that the shape of the peak in the

Hough transform can be used to estimate the error on the recovered shape position. In
the experiments presented here the magnitude of the positional error is quantified for

a number of model shapes and the ability to predict this error is tested by comparing

the predicted error with the variation of the recovered position of test shapes in known
positions.

In order to measure the variability in the estimated shape position for a particular model,

100 test images were generated by applying a uniformly distributed, random transforma-

tion to the original image data and then adding some random, pixel noise. The range of

transformations allowed was constrained so that the whole shape was present in each test

image. The added pixel noise was generated from a Gaussian distribution with a variance

of 5% of the pixel grey-level. The line segment data extracted from the generated test

images exhibits significant variation over the original model, providing a good test whilst

ensuring that the position of the model is still known so that this may be compared with

the estimates for each test. Figure 3.16 displays the error in the position estimate for each
of the 100 test examples for two different model shapes. Note that all points have been
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Figure 3.14: Recognition and localisation of silhouett data.
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Figure 3.15: Recognition and localisation of ID chanica! components.
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rotated into the model's local coordinate frame. The fitted ellipses represent the third

standard deviation from the mean of each cluster. In both of these examples the error on
the estimate, along the direction of greatest error, is of the order of 0.2 pixels.

o
c
<1)
s::
8.. -0.4
6o
U
><

o
o o

0.8

0.6

0.4

0.2

-0.2

-0.6
o

-0.8
_IL_ __ ~ __ _L __ ~ L_ __ ~ __ -L __ ~ L_ __ ~ __ ~

-I -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

X Component of Location Error

0.8...
0 0.6t:
~
c: 0.4 .'

........
'"

0 .'·c 0 o. 000ro 0.2 o o.
o o 00.

o't>0 oOoooe 0 0~ o I- .0 oo~o.Q)o<><I:> ..........
000 $0 0 0 0... 0 0 0 0c:: -0.2 <> .,»<1) 0 0s::

0
-0.40..

6
0

-0.6U
>< -0.8

-I
-I -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

X Component of Location Error

Figure 3.16: The error (in pixels) on the estimated location of 100 t t hap

The ability to predict the error on the position timate is t st d h r by b til m uring

and estimating this for a number of different models. The stimat is btain d by 1 ating

each model in its original image and measuring the variance along th maj r axis of the

Hough transform peak. Each model is then located in 100 t st c n s in which the p sition
is known and the magnitude of the error along the major axis of th

Figure 3.17 shows the predicted error versus the measured rror for ach of th mod Is
used.
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The first thing to notice about this data is that the predicted error is much worse than
the measured error. This is because the magnitude of the line end point error used in the

experiment is 1 pixel but the actual error, measured in Section 3.6.3 earlier was around

0.2 pixels. This means that the predicted error should be a factor of 5 gr ater than th
measured error. This relationship is shown by the dotted line in Figure 3.17. Bearing this

in mind, it can be seen that the measured error is generally worse than the expected value,

although in these examples it is always within a factor of 2. The reason for this is that

the Hough transform entries are partially correlated (many entries are made for each line
segment) which means that each entry carries less information about the shape's position

than is being assumed. Overall it may be concluded that an approximate stimate of the

error can be derived from the Hough transform peak.

2.5 I I I I I I I I I

,....._

~ 2 I-....
0
'::;p
::E
'-'.... 1.50
t:: 0~ 0
J::
0.~ 1 0
o e 000
....l c.
"0
2 0.5
o:.ae
0.. I I I I I I I I I

0
0 0.05 0.1 0.]5 0.2 0.25 0.3 0.35 0.4 0.45 0.5

MeasuredLocationError (MajorAxis)

Figure 3.17: The error on shape position estimated from the Hough transform p ak shap
versus the error measured over 100 test scenes.

3.8 Conclusions

In this chapter it has been suggested that the key to dev loping a pow rful 0 j t r og-

nit ion strategy based on image features is to use a highly descriptive r pr S ntati n whi 11

permits individual features to be classified providing a limited numb r of hyp th s s f

a scene's content. This greatly improves fficiency by limiting the s ar h n d cl t find

feature groupings consistent with known model shap s. A shape repr s ntation whi 11

provides this level of description can be constructed by storing g om tric m asurcments
between pairs of features in the the form of a fr quency distribution. h ompa tn s f
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these pairwise geometric histograms promotes efficient feature matching and by explicitly

coding feature measurement errors into the representation classifications it is reliable.

The representation of polygonised shape data using geometric histogram, as first presented
by Evans [Evans 94], has been adopted here and shown to be effective for classifying line

segments in difficult scenes. Central to the classification process is the choice of the

Bhattacharyya distance metric for comparing seen and unseen shape data. Although this
metric was originally chosen for empirical reasons, a statistical argument is presented

which suggests why this metric is appropriate.

Final object classifications are formed by combining hypotheses provided by classified
line segments, previously done using a generalised Hough transform. This stage of the
algorithm is greatly improved by adopting the probabilistic Hough transform which allows

variability on the pose of features to be modelled. The probabilistic Hough transform has

been described here and formulated for recovering shape positions from sets of hypotheses.

Experimental results have shown that the probabilistic Hough transform performs well on

scenes exhibiting high levels of clutter and occlusion. By interpolating across the Hough
transform peak, an improved estimate of model locations can be determined and it is shown
that typical levels of accuracy of 0.2 pixels can be expected. In any estimation problem
it is desirable to have some quantitative knowledge about the error on the estimate, and

the probabilistic Hough transform provides this information explicitly. Results show that

the error on the estimated shape position can be determined to within a factor 2.



Chapter 4

An Analysis of the Reliability of
Recognition

4.1 Introduction

In general, the classification of measured data is prone to some error and the magnitude
of this error is an important measure of a classifiers performance. Not only does the error

rate reflect the classifiers success but when the classifier is integrated into a larger system,

a quantitative measure of the error rate allows the performance of the complete system to
be predicted by error propagation [Haralick 96].

Quantitative knowledge of the error rate has a number of uses in the design and application

of a classifier. When designing a system which incorporates some element of classification

the designer may wish to specify the maximum error rate which is acceptable. Knowledge

of the error rate of different classification techniques not only allows the designer to com-

pare these techniques with each other but allows the most appropriate one, which meets
the systems requirements, to be selected.

Another use of the error rate is the selection of appropriate, or possibly even optimal

algorithm parameters. Complex algorithms often have a large number of such parameters

which control their behaviour and these need setting appropriately. Sometimes appropriate

values for these parameters relate directly to quantities which can be either measured

or derived from sample data or from other algorithm parameters. For example, when

entries are made into a pairwise geometric histogram, the blurring applied to account

for errors in the measurement of the angle between line primitives is derived from the
algorithm which approximates the image data by line segments in the first place. When

66
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the meaning of algorithm parameters is less obvious selecting an appropriate value, and

justifying this choice, is less straightforward. In these instances parameter values may be
selected by observing their effect on the performance of the algorithm and selecting a set

of parameters which result in acceptable, or even optimal, performance. To do this, a
measure of performance must be defined and the error rate is a useful component of this.

A similar use of the error rate is to assess modifications made to the classification algorithm

itself. This determines whether a change improves or degrades reliability and allows the

changes in reliability to be compared with other important factors such as changes in
the algorithm's complexity. This promotes a more methodical approach to algorithm

development where the costs and benefits of specific modifications are well understood.

A fair criticism of most of the computer vision research conducted to date is the lack

of analysis needed to quantify important performance characteristics such as the error

rate [Haralick 92, Courtney Thacker & Clark 97]. This is both problematic for the re-

searcher who wishes to build on existing work and to the engineer who wishes to identify

solutions to well specified problems. For the research field to develop effectively it is
necessary to be able to assess the relative merits of different algorithms and theories of

vision. This allows research to be focussed on the techniques which look most promising.
In order to be adopted by engineers, the performance of vision algorithms must be well

understood so that they fit into the engineering design methodology. These issues have

motivated the work presented in this chapter which investigates the reliability of scene
feature classification when using pairwise geometric histograms.

4.1.1 Algorithm Scalability

Intuitively, the reliability of a classifier is likely to depend upon the number of different

classes from which samples can be drawn. For many classification tasks this number is fixed

and possibly quite small, and the classification error is frequently estimated from a number

of test examples taken from each class. Conventional approaches to error estimation are
briefly discussed in the next section. Even in some vision tasks the number of classes

is sufficiently constrained to allow this conventional treatment. In general though, the

number of classes in an object recognition application can be very large and possibly

even unknown and conventional error estimation techniques are no longer practical. Even

in relatively straightforward applications such as the inspection of industrial parts, the

system may need to be flexible enough to allow additional shape classes to be added in
the. future and. the impact of this change needs to be predictable.

Many of the object recognition algorithms which have been developed are demonstrated
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with a small number of model object classes and the error rate based on this small sample.
It is not obvious how well these algorithm will perform as the number of models is increased
however. This poses a more general question about the performance of object recognition

algorithms. What is the impact on the performance of the algorithm as the number of

model object classes is increased? This is a question of scalability. To begin to answer

this question the four following issues must be considered:

1. How does the algorithm's computational requirement increase as the number of
classes is increased?

2. How does the algorithm's memory requirement increase as the number of classes is

increased? .

3. How does the reliability of the classification process degrade as the number of classes

is increased?

4. How many unique classes can be described using a given representation?

The designers of all types of algorithm are very familiar with the concepts of algorithm
complexity which concerns the first two of these issues. The last two issues are specific to

classification algorithms and in particular computer vision algorithms in which the number

of classes can be very large. This more general issue of scalability is initially approached in

this chapter by investigating the relationship between the number of model classes and the

reliability of classification. To complement this, the, fourth issue concerning the number
of shape classes which can be uniquely represented is investigated in Chapter 5.

Most of the parameters used in the construction of geometric histograms have well defined

values with the exception of the number of bins along the perpendicular distance axis. To

provide a mechanism for selecting an appropriate bin size the effect of this parameter on

the reliability of the algorithm is investigated in Section 4.8. The result of this analysis

allows an appropriate bin size to be selected that will give a specific classification error.

4.2 Classification Error Estimation

The standard framework used for handling classification errors is probability theory. Given

a number of classes {Wi: 1 ~ i ~N} and a sample x, the error e is the probability that

the sample is assigned to the wrong class. If the conditional a posteriori probability of
each class given the sample is known then it is usual to assign the sample to the class for
which this probability is maximum. This is the Bayes decision rule.
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(4.1)

where w is the class to which the sample is assigned and P(wilx) is the a posteriori

probability of the data belonging to class Wi given the measurement. This rules results
in the minimum possible error rate which is called the Bayes error. Unfortunately, even

when the class density distributions are known, calculating the Bayes error is very difficult

as it requires the integration of the regions of the class density functions which intersect

each other. Usually the class density distributions are not known anyway and this has

motivated other approaches to error estimation.

The common approach for estimating the error is to measure the rate of success of the
classifier when applied to a set of test data, but selecting a representative test set which
accounts for the natural variability in the data and effects of noise is difficult for vision

problems. Also, in some circumstances the amount of data available for testing may be

limited resulting in poor estimates of the error. An improved method for error estimation

has been proposed by Haralick [Haralick 92] in which models are constructed to describe

the data to be classified and to describe the variability of the data. Test examples can then
be drawn at random from these models and providing these models are representative of

the data to be classified, good estimates of the error rate can be determined. A criticism of

this approach is that real data rarely conforms to the types of models which are adopted.

4.3 Classification Error for Many Classes

The methods already discussed for classification error estimation may be appropriate when

the number of classes is small but they become impractical as the number of classes is

increased. These methods also say nothing about how the reliability scales as the number

of classes is increased. This has motivated the development of an alternative approach to

error estimation which makes the relationship between the error rate and the number of
model classes explicit.

Before proceeding there are some important observations which should be made about this

particular classification problem as these have moulded the approach taken. First of all,

the domain of all shape classes is not a discrete space hut describes a continuous and infinite

variety of possible shape. Discrete classes are imposed on this space by the set of training

examples, but these are simply a sample taken from the distribution of all possible shape.
It is useful to adopt the concept of a prior density distribution [Fukunaga & Flick 84]
when considering a large number of classes under these circumstances. This prior density
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reflects the fact that some shape classes are more likely to be encountered than others
and that some configurations are unlikely to be encountered at all. The prior density

distribution Pprior(X) describes the probability of drawing a random pairwise geometric

histogram or pattern X = x, within a small range ~x.

P(X = x) = PpTior(X)~X (4.2)

The situation, then, is that we have some continuous domain of patterns and impose N
classes {Wi: 1 ~ i ~N} on this domain by defining a set of exemplars {Xi: 1 ~ i ~ N}.
Given a previously unseen pattern, x, we would like to estimate the probability, E, that
the pattern is incorrectly classified and relate this to the number of classes N.

We begin by considering a pair of classes Wi and wi represented by class exemplars Xi and

xi and a sample Xi drawn from class Wi. For a nearest-neighbour classifier an error occurs

when Xi is closer to the wrong class exemplar xi than it is to its own class exemplar Xi.

This is the pairwise error cp(i, j).

(4.3)

where the notation 1·1 is used to represent the distance between a pair of patterns defined

by the appropriate distance metric. As already discussed in Chapter 3 the classification
of pairwise geometric histograms is based on the Bhattacharyya distance.

[m - si = L:..foiiv'Si
i

(4.4)

where m represents a model pairwise geometric histogram and s represents the pairwise

geometric histogram constructed for a scene line primitive. The mean pairwise error Ep is
determined by averaging over all of the classes.

(4.5)

,
The mean pairwise error, cp, is the probability that a sample pattern will be closer to a

randomly selected class exemplar than it is to its own class exemplar. Conversely, the

probability that a sample pattern will be closer to its own exemplar than a randomly
selected one is by definition 1 - Cp. If there are a total of N stored exemplars then the

sample pattern will only be classified correctly if it is closer to its own exemplar than it is to
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any of the other N - 1 class exemplars. Assuming that class exemplars are independently
sampled from the distribution of patterns, then the probability that the test pattern is
correctly classified, P, is simply:

(4.6)

If P is the probability of the test pattern being classified correctly then the classification

error, E is simply 1 - P.

(4.7)

This expression for E, which is exponential with respect to N, suggests that even when

the pairwise error is small the classification error can become large when the number of

stored exemplars, N, is large. One way in which the classification error can be improved

when the number of classes is large is to propose a number of likely classes for each test

pattern based on the nearest n neighbours. This is only useful if the extra, incorrect classes
can be discarded later, which for shape data can be done by finding consistency amongst

the classes assigned to a group of shape primitives. In fact, this is done already in the

recognition algorithm by the probabilistic Hough transform as only consistent primitive

classifications contribute to the winning Hough space. This is in contrast to Fukunaga's
suggestion that classes are grouped to reduce the classification error when the number of
classes is very large [Fukunaga & Flick 84].

Typically the number of classes that should be proposed for each test pattern so that it

is likely that the correct class is included is the expected number of pairwise misclassi-

fications, (N - l)Ep. More specifically, if the number of proposed classes is n, then the

probability that none of those classes will be the correct class is described as a sum of
binomial terms. This is derived in Appendix C.

(4.8)

This allows the user of the algorithm to select n according to the data to be classified to

obtain the required classification error, at the expense of having to find a single, correct
class later.
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4.3.1 Estimation of the Mean Pairwise Error

So far it has been suggested that the classification error e can be determined from the mean

pairwise error C:p but nothing has been said about how this is determined. It is shown here

that the mean pairwise error can be estimated from the distribution of distances between

class exemplars and the distribution of distances between class exemplars and samples

drawn from those classes.

The typical distance between patterns drawn at random from Pprior (x) gives an indication
of the difficulty of a particular classification problem. This can be characterised by the

interclass density distribution Pinter (d) which gives the probability that a pair of patterns
Xi and Xj drawn at random are at a distance d from each other, within some small range

ss.

