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Parallel Processing for Fault 
Tolerant Aircraft Control 

by 

J arnel Makky Tahir 

ABSTRACT 

This thesis addresses the problem of real-time optimal control of aircraft sys-

terns using parallel processing techniques. It is shown that transputer hardware can 

be used in designing a suitable optimal controller for general nonlinear time-varying 

aircraft. In the first part of the thesis, nonlinearties and time varying aspects of the 

aircraft system, together with the current available solutions are investigated and 

suitable designs presented. Here the linear regulator approach for linear time-varying 

aircraft is investigated first but it is shown that real-time performance is difficult to 

achieve. The problem is then approached differently in that the aircraft is considered 

as a linear time-invariant system for short time intervals and it is then found possible 

to implement an optimal control solution in real-time, and suitable multi-transputer 

architectures are presented. The receding/moving horizon approach is applied to 

the aircraft system and is shown to be adequate for achieving satisfactory results. 

The problem of selection of the weights in the performance index of the optimal 

control problem is then studied and a design procedure is presented. The modeling 

of the aircraft as decoupled longitudinal and lateral dynamics is investigated and ap­

proached in such a way as to reduce the cross-coupling effects. Another important 
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aspect of this research involves the consideration of failure detection and diagnosis 

in the aircraft hardware. Problems including actuator failure are studied and some 

remedial methods for handling the failures by enabling system reconfiguration after 

the occurrence of the failure are presented. 

The multi-processor based control system design is shown to offer a viable 

solution to solving complicated optimisation problems without the need for the sim­

plification of the system dynamical equations and thereby loosing accuracy. Such 

simplification is usually a prerequisite for enabling practical designs. However with 

the use of parallel processing techniques such designs can be achieved for the more 

complicated (and more computationally demanding) cases as well. 
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Chapter 1 

Introduction 

1.1 Historical Background 

The field of automatic control has matured from an art to a technical discipline, and 

is still expanding rapidly. During the period from the late eighteenth to the early 

twentieth century, the progress in the field of control was empirical in nature. The 

Watt governor applied to steam engine control was perhaps the single most impor­

tant development in this era of control (Widnall [54], Takahashi [51]). In the period 

from about 1900 to the start of World War II, the industrial progress was gaining mo­

mentum. Large-scale power generation, the aeronautic industry, communications, 

and electronic engineering also appeared. Such technological progress created an 

increasing demand for instruments and regulators. The last period dated from the 

early 1940's. In this period the frequency domain analysis, root-locus, sampled-data 

control, multivariable control systems, and optimal control theory were developed 

and heavily applied to both civil and military applications. 

It was in this period when control system design was first approached as an 

optimization problem. Much of this work started with Wiener(1949), who suggested 

that the search for an efficient system should be formulated as an optimisation 
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problem. Following Wiener's lead, the field of optimal control theory has taken 

different approaches to the design problem. The design engineer must give con­

siderable attention to formulating the design problem accurately. He must develop 

mathematical models for the plant to be controlled and the disturbances affecting 

it. He must know the nature of the measurements of the plant state including any 

sources of noise which corrupt the measurements. All the various control objectives 

must be gathered into an analytical statement of the cost of operating the plant, 

then the engineer must find the means to produce the control that minimises the 

cost. Mathematical tools has been found to solve the optimal control problem such 

as dynamic programming and the maximum principle. The digital computer came 

next and made it much easier to solve complicated numeric problems which were 

tedious when tackled manually. 

An area of particular interest in which automatic control plays a vital role is 

automatic flight control where a balanced combination of art, science, and the effort 

of large project teams with adequate resources is usually required, see Howard [24]. 

To appreciate the research presented in this thesis it is useful to have a knowledge of 

the historical development of automatic control systems for flight control. For this 

reason such a discussion is presented here. 

One century ago we were still in the era of lone inventors rather than project 

management teams and automatic control engineering like mechanical flight, was in 

its infancy. Automatic flight control started in 1873 when the Frenchman Charles 

Renard tested, from a high tower, an unmanned multi-wing glider incorporating an 

automatic control device aimed at improving the machine's directional stability. The 

early designs of aircraft left all the burden of controlling the aircraft to the pilot, 

which kept him too busy looking after the aircraft than to be able to attend any 

other matters modern aircraft used to do. In 1914 Lawrence Sperry demonstrated 
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the first fully automatic stabilised flying boat. In 1920 there arose again a series of 

simple automatic stabiliser inventions and by 1930 the final outcome of this early 

work on pilotless aeroplanes was the RAE Mark I control followed by a series of 

automatic stabilisers. The radio guidance and the first fully automatic landing was 

demonstrated in 1945. The development of the integrated circuit technology made 

it possible in the 1960's to produce very low weight auto-stabliser systems. The 

situation has advanced so much that modern aircraft nowadays carry thousands of 

microcircuit elements to solve their complex control and stability requirements; they 

also carry very powerful digital computers for the purpose of executing the extensive 

programmes for the testing of all the sub-systems, and the locating of failures when 

they occur in the automatic flight control system. 

1.2 Contribution of this Research 

This work is concerned with the complex problem of optimal control of nonlinear 

time-varying aircraft in real-time. An investigation is made to employ parallel and 

multi-processing techniques to achieve fast and efficient computations to provide the 

control within the time constraints of real-time applications, that is, within the sam­

ple time of 5 ms, when a sampling frequency of 200 Hz is used. This goal is difficult 

to achieve in problems of high dimensionality, time variations and nonlinearties. 

Certain assumptions can however be made to make real-time solutions pos­

sible; these include reducing the system order, using linearized models to simplify 

the problem and allowing the feedback control strategy to be calculated off-line, 

and then applied on-line to provide the control in real-time. The drawback in using 

such an approach is usually loosing accuracy and having to accept some below par 

performances. Therefore, compromises have to be made between the real-time com­

putational demands and performance demands. However with the aid of parallel 
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processing, it is shown here that it is possible to solve such optimal flight control 

problems while keeping satisfactory performance specifications. 

Another problem which has been investigated in this research is the reliabil­

ity and risk analysis of the aircraft system under consideration; techniques have 

been applied to achieve fault tolerance under actuator failures by allowing control 

reconfiguration. 

1.3 Organisation of the Work 

This work is divided into two main areas: The optimal control law design, and the 

fault tolerance system design. Chapter 2 presents the basic concepts of optimal 

control theory and the various techniques associated with it. It also presents the 

concepts of parallel processing by giving a brief description of some of the architec­

tural classifications of parallel transputer systems, and the programming language 

used with them. Chapter 3 reviews the mathematical background related to aerody­

namics and aircraft systems modelling. Chapter 4 considers the problem of designing 

a longitudinal optimal controller for an aircraft system. The linear regulator prob­

lem is first applied to the linearized time-varying aircraft, and then applied to the 

case where the aircraft is assumed to be linear and time-invariant for short time 

intervals. Different multi-transputer architectures are presented to provide real-time 

performance. Chapter 5 considers the receding horizon control problem formulation; 

an algorithm using this technique is developed and applied to both the longitudinal 

and lateral motions of the aircraft. Chapter 6 considers the problem of selecting 

the weighting matrices used in the optimal control problems. A practical method 

for the weights selection is presented to ease the design problem, and to allow ad­

justment of the time varying gains on-line to enable the controller to follow the 

aircraft time-varying aspects. Chapter 7 presents a decoupled design approach for 
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the longitudinal and lateral motions, where the cross-coupling effects are included 

to achieve an accurate representation of the aircraft dynamics. Chapter 8 considers 

the problem of aircraft actuator failure detection, diagnosis and suitable techniques 

have been used to increase the systems reliability. In Chapter 9, conclusions and 

suggestions for future work form the final section of this thesis. 
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Chapter 2 

Fundamental Concepts 

In this chapter the fundamental theoretical concepts which are used in the remain­

der of the thesis are presented. These cover quite a large area, but it are necessary 

to be able to appreciate the wide ranging aspects of this research. The aircraft 

regulator designs presented here are based on optimal control problems and so an 

introduction to the relevant theory is presented in section 2.1. In our approach to 

the real-time design of optimal controllers for the nonlinear time-varying aircraft, it 

was felt that the designs could only be realizable in practice by using parallel pro­

cessing techniques. Therefore we introduce in section 2.2, some of the fundamental 

concepts of parallel processing and in particular transputer systems are discussed. 

Fault tolerance has became a very important property demanded in modern control 

systems and is the third main feature of the work described here. In light of this 

the fundamental aspects of fault tolerance systems are presented in section 2.3. 

2.1 Optimal Control Theory 

The technology of information transmission and processing has grown during recent 

years at an exceptionally rapid rate. The development of its most important direc-
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tion namely automation, is characterized by the rapid spread of automatic systems 

and by an expansion of its range of application. New principles of automatic control 

are emerging which solve the more complex problems of control and replace man in 

the more complicated shares of his activity. 

One of the important directions of engineering is the theory of optimal pro­

cesses (see for example Widnall [54], Fel'dbaum [18]). Optimal control problems can 

arise in all fields of engineering, because, any control engineering problem can be 

solved in a "best method", that is optimal in some sense. 

x* 
• X 

A 
u 

B 
[ I I 

Figure 2.1: Automatic control system 

The block diagram of Figure 2.1 represents an automatic system. The con­

troller is denoted by A, and the controlled object by B. The controlled variable X 

is the parameter characterizing the state of the controlled object, the control action 

u of the controller A acts at the input of B, the driving action X· is supplied to the 

input of A representing of what must be the variable X, and the perturbing action 

Z acting on B and having an influence on its output X. It is convenient to regard 

these variables as vectors. 

Automatic control systems can be divided into two classes: open-loop, and 

closed-loop systems. The latter are also called feedback systems. In open-loop 
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systems the controller A does not receive information about the actual state X. 

The principle of feedback creates the possibility of satisfying the demands presented 

to the variable X. 

The control purpose can be considered as the attainment of an extremum of 

some quantity J which is called the optimality criterion or the performance index. 

In the general case an optimality criterion depends both on the driving action x· 
and on the state variable X; it can also depends on u as well as on time t. For 

definiteness let it be required that the quantity J is to be minimised: 

J(X·, X, u, t,) = Min (2.1) 

This condition is the analytical formulation of the control purpose or objective. In 

special cases J has the quadratic form 

(2.2) 

Various engineering and economic indices can be selected as the criterion Jj for 

example, the output of a system or the quality of production. 

2.1.1 Variational Problems 

In the eighteenth century general methods of solving variational problems used in 

determination of extreme points were given by Euler and Lagrange (see for exam­

ple Widnall [54]). In the twentieth century the so-called direct methods of solving 

problems began to be applied in physics and engineering. The new problems have 

caused the appearance of new methods of solving variational problems: The method 

of dynamic programming developed by Bellman, and also the Maximum principle 

proposed by Pontryagin have all contributed to the determination of optimal solu­

tions. Dynamic programming which we discuss next offers a convenient method for 

solving general optimisation problem. 
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X(O) 

x 
* 

Figure 2.2: Optimal trajectory 

2.1.2 Dynamic Progralnnling 

2 

Let us consider -the problem of the control of an object with the equation 

x = h(X, u) 

where X is n-dimensional and u is m-dimensional, let 

u E !1(u) 

and let it be required to minimise the integral 

J = loT Ll(X(t), u(t), t)dt + 'Pl(X(t)) 

X(T) 

* 

(2.3) 

(2.4) 

(2.5) 

where T will be considered fixed. To illustrate the principle of optimality let us 

consider the optimal trajectory of Figure 2.2 with initial value of X(O) at t = to, 

final value X(T) a.t t = T > To, and some intermediate point X corresponding to 

t = t, where to < t < T. 
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The principle of optimality can be stated as: "The second section of an optimal 

trajectory (X to X(T» is in turn an optimal trajectory"; or "The optimal strategy 

does not depends on the previous history of the system but is determined only by 

the value of the state at the time instant under consideration". 

Let us break up the interval (0, T) into N equal parts of length l1t, and consider 

discrete values of X = X(k) and u = u(k), (k = 1,2, ... ,N). Then the differential 

equation 2.3 can be approximately replaced by the finite difference equation 

X(k + 1) = X(k) + f(X(k), u(k» 

where 

f(X(k), u(k» = l1t x fl(X(k), u(k» 

X(O) = [X]t=o 

The integral 2.5 also be approximated by the sum 

N-l 

J = E L(X(k), u(k» + cp(X(N» 
i=O 

where 

L(X(k), u(k» = l1t x Ll(X(k), u(k» 

cp(X(N» = cpl(X(T» 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11 ) 

To solve this discrete problem we use the concept of the "retrograde" motion 

from the end of the process, that is, from the terminal instant t = T, to the start 

time. Let us denote the minimal value of IN-l by SN-l. Evidently, this quantity 

depends on the state of the system at t = (N - 1 )l1t. Thus 

SN-l SN-l(X(N - 1» 
- min{L(X(N - 1), u(N - 1» + cp[X(N - 1) + 

f(X(N -1), u(N - I»]} 

10 
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The minimisation need only be carried out with respect to the single variable 

u(N - 1). Let us now pass to the next-to-Iast time segment. It can be noted that 

the choice of u(N - 2) and u(N - 1) appears only in the terms of the sum 2.9 that 

enter into the composition of the expression 

I N- 2 = L(X(N - 2), u(N - 2)) + {L(X(N - 1), u(N - 1)) 

+c,o(X(N))} (2.13) 

From the optimality principle it follows that only the value of X(N - 2) and the 

control objective (the minimisation of IN-2) determine the optimal control for the 

time segment under consideration. Then we can write 

SN-2 - min{L(X(N - 2), u(N - 2)) + SN-d 

- min{L(X(N - 2), u(N - 2)) + SN-l(X(N - 2) 

+ f(X(N - 2), u(N - 2)))} (2.14) 

Here the minimisation is carried only with respect to the variable u(N - 2), then 

we find u*(N - 2) which is the optimal value of u(N - 2) and hence the quantity 

S N -2 can be obtained. 

Passing in a completely analogous fashion to SN-3, .... , SN-1c, we obtain the 

recurrence formula for determining SN-1c[X(N - k)] 

SN-1c = min{L(X(N - k), u(N - k)) + SN-1c+l (X(N - k) 

+ f(X(N - k), u(N - k)))} (2.15) 

Parallel to the process of minimising the right side of this formula, the optimal 

value u* depending on X(N - k) can be determined thus 

u*(N - k) = u*(X(N - k)) (2.16) 

By computing the SN-1c successively for k = 1,2, ... , N from equation 2.15, we 

finally arrive at the determination of the optimal value u*(O), that is, the value of 

the optimal control action required at the initial time instant. 
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Dynamic programming permits the minimisation of a complicated function of 

many variables by replacing it by a sequence of minimisations. In each of these 

minimisation processes, the minimum of a simpler function need to be determined. 

It should be noted, however, that in general the solution of problems in dynamic 

programming can nevertheless turn out to be exceedingly tedious, but for some 

simple cases, it can give the control as some function of the state variables and the 

time to go to the final state. Complicated problems, can be only solved in pra.ctice 

with the aid of digital computers. 

2.1.3 The Maximum Principle 

One of the more outstanding recent contributions to optimal control theory is the 

maximum principle of Pontryagin (see for example Banks [4]). The essence of the 

maximum principle is that classical calculus of variation no longer holds. 

Consider the performance criterion 

i t! 
J = L(X, u, t)dt + <p(X(t,)) 

to 
(2.17) 

subject to the nth-order constraints 

x f(X, u, t) 

Xo - X(to) gIven 

u(t) n (some subset in the u space) (2.18) 

The problem is to find u*(t) such that J is minimised. to formulate the theo­

rem for this problem we introduce an n-dimensional costate vector P(t). The above 

equations and the costate vector are combined into a scalar function by the Hamil­

tonian H such that 

H = L(X, u, t) + P(t)f(X, u, t) (2.19) 
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The Hamiltonian is regarded as a function of u E n. The statement of the maximum 

principle is: "Let u(t), to ~ t ~ tIt be an admissible control that moves the state 

from a given initial state X(to) to a prescribed final state X(t,) at some time (t ,-to). 

In order that u·(t) and the resulting trajectory X·(t) be optimal, it is necessary that 

there exist a nonzero continuous vector P*(t) that correspond to u· and X* such 

that, for every t, to ~ t ~ t" the function H of the variable '1.£ E n attain its 

minimum at the point u = '1.£.". Therefore, the necessary conditions for minimum J 

are: 

· 6H 
X = 6P = f(X, '1.£, t) (2.20) 

· 6H (2.21 ) P=--
6X 

P( ) = 61{)(X(t,)) 
t, 6X (2.22) 

6H =0 
6'1.£ 

(2.23) 

If t, is free and that X(t,) is constrained to the terminal manifold defined by the 

equation 

(2.24) 

Then we have the following conditions: 

H(X·, u*, P, t) ~ H(X, u, P, t) at all t E [to, t,l (2.25) 

· 6H 
X= 6P (2.26) 

· 6H 
P= -6X (2.27) 

61{) 6NT 
P = 6X + (6X )v (2.28) 

61{) 6NT 
-H = Tt + (""6t)v at t = t, (2.29) 
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where v is a lagrange multiplier. The equations (X, P) are known as two point 

boundary value problem (TPBVP). Some of the initial conditions (P(to)) are un­

specified, once it is known, the solution will be straight forward. The maximum 

principle does not circumvent the computational difficulties of the TPBVP prob­

lems, but in some simple cases it does provide considerable insight into the form of 

the optimal control function so that we may be able to solve the problem indirectly 

(Lee [30]). 

2.1.4 Numerical Solutions 

The development of the two theoretical approaches we have seen in the previous sec­

tion have led to the solution of many optimal control problems that are analytically 

tractable. Unfortunately, in general cases such analytic solutions are difficult to es­

tablish, and recourse must be made to numerical techniques to obtain the solutions. 

There are many numerical methods to solve the optimal problem (see for ex­

ample Polak [42], Dyer [16], and Hasdorff [22]). In general, for nonlinear optimal 

control problems, the following algorithmic procedure is usually undertaken 

Step 1 : Making an initial guess in the control UO( t) (some algorithms start with 

an initial guess for the missing initial conditions), i = O. 

Step 2 Compute the system state Xi(t) that corresponds to ui . 

Step 3 Linearize the TPBVP over the calculated trajectory (Xi, ui). 

Step 4 Obtain a search direction by solving the linearized TPBVP. 

Step 5 : Calculate a step size in the search direction that leads to the minimum 

cost. If the optimal solution has been found, stop; else, continue. 

Step 6 : Compute a new better control ui+1. Set i = i + 1, and go to Step 2. 
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In this section we will study one of the numerical methods, namely the gradient 

method, to show the computational difficulties which limit their application in real-

time control systems. 

The gradient algorithm is a direct method in which a sequence of nominal 

solutions converging to the optimum are generated. The new nominal solution is 

generated by incrementing the old nominal in the direction of the gradient of the 

return function (~~). 

Consider the problem of minimising the performance criterion 

(2.30) 

subject to 

x = f(X, u, t), X(to) specified (2.31 ) 

U sing the maximum principle, we have the following costate equation 

. T of oL 
P(t) = -P (t)(ox) + (ox) (2.32) 

with 

at t = tJ (2.33) 

and the gradient of the cost function J( u) is given by 

(2.34) 

The following algorithm can be used to solve this problem 

Step 0 : Select a nominal control sequence UO(t), t E [to, til. 

Step 1 : Set i = O. 

Step 2 : Compute Xi(t), t E [to, tJ]' by solving 2.31 with u(t) = ui(t). 
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Step 3 : Compute pi(t), t E [to, tfl, by solving the costate equation backwards 

with u(t) = ui(t), X(t) = Xi(t), and t E [to, tf]. 

Step 4 : Compute the gradient from equation 2.34, for t E [to, tfl, and with 

ui , pi, Xi. 

Step 5 : For t E [tOl tJ] set 

(2.35) 

if h( u', t) = 0, stop; else, go to Step 6. 

Step 6 : Compute a ~i > 0 such that 

for some a E [0, 1] and 

(2.37) 

Step 7 : For t E [to, tfl, set 

(2.38) 

set i = i + 1, and go to Step 2. 

After a number of iterations, the algorithm converges to the solution u*(t). 

