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Abstract 

 

Substructural analysis (SSA) was one of the very first machine learning techniques to be 

applied to chemoinformatics in the area of virtual screening. For this method, given a set of 

compounds typically defined by their fragment occurrence data (such as 2D fingerprints).  

The SSA computes weights for each of the fragments which outlines its contribution to the 

activity (or inactivity) of compounds containing that fragment. The overall probability of 

activity for a compound is then computed by summing up or combining the weights for the 

fragments present in the compound. A variety of weighting schemes based on specific 

relationship-bound equations are available for this purpose. This thesis identifies uplift to the 

effectiveness of SSA, using two evolutionary computation methods based on genetic traits, 

particularly the genetic algorithm (GA) and genetic programming (GP). Building on previous 

studies, it was possible to analyse and compare ten published SSA weighting schemes based 

on a simulated virtual screening experiment. The analysis showed the most effective 

weighting scheme to be the R4 equation which was a part of document-based weighting 

schemes. A second experiment was carried out to investigate the application of GA-based 

weighting scheme for the SSA in comparison to an experiment using the R4 weighting 

scheme. The GA algorithm is simple in concept focusing purely on suitable weight generation 

and effective in operation. The findings show that the GA-based SSA is superior to the R4-

based SSA, both in terms of active compound retrieval rate and predictive performance. A 

third experiment investigated the genetic application via a GP-based SSA. Rigorous 

experiment results showed that the GP was found to be superior to the existing SSA weighting 

schemes. In general, however, the GP-based SSA was found to be less effective than the GA-

based SSA. A final experimented is described in this thesis which sought to explore the 

feasibility of data fusion on both the GA and GP. It is a method producing a final ranking list 

from multiple sets of ranking lists, based on several fusion rules.  The results indicate that 

data fusion is a good method to boost GA-and GP-based SSA searching. The RKP rule was 

considered the most effective fusion rule. 
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Chapter 1 

 

Introduction 

 

 

1.1  The drug discovery process 

The drug discovery process can be divided into five distinct stages. These are target 

identification, lead selection, lead optimisation, preclinical testing and clinical development. 

The target is a protein involved with a particular identified disease. It is commonly known that 

drug discovery is both time consuming and expensive, and that the risks of drug design failure 

increase after each stage within a typical pharmaceutical research timeline. Rishton (2005) 

reported a high failure rate suffered by the pharmaceutical industry during the drug discovery 

and design process, despite the advancements in related technology. One major challenge in 

drug discovery is that pharmaceutical research often requires the processing of huge amounts 

of structurally complex and unrelated molecular data. The individual assessment of 

compounds is therefore virtually impossible for the purpose of scrutinising possible lead 

candidates among a pool of millions of molecules. With the constant new discoveries of 

compounds and the availability of both commercial and free databases of compounds, the 

selection of potential molecule candidates continues to pose a challenge (Walters, Stahl, & 

Murcko, 1998). Important drug discoveries were, and still are, key components in 

pharmaceutical research as such processes may impact on the long lifecycle usually imposed 

in pharmaceutical research studies. This process is highlighted in Figure 1.1 below. 
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Figure 1.1: Trends in pharmaceutical research for drug discovery and design (after Terstappen 

and Reggiani, 2001) 

 

The first step in the drug discovery cycle is typically target identification. This step essentially 

involves identifying a particular protein target from a particular disease from genetic 

information. The next step is the identification of suitable compounds that react with the 

particular protein target. Such compounds are otherwise known as lead compounds. Out of 

these one or several potential compounds are chosen based on a number of measureable 

properties and analyses. These include structural activity relationship and a favourable 

absorption, distribution, metabolism and excretion (ADME) profile. The lead compounds 

require further optimisation to increase the biological activity and to improve the effectiveness 

of the compounds against the target. This process is also known as lead optimisation and 

typically lasts around 12 to 18 months. The later stages of pharmaceutical research involve 

many more clinical evaluations and trials before the compound can be marketed. There is 

always a high risk that the results will be unsuitable for further development, from the initial 

stages of drug discovery. In this case, chemical compounds may seem to be promising drug 

candidates during the initial level of screening. Subsequently, failing during tests in the 

expensive pre-clinical and clinical stages where they may often prove to be unsuitable for 

further development (Bleicher et al., 2003).  

 

Major hurdles in drug discovery and design include the crucial pre-clinical stages. At this 

stage, it is necessary to identify suitable or less risky lead compounds. Accurate assessment of 
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the safety and toxicity of compounds is stressed during this stage through rigorous 

experiments. Risks associated with the clinical stages include the impact of clinical trial 

transitions from animal tests to live human testing. There is also a significant impact from a 

business perspective: investments of pharmaceutical companies often range from hundreds to 

billions of US dollars. This high level of investment bringing increased pressure for 

experimental success. The transitional stages from a target discovery to a lead discovery are 

important as only a minimal number of potential compounds chosen from a large pool are 

carried through to clinical testing. There is only a small margin for error, as the whole drug 

discovery and design process will need to be repeated or even abandoned if the potential 

compounds do not work. This process can also be extremely time-consuming. The 

development and marketing of a single drug can take a long time, typically between 10 and 15 

years (Lindsley, 2014). All of these risks can potentially be reduced very early in the drug 

discovery process through the accurate identification of promising lead compounds. 

 

1.2  Chemoinformatics and the use of machine learning methods 

All of these risks can potentially be reduced very early in the drug discovery process through 

the accurate identification of promising lead compounds. Today, chemical databases contain 

many millions of structures available for synthesis. Computational methods which incorporate 

informational techniques are therefore frequently used to improve the efficiency of the 

screening procedure, otherwise referred to as the field of chemoinformatics. One of the first 

scholars to define chemoinformatics was Brown (1998), who stated:  

 

“Chemoinformatics is the mixing of those information resources to transform data into 

information and information into knowledge for the intended purpose of making better 

decisions faster in the area of drug lead identification and optimisation.”  

 

In the search of suitable drug candidates, a large numbers of compounds are evaluated in order 

to find molecules that are effective against the biological target. This screening process is 

known as high throughput screening (HTS), which is an approach to target validation. It 

allows the assaying of very large numbers of potential compounds against a chosen set of 

defined targets using an in vitro technique. This involves controlled environment and 

equipment. The most potent compounds obtained are called hits. HTS can rapidly select those 

substances that affect the target; however, it is expensive, requires extensive skills and HTS 

data are typically noisy or false positives. Much effort has been invested in the use of 
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computational methods to increase the speed and reduce the cost of lead discovery. The range 

of techniques developed for this purpose is generally referred as virtual screening (VS). VS 

involves the computational filtering of a large body of molecules (e.g., comprising a 

company‟s corporate database) to identify those that have a high probability of activity in a 

biological test system of interest.  Thus, the VS method takes as its input all of those 

molecules that might be acquired (or synthesised) and tested. It then gives as its output the 

few molecules that should actually be tested. VS methods are increasingly being used to 

increase the cost-effectiveness of drug discovery programmes (Klebe, 2000).  

 

Virtual screening is an in silico analogue of HTS which aims to identify which compound to 

synthesise or to purchase and to select compounds for an in vitro experiment. VS can help to 

analyse the results of an HTS run by identifying false positives hits. Over the past years, VS 

has become an essential companion of HTS as they are complementary to each other to 

support the lead discovery process. One popular approach to virtual screening involves the use 

of algorithms from the area of computer science which are referred to machine learning. A 

machine-learning method takes as its input a training set of compounds that have previously 

been classified as active or inactive. These are then analysed to develop a model that can be 

used to classify new molecules into active or inactive classes. 

 

The earliest example of a machine learning method in chemoinformatics is considered to be 

the Substructure Analysis (SSA), while popular ones used today is Support Vector Machines 

(SVMs), Random Forest (RF) and Artificial Neural Networks (ANN). SSA, in particular, was 

proposed by Cramer in the 1970s. It was based purely on the identification of suitable lead 

compounds based on the relationship between molecular activity and fragment structure. SSA 

uses this relationship to extract a fragment weighting scheme, which is applied to the 

compounds for scoring, ranking and finally for assessment. The main criterion of the 

assessment is based on the number of active molecules that occur in the top of the ranking. 

The SSA method has been further developed through the introduction of various weighting 

schemes. It has not, however, progressed as much as other machine learning methods in 

recent times. SSA is very closely related to the Naïve Bayesian Classifier (NBC), a machine 

learning method that has become very popular in the last few years with its availability in the 

Pipeline Pilot system (Hert et al., 2006). NBC is a simple classification algorithm that is 

based on the use of Bayes‟ theorem and on strong assumptions as to the statistical 

independence of the descriptors characterising the objects that are to be classified. Here, it is 
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argued that the SSA is still a unique method to identify potential compounds based on its 

simplicity. It is a simple yet powerful method of quantifying a compound‟s influence purely 

on the basis of the fragment properties (via weighting schemes). As it has never been 

attempted before, the question remains as to whether there can be any possibility of 

improving the SSA method and its weighting scheme definition through the use of more 

robust and evolutionary approaches, specifically the GA (genetic algorithm) and GP (genetic 

programming). Both of these have reported success in various fields of application. The other 

question is whether both approaches, which are stochastic in nature, can be enhanced through 

the use of the use of a data fusion method. Data fusion is a deterministic method to produce a 

single, unified outcome. 

 

1.3 Research aim and objectives 

The aim of this study is to develop new weighting schemes in SSA that might have a better 

level of prediction performance than the existing procedures, based on evolutionary 

approaches. This application may enhance the cost-effectiveness of research programmes 

seeking to identify novel bioactive molecules. In order to achieve the above aim, several 

research objectives have been identified which need to be explored as summarised below: 

i) The first research objective is to quantify the level of performance of all of the 

existing SSA weighting schemes, which have been introduced by various researchers, 

and establish the best overall scheme. 

ii) The second objective is to assess the use of GA to determine the fragment weighting 

scheme to be used in the SSA and whether it can provide an upper-bound to the 

performance of the SSA when compared to the existing weighting schemes. The level 

of improvement will be quantified, if any uplift exists. 

iii) The third objective is to investigate the use of GP to determine a fragment weighting 

scheme to be used in the SSA. It is thus necessary to determine whether it can provide 

an upper-bound to the performance of the SSA when compared to both the existing 

weighting schemes and the GA-based scheme. The level of improvement will be 

quantified, if any uplift exists. 

iv) The final objective is to investigate and assess the use of data fusion, a technique that 

combines multiple ranking to provide further enhancement to the GA and GP-based 

SSA. 
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1.4  Thesis outline 

This chapter describes a general introduction to the concept of chemoinformatics. This 

includes its application in the real world and the discussion on the virtual screening research 

background. This research focuses on ligand-based virtual screening, specifically on SSA. 

Based on the research aim and objectives defined in Section 1.3, the study is organised into 

eight chapters.  

 

Chapter 2 of this thesis begins with an overview of the main elements of extracting 

information from a chemical structure. Commonly used methods for molecular descriptors 

and molecular representation are also included. Chapter 2 also reviews the basic principles 

and the development of the SSA method used in this thesis. Chapter 3 discusses the 

experimental design used in this study. It includes the details of the databases, the evaluation 

methods and the statistical analyses adopted to evaluate the results of the experiments 

conducted in this study. Chapter 4 reports on the comparison and the evaluation of the 

existing SSA weighting schemes. In total, ten published SSA weighting schemes are analysed. 

Chapter 5 investigates the use of the GA approach to weighting schemes to identify whether 

GA-based weighting determination yields similar or improved results when compared to the 

existing SSA weighting schemes. The GA approach is based on its direct determination of 

fragment weights as opposed to the pre-existing SSA weighting schemes. Thus, the feasibility 

of such a method is compared against existing weighting schemes in terms of an improvement 

in predictive performance. Chapter 6 examines the use of GP to develop new weighting 

schemes, taking as a starting point the pool of possible variables and the pool of simple 

arithmetic operators. The new weights resulting from the GP are then evaluated. Chapter 7 

investigates the use of the data fusion method to combine the retrieval results from the 

multiple GA and GP searches, in which eight fusion methods are applied and assessed. 

Chapter 8 draws this work to a conclusion, with suggestions for more investigation into and 

further improvement of the SSA.  
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Chapter 2 

 

Virtual Screening and Substructural Analysis 

 

 

2.1 Introduction  

The evolution of chemical computing has given rise to several established chemical 

information storing methods, and subsequently machine-led screening processes. Central to 

such methods are the extraction, analysis and manipulation of fragments from compounds. 

These methods are performed in silico to guide the initial discovery stage of the drug design 

processes. It is therefore necessary to consider potential chemical-based attributes, such as the 

activity and relevance of the molecules in question. Theoretically, this should increase the 

likelihood of discovering novel compounds for further lead verification and optimisation. This 

chapter describes the methods used to store and retrieve chemical structures. In addition, there 

are two principal components that will affect the performance of substructure analysis (SSA). 

These are the representation used to characterise the compounds, and the SSA weighting 

functions used to compare them. 

 

2.2 Representation of chemical structures 

The search for desirable compounds in existing databases is largely influenced by the clarity 

and accessibility of molecular information to chemists in the chemical search space. This has 

led to the introduction of various formats of chemical representations. Such forms of 

compound representations may range from simple to complex, depending on the requirements 

imposed on such representations. Two common forms of presentation are connection tables 

and line notations. 

  

2.2.1 Connection tables 

Connection tables are effective in documenting atoms and the bonds between them, which are 

not readily available in other types of 1D- or 2D-based structural representations. Figure 2.1 

below shows an example of a connection table for the compound Aspirin. The table is 

primarily formed by capturing the spatial coordinates of each atom by definition of its x, y, 

and (perhaps) z coordinates of the atom, and their associated bonds. A connection table also 

provides bond information for each atom forming the compound.   
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Figure 2.1: Connection table representation (after Leach & Gillet, 2007). Information such as 

atom coordinates relating to its formation and bonding pairs are stored for accurate rebuilding 

of the molecules 

 

The connection table shown above is the simplest form of representation. More detailed forms 

may include further additional information, such as the hybridisation states of the atoms and 

the bond orders (Leach & Gillet, 2007). Hydrogen atoms are usually not included in the 

majority of standard connection tables, but this is also the case for many other structural 

notation systems (such as in SMILES, as will be discussed below). Information regarding the 

(xy) or (xyz) coordinates of the atoms enables standard chemical drawings to be produced for 

use in a molecular graphics program or any 3D molecular manipulation / analysis methods.  

 

2.2.2 Morgan algorithm 

The atoms of chemical compounds originally are not denoted with descriptive labels and the 

numbering system may be arbitrary. Issues arise when many different labels for the atoms can 

be represented for the same chemical compound. The Morgan algorithm can be used to solve 

this problem by providing a canonical label or a unique number for an atom. Canonicalisation 

is an important concept in chemical representation, as it allows the representation of a 



 

9 

 

particular compound to be unique and unambiguous. The Morgan algorithm uses iterative 

calculations of the connectivity values to differentiate atoms, as illustrated in Figure 2.3.  

 

 

Figure 2.2: Morgan algorithm procedure (after Leach & Gillet, 2007) 

 

(a) (b) 

(c) 

(d) (e) 
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From Figure 2.3, a compound is first defined as a series of connected atoms, where the 

connectivity value of each atom is calculated from the number of connections to other atoms. 

The next iteration seeks to update the connectivity value of the atom based on the initial 

values of the neighbouring atoms (Figures 2.3(b) and (c)). For example, the orange 

highlighted atom in Figure 2.3(b) has its connectivity value updated to 5, as a summation of 

the connectivity values of its neighbours, which are 1, 1 and 3 respectively. The iteration 

continues for each atom until a maximum connectivity value is reached, as shown in Figure 

2.3(e). Based on the finalised connectivity values, the connection table uses atoms with the 

highest connectivity value as the first atom for definition, and subsequently other atoms in 

decreasing order of their connectivity values (Leach & Gillet, 2007).  

 

2.2.3 Line notation 

Line notation is a compact, alphanumeric representation of molecules. It is more compressed 

than connection tables. It is thus able to encode a large number of molecular structures while 

requiring only a small memory space for storage. It is widely used for storing, representing, 

communicating and checking the identity of chemical structures. It can encode structures in 

compact form, and this may be human-readable and writable. It can also be easily used with 

respective software, and it also provides a canonical representation. Line notation is of 

particular importance in chemoinformatics which include Wiswesser Line Notation (WLN), 

Simplified Molecular Input Line Entry System (SMILES) and InChI (Willett, 2009). Linear 

notation represents the complete constitution and connectivity of chemical compounds as a 

linear sequence of character.  

 

A given chemical structure can have many valid and unambiguous representations. A 

molecule may be presented in the form of a different numbering system for the atoms in 

connection table. It would be useful to use a standard numbering system to derive a single 

unique representation. The process of converting an input representation to a canonical form is 

called canonicalisation. Many methods have been developed for a unique and unambiguous 

numbering of the atoms of a molecule. The canonicalisation process involves deriving a 

canonical code for numbering or labelling the atoms in a unique and reproducible way 

(Gasteiger & Engel, 2006). Canonical-based representations introduced with WLN, SMILES 

and InChI will be discussed in greater later in this chapter. 
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2.2.4 Wiswesser Line Notation (WLN) 

Wiswesser Line Notation (WLN) was developed by William Wiswesser in the 1950s. It was 

considered one of the most popular and widely used notations to enforce canonical 

representation of molecules, whereby each molecule has one and only one formula. Figure 2.2 

below stresses the exclusive relationship between the computer representation and the 

molecular structure. „Unique’ refers to only one instance of computer representation derived 

from a structure; „Unambiguous‟ refers to only one structure produced from one computer 

representation. 