P(lxi - xjl = d) = Pinter (d)!::::.d (4.9)

This is shown in Figure 4.1 for clarity. The term interclass distance density distribution
is used because class exemplars are treated as random samples from the prior density
distribution.

d
Distance a

Figure 4.1: Calculating the probability that two random samples Xi and Xj will b ' par-

ated by a distance d using the interclass density distribution Pint r(a).

It is also convenient to define the cumulativ , interclass density function, Pinter(d), where:

(4.10)

The probability that a pair of randomly selected patterns Xi and Xj are 1 ss than a distance
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d from each other is given directly by the cumulative distribution.

(4.11)

Given a set of exemplar training patterns, {Xi: 1 ::; i ::;N}, an estimate of the cumulative

interclass distance density function Pinter (d) can be determined by recording the distance

between each pair of class exemplars as a frequency distribution and then normalising.

The typical distance between a class exemplar and patterns drawn from that class also

gives an indication of the difficulty of the classification problem. For the time being gross
effects such as scene clutter and missing data are ignored so that this distance reflects

variability introduced by the different stages of the recognition system. The statistics of

this distance can be characterised by the mean within-class density distribution Pwithin(d)
which gives the probability that pattern Xi drawn at random from a class Wi also drawn

at random is at a distance d from the class exemplar Xi.

(4.12)

This probability is depicted in Figure 4.2 for clarity. It is worth noting that the exp ctation
of this distribution is the mean class variance (j2.

-a2 = E [Pwithin(d)] (4.13)

d

Distance a

Figure 4.2: Calculating the probability that a pattern xi drawn at rand m and the class

exemplar Xi will be separated by a distance d using the within-class distanc distribution
pwithin (a) .
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As with the interclass distance density distribution, an estimate of the mean within-class

distance density Pwithin(d) can be determined from a number of samples.

It is now possible to derive an expression for the mean pairwise error Cp' Recall from

earlier that.

(4.14)

That is, a pairwise error occurs if the distance from a sample Xi to the wrong class exemplar

Xj is less than the distance to the correct exemplar Xi. This can be written as a joint
probability integrated over a marginal variable a.

cp - 10
00

P(lxi - xjl < a,IXi - Xii = a)da

- 1000 P(lxi - xjl < a)P(lxi - Xii = a)da

(4.15)

(4.16)

Then, by substituting in Expressions 4.11 and 4.12, an expression for Ep in terms of the
interclass and within-class density distributions is obtained.

(4.17)

In practice, analytic expressions for the density distributions are unavailable and instead

they are estimated from a sample set of pairwise geometric histograms. An estimate of

the pairwise error is determined from these estimated distributions using the expression:

A
€p = LPwithin(a)Pinter(a)Aa

a=l
(4.18)

where A is the number of bins used to represent the estimated density distributions and
~a is the width of each bin.

4.4 Experiments: Noise Free Classification Error

The classification error for shape data represented by pairwise geometric histograms is
investigated here using the analysis discussed above. This has been done for two sets of
shape data, the first being shape outlines and the second being views of mechanical parts.
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Both sets can be found in Appendix A, the outline data in Figures A.1 and A.2 and the
mechanical data in Figure A.3. Each set of shape data was used to construct exemplar

geometric histograms, each line primitive defining a different class, and these were then
used to construct the respective cumulative interclass distance distributions. This data
provides only a single example for each class but to construct the within-class distance

distributions a number of example shape primitives from each class are needed. To obtain

this additional data, 99 examples were generated for a few selected elasses by applying

random rotations and translations to the original image data for a number of models, and

then approximating the new images by line segments. Line segments were clustered into

groups of 100 based upon proximity of their geometric histograms which should group

them according to class and the within-class distance distributions generated.

4.4.1 Shape Outlines

The outline shape data found in Appendix A, Figures A.I and A.2, has been used to

construct a database of 906 exemplar pairwise geometric histograms of type directed with
a resolution of 40 distance bins and 64 angle bins. Figure 4.3 shows the normalised,

cumulative interclass distance distribution constructed for this data. The distribution has
been constructed with 100 bins over the range of distance from 0.0 to 1.0.
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Figure 4.3: Cumulative distri~ution of interclass distance, .Pinter(d), for the shape outline
data.

Figure 4.4 shows the normalised, within-class distance distribution constructed for a se-

lection of line primitives taken from the outline data set. Again, the distribution has been
constructed with 100 bins over the range of distance from 0.0 to 1.0.
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Figure 4.4: Distribution of within-class distance, Pwithin (d), for a selection of line primitives

taken from the shape outline data.

Using Expression 4.18, these distributions have been used to estimate the probability,
cp, that a scene geometric histogram will be closer to an exemplar geometric histogram

selected at random from the training set than it is to its own class exemplar.

€p = 3.029 X 10-5 (4.19)

For the database of 906 exemplar geometric histograms, and when classification is based

on the nearest neighbour (n = 1), this gives a classification error of:

e = 2.71% (4.20)

Figure 4.5 presents the error rate as a function of the number of stored exemplars for

different values of n. For this type of shape data a classification error of less than 0.5%

can be expected with tens times as many stored models when classification is based on

the nearest 3 neighbours.

4.4.2 .Mechanical Parts

The outline shape data found in Appendix A, Figure A.3 has been used to construct a

database of 449 exemplar pairwise geometric histograms of type directed with a resolution

of 40 distance bins and 64 angle bins. Figure 4.6 shows the normalised, cumulative inter-

class distance distribution constructed for this data. As in the previous experiment, the
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Figure 4.5: The classification error for the outline data as a function of the number of

exemplar histograms for different values of n.

distribution has been constructed with 100 bins over the range of distance from 0.0 to 1.0.
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Figure 4.6: Cumulative distribution of interclass distance, Pinter(d}, for the mechanical

part data.

Figure 4.7 shows the normalised, within-class distance distribution constructed for a se-

lection of line primitives taken from the mechanical part data set. Again, the distribution

has been constructed with 100 bins over the range of distance from 0.0 to 1.0.

These distributions have been used to measure the probability, Ep, that a scene geometric

histogram will be closer to an exemplar geometric histogram selected at random from the
training set than it is to its own class exemplar using Expression 4.18.
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Figure 4.7: Distribution ofwithin-class distance, Pwithin(d), for a selection ofline primitives
taken from the mechanical part data set.

€p = 5.142 X 10-3 (4.21)

For the database of 449 exemplar geometric histograms, and when classification is based
on the nearest neighbour (n = 1), this gives a classification error of:

e = 90.1% (4.22)

Figure 4.8 presents the error rate as a function of the number of stored exemplars for
different values of n. The reliability of classification is much worse for this data than it is
for the shape outline data. To obtain a classification error of less than 0.5% for around
5000 stored exemplars more than 40 of the nearest neighbours must be used. The main
reason for this apparently poor performance is that many of the features in the mechanical
shape data are very similar, resulting in ambiguities. For example, all of the line segments
describing a circular shape, of which there are several in the mechanical part database, are
represented by identical geometric histograms because of shape symmetry. It should be
noted that this large classification error does not necessarily result in poor object detection
and localisation, as is apparent from the recognition results in the previous chapter. Good
overall performance is still attained provided that ambiguous features impose the same
constraint on the object pose. The issue of feature ambiguity is studied in more detail in
Chapter 5.
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Figure 4.8: The classification error for the mechanical part data as a function of the

number of exemplar histograms for different values of n.

4.5 Classification Error in Noise

So far the analysis of classification error has assumed that patterns drawn from some
class will be centred around the class exemplar and vary from that exemplar according to

some statistical distribution which reflects variability in the construction of the pattern.

This variability was measured in the form of a within-class distance distribution and used
to estimate the classification error. For well constrained problems this level of analysis
is sufficient but for many problems, including the classification of shape in real scenes,

patterns can move much further from the class exemplar than the within-class variability

would suggest because of incomplete or contaminated data. Although data may become

incomplete or contaminated for a whole host of different reasons the general term used to

describe these factors is noise.

If the distance moved by patterns from their class exemplars in noisy data is significantly

greater than suggested by the within-class variability then the calculation of classification

error based on the earlier analysis will give an under estimate. This has motivated the

development of an alternative way of estimating the classification error for noisy data.

Instead of quantifying the distance moved by patterns from their exemplars using a fre-

quency distribution of distance, the typical (or mean) distance moved in noisy data is now

used. If the mean distance moved by a pattern, Xi, from its class exemplar, Xi, is ~D

then the probability that Xi is nearer to a randomly selected class exemplar, xi (this is
the pairwise error, cp(i,j)) is simply:
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(4.23)

The mean pairwise error cp over all of the classes is simply the area under the interclass
distance distribution below AD, see Expression 4.9. This can be expressed in terms of

the cumulative interclass distance distribution.

(4.24)

In other words, the cumulative interclass distance distribution can be interpreted as the

pairwise error as a function of the distance patterns move from their exemplars because of

noise, see Figure 4.9. This new estimate of the pairwise error can then be used as before

to estimate the classification error, e, as in Expressions 4.7 and 4.8.
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Figure 4.9: The cumulative interclass distance distribution can be interpreted as the

pairwise error as a function of the distance moved by patterns from their class exemplars

due to noise.

4.6 A Noise Model for Shape Data

Rather than measuring the typical distance that a geometric histogram moves from its

class exemplar from a selection of noisy scenes a model of this movement is developed here

for different sources of noise. This is advantageous because it allows the classification error

to be predicted for arbitrary scenes given an estimate of the magnitude of the noise in the

scene. To test the validity of this model, the distance that patterns move as predicted by
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the model has been compared to the distance moved in scenes containing known levels of
simulated noise, and it has been found that the model provides an upper bound.

The two major sources of noise in the construction of geometric histograms investigated
here are missing line data and scene clutter. Shape data can be missing for a variety of

reasons. If sections of objects are poorly lit, in shadow, badly focussed or if the level of

pixel noise is high then boundaries may not be detected. More seriously, whole sections
of a shape can be missing if it is occluded by other objects. Except under constrained

viewing conditions clutter is an integral part of any scene and unless this is removed by

a segmentation strategy it will contaminate geometric histograms constructed for shape
primitives in its vicinity.

4.6.1 The Effect of Missing Data

To predict the effect of missing line data on the classification process an expression relating

the distance moved by patterns, tJ.D, as a function of the proportion of missing data, rn, is
derived. A normalised, exemplar histogram, iI = [ho, ht, ...,kN-I], constructed from some
arbitrary shape data is defined. A second normalised histogram, if = [mo,mt, ...,mN-l],
is then defined which is constructed from the same shape data as iI except that a pro-

portion, m, of each line of the shape has been removed. This distance between tt and M
is then evaluated using the distance metric:

AD(m) = 1-L [h;Vihi
i

{4.25}

As the shape data represented by if is a subset of the shape data represented by it, the
entries in At must be a subset of the entries in iI which have been rescaled to maintain

normalisation. The distance metric only depends upon elements of M and Ii which are

both non-zero and At is a subset of tt. The distance can therefore be expressed in terms
of if and the scaling factor, s, alone.

AD(m} - 1- L..;s;h;...Imi
- I-VS

{4.26}

(4.27)

Where s is the difference in scale between iI and At.
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(4.28)

This scaling factor, s, can be determined from the difference in the height of a single
geometric histogram entry made for a pair of lines before and after a proportion of the

line data is removed. Figure 4.10 depicts a single histogram entry for a reference line of
length lo compared to another line of length lj' and then the same entry when a proportion

of the line data has been removed.

l~-~
~ __..;__tM

(a)

Ij(1-m) ,,' j
....~::1M(I-m)
I I '1'
I I
I
I

MO-m)

loO-m)

(b)

Figure 4.10: The effect of missing line data on a single histogram entry. (a) The entry

made for the original line data. (b) The entry made for the line data after a proportion
m of each line is removed.

For the original line data the entry is weighted by the product of the lengths of the
two lines, lolj, and normalised by the total entries made into II which is given by the
expression:

2:Hi - 2: lol;
j

= lol

(4.29)

(4.30)

Where 1 is the total length of lines in the shape. If the width of the entry is Ad then the

height, hi, is simply (there shoul~ also be a term relating to the width of the entry along
the angle axis but this falls out and so is ignored):

hi - ~
lolD.d

- J.L
lD.d

(4.31)

(4.32)
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For the shortened line data, the entry is weighted by the product of the lengths of the two

shortened lines, 10lj{1 - m)2, and normalised by the total entries made into M which is

given by the expression: ,

LHi - L1olj{1-m)2
j

_ lol{1 - m)2

(4.33)

(4.34)

The width of the shortened entry is now Ad(l - m) which means that the height of the

(4.35)

lAd(l- m)
(4.36)

The scaling factor s can now be determined by substituting the expressions for hi and mj
into Expression 4.28.

s= 1-m (4.37)

The relationship between AD and m is then determined by substituting 8 in equation 4.27:

-AD(m) = 1-Vl- m (4.38)

To demonstrate this effect, 5 of the models taken from the data set in Appendix A have

been matched with an increasing proportion of line data removed and the mean distance

moved by all of the geometric histograms for each shape recorded. The experimental

results are given in Figure 4.11 along with the theoretical expression shown by the solid

line. The reason why the distance moved in practice is smaller than predicted is because

quantisation of the entries into bins results in a greater overlap than the model would

suggest. This means that the model can be used as an upper bound on ~D. One of the

model shapes used in this experiment is depicted in Figure 4.12 with 25% and then 75%
of the line data removed.
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Figure 4.11: The distance moved by patterns from their class exemplars as a function of

the proportion of missing data m. The solid line is the distance predicted by the model
and the dotted lines are the mean distances moved for all of the geometric histograms for

each of 5 shapes taken from the training set.
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Figure 4.12: An example of model shape data with (a) 25% of each line primitive removed,
and (b) 75% of each line primitive removed.
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4.6.2 The Effect of Scene Clutter

To predict the effect of scene clutter on the classification process an expression relating
the distance moved by patterns from their exemplars, AD, as a function of the proportion

of scene clutter, c, is derived. A normalised exemplar histogram, II = [ho,hI, ..., hN-I],
constructed from some arbitrary shape data is defined. A second normalised histogram,

6 = [eo,Cl, ... , CN-I], is then defined which is constructed from the same shape data as

II except that a proportion, c, of the length of lines in the model are randomly added as

clutter. The distance between II and 6 is then evaluated using the distance metric:

AD(c) = 1- LA..;t; (4.39)

If the entries added to II for the clutter data to produce 6 are assumed not to correlate

with any of the original entries in II then correlated entries between II and 6 are related

the scale factor needed to normalise 6.

(4.40)

II is a subset of the data in 6 so the distance between them can be determined in terms
of II and the scale factor.

AD(c) - l-LAj¥ (4.41)
i 8

1
- 1-- (4.42)..;s

The scale factor can be determined, as before, by considering a single entry made for a

reference line of length lo and another line of length lj. The weight for the entry is the
product of the line lengths lolj normalised by the total entries' made into the histogram
lol. If the width of the entry is Ad then the height hi is:

h. = 101;
l lolAd (4.43)

Similarly, for the cluttered data the entry is weighted by the product of the lengths of

the two lines lolj normalised by the total entries made into the histogram, lol(l + c). The
height of this entry, Ci, still of width Ad is simply:
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~ lolj
Ci = 101(1 + c)~d (4.44)

The scale factor can now be determined by substituting the expressions for hi and q into

Equation 4.40.

s=1+c (4.45)

The relationship between ~D and c is then determined by substituting s in Equation 4.42:

1
~D(c) = 1- v'f+C

l+c
(4.46)

To demonstrate this effect, 5 of the models taken from the data set in Appendix A have

been matched with an increasing proportion of scene clutter added and the mean distance

moved by all of the geometric histograms for each model recorded. The experimental

results are given in Figure 4.13 as dotted lines along with the predicted distance shown
by the solid line. The reason why the prediction is always greater than the measured
distances is that some of the added clutter correlates with the original histogram entries

increasing the similarity. This means that the model prediction can be used as an upper

bound in the distance moved by patterns because of clutter. One of the model shapes
used in this experiment is depicted in Figure 4.14 with as much clutter as there is model
data and with twice as much clutter than there is model data.