The time required for the algorithm to converge to the solution depends on how 

close the initial guess UO(.) is to the optimal solution u*(t). Numerical techniques, 

such as the above algorithm, must be used to provide control for optimal system in 

two ways: 
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1. Open-loop control: In which the algorithm is run off-line, and then, the re­

sulting control sequence u*(t) is fed to the system to take it from its initial 

state to the required state, provided that, the system is stationary, that is, 

it remains in its initial state during the computation time. Furthermore, all 

the possible sources of disturbances remain in the same predicted state during 

the time interval used to take the system to its final state. An example of this 

systems, is launching a missile to an orbit or rendezvous point. 

2. Closed-loop control: In this case, the control to be applied must depends on 

the system state and the time to go to the final state. To achieve this, the 

above algorithm should run and produce the control at every instant in time, 

and only the control corresponds to that instant is applied. The current state 

will be the initial value for the next run until the specified final state or time 

is reached. This requires that all the computations must be completed within 

some specified period of time (the sample period). 

It is obvious, that the numerical solution of complex problems (nonlinear and 

high dimensional) is computationally demanding. The situation when considering 

on-line computer control of systems is further complicated due to the need for high 

sample rates. Because of these difficulties, designers usually try to avoid the use 

of numerical techniques to solve on-line computer control problems which need on­

line real-time computations. They simplify their problems by considering it to be 

linear, piecewise linear, and/or reducing its order to make it analytically solvable or 

computationally feasible. Most of the designs use off-line computations of numerical 

algorithms to provide good insight into the form of optimal control which is much 

easier to implement. For example, the references Calise [11], Ellert [17], and Grimm 

[21] show how some of the optimal control problems can be tackled for real-time 

implementation. 
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After the recent development in the area of parallel processing, many inves­

tigators have been encouraged to use the new technology to reduce the execution 

time of the numerical algorithms. As a result, some existing algorithms have been 

modified, a.nd new parallel algorithms developed a.nd used in various application 

areas. 

There are ma.ny parallel algorithms which address the optimisation problems 

in general a.nd optimal control problems in particular (see for example Travassos [53], 

Raczynski [44], Keller [28], Cha.ng [12], a.nd Menon [33]). Some of these algorithms 

execute the most costly operations in parallel to reduce the time complexity of 

a sequential algorithm (Raczynski [44]). Other algorithms achieve parallelism by 

dividing the optimisation interval [to, ti] into a number of subintervals, thus, the 

optimisation problem is converted into a number of subproblems which are solved 

in parallel togather with introducing some criterion to achieve continuity between 

the subproblems. Examples of this kind of algorithm are the parallel shooting and 

parallel quasilinearization algorithms. 

Parallelism, as far as numerical optimisation algorithms are concerned, does 

not simply mean using several processors to accelerate some vector or matrix oper­

ations in the algorithm because the whole algorithm will be classified as a sequen­

tial one, despite the fact that some elemental operations are executed concurrently. 

Thus, parallel processing must be used at a higher level. For the gradient algorithm, 

there are two main tasks: 1) Evaluation of the gradient, which needs one forward 

integration of the system equations, linearization over the whole trajectory, and 

backward integration of the costate equation. 2) Evaluation of the cost function to 

find the step size, which needs several forward integrations of the system equations 

and evaluations of the cost function. These two tasks must be executed in parallel, 

and in the cost function calculation, we can lunch a number of evaluations with 
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different step sizes (>.). In this case, parallelism is achieved in our algo.rithm and it 

will be of the type GY I Z (see Travassos [53]), where Y is the number of tasks, both 

of gradient and cost function type, which might be executed in parallel and Z is the 

number of cost function tasks. Thus, the number of gradient tasks being executed 

concurrently with the cost tasks equal Y - Z. The sequential algorithm is of type 

GIll where no parallelism exists. 

Parallel implementation of optimisation algorithms can clearly speed up the 

execution time, and it may be widely applied to control systems of the open-loop 

type. But, their time complexity is still high which makes it unsuitable for systems 

requiring on-line computations unless they are simple. Furthermore, for closed-loop 

systems, the execution time can not be fixed, which is an important property in com­

puter control, because the time to convergence depends on the initial guess. And, 

if a large number of processors are used, the time required for inter-processor com­

munications may become significant and effect the efficiency of the implementation. 

These difficulties force us to divert our attention from such methods and instead to 

consider more practical solutions as we will see in the next chapters. 

2.2 Parallel Processing 

In recent years, the computer industry has seen a remarkable growth in computing 

speed. However, better devices with higher speed are not the sole factor contributing 

to high performance. It was evident that the Von Neuman or the sequential computer 

trend must soon come to an end because the laws of physics limit further significant 

advances in this direction. Therefore, the main way around this difficulty is to use 

parallel processing techniques, that is machines which possess several computing 

devices and are able to process several bits of information simultaneously. 

Parallel processing encompasses several diverse computer architectures which 
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can be characterized into three distinct classes: pipelined computers, array proces­

sors, and multi-processor systems (see Bertsekas [6], Hockney [23], Patton [40], and 

Hwang [25]). Parallelism may be exploited at four different levels: 

1. Job level 

2. Task level 

3. Inter-instruction level 

4. Intra-instruction level 

The last two levels require the user to have an intimate knowledge of the system 

architecture on which the program is to be executed, with the intra-instruction par­

allelism being directly exploited by hardware measures. Therefore, we will address 

only job and task parallelism. 

In pipeline computers successive instructions are executed in an overlapped 

manner. Each pipeline cycle is set equal to the delay of the slowest stage. The flow 

of data from a stage is synchronized by a common clock control. Theoretically, a 

k-stage pipeline processor could be at most k times faster, therefore the longer the 

pipeline, the greater the efficiency. The pipeline architecture is attractive for vector 

processing, where the instruction operations are executed repeatedly. 

In array processors, the architecture include a central control unit, several 

processing elements with individual memories, and an inter-connection network. The 

multiple streams of data are fed into the processing elements which then execute the 

instructions from the control unit simultaneously. 

In multi-processor systems, several comparable processors with common mem­

ory, input/output capabilities, and peripheral devices. Each processing element 

contains its own control unit and so they all operate independently of each other, 

up to the limit imposed by communication requirements. Because of this relative 
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independence, this type has the greatest potential for a wide range of applications. 

However, the application of such systems is currently hampered by several architec­

tural problems, such as efficient task scheduling to minimise the overall idle time 

of the processors, data inconsistencies, and the speed of data transfers between the 

processors. 

The solution to the execution time constraint promised by distributed parallel 

algorithms can be exploited on multi-processor machines which can possess vast 

computational power. Such computers generally have the shared-bus architecture 

(SBA) shown in Figure 2.3, where all the microprocessors share the system bus and 

hence compete to use it. This in reality can delay the computations. An alternative 

System Bus 

Figure 2;3: Shared-bus architecture 

approach is the point-to-point (PTP) architecture shown in Figure 2.4 which allows 

each processor to communicate with several others through separate links, thus 

relieving the system from the bus bottle-neck in communications. One commercially 

available design of the later (PTP) architecture is the INMOS transputer which we 
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now concentrate on since this hardware is used in the work described here. 

Figure 2.4: Point-to-point architecture 

2.2.1 The Transputer Systeln 

The INMOS transputer is a general-purpose single-chip microprocessor designed 

by INMOS Ltd (see Mitchell [35], and INMOS [27]). The latest, and the most 

sophisticated, version available is the T800 transputer whose architecture is shown 

in Figure 2.5. This design combines a processing unit, floating-point unit, memory, 

and communication links on a single silicon subtrate. 

In any application requiring a powerful multi-processor system, a single trans­

puter can be connected to other (any number) of similar devices using its four 

high-speed serial duplex links. The presence of the on-board floating-point unit sig­

nificantly enhances the performance of the transputer by allowing the execution of 

1.5 M flops (million of floating-point operations) per second, with a processor speed 

of 20 MHz. The design supports the concurrent high-level Occam programming lan-
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Figure 2.5: T800 transputer architecture 
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guage (see Mitchell [35]), and other high-level language compilers, to support the 

use of parallel versions of programming languages such as C, Fortran and Pascal. 

In implementing a parallel application, the software source codes must be 

written in an appropriate programming language. Two high-level languages were 

available for this research namely Occam and parallel C. Parallel C with the 3L 

C-compiler has been used in this work. This is largely compatible with the standard 

C (see Purdum [43]) where the main features have been retained and parallelism is 

achieved in two ways: 

1. Task level: A task is code for a single transputer, it contains all the necessary 

functions along with its "mainO" function. 

2. Thread level: Processes can be created at run-time, with two priority levels 

(urgent and nonurgent), and then terminated once finished. This is done by 

the dynamic allocation property associated with C. 

The construction of each task has the following form: 

#include < chan.h > 

int 

float 

externa.l variables declaration 

main(argc, argv, envp, 'Lnp, 'Lns, outp, outs) 

int ins, outs, argCj 

char * argv[], *envp[]j 

CHAN * inp[], *outp[]j 
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{ 

main body 

} 

void ju.nc1( ) 

{ 

fune! body 

} 

The only means of communications between different tasks is through channels 

(inp, outp). If variable A of 4 bytes is to be sent, and B of 4 bytes is to be received 

then the C structure would be 

chan - out - message( 4, &A, outp[l])j 

chan - in - message( 4, &B, inp[l])j 

where the number 1 appearing with the channels (outp, inp) represents a software 

link number. A separate configuration file is set where the tasks and links arrange­

ment with the channel number allocated to each task are defined. 

From the practical experiments conducted on the transputer equipment avail­

able in the Department of Automatic Control & Systems Engineering, the execution 

times for arithmetic operations and point-to-point transmission of one floating point 

value (32 bits) are shown in Table 2.1. These values are used in the theoretical 

performance assessment of the algorithms presented in the forthcoming chapters. 

2.3 Fault Tolerance Principles 

Fault tolerance techniques have been used in computing systems, since the 1950's, to 

provide highly reliable hardware operations. As more systems have been employed 
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Table 2.1: T800 transputer Execution times 

Operation Execution time 

p.s 

Addition or subtraction 1.75 

Multiply 1.95 

Divide 2.25 

Sequare root 8.2 

sin 18.3 

cos 18.5 

tan-1 20.5 

Data transmission( f. p ) 11 

on critical tasks, the use of fault tolerance has increased and spread in both military 

and industrial applications (see for example Anderson [1] and Pau [38]). 

There are widely different requirements for the reliability and availability of 

computers and systems. Wrong outputs from a computer may simply be inconve­

nient, but in some applications, where human lives and/or vast sums of money may 

be at stake, wrong outputs cannot be tolerated. For example, the space shuttle is 

totally dependent on the proper operation of its computers, a mission can not even 

be aborted if the computers fail. Other example is the fuel-efficient aircraft, where 

computer control is essential to provide the fine degree of control surface actuation 

required to maintain its stability which the crew could not achieve. System reliabil­

ity is approached by fault prevention, the goal of which is to prevent the failure of 

systems by ensuring that all conceivable causes of unreliability have been removed 

from the system before reliance is placed on its operation. There are two traditional 

ways to achieve fault prevention, namely fault avoidance and fault removal. 
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Fault avoidance is concerned with design methodologies and the selection of 

techniques and technologies which aim to avoid the introduction of faults during 

the design and construction of a system by the use of reliable components, and 

methodologies for coping with the complexities of hardware and software designs. 

Despite the adoption of fault avoidance techniques, faults are usually present 

in a constructed system because of the unavailability (or cost) of fault-free hardware 

components and the complexity inherent in most systems. 

Fault removal is concerned with checking the implementation of a system and 

removing any fault which are thereby exposed. A system can be extensively tested 

to reveal faulty hardware components and design faults. Faults are then removed 

and the system put into operation. But if faults develop or remain then system 

failure is likely to occur. Fault avoidance and removal were found to be insufficient 

for reliable operation of the hardware components because they age and deteriorate 

and can therefore become faulty. It was recognized that fault tolerance (that is, 

providing reliability despite the presence of faults) was often required, at least to 

protect the system against such hardware component faults. 

There are four phases of fault tolerance which, when taken together, provide 

the general means by which faults can be prevented from leading to system failures. 

These phases are: 

1. Error detection: The starting point for all fault tolerance strategies is the 

detection of an erroneous state. In principle, the more effort used in error 

detection the better the resulting system will be for reliable operation, since if 

all errors are detected and appropriate techniques applied to recover from them, 

then no fault can lead to system failure. In practice there will be limitations 

to the amount of error detection that can be provided, such as the cost of 

the redundancy needed and the overheads incurred at run-time by extensive 
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checking. 

The measures for error detection that can be incorporated in systems (com­

puter systems in particular) can take many forms; the majority of the measures 

adopt checks and fall into the following classifications: 

(a) Replication checks; 

(b) Timing checks; 

(c) Reversal checks; 

(d) Reasonableness checks; 

(e) Structural checks; 

(f) Diagnostic checks; 

(g) Coding checks. 

Replication checks involve some duplication, triplication, etc, of the activity 

of the system, then the results checked for consistency. Timing checks can 

be provided if the specification of a component includes timing constraints 

on the provision of its service. If the constraints are not met, then the timing 

check can raise a "time out" exception to indicate the failure of the component. 

Reversal checks takes the outputs from a system and calculate what the inputs 

should have been in order to produce that output, the calculated inputs can 

then be compared with the actual inputs to check whether there is an error. 

Reasonableness checks make checks for acceptability in which the value of an 

object is in an acceptable range. Structural checks are applied to complex 

data structures which consist of a set of elements linked together by pointers. 

Checks will be concerned with the consistency of information contained in a 

data structure. Diagnostic checks are concerned with checking the behaviour 
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of the components from which the system is constructed. Coding checks are 

based on the redundancy in the representation of an object, an example is 

parity checks. 

2. Damage confinement and assessment: Once an error is identified, there 

can be no guarantee that all of the unwanted consequences of a fault (the 

damage) will be identified. Damage can spread as a result of any subsequent 

flow of information. The designer must be able to identify the possible system 

activity that could have followed an erroneous transition, and the possible flow 

of information. When the possible damage is identified, measures can be taken 

to remove it. 

3. Error recovery: The previous two phases are passive in the sense that they 

are not intended to effect any changes to the system. The remaining phases 

are active since they do change the system and thereby enable faults and their 

consequences to be tolerated. The aim of error recovery is to eliminate errors 

from the system state that could lead to system failure. After an error has 

been detected and the damage assessment phase has produced an estimate 

of the extent to which the system state is erroneous, it will be necessary to 

eliminate those errors from the system state. 

State restoration is one of the measures used to recover from an error, namely 

to replace the entire state of the system. This is usually referred to as a 

"reset" of the system. the most basic reset strategy is to place a system in 

some predefined state, for example an initial state or a prior state of a system 

(backward error recovery). Forward error recovery techniques manipulate some 

portion of the current state to produce a new state in the hope that the new 

state will be error free. 
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4. Fault treatment and continued service: If the above techniques succeed 

in placing the system in an error free state, the system can return to normal 

operation since the immediate danger of failure has been averted. However, this 

may not be enough to ensure reliability, because those techniques leave the fault 

which produce the error untreated. Repeated manifestation of a fault can force 

a system to fail despite the efforts of the fault tolerance techniques described 

so far. Faults treatment techniques attempt to eradicate faults from a system 

so that service can be maintained. These techniques provide treatment for the 

fault itself and can be divided into two stages, namely "fault allocation" and 

"system repair" . 

Techniques for system repair will necessarily be based on "reconfigurating" 

the system in such a way that characteristics of use of suspect components are 

modified to some extent. The standard approach is to make no further use of 

the suspect components and replace them by spare components if available. 

The fundamental concepts which will be used in the research presented have been 

introduced and so we can now proceed to the next chapter where the modelling of 

the aircraft systems is discussed. 
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Chapter 3 

Dynamic Model of the Aircraft 

3.1 Introduction 

Before analysing any problem, it is necessary to build the foundations and derive the 

general equations which describe the behaviour of the system under consideration. 

In this connection, the derivation of the aircraft equations of motion is reviewed 

here. 

It is well known from classical mechanics that the translational motion of a 

body is described by the equation of linear momentum while the rotational motion 

is governed by the equation of angular momentum. The forces that influence the 

motion of an aircraft are of six types (see for example Babister [2], and Blakelock 

[7]): 

1. Inertial forces arising from the mass distribution, linear, and angular acceler­

ation of the aircraft. 

2. Aerodynamic forces and moments depending on the angular velocities of the 

aircraft. 

3. Aerodynamic forces and moments depending on the linear velocities of the 
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aircraft. 

4. Aerodynamic forces and moments due to the application of controls. 

5. Gravitational forces. 

6. Propulsive forces. 

The motion of an aircraft can be determined by considering the above forces acting 

on a rigid body, which is free to move in any direction. 

Figure 3.1: Aircraft and earth axes 

3.2 The Aircraft Attitude with Earth 

In order to describe the motion of the aircraft with respect to the earth or inertial 

space, it is necessary to specify the orientation of one axis system with respect to 

another. This can be done through the use of a set of angles called "Euler angles" . 
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Consider an earth axis system with its origin at the centre of gravity of the aircraft 

and non-rotating with respect to the earth (see Figure 3.1). 

Let aXE and aYE be in the horizontal plane and aZE vertical and down. 

aXE may be taken as North or any other fixed direction. Let the following angles 

indicate the rotation of the XY Z axis from the earth axis. 

'11 the angle between aXE and the projection of the ax axis on the horizontal 

plane. 

q, is the a vector along a Z E. 

e the angle between the horizontal and the ax axis measured in the vertical plane. 

e is a vector along ON. 

<) the angle between ON and the ay axis measured in the OY Z plane. 

<) is a vector along a X . 

Thus, the angles '11, e, and <) specify the orientation of the aircraft axis system 

with respect to the earth. The positive direction of these angles is indicated in Figure 

3.1. 

It is necessary to be able to transform the components of angular velocity of 

the aircraft from the earth axis to the aircraft axis system; This is done as follows. 

We take the components '11, e, <) and project them along OX, OY, OZ axes to 

gIve 

p = ~ - q, sine 

Q = e cos <) + q, cos e sin <) 

R = - e sin <) + \If cos e cos <) 
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(3.3) 



· . 
These equations can be solved for \lI, 8, and ~ to yield 

E> = Q cos q; - R sin 4> 

ci> = P + Q sin ~ tan 8 + R cos ~ tan 8 

q, = _Q_si_n_~_+_R_c_os_~_ 
cose 

(3.4) 

(3.5) 

(3.6) 

where P, Q, R are the angular velocities (in rad/sec) of the aircraft about the 

OX, OY, OZ axes respectively. 

1] 

( 

x 

p 

y 

Figure 3.2: Aircraft axes and velocity components 

The components of the gravity force along the aircraft axes are along 

OX: -mg sin E> (3.7) 

OY: mg cos e sin 4> (3.8) 

o Z: mg cos e cos 4> (3.9) 

where mg = m x 9 is the aircraft weight. 
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3.3 The Aircraft Dynamic Equations 

Let us take a set of rectangular axes OXY Z, as shown in Figure 3.2. The axes (body 

axes) are fixed in the aircraft and move with it. OX and OZ are in the plane of 

symmetry of the aircraft, with OZ downwards and OY to starboard. Let U, W, V 

be the velocity components of the centre of gravity along OX, OY, OZ respectivelYi 

let P, Q, R be the components of angular velocity of the axis frame OXY Z about 

OX, OY, OZ respectively. The positive senses of these angular velocities are the 

clockwise directions about the respective axes. Let m be the mass of the aircraft, 

I"" Ill' l:~ the moments of inertia of the aircraft about OX, OY, OZ respectively, and 

let IlIz , I",z, I"", denote the products of inertia with respect to OYZ, OZX, OXY 

respectively. The aircraft is assumed to be acted upon by external forces which 

have components F"" Fy, Fz along OX, OY, OZ respectively. The moments of the 

external forces about OX, OY, OZ are Rm, Pm, Ym respectively. 

Considered as a rigid body, the motion of the aircraft is completely defined by 

the following six equations: 

Translation motions: 

1. Parallel to OX: 

m(U - RV + QW) = F", (3.10) 

2. Parallel to OY: 

m(V - PW + RU) = Fy (3.11 ) 

3. Parallel to OZ: 

meW - QU +PV) = Fz , (3.12) 
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Angular motions: 

4. About OX: 

R",. = Iz? - (1y - I&)QR - Iy&(Q2 - R2) -l:1:&Ck + PQ) 

-I:Il1J(Q - RP) 

5. About OY: 

Pm = IyQ - (1& - Iz)RP - lzz(R2 - p 2) - l zY{P + QR) 

-lyz(R - PQ) 

6. About OZ: 

Ym = lzR - (Jz - l y)PQ - 1:1l1J(P2 - Q2) - l yz (Q + RP) 

-Izz(? - QR) 

(3.13) 

(3.14) 

(3.15) 

The external forces and moments will be of two types: aerodynamic (and 

propulsive) forces and moments, and gravitational forces. There are no moments 

due to gravity, since we have taken the axes to pass through the centre of gravity. 