 

 

Figure 2.3: Canonical state of structure for computer representation (adapted from UTM open 

courseware chemistry website) 

 

WLN represents structural formulae with a short combination of numerals, capital letters and 

punctuation marks. It also makes extensive use of special symbols to denote common 

structural fragments. These symbols are formed into a specific code by encoding them in the 

same order in which the fragments are connected in the structural formula (Vollmer, 1983). A 

set of rules is devised to ensure that such notations enforce a canonical form, as shown in 

Figure 2.2. Although WLN has been widely used to represent structures in the form of line 

notation, it was difficult to adopt and maintain. This is mainly because many rules must be 

followed to generate the correct notation of a complex structure (Weininger, 1988). It thus 

proved particularly difficult to implement notation in computer terms; consequently, this led 

to the introduction of alternative notation systems instead.  

 

2.2.5 Simplified Molecular Input Line Entry System (SMILES) 

SMILES is one of the most popular line notations in current use. It was created in response to 

the need for a simpler, more computer accessible and human-friendly notation than WLN. 

SMILES retains the concept of canonical representation, but it is easier to encode with a 

computer than was the case with WLN. The original SMILES specification was developed by 

Arthur Weininger and David Weininger in the late 1980s. It has since been modified and 

extended by numerous other organisations (Weininger, 1988).  
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In 2007, an open standard called OpenSMILES was developed by the Blue Obelisk open 

source chemistry community (http://www.opensmiles.org). In SMILES, atoms are represented 

using their respective atomic symbol. Upper case letters refer to aliphatic atoms; lower case 

letters refer to aromatic atoms. If the atomic symbol has more than one letter, the second letter 

must be in lower case. The structures entered using SMILES are hydrogen-suppressed, which 

means that the molecules are represented without hydrogen atoms. SMILES is able to handle 

branches denoted with the symbol ( ) and also supports nesting. In terms of bonding, the 

following is used: „-‟ for a single bond (which are usually not shown at all); „=‟ for double 

bonds; „#‟ for triple bonds and „:‟ for aromatic bonds. Single and aromatic bonds may always 

be omitted. Many weak points of other line notation systems can be attributed to the overuse 

of symbols and hierarchical rules based on the length of the final notation. SMILES notation 

was designed to introduce a standard, unified description of chemical structures so that it can 

be used and understood by both users and computers. For example, a chemist is able to 

retrieve a list of compounds from a database defined in terms of coded strings as notated by 

the SMILES. The selected compounds in SMILES notation can be further utilised with a 

computer to identify structural descriptors as necessary. Likewise, chemical information can 

be exchanged universally with ease between researchers by utilising the standard unique 

SMILES string to name a molecule. Chemical programmers also use SMILES in the process 

of entering chemical data into a computerised database, and thus, maintaining unique 

structural descriptions is necessary. The description used by computers requires a far more 

complex set of rules and hierarchies, and this translates to an extensive dependency on an 

efficient computer algorithm (Weininger, 1988). 

 

2.2.6 International Chemical Identifier (InChI) 

InChI is a recent notation system introduced to standardise chemical structure information. 

InChI was a joint project by many organisations, such as standards agencies, chemical field 

experts, and educational and commercial based participants. The goal was to achieve a more 

consistent and standardised definition of chemical structures. InChI uses a layered format to 

represent all the available structural information relevant to compound identity, where by each 

layer designates a specific type of structural information, with the layers ordered to provide 

successive structural refinement. There are six major InChI layer types, with each giving a 

different class providing structural information. The InChI layers consist of the main layer, a 

charge layer, a stereochemical layer, an isotopic layer, a fixed-H layer and a reconnected layer. 

The main layer, which specifies chemical formula, atoms, and bonds between them, is 



 

13 

 

required for all InChIs. However, the other layers appear only when corresponding input 

information is provided (Heller, McNaught, Stein, Tchekhovskoi & Pletnev, 2013). Every 

InChI starts with the string "InChI=" followed by the version number, currently 1. This is 

followed by the letter S for standard InChIs. Layers and sub-layers start with “/” (forward 

slash) followed by a letter denoting the identity of the layer (except for the chemical formula 

layer). InChI notations are meant to be processed and decoded by computers only: they are 

not designed to be interpreted by users. Comparisons between SMILES and InChI have been 

drawn in various studies (Boda, 2010), where the former has more flexibility and the latter is 

more consistent in terms of representations. SMILES is proprietary and has more software 

support. As O‟Boyle (2012) states: “other commercial and open-source software developed 

their own algorithms for generating canonical SMILES all of which differed from each other 

and none of which are published” (O‟Boyle). This has led to the use of different generation 

algorithms, and thus, different SMILES versions of the same compound have been found. The 

lack of a single commonly-adopted standard has resulted in inconsistent representation terms. 

To address the lack of a non-proprietary, strictly-unique standard chemical identifier, the 

InChI project was initiated. InChI is non-proprietary, open-source, and freely available to the 

scientific community. As the software for generating InChI strings is freely available, it also 

avoids the interoperability issue. SMILES, however, is generally considered to be more 

human-readable than InChI. Table 2.1 shows the comparison between the SMILES and InChI 

notations.  
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Table 2.1: Linear chemical notation 

Bonds IUPAC Name Chemical 

Compound 

Chemical 

Formula 

SMILES IUPAC 

Standard 

InChi 

Single 

Bond 

Ethane 
 

 
 

C2H6 

 

CC InChI=1S/C2H

6/c1-2/h1-2H3 

Double 

Bond 

Ethene 
 

 
 

H2C=CH2 

 

C=C InChI=1/C2H4/

c1-2/h1-2H2 

Triple 

Bond 

Hydrogen 

Cyanide 

 

 
 

HCN 

 

C#N InChI=1S/CHN

/c1-2/h1H 

Aromatic 

Bond 

Dimethyl 

Ether 

 

 

CH3OCH3 COC InChI=1S/C2H

6O/c1-3-2/h1-

2H3 

Branches Triethylamine 
 

 

N(CH2CH3)3 

 

CCN(CC)CC InChI=1S/C6H

15N/c1-4-7(5-

2)6-3/h4-

6H2,1-3H3 

 

 

2.3 Molecular descriptors 

The manipulation and analysis of chemical structural information often requires the use of 

molecular descriptors generated from the molecule representations described above. The 

molecular descriptor can characterise and classify structural patterns by means of encoding, 

using numerical values to characterise the properties, e.g. the physicochemical properties of 

molecules (Todeschini & Consonni, 2008). A descriptor classification essentially requires two 

criteria: the molecular representation of the compound, and the algorithm used to calculate the 

descriptor information. These descriptors may contain detailed information regarding various 

properties useful for analysis within Virtual Screening, such as the Structure-Activity-

Relationship (SAR), Quantitative-SAR (QSAR) studies and molecular diversity analysis. It is 

reported that there are more than 3,000 different types of molecular descriptors available 

(Leszczynski & Shukla, 2009). For any typical drug discovery process, however, only 

descriptors that successfully correlate structural features with the biological activity of interest 

are explored (Khanna & Ranganathan, 2011).  

 

There are several ways to classify descriptors, categorised as physicochemical (hydrophobic, 

steric or electronic), structural (frequency of occurrence of a substructure), topological, 
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electronic (molecular orbital calculation) or geometric (molecular surface area calculation). 

Molecular descriptors (specifically, physicochemical descriptors) can also be categorised into 

two groups. The first is the descriptors representing properties of molecules, for instance, the 

logP and the molecular weight. Physicochemical parameters govern the physical and chemical 

properties of chemical entities. The behaviour of bioactive chemical entities may be affected 

by changes in physicochemical properties. Physicochemical properties are also known as an 

example of 1D descriptors. Examples of properties include molecular weight; logP (the 

logarithm of the partition coefficient between octanol and water) which quantifies a molecular 

hydrophobicity, solubility and simple count of features (e.g. number of atoms, H-bond donors, 

H-bond acceptors and ring systems). All these properties can be used as part of QSAR studies, 

which correlates quantitative chemical structure attributes (e.g. physicochemical, biological 

and toxicological) of molecular descriptors to a biological activity. For instance, Lipinski et al. 

(2012) in their studies of solubility and permeability prediction in drug discovery used four 

physicochemical properties. These were molecular weight, sum of nitrogen, oxygen and 

hydrogen-bond acceptors. 

 

The second type is descriptors categorised according to dimensionality, which are 2D, and 3D. 

2D descriptors are derived from molecular connectivity table and apply a simple count of 

features to characterise molecules. Examples of 2D descriptors calculated from 2D graphs are 

topological indexes and 2D fingerprints.  

 

3D descriptors are generated from 3D connection tables, which can be obtained either 

experimentally or theoretically. For example, a 3D structure builder such as CONCORD or 

CORINA (Clark, 1999) can generate 3D structures from the chemical graph. Examples of 

descriptors requiring 3D representations are the pharmacophore descriptors, affinity 

fingerprints, distance-based descriptor, 3D atom environment for use in atom mapping 

similarity searching and 3D molecular fields for use in field-based similarity searching. 3D 

molecular field descriptors involve generally a 3D grid, each element of which is 

characterised by the values/properties of the steric, electrostatic and hydrophobic. It should be 

noted that these 3D properties are used in QSAR methods, such as Comparative Molecular 

Field Analysis (COMFA), where it is one of the most significant development in QSAR. This 

research, however, focuses only on 2D descriptors, which are considered more appropriate to 

the aims of this research, namely, the SSA. There are also several descriptors, which are based 
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on 3D molecular fields that have been used to predict ADMET properties, e.g. Volsurf 

descriptors developed by Cruciani, Crivori, Carrupt and Testa (2000). 

 

2.4 2D descriptors 

2D descriptors are widely used in chemoinformatics in terms of calculation, storage and 

interpretation, and extensively in VS methods. This may include similarity searching, where a 

simple count of shared features, such as common fragment substructures, can be a measure of 

chemical distance when used with similarity coefficients.  In addition, they are commonly 

used because of their simplicity: they are easy to analyse and calculate (Leach & Gillet, 2007). 

Two important types of 2D descriptors are discussed here: topological indices and fragment-

based descriptors. 

 

2.4.1 Topological indices 

Topological indices are single-valued descriptors derived from a 2D graph of molecules. They 

are presented as real numbers, characterising structures according to properties such as size, 

overall shape and atom connectivity. In other words, the index encodes the information of the 

molecule, rather than the presence of particular fragments in a given compound. There are 

many examples showing the use of topological indices applied as descriptors. One is the 

Wiener Index, which computes the number of bonds and the distance between pairs of atoms 

(Wiener, 1947). Another example is the Randić molecular connectivity index, also known as 

the branching index. This index is the accumulation of the connectivity of bonds over all 

bonds in the molecule (Randic, 1975). A further example is the family of chi molecular 

indices. To calculate the index, valence values are introduced to encode the counts of pi, 

sigma and lone pair electrons for each atom (Leach & Gillet, 2007). Balaban‟s J index 

(Balaban, 1982) is also an example of a topological index. 

 

2.4.2 Fragment-based descriptors 

Fragment-based descriptors are also called 2D fingerprints or fragment bit-strings. They 

consist of a vector of bits (each bit position corresponding to one or more specific 

substructural fragments). The descriptors encode the presence or absence of a particular 

substructure or fragment in a compound. They encode the presence („1‟) or absence („0‟) of a 

fragment or substructure in a molecule as illustrated in Figure 2.4. There are two basic types 

of fragment-based 2D fingerprints widely used in VS: (1) Fragment Dictionary and (2) 

Hashed Fragments. 
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Figure 2.4: 2D chemical structure (left) and structural key fingerprint (right) 

 

Fragment dictionaries  

Fragment dictionaries are also known as structural keys which were, historically, the first type 

of screen employed in chemical database searching (Willett, 1987). They are usually 

represented as a bit-string, each entry of which represents the presence or absence of a 

specific 2D fragment. Structural keys rely on the use of list of fragments selected to be 

important for the medicinal chemists, i.e., the predefined fragment dictionary. Thus, it imposes 

several limitations. The main weakness of this approach is that the fingerprints only contain a 

limited number of keys, i.e., those present in the dictionary. The predefined dictionary will 

later introduce a „library bias‟ problem, where only fragments contained in the library will be 

considered for the contribution in the similarity search. Another limitation of a fragment 

dictionary is that the relevance of the fragments depends on the database considered. If the 

choice is ineffective, it will cause many defined fragments in the library that might not be 

useful in a given problem.  

 

Several studies have been conducted to approach these limitations. For example, Adamson et 

al. (1973) introduced a method to select the best structural keys for screening in a huge 

chemical database.  The selection was made according to the disparate frequencies of many 

types of fragments in the database. These types are classified based on the structural 

characteristics of compounds of the Chemical Abstract Service Registry System. Hodes later 

implemented a modification of Adamson‟s approach by focusing on the automated fragment 

generation for screening discrimination (Hodes, 1976). Barnard Chemical Information (BCI) 

later created the BCI fragment dictionary, used much later, as the basis to generate fragment-

based fingerprints (Barnard & Downs, 1997). Predefined dictionaries of structural fragments 

such as MDL MACCS keys are used to identify features contained in molecules. These are 

based on the pattern matching of chemical compound structures (Durant et al., 2002). The 
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descriptors consist of 166 structural fragments and each fragment has a key, represented in a 

fixed position in the bit-string. Chemists have recognised that these fragments are important 

for the bioactivity of chemical compounds. The structural fragments of features in a given 

molecule are flagged as 1 or 0, so as to replicate the nature of binary format. The latter, as a 

whole, forms a bit-string, as determined by the elements of the dictionary. Limitations were 

observed, however, in that bits may be set only once, irrespective of the frequency of 

occurrence of the given key.  

 

Circular substructure fingerprints 

Circular substructure fingerprints are a popular subclass of molecular fingerprints and have 

been successfully applied in the Pipeline Pilot software, also known as the Extended 

Connectivity Fingerprint (ECFP). Pipeline Pilot implemented the ECFP algorithm to generate 

these fingerprints. They encode the central atom and the neighbouring atoms within a 

diameter of 2 (i.e., ECFP(C)_2), 4 (i.e., ECFP(C)_4) or 6 (i.e., ECFP(C)_6) atoms. The ECFP 

algorithm was derived from the Morgan algorithm. A study reported on the combination of 

ECFPs and Functional Connectivity Fingerprints (FCFPs) which is found to be more effective 

than hashing, dictionaries or topological based fingerprints (Hert, 2004). 

 

In generating the fingerprint, there are three stages that will be carried out sequentially. First, a 

numeric identifier (NID) is assigned to each atom. Second, iteration is performed to update 

the NID and to reflect the NID of the neighbours of each atom in a given diameter. All of the 

iterations can encode a list which consists of integer(s) that are calculated by a suitable 

hashing function. Finally, multiple occurrences of the same feature are removed. Several 

studies have been carried out in order to evaluate ECFP in analysing the output of High-

Throughput Screening (HTS).  

 

Rogers and Hahn (2010) used a modified Bayesian model to determine whether compounds 

exhibited false positive or false negative hits in HTS data consisting of more than 50,000 

compounds. Both Hu et al. (2009) and Glen et al. (2006) applied ECFP in ligand-based virtual 

screening methods for the classification of active and inactive molecules. From these studies, 

it was concluded that circular fingerprints are one of the most effective representations to use 

as a search tool. It is considered fast and efficient method for detecting the presence and 

absence of fragments, and has obtained very good performances in chemoinformatics (Rogers 
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& Hahn, 2010). ECFP can be applied in similarity searching, clustering, and virtual screening, 

in a similar way to other types of fingerprints. 

 

Hashed fingerprints 

Hashed fingerprints are an alternative fragment-encoding procedure consisting of indexing all 

the substructural patterns present in a particular molecule. It is interesting to note that some 

consider the circular fingerprints to be arguably a form of hashed fingerprint. In hashed 

fingerprint, all the patterns are hashed using a hashing function to fit into the length of the bit-

string. This approach allows for more generalisations because it does not depend on a 

predefined list of structural fragments. Instead of using a fragment dictionary, the hashed 

method defines a set of patterns to index. For every molecule, each distinct fragment will be 

mapped to a set of numbers using a pseudo-random number generator. All the representative 

numbers produced for one molecule will be combined using a hashing function to produce a 

bit-string. The corresponding bit positions in the bit-string are subsequently set to „on‟. In this 

approach, a given pattern always results in the same set of numbers. 

 

This approach is used in the Daylight Chemical Information Systems (James & Weininger, 

2006) and Tripos systems (Tripos Inc., 2010). Daylight fingerprints report all path lengths of a 

molecule up to a certain value (by default 7 bonds). The Unity System only considers patterns 

up to 6 bonds long and uses a combination of structure keys and hashed fingerprints to 

generate 988 bit fingerprints (Khanna & Ranganathan, 2011). Once the numbers for all 

patterns have been generated, the fingerprint is generally folded to obtain a fixed-length bit-

string.  

 

The folding method was introduced to optimise the number of bits in the hashed fingerprints 

and to increase the searching speed. This method is applied by dividing the obtained 

fingerprint into two equal parts of the bit string and combines the two parts by using the 

logical OR. This produces a high density of information with fewer bits (Todeschini & 

Consonni, 2008). Folding has several limitations as the common bits in two fingerprints can 

be set by unrelated fragments. These bits then lose their specificity and can potentially 

become irrelevant, which is otherwise known as bit collision.  

 

Another widely used example of hashed fingerprints, which includes frequency information, 

is the molecular hologram invented by Tripos (Tripos Inc, 2003). Molecular Holograms 
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encode the number of times each fragment appears in a molecule. Instead of using a binary bit 

(`1‟ or `0‟) to represent the existence of each fragment, the hologram uses integers to represent 

the total number of occurrences of each fragment.  

 

2.5 Searching databases of molecules 

Chemical structure databases containing computerised representations of traditional chemical 

structure diagrams have been used to support various tasks in chemical research and 

development. In chemoinformatics, searching for a molecule in a molecular database using a 

query structure is common. It involves the use of graph matching algorithms by comparing the 

connection tables. This requires a large number of tests of all possible mappings of the query 

structure to each molecule in a database. Contemporary chemical databases can be very large. 