This model of the distance moved by geometric histograms as a function of the level of

missing data and scene clutter can be used, along with the cumulative interclass distance

distribution, to calculate the classification error for noisy scenes. If the mean levels of

missing data and scene clutter are m and c respectively then the mean distance moved by
input patterns, AD, is described by the sum of the models.

1
~D = 2 - VI - m - --==

v'f+C (4.47)

The pairwise error, cp, can then be determined from the cumulative interclass distance
distribution, Pinter(AD):

cp = Pinter (2 - VI _ m _ 1 )
v'1+c (4.48)
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Figure 4.13: The distance moved by patterns from their class exemplars as a function
of the proportion of added clutter data c. The solid line is the distance predicted by
the model and the dotted lines are the mean distances moved for all of the geometric
histograms for each of 5 shapes taken from the training set.
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Figure 4.14: An example of model shape data with (a) the same amount of clutter as
there is model, and (b) twice as much clutter as there is model.
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4.7 Experiments: Classification in Noise

The classification error is estimated here for noisy scenes using the shape data used in the

earlier, noise free, experiments. A reasonable mean distance between geometric histograms

constructed for scene data and their correct class exemplars, ~D, of 0.25 has been picked
to represent realistic levels of scene noise. The noise model suggests that this would be

the mean distance moved by patterns from their exemplars if about half of the shape data
was missing or if there was as much scene clutter as there was shape data. Because the
noise model gives an upper bound on the distance moved by patterns this value of ~D
probably represents much worse viewing conditions.

4.7.1 Shape Outlines

The cumulative interclass distance distribution constructed earlier for the shape outline

data, see Figure 4.3, is interpreted as the pairwise error as a function of the mean distance

moved by patterns from their exemplars. For a distance ~D = 0.25, the estimated pairwise
error is:

€p = 6.488 X 10-4 (4.49)

For the database of 906 exemplar geometric histograms, and when classification is based
on the nearest neighbour (n = 1), this gives a classification error of:

E: = 44.4% (4.50)

Figure 4.15 presents the error rate as a function of the number of stored exemplars for
different values of n.

4.7.2 Mechanical Parts

The cumulative interclass distance distribution constructed earlier for the mechanical part

data, see Figure 4.6, is interpreted as the pairwise error as a function of the mean distance

moved by patterns from their exemplars. For a distance ~D = 0.25, the estimated pairwise
error is:

€p = 5.046 X 10-2 (4.51)
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Figure 4.15: The classification error for the outline data as a function of the number of

exemplar histograms for different values of n.

For the database of 449 exemplar geometric histograms, and when classification is based
on the nearest neighbour (n = 1), this gives a classification error of:

e = 99.9% (4.52)

Figure 4.16 presents the error rate as a function of the number of stored exemplars for
different values of n.
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Figure 4.16: The classification error for the outline data as a function of the number of
exemplar histograms for different values of n.
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4.8 Optimum Selection of Parameters

It was mentioned in the introduction that one of the motivations for determining the

classification error is to be able to select algorithm parameters in order to provide a

specific level of performance. This is particularly useful when an appropriate value for a

particular parameter cannot be determined in any other way. One such parameter used

in the construction of pairwise geometric histograms is the histogram resolution along

the perpendicular distance axis. To provide a more principled method for selecting an
appropriate resolution, cumulative interclass distance distributions have been constructed

for geometric histograms of increasing resolution. These can be seen in Figure 4.17 for

geometric histograms with 10, 20, 40, 80, 160 and 320 bins along the perpendicular distance

axis.
1

# Distance Bins
0.8 J~8~...g 0.6

~
0I.l

'".~ 0.4.;
I:l..

Mean Distance from Exemplar AD

Figure 4.17: Cumulative interclass distance distributions constructed for geometric histo-
grams with increasing perpendicular distance resolution.

Given a specified level of performance, in terms of the classification error e and the number

of stored exemplars N, the pairwise error which gives this performance can be determined
be rearranging Expression 4.7.

(4.53)

The histogram resolution which gives this performance for a specified level of scene noise

can then be read directly from the curves in Figure 4.17. Intuitively the classification

error cannot be continually improved by increasing the histogram resolution. This is

confirmed by the data in Figure 4.17 where the curves converge to a minimum error. At
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this resolution all of the measurements entered into the geometric histogram are being

accurately represented.

4.9 Conclusions

Error analysis of object recognition algorithms is essential if the research is to progress ef-

fectively and if the proposed solutions are to be successfully embedded into larger systems.

A more general question, and one which is very relevant to object recognition in partic-

ular, concerns the relationship between reliability and the number of model classes that

the system is expected to distinguish between. This argument motivated the analysis of
the reliability of shape primitive classification when using pairwise geometric histograms.
Conventional error estimation techniques do not make the relationship between the error

and the number of (shape) classes explicit so an alternative approach has been proposed.

Central to this new approach is the idea, proposed by Fukunaga, that shape classes are

effectively drawn at random from some prior density distribution. Although this distri-

bution is never used directly it does mean that the distribution of distances between pairs
of class exemplars has a characteristic shape and this interclass distribution can be used
in estimating the error.

The main criticism of the approach is likely to be that the shape of the interclass density
distribution depends to some extent on the shape data used. Compare Figures 4.3 and 4.6
for example which present the interclass density distribution for the two different datasets

used in the experiments. There is clearly a difference in their shape. The intuitive counter

argument would be that these distributions must have some uniformity in their shape,

otherwise the performance of the algorithm would vary wildly from one shape to the next,

but this is not found in practice. If a researcher demonstrates their algorithm working on

some shape data then we accept that it is likely to also work on other similar shapes under

the same conditions. In fact, simply observing distributions like the interclass density

distribution which are central to the behaviour of the algorithm can provide significant
insight into the performance of the algorithm even before any quantitative analysis is

conducted. A more rigorous argument is provided in the next chapter where it is found

that the shape of the interclass density distribution for small distances is related to the

complexity of the shape data, or more specifically the intrinsic dimensionality of the data.

It is also this part of the interclass density distribution which affects the estimated error.

One of the observations of the analysis was that the error increases exponentially with
respect to the number of model shape classes. Even when the error rate for a small number
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of shape classes is very small this can change rapidly as the number of shape classes is
increased. It was proposed that this problem can be avoided by assigning a number of the

best classes to each scene primitive and then identifying the correct single class later by

looking for consistency. Results presented here have shown that error rates better than

1% can be attained for large numbers of stored models when this strategy is adopted.

One of the uses of a quantitative measure of reliability is to enable algorithm parameters
to be selected in order to give a specified level of performance. Most the parameters used

in the construction of pairwise geometric histograms are well defined but an exception to

this is the resolution along the perpendicular distance axis. To provide a principled means

for selecting this parameter, its effect on reliability has been made explicit by plotting

distance distributions for different resolutions. This allows the user to specify a required

classification error and choose an appropriate histogram resolution accordingly.



Chapter 5

Estimating the Capacity of the
Shape Representation

5.1 Introduction

In the previous chapter the reliability of the shape classification process and the way

that this scales with the number of stored shape primitives were investigated. A second

important issue regarding the scalability of the algorithm concerns the number of distin-
guishable shape primitives which can be described using pairwise geometric histograms
without confusion. The term capacity is coined to describe this. Given a simple represent-
ation, for example the binary representation of integers, the number of different integers

which can be described for a given number of bits can easily be determined by counting

the number of binary combinations that can be formed. This is a straightforward problem

because it is clear what is meant by a unique or distinguishable integer and also because

we know that all combinations of binary digits represent allowable integers. Given that

a geometric histogram can only be represented to some level of precision in practice, a

naive approach for estimating the capacity might be to simply count the number of unique

histograms that can be formed. This, of course, gives a very poor estimate which does

not reflect any intuition about what is meant by distinguishable shape and also allows

for instances of shape which are unlikely to be encountered. This example highlights two

particular problems which must be addressed in order to obtain a meaningful estimate

of capacity. First of all, how can the continuous domain in which geometric histograms

exist be quantised in a sensible manner to represent unique patterns so' that they can be

counted? Secondly, what proportion of this domain represents the sorts of shapes that

are likely to be encountered and can this be determined from a relatively small number of

93
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example shapes?

Intuitively there appears to be some relationship between capacity and reliability but at

first the nature of this relationship may not be obvious. Certainly, if a representation

with a small capacity is used to represent a large number of exemplars then the system

will not be able to uniquely classify test data without error. The problem here is one

of ambiguity and can only be avoided by proposing multiple hypotheses for the class of

each test example. On a statistical level this ambiguity arises because class distributions
overlap each other so that it is sometimes impossible to tell, with absolute certainty, from

which class a particular test exa~ple may have been drawn. The capacity can be defined

in this context as the number of classes that can be represented so that the uncertainty is
below a specified, acceptable level.

The purpose of the work presented in this chapter is to estimate the number of shape prim-

itives which may be described by the pairwise geometric representation without ambiguity

and ultimately to demonstrate that this is not a limiting factor on the scalability of the

algorithm. Two different approaches are taken, one based on geometric intuition which

allows a lower bound on capacity to be estimated and the second based on a statistical
model of the training process permitting a more precise estimate of the capacity itself to
be determined.

The geometric approach is an improvement on the work of other research-

ers [Swain & Ballard 91, Stricker 94, Stricker & Swain 94] who have estimated the capa-
city of other representations. In this approach each stored exemplar is imagined to occupy

some finite region of the pattern space and the storage capacity is defined to be the num-
ber of exemplars which, when tessellated, fully occupy the pattern space. On its own this

is a grossly simplified view which inevitably results in a gross over-estimate of capacity

because it is assumes that all regions of the pattern space represent shapes primitives that

are likely to be encountered. The approach has been refined here by estimating the local

dimensionality of the training data and calculating the number of unique patterns which

can be stored along a manifold of this dimensionality embedded in the pattern space,
which can be shown to give a lower bound on capacity.

The statistical approach treats the storage of exemplar patterns as a binning process where

the domain of the representation is imagined to consist of a finite number of potential

storage locations. If it is assumed that each location is as likely to be occupied as any

other then the filling process can be described using Poisson statistics and an estimate of

the capacity can be derived using this statistical model. The advantage of this approach

is that no assumption is made about the distribution of the potential storage locations
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through the pattern space.

5.2 A Geometric Approach

The domain of all possible pairwise geometric histograms can be visualised as a high-

dimensional and continuous space which, ignoring practical limitations on the precision to

which numbers can be represented, describes an infinite variety of histogram patterns. As

model geometric histograms are normalised they define unit vectors in this space which

describe the surface of a hyper-sphere and it is this surface which defines the set of all

possible histograms. In fact, the whole of the surface is not allowable because geometric
histogram bins can only contain positive values as they represent frequencies. This limits

the representational domain to lie on the positive quadrant of the hyper-sphere. Although,

in principle, unique classes can be defined arbitrarily close on this surface, variability in-

troduced by the various processes performed in the construction of a geometric histogram,

such as image sampling and polygonisation, means that neighbouring classes may become

indistinguishable. This variability was quantified in the last chapter for a given set of

shapes by measuring the spread of the within-class distance distribution for a number of

shape primitives from the same class: Figure 5.1 shows one of the within-class distribution
previously constructed.
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Figure S.l: Within-class variability can be quantified by measuring the spread, Dth' of
the within-class distance distribution.

The distance, Dth' which accounts for most of the spread of the data (about three standard
deviations has been chosen here) is a measure of how far data from a given class can be

expected to vary from the class mean. Provided that class centres are never less than twice
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this distance from each other then it is reasonable to say that those classes are distinct.

In this way a class can be described as a patch on the surface of the hyper-sphere with a

radius of Dth as depicted in Figure 5.2.

Figure 5.2: A surface patch describing a region of similar shape is defined by th radius

Dth which is determine by measuring the typical variability of the data within a class.

A geometrically intuitive approach for estimating the capacity is to simply count the num-

ber of patches needed to cover the hyper-sphere's surface. This is similar to the approach

used by Swain [Swain & Ballard 91] and by Stricker [Stricker 94, Stricker & Swain 94] to

estimate the number of colour images which can be stored and individually ind xed using
colour histogram descriptors. If the patches defining unique classes ar assumed to t s-

sellate then the capacity, C, is simply the ratio of the total ar a1 of the patt rn sa,

Aspace, to the area of a single patch, Aclass'

It can be shown that the surface area, An (e), of an n-dimensional hyper-sph rical pat h
with unit radius, defined by a solid angle 2e is given by the r duction formula (sec Ap-

pendix C).

Where.

(r! .2)

The total surface area of an n-dimensional hyper-sph r is det rrnin cl by I tting f) = 7l'.

(5.3)

IThe term area is used because this is determined by integrating over a surface
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This gives the total surface area but must be modified to give the required surface area. of

the positive quadrant. As the dimensionality of the space is increased an increasing pro-

portion of the hyper-sphere's surface exists outside of the positive quadrant. Specifically,
the addition of each dimension doubles the proportion of the hyper-surface's area which
is not within the positive quadrant. Therefore, the total surface area of the positive quad-

rant of an n-dimensional hyper-sphere is determined by halving the area of the complete

sphere n times, giving the required area of the pattern space, Aspace.

(5.4)

The surface patch of radius Dth is described by a solid angle of () = acos(l - Dth), see

Figure 5.2. The surface area of patch representing a distinct pattern class is then simply:

(5.5)

The estimate of capacity is then given by the ratio:

r1r 8inn-2adex 1c= JO
racos(l-Dth) . n-2 d 2nJo 8m ex a

(5.6)

5.2.1 Improved Estimate using Intrinsic Dimensionality

Although shape data is represented in a space whose dimensionality is spanned by the

number of pairwise geometric histogram bins, the intrinsic or local dimensionality, ni, of
the data is significantly less than this. Consequently, the pattern space will never be fully

populated. This reduction in dimensionality arises as a result of two different phenomena.

Firstly, the histogram bins are not independent pieces of data but are highly correlated

because of natural geometric correlations found in shapes which are a function of the

complexity of the shape. Correlations also exist between bins because histogram entries

are blurred by the error functions representing measurement variability. Secondly, not all

areas of the pattern sp~ce correspond to shape data that is ever likely to be encountered
so these areas will always be empty of exemplars.

The consequence of the local dimensionality of the histogram data being less than the

actual dimensionality of the hyper-sphere described by histogram patterns is that the

quadrant is not completely covered but the data describes trajectories across the surface.
Simply estimating the storage by counting the number of patches which completely cover
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the quadrant's surface results in a gross over-estimate. Figure 5.3 depicts a hypothet-

ical situation where, although the data is 2-dimensional, it is constrained to lie along a

traject~ry which locally is l-dimensional, The capacity in this example is the number

of distinct patterns which can lie along the trajectory. In practice we would expect the

surface to be covered by many disjoint, low dimensional trajectories which are locally
smooth. This is because, given an arbitrary shape, smooth deformations such as scalings

and shearings are likely to produce different but equally viable shapes, all of which lie on a

locally continuous manifold. Significantly different shapes are unlikely to lie on the same

manifold however. In general, then, the capacity is driven by the local dimensionality of
the geometric histogram data and the extent to which the trajectories described by the
data tend to fill the higher-dimensional space they occupy.
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Figure 5.3: Geometric histogram data does not fully populate the surface of the hyper-
sphere's positive quadrant but describes low-dimensional trajectories across the surface.

Therefore, the capacity is the number of distinct patterns which can be placed along these
trajectories.

The extent to which the histogram pattern data fills the higher dimensional space is

difficult to calculate but it is possible to estimate the local dimensionality of the data

and this can be used to estimate a lower bound on the capacity. The capacity along
a space-filling trajectory will always be greater than the capacity along a trajectory of

the same dimensionality which does not fill space so the number of patterns which fit

along a straight trajectory through the pattern space is likely to be a lower bound on the

capacity, see Figure 5.4. The area along a straight trajectory of dimensionality, ni, can
be determined using the same integral which is used to calculate the surface area of an

n-dimensional hyper-sphere, where n is replaced by ni. The capacity is simply calculated
using the same expression as before (Equation 5.6) but where n is replaced by ni.
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Figure 5.4: A lower bound on capacity can be estimated using the local dimensionality,
ni, of the pairwise geometric histogram data by counting the number of distinct patterns
which lie along a straight, ni-dimensional trajectory.