The mass distribution of the aircraft is taken to be symmetrical with respect 

to the plane OX Z. Thus 

1:1l1J = LXY em = 0 

l yz = LYz em = 0 

(3.16) 

(3.17) 

while lzz will not be zero unless OX and OZ are the principal axes of inertia. 

Therefore, from the equations 3.4 to 3.17 we have the following equations which 

define the motion of the aircraft about the body axes: 
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. F~ 
U=-+RV-QW 

m 

. F~ 
W=-+QU-PV 

m 

. F'II 
V= -+PW-RU 

m 

Q = Pm + (I~ - I~)RP + I~~(R'l - p'l) 
I'll 

p = Rm + (I'll - I~)QR + I~~(R + PQ) 
I~ 

R = Ym + (I~ - I'II)PQ + I~~(P - QR) 
I~ 

e = Q cos If> - R sin If> 

~ = P + (Q sin If> + R cos If> ) tan e 

q, = -.:.Q_si_n_If>_+_R_c_os_lf>_ 
cosE> 

il = U sin e - W cos e cos If> - V sin If> cos e 

(3.18) 

(3.19) 

(3.20) 

(3.21 ) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

For trajectory studies, the above equations are divided into two sets of equa-

tions, namely, longitudinal (the equations 3.18, 3.19, 3.21, 3.24, and 3.27) and lateral 

(the equations 3.20, 3.22, 3.23, 3.25, and 3.26). The two motions are then normally 

decoupled by means of engineering hypotheses (see chapter 7) and then handled 

separately. 

3.4 The Aerodynamic Forces and Moments 

The forces and moments which appear in the equations 3.18 to 3.23 are defined as 

follows: 

Th-(D+Xd)COS O b+L sinob-mg sinE> (3.28) 
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F. - -(D + Xel)sinQb - £ COSQb + mg cos e cos ~ 

Fy - Y + mg sin ~ cos e 

Pm - Pmt + £(Cg - C1)0 COS Qb + D(Cg - C1 )0 sinQb 

+Xel(C2 + (Cg - CdC)sinQb + Gp 

(3.29) 

(3.30) 

(3.31 ) 

(3.32) 

(3.33) 

where Th is the engine thrust; D, £ are drag and lift forces respectively; Qb is the 

angle of attack relative to fuselage; Xel is the engine intake drag force; Y is the 

aerodynamic side force; Pmt is the aerodynamic pitching moment about the wing 

quarter chord; Rmt, Ymt are the aerodynamic rolling and yawing moments about the 

stability axis; Cg is the position of the centre of gravity behind the leading edge of 

the standard mean chord 0 as a fraction of Cj Cl , C2 are constants; Gp and Gy are 

the engine gyroscopic effects. 

The lift, drag, and pitching moment are given by: 

£ 
1 2 2P¥" SwCI 

D 1 2 2P¥" SwCct 

Pmt 
1 2 

- 2P¥" SwCm 

(3.34) 

(3.35) 

(3.36) 

The aerodynamic derivatives (see Babister [2]) Cl , Cel, and Cm depend upon the 

angle of attackj the flap settingj the setting angle of the tail (the stabilizer)j the 

elevator control angle 7]; the wing area Sw; the tail area St; the wing span b; the 

height of the tail above fuselage and the distance between the wing and the tail 

quarter chord. It also depends upon other quantities which are functions of the 

Mach number M, and are given in the form of graphs in the aircraft engineering 

data [8]. P is the air density and v,. = JU2 + W 2 + V2 is the aircraft relative 

velocity. 

38 



The rolling, yawing moments and side force are given by: 

1 1 2 
Y - 2Pv,.SUly"V + 2P¥" SUI¥( (3.37) 

1 
Rmt - 2Pv,.Swb[L lI V + v,.Le~ + v,.L,( + bLp 

(P cos Ob + R sin Ob) + bLr{R cos Ob - P sin Ob)] (3.38) 

1 - 2Py"SUlb[NlIV + Y,.Nee + Y,.N,( + bNp 

(P cos Ob + R sin Ob) + bNr (R cos 0b - P sin Ob)] (3.39) 

where ~, ( are the aileron and rudder angles (lateral control variables)j the aero-

dynamic coefficients Y", ¥(, ... , Nr are functions of the angle of attack which were 

given in the form of graphs in the aircraft engineering data. The C9 position as well 

as the inertial moments (I~, I'll' Iz, I~z) are functions of the aircraft mass (m) and 

were also given as graphical data. 

3.5 The Engine Model 

The aircraft under consideration has one turbojet engine whose dynamics are as 

follows [8]: 

Let T., p. be the static temperature (K) and static pressure (N/m 2 )j let M 

be the Mach number (the ratio of aircraft velocity to the speed of sound)j and let 

N be the engine rotor speed (number of revolutions per minute). Then the total 

temperature and pressure is given by 

(3.40) 

(3.41 ) 

let 

(3.42) 
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(3.43) 

Then the thrust will be 

(3.44) 

and the intake momentum drag is 

(3.45) 

The engine gyroscopic moments are 

(3.46) 

Gy = C13NQ (3.4 7) 

Let the demanded throttle position be denoted by "Y, then the actual throttle position 

is given by 

1 
"Y E [0,1] (3.48) 

and the corresponding engine rotor speed is 

(3.49) 

where 

(3.50) 

and where V~ is the equivalent airspeed (knots), and Nm~:t: is the maximum permis-

sible rotor speed. From the equations 3.48 to 3.50 we have 

IV - N0 + "Y(Nm~:t: - Nidle )2 - (N - Nidle)2 
- ,die 4( N - N

idle
) 

(3.51 ) 

Equation 3.51 is then combined with the aircraft dynamic equations (3.18 to 3.27) 

to form the aircraft nonlinear equations of motion. The constants (C1 to C16 ) and 

Nm~:t: are obtained from the aircraft engineering data. 
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3.6 The Atmosphere Model 

To assess the aircraft modelling, it is important that a standard atmosphere be 

defined. The vertical distribution of the physical properties of the atmosphere de­

pends on the height and time. For the altitude region between sea level and height 

H = 6.5 X 104 ft, the atmospheric properties can be obtained by taking into account 

the variation of both the acceleration of gravity (g) and the air molecular weight 

with the altitude (see Miele [37]). 

There are two basic equations which must be satisfied by the gas composing 

any atmosphere, these are 

dP - -pgdH 

P - pRT 

(3.52) 

(3.53) 

where P is the pressure; p is the density; 9 is the acceleration of gravity; H is the 

altitude; R is the gas characteristic constant; and T is the temperature. If we denote 

the quantities evaluated at sea level by the subscript 0, then the geopotential altitude 

(fI) is defined as 

I1H fI = - gdH 
go 0 

(3.54) 

and the molecular temperature (static temperature) is defined as 

(3.55) 

where w is the molecular weightj From equations 3.53 to 3.55 we can get the set of 

differential equations 

(3.56) 

(3.57) 
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where f) = ~ is the gradient of the molecular temperature. 

The atmosphere data available for this research is known as the ARDC (see 

Miele [37]) model atmosphere and is based on the following assumptions 

1. The space immediately surrounding the Earth is divided into eleven concentric 

layers, in each of which the gradient of the molecular temperature is constant. 

2. For the six layers belonging to the lower atmosphere (from sea level to 3 x 105 

ft), the composition of the air is constant. 

3. For the five layers belonging to the upper atmosphere (3 x 105 ft to 2.3 X 106 ft), 

the composition of the air is variable, and the molecular weight is represented 

by inverse trigonometric functions in terms of the geopotential altitude. 

4. The acceleration of gravity varies with altitude according to 

( ro )2 
9 = 90 ro + H (3.58) 

where ro = 20.9 X 106 ft is the radius of the Earth. This atmosphere model may be 

replaced by a simplified model using the International Standard Atmosphere model 

(ISA) [9] which consists of height bands which are identified by their temperature 

profiles: 

Troposphere which has a constant temperature gradient from 288 K at sea level 

to 217 K at 36089 ft. 

Lower Stratosphere has a constant temperature of 217 K from 36089 ft to 65616 

ft. 

Upper Stratosphere and Lower Chemosphere have a constant temperature gra­

dient from 217 K at 65616 ft to 229 K at 104986 ft. 

For a constant temperature gradient the local static pressure p. is 

42 



(3.59) 

For a constant temperature 

P _ P en(H -Ho) 
II - 110 (3.60) 

where Ho is the altitude at the base of the height band, T is ISA standard temper-

ature (K), 

PliO = 2116.2166 Ib1 1 1t2, k = 5.2558797 (Troposphere), 

PliO = 472.68000 Ib11/t2 , n = -0.0000486346111/t (Lower Stratosphere), 

PliO = 114.34520 Ib/I /t 2 , k = -34.163218 (Upper Stratosphere and Lower Chemo­

sphere). 

We may now add an offset to the temperature profile to produce the desired sea level 

temperature Til (deg C), and then compute the speed of sound A, and air density 

p: 

Til = T + (Til - 15.0) 

PII 

p= RT, 

where J1. = 1.4, and R = 3089.8114 1t2 1 sec2 1 K. 

3.7 Conclusion 

(3.61 ) 

(3.62) 

(3.63) 

This chapter has presented the modeling assumptions used in this research. Much 

of these are standard but are given here for completeness so that the thesis form 

a complete and coherent piece of work. It is now possible to present the technical 

findings of this research, and is the next chapter, the first autopilot results are 

presented. 
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Chapter 4 

Aircraft Longitudinal Optimal 

Control 

4.1 Introduction 

In the preceding chapters we have discused some of the fundamental aspects of com­

puter control and aircraft systems. Now we start presenting the main contributions 

in this thesis, and in this chapter an optimal autopilot using the British Aerospace 

aircraft data for the longitudinal motion is described. This is a simplification of the 

overall control problem but it allows an easy and convenient stepping stone to the 

complete aircraft consideration presented in chapter 7. As we have seen in chapter 

2, that for optimal solutions several steps have to be performed to reach the desired 

objectives, namely a linearization done about an operating point, the adjoint equa­

tions solved backwards in time over the optimisation horizon, the problem solved to 

give a descent direction, a new operating point deduced, the equations relinearized 

at the new conditions and so on. Assuming all the stages are well constructed, this 

iteractive scheme results in a solution to the original nonlinear problem. It is clear 

that the procedure is quite tortuous and in computer control applications the pro-
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cessing needs to be performed in real-time. The situation, when considering optimal 

control of aircraft systems is further complicated because large dimensional models 

are necessary for adequate representation and fast sample rates are also required 

giving rise to a heavy computational burden that is extremely difficult to achieve 

in real-time implementation. A sampling rate of 200 Hz is normally expected to 

achieve good real-time control performance and so the control computations needs 

to be accomplished within a sampling period of 5 milliseconds. Due to the com­

plexity of the computing task this is difficult to achieve using sequential computer 

systems and in fact are difficult even for the parallel computers which have recently 

became available. 

Because of the above difficulties, optimal control problems are usually ap-

pro ached using simplified system dynamic equations. Here, we also simplify the 

problem to make it tractable by assuming that the nonlinear aircraft is pointwise 

linearized at particular instants. The concepts of parallel processing is then used to 

achieve real-time optimal control of the aircraft longitudinal motion. 

4.2 The Aircraft Longitudinal Equations 

As mentioned earlier, the aircraft equations presented in chapter 3 can be split into 

two sets where one set describes the longitudinal motion of the aircraft and the other 

describes the lateral motion. This can be achieved by the use of proper assumptions 

which uncouples the two sets. Thus, by assuming 

( 4.1) 

the longitudinal equations are 

. F~ 
U=--QW 

m (4.2) 

. Fz 
W=-+QU 

m (4.3) 
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• Pm. Q=-
11/ 

( 4.4) 

(4.5) 

if = U sin e - w cos e (4.6) 

(4.7) 

where the notation is as defined in chapter 3. These nonlinear equations can be 

represented as: 

x = f(X, u) (4.8) 

where X = [U, W, Q, 9, H, N]T is an 6-vector of state variables, and u = [7], "Yf 
is an 2-vector of control inputs. 

Trajectory optimisation for the system (4.8) continue to be computationally 

challenging because the application of Pontryagin's maximum principle produces 

the general nonlinear two-point boundary value problems which are computation­

ally demanding as mentioned earlier. In the approach here to solve this problem, 

successive linearizations are made to produce successive linear optimal problems 

which are solved to obtain the optimal control. As time progresses the linearizing 

point and optimising interval moves forwards thus enabling real-time performance. 

4.3 linearization of the Aircraft Model 

Linear differential equations are easier to handle than the general nonlinear ones; it 

is therefore natural that most applicable control theory is based on linear models 

which approximate the system under consideration. 

In many practical applications the ideal operating condition for the system 

is where all system inputs, states and outputs are constant in time. In such ap­

plications, the role of the control system is primarily that of a regulator to return 
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the system variables to their ideal values following disturbances. Suppose that the 

system is described by the nonlinear model 

X(t) - j(X(t), u(t)), for all t 

Y(t) g(X(t), u(t)) (4.9) 

where the vector functions j and 9 do not depend explicitly on time t. Let X o , U o , Yo 

be an operating point; the process of linearization of (4.9) in the vicinity of these 

operating conditions consists of approximating of the vector functions j, 9 by linear 

functions 

(4.10) 

(4.11) 

where A, B, C, D are constant matrices. Defining the perturbation variables 

x = X(t) - Xo 

ii. = u(t) - U o 

Y = Y(t) - Yo 

then we obtain 

dX(t) = i(X(t) _ X ) = dX(t) 
dt dt ° dt 

Y(t) = Yo + CX(t) + Dii.(t) 

j(X(t), u(t)) ~ AX(t) + Bii.(t) 

and the relations 

dX(t) '" AX(t) + Bii.(t) 
dt 

Y(t) '" CX(t) + Dii.{t) 

( 4.12) 

( 4.13) 

( 4.14) 

( 4.15) 

( 4.16) 

( 4.17) 

( 4.18) 
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These expressions suggest that the dynamic behaviour of the perturbations X and 

Y in response to the perturbation input u can be approximated by the solution of 

the linear time-invariant model obtained from (4.18) by replacing the approximation 

signs by equalities. The matrices A, B, C, D have elements calculated by 

( 4.19) 

at X = Xo and 'U = 'Uo. Using the above results, the aircraft longitudinal equations 

can be linearized about the operating point (Xo, uo) to be 

e(t) = Ae(t) - BD.'U(t) ( 4.20) 

where 

e(t) = X(t) - Xo ( 4.21) 

D.'U(t) = u(t) - U o ( 4.22) 

and the matrices A, B will be of the form 

F~'U. F~'IJI - Q F~q -W F~e 0 F~n 

Fz'U. Fz'IJI Fzq Fze 0 0 

Pm\/' Pm'IJI Pmq PmB 0 0 
A= ( 4.23) 

0 0 1 0 0 0 

sine -cosS 0 He 0 0 

N\/, 0 0 0 Nh, Nn 

48 



F:t:f) 0 

FZf) 0 

Pmf) 0 
B= ( 4.24) 

0 0 

0 0 

0 N., 

where F:t:1J. = SF;JS1J., ... etc, are known as the aerodynamic derivatives which can be 

calculated using the corresponding equations presented in chapter 3. 

Because the linearizing process is repeated successively when time progresses, 

the linear time-invariant model given by equation (4.20) can be considered as time-

varying system of the form 

e(t) = A(t)e(t) + B(t)Llu(t) ( 4.25) 

4.4 The Linear Quadratic Regulator Problem 

The linear quadratic regulator is an automatic feedback-control oriented approach 

to optimal control problems, in which, feedback can be realized in the optimal con­

trol of linear systems based upon a quadratic performance index. We consider the 

minimisation of the quadratic cost function 

( 4.26) 

subject to the linear dynamics (4.25), where F and Q are (6 x 6) positive semidefinite 

symmetric matrices, and R is an (2 x 2) positive definite symmetric matrix. F, Q, R 

are the weighting factors which indicate the relative importance of the various terms 

in the control performance, and so they must be stated such that the objective is 

satisfied. 
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It is well known that problem (4.25) and (4.26) produces a two-point boundary 

value problem (see for example Banks [4]), which can be solved by applying the 

maximum principle. 

We have seen in chapter 2 that the necessary conditions for an extremum are 

SH 
- = RI:1'U + BTA 
61:111, 

6H e = 6f = A(t)e(t) + B(t)I:1'U(t) 

where we define the Hamiltonian H by 

H( e, 1:111" A, t) eT(t)Qe(t) + I:1'UT(t)RD.u(t) 

+ AT(t) (A(t)e(t) + B(t)D.'U(t» 

From equation (4.30) we get 

( 4.27) 

( 4.28) 

( 4.29) 

( 4.30) 

(4.31 ) 

( 4.32) 

and from equations (4.27), (4.30), and substituting from equation (4.32) we have 

( 4.33) 

with the initial and final conditions 

e(to) = eo ( 4.34) 

( 4.35) 

respectively. 

Equation (4.33) is the two-point boundary value problem which can be solved by 

assuming 
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A(t) = P(t)e(t) ( 4.36) 

where P is an (6 x 6) positive definite symmetric matrix. By differentiating the last 

equation with respect to time t, we get 

( 4.37) 

Substituting from equation (4.33) we have 

( 4.38) 

The last equation must hold for non-zero e, thus the term inside the round brackets 

must be zero, and so 

P _ -P(t)A - AT pet) - Q + P(t)BR-t BT pet) 

pet,) - F ( 4.39) 

which is known as the "Riccati equation", and it defines a system of (6 x 6) first 

order differential equations. However, since P is symmetric, only 6(6 + 1)/2 first 

order equations need to be solved. The optimal control is then given by 

6u(t) = _R-t BT P(t)e(t) ( 4.40) 

For time-varying systems, the above problem can be solved to provide optimal con­

trol for the system such that the states will be driven to and maintained at desired 

values. This can be achieved using the following algorithmic procedure: 

Algorithm 1: 

Step 0 : Initialise u(to), set i = 0, to, tj, h, and the desired state X d • 

Step 1 : Linearize the system equations about the current state and control (X(ti)' U(ti»' 

Step 2 : Integrate the Riccati equation (4.39) with the set (A, B), provided from 

Step 1, from t, to ti and store the gain matrixP(ti). 
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Step 3 : Calculate the optimal control 1.1.( ti+l) for the next step as follows: 

e(ti) - X(ti) - Xci (4.41 ) 

Au - _R-1 BT P(t;}e(t;} ( 4.42) 

U(t;+l) - U(ti} + Au (4.43) 

ti+l ti + h ( 4.44) 

Step 4 : Calculate X(ti+l) by integrating the nonlinear system equations from the 

current state and using the new controlu(ti+l). 

Step 5 : Set i = i + 1; if t; = tj, set x(to) = X(ti), u(to) = u(ti), i = 0, and go to 

Step 1 (that is, to start new interval (to, t,)); else go to Step 1. 

Equation (4.43) reflects the fact that the state and control variables used in 

the linearized system equations are perturbations of the original state and control 

variables. The above algorithm suggests that at all moments in time (each sampling 

interval), the Riccati equation must be integrated from (t,) to the current time (t;) 

using the current linearized system matrices (A, B) to give the current gain matrix 

P(ti) which is to be used to provide the control at that moment. The system may 

need several intervals (tJ - to) to drive the state error to zero; this will depend upon 

the size of the error and the length of the optimisation interval. In practice, it is 

difficult to perform the above calculations within a sampling period of 5 milliseconds 

as we will illustrate in the next section. 

4.5 The Computational Complexities 

We consider now equation (4.39), for the aircraft longitudinal motion, which gives 

rise to a Riccati equation of dimension 

11. = n(n + 1) = 21 
2 
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since n = 6. 

