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Summary

One of the fundamental problems in the field of computer vision is the task of classifying
objects, which are present in an image or sequence of images, based on their appearance.
This task is commonly referred to as the object recognition problem. A system designed to
perform this task must be able to learn visual cues such as shape, colour and texture from
examples of objects presented to it. These cues are then later used to identify examples of
the known objects in previously unseen scenes. The work presented in this thesis is based
on a statistical representation of shape known as a pairwise geometric histogram which
has been demonstrated by other researchers in 2-dimensional obJect recogmtlon tasks. An
analysis of the performance of recognition based on this representatlon has been conducted
and a number of contnbutlons to the original recogmtlon algorithm have been made. An
1mportant property of an object recognition system is its scalability. This is the ablhty
of the system to continue performing as the number of known objects is increased. The
analysis of the recognition algorithm presented here considers this issue by relating the
classification error to the number of stored model objects. An estimate is also made of the
number of objects which can be represented uniquely using geometric histograms. One of
the main criticisms of the original recognition algorithm based on geometric histograms
was the inability to recognise objects at different scales. An algorithm is presented here
that is able to recognise objects over a range of scale using the geometric histogram
representation. Finally, a novel palrw1se geometric histogram representatlon for arbitrary
surfaces has been proposed. Thxs inherits many of the advantages of the 2- dimensional

shape descriptor but enables recognition of 3-dimensional object from arbitrary view-
points. - - : ’ |
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Chapter 1

Introduction

1.1 Background

Techniques for the automatic interpretation of image data are providing solutions to a very
diverse range of problems. Production lines can be monitored automatically in industrial
environments allowing manufactured items to be 1nspected for faults and prov1d1ng visual
feedback for automatic assembly. Medical images used in the d1agnosxs of disease and
injury can be analysed, prov1d1ng a valuable tool for doctors and surgeons. Image data
collected by satellite can be analysed to provide data on crop growth and measure the
the extent of pollution. With the growth of multimedia there is a need to organise large
image and video archives efficiently and provide mechanisms for searching them. Image
1nterpretat10n techmques are beginning to be used to achieve this. These are just a few
examples of the potentially endless number of applications and as the SOphlStlcatlon of

the technology develops it will play a more significant role in all aspects of our lives.

One of the fundamental problems of image interpretation is the automatic classification of
objects which are present in image data. This is a process commonly referred to as object
recognition. An object recognition system must learn visual cues, such as shape, colour
and texture, from examples of objects presented to it. These visual cues are later used
to identify examples of these obJects in previously unseen 1mages A general architecture
which most object recogmtion systems conform to is presented in Flgure 1.1. Prior to
recognition there is a training penod in which visual cues are extracted from the example
objects the system is expected to learn. These are recorded as an object descnption or
representation. Recognition is then achieved by comparing model representations and

representations constructed from the i image ofa scene in an appropnate manner.
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Training Recognition
r

Model Image

o

Scene Image

|

Scene Representation

Model Representation

Matching

Scene Description

Figure 1.1: A typical architecture for object recognition systems

There é.re a variety of visual cues which can be used in the description of an object. It is
likely that a general purpose vision engine will comprise specialised modules for tasks such
as texture and shape based recognition with final classification of scene objects based on
fusion of these different modalities. Although cues such as texture and colour are useful
(if we want to distinguish between a red brick and a blue brick then colour is the only
information needed) the work presented in this thesis concerns the recognition of objects
using shape only. Shape is an attractive property of an object to use because it is highly
descriptive and is easily quantified using the ldnguage of geometry. Central to the work
presented in this thesis is the issue of system integration. An object recognition algorithm
serves no purpose on its own and must be integrated into a larger system to provide any
useful function. As just stated, it is also desirable to be able to integrate the data from
different vision modules (and maybe other modes of sensory input) to take advantage of
all of the information available about a scene in order to produce a system which is reliable
and able to operate in a wide variety of environments. To enable this sort of integration

the quality of the data produced by each vision module must be known so that the system

can weight its significance in decision making.

Although the problem of object recognition is relatively simple in principle a straightfor-
ward solution is hindered because the appearance of an object can vary significantly from
one image to the next. The key to de\?eloping a successful object recognition system ié to
develop object descriptions which are insensitive to this variation in appearance whilst still
providing enough information to distinguish different objects reliably and efficiently. The

appearance of an object in an image can vary for a variety of reasons and it is important
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to be aware of these when assessing the usefulness of any particular object representation.
The most significant factors which affect appearance can be roughly grouped into four

different categories.

Lighting effects

e Change in the position of an object relative to the camera -

Image acquisition problems

Object damage and deformation

The way an object appéars in an image is directly related to the Structure of the object,
the way that the object’s surfaces interact with incident light and the lighting conditions.
If the relative posxtxon, intensity and colour of light sources is varied the appearance of
the object can vary significantly. To minimise the effect this variation has on object
descriptions, shape features such as edges and corners, which can be detected under a

whole range of lighting conditions, are often used in the construction of representations.

As an object moves relative to the camera, or if the camera moves relative to the object,
the image of the object changes. If the object is always viewed from the same direction
then this change can be described as translations, rotations and scaling of the image
data (ignoring the effects of perspective foreshortening). Object representations which are
insensitive to these changes in the image data are said to possess translation, rotation
and scale invariance respectively. If the direction in which an object is viewed changes,
the change in the appearance of the object is more complex and depends upon the 3-

dimensional structure of the object and its distance from the camera.

The process of acquiring and storing images digitally is subject'to various imperfections
which affect the final quality of the image data. Light reflected from the surface of an
object is first focussed onto a sensor to produce an image using one or more lenses. Lenses
can never be manufactured perfectly and as a result introduce some optical distortion.
The function of the light sensor is to convert the level of incident light into electrical
signals. As in all electronic systems, these signals are subject to a variety of sources of
noise including thermal noise and cross-talk from other electrical signals and this will effect
the final image data. Finally the electrical signals are sampled and quantised so that they
can be represented digitally. The spatial sampling of the image data into an array cannot
capture high spatial frequencies (a particular problem at shape edges) and can introduce
artlfacts because of aliasing. Further information is lost by the process of quantlsmg the

data to a finite number of intensity levels.
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The actual shape of an object may change over time for a number of reasons. It may be
composed of a number of moving parts which affect the shape of the object as they move
or the object may be deformable and not have a well defined shape at all. Physical objects

are also subject to wear and damage which affect their shape.

The task of recognition is complicated further because objects in real scenes rarely appear
is isolation. Usually there will be other objects present and the background will contain
lots of detail. This extraneous visual data is usually referred to as scene clutter. To be able
to classify objects reliably in real scenes it is necessary to either isolate (or segment) each
object from the scene, which is a substantial problem, or to adopt a matching strategy
which is insensitive to this extra information. A more serious problem arises when ob jects
obscure each other so that they are only partially visible (the problem of occlusion). If

an object is described using some global property of its shape then recognition will be

unreliable under conditions of occlusion.

1.2 Aims and Objectives

The motivation for the work presented in this thesis is this development and analysis of
object recognition using pairwise geometric histograms. This novel representation, which
was first proposed by Evans [Evans et al 93, Evans 94], enables efficient and reliable clas-
sification of 2-dimensional rigid shape data, solving many of the problems outlined earlier.
In brief, this representation is formed by recording the geometrical relationship between
pairs of shape primitives (Evans uses line segments) in the form of a frequency distri-
bution, known as a pairwise geometric histogram. By careful selection of the geometric
measures which are recorded, a concise shape descriptor with good invariance properties
and insensitivity to noise can be obtained. A full description of this representation will be

presented in Chapter 3.

This shape representation and its accompanying matching algorithms provides a strong
basis for a general purpose recognition system based on shape. The research conducted
here aims to provide some important improvements to the original algorithm, allowing it
to be applied to a wider range of problems, and to provide an analysis of its performance to
enable designers to integrate it more easily into a system. It is also demonstrated how the

representation can be extended for 3-dimensional surface features to enable 3-dimensional

surface based recognition.

One of the most important properties of any classification system is its reliability but
all too often the designers of object recognition algorithms fail to provided a sufficient



Chapter 1. Introduction 5

analysis of this, only demonstrating the technique on a few selected test images. On their
own, object recognition algorithms serve no purpose and must be integrated into a larger
system. To do this in a way which will provide robust performance, a quantitative measure
of its reliability must be known. In fact a quantitative measure of reliability has many
other uses which will be discussed later. This has motivated an analysis of the reliability

of object recognition using pairwise geometric histograms.

Another important property of a classification algorithm, and again an issue which is
frequently neglected, is scalability - the ability of a classification algorithm to perform
successfully as the number of object classes is increased. Algorithms which become im-
practical to use for more than a few different object classes cannot provide a generic
object recognition solution. When evaluating the scalability of a particular algorithm

three factors must be considered.

e The relationship between reliability and the number of object classes

e The relationship between the computation needed to perform recognition and the

number of object classes

e The number of different objects which can be represented uniquely (capacity) .

To assess the scalability of the geometric histogram algorithms these issues will be ad-
dressed. The relationship between reliability and the number of object classes will become
evident from the analysis of reliability, which has already been identified as an important
issue in its own right. The relatlonshlp between the number of object classes and the com-
putatlon needed for matching is linear, which is good for scala.blhty, and the algorithm
also has the advantage that it can be implemented on an array of simple, homogeneous
processors to improve performance. This issue of computatlonal complexity is relatively
stralghtforward will not be considered any further. This leaves an interesting question
regarding the number of objects which can be represented uniquely. To answer this a
number of approaches for estimating the capacity of the pairwise geometric histogram

representation have been investigated.

In order to accumulate evidence for the presence of a model in a scene and to determme
the models position a generahsed Hough transform was adopted as part of the orrgmal
recogmtlon algorithm. The Hough transform is noted for its robustness and performs well
in this apphcatlon but srgmﬁca.nt 1mprovements can be gamed by takmg proper account
of variability in the position of shape primitives. ‘This has motivated the development of

a probabilistic Hough transform which determines the most likely position of models in a
scene and provides an estimate of the error on this estimate.
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The geometric histogram representation used by Evans is invariant to translations and
rotations of shape data but not to changes in shape scale. This lack of scale invariance
prevents the recognition of objects at arbitrary distances from the camera (which then
appear at arbitrary scale). To extend the range of possible apphcatlons of this algorithm

this issue has been addressed.

Althoughvthe majority of the work presented in this thesis concerns the repfesentation and
classification of 2-dimensional shape, the pairwise geometric histogram representation can
be extended to represent 3-dimensional features. Such an extension for the representation

of 3-dimensional surfaces has been developed, enabling surface based recognition of 3-

dimensional objects.

1.3 Organisation of the Thesis

In the next chapter a selection of the most 1mportant algorlthms for 2- d1mens1onal shape
recognition are described and compared. It is intended that this selectxon will cover all of
the 1mportant principles used to date and that other algorithms can been seen as extensions
or variations on these. The chapter concludes with a summary of the important properties

of each algorithm, highlighting the principles which are most useful for recognition.

The representation and recognition of Shape using pairwise geometric histbgrams is re-
viewed at the beginning of Chapter 3 and results are presented to demonstrate the ef-
fectiveness of this shape descriptor for classifying shape primitives. This is followed by
a formulation of the probabilistic Hough transform which is used to find arrangements
of shape primitives in scene data which are consistent with model objects, providing a

number of advantages over the original scheme. Results of using the probabilistic Hough

transform are presented.

In Chapter 4 an analysis of the reliability of shape classification using geometric histo-
grams is developed. Although techniques for error estimation in classification problems
are common, the aim of this work is to make the relationship between reliability and the
number of stored models explicit. To achieve this a novel estimation scheme is proposed
and this is used to estimate the probability that shape primitives are misclassified for
two different classes of shape data. The original recognition scheme is found to become
unreliable as the number of models becomes very large so a modification to the algorithm

is recommended which ensures reliable recognition for any number of stored models.

The issue of representation capacity is investigated in Chapter 5. To determine the number
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of unique classes that can be represented it is necessary to partition the continuous class
domain into enumerable units and to determine the proportion of the domain which is
likely to be occupied after training. Two different approaches are taken to solve these
problems, one based on geometrical intuition and the other on a statistical model, and
these are used to estimate the capacity for different classes of shape data. The geometric

approach provides a bound on capacity and the statistical approach provides an estimate

of the capacity itself.

The representation of shape data over ranges of scale is considered in Chapter 6. This
addresses one of the main criticisms of the original pairwise geometric histogram approach.
Experimental results are presented to demonstrate successful recognition of shape over
ranges of scale and the algorithm is also used to track an object over a sequence of images

as it approaches a fixed camera.

Chapter 7 presents a novel representation for 3-dimensional surface data which is based on
a new pairwise geometric histogram descriptor. This 3-dimensional representation inherits
many of the advantages of the 2-dimensional representation but enables full, 3-dimensional

object recognition. Experimental results are presented to demonstrate the effectiveness of

this novel scheme.

In chapter 8 the main contributions provided by the thesis are reviewed and the conclusions

of each piece of work discussed. A number of suggestions for continued research are also

presented.



Chapter 2

Representation and Classification

of 2-Dimensional Objects

2.1 Introduction

Since the development of digital computers capablé of storing and manipulating images,
a large number of researchers from a surprisingly diverse rahge of fields of expertise have
worked on the object recognition problem (the problem of identifying objects known a priQ
ori in previously unseen images). This has produced an equally diverse range of potential
solutions with differing merits and ranges of applicability. The purpose of this chapter is to
describe the most important solutions that have been published and ultimately to identify

which of the underlying principles are of general importance, with a view to building on

these.

Broadly speaking, the object recognitiqn algorithms reported in the literature fall into
either of two categories - those which require scene images to be divided into regions of
interest prior to classification (a process commonly referred to as image segmentation)
and those Wthh focus on image features such as corners, edges, holes, arcs etc. In fact,

the distinction between regions of interest and features is not that precise but typically
a region of interest will be defined by some global characteristic and may contain many
features which themselves are defined locally. Representations based on regions of interest
may be further divided into those which use the region’s shape or topology, those which
use the shape of the region’s contour and those which use information contained within

the region itself. This categorisation of representations is depicted in Figure 2.1.
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Image
Segmenta:ion/ Wure Detection
Image Region Image Features
Shape Based Contour Based || Region Based Feature Based
Representations Representations | | Representations Representations

Figure 2.1: The different categories of object representations based on segmented image

regions and detected image features.
2.1.1 Image Segmentation

One of the fundamental problems facing the designer of an object recognition algorithm is
distinguishing between data which is relevant to the classification of an object (for example
the pixels belonging to an object under investigation) and data which is not relevant (pixels
belonging to the background or other objects). To some extent this problem can be avoided
by designing classifiers which are insensitive to irrelevant scene data (scene clutter) but
a more direct approach is to search for regions of a scene image which are believed to

contain single objects or object parts and then to classify these regions in isolation.

Techniques for segmehting images into regions of interest are usually based on the premise
that objects, or object parts, exhibit global characteristics which can be identified in im-
ages. A simple example might be the segmentation of machine parts appearing against
a light background. The global characteristic common to these objects is that they are
darker than the background and as such pixels can easily be classified as object or back-
ground by considering only their intensity. Figure 2.2 (a) contains a simple shape on a
uniform background which is easily segmented by thresholding, as shown in Figure 2.2

(b). The region can also be segmented by detecting its bounding contour as shown in
Figure 2.2 (c).

In more realistic scenes which may contain multiple objects possibly occluding each other,
background clutter and other artifacts such as shadows, the segmentation process is much
more demanding. Researchers have used additional information such as texture, colour,
depth and motion to varying degrees of success but no generic solution has yet been found.
Robust segmentation of objects from real scenes has proved to be somewhat paradoxical

in that the only sure way to segment out a complete object is to have first recognised it.
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(a) (b)
o~ B e
(©) (d)

Figure 2.2: Examples of region, boundary and line feature segmentation. (a) The original

image. (b)

The image is segmented by simple grey-level thresholding. (c) The image is

segmented by a bounded contour. (d) Line segment features.
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2.1.2 Feature Detection

Features such as edges and corners provide a valuable source of information about the
content of an image as they correspond directly with physical structures in the real
world. Features represent a local property of a shape’s geometry and can usually be
recovered even if some of the shape is obscured or corrupted by excessive noise. As a
consequence of the way in which light falls on an object, physical structures will generally
appear as discontinuities in the intensity of pixels in an image. Most feature detection
techniques identify these discontinuities using differential operators which quantify im-
age gradients [Sobel 70, Canny 86, Harris & Stephens 88]. More complex features such
as holes and curves may be detected by fitting geometric models of these structures to
the image gradients. Figure 2.2 (d) presents the result of line fitting applied to the edge

information recovered from Figure 2.2 (a) using the Canny edge detector.

In the remainder of this chapter a broad selection of the object recognition algorithms
found in the literature are described and grouped according to the different categories
identified above. Although the list of algorithms covered is not exhaustive and not all

variants are discussed, it is hoped that all of the important principles used throughout the

object recognition field can be found here.

2.2 Shape and Topology Based Representations

Given an image region which corresponds to an object or part of an object, the shape
and topology of the region provides important clues as to its class. The representations

discussed in this next section are constructed by measuring shape and topology directly

and recording this in an appropriate manner.

2.2.1 Shape Descriptors

The shape of arbitrary image regions can be described by a range of features derived from
distance and area measurements taken directly from the image data. When grouped to
form feature vectors they can be used to classify image regions using standard pattern
recognition techniques. Although these features do not provide a complete description of
the region shape (in the sense that the image region cannot be reconstructed from the
description) an efficient and reliable classifier can be implemented for simple recognition
tasks by careful selection of the appropriate features [Strachan et al 90]. A number of the
most common features used in region classification are described here along with their
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invariance properties.

Distance

Simple distance measures, such as the lengths of the maximum and minimum chords across
a shape or the shape’s perimeter, provide rotation and translation invariant features. More

usually, ratios of distances will be used as these also provide invariance to the scale of the
shape. | '

Area

The area of a shape provides a rotation and translation invariant feature and may be
normalised using some recoverable distance to also provide invariance to scale.
Eccentricity

The eccentricity of a region is a measure of the tendency of the region to be long and thin.
A number of alternative formulations for this metric have been proposed but the simplest,

and most intuitive, is defined as the following ratio:

Length of maximum chord across the region
Length of maximum chord perpendicular to the first

(2.1)

eccentricity =

This ratio of distances provides invariance to rotation, translation and scale.

Rectangularity

The similarity of the shape of an image region to that of a rectangle is defined By its
rectangularity. This is simply the ratio of the area of the image region to the area of the

smallest rectangle which bounds the image region:

Area of image region
Area of smallest bounding rectangle

rectangularity = (2.2)

By taking the ratio of areas, the rectangularity is invariant to rotation, translation and

scale.
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Compactness

The tendency of an image region to be confined is measured by its compactness. Circular
regions are the most compact and the least compact class of shapes are fractal structures.

A common formulation of compactness is defined as:

(Perimeter length of image region)?
Area of image region

(2.3)

compactness =

The ratio of a squared distance to an area provides scale invariance in addition to invariance

to rotation and translation.

2.2.2 Shape Skeletons

The topology of a shape can provide important clues about its class. A shape’s topo-
logy can be recovered by thinning until it becomes a unit pixel width network and then
describing the resulting skeleton as a connected graph. A shape and its skeleton are presen-
ted in Figure 2.3. Recognition is achieved by comparing topological graphs constructed

from models with graphs constructed from scenes using well established graph matching

techniques.

Original Image Extracted Skeleton

Figure 2.3: The topology of the hand can be recovered by first thresholding the image

and then stripping away pixels until a thin skeleton remains.

Thinning strategies generally work on the principle of stripping away successive layers of

shape boundary points on the condition that the removal of a point does not change the
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connectedness of the shape. This can be done using either erosion morphological operators
or fire-front type algorithms (a good example is presented by Xia [Xia 89]).

Topological networks posses all of the invariant properties required of a general vision
system although for most applications a purely topological description is too ambiguous
and some structural constraints have to be added. These structural constraints may well

compromise the invariance properties of the description.

The topology of a shape is largely unaffected by random noise although its presence can
introduce short spurs into the shape skeleton. These are easily removed by pruning.
By their nature, thinning algorithms are sensitive to occlusion (to a thinning algorithm
an occluded shape looks like a different shape with different topology) and in general

recognition schemes based on skeletons cannot cope with occluded schemes.

2.3 Contour Based Representations

In applications where objects, or object parts, can be successfully segmented from a scene
image the shape of the contour around the object can be used for classification. When ex-
tracted from a regidn of interest, the raw contour C comprises a string of edge pixels
(edgels) defined by their position in the image and possibly their orientation and/or
the local edge gradient. Although the contour around an image region occupies the 2-

dimensional image plane it is essentially a 1-dimensional structure and can be expressed
parametrically as a function of single variable.

C=loopi ¥ V)] 0<ign (2.4

Where n is the total number of pixels along the contour, (z;,y;) is the position of the ith

pixel along the contour, %; is the direction of the normal to the contour at the ith pixel
and V; is the magnitude of the edge gradient at the ith pixel.

Although this contour description may, at least in principle, be used directly for matching
unseen contours with known model contours it lacks the necessary properties to promote
efficient and reliable recognition. A good contour description for efficient recognition is one
which is both compact and invariant to the position, orientation and scale of the contour
but the raw contour description has none of these properties. For reliable recognition the
contour description must be repeatable and insensitive to the types of noise encountered

in typical scene images but again this is not a property of C. To address these problems
a number of alternative contour descriptors have been proposed.
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2.3.1 Chain Codes

The chain code, Cehain, 18 a contour descriptor which has been developed to remove the
dependency of the descriptor on the position of the contour within an image [Freeman 61].
Instead of defining a contour pixel by its position within the image it is defined by its
position relative to the previous edge pixel in the contour. Because an edgel can be in any
one of eight! possible pixel locations relative to its previous neighbour each edgel may be
uniquely defined by an integer between 1 and 8, and the complete contour described by a

string (or chain) of integers in this range.

Chan=lcl ¢ €1,23,4,56,7,8 and 1<i<n-1 (2.5)

Each chain element, ¢, is derived from the position of the ith and (i — 1)th pixel.

c(i) = F (z; — Ti-1, ¥ — Yi-1) (2.6)

Where F(Az,Ay) maps the position of the current pixel relative to its neighbour to an

integer in the range 1 to 8. An example is provided in Figure 2.4 for a section of contour.

C

chain

=(3,3,4,4,4,3,434,43,444,554,5,5,5,5,55,5,5 ]
Figure 2.4: A section of a shape contour and its associated chain code.

By describing contours in this manner boundaries found in unseen images can be classified
by comparing them to model boundaries using string matching techniques. This approach
has the advantage that broken or occluded contours can still be classified by treating their

chain codes as sub-strings of those describing the stored model contours. This relative

! Assuming 8-connectivity is used when forming the contour
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description of contour pixels is invariant to translations of the contour within the image.
However, the descriptor is still dependent on the scale and orientation of the shape and is
therefore of limited general applicability. A useful extension of this coding which removes
the dependency on the orientation of the contour is to record the first derivative (modulo-
8) of the chain code so that each chain element represents the change in direction of the
contour rather than its absolute direction. A more serious problem with this type of
descriptor is its sensitivity to even moderate amounts of scene noise. This arises because
of the discontinuous mapping, F(Az,Ay), between pixel positions and chain codes with

the consequence that small variations in pixel positions due to noise can produce abrupt
changes in the descriptor.

2.3.2 The Polar Parameterisation

A useful shape descriptor is obtained by transforming the position of contour pixels from
Cartesian coordinates to a polar coordinate system whose origin lies on the contours
centroid (Z,7). Each pixel along the contour Cpoler is defined by its radial distance from

the centroid, r, and its angular displacement around the contour from some arbitrary
reference, 0.

polar ["'za z] 0<ign. (27)
Where
ri = /(zi — 2)2 + (3 — §)? (2.8)
and
i = arctan (y—'——ﬁ:) (2.9)
Ii—X .

By interpolating between adjacent boundary pixels the contour can be descnbed as a
continuous function of r in @ as depicted in Figure 2.5.

Cpotar = T(6) : (2.10)

One advantage of this type of contour description is that it is independent of the position
of the contour within an image and, importantly, rotations of the the contour produce a
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r(®)

Figure 2.5: Describing a shape contour in polar coordinates.

shift in the descriptor along the #-axis. This promotes efficient matching between scene
and model contours using a 1-dimensional shift correlation. A further advantage of this
representation is that small changes in the position of contour pixels due to scene noise

only result in small changes in the descriptor enabling reliable recognition in moderately

noisy scenes.

Like all representations which rely on centroid measurements the (r,§) parameterisation
becomes distorted if the position of the centroid changes. This seriously impairs shape
recognition in scene images exhibiting occlusions or significant background clutter where
repeatable recovery of a shape’s centroid is not possible. A particular problem with the
(r,6) description is that for all but the most simple shapes, the profile becomes multi-
valued (for some values of 6 their may exist a number of different values of r). It has been
suggested that multiple r values can be avoided by discarding all but either the smallest or

the largest r values at each value of 8 but this significantly reduces the descriptive power
of the representation and leads to ambiguities.

2.3.3 The Tangential Parameterisation

The tangential representation is an alternative contour parameterisation which is position
invariant without the need to recover the contour’s centroid and which cannot become
multi-valued so that arbitrary contours can be represented completely and without ambi-
guity. Starting at any arbitrary point along the contour the orientation of each boundary
edgel, relative to the orientation of the first edgel, v, and the distance travelled along
the contour, s are recorded. This is a measure of the degree of bending of the contour at

a distance s from the start. An example is given in Figure 2.6 for the simple case of a
circular contour. - '
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Ctan = w’nsz] ~0<gisn o : (211)

Like the polar representation the contour can be described as a continubus function by

interpolating between adjacent pixels, as shown in Figure 2.6.