5.2.2 Estimating Intrinsic Dimensionality

The problem of determining the intrinsic dimensionality of a set of data is an interesting

one that has many uses in the field of pattern recognition but, as yet, no general solution
has been found. At first the problem does not appear to be a difficult one (a human

observer can look at 1- or 2-dimensional data embedded in a 3-dimensional space and

recognise the intrinsic dimensionality with little trouble) but there are complications. First

of all the apparent dimensionality of a data set depends upon the scale at which the data is
observed, so an appropriate scale must be determined before the intrinsic dimensionality
can be calculated. Again the human observer has little trouble in selecting the appropriate

scale but embodying this process into an algorithm has proved to be difficult. Secondly,

real data tends to be influenced by noise which has the effect of thickening the hyper-

surfaces that the data lies on, resulting in an increase on the apparent dimensionality.

A robust technique to decide whether data is thickened because of noise or really docs

have a larger intrinsic dimensionality has not been found. Examples of these problems are
depicted in Figure 5.5.

A number of techniques for measuring intrinsic dimensionality have been published al-

though they all tend to be variations on either the local PGA (Principal Component

Analysis) approach or the nearest-neighbour approach. The local PCA approach was de-

veloped by Fukunaga [Fukunaga & Olsen 71] and, as the name suggests, is based on the

principal component analysis technique which is traditionally used to determine the min-

imum number of orthogonal directions needed to describe a data set. In the local PCA

approach an estimate of the intrinsic dimensionality is obtained by determining the typical
number of orthogonal directions needed to describe local regions of the data. The local re-
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Figure 5.5: Estimation of the intrinsic dimensionality of the dat in ( ) i hind r d by (a)

viewing the data at an inappropriate scale, and (b) noise whi h iner

dimensionality.

s th appar ut

gions used in this analysis can be defined in a number of different ways. 'trunk [Trunk 76J
progressively increases the number of nearest-neighbours, k, in a h 1 ally d fin cl r -

gion until the (k + 1) th neighbour fits into the co rdinat fram d fin d by th fir t

k data-points. Other approaches define local regions by att mp ing t dust r th I ta
according to measures of topology or distance [Schwartzmaun & Vidal 75]. h n d I,

select an appropriate neighbourhood size in which t al ulat prin ipal mp n nts is a
consequence of the scale problem discussed earli r.

The nearest-neighbour approach utilises the fact that th r lativ dist n

in the pattern space to the nearest-neighbouring x mplars is . fun i n
dimensionality of the data whilst tending to b unaff ct d y th t al Dumb r

exemplars and the actual distribution of th data [Fukun ga 90] [ ttis 7 ). In f t II

be shown that:

(5.7)

Where dk is the mean distance to the kth nearest 11 ighb ur fr In a h p' t rn ill }p

space. Again local regions are effectively defin d, this tim y sIting k, H1d g cl
results depend upon selecting k appropriately.

A recent evaluation of these existing methods [Verv r & uin 5] onchld s tha ~h r



Chapter 5. Estimating the Capacity of the Shape Representation 101

are problems with both and that a good understanding of specific data sets is required
to interpret the results they give. This has motivated the development of an alternat-
ive technique to measure the intrinsic dimensionality of the exemplar pairwise geometric

histograms.

5.2.3 An Alternative Intrinsic Dimensionality Estimator

Central to the nearest-neighbour estimator is the fact that the rate at which neighbours
are encountered, when moving radially out from points in the pattern space, is a function

of the dimensionality of the space. This can be represented graphically by plotting a his-

togram of the the number of neighbours encountered when moving radially outwards from

any exemplar and the shape of this plot is characteristic of the local dimensionality. The

local density of the data introduces a scale factor which can be removed by constructing

the histogram up to some specified radial distance, Dneighbour, and then normalising its

area. This selection of a neighbourhood size is again a consequence of the problem of
analysing the data at an appropriate scale. For convenience, we shall refer to the histo-

gram constructed in this way as the neighbourhood distance histogram or simply distance
histogram.

It is proposed here that the local dimensionality of a set of data is estimated by fitting

distance histograms constructed for the data to distance histograms constructed for simu-

lated data of known intrinsic dimensionality. Distance histograms constructed for a single
data point characterise the local dimensionality at that data point but an average, local

dimensionality can also be determined by using the sum of the distance histograms con-

structed at every data point. Interestingly, these mean distance histograms can be derived

directly from the interclass distance distributions used to predict reliability in the previ-

ous chapter. The neighbourhood distance histogram is simply the section of the Interclass
distance distribution below Dneighbour which is then normalised. An important point to

note is that the shape of these distributions characterises both the reliability of cla..ssiflc-

ation and the local dimensionality of the data. This agrees with the observation made by

Fukunaga that for classification problems involving large numbers of classes the error rate
is driven by the intrinsic dimensionality of the data [Fukunaga & Flick 84].

To test this approach, distance histograms constructed for data uniformly distributed

over the positive quadrant of a hyper-sphere have been compared to distance histograms

constructed for data lying in low-dimensional manifolds on higher dimensional hyper-
spheres. To generate random data points on the surface of a hyper-sphere which are
uniformly distributed, each component of the vector describing a. point is selected randomly
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according to a normal distribution and then the vector is normalised to the sphere's radius

(in this case unity). In order to constrain data points to the positive quadrant of the hyp r-
sphere, the absolute value of each vector component is used. Figure 5.6 shows a set f
points generated this way which lie on the positive quadrant of a 3-dimensional spher . ':D
generate data points along ni-dimensional trajectories on the surface of an n-dimensional

hyper-sphere only ni of the n vector components are selected randomly, the r st being

assigned a constant value.

o

o

z 0.5

o

Figure 5.6: Simulated data uniformly distributed ov r the positiv qu drant of a sph r .

Figure 5.7 shows distance histograms constructed for 10-dim nsion 1 data in 10, 2 an
40-dimensional spaces and 20-dimensional data in 20, 40 and SO-dim nsional sp t is
clear from this result that the shape of the distance distribution is hara t ris d y th
intrinsic dimensionality of the data.

To re-cap, the proposed method for estimating the capa ity D1 tri hi L gram
representation is to first estimate the mean, intrinsic dim nsion lity f h d ta, Hi, har-

acterised by the shape of the interclass distance distribution for mall istanc s. A 1 w r

bound on capacity can then be estimated by counting the numb r f di tin t las s whi h
will fit on trajectory of this dimensionality using the xpression:

(5. )

5.3 Results: The Geometrical Approach

A lower bound on the capacity of the pairwise geom trie hist gram l' pr S 'nta,ti n is s-
timated here for two different sets of shape data, th first compl'ising utlin s f shap
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Figure 5.7: Estimating the dimensionality of the simulated data using neighbourho d

distance histograms. (a) The solid line describes the distance histogram for lO-dim n ional

data. The dashed lines correspond to ID-dimensional data embedd d in a 20- and a 40-
dimensional space. (b) The solid line describes the distance histogram for 20-dim n ional
data. The dashed lines correspond to 20-dimensional data emb dd d in a 40- nd an

80-dimensional space.

silhouettes (Appendix A, Figures A.l and A.2) and the second omprising vi w f m h-

anical parts (Appendix A, Figure A.3). For each data set the mean intrinsi dimensi nality

has been estimated using neighbourhood distance histograms and th n, with th within-
class variability measured in the last chapter, the capacity is d riv d. B cause m asur s f
within-class variability and intrinsic dimensionality are subje t to som rr r th P< ity
is plotted for a range of these parameters, providing an insight into th

capacity estimate to these values.
nsitivity f th

5.3.1 Shape Outlines

Figure 5.8 shows the neighbourhood distance distribution for the shap utlin dat· aI'S

and the distance distributions for simulat d data of known dim nsi nality as lin h \

similarity of the distribution for the shape data and th

data suggests that the mean intrinsic dimensionality

The estimated capacity of the outline shape data, bas d on an stima cl dim !lsi
of 10 and a within-class variability of 0.15, is plott d in Figure 5.9 with S ID margin.
This result suggests that in excess of 1000 shape primitives of tho typi ally pr '8 nt in
the training data should be capable of being stored without ambiguity.
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Figure 5.8: The similarity between the distance histogram constructed for the sh p data

(shown as bars) and the distance histogram constructed from sirnulat d 10-dim nsi nal

data (the solid line) suggests that the mean intrinsic dimensionality of the hap data is

about 10.
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Figure 5.9: Lower bound on capacity as a function of intrin i
class variability around the estimated values.
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5.3.2 Mechanical Parts

Figure 5.10 shows the neighbourhood distance distribution for the mechanical shap data

as bars and the distance distributions for simulated data of known dimensionality as

lines. The similarity of the distribution for the shape data and the distribution f r the
6-dimensional data suggests that the mean intrinsic dimensionality of the shape data is 6.

10

9

8
;..,
o 7=II)::s 6er
II)...~ 5"0
II)

'" 4.....
e;;
S 3....
0
Z 2

Distance

Figure 5.10: The similarity between the distance histogram constru t cl £ r th sh p data

(shown as bars) and the distance histogram constructed from simulat d 6-clim n i nal cl ta

(the solid line) suggests that the mean intrinsic dimensionality f the shap dat is ab ut

6.

The estimated capacity of the mechanical part shape data, bas d on n intrinsic im n-
sionality of 6 and a within-class variability of 0.15, is plotted in Figur 5.11 with me

margin. This result would suggest that a lower bound on th aI a ity f ab ut 1 0 shap
primitives, typical of those seen in the training s t, would b r asonabl .

5.4 A Statistical Approach

The geometric approach to estimating the capacity of th pairwis g m ri

representation is attractive because the process of packing the att ru spa

regions representing the training data is easily visualised and i a g cl m

training process. The problem of determining whi h r gions of th pa t rn ij~ a r pr s nt

likely shape configurations is a difficult one though, and has r strict cl th ~ usc r this
technique to finding a lower bound. This limitation has motiv t d th cl vel pm nt fan
alternative approach based on a statistical model of the training r ss.

hist gr III

wi h small
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Figure 5.11: Lower bound on capacity as a function of intrinsic dimensionality and within-

class variability around the estimated values.

In this approach the pattern space is visualised as containing a finite number of class

locations (patches on the surface of the hyper-sphere defined by normalised patterns) which

can become filled as exemplar patterns are stored. The importance of this alternative

approach is that no assumption need be made about the distribution of these potential

storage locations through the space but it is assumed that any training pattern has an
equal probability of falling into any particular patch. This poses the problem as a simple
binning process which can be modelled using Poisson statistics. Having trained with a
particular number of exemplars, the Poisson distribution can be used to determine the

probability that anyone storage location will contain a given number of patterns. If the
number of stored exemplars which have fallen into anyone patch is given by the random

variable X then the probability of a patch containing x patterns is described by the Poisson
distribution.

AX
P(X = x) = e-'\-

x! (5.9)

Where A is the mean number of patterns within anyone patch. The total number of

patches in the pattern space is the capacity, e, and this relates the mean number of
patterns per patch, A, to the number of stored exemplars, N.

NA =-
G (5.10)
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After training with a set of exemplars some storage locations are likely to be empty, some
will contain a single exemplar and some may even contain several. Defining ex to be the

number of patches containing x patterns, such that e = Co + Cl + C2 + ..., then the
probability of a patch containing x patterns can be estimated as:

P(X = x) ~ ex
C

(5.11)

This can be equated to Expression 5.9 for the Poisson distribution to give:

(5.12)

From this point onwards it will be assumed that relatively few class locations will be

occupied by three or more patterns and that many more patches will contain a single

pattern than those containing a pair of patterns.

(5.13)

This is a fair assumption provided that the number of training examples is less than the

number of storage locations and given the earlier assumption that exemplars are equally
likely to fall into any patch. These assumptions also lead to another expression which will
be used shortly.

(5.14)

Considering only those patches containing either one or two exemplars, Equation 5.12
yields the following two expressions.

(5.15)

(5.16)

Dividing Expression 5.15 by Expression 5.16 yields an expression relating the ratio of the
number of patches containing one exemplar to the number of patches containing a. pa.ir of
exemplars to A.
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(5.17)

From which the expression for capacity C can be derived by substituting in the expression

for oX from Equation 5.10 above.

(5.18)

This can now be simplified using the approximation that Cl ~ N.

(5.19)

This expression defines the capacity in terms of the number of stored exemplars, N,

which is known, and the number of patches containing a pair of exemplars, which can be

counted. As in the geometric approach, a patch describing what we intuitively mean by

a distinguishable shape is defined by a radius Dth' which is set according to the observed
variability of the data. The number of patches containing pairs of exemplars, C2, is simply
assumed to be the number of pairs of exemplars less than a distance Dth from each other.

This information is provided explicitly by the distribution of interclass distances intro-

duced in the last chapter. C2 is simply the number of entries made in the distribution
at a distance less than Dth. Rather than expressing the capacity C in terms of 02 it is
useful to express it in terms of the proportion, p, of the interclass distribution below Dth'

depicted in Figure 5.12.

Recall that the interclass distribution is constructed by matching all pairs of exemplars

drawn from the training set of N. The number of entries made in the distribution is

therefore:

N2-N
Number of entries = ---

2 (5.20)

The proportion of entries, p, made below Dth is the ratio of the number of entries, 02

made below Dth to the total number of entries made into the distribution.

(5.21)

Provided that the number of exemplars, N, is large such that N2 »N, then this can be
simplified to:
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Figure 5.12: The capacity can be derived directly from the proportion, p, of the interclass

distance distribution below Dth·

(5.22)

Using this to replace C2 in the expression for capacity given by Equation 5.19 giv s:

(5.23)

This expression provides a good estimate of the capacity which mak s no as umption ab ut

the distribution or dimensionality of the geometric histogram pattern data and H ws th

capacity to be determined using a simple measurement taken from the int r lass distan

distribution. In order to obtain an accurate estimate of the apacity it is n sary t

have a good measure of p and this depends upon a good sample of dati in hint r lass
distribution below Dth· Unfortunately there tends to be very little cl ta in this part f th

interclass distribution, see Figure 5.12 for example, and this leads t a largo rr r in th

estimate of the capacity.

5.4.1 Estimating p by curve fitting

To minimise errors on the estimate of capacity, a better measurem nt of p an cl l rrn-

ined by fitting an appropriate model to the interclass distance distribution v r . range
where there is sufficient data. In fact, suitable model fitting was don in th g omctri
approach described earlier when measuring the intrinsic dimensionality of th g ID tric
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histogram data, see Figure 5.8. A better estimate of p is found by fitting distance histo-
grams constructed for simulated data to the interclass distance distribution and measuring

the proportion of the fitted distribution below Dth, as shown in Figure 5.13.

18

16
Fitted simulated data histogram -

;>.
14

u~ 120
::l
0-
0 10...~
"0 80
VJ

~ 6§
0

4Z
2

0.05 0.1

Distance

Figure 5.13: A better estimate of p can be determined by measuring the proportion of the

simulated distance distribution, which best fits the data, below Dth·

5.5 Results: The Statistical Approach

The capacity of the pairwise geometric histogram representation is estimated h r f r tw
different sets of shape data, the first comprising outlines of shape silhouett s (App ndix

A, Figures A.1 and A.2) and the second comprising views of me hanical parts (App ndix

A, Figure A.3). For each data set the proportion, p, of the interclass distan di tributi 11

below Dth (Dth being determined from the spread of th within-class dist n e istri uti u)

is measured and the capacity derived. To improve th accuracy of this .alcuu ti u p is

derived from the estimate of the intrinsic dimensionality of the data d t rmin d a1'11r.
The capacity is then plotted as a function of the intrinsic dim nsionality ar und tb.
estimated value.