The following equations need to be solved in order to evaluate the derivative function 

and to calculate the control deviation ~'U. 

i~j 

i, j = 0,1, ... ,5 

5 5 5 5 

Pij LPil L SlkPkj - L akiPkj - L akjPik, i < j 
/=0 k=O k=O k=O 

5 5 5 

Pij - LPil L SlkPkj - 2 L alcjPkj - qii, i = j = 0,1, ... ,5 
/=0 k=O 1c=0 

b·· 
RBji = ~, i = 0, 1, ... , 5; j = 0, 1 

rjj 

5 

RBPji = ~ RBjkPlcj, i = 0,1, ... ,5; j = 0,1 
k=O 

5 

~'Uj = - L RBPjkek, i = 0,1, ... ,5; j = 0,1 
k=O 

( 4.46) 

(4.4 7) 

( 4.48) 

( 4.49) 

( 4.50) 

Equations (4.46) and (4.48) need to be solved once during the linearization 

process, while equation (4.47) needs to be solved for each function evaluation (deriva­

tion), and the equations (4.49) and (4.50) need to be solved once at the end of each 

integration process (at each sample). 

Let n~, n., nd, nm be the number of additions, subtractions, divisions, and 

multiplications respectively, then for one function evaluation (equation (4.47)) we 

have 

n~ - 45ft - 5n = 915 

n. - 2ft =42 

nm - 54ft - 5n = 1104 

nd - ° (4.51 ) 
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and for the calculation of .6.u we have 

nil - 60 

n, - 12 

nm - 84 

nd - 0 ( 4.52) 

When we remove all the terms in (4.47) and (4.49) which are multiplied by zero 

elements of A and B, then for one function evaluation we have 

nil - 205 

n, - 27 

nm - 269 ( 4.53) 

and for the calculation of .6.u 

nil - 12 

n, 12 

nm - 36 ( 4.54) 

The total time required to integrate (4.39) from the final to the initial time 

and calculate .6.u can be estimated by using the equation 

( 4.55) 

where T" TI , T"", T",,7" Team are the execution times of the linearization routine, func­

tion evaluation, D.u calculation, updating the P gains, and interprocessor communi­

cations respectively; and where N, is the number of integration steps ((tf - to)jh). 

Let til' t" tm, td, team be the execution times of one Boating point addition, subtrac­

tion, multiplication, division, and interprocessor transmission respectively; then by 

using the values given in Table 2.1 we can estimate the total execution time required 

to calculate the control using Algorithm 1 
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4.6 Optimal Control Problem Parallelisation 

Algorithm 1 is implemented sequentially using the transputer based system of Fig­

ure 4.1(a), and in parallel using the transputer array system shown in Figure 4.1(b) 

and (c). Where the ellipses represent processes mapped onto the different processors 

(represented by the rectangles). Processor Po performs the aircraft simulation, and 

is connected to a personal computer (PC) which serves as a link between the user 

and the transputer network. The processors PI to P4 are used to perform the nu-

merical integration of (4.39) as well as supplying Po with the control input signals. 

Parallelism is achieved by using parallel numerical integration methods to reduce 

the computation time (see for example Miranker [34], and Franklin [19]). 

Two methods of numerical integration are demonstrated here to realise real-

time implementation of Algorithm 1. 

Method 1: 

The Euler integration method can be used; this method needs one function evalua­

tion in each integration step. Parallelism is achieved by partitioning the equations 

(4.47), (4.49) and (4.50) between the processors. 

For the one processor case (see Figure 4.1(a)), an optimisation interval (tf -to) 

of 0.5 second and a sampling period (the integration step, h) of 5 milliseconds were 

used and gave the following results 

N, 0.5 = 100 
5 X 10-3 

TJ 205tc& + 269tm + 27t, = 930.55 p.s 

T" - 12tc& + 36tm + 12t, = 112.2 p.s 

T"p - net, + tm ) = 77.7 p.s 

T/ = 3000 J1.s 
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Figure 4.1: Transputer network for Algorithm 1 
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Hence using equation (4.55), the total time is Tt = 0.103 seconds. 

Using the tra.nsputer network of Figure 4.1(b)j a.nd by partitioning the equa­

tions such that: 

1. processor PI is used to update the gains 

[Poo, Po4, Pos, P14, PIS,P24, P2S, P34, 1'3s, P44, P4S, Pss] 

and calculate Lluoj 

2. processor P2 is used to update the gains 

[POI, Po2, poa, Pn, P12, pIa, P22, P2a, Paa] 

a.nd calculate Ll UI. 

The maximum time required is as follows 

TJ - 118t" + 14ltm + 14t, = 512.95 J1.s 

Tu - 12t" + 6t, + 24tm = 46.8 J1.s 

TUJl - 12( t. + tm ) = 44.4 J1.s 

Each processor has a copy of the linearization routine and the two processors 

need 21 transmissions to exchange the gains Pi; which are needed to evaluate the 

derivative function. Therefore 

Tcom = N,(fitcom) = 23100 J1.s ( 4.56) 

Hence the total time is Tt = 0.082 seconds. By further partitioning and using the 

transputer network of Figure 4.1(c), such that 

1. PI is used to update the gains [POl, Po2, Pn, P12, P22] and calculates ~uo, 

2. P2 is used to update the gains [Poa, P13, P2a, Pa3] and calculates ~UI' 

3. P3 is used to update the gains [Poo, P04, P14, P24, Pa4, P44] , 
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4. P4 is used to update the gains (PO,;, P15, P3S, P4S, Pss]. 

Each processor has a copy of the linearization routine and the four processors 

need 32 transmissions to exchange the gains in each integration step. Therefore the 

ma.ximum time required to perform the different operations is 

TJ - 56t(l + 73tm + 7t. = 252.5 P.8 

T" - 12t(l + 6t. + 24tm = 46.8 p.s 

Tu'P - 6( t. + tm) = 22.2 p.s 

Tcom. - N.(32tcom.) = 35200 p.s 

And therefore the total time is Tt = 0.067 seconds. 

Method 2: 

The parallel predictor-corrector integration method is used here which uses the fol­

lowing formulas 

141 = 1'i:l + ~(8Fl- 5Ft_l + 4Ft_'l - Ft-3) 

fic = fi:l + ~ (9F! + 19Ft_l - 5Fi:'2 + Ft-3) 

( 4.57) 

( 4.58) 

where i indicates the step number; p, c indicate the predicted and corrected values 

respectively, and when used in conjunction with a function evaluation (F) indicate 

that the function is evaluated using the corresponding predicted or corrected values. 

Two function evaluations are required in each integration step. This method has 

better accuracy than the previous one and may be used with larger integration 

steps for a given error tolerance. The execution time can be estimated by using the 

equation 

( 4.59) 

58 



The values of T" T" Tu are as given in Method 1, while the updating time becomes 

( 4.60) 

Therefore in one processor we have 

Tup 358.05 J.£S 

Tcom - 0 

Tt - 0.260 s 

In the two processor case, the time for function evaluations and updating will be 

halved since 

1. the predictor equation and its function evaluation is solved by the predictor 

processor P2, and 

2. the corrector equation and its function evaluation is solved by the corrector 

processor Pl. 

The two processors need to communicate 3n times in each step as all the yc and Fe 

values must be passed from the corrector to the predictor processor and F'P values 

from the predictor to the corrector processor. Therefore 

Teom - N,(3nteom) = 69300 J.£S 

Tt - T, + N,(Tf + Tup) + Tu + Teom = 0.201 s 

If we use four processors such that PI, P'J, work as the corrector group, P3 , p. as 

the predictor group; a.nd the equations are partitioned in each group as shown in 

the two processor case of Method 1, then we will have 

Inter - group communications 

Inter - processor communications 
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Therefore 

Tcom N.(56tcom ) = 61600 J1.S 

TJ - 512.95 J1.S 

Tup - 12(2t" + 2t, + 4tm, + td) = 204.6 J1.s 

Tu - 46.8 J1.s 

Tt - T/ + N.(Tf + Tup) + Tu + Tcom. = 0.136 s 

Table 4.1: Execution times for algorithm 1 

Number Execution time (sec.) 

of Method 1 Method 2 

Transputers Estimated Actual Estimated Actual 

1 0.103 0.124 0.260 0.290 

2 0.082 0.097 0.201 0.242 

4 0.067 0.079 0.136 0.182 

The estimated and actual execution time for the different cases considered 

are as shown in Table 4.1. It can be seen that the time required for inter-processor 

communications is likely to dominate the total time when the number of processors is 

increased. Although the optimisation interval used is short (0.5 second), the results 

obtained show that the execution time is far beyond the goal of 5 milliseconds and 

no significant improvement can be obtained by further partitioning of the system 

equations. Therefore Algorithm 1 is not suitable for real-time control application. 

Real-time solution is possible if the algorithm can be modified to suit the time 

constraints. In the next section we illustrate how this is possible. 
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4.7 A Real-time Algorithm 

Algorithm 1 is a good approximation for handling the nonlinear time-varying air­

craft problem, but as we have seen, it is not suitable for real-time implementation 

in practical systems since the execution time can not be reduced as required (5 mil­

liseconds). The modification proposed here is that, instead of linearizing the system 

equations and calculating the time varying gains for each sampling interval, the air­

craft equations are linearized and the gain matrix (G = -R-1 BT pet), t E [tlJ t 2]) 

calculated and held constant for several samples (between hand t2)' During this 

time the aircraft model is assumed to be time-invariant, when time t2 is reached the 

aircraft is relinearized at the new state, etc. The precise details of the algorithm are 

given next. 

Algorithm 2: 

Step 0 : Initialise u(to), to, t" h, and the desired state Xdi set i = O. 

Step 1 : linearize the system equations about the current state and control (X (ti), u( ti)) j 

set Uo = U(ti). 

Step 2 : Integrate the Riccati equation from tl to the beginning of the next subin­

terval t (within which the system is assumed to be time-invariant)j store the 

gains (G(t) = _R-1 BT P(t), t E [I, tiD. 

Step 3 : Calculate the optimal control u(t,+l) for the next sampling step as follows 

e(ti) = X(ti) - Xd 

D.u - _R-1 BT P(t,)e(t,) 

u(t'+l) - Uo + D.u 

ti+l - t, + h 
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Step 4 : Calculate X( ti+d by integrating the nonlinear system equations from x( ti) 

and using U(ti+l). 

Step 5 : Set i = i + 1; if ti = tIt set X(to) = X(ti)' u(to) = U(ti), i = 0, and go to 

Step 6; else go to Step 6. 

Step 6 : Is it time for the next linearization? If yes, go to Step 1; If not go to Step 

3. 

Algorithm 2 suggests that the optimisation horizon interval should be divided into 

subintervals of length equal to the expected execution time required to prepare the 

gains for the next subinterval. Within these intervals the system is assumed to be 

time-invariant. It is necessary to calculate and store the whole sequence of gains G( t) 

for t E [l, tl]' and because of this we are unable to perform the gain calculations 

in a processor and send it to a controller processor which works in real-time to 

provide the control signals. This is because the communication time required to 

send the time sequence of the (2 x 6) gain matrix G(t) is likely to cause undesirable 

delay in the controller and the integrator processor. To overcome this problem, we 

let the controller processor and the integrator processor switch from the control to 

integration job and vice versa. That is, the processor which calculates the gains 

for the next subinterval is switched to the control task in that interval as shown in 

the time table of Figure 4.2. The algorithm is implemented using the transputer 

network of Figure 4.3(a), where Po is the aircraft simulator and also controls the 

switching procedure. PI and P2 perform one of the following sub-tasks at a given 

subinterval 

1. To calculate 6u using the stored gains, transmit the gains to Po, and read the 

current state at each sample. This will be referred to as the control task. 
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Time (seconds) 
Processor 

0.0 0.108 0.192 0.27 0.33 0.37 0.5 

Integration Integration Integration 

P1 Control Task Control Task Control Task 
Task Task Task 

(0.5 - 0.192) (0.5 - 0.33) (0.5 - 0.0) 

Integration Integration Integration 

P2 Task Control Task Control Task Control 
Task Task Task 

(0.5 - 0.108) (0.5 - 0.27) (0.5 - 0.37) 

. "-

Figure 4.2: Time table for Algorithm 2 

2. Linearize the aircraft equations about the operating point at the switching 

instant, integrate the Riccati equation backwards from t f to the next switching 

time, and store the gains. This will be referred to as the integration task. 

The interval (t f - to) is divided according to the actual execution time required 

for the integration task as given in Table 4.1 for Method 1. The time required for 

updating the gains can be reduced by increasing the number of subintervals, that 

is, by reducing the execution time of the integration task. This can be achieved 

by adding extra processors as shown in Figure 4.3(b). The extra processor P3 will 

combine with the processor performing the integration task to give an array of 

processors as we have seen in the two processors case in the previous section. The 

time diagram for the later case is shown in Figure 4.4. 
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Processor 
Time (seconds) 

P1 

P2 

0.0 0.086 0.16 0.225 0.285 0.33 0.37 0.4 0.5 

Control 
Integration 

Control 
Integration Integration Integration 

Task with Task with Control Task with Control Task with 
Task 

P3 Task 
P3 Task P3 Task P3 

(0.5 - 0.16) (0.5 - 0.285) (0.5 - 0.37) (0.5 - 0.0) 

Integration Integration Integration Integration 
Task with Control Task with Control Task with Control Task with Control 

P3 Task P3 Task P3 Task P3 Task 
(0.5 - 0.086) (0.5 - 0.225) (0.5 - 0.33) (0.5 - 0.4) 

Figure 4.4: Time table for Algorithm 2 with extra processors 

4.8 Simulation Results 

Algorithm 2 can be implemented in real-time using the following weighting matrices 

which are chosen to satisfy the states and control constraints 

Q diag[O.15, 0, 100, 1000, 2, 5 x 10-6
] 

F 0 

R diag[10000, 1000] 

The method for the selection of these weights is discussed in chapter 6. The initial 

aircraft state is assumed to be [145, 0, 0 , 0, 4900, 6600], the desired state is 

[150, 5, 0, 0.033, 5000, 6615]. The optimisation interval is 0.5 second, and the 

sampling period is 5 milliseconds. The optimal control results are shown in Figure 

4.5 which show good performance. The algorithm presented therefore offers a viable 

solution for the real-time optimal control problem, and gives a good approximation 

to the nonlinear aircraft problem. 
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Chapter 5 

Real-time Algorithm Via the 

Receding Horizon Method 

5.1 Introduction 

In this chapter we will introduce an alternative method of obtaining a suitable op­

timising control strategy for our time-varying system, namely, the receding/moving 

horizon method. The reasons for introducing it here are due to its lower require­

ments in computing resources as discused below. For these reasons it is the technique 

adapted for the majority of the control designs presented in this thesis. In fact for 

linear time-invariant systems, there exist several approaches to enable the design 

of optimal control laws. One of these which guarantied robust stabilising feedback 

control is the steady-state feedback law where the optimal stabilising state-feedback 

gains are found by solving (only once) an algebraic Riccati equation (see Richardson 

[47], Illinois [26]). The corresponding solution for the linear time-varying system 

problem requires the backward integration of a matrix Riccati equation over an in­

finite horizon or the solution of a difficult and time consuming algebraic Riccati 

equation at all moments in time. Clearly, this is not a very practical way of ob-
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taining the control law. A natural way of attempting to reduce the computational 

difficulties is to assume that at all moments t, we need to calculate the optimal 

control for a fixed, finite horizon of length T (see Shaw [50], Kwon [29]). 

The standard regulator problem addresses the problem of determining the op­

timal control 'U0
(.) to be applied to a linear system in order to minimise a cost 

function over a given interval (ti, t f). In the case of a quadratic performance in­

dex, the resulting optimal control is a straight forward state-feedback law; the gain 

computation involves the solution of the Riccati equation backwards in time. The 

control applied at time t, using a moving horizon of length T, would therefore be the 

initial step in minimising a quadratic performance index over (t, t + T). The pro­

cedure leads to a state-feedback control law. The deference between this approach 

and the one presented in the last chapter is that "only the initial gain at time t is 

applied" . 

Although the receding horizon is reasonable in concept, it does not have any 

obvious interpretation in terms of optimising some standard form of performance 

index over some predetermined interval (ti, tf); its value is in the fact the approach 

gives a practical and computationally realizable technique for calculating optimal 

control for general time-varying linear systems. 

5.2 Receding Horizon Optimal Control 

Consider the time-varying linear system described by 

e(t) = A(t)e(t) + B(t)~'U(t) (5.1) 

where e(.) E ~n and ~'U(.) E ~m. Let J be a standard quadratic cost function over 

a fixed interval (ti, t f) defined as 

J = eT(tf)Fe(tJ) + l;tJ
[eT(r)Qe(r) + ~'UT(r)R~u(r)]dr (5.2) 
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Here Q, R, F are design parameters or weighting matrices. As we have seen in 

chapter 4, the optimal control input that minimises J is provided by the following 

state-feedback law 

(5.3) 

and the gain P(t, tJ; F) is computed using the Riccati equation 

d 
dr P(r, tJ; F) - -P(r, tJ; F)A(r) - A(r)P(r, tJ; F) + 

P(r, tJ; F)B(r)R-1BT(r)P(r, tf; F) - Q (5.4) 

backwards in time using the final condition P(tj, tf; F) = F. This can be modified 

to give rise to the receding horizon optimal control problem; the receding horizon 

optimal control boum(t) is defined as the input at time t that would be needed to 

minimise over (t, t + T) the following criterion 

(5.5) 

This also results in a control law which is a state-feedback law, given by 

(5.6) 

The interpretation of this control is that, at each moment t, the input applied is 

chosen as if optimisation of the criterion Jm over (t, t + T) was the overall objective. 

In order to compute P( t, t + T; F) one must solve at all moments in time the Riccati 

equation backwards from final conditions at t + T given by F. As we have seen from 

the complexity of Algorithm 1 presented in chapter 4, this is not computationally 

feasible. However it is straight forward to realize that in the case of time-invariant 

systems, the receding horizon method yields a "constant" feedback gain given by 

(5.7) 
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where PT can be obtained from 

~P _ -PA - ATp + PBR-1BTp - Q; 
dt 

P(t+T, t+T; F) F (5.8) 

The last equations makes use of the same assumption used in Algorithm 2, that is, 

the system is assumed to be time-invariant for short intervals TUn < T to overcome 

the excessive computational requirements. 

The feedback control law must provide asymptotic stability for the closed-loop 

system. Therefore, there must be a finite horizon T which will ensure stability for 

the system. For the particular case where F = 0, Q > 0, R > 0, it is well known 

that: (see Kwon [29]) 

"If the pair (A, B) is controllable, then there exists a finite horizon T such that the 

moving (receding) horizon control law stabilises the system". 

For large enough T, the value pet, t + T; F) approaches the steady state law 

pet, 00; F). Therefore, the actual control used in practise differs only slightly from 

the steady-state feedback law (P(t, 00; F)), which is known to stabilise the time­

varying systems. K won [29] and Shaw [50] have presented a method for choosing the 

horizon length T for the case of F = 00, and Thomas [52] suggests that T should be 

made roughly equal to the rise-time of the system. 

5.3 Real-time Receding Horizon Algorithm 

The receding horizon method can be implemented using a procedure similar to Algo­

rithm 1 where to reduce the computational requirements, the aircraft equations are 

assumed to be linear and time-invariant for short intervals TUn < T; the algorithm 

presented below may be used 

Algorithm 3 
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Step 0 : Initialise Uc , t, T, Tli7U h, and Xt/.. 

Step 1 : linearize the system equations about the current state X(t) and the control 

Uc (the centre position for the control); set t = t. 

Step 2 : Integrate the Riccati equation from t + T to t and store the gain matrix 

G = -R-IBTPT. 

Step 3 : Calculate the control for the next step as follows: 

e(t) - X(t) - Xt/. (5.9) 

6'1.£ - Ge(t) (5.10) 

u(t + h) - Uc + 6'1.£ (5.11 ) 

t - t + h (5.12) 

Step 4 : Apply the control u(t) to the system and obtain the new state X(t). 

Step 5 : If t ~ t + Tli7U go to Step 1; else, go to Step 3. 

It should be noted that the nonlinear system equations are linearized about the 

control Uc instead of the current control u(t) to prevent the integral action in the 

calculated control ('1.£( t + h) = '1.£( t) + 6'1.£) which causes undesired response such as 

control saturation and excessive switching. That is, we calculate at each step the 

actual amount of control and not the change required to the current control as in 

Algorithm 2. Algorithm 3 can be implemented in real-time using the transputer 

network shown in Figure 5.1, in which 

1. Processor Po is the system simulator (it performs step 4 of the algorithm). 
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Figure 5.1: Transputer network for Algorithm 3 

72 



2. Processor PI acts as the controller providing the control updates every 5 mil-

liseconds using the current value of the gain matrix G (it performs Step 3 of 

the algorithm). 