Clan = ¥(s) | (2.12)

/2 ]

1
-n/2 : :
-1 - ‘ ol

Figure 2.6: A two dimensional shape and its tangential representation. P is the perimeter

of the boundary.

By measuring the orientation of contour plxels relative to the orientation of the first pixel,
the dependency of the descriptor on the orientation of the contour is removed. However,
variation in the selection of a starting point along the boundary produces a shift in the
descriptor along the s-axis and along the 1-axis. Matching can proceed as a 2-dimensional
shift correlation but more usually, to improve efficiency, the mean value of 1 is removed
from the descriptor and matching is performed as a 1-dimensional shift correlation along
the s-axis. The drawback of this improvement is that the mean value of 9 is sensitive
to occlusions. A significant problem with this contour representation is that estimates of

the distance travelled along the contour tend to be over-est1mated and variable dependmg

upon the way the original image is quantised.

2.3.4 quriér Descripidrs

It is well understood that any penodlc function can be expressed as Fourier serles and
Cosgriff [Cosgriff 60] recogmsed the merit in applymg this to functions descubmg contours
in images. Any contour parameterisation which is perxodlc (or can be made perxodlc) can
be described by an infinite series of Fourier coefficients but usually only a small number

of these coefficients are necessary for classifying the contour’s shape, producing a concise

contour description. -
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Although the polar parametrisation is a naturally periodic function, variants of the tan-
gential function are more usually used as the basis for Fourier descriptors because of their
ability to describe arbitrary contours without ambiguity. The tangential function itself is
not periodic because the measure of bending, v, decreases? by 27 for each circuit of the

closed contour, but this is easily rectified by defining a variant, 1*(s).

¢*(8) = 9(s) + (%) 2r (2.13)

Where L is the length of the closed contour.

It is interesting to note that t*(s) = 0 when the contour shabe ié perfectly circular so
this variant can be interpreted as a measure of the deviation of the shape of the contour
from that of a circle. The period of this contour description is the length of the closed
contour, L, but to apply the 'Fourier expansion this must first be normalised to a period
of 2. This may be done by defining a new boundary length ¢t which varies from 0 to 27

as s varies from 0 to L.

; | _
t= (Z) a0 (2.14)
A periodic contour description with period 27 is obtained by substituting ¢ into expres-

sion 2.13.

Pt)=9 (%rt-) +t (2.15)

This periodic contour description can then be expressed as a Fourier series.

. 0o
B0 =+ 3 Axcoslkt - ) (216)
The shape contour is now fully descnbed by the Fourier coefficients A; and O and thé
mean value po. The details of how these coefficients are determined from expression 2. 16
are not included here but can be found in any standard Fourier series text, although a good
example specifically for shape contours is reported by Zahn et ol [Zahn & Roskeis 72]. Like
the tangential parameterisation discussed earlier the mean value yg reflects the choice of

a boundary starting point and is not useful as an invariant descriptor but the harmonic

2\When the contour is followed in a clockwise direction
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amplitudes, Ay, and some functions of the phase angles, oy are invariant to translations,

rotations and scalings of the shape contour.

An interesting property of Fourier descriptors is that the lower order Fourier coefficients
describe the macroscopic behaviour of the contour’s shape whilst higher order coeficients
describe more detailed variations in the shape of the boundary. Truncating the coefficients
used to describe a particular shape boundary not only results in a concise shape descriptor
but results in a descriptor which is very insensitive to small variations in the boundary
due to noise. Unfortunately more serious degradation in a contour’s shape, perhaps as
a result of object occlusions, dramatically changes the Fourier description both because
the macroscopic behaviour of the contour changes signiﬁcantly and because the contour

length, L, used in determining the Fourier coefficients cannot be recovered.

2.4 Region Based Representations

The shape of the contour which bounds an image region is only one of the properties
of the region which can be used for classification. Other characteristics such as texture
and colour provide further information which may be used to construct more descriptive
object representations. A number of representational schemes which make explicit use of
the intensity of pixels within some image region, usually obtained by segmentation, are
discussed in this section. Given an image region, R, this region may be described by the

intensity and position of each of the pixels which it contains.

R=1I(z,y) (z,y) €R | - (2.17)

Like the raw contour descriptor introduced earlier, R can be used for matching directly
and this is the basis of the block matching scheme discussed next. However, it possesses
none of the desired invariance properties and this has motivated the development of more
sophisticated algorithms, some of which will be discussed subsequently. Although all of
these algorithms can be used to represent raw intensity images, it is more usual to use

edge-enhanced images as this provides a degree of insensitivity to lighting variations.

2.4.1 Template Matching

Given an image region describing a model object it is possible to detect iynstanees of this

model in a scene by placing it at every possible location and measuring the similarity
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between corresponding model and scene pixel intensities. Given a model region M(i 7)
)

and a scene image S(z,y) this can be expressed formally as:

c(z,y) = ZZ[M’ j) = S(z +4,y+5)) (2.18)

i=1j=1
Where the model region is a block with a width of M pixels and a height of N pixels, and
c¢(z,y) is a measure of the similarity between the model and the scene when the model is

placed at (z,y) (c = 0 implies a perfect match).

Using raw pixel intensities to represent objects allows arbitrary shape to be described
and because pixels are compared individually matching can be performed reliably when
an object might be partially obscured. The representation possesses no invariance prop-

erties so if objects are free to translate, rotate and scale an excessively large amount of

computation is needed to detect them.

2.4.2 The Log-Polar Mapping

Using grey-level templates to represent image regions makes good use of the information
provided but this type of descriptor does not promote efficient recognition because of
its lack of invariance properties. Sensitivity to changes in lighting conditions can be
reduced by using edge-enhanced images but this still leaves a representation which is
sensitive to changes in the scale and orientation of image regions. The log-polar descriptor,
Riogpolar, addresses this limitation by mapping pixels (edge-enhanced or otherwise) into
a domain where changes in scale and orientation in the image space manifest themselves

as translations in the log-polar space. This permits a relatively efficient 2-dimensional

shift-correlation to be used for classification.

The log-polar representation is constructed by sub-pixel interpolation of the original image
data using the mappings given by expression 2.20 and 2.21. Like the polar contour para-

meterisation, discussed earlier, the log-polar representation is only useful if the centroid

(z’,y") can be recovered.

Rlogpolar = J(P’ 6) (P, 0) e‘Rlogpolar | ; (219)

Where"‘" is the logarithm of the radial distance,r r, of (z,y) from the region centroid
¥

(=',¢)-
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p = log(r) (2.20)
9 = tan~! (: — Z',) (2.21)

Both Wechsler et al [Wechsler & Zimmerman 88] and Rak et al [Rak 91] take the Fourier _
Transform of the log-polar space and use its magnitude as an invariant measure. This

works because the magnitude of the Fourier Transform is invariant to translation.

Wechsler et al identify the problem that small variations in located centroid result in

dramatic variations in the resulting log-polar representation. Unfortunately, random noise

and occlusion produce such variations.

The nature of the mapping is that many samples are taken at the centre of the image where
the radial lines are closer together but the resolution falls off moving out from the centre.
This has two consequences. Firstly the method is really only suitable for objects which
are significantly smaller than the image size so that the resolution of the representation
is sufficiently high. Secondly, because outlying objects have only a minor effect on the
representation due to the low sampling, the object under analysis does not have to be
segmented out from the image, providing that it can be centred correctly.

2.4.3 Moment Invariants

The use of moments as invariant binary shape representations was first proposed by
Hu [Hu 62], who successfully used this technique to classify handwritten characters. The
regular moment of a shape in an M by N binary image is defined as: -

upg =YY 2Py (z,y) (2.22)
R «

Where I(z,y) is the intensity of the pixel at the coordinates (z,y) and p + g is said to be
the order of the moment.

To remove the dependency of high order moments on the position of a shape within an

image, measurements are made in relation to the shapes centroid (z',3'). The coordinates
of the centroid are determined using the first order moments.

T = — and Yy = — (223)
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Relative moments are then calculated using the equation for central moments which is
defined as:

N-1N-1 ,
=3 3 G-aVG - y)G,5) (2.24)
§=0 i=0
Individual moments values do not have the descriptive power to uniquely represent ar-
bitrary shapes, nor do they posses the required invariance characteristics. However, sets
of functions based on these moments can be determined which do have this power. Hu
derived a set of seven rotational invariant moment functions which form a suitable shape
representation (or feature vector).

My = (uz + uo2) ' o | (2.25)

M = (ugo — ug2)? + 4ud, : - (2.26)

M3 = (u30 — 3u12)? + (ug1 — uao)? (2:27)
= (uso +u12)? + (uzs +uga)® (2.28)

Ms = (us0 — 3ui2)(uso + uj2) ((U3o +u12)? = 3(ug1 + uoa-)z)
+  (3ug1 — uo3)(u21 + ug3) (3(u30 +u12)? = (u21 + u03)2) (2.29)

| Ms = (uzo = u2) ((uap +u12)? — (ug1 + U03)2) + dups (ugo + Busz) (uzs +uog)  (2.30)

M7 = (3ug — ug3)(usp + u12) ((Uso +up2)? = 3(ug; + %3)2)
(uzo — 3uya)(ug + 1{03) (3(U30 + u12)2 - (ug1 + u03)2) (2.31)

Class1ﬁcatxon is achieved by matching a shape vector extracted from an image with pre-

viously encountered shape vectors from the training set. The shape representatlon can be
improved to exhibit scale invariance by a process of normalisation.
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Moment invariants do not inherently possess translational invariance and this variability is
removed by centring the coordinate system on a shape’s centroid. Unfortunately, moment
calculations are sensitive to the position of a shape’s centroid and attempts to determine
this are marred by random noise, poor segmentation and occlusion. Hence, moment

invariant schemes are not robust to these types of problem.

2.5 Shapes as Feature Groupings

The use of image features to represent objects promotes a Sha.pe descriptor which can
be reliably recovered in noisy scenes, can represent arbitrary shape by carefully selection
of appropriate features and provides a powerful, possibly complete, description of the
shape. Object recognition strategies based on image features typically comprise two dis-
tinct stages. Initially features are recovered from the scene image data and then a search
is conducted to find groups of features which are consistent with stored models. A number

of techniques for finding consistent groupings of features have been investigated but the

most important are discussed here.

2.5.1 Relational Graph Matching

Model featureé are well defined by their geometrical relationship to each other and the
technique of relational graph matching exploits this to find consistent feature groupings.
Given a set of model features, M, and a set of detected scene features, S, each possible
pairing between a model feature and a scene feature is considered to be a possible match.
These pairings can be represented as nodes in a, so far unconnected, graph as shown in

Figure 2.7 (a). Each node of the graph then represents a mapping from the model to the

scene.

To find consistent feature groupings each pair of graph nodes is considered in turn and the
ihappings they represent compared. If these mappings are the same, within some specified
tolerance, an arc is formed between the pair of nodes. When this has been completed for

all node pairs, consistency between groups of model and scene features manifest themselves

as fully connected networks of graph nodes, referred to as cliques.

The invariance properties of this type of representation depend upon the geometrical
relationships recorded between features but generally it is possible to attain translation,
rotation and scale invariance. The computational complexity of this approach is a serious

disadvantage and arises because of the large number of mappings which can exist between
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(a)

(®)

Figure 2.7: Relational graph matching. (a) A graph node is constructed for each model
and scene feature pair. (b) Geometrically consistent pairs are labelled by a connecting

arc. Consistent groups manifest themselves as fully connected groups or cliques.

scene and model features and the complexity of the clique detection techniques. This
problem can be minimised by directing the search for features within some local area as

in the Local Feature Focus method suggested by Bolles et al [Bolles & Cain 82).

2.5.2 The Interpretation Tree

Consistency between model and scene features can be found much more efficiently if
the relational graph is reorganised as a search tree. The use of a search tree to
search the relational graph, referred to as the interpretation tree, was first proposed in
[Gaston & Lozano-Perez 84], although the sensor data used in this first example was tact-
ile rather than visual. The approach has since been used for many visual recognition tasks

using a range of different image features [Grimson & Lozano-Perez 87, Grimson 90).

The inferpretation tree is constructed such that each possible pairingl between scene and
model features is represented by a unique path through the tree. A simple example is
illustrated in Figure 2.8 for a set of model features M = {mq,m;, my} and a set of scene
features S = {sg, s1,32}. At each node of the tree a check is made to ensure that the model
to scene pairings described by the path from the tree root to the node are self consistent.
If not then the tree below the node in question is pruned away.

As the tree is descended, more constraints become available for conéi‘stencry checking. At

the first layer only a single model feature to scene feature pairing is speciﬁed 80 consistency
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Figure 2.8: The interpretation tree provides an efficient scheme for finding consistent

model-to-scene feature pairings.

can only be determined using properties of the features themselves, usually referred to as
unary constraints. For example, when utilising line features the scene and model line
lengths might be used to decide whether or not a particular pairing is consmtent At the
second layer of the tree, however, relationships between pairs of model features can be used
to provide stronger constraints for consistency checking. These are usually referred to as
bz"nary constraints. The final ob jective is to reach one of the leaf nodes of the inferpretation

tree, at which point‘a consistent set of feature pairings has been determined.

2.5.3 Geometric Hashing

Geometrlc Hashing was ﬁrst proposed by Lamdan and Wolfson [Lamdan & Wolfson 88] as
an alternative to the feature matchrng approaches already discussed. The approach differs
in that no explicit matching between scene and model features is conducted, thus avoiding
the computational explosion this produces. Instead, invariant measures are derived from
scene features and these are used to index a precompiled hash table of models, Votes are
then cast for the indexed models and recognition is achieved by finding models which have

received a significant number.

The invariant measurements used to index the hash table are derived by transforming
features into an invariant frame of reference, which itself is determined from a small number
of the features. In the original work proposed by Lamdan and Wolfson, an arbitrary pair
of point features are mapped to the coordinates (0,0) and (1, 0). The same mapping is
then applied to all of the other points and the resulting coordinates are used to index
the hash table. This approach has also been applied to arbitrary views of 3-dimensional
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objects by using more features to define an affine invariant frame of reference.

Compilation of the hash table can be computationally expensive because of the number
of combinations of features that can be selected to define the invariant frame. The com-

pilation is performed off-line though and allows models to be indexed very quickly during
recognition.

2.5.4 The Hough Transform

The Hough transform was first devised in 1962 as a means of detecting the paths of high
energy particles [Hough 62] but has since evolved and been applied to many different image
processing and computer vision tasks. In essence, the Hough transform maps complex
patterns of pixels or features from the image domain into compact features in some selected
parameter space. This greatly simplifies the task of searching for complex patterns in an
image when working in the parameter space.

Probably the most straightforward application of the Hough transform is in the detec-
tion of straight lines in images (or strictly, the detection of collinear edge pixels). Al-
though there are some earlier versions, the accepted formulation was first presented by

Duda [Duda & Hart 72]. In this formulation, lines are described using the P-6 equation,
as shown in Figure 2.9.

P =2zcosf + ysind (2.32)

Where P is the length of the normal from the line being detected to the origin and 6 is
the angle between the normal and the positive x-axis.

¥
>

Figure 2.9: A line in image space defined by the two parameters P and 6.

Each edge pixel in an image can potentially lie along an infinite number of lines passing
through it, and the parameter values associated with these lines describes a, sinusoid in P-6
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space. If a sinusoid entry is accumulated into a quantised, 2-dimensional parameter space
for each detected edge pixel, collinear pixels result in sinusoids which intersect at the same
point producing a detectable peak. The position of the peak determines the parameters

of the line the edge pixels lie along and the height of the peak gives the number of pixels
which lie along that line.

A number of developments of this basic scheme have been devised for the recognition of
parameterised shapes such as circles and ellipses but the most the significant improvement
in the field of object reéognition has been the development of the generalised Hough
transform [Ballard 81). This formulation of the Hough transform allows arbitrary objects
to be recognised in scenes from their edge features and is robust to partial occlusion
of the object data and the preéence of scene clutter. Central to the technique is the
parameterisation of an bbject’s edge pixels in terms of some arbitrary reference point in the
image plane. For each edge pixel, the vector p(r, &) from this edge to the reference point is
recorded in a table as a function of the orientation of the edge, ¢. There may be a number
of edge pixels with the same orientation so each row of the table, commonly referred to

as the R-table, may contain multiple entries. Figure 2.10 shows the measurements made
to construct the R-table.

Figure 2.10: The generalised Hough trahsfbrm. The skhaype.lboundary is pararﬁeteriséd in

terms of the véctbr, p(r,a), which defines an arbitrary reference point from each edge
pixel.

Given a scene image, each detected edge pixel is used to index the R-table for each stored
model to provide a hypothesis of the position of the model’s reference point, and this
hypothesis is accumulated in a 2-dimensional, quantised parameter space. Edge pixels
consistent with a particular model generate consistent hypotheses producing a peak in the
parameter space. The height of this peak relates to the number of edge pixels consistent

with the model and the position of the peak provides an estimate of the position of the
model in the image. .
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The generalised Hough transform possesses translational invariance but not scale or rota-
tional invariance. To detect shapes at different orientations and scale, an explicit search
must be made for each instance by applying a suitably transformed R-table. The table
is transformed for scale variations by simply scaling the r values accordingly whilst it is
transformed for orientation variations by shifting the r values along the ¢-axis. The result
is a four dimensional pa.rametér space with two axes for image position, an axis for orient-
ation and an a:xis for scale Significant peaks in this four dimensional space then indicate
the presence of an object along with its position, orientation and scale within a scene.
The disadvantage of this approach is the amount of computation and storage needed to
search and store the large parameter spaces although significant work has been conducted
to avoid this problem. This is typically dope by constructing coarse parameterisations
and then focusing on dense areas of the parameter space [O’Rourke 81}, or by decoupling

the parameters and searching through the resulting lower dimensional spaces.

2.6 Affine and Projective Invariance

For the majority of 2-dimensional recognition problems it is reasonable to assume that
objects are constrained to lie in a plane, but relaxing this constraint can open up addi-
tional applications. A good example is in an industrial environment in which objects are

represented using their 2-dimensional appearance but may lie on top of one another so
that they are not constrained to a fixed plane.

When the depth across an object is small compared to its distance from the camera the
mapping from world coordinates to image coordinates can be approximated using an affine
transformation. This is the assumption of weak perspective. A number of researchers have

proposed affine mvarlant representations but when the assumption of weak perspective

cannot be made a more general projective transformation must be used. In the next

section a projective invariant shape representation scheme is presented.

2.6.1 Projective Invariants

A shape representation for two dimensional planar objects which is invariant to pro-
jective transformations as well as changes in pose and scale is presented by Rothwell et
al [Rothwell et al 92] The representatlon relies upon the fact that points of tangency on
a two dimensional planar object are preserved under dlﬁ'erent prOJectlons and also that
the mapping of any four points from one plane to another is sufficient to determine the

transformation matrix T which fully defines that transformation. Consequently, by map-
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ping four points of tangency from a planar object to four fixed but arbitrary points in
a second plane, this second plane will possess the required invariant properties, and by
determining the transformation matrix T from the four mappings all points on the planar
object can be mapped onto the invariant plane.

In this scheme, planar object concavities are used to determine four tangency points,
referred to as distinguishing points, as shown in Figure 2.11. The first two distinguishing
points (A and D) are located by the blta.ngent that marks the entrance to the concavity.
The other two distinguishing points (B and C) are located by the tangents to the inner
curve of the concavity which pass through each of the first two distinguishing points.

Figure 2.11: For this projective invariant, two distinguishing points (A and D) are located
by the bitangent that marks the entrance to the concavity. Two other distinguishing

points (B and C) are located by the tangents to the inner curve of the concavity which
pass through each of the first two distinguishing points

These four points are then mapped to the corners of a unit square on the invariant plane,
which is referred to as the canonical plane, and then the same transformation is used to
map all other boundary points within the conca.v1ty onto this plane. The mapping of the
concavity shown in Figure 2.11 to the canonical plane is shown in Figure 2.12 below.

Rothwell uses this mapping to construct an invariant object representation by projecting

planar objects onto the invariant plane and then taking a number of area and moment

measurements which then constitute invariant feature vectors. The use of local object

concavities provides some robustness to partial object occlusions although the need for
concavities limits the scope of objects that can be represented in this way. Although an
extension of the approach to 3-dimensional objects would be desirable it would appear to

be impossible as Burns [Burns et al 93] has proved that this type of projective invariant
cannot exist for arbitrary 3-dimensional structures.
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Figure 2.12: The mapping of the concavity in Figure 2.11 onto the canonical plane.

2.7 Representing Deformable Shape

The object representations considered so far in this chapter have been limited to the
description of rigid shape, and certainly this is an important class of problem. Recently
though, interest in represéntations for deformable objects has grown significantly with key
areas such as medical imaging and face recognition providing much of the motivation.
Although the work presented in this thesis concerns the recognition of rigid shape, a

summary of shape representations would be incomplete without a brief look at deformable
shape.

2.7.1 Point Distribution Models

Cootes {Cootes & Taylor 92] has presented a deformable shape representation which mod-
els the way in which the position of landmark points located on an object vary as the
object deforms. Given a set of examples of the object which exhibit the expected modes
of deformation, landmark points are placed on each example (usually by hand) and the
movement of these points, between examples, is measured. Figure 2.13 shows a pair of
examples from a training set with labelled landmark pbints. To‘be able to find corres-
pondences between landmarks in different examples, or lAter between the model and scene

data, they must be placed on recoverable features such as edges or corners.

If the position of all of the landmark points (z;,;) are concatenated into a vector x, such
that: |

X= [xhyl)-"mmyn]T ‘ (233)
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Example 1

Example 2

Figure 2.13: Two examples from a training set with labelled landmark points, exhibiting

some deformation.

Then the positions of landmark points across the range of examples can be expressed as:

x=X+Pb (2.34)

Where X is the mean position of the points, P is the matrix of eigenvectors of the co-
variance matrix which describes how points vary from their mean and b is a vector of
weights or model parameters. If the variation of landmark point positions exhibit any
linear correlation, which is usually the case, then only a few model parameters are needed
to describe the modes of deformation in the training set. This results in a relatively con-

cise representation of deformable shape and a small space in which to search for model
parameters during recognition.

Given an estimate of the pose and scale of an object within a scene, the point distribution
model can be placed over the scene and the landmark points iteratively moved towards
image gradients. The incremental change in the position of each point at each iteration can
be resolved to give a global change in the pose and scale of the model and a change in the

model parameters, constrained by the modes of variation seen in the training examples.

Strictly speaking, this is a model fitting algorithm rather than an object recognition al-
gorithm although the goodness of fit of the model can be used to decide whether or not
a particular object is present. The technique is more suited to discriminating between
similar objects from different classes, a good example of which is the recognition of

faces [Lanitis et al 94]. In this application the model is trained on many examples from
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each class and classification of test objects is based upon the fitted model parameters.

The need to have an initial estimate of the pose and scale of an object before using a
point distribution model severely limits its use as a éeneral solution to deformable object
recognition - if the pose and scale is already known then the ob ject recognition problem
is largely solved. The technique does have applications in more constrained environments
when locating and ihépecting an object which is exf)ected in a scene. The use of image
gradients to position landmark points provides insensitivity to cha{hges in lighting and the
use of global shape constraints prdvides some robustness to occlusion, clutter and imége

noise. Overall, the approach is an interesting solution for the "‘represeﬁtation of shape
deformation. '

2.8 Conclusions

The motivation behind this chapter has been to identify both the successful and unsuc-
cessful approaches for shape based object recognition by critically reviewing some of the
important contributions in the field to date. As a means of comparing the algorithms
discussed, each has been assessed in terms of four significant properties, namely: reliabil-
ity in the presence of typical scene noise including occlusion and clutter; good invariancé
characteristics to promoté'eﬂicient recognition; the scope to represent arbitrary shape and
sufficient descriptive power to represent large numbers of shapes uniquely. An accurate
assessment like this is difficult without quantitative results but these are rarely provided
by algorithm designers - in fact, this problem has motivated an analysis of reliability
and descriptive power in chapters 4 and 5 respectively. Instead, each algorithm has been
judged as being reliable, invariant, etc. and although this maybe somewhat subjective it
does highlight the relative advantages of the different approaches. Table 2.1 presents the
results of this analysis for each of the considered algorithms.

Probably the most important property required of a generic object recognition algorithm,
and yet the one which few of the algorithms discussed have achieved, is reliability in a
realistic environment exhibiting pixel noise, clutter and occlusions. The problem with
most of the representations which fail in this respect is that they are based on global
measurements which change if any part of the shape data changes. In the case of shape
descriptors and Fourier descriptors the global shape is measured directly but in other cases,
such as the polar parameterisation, measures are dependent on the recovery of the object
centroid which itself is a global measure. Although the chain code is constrhcted from local
measurements its lack of reliability can be attributed to the fact fhat the representation

changes abruptly even for small changes in the shape data. The shape skeleton is also



Chapter 2. Representation and Classification of 2-Dimensional Objects 34

Reliable | Invariant | Good Scope | Descriptive
Shape Shape descriptors - ° ° -
Shape skeletons - ° - -
Contours Chain codes - - ° .
Polar param. - . ° .
Tangential param. ° ° ° .
Fourier descriptors - . . °
Regions  Template matching ° - o .
Log-polar mapping - . ° °
Moment invariants - . ° .
Features  Relational graphs . . ° .
Interpretation tree . . ° °
Geometric hashing . o . °
Hough transforms ° o . °

Table 2.1: A summary of some of the most important aspects of the reviewed algorithms.
A e indicates that this algorithm has good properties of the respective type

constructed from local information but it only takes small amounts of scene clutter and

occlusion to prevent the thinning procedure from recovering the correct topology.