For example, the ChEMBL Open Data database contains over 1 million compounds (Gaulton 

et al., 2012) while Chemical Abstracts Service (CAS) reported over 100 million chemical 

substances to date (CAS, 2016). Thus, an effective approach is important as it enhances search 

efficiency in a appropriate time frame. Early, there were two types of searching database 

mechanisms, namely: structure searching and substructure searching. These mechanisms were 

later complemented by another mechanism which is similarity searching.  

 

2.5.1 Structure searching 

The chemical compounds stored in a machine-readable form allow analysts to perform direct 

searches for a particular molecule or molecules. The earliest and simplest type of search 

mechanism is structure searching, which checks for the presence or absence of a specific 

molecule in a database (Willett, 2009). This is very simple to implement if a canonical 

character-string representation of a molecule is available, such as the Wiswesser Line 

Notation. Structure searches of connection-table files were, however, more problematic until 

subsequent development by Morgan at the Chemical Abstract Service (henceforth „CAS‟) of a 

simple canonicalisation procedure. This produced a canonical numbering of a set of atoms. 

Another effective way to implement structure searching is by generating a hash code from the 

connection tables. The hash code of the query is compared to the hash code of the compounds 

in the database (Maurer & Lewis, 1975, Sheridan, 2002). Consequently, the structures that 

match the query code can be evaluated using isomorphism algorithms, as shown in Figure 2.5. 

The hash code of the query is first compared to the hash code of the compounds in the 

database and only the structures that match the code of the query are evaluated using an 

isomorphism algorithm (Bawden et al., 1981).  
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Figure 2.5: Graph A and B are isomorphic and topologically identical (after Yirka, 2015) 

 

2.5.2 Substructure searching 

Unlike structure searching, which only targets a whole molecular structure, substructure 

searching seeks to determine the presence of a partial structure in a complete molecule. The 

graph represents the molecule. The atoms of one molecule are the nodes of the graph and the 

covalent bonds between the atoms are the edges. There are two main procedures employed in 

substructure searching. Screening is firstly carried out to discard non-matching molecules 

with the query structure. An atom-by-atom search then follows, which further analyses all the 

available molecules using subgraph algorithms. Subgraph algorithm for substructure 

searching was introduced almost half a century ago (Ray & Kirch, 1957). The algorithm 

performed subgraph isomorphism procedures that exhaustively searched a connection table 

for the presence of the query pattern. It was largely inefficient, however, and often led to 

subgraph isomorphism problems. A problem arose in determining whether the input target (T) 

graph contained a subgraph that was isomorphic to the input query (Q) graph.  
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Figure 2.6: Schema of chemical substructure searches (after Horai et al., 2010) 

 

Figure 2.6 shows the fundamental schematics of substructure searching. A query structure is 

relayed to a database of molecules. The substructure search yields all the molecules that 

contain the specified query structure and will result in a substructure hit, if found. Large scale 

substructure searching is relatively quicker with the use of 2D fingerprints. This method can 

be applied in a substructure search. Accordingly, if an X structure is a substructure of Y, then 

each bit set for structure X must also be a set for structure Y. The fingerprint screening can 

then be used to compare and eliminate molecules in the data set before invoking a subgraph 

isomorphism algorithm. The function of the filter is to rapidly discard those molecules which 

do not contain the query‟s substructural fragments to pass on to the time-consuming subgraph 

isomorphism search (Willett, 2009). A substructure search, in fact, only divides the database 

into two subsets: those containing the query and those that do not contain it.  

 

2.5.3 Similarity searching 

Similarity searching provides a complementary alternative technique to substructure 

searching. It involves comparing the query with every compound in the database. A measure 

of similarity is then calculated between the target structure and every database structure.  

Similarity measures quantify the relatedness of two molecules with a large number (or one) if 

their molecular descriptions are closely related and with a small number (large negative or 

zero) when their molecular descriptions are unrelated.  There are many measures available to 

quantify the degree of similarity between a pair of molecules. The computational requirements 
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of these measures vary depending on the level of detail used to represent the molecules that 

are being compared. 

 

The results of the similarity measure will be used to sort the database structures in the order of 

decreasing similarity with the target.  The resulting ranked list of structures will then be 

returned to the user.  Molecular similarity can be defined in many ways depending on the 

information used to represent the molecules and also the measures employed to quantify the 

degree of similarity between two molecules (Johnson and Maggiora, 1990; Dean, 1995). The 

first reports on similarity searches appeared in the mid-1980s, based on the work carried out at 

Lederle Laboratories (Carhart et al., 1985) and Pfizer (Willett & Winterman, 1986).  The use 

of similarity calculations between molecules have since not only been used in similarity 

searching, but also in application like compounds selection (Bawden, 1993; Lajiness, 1997) 

and molecular diversity (Martin et al., 1995; Holliday, Ranade & Willett, 1995; Holliday and 

Willett, 1996; Gillet, Willett & Bradshaw, 1997).  There are three principal tools used for the 

similarity measure (Willett, 2000): a structural representation used to characterise the 

compounds that are being compared; a similarity coefficient used to quantify the degree of 

resemblance between a target structure and each of the structures present in the database; and 

a weighting scheme used to differentiate more important from less important features in a 

compound.     

 

2.6 Virtual and High-Throughput Screening  

High-Throughput Screening (HTS) was first developed to assay tens to hundreds of 

compounds conducted using in vitro technique. There can now be as many as hundreds of 

thousands of active compounds discovered from HTS processes, which require further 

screening for optimal selection within 6 months to a year time frame (Oprea & Matter, 2004). 

Specifically, the use of combinatorial libraries of chemical compounds through HTS yields a 

large number of active compounds for further analysis, otherwise known as hits. In this way, 

the hits can be refined and analysed to determine a suitable series of structures, taking into 

account preferred biological and drug-like activity, known as leads.  

 

HTS and VS are important methods in drug discovery process used to find chemical 

compounds that bind to the identified target. These screening methods are different in 

approach but have similar objectives. Chemists are given a targeted series of biological 

activities, constituting a set of objectives for compounds to achieve, also known as target 
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identification and validation, derived from the disease in focus. Figure 2.7 illustrates a typical 

screening process in drug discovery.  

 

Virtual screening is increasingly influential and involves the lead identification process from 

large chemical compounds databases in pharmaceutical research (Reddy et al., 2007; Willett, 

2005). By definition, virtual screening is the use of computer methods to perform such 

screening, and is capable of automatically evaluating a large library of compounds (Walters et 

al., 1998; Willett, 2009). The ultimate aim of virtual screening is to identify novel molecular 

structures which respond to, or achieve, a target set of objectives or profiles.  

 

The HTS method did not entirely fulfil its high expectations, however, since one of the most 

common problems with HTS is the resulting large number of false positives. There could be a 

pool of highly diverse hits, and thus additional screening methods were usually required to 

determine an acceptable number of leads (Diller & Hobbs, 2004). Overall, this method has a 

number of limitations, which are that it is time-consuming, expensive and requires intensive 

skills. As a consequence of a large number of commercially available and synthetically 

accessible molecule structures, efficient algorithms for searching large datasets are becoming 

more vital. Bajorath points out that the effectiveness of the HTS can be enhanced by 

combining the HTS with VS. The VS method can be applied in parallel or prior to HTS to 

maximise effectiveness of the drug discovery screening process (Bajorath, 2002).  

 

High Throughput Screening (HTS) is a drug-discovery process widely used in the 

pharmaceutical industry. HTS identifies lead molecules by performing individual biochemical 

assays with large number of compounds. The huge cost and time consumed with this 

technology has led to the integration of cheaper and effective computational methodology 

namely virtual High Throughput Screening (vHTS). vHTS is a computational screening 

method which is widely applied to screen in silico collections of compound libraries to check 

the binding affinity of the target receptor with the library compounds. The compounds that are 

predicted to bind strongly to the target are then extracted from the database for further testing 

(Dahlin & Walters, 2014). This is achieved by using a scoring function which computes the 

complementarity of the target receptor with the compounds. HTS and vHTS are 

complementary methods and vHTS has been shown to reduce false positives in HTS and to 

increase hit rates or enrich hit lists from HTS. vHTS can effectively enrich the output of HTS 

by removing predicted compounds that are least likely to engage the target. (Jenkins, Kao & 
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Shapiro, 2003). Lengauer et al. (2004) summarised ―Better drug candidates originate from 

better leads, and better leads will come from better hits”.  

 

 

Figure 2.7: Overview of typical screening process (after Lengauer, Lemmen, Rarey, & 

Zimmermann, 2004) 

 

VS methods can be classified into two main groups: ligand-based and structure-based 

methods. The ligand-based (LBVS) method can be employed when the 3D structure of the 

target is unknown, whereas the structure-based (SBVS) is applied when the 3D structure is 

known (Bajorath, 2001; Leach & Gillet, 2007; Willett, 2006). LBVS is essentially a method 

where chemical compounds (ligands) and their associated biological information serves as the 

primary components‟ starting point (Langer, Hoffmann, Bryant, & Lesur, 2009). In order to 

perform screening, large searchable collections of compounds are needed. These are accessed 

from compound databases, such as from virtual and real compounds, and ligand knowledge-

bases, which include WDI (available via http://thomsonreuters.com/en/products-

services/pharma-life-sciences/life-science-research/world-drug-index.html) and the MDL 

Drug Data Report which is available via http://lifesciences.thomsonreuters.com/prous. Langer 

et al. (2009) stated that the main purpose of biological screening is to extract from a large pool 

of compounds, a number of high quality hits which can then be translated into candidate lead 

http://lifesciences.thomsonreuters.com/prous
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compounds for further testing. A large screening pool is therefore advantageous to the effort 

of collecting a good number of hits for lead compounds identification. 

  

When only a single active molecule is known, similarity searching can be performed, where 

the database will be ranked in decreasing order, according to the degree of similarity between 

the query and the known active structure. However, if several actives are known then 

pharmacophore mapping can be applied to determine the patterns of features responsible for 

the biological activity (Willett, 2009). The identification of a common 3D pharmacophore, 

followed by a 3D database search, is possible when such data are available. On the condition 

that a reasonable number of active and inactive structures are known, machine learning 

methods such as Substructural Analysis and Binary Kernel Discrimination (BKD) may be 

used for virtual screening. Finally, protein ligand-docking or de novo design may be applied 

when the 3D structure of the protein or biological target is available to enable detection of its 

ligand binding. A summary of the methods described above is presented in Table 2.2. 

 

Table 2.2: Approaches in ligand-based and structure-based virtual screening 

Virtual Screening Method 

Ligand-based 

virtual screening 

 

Amount of  

structural and 

bioactivity data 

Approach 

Similarity searching Single active known Determine the value of similarity between 

reference structure and each structure in a 

chemical database. 

 

Database then ranked in decreasing order. The 

most similar structure to the active reference 

structure will be listed at the top of the database. 

 

Based on Similar Property Principle (SPP) 

(Johnson & Maggiora, 1990) which suggests 

similar structures likely to have similar activities 

and properties. 
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Pharmacophore 

mapping 

Several actives known To identify common features and structures by 

examining the interaction between receptor and 

ligand. 

 

The 3D database search usually employed to 

identify lead molecules and new classes of 

compounds based on desired biological activity 

(Güner, 2000). 

Training data for 

machine learning 

system  

 

Reasonable number of 

active and inactive 

known 

Ranking of database in decreasing order, based on 

a set of calculated weights based on the active and 

inactive molecules information in the training set. 

  

The top-ranked molecules possess the highest 

probability of activity. 

 

Examples of such methods include Substructural 

Analysis, Binary Kernel Discrimination, Bayesian 

Inference Network, etc. 

Structure-Based 

Virtual Screening 

 

Amount of  

structural and 

bioactivity data 

Approach 

Docking study 

De novo design 

3D structure of the 

protein target known 

To find the molecules forming the best fit 

between receptor and ligand that correspond to 

the binding site (Halperin, Ma, Wolfson, & 

Nussinov, 2002). 

 

 

2.7 Structure-Activity Relationship (SAR) and Quantitative Structure-Activity 

Relationship (QSAR) 

SAR is an approach to find relationships between chemical structures and biological activity. 

SAR theory is based on the principle that molecules with similar structures will have similar 

properties (Hansch, 1969). SAR theory states that a small change in the structure of a 

compound is expected to have a small favourable or undesirable effect on its activity. In actual 

practice, however, though it holds as a general rule, this is often not the case, as even small 

changes in the structure may have a much greater effect than expected (Tong, Welsh, Shi, 
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Fang, & Perkins, 2003). The identification of a relationship between structure and activity 

requires that the significant structural characteristics of molecules with known activities 

should be encoded in a manner that can be understood, and operated on, by computational 

algorithms.  

 

Several descriptors, in principle, such as structural features and characteristics which include 

the size, shape and geometry of chemical structures, can be used in a structure-activity 

relationship (Carhart, Smith, & Venkataraghavan, 1985). SAR theory considers activity as 

either a quantitative measure or as discrete states, such as a binary classification of active and 

inactive, or as a level of activity, such as weakly active or strongly active. Where quantitative 

measures of activity are used, a SAR is often referred to as a QSAR. Measurements include 

half maximal effective concentrations, for example, and the concentration of a compound that 

causes some specific level of effects, such as a drug or toxicant (Sherhod, 2011).  

 

QSAR modelling techniques mainly rely on the use of molecular descriptors to perform 

“quantitative” analysis on such descriptors. They can yield useful physiochemical information 

and subsequently, a correlation between the structure and biological activity.  

 

 

Figure 2.8: Different types of QSAR strategies (after Todeschini & Consonni, 2008): (a) 

Regression model focusing on the best fit classifications; (b) Classification model to 

characterise the similarity between certain properties, and (c) Partial order ranking models, 

based on Hasse diagram technique. The figure shows the ranks of chemicals according to their 

toxicity levels, which relies on statistical significance 
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With the availability of different types of properties and descriptors, QSAR is able to deploy 

different strategies, such as regression models, classification models and ranking models, to 

enhance relationship analysis, as illustrated in Figure 2.8. One of the earliest techniques to 

address the relationship between compound‟s physicochemical properties or structure and 

biological activity, was described by Hansch in 1969. The Hansch Analysis is primarily based 

on the regression concept, which aims to obtain the best-fit for the observed values. The 

Hansch function as shown in Equation 2.1 in its simplest form is given below: 

 

𝑙𝑜𝑔 (
1

𝐶
) =  𝑘1 𝑙𝑜𝑔 𝑃 − 𝑘2 (𝑙𝑜𝑔 𝑃)

2 + 𝑘3 𝐸𝑠 + 𝑘4(𝜕) + 𝑘5             (Equation 2.1) 

   Where log 1/C is the logarithm inverse of the molar concentration C; 

   C denotes the minimum effective dose of concentration; 

   log P constitutes  the logarithm of the water coefficient P; 

P denotes the coefficient of water partition; 

   Es and ∂ are descriptors derived from experimental observation; 

 𝜕 denotes Hammett substituent constant; 

and,  Kx is constant values to influence the fitting of the relationship. 

 

 

This equation derives a relationship between the relative biological activity (log 1/C) and the 

drug activity hydrophobicity defined by log P (Hansch, 1969). Another well-known technique 

is the Free-Wilson analysis, which is essentially a mathematical model examining structural 

features and their presence or absence. Free-Wilson analysis is expressed by the Equation 2.2 

below: 

             𝑙𝑜𝑔 (
1

𝐶
) = ∑𝑎𝑖 𝑥𝑖 +           (Equation 2.2) 

Where 𝑥𝑖  denotes the presence or absence of a particular substituent at the relevant 

position in the compound; 
 

𝑎𝑖 denotes the contribution of the corresponding substituent/position i combination to 

the activity; 
 

   and µ is the activity value of un-substituted compound. 

 

The two methods cited above, however, have several limitations. These include being 

dependent on only similarly structured compounds in their analyses. This makes the process 

more difficult as a chemical database would normally contain a structurally diverse set of 

compounds with different types of biological activities (Cramer, Redl, & Berkoff, 1974). It is 

worth noting that Hansch Analysis and the Free-Wilson method are closely related, even 
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though they exhibit marked differences in regard to their approaches to analysis. In addition, 

the two techniques are aimed more towards lead optimisation rather than lead discovery. This 

eventually led to the concept of Substructural Analysis as posited by Cramer et al. (1974). 

They attempted to systematically correlate sets of biological and substructural data for lead 

discovery, and consequently developed Virtual Screening.  

2.8 Machine learning 

In 1959, computer scientist Arthur Lee Samuel popularised the term machine learning as the 

“Field of study that gives computers the ability to learn without being explicitly 

programmed.‖ Mitchell (1997) later provided a broader definition of machine learning where 

“A computer program is said to learn from experience E with respect to some task T and some 

performance measure P, if its performance on T, as measured by P, improves with experience 

E‖. A recent definition states that machine learning is a field in computer science concerned 

with the computational properties of algorithms. This allows a machine, under human 

supervision, to learn meaningful and complex patterns and predict new outcomes of results or 

conclusions (Wale, 2011). Generally, machine learning explores the study and construction 

of algorithms that are able to learn from, and make predictions about, data. Such algorithms 

operate by building a model from examples of inputs in order to make data-driven predictions 

or decisions, rather than following strictly static program instructions. Machine learning 

positions itself to address the limitations of human cognition and information processing, 

especially on the handling of enormous data, their relationships and the analysis that follows. 

To employ such a powerful tool, however, the rationale, objectives and expectations have to 

be clearly defined and understood. It is necessary to identify the tasks humans can and cannot 

do, and what tasks the machine can do better than humans. In terms of cooperation, it is 

important to establish what tasks the two can achieve together. From this, machine learning 

techniques can essentially be grouped into supervised and unsupervised learning, depending 

on human-level instructions and machine-level freedom (Wang and Summers, 2012). 

 

Supervised learning is a type of learning that attempts to gauge data and models based on 

user-defined labels and objectives. In LBVS, supervised learning has been used to solve 

classification problems, such as the popular classification between active or inactive 

compounds (Duch, Swaminathan & Meller, 2007). The learning process is applied on a 

training set, while a corresponding test set validates the accuracy of the prediction algorithm. 