5.5.1 Shape Outlines

The estimated capacity for the outline shape data, based on the valu f TJ pr di t d fr In

the estimated intrinsic dimensionality and a within-class variability of 0.15, is pl t 1 in
Figure 5.14 with some margin. This result suggests that a capacity of up t 10000 a ems

reasonable for this type of shape data. It is interesting to note that th capa ity stimat
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Figure 5.14: Capacity as a function of the intrinsic dimensionality and within-class vari-

ability around the estimated value.

agrees within an order of magnitude over a large range of intrinsic dimensionality and

within-class variability.

5.5.2 Mechanical Parts
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Figure 5.15: Capacity as a function of the intrinsic dimensionality and within-class vari-

ability around the estimated value.

The estimated capacity for the mechanical part shape data, based on a value of p predicted

for the estimated intrinsic dimensionality and a within-class variability of 0.15, is plotted
in Figure 5.15. It seems reasonable to say that a capacity of about 100 distinct shape
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primitives can be expected for this type of data.

5.6 Conclusions

The purpose of the work presented in this chapter has been to estimate the number of

shape primitives which can be described, without ambiguity, using the pairwise geometric

histogram representation. In the introduction to the chapter it was suggested that to

obtain sensible estimates of capacity two particular problems needed to be solved.

1. The domain of the pairwise geometric histogram representation is a continuous space
which, in principle, defines an infinite variety of patterns. How can this space be

quantised in an appropriate manner so that the number of unique patterns can be

counted?

2. Not all points in the geometric histogram domain represent configurations of shape
which are ever likely to be encountered. Given only a relatively small number of
training shapes, is it possible to derive an estimate of capacity which takes this into

account?

The problem of quantising the space has been addressed by defining uniqueness using
hyper-circular patches, on the surface of the hyper-sphere which describes all possible
patterns. The radius of each patch is determined by observing the typical variability

of geometric histograms within the same class. Although rather simplistic, this solution

seems reasonable as it is founded on the distance metric, which is by definition the measure

of similarity. This definition of uniqueness has been used as the basis of two different
approaches for estimating the capacity.

The first approach derived capacity by counting the number of patches which can be
packed onto the surface of the representational domain. The problem of predicting the

proportion of the space which represents viable shape primitives was solved by estimat-

ing the local, or intrinsic, dimensionality of the training shape data and assuming that

further shape data will be confined to trajectories of this dimensionality. Estimation of

intrinsic dimensionality is an on-going area of research area and problems with current

solutions motivated the use of an alternative technique. This technique bases the estimate

of dimensionality on the shape of the interclass distance distribution for small distance.
It was argued that this was likely to provide a lower bound on the capacity rather than
the capacity itself.
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The second approach modelled the storing of training data as a binning process which

can be described using Poisson statistics. It was shown that the capacity can be defined

in terms of the number of patches containing pairs of shape exemplars after training and
this is easily measured using the interclass distance distributions. The advantage of this

approach is that no assumption is made about the distribution of the classes through

the space so that the proportion of the space representing viable shape is implicit in the

calculation. In practice, using the interclass distributions directly leads to large errors on

the estimated capacity because of the small number of patches containing pairs of patterns.
This problem has been minimised by fitting model curves to the interclass distributions

where there is sufficient data and extrapolating.

An important result, although maybe an obvious one, to come from this work is that the

capacity of the representation depends upon the type of shape data being used. These

experiments suggest that for data typical of the shape outlines used, many thousands

of primitives can be represented uniquely, whereas, for the mechanical data set which
exhibits many similar features such as right-angled corners, the capacity was estimated
to be around 100. It is interesting that this difference between the shape data sets has
been made explicit by measuring the data's intrinsic dimensionality. Another interesting
observation which should be made is that the interclass distance distributions, used in the

last chapter to estimate reliability, have been used here to estimate intrinsic dimensionality.
This agrees with the intuition that there is a relationship between reliability and capacity

and confirms the observation made by Fukunaga that for classifications tasks involving
large numbers of classes, the reliability is driven by the intrinsic dimensionality of the

data.



Chapter 6

Algorithm Extensions for the
Recognition of Scaled Shapes

6.1 Introduction

One of the main criticisms of the pairwise geometric histogram representation is that it is

not invariant to changes in the apparent size or scale of a shape. A geometric histogram

constructed to represent shape data provides a description of that shape at a specific scale
and is different to a geometric histogram representing the same shape data at a different
scale. This lack of scale invariance is a consequence of using distance measurements in the

description of shape and, until now, has limited recognition to shapes of a fixed size. A

scale invariant representation can be obtained by recording only the relative angle between

pairs of line segments in a l-dimenslonal descriptor, effectively projecting the data in a

2-dimensional pairwise geometric histogram onto the relative angle axis. This was tried

during the development of the current geometric histogram representation but lacked

the sparseness which promotes robust recognition in cluttered scenes. An alternative

geometric histogram representation has been developed by Kumar [Kumar & Rockett] in

which triplets of points on an objects boundary are used to define a pair of angles and an

entry is made in a 2-dimensional histogram accordingly. Although these angle measures

are invariant to the scale of the shape data the errors on the measurements made from

the image data are not .. The correct level of blurring made to each histogram entry to

account for measurement errors is a function of the scale of the shape data and so the

representation is not entirely scale invariant. In fact, any scale invariant representation of
shape which properly accounts for measurement errors, whether based on angles or ratios
of distances, will suffer from this problem. It is interesting, though, that the problem

114
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can be minimised by centring an object on a sensor with a resolution which increases

exponentially towards its centre, so that measurement errors become constant up to the

maximum resolution of the sensor. This may be one of the reasons why the human retina

has a structure similar to this.

The motivation for developing an algorithm which can recognise shapes at any scale really
comes from two sources. The first originates from the concept of shape and its inde-
pendence of scale. From our own experience we can look at a shape over a large range

of scale and still perceive it as the same shape. It is desirable for a shape classification

system to be able to reflect this. The second source of motivation is more practical and

concerns recognising objects at different distances from the camera. Except in artificially
constrained environments objects can be expected at arbitrary distances from the camera

and consequently appear at different scales. Many more vision problems could be solved

using geometric histograms if the constraint on scale is removed.

Although the pairwise geometric histogram representation is not invariant to the scale of
shape data, an algorithm for recognising shape over a range of scale using this type of
descriptor is developed and tested in this chapter. In the next section the relationship
between the apparent size of an object in an image and its distance from the camera is

investigated and the calibration needed to predict the distance to an object from its scale is

explained. The effect of scale on the geometric histogram representation is studied in some
detail and this leads to a technique for representing and recognising shapes over a specified

range of scale. Qualitative and quantitative results are then presented to demonstrate the
effectiveness of this extension to the original algorithm. Finally, results of an application

where an object is tracked by recognising it in a series of images are presented.

6.2 Scale, Distance and Calibration

One of the main motivations for developing a shape recognition system which can recognise

shapes at arbitrary scale is the fact that the apparent size of an object in an image is a

function of its distance from the camera. This relationship is investigated here and the

measurements which must be made to calibrate a shape model so that an object's distance

from the camera can be determined are defined. The analysis begins by defining the scale,

s, as the factor which relates the apparent size of an object in an image, x, to its actual
size in the world, X.

x
S=-

X (6.1)
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The relationship between image and object sizes and the distance between the object and
the camera can be determined, to first order, using the pinhole camera model, as presented

in Figure 6.1.

x

d
<- - - - - - ~I

I

x

10
I DI<--------------~
I

Image Optical Centre Object

Figure 6.1: The simple pinhole camera model can be used to relate image and object sizes

to image and object distances.

If the distance from the object to the optical centre, 0, is D and the distance from the
optical centre to the image plane is d then, by noticing that a ray from a point on the

object to the image defines a pair of similar triangles, the following expression can be

formed.

x d
X=D (6.2)

By rearranging this expression and substituting in the expression for scale an expression
for D in terms of d and the scale of the image is obtained.

dD=-
s (6.3)

Typically the distance d from the image plane to the optical centre is not well known but
this can be replaced by suitable calibration of each model. If an object is placed at a

distance Dx from the camera and the scale of the image at this distance is 8x then, using
Expression 6.3.

(6.4)

Substitution of this back into Expression 6.3 gives an expression for D in terms of these
calibration measurements and the scale of the image, s.
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D = 8xDx
s (6.5)

Rather than expressing D in terms of the size of the image relative to the size of the object

it is convenient to use the size of the image relative to the size of the model constructed for

the training data, Sm. If the model is constructed for the object when it is at a distance

Dx from the camera then the model scale is simply:

S
Sm=-

Sx
(6.6)

This can be used to obtain an expression for D in terms of the model scale by substitution

into Expression 6.5.

D= Dx
Srn

(6.7)

In other words, the distance from an object to the camera can be determined from the
scale of the model which fits the image data and the distance that the object was placed
from the camera when the model was constructed.

6.3 The Effect of Scale on the Similarity Metric

As measures of distance are used in the construction of pairwise geometric histograms,

the representation changes as the scale of the encoded shape data is changed. As a

consequence, histograms constructed from the same shape data but at different scales

exist at different locations in pattern space and this complicates the classification process.

In order to develop a classification scheme which can work with shape data at various

scales, it is necessary to understand the way that geometric histogram patterns move

around the pattern space as the scale of the shape data is varied. This may be done by

looking at the way the data in a geometric histogram changes as a function of scale and
the consequence that this has on the distance metric.

The effect of scale on the representation can be seen by considering the effect of scale on a

single entry, as demonstrated in Figure 6.2. For any particular scale, s, the perpendicular

distances do and d1 are simply scaled to distances sdo and Sdl respectively, such that the
histogram entry becomes stretched (or compressed) along the perpendicular distance axis.
This will be the case for each of the individual entries that make up a complete geometric

histogram such that the overall effect is a stretching (or compressing) of the histogram
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data as a whole. Note that it has been assumed here that scaling the image data by some

factor s simply results in the line data being scaled by the same factor. This is a good
assumption over reasonable ranges of scale because of the scale invariant segmentation
algorithm employed to perform the straight line approximation, but at very large or small

scales other effects may become significant.

Perpendicular
Distance

e
1 sdo1

sd, - - -]

sdo - --
--'-- __ .... 1 ..

a
Relative Orientation

Figure 6.2: The effect of scale on the pairwise geometric histogram can be seen by consid-

ering a single entry. As the shape data is scaled the histogram entries become stretched

or compressed.

Due to the fact that the pairwise geometric histogram data changes smoothly as a function

of shape scale, the distance between a pair of histograms constructed from the same shape
data must change smoothly as their relative scale is varied. This can be viewed as the
histogram following a smooth trajectory through the pattern space as the scale of the
shape data is varied. For clarity this will be called the shape trajectory. The effect of

scale on the distance metric is shown in Figure 6.3 which presents the distance between

a pair of geometric histograms constructed from real shape data but at different scales.

As geometric histograms remain similar over a reasonable range of scale, an individual

histogram, although not scale invariant, can effectively represent a range of scale. It is
this property which may be used to represent shape across any range of scale.

6.4 Representing Shape Over a Range of Scale

To enable shapes to be classified over some range of scale using pairwise geometric his-

tograms it is necessary to represent the shape trajectories defined in the pattern space

by these shapes across the scale range. Individual geometric histograms can effectively
represent a small range of scale or section of the shape trajectory. Consequently, the
complete trajectories may be stored in a piecewise fashion by storing a small number of
exemplars. A hypothetical example is shown in Figure 6.4.
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Figure 6.4: Shape primitives can be represented over a range of scale as a. piecewise
approximation to the trajectory described by the shape data.
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To represent a shape primitive over some range of scale from Smin to Sma:r: it is necessary
to determine the number and positions of histograms to store along the shape trajectory.
This depends upon how coarsely the trajectory is to be described and may be defined in

terms of a distance threshold Ds, as shown in Figure 6.4. If this distance is chosen to be
small then the trajectories will be well represented but at the expense of having to store
a large number of geometric histograms. Alternatively, if this distance is large then few

histograms will need to be stored but the trajectories will be poorly represented and the

likelihood of misclassifications will increase.

6.4.1 The Training Algorithm

An algorithm has been designed to determine the values of scale at which histograms

should be stored given values for Ds, Smin and Smax. The algorithm operates as follows,

and can be visualised as shown in Figure 6.5.

1. Initially a temporary histogram is constructed at scale Smin. This is used to determine
the scale So which describes a geometric histogram at a distance D, using a bisections

search across the scale range.

2. A histogram is stored at scale 80 and the temporary histogram is discarded.

3. The histogram stored at scale So is used to find the next scale which describes a

histogram a further distance D, away. Another temporary histogram is constructed

at this scale.

4. The new temporary histogram is used to determine the scale 81 where the next

histogram is stored.

5. This process is repeated until the complete range of scale is covered.

6.4.2 Classification of Shape Primitives

Ideally, an unknown shape primitive should be classified according to the shape traject-

ory which it is closest to in the pattern space and the scale of the primitive should be

determined from the position of the closest point along the trajectory. This is possible,
in principle, if the trajectory between the stored exemplars is assumed to be linear but
in practice these trajectories are very non-linear and the computation needed to perform

this calculation would seriously impair the recognition speed. Instead, unknown shape
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Figure 6.5: To represent a line segment over the range of scale from Smin to Sm4Z to a level
of precision defined by the distance threshold D a three geometric histograms are stored

for the shape data at scales of so, S1 and 82' The solid line represents the distance between

the shape primitive and its nearest neighbour across the scale range.

primitives are classified, as before, according to the nearest stored exemplar and the scale

estimate is simply based on the scale of that exemplar.

This introduces two problems. First of all, even if a shape primitive is a perfect example
which lies on a shape trajectory it can lie up to a distance of Da from its nearest neighbour,
increasing the probability of misclassification. This is effectively a quantisatlon noise
problem and can be included in the noise model introduced earlier to select an appropriate

spacing at which to place exemplars to attain a given level of reliability. The second

problem is that by basing the scale estimate on the scale of the nearest exemplar a uniform
scale error is introduced. This complicates the determination of an object's position and

scale in a scene but can be resolved by appropriate construction of the probabilistic 1Iough

transform, which is the issue of the next section.

6.5 Determining Shape Location and Scale

When constructing a probabilistic Hough transform to determine the position of shapes

identified within a scene for fixed scale data, the error on the position hypothesised by

individual pairs of scene lines is largely due to variability in the line segmcntatlon process,

For variable scale data the position of a model hypothesised by labelled Keene Ilnes is aleo

a function of the model scale and correct account of scale errors must be taken when

constructing the Hough transform.

The effect of the uniform scale error on the hypothesised model position is demonstrated

in Figure 6.6. The scales and scale errors associated with lines A and D constrain the

position of the model to lie within the bands defined between the dotted lines. However,

if both of these lines belong to the same shape then the model position must satisfy both
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constraints and lie in the shaded region. This does not provide a strong constraint on the

position of the model and the precision of the recovered shape position suffers. How ver,
if the scene lines belong to the same shape then they must also be at the same seal and
this provides the tighter constraint represented by the dashed line. The section of th
dashed line which intersects the shaded region satisfies all of the constraints so if both

lines A and B are from the same model then its position must lie on this section .

.LineA ."'\.
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Figure 6.6: The effect of scale error on the hypoth sised shap position.

The correct Hough transform entry for each pair of scene lin s which unts for both
the scale error and the line endpoint error is obtained by c nv lving th r sp tivs nor
functions together. This is greatly simplified by approximating the al rr r fun ·tj n

by an ellipse which can be described using a covariance matrix. his has b n d 1 by

orienting the major axis of the ellipse with th equal le on traint and Lting its 1 u th
to 3 times the length of the section of equal seal constraint whi h d n s th rr r,
The minor axis of the scale error ellipse was set to n t nth f th 1 ngth f th maj r

axis. The covariance matrix which describ s the mbin d s 1 and ndpoint rr 1'8 is
then determined by simply adding their covariance matri s.