The template matching scheme promotes reliable recognition whilst providing good de-
scriptive power but its lack of invariance properties renders it computationally unattract-
ive. Of the contour representations the tangential parameterisation is the most attractive,
exhibiting all of the desired properties. The disadvantage of this approach is that, like all

of the contour and region based representations, it depends upon good prior segmentation
of the image. " ‘

The class of representations which outperforms all others in this analysis are those based
on image features. Image features, by their nature, are local descriptions of shape and can
be recovered in realistic scenes and by basing representations on relative measurements
between features, good invariance properties can also be attained. By selecting appropriate
features it is possible to represent all types of shape providing good scope and descriptive
power. The disadvantage of feature based representations is that matching scenes to
models can be computationally very expensive when considering all model-feature to scene-
feature mappings. In the next chapter, however, a strategy for limiting the number of
mappings between model and scene features is introduced providing a feature based object

recognition strategy with all of the properties discussed here but which is also efficient for
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Chapter 3

Ob ject Recognltlon usmg PalrW1se

Geometrlc Hlstograms

3.1 Introduction

Many of the objeét recognition techniques reviewed in the last chapter provide a good
solution in sufficiently constrained environments, and this is reflected by their adoption
in many practical systems. In general though, we would like to be able to relax many of
these constraints, opening up many more areas of application and ultimately find a generic
solution which is an equal to (or even superior to) our own vision systems. Although such
a generic solution appears to be a very long way off, a great deal of useful experience has
been gained during the development of the existing techniques. It is unlikely that any
one approach will be appropriate for all types of scenes, under a range of different viewing
conditions and a generic solution is likely to involve fusion of the results of specialised vision
modules. Current research must focus on these specialised modules, and in particular on

visual properties which carry a large amount of information such as shape.

It is quite clear that one of the primary requirements of a generic object recognition
strategy is insensitivity to large changes in the image data due to occlusions and scene
clutter, It was concluded in the last chapter that algorithms based on image features
can help promote such insensitivity (because image features tend to be defined locally)‘
but it was also seen that current feature based approaches suffer from the large number
of mappings that can exist between scene and model features. In the next section the
use of image features is discussed in a little more detail and it is shown how the number

of mappings between scene and model features can be greatly reduced by employing an

36
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appropriate feature representation.

The use of Pairwise Geometric Histograms as a robust, statistically based descriptor of
image features was first presented in the work of Evans [Evans 94]. These descriptors
allow scene image features to be classified according to known model features, simplifying
the task of identifying arrangements of scene features which are consistent with stored
models. This promotes a complete object recognition sﬁrategy which is both reliable and
efficient. In section 3.3 the construction of pairw'ise geometric histograms for representing

line features is explained, and some of the importaht properties of this representation are
discussed.

An important factor in the design of any classifier is the selection of a similarity metric
which allows meaningful comparison between training data and unseen data. A generally
accepted technique is to use the likelihood of observing some data given each of the classes
that data may have been drawn from as the measure of similarity between the data and
each of those classes. This has led to the use of statistical metrics such as the mean absolute
distance (MAD), x? and the Malhalanobis distance. This issue is discussed in more detail
in section 3.4 and a metric appropriate for classifying scene image features based on the
similarity of geometric histograms is derived. The performance of this classification scheme

is then demonstrated in section 3.5 for a range of test images exhlbltmg realistic levels of
occlusion and clutter.

In the original work by Evans [Evans 94], a generalised Hough transform is used to collate
evidence from classified features about the presence of particular objects in a scene, whilst
simultaneously identifying their likely positions. Although this technique performs ad-
equately, a number of advantages are gained by replacing this with a probabilistic Hough
transform - a maximum likelihood formulation of the Hough transform presented by Steph-
ens [Stephens 90]. This allows variability in the relative pose of features to be modelled
allowing the position of objects to be determined to a much greater accuracy and removing
the dependency of the position estimate on the quantisation of the parameter space to be
removed, increasing robustness. The probabilistic Hough transform not only identifies the
most likely position of an object within a scene but éxplicitly provides information about
the expected error on the position. Knowledge of this efror is essential if the algdrithm is
to be robustly mtegrated into a larger system. In section 3.6 the use of the probabllxstlc

Hough transform in this apphcatlon is described and in section 3.7 experlmental results
are presented.
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3.2 Shape Features for Object Recognition -

Image features such as corners, line segments and curved sections provide a good basis for
object recognition because they can be recovered over a wide range of viewing conditions
and object transformations. These types of features also promote successful recognition
under conditions of scene occlusion and clutter because they are defined locally. The main
criticism of feature based techniques is the need to exhaustively consider many possible
mappings between features recovered from a scene with stored model features. Consist-
ency between scene and model features is usually identified by searching through many
combinations of pairings between scene and models using graph matching or by accumu-
lating evidence using Hough transform type methods. When using graph matching to
explore model-to-scene consistency a combinatorial explosion of mappings occurs render-
ing the technique impractical for more than a few relatively simple models. Even when
using Hough transform based approaches, which are computationally more efficient than
graph matching [Davies 90], the amount of processing necessary can still be very large
and, perhaps more significantly, the parameter space, which is searched to find agreement

between models and scenes, quickly becomes noisy and reliability suffers.

Considerable improvements in efficiency and reliability can be gained by introducing con-
straints which limit possible mappings between scene and model features. For example,
when considering corner features the local image curvature may be used as a distinguish-
ing characteristic of the corner and only pairings between scene and model corners with
similar local curvature need to be considered. By introducing further constraints the num-
ber of potential pairings is pruned even more with a further increase in performance. In
the work that follows, this approach has been extended to the extent that each feature is
represented by a (near) unique descriptor based upon local geometry. The result is that

only a single mapping (or at least very few mappings) exist between scene and model
features promoting efficient and reliable recognition.

This approach can be adopted, at least in principle, to represent and classify all types
of image feature although the work here is limited to the representation of straight line
segments as first investigated by Evans [Evans 94]. The choice of line segments as the
basic shape primitive means that the class of shapes to be represented is not restricted,
as would be the case with corners for example. Even shapes comprising of only curves
can be approximated to a specified précision by straight lines and, as will be seen shortly,
errors introduced by this approximation can be accounted for.
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3.2.1 Approximating Image Data with Straight Line Segments

The straight line approximation algorithm which has been used is a development of the
recursive-split algorithm described by Ballard and Brown [Ballard & Brown 82]. Im-
age data of models during training and of scenes during recognition is first processed
by a suitable edge detection scheme which produces strings of connected edge pixels -
Canny [Canny 86] has been used here although any edge detection and linking scheme
could be adopted. In Ballard and Brown’s scheme, each edge string is then repeatedly
approximated by increasingly shorter line segments until the maximum perpendicular dis-
tance from any line to the edge string is below some specified threshold, A\. This is achieved
by repeatedly splitting line segments with a maximum perpendicular distance greater than
the threshold at the point of maximum distance. The development introduced here is to
place a threshold on the ratio of a line segment’s length to its maximum perpendicular dis-
tance to the edge string rather than on the maximum perpendicular distance alone. The
result of this modification is that inaccuracies in representing edge strings are proportional
to the absolute size of the image structures so that fine details are represented more closely
without the need to over represent coarser details. This approach was designed so that
it would be invariant to the scale of the image data in the sense that the same image at

different scales should be approximated by the same number of line segments. An example
of the line segmentation process is shown in Figure 3.1.

(a) (b)

Figure 3.1: Approximation of edge strings by straight line segments. (a) The original
image data. (b) The polygonised data.
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3.3 Statistical Representation of Shape

Although image features can be characterised to some extent by intrinsic attributes such
as local image gradients and curvatures, the context of the surrounding shape geometry
provides the basis for a much more powerful descriptor. By recording the geometrical
relationships between a feature and each of the surrounding shape features or primitives
the feature is fully defined in terms of its shape context. By carefully selecting appropriate
measures and storing these measurements in the form of a frequency histogram, a concise
shape descriptor which promotes efficient and robust feature classification can be produced.

This frequency histogram is referred to as a pairwise geometric histogram because it records
geometric measures made between pairs of image features.

The selection of geometrical measurements with which to form a particular type of pair-
wise geometric histogram is motivated by two, possibly dpposing, requirements. On the
one hand it is desirable to make measurements which tbgether, fully define the relationship
between a pair of features, producing a unique descriptor. On the other hand, it is import-
ant to select measures with good invariance properties to promote efficient classification

and which are stable under expected noise conditions to promote robustness.

The geometric relationship between a pair of line segments is well defined by the relative
angle between them and the range of perpendicular distance obtained when the endpoints
of the second line are projected onto the first. These relationships are depicted in Fig-
ure 3.2. Although this does not fully constrain the relationship between the paii- of lines
(the second line is free to translate parallel to the first) it is invariant to rotations and
translations of the line pair. Importantly, these measures also exhibit stability if any of
the lines become fractured which frequently occurs in real images. Entries made in the
histogram for these measurements are weighted by the product of the lengths 6f the two
line segments. This assigns an equal amount of significance to each edge pixel of the shape
and ensures that fragmented entries add up correctly. Figure 3.3 (a) depicts the histogram
entry made for the line pair in Figure 3.2 and Figure 3.3 (b) depicts the multiple entries

made if the second line becomes broken. Clearly these representations are very similar.

3.3.1 Accounting for Measurement Errors

Naturally, the measurement of image features is prone to measurement errors and further
error is introduced by the approximation of edge strings by straight line segments. Unless
some account is taken of these, the resulting pairwise geometric histogram will not be

truly representative of the shape data it describes. Ideally, a set of training examples of
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Figure 3.2: The relationship between a pair of line segments may be represented by their

relative orientation, o, and the range of perpendicular distance from dy to d,.
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Figure 3.3: The effect of line fragmentation. (a) The single histogram entry made for the
relationship between the line pair in Figure 3.2. (b) The multiple entries made for the same

line pair when the second line is fragmented add to give almost the same representation.
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each shape line segment should be used to construct each geometric histogram so that
the distribution of the feature measurements is recorded. An alternative to this approach
which gives approximately the same result but only requires single training examples is to
assume that each example represents the mean shape. The expected error is then encoded
on feature measurements directly into the frequency histogram by blurring (convolving)

with the error function, which may be determined prior to training.

It has been shown by Riocreux [Riocreux, Thacker & Yates 94, Thackeret al 95] that the
line approximation algorithm introduces a uniform orientation error for curved edge strings
with a maximum width of 4\, where A is the splitting threshold described in section 3.2.1.
To allow for further variability due to noise and shape deformation the magnitude of the
error may be increased above this. Selecting a suitable error function for perpendicular
distance measurements is less clear but a uniform distribution is a reasonable choice as this
corrects for line fragmentation and allows for some lateral shift of lines. The scale of this
error is chosen to be of the order of the bin width along the perpendicular distance axis
of the histogram. An example of a fully constructed histogram with appropriate blurring

which represents the line primitive highlighted in Figure 3.4 (b) is shown in Figure 3.4

(a).

(a) (b)

Figure 3.4: (a) A fully constructed pairwise geometric histogram for the line primitive in

(b).

There are a number of interesting properties of this form of shape representation which
are worth highlighting at this point. By normalising the histogram so that the integrated
contents sum to one, a joint probability density function of geometric measurements is
obtained. This statistical interpretation permits the use of statistically based classification
techniques which are discussed in the next section. An important property of the geometric
histogram used here is the proportion of the bins which are empty. This is described as

sparseness. Typically, for the shape data used in this thesis, more than half of the bins
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are empty. This promotes robust classification in cluttered scenes as clutter data in scene
histograms is unlikely to correlate with model data in model histograms.

3.3.2 Selecting Histogram Parameters

Prior to constructing géometric histograms it is necessary to decide on the histogram
‘scale and resolution. The choice of maximum perpendicular distance, dmqoc i8 driven by
two opposing requirements. On one hand the d,,4; should be small so that the pairwise
geometric histogram represents local shape and is robust to missing data and occlﬁsion.
On the other hand d;q; should be large enough so that enough shape information is
present in each pairwise geometric histogram so that they are distinct from each other. In

practice a good rule of thumb is to ensure that about half of a shape is encoded into each
histogram.

Again, the selection of the histogram resolution is driven by opposing requirements. If
the resolution of the pairwise geometric histogram is high then it will precisely describe
the shape primitive features. However, this is at the expense of requiring a large amount
of memory to store and large amount of computation to match. On the other hand if
the histogram resolution is coarse, then storing and matching will be less expensive but
the shape primitives will only be approximately represented. Evans [Evans 94] suggests
that the histogram bin size should be similar to the width of the errors functions. A more
principled choice can be made, however, by looking at how the performance is effected

by the pairwise geometric histogram resolution and setting the resolution appropriately.
This is considered later in chapter 4.

3.3.3 Controlling Histogram Invariance Propevrties

By virtue of the relative nature of the measurements recorded in pairwise geometric histo-
grams this shape representation is invariant to rotations and translations of the shape data.

Depending upon exactly how angle and distance measures are defined, other invariance
properties may or may not also exist.

The simplest type of histogram is constructed by restricting angles to the range 0 to 7 and
distances to the range 0 to dmq;. This histogram is invariant to reflections of the shape data
about the reference line and is described as mirror symmetric. Mirror reflection invariance
is not always desirable and can be removed by using the handedness of angles (clockwise

or anti-clockwise) to extend the range of angle measurements to —7 to 7. This doubles the
area of the histogram which in turn doubles the computation needed for matching but also
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increases the sparseness which ifnproves robustness of matching in cluttered scenes. This
type of geometric histogram is named rotate symmetric. The area of the histogram can be
doubled again, further improving the descriptive power of the representation, by directing
the reference line towards the point where the line pair intersect and using this to define
a reference frame. Measures of distance can then be signed depending upon whether they
are to the left or right of the directed reference line, extending the distance range to —dmaz
t0 d,naz. This type of geometric histogram is named directed and is the type used in the
experiments presented in this thesis. These 3 histogram types are shown in Figure 3.5. A
full description of further histogram types is described by Riocreux [Thackerét al 95].

dmax
dmax dmax

0
0 0

0 T -1 0 T
-d max
-7 0 i
(a) (b) ' ©

Figure 3.5: Some of the different geometric histogram types. (a) Rotation, translation

and mirror reflection invariant. (b) Rotation and translation invariant. (c) Rotation and
translation invariant.

3.4 Classification of Scene Image Features

Geometric histograms promote robust and efficient classification of scene image features
by providing a concise feature descriptor which explicitly records statistical variability in
the shape data. Central to the classification of any data is the need for a similarity metric
which provides a quantitative measure of similarity between seen and unseen data. A

good metric is one which degrades gracefully as the data degrades and should take proper
account of the errors on the data being compared.

3.4.1 Defining Similarity

Because pairwise geometric histograms are essentially binned conditional probability dens-
ity distributions it is appropriate to use conventional metrics for comparing probability
distributions as a measure of histogram similarity. The standard technique for deciding

whether two sample distributions are drawn from the same underlying distribution is the
x? test. Given two sample distributions § = {s1,...,sy} and M = {m,,...,mn}, the x>
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statistic is defined as follows.

=y lmm) (3.1)

The term s; + m; is used as an estimate of the error on the measurement of (s; — m;)? so
x2 is essentially a sum of square differences in which each component is normalised by the
expected measurement error. In practice this estimate on the measurement error is only

valid when the two distributions are very similar and a better metric should be adopted.

To clarify this situation it is worth going back to first principles. Given a random variable
X, a statistical measure of the distance D between the endpoints X =z and X =z + éz

of a short line is obtained by normalising by the standard deviation o.

D== (3.2)

In general, the statistical distance between any two points X = s and X = m can be
determined by the definite integral:

D=/-a'"%’;‘ | - (33)

For N independent measurements the statistical distance is given by a sum of squared
components:

E / ™ dz‘ (3.4)

It is well known that binned data conforms to a Poisson distribution and that the variance

of a Poisson variable is equal to its mean. A statistical distance metnc for binned data is
then obta.med by substltutlon of o; = \/z;.

p? = E /am d““ - - (3.5)

l

42(\/87--\/@" 69

Removing the constant factor in this expression gives the statistical metric proposed by
Matusita [Matusita 55] which is known as the Matusita distance.
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Dmatusita = E (\/3_1 - \/';-n—z)2 (37)

Expanding this expression gives:

Dpatusita = E Si+ Emi - E \/?z-\/"'_n_z (38)
[3 [ [

If both m and s are normalised, or when using this metric to compare a single scene
pattern with a set of normalised model patterns, this is simply:

Dratusita = const — E \/s—h/m,' , (39)
i

Removing the constant results in the Bhattacharyya distance.

Dbhattacharyya = Z \/5\/171,‘ (3.10)
i

The Bhattacharyya metric, then, is both a statistically valid and computationally efficient
metric for comparing geometric histograms. It is computationally efficient as it requires

only one multiply and one square root if model histograms are square-rooted during train-
ing.

3.4.2 Nearest-Neighbour Classification

Pattern classification strategies tend to partition the pattern space into class regions and
test patterns are classified according to the region in which they fall. Class boundaries
can either be defined explicitly, as is the case with discriminant functions which describe

partitioning hyper-surfaces or can be implied by the presence of exemplars as 1s the case
with nearest-neighbour classifiers.

The classification of scene features using geometric histograms is performed here using a
nearest-nelghbour classifier. During training the pattern space is populated by normalised
model pairwise geometric histograms and scene data is later classified accordmg to the
closest model. It is well understood that the optimal classifier in terms of reliability is the
Bayes classifier where boundaries describe regions of pvattern épace where the pfoba.bility
of data coming from two or more classes is equal. Providing that the training data lies

close to the class means the use of the Bhattacharyya dlstance, ‘which properly accounts
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for errors in the data, results in a nearest-neighbour classifier which is equivalent to a
Bayes classifier.

In practice, the excessive amounts of noise encountered in real images means that clas-
sification based solely upon the nearest-neighbour is found to be unreliable once large
numbers of model shapes are being stored. A better strategy is to not only form a single
classification based on the nearest-neighbour but to form multiple classifications based on
a number of the nearest-neighbours. These additional classifications can be removed later

when looking for a consistent set of primitives to form shape classifications. This issue is
considered in detail later in chapter 4.

3.5 Experiments: Classification of Line Segments

The experiments presented here have been devised to demonstrate the effectiveness of
using pairwise geometric histograms to classify scene line segments in real scenes which
exhibit clutter and occlusion. The test images selected for these experiments contain
several planar shape templates and a number of views of mechanical parts. The original
images are presented in Figures 3.6 and 3.7 for the planar objects and mechanical parts
respectively. The advantage of using some planar objects is that they can be arranged to
overlap each other to produce good examples of occlusion. Objects are rarely planar in
practice which is why mechanical parts have also been used to form more realistic scene
data. Further examples can be found in Evans’ thesis [Evans 94].

The dinosaur templates and mechanical parts shown in Appendix A Figures A.1 and A.3
were used as the training data for all of these experiments and they have been represented
using the directed histogram type with a resolution of 40 distance bins and 64 angle
bins. Figures 3.8 and 3.9 show the polygonised data derived from the test scenes after
classification. The models present in each scene have been assigned a colour and line
segments classified as belonging to that model have been drawn in this colour. Lines

classified as belonging to a model not present in the scene have been drawn in black.

It can be seen from these examples that there are generally two cases where line segmehts
are incorrectly classified. The first case is close to the point where occluding shapes meet
such as the head of the Brontosaurus (green) and the uppermost wing of the pterodactyl
(red) in Figure 3.8 scene 3. This is because in the vicinity of the occlusion the shape
information in the scene is quite different to that in the training data and incorrect features
may well give a better match. It is important to note, however, that away from the

occluding regions the classifications are very reliable. The second problem is that the
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Scene 1 Scene 2

Scene 3 Scene 4

Figure 3.6: These four test images contain planar shape templates which have been ar-

ranged to produce examples of scene clutter and occlusions.
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Scene 1 Scene 2

Scene 3 Scene 4

Figure 3.7: These four test images contain views of mechanical parts arranged to form

relatively clutter scenes.
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orientation and position of very short lines is much more variable than that of longer
lines which leads to poor classification. Many incorrectly classified short line segments
can be seen in all of the test images. This does not seriously impair performance as the
significance of classified lines on the further stages of the algorithm is proportional to their
lengths and, in practice, a threshold may be used to discard lines below a certain length
to speed up the algorithm with little or no loss in performance. It is possible that scene
clutter may influence some of the misclassifications although there is no direct evidence
of this in any of the test scenes. The poor classification of the tail of the Stegosaurus
(blue) in Figure 3.8 scene 1 may be a result of the shortness of the line segments used
to approximate the fine detail on this part of the shape although certainly there will be
some contribution to the scene histograms constructed for these lines from the nearby

Antrodemus model (green) which may correlate well with incorrect training examples.

3.6 Hypothesis Combination and Determining Object Pose

Classified line segments provide useful information about the content of a particular scene
but do not explicitly state whether or not known objects have been recognised. What each
classified line provides is a hypothesis of the scene content and decisions as to the whether
an object is present or not are made by combining hypotheses, in an appropriate manner,
to find an acceptable level of agreement. Originally this has been done using a generalised
Hough transform which coarsely identified consistent geometrical arrangements of line

segments. This has now been improved by introducing a probabilistic Hough transform
which is described and tested in the next two sections. '

In order to do any geometrical reasoning about shape features it is useful to define a
reference frame for each of the stored models shapes, centred at any arbitrary position,
so that all of the features can be measured in relation to this frame. The position of
a shape hypothesised by classified scene lines'can then be estimated using the rel:;tive
position of each model shape line within this reference frame as shown in Figure 3.10 (a).
Unfortunately, the position of a shape hypothesised by each single classified scene line
is unreliable because of the effect of scene line fragmentation. This problem is shown in
Figure 3.10 (b). In fact, the actual shape position must lie along a line, shown as dashed
in Figure 3.10 (c), which is parallel to the scene line and passes through the hypothesised
position. A more constrained hypothesis for the position of a shape is obtained by finding

the intersection, see Figure 3.10 (d), of the parallel line constraints from pairs of scene
lines which have been classified according to the same shape.
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Figure 3.8: The polygonised test data formed by approximating the edge strings detected
in the original images by straight line segments. In each scene, each colour represents a

different model from the training set and classified line segments are coloured accordingly.
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Figure 3.9: The polygonised test data formed by approximating the edge strings detected
in the original images by straight line segments. In each scene, each colour represents a

different model from the training set and classified line segments are coloured accordingly.
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Figure 3.10: The constraint on model location imposed by matched line features. (a)
Defining shape position using a reference point (b) Hypothesis error as a result of line

fragmentation (c) Weakened constraint due to scene line fragmentation. (d) Improved
constraint imposed by pairs of scene lines.

3.6.1 The Probabilistic Hough Transform

The probabilistic Hough transform has been presented [Stephens 90] as a robust statistical
method for combining measurements or hypotheses to find the most likely value of given
parameters. Instead of incrementing the bin in the Hough transform which most closely
accounts for each measurement, as in standard Hough transforms, a kernel derived from
the error on each measurement is properly integrated into the Hough space. This way the
Hough transform is treated as a sampled, continuous function. An implementation of the
probabilistic Hough transform is used here to determine the location of shapes in a scene

and by appropriate weighting of the Hough transform entries a level of evidence for the
presence of the shape is simultaneously derived.

Given a set of hypotheses, p;(z,y), of a shape’s position derived from each pair of scene
lines which have been classified as belonging to that shape, we wish to determine the shape
position which most likely accounts for these hypotheses. If each hypothesis is subject to

some error, P(pi|p), then the probability of making a measurement p; given that the
shape is actually at p, and the error on each hypothesis is independent is simply:

P(p;... pnlp) = P(p1|p)P(p2Ip)... P(pxlp)
| = [[P(pip) (3.11)

This function of p is called the likelihood function and it is intuitive to base the estimate
of the shape position P on the value of p where this function is a maximum.
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b =max [[ P(pilp) (3.12)

When the error function P(p;|p) is represented by a Gaussian distribution it is easier
to calculate the logarithm of the likelihood function rather than the likelihood function
itself. This is because the logarithm of a Gaussian is simply a quadratic function and
the series of products is replaced by a series of additions. This then is the probabilistic
Hough transform, H(p), and is implemented by binning the parameter space into an

accumulator array and then repeatedly adding the logarithm of the hypothesis errors for
each measurement into the array.

H(p) = _In[P(pi|p)] (3.13)

In general the pdf used to describe the error on some hypothesis given some parameter
does not account for measurements which are completely wrong, commonly known as
flyers, and these flyers can grossly distort the maximum likelihood calculation. A common
approach to avoid this problem is to add tails to the error pdfs to allow a finite probability
of measurements being made which are well beyond the confines of the expected error.

3.6.2 Modelling the Shape Position Hypothesis Error

The entry made in the PHT for each pair of labelled scene lines is derived from the error
on the position of the shape hypothesised by those lines, as described by Expression 3.13.
The source of this hypothesis error is a variation in the relative position and orientation
of scene lines as compared to their counterparts in the stored models. This variation
may be introduced by a number of factors including camera noise, occlusion, changes in
lighting and artifacts of the line approximation algorithm and building an accurate model
of these processes is generally not possible. Instead a simple model of line variation is
adopted here which is found to significantly increase both the robustness and accuracy
of the shape recognition and location process - the validity of this model is verified later
in Section 3.6.3. The error model that has been used here assumes that the positions of

scene line end points are subject to an isotropic, normally distributed variation which can
be described by a covariance matrix Teng.