In the real world, the concept of supervised learning is likened to a child learning about fruit 

and vegetables based on labelled objects from the two groups, such as fruit like apples and 

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Learning
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Mathematical_model
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oranges, and vegetables like broccoli and carrots. The children are exposed to (learn about) 

both fruit and vegetables for several days. After a week, they are tested by the teacher to 

validate how well they have learned to differentiate the two, given that this time there is a 

wider selection of fruit and vegetables to identify.  

 

On the other hand, unsupervised learning is the automated learning process of understanding a 

data set, given little or no knowledge of its specific property, label or objective. Such data are 

also known as unlabelled data. The method is used to look for structures or unusual patterns 

but without having a clear goal of the learning purpose, thus having no clear reward system 

that might indicate a solution. An example of unsupervised learning is common to the function 

of the human brain. For instance, almost all activities of a human involve sensory and 

visionary elements (touch, smell and sight), which provide information that gets passed to the 

human brain. Having no clear objective of what this information constitutes, somehow the 

brain is able to analyse the information from the elements, form a suitable response, and 

subsequently react to the activities in its own unique way.  

 

It is interesting to note that almost every technique in Virtual Screening involves the use of 

machine learning methods. The list of VS methods in Table 2.2 includes similarity searching 

(SS), itself primarily a data mining and machine learning tool. The similarity searching 

method uses a single reference compound to predict new active compounds, based on the 

similarity value calculated using a similarity coefficient. This approach has led to advanced 

applications of machine learning methods which require a subset of compound data to form a 

training set. This is used to extract knowledge or a predictive model which is then applied to a 

test set for identification of new active compounds. Although various machine learning 

techniques have been available for some time, this study focuses on techniques that have been 

used in the ligand based virtual screening context (LBVS). In addition to SS, other popular 

machine learning techniques in LBVS include Substructural Analysis (SSA), Binary Kernel 

Discrimination (BKD), Support Vector Machines (SVMs), Decision Trees (DT), Artificial 

Neural Networks (ANN) and K-Nearest Neighbours (KNN). All of the techniques mentioned 

above make use of both active and inactive compound information while progressing through 

rigorous stages of learning. The goal of learning in this case is to be able to achieve the 

accurate prediction potency of a new chemical compound, given its chemical structure, 

against the target receptor (Wale, 2011). Table 2.3 compares and summarises the machine 

learning techniques described above, related to LBVS.  
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Table 2.3: Comparison of machine learning classification techniques in LBVS (after Lavecchia, 2015) 

Machine 

learning 

techniques 

Researchers Definition Applications Advantages Disadvantages Type of 

learning 

SVM Vapnik and 

Chervonenkis 

(1964) were the 

first scholars to 

introduce the 

SVMs concept. 

Support vector machines 

(SVMs) are a set of 

kernel-based supervised 

learning methods used for 

classification and 

regressions.   

 

SVMs try to minimise the 

empirical classification 

error and maximise the 

geometric margin 

simultaneously on the 

training set, which leads to 

a high generalisation 

ability for the new 

samples. 

 

Some features being 

extracted may not be 

relevant and become noisy 

features which can result 

in poor performance. The 

best features can be 

identified by minimising 

bounds on the leave-one-

out error (Wang, 2005). 

In LBVS, this technique is applied 

to predict compounds‟ activity, 

based on the classification and 

ranking of their probability, in 

decreasing order. 

 

Classification is performed for the 

purpose of separating drugs and 

non-drugs and also to differentiate 

between active and inactive 

compounds (Byvatov, Fechner, 

Sadowski and Schneider, 2003; 

Zernov, Balakin, Ivaschenko, 

Savchuk and Pletnev, 2003; 

Warmuth, Liao, Rätsch, Mathieson, 

Putta and Lemmen, 2003 and 

Jorissen and Gilson, 2005).  

 

The active compounds are separated 

from the inactive compounds by the 

maximum margin hyperline. The 

margin is the distance from the 

decision boundary to the nearest 

training point of both classified sets.  

 

Hyperline is defined by identifying 

the support vector (i.e. the point on 

the margin). 

 

 

No presumption of 

association between 

target property and 

descriptors used to 

represent compounds.  

 

Overfitting rarely 

occurs. 

 

Accurate classification 

method. 

  

SVM technique 

suitable for 

binary 

classification 

tasks.  

 

 

Supervised 

learning. 



 

33 

 

DT Breiman, 

Friedman, 

Olshen and 

Stone (1984) 

were apparently 

the first to 

develop 

simultaneous 

Classification 

And Regression 

Trees (CART) in 

statistic.  

 

The decision tree is 

usually represented as a 

treelike structure. The root 

is placed at the top of the 

tree and the leaves at the 

base.  

 

The tree is divided into 

two or more branches 

from a single trunk. Each 

branch denotes the 

outcome of the tests, and 

the leaves denote the label 

of a class: i.e. decisions 

taken after a series of 

queries, (questions are 

asked, starting from the 

root node). The answers 

are used to choose 

branches until a leaf is 

reached, based on 

classification rules.  

 

A path from root to leaf 

denotes the classification 

rules (Kohavi and  

Quinlan, 2002)  

 

Commonly, this technique is used in 

the prediction of drug-likeness and 

the identification of biological 

activity, which identifies 

substructures of separate active 

compounds from inactive ones in a 

dataset.  

 

DT is also used to classify chemical 

compounds as drug or nondrug.  

 

A number of studies have applied 

DTs in predicting ADME properties 

(Lamanna, Bellini, Padova, 

Westerberg and Maccari, 2008; 

Sakiyama, Yuki, Moriya, Hattori, 

Suzuki, Shimada and Honma, 2008; 

Hou, Wang and Li, 2007; 

Deconinck, Zhang, Coomans, and 

Vander Heyden, 2006; Gleeson, 

Waters, Paine and Davis, 2006, 

Mente and Lombardo, 2005).   

 

No presumption of 

association between 

target property and 

forms used to represent 

compounds.  

 

A fast classification 

method. 

 

Able to perform 

multiclass 

classification. 

 

 

Affected by 

overfitting 

possibility when 

the training set 

is small and 

filled with a 

huge variety of 

descriptors. 

 

 

 

Supervised 

learning. 

NBC 

 

 

 

 

 

 

NBC is based on 

the work of 

Thomas Bayes 

between 1702 to 

1761 (Panda and  

Patra, 2007) 

NBC is based on Bayes‟ 

theorem with 

independence assumptions 

between predictors. The 

equation of Bayes‟ 

theorem is as follows: 

 

In chemoinformatics Bayes‟ 

theorem helps chemists to predict 

new active compounds by using 

known actives.  

 

Specifically, the NBC is used to 

identify the probability that a 

A very fast 

classification algorithm 

to use. 

 

Can be applied to solve 

real data. 

 

Assumes 

features are not 

related. 

Supervised 

learning. 
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𝑃(𝐴/𝐵) =
𝑃(𝐴/𝐵). 𝑃(𝐴)

𝑃(𝐵)
 

 

 

The equation describes the 

probability P of the 

condition A that might 

occur in relation to another 

condition (Kotsiantis, 

Zaharakis and Pintelas, 

2007). 

 

compound is active, based on 

descriptor representation 

(Angelopoulos, Hadjiprocopis, 

Walkinshaw, 2009).   

 

NBC is also applied to rank 

compounds of the database 

structure based on the activity 

probability (Lavecchia, 2015). 

Not affected by 

insignificant features. 

 

KNN KNN was 

originally 

introduced by 

Fix and Hodges 

in 1951. 

KNN is a simple 

algorithm, which is used to 

classify a new data point, 

x, by identifying the most 

similar x-based training 

points.  

 

In other words, the KNN 

has been employed to 

identify k nearest 

neighbours of x, regardless 

of labels in a given 

training set (Cunningham 

and Delany, 2007).  

In LBVS, KNN is used to classify a 

molecule based on its properties in 

relation to its neighbouring 

molecules.  

 

Its neighbouring molecules are 

relatively defined by the variable k, 

where a larger k value constitutes a 

larger group of neighbouring 

molecules considered when 

classifying a specific molecule.  

 

Usually Euclidean and Manhattan 

distance is applied to calculate the 

distance between objects, which is 

represented by a position vector in 

the multidimensional feature space 

(Lavecchia, 2015).  

 

No association between 

target property and 

descriptors used to 

represent compounds.  

 

Able to perform 

multiclass 

classification. 

 

Fast application on 

training sets. 

 

 

Classification 

performance 

largely depends 

on the distance 

measures used.  

Unsupervise

d learning. 
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A major concern in machine learning applies to the extent to which the machine can actually 

learn, and the extent to which learning to accomplish a task successfully is considered proof 

of intelligence. Such limitations may be an apparent barrier to the possibility of highly 

efficient and inexpensive in-silico screening methods. These constraints may be significant 

factors when critically evaluating the various machine-learning based systems used in Virtual 

Screening. Specifically in LBVS, the first application of machine learning in computer-aided 

molecular design (CAMD) was substructural analysis. It was introduced by Cramer et al. 

(1974) in the early Seventies as a tool for the automated analysis of biological screening data, 

and which continues to be of much current interest. 

 

2.9 Substructural analysis 

2.9.1 History and definition 

Substructural analysis (SSA) is a method under ligand-based virtual screening and was 

pioneered by Cramer et al. (1974). The technique is one of the earliest forms of machine 

learning method used in chemoinformatics. In substructural analysis, it is assumed that each 

molecule in a dataset is characterised by a series of binary descriptors, most commonly in the 

form of a 2D fingerprint in which each bit denotes the presence or absence of a substructural 

feature (often referred to as a fragment). Associated with each such bit is a weight that is a 

function of the number of active and inactive molecules that have that bit switched on, i.e., 

that contains the corresponding fragment. This weight reflects the probability that a molecule 

containing that substructural feature will be active (or inactive); for example, the weight might 

be the fraction of the active molecules containing that particular fragment. A molecule is then 

scored by summing (or otherwise combining) the weights of those bits that are set in its 

fingerprint, the resulting score representing the overall probability that the molecule will be 

active. A major assumption of SSA is that a given substructure can influence the determination 

of the activity level of a molecule, regardless of the compound in which it occurs (Cramer, 

Redl, & Berkoff, 1974).  

 

2.9.2 Fundamental components of the SSA 

SSA stresses the relationship between a substructure and its activity state, either active or 

inactive, for each given compound. The analysis involves a determination of a series of 

weights for every fragment in a compound. These individual compounds are then ranked in a 

particular order of scores in order to highlight activity frequency. This, in essence, acts as the 

basis for a large machine-learning-based screening program which enhances the efficiency of 
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lead identification. This is because it is able to predict the differential probabilities of activity 

in a set of untested, structurally diverse compounds. SSA mainly uses fragment 

representations, such as 2D fingerprints in its analyses, in order to characterise fragment 

occurrences more successfully throughout each compound. SSA is considered to be most 

useful in the context of large screening programs as it is able to focus on the importance of 

molecular features independent of the diversity of the compounds‟ structural representation in 

nature (Cramer, Redl, & Berkoff, 1974). Substructural Analysis does not discard the 

contributions of information from low-probability structures, based on their activity state. It 

uses such information to quantify the degree of probability of each compound being a 

potential hit. Specifically, fragment occurrence levels in active and inactive compounds are 

gauged from a known set of compounds. At all times, however, it is assumed that most known 

active compounds are similar to other active compounds. 

 

 

Figure 2.9: Simple schematics of Substructural Analysis 

 

Figure 2.9 illustrates the steps involved in Substructural Analysis. Selected compounds are 

initialised at first, otherwise known as a training set (Fig. 2.9a). All compounds in the training 

set are represented by substructural fragments. Each of the fragments is assigned a weight 

value based on the weighting function chosen and on the occurrences of the fragment in the 

active and inactive molecules in the training set (Fig. 2.9b). This provides a measure of the 

of test set 
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likelihood that a compound containing that fragment will be active. The overall score for a 

compound in the test set is computed by summing (or otherwise combining) the weights for 

the fragments present in that compound (Fig. 2.9c). All the compounds in the test set are then 

ranked (Fig. 2.9d) in the order of highest to lowest compound weights, reflecting the most 

likely active compounds at the top. Fundamentally, SSA assumes that all fragments in a given 

structure have some degree of influence on activity levels in screened compounds. 

 

Computation of the fragment weights is usually in the form of a statistical evaluation of 

relevancy. It uses a form of equation that manipulates the active and inactive state of the 

compounds. Ranking of these compounds theoretically highlights the best set of compounds 

in a dataset. Compounds at the top of the ranking, i.e., compounds with high scores, will 

contain fragments with high weights and thus these compounds will have high probabilities of 

being active (Cramer et al., 1974). The predictive study method was actually introduced in the 

pioneering work on SSA. The basic step involves choosing at random a certain percentage of 

active and inactive molecules called a training set, then deriving the weights based on that set; 

and finally calculating the scores across all data. This model of study has been implemented 

by various authors, especially in their comparative performance review of Substructural 

Analysis (Ormerod, Willett & Bawden, 1989; Cosgrove & Willett, 1998; Wilton, Willett, 

Lawson & Muller, 2003). 

 

2.9.3 The SSA weighting schemes 

Weights are calculated for each fragment in the molecule database to mark their likelihood of 

usefulness and relevancy as a lead compound. Various weighting schemes have been 

introduced by researchers with the aim of improving the prediction model since the original 

weighting scheme was proposed by Cramer et al. (1974). The weighting calculation ranges 

from simple to complex. While the use of active molecule information is compulsory in any 

given scheme, inactive molecules are included in some of the more advanced and recent 

schemes. 

 

Cramer’s weighting schemes 

Cramer et al. (1974) introduced the original weighting scheme in the pioneer study on 

Substructural Analysis. The method involves the following: (1) Calculation of the Structure-

Activity Frequency (SAF) for each fragment I in every compound, governed by the Equation 

2.3: 
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𝑆𝐴𝐹(𝐼) =
𝐴𝐶𝑇(𝐼)

𝑇𝑂𝑇(𝐼)
 

            

Where ACT(I) is the number of active compounds containing the fragment I; 

and TOT(I) is the total number of compounds containing the fragment I. 

 

Then (2) computation of the mean SAF value for every compound, also known as the Mean 

Structure-Activity Frequency (MSAF). The MSAF values for each compound are then (3) 

used to rank the whole compound collection in descending order. This is based on the theory 

that the molecules with greatest probability of activity are located at the top. Both the 

summation mean of each compound‟s weighting values and the subsequent ranking methods 

have remained unchanged in recent alternative weighting schemes. SAF is perhaps the most 

traditional scheme for substructural analysis, relying on a rather simple, yet effective 

statistical measure. It is also considered to be the most basic of all weighting schemes 

(Cosgrove & Willett, 1998). While it is appealing in terms of its simplicity, Cramer‟s SAF 

does not directly adopt the inactive molecule information in his equation. In essence, this 

causes a certain sense of bias to the active compound group in the calculation of weights. The 

clear limitation of this weighting scheme has prompted many subsequent studies to achieve a 

more accurate analysis. 

 

Cramer (ibid) identified the possibility of bias in cases where there is only a unique presence 

of individual fragments. The latter presented a „workaround‟ by introducing a factor of 

randomness in SAF averaging. A set number of groups were formed randomly and the 

computation of the MSAF was calculated or recalculated for each group. This decreases the 

probability of the compound‟s MSAF values being affected by certain members of its group. 

Such a workaround was, however, abandoned or not carried through in subsequent studies, as 

the manipulation of both the active and inactive compound information was later considered 

more insightful. An alternative scheme was suggested by Redl, Cramer, and Berkoff (1974) 

which is closely related to the above, and is known as the Substructure Activity Score (SAS), 

is given by the Equation 2.4:  

 

  𝑆𝐴𝑆(𝐼) = 𝐴𝐶𝑇(𝐼) − (𝑇𝑂𝑇(𝐼)   ×  𝑁𝐴𝐶𝑇/𝑁)    

Where NACT is the total number of active compounds in the database; 

and N denotes the total number of compounds in the database. 

(Equation 2.3) 

(Equation 2.4) 
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The SAS scheme above takes into account the direct contribution of inactive compounds. It 

achieves this by providing a difference between the active numbers of molecules containing 

the fragment in question versus the number to be expected if the fragment had no influence on 

the activity of the molecule (Cosgrove & Willett, 1998) 

 

Carhart’s method 

Carhart et al. (1985) published work on a method called „trend vector’. This performs 

correlations between atom-pairs and structure-activity properties to estimate the biological 

activity of new compounds. Trend Vector was proposed using the atom-pair concept, but 

Ormerod et al. (1989) and Cosgrove et al. (1998) both reported that it can be extended with 

the use of other 2D fingerprints. It is worth noting that fragment weights generated by the 

trend vector are a somewhat scaled version of Cramer's SAS. Each unique atom pair is 

assigned a score and this score for the atom pair I as shown in Equation 2.5: 

 

𝐴𝐶𝑇(𝐼)− (𝑇𝑂𝑇(𝐼)× 
𝑁𝐴𝐶𝑇
𝑁 *

𝑁
 

 

 

Hodes’ measures of statistical-heuristic methods 

Hodes, Hazard, Geran, and Richman (1977) introduced a different weighting scheme to 

address the limitations of Cramer‟s weighting functions. It has been claimed that their 

methods are more statistically derived (Ormerod et al., 1989), as they seek to quantify the 

probability of a compound being active based on estimation by statistical averaging (the 

statistical mean in particular); and then subsequently correlated with the actual observation of 

the activity. The standard deviation principle was mainly used to derive a formulated 

weighting scheme. In this sense, weights are assigned according to the statistical significance 

between the active features against the expected number. Hodes‟ method of weighting scheme 

is, relatively speaking, not a simple equation, compared to other existing weighting schemes. 

The number of Standard Deviation (NSD) works by calculating the Standard Deviation I value 

- termed SD(I) - for each fragment in the compound, and summing it to get a total SD - termed 

TOTNSD - which would act as the fragment weight. 