6.5.1 The Scale Hough Transform

Having determined the position of a mod Ifund in a S 11, i is 11 ssary

scale. This may be done with a l-param tel' (8 1) Hugh transf rm,
L rmiu its

ti ITUl.t s
associated with each matched scene lin may b u cl t mak ntri A in

transform directly but the uniform scale nor on a ih stimat limit th PI' i i n of 11

final scale measurement. A bett r scale stimat all b cl t rmin cl C r each tin

located model now that the position of th mod 1 h· b u cl t rmin d. 'I'h impr

model scale stimate, Srn, is simply alculated as:

S
_ dscen

m--
dmod I

( •.8)
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Where dscene is the perpendicular distance from the scene line to the determined shape
location and dmodel is the perpendicular distance from the corresponding model line to the
corresponding model reference point.

These improved scale estimates provide good hypotheses for the scale of the shape and are
used to form entries in the scale Hough transform to determine the actual model scale.

6.6 Experiments

A number of experiments are presented here to demonstrate the effectiveness of the ex-
tended shape recognition algorithm. The first results simply demonstrate the recognition,
localisation and scale estimation of simple shape data at different scales. A more thor-
ough, quantitative analysis is then presented which determines the accuracy of the scale
estimate over a large number of example shapes. Finally the algorithm is used to track
a moving object over a sequence of images by identifying the object in each image and
estimating its distance from the camera by using the scale estimate.

6.6.1 Demonstration

In this experiment the recognition system has been trained with a single shape model
over a range of scale from 8m = 0.5 to 8m = 2.0. With a distance threshold D. = 0.05 an
average of six geometric histograms were needed to represent each shape primitive over the
scale range. Figure 6.7 shows three scenes containing the shape model at scales of 0.5, 1.0
and 2.0. The scene line data is shown in grey. These scenes were generated by scaling the
original image data and then approximating the new image by line segments, rather than
simply scaling the original line data. The identified models have been superimposed over
each scene in black, at the determined location and scale. Close examination of the results
reveals that the scene and model line data is generally quite different but the algorithm
still performs well.

6.6.2 Quantitative Analysis

The experiment presented here has been devised to estimate the accuracy with which the
scale of an object can be determined using the recognition algorithm. For two different
shapes from Appendix A, one taken from the set of outlines and one from the mechanical
parts, a large number of test images have been produced. For each shape, 10 examples at
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each of 11 different scales were constructed. The following procedure was used.

1. Scaled object images are produced by scaling the original image data across the

given scale range.

2. Multiple object images are produced at each scale by rotating the scaled image data.

3. The set of test data is produced by extracting lines from all of the test images.

The object in each test image has been identified, its scale estimated and the proportional

error recorded. If the actual scale of the shape in the scene is Sm and the estimated scale

is sm' then the proportional error, ea is defined as:

Sm
(6.9)

Figure 6.8 and Figure 6.9 present the mean error at each image scale for the outline
and mechanical part shape data respectively. The error bars represent three standard

deviations either side of the mean. The scale error is typically within 5% for both classes

of shape although the errors become worse for small scales. In general the scale error is

worse for the mechanical part data than for the outline shape data, which is probably
because the simpler mechanical shapes provide less constraint on scale.
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Figure 6.8: The proportional error in the estimated scale of one of the outline shapes as
a function of its actual scale.
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Figure 6.9: The proportional error in the estimated scale of one of the mechanical part
shapes as a function of its actual scale.

6.6.3 Tracking Results

One of the main motivations for developing an algorithm which can recognise objects at
arbitrary scale is to allowobjects to be recognised at arbitrary distances from the camera.
Once such an algorithm has been implemented it can be used to estimate the distance
between the camera and the object from the object's scale in the image, providing there
has been some calibration done.

A simple demonstration is presented here in which the distance to a model train is estim-
ated as it approaches the camera by first recognising it in the scene, and then estimating
its scale. By placing the camera along a straight section of railway track the train is always
viewed from the same direction so, apart from slight perspective distortion, the problem
is essentially a 2-dimensional recognition task.

An image of the train about half way along the track was first used to both calibrate the
system and to generate a model of the train. A bounding box around the front section of
the train was defined by hand and the image data within this region wallused to construct
the train model. The distance between the train and the camera was then recorded to
define the reference used for calibration. A series of 25 images of the tra.in were then
captured at approximately 2 centimetre intervals as it approached the camera. Three of
these images are shown in Figure 6.10.

The distance to the train in each image has then been estimated by first locating tho
train model in the scene and then estimating its scale as described earlier in this chapter.
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The located model can be seen in the three example images in Figure 6.10, overlaid in
black. Figure 6.11 presents the estimated distance from the camera to the train for each

of the images. The solid line represents the actual distance to the train and the dotted

lines provide a 5% margin either side of that distance. The distance to the train has been

successfully estimated for all of the images within 5% of the actual value.

6.7 Conclusions

As distance measures are used in the construction of pairwise geometric histograms, the

representation changes as the scale of the shape data it describes is changed, limiting the

use of geometric histograms to recognising shapes of fixed scale. A shape primitive over

a range of scale is not described by a single point in the pattern space but by a smooth

trajectory through the space. An algorithm has been developed in this chapter which can

recognise shape over a range of scale, using geometric histograms, by approximating these

trajectories by a small number of example histograms. This has been possible because a

single geometric histogram is able to represent a shape primitive over a relatively large
range of scale because of the stability of the distance metric as a function of scale.

In this scheme, line segments are classified according to the nearest neighbour in the

pattern space as before but now the classification also includes an estimate of the line

segment scale. As the scale of the classified line segment is assumed to be the same as
the scale of the nearest stored exemplar, this estimate is subject to a large, uniform error.

To ensure robust recognition, this error has been accounted for in the construction of the
probabilistic Hough transform.

The algorithm has been shown to work over a range of scale from 0.5 to 2.0 for simple

shape data. A quantitative analysis of the scale estimate suggests that an error of between
5% and 10% is typical although this does depend to some extent on the shape data. Dy
determining the scale of a known object in a scene it is possible to estimate its distance
from the camera. This has been used to track a model train over a. series of images.
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Figure 6.10: Estimating the distance to the train from it s al . Th imag s on th 1 ft
show the image of the train as it is captured approaching the camera. nth right hand

side of each image are the line primitives xtracted from th image data (in gr y) and th
located models of the train (superimposed in black).
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Chapter 7

Representing Surface Shape using
Pairwise Geometric Histograms

7.1 Introduction

The work presented so far in this thesis has concerned the development and analysis of
2-dimensional shape recognition using pairwise geometric histograms. It has been demon-
strated that encoding the distance and angle between 2-dimensional shape line segments
provides a powerful shape descriptor which can be used for reliable and efficient shape
matching. This particular representation has proved to be very useful but other geometric
histograms definitions based on other features and feature relationships have also been
proposed [Kumar & Rockett, Evans 94].

Kumar has suggested that edge pixels around the boundary of an object can be represented
using the pair of angles defined between the reference edge and all possible pairs of edges
within somewindow. By only using angle measurements this representation is invariant to
the scale of the object, although the error on the measurement which defines the amount
of blurring to apply to each histogram entry does depend upon scale. Evans also suggested
using 3-dimensionalline segments recovered using a stereo vision system to produce a 3-
dimensional shape representation which is invariant to rigid transformations of the shape
data.

The use of line features for 2-dimensional recognition is a good choice because it focuses
attention to information rich areas of the image and because all objects can be described
in terms of these features. Even objects with smooth surfaces can be described by their
bounding contour when always viewed from the same direction. Unfortunately, for 3-

130
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dimensional applications the bounding contour of smooth objects is a function of the
viewing direction so the boundary shape is of limited use for recognition. This general
problem has motivated researchers to build representations based upon the surface shape
of objects for general 3-dimensional recognition tasks.

In this chapter a novelpairwise geometric histogram representation for describing arbitrary
surfaces is proposed, enabling the recognition of 3-dimensional objects with arbitrary
surface shape. The process of constructing this representation and then matching model
and scene surfaces can be summarised as follows:

1. Raw surface data is acquired using a range sensor. A number of data sets taken
from different view-points are used when constructing models.

2. The surface is approximated by a triangular mesh. The details of this approximation
and the algorithms employed for this are presented in Section 7.2.1.

3. Each triangular facet is represented by a pairwise geometric histogram which records
the relationship between this facet and the surrounding facets. This representation
is discussed in Section 7.2.2.

4. Correspondences between scene and model facets are found by matching their re-
spective geometric histograms. These local correspondences provide hypotheses for
the correspondence between the model and scene.

5. Global model to scene correspondence is found by finding the transformation that
aligns most of the surface data. This is done using a variant of the RANSAC
algorithm [Fischler & Bolles 81] which is discussed in section 7.5.

7.2 A Novel Surface Shape Representation

7.2.1 Surface Reconstruction and Approximation

Initially a given surface S, acquired using a range sensorI is described by a set of points
samples P = {Pl, ... ,PN}. The points may represent a single view of the surface or a.
number of different views, for example from different viewpoints around an object. 1£ a.
number of views are used then the data must be registered so that surfaces common to
more than one view are aligned. The point set is then used to construct a triangular mesh
approximation S to the original surface, where SA = {t t} d t' t . Il, ••• , M an i IS a nangu ar
facet of the mesh.
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It is important to clarify at this stage that the only requirement of the mesh is that it is

a good approximation of the surface shape. No assumptions are made about the actual
distribution of facets over the surface as this is unlikely to be repeatable. To minimise the

amount of memory and computation needed to solve the correspondence problem, the mesh
should also contain the smallest number of facets needed to give a good approximation of

the surface.

A number of algorithms have been proposed for reconstructing a triangular faceted mesh

from a set of points. In the work presented here an initial, regular mesh was con-

structed from the sampled point data using a reconstruction algorithm by Hoppe et
al [Hoppe et aI92). The resulting regular mesh was then refined to minimise the num-
ber of facets whilst maintaining most of the surface shape using a surface simplification

algorithm by Garland and Heckbert [Garland & Heckbert 97).

There are a number of advantages in using a triangular mesh to approximate the surface

to be represented instead of more complex features such as quadric patches, the most

obvious being efficiency. Constructing a mesh is also significantly more straightforward

than segmenting a surface into more complex features. A second important issue is scope.

Any surface can be approximated by a triangular mesh but selecting a fixed set of features

can impose limitations on the types of surfaces that can be described. Another important

issue is that of stability. If surface patches are assigned to different classes based on their

shape then borderline cases can result in sudden changes in the representation because of
slightly different viewing conditions or noise.

The disadvantage of using a triangular mesh is that it requires many facets to describe

surfaces with high curvature to a high degree of accuracy. Dy statistically modelling the

shape error introduced by the triangular shape approximation, it is still possible to obtain

a good shape representation when only a relatively small number of facets are used.

7.2.2 Histogram Construction

A pairwise geometric histogram hi is constructed for each triangular facet ti in a given mesh

which describes its pairwise relationship with each of the other surrounding facets within

a predefined distance. This distance controls the degree to which the representation is a

local description of shape. The histogram is defined such that it encodes the surrounding

shape geometry in a manner which is invariant to rigid transformations of the surface data

and which is stable in the presence of surface clutter and missing surface data.

Figure 7.1{a) shows the measurements used to characterise the relationship between facet
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ti and one of its neighbouring facets tj. These measurements are the relative angle, a,
between the facet normals and the range of perpendicular distances, d, from the plane
in which facet ti lies to all points on facet tj. These measurements are accumulated in a
2-dimensional frequency histogram, weighted by the product of the areas of the two facets
as shown in Figure 7.1(b). The weight of the entry is spread along the perpendicular
distance axis in proportion to the area of the facet tj at each distance. To compensate for
the differencebetween the measurements taken from the mesh and the true measurements
for the original surface, the entry is blurred into the histogram. For the work presented
here a Gaussian blurring function has been used, but further analysis of the surface ap-
proximation error is needed to determine a more principled function. Certainly the scale
of the blurring function relates to the coarseness of the mesh. The complete pairwise
geometric histogram for facet ti is constructed by accumulating these entries for each of
the neighbouring facets.
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Figure 7.1: (a) The geometric measurements used to characterise the relationship between
two facets ti and tj. (b) The entry made into the pairwise geometric histogram to represent
this relationship.

For clarity, an example of a pairwise geometric histogram is presented in Figure 7.2(a).
This has been constructed for the highlighted facet on the hemispherical mesh presented
in Figure 7.2(b). Note that the representation only depends upon the surface shape and
not on the distribution of facets over the surface. This independence on the distribution
of the facets is important because recovering exactly the same mesh for the same surface
under different viewing conditions is very unlikely, particularly if there is some surface
occlusion.
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Perpendicular Distance d

(a) Cb)

Figure 7.2: (a) The geometric histogram that characterises the relationship b twe n high-

lighted facet and the other facets in the mesh in (b).

7.3 Classification of Scene Surface Features

Given two surface meshes, SA and SB, the geometric histogram r pr sentation allows

correspondences between all facets, tf and tf, from each of th mesh s to be d t rrnin d.

A match for facet tf is determined by finding the best match b tw n it r sp ctiv

pairwise geometric histogram and all of the histograms repres nting the fa ets in surf

SB. These local correspondences are treated as hypotheses for the correspon n b twe n

the two surfaces SA and SB.

The similarity, Dij, between two pairwise g ometric histograms hi and hj is d fin d usin

the Bhattacharyya metric as before. This is giv n by th expr ion:

Dij =LJhi(a, d)Jhj( , d)
o,d

(7.1)

7.4 Experiments: Classification of Scene Surfac F tur s

The experiment presented here has been devised to demonstrate th

ing the proposed pairwise geometric histogram repr ntation for lassifying se n surfac

mesh facets. Figure 7.3 presents the four test scenes us d in this xp rim ut which 'on-

tain a selection of objects, some with simple geometri surfa sand s m ~with fr .£ rm

surfaces. Each scene was generated by taking a singl range imag using a las r strip r

and then approximating the acquired surface points by a triangul r fa t cl m sh. Se en
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1 which contains the simpler geometric surfaces was approximated with 1000 triangular
facets whilst the other 3 scenes, which contain objects with more complex surfaces, were
approximated with 2000 facets.

The set of model objects used as training data in this experiment, presented in Appendix
E, have been represented using geometric histograms with a resolution of 20 distance bins
and 20 angle bins. A maximum perpendicular distance of 15mm was used. To build
each of the first three models enough range images were acquired to cover all of the
surfaces. The range images for each object were then registered using the Iterated Closest
Point algorithm proposed by Besl [Besl & McKay 92] and a surface mesh of 1000 facets
constructed. The remaining three models were each constructed from a pair of range
images taken from different sides of the object and registered by hand. These surfaces
were then approximated by 2000 facets each.

Figure 7.4 presents the classification results for all of the scene mesh facets when matched
to the models. Each surface facet has been coloured according to the class of the model
to which the best matching facet belongs. Surface facets which have no match to any of
the models present in the scene have been coloured in black. Although this colour coding
indicates which scene facets have matched to the correct model it does not necessarily
mean that the scene facet has matched to an appropriate facet on that model. This is
implied later, however,when the pose of the models in the scene is determined successfully.

In general the surface facet classification has performed relatively well in all of the scenes.
As might be expected, better results are obtained on flatter surfaces where the estimation
of the surface normal is more repeatable. Although histogram entries are blurred to
account for variation in the surface normal direction the blurring function used was chosen
for simplicity rather than correctness. Further analysis of this variability is needed to
determine a more suitable blurring function and this should improve the classification of
facets on more curved surfaces.

7.5 Hypothesis Combination and Determining Object Pose

Good matches between scene and model facets provide evidence for the presence of known
models in the scene and provide constraints on the pose of those models. As with the
recognition of 2-dimensional shape data considered earlier, the recognition process is com-
pleted by combining these local hypotheses into a global scene interpretation.

For 2-dimensional shape data a probabilistic Hough transform was employed as a robust
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Scene 1

Scene 3

Scene 2

Scene 4

Figure 7.3: These four test scenes contain a number of obj cts with b th simpl g m Lt'i'

and free-form surfaces.