) ol 0 .
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Figure 3.11: The variability in the pose of line segments can be approximately modelled
by assuming normally distributed line endpoint errors. The resulting error on the position

of the object reference point can then be determined using error propagation.

For each pair of lines this end point error manifests itself as an error in the point of
intersection of the parallel constraints, as depicted is Figure 3.11. If the position of the
line end points are pa1 and paz for “Line A” and pp1 and ppy for “Line B” then the
point of intersection, pj, is described by a function p;(pa1, Pa2,da,PB1,PB2,dp). A full
derivation of this can be found in Appendix B. If the error on the intersection point is

described by the covariance matrix Zjn; and pi() is assumed to be approximately linear
Jocally then 3, can be expressed as:

Sint = VP! enaVp; (3.15)

Where Vp; is the matrix of partial derivatives (the Jacobian matrix) of p; with respect
to the position of the line endpoints (again see Appendix B for a full derivation of this).

For the assumption of normally distributed endpoint errors X, describes an oriented
bivariate normal distribution of the form:

1
P(pilp) = ———e X'/? (3.16)
27leint‘2

Where x2 is the distance between p and p; weighted by the magnitude of the errors. In
fact, x is the distance from p in standard deviations.

x* = [pi — P =54 [pi — p] (3.17)

Taking the logarithm of this gives an oriented quadratic surface, a cross section of which
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is shown is Figure 3.12 (a).

In[P(pilp)] = In [——1 r| - X (3.18)
) 27r|2'int|E 2

This is used to form a robust kernel, H;(p), by allowing an equal probability of finding

a measurement outside of 3 standard deviations, as shown is Figure 3.12 (b). Integrating

this kernel into the Hough space is unnecessarily time consuming because of the constant

background level so the whole function is shifted by this constant amount to produce a
localised function.

' 90-x2 ify<3
H;(p) ={ X BXx (3.19)

0.0 otherwise

int

[t ]
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Figure 3.12: Formation of a robust kernel from the log likelihood function. (a) A cross

section thpbugh the quadratic surface defined by In [P(p;|p)] (b) A cross section through
the robust kernel derived from the surface in (a).

Although this shift is diﬂ’erent for each hypothesis, the overall effect is simply to shift the
height of the final Hough space surface, with no effect on the actual shape of the surface.
Finally the magnitude pf the kernel is weighted by the product of the length of the lines
used to derive the hypothesis. This is necessary for entries to add together properly such
that the entry for a pair of line segments is equivalent to the sum of the entries for pair
of edge pixels which the lines approximate (except of course that pose error on individual
edge pixels is greater resulting in a more spread entry). This weight also allows the height
of the peak to be interpreted as a measure of the proportion of the shape present in

the scene. The probabilistic Hough transform is then constructed by accumulating the
weighted kernels.
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H(p) = 3 wiHi(p) (3.20)

3.6.3 Validating the Line End Point Error

The use of a normally distributed line end point error to model the variability in the relative
pose of line segments leaves two impoftant questions to be answered. First we would like
to know whether this model is an acceptable one given the actual pose variation and
secondly we would like to know what the magnitude of this error is. These questions can
be answered by examining the distribution of the error on hypothesised shape positions,
normalised by the error predicted by the model, for an arbitrary test scene. This is the
distribution of x for each of the hypotheses. Figure 3.13 shows the distribution of x for the
location of the Pterodactyl in Figure 3.8 scene 1 with an end point error of 1 pixel assumed.
The approximately Gaussian shape of this distribution suggests that the endpoint error
model is an appropriate one and the width of the distribution gives an estimate of the
magnitude of the end point error. A point to consider when setting the magnitude of
the end point error is that entries in the Hough transform must extend over several bins
to be represented properly. This is effectively a sampling rate criterion. It is perfectly
acceptable to choose errors which are higher than those measured so that the resolution
of the Hough space can be controlled. "
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Figure 3.13: Validating the line end point error model and measuring the magnitude of
the error by examining the distribution of x for a set of hypotheses.
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3.6.4 Estimating the Location Uncertainty

By using the probabilistic Hough transform the variability in the pose of scene lines can be
accounted for and the most likely shape position determined as outlined above. Of course
there will be an element of uncertainty associated with the determined shape position
and a quantitative estimate of this uncertainty is needed. The position alone is really
meaningless without some knowledge of the error.

The error on the estimated shape position p is simply the width of the peak in the Hough
transform and is quantified by finding the covariance matrix, Zp which describes the peak

shape. As the peak is constructed by summing quadratic kernel entries, its shape is also
quadratic and this can be measured by surface fitting,

S(z,y) = a +bz + cy + dz? + exy + fy° (3.21)

As the surface describes a log-probability function, its height away from the peak can be

expressed as a x? and this is used to relate the covariance matrix Zp to the surface fit
parameters.

- 517 =5'p - B = S(@y) e

p= [ 3 ] | (3.23)

When this is expanded the coefficients of the inverse covariance matrix are found to be:

Where.

3
; ] (3.24)

o 1 f € .
p = T-2 [ ’ dz] (3.25)
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3.6.5 The orientation Hough transform

Significant peaks in the probabilistic Hough transform suggest the presence of known mod-
els in the scene data and the positions of these peaks indicate the most likely positions
of those models, but no attempt has been made at this stage to determine their hkely
orientation. This is done separately for_evach identified model by 1solatmg the lines Wthh
have contributed to the Hough peak and accurhulating the difference in the orientation
between these lines and the associated model lines. Isolating lines which have contributed
to a particular peak is a matter of finding those lines whose parallel constramt passes
within 3 standard deviations. A 1-parameter Hough transform is employed to accumulate
the relative angle between the scene and model line data and the estimate of the model
orientation is based ixpon the position of the peak in this space. The normally distrib-
uted line end point error impiies that orientation estimates will also be subject to normal
‘errors‘ and these can be accounted for by making appropriate quadratic entries into the
1-parameter Hough transform. As with the location Hough transform this improves ro-

bustness, a.llows orientations to be determined to sub-bin accuracy by xnterpolatlon and
prov1des a measure of confidence in the estimate.

3.7 Experiments: Hypothesis Combination and Determin-
ing Object Pose

The experiments presented here demonstrate the effectiveness of the probabilistic Hough

transform for combining evidence from classified line segments ellowing decisions to be

made about the presence and pose of known objects. The first of these experiments

combines evidence from the classified line segments for the test images presented in section
2.5. Further results are then provided which quantify the uncertainty in recovered shape

positions and it is shown that this uncertainty can be estimated from the shape of the
peak in the Hough transform.

3.7.1 Demonstration

In Section 2.5 a number of test images of planar shape templates and views of mechanical
parts were selected to demonstrate how pairwise geometric histograms can be used to

classify scene line segments according to the line segments found in stored models. The

results of this classification (see Figures 3.8 and 3.9) are used here to identify known shape

models in the test scenes. A probabilistic Hough transform has been constructed for each
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of the known models and entries made for all appropriately labelled scene lines. Models

for which enough evidence can be found in each of the scenes have been presented at their
most likely pose in Figures 3.14 and 3.15.

In these examples the probabilistic Hough transform has successfully detected all of the
models present in each of the scenes and determined what at least qualitatively appear to
be good estimates of the shape poses. Most of the misalignment between the scene data
and the overlaid models is explained by the vafiability in the scene data due to change of
lighting, slight scale variation where templates are placed on top of each other and slight
perspective effects for the mechanical parts. There are a number of specific problems which
are worth highlighting however. In Figure 3.14 scene 3 the Brontosaurus’ head (green) is
poorly aligned with the scene data but by looking at the classified data in Figure 3.8 it
can be seen that the head of the Brontosaurus has been poorly classified, providing little
constraint on the position of the model. Another potential problem is the Stegosaurus
model (red) in Figure 3.14 has been poorly localised along its length. In fact the model is
poorly constrained in this direction becausé most of the vertical lines are very short‘and
thus prone to a large error in position and orientation, This is a prime example of why it

is important to be able to predict the uncertainty in the recovered shape positions.

3.7.2 Estimating location uncertainty

In the theoretical discussion above it was suggested that the shape of the peak in the
Hough transform can be used to estimate the error on the recovered shape position. In
the experiments presented here the magnitude of the positional error is quantified for
a number of model shapes and the ability to predict this error is tested by comparing

the predicted error with the variation of the recovered position of test shapes in known
positions.

In order to measure the variability in the eétimated shape position for a particular m(:)del,
100 test images were generated by applying a imiformly distributed, random transforma-
tion to the original image data and then adding some random, pixel noise. The range of
transformations allowed was constrained so that the whole shape was present in each test
image. The added pixel noise was generated from a Gaussian distribution with a variance
of 5% of the pixel grey-level. The line segment data extracted from the generated test
images exhibits significant variation over the original model, providing a good test whilst
ensuring that the position of the model is still known so that this may be compared with

the estimates for each test. Figure 3.16 displays the error in the position estimate for each
of the 100 test examples for two different model shapes. Note that all points have been
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Scene 1 Scene 2

Scene 3 Scene 4

Figure 3.14: Recognition and localisation of silhouette shape data.
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Figure 3.15: Recognition and localisation of mechanical components.
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rotated into the model’s local coordinate frame. The fitted ellipses represent the third
standard deviation from the mean of each cluster. In both of these examples the error on

the estimate, along the direction of greatest error, is of the order of 0.2 pixels.
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Figure 3.16: The error (in pixels) on the estimated location of 100 test shapes.

The ability to predict the error on the position estimate is tested here by both measuring
and estimating this for a number of different models. The estimate is obtained by locating
each model in its original image and measuring the variance along the major axis of the
Hough transform peak. Each model is then located in 100 test scenes in which the position
is known and the magnitude of the error along the major axis of the cluster is measured.

Figure 3.17 shows the predicted error versus the measured error for each of the models
used.
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The first thing to notice about this data is that the predicted error is much worse than
the measured error. This is because the magnitude of the line end point error used in the
experiment is 1 pixel but the actual error, measured in Section 3.6.3 earlier was around
0.2 pixels. This means that the predicted error should be a factor of 5 greater than the
measured error. This relationship is shown by the dotted line in Figure 3.17. Bearing this
in mind, it can be seen that the measured error is generally worse than the expected value,
although in these examples it is always within a factor of 2. The reason for this is that
the Hough transform entries are partially correlated (many entries are made for each line
segment) which means that each entry carries less information about the shape’s position

than is being assumed. Overall it may be concluded that an approximate estimate of the
error can be derived from the Hough transform peak.
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Figure 3.17: The error on shape position estimated from the Hough transform peak shape
versus the error measured over 100 test scenes.

3.8 Conclusions

In this chapter it has been suggested that the key to developing a powerful object recog-
nition strategy based on image features is to use a highly descriptive representation which
permits individual features to be classified providing a limited number of hypotheses of
a scene’s content. This greatly improves efficiency by limiting the search needed to find
feature groupings consistent with known model shapes. A shape representation which
provides this level of description can be constructed by storing geometric measurements

between pairs of features in the the form of a frequency distribution. The compactness of
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these pairwise geometric histograms promotes efficient feature matching and by explicitly

coding feature measurement errors into the representation classifications it is reliable.

The representation of polygonised shape data using geometric histogram, as first presented
by Evans [Evans 94], has been adopted here and shown to be effective for classifying line
segments in difficult scenes. Central to the classification process is the choice of the
Bhattacharyya distance metric for comparing seen and unseen shape data. Although this
metric was originally chosen for empirical reasons, a statistical argument is presented

which suggests why this metric is appropriate.

Final object classifications are formed by éombining hypotheses provided by classified
line segments, previously done using a generalised Hough transform. This stage of the
algorithm is greatly irhproved by adopting the probabilistic Hough transform which allows
variability on the pose of features to be modelled. The probabilistic Hough transform has
been described here and formulated for recovering shape positions from sets of hypotheses.
Experimental results have shown that the probabilistic Hough transform performs well on
scenes exhibiting high levels of clutter and occlusion. By interpolating across the Hough
transform peak, an improved estimate of model locations can be determined and it is shown
that typical levels of accuracy of 0.2 pixels can be expected. In any estimation problem
it is desirable to have some quantitative knowledge about the error on the estimate, and
the probabilistic Hough transform provides this information explicitly. Results show that

the error on the estimated shape position can be determined to within a factor 2.



Chapter 4

An Analysis of the Reliability of

Recognition

4.1 Introduction

In general, the classification of measured data is prone to some error and the magnitude
of this error is an important measure of a classifiers performance. Not only does the error
rate reflect the classifiers success but when the classifier is integrated into a larger system,

a quantitativev measure of the error rate allows the performance of the complete system to
be predicted by error propagation [Haralick 96].

Quantitative knowledge of the error rate has a number of uses in the design and application
of a classifier. When desig'ninga system which incorporates some element of classification
the designer may wish to specify the maximum error rate which is acceptable. Knowledge
of the error rate of different classification techniques not only allows the designer to com-

pare these techniques with each other but allows the most appropriate one, which meets
the systems requirements, to be selected. . |

Another use of the error rate is the selection of appropriate, or possibly even optimal
algorithm parameters. Complex algorithms often have a large number of such parameters
which control their behaviour and these need setting appropriately. Sometimes appropriate
values for these parameters relate directly to quantities which can be either measured
or derived from sample data or from other algorithm parameters. For example, when
entries are made into a pairwise geometric histogram, the blurring applied to account
for errors in the measurement of the angle between line primitives is derived from the
algorithm which approximates the image data by line segments in the first place. When

66
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the meaning of algorithm parameters is less obvious selecting an appropriate value, and
justifying this choice, is less straightforward. In these instances parameter values may be
selected by observing their effect on the performance of the algorithm and selecting a set
of parameters which result in acceptable, or even optimal, performance. To do this,

measure of performance must be defined and the error rate is a useful component of this.

A similar use of the error rate is to assess modifications made to the classification algorithm
itself. This determines whether a change improves or degrades reliability and allows the
chahgés in reliability to bé compared with other important factors such as changes in
the algorithm’s complexity. This promotes a more methodical approach to algorithm

development where the costs and benefits of specific modifications are well understood. -

A fair criticism of most of the computer vision research conducted to date is the lack
of analysis needed to quantify important performance characteristics such as the error
rate [Haralick 92, Courtney Thacker & Clark 97). This is both problematic for the re-
searcher who wishes to build on existing work and to the engineer who wishes to identify
solutions to well spyeciﬁed problems. For the research field to develop effectively it is
necessary to be able to assess the relative merits of different algorithms and theories of
vision. This allows research to be focussed on the techniques which look most proiniéing.
In order to be adopted by engineers, the performance of vision algorithms must be well
‘understood so that they fit into the engineering design methodology. These issues have

motivated the work presented in this chapter which investigates the reliability of scene

feature classification when using pairwise geometric histograms.

4.1.1 Algorithm Scalability

Intuitively, the reliability of a classifier is likely to depend upoh the number of different
classes from which samples can be drawn. For many classification tasks this number is fixed
and possibly quite small, and the classification error is frequently estimated from a number
of test examples taken from each class. Conventional approaches to error estimation are
briefly discussed in the next section. Even in some vision tasks the number of classes
is sufﬁc1ently constralned to allow this conventional treatment. In general though, the
number of classes in an obJect recognition application can be very large and possibly
even unknown and conventional error estimation techniques are no longer practical. Even
in relatively straightforward applications such as the inspection of industrial parts, the

system may need to be flexible enough to allow additional shape classes to be added i m
the future and the lmpact of this change needs to be predictable.

Many of the object recognition algorithms which have been developed are demonstrated
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with a small number of model object classes and the error rate based on this small sample.
It is not obvious how well these algorithm will perform as the number of models is increased
however. This poses a more general question about the performance of object recognition
algorithms. What is the impact on the performance of the algorithm as the number of
model object classes is increased? This is a question of scalability. To begin to answer
this question the four following issues must be considered:

1. How does the algorithm’s computational requirement increase as the number of
classes is increased? '

2. How does the algorithm’s memory requirement increase as the number of classes is
increased? .

3. How does the reliability of the classification process degrade as the number of classes
is increased? ' ‘

4. How many unique classes can be described using a given representation?

The designers of all types of algorithm are very familiar with the concepts of algorithm
complexity which concerns the first two of these issues. The last two issues are specific to
classification algorithms and in particular computer vision algorithms in which the number
of classes can be very large. This more general issue of scalability is initially approached in
this chapter by investigating the relationship between the number of model classes and the
reliability of clasmﬁcatlon To complement this, the fourth issue concerning the number

of shape classes which can be uniquely represented is mvestxgated in Chapter 5.

Most of the parameters used in the construction of geometric histograms have well defined
values with the exception of the number of bins along the perpendicular distance axis. To
provide a mechanism for selecting an appropfiate bin size the effect of this parameter on
the reliability of the algorithm is investigated in Section 4.8. The result of this analysis

allows an appropriate bin size to be selected that will give a specific classification error;

4.2 Classification Error Estimation

The standard framework used for handling classification errors is probability theory. Given
a number of classes {w; : 1 <4 < N} and a sample x, the error ¢ is the probability that
the sample is assigned to the wrong class. If the conditional a posteriori probability of

each class given the sample is known then it is usual to assign the sample to the class for
which this probability is maximum. This is the Bayes decision rule.
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- & = max arg P(w;|x) . " (4.1)

where & is the class to which the sample is assigned and P(wj|x) is the a posteriori
probability of the data belonging to class w; given the measurement. This rules results
in the minimum possible error rate which is called the Bayes error. Unfortunately, even
when the class density distributions are known, calculating the Bayes error is very difficult
as it requires the integration of the regions of the class density functions which intersect

each other. Usually the class density distributions are not known anyway and this has
motivated other approaches to error estimation. 4

The common approach for estimating the error is to measure the rate of success of the
classifier when applied to a set of test data, but selecting a representative test set which
accounts for the natural 'varia,bility in the data and effects of noise is difficult for vision
problems Also, in some cxrcumstances the amount of data available for testing may be
limited resultmg in poor estimates of the error. An improved method for error estimation
has been proposed by Haralick [Haralick 92] in which models are constructed to describe
the data to be classified and to describe the variability of the data. Test examples can then
be drawn at random from these models and providing these models are representative of
the data to be classified, good estimates of the error rate can be determined. A criticism of

this approach is that real data rarely conforms to the types of models which are adopted.

4.3 Classiﬁcatidﬁ Error for Many Classes

The methods already discussed for classification error estimation may be appropriate when
the number of classes is small but they become impractical as the number of classes is
increased. These methods also say nothing about how the reliability scales as the number
of classes ig increased. This has motivated the development of an alternative approach to

error estimation which makes the relationship between the error rate and the number of
model classes explicit.

Before proceeding there are some important observations which should be made about this
particular classification problem as these have ‘moulded the approach taken. First of all
the domain of all shape classes is not a discrete space but describes a continuous and infinite
variety of possible shape. Discrete classes are imposed on this space by the set of training
examples, but these are simply a sample taken from the distribution of all possible shape.

It is useful to adopt the concept of a prior density distribution [Fukunaga & Flick 84]
when considering a large number of classes under these circumstances. This prior density
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reflects the fact that some shape classes are more likely to be encountered than others
and that some configurations are unlikely to be encountered at all. The prior density
distribution pprior(x) describes the probability of drawing a random pairwise geometric
histogram or pattern X = x, within a small range Ax.

P(X = x) = pprior(x)Ax (4.2)

The situation, then, is that we have some continuous domain of patterns and impose N
classes {w; : 1 € i < N} on this domain by defining a set of exemplars {X;:1 <i < N}.
Given a previously unseen pattern, x, we would like to estimate the probability, €, that

the pattern is incorrectly classified and relate this to the number of classes N.

We begin by considering a pair of classes w; and w; represented by class exemplars X; and
X; and a sample x; drawn from class w;. For a nearest-neighbour classifier an error occurs

when x; is closer to the wrong class exemplar X; than it is to its own class exemplar X;.
This is the pairwise error ep(i, j).

£p(4,5) = P(|x; — X5 > |x; — X;) (4.3)

where the notation |+] is used to represent the distance between a pair of patterns defined
by the a.pproprla.te distance metnc As already discussed in Chapter 3 the classification
of pairwise geometric histograms is based on the Bhattacharyya distance.

m—s| = Z\/_\/—v : - (44)

where m represents a model pairwise geometric histogram and s represents the pairwise
geometric histogram constructed for a scene line primitive. The mean pairwise error Ep is
determined by averaging over all of the classes.

Ep = N(N _ 1 Z Z EP("’J) » (45)

i jg#i
The mean pa1rw1se error, Ep, 18 the probablhty that a sample pattern wxll be closer to a
randomly selected class exemplar than it is to its own class exemplar. Conversely, the
probability that a sample pattern will be closer to its own exemplar than a randomly

selected one is by definition 1 — €,. If there are a total of N stored exemplars then the
sample pattern will only be classified correctly if it is closer to its own exemplar than it is to



Chapter 4. An Analysis of the Reliability of Recognition 71

any of the other N ~1 class exemplars. Assuming that class exemplars are independently

sampled from the distribution of patterns, then the probability that the test pattern is
correctly classified, P, is simply:

P=(1-gy)N! | (4.6)

If P is the probabxhty of the test pattern being classified correctly then the classification
error, ¢ is simply 1 — P.

e=1-(1—¢,)N! - A1

This expression for €, which is exponential with respect to N, suggests that even when
the pairwise error is small the classification error can become large when the number of
stored exemplars, N, is large. One way in which the classification error can be improved
when the number of classes is large is to propose a number of likely classes for each test
pattern based on the nearest n neighbours. This is only useful if the extra, incorrect classes
can be discarded later, which for shape data can be done by finding consistency amongst
the classes assigned to a group of shape primitives. In fact, this is done already in the
recognition algorithm by the probabilistic Hough transform as only consistent primitive
classifications contribute to the winning Hough space. This is in contrast to Fukunaga’s

suggestion that classes are grouped to reduce the classification error when the number of
classes is very large [Fukunaga & Flick 84].

Typically the number of classes that should be proposed for each test pattern so that it
is likely that the correct class is included is the expected number of pairwise misclassi-
fications, (N — 1)ep. More specifically, if the number of proposed classes is n, then the

probability that none of those classes will be the correct class is described as a sum of
binomial terms. This is derived in Appendix C. | H

=0 1

1
e-l—E(l—e)N""(N_—l) ‘ (4.8)

This allows the user of the algorithm to select n according to the data to be classified to

obtain the required classification error, at the expense of having to find a single, correct
class later.
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4.3.1 Estimation of the Mean Pairwise Error

So far it has been suggested that the classification error € can be determined from the mean
pairwise error £, but nothing has been said about how this is determined. It is shown here
that the mean pairwise error can be estimated from the distribution of distances between

class exemplars and the distribution of distances between class exemplars and samples
drawn from those classes.

The typical distance between patterns drawn at random from p,ier(x) gives an indication
of the difficulty of a particular classification problem. This can be characterised by the
interclass density distribution pinter (d) which gives the probability that a pair of patterns

x; and x; drawn at random are at a distance d from each other, within some small range
Ad.

P(|xi = xj| = d) = pinter(d)Ad (49)

This is shown in Figure 4.1 for clarity. The term interclass distance density distribution

is used because class exemplars are treated as random samples from the prior density
distribution.

Pinter (a)

J -

Distance a

Figure 4.1: Calculating the probability that two random samples x; and x; will be separ-

ated by a distance d using the interclass density distribution Pinter(a).

It is also convenient to define the cumulative, interclass density function, Pinter (d), where:

d
Prnie () = /0 Pinter ()2 (4.10)

The probability that a pair of randomly selected patterns x; and x; are less than a distance
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d from each other is given directly by the cumulative distribution.

P(lxi = le < d) e Pinter(d) (411)

Given a set of exemplar training patterns, {X; : 1 < i < N}, an estimate of the cumulative
interclass distance density function Pinter (d) can be determined by recording the distance

between each pair of class exemplars as a frequency distribution and then normalising.

The typical distance between a class exemplar and patterns drawn from that class also
gives an indication of the difficulty of the classification problem. For the time being gross
effects such as scene clutter and missing data are ignored so that this distance reflects
variability introduced by the different stages of the recognition system. The statistics of
this distance can be characterised by the mean within-class density distribution p.inin(d)

which gives the probability that pattern x; drawn at random from a class w; also drawn
at random is at a distance d from the class exemplar X;.
P(xi — xi| = d) = puithin(d)Ad (4.12)

This probability is depicted in Figure 4.2 for clarity. It is worth noting that the expectation
of this distribution is the mean class variance &>

0° = E [puithin(d)) (4.13)

P(IX; - Xj|=d)

Puithin (@)

Distance «

Figure 4.2: Calculating the probability that a pattern x; drawn at random and the class

exemplar X; will be separated by a distance d using the within-class distance distribution
Puwithin(a)-
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As with the interclass distance density distribution, an estimate of the mean within-class

distance density Huwithin(d) can be determined from a number of samples.

It is now possible to derive an expression for the mean pairwise error €,. Recall from
earlier that.

Ep = P(|x; — ')'('jl < |x; —X|) : (4.14)

That is, a pairwise error occurs if the distance from a sample x; to the wrong class exemplar

X; is less than the distance to the correct exemplar X;. This can be written as a joint
probability integrated over a marginal variable a.