3. The network of processors P2 to P5 are used to update the gain matrix G (to 

perform the steps 1 and 2 of the algorithm). 

The next two sections discuss the computational aspects of Algorithm 3 when 

it is used to provide the control inputs to the aircraft. The sample period used is 

h = 5 ms, the horizon depth is T = 5 s, and the Riccati equation is integrated in 

steps of h. = 20 ms. 

5.4 The Longitudinal Motion 

The aircraft longitudinal motion is modelled using the equations (4.2) to (4.7). Fol­

lowing the same procedure as in chapter 4, the computational timings can be esti­

mated. The number of integration steps N. will be 

T 5 
N, = h. = 20 X 10-3 = 250 (5.13) 

Using equation (4.55) we can estimate the execution time required to perform Steps 

1 and 2 of Algorithm 3 (which is made equal to the length of the linearization interval 

Tlin)i This is calculated to be the following: 

One processor (Figure 5.1 a): 

Tlin = 255.13 ms 

Two processors (Figure 5.1 b): 

Tlin = 200.12 ms 

Four processors (Figure 5.1 c): 

Tlin = 159.71 ms 
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The actual times found in real implementations are as given in Table 5.1. From 

these results, it is clear that the feedback gains can be updated every 295, 212, and 

169 milliseconds with respect to the above three cases respectively. 

Processor PI needs to communicate with Po, that is, it transmits the control 

and receives the system states. It also calculates the control and monitors the gain 

updating processor{ s). The maximum execution time in PI is then 

Communications with Po = 8 x team = 88 p.s 

Communications with P2 = 18 x team = 198 p.s 

Control updating = 12 x tm + 14 x to. = 47.9 p.s 

Total time = 333.9 p.s 

The total time required by the controller processor (Pd is very small when compared 

by the time constraints of 5 milliseconds which is the sample period. This leaves 

some extra spare capacity in PI to perform other tasks as we will see in the following 

chapters. 

5.5 The Lateral Motion 

Now we consider the complete set of equations of motion for the whole aircraft given 

in chapter 3. If we use the following assumptions 

w -

Q -

U -

W=O 

Q=O 

Uo 

(5.14) 

(5.15) 

(5.16) 

Then, the aircraft lateral motion can be described by the following set of nonlinear 

equations 

F" V = --RUo 
m (5.17) 
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P 
Rm + l:uR 

(5.18) -
I: 

R Ym +1:t:r.P 
(5.19) -

1r. 

<P - P (5.20) 

'l1 Rcos~ (5.21) 

where the notations, forces and moments are again as that defined in chapter 3. The 

above nonlinear equations can be represented as 

x = I(X, u) (5.22) 

where X = [V, P, R, <P, 'l1]T is the state vector, and u = [e, (]T is the control 

vector. The above equations can be linearized about an operating point (Xo, Uc) to 

glve 

e = Ae(t) + Bf1u(t) 

where 

e(t) - X(t) - Xo 

~u(t) - u(t) - Uc 

and the matrices A, B will be in the form 

FYlI 0 -Uo gcost 

Rmll Rm'P Rm" 0 

A(t) = Ymll Ym'P Ym " 0 

0 1 0 0 

0 0 cost -Rsint 
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0 

0 

0 

0 

0 

(5.23) 

(5.24) 

(5.25) 

(5.26) 



o Fy( 

R.ne R.n( 

B(t) = Yme Ym ( 

o 0 

o 0 

(5.27) 

where Fy'U = of''J0'U, ... etc, are obtained by differentiating the corresponding equa­

tions presented in chapter 3. Following the same procedure as in chapter 4, the 

computational timings of Algorithm 3 when used to provide the lateral control, are 

as follows 

n = n(n + 1) = 15 
2 

One processor (Figure 5.1 a): 

T j 164t" + 12ltm = 522.95 JJ.S 

Tg - 15tIJ + 25tm + 15td = 108.75 JJ.S 

Tcom - 0 

Tz 2700 JJ.S 

TZin Tz + N,{TJ + Tu,,) + Tg + Tcom = 147.42 ms 

where TJ, Tu", Tcom, Tz are as defined in chapter 4, Tg is the estimated execution 

time to perform the gain equation G = _R-l BT PT at the end of each Riccati 

integration phase, and TUn is the time required to update the lateral gains. 

Two processors (Figure 5.1 b): 

TJ - 6lt IJ + 83tm = 268.6 JJ.S 

Tu" 9(tm + tlJ) = 33.3 JJ.S 

Tg 15t" + 25tm + 15td = 108.75 J.LS 
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Tcom. - N,(iitcom.) = 41250 J.£S 

TI - 2700 J.£S 

TZin - 11 + N,(T, + T",,) + Tg + Tcom. = 119.53 ms 

Each processor has a copy of the linearization routine and the gain matrix G is 

calculated in processor P2 because no significant improvement can be achieved in 

partitioning these operations due to communication cost. The Riccati equation is 

partitioned (as equally as possible) such that processor P2 updates the gains 

[P03, P04, P13, P14, P23, P24, P33, P34, P44] 

as well as calculating the gain matrix Gj processor P3 updates the gains 

[Poo, POl! P02, Pn, P12]. 

Four processors (Figure 5.1 c): 

The equations are partitioned such that, processor P2 updates the gains 

[P03, P13, P23, P33] and calculates the matrix Gj P3 updates 

[pQ4, P14, P24, P34, P44]j P4 updates 

(P02, P12, P22]j and P5 updates (poo, Pol, Pn]. 

The total execution time is obtained as follows 

TJ 34ta + 45tm = 147.25 J1.s 

T"" - 4( tm + tG) = 14.B J.£S 

Tg - 15tG + 25tm + 15td = 10B.75 J.£S 

Tcom. - N, (23tcom.) = 63250 J.£S 

Tz 2700 J.£S 

TZin Tz + NII(T, + T",,) + Tg + Tcom = 106.57 ms 

The actual execution times are shown in Table 5.1. 
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Table 5.1: Execution times for Algorithm 3 

Execution time T'in (ms) 

Network Longitudinal Lateral 

Estimated Actual Estimated Actual 

1 processor 255.13 295 147.42 190 

2 processors 200.12 212 119.53 130 

4 processors 159.71 169 106.57 113 

5.6 Simulation Results 

Algorithm 3 is implemented in real-time to process the longitudinal and lateral con­

trol laws using the transputer network shown in Figure 5.1. The following design 

parameters are used: 

Horizon T = 5 s, 

integration step h, = 20 ms, 

and sample period h = 5 ms. 

The weighting matrices for the longitudinal controller are: 

Q'ong = diag[1.3, 0.6, 200, 40, 0.004, 0.00002], 

R10ng = diag[8, 2], 

F'ong = O. 

For the lateral controller the corresponding matrices are: 

Q'at = diag[0.008, 1, 20, 30, 200], 

R'at = diag[20, 20], 

F'at = o. 
For the longitudinal motion, the initial and the desired states are: 

Xo = [150, 0, 0, 0, 4900, 6605] 
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Xd = [150, 5, 0, 0.033, 5000, 6605] 

and for the lateral: 

Xo = [0, 0, 0, 0, 0.2] 

Xd = [0, 0, 0, 0, 0] 

The "sub-optimal" controlled trajectories are shown in Figure 5.2 for the lon­

gitudinal and Figure 5.3 for the lateral motion. We can see from these trajectories, 

that the real-time control performances are adequate. The setting of the weight­

ing factors (Q, R) determines this performance, and so the selection of the (Q, R) 

matrices is quite critical. We will discuss this in the next chapter. 
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Chapter 6 

Selection of Weights in 

Time-varying Optimal Flight 

Control 

6.1 Introduction 

In the previous chapters, we have discused the design of optimal controllers for 

nonlinear time-varying aircraft. The critical factor in such designs is the choice of the 

performance index, and in particular, the choice of the weighting elements to achieve 

the desired responses. In this chapter, we present a design procedure for the selection 

of these weights. This is quite a complicated task since the performance assessment 

is usually very subjective with possibly many points to take into consideration such 

as percentage overshoot, steady-state errors, settling times and rise-times. 

The commonest cost function in current use is a quadratic function taking the 

form 

mJn iT [xT (t) Qx (t) + u7 (t) Ru (t)] dt (6.1 ) 
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where Q is an n X n symmetric positive semi-definite matrix, R is an m X m symmetric 

positive definite matrix for a system of state x(t), with dimension n, and m inputs 

U = [Ul,'" ,um]T. 

In problems of this kind it is well known that the xTQx term relates to system 

error and 117 Rv, relates to control effort. By varying Q and R, the emphasis given 

to the individual terms can be varied for different objectives. For example as Q 

is increased, tighter regulatory performance is sought, which usually requires larger 

controlling signals. Similarly as R is increased, control effort is penalised more, and 

so large control signals are avoided, but this generally leads to worsening of the 

errors. It is therefore clear that a proper balance between Q and R needs to be 

reached to ensure that good error regulation is obtained but without using excessive 

control. 

Now although the theory of optimal control is well documented (see for example 

Banks [4]; Bryson and Ho [10]), and leads to the determination of optimal solutions 

for general problems, the proper formulation of such problems is not. The Q and 

R matrices in the objective function (6.1) are usually found by following essentially 

an educated trial and error approach until an adequate response is obtained. Such 

a procedure for selecting the weights can get very complicated when multivariable 

systems are being considered, and where there is significant cross-coupling between 

the various subsystems. Moreover, for time-varying systems, a particular set of Q 

and R matrices which give a satisfactory response at a given operating condition may 

not yield good behaviour at another operating point; hence the Q and/or R weights 

may need to be made time-varying and dependant upon operating conditions. 

These difficulties, together with the significant computational demands for on­

line control, and the level of mathematical analysis required, have restricted the 

widespread adoption of optimal control techniques in practical applications, and it 
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is felt that better design methodologies are required. In this chapter a practical 

systematic approach is suggested which enables the Q and R matrices to be deter-

mined. We will concentrate on the optimal autopilot design problem to illustrate 

the approach but the method is equally applicable to any multi variable problem. 

As we have seen in chapter 5, a receding/moving horizon control problem has been 

shown to be suitable for handling the time-varying aircraft equations in real-time. 

Here we have the system described by 

e{t) - A{t)e{t) + B{t)Llu{t) 

e(to) - eo (6.2) 

The quadratic cost function J is to be minimised over a fixed interval [to! to + T] for 

some horizon length of T seconds, and 

I1to+
T 

1 J = - [eT(t)Qe{t) + LluT{t)RLlu{t)] dt + _eT (to + T) Fe (to + T) (6.3) 
2 ~ 2 

Here Q, R, and F are symmetric matrices which contain the designed weighting 

parameters. We will a.ssume that Q and F are n X n positive semi-definite matrices 

and R is an m x m positive definite matrix. This is the standard regulator problem 

where the Q, R, and F matrices need to be selected so that the minimising control 

will drive the initial error eo towards the origin in an optimal manner. As already 

discussed the optimal control input that minimises equation (6.3) is provided by the 

following state-feedback law 

for t E [to, to + T] (6.4) 

where P(to) is an n X n matrix-valued function calculated from solving a Riccati 

equation, and TZin < T is the time duration over which time-invariance is assumed 

for the aircraft. 
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6.2 Selection of Q and R 

It is clear that to achieve the desired control performance, the" correct" weighting 

matrices in the objective function have to be determined. There are no rigid guide­

lines which enable such a design, and usually some ad hoc approach is used. In this 

section we present a practical procedure which enables the selection of the Q and R 

matrices so that the overall control performance is as required. From equation (6.4) 

we have 

(6.5) 

where G (to) is an m x n matrix given by 

for t E [to, to + T1in] (6.6) 

at the start of each linearizing interval. The components of the control input are 

therefore calculated by 

for j = 1,2, ... , m (6.7) 

and so each control input LluJ has n gain elements of G associated with it. These 

gains are multiplied by the corresponding state errors to give individual contributions 

to the overall control input signals which need to be applied. As can be seen from 

the above equations, the gain elements of G are effected by the weighting matrices 

Q, R, and F. For convenience we will assume that F = 0 and concentrate on the 

selection of Q and R. The important points to bear in mind when Q and Rare 

being designed include the following: 

1. The Q and R matrices for the given horizon, must be found to achieve a proper 

bala.nce between the terms in the Riccati equation so that an individual compo­

nent term does not dominate the solution. Of course, in certain applications 
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this may be precisely what is required to simplify the design procedure or 

emphasise a particular design objective. 

2. Each gain 9ji should therefore be of "reasonable" magnitude so that its author­

ity (that is the term 9jiei ) will not dominate the resulting control. Also the 9ii 

magnitudes must not lead to excessive control (actuator saturation). Hence, 

in the design procedure, all the weights must initially be roughly the same 

order, and then altered according to the required performance. The authority 

assignment to each gain is clearly system dependant and on the performance 

requirements sought. 

3. When the above aspects have been considered and the elements of Q and R 

have been selected for a given operating point, it is advisable to study the 

system responses to assess the controller's performance. It may be possible to 

make further changes to fine-tune the weights to obtain the desired results. 

4. In some applications the system under study is time-varying, and so the time­

varying characteristics of the gains 9ji have to be established. Do these follow 

the time-varying characteristics of the system? If not the controller needs to 

be made time-varying so that it stays tuned to the system. To determine how 

this can be achieved it is necessary to establish which of the system states 

have the major time-varying influence on the system. The dominant state( s) 

can be found by analysing the time-varying properties of elements in the A 

and B matrices. For example in the aircraft dynamic equations considered 

in this work, the velocity has the major influence on the system dynamics; 

higher velocities means that the elements of B and some elements of A will 

increase. This effects the balance designed for in the optimal flight control. 

The designed values of Q and R (for the operating velocity) must therefore 
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be tested along the full working range of velocities. From our study of the 

aircraft system, we found it difficult to calculate fixed weights which covered 

the entire range of velocities adequately, and hence some elements need to be 

made time-varying. This time-varying nature has to be established so that Q 

and R can be adjusted, on-line, as the operating velocity varies with time. 

In the next section we shall show how the above points can be used to yield 

a suitable procedure for designing Q and R. Although the procedure presented is 

with particular reference to fixed wing aircraft, it can be used as a guide-line for 

other general dynamical systems if some prior knowledge concerning the application 

is available. 

6.3 Longitudinal Motion Controller 

Here we design an optimal control law for the longitudinal motion of the aircraft. 

From equation (6.5) - (6.7) we have 

where the gji's gains are of the form 

-1 
9li - -(F:r:1/Pli + F Z'f/P2i + Pm 'f/1'3i) for i = 1,2, ... ,6 

TU 

-1 
92i -N-YPSi for i = 1,2, ... ,6 

T22 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

Also el, e2," ., es are the state errors, Pij are the elements of the Riccati matrix 

P (to), and Tjj are the elements of the diagonal matrix R. 

Bearing in mind the aspects stated above, the following procedure can be 

undertaken to select the weighting matrices for our aircraft application: 
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1. Choose an operating condition, such as for example, the current state 

Xo = [150,0,0,0,4900, 6605]T , (say) 

and let the desired state be 

Xd = [150,0,0,0.033,5000, 660sf , (say). 

2. Determine suitable working ranges for the states U, W, Q, 8, H, N, and the 

controls 1/, and 'Y. Then select values within these ranges of possible errors for 

each state (say 5% of these values), and determine the average values for the 

control inputs. To give equal emphasis to all the error and control effort terms, 

the diagonal elements of the Q and R matrices can be selected as follows: 

The qii and r jj elements are chosen inversely proportional to the 

corresponding errors and average inputs respectively. Considering 

the longitudinal motion, we have the data shown in the Tables 6.1 

and 6.2. Hence the qii and rjj elements can be chosen initially so 

that 

for i = 1,2, ... ,6 

and 

tLj .. "rjj = 1, for j = 1,2 

Therefore the initial Q R weighting matrices are: 

Qo =diag [0.13, 0.6, 40, 40, 0.004, 0.003], 

Ro =diag [3.85, 2]. 

3. Using these initial Q and R in the optimal controller algorithm, it is possible 

to calculate the gain matrix G at the initial state values Xo. This G is found 
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Table 6.1: Initial qii weighting 

, State Typical 5% value qii 

ei value e'&K 

1 U 150 m/s 7.5 0.13 

2 W 30 m/s 1.5 0.6 

3 Q 0.5 rad/s 0.025 40 

4 e 0.5 rad 0.025 40 

5 H 5000 m 250 0.004 

6 N 6600 rpm 330 0.003 

Table 6.2: Initial rjj weighting 

J Control Range of Control Average r" 13 

Dou' J input Uj .... 

1 TJ -0.36 to 0.16 rad 0.26 rad 3.85 

2 "'( o to 1 0.5 2 

to equal 

[ -0.24 0.27 4.06 14.7 0.025 -0.000006] 
G- (6.12) 

-0.05 -0.004 0.001 0.12 -0.0002 -0.014 

The first row corresponds to the elevator control Do.,., and the second to the 

engine throttle control Do",(. 

4. These initial Q and R result in the responses shown in Figure 6.1 from which 

it is obvious that the responses are unsatisfactory since large oscillations are 

present in many of the responses. The performance index needs to be modified 

and better values for the Q R matrices need to be selected. To ease the design 
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problem and because of the interaction between the two control loops, it is 

possible to consider one loop at a time: 

(a) The aircraft engine rotor speed (N) is seen to be responding poorly to the 

velocity error. The reason for this may be found by examining the gains 

921 (corresponding to the forward velocity U) and 926 (corresponding to 

rotor speed N); if these are multiplied by the respective 5% state errors 

in U and engine speed from Table 6.1 it can be seen that the magnitudes 

of their contributions I 9jiei I to the total control signal are 

921 0.05 x 7.5 = 0.375 

926 0.014 x 330 = 4.62 

This means that 926 dominates the engine throttle control; therefore it 

is necessary to increase the contribution from 921 and/or decrease that 

from 926. In practice this corresponds to increasing qll and/or decreasing 

q66 in the Q matrix until a reasonable compromise is achieved. Suitable 

values for these q,i's were found to be qll = 1.3 and q66 = 0.00002. 

(b) In the elevator control loop, the calculated control !:::'TJ is excessive and 

the elevator is likely to saturate for small errors in the pitch angle e as 

seen by the contribution from 914 = 14.7 x 0.025 = 0.3675; since TJ has 

a maximum limit of 0.36 rad, it is seen that a 5% error in the pitch 

angle causes the elevator to saturate. The situation can be remedied 

by increasing rll so that the sensitivity is reduced. Therefore after one 

tuning phase, the following Q and R are arrived at: 

Q1 =diag[1.3, 0.6, 40, 40, 0.004, 0.00002], 

Rl =diag[8, 2]. 