 

 

 

(Equation 2.5) 
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𝑃 = 
𝑁𝐴𝐶𝑇

𝑁
 

 

𝑀𝐴𝑉𝐺(𝐼) = 𝑇𝑂𝑇(𝐼) × 𝑃 

 

𝐷𝑉𝐹𝐴𝐶𝑇(𝐼) =  √𝑇𝑂𝑇(𝐼) × 𝑃(1 − 𝑃) 

 

                                       𝑆𝐷(𝐼) =  
(𝐴𝐶𝑇(𝐼) − 𝑀𝐴𝑉𝐺(𝐼)

𝐷𝑉𝐹𝐴𝐶𝑇(𝐼)
 

 

Where MAVG is the expected mean average of compounds to contain fragment i; 

P is the probability that a compound will contain fragment i; 

and DVFACT(I) is the Deviation factor as constant for Standard Deviation 

calculation. 

 

As reported by several authors (Ormerod, 1989; Cosgrove 1996), Hodes method is by no 

means a simple calculation process and shown in Equations 2.6 to 2.9. Consider this example, 

which shows the workings of the Hodes SD value. Given a set of 100 total compounds 

(represented as N=100) in which 20 are active (NACT=20), 10 compounds are determined to 

contain the fragment of interest I (TOT(I)=10). The probability P is then calculated as 20/100, 

or 0.20. The mean average of fragment I, MAVG(I), is calculated as (10 * (20/100), which 

equals 2. Calculation of DVFACT(I) yields a constant factor of (10 * 0.20 (1-0.20))
1/2

, 

equalling 1.265. Assuming that there are 5 active compounds which actually have the 

fragment I, SD(I) can be computed as (5 – 2) / 1.265, which is 2.371 SD away from the mean 

value of 2. Hodes (1976) also mentioned the probability of getting 2.371 SDs away by chance, 

hence further approximation by normal distribution for the two-tailed value for P is used. This 

is done by referring to the statistical table for the area under the curve of the SD which yields 

a P value of 0.0178. The weight needs to be the inverse of P (i.e. 1/P) and also logged: this 

gives 1.749. This value indicates the measure of probability of predicting that the compound is 

inactive.  

 

The above equation involves computing a measure of the probability of activity of a 

compound based on the statistical evidence of its features. The use of summation and 

multiplication for index i are used to combine probabilities under the assumption of the 

(Equation 2.6) 

(Equation 2.7) 

(Equation 2.8) 

(Equation 2.9) 
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independence of features. The use of log 1/P gives a good spread and avoids lower values of 

weights, since the active and inactive compounds have been specifically identified earlier 

(Hodes et al., 1977). The conversion from a number of standard deviations to log 1/P is shown 

in Figure 2.10. Hodes (1976) and Ormerod (1989) each reported that either the number of 

standard deviations (NSD) or the probability (P) could be used as a fragment-weighting 

scheme for SSA. In this way, Hodes presented a wide choice of weighting schemes, which can 

be derived from this particular workflow: (i) weighting based on the standard deviation values 

above, termed SD; (ii) weighting based on the probability of being SD away by chance, 

termed PR; and (ii) the inverse of SD and PR, each termed SDI and PRI respectively. These 

four weighting schemes were implemented in Ormerod‟s review.   

 

 

Figure 2.10: Plot of weight versus number of standard deviation with conversion to log 1/P 

(Hodes et al., 1977) 

 

Robertson-Sparck Jones statistical measures 

Ormerod et al. (1989) investigated the use of weighting schemes meant for general 

information retrieval, based on the works of Robertson and Sparck Jones. They are derived 

from a formal probabilistic theory of relevance weighting, and were intended to be used in 

bibliographical searches rather than as a chemistry-based screening method. Unlike Cramer‟s 

scheme, which generally disregards the inactive molecular contribution or the rather indirect 

use of such information in Hodes‟ methods, the Robertson-Sparck Jones scheme utilises 

inactive molecule information by incorporating them in their equations as shown in Equations 

2.10 to 2.13.  

 

The Robertson-Sparck Jones weighting is originally a set of techniques used to measure the 

relevancy of documents by use of statistical weighting. It is meant for general document 

retrieval systems, but makes heavy use of the binary format of descriptors (in this case binary 
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index descriptions of documents). It is thus possible to relate the collection of documents 

represented by index terms in binary format to that of a database of chemical compounds 

containing binary indices of 2D fragments. This assumption is similar to that described by 

Willett (2009). He suggests that there is a general similarity between textual and chemical 

databases, not just by virtue of their impending characteristics but by how they are accessed, 

analysed, manipulated and put into context in terms of the relevance and relativity between 

the items in such databases. In the case of a chemoinformatics‟ perspective, four different 

relevance weighting schemes, termed R1 to R4, as originally derived by Robertson and 

Sparck-Jones (1976), were modified by Ormerod et al. (1989) in a detailed study to 

accommodate their use for chemical substructures: 

 

𝑅1 = 𝑙𝑜𝑔 (
𝐴𝐶𝑇(𝐼)/ 𝑁𝐴𝐶𝑇

𝑇𝑂𝑇(𝐼)/ 𝑁
) 

 

𝑅2 = 𝑙𝑜𝑔 (
𝐴𝐶𝑇(𝐼)/ 𝑁𝐴𝐶𝑇

𝐼𝑁𝐴𝐶𝑇(𝐼)/ 𝑁𝐼𝑁𝐴𝐶𝑇
) 

 

𝑅3 = 𝑙𝑜𝑔 (
𝐴𝐶𝑇(𝐼)/ (𝑁𝐴𝐶𝑇 − 𝐴𝐶𝑇(𝐼))

𝑇𝑂𝑇(𝐼)/ (𝑁 − 𝑇𝑂𝑇(𝐼))
) 

 

𝑅4 = 𝑙𝑜𝑔 (
𝐴𝐶𝑇(𝐼)/ (𝑁𝐴𝐶𝑇 − 𝐴𝐶𝑇(𝐼))

𝐼𝑁𝐴𝐶𝑇(𝐼)/ (𝑁𝐼𝑁𝐴𝐶𝑇 − 𝐼𝑁𝐴𝐶𝑇(𝐼))
) 

 

Where INACT(I) is the total number of inactive compounds containing fragment I; 

and NINACT is the total number of inactive compounds in the dataset. 

 

Weighting schemes R1 and R3 use the active molecule information, while R2 and R4 in 

particular use the active and inactive molecule information, here termed INACT(I) and 

NINACT, to reflect the probabilistic derivation of such relevance. As stated by Robertson and 

Sparck-Jones (1976), these schemes are driven by 2 assumptions: (1) the assumption of 

independence; and (2) the principles of ordering. Assumption 1 states that the distribution of 

terms in the relevant documents is independent, and the distribution of terms in all documents 

is independent. Assumption 2 states that the distribution of terms in the relevant documents is 

independent and the distribution of non-relevant documents are also independent. The two 

(Equation 2.13) 

(Equation 2.10) 

(Equation 2.11) 

(Equation 2.12) 
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ordering principles are as follows: Ordering 1 is based only on the presence of search terms; 

Ordering 2 is based on both the presence and absence of search terms in the documents.  

 

Several principles can be drawn when the weighting scheme is applied in molecular 

information contexts; in the case of the assumption of independence, two assumptions exist. 

Assumption 1 is that the distributions of fragments in the active compounds and in all 

compounds is independent; Assumption 2 is that the distribution of fragments in active 

compounds is independent and the distribution of fragments in in-active compounds is 

independent. R1 is based on Assumption 1, Ordering 1; R2 is based on Assumption 2, 

Ordering 1; R3 based on Assumption 1, Ordering 2; and R4 is based on Assumption 2, 

Ordering 2. TOTR1, TOTR2, TOTR3 and TOTR4 values are then calculated for each 

compound by summing the individual fragment values for R1, R2, R3 and R4 respectively. 

The compounds in the datasets are then ranked in descending order based on TOTR1, TOTR2, 

TOTR3 and TOTR4 values. 

 

In regard to the relevance weighting schemes above, if any of the elements are zero, then it 

would ultimately cause the weighting to be zero as well, which will definitely be problematic. 

Robertson and Sparck-Jones (1976) reported in the document retrieval context on how to 

overcome such a problem; if there is a zero value for any element in the weighting scheme, 

the zero value will have to be replaced with 0.0000001.  

 

Mayer and Sens weighting schemes 

Mayer and Sens (1988) have reported substructural analysis studies using a fragment weight, 

given by Equation 2.14: 

 

𝐴𝐶𝑇(𝐼)/ 𝑁𝐴𝐶𝑇

𝐼𝑁𝐴𝐶𝑇(𝐼)/ 𝑁𝐼𝑁𝐴𝐶𝑇
 

 

 

The equation above is identical to the R2 weighting scheme, except there is no logarithms 

function included, as used by the R2 scheme. The rationale for using logarithms is explained 

in detail by Robertson and Sparck-Jones (1976).   

 

 

(Equation 2.14) 
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AVID weighting schemes 

Several other variations of weighting schemes, closely related to Cramer‟s original scheme, 

were investigated by Ormerod et al. (1989). One is based on the work of Avidon et al. (1982) 

known as the Avidon scheme (AVID) is defined by the Equation 2.15: 

 

𝐴𝑉𝐼𝐷(𝐼) =  
𝐴𝐶𝑇(𝐼) + 1

(𝑇𝑂𝑇(𝐼) × 𝑁𝐴𝐶𝑇 / 𝑁) + 1
 

 

Similar to Cramer‟s scheme, a mean AVID (MAVID) is also calculated for each compound by 

summing the AVID values for all fragments in that compound. It then divides this total by the 

number of fragments in the compound. The compounds in a dataset are then ranked based on 

the relevance value of each compound. (Avidon, Pomerantsev, Golender, & Rozenblit, 1982) 

also reported the use of two further fragment weights: 

 

𝑊𝑇1(𝐼) =  
𝐴𝐶𝑇(𝐼)

𝐼𝑁𝐴𝐶𝑇(𝐼)
 

 

𝑊𝑇2(𝐼) =  
𝐴𝐶𝑇(𝐼) − 𝐼𝑁𝐴𝐶𝑇(𝐼)

𝑇𝑂𝑇(𝐼)
 

 

Referring to the fragment weights above (Equation 2.16 and 2.17), there is an issue in the 

calculation of WTI whenever INACT(I) is equal to 0. For such cases, a prior value of 

0.0000001 is assigned for INACT of instance I. Mean values of MWT1 and MWT2 are 

calculated for each compound of the dataset by summing the WTI or WT2 values for all 

fragments in the compound and the sum is divided by the total number of fragments in the 

compound. The compounds in the datasets are then ranked in descending order, based on 

MWT1 and MWT2 values. 

 

2.10 Application of SSA for drug discovery 

In previous studies a number of SSA implementations have been commercialised for industry, 

or developed for academic pharmaceutical studies worldwide. The earliest applications known 

were carried out by the Drug Research and Development Programme in The United States, 

which was for the selection of compounds for antitumor screening (Hodes et al., 1977). The 

SSA method was chosen as this method has the ability to handle a large number of structurally 

(Equation 2.15) 

(Equation 2.16) 

(Equation 2.17) 
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diverse compounds in an automated manner, and for the analysis of their biological activity 

relationships using virtual screening methods. The National Cancer Institute in the 1970s was 

heavily involved in the development of new drugs to treat human cancer. Anti-tumour 

screening programmes involved the testing of compounds in a variety of animal tumour 

models.  

 

Certain limitations were prevalent at the time: there was a limited capacity for screening 

(15000 synthetics per year) and close to an infinite possibility of new compounds. The 

automated selection of drugs differs from standard approaches, such as the quantitative 

structure-activity approach, whereby the former is applied across a broad range of compounds 

rather than a single class. There may be unusual and unnoticed combinations of certain 

chemical structure features that impart a specific biological activity (Hodes et al., 1977).  

 

2.10.1 Hodes study in National Cancer Institute (NCI) for tumour screening program 

Hodes‟ detailed study on cancer disease led to the introduction of a statistical-relevance 

weighting scheme. The first application of SSA was initiated in 1976 on a specific Mouse 

Ependymoblastoma study, where a training set comprising 170 compounds was selected, 

covering a broad range of structure classes. These had been subject to previous structure-

activity studies (Hodes, 1976). Putting aside issues of structure redundancies, through 

elimination and further multiplication of actives based on occurrence probability, the result of 

the first study concluded that the use of SSA through Hode‟s method was comparable to more 

complex pattern recognition methods. It required, however, further testing on larger scale 

experimental sets to be able to deem them usable in a commercial sense (Hodes, 1976). Hodes 

continued his work on SSA in 1976 with a larger scale study, specifically on a novel anti-

tumour drug design. The results showed a limited justification in the selection of appropriate 

compounds through variations of methods imposed in the experiments. The research, 

however, was undermined by issues of the biasing of compounds selected for the training sets. 

These factors resulted in the performance being unrealistically positive (Hodes, 1976). 

 

Hodes (1981) published a more detailed, larger scale study on the anti-tumour screening 

programme, particularly on the search for a new drug responding to mouse lymphocytic 

leukaemia or P388. The study involved some 120 highly active compounds and 2000 

moderately active compounds, while 33,000 more compounds were deemed inactive. Further 

selections for a training set were made, comprising 80% of the compounds above, in order to 
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eliminate any doubts about bias. Screening performance was validated by both the computer 

and the chemist selection on the agreement of actives, which was largely similar. Hodes 

concluded that the results of the computed selection of compounds were favourable in this 

sense. However, he did not discount several limitations due to problems of biasing, chemical 

structures, feature choice on fragments, redundancies and the difficulty of application (Hodes, 

1981). 

 

2.10.2 CASE and MULTICASE 

Klopman (1984) introduced a program to study the relationship between the structures and the 

biological activity of organic molecules called Computer Automated Structure Evaluation 

(CASE). The program was based on the artificial intelligence concept with an algorithm that 

automatically identifies molecular fragments with a high probability of relevancy in terms of 

the biological activity in question. CASE was considered as a knowledge-based system. One 

of the original objectives of CASE was to intrinsically maximise the effort to focus on active 

molecules from the mass of inactive ones. The basic workflow of CASE is: (1) the generation 

of all possible connected fragments for every molecule in the dataset; (2) the determination of 

active and inactive molecule distribution; (3) the evaluation of each active or inactive 

molecule distribution concerning whether it is specifically in the active molecules, in the 

inactive molecules or if the distribution has occurred simply by chance.  

 

In subsequent studies, it was discovered that CASE had several limitations apart from its 

success in the automated prediction of relevant molecules, based on their inherent biological 

activity response. Klopman (1992) noted the lack of sensitivity to geometrical differences and 

their inability to be handled in a hierarchical manner. Klopman later presented a new program 

called MULTICASE. It involved the use of logical and hierarchical features to select 

descriptors for the improved, automated prediction of relevant molecular substructures. CASE 

and MULTICASE have both been applied to a wide variety of problems including the 

prediction of physiochemical properties, the generation of quantitative structure-activity 

models (in particular toxicology, mutagenicity and biodegradation) and the analysis of large 

data sets (Leach & Gillet, 2007). 

 

Recently, the CASE Ultra algorithm was introduced by Chakravarti, Saiakhov and Klopman 

(2012). It is the latest methodology, which is mainly based on the MULTICASE methodology.   

The CASE Ultra algorithm was implemented in the CASE Ultra Expert System. It is a 
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fragment based QSAR machine learning method and has recently been applied in the field of 

chemical toxicity (Chakravarti, Saiakhov & Klopman, 2012). CASE Ultra generates 

predictive models automatically by learning from training sets which consist of both active 

and inactive compounds. It does this by scanning each individual compound to find structural 

alerts, also called positive alerts related to activity. The final set of positive alerts is further 

used to build a local QSAR model. Several advantages of this new algorithm are its ability to 

utilise the capacity of modern hardware and software. It also allows the handling of large 

training sets and is known to be unlimited with regards to its learning-path determinations 

(Saiakhov, Chakravarti, & Klopman, 2013). 

 

2.10.3 SLASH      

The SLASH program is an implementation of SSA, developed for medicinal chemists in 

Zeneca Pharmaceuticals in 1998 as an acceptable molecular descriptor in identifying a lead 

compound. The objective of the programme was to analyse a large number of compounds, 

identify complete functional groups and determine their significance in relation to activity 

(Cosgrove & Willett, 1998). SLASH examined the performance of scoring functions by using 

larger and more useful functional group fragments, incorporating four weighting schemes: (1) 

the SAF scheme by Cramer et al. (1974); (2) the SAS scheme by Redl et al. (1974); (3) the R2 

schemes by Robertson and Sparck-Jones (1976); and (4) the Number of Standard Deviations 

(NSD) by Hodes et al. (1977). One of the objectives of SLASH is to determine if the use of 

more sensible functional group fragments in a substructural analysis can improve the 

performance of any of the fragment scoring functions (Cosgrove & Willett, 1998). Similar to 

Ormerod (1988), Cosgrove (1998) tested three statistical measures within SLASH to assess 

the effectiveness of each scoring function in SSA: Percent misplaced (PM), Error Score (ES) 

and comparison of rankings (Cosgrove & Willett, 1998) as discussed in Section 3.5.3. 