Chapter 7. Representing Surface Shape using Pairwise Geometric Histograms 137

Scene 1

Scene3

Scene2

Scene4

Figure 7.4: Classification of the scene surface facets. Each fac t has b n 1 ur d

cording to the class of the model to which the best matching model fac t b 1 ngs. Fa t

matching to model not present in the scene have been coloured in bla k.
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estimator of pose and by weighting votes by line segment lengths a suitable measure of
evidence was simultaneously obtained. Although this approach can be extended to estim-
ate the pose of 3-dimensional surface meshes, the increase in computation is significant so
an alternative approach has been taken.

The alternative approach is based on the RANSAC (Random Sample Consensus) al-

gorithm proposed by Fischler [Fischler& Bolles 81]for estimating model parameters when
the data contains many outliers. Unlike conventional approaches such as least squares fit-
ting which uses all of the data available, the RANSAC algorithm begins with just N ran-
domly sampled measurements where N is the minimum number of measurements needed
to estimate the model parameters. Given the initial estimate, the amount of data which
are consistent with that estimate is determined. If the amount of consistency is below
some interest threshold then another N samples are taken and the process is repeated.
Once the interest threshold is reached an improved estimate is formed using a conventional
least squares fit to the consistent data. Ifafter a specified number of iterations the amount
of consistency has not reached the interest threshold then the model is unlikely to be a
good description of the data.

A slight modification to the original algorithm is used here in that the algorithm is iterated
a fixed number of times and the estimate with the highest consistency is chosen provided
that it is above the interest threshold. To determine whether a particular model is present
in a scene and to estimate the model pose two passes of the RANSAC algorithm are used.
In the first pass N; pairs of surface patches are picked at random from the scene and
these are used to generate N; estimates of the orientation of the model. The amount of
consistency associated with each estimate is determined by summing the area of matched
scene and model facets which are consistent with the estimate. Matched scene and model
facets are said to be consistent with the estimate if the direction of the surface normal of
the rotated model facet is the same as the direction of the scene facet, given a degree of
tolerance.

In the second pass of the RANSAC algorithm Nt triplets of scene facets are picked at
random from the set of scene facets which were consistent with the best estimate in the
first pass of the algorithm. An estimate of the translation that aligns the model and
scene is then determined for each triplet and the amount of consistency is determined
as before. In this case, matched scene and model facets are said to be consistent if the
perpendicular distance between the translated model facet and the scene facet is zero,
within some tolerance. If the estimate with the maximum overall consistency is above the
interest threshold then the model is said to be present in the scene and its pose estimate
is improved using least squares fitting.
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Scene 1 Scene 2 Scene 3 Scene 4
Cylinder 1034.231 0 0 0
Block 52.127 12.408 0 0
Widget 781.701 0 0 0

Calf 0 30.283 506.636 0
Pig 23.4 929.196 724.893 256.541
Pony 0 20.696 27.231 590.585

Table 7.1: The area of each scene in millimetres/ which was found to be consistent with
each of the known models.

7.6 Experiments: Hypothesis Combination and Determin-

ing Object Pose

In this experiment, evidence to suggest the presence of the model objects in each of the
four scenes in Figure 7.3 is accumulated and the pose of these models is estimated based
on the surface facets classifiedearlier. For each scene the RANSAC algorithm was run for
5000 trials to determine the best orientation of each model and then for 10000 trials to
determine the best translation of each model.

Table 7.1 and Figure 7.5 present the object recognition and pose estimation results for
each of the four scenes. The table presents the area of each Beenewhich was found to be
consistent with each of the six models, providing evidence for the presence of the models
in each of the scenes. The figure presents all of the detected models, in the lighter shade,
superimposed over the scene data, in the darker shade, at the estimated poses. In all cases
the models present have been detected successfullyand the pose of each model determined.

7.7 Conclusions

In this chapter a novel approach for representing 3-dimensional surface data using pairwise
geometric histograms has been proposed and the representation has been demonstrated in
a surface based object recognition application. In the original work on pairwise geometric
histograms, Evans {Evans94] proposed that 3-dimensionalline segments recovered using
a stereo vision system can be represented using a histogram descriptor and he provides
a 3-dimensional recognition demonstration. This approach is suitable for objects with
distinct edges which can be recovered from a scene but is not suitable for objects with
smooth surfaces. This general problem has motivated researchers to investigate the use



Cb pt r 7. R pr nting urface bap u ';ng

cene I

In 'fr; fliH 0 rt III

seen cl a is sb wu iu 11·
. Lima.' I Ii a in h Ii "hI

rk
III 1·.

ttl t \. '1 It tl U1 l
I 1 lu \

nltl nand7 1:: •. .



Cbepter 7. Representing Surface Slmpc using Plurwise Geometric l1i.'itogrllIlJS 141

of surfaces for object classification but the common representations are limited to certaln
surfaces types such as planes or quadrics. In contrast to this, the represcntatlon presonted
here is suitable for arbitrary surface types and 8.'1 such, provides a possible solution to an
important problem in computer vision.

This new surface representation also inherits many of the advantages of the orlglnnl palr-

wise geometric histogram descriptor. Dy careful selection of the measurements "Ne'tl to

construct the histogram, the descriptor is invariant to rigid transformations of the surflu:c
data and in combination with its compactness promotes dl1cieut matching, A reasounble

criticism would be the large number oC histograms Iwt'tled to descrlbe a pnrticular surface,

between 1000 and 2000 for the surfaces used in the experiments, The amlw('r to this might
be to perform the matching in parallel using a neural network type of architecture

The main area of improvement for this work is the development of a better model of the

triangular mesh approximation error. This is 1U'('(11't1 to determine the correct Iuuctlon
to blur entries into the geometric histogram and to decided whether, given a particular

transformation estimate, a. pair of matched scene and mesh r!\C(~t8are tlUllid('ntly aliglwtl.

However, even with a simple Gaussian blurring function and empirically 'It'l('(~ll~ltCJlt'nuu'(~
good performance of the recognition algorithm hn.'t been achieved with motlt>rn.tt,ly('ompl,~x
scenes.



Chapter 8

Conclusions

8.1 Introd uction

A large number of algorithms have been developed Cor solving tho ohj('f.t recognltlon
problem but it is debatable whether any of theso are reliable enough or well t'nough
understood to be integrated into a. general ImrpoHt' vlslon ay"lt·m. OM of lh" rt'nlral
goals of computer vision research since the dawn oC the ficlt! Ill"" Lt'('1\ tho ,ltlve1opnlt'nt. of
an object recognition system which meets the 1U..~h,of rt'alll("('l\o hllt'rprrtnlion Ilwblt'mtt
and which provides the information n('('(I('(1for 8y"t('11\ lntegratlou, To tIC' a um·ru\ Ill\fl
of a general purpose vision engine an objed recognitlon ..dlt'mn I1mKt. III\vO a I\utnht'r of
essential properties.

• An object representation capable oCr('pr('twutillg a llU'gn cl:w ()f ohj'>rtl.

• A concise representation with good lnvnrlauce propertk ... fur c·meit'lll l1u\td,inll:.

• A representation and matching 8ch(,I11t~which ere InKc'ullitivo to Ohjl'd vf\,r\nlhm filHl

8(;Cl1e clutter providing reliable recognitlon,

Although originally limited to the represeutatlon of 2-clilllc\I\!'\ol\:U ..hapI', th., l)alrwlMC!ftt,,),
metric histogram representation ha.., been shown to solve many of tho Ilr()h"'IlUll\J~Koclnt('(l
with object recognition and has been used here 8.1 the 1>/1."\8 of further work. Geometrlc
histograms provide a local descriptor of shape which itl COI11PI\c\ I\ud IItl\'blt~to "hnp" vnrl-
ability, permitting efficient and robust matchlng. Th(~ motivation Cor tho work ,m·tlC'l\l~l
in this thesis has been to 8,(idrcss some of the critidlun14 of the orighll\'l IllgorithmM 1\.1\,110
quantify some of the representatlon's lmportant propcrtles, Tho m'xl K.'dlon l)ro\'111.,.. 11

142
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review of the main contributions made by this work and this is followed by a number oC

suggestions for future research.

8.2 Contribution

8.2.1 Critical Review of Recognition Algorithms

A large number of object recognition algorithms using a vari('ty oCdim'rent apprc)lu:lu'3

can be found in the literature. Understanding these algorithms and appr('Ciating thdr

relative merits is a considerable task, particularly for nCWCOIlll'fSto tho Ilcld. In Chnpl.'r

2 a selection of the most important algorithms have been critically reviewed And a table

of important properties compiled 80 that a COlU"tlC comparison can be made. Although

the list of algorithms reviewed is not exhaustive it is Intended that J1lmltof lim main
approaches to 2-dimensional shape recognition are included. Other aigorithulli Are tik,·ly

to be variants on these.

The most important conclusion to be drawn from this study III the Importance oChnag ...

features for robust recognition in real scent'S exhibiting background clutter, lightluK ar-
tifacts such as shadows and specularltles and partial object occlusion. 1\"(:lmlq\1.111whlch

depend upon good segmentation of image f(·gions perform poorly under tlU'tlO comUtlunlt.
The problem with using image features is the need to couslder all "ial,l,' prurlngll h"tWt'C'n
model and scene features. Even when the number of mode] ruul scene {,·I\tUft'tl Itt f(·I"Uvt·ly
small the number of viable pairings can become \'('ry llU'g~. The npplklllion of lll\lrwhio
geometric histograms provides a potential solution to thlrl problem hy Ilro"hUn,; l\ rkh
feature representation which can he used to find" small nurnbcr (,f model to IK'N'" f",\lura

pairings.

8.2.2 Probabilistic Hough Transform Implementation

The pairwise geometric histogram representatlon allowa shape £t!llturrl to he rt'prMlI'nll,<l

and classified in an efficient manner, However, to recognise ccmplcte object.lIt npproprhltdy
classified features must be arranged in a way which ill cotlHhltrllt with IIlorc,l ruodcls. Tho
problem is formulated 8..'1 a parameter Cfltillllllioll problem, In th,,' CI\."O tho 1H\fl\uwlcrtt are

the model pose, and recognition depends upon fimling ('Ilo\lgh datil which is t:onKiKt(,llt
with a particular estimate.

This estima.tion problem ha.'I been implemented here titling a Ilrolm.LilititicHough lrlll1"form
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in which votes are placed in a parameter space, representing the model POHC,for 11ILirs
of matched model and scene line segments. The adoption of the probabilistic Bough

transform is a considerable improvement over the generalised Hough transform which WIL."

used previously, allowing variability in the position of shape features to he accounted for
correctly. This not only improves the robustness of the technique but also allowlI the

position of models to be detected to a mud. greater accuracy and provides an estlmate of

the error on the estimated position. In fact, this approach is equivalent to \Ising n rubust
least squares fit of the model line segments to the scene line segments. Experimental
results suggest that typical errors of 0.2 pixels can be expected and that it iii Jl()f\sihloto
predict this error with a factor of 2.

8.2.3 An Analysis of Reliability

There are a variety of reasons why a quantitative IIU'IL'(urcof the reliability of a rlMJli·
fication algorithm is needed, the most significant concerns system lntegratlon. If n. dM·
sification algorithm is to be Integrated into a larger 8yst(,111then tho lH'rf,)rmfll1(~Cof the

complete system can be determined if the consequence of the dlUlKification error iii pr()lU\K-
ated through every stage of decision making. The problem of t'Slimn.ting dIUlt!ificl\tionerror

has been considered by many researchers and difre'fl'ut npprondU'1t lUWt' \u't'n flUAAt'Mltltl

but these give no indication of how the reliahility sm,lt'H lUi tho llUml>C'rlIf trlLlnlng mOll..t1l
is increased. An alternative approach ht adopted here in wbkh tho I1U'Murt'IlU>lIt",uM"l
in forming classification decisions arc ldentifled and thdr IItl\lllitlrn.1varlntlon fur dilrt·rc.-nt
sets of shape data is observed. Provided that theso !ltl\tislks are r('prt'St'utAtivu (IfAll flhl\p~

datil, the performance of the algorithm n.... II function of tilt! number of "loft ..l IlUlth·h, enn
be predicted. The classification error which it!(h'riv('tl from tht,tlt' titAlitllkll tU\l4 1u'('" \llt.·.l
to estimate the error Cortwo difr"rt'llt Krtll oCshnpe ,I'LLIL.

One of the important OhHt'rvationKmade (luring thll1 lumtytliKWM thl\l tI('NU' r..film" dl'-""
sifica.tion bnsoo on only the \)('St malch 1"~()Jn(~ ullfC·lialtl.,Nt til., lI\unh ..r oC I1IOt'I·lltll4

increased. To avoid this problem it hM IH'C'n IIlMc'tlt,'d lhl\t tlt ..no rC'l\hm'M1\1'0 ~\vt'n "

number of potentia.l elMS lahd14, lIlL'4('(1 on n. numher uf thu ''''fit U\l\tr.hc'H. "'1('"" A,Mitlonlll
classes arc resolved to obtllin a singh! c1:wilkntion hy fhuling glohal COIudPlh'ucy "M'"g lha
proba.bilistic lIough tra.nHform.

A further UNC oC a quantitative m(~n.'1\lrcof rdin\,ility 114to nU'IUHlrt! tho rlrl'f,~tJf rh:Ul&r"

to the algorithm or the effc·et of varying algorithm p:ul\l1wtertl. Thlll lIt .1t'l1lollrltrl\lt'tl by
plotting error curves for different g(~mctric hiHlogrtlm rl'HulutionM,alluwing nn l\ppropdl\lu
resolution to he sdecte<l to give a tlpN"ific"ll(·yt·1of Iwrformaneo.
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8.2.4 Estimating Capacity

One of the requirements of a general pUrpOHCobject representation is the ahility to describe

a large number of different objects uniquely, This qUl\ntity is commonly referred to lUI
capacity. Estimating the capacity of an object representation is css('ntially a counting

exercise but is complicated by the need to define what is meant by a unique obj(~t IUUt to

ensure that only viable object descriptions arc included. Two different approndws have
been developed to estimate the capacity of the pairwise geometric histogram representatlou

and applied to two different classes of shape data. It is not surprbdng to find lhl\t tho

capacity depends on the complexity of shape data being represented, Whl\t i8 lutt·ft'tlling
is that the complexity of the shape data can be made explicit by II\t'Il.'1uring its lntrlnslc
dimensionality, Experimental results suggest that fur reasonably complex shape':l many

thousands of different shapes can be described uniquely but for slmplo geometrlc objt'Cla

the capacity is much lower,

8.2.5 Extensions for Scale

The pairwise geometric histogram representatiou utililu'" diHll\l\('('1Il,.,twl'C'1l tlllllpn f"l\turc'_

in its description of shape with the consequence llmt it ill dt'P"IU!t'llt upon "hAp" "(~AI«"
This has attracted a fa.ir amount of critlclsm 8.'1 it reHlricts recognltlon to Uhjl'Cla of" flxrtl
size, or more significantly, nt a fixed distauce (rom tho crunt'ra.

Although shapes are represented at a speciflc IIcnle, IIll1\110,Jala at IIlmill\f tlcah'" are ,lr-
scribed by similar geometric histogram». Thill observnrlou hM he'C'nUI'I('(' M tha hnJolI.. (llr
representing shape data over rensonabk rangc'!Cof 11('1\10lIy flloring " r.,w Mn.mplc'"(l( ..nd,

shape primitive at different senlell, The coustructlou o( lim IlrtJl)l\\'ilistk lIuURh trnlltl(l,wl

ha.'Ibeen modified to account (or the vnrlatlon In tlhapo 8('n.l(, IUltt to rurrt't:lly lmllcU" "rrOrM

in the estimation of tho scale of end, shape primitiv", R"lmll" hnve he"',, pr .."..nt(>tlwhIth
demonstrate that the technique works and thn.t, ovrr " rl\ngt! (lr "(.'1\10 from 0.5 to 2.0. lht!
scall! of shapes can he typkl\l1y .-slimnl('(t within 5%, Ono of th" \lI"'''' CIf n. Iu"nl", C't4Uml\l"
is to determine the distancc from a known ohj('Ct to tilt' ft\llU'rl~, A tl"'l1\ol\tllrl\UoU I"
presented in which a modd train hI trnr.k('tl ov('r a ICt'C1Ul'IU'C of imAg ..... M 1t npprnl\rht''' a
fixed camera,
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8.2.6 Representing Surface Shape

Although the original pairwise geometric histogram representation was used to describe

2-dimensional line features, other features can aIR<>be represented in a similar manner.