These weighting matrices do indeed lead to a better response as shown in 
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Figure 6.2. The resulting gains at the initial state for these QR weights 

are 

[ 

-0.088 0.18 
G= 

-0.76 -0.033 

3.09 10.52 0.017 -0.000055] 
(6.13) 

-0.003 0.07 6.2 -0.006 

(c) It can be seen from Figure 6.2 that the forward velocity and engine speed 

responses are now satisfactory, but the responses in aircraft altitude and 

attitude are still unsatisfactory. The bala.nce between the gains g12 to g15 

needs to be adjusted to give a better control performance; how this is 

achieved can be found by analysing the aircraft responses and the gijej 

contributions which form the elevator control. These contributions for 

the respective elements are: 

g12 0.18 x 1.5 = 0.27 

g13 3.09 x 0.025 = 0.077 

g14 10.52 x 0.025 = 0.263 

g15 0.017 x 250 = 4.25 

It is clearly seen that the g13 contribution is significantly smaller than the 

others. This corresponds to the q33 element in Q, and so the effectiveness 

of q33 has to be increased by increasing the magnitude of q33; such rea-

soning leads to the determination of the following Q and R matrices: 

Q2 =diag[1.3, 0.6, 200, 40, 0.004, 0.00002] , 

R2 =diag[8, 2] 

These yields the results shown in Figure 6.3, where it can be seen that the 

performance is reasonably satisfactory, and so suitable diagonal weight-

ing matrices have been obtained. Of course further modifications can be 

made to improve the situation if necessary, but we stop here since the 

procedure has been demonstrated adequately. 
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6.4 Time Variational Effects 

In the previous section, a procedure for selecting the Q R weights for optimally con­

trolling the longitudinal motion of an aircraft operating at some point has been 

presented. Since the system is time-varying, the time dependency has to be ac­

counted for in the optimisation procedure. One practical method of obtaining a 

suitable strategy is to analyse the system equations and determine which states 

have the major influence on the time variational behaviour. From a study of the 

system considered, it was found that aircraft velocity caused the largest changes in 

the system description matrices. Therefore, the optimal controller design needs to 

be tested for different velocities in the working range of the aircraft. The result of 

this assessment showed that the above designed values for Q and R are satisfactory 

only in a small neighbourhood of the chosen operating velocity; as the aircraft ve­

locity changes, the elements of the matrix B (mainly the ones corresponding to the 

elevator) increase significantly thereby disrupting the balance that has been designed 

for in the Riccati equation. It is found that the P BR-l BT P term will have more 

effect than the other terms (for higher velocities), and so reasonable results can be 

achieved if this major effect can be cancelled. Since the change in the P BR-l BT P 

term results mainly from the increase in the elements of B, a suitable correction can 

be obtained by adjusting the weighting matrix R. The time variational behaviour is 

most apparent in the elements of B which are related to the elevator control, hence 

increasing the corresponding R element, that is, increasing rll with velocity will give 

the necessary adjustment. The practical procedure suggested is to simply increase 

the velocity in steps within the operating range and vary ru until a satisfactory 

response is achieved at each range of operational velocity. The experimental results 

of this variation of the optimising rll with aircraft velocity showed that the following 

relation can be derived: 
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rn = -0.0022V,? + 1.802v,. - 212.7 (6.14) 

Equation (6.14) can then be used with each Riccati equation integration to adjust the 

weighting element rn on-line such that the resulting optimising feedback gains are 

adjusted according to the operating velocity; Figure 6.4 shows the system responses, 

for the same state error, at two different operating velocities (150 m/ sand 250 m/ s) 

where it can be seen that both performances are similar; the procedure can therefore 

lead to good aircraft control over a large operating range. Some of the Q elements 

may also be altered in the same way if it is required to compensate for any other 

undesired behaviour caused by the time-varying effects. 

6.5 Lateral Motion Controller 

The lateral motion dynamical equations are given in chapter 5. In the same way 

as for the longitudinal motion, we can design an optimal control law and its corre­

sponding weighting matrices. Here we have X = [V, P, R, t, 'If]T is the state vector, 

'U = [e, (]T is the control input vector, and e is the state error vector. 

From equation (6.5) - (6.7) we have 

where the gains 9ii's are of the form 

(6.15) 

(6.16) 

(6.17) 

(6.18) 

and where, Pi/S are the elements of the Riccati matrix P(to) and rii are the diagonal 

elements of the lateral weighting matrix R. 
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U sing an initial state Xo = [0, 0, 0, 0, 0.2f, a desired state Xli = [0, 0, 0, 0, of, 
and following the procedure presented in section 6.4 for the longitudinal motion, 

suitable Q and R weighting matrices for the lateral controller can also be designed. 

These weightings are 

Q = diag [0.008, 1, 20, 30, 200], 

R = diag [20, 20]. 

and give the control performance shown in Figure 6.5, and a lateral feedback gain 

matrix at the initial state as 

[ 

0.003 0.3 
G-

-0.0042 -0.017 

-0.037 1.24 0.S5] 

1.52 0.33 2.6 
(6.19) 

Again, as for the longitudinal motion case, the effect of time variations on the 

performance of the lateral motion controller need to be taken into consideration. In 

this respect it was found that, as the aircraft velocity increases, the performance 

can be maintained by allowing for extra error in the velocity of side-slip (V); that 

is, keeping the same allowance for the angle of side-slip (/3 = sin- 1 vIVr). This 

corresponds to the weighting element qll which must be reduced as the aircraft ve­

locity increases. As a result of off-line investigations, it was found that the following 

linear relationship for calculating the optimal qll element can be used at different 

velocities: 

(-0.003Vr + 1.25) 
qn = 100 (6.20) 

When this adjustment is made, the lateral control performance, shown in Figure 

6.6, gives similar optimised performances for identical errors at different operating 

velocities. The responses shown are for an error in \lI of 0.2 rad at operating velocities 

of 150 ml sand 250 m/ s. 
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Chapter 7 

Parallel Flight Controller 

Implementations 

7.1 Introduction 

In this chapter the optimal flight controller for the whole aircraft will be considered 

and how the control law computations can be parallelised using various transputer 

networks to achieve real-time performance. 

As we have seen earlier, it is not possible to linearize the aircraft (and update 

the time-varying gains) every 5 ms, but after much longer time intervals dictated 

by the computing hardware. Since the aircraft is a time-varying system, the ap­

proximations may therefore yield poor descriptions - this clearly has consequences 

which are detrimental to the performance of the flight controller. To improve the 

performance, the linearization rate can be increased by using parallel processing 

techniques which allow the overall computing task to be partitioned into several 

sub-tasks that are mapped onto a multi-processor system. A regulator optimal con­

trol problem is considered where the controller is designed to drive initial errors 

towards the origin. The problem can be reformulated in a straight forward way to 
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yield the tracking problem case where the objective is to calculate the optimal flight 

control laws in response to pilot demands. Similar reasoning as for the longitudi­

nal autopilot discussed in chapter 5 is used to arrive at a suitable control strategy 

for the whole aircraft. The cross-coupling effects are assumed to be constant over 

the linearization intervals. It is shown that when the processing is partitioned over 

several processors the linearization time intervals can be reduced to well within 400 

ms second enabling accurate representations of the nonlinear time-varying aircraft, 

and thereby achieving good control performances as compared to the results when 

a single computing device is used. The efficiency of the parallel implementations 

is highlighted by comparing different multi-processor solutions with a uni-processor 

solution. Timings of the multi-processor designs are analysed to study the effects of 

communication overheads, idle times, etc, and how the parallelisation efficiency can 

be improved. 

7.2 The Aircraft Model 

The nonlinear equations which define the motion of the aircraft are given in chapter 

3 and may be put in the form 

X(t) = f(X(t), u(t» (7.1) 

where X = [U, W,Q,9,H,N, V,P,R,t, \lilT is the state vector and u = [17,-y,{,(jT 

is the control vector. These equations can be written in a linearized form to highlight 
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where An, A12 , A21 and A22 , are the partial derivations of the nonlinear function f in 

equation (7.1) with respect to the states, B1 and B2 are the derivatives with respect 

to the controls, :1:1 = [u, w, q, 8, h, n]T is made up of variables related to the longitu­

dinal motion and :1:2 = [v,p, r, cP, 1/J]T has variables connected to the lateral motion. 

Hence An and A21 represents the cross-coupling terms, and if these are absent the 

longitudinal and lateral motions are decoupled and can be handled independently of 

each other. It is well known, see for example Blakelock [7], that the cross-coupling 

terms can be removed by assuming: 

1. the aircraft is in straight and unaccelerated flight and then disturbed by de­

flections of the control surfaces. 

2. the elevator deflection causes only a pitching moment about the OY axis and 

causes no rolling or yawing moments. 

3. the aileron and rudder deflections causes rotations only about the OX and OZ 

axes respectively. 

These assumptions are not strictly valid in many modern aircraft. Furthermore 

the designs are evolving towards aircraft having more weight concentrated in the 

fuselage and their wings are becoming thinner, shorter and hence lighter. This 

weight shift is causing the cross-coupling effects to increase because the magnitudes 

of the moments of inertia in equations (3.21)-(3.23) are changing significantly. As 

more weight is concentrated along the longitudinal axis, the moment of inertia about 

the OX axis, 1'1: decreases while the moments of inertia about the OY and OZ axes 

increase. This phenomena increases the interaction between the longitudinal and 

lateral motions, and can best be seen by examining these moment equations. As 

1'1: becomes much smaller than 1~ and 1z the moment of inertia difference terms 

(Iz - 1'1:) and (I'I: - 1~) become large. Hence if a rolling moment is introduced, it 
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results in some yawing moment and the P(t)R(t)(Iz - I~) term may become large 

enough to cause considerable pitching. Other factors which must be considered 

are the aerodynamic cross-coupling effects. For example, the lateral aerodynamic 

derivatives are proportional to the angle of attack (0), which is dependent upon 

the longitudinal states (i.e, 0 = tan-1 W/U). Also, in the design of standard flight 

controllers, pointwise linearizations of the aircraft are used - this means the aircraft 

may not be in straight and level unaccelerated flight at the linearization instants as 

normally assumed above leading to errors in the models used in the controller design. 

It is clear that the standard assumptions are not always valid and so a more 

general approach is necessary for obtaining improved system performance. In this 

respect we propose to decouple the longitudinal and lateral motions but to assume 

that the cross-coupling effects are constant over the linearization intervals. Equa­

tion (7.2) shows that the longitudinal motion can be separated if we assume that 

the lateral state perturbations, that is [v, p, r, <P, 1/Jf have small values and can be 

neglected. In the same way we can separate the lateral motion equations by neglect­

ing the longitudinal perturbations. Therefore if X is a vector of the state variable 

then 

X(t) = Xo + x(t) (7.4) 

where Xo is the value of the state vector at the linearization instant, x(t) is the state 

vector perturbation. This forms the basis for the decoupling of the aircraft motionsj 

the equations for the two motions are presented next. 

7.2.1 Decoupled Aircraft Motions 

Longitudinal Motion 

When considering the longitudinal motion, the lateral state perturbations are as­

sumed to be small, and so their rates of change can be neglected during an interval 

105 



Tlin between two successive linearizations. Hence V = P = R = ~ = ~ = 0, and 

this leads to the following longitudinal equations (not showing the time dependence 

for convenience): 

U - ~ - QW + (RoVo)* (7.5) 

W - ~ + QU - (PoVo)* (7.6) 

Q - {Pm + (l~ - 1~)PoRo + l~~ (~- p;)} fly (7.7) 

9 - Q cos <1>0 - (Ro sin <1>o)t (7.8) 

H - U sin e - W cos e cos <1>0 - Vo cos e sin <1>0 (7.9) 

IV -
N. + "Y(Nma.~ - N idle )2 - (N - Nidle}2 

idle 4( N - N idle ) (7.10) 

Lateral Motion 

In the same way the effects of the longitudinal perturbations can be ignored by 

assuming if = W = Q = e = if = IV = 0, which gives rise to the following latera.l 

equations: 

V 
Y, (7.11) - - + PWo-RUo 
M 

P - { Rm + (I1/ - l~) RQo + l~~ (R + PQo) } / 1~ (7.12) 

R - {Ym + (I~ - 11/) PQo + I~~ (P - RQo)} / I~ (7.13) 

<1> - P + (Qo sin <1> + Rcos <1» tan eo (7.14) 

w - {Qo sin <1> + R cos <1>} / cos 9 0 (7.15) 

These sets of equations will be used for short time intervals TUn over which the 

aircraft is linearized and suitable optimal control laws designed. It is clear that in 

this way the cross-coupling effects between the two motions a.re a.llowed for, but a.re 

a.ssumed to be constant over the linearizing intervals. For exa.mple when consider-

ing the longitudinal motion, the lateral variables (V, P, R, <1>, w) are assumed to be 
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constant at their values (Va, Po, Ro, to, q,o) when the linearization is performed, and 

vice versa. In the longitudinal equations some of the cross-coupling terms (assumed 

constant) appear as constants, and hence will vanish in the linearization process. 

Other terms however, ego Q cos to in equation (7.8) are combined with the longi­

tudinal terms and will not vanish. In the lateral motion equations all the (assumed 

constant) longitudinal terms are combined with the (assumed varying) lateral terms. 

Therefore (Uo, Wo, Qo, Ho, No) will not vanish in general from the linearized lateral 

equations, and hence they will effect the optimal feedback gains calculated by the 

control algorithm. 

A procedure for handling the cross-coupling terms which vanish in the lin­

earization (and hence are not handled in the control algorithm) in the longitudinal 

equations is possible along the lines indicated below. 

1. The terms marked * in equations (7.5) and (7.6) normally have a small effect 

on the longitudinal motion and can therefore be removed from the equations 

without affecting the performance significantly. 

2. The inertial cross-coupling terms in equation (7.7) are normally the most im­

portant terms. They can be neutralised by applying an equal and opposite 

amount of pitching moment using the elevator. Such a result can be achieved 

by setting 

(7.16) 

3. The term marked t in equation (7.8) can be eliminated by changing the pitch 

rate Q by an amount tl.Q where 

tl.Q = Rtant (7.17) 
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This llQ can be added to the demanded pitch rate Qd causing an error which 

generates (when multiplied by the corresponding feedback gain) an elevator 

control action dependent upon yaw rate and roll angle to keep the pitch angle 

and aircraft height at desired values. 

In this way it is not necessary to wait until significant errors accumulate in the longi­

tudinal states before remedial action is taken since such an action can be computed 

and applied as soon as the errors arise in the lateral attitude angles and rates using 

equation (7.16) and (7.17). In this way these cross-coupling effects can be kept to a 

minimum. 

7.3 Real-time Implementation 

The approach taken here is to formulate an optimal control problem for the complete 

linearized aircraft, separate the motions into the longitudinal and lateral dynamics, 

taking into account some of the cross-coupling effects explicitly and others implicitly 

in the optimal control algorithm, and solve the two "decoupled" subproblems using 

a multi-transputer network in real-time. Algorithm 3, presented in chapter 5, is 

used to provide the control for each motion provided that when is used to control 

the longitudinal motion, the extra terms needed to account for the inertial cross­

coupling ll." from equation (7.16) should be added to the calculated elevator control 

input and the additional pitch rate llQ from equation (7.18) should be added to 

the desired pitch rate as discussed earlier. Clearly for real-time performance all the 

computations have to be performed iteratively within the time scales of the aircraft 

and as already mentioned, a sampling rate of approximately 200 Hz is normally 

needed to achieve satisfactory control; hence Algorithm 3 should be processed to 

provide control updates for the two motions every 5 ms. 
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7.3.1 Single Transputer Implementation 

The aircraft data supplied by British Aerospace was coded in Parallel C to run 

on a single T800 transputer, and as a benchmark to assess the parallel implementa­

tions, the optimal control algorithm was executed on another single T800 transputer 

interacting with the aircraft simulator processor as shown in Figure 7.1. 

Riccati 
Integration 

and 
Ai"craft 

l.i1earization 

Figure 7.1: Single transputer autopilot implementation 

Since the transputers currently available have only two levels of priority, the 

linearization and Riccati integrations for the lateral and longitudinal motions were 

executed as background tasks (non-urgent tasks) and the control updates as fore­

ground tasks (urgent tasks) so that the control signals can be provided every 5 ms 

(see for example Bennett [5]). It was found that real-time performance was achieved 

using an optimising horizon T =5 seconds and integration step size of 20 ms and 

a linearizing updates every Iii1\. =600 ms. This time is quite satisfactory for the 

aircraft system considered. However for some advanced military aircraft with much 

faster dynamics, and which is required to perform complex manoeuvres, much faster 

linearizing rates are required to maintain good system representations at all times. 

To illustrate this aspects for the aircraft under consideration the linearization up-

109 



date rate was dilebrately slowed to show the performance compared with the faster 

update rate. Figure 7.2 shows the responses for 71in =600 ms and T'in. =4 seconds 

when an initial state X ic = [180, 0, 0, 0, 4900, 6615, 0, 0, 0, 0, OjT and a desired 

state Xd = [150, 5, 0, 0.033, 5000, 6615, 0, 0, 0, 0, of are assumed. The lateral 

states are not shown because there is no significant change in them. The figure 

clearly shows that the control action is slower for the 71in =4 seconds case because 

the aircraft linearization is carried out at high velocity, but as time passes the air­

craft velocity is reduced thus changing the aircraft dynamics, but these are not 

followed adequately with the slow linearizing rate and leads to the poorer response. 

The faster update implementation is able to follow the aircraft changes more closely. 

Such poor modelling can lead to situations where instability results. 

In addition fast linearization updates are very useful in instances where as­

pects such as fault tolerance are considered (see chapter 8) and which use analytical 

redundancy to detect and isolate failures. Such applications require fast updates to 

the reference models so that quick and reliable fault detection can occur. 

To improve the situation the linearization update time can be reduced by using 

multiple processor systems, as discussed next. 

7.3.2 Multi-Transputer Implementations 

It has been shown in the previous chapters, that the longitudinal and lateral motions 

of the aircraft can be optimally controlled using a parallel processing approach where 

the linearizing intervals TUn can be made equal to the execution time for Steps 1 

and 2 of the control algorithm (Algorithm 3). Therefore if extra processors are used 

to execute the algorithm, the time interval TUn can be reduced as required. Here 

we extend the results to cover the whole aircraft. A number of different parallel 

implementations are presented and each solution is analysed in terms of its timings 
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and efficiency. 

Two Transputer implementation 

The first multi-processor solution to be presented is obtained by partitioning the 

longitudinal and lateral motions into two sub-tasks which are mapped onto two 

separate processors. The transputer network system shown in Figure 7.3 can be 

used to provide the real-time optimal control solution for this approach. The tasks 

Figure 7.3: Two transputer autopilot implementation 

of the separate processors in this configuration are as follows: 

Transputer Po is the aircraft simulator. 

Transputer PI handles the lateral motion, that is provide aileron (e) and rudder 

(() control actions in its foreground task. Transputer PI performs these control 

updates by using the gains PT calculated by a background task which performs 

the linearizations and solves the Riccati integration, that is Steps 1 and 2 of 

the control algorithm for the latera.l motion. 
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Transputer P2 controls the longitudinal motion of the aircraft, that is provide the 

elevator (1'/) and engine throttle (~) controls. Essentially P2 performs the same 

operations as Pl but for the longitudinal motion. 

Both the lateral and longitudinal transputers (P1 and P2 ) read the complete 

state from the simulator transputer Po so that the dominant cross-coupling effects 

not included in the optimal controller can be allowed for as discussed earlier. For 

a receding horizon interval T of 5 s, and if the integration step used in Step 2 of 

the algorithm is 20 ms then it is found that the lateral Riccati equations can be 

up dated every 215 ms (= TI,ltlt) and the longitudinal ones every 345 ms (= T'l/ong). 

These figures can be further reduced if the linearization and Riccati solution tasks 

are separated and distributed onto extra processors as discussed next. 

Tree Network Autopilot Implementation 

Since the Riccati integration sub-task is performed after the aircraft linearization 

sub-task has been completed, it is not worthwhile to map these two tasks onto sep­

arate processors as they are essentially sequential in nature. It may however be 

useful to distribute the individual sub-tasks onto more processors so that the cycle 

time is reduced. This is not done here but we speed up the cycle rate of the lin­

earization by separating the control calculation sub-tasks and mapping them onto 

a separate transputer as shown in Figure 7.4. The control calculation sub-tasks are 

relatively lightweight and so this transputer (Pt) has significant spare processing 

capacity which can be used in a variety of ways to speed up the overall cycle time. 

For example Pl can be used to share some of the processing for the aircraft lineariza­

tion and/or assisting in the Riccati integration calculations. Another possibility, as 

discussed in chapter 8 is to use the spare capacity to monitor and maintain other 

aircraft functions such as fault tolerance by being able to reconfigure the control 
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Control 
Calculation 

for complete 
aircraft 

Figure 7.4: Tree network implementation 

forces under failure conditions. 

Lateral Motion 

l.orlg!udinaJ Motion 

Using the network shown in Figure 7.4 it was found that the lateral motion 

transputer P'l can update the gains every 190 ms, the longitudinal transputer P3 can 

cycle every 295 ms. The control update transputer Pl requires 993 p.s to perform 

the controlling and communication tasks leaving the remainder of the 5 ms sample 

time to perform "other operations". 

It should be noted that if the transputer P'l and P3 are used together to perform 

linearization and Riccati calculations for the overall aircraft as shown in Figure 7.5, 

that is, not splitting the processing into the longitudinal and lateral parts, then 

the results will not be as good as the tree network implementation of Figure 7.4. 