. o0
& = /0 P(|xi — | < a, |x; — Xi| = a)da (4.15)

= [(P(xi-%l<aP(xi-%l=ada  (416)

Then, by substituting in Expressions 4.11 and 4.12, an expression for ¢, in terms of the
interclass and within-class density distributions is obtained.

e
€p = /0 Puwithin (@) Pinter (a)da : (4.17)

In practice, analytic expressions for the density distributions are unavailable and instead
they are estimated from a sample set of pairwise geometric histograms. An estimate of
the pairwise error is determined from these estimated distributions using the expression:

A
ép = Zﬁwithin(a)Pinter(a)Aa (418)
a=1

where A is the number of bins used to fepresent the estimated densify distributions and
Aa is the width of each bin.

4.4 Experiments: Noise Free Classification Error

The cla.ssiﬁcatiqn error for shape data represented by pairwise geometric histograms is
investigated here using the analysis discussed above. This has been done for two sets of
shape data, the first being shape outlines and the second being views of mechanical parts.
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Both sets can be found in Appendix A, the outline data in Figures A.1 and A.2 and the
mechanical data in Figure A.3. Each set of shape data was used to construct exemplar
geometric histograms, each line primitive defining a different class, and these were then
used to construct the respective cumulative interclass distance distributions. This data
provides only a single example for each class but to construct the within-class distance
distributions a number of example shape primitives from each class are needed. To obtain
this additional data, 99 examples were generated for a few selected classes by applying
random rotations and translations to the original image data for a number of models, and
then approximating the new images by line segments. Line segments were clustered into
groups of 100 based upon proximity of their geometric histograms which should group
them according to class and the within-class distance distributions generated.

4.4.1 Shape Outlines

The outline shape data found in Appendix A, Figures A.1 and A.2, has been used to
construct a database of 906 exemplar pairwise geometric histograms of type directed with
a resolution of 40 distance bins and 64 angle bins. Figure 4.3 shows the normalised,
cumulative interclass distance distribution constructed for this data. The distribution has

been constructed with 100 bins over the range of distance from 0.0 to 1.0.
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Figure 4.3: Cumulative distribution of interclass distance, Isinte,(d), for the shape outline
data. ‘ o

Figure 4.4 shows the normalised, within-class distance distribution constructed for a ge-

lection of line primitives taken from the outline data set. Again, the dlstnbutlon has been
constructed with 100 bms over the range of distance from 0.0 to 1.0.
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Figure 4.4: Distribution of within-class distance, Puwithin (d), for a selection of line primitives
taken from the shape outline data. .

Using Expression 4.18, these distributions have been used to estimate the probability,

€p, that a scene geometric histogram will be closer to an exemplar geometric histogram
selected at random from the training set than it is to its own class exemplar.

g, =3.029 x 107° | (4.19)

For the database of 906 exemplar geometric histograms, and when classification is based

on the nearest neighbour (n = 1), this gives a classification error of:

e=2T1% (4.20)

Figure 4.5 presents the error rate as a function of the number of stored exemplars for
different values of n. For this type of shape data a classification error of less than 0.5%

can be expected with tens times as many stored models when classification is based on
the nearest 3 neighbours.

4.4.2 Mechanical Parts

The outline shape data found in Appendix A, Figure A.3 has been used to construct a
database of 449 exemplar pairwise geometric histograms of type directed with a resolution
of 40 distance bins and 64 angle bins. Figure 4.6 shows the normalised, cumulative inter-

class distance distribution constructed for this data. As in the previous experiment, the
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Figure 4.5: The classification error for the outline data as a function of the number of
exemplar histograms for different values of n.

distribution has been constructed with 100 bins over the range of distance from 0.0 to 1.0.
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Figure 4.6: Cumulative distribution of interclass distance, Pinter(d), for the mechanical
part data.

Figure 4.7 shows the normalised, within-class distance distribution constructed for a se-
lection of line primitives taken from the mechanical part data set. Again, the distribution
has been constructed with 100 bins over the range of distance from 0.0 to 1.0.

These distributions have been used to measure the probability, €p, that a scene geometric

histogram will be closer to an exemplar geometric histogram selected at random from the
training set than it is to its own class exemplar using Expression 4.18.
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Figure 4.7: Distribution of within-class distance, Pyithin(d), for a selection of line primitives
taken from the mechanical part data set.

ép=5.142 x 1073 (4.21)

For the database of 449 exemplar geometric histograms, and when classification is based
on the nearest neighbour (n = 1), this gives a classification error of:

= 90.1% (4.22)

Figure 4.8 presents the error rate as a function of the number of stored exemplars for
different values of n. The reliability of classification is much worse for this data than it is
for the shape outline data. To obtain a classification error of less than 0.5% for around
5000 stored exemplars more than 40 of the nearest neighbours must be used. The main
reason for this apparently poor performance is that many of the features in the mechanical
shape data are very similar, resulting in ambiguities. For example, all of the line segments
describing a circular shape, of which there are several in the mechanical part database, are
represented by identical geometric histograms because of shape symmetry. It should be
noted that this large classification error does not necessarily result in poor object detection
and localisation, as is apparent from the récognition results in the previous chapter. Good
overall performance is still attained provided that ambiguous features impose the same

constraint on the object pose. The issue of feature ambiguity is studied in more detail in
Chapter 5.
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Figure 4.8: The classification error for the mechanical part data as a function of the
number of exemplar histograms for different values of n.

4.5 Classification Error in Noise

So far the analysis of classification error has assumed that patterns drawn from some
class will be centred around the class exemplar and vary from that exempldr according to
some statistical distribution which reflects variability in the construction of the pattern.
This variability was measured in the form of a within-class distance distribution and used
to estimate the classification error. For well constrained problems this level of analysis
is sufficient but for many problems, including the classification of shape in real scenes,
patterns can move much further from the class exemplar than the within-class variability
would suggest because of incomplete or contaminated data. Although data may become

incomplete or contaminated for a whole host of different reasons the general term used to
describe these factors is noise. |

If the distance moved by patterns from their class exemplars in noisy data is significantly
greater than suggested by the within-class variability then the calculation of classification
error based on the earlier analysis will give an under estimate. This has motivated the
development of an alternative way of estimating the classification error for noisy data.

Instead of quantifying the distance moved by patterns from their exemplars using a fre-
quency distribution of distance, the typical (or mean) distance moved in noisy data is now
used. If the mean distance moved by a pattern, x;, from its class exemplar, X;, is AD

then the probability that x; is nearer to a randomly selected class exemplar, 'i, (this is
the pairwise error, e,,(z, j)) is simply:
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&,(i,§) = P(|x: - ;| < AD) (4.23)

The mean pairwise error €, over all of the classes is simply the area under the interclass
distance distribution below AD, see Expression 4.9. This can be expressed in terms of

the cumulative interclass distance distribution.

€p = Pinter(AD) (4.24)

In other words, the cumulative interclass distance distribution can be interpreted as the
pairwise error as a function of the distance patterns move from their exemplars because of
noise, see Figure 4.9. This new estimate of the pairwise error can then be used as before
to estimate thé classiﬁéation error, €, as in Expressions 4.7 and 4.8.
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Figure 4.9: The cumulative interclass distance distribution can be interpreted as the

pairwise error as a function of the distance moved by patterns from their class exemplars
due to noise.

4.6 A Noise Model for Shape Data

Rather than measuring the typical distance that a geometric histogram moves from its
class exemplar from a selection of noisy scenes a model of this movement is developed here
for different sources of noise. This is advantageous because it allows the classification error
to be predicted for arbitrary scenes given an estimate of the magnitude of the noise in the
scene. To test the validity of this model, the distance that patterns move as predicted by
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the model has been compared to the distance moved in scenes containing known levels of

simulated noise, and it has been found that the model provides an upper bound.

The two major sources of noise in the construction of geometric histograms investigated
here are missing line data and scene clutter. Shape data can be missing for a variety of
reasons. If sections of objects are poorly lit, in shadow, badly focussed or if the level of
pixel noise is high then boundaries may not be detected. More seriously, whole sections
of a shape can be missihg if it is occluded by other objects. Except under constrained
viewing conditions clutter is an integral part of any scene and unless this is removed by

a segmentation strategy it will contaminate geometric histograms constructed for shape
primitives in its vicinity.

4.6.1 The Effect of Missing Data

To predict the effect of missing line data on the classification process an expression relating

the distance moved by patterns, AD, as a function of the proportion of missing data, m, is

derived. A normalised, exemplar histogram, H = [izo,le, JhN- 1] constructed from some
arbitrary shape data is defined. A second normalised histogram, M = [rhg, 1111, ..., AN -1],
is then deﬁned which is constructed from the same shape data as H except that a pro-

portion, m, of each line of the shape has been removed. This distance between I and M
is then evaluated using the distance metric:

D(m)=1- Z \/f:\/ﬁ, (4.25)

As the shape data represented by M is a subset of the shape data represented by H, the
entries in M must be a subset of the entries in A which have been rescaled to maintain

normalisation. The distance metric only depends upon elements of M and JT which are

both non-zero and M is a subset of H. The dlstance can therefore be expressed in terms
of M and the scaling factor, s, alone.

ADm) = 1~ Y Vemm/ (426)
= 1-3 (4.27)

Where s is the difference in scale between H and M.
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hi .
8= m—' for m; #0 - (4.28)

)

This scaling factor, s, can be determined from the difference in the height of a single
geometric histogram entry made for a pair of lines before and after a proportion of the
line data is removed. Figure 4.10 depicts a single histogram entry for a reference line of

length Iy compared to another line of length I; and then the same entry when a proportion
of the line data has been removed.
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Figure 4.10: The effect of missing line data on a single histogram entry. (a) The entry

made for the original line data. (b) The entry made for the line data after a proportion
m of each line is removed.

For the original line data the entry is weighted by the product of the lengths of the

two lines, lyl;, and normalised by the total entries made into H which is given by the
expression:

Y H = Yl | (4.20)
j

= ol | | - (4.30)

Where [ is the total length of lines in the shape If the w1dth of the entry is Ad then the
height, h;, is simply (there should also be a term relatmg to the wxdth of the entry along
the angle axis but this falls out and so is 1gnored)

lolAd (4.31)

A (4.32)
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For the shortened line data, the entry is weighted by the product of the lengths of the two

shortened lines, lol;(1 — m)?, and normalised by the total entries made into M which is
given by the expression: .

SH = YLl —'m)2 (4.33)
j

i

= lol(1 =m)? ; (4.39)

The width of the shortened entry is now Ad(l —m) which means that the height of the
entry, m;, is:

A lol'(l—m)2
T (- in)zAd(l - m) (4.35)
l:
prrren B (4.36)

The scaling factor s can now be determined by substituting the expressions for hi and 1h;
into Expression 4.28.

s=1-m | (4.37)

The relationship between AD and m is then determined by substituting s in equation 4.27:

AD(m)=1-vI-m © (4.38)

To demonstrate this effect, 5 of the models taken from the data set in Appendix A have
been matched with an increasing proportion of line data removed and the mean distance
moved by all of the geometric histograms for each shape recorded. The experimental
results are given in Figure 4.11 along with the theoretical expression shown by the solid
line. The reason why the distance moved in practice is smaller than predicted is because
quantisation of the entries into bins results in a greater overlap than the model would
suggest. This means that the model can be used as an upper bound on AD. One of the

model shapes used in this experiment is depicted in Figure 4.12 with 25% and then 75%
of the line data removed.
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Figure 4.11: The distance moved by patterns from their class exemplars as a function of
the proportion of missing data m. The solid line is the distance predicted by the model

and the dotted lines are the mean distances moved for all of the geometric histograms for
each of 5 shapes taken from the training set.
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Figure 4.12: An example of model shape data with (a) 25% of each line primitive removed,
and (b) 75% of each line primitive removed.
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4.6.2 The Effect of Scene Clutter

To predict the effect of scene clutter on the classification process an expression relating
the distance moved by patterns from their exemplars, AD, as a function of the proportion
of scene clutter, ¢, is derived. A normalised exemplar histogram, H= [izo,fu, ...,fLN_l],
constructed from some arbitrary shape data is defined. A second normalised histogram,
C = [¢o,é1,-.-,éN—1], is then defined which is constructed from the same shape data as
H except that a proportion, ¢, of the length of lines in the model are randomly added as
clutter. The distance between H and C is then evaluated using the distance metric:

AD(c)=1- 2 \/)T\/c‘, (4.39)

If the entries added to H for the clutter data to produce € are assumed not to correlate

with any of the original entries in H then correlated entries between H and € are related
the scale factor needed to normalise C.

%
Il
ol

for h; # 0 (4.40)

H is a subset of the data in C so the distance between them can be determined in terms
of H and the scale factor.

AD(c)

1- E \/}T,\/é | (4.41)
1

= 1=

7 (4.42)

The scale factor can be determined, as before, by considering a single entry made for a
reference line of length Iy and another line of length I;. The weight for the entry is the

product of the line lengths lyl; normalised by the total entries made into the histogram
lol. If the width of the entry is Ad then the height 71.- is:

bl

hy = =3
1 lolAd (4.43)
Similarly, for the cluttered data the entry is weighted by the product of the lengths of

the two lines lol; normalised by the total entries made into the histogram, lyl(1 + c). The
height of this entry, &, still of width Ad is simply:
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lol;

AT W+ 0Ad o (4.49)

The scale factor can now be determined by substituting the expressions for k; and & into
Equation 4.40.

s=1+4¢ (4.45)

The relationship between AD and c is then determined by substituting s in Equation 4.42:

“AD(c)=1- \/Il‘+—c - (4.46)

To demonstrate this effect, 5 of the models taken from the data set in Appendix A have

been matched with an increasing proportion of scene clutter added and the mean distance
moved by all of the geometric histograms for each model recorded. The experimental
results are given in Figure 4.13 as dotted lines along with the predicted distance shown
by the solid line. The reason why the prediction is always greater than the measured
distances is that some of the added clutter correlates with the original histogram entries
increasing the similarity. This means that the model prediction can be used as an upper
bound in the distance moved by patterns because of clutter. One of the model shapes

used in this experiment is depicted in Figure 4.14 with as much clutter as there is model
data and with twice as much clutter than there is model data.

This model of the distance moved by geometric histograms as a function of the level of
missing data and scene clutter can be used, along with the cumulative interclass distance
distribution, to calculate the classification error for noisy scenes. If the mean levels of

missing data and scene clutter are m and ¢ respectively then the mean distance moved by
input patterns, AD, is described by the sum of the models.

1 :
AD=2-1-m- ,
ST e - W

The pairwise error, €p, can then be determined from the cumulative interclass distance
distribution, Pinter(AD):

epgﬂnter(2“V1—m— 1 )

— (4.48)
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Figure 4.13: The distance moved by patterns from their class exemplars as a function
of the proportion of added clutter data c¢. The solid line is the distance predicted by

the model and the dotted lines are the mean distances moved for all of the geometric
histograms for each of 5 shapes taken from the training set.
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Figure 4.14: An example of model shape data with (a) the same amount of clutter as
there is model, and (b) twice as much clutter as there is model.
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4.7 Experiments: Classification in Noise

The classification error is estimated here for noisy scenes using the shape data used in the
earlier, noise free, experiments. A reasonable mean distance between geometric histograms
constructed for scene data and their correct class exemplars, AD, of 0.25 has been picked
to represent realistic levels of scene noise. The noise model suggests that this would be
the mean distance moved by patterns from their exemplars if about half of the shape data
was missing or if there was as much scene clutter as there was shape data. Because the

noise model gives an upper bound on the distance moved by patterns this value of AD
probably represents much worse viewing conditions.

4.7.1 Shape Outlines

The cumulative interclass distance distribution constructed earlier for the shape outline

data, see Figure 4.3, is interpreted as the pairwise error as a function of the mean distance
moved by patterns from their exemplars. For a distance AD = .25, the estimated pairwise

error is:
ép =6.488 x 1074 (4.49)
For the database of 906 exemplar geometric histograms, and when classification is based
on the nearest neighbour (n = 1), this gives a classification error of:
£ =44.4% (4.50)

Figure 4.15 presents the error rate as a function of the number of stored exemplars for
different values of n. | '

4.7.2 Mechanical Parts

The cumulative interclass distance distribution constructed earlier for the mechanical part
data, see Figure 4.6, is interpreted as the pairwise error as a function of the mean distance

moved by patterns from their exemplars. For a distance AD = 0.25, the estimated pairwise
error is:

ép = 5.046 x 1072 (4.51)
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Figure 4.15: The classification error for the outline data as a function of the number of

exemplar histograms for different values of n.

For the database of 449 exemplar geometric histograms, and when classification is based
on the nearest neighbour (n = 1), this gives a classification error of:

€ =99.9%

Figure 4.16 presents the error rate as a function

different values of n.

(4.52)
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Figure 4.16: The classification error for the outline data as a function of the number of

exemplar histograms for different values of n.
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4.8 Optimum Selection of Parameters

It was mentioned in the introduction that one of the motivations for determining the
classification error is to be able to select algorithm parameters in order to provide a
specific level of performance. This is particularly useful when an appropriate value for a
particular parameter cannot be determined in any other way. One such parameter used
in the construction of pairwise geometric histograms is the histogram resolution along
the perpendicular distance axis. To provide a more principled method for selecting an
appropriate resolution, cumulative interclass distance distributions have been constructed
for geometric histograms of increasing resolution. These can be seen in Figure 4.17 for
geometric histograms with 10, 20, 40, 80, 160 and 320 bins along the perpendicular distance
axis. '
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Figure 4.17: Cumulative interclass distance distributions constructed for gecometric histo-
grams with increasing perpendicular distance resolution.

Given a specified level of performance, in terms of the classification error € and the number

of stored exemplars N, the pairwise error which gives this performance can be determined
be rearranging Expression 4.7.

loge
ep=1-10% (4.59)
The histogram resolution which gives this performance for a specified level of scene noise
can then be read directly from the curves in Figure 4.17. Intuitively the classification

error cannot be continually improved by increasing the histogram resolution. This is
confirmed by the data in Figure 4.17 where the curves converge to a minimum error. At



Chapter 4. An Analysis of the Reliability of Recognition 91

this resolution all of the measurements entered into the geometric histogram are being
accurately represented.

4.9 Conclusions

Error analysis of object recognition algorithms is essential if the research is to progress ef-
fectively and if the proposed solutions are to be successfully embedded into larger systems.
A more general question, and one which is very relevant to object recognition in partic-
ular, concerns the relationship between reliability and the number of model classes that
the system is expected to distinguish between. This argument motivated the analysis of
the reliability of shape primitive classification when using pairwise geometric histograms.
Conventional error estimation techniques do not make the relationship between the error

and the number of (shape) classes explicit so an alternative approach has been proposed.

Central to this new approach is the idea, proposed by Fukunaga, that shape classes are
effectively drawn at random from some prior density distribution. Although this distri-
bution is never used directly it does mean that the distribution of distances between pairs

of class exemplars has a characteristic shape and this interclass distribution can be used
in estimating the error.

The main criticism of the approach is likely to be that the shape of the interclass density
distribution depends to some extent on the shape data used. Compare Figures 4.3 and 4.6
for example which present the interclass density distribution for the two different datasets
used in the experiments. There is clearly a difference in their shape. The intuitive counter
argument would be that these distributions must have some uniformity in their shape,
otherwise the performance of the algorithm would vary wildly from one shape to the next,
but this is not found in practice. If a researcher demonstrates their algorithm working on
some shape data then we accept that it is likely to also work on other similar shapes under
the same conditions. In fact, simply observing distributions like the interclass density
distribution which are central to the behaviour of the algorithm can provide significant
insight into the performance of the algorithm even before any quantitative analysis is
conducted. A more rigorous argument is provided in the next chapter where it is found
that the shape of the interclass density distribution for small distances is related to the
complexity of the shape data, or more specifically the intrinsic dimensionality of the data.

It is also this part of the interclass density distribution which affects the estimated error.

One of the observations of the analysis was that the error increases exponentially with
respect to the number of model shape classes. Even when the error rate for a small number
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of shape classes is very small this can change rapidly as the number of shape classes is
increased. It was proposed that this problem can be avoided by assigning a number of the
best classes to each scene primitive and then identifying the correct single class later by
looking for consistency. Results presented here have shown that error rates better than

1% can be attained for large numbers of stored models when this strategy is adopted.

One of the uses of a quantitative measure of reliability is to enable algorithm parameters
to be selected in order to give a specified level of performance. Most the parameters used
in the construction of pairwise geometric histograms are well defined but an exception to
this is the resolution along the perpendicular distance axis. To provide a principled means
for selecting this parameter, its effect on reliability has been made explicit:by plotting
distance distributions for different resolutions. This allows the user to specify a required

classification error and choose an appropriate histogram resolution accordingly.



Chapter 5

Estimating the Capacity of the

Shape Representation

5.1 Introduction

In the previoyus chapter the reliability of the shape classification process and the way
that this scalés with the number of stored shape primitives were investigated. A second
important issue regarding the scalability of the algorithm concerns the number of distin-
guishable shape primitives which can be described using pairwise geometric histograms
without confusion. The term capacity is coined to describe this. Given a simple represent-
ation, for example the binary representation of integers, the number of different integers
which can be described for a given number of bits can easily be determined by counting
the number of binary combinations that can be formed. This is a straightforward problem
because it is clear what is meant by a unique or distinguishable integer and also because
we know that all combinations of binary digits represent allowable integers. Given that
a geometric histogram can only be represented to some level of precision in practice,
naive approach for estimating the capacity might be to simply count the number of unique
histograms that can be formed. This, of course, gives a very poor estimate which does
not reflect any intuition about what 18 meant by distinguishable shape and also allows
for instances of shape which are unlikely to be encountered. This example hxghllghts two
particular problems which must be addressed in order to obtain a meaningful estimate
of capacity. First of all, how can the continuous domain in which geometric hiétograms
exist be quantised in a sensible manner to represent unique patterns so that they can be
counted? Secondly, what proportion of this domain represents the sorts of shapes that
are likely to be encountered and can this be determined from a relatively small number of

93
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example shapes?

Intuitively there appears to be some relationship between capacity and reliability but at
first the nature of this relationship may not be obvious. Certainly, if a representation
with a small capacity is used to ’represent a large number of exemplars then the system
will not be able to uniquely classify test data without error. The problem here is one
of ambiguity and can only be avoided by proposing multiple hypotheses for the class of
each test example. On a statistical level this ambiguity arises because class distributions
overlap each other so that lt is sometimes impossible to tell, with absolute certainty, from
which class a particular test example may have been drawn. The capacity can be defined

in this context as the number of classes that can be represented so that the uncertainty is
below a specified, acceptable level.

The purpose of the work presented in this chapter is to estimate the number of shape prim-
itives which may be described by the pairwise geometric representation without ambiguity
and ultimately to demonstrate that this is not a limiting factor on the scalability of the
algorithm. Two different approaches are taken, one based on geometric intuition which
allows a lower bound on capacity to be estimated and the second based on a statistical

model of the training process permitting a more precise estimate of the capacity itself to
be determined.

The geometric approach is an improvement on the work of other research-
ers [Swain & Ballard 91, Stricker 94, Stricker & Swain 94] who have estimated the capa-
city of other representations. In this approach each stored exemplar is imagined to occupy
some finite region of the pattern space and the storage capacity is defined to be the num-
ber of exemplars which, when tessellated, fully occupy the pattern space. On its own this
is a grossly simplified view which inevitably results in a gross over-estimate of capacity
because it is assumes that all regions of the pattern space represent shapes primitives that
are likely to be encountered. The approach has been refined here by estimating the local
dimensionality of the training data and calculating the number of unique patterns which

can be stored along a manifold of this dimensionality embedded in the pattern space,
which can be shown to give a lower bound on capacity.

The statistical approach treats the storage of exemplar patterns as a binning process where
the domain of the representation is imagined to consist of a finite number of potential
storage locations. If it is assumed that each location is as likely to be occupied as any
other then the filling process can be described using Poisson statistics and an estimate of
the capacity can be derived using this statistical model. The advantage of this approach
is that no a.ssumptlon is made about the distribution of the potential storage locatnons
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through the pattern space.

5.2 A Geometric Approach

The domain of all possible pairwise geometric histograms can be visualised as a high-
dimensional and continuous space which, ignoring practical limitations on the precision to
which numbers can be represented, describes an infinite variety of histogram patterns. As
model geometric histograms are normalised they define unit vectors in this space which
describe the surface of a hyper-sphere and it is this surface which defines the set of all
possible histograms. In fact, the whole of the surface is not allowable because geometric
histogram bins can only contain positive values as they represent frequencies. This limits
the representational domain to lie on the positive quadrant of the hyper-sphere. Although,
in principle, unique classes can be defined arbitrarily close on this surface, variability in-
troduced by the various processes performed in the construction of a geometric histogram,
such as image sampling and polygonisation, means that neighbouring classes may become
indisﬁinguishable. This variability was quantified in the last chapter for a given set of
shapes by measuring the spread of the within-class distance distribution for a number of

shape primitives from the same class. Figure 5.1 shows one of the within-class distribution
previously constructed.
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Figure 5.1: Within-class variability can be quantified by measuring the spread, Dy, of
the within-class distance distribution.

The distance, Dyp, which accounts for most of the spread of the data (about three standard
deviations has been chosen here) is a measure of how far data from a given class can be

expected to vary from the class mean. Provided that class centres are never less than twice
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this distance from each other then it is reasonable to say that those classes are distinct.

In this way a class can be described as a patch on the surface of the hyper-sphere with a
radius of Dy, as depicted in Figure 5.2.
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Figure 5.2: A surface patch describing a region of similar shape is defined by the radius

Dy, which is determine by measuring the typical variability of the data within a class.