 

2.10.4 Other applications of SSA 

A further example of the application of SSA was carried out by Capelli et al., (2006). They 

employed SSA and 1024 Daylight fingerprints to create a set of GlaxoSmithKline compounds 

biased towards Ligand-Gated Ion-Channel Ligands (LGIC). In the study, they used the R2 

weighting scheme to calculate the score of each compound by utilising the information on the 

activity state which are LGIC (active) and non-LGIC (inactive). As a consequence, they found 

that the scoring function effectively discriminated the known LGIC from the non-LGIC 

training set, and efficiently ranked the 550k in a house test set. 
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Another application is described by Anzali et al. (2001), who employed SSA as an algorithm 

for use in computer systems, known as the Prediction of Activity Spectra for Substances 

(PASS). In addition to the use of the SSA algorithm, PASS also provides chemical structure 

information, guided to improve accuracy in the differentiation between “drug” and “nondrug” 

compounds. Lederle also conducted an experiment on the use of substructural analysis to 

calculate the independence of atom-pair and structure-activity properties as either active or 

inactive, for each given compound. In the study, Carhart et al. (1985) employed SSA to 

calculate the score for each compound by using the information of the presence of a particular 

substructure in a compound. It uses such information to estimate the probability of the 

biological activity of new compounds being potential hits. The study applied the same 

principle that was introduced by Cramer, but with a different approach. Carhart et al. formed 

the weighting based on a heuristic and used the appearance of an atom-pair in the structures as 

a molecular descriptor to be analysed. The heuristic technique is also known as the trend 

vector analysis, whereby the occurrence of atom pairs of different types is correlated with 

biological activity. The atom-pair is a substructure containing two non-hydrogen atoms with 

the interatomic bond separation. Each unique atom pair is assigned a score, as shown by 

Equation 2.18. 

 

𝐴𝐶𝑇(𝐼) − (𝑇𝑂𝑇(𝐼) ∗
𝑁𝐴𝐶𝑇
𝑁 )

𝑁
            

 

Permeability of the blood–brain barrier (BBB) is a system that guards the brain from harmful 

substances, which circulate in the blood of the central nervous system via capillary cells. 

Mensch, Oyarzabal, Mackie and Augustin (2009) reported on the use of the SSA method in 

the analysis of BBB, where, SSA was applied to categorise the unknown BBB permeability of 

the molecules over a pool of known BBB+ and BBB- molecules. First, the molecules are 

fragmented into a possible fragment size that is defined by the user, and then the summation 

and mean value of the fragment score of each compound is determined. Finally, the 

compounds are ranked in descending order, where the highest numbers of compounds, which 

have the highest potential to permeate the BBB, were placed at the top.  

2.11 SSA and Naive Bayesian Classifier (NBC) 

SSA has been studied in considerable detail by researchers at the National Institutes of Health 

in an extended programme to develop novel anti-cancer agents, and also by workers at 

Lederle (Carhat et al., 1985; Hodes et al., 1976; Hodes et al., 1977; Hodes et al., 1981). 

(Equation 2.18) 
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However, it is only in the last few years that the approach has become widely used. Although 

this was perhaps not recognised when the approach was first introduced, SSA is an example 

of a Naive Bayesian Classifier (NBC). NBC by definition is a type of probabilistic 

classification algorithm, based on Bayes theorem, which carries a strong assumption of 

independence when characterising structurally the object(s) to be classified. The NBCs 

approach can be used to classify a trained data set into two different classes of active and 

inactive, based on their probability value of in(activity) calculated using Bayes`s theorem. For 

example, Xia, Maliski, Gallant and Rogers (2004) employed NBCs to categorise kinese 

inhibitors activity, in which they claimed the method was able to find a compound that was 

structurally diverse to known actives. 

 

In principle, SSA and Naive Bayesian Classifier (NBC) are both machine learning methods 

which can be used for ligand-based virtual screening in drug discovery, and which can be 

shown to be mathematically related. The notion of similarity between SSA and NBC was 

noted by Hert et al. (2006).  Taking note of Xia‟s et al. (2004) NBC based equation is used in 

the Pipeline Pilot software; Hert et al. proved that it can reach a form of equation similar to 

Robertson-Sparck Jones' R1 method, as shown below: 

 

𝑃(𝐴) =  
𝑁𝐴𝐶𝑇

𝑁
             

 

𝑃(𝐴|𝐼) =  
𝐴𝐶𝑇(𝐼)

𝑇𝑂𝑇(𝐼)
              

 

𝑃(𝐴|𝐼)

𝑃(𝐴)
=  
𝐴𝐶𝑇(𝐼)/𝑁𝐴𝐶𝑇

𝑇𝑂𝑇(𝐼)/𝑁
              

    

 

The initial equation form of (Equation 2.19), as expressed by Xia et al., estimates the ratio of 

active compounds over the total compounds available. Specifically for a given fragment I, the 

ratio can be computed, as in (Equation 2.20), whereby the number of active fragments I is 

over total compounds containing fragment I. Extending (Equation 2.19) and (Equation 2.20) 

yield equation (Equation 2.21) which is similar to Robertson-Sparck Jones' R1(I) method. 

(Equation 2.19) 

(Equation 2.20) 

(Equation 2.21) 
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𝑃(𝐴|𝐼) =     𝐴𝐶𝑇(𝐼) + 1 ⌈𝑇𝑂𝑇 (𝐼)
𝑁𝐴𝐶𝑇(𝐼)

𝑁(𝐼)
⌉    

 

Hert further demonstrated that by expanding equation (3) above, it can reach the form of the 

Avidon scheme (Equation 2.22). Furthermore, in the Pipeline Pilot, the log function is used to 

sum up the fragment weights for a compound, which yield the final probability of activity for 

it. In regard to Avidon weighting scheme, the sum of the fragment weights is the final score. 

Based on the equations above (Equation 2.22), Hert et al. (2006) also showed that the SSA 

weighting scheme R2 is mathematically related to NBC.  

 

NBC‟s approach has been previously studied under similarity searching and has been applied 

to screening set selection and the HTS dataset analysis. For instance, Bender, Mussa, Glen, 

and Reiling (2004) used NBC to classify compounds into two different classes of active and 

inactive, based on their probability value of in(activity), calculated using Bayes`s theorem. 

Furthermore, Bender, Mussa, Glen, and Reiling (2004) reported on the use of NBC searching 

method based on atom environments as molecular descriptor to show the best results in their 

investigation of molecular searching techniques. Their experiment in particular measured the 

performance of the retrieval rates of active compounds derived from the MDDR database. 

They concluded that the performance was better in the case of diverse structures and on a 

large size data set. In another application, Ertl, Roggo, and Schuffenhauer (2008) used SSA to 

analyse the similarity of molecules to structural characteristic based on Bayes‟s theorem. This 

was done by measuring the natural product likeness rather than by measuring the overall 

activity of compounds. 

 

Glick, Klon, Acklin and Davies (2004) applied NBC to enrich noisy HTS data of a five 

compounds mixture. The experiment found that NBC successfully ranked the large number of 

compounds (up to 1 million in minutes) by using a desktop computer. Additionally, in 2006, 

Glick, Jenkins, Nettles, Hitchings and Davies carried out a further investigation on the use of 

NBC. In the experiment, Glick et al. (2006) investigated the performance of NBC in the 

screening of novel active compounds applied to the HTS data with increasing levels of noise. 

In their analysis, Glick et al., found that NBC can improve the enrichment of high-level noisy 

HTS data, and is therefore useful and applicable to use NBC for this purpose. 

 

(Equation 2.22) 
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On the other hand, previous studies have shown that NBC unsuccessfully increased the 

enrichment of High-Throughput Docking (HTD) results. In their study, however, Klon, Glick 

and Davies (2004) reported that the combination of NBC and consensus scoring approaches 

successfully improved the HTD data. This can be achieved by employing the consensus 

scoring after HTD, and later NBC uses the list of compounds gained from the consensus 

scoring as input to improve the enrichment. For example, Rogers, Brown and Hahn (2005) 

reported that it is useful to employ NBC with ECFP fingerprints to rank samples in the test set 

for screening. The advantages include speed, automation, ease and the low cost of the 

computation required for analysing the HTS data. Langer et al. (2009) also reported that, 

when active versus inactive categorical data against a given target is available, the NBC can 

be envisaged. As a result, a large compound collection can be screened in order to 

differentiate potentially active molecules from inactive ones.  

 

2.12 Performance evaluation and validation for SSA 

Only a few documented studies of the SSA have been conducted by researchers since the 

introduction of the method. Such available studies, however, have explored the evaluation of 

the SSA performance with respect to structural based molecular descriptors, mainly on 2D 

fingerprints. This is in contrast to various available studies. These evaluated different machine 

learning methods, such as the popular similarity searching, data fusion scoring and binary 

kernel discrimination. Considering the diverse nature of chemical structures, and noting the 

heterogeneity of compounds in a dataset (consider HTS screened data), the main theme of this 

study involves the predictive analysis of SSA application. A form of quantification of SSA‟s 

performance was thus needed (as for any given evaluation programme), it essentially involves 

statistical evaluation methods for the weighting schemes in question, or SSA‟s overall 

performance in general. A number of statistical evaluation methods have been conducted by 

various authors (Ormerod, 1989; Cosgrove, 1998; Wilton, 2003) in order to analyse the 

variability and performance of the weighting schemes.  

 

Table 2.4 highlights a summary of previous works on the performance evaluation of SSA by 

various researchers. Ormerod et al. reported an extensive study, which compared the 

effectiveness of a number of established fragment weighting schemes. Their work was 

originally within the SSA scope of weighting scheme evaluations. In this study, ten individual 

databases with roughly 100-200 compounds were used to perform SSA with fourteen different 

weighting schemes. All fragment weights performed less well predictively than 
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retrospectively. Taking into account both the predictive and retrospective analysis of the study, 

the R2 weighting scheme is clearly to be the most effective, with SAS consistently being the 

least effective (Ormerod, Willett, & Bawden, 1989).  

 

Cosgrove et al. (1998) aimed to develop a program called SLASH, which moves a step further 

in the preparations of the fragments to be used in SSA. For instance, a test was conducted in 

their study which confirmed the validity of the performance of weighting schemes in the 

following order: Robertson Spark-Jones R2 > SAF > NSD > SAS. The most recent evaluation 

of SSA was carried out by Wilton et al. (2003), whose work involved a comparative study of 

ranking-based methods in Virtual Screening. He employed and analysed individual techniques 

such as Similarity Searching (SS), Substructural Analysis (SSA) and Binary Kernel 

Discrimination (BKD). In the study, R1 shows the highest retrieval rate of active compounds 

derived from the NCI AIDS dataset in the top 1%, and 5% by using BCI and Unity 

fingerprints respectively. In contrast, R2 shows the highest number of active compounds 

retrieved from the Syngenta database in the top 1%, and 5% using BCI and Unity fingerprint 

respectively. In all the evaluation studies, the majority authors highlighted the fact that the 

most effective results were obtained with the Robertson-Sparck Jones R2 method. 

 

2.13 Conclusion 

This chapter discusses the elements in substructure analysis (SSA). Molecular descriptors 

used to represent the information of chemical compounds are emphasised. Furthermore, 

several popular weighting schemes used in the SSA searches have been explained. Each of the 

components of SSA plays an important role in the performance of the search. The next chapter 

describes the methodology used to develop new weighting schemes in the SSA. This includes 

the justification on the selection of databases, fingerprints, weighting schemes adopted in this 

research. 
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Table 2.4: Summary of past performance evaluation programs on SSA 

Description / Analysis / Results 

Researche

r(s) 

Evaluation Dataset Weighting 

Schemes 

Method of 

study 

Performance 

evaluation 

Conclusion/Resu

lts 

Ormerod 

et al. 

(1989) 

Evaluation of 14 

different fragment 

weighting 

schemes for 

Substructural 

Analysis. 

 

10 small-sized 2D-

fingerprints datasets (a few 

hundred compounds each) 

Data Compounds 

Chemmut  115  

Dataprak  196 

Nitroso  145 

Amino  141 

Benzo  115 

Ames  114 

Nitrocyc 111 

Acrid  209 

Stero  114 

Barbit 160 

 
 

SAF, SAS, 

Hodes SD and 

PR (including 

analog versions 

SDI and PRI), 

Robertson-

Sparck R1 to R4, 

AVID, WT1, 

WT2. 

 

 

Retrospective 

and Predictive 

Chi x2, percentage 

misplaced, error 

score 

 

Robertson-Sparck 

Jones R2 method 

most efficient, but 

not by a great 

margin compared 

to other schemes. 

Cosgrove 

et al. 

(1998) 

Application and 

evaluation of 

Substructural 

Analysis method 

with the use of a 

more sensible 

fragment group 

(SLASH 

program). 

 

Atom-pair fragment group. 3 

sets of datasets: 

 25 000 molecules (305 

actives, 2 195 inactives 

and produced 784 458 

fragments)  

 28 456 molecules (1 822 

actives, 26 634 inactives 

and produced 979 256 

fragments) 

 DAYLIGHT fingerprints 

for comparison of result. 

Robertson-

Sparck R2, SAF, 

SAS and NSD. 

 

Retrospective 

and predictive 

 

Decile ranking  Agreement with 

Ormerod on R2‟s 

best performance 

among the tested 

weighting 

schemes. 

Otherwise, atom-

pairs group 

considered 

limited in ability 

to predict 

activities of new 

compounds. 
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Wilton et 

al. (2003) 

Evaluation of 

SSA (chosen 

weighting 

schemes) with 

other machine 

learning methods 

(Binary Kernel 

Discrimination 

(BKD) and 

Support Vector 

Machine (SVM). 

 

1) NCI AIDS dataset, 

containing compounds 

checked for anti-HIV 

activity, 2D-fingerprints 

descriptors (1 129 actives 

and 34 862 inactives) 

 Training Set (200 actives 

and 200 inactives) 

 Test Set (35 591 

compounds) 

2) Syngenta, which contains 

132 784 molecules (7 127 

actives and 125  657 

inactives) 

 Training Set (713 actives 

and 713 inactives) 

 

AVID, 

Robertson-

Sparck R1 and 

R2, WT2. 

  

Retrospective Top percentage 

(cumulative) 

ranking recall 

 

Highlighted 

BKD‟s 

performance 

efficiency over 

other methods, 

but Robertson-

Sparck‟s R2, 

shown as the best 

weight function 

among schemes 

in SSA. 
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Chapter 3 

 

Research Methodology  

 

 

3.1  Introduction 

This chapter describes the methods used to investigate and analyse all experiments conducted 

in this study. Four experiments were carried out and are outlined in the thesis as follows: the 

first is a comparison of different existing weighting schemes in SSA (as explained in Chapter 

4); second, the use of a genetic algorithm (GA) as a weighting scheme for the SSA (Chapter 

5); third, the use of genetic programming (GP) for SSA (Chapter 6); and finally an 

investigation of the application of data fusion to both the GA and GP-based SSA (as 

explained in Chapter 7). Thus, the purpose of this chapter is to describe the experimental 

design (datasets, fingerprints, and evaluation methods) that covers all experiments above. The 

elements, methods and procedures in all experiments are similar, as are the statistical and 

evaluation methods used to quantify the performance of each SSA techniques in question. 

 

3.2 Datasets 

For all experiments conducted in the study, three large datasets were used to simulate the 

virtual screening experiments and for the evaluation of the tested methods. The datasets used 

are as follows: (i) the MDL Drug Data Report database (MDDR); (ii) the World Of Molecular 

Bioactivity database (WOMBAT) (World Of Molecular Bioactivity, 2007); and (iii) the 

European Bioinformatics Institute‟s ChEMBL database (version 18, otherwise known as 

ChEMBL). The databases above were chosen as they have been used extensively by 

University of Sheffield researchers, and many other research groups for various 

chemoinformatics-based studies.  

 

3.2.1 MDDR 

The MDDR jointly produced by Accelrys and Prous Science (available from Accelrys Inc. at 

http://accelrys.com/products/databases/bioactivity/mddr.html). The final MDDR database 

version is volume 32, year 2010 and holds over 180,000 biologically active compounds. 

Well-defined derivatives are also featured, as well as structures and information on 

pharmacological classes for the compounds. It was reported that there were approximately 
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10,000 new compounds added to the database yearly up to the 2010 version. The information 

of these compounds was gathered from published journals, patent literature, congresses and 

meetings focusing on released and under development drugs. MDDR used a qualitative 

method to distinguish between active and inactive compounds. A compound was classified as 

active if it showed a specific activity, otherwise it was considered as inactive. In this study, 

MDDR version 1995 was used. It contains 102,540 compounds as shown in Table 3.1(a). For 

our experiments in the following chapters, eleven activity classes were selected from the 

MDDR database that were first described by Hert et al. (2004) and that were devised in 

collaboration with Novartis (Novartis, 2012). 

 

3.2.2 WOMBAT 

WOMBAT is a well-known, small molecule, chemogenomics database and was developed by 

Sunset Molecular Discovery. The database holds structures collected from papers published 

in important drug-discovery journals, such as the Journal of Medicinal Chemistry. Every year, 

the database was amended twice, and each time over 10,000 new biological activity 

structures were added to the database.  Unlike MDDR, WOMBAT is quantitative, whereby 

the activity of a compound is based on the drug potency value. The value is quantified using 

the –log IC50 scale, also known as pIC50. The scale is introduced by converting the half 

maximal inhibitory concentration (IC50) value. The IC50 is used to quantify the inhibition 

effectiveness of a molecule affecting chemical process or life in living organisms. The 

activity of a compound is classified by comparing the activity value with a threshold value. 

The threshold value was set as pIC50 at 5.0. For each activity class, compounds with pIC50 ≥ 

5.0 were classified as active in a particular class. Meanwhile, compounds with pIC50 < 5.0 

were classified as inactive and removed from that class. Fourteen activity classes from the 

WOMBAT dataset, as described by Gardiner et al. (2009), were used throughout the studies 

presented in Chapters 4 to 7. 14 activity classes were selected from this database. They are 

similar to the 11 activity classes from the MDDR dataset, with several additional activity 

classes. The 14 activity classes identified in this study are shown in Table 3.1(b).   