Interest in 3-dimensional object recognition based on surface shape Im.'Imotivated the
development of a novel representation for 3-dimcnsionalsurface data. The represontatlon

has been successfully demonstrated in a surface based 3-ditnt~nHional object recognition

application involving objects with a range of surface types,

In the same way that curves are approximated by short line 8<'gmcnt8 in the original al-

gorithm, surfaces acquired using a range finder arc approximated by small triangular facrta

in this algorithm. Geometric histograms can then he constructed to represent t.h(·Norarrtll
allowing the correspondence between model and scene surfaces to he c.il!tf'nninod. Thr. rep-

resentation is suitable for all surface types, including free-form Imrfl\CCH,and unllke ml\ny

surface based representations does not require any surface twgm('ntalion or clasHifk,\tloll

which can be unreliable.

8.3 Future Work

During the course of this work a number of toplcs fur comlnued dcV\'loJll1u'Ill. \.,·)'Ou,1
the scope of this thesis, have been ldentlfied, Tilt'S" topka are .It'Scribt',l in bd.~rIn till,.

section.

8.3.1 Object Classification Error

The analysis in Chapter 4 provides a technique for t·tlthnntlnJ; tho r('Unhllity of tho riM-
sification of shape primitives bR...!"l on pl\irwiHl~gC'OIIU'lric hINlov;rl1l1\14.Tim t'lf,,(,t of tht,.
classification error on the recognition of complete obj(<('lKWM not ('onMhlt·fC-.1 hnwrv~r. Tu
determine the probability tlmt objC'Cl!larc lIliHd~ifiNl, it lit 1l(~M4tll\ryto llrolmgl1to tha

feature cla ..ssification error through the Ilro\JnbmHtlc Ilougb trl\Ullfllrm furllll\Uol\ 1ll't)(·..."8.
This analysis will not only provide c1:utt1ificntionerror figurC'ftbut should 1.1140Ilfovhlo 1\ hl·t-

ter mechanism for selecting important Bough tralUlfurm 11lU'lUlwtl'tlI such M the Jlaral1l('lC'r

space resolution and the pel\k threshohl.

It was suggested in Chapter 4 thl\t scene fl'lltuf('s arc given n. number of elMS ll\hdl4, In-
creasing linearly with the Illlmb('r of atort'tl Illmldlt, to ('mUlro rc1inhlo dl1...,,\ficnllnn. Thrtlt1
additional labels result in more cntril'S bdng made into thn ltotlF,h lrnnf\furl1l pl\ramrlrr
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space and this will have some influence 011 the cla...siflcatlon of complete objects, Fur-

ther analysis is needed to determine whether this will have a detrimental ('fTl'tt on the

recognition performance as the number of model objects is increased.

8.3.2 Surface Based Representation

A novel surface representation based on pairwise geometric histograms WlUI preseuted 1n
Chapter 7 and preliminary object recognition results using this descriptor were demon-

strated. To ensure that the representation is a good descriptor of the underlying surface

data, it is necessary to have a good model of the error Introduced by approximating raw

surface data using a triangular mesh. Further analysis of this process is needed and peril"J)1I

alternative triangulation algorithms with better statistical properties elm he identUll'tl or

developed.

A similar analysis to the one presented in Chapt('rs 4 and fi Cor the orlglnal IltLirwitW

geometric histogram representation should be carried out for the new lIurfl\cc till"!>,,re'l).
resentation. This will provide a better understanding of the rt'pr('Ht'lltation and provide A

more principled mechanism for selecting parameters such M the histogram resolutlou.

An important problem when reconstructing oLjl'Ct models from multlplo Ilt'tt of rl\n~tl
data is finding the transformation that aligns all of tho tlds into a common coordlnate

frame. This is the registration problem. Although some algorithmtt exi.'lt, for rXl\mplt, lhu
ICP algorithm was used to construct 8<)111(' of the models found in Appc~n,Hx I~, none of
them provide a complete solution in all cn.'l(~14. D('('aUl"cthe proposed gt't'llUt'tric hlKto~fI\ln
representation can be used to find correspondences h('lwc't'n IImfnt'.'" lt mny prove tu be "

useful tool in solving the registratlon problem.

8.3.3 Non-Exhaustive Search Strategies

The matching of model and scene pairwise gt'()I1wtric hitltngrnllu, lit wry wt'll Imit(~l to

parallel implementation but in practice highly Ill\.faltr·lml\(·.hi"t'!tare ('xlwlltlivo alUl tliflkuh

. to program. An alternative wny to reduce the amount of timo f1~lt ..l to dlWllfy tlct'n..,
primitives might be to develop an alternative hllllt:hillJ; IItrl\tC'g)'.

One possible approach might be to limit the amount of l1\alchln~ \'y ,lirC'ding 111C111('lU'ch.
Rather than matching all scene ptlmltivcs at once 1\ Iduglc "frl\e prhnillvc lit I)id~,~l III

random and classified. Having identified the elMK of thi1'lprimitive, it IIhould he ,mfut\blt1
to search the image for other primitives from the (mmo .hl\po. A IK'cond (lostllhHity 1.
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to first recognise shapes at a very coarse scale and use this result to limit search at an
increased resolution. At coarse scales the shape data can be described by fewer shape
primitives and a small number of geometric histograms. \Vhich ever stratt'gy is adopted,
it is essential that the consequence of using a non-exhaustive search on the c1n.~sirkation
error is understood.

8.3.4 Appearance-based 3-dimensional Object Recognition

The work presented in Chapter 7 proposes a 3-dimcnsional shape representation In which
the 3-dimensional structure is represented explicitly. Other resenrchers have Illlggc't-ltt'tl
that 3-dimensional objects can be represented solely using their 2-tlimcllsiunnl appearance.
Typically a number of characteristics views of the ohject arc stored Ilnd lntemuxliate

views are generated by interpolation. In the snme wny that objects I\t tlifft'rcnt ..('nll·~
were represented by storing a number of examples in Chapter a, it nmy also he Ilo!lsihlu
to represent fully 3-dimensional objects in this wny. The importnllt chnrncterlstle whkh
may permit this is the fact that a geometric histogram rt'prc'H('nting I. plU'ticulnr ft'nturo
varies smoothly 8.8 the view-point is changed.

8.4 Afterword

The original aim of the work presented in thiM thc~ilt Wlut to lnvc't-ltip,l\tut.ho ('xl"t Ilite np·
preach to object recognition using palrwlse geometrlc hhltugrnltu, 1.11,1tn ,It'wl"ll t""
method further. Initially it was antlclpat«! thM tlu~ il1vt'tltigl\lhm would itle'nUfy rUt'M

for improvement and the main part of the work would Involve (!t~vt'lnping UU'tlOlmprovo-
mcnts. Certainly areas for improvement were klcntltled nud dc:'vt·lupt\tllml the d'l4(.utltlion
of these only cover about half of the work in thc~lhc~ilt. Tho rC'lU4onfor thi .. Wl\.lt \hl\t dur-
ing the lnvestigatlon of the original approach the lmportnnce of Algorithm p,'rfufml\lu-.,
evaluation became clear. Thill lssue covers til., remninlng lllLrt.of the work,

One of the early criticiHmH for the rc·pf(·t!(·nll\lion WM tllt ll\('k uf 'lI('nl(oluvnrll\.I\(·C'. fly
providing a solution to the probl('IU of rerogni!4ing 8h:lpe ovt'r rl\ngc'!I of ,,,,1\1,,th" nl'prul\('h

can now be viewed M It. g('lleral 801ulion to the r''C:()gnillon of 1U't.llrn.ry 2.(lInwt\lilnnn.l
shape in complex KCCIlCS.

The usc of geometric hilitograms for r('pr('Kc'nting ,!lmpc hi nol limlt.·,l to lim ..prdfic hn-
plementa.tion proposoo originally bUL IlrOvldf'Ha ",or" gNu'rl\t IlU't1lml fur t4Ulving1111,,1'''
classification problems. As an example of this, a g{'t)IJu'tric hilltngrl\l1l f('llrt'!c"llll\lhm ror
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3-dimensional surface shape has been proposed and initial experiments show the repres-
entation being successfully applied to recognition problems. This not only dernoustrntes

the generality of the geometric histogram approach but provides a useful solution for real
3-dimensional problems.

Although the Hough transform has been around for some time it ill still a valuable tool

for the vision researcher, and in fact for anyone interested in robust parameter estimation
problems. This is evident from the frequency that the Hough transform still "PIl('MS in
journals and conference papers. The insight that the Hough transform h. closely rdntC't1

to maximum likelihood statistics is an important one and has allowed a more rigorous

implementation of object pose estimation. Anyone interested in uslng the Hough transfonn
should consider the benefits gained by taking this more rlgorous approach,

As is often the case with research, and one of the factors which makes research Ilniul('rt't4t.

ing occupation, the direction that the work takes can be unpredictable. \Vhnt begnn M A

conventional approach to quantify the error rate of a classification lIytlt('m, In t111:,(rum the

classification of shape, led to a more general look at. performance evaluation. In particular,

it has been proposed that the issue of scalability, which has In.rg(·lybeeu lU'glt'Ctt'tl I.y tho
designers of vision algorithms, be adopted WI an important lndicatlon of IU'rformllllt'o fllr
object recognition systems.

The pairwise geometric histogram approach ill now in " wry titrong posltlon aft .., thlt.

treatment. Gross predictions can now be made about itl performance untlt'r varying ron-

ditions and the steps needed to be taken to ensure reliable performance can ho ,It'lc·rminC'tl.

As a general statement, it is fair to predict llll\t Ior IIhnpc cialll of ..lmUM tomplc·xlty to llu\t

used in this work, the approach is suitable for recognitlon tMkll involvinK many thUtltllUul"
of different objects.

Although the demonstration of tho pairwise gf'(mlt'tric: hi14logrllmalgorithm on rrlntlvdy

complex scenes and the anl\lY8i" of the algorithllu, H(:IllllhilityMC .,,,1,1"1\(,0 tt.Ill tlm "1"
preach is an important contribution to the, fidd of "hj(,(·t rC'('(IKnitlol1,It. more rlgormut
comparison with other approndu'S Is IIlill 11('('(!t.. l. Thl" f('(luin's tho t),IU' or ('valuation
suggested in this thesis to be performed 011 ('xlMling I\ud future O"JI'C't r('('ogn~llfl" lc'(l,.
niqucs. The author leavcs thi" lUI 1\ rhall('llgc to hilt (~CJlI('l\gUf'lt.
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Database of 2D Shape Models
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Figure A.3: 2-Dimensional views of real mechanical parts.



Appendix B

Propagation of Line End Point
Errors

Each classified scene line segment constrains the position of the object to a line which is
parallel to the scene line at an appropriate distance. Any pair of scene lines which belong
to the same object and are not parallel define constraints which intersect at the position
of the object, as shown in the figure below. If the endpoints of the scene lines are subject
to some error, represented here by a covariance matrix Eend, we would like to calculate
the error on the point of intersection, described by the covariance matrix Eint.

Figure B.l: The constraints imposed by a pair of objects lines intersect at the estimated
position of the object.

First of all, the point of intersection is determined from the line endpoints and the per-
pendicular distances dA and a». The line parallel to "Line A" at a perpendicular distance
dA can be described using the expression:

153



Chapter B. Propagation of Line End Point Errors 154

(B.1)

Expanding this and rearranging gives:

(B.2)

Similarly for "Line B".

(B.3)

Which again can be expanded and rearranged to give:

(B.4)

Expressions B.2 and B.4 define a pair of simultaneous equations which can be expressed
in matrix form and then solved.

(D.5)

The change in the point of intersection, given changes in the position of the line endpoints,
can be predicted using a Taylor expansion of Pi. For small endpoint errors this function
will be approximately linear and the intersection error can be expressed as:

(D.6)

Where V'Pi is the Jacobian matrix.

8pi:r: OPi:r: OPi:r: 8Pi:r: oPi:r: DPi:r: DPi,. DPi:r:

V'Pi =
OPAlx OPAly DpA2x OPA2y OPBb; DpBly OPB2x lJpB211

8Pill 8Pill DPill 8Pill 8PiJl OPill DPill UPi»
8PAlx 8PAly f)PA2x f)PA2y DPBlx 8PBly UPB2x .8PB211

(D.7)



Appendix C

Classification Error for Multiple
Hypotheses

Given a set of class exemplars, {Xi: 1 :5 i :5 N}, and a test pattern, Xi, drawn at random
from one of those classes, the pairwise error, cp, is defined as the probability that Xi is
closer to a randomly selected class exemplar than its own class exemplar. We wish to
calculate the probability, s, that the correct class exemplar is not within the nearest n
neighbours. This is the probability of misclassification when test patterns are associated
with multiple classes based on the nearest n neighbouring exemplars.

The probability that the test pattern will be closer to its own class exemplar than a
randomly selected one is 1- cp and, if each class exemplar is assumed to be an independent
sample from the distribution of potential patterns, the probability, P(O), that no incorrect
class exemplars will be nearer over N - 1 trials is:

(C.1)

Similarly, the probability, P(1), that only one incorrect exemplar will be nearer to the test
pattern than it is to its own class exemplar is:

(C.2)

The first two factors of this expression imply an ordered sequence of trials in which the
first N - 2 trials are successful followed by a single failure. The combinatorial factor
accounts for the different ordering in which these events can occur.
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In general, the probability, P{i), that the test pattern is closer to i randomly selected class
exemplars than it is to exemplar of the class from which it was drawn is:

Nl .. (N-l)P{i) = (I - Ep) - -IE~ i (C.3)

The probability, P( < n), that the test pattern is closer to less than n randomly selected

exemplars is then:

P( < n) = P(n -1) + P(n - 2)+ ...+ P(O) (CA)

An expression for P( < n) can be derived by substituting Expression C.3 into Expres-

sion CA.

(C.5)

This is the probability that the correct exemplar is within the nearest n neighbours. The

classification error, E, is then simply:

n-l .. ( N -1 )
E = 1- I:(1- Ep)N-I-IE~ •

i=O ~
(C.6)



Appendix D

The Surface Area of a
Hyper-spherical Patch

Given a hyper-sphere with radius r in an n-dimensional space we would like to determine

the area, An"), r), of a surface patch defined by an angle (). Figure D.l shows a slice
through an n-dimensional hyper-sphere with the surface patch defined by the angle ().

We begin by observing that a slice through the n-dimensional hyper-spherical patch is a

complete n-1-dimensional hyper-sphere. If we define the position of the slice by the angle
0, as shown in Figure D.l, then the radius of this hyper-sphere is r sin o. A small change,
00, in the angle 0 defines a ring on the surface patch of width roo. The area of this ring,
oAn((),r), is then given by:

lim oAn(O,r) = An_1(rr,rsino)r80
6Q~O

(DJ)

" ... -,-- ....
I
I

.lCn-J

Figure D.1: Slicing through an n-dimensional hyper-spherical patch produces a complete
n - l-dimensional hyper-sphere.
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The area of the complete surface patch can then be determined by integration.

(D.2)

It is both easily shown and intuitive that a change in the radius of a hyper-sphere by a

factor a has the following effect on the surface area of the hyper-sphere:

(D.3)

For example, doubling the radius of a circle (a 2-dimensional hyper-sphere) doubles its

circumference whilst doubling the radius of a sphere (a 3-dimensional hyper-sphere) quad-

ruples its surface area. Using this relationship, Expression D.2 can be re-expressed as:

(D.4)

And because An-l (11", r) and r are independent of the angle a this can be simplified to:

(D.5)

This provides a recursive expression for the area of a hyper-sphere which is terminated by
the 2-dimensional case where:

(D.6)



Appendix E

Database of 3D Shape Models

Cylinder

Calf

,/

/
I

Widget

Pony

Figure E.1: 3-Dimensional surface models.
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