A geometrically intuitive approach for estimating the capacity is to simply count the num-
ber of patches needed to cover the hyper-sphere’s surface. This is similar to the approach
used by Swain [Swain & Ballard 91] and by Stricker [Stricker 94, Stricker & Swain 94] to
estimate the number of colour images which can be stored and individually indexed using
colour histogram descriptors. If the patches defining unique classes are assumed to tes-

sellate then the capacity, C, is simply the ratio of the total area! of the pattern space,
Aspace, to the area of a single patch, A Ness

It can be shown that the surface area, A, (f), of an n-dimensional hyper-spherical patch

with unit radius, defined by a solid angle 26 is given by the reduction formula (see Ap-
pendix C).

0
An(6) = Ay (7) fo sin™2ada (5.1)

Where.

Ay(0) = 20 (5.2)

The total surface area of an n-dimensional hyper-sphere is determined by letting 0 = 7.

AT /(; L neaa T (5.3)

'The term area is used because this is determined by integrating over a surface
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This gives the total surface area but must be modified to give the required surface area of
the positive quadrant. As the dimensionality of the space is increased an increasing pro-
portion of the hyper-sphere’s surface exists outside of the positive quadrant. Specifically,
the addition of each dimension doubles the proportion of the hyper-surface’s area which
is not within the positive quadrant. Therefore, the total surface area of the positive quad-
rant of an n-dimensional hyper-sphere is determined by halving the area of the complete
sphere n times, giving the required area of the pattern space, Aspace-

. T . _ 1 .
Aspace =A,,_1(1r)/0 sin™ 2ada o (5.4)

The surface patch of radius Dy, is described by a solid angle of § = acos(l = D), see

Figure 5.2. The surface area of patch representing a distinct pattern class is then simply:
) acos(1—-Dyp)
Aclass = An-1(m) / sin"2ada (5.5)
0
The estimate of capacity is then given by the ratio:

T sin™ 2ad 1
= acoa{(l)-D ) .a = on (5-6)
JNTTM sinn~20da 2

5.2.1 Improved Estimate using Intrinsic Dimensionality

Although shape data is represented in a space whose dimensionality is spanned by the
number of pairwise geometric histogram bins, the intrinsic or local dimensionality, n;, of
the data is significantly less than this. Consequently, the pattern space will never be fully
populated. This ;edug:tibn in dimensionality arises as a result of two different phenomena.
Firstly, the histogram bins are not independent pieces of data but are highly correlated
because of natural geofmetric correlations found in shapes which are a function of the
complexity of the shape; Correlations also exist between bins because histogram entrics
are blurred by the error functions representing measurement variability. Secondly, not all

areas of the pattern s‘pa;ce correspond to shape data that is ever likely to be encountered
so these areas will always be empty of exemplars.

The consequence of the local dimensionality of the histogram data being less than the
actual dimensionality of the hyper-sphere described by histogram patterns is that the
quadrant is not completely covered but the data describes trajectories across the surface.

Simply estimating the storage by counting the number of patches which completely cover
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the quadrant’s surface results in a gross over-estimate. Figure 5.3 depicts a hypothet-
ical situation where, although the data is 2-dimensional, it is constrained to lie along a
trajectory which locally is 1-dimensional. The capacity in this example is the number
of distinct patterns which can lie along the trajectory. In practice we would expect the
surface to be covered by many disjoint, low dimensional trajectories which are locally
smooth. This is because, given an arbitrary shape, smooth deformations such as scalings
and shearings are likely to produce different but equally viable shapes, all of which lie on a
locally continuous manifold. Significantly different shapes are unlikely to lie on the same
manifold however. In general, then, the capacity is driven by the local dimensionality of

the geometric histogram data and the extent to which the trajectories described by the
data tend to fill the higher-dimensional space they occupy. '

Figure 5.3: Geometric histogram data does not fully populate the surface of the hyper-
sphere’s positive quadrant but describes low-dimensional trajectories across the surface.

Therefore, the capacity is the number of distinct patterns which can be placed along these
trajectories.

The extent to which the histogram pattern data fills the higher dimensional space is
difficult to calculate but it is possible to estimate the local dimensionality of the data
and this can be used to estimate a lower bound on the capacity. The capacity along
a space-filling trajectory will always be greater than the capacity along a trajectory of
the same dimensionality which does not fill space so the number of patterns which fit
along a straight trajectory through the pattern space is likely to be a lower bound on the
capacity, see Figure 5.4. The area along a straight trajectory of dimensionality, n;, can
be determined using the same integral which is used to calculate the surface area of an
n-dimensional hyper-sphere, where n is replaced by n;. The capacity is simply calculated
using the same expression as before (Equation 5.6) but where n is replaced by n;.
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Figure 5.4: A lower bound on capacity can be estimated using the local dimensionality,

n;, of the pairwise geometric histogram data by counting the number of distinct patterns
which lie along a straight, n;-dimensional trajectory.

5.2.2 Estimating Intrinsic Dimensionality

The problem of determining the intrinsic dimensionality of a set of data is an interesting
one that has many uses in the field of pattern recognition but, as yet, no general solution
has been found. At first the problem does not appear to be a difficult one (a human
observer can look at 1- or 2-dimensional data embedded in a 3-dimensional space and
recognise the intrinsic dimensionality with little trouble) but there are complications. First
of all the apparent dimensionality of a data set depends upon the scale at which the data is
observed, so an appropriate scale must be determined before the intrinsic dimensionality
can be calculated. Again the human observer has little trouble in selecting the appropriate
scale but embodying this process into an algorithm has proved to be difficult. Secondly,
real data tends to be influenced by noise which has the effect of thickening the hyper-
surfaces that the data lies on, resulting in an increase on the apparent dimensionality.
A robust technique to decide whether data is thickened because of noise or really docs

have a larger intrinsic dimensionality has not been found. Examples of these problems are
depicted in Figure 5.5.

A number of techniques for measuring intrinsic dimensionality have been published al-
though they all tend to be variations on either the local PCA (Principal Component
Analysis) approach or the nearest-neighbour approach. The local PCA approach was de-
veloped by Fukunaga [Fukunaga & Olsen 71] and, as the name suggests, is based on the
principal component analysis technique which is traditionally used to determine the min-
imum number of orthogonal directions needed to describe a data set. In the local PCA
approach an estimate of the intrinsic dimensionality is obtained by determining the typical
number of orthogonal directions needed to describe local regions of the data. The local re-
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Figure 5.5: Estimation of the intrinsic dimensionality of the data in (c) is hindered by (a)

viewing the data at an inappropriate scale, and (b) noise which increases the apparent
dimensionality.

gions used in this analysis can be defined in a number of different ways. Trunk [Trunk 76]
progressively increases the number of nearest-neighbours, k, in each locally defined re-
gion until the (k + 1) th neighbour fits into the coordinate frame defined by the first
k data-points. Other approaches define local regions by attempting to cluster the data
according to measures of topology or distance [Schwartzmann & Vidal 75]. The need to

select an appropriate neighbourhood size in which to calculate principal components is a
consequence of the scale problem discussed earlier.

The nearest-neighbour approach utilises the fact that the relative distance from points
in the pattern space to the nearest-neighbouring exemplars is a function of the local
dimensionality of the data whilst tending to be unaffected by the total number of stored

exemplars and the actual distribution of the data [Fukunaga 90] [Pettis 79]. In fact, it can
be shown that: E

e Ok T
(dkg1 — di)k (5.7)

i

Where dj is the mean distance to the kth nearest neighbour from each pattern in the

space. Again local regions are effectively defined, this time by selecting k, and good
results depend upon selecting k appropriately. '

A recent evaluation of these existing methods [Verveer & Duin 95] concludes that there
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are problems with both and that a good understanding of specific data sets is required
to interpret the results they give. This has motivated the development of an alternat-

ive technique to measure the intrinsic dimensionality of the exemplar pairwise geometric
histograms.

5.2.3 An Alternative Intrinsic Dimensionality Estimator

Central to the nearest-neighbour estimator is the fact that the rate at which neighbours
are encountered, when moving radially out from points in the pattern space, is a function
of the dimensionality of the space. This can be represented graphically by plotting a his-
togram of the the number of neighbours encountered when moving radially outwards from
any exemplar and the shape of this plot is characteristic of the local dimensionality. The
local density of the data introduces a scale factor which can be removed by constructing
the histogram up to some specified radial distance, Dpeighbour, and then normalising its
area. This selection of a neighbourhood size is again a consequence of the problem of
analysing the data at an‘appropriate scale. For convenience, we shall refer to the histo-

gram constructed in this way as the neighbourhood distance histogram or simply distance
histogram.

It is proposed here that the local dimensionality of a set of data is estimated by fitting
distance histograms constructed for the data to distance histograms constructed for simu-
lated data of known intrinsic dimensionality. Distance histograms constructed for a smgle
data point characterxse the local dimensionality at that data point but an average, local
dimensionality can also be determined by using the sum of the distance histograms con-
structed at every data point. Interestingly, these mean distance histograms can be derived
directly from the interclass distance distributions used to predict reliability in the previ-
ous chapter. The neighbourhood distance histogram is simply the section of the interclass
distance distribution below Dyeighsour Which is then normalised. An important point to
note is that the shape of these distributions characterises both the reliability of classific-
ation and the local dimensionality of the data. This agrees with the observation made by
Fukunaga that for classification problems involving large numbers of classes the error rate
is driven by the intrinsic dimensionality of the data [Fukunaga & Flick 84).

To test this approach dlstance histograms constructed for data uniformly distributed
over the p081t1ve quadrant of a hyper-sphere have been compared to distance histograms

constructed for data lying in low-dimensional manifolds on higher dimensional hyper-

spheres. - To generate random data points on the surface of a hyper-sphere which are
uniformly distributed, each component of the vector describing a point is selected randomly
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according to a normal distribution and then the vector is normalised to the sphere’s radius
(in this case unity). In order to constrain data points to the positive quadrant of the hyper-
sphere, the absolute value of each vector component is used. Figure 5.6 shows a set of
points generated this way which lie on the positive quadrant of a 3-dimensional sphere. To
generate data points along n;-dimensional trajectories on the surface of an n-dimensional

hyper-sphere only n; of the n vector components are selected randomly, the rest being

assigned a constant value.

Figure 5.6: Simulated data uniformly distributed over the positive quadrant of a sphere.

Figure 5.7 shows distance histograms constructed for 10-dimensional data in 10, 20 and
40-dimensional spaces and 20-dimensional data in 20, 40 and 80-dimensional spaces. It is

clear from this result that the shape of the distance distribution is characterised by the
intrinsic dimensionality of the data.

To re-cap, the proposed method for estimating the capacity of the geometric histogram
representation is to first estimate the mean, intrinsic dimensionality of the data, n;, char-
acterised by the shape of the interclass distance distribution for small distances. A lower

bound on capacity can then be estimated by counting the number of distinct classes which
will fit on trajectory of this dimensionality using the expression:

o Iy sin®2ada 1
= racos(1-Dy) . ni (5.8)
Jo sin"2ada 2™

5.3 Results: The Geometrical Approach

A lower bound on the capacity of the pairwise geometric histogram represe

ntation is es-
timated here for two different sets of shape data,

the first comprising outlines of shape



Chapter 5. Estimating the Capacity of the Shape Representation 103

18 1 i 1 1
16
§ 14
g 12
o
& 10
89
3 8
2
g 6
Z 4
2
1
00 0.05 0.1 0.15 0.2 0.25

Distance

Figure 5.7: Estimating the dimensionality of the simulated data using neighbourhood
distance histograms. (a) The solid line describes the distance histogram for 10-dimensional
data. The dashed lines correspond to 10-dimensional data embedded in a 20- and a 40-
dimensional space. (b) The solid line describes the distance histogram for 20-dimensional

data. The dashed lines correspond to 20-dimensional data embedded in a 40- and an

80-dimensional space.

silhouettes (Appendix A, Figures A.1 and A.2) and the second comprising views of mech-
anical parts (Appendix A, Figure A.3). For each data set the mean intrinsic dimensionality
has been estimated using neighbourhood distance histograms and then, with the within-
class variability measured in the last chapter, the capacity is derived. Because measures of
within-class variability and intrinsic dimensionality are subject to some error the capacity

is plotted for a range of these parameters, providing an insight into the sensitivity of the
capacity estimate to these values.

5.3.1 Shape Outlines

Figure 5.8 shows the neighbourhood distance distribution for the shape outline data as bars
and the distance distributions for simulated data of known dimensionality as lines. The
similarity of the distribution for the shape data and the distribution for the 10-dimensional

data suggests that the mean intrinsic dimensionality of the shape data is 10.

The estimated capacity of the outline shape data, based on an estimated dimensionality
of 10 and a within-class variability of 0.15, is plotted in Figure 5.9 with some margin.
This result suggests that in excess of 1000 shape primitives of those typically present in
the training data should be capable of being stored without ambiguity.
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Figure 5.8: The similarity between the distance histogram constructed for the shape data
(shown as bars) and the distance histogram constructed from simulated 10-dimensional
data (the solid line) suggests that the mean intrinsic dimensionality of the shape data is
about 10.
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Figure 5.9: Lower bound on capacity as a function of intrinsic dimensionality and within-
class variability around the estimated values.
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5.3.2 Mechanical Parts

Figure 5.10 shows the neighbourhood distance distribution for the mechanical shape data
as bars and the distance distributions for simulated data of known dimensionality as
lines. The similarity of the distribution for the shape data and the distribution for the

6-dimensional data suggests that the mean intrinsic dimensionality of the shape data is 6.
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Figure 5.10: The similarity between the distance histogram constructed for the shape data
(shown as bars) and the distance histogram constructed from simulated 6-dimensional data

(the solid line) suggests that the mean intrinsic dimensionality of the shape data is about
6.

The estimated capacity of the mechanical part shape data, based on an intrinsic dimen-
sionality of 6 and a within-class variability of 0.15, is plotted in Figure 5.11 with some
margin. This result would suggest that a lower bound on the capacity of about 100 shape

primitives, typical of those seen in the training set, would be reasonable.

5.4 A Statistical Approach

The geometric approach to estimating the capacity of the pairwise geometric histogram
representation is attractive because the process of packing the pattern space with small
regions representing the training data is easily visualised and is a good model of the
training process. The problem of determining which regions of the pattern space represent
likely shape configurations is a difficult one though, and has restricted the use of this

technique to finding a lower bound. This limitation has motivated the development of an
alternative approach based on a statistical model of the training process.
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Figure 5.11: Lower bound on capacity as a function of intrinsic dimensionality and within-
class variability around the estimated values.

In this approach the pattern space is visualised as containing a finite number of class
locations (patches on the surface of the hyper-sphere defined by normalised patterns) which
can become filled as exemplar patterns are stored. The importance of this alternative
approach is that no assumption need be made about the distribution of these potential
storage locations through the space but it is assumed that any training pattern has an
equal probability of falling into any particular patch. This poses the problem as a simple
binning process which can be modelled using Poisson statistics. Having trained with a
particular number of exemplars, the Poisson distribution can be used to determine the
probability that any one storage location will contain a given number of patterns. If the
number of stored exemplars which have fallen into any one patch is given by the random

variable X then the probability of a patch containing z patterns is described by the Poisson
distribution.

AT
Where X is the mean number of patterns within any one patch. The total number of

patches in the pattern space is the capacity, C, and this relates the mean number of
patterns per patch, A, to the number of stored exemplars, N.

Ql =

(5.10)
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After training with a set of exemplars some storage locations are likely to be empty, some
will contain a single exemplar and some may even contain several. Defining C; to be the
number of patches containing z patterns, such that C = Cy + C; + C3 + ..., then the
probability of a patch containing z patterns can be estimated as: ‘

Cs

This can be equated to Expression 5.9 for the Poisson distribution to give:
C z
s _ X

T = (5.12)

From‘this point onwards it will be assumed that relatively few class locations will be

occupied by three or more patterns and that many more patches will contain a single
pattern than those containing a pair of patterns. |

CL>»C; : R ' (5.13)

This is a fair assumption provided that the number of training examples is less than the
number of storage locations and given the earlier assumption that exemplars are equally

likely to fall into any patch. These assumptions also lead to another expression which will
be used shortly. A

| Cy z‘N | (5.14)

Considering only those patches containing either one or two exemplars, Equation 5.12
yields the following two expressions. ’ .

PX=1=eM=S
)=e 5

25T (5.16) -

Dividing Expression 5.15 by Expression 5.16 yields an expression relating tile ratio of the

number of patches containing one exempl
plar to the number of patch ini
es cont i
exemplars to A. : : aining a pair of
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G _

2

From which the expression for capacity C can be derived by substituting in the expression
for )\ from Equation 5.10 above.

_No

This can now be simplified using the approximation that C; =~ N.

2

Cx 5%; (5.19)
This expression deﬁnes the capacity in terms of the number of stored exemplars, N,
which is known, and the number of patches containing a pair of exemplars, which can be
counted. As in the geometric approach, a patch describing what we intuitively mean by
a distinguishable shape is defined by a radius ,D"“ which is set according to the observed
variability of the data. The number of patches containing pairs of exemplars, Cs, is simply

assumed to be the number of pairs of exemplars less than a distance Dy, from each other.

This information is provided explicitly by the distribution of interclass distances intro-
duced in the last chapter. C; is simply the number of entries made in the distribution
at a distance less than Dy,. Rather than expressing the capacity C in terms of C; it is

useful to express it in terms of the proportion, p, of the interclass distribution below Dy,
depicted in Figure 5.12.

Recall that the interélass distribution is constructed by matching all pairs of exeniplaré

drawn from the training set of N. The number of entries made in the distribution is
therefore:

N2—-N

Number of entries = — (5.20)

The proportion of entries, p, made below Dy, is the ratio of the number of entries, C;
: A

made below Dy, to the total number of entries made into the distribution.

_ 20,
T N2CN (5.21)

Provided that the number of exemplars, N, is large such th#t N2 N theﬁ thié can be
simplified to: !
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Figure 5.12: The capacity can be derived directly from the proportion, p, of the interclass
distance distribution below Dyy.

2C
D= (5.22)

Using this to replace C; in the expression for capacity given by Equation 5.19 gives:

G (5.23)
This expression provides a good estimate of the capacity which makes no assumption about
the distribution or dimensionality of the geometric histogram pattern data and allows the
capacity to be determined using a simple measurement taken from the interclass distance
distribution. In order to obtain an accurate estimate of the capacity it is necessary to
have a good measure of p and this depends upon a good sample of data in the interclass
distribution below Dy,. Unfortunately there tends to be very little data in this part of the

interclass distribution, see Figure 5.12 for example, and this leads to a large error in the
estimate of the capacity.

5.4.1 Estimating p by curve fitting

To minimise errors on the estimate of capacity, a better measurement of p can be determ-
ined by fitting an appropriate model to the interclass distance distribution over a range
where there is sufficient data. In fact, suitable model fitting was done in the geometric

approach described earlier when measuring the intrinsic dimensionality of the geometric
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histogram data, see Figure 5.8. A better estimate of p is found by fitting distance histo-
grams constructed for simulated data to the interclass distance distribution and measuring

the proportion of the fitted distribution below Dy, as shown in Figure 5.13.
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Figure 5.13: A better estimate of p can be determined by measuring the proportion of the

simulated distance distribution, which best fits the data, below Dy,.

5.5 Results: The Statistical Approach

The capacity of the pairwise geometric histogram representation is estimated here for two
different sets of shape data, the first comprising outlines of shape silhouettes (Appendix
A, Figures A.1 and A.2) and the second comprising views of mechanical parts (Appendix
A, Figure A.3). For each data set the proportion, p, of the interclass distance distribution
below Dy, (Dyp, being determined from the spread of the within-class distance distribution)
is measured and the capacity derived. To improve the accuracy of this calculation p is
derived from the estimate of the intrinsic dimensionality of the data determined earlier.

The capacity is then plotted as a function of the intrinsic dimensionality around the
estimated value.

5.5.1 Shape Outlines

The estimated capacity for the outline shape data, based on the value of p predicted from
the estimated intrinsic dimensionality and a within-class variability of 0.15, is plotted in
Figure 5.14 with some margin. This result suggests that a capacity of up to 10000 seems

reasonable for this type of shape data. It is interesting to note that the capacity estimate
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Figure 5.14: Capacity as a function of the intrinsic dimensionality and within-class vari-
ability around the estimated value.

agrees within an order of magnitude over a large range of intrinsic dimensionality and
within-class variability.

5.5.2 Meéhanical Parts
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Figure 5.15: Capaéity as a function of the intrinsic dimensionality and within-class vari-
ability around the estimated value. '

The estimated capacity for the mechanical part shape data, based on a value of p predicted
for the estimated intrinsic dimensionality and a within-class variability of 0.15, is plotted

in Figure 5.15. It seems reasonable to say that a capacity of about 100 distinct shape
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primitives can be expected for this type of data.

5.6 Conclusions

The purpose of the work presented in this chapter has been to estimate the number of
shape primitives which can be described, without ambiguity, using the pairwise geometric
histogram representation. In the introduction to the chapter it was suggested that to

obtain sensible estimates of capacity two particular problems needed to be solved.

1. The domain of the pairwise geometric histogram representation is a continuous space
which, in principle, defines an infinite variety of patterns. How can this space be

quantised in an appropriate manner so that the number of unique patterns can be
counted? ' ' ’

2. Not all points in the geometric histogram domain represent configurations of shape
which are ever likely to be encountered. Given only a relatively small number of

training shapes, is it possible to derive an estimate of capacity which takes this into
account? '

The problem of quantising the space has been addressed by defining uniqueness using
hyper—circular patches, on the surface of the hyper-sphere which describes all possible
patterns. The radius of each patch is determined by observing the typical variability
of geometric histograms within the same class. Although rather simplistic, this solution
seems reasonable as it is founded on the distance metric, which is by definition the measure

of similarity. This definition of uniqueness has been used as the basis of two different
approaches for estimating the capacity.

The first approach derived capacity by counting the number of patches which can be
packed onto the surface of the representational domain. The problem of predicting the
proportion of the space which represents viable shape primitives was solved by estimat-
ing the local, or intrinsic, dimensionality of the training shape data and assuming that
further shape data will be confined to trajectories of this dimensionality. Estimation of
intrinsic dimensionality is an on-going area of research area and problems with current
solutions motivated the use of an alternative technique. This technique bases the estimate
of dimensionality on the shape of the interclass distance distribution for small distance.

It was argued that this was likely to provide a lower bound on the capacity rather than
the capacity itself.
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The second approach modelled the storing of training data as a binning process which
can be described using Poisson statistics. It was shown that the capacity can be defined
in terms of the number of patches containing pairs of shape exemplars after training and
this is easily measured using the interclass distance distributions. The advantage of this
approach is that no assumption is made about the distribution of the classes through
the space so that the proportion of the space representing viable shape is implicit in the
calculation. In practice, using the interclass distributions directly leads to large errors on
the estimated capacity because of the small number of patches containing pairs of patterns.

This problem has been minimised by fitting model curves to the interclass distributions

where there is sufficient data and extrapolating.

An important result, although maybe an obvious one, to come from this work is that the
capacity of the representation depends upon the type of shape data being used. These
experiments suggest that for data typical of the shape outlines used, many thousands
of primitives can be represented uniquely, whereas, for the mechanical data set which
exhibits many similar features such as right-angled corners, the capacity was estimated
to be around 100. It is interesting that this difference between the shape data sets has
been made explicit by measuring the data’s intrinsic dimensionality. Another interesting
observation which should be made is that the interclass distance distributions, used in the
last chapter to estimate reliability, have been used here to estimate intrinsic dimensionality.
This agrees with the intuition that there is a rélationship between reliability and capacity
and confirms the observation made by Fukunaga that for classifications tasks involving

large numbers of classes, the reliability is driven by the intrinsic dimensionality of the
data.



Chapter 6

Algorithm Extensions for the
Recognition of Scaled Shapes

6.1 Introduction

One of the main criticisms of the pairw‘ise geometric histogram representation is that it is
not invariant to changes in the apparent size or scale of a shape. A geometric histogram
constructed to represent shape data providés a description of that shape at a specific scale
and is different to a geometric histdgram representing the same shape data at a different
scale. This lack of scale invariance is a consequence of using distance measurements in the
description of shape and, until nbw; has limited recognition to shapes of a fixed size. A
scale invariant representation can be obtained by recording only the relative angle between
pairs of line segments in a 1-dimensional descriptor, effectively projecting the data in a
2-dimensional pairwise geometric histogram onto the relative angle axis. This was tried

during the development of the current geometric histogram representation but lacked
the sparseness which promotes robust recognition in cluttered scenes. An alternative
geometric histogram representation has been developed by Kumar (Kumar & Rockett] in
which triplets of points on an objects boundary are used to define a pair of angles and an
entry is made in a 2- -dimensional histogram accordingly. Although these angle measures
are invariant to the scale of the shape data the errors on the measurements made from
the imagé data are not. The correct level of blurring made to each histogram entry to

account for measurement errors is a function of the scale of the shape data and so the
representation is not entirely scale invariant. In fact, any scale invariant representation of
shape which properly accounts for measurement errors, whether based on angles or ratios
of distances, will suffer from this problem. It is interesting, though, that the problem

114



Chapter 6. Algorithm Extensions for the Recognition of Scaled Shapes 115

can be minimised by centring an object on a sensor with a resolution which increases
exponentially towards its centre, so that measurement errors become constant up to the

maximum resolution of the sensor. This may be one of the reasons why the human retina
has a structure similar to this.

The motivation for developing an algorithm which can recognise shapes at any scale really
comes from two sources. The first originates from the concept of shape and its inde-
pendence of scale. From our own experience we can look at a shape over a large range
of scale and still perceive it as the same shape. It is desirable for a shape classification
system to be able to reflect this. The second source of motivation is more practical and
concerns recognising objects at different distances from the camera. Except in artificially
constrained environments objects can be expected at arbitrary distances from the camera
and consequently appear at different scales. Many more vision problems could be solved

using geometric histograms if the constraint on scale is removed.