Here transputers P2 and P3 first solve the linearization task of the two motions and 

then perform the Riccati equation integrations by splitting the job of each motion 

between them. Extra communications are necessary in this implementation and so 

the efficiency is reduced. In this case it was found that P'l and P3 used collectively 

gives a linearization and feedback gains update every 342 rns. 

114 



Control 
Calculation 

, ..... - ..... for complete 
aircraft 

Riccati 
Integration 
and System 
Uneanzation 
forcomplete 

aircraft 

Figure 7.5: "Collective Mode" network implementation 

The processing and communication times are significantly increased if the 

whole aircraft is considered as one optimisation problem due to the larger dimen­

sionality of the problem. The timings for the various parallel implementations dis-

cussed can be broken down into actual computation time, and communication times. 

These are shown in Table 7.1, and Table 7.2 shows the performance of the various 

transputer autopilot implementations. The efficiency of the multi-transputer imple-

mentations are calculated by using 

ffi 
. _ single transputer cycle time 

E clency - I' I . f mu tJ - transputer cyc e tIme x no. 0 transputers 
(7.18) 

7.4 Simulation Results 

The real-time algorithm was coded to run on the various T800 transputer networks 

considered in section 7.3. For the state vector X = [U, W, Q, 0, H, N, V, P, R,~, 'l1f, 
an initial value of X ic = [ 150, 5, 0, 0.033, 5000, 6615, 0, 0, 0, 0, 0.2]T and a de­

sired value of Xd = [ 150, 5, 0, 0.033, 5000, 6615, 0, 0, 0, 0, OjT is assumed, and 
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Table 7.1: Timings for different transputer implementations 

Network Cycle time Processing time Communication time 

Two Tl 215 ms 208.9 ms 6.2 ms 

transputers T2 345 ms 335.1 ms 9.9 ms 

Tree Tl 5 ms 728 J.l.S 275 J.l.S 

network T2 190 ms 189.89 ms 1l0J.l.s 

T3 295 ms 294.86 ms 132 J.l.S 

"Collective Tl 5 ms 728 J.l.S 385 J.l.S 

Mode" network T2 342 ms 242.8 ms 99.2 ms 

T3 342 ms 242.8 ms 99.2 ms 

so the aircraft is required to change its direction by 11.50
• 

The weighting matrices shown in Table 7.3 were designed using the procedure 

presented in chapter 6. 

The optimal trajectories and controls for the multi-transputer implementations 

are shown in Figure 7.6 (the longitudinal motion) and Figure 7.7 (the lateral motion). 

From these we can observe the following: 

1. The elevator positive deflection in the first few seconds is due to the additional 

cross-coupling control /:177, while later on the elevator responds optimally to 
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Table 7.2: Performances for different transputer outopilot implementations 

Network Cycle times Ims Efficiency Spare capacity 

Uni-processor T, = 600 1.0 No 

Two processors T,,'ot =215, 0.87 No 

T" 'emg =345 

Tree network T,,'ot =190, 0.68 Yes 

T','emg =295 

"Collective Mode" network T, =342 0.59 Yes 

a e .. elgJ T bl 73 W· ht s use d' th In t ·1 t e au OplO 

Longitudinal motion Lateral motion 

Q'emg = diag [1.3, 0.6, 200, 40, 0.004, 2 x 10-6] Q/ot = diag[Qll(y"), 1,20,30,200] 

R/ong = diag [rll(y"), 2] Riot = diag [20, 20] 

F'ong = 0 F'at = 0 

reduce the errors in the pitch angle and aircraft height. 

2. The reduction in e even though Q is positive is due to the cross-coupling effect 

from yaw rate and roll angle but it has been kept to a minimum due to the 

additional AQ term of equation (7.17). 

3. The reduction in forward speed U is caused mainly by the positive pitch rate 

and slightly by the cross-coupling term (RV). This reduction in U is remedied 

optimally by a slight increase in throttle control. 

4. The response to an error in the yaw direction (w) is acceptable and the negative 

error in the roll angle (~ ) reduces the angle of side-slip. The amount of roll can 
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be reduced by increasing the weighting elements Ql1, Q33 and ru in the lateral 

motion, but at the expense of increasing the settling time for the yaw angle 

heading. 

Overall, the results shown in Figures 7.6 and 7.7 are adequate. Hence the 

linear time invariant aircraft model, and the cross-coupling assumptions are valid 

and useful when considering problems of this kind. 

It has been shown that good performance levels are possible by splitting the 

computational task functionally into smaller sub-tasks which are processed by dif­

ferent processors. The individual processing devices can be configured into suitable 

architectures for optimising the computations for the application being considered. 

It is imperative that such flexibility be available for the effective employment of 

parallel processing techniques to a wide variety of applications. 

120 



Chapter 8 

A Fault Tolerant Optimal Flight 

Control System 

8.1 Introduction 

The various real-time distributed optimal autopilot designs, presented in chapter 7, 

allow a viable design methodology. The methods ensure that each element in the 

control loop performs to required specifications using suitably selected weighting 

matrices for the "decoupled" longitudinal and lateral problems. The control algo­

rithm, although allowing good performance, is not designed to efficiently exploit the 

resulting control power if the primary control surfaces become inoperative due to 

failures in the aircraft. Such issues are important in military aircraft systems and 

hence lead to very stringent reliability standards that dictate extensive redundancy 

in the hardware. This extra hardware results in additional cost but reduces the 

mean time between failures. 

Most aircraft have excess control power which can be used when required; this 

excess power can allow an alternative to the duplication or triplication of the control 

linkages, and such an approach is taken in this paper to give rise to a fault-tolerant 

121 



autopilot design. Although a level of redundancy is inevitable in a realistic design, 

we show that it is possible to reconfigure and distribute the forces and moments 

of a failed control surface to the remaining functional surfaces. In this way good 

control performance can be maintained without resorting to redundancy in the ac­

tuator and servo hardware. The available aircraft mathematical model is used to 

design a method for effective fault-detection and identification of failures in control 

surfaces. This is performed using "digital logic" that compares state predictions 

with actual sensor measurements taken from the aircraft so that failures in control 

surface operation can be detected and hence acted upon. When a fault is detected 

it is necessary to distribute the failed control surface forces to the remaining, still 

functional, surfaces. Such a result is achieved by using control reconfiguration that 

allows redistribution of the control inputs taking the failure into account. The air-

craft model provided by British Aerospace did not include split controlling surfaces 

- only differential ailerons e, collective elevator T'/, single rudder (, and one engine 

throttle control 'Y, were available. In order to be able to apply the control recon­

figuration to the aircraft, it is necessary to modify the model so that split elevator 

and ailerons can be used when required. For example, if the aileron fails it is then 

possible to use the left and right elevators differentially to produce a rolling moment. 

Under normal conditions, we have the situation shown in Figure 8.1 which is 

the ordinary optimal autopilot presented in chapter 7. Here the aircraft is linearized 

about some point to give: 

(8.1) 

or 

x = Ax{t) + B6u{t) (8.2) 

122 



nded Cerna 
l",ut 
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u(t) 

Actuators Ai rcraft System 
-

Sensors 

Figure 8.1: Original optimal flight control system 

where as before Xl = [u, w, q, 8, h, nf is the longitudinal motion state, Xl = [v,p, r, <p, 1/If 
is the lateral motion state, and ~ u = [17, ')', e, (f are the control inputs. We have 

seen that a receding-horizon optimal control law can be computed for an aircraft sys­

tem, in real-time, using a multi-transputer network. Here we extend this autopilot 

design to enable a degree of fault-tolerance. 

Under a failure condition, assuming the failed surface is locked to the centre 

position, that is, the input force to the aircraft from this surface is zero, the control 

signals are reconfigured using reconfiguration matrices so that the new system is 

as close to the original non-failed system as possible. The block diagram of the 

proposed fault-tolerant solution is shown in Figure 8.2, and which we will discuss 

next. 
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Figure 8.2: Reconfigurable flight control system 

8.2 The Aircraft Optimal Control Law 

Equation (8.1) shows the linearized form of the coupled aircraft equations. As we 

have seen in chapter 7, the aircraft two motions can be "decoupled" and we can 

design an optimal control law for each motion which will be 

(8.3) 

(8.4) 

where the subscripts "long" and "lat" denote the longitudinal and lateral motions 

control law which are discused in the previous chapters and so ~uion.g = [17, ,]T and 

~Ui4t = [e, (V. The modified control input vector is as follows: 
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Therefore only the matrix B in equation 8.1 will be changed to become 

~ ~ 0 h{ .. 11{1 0 

~ ~ 0 i'l{ .. 12{1 0 

tr tr 0 13{ .. 13{1 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

[ Bu ~12 ] = Bo= 0 0 Is-, 0 0 0 (8.5) 
,821 B22 

0 0 0 0 0 h( 

IS'f/r IS'f/1 0 l¥ -l¥- Is( 

19'f/ .. 19'f/1 0 Lr -Lr 19( 

0 0 0 0 0 0 

0 0 0 0 0 0 

For the unimpaired aircraft there will be no effect from the submatrices Bl2 and 

E21 due to symmetry. Therefore if we examine the term P BR- I BT P in the Riccati 

equation (5.8) we will find the new optimal control problem (with the modified 

control) is equivalent to the previous one provided that the (2x2) weighting matrices 

RZong and RZa.t become (3x3) defined as follows: 

- . rn rn T 
RZong = dlag[T' T,r22] 

- . rn rn ]T 
R'a.t = dlag[T' T' r22 

where rii's are the corresponding diagonal elements of the matrices R'ong and R'a.t. 

The Riccati solution of the new problem will give the same gain matrices P'ong and 

P'a.t and only the feedback gain matrices will change to be 

(3 x 6) (8.6) 

(3 x 5) (8.7) 

Hence, the results obtained in the previous chapters can be used to calculate the 

new feedback gains. 
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8.3 Failure Detection 

It is evident that before remedial action can be taken any fault present needs to 

be detected and isolated. The proposed solution of the failure detection problem 

is ba.sed on the reference model approach used in observer theory, see for example 

Patton [41]. An observer used for fault monitoring can be designed using eigen­

structure assignment such that the eigenvalues of the closed-loop observer matrix 

are chosen not only to provide good state estimation but also to let certain faults 

manifest themselves in the observer/filter residuals. Therefore, an aircraft failure 

can be identified by using a state observer constructed from a reference model in 

conjunction with sensed aircraft data as shown in Figure 8.3. The observer matrix D 

x(t) 

State Estimate 

c -
m 

A(t) -
~ ,Y 

+ Output 
D 

Error 

z(t) u(t) 
System ~--------~---~ 

Control Input Output 

Figure 8.3: State estimator for fault detection 

is normally chosen so that the eigenvalues of (Am. - DCm.) are stable and that good 

state estimates are obtained, where the "m" subscripts denote that model matrices 

are being considered. However, in the present application, the primary concerns are 

that a stable observer be designed and certain failures be accentuated in the errors , 
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defined by 

>'(t) = z(t) - OmX(t) (8.8) 

The triad (Am, Bm, Om) is assumed to accurately describe the aircraft model under 

normal unfailed conditions, and so (Am, Bm, Om) ~ (A, B, 0) and the subscripts can 

be omitted for convenience. Under failure conditions the aircraft can be modelled 

by 

z(t) - Ax(t) + B6u(t) - b,6u,(t) 

z(t) - Ox(t) 

(8.9) 

(8.10) 

for t ~ to, where bi is the ith column of B relating to the failed component of the 

input, and to is the (unknown) time of failure; hence an off-failure in the ith control 

input is modelled such that u, does not affect z(t). The observer/filter equation will 

be 

~(t) = Ax(t) + B6u(t) + D>.(t) (8.11) 

There are many techniques for designing failure sensitive filters, see for example 

Willsky [55]; one method is to choose the observer matrix D so that particular failure 

modes manifest themselves as residuals which remain in a fixed direction or plane. 

To illustrate this consider the case when 0 = In, so that the differential equation 

for the residuals is 

~(t) = [A - D] >.(t) - b,6ui(t) (8.12) 

If D = SIn + A, where 6 > 0, it is straightforward to show 

b·6u· ( ) >.(t) = e-c5(t-to},\ (to) - T 1 - e-c5(t-to} (8.13) 

Hence as the initial conditions die out, '\(t) maintains a fixed direction -b,6u, under 

failure conditions. Hence in this case a fault can be detected and alarms sounded 
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when I A(t) I~ e, for some e > o. It is obvious that the state estimator (8.11) is 

asymptotically stable as the eigenvalues of (A - D) have negative real parts. For 

good fault-tolerance the values of ~ and e have to be chosen carefully; small ~ values 

correspond to good fault detection since they lead to large >"s, but also to poor state 

estimation since the observer dynamics are slow; small e values lead to false alarms, 

whereas large values give reductions in the fault detections - clearly a compromise 

needs to be reached; both ~ and e need to be small and this is only possible if the 

estimation properties of the observer is good. 

The problem with the above approach is its restriction to deterministic systems 

which are linear and time-invariant in their unfailed states. For our nonlinear time­

varying aircraft, the filter reference model is updated in periods of T'in with the 

feedback gains (see chapter 7). Therefore the linear time-varying model used in the 

filter can closely describe the aircraft system and give satisfactory results. However, 

the approximations used in the linearization process and if long T'in periods are used 

can lead to poor performance. To improve the state estimation and hence the filter 

performance equation (8.11) can be modified to be 

&:(t) = I(x(t), u(t)) + D>.(t) (8.14) 

where 1(.) represent the aircraft nonlinear equations and the matrix D for the two 

cases (for the linear time-varying and the nonlinear filters) will be 

D = 81 +A (8.15) 

and where A is the local linear representation to the aircraft system which is to be 

updated every TUn seconds. In the nonlinear filter case, 8 and e may be kept small 

to improve the filter performance. 

To reduce the computational complexity of our filter we also use a reduced­

order observer/filter in which we only use the residuals of the q, p, r states since these 
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are directly affected by the above controls; it is therefore sufficient to detect these 

residuals to enable isolation of any failure. That is, we estimate three states instead 

of eleven. Therefore 

a.nd letting 

s - [q,p,rf 

x - [1.£, w, q, fJ, h, n, v,p, r, tjJ, .,p]T 

5: - [1.£, w, q, fJ, h, n, v,p, r, tjJ,.,pf 

our observer/filter equations will be 

~(t) = A5:(t) + Bu(t) + [».(t) linear filter 

.i(t) = /(5:(t) + u(t)) + jj~(t) nonlinear filter 

(8.16) 

(8.17) 

(8.18) 

(8.19) 

(8.20) 

(8.21 ) 

where ~ = s - s, A is the (3 x 11) matrix consisting of rows 3, 8 and 9 of the A 

matrix, B is the (3 x 6) matrix consisting of rows 3, 8, 9 of the B matrix, f(.) is the 

corresponding three nonlinear moments equations, and jj is given by 

f3q h, hr 
jj = SI + I I I J8q J8, J8r 

/9 q /9, /9 r 

(8.22) 

where SI = diag [Su, S22, S33] a.nd /ia. are the corresponding elements of A. As soon 

as one of the elements of ~ exceeds e an alarm is raised. In this work we are 

not considering the effect of disturba.nces on the three states (Q, P, R)i this will be 

considered in future work. 

Having detected a fault the problem has to be isolated, that is, it is necessary 

to determine which actuator has failed. Such fault isolation can be achieved by using 
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digital logic. Here we are concerned in detecting any failures in the control actuators 

1/r,'1!' er, {" and ( (where the subscripts relate to the left and right surfaces of the 

modified aircraft). It is easily seen that any fault can be isolated by analysis of the 

elements of Aj the element which exceeds e first corresponds to the failed control 

while the other elements will be shifted into some direction depending on the failure. 

Thus the element of A which goes larger than e, together with the signs of the other 

elements and the applied controls gives an indication of which control has failed. 

For example, when I Aq I~ e, one of the elevators 1/r or 1/1 must be in failure. To 

determine which one has failed, it is necessary to check the signs of Ap and the 

elevator deflections as required by the controller. If it is required that the elevators 

be at negative deflection at the moment when the alarm is raised, and Ap is positive, 

then the left elevator has failed and vice versa. In the same way we can detect and 

isolate aileron failures while rudder faults are isolated when only I Ar I~ e. 

8.4 System Reconfiguration 

Reconfiguration of the flight control law after effector failure is studied by several 

researchers, see for example Ratton [45], [46], McLean [32], and Russ [49]. The 

usual objective is to obtain a gain reconfiguration matrix so that the output of the 

reconfigured system is as close to the original unfailed system as possible. In our 

work, to simplify the analysis it will be assumed that when a failure occurs, the 

control surface is locked to the centre position, that is, the input to the aircraft from 

the failed surface is zero. To implement reconfiguration of the control signals, it is 

necessary to compute the gain reconfiguration matrices which distribute the forces 

and moments of the failed surface to the remaining, still functional, surfaces. This 

needs to be done for all possible faults so that in practice the reconfiguation can 

be achieved as a gain scheduling algorithm to apply the appropriate reconfiguration 
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matrix. In the fully functional aircraft case the gain matrix of the unimpaired aircraft 

is used. 

As discussed in the previous chapters, an optimal autopilot for the linearised 

aircraft 

z(t) = Ax(t) + Boll.ii.(t) (8.23) 

is possible using ll.ii. = Goe(t), where Go is the unimpaired (or original) optimal 

controller gain matrix obtained by solving the Riccati equations and e is the error 

in the system states defined by e = X - X d • The component of z due to the control 

inputs is given by the term BoGoe(t). When a fault develops and the aircraft is 

impaired, the feedback matrix must be altered (reconfigured) and the :i: control 

component becomes BIG Ie( t), where the subscripts" 1" denote impaired matrices. 

It is clear that for the aircraft system to be unaffected by the impairment, we must 

have 

BrGr = BoGo (8.24) 

Therefore equation (8.24) provides a method of determining the unknown gain ma-

trix Gr namely 

Gr = BtBoGo (8.25) 

where Bt is the pseudo-inverse of matrix Br, see Noble [39]. If n > m, that is, the 

state dimension is greater than the number of control inputs then the solution of 

equation (8.24) which minimises the sum of the squares of the errors J = rT r can 

be used, where r = BoGo - BrGI. This gives 

( 
T )-1 T Gr = BI BI Br BoGo (8.26) 

Since the various components can have different ranges and different limits, a weighted 

least-squares error estimate, or normalisation of the values by their physical limits, 
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can be used. In these cases equation (8.24) is modified to W BrGr = W BoGo which 

yields 

(8.27) 

where W is a weighting matrix which needs to be designed. From equation (8.26), 

equation (8.27) can be written as 

(8.28) 

where H = WTW. Defining the reconfiguration matrix to be 

(8.29) 

Equation (8.25) can be solved by minimising the error J = rT r + Gj KGr to give 

the solution 

(8.30) 

Here two weighting matrices H and K have to be designed, where H is used to 

optimise equation (8.24), and K is used to constrain the amplitude of the elements 

of the required control gain matrix Gr (see for example McLean [32]). Then the 

reconfigured feedback gain matrix will be 

Gr = MrGo (8.31 ) 

The reconfiguration matrices Mr can be computed off-line for different failure con­

ditions and the correct one utilised as necessary on-line. 
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8.4.1 Calculation of the Reconfiguration Matrices 

The aircraft equations were linearized about some operating point and the control 

matrix Bo is found to be 

0.07 0.07 0 -0.17 -0.17 0 

-6.28 -6.28 0 -9.8 -9.8 0 

-5.8 -5.8 0 0.7 0.7 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

Bo= 0 0 1477 0 0 0 (8.32) 

0 0 0 0 0 1.9 

-3.0 3.0 0 -12.2 -12.2 0.04 

0 0 0 -0.1 0.1 -2.04 

0 0 0 0 0 0 

0 0 0 0 0 0 

To avoid the difficulties associated with the solution of equation (8.29) and (8.30), 

which result from the weighting matrices H and K, another approach of reasoning 

logic is used to design the reconfiguration matrices M/ as follows: 

1. The gains of the failed surface are to be given to the remaining one; if the two 

control surfaces are failed then its gains must be distributed to the remaining 

control surfaces that are able to replace them. 

2. The effect of loosing symmetry must be removed such that equation (8.24) 

holds. 