 

3.2.3 ChEMBL  

Experiments of the GA and GP-based SSA were mainly carried out on the MDDR and 

WOMBAT databases, while a verification test was later performed on a larger, more current 

dataset. For this purpose, ChEMBL database was selected for such test. ChEMBL database is 

created by the European Molecular Biology Laboratory‟s – European Bioinformatics Institute 
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(EMBL-EBI), providing over a million molecules for scientists working in both academia 

and industry. ChEMBL is an open-data database which is available via 

https://www.ebi.ac.uk/chembl/. The database consists of 2D structures and calculated 

properties (i.e. log P, molecular weight, and Lipinski parameters). It also features binding, 

functional and ADMET bioactivities. Much of the ChEMBL data sources were extracted 

from over 48,000 papers in 47 or more journals, particularly from the Bioorganic and 

Medicinal Chemistry Letters, the Journal of Medicinal Chemistry and the Journal of Natural 

Products. EMBL-EBI released several versions of the ChEMBL database, the latest which is 

version 21, made available on the 29th March 2016 and contains 1,928,903 molecules and 11, 

019 protein targets.  

 

In this study, ChEMBL version 18 (hereby labelled as ChEMBL) was used to study our GA 

and GP-based SSA methods, containing a total of 1, 352, 681 molecules. To exclude any bias 

in the performance measurement, only activity classes similar to those in WOMBAT and 

MDDR databases were retrieved. Similar to WOMBAT datasets, the bioactivity for ChEMBL 

is quantitative, as the molecule is considered to be active if the calculated activity value is 

more than a threshold value, and is considered inactive for the rest. Molecules were retrieved 

based on three properties: (i) homo sapiens target organism; (ii) compounds with pIC50 ≥ 

5.0; and (iii) compounds with a confidence score equal to 9. In the ChEMBL database, the 

confidence score is a score value that reflects the target type assigned to a particular assay 

and the assurance that the target assigned is the correct target for that assay. By using these 

properties, it was possible to extract 15 activity classes from ChEMBL, as shown in Table 

3.1(c).   

 

Table 3.1 contains information on the experimental activity classes from the three databases. 

These include the name of each activity class, the number of active molecules and the Mean 

Pairwise Similarity (MPS) values for each class. The MPS value in each row was calculated 

by comparing each member of an activity class with all of the other members of that class. 

The MPS values were obtained by quantifying the similarity values between each molecule 

for each activity class using the standard UNITY 2D fingerprints (Tripos, 2015) and the 

Tanimoto coefficient. The average of the similarity values was then computed in order to 

acquire the level of molecular diversity for each activity class (Gardiner et al., 2009; Hert et 

al., 2004). Based on the MPS values, as shown in Table 3.1(a) and Table 3.1(b), the Renin 

inhibitors (RNN) was identified as the most homogeneous set, while Cyclooxygenase 
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inhibitors (COX) as the most heterogeneous. From these, it was possible to classify the 

activity classes into two heterogeneity sets, namely (1) homogeneous datasets, in which the 

MPS is equal or more than 0.40; and (2) heterogeneous, wherein the MPS value is less than 

0.40. Table 3.1 also provides the number of unique ring systems for each activity class. This 

is defined by the number of scaffolds found among drugs, also known as the Murcko 

scaffold. The study of this scaffold was first carried out by Bemis and Murcko (1996), who 

identified significant ring systems and chains linking two or more rings together. In another 

study, Brown (2009) found that scaffolds can be used in molecular diversity selection and 

molecular classification. Figure 3.1 below demonstrates the Murcko scaffold used in this 

study. A ChEMBL molecule is represented by the Figure 3.1(a). Such molecule is translated 

to its Murcko scaffold equivalent as shown in Figure 3.1(b). 

 

                                                

(a)                                                           

(b) 

Figure 3.1: (a) A molecule from the ChEMBL database and (b) Its corresponding Murcko 

scaffold 

 

3.3 Fingerprints  

The molecules from MDDR, WOMBAT and ChEMBL datasets were characterised via a 

dictionary-based fingerprints known as the MDL fragment description. The MDL structural 

keys used in this study was originally developed for a substructure search (Olah et. al., 2004). 

The MDL keys consist of 166 bit keysets, based on 166 publicly available MDL MACCS 

structural keys. The structural keys are important fragments listed in a dictionary used to 

encode molecules in a bit-string. Each bit is associated with a structural key and it denotes the 

presence or absence of one of the keys or substructure.  

 

Another type of fingerprint is the Daylight fingerprints which contain indexing of all the 

structural patterns present in a molecule. A hashing function is applied to generate a set of 
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numbers from these patterns. Once the numbers for all patterns have been generated, the 

fingerprints are folded to obtain a fixed bit-string. Folding has several limitations as the same 

bit may be set by multiple patterns. This bit can potentially become irrelevant and lose 

information, which is otherwise known as bit collision. Based on the limitation of the 

Daylight fingerprints, the MDL fingerprints were considered to be more chemically 

meaningful, as it is recognised as a low resolution, well-established descriptor and has often 

been used as a standard to evaluate the performance of fingerprints (Heikamp & Bajorath, 

2011).  

 

The MDL fingerprints were used to identify the combination of fragment weights to generate 

the best possible ranking of the molecules in a database. The MDL fingerprints were 

generated using SciTegic‟s Pipeline Pilot software to produce structural descriptors or 

fragments for all compounds. Pipeline Pilot protocols were used to retrieve the MDL 

fingerprints from the MDDR database. The protocol, as illustrated in Figure 3.2, involves the 

process of converting a Daylight SMILES notation found in the property list to a molecular 

representation. The MDL public key fingerprint component was then used to convert 

molecules into 166-bit MDL fingerprints, denoting the present fragments as „1‟ and the absent 

fragments as „0‟ in each of the 166 fragments. 

 

 

Figure 3.2: Pipeline Pilot workflow for fingerprint 

 

3.4 Test set and training set 

Predictive analysis is a standard approach implemented in machine learning methods, as 

outcomes of such methods often have the possibility of being biased to their input datasets. In 

a predictive analysis, a dataset is divided into training and test sets, in which the former is 

used to build an analysis model, while the latter is used to validate the model generated. In 

the case of SSA, and for each activity class in each database, an analysis is first performed on 

the training set, generating a set of fragment weights for all fragments. The obtained fragment 

weights are then directly applied to the test set to calculate the activity or inactivity score for 

all compounds in the prediction set. In total, three separate analyses were carried out 



 

60 

 

pertaining to each database used in the experiment. In each dataset, if an active compound for 

a particular activity class is active, it will be inactive for the other classes. For each activity 

class, 10% of the active and inactive compounds were selected randomly from each database 

to create the training set. Such size for a training set was considered for reasons of running-

cost effectiveness, whereby 10% size constitutes to a large enough proportion of active and 

inactive compounds. It is also to ensure that any methods experimented in this research are 

challenged on its tolerance to the composition of the training and test set relationship. 

 

The remaining compounds were grouped as the predictive test sets. This is described as 

follows: 

i) Predictive MDDR: 10% of active compounds and 10% of inactive compounds were 

selected from MDDR as a training set, making a total of 10,254 compounds available 

for analysis. The test set consisted of the remaining 90% of the dataset. 

ii) Predictive WOMBAT: 10% of active compounds and 10% of inactive compounds 

were selected from WOMBAT as a training set, making a total of 13,812 compounds 

available for analysis. The test set comprised of the remaining 90% of the dataset. 

iii) Predictive ChEMBL: 10% of active compounds and 10% of inactive compounds were 

selected from ChEMBL as a training set, making a total of 135,268 compounds 

available for analysis. The test set comprised of the remaining 90% of the dataset. 

 

Table 3.1: (a) MDDR, (b) WOMBAT and (c) ChEMBL activity classes considered in this 

study 

Activity class  Abbreviation  
Number of 

Actives 

Number of 

scaffolds 
MPS 

5HT3 antagonists  5HT3 752 417 0.35 

5HT1A agonists  5HT1A 827 450 0.34 

5HT Reuptake inhibitors  5HT 359 181 0.35 

D2 antagonists  D2 395 258 0.35 

Renin inhibitors  RNN 1130 554 0.57 

Angiotensin II AT1 antagonists  AT1 943 464 0.40 

Thrombin inhibitors  THRM 803 425 0.42 

Substance P antagonists  SUBP 1246 586 0.40 

HIV protease inhibitors  HIVP 750 461 0.45 

Cyclooxygenase inhibitors  COX 636 282 0.27 

Protein kinase C inhibitors  PKC 453 171 0.32 

(a)  
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Activity class  Abbreviation 
Number of 

Actives 

Number of 

scaffolds 
 MPS 

5HT1A agonists 5HT1A 592 224 0.40 

5HT3 antagonists 5HT3 220 117 0.38 

Acetylcholineesterase inhibitors ACHE 503 220 0.37 

Angiotensin II AT1 antagonists AT1 724 253 0.44 

Cyclooxygenase inhibitors COX 965 220 0.32 

D2 antagonists D2 910 324 0.37 

Factor Xa inhibitors FXA 842 328 0.39 

HIV protease inhibitors HIVP 1128 473 0.44 

Matrixmetalloprotease inhibitors MMP 694 280 0.44 

Phosphodiesterase inhibitors PDE 569 270 0.36 

Protein kinase C inhibitors PKC 142 31 0.57 

Renin inhibitors RNN 474 253 0.59 

Substance P antagonists SUBP 558 186 0.43 

Thrombin inhibitors THRM 421 196 0.42 

 (b) 

 

Activity class  Abbreviation 
Number of 

Actives 

Number of 

scaffolds 
 MPS 

Serotonin 1a (5-HT1a) receptor 5HT1A 1483 641 0.37 

Serotonin 3a (5-HT3a) receptor 5HT3 213 90 0.35 

Serotonin transporter 5HT 2447 687 0.34 

Acetylcholinesterase ACHE 739 400 0.36 

Type-1 angiotensin II receptor AT1 106 60 0.52 

Cyclooxygenase-1 COX 139 63 0.28 

Dopamine D2 receptor D2 1858 815 0.35 

Coagulation factor X FXA 1502 603 0.39 

Human immunodeficiency virus type 1 

protease 

HIVP 2157 904 0.43 

Matrix metalloproteinase-1 MMP 395 157 0.40 

Phosphodiesterase 4a PDE 254 100 0.31 

Protein kinase C alpha PKC 211 76 0.42 

Renin RNN 982 291 0.45 

Neurokinin 1 receptor SUBP 847 316 0.43 

Thrombin THRM 838 472 0.35 
 

(c) 
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3.5 SSA weighting schemes evaluation methods 

As the training sets were mainly used to determine fragment weights (subsequently directly 

applied to corresponding test set), a score for each molecule from the test set was calculated 

by adding the weights of those fragments present its MDL fingerprint. The molecules were 

ranked in descending order based on the calculated score, relative to the measure of the 

probability that the compound would be active. The best fragment weights were expected to 

successfully rank all active compounds at the top and all inactive towards the bottom of the 

ranking. In the past, Cosgrove and Willett described three different statistical measures that 

can be used to evaluate the rankings resulting from the various SSA weighting schemes 

(Cosgrove et al., 1998). The techniques are: 

i) Chi squared X
2
: The value representing the difference in distributions of actives and 

inactives in the top and bottom halves of the ranked list of compounds. If there was no 

association between the score calculated for a structure and its activity, 50% of the 

actives would be expected to appear in the top half of the ranked list with the 

remaining 50% in the bottom half. Similarly, 50% of the inactives would be expected 

to appear in the top half of the ranking and 50% in the bottom half. The observed 

distribution could then be compared with this null distribution using the calculated X
2
 

values.  

ii) % misplaced or decile ranking:  The number of active compounds in each decile of 

the activity ranking is identified and two rankings compared by the distribution of 

active compounds within the deciles. If a dataset has been analysed perfectly, the first 

part of the ranking will consist just of actives and the second part just of inactives. In 

general, however, some of the actives will be displaced and occur in the lower part of 

the ranking, with some of the inactives appearing in the upper part of the ranking. For 

example, consider 10 compounds, 6 of which are active (A) and 4 of which are 

inactive (I). The perfect situation would be  

A A A A A A I I I I,  

for the compounds when ordered in descending score value. If the actual ordering 

gave  

  I A A A A A I I I A, 

            then the percentage misplaced is 2/10, i.e., 20%. 

iii)  Error score: Takes account not only of the number of compounds misplaced but also 

the positions of the misplaced compounds in the ranking, i.e., how far their rank is 
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from the dividing line between the active and in active compounds in the ideal 

ranking. Consider a possible ranking of the small dataset  

         I I I A A A I A A A . 

Thus, for this ranking, the error for the inactives is 12, i.e, 5+4+3, and for the actives 

is 9, i.e, 4+3+2. The Error score is the given by the mean error, i.e., by (9+12)/10. 

Thus, the Error score for this ranking is 2.1.  

 

However, the Enrichment Factor (EF) was used to compare the rankings resulting from the 

weighting schemes investigated in our study. 

 

3.5.1 Enrichment Factor (EF) 

In evaluating the SSA search method, the effectiveness aspect was focused on, which 

quantifies whether the actual output meets the desired output or otherwise (Edgar et al., 

2000). Several techniques can be applied to evaluate the effectiveness of existing SSA 

weighting schemes and developed evolutionary algorithms based on SSA. Machine learning 

experiments are often evaluated using area under the curve (AUC) values, i.e., the area under 

a receiver operating characteristic (or ROC) curve. However, this performance criterion is 

less appropriate for evaluating virtual screening experiments since it considers the entire 

ranking of a database when calculating the effectiveness of a ranking. In fact, methods of 

virtual screening require only the analysis of a small fraction of the molecules that occurs at 

the top of the ranking to be considered for further biological screening. Rather than using 

AUC values, the screening performance was hence measured by the number of actives for the 

top 1% of the ranked test set (i.e. 1% enrichment value). 

 

The enrichment values are computed as the actual obtained number of active compounds at a 

specific cut-off value, divided by the number of actives that would be retrieved if compounds 

were picked from the database at random. Thus, the enrichment factor compares how much 

the retrieval rates are better than the random model-based retrieval. For instance, for a given 

group of 750 active compounds, and considering that the top 1% was picked at random, the 

expected number of active compounds would be 7.5. Hence, a random model-based 

enrichment of active compounds at the top 1% of the samples would yield 7.5 active 

compounds. Again, this is based on the random assumption. Consequently, to compute the 

enrichment factor for a given trend, consider the case in which 200 active compounds are 

found in the top 1%. The enrichment factor would be the actual obtained number of active 
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compounds divided by the number of actives expected based on random selection, which is 

200/7.5. Therefore, in the top 1% of the dataset, the enrichment value is denoted as 26.7 in 

this case. 

 

3.5.2 Analysis of diversity 

In this study, apart from the enrichment factor, the performance of the virtual screening was 

also measured by identifying the number of distinct Murcko scaffolds at the top 1% actives. 

This serves as a simple measure of structural diversity. Diversity analysis was conducted on 

the experimental results to quantify its ability to identify novel bioactive compounds from a 

diverse space of possible compounds. The analysis obtained was compared to the results 

obtained from evaluating weighting schemes. The top 1% rank positions of compounds from 

the test set in the analysis were chosen for diversity analysis. The weighting scheme with the 

highest retrieval rate, diversity and unique scaffolds for each activity class were identified. 

Mean diversity analysis is calculated as the complement of mean similarity analysis using the 

Tanimoto coefficient. The equation retrieves fragment presence information of two 

compounds by using 2D fingerprints (defined as 166-bits MDL 2D fingerprints in this case) 

and computes a value associated with the Tanimoto coefficient, given by Equation 3.1: 

 

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦𝐴𝐵 = 1 − *
𝑐

𝑎 + 𝑏 + 𝑐
+ 

 

where a is the  number of "on" bits in compound A, 

b is the number of "on" bits in compound B, 

c is the number of "on" bits in both compounds A and B. 

 

Based on the above equation, the Tanimoto coefficient calculates the ratio between an 

intersecting set and the union set. The ratio of one signifies maximum diversity and the ratio 

of zero denotes maximum similarity. This method was chosen as it has been used extensively 

in the past for identifying / singling out structural similarities.  In this analysis, it was possible 

to identify the number of unique scaffolds of ranked compounds retrieved in the top 1%. 

These were obtained through the use of Pipeline Pilot software. In order to generate a variety 

of unique scaffolds from the retrieved compounds, the BemisMurckoAssemblies scaffold type 

was utilised, as described by Bemis and Murcko (1996).  

 

(Equation 3.1) 
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3.5.3 Statistical tests 

Two different statistical sets of methods were carried out to evaluate the statistical 

significance of the experimental results. The statistical tests were used to identify the 

performance of weighting schemes outlined in Chapters 4, 5 and 6. They were also used 

effectively on the performance of data fusion methods application discussed in Chapter 7.        

 

3.5.3.1 Kendall’s W analysis 

The degree of agreement between the weighting schemes rankings is measured by calculating 

the Kendall coefficient of concordance, known as the W value (Siegel, 1956). This coefficient 

provides a means of quantifying the degree of association between k variables or k sets of 

rankings of similar objects. Accordingly, Kendall‟s W calculates the agreements between 

rankers as it evaluates and ranks a number of subjects according to particular characteristics. 

The concept is that n subjects are ranked (0 to n-1) by each of the rankers, and the statistic 

evaluates how much the rankers agree with each other. Kendall's W ranges from 0 to 1, where 

0 indicates no agreement and 1 indicates complete agreement.  This analysis was performed 

for all of the experimented methods conducted in chapters 4 to 7. 

 

Specifically, the weighting schemes from each database are ranked in decreasing order of 

effectiveness of virtual screening for a specific activity class. This is repeated for each class 

so that there are e.g. 11 rankings for the MDDR dataset.  The degree of agreement between 

the rankings in the top 1% of the ranked compounds is measured by calculating the Kendall 

Coefficient of Concordance, W. This coefficient provides a means of quantifying the degree 

of association between sets of rankings of the same objects. If there is an agreement between 

the rankings of the weighting schemes, it can be concluded that there is a statistical 

significant result for the null hypothesis, H0. This predicts the probability that the rankings are 

not associated, and can thus be rejected. In this analysis, 0.001, 0.01, 0.1 and 0.5 were 

selected as the significance level. Therefore, if the probability p value is equal to or less than 

0.001, it is then necessary to reject the null hypothesis and then can give overall ranking. 