Although the pairwise geometric histogram representation is not invariant to the scale of
shape data, an algorithm for recognising shape over a range of scale using this type of
descriptor is developed and tested in this chapter. In the next section the relationship
between the apparent size of an object in an image and its distance from the camera is
investigated and the calibration needed to predict the distance to an object from its scale is
explained. The effect of scale on the geometric histogram representation is studied in some
detail and this leads to a technique for representing and recognising shapes over a specified
range of scale. Qualitative and quantitative results are then presented to demonstrate the
effectiveness of this extension to the original algorithm. Finally, results of an application

where an object is tracked by recognising it in a series of images are presented.

6.2 Scale, Distance and Calibration

One of the main motivations for developing a shape recognition system which can recognise
shapes at arbitrary scale is the fact that the apparent size of an object in an image is a
function of its distance from the camera. This relationship is investigated here and the
measurements which must be made to calibrate a shape model so that an object’s distance
from the camera can be determined are defined. The analysis begins by defining the scale,

s, as the factor which relates the apparent size of an object in an image, z, to its actual
'
gize in the world, X.

>|8

(6.1)
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The relationship between image and object sizes and the distance between the object and
the camera can be determined, to first order, using the pinhole camera model, as presented
in Figure 6.1.

Image Optical Centre _ Object

Figure 6.1: The simple pinhole camera model can be used to relate image and object sizes
to image and object distances.

If the distance from the object to the optical centre, O, is D and the distance from the
optical centre to the image plane is d then, by noticing that a ray from a point on the

object to the image defines a pair of ksimilar triangles, the following expression can be
formed. |

i_d
X~D - (6.2)

By rearranging this expression and substituting in the expression for scale an expression

for D in terms of d and the scale of the image is obtained.

D=

| Q.

(6.3)

Typig:ally the distance d from the image plane to the optical centre is not well known but
this can be replaced by suitable calibration of each model. If an object is placed at a

distance D; from the camera and the scale of the image at this distance is 8z then, using
Expression 6.3. ‘ ' ’

d = 8zD¢ , | (6.4)

Substitution of this back into Expresgion 6.3 gives an ex;;ression for D in terms of these
calibration measurements and the scale of the image, s. ‘
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8zDg

D= — »» (6.5)

Rather than expressing D in terms of the size of the image relative to the size of the object
it is convenient to use the size of the image relative to the size of the model constructed for

the training data, sy;,. If the model is constructed for the object when it is at a distance
D, from the camera then the model scale is simply:

8y = — A | ’ (6.6)

This can be used to obtain an expression for D in terms of the model scale by substitution
into Expression 6.5.

D=3 | (67)

Sm -

In other words, the distance from an object to the camera can be determined from the

scale of the model which fits the image data and the distance that the object was placed
from the camera when the model was constructed.

6.3 The Effect of Scale on the Similarity Metric

As meaSures of distance are used i in the construction of pairwise geometric hxstograms,
the representa.tlon changes as the scale of the encoded shape data is changed. As a
consequence, histograms constructed from the same shape data but at different scales
exist at different locations in pattern space and this complicates the classification process.
In order to develop a classification scheme which can work with shape data at various
scales, it is necessary to understand the way that geometric histogram patterns move
around the pattern space as the scale of the shape data is varied. This may be done by

looking at the way the data in a geometric histogram changes as a function of scale and
the consequence that this has on the distance metric.

The effect of scale on the representation can be seen by considering the effect of scale on a
single entry, as demonstrated in Figure 6.2. For any particular scale, s, the perpendicular
distances do and d; are simply scaled to distances sdy and sd; respectively, such that the
histogram entry becomes stretched (or compressed) along the perpendicular distance axis
This will be the case for each of the individual entries that make up a complete geometric

histogram such that the overall effect is a stretching (or compressing) of the histogram
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data as a whole. Note that it has been assumed here that scaling the image data by some
factor s simply results in the line data being scaled by the same factor. This is a good
assumption over reasonable ranges of scale because of the scale invariant segmentation

algorithm employed to perform the straight line approximation, but at very large or small
scales other effects may become significant.

Perpendicular
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Figure 6.2: The effect of scale on the pairwise geometric histogram can be seen by consid-

ering a single entry. As the shape data is scaled the histogram entries become stretched
or compressed.

Due to the fact that the pairwise geometric histogram data changes smoothly as a function
of shape scale, the distance between a pair of histograms constructed from the same shape
data must change smoothly as their relative scale is varied. This can be viewed as the
histogram following a smooth trajectory through the pattern space as the scale of the
shape data is varied. For clarity this will be called the shape trajectory. The effect of
scale on the distance metric is shown in Figure 6.3 which presents the distance between
a pair of geometric histograms constructed from real shape data but at different scales.
As geometric histograms remain similar over a reasonable range of scale, an individual
histogram, although not scale invafiant, can effectively represent a range of scale. It is
this property which may be used to represent shape across any range of scale.

6.4 Representing Shape Over a Range of Scale

To enable shapes to be classified over some range of scale using pairwise geometric his-
tograms it is necessary to represent the shape trajectomes defined in the pattern space
by these shapes across the scale range. Individual geometric histograms can effectively
represent a small range of scale or section of the shape trajectory. Consequently, the

complete trajectories may be stored in a piecewise fashion by storing a small number of
exemplars. A hypothetical example is shown in Figure 6.4.
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Figure 6.3: The distance between a pair of geometric histograms constructed for the same

shape data at different scales.
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Figuré 6.4: Shape primitives can be represented over a range of scale as a piccewise
approximation to the trajectory described by the shape data.
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To represent a shape primitive over some range of scale from smin t0 Smaz it is necessary
to determine thg number and positions of histograms to store along the shape trajectory.
This depends upon how coarsely the trajectory is to be described and may be defined in
terms of a distance threshold D;, as shown in Figure 6.4. If this distance is chosen to be
small then the trajectories will be well represented but at the expense of having to store
a large number of geometric histograms. Alternatively, if this distance is large then few

histograms will need to be stored but the trajectories will be poorly represented and the
likelihood of misclassifications will increase.

6.4.1 The Training Algorithm

An algorithm has been designed to determine the values of scale at which histograms

should be stored given values for Dy, Smin and Smaz. The algorithm operates as follows,
and can be visualised as shown in Figure 6.5.

1. Initially a temporary histogram is constructed at scale smin. This is used to determine

the scale sg which describes a geometric histogram at a distance D, using a bisections
search across the scale range.

2. A histogram is stored at scale sg and the temporary histogram is discarded.

3. The histogram stored at scale sg is used to find the next scale which describes a

histogram a further distance D, away. Another temporary histogram is constructed
at this scale. ‘

4. The new temporary histogram is used to determine the scale s; where the next
~ histogram is stored.

5. This process is repeated until the complete range of scale is covered.

6.4.2 Classification of Shape Primitives

Ideally, an unknown shape primitive should be classified according to the shape traject-
ory which it is closest to in the pattern space and the scale of the primitive should be
determined from the position of the closest point along the trajectory. This is possible,
in principle, if the trajectory between the stored exemplars is assumed to be lincar but
in practice these trajectories are very non-linear and the computation needed to perform

this calculation would seriously impair the recognition Speed. Instead, unknown shape
, ;



Chapter 6. Algorithm Extensions for the Recognition of Scaled Shapes 121

8
£ h
4
a

Figure 6.5: To represent a line segment over the range of scale from Spin t0 Smaz to a level
of precision defined by the distance threshold D, three geometric histograms are stored
for the shape data at scales of sg, 81 and s3. The solid line represents the distance between

the shape primitive and its nearest neighbour across the scale range.

primitives are classified, as before, according to the nearest stored exemplar and the scale
estimate is simply based on the scale of that exemplar.

This introduces two problems. First of all, even if a shape primitive is a perfect example
which lies on a shape trajectory it can lie up to a distance of D, from its nearest neighbour,
increasing the pfoba.bility of misclassification. This is effectively a quantisation noise
problein and can be included in the noise model introduced earlier to select an appropriate
spacing at which to place exemplars to attain a given level of reliability. The second
problem is that by basing the scale estimate on the scale of the nearest exemplar a uniform
gcale error is introduced. This complicates the determination of an object’s position and

scale in a scene but can be resolved by appropriate construction of the probabilistic llough
transform, which is the issue of the next section.

6.5 Determining Shape Location and Scale

When constructing a probabilistic Hough transform to determine the position of shapes
identified within a scene for fixed scale data, the error on the position hypothesised by
individual pairs of scene lines is largely due to variability in the line scgmentation process.
For variable scale data the position of a model hypothesised by labelled scene lines is also

a function of the model scale and correct account of scale errors must be taken when
constructing the Hough transform.

The effect of the uniform scale error on the hypothesised model position is demonstrated
in Figure 6.6. The scales and scale errors associated with lines A and B constrain the
position of the model to lie within the bands defined between the dotted lines. However,

if both of these lines belong to the same shape then the model position must satisfy both
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constraints and lie in the shaded region. This does not provide a strong constraint on the
position of the model and the precision of the recovered shape position suffers. However,
if the scene lines belong to the same shape then they must also be at the same scale and
this provides the tighter constraint represented by the dashed line. The section of the
dashed line which intersects the shaded region satisfies all of the constraints so if both

lines A and B are from the same model then its position must lie on this section.

Line A o)
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Figure 6.6: The effect of scale error on the hypothesised shape position.

The correct Hough transform entry for each pair of scene lines which accounts for both
the scale error and the line endpoint error is obtained by convolving the respective error
functions together. This is greatly simplified by approximating the scale error function
by an ellipse which can be described using a covariance matrix. This has been done by
orienting the major axis of the ellipse with the equal scale constraint and setting its length
to 3 times the length of the section of equal scale constraint which defines the scale error.
The minor axis of the scale error ellipse was set to one tenth of the length of the major
axis. The covariance matrix which describes the combined scale and endpoint errors is
then determined by simply adding their covariance matrices.

6.5.1 The Scale Hough Transform

Having determined the position of a model found in a scene, it is necessary to determine its
scale. This may be done with a 1-parameter (Scale) Hough transform. The scale estimates
associated with each matched scene line may be used to make entries into the scale Hough
transform directly but the uniform scale errors on each estimate limit the precision of the
final scale measurement. A better scale estimate can be determined for each line of the

located model now that the position of the model has been determined. The improved
model scale estimate, s,,, is simply calculated as:

iv dscene
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Where dgcene is the perpendiculaLr distance from the scene line to the determined shape

location and dpyodel is the perpendicular distance from the corresponding model line to the
corresponding model reference point.

These improved scale estimates provide good hypotheses for the scale of the shape and are

used to form entries in the scale Hough transform to determine the actual model scale.

6.6 Experiments

A number of experiments are presented here to demonstrate the effectiveness of the ex-
tended shape recognition algorithm. The first results simply demonstrate the recognition,
Jocalisation and scale estimation of simple shape data at different scales. A more thor-
ough, quantitative analysis is then presented which determines the accuracy of the scale
estimate over a large number of example shapes. Finally the algorithm is used to track

a moving object over a sequence of images by identifying the object in each image and
estimating its distance from the camera by using the scale estimate.

6.6.1 Demonstration

In this experiment the recognition system has been trained with a single shape model
over a range of scale from s;; = 0.5 to s, = 2.0. With a distance threshold D, = 0.05 an
average of six geometric histograms were needed to represent each shape primitive over the
scale range. Figure 6.7 shows three scenes containing the shape model at scales of 0.5, 1.0
and 2.0. The scene line data is shown in grey. These scenes were generated by scaling the
original image data and then approximating the new image by line segments, rather than
simply scaling the original line data. The identified models have been superimposed over
each scene in black, at the determined location and scale. Close examination of the results

reveals that the scene and model line data is generally quite different but the algorithm
still performs well.

6.6.2 Quantitative Analysis

The experiment presented here has been devised to estimate the accuracy with which the
scale of an object can be determined using the recognition algorithm. For two different
shapes from Appendix A, one taken from the set of outlines and one from the mechanical

parts, a large number of test images have been produced. For each shape, 10 examples at
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Figure 6.7: Scenes containing single models from the outline shape and mechanical part
data sets at scales of 0.5, 1.0 and 2.0. The scene line data is shown in grey and the
identified object is superimposed at the estimated location and scale in black.
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each of 11 different scales were constructed. The following procedure was used.

1. Scaled object images are produced by scaling the original image data across the

given scale range.
2. Multiple object images are produced at each scale by rotating the scaled image data.

3. The set of test data is produced by extracting lines from all of the test images.

The object in each test image has been identified, its scale estimated and the proportional
error recorded. If the actual scale of the shape in the scene is s,, and the estimated scale
is 8,/ then the proportional error, e, is defined as:

m = m/!
es = 's_——s—"' (6-9)

Sm

Figure 6.8 and Figure 6.9 present the mean error at each image scale for the outline
and mechanical part shape data respectively. The error bars represent three standard
deviations either side of the mean. The scale error is typically within 5% for both classes
of shape although the errors become worse for small scales. In general the scale error is
worse for the mechanical part data than for the outline shape data, which is probably

because the simpler mechanical shapes provide less constraint on scale.
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Figure 6.8: The proportional error in the estimated scale of one of the outline shapes as
a function of its actual scale.
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Figure 6.9: The proportional error in the estimated scale of one of the mechanical part
shapes as a function of its actual scale.

6.6.3 Tracking Results

One of the main motivations for developing an algorithm which can recognise objects at
arbitrary scale is to allow objects to be recognised at arbitrary distances from the camera.
Once such an algorithm has been implemented it can be used to estimate the distance

between the camera and the object from the object’s scale in the image, providing there
has been some calibration done. ;

A simple demonstration is presented here in which the distance to a modcl train is estim-
ated as it approaches the camera by first recognising it in the scene, and then estimating
its scale. By placing the camera along a straight section of railway track the train is always

viewed from the same direction so, apart from slight perspective distortion, the problem
is essentially a 2-dimensional recognition task. ‘

An image of the train about half way along the track was first used to both calibrate the
system and to generate a model of the train. A bounding box around the front section of
the train was defined by hand and the image data within this region was used to construct
the train model. The distance between the train and the camera was then recorded to
define the reference used for calibration. A series of 25 images of the train were then

captured at approximately 2 centimetre intervals as it approached the camera. Three of
these images are shown in Figure 6.10.

The distance to the train in each image has then been estimated by first locating the

train model in the scene and then estimating its scale as described earlier in this chapter,
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The located model can be seen in the three example images in Figure 6.10, overlaid in
black. Figure 6.11 presents the estimated distance from the camera to the train for each
of the images. The solid line represents the actual distance to the train and the dotted
lines provide a 5% margin either side of that distance. The distance to the train has been
successfully estimated for all of the images within 5% of the actual value.

6.7 Conclusions

As distance measures are used in the construction of pairwise geometric histograms, the
representation changes as the scale of the shape data it describes is changéd, limiting the
use of geometric histograms to recognising shapes of fixed scale. A shape primitive over
a range of scale is not described by a single point in the pattern space but by a smooth
trajectory through the space. An algorithm has been developed in this chapter which can
recognise shape over a range of scale, using geometric histograms, by approximating these
trajectories by a small number of example histograms. This has been possible because a
single geometric histogram is able to represent a shape primitive over a relatively large
range of scale because of the stability of the distance metric as a function of scale.

In this scheme, line segments are classified according to the nearest ncighbour in the
pattern space as before but now the classification also includes an estimate of the line
segment scale. As the scale of the classified line segment is assumed to be the same as
the scale of the nearest stored exemplar, this estimate is subject to a large, uniform error.

To ensure robust recognition, this error has been accounted for in the construction of the
probabilistic Hough transform. '

The algorithm has been shown to work over a range of scale from 0.5 to 2.0 for simple
shape data. A quantitative analysis of the scale estimate suggests that an error of between
5% and 10% is typical although this does depend to some extent on the shape data. By
determining the scale of a known object in a scene it is possible to estimate its distance

from the camera. This has been used to track a model train over a scries of images.
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i

Figure 6.10: Estimating the distance to the train from it scale. The images on the left

show the image of the train as it is captured approaching the camera. On the right hand

side of each image are the line primitives extracted from the image data (in grey) and the
located models of the train (superimposed in black).
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Figure 6.11: The estimated distance to the train from the camera over a series of images.

The solid line represents the actual distance and the dotted lines represents a margin of
5% above and below this.



Chapter 7

Representlng Surface Shape using

PalrW1se Geometrlc Histograms

7.1 Introduction

The work presented so far in this thesis has concerned the development and analysis of
9.dimensional shape recognition using pairwise geometric histograms. It has been demon-
strated that encoding the distance and angle between 2-dimensional shape line segments
provides a powerful shape descriptor which can be used for reliable and efficient shape
matching. This particular representation has proved to be very useful but other geometric

histograms definitions based on other features and feature relationships have also been
proposed [Kumar & Rockett, Evans 94}.

Kumar has suggested that edge pixels around the boundary of an object can be represented
using the pair of angles defined between the reference edge and all possible pairs of edges
within some window. By only using angle measurements this represcntation is invariant to
the scale of the object, although the error on the measurement which defines the amount
of bhirring to apply to each histogram entry does depend upon scale. Evans also suggested
using 3-dimensional line segments recovered using a stereo vision system to produce a 3-

dimensional shape representation which is invariant to rigid transformations of the shape
data.

The use of line features for 2-dimensional recognition is a good choice because it focuses

attention to information rich areas of the image and because all objects can be described
in terms of these features. Even objects with smooth surfaces can be described by their
bounding contour when always viewed from the same direction. Unfortunately, for 3-

130
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dimensional applications the bounding contour of smooth objects is a function of the
viewing direction so the boundary shape is of limited use for recognition. This general

problem has motivated researchers to build representations based upon the surface shape
of objects for general 3-dimensional recognition tasks.

in this chapter a novel pairwise geometric histogram representation for describing arbitrary
surfaces is proposed, enabling the recognition of 3-dimensional objects with arbitrary

surface shape. The process of constructing this representation and then matching model
and scene surfaces can be summarised as follows:

1. Raw surface data is acquired using a range sensor. A number of data sets taken
from different view-points are used when constructing models.

2. The surface is approximated by a triangular mesh. The details of this approximation
and the algorithms employed for this are presented in Section 7.2.1.

. Each triangular facet is represented by a pairwise geometric histogram which records

the relationship between this facet and the surrounding facets. This representation
is discussed in Section 7.2.2.

. Correspondences between scene and model facets are found by matching their re-

spective geometric histograms. These local correspondences provide hypotheses for
the correspondence between the model and scene.

Global model to scene correspondence is found by finding the transformation that

~ aligns most of the surface data. This is done using a variant of the RANSAC
algorlthm [Fischler & Bolles 81] which is discussed in section 7.5.

7.2 A Novel Surface Shape Representation

7.2.1 Surface Reconstruction and Approximation

Initially a given surface S, acquired using a range sensor, is described by a set of points
samples P = {pi1,...,pn}. The points may represent a single view of the surface or a
number of different views, for example from different viewpoints around an object. If a
number of i(iews are used then the data must be registered so that surfaces common to
more than one view are aligned. The point set is then used to construct a triangular mesh

approximation § to the original surface, where § = {t1,

‘ .»tm} and t; is a triangular
facet of the mesh.
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It is important to clarify at this stage that the only requirement of the mesh is that it is
a good approximation of the surface shape. No assumptions are made about the actual
distribution of facets over the surface as this is unlikely to be repeatable. To minimise the
amount of memory and computation needed to solve the correspondence problem, the mesh

should also contain the smallest number of facets needed to give a good approximation of
the surface.

A number of algorithms have been proposed for reconstructing a triangular faceted mesh
from a set of points. In the work presented here an initial, regular mesh was con-
structed from the sampled point data using a reconstruction algorithm by Hoppe et
al [Hoppe ét al 92]; The resulting regular mesh was then refined to minimise the num-
ber of facets whilst maintaining most of the surface shape using a surface simplification
algorithm by Gmléﬁd and Heckbert [Garland & Heckbert 97).

There are a number of advantages in using a triangular mesh to approximate the surface
to be represented instead of more complex features such as quadric patches, the most
obvious being efficiency. Constructing a mesh is also significantly more straightforward
than segmenting a surface into more complex features. A second important issue is scope.
Any surface can be approximated by a triangular mesh but selecting a fixed set of features
can impose limitations on the types of surfaces that can be described. Another important
issue is that of stability. If surface patches are assigned to different classes based on their

shape then borderline cases can result in sudden changes in the representation because of
slightly different viewing conditions or noise.

The disadvantage of using a triangular mesh is that it requires many facets to describe
surfaces with high curvature to a high degree of accuracy. By statistically modelling the
shape error introduced by the triangular shape approximation, it is still possible to obtain

a good shape representation when only a relatively small number of facets are used.
7.2.2 Histogram Construction

A pairwise geometric histogram h; is constructed for each triangular facet ¢; in a given mesh
which describes its pairwise relationship with each of the other surrounding facets within
a predefined distance. This distance controls the degree to which the representation is a
local description’of shape. The histogram is defined such that it encodes the surrounding
shape geometry in a manner which is invariant to rigid transformations of the surface data

and which is stable in the presence of surface clutter and missing surface data.

Figure 7.1(a) shows the measurements used to characterise the relationship between facet
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t; and one of its neighbouring facets ¢;. These measurements are the relative angle, o,
between the facet normals and the range of perpendicular distances, d, from the plane
in which facet ¢; lies to all points on facet ;. These measurements are accumulated in a
2-dimensional frequency histogram, weighted by the product of the areas of the two facets
as shown in Figure 7.1(b). The weight of the entry is spread along the perpendicular
distance axis in proportion to the area of the facet t; at each distance. To compensate for
the difference between the measurements taken from the mesh and the true measurements
for the original surface, the entry is blurred into the histogram. For the work presented
here a Gaussian blurring function has been used, but further analysis of the surface ap-
proximation error is needed to determine a more principled function. Certainly the scale
of the blurring function relates to the coarseness of the mesh. The complete pairwise

geometric histogram for facet t; is constructed by accumulating these entries for each of
the neighbouring facets.
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Figure 7.1: (a) The geometric measurements used to characterise the relationship between

two facets t; and ;. (b) The entry made into the pairwise geometric histogram to represent
this relationship.

For clarity, an example of a pairwise geometric histogram is presented in Figure 7.2(a).
This hag been constructed for the highlighted facet on the hemispherical mesh presented
in Figure 7.2(b). Note that the representation only depends upon the surface shape and
not on thg distribution of facets over the surface. This independence on the distribution
of the facets is important because recovering exactly the same mesh for the same surface

under different viewing conditions is very unlikely, particularly if there is some surface
occlusion.
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Figure 7.2: (a) The geometric histogram that characterises the relationship between high-
lighted facet and the other facets in the mesh in (b).

7.3 Classification of Scene Surface Features

Given two surface meshes, 4 and S&, the geometric histogram representation allows
correspondences between all facets, t4 and t?, from each of the meshes to be determined.
A match for facet ¢{' is determined by finding the best match between its respective
pairwise geometric histogram and all of the histograms representing the facets in surface

GSB . These local correspondences are treated as hypotheses for the correspondence between
the two surfaces S4 and SB.

The similarity, D;;, between two pairwise geometric histograms h; and h; is defined using

the Bhattacharyya metric as before. This is given by the expression:

Di; = Z \/hi(a,d) \/hj (ar,d) (7.1)
a,d

7.4 Experiments: Classification of Scene Surface Features

The experiment presented here has been devised to demonstrate the effectiveness of us-
ing the proposed pairwise geometric histogram representation for classifying scene surface
mesh facets. Figure 7.3 presents the four test scenes used in this experiment which con-
tain a selection of objects, some with simple geometric surfaces and some with free-form
surfaces. Each scene was generated by taking a single range image using a laser striper

and then approximating the acquired surface points by a triangular faceted mesh. Scene
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1 which contains the simpler geometric surfaces was approximated with 1000 triangular

facets whilst the other 3 scenes, which contain objects with more complex surfaces, were
approximated with 2000 facets.

The set of model objects used as training data in this experiment, presented in Appendix
E, have been represented using geometric histograms with a resolution of 20 distance bins
and 20 angle bins. A maximum perpendicular distance of 15mm was used. To build
each of the first three models enough range images were acquired to cover all of the
surfaces. The range images for each object were then registered using the Iterated Closest
Point algorithm proposed by Besl [Besl & McKay 92] and a surface mesh of 1000 facets
constructed. The remaining three models were each constructed from a pair of range

images taken from different sides of the object and registered by hand. These surfaces
were then approximated by 2000 facets each.

Figure 7.4 presents the classification results for all of the scene mesh facets when matched
to the models. Each surface facet has been coloured according to the class of the model
to which the best matching facet belongs. Surface facets which have no match to any of
the models present in the scene have been coloured in black. Although this colour coding
indicates which scene facets have matched to the correct model it does not necessarily
mean that the scene facet has matched to an appropriate facet on that model. This is

implied later, however, when the pose of the models in the scene is determined successfully.

In general the surface facet classification has performed relatively well in all of the scenes.
As might be expected, better results are obtained on flatter surfaces where the estimation
of the surface normal is more repeatable. Although histogram entries are blurred to
account for variation in the surface normal direction the blurring function used was chosen
for simplicity rather than correctness. Further analysis of this variability is neceded to

determine a more suitable blurring function and this should improve the classification of
facets on more curved surfaces.

7.5 Hypothesis Combination and Determining Object Pose

Good matches between scene and model facets provide evidence for the presence of known
models in the scene and provide constraints on the pose of those models. As with the
recognition of 2-dimensional shape data considered earlier, the recognition process is com-
‘pleted by combining these local hypotheses into a global scene interpretation.