3. The elements of MJ is to be calculated by comparing the effectiveness of the 

failed and the remaining surfaces and then adjusted using simulation tests. 
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Therefore the values of the reconfiguration matrices for the failures considered are 

as given below: 

0 0 0 0 0 0 1 0 0 -ml 0 0 

1 1 0 0 0 0 0 1 0 -ml 0 0 

0 0 1 0 0 0 0 0 1 0 0 0 
M/,Y/r = MI,e .. = 

ml 0 0 1 0 0 0 0 0 0 0 0 

-ml 0 0 0 1 0 0 0 0 -1 1 0 

0 0 0 0 0 1 0 0 0 m3 0 1 

1 0 0 0 0 -m" 1 0 0 me 0 0 

0 1 0 0 0 m" 0 1 0 0 me 0 

0 0 1 0 0 0 0 0 1 0 0 0 

MI" = M/,e"H, = 
0 0 0 1 0 ms 0 0 0 0 0 0 

0 0 0 0 1 -ms 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 

1 1 0 -2m2 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 1 0 0 0 
MI,e .. +'I'JI = i MI,'7"+'7' = 

0 0 0 0 0 0 -mr 0 0 1 0 0 

0 2ml 0 -1 1 0 0 -mr 0 0 1 0 

0 0 0 0 0 1 0 0 0 0 0 1 

Where the mi elements are calculated in the following way: 

l. TJr failure: 

(a) The new gains of the remaining elevator (9'7') must be doubled, that is 

9'7' = g", + g" ... 
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(b) The roll effectiveness of the left elevator is to be cancelled using the 

ailerons, therefore 

where 

Roll effectiveness of '1r 3 
ml = R 11 it t' f ·1 = -24 = 0.123. o e ec 1 veness 0 al erons .4 

However simulation tests show that a better performance can be achieved 

using ml = 0.02. 

(c) The yaw effictiveness of '1l is neglected. 

2. ~r failure: 

( a) The gains of the remaining aileron are doubled 

(b) The pitch effectiveness of ~, is to be cancelled by the elevators, therefore 

9'1r -

9",1 - m2ger; 

Pitch effectiveness of ~r = 0.7 = 0.06. 
Pitch effectiveness of elevators 11.6 

( c) The yaw effectiveness of ~, is to be cancelled by the rudder, therefore 

9, + m3ger; 

Yaw effectiveness of (r = ~ = 0.05. 
Yaw effectiveness of rudder 2.04 

3. (failure: 

There is no other rudder surface, therefore the rudder gains are to be dis-

tributed to the ailerons and the elevators to produce a bank angle such that the 
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starboard weight component produces the necessary yawing moment. therefore 

ge, - ms9C; 

Yaw effectiveness of , 2.04 
- =-=20' Yaw effectiveness of elevators 0.1 I 

Yaw effectiveness of , _ 2.04 _ 

Y sr' f'l - 0 2 - 10. aw euectIveness 0 aI erons . 

Simulation tests show that a better performance can be achieved using m. = m5 = 1. 

4. ((.,. + ez) failure: 

The gains of the failed ailerons are to be given to the elevators to enable them 

to work differentially to produce the required rolling moment. Therefore 

g""r - 9'1r + mager; 

g'l' - 9'1' + mage,; 

ma -
Roll effectiveness of one aileron = 12.2 = 4.06. 
Roll effectiveness of one elevator 3 

5. ((.,. + 111) failure: 

(a) The gains of the remaining aileron and elevator are to be doubled. 

(b) The pitch effectiveness of the left aileron and the roll effectiveness of the 

right elevator have to be cancelled. Therefore 

6. (1].,. + 111) failure: 

The gains of the failed elevators are to be given to the ailerons to enable them 
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to work collectively to produce the required pitching moment. 

gel - gel - m7grll ; 

Pitch effectiveness of one elevator 5.8 
m7 Pitch effectiveness of one aileron = 0.1 = 8.3. 

8.5 Simulation Results 

To achieve real-time performance the above fault-tolerant design can be implemented 

on the transputer network shown in Figure 8.4. Transputer Po is the aircraft simula-

Control 
Calculation 

forcomplete 
aircraft 

Figure 8.4: Transputer network for aircraft control 

Lateral Motion 

longi1udinal Motion 

tor. Transputer PI handles the control tasks, that is, it provides ailerons, elevators, 

rudder and engine speed controls, the failure detection and isolation task, and the 

reconfiguration of the feedback gains according t9 the failure. Pi receives the longi­

tudinal and lateral feedback gains as well as the elements of the filter matrices (A, B I 

and D) from transputers P2 and P3 at intervals of 295 ms and 190 ms respectively. 
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Transputer P2 performs the aircraft linearization and solves the Riccati equation for 

the longitudinal motion and supplies PI with the longitudinal gains and some of the 

elements in (A, iJ, jj) . Transputer P3 performs the same operations as P'J but for 

the lateral motion. This is when a sampling rate of 200 Hz with a horizon length of 

5 seconds is used. Table 8.1 shows the execution times taken for the different tasks 

performed by transputer PI for the linear time-varying filter and the nonlinear filter 

cases; this shows that the total time is well below the sampling period of 5 ms. The 

Table 8.1: Transputer PI timings 

Computational task Execution time JLS 

Linear Nonlinear 

filter filter 

Control calculations 728 728 

Fault detection + isolation 326 950 

Gains reconfiguration 402 402 

Communications with To 187 187 

Communications with T'J 385 286 

Communications with T3 451 297 

Minimum total time 1241 1865 

Maximum total time 2094 2564 

desired aircraft states are assumed to be 

Xd = [150, 5, 0, 0.03, 5000, 6605, 0, 0, 0, 0, OjT 

Six different cases were considered, namely, 

1. an error of 100 m in the height and the right elevator fails (see Figure 8.5 and 

8.6); 
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2. an error of 0.6 rad in the roll angle and the right aileron fails (see Figure B.7 

and 8.B); 

3. an error of 0.2 rad in the yaw angle and the rudder fails (see Figure 8.9 and 

8.10); 

4. an error of 0.6 rad in the roll angle and the two ailerons failed (see Figure B.11 

and 8.12); 

5. an error of 0.6 rad in the roll angle and the right aileron together with the left 

elevator failed (see Figure 8.13 and 8.14); and 

6. an error of 100 m in the height and the two elevators failed (which resulted in 

an unstable aircraft). 

As shown in Figures (8.5) to (B.14) good results are possible for the one aileron, 

one elevator, two ailerons, and an aileron + an elevator failures. The impaired 

and unimpaired responses are seen to be similar, indicating that the aircraft can be 

controlled adequately under such failures. For the rudder failure, good results are 

obtained for the manoeuvre shown; however, the remaining surfaces are not sufficient 

to regulate large errors in the yaw rate using the side-force produced by rolling the 

aircraft and so another rudder is ideally required to adequately control the aircraft. 

The same may be said about the two elevators failure, where simulation test shows 

that the ailerons do not have enough spare power to replace the elevators because 

there pitch effectiveness is very small when compared with the elevators. Also they 

adversely effect the vertical velocity (when used collectively) which produces large 

angles of attack leading to instability. This can clearly seen from equation (8.32) 

where the effectiveness of the aileron to the vertical velocity (9.8) is quite high 

comparatively. 
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Chapter 9 

Conclusion and Future Work 

The main aims of the research presented in this thesis has been to investigate the 

design of optimal controllers for nonlinear time-varying aircraft, and to design a 

reconfigurable control law which enables the aircraft to retain its flight performance 

in the presence of control failures caused by combat damage or actua.tor failures. 

The mathematical model of a typical fixed wing aircraft is used as the basis to 

demonstrate the design; this was used to decouple the model into two smaller models, 

the longitudinal and lateral motions which can be treated as two subproblems with 

some cross-coupling effects. 

Several approaches were used to solve the optimal control problem, for nonlin­

ear time-varying systems but to no avail; the main reasons are that these a.pproaches 

require excessive computational resources to provide real-time control. Therefore an 

alternative, namely the linear quadratic regulator (LQR), approach is used for a 

linear time-varying aircraft. This is also computationally demanding but by using 

parallel processing techniques it is demonstrated that suitable transputer architec­

tures can be used to solve the problem. The solution fulfills the control objective 

but suffers from the following aspects: 

1. The integration step sizes in the Riccati solution are restricted to equal the 
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sampling period; this increases the computation time for high sample rates. 

2. A large memory capacity is needed to store the gain sequence for the complete 

horizon interval. 

3. A relatively large communication time is required to transmit the updated gain 

elements from an "off-line" processor to the "on-line" controller processor. 

In view of these, a receding horizon approach is used and found to be adequate for 

real-time aircraft control. 

Due to the difficulties in formulating optimal control problems, a design pro­

cedure is presented which allows the weighting matrices to be selected for such 

problems. Some of the weighting elements in the matrices are time-varying to allow 

for good performances over the entire operating range of the aircraft. The stability 

of the Riccati solution and the time-varying problem are solved by using velocity 

dependent weights. 

Several transputer networks are used to handle the "decoupled" aircraft mo­

tions with the cross-coupling effects of the two motions allowed for. Good real­

time performances are achieved by splitting the computational task functionally 

into smaller sub-tasks which are processed on different processors, and the individ­

ual processing devices are configured to minimise the communication aspects of the 

application. 

Another aspect of the work presented here is the fault tolerance nature of the 

approach. It is shown that reconfiguration of the flight control system is possible. 

Some results are presented where single and double control surfaces failures are in­

troduced. These show that the remaining surfaces can compensate for the failures. 

However, such recovery can only be achieved with an aircraft which has been de­

signed with other surfaces available and which have sufficient power. The failures 

can be detected and isolated using linear and nonlinear time-varying observer/filter 
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combined with digital logic. The nonlinear filter gives better performances but re­

quire more processing times than the linear filter. 

It is hoped that the fault tolerant optimal flight control designs presented here 

is a useful addition to the area of control engineering. However the sign of good 

research is that it leads to further avenues for investigation. In this respect we have 

merely touched an a small aspect of the work which is necessary for the design 

of flight control systems. Other areas of work which have been exposed by our 

investigations include: 

1. the design of controllers which respond to pilot demands (the "tracking prob­

lem"); 

2. the need to design a separate control loop which sets the angle of the stabiliser 

to achieve open-loop stability for the entire working range of the aircraft. In 

the current work this is assumed to be operated manually. This could be an 

important feature in the fault tolerance and reconfiguration strategy since it 

allows a secondary control input force for the elevators; 

3. the need to consider the effect of disturbances on the failure detection filter 

such that robust design can be achieved; 

4. the consideration of other types of failure, such as, "on" failures and computer 

failures; and 

5. the consideration of different modelling and control strategies. 

It is hoped that future work can consider such issues and that the work presented 

here helps in this respect. 

152 



Bibliography 

[1] Anderson T, and Lee P A, Fault tolerance principles and practice, Prentec-Hall 

1981. 

[2] Babister A W, Aircraft dynamic stability and response, Pergamon press 1980. 

[3] Balakrishnan A V, Control theory and the calculaus of variations, Academic 

press 1969. 

[4] Banks S P, Control systems engineering, Prentic-HalI1986. 

[5] Bennett S, Real-time computer control, Prentice-Hall, London, 1988. 

[6] Bertsekas D P, and Tsitsiklis J N, Parallel and distributed computations, nu­

merical methods, Prentice-Hall 1989. 

[7] Blakelock J H, Automatic control of aircraft and missiles, John Wiley & sons 

1965. 

[8] British aerospace aircraft engineering data, (private correspondence). 

[9] British standard aerospace series, B.S.2G 199, 1984. 

[10] Bryson A E, and Ho Y C, Applied optimal control, Ginn and Co, 1969. 

153 



[11] Calise A J, Corban J E, and Flandro G A, Trajectory optimisation and guidance 

law development for national aerospace plane applications, American control 

conferance, Atlanta, Georgia, June 15-17, 1988. 

[12] Chang T, Jin X, and Luh P B, A parallel algorithm for large scale convex 

optimal control problems, proceedings of 1987 American control conferance, 

Minneapolis USA, 10-12 June 1986. 

[13] Chakravarty A, Four-dimensional fuel-optimal guidance m the presence of 

winds, J. Guidance, vol. 8, no. 1, Jan.-Feb. 1985. 

[14] Chazan D, and Miranker W L, A nongradient and parallel algorithm for un­

constrained minimisation, SIAM J. control, vol. 8, no. 2, May 1970. 

[15] Dixon L C W, Adjoint-control transformations for solving practical optimal 

control problems, optimal control applications & methods, vol. 2, pp 365-381, 

1981. 

[16] Dyer P, The computation and theory of optimal control, Acadenic press 1970. 

[17] Ellert F J, and Merriam C W, Synthesis of feedback controls using optimisation 

theory - an example, IEEE Trans. on automatic control 1963. 

[18] Fel'dbaum A A, Optimal control systems, Academic press 1965. 

[19] Franklin M A, Parallel solution of ordinary differential equations, IEEE Trans. 

C-27(5), pp. 413-420, 1978. 

[20] Fu S J, Aircraft guidance for formation flying based on optimal control, pro­

ceedings of the American control conferance, Minneapolis USA, 10-12 June 

1987. 

154 



[21] Grimm W, A numerical approach for on-line guidance of aircraft, proceedings 

of 25th IEEE conferance on decision and control, Athens, Greece, 10-12 Dec. 

1986. 

[22] Hasdorff L, Gradient optimisation and nonlinear control, John Wiley & sons 

1969. 

[23] Hockney R W and Jesshope C R, Parallel computers 2: Architecture program­

ming and algorithms, Adams Hilger, Bristol, 1988. 

[24] Howard R W, Automatic flight controls in fixed wing aircraft - the first 100 

years, Aeronatical journal, Nov. 1973. 

[25] Hwang K, and Briggs F A, Computer architecture and parallel processing, 

Mcgraw-Hill 1984. 

[26] Illinois R B, and Bielefeld V M, Symmetric updating of the solution of the 

algebraic Riccati equation, methods operation research, vol. 54, pp. 117-25, 

1986. 

[27] INMOS Ltd, IMS T800 transputer engineering data, 1980. 

[28] Keller H B, Numerical solution of two-point boundary value problems, society 

for industrial and applied mathematics, Philadelphia, Pennsylvania 19103, vol. 

24, 1976. 

[29] Kwon W H, Bruckstein A M, and Kai1ath T, Stablising state-feedback design 

via the moving horizon method. 

[30] Lee R C K, Optimal estimation, identification, and control, M.I.T. press 1964. 

[31] Lee E B, and Markus L, Foundations of optimal control theory, John Wiley & 

sons 1967. 

155 



[32] McLean D, and Aslam-Mir S, Reconfigurable flight control system, International 

conference on Control'91, vol. 1, pp. 234-242, 25-28 March 1991. 

[33] Menon P K A, and Lehman L L, A parallel quasi-linearization algorithm for air 

vehicle trajectory optimisation, J. Guidance, vol. 9, no. 1, Jan.-Feb. 1986. 

[34] Miranker W L, and Liniger W M, Parallel methods for the numerical integration 

of ordinary differential equations, J. Math. Comput. vol. 21, pp. 303-320, 1967. 

[35] Mitchell D A P, Thompson J A, Manson G A, and Brookes G R, Inside the 

transputer, Blackwell scientific publications 1990. 

[36] Miele A, Well K H, and Tietze J L, Multipoint approach to the two-point 

boundary value problem, Journal of mathematical analysis and applications, 

vol. 44, pp. 625-642, 1973. 

[37] Miele A, Flight mechanics: Theory of flight path, Pergamon press 1962. 

[38] Pau L F, Failure diagnosis and performance monitoring, Marcel Dekker inc 

1981. 

[39] Noble B, Applied linear algebra, Prentice-Hall, 1969. 

[40] Patton P 0, Multi-processors: Architectures and applications, computer, vol. 

18, no. 6, pp. 29-40, 1985. 

[41] Patton R, Frank P, and Robert C, Fault diagnosis in dynamic systems, Prentice­

Hall 1989. 

[42] Polak E, Computational methods in optimisation, Academic press 1971. 

[43] Purdum J, 0 programming guide, Que corporation 1988. 

156 



[44] Raczynski S, On parallel algorithm for real-time optimal control problems, pro­

ceedings of the 1986 American control conference, Seattle, USA, 18-20 June 

1986. 

[45] Ratton K S, Evaluation of control-mixer concept for reconfiguration of :Bight 

control systems, NAECON, vol. 2, pp. 560-569, 1985. 

[46] Ratton K S, Reconfiguration of :Bight control systems after effector failure, proc. 

of fourth international conferance on systems Engineering, Coventry Polytech­

nic, 1985. 

[47] Richardson T J, and Kwong R H, On positive definite solution to the algebraic 

Riccati equation, systems & control letters, vol. 7, pp. 99-104, 1986. 

[48] Roberts S M, and Shipman J S, Two-point boundary value problems: shooting 

methods, Elsevier 1972. 

[49] Russ D E, Reconfigurable digital control laws for the 7D Digitac II a.ircra.ft 

with failed primary control surface, proc. of workshop on multivariable control 

systems, 1983. 

[50] Shaw L, Nonlinear control of linear multivariable systems via state-dependent 

feedback gains, IEEE trans. control, vol. 24, no. 1, feb. 1979. 

[51] Takahashi Y, Rabins M J, and Auslander D M, Control and dynamic systems, 

Addison-Wesley publishing company 1965. 

[52] Thomas Y A, Linear quadratic optimal estimation and control with receding 

horizon, electronic letters, vol. 11, no. 1, 9t
h. jan. 1975. 

157 



[53] Trava.ssos R, and Kaufman H, Parallel algorithms for solving nonlinear two­

point boundary value problems which arise in optimal control, Journal of opti­

misation theory and applications, vol. 30, no. 1, Jan. 1980. 

[54] Widnall W S, Applications of optimal control theory to computer controller 

design, M.LT. press 1968. 

[55] Willsky A S, A survey of design methods for failure detection in dynamic sys­

tems, Automatica., vol. 12, pp. 601-611, 1976. 

158 



Appendix A 

Publications 

1. Tahir J,M and Virk G S, A real-time distributed algorithm for an aircraft 

longitudinal optimal autopilot, Concurrancy: Practice and Experience, vol 

2(2), pp 109-121, 1990. 

2. Virk G S and Tahir J M, Parallel optimal control algorithms for Aircraft, 

lEE Colloquium on navigation, guidance and control in aerospace. Digest 

No.l989/142, 3/1 - 3/5, November 1989. 

3. Virk G S, Tahir J M, and Kourmoulis P K, Parallel processing in aerospace 

control system, proceedings of the second international conference on applica­

tions of transputers,1l-13 july 1990, Southampton UK. 

4. Virk G S and Tahir J M, Selection of weights in time-varying optimal flight, 

submitted to Optimal Control Applications and Methods, 1991. 

5. Virk G S and Tahir J M, A fault tolerant optimal flight control system, lEE 

International Conference 'Control 91 ',vol. 2, pp. 1049-1055, 25-28 March 

1991, Heriot-Watt university, Edinburgh, UK. 

6. Virk G S and Tahir J M, The design of optimal controller for aircraft, lEE 

159 



Colloquium on integrating issues in aerospace control, Digest No. 1991/072, 4 

April 1991. 

7. Virk G S and Tahir J M, Parallel processing for real-time flight control, invited 

chapter in Transputer Control, Research Studies Press Ltd, to be published. 

160 



Appendix B 

Table of Notations 

U m/sec forward component of aircraft velocity 

W m/sec downward component of aircraft velocity 

V m/sec velocity of side-slip 

v,. m/sec aircraft relative velocity 

Q rad/sec pitch rate 

P rad/sec roll rate 

R rad/sec yaw rate 

e rad pitch attitude angle 

C) rad roll attitude angle 

\If rad yaw attitude angle 

H metres aircraft height 

N rev/min engine speed 

." rad elevator deflection 
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e rad aileron deflection , rad rudder deflection 

7 dimensionless engine power setting 

X, N total force acting along OX axis 

Y, N total force acting along OY axis 

Z, N total force acting along 0 Z axis 

Pm. Nm total pitching moment 

Ym. Nm total yawing moment 

Rm Nm total rolling moment 

M kg total aircradt mass 

I~ kgm2 moment of inertia about OX axis 

I'll kgm2 moment of inertia about OY axis 

Iz kgm2 moment of inertia about 0 Z axis 

I~z kgm2 the cross product of inertia about OZX axes 

T. ms sampling period 

T, ms time between successive linearizations 

T sec horizon depth 

x vector of state variables 

Xci vector of desired states 

U.in vector of control variables 

Q rad angle of attack 
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