For 2-dimensional shape data a probabilistic Hough transform was employed as a robust
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Scene 3 Sy

Figure 7.3: These four test scenes contain a number of objects with both simple geometric

and free-form surfaces.
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Scene 1 Scene 2

Scene 3 Scene 4

Figure 7.4: Classification of the scene surface facets. Each facet has been coloured ac-
cording to the class of the model to which the best matching model facet belongs. Facets

matching to model not present in the scene have been coloured in black.
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estimator of pose and by weighting votes by line segment lengths a suitable measure of
evidence was simultaneously obtained. Although this approach can be extended to estim-
ate the pose of 3-dimensional surface meshes, the increase in éomputation is significant so
an alternative approach has been taken. "

The alternative approach is based on the RANSAC (Random Sample Consensus) al-
gorithm proposed by Fischler [Fischler & Bolles 81] for estimating model parameters when
the data contains many outliers. Unlike conventional approaches such as least squares fit-
ting which uses all of the data available, the RANSAC algorithm begins with just IV ran-
domly sampled measurements where N is the minimum number of measurements needed
to estimate the model parameters. Given the initial estimate, the amount of data which
are consistent with that estimate is determined. If the amount of consistency is below
some interest threshold then another N samples are taken and the process is répeatéd;
Once the interest threshold is reached an improved estimate is formed using a conventional
least squares fit to the consistent data. If after a specified number of iterations the amount

of consistency has not reached the interest threshold then the model is unlikely to be a
good description of the data. ‘

A slight modification to the original algorithm is used here in that the algorithm is iterated
a fixed number of times and the estimate with the highest consistency is chosen provided
that it is above the interest threshold. To determine whether a particular model is present
in a scene and to estimate the model pose two passes of the RANSAC algorithm are used.
In the first pass N, pairs of surface patches are picked at random from the scene and
these are used to generate N, estimates of the orientation of the model. The amount of
consistency associated with each estimate is determined by summing the area of matched
scene and model facets which are consistent with the estimate. Matched scene and model
facets are said to be consistent with the estimate if the direction of the surface normal of

the rotated model facet is the same as the direction of the scene facet, given a degree of
tolerance.

In the second pass of the RANSAC algorithm N, triplets of scene facets are picked at
random from the set of scene facets which were consistent with the best estimate in the
first pass of the algorithm. An estimate of the translation that ahg,ns the model and
scene is then determined for each triplet and the amount of consxstency is detormmed
as before. In thxs case, matched scene and model facets are said to be consistent if the
perpendicular distaane between the translated model facet and the scene facet is zero,
within some tolerance. If the estimate with the maximum overall consistency is above the

mterest threshold then the model is said to be present in the scene and its pose estlmate
is 1mproved using least squares fitting,
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Scene 1 | Scene 2 | Scene 3 | Scene 4
Cylinder | 1034.231 0 .0 0
Block | 52127 | 12408 | 0 0
Widget | 781.701 0 0 0
Calf 0 30.283 | 506.636 0
Pig 23.4 929.196 | 724.893 | 256.541
Pony 0 20.696 | 27.231 | 590.585

Table 7.1: The area of each scene in millimetres? which was found to be consistent with
each of the known models.

7.6‘, Experiments: Hypothesis Combination and Determin-
ing Object Pose

In this experiment, evidence to suggest the presence of the model objects in each of the
four scenes in Figure 7.3 is accumulated and the pose of these models is estimated based
on the surface facets classified earlier. For each scene the RANSAC algorithm was run for

5000 trials to determine the best orientation of each model and then for 10000 trials to
determine the best translation of each model.

Table 7.1 and Figure 7.5 present the object recognition and pose estimation results for
each of the four scenes. The table presents the area of each scene which was found to be
consistent with each of the six models, providing evidence for the presence of the models
in each of the scenes. The figure presents all of the detected models, in the lighter shade,
superimposed over the scene data, in the darker shade, at the estimated poses. In all cases
the models present have been detected successfully and the pose of each model determined

7.7 Conclusions

In this chapter a novel approach for representing 3-dimensional surface data using pairwise
geometric histograms has been proposed and the representation has been demonstrated in
a surface based object recognition application. In the original work on pairwise geometric
histograms, Evans [Evans 94] proposed that 3-dimensional line segments recovered using
a stereo vision system can be represented using a histogram descriptor and he provides
a 3-dimensional recognition demonstration. This approach is suitable for objects with
distinct edges which can be recovered from a scene but is not suitable for objects with

smooth surfaces. This general problem has motivated researchers to investigate the use
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Scene | Scene 2

Scene 3 Scene 4

Figure 7.5: Recognition and pose estimation results for the test scene data, The original
scene data is shown in the darker shade and the detected models are shown in their
estimated poses in the lighter shade.
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of surfaces for object classification but the common representations are limited to certain
surfaces types such as planes or quadrics. In contrast to this, the representation presented

here is suitable for arbitrary surface types and as such, provides a possible solution to an
important problem in computer vision.

This new surface representation also inherits many of the advantages of the original pair-
wise geometric histogram descriptor. By carcful sclection of the measurements used to
construct the histogram, the descriptor is invariant to rigid transformations of the surface
data and in combination with its compactness promotes cfficient matching. A reasonable
criticism would be the large number of histograms needed to describe a particular surface,
between 1000 and 2000 for the surfaces used in the experiments. The answer to this might

be to perform the matching in parallel using a neural network type of architecture.

The main area of improvement for this work is the development of a better model of the
triangular mesh approximation error. This is needed to determine the correct function
to blur entries into the geometric histogram and to decided whether, given a particular
transformation estimate, a pair of matched scene and mesh facets are sulliciently aligned,
However, even with a simple Gaussian blurring function and empirically selected tolerances

good performance of the recognition algorithm has been achieved with moderately complox
scencs.



Chapter 8
Conclusions

8.1 Introduction

A large number of algorithms have been developed for solving the object recognition
problem but it is debatable whether any of these are reliable enough or well enough
understood to be integrated into a general purpose vision system. Ono of the central
goals of computer vision research since the dawn of the ficld has been the development of
an object recognition system which mects the needs of real scene interpretation problems
and which provides the information needed for system integration. To Le a useful part

of a general purpose vision engine an object recognition schemo must have a number of
essential properties.

¢ An object representation capable of representing a large class of objects,
e A concise representation with good invariance properties for efficient matching,

e A representation and matching scheme which are insensitive to object varlation and
scene clutter providing reliable recognition,

Although originally limited to the representation of 2-dimensional shape, the palrwise goeos
metric histogram representation has been shown to solve many of the problems associated
with object recognition and has been used hiere as the basis of further work, Geometrie
histograms provide a local descriptor of shape which is compact and stable to shape varl-
ability, permitting efficient and robust matching. The motivation for the work presented
in this thesis has been to address some of the criticisms of the original algorithms and to

quantify some of the representation’s important properties. The next section provides a
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review of the main contributions made by this work and this is followed by a number of
suggestions for future research.

8.2 Contribution

8.2.1 Critical Review of Recognition Algorithms

A large number of object recognition algorithms using a varicty of different appronches
can be found in the literature. Understanding these algorithms and appreciating their
relative merits is a considerable task, particularly for newcomers to the ficld. In Chapter
2 a selection of the most important algorithms have been critically reviewed and a table
of important properties compiled so that a coarse comparison can be made, Although
the list of algorithms reviewed is not exhaustive it is intended that most of the main

approaches to 2-dimensional shape recognition are included. Otlier algorithms are likely
to be variants on these.

The most important conclusion to be drawn from this study is the importance of lmage
features for robust recognition in real scenes exhibiting background clutter, lighting ar-
tifacts such as shadows and specularities and partial object occlusion, Techniques which
depend upon good segmentation of image regions perform poorly under these conditions,
The problem with using image features is the need to consider all viable palrings between
model and scene features. Even when the number of model and scena foatures s relatively
small the number of viable pairings can become very large. The application of pairwise
geometric histograms provides a potential solution to this problem by providing a rich

feature representation which can be used to find a small number of model to scene feature
pairings.

8.2.2 Probabilistic Hough Transform Implementation

The pairwise geometric histogram representation allows shape features to be represented
and classified in an efficient manner. However, to recognise complete objects, appropriately
classified features must be arranged in a way which is consistent with stored models, The
problem is formulated as a parameter estimation problem, In this case the parameters are

the model pose, and recognition depends upon finding enough data which s consistent
with a particular estimate. ’ ‘

This estimation problem has been implemented here using a probabilistic Hough transform
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in which votes are placed in a parameter space, representing the model pose, for pairs
of matched model and scene line segments. The adoption of the probabilistic Hough
transform is a considerable improvement over the generalised Hough transform which was
used previously, allowing variability in the position of shape features to be accounted for
correctly. This not only improves the robustness of the technique but also allows the
position of models to be detected to a much greater accuracy and provides an estimate of
the error on the estimated position. In fact, this approach is equivalent to using a robust
least squares fit of the model line segments to the scene line segments.  Experimental

results suggest that typical errors of 0.2 pixcls can be expected and that it is possible to
predict this error with a factor of 2.

8.2.3 An Analysis of Reliability

There are a variety of reasons why a quautitative measure of the reliability of a classi-
fication algorithm is needed, the most significant concerns system integration. If a clas-
sification algorithm is to be integrated into a larger system then the performance of the
complete system can be determined if the consequence of the classification error s propag-
ated through every stage of decision making. The problem of estimating classifieation error
has been considered by many researchers and different appronches have been suggested
but these give no indication of how the reliability scales a8 the number of tralning models
is increased. An alternative approach is adopted here in which the measurements unsed
in forming classification decisions are identified and their statistical variation for different
sets of shape data is observed. Provided that theso statistics are representative of all shape
data, the performance of the algorithm as a function of the number of stored models ean
be prédicted. The classification error which is derived from these statistics has been used
to estimate the error for two different sets of shape data,

Oue of the important obscervations made during this analysis was that scene feature clas.
sification based on only the best match becomes unrelinblo as the mmber of models is
increased. To avoid this problen it has been suggested that scene fontures are glven a
number of potential class labels, based on a number of the best matches, These ndditional

classes are resolved to obtain a single classification by finding global consistency using the
probabilistic Hough transform.

A further use of a quantitative measure of reliability Is to measure the effect of changea

to the algorithm or the effect of varying algorithm parameters, ‘This i3 demonstrated by

plotting error curves for different geometric histogram resolutions, allowing an appropriate
resolution to be selected to give a specified level of performance,
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8.2.4 Estimating Capacity

One of the requirements of a general purpose object representation is the ability to describe
a large number of different objects uniquely. This quantity is commonly referred to as
capacity. Estimating the capacity of an object representation is essentially a counting
exercise but is complicated by the nced to define what is meant by a unique object and to
ensure that only viable object descriptions are included. Two different approaches have
been developed to estimate the capacity of the pairwise geometric histogram representation
and applied to two different classes of shape data. It is not surprising to find that the
capacity depends on the complexity of shape data being represented. What Is interesting
is that the complexity of the shape data can be made explicit by mensuring its intrinsic
dimensionality. Experimental results suggest that for reasonably complex shapes many

thousands of different shapes can be described uniquely but for simple geometric objects
the capacity is much lower.

8.2.5 Extensions for Scale

The pairwise geometric histogram representation utilises distances between shape features
in its description of shape with the consequence that it is dependent upon shape sealo.

This has attracted a fair amount of criticism as it restricts recognition to objecta of a fixed
size, or more significantly, at a fixed distance from the camera.

Although shapes are represented at a specific scale, shape data at slmilar scales are de-
scribed by similar geometric histograms. This observation has been used as the basis for
representing shape data over reasonable ranges of seale by storing a few samples of each
shape primitive at different scales. The construction of the probabilistie Hough transform
has been modified to account for the variation in shape seale and to correctly handle errors
in the estimation of the scale of each shape primitive. Results have been presented which
demonstrate that the technique works and that, over a range of sceale from 0.5 to 2.0, the
scale of shapes can be typically estimated within 5%. One of the uses of n seale extimate
is to determine the distance from a known object to the camera. A demonsteation s

presented in which a model train is tracked over a xequence of images as it approachion a
fixed camera.
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8.2.6 Representing Surface Shape

Although the original pairwise geometric histogram representation was used to describe
2.dimensional line features, other featurcs can also be represented in a similar manner,
Interest in 3-dimensional object recognition based on surface shape has motivated the
development of a novel representation for 3-dimensional surface data. The representation
has been successfully demonstrated in a surface based 3-dimensional object recognition
application involving objects with a range of surface types.

In the same way that curves are approximated by short line segments in the original al-
gorithm, surfaces acquired using a range finder are approximated by small triangular facets
in this algorithm. Geometric histograms can then be constructed to represent these facets
allowing the correspondence between model and scene surfaces to be determined. The rep-
resentation is suitable for all surface types, including free-form surfaces, and unlike many

surface based representations does not require any surface segmentation or classification
which can be unreliable.

8.3  Future Work

During the course of this work a number of topics for continued development, beyond

the scope of this thesis, have been identificd. These topics are described in brief in this
section. '

8.3.1 Object Classification Error

The analysis in Chapter 4 provides a technique for estimating the reliability of the clas-
sification of shape primitives based on pairwise geometric histograms, The effeet of this
classification error on the recognition of complete objects was not considered however, To
determine the probability that objects are misclansified, it is necessary to propagate the
feature classification error through the probabilistic Hough transform furmation proceas.
This analysis will not only provide classification crror figures but should also provide a bet.

ter mechanism for sclecting important Hough transforin parameters such as the parameter
space resolution and the peak threshold.

It was suggested in Chapter 4 that scene features are given a number of claxs labels, in-
creasing linearly with the number of stored models, to ensure reliable classification, These
additional labels result in more entries being made into the Hough transform parameter
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space and this will have some influence on the classification of complete objects. Fur-
ther analysis is needed to determine whether this will have a detrimental effect on the
recognition performance as the number of model objects is increased.

8.3.2 Surface Based Representation

A novel surface representation based on pairwise geometric histograms was presented in
Chapter 7 and preliminary object recognition results using this descriptor were demons
strated. To ensure that the representation is a good descriptor of the underlying surface
data, it is necessary to have a good model of the error introduced by approximating raw
surface data using a triangular mesh. Further analysis of this process is needed and perhaps

alternative triangulation algorithms with better statistical properties can be identified or
developed.

A similar analysis to the one presented in Chapters 4 and § for the original pairwise
geometric hntogram reprosontatnon should be carried out for the new surface shape rep-
resentation. This will provnde a better understanding of the representation and provide a

more principled mechanism for sclecting parameters such as the histogram resolution.

An important problem when reconstructing object models from multiple sets of range
data is finding the transformation that aligns all of the sets into a common coordinate
frame. This is the registration problem. Although some algorithms exist, for example the
ICP algorithm was used to construct some of the models found in Appendix E, none of
them provide a complete solution in all cases. Because the proposed geometric histogram

representation can be used to find correspondences between surfacea it may prove to be a
useful tool in solving the registration problem.

8.3.3 Non-Exhaustive Search Strategics

The matching of model and scene pairwise geometric histograms la very well suited to
parallel implementation but in practice highly parallel machines are expensive and diflicult

“to program. An alternative way to reduce the amount of time needed to clualfy scene
primitives might be to develop an alternative matching strategy.

One possible approach might be to limit the amount of matching by directing the search,
Rather than matching all scene primitives at once a single scene primitive Is picked at
random and classified. Having identified the class of this primitive, it should be possible

to scarch the image for other primitives from the same shape. A second possibility is
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to first recognise shapes at a very coarse scale and use this result to limit scarch at an
increased resolution. At coarse scales the shape data can be described by fewer shape
primitives and a small number of geometric histogramns. Which ever strategy is adopted,

it is essential that the consequence of using a non-exhaustive search on the classification
error is understood.

8.3.4 Appearance-based 3-dimensional Object Recognition

The work presented in Chapter 7 proposes a 3-dimensional shape representation in which
the 3-dimensional structure is represented explicitly. Other researchers have suggested
that 3-dimensional objects can be represented solely using their 2-dimensional appearance,
Typically a number of characteristics views of the object are stored and intermediate
views are generated by interpolation. In the same way that objects at different seales
were represented by storing a number of examples in Chapter 6, it may also be possible
to represent fully 3-dimensional objects in this way. The linportant characteristic which

may permit this is the fact that a geometric histogram representing a particular feature
varies smoothly as the view-point is changed.

8.4 Afterword

The original aim of the work presented in this thesis was to fuvestigate the existing ap-
proach to object recognition using pairwise geometric histograms and to develop the
method further. Initially it was anticipated that the fnvestigation would identify arens
for improvement and the main part of the work would involve developing these lmprove
ments. Certainly areas for improvement were identified and developed but the discunsion
of these only cover about half of the work in the thesia, The renson for thin wan that durs

ing the investigation of the original appronch the fmportance of algorithm performance
evaluation became clear, This issue covers the remaining part of the work,

One of the carly criticisms for the representation was its lack of seale lnvariance, Dy
providing a solution to the problem of recognising shape over ranges of keale the approach

can now be viewed as a general solution to the recognition of arbiteary 2-dimenstonal
shape in complex scenes.

The use of geometric histograms for representing shape Is not limited to the specific hne
plementation proposed originally but provides a more general method for solving shape
classification problems. As an example of this, a geometric histogram representation for
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3-dimensional surface shape has been proposed and initial experiments show the repres-
entation being successfully applied to recognition problems. This not only demonstrates

the generality of the geometric histogram approach but provides a useful solution for real
3-dimensional problems.

Although the Hough transform has been around for some time it is still a valuable tool
for the vision researcher, and in fact for anyone interested in robust parameter estimation
problems. This is evident from the frequency that the Hough transform still appears in
journals and conference papers. The insight that the Hough transform is closely related
to maximum likelihood statistics is an important one and has allowed a more rigorous
implementation of object pose estimation. Anyone interested in using the Hough transform
should consider the benefits gained by taking this more rigorous approach.

As is often the case with research, and one of the factors which makes research an interest.
ing occupation, the direction that the work takes can be unpredictable, What began as a
conventional approach to quantify the error rate of a classification system, In this case the
classification of shape, led to a more general look at performance evaluation. In particular,
it has been proposed that the issue of scalability, which has largely been neglected by the

designers of vision algorithms, be adopted as an important indication of performance for
object recognition systems.

The pairwise geometric histogram approach is now in a very strong position after this
treatment. Gross predictions can now be made about its performance under varying con-
ditions and the steps needed to be taken to ensure relinble performance can be determined,
As a general statement, it is fair to predict that for shape data of similar éumplv:ity to that

used in this work, the approach is suitable for recognition tasks lnvolving many thousands
of different objects.

Although the demonstration of the pairwise geometric histogram algorithn on relatively
complex scenes and the analysis of the algorithing sealability are evidence that the ap-
proach is an important contribution to the field of object recognition, n more rigorous
comparison with other approaches Is still needed. This requires the type of evaluation

suggested in this thesis to be performed on existing and future object recognition tech-
niques. The author leaves this as a challenge to his colleagues,
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Database of 2D Shape Models
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Ankylosaurus Antrodemus Brontosaurus
Dimetrodon Preroductyl Stegosaurus
Triceratops Tyrannosaurus

Figure A.1: 2-Dimensional silhoucette, shape data: Dinosaurs,
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Cat Slecping Cat Dog
Sitting Dog Fish Mouse
Parrot Rabbit

Figure A.2: 2-Dimensional silhouctte, shape data: Pets,
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Figure A.3: 2-Dimensional views of real mechanical parts.
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Appendix B

Propagation of Line End Point
Errors

Each classified scene line segment constrains the position of the object to a line which is
parallel to the scene line at an appropriate distance. Any pair of scene lines which belong
to the same object and are not parallel define constraints which intersect at the position
of the object, as shown in the figure below. If the endpoints of the scene lines are subject
to some error, represented here by a covariance matrix L.,4, we would like to calculate
the error on the point of intersection, described by the covariance matrix Tin;.

o
Pg; .
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. \VB
. dg
K ~“~ P —’_—
~‘\~ i _—"
dA_." L Sl
Py : - S
Line A Pas f/\
Vi

Figure B.1: The constraints imposed by a pair of objects lines intersect at the estimated
position of the object.

First of all, the point of intersection is determined from the line endpoints and the per-

pendicular distances d4 and dp. The line parallel to “Line A” at a perpendicular distance
da can be described using the expression:

153



Chapter B. Propagation of Line End Point Errors

154

(Pi —Pa1)- VA =da (B.1)
Expanding this and rearranging gives:

Piva=da+pai¥a (B.2)
Similarly for “Line B”.

(pi —PB1).Vp=dp (B.3)
Which again can be expanded and rearranged to give:

Pivp=dp+pPmVB (B.4)

Expressions B.2 and B.4 define a pair of simultaneous equations which can be expressed
in matrix form and then solved.

04, D4, Pi | _ | da+Panda, +pa,04, (B.5)
| 98, P8, | | Pia ds +pp1,08, + P51, 0B,
The change in the point of intersection, given changes in the position of the line endpoints,

can be predicted using a Taylor expansion of p;. For small endpoint errors this function
will be approximately linear and the intersection error can be expressed as:

Tint = VD7 LenaVpi (B.6)

Where Vp; is the Jacobian matrix.

9pi, Opi. Opi, Opi. Opi, Ipi, Ipis Ipi,
Vp; = Opa1z  Opay  Opax  Opazy 31’51;_ Opp1y  Oppaz  Oppy
9pi, 9pi, Opi, opi, Opi,  Opi, opi,
Opaic  Opay  Opazz Opay Opmz Oppy  Oppaz.

Op;,
Opp2y
~(B.7)




Appendix C

Classification Error for Multiple
Hypotheses

Given a set of class exemplars, {X; : 1 < i < N}, and a test pattern, x;, drawn at random
from one of those classes, the pairwise error, &;, is defined as the probability that x; is
closer to a randomly selected class exemplar than its own class exemplar. We wish to
calculate the ‘probability, ‘e, that the correct class exemplar is not within the nearest n

neighbours. This is the probability of misclassification when test patterns are associated
with multiple classes based on the nearest n neighbouring exemplars.

The probability that the test pattern will be closer to its own class exemplar than a
randomly selected one is 1 —¢, and, if each class exemplar is assumed to be an independent

sample from the distribution of potential patterns, the probability, P(0), that no incorrect
class exemplars will be nearer over N — 1 trials is:

P(0) = (1 —gp)"~! | (C.1)

Similarly, the probability, P(1), that only one incorrect exemplar will be nearer to the test
pattern than it is to its own class exemplar is:

P(1) = (1-¢,)""%, ( N 1" 1 ) (C.2)

"The first two factors of this expression imply an ordered sequence of trials in which the
first N — 2 trials are successful followed by a single failure. The combinatorial factor
accounts for the different ordering in which these events can occur.
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In general, the probability, P(i), that the test pattern is closer to ¢ randomly selected class

exemplars than it is to exemplar of the class from which it was drawn is:

P(i) = (1—g)V 1% ( N : ! ) | (C.3)

The probability, P(< n), that the test pattern is closer to less than n randomly selected
exemplars is then:

A P(<‘n)-= P(n —1)+P(n—2)+..+ P(0) (C.4)

An expression for P(< n) can be derived by substituting Expression C.3 into Expres-
sion C.4.

. n—l -—
P(<n)=Y_ (1-g)N 1 ( N i ! ) (C.5)

1=0

This is the probability that the correct exemplar is within the nearest n neighbours. The
classification error, €, is then simply:

n-1
e=1-Y (1-g)" 1%} ( N : ! ) (C.6)

1=0



Appendix D

The Surface Area of a

Hyper-Spherical Patch

Given a hyper-sphere with radius r in an n-dimensional space we would like to determine
the area, An(0,7), of a surface patch defined by an angle 6. Figure D.1 shows a slice
through an n-dimensional hyper-sphere with the surface patch defined by the angle 6.

We begin by observing that a slice through the n-dimensional hyper-spherical patch is a
complete n-1-dimensional hyper-sphere. If we define the position of the slice by the angle
a, as shown in Figure D.1, then the radius of this hyper-sphere is rsina. A small change,
da, in the angle a defines a ring on the surface patch of width réa. The area of this ring,
0A,(6,7), is then given by:

6220 0An(0,7) = Ap—1(m,rsina)réa (D.1)
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Figure D.1: Slicing through an n-dimensional hyper-spherical patch produces a complete
n — 1-dimensional hyper-sphere.
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The area of the complete surface patch can then be determined by integration.

@
An(0,r) =/(; Ap_y(m,rsina)rda (D.2)

It is both easily shown and intuitive that a change in the radius of a hyper-sphere by a

factor a has the following effect on the surface area of the hyper-sphere:

An(m,ar) = a1 A, (T, 1) (D.3)
For example, doubling the radius of a circle (a 2-dimensional hyper-sphere) doubles its

circumference whilst doubling the radius of a sphere (a 3-dimensional hyper-sphere) quad-

ruples its surface area. Using this relationship, Expression D.2 can be re-expressed as:

0
An(0,7) =/0 sin" "2 aAp-1 (7, r)rda (D.4)

And because Ap—1(7,7) and r are independent of the angle o this can be simplified to:

6
An(0,7) = An_1(1r,r)r/0 sin"? ada (D.5)

This provides a recursive expression for the area of a hyper-sphere which is terminated by
the 2-dimensional case where:

Ag(m,r) =277 v (D.6)
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Database of 3D Shape Models

Cylinder Block

Calf Pig Pony

Figure E.1: 3-Dimensional surface models.
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