However, if the p value is more than 0.01, then the computed results are considered 

insignificant. The equation that has been used to compute the degree of variance among the 

ranks is given by Equation 3.2: 
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𝑊 = 
12 ∑𝑅𝑖

2 − 3𝑘2  × 𝑁 (𝑁 + 1)2

𝑘2  × 𝑁 (𝑁2 − 1)
 

 

where k is the number of ranks; for example, 11 activity class in MDDR dataset; 

N is the number of objects being run; for example 9 weighting schemes were 

evaluated in this study; 

and 𝑅𝑖
2

 is the sum of the squares sums of ranks for each of the N objects. 

 

The significance of the W was computed using a X
2 

distribution, with a degree of freedom df 

=N-1, for which the equation (Equation 3.3): 

 

                                      𝑋2 = 𝑘(𝑁− 1)𝑊  

 

If the size of the samples is larger (N >7) then the chi square and the probability p values 

were identified by referring to the chi square distribution table; otherwise, the table of critical 

values was used to identify the probability (Siegel and Castellan, 1988). Whenever W is 

larger than the critical values, this result would be considered significant and thus the null 

hypothesis would be rejected.  

 

3.5.3.2 Wilcoxon signed rank test 

In addition to Kendall‟s W test, the Wilcoxon signed rank test was also performed in Chapters 

5 to 7. This nonparametric test is designed to evaluate the difference between two conditions 

where the samples are correlated (Ott & Longnecker, 2015). In this study, the test was used to 

compare the performance between weighting schemes. The statistical test was used in this 

study to measure paired samples to identify whether two weighting schemes are statistically 

significantly different or whether one of them is better than another. Rankings of differences 

of larger and smaller values are used in conjunction with a test statistic W. In this test, all the 

top 1% active recalls of activity classes in all datasets (i.e. MDDR, WOMBAT and ChEMBL) 

are collected and their significance of difference tested using the Wilcoxon signed rank test. A 

null hypothesis, Ho, is defined as where the median difference is zero. This means that our 

default assumption is that both results of weighting schemes are significantly identical. The 

alternate hypothesis, H1, is defined as the median difference being positive at a significance 

level of p = 0.01. The ranks are given the positive (+) or negatives (-) signs of the 

(Equation 3.2) 

(Equation 3.3) 
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corresponding deviations. The computation of the Wilcoxon signed rank test involves five 

steps, these are explained below: 

 

i) The magnitude of difference between two weighting schemes is determined by 

calculating the signed difference DIFFi of each pair, Xi and Yi, in observation. The 

difference is calculated by subtracting Yi from Xi (i.e. DIFFi = Xi – Xi). This gives 

more weight to a pair which shows a larger difference than a smaller one. If the two 

scores of any pair N are equal, where DIFFi = 0, then such pairs are discarded from 

the analysis. N is equivalent to the number of pairs whose differences show a sign (i.e. 

+ or -) where ties are ignored, in this study. 

 

ii) Ignoring the sign (i.e. –, +) of the difference, all the DIFFi values are ranked 

subsequently, with 1 being the smallest. This rank (i.e. Ri) is used to compute the test 

statistics. 

 

iii) Each rank (Ri) is labelled according to its sign of difference (DIFFi) to indicate which 

rank is positive (+) or negative (-) from the DIFFi. The signed rank is used to 

calculate the sum of positive and negative ranks. The positive ranks are calculated by 

summing the entire positive (+) ranks, while the negative ranks are calculated as the 

sum of the negative ranks. 

Ri_positive = the sum of the positive DIFFi's ranks 

Ri_negative = the sum of the positive DIFFi's ranks 

 

iv) To compute the probabilities H0 being true, the W value was calculated to evaluate the 

hypothesis, since the size of N used is less than 20, then the W value was used to 

evaluate the hypothesis, if N >= 20 the z value can be used. Calculate W by comparing 

the value of Ri_positive and Ri_negative, the smallest compared value is assigned as W. 

For instance, Ri_positive = 8, while Ri_negative = 15, thus, W, the smaller of Ri_positive and 

Ri_negative, is 8. 

 W = Smaller of Ri_positive and Ri_negative 

 

v) Finally, it is necessary to refer to the table of critical values of W. This serves to gauge 

the level of rejection of the test statistics in order to arrive at the alternate hypothesis. 

Using the information of the number of differences, N; a probability value with the 
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lowest value of the significance level of 0.01, rejects the null hypothesis H0, if the 

value of W is less than or equal to the critical value of Wcritical (Ott & Longnecker, 

2015). For example, to determine the critical value of N = 11 for the significance level 

α = 0.01 with the test statistic is W = 3, looking at the critical value table, the critical 

value of Wcritical is 5, thus the null hypothesis is rejected because the calculated W is 

less than the Wcritical, 3 < 5. 

If W ≤ Wcritical then reject H0 

 

3.6  Hardware 

Several computer machines were made available over the course of this research, in order to 

perform the investigated methods and also to gauge their computing performance. The 

computer hardware specifications are listed in Table 3.2. It is stressed that programming and 

development of methods investigated in this thesis was completely done via MATLAB, a 

rapid application development (RAD) productivity software package with a custom high 

level language tailored for the software. Therefore, there are clearly other potential 

applications (such as code redundancy reductions or even a change to optimised low-level 

languages like C++) which can reduce computational cost and increase programming 

efficiencies, but this was not explored further. MATLAB also features a parallel computing 

toolbox which includes the graphic unit acceleration option. These options were also not 

explored during this research; therefore, the advantage of multi-core processes or graphic unit 

additions on evolution-based SSA at the time of writing could not quantify. At the very least, 

the runtime benchmark analysis presented for both GA and GP programs can indicate the 

level of resource expectation when screening a multitude of dataset sizes. It may also be 

possible to use different parameterisations to the ones used in these setups.  
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Table 3.2: Computer‟s hardware specification used to run the GA-based SSA. (a) Server 

setup; (b) Multimedia-intensive workstation; (c) Office-level workstation; and (d) Laptop 

setup 

(a) 

Machine ID Server_1 

Make / Model (if applicable) Linux server 

Processor 
Intel (R) Xeon  (R) CPU E5-1650 v3 % 3.5 Ghz 

(12 cores) 

Memory (RAM) 32.0 GB 

Operating system Red Hat Linux Enterprise 

 

(b) 

Machine ID Workstation_1 

Make / Model (if applicable) Custom built 

Processor AMD FX (TM) 8350 8 Core 4.00 GHz 

Memory (RAM) 16.0 GB 

Operating system Windows 7 64-bit Professional, Service Pack 1 

 

(c) 

Machine ID Workstation_2 

Make / Model (if applicable) Dell / OptiPlex 320X 

Processor Intel (R) Core (TM) i5 CPU 650 @ 3.20 GHz 

Memory (RAM) 4.0 GB 

Operating system Windows 7 32-bit Enterprise, Service Pack 1 

 

3.7 Conclusion 

This chapter has described the method used in this investigation of the SSA weighting 

schemes using evolutionary algorithms. This chapter also discussed the databases used and 

the statistical methods applied to evaluate the effectiveness of the developed evolutionary 

algorithms-based SSA compared to the existing SSA weighting schemes. Thus, the following 

chapter describes the evaluation of different existing weighting schemes in SSA using the 

three large datasets, i.e. MDDR, WOMBAT and ChEMBL as discussed above.  



 

70 

 

Chapter 4 

 

The Comparison of Different Weighting Schemes in Substructural 

Analysis Using Large Datasets 

 

 

4.1 Introduction 

Several weighting schemes are readily available in SSA, as discussed in Chapter 2. A majority 

of the schemes are relatively similar to one another in terms of the equations. In the current 

literature, studies have been conducted on the analysis of the effectiveness of such weighting 

schemes. Their evaluations, however, only focused on small sets of compounds (amounting to 

hundreds to a few thousands only) and in limited activity classes (Ormerod, 1989; Cosgrove, 

1998; Wilton, 2003). In this chapter, an updated analysis of the effectiveness of the established 

SSA weighting schemes for measuring the predictive performance of a given biological 

activity class using large datasets was presented. Predictive analyses using a randomly 

selected portion of the dataset to analyse the predictive performance of SSA in the test set, 

based on applications in the training sets were conducted. Experiments to analyse the 

effectiveness of the established SSA weighting schemes in determining the activity of the 

molecules were also carried out. 

 

4.2 Experimental details 

For the experiments, three large datasets were used, namely WOMBAT, MDDR and 

ChEMBL. The details of the datasets and the analysis method applied in this study are 

explained in Chapter 3. The molecules in MDDR, WOMBAT and ChEMBL were represented 

by the MDL fragment descriptor (contains 166 bits). More information about the MDL 

fingerprints and explanation on the workflow used to generate the MDL fingerprints are 

described in Chapter 3. 

 

4.3 Experimental procedure 

Figure 4.1 illustrates the procedure used in conducting the comparative experiment. Here, the 

SSA method was applied for predictive analyses, consisting of three general steps. First, the 

weight calculation of the individual fragment was carried out using ten different weighting 



 

71 

 

schemes. Second, the process involved identifying score of each compound in the test set. 

Finally, it is necessary to rank the compounds in the test set by descending score value order.  

 

4.3.1 Weighting schemes 

Given the abundant choice of various weighting schemes available under SSA, ten weighting 

schemes were selected for evaluation on the basis of their performance in previous 

comparative studies by different authors. The selected weighting schemes are: SAF and SAS, 

introduced by Cramer et al. (1974); the relevance weighting schemes R1, R2, R3 and R4 

introduced by Robertson and Sparck Jones (1976); Avidon et al.‟s (1982)  derived weighting 

schemes, particularly AVID, WT1 and WT2; and NBC method from Pipeline Pilot. A detailed 

explanation of these weighting schemes is described in Chapter 2.  

 

4.3.2  Benchmarking SSA performance against NBC Pipeline Pilot 

In addition to the SSA weights, the implementation of the NBC-based Pipeline Pilot scheme 

as an additional benchmark against the SSA weighting schemes was also included. The NBC 

method was performed using the Pipeline Pilot software and the procedure is described in 

detail in both Figures 4.2 and 4.3. For the initial NBC model using training sets, the predictive 

sets as input and the NBC model is generated using the "Learn Good Molecules" option. It is 

used in order to examine and distinguish the “good” and “baseline” compounds (Figure 4.2). 

The generated NBC models were used to screen a new candidate of the input test set and 

sorted the test set using the model's value using the ”Enrichment Plot Viewer” option (Figure 

4.3). The plot is used to identify how rapidly hits are found in the sorted compounds list. The 

NBC results were compared to all the SSA weighting schemes for benchmark analysis.  

 

4.4  Analysis of SSA weighting schemes 

The performance of the weighting schemes was evaluated via enrichment factor analysis and 

statistical-based methods (enrichment curve and Kendall‟s W) to highlight the prediction 

effectiveness for each scheme. The measures are based on the number of active molecules 

retrieved in the top 1% of the test set, as explained in Chapter 3. 

 

Table 4.1 lists the total number of actives in the test set and the number of actives in the top 

1% using the selected weighting schemes for every designated activity class of three 

databases. The equivalent enrichment factor of the actives is also summarised in Table 4.2. 

The best result for each activity class is lightly shaded. 
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The entire comparable results were obtained with the MDDR dataset as presented in Tables 

4.1(a) and with WOMBAT dataset as shown in Tables 4.1(b). In the predictive experiment, all 

weights retrieved more than 10% of active compounds, except SAS weight, which, can be 

seen in 5HT3, 5HT1A, 5HT, D2, RNN and HIVP classes. In general, more than 50% of the 

active compounds were retrieved within the top 10% of the ranked compounds in all activity 

class analysis. Similar observations can be seen in cases with the ChEMBL dataset. Tables 

4.1(c) shows that the four relevance weighting schemes show good retrieval rates for 1% 

searches compared to SAS, which is shown to be significantly lower in terms of performance.     

 

4.4.1 Enrichment curve analysis 

The effectiveness of screening via SSA is illustrated diagrammatically using enrichment curve 

plots for all SSA weighting schemes. The cumulative active compounds recall rates based on 

the enrichment factor of actives in the ranked compounds for each weighting scheme were 

plotted. Figures 4.4 to 4.8 show several examples of enrichment plots from predicted test set 

instances for the first 10% ranked compounds, based on five selected activity classes from 

MDDR, WOMBAT and ChEMBL datasets. These are the 5HT3, COX, D2, RNN and PKC 

classes respectively. The figures also include a random and ideal model, where the former 

serves as the baseline guide for the active compound retrieval rate distributed equally 

throughout the entire ranking. The latter shows the best possible performance of active 

compound retrieval at the top ranks. The value of the enrichment factor within the top 10% 

levels‟ samples are plotted and the number of active compounds in the top 1% of each of the 

eleven MDDR, fourteen WOMBAT and fifteen ChEMBL activity classes for all ten weighting 

schemes are captured for further analysis (Kendall‟s W test). 

 

Based on the enrichment curve analysis for provided plots, it can be seen that the R3 and R4 

schemes are shown to outperform other weighting schemes in most classes tested over the 

three databases. Clear examples are from the WOMBAT 5HT3 (Figure 4.4b), MDDR D2 

(Figure 4.6a) and ChEMBL D2 (Figure 4.6a), MDDR, WOMBAT and ChEMBL RNN (Figure 

4.7a-c), and WOMBAT PKC (Figure 4.8b) classes. There are cases, however, when the NBC 

scheme surpasses the R3 and R4 scheme, as shown in the MDDR 5HT3 (Figure 4.4a) and 

MDDR COX (Figure 4.5a). R1 and R2 schemes were also shown to come on top against the 

R3 and R4 schemes in the ChEMBL 5HT3 (Figure 4.4c) and WOMBAT D2 (Figure 4.6b). A 

majority of R1, R2 and NBC schemes generally show mid and occasionally top-tier 

performance results in most classes tested, while SAF, WT1, AVID, WT2 schemes exhibit 
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mediocre performance schemes for a majority of classes in all three databases. The SAS and 

AVID schemes are shown to be consistently the worst performing schemes in most classes. It 

is worth noting that the AVID schemes managed to retrieve just less than 50% active 

compounds at the top 10% ranked percentile. These can be seen in examples of MDDR and 

ChEMBL 5HT3 (Figures 4.4a and 4.4c), MDDR COX (Figure 4.5a), MDDR and WOMBAT 

D2 (Figure 4.6a-b). Note that a particular ChEMBL RNN activity class (Figure 4.7c) indicates 

that the AVID scheme is disappointingly lower than even the random model threshold up to 

the top 10% ranked list. 

 

In general, more than 50% of the active compounds were retrieved within the top 10% of the 

ranked compounds in all the classes of all databases analysed, except for the SAS scheme. It 

was also observed that the four relevance weighting schemes (R1, R2, R3 and R4) exhibit 

good retrieval rates for 1% searches compared to other available schemes. 

 

Based on the enrichment curve analysis for MDDR, WOMBAT and ChEMBL datasets as 

discussed above, two observations can be made. First, all the relevance weighting schemes 

based on Robertson-Sparck Jones work were shown to consistently produce the highest, or 

among the highest distribution rate. These are clearly shown in Tables 4.1 and 4.2 for almost 

every activity class from the three databases. Second, based on the results presented in Figure 

4.9, to 4.11, the homogeneous activity class, i.e., RNN, AT1, PKC, MMP and SUBP gave 

excellent results for actives retrieved in MDDR, WOMBAT and ChEMBL datasets 

respectively, using the SSA R4 weighting function. 

 

4.4.2 Kendall’s W analysis 

Kendall‟s W tests were carried out based on the number of active compounds in the top 1% of 

the ranked compounds of each dataset. Table 4.3 shows the list of ranks for each weighting 

scheme for each activity class of MDDR, WOMBAT and ChEMBL test sets. The weighting 

scheme with the number of actives retrieved for each activity class is recorded. From these 

values, the rank for each weighting scheme was noted for the purpose of identifying the 

performance of the schemes. Thus, in these studies the weighting scheme subjects are ranked 

(0 to N-1), so the rank value is from 0 to 9. For example, MDDR, R3 produces the highest 

number of actives retrieved in the ATI activity class. Therefore, R3 was ranked as number 9 

and the weighting scheme, SAS, with the lowest number of actives in the class will have rank 

number 0. The final two columns on the right in Table 4.3 are the mean of the rank obtained of 
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all activity classes for each weighting scheme. This produces a listed rank position for each 

scheme. In the case of tied rank positions, a correction factor is used to resolve such disputes. 

The correction factor is defined as shown in Equation 4.1.  

 

𝑇𝑗 =∑𝑡𝑖
3  −  𝑡𝑖  

𝑔𝑗

𝑖=0

 

 

From the equation, ti is the number of tied ranks in the i
th

 groups of tied ranks; while gj is the 

number of groups of ties in the set of ranks for judge j. The correction factor is computed by 

adding over all groups of ties found in all j judges. For the tied rankings, their positions will 

be re-assigned based on the correction factor calculated above (Siegel and Castellan, 1988). 

 

The rankings of the weighting schemes are measured in three steps. First, the ranking of the 

weighting schemes in the top 1% of samples are identified, these are based on the number of 

active compounds retrieved from the enrichment curves of each activity class. Second, the 

degree of agreement between the ten rankings is computed. This produces the list of ranks for 

each weighting scheme for each activity class of three databases (MDDR, WOMBAT and 

ChEMBL), as shown in Table 4.2. From these values, the value of W in the top 1% of the 

ranked compounds, together with the probability value, is computed. Thirdly, the mean value 

of rank for each weighting scheme is calculated. The rank for each weighting scheme is 

generated by the Kendall‟s W test, based on the number of actives in the top 1% over all the 

activity classes of each database, as presented in Table 4.2. From the results, the overall 

ranking of the weighting schemes in the top 1% for the predictive analyses are identified. 

 

Predictive analysis 

The determination of the Kendall‟s W test for the eleven, fourteen and fifteen activity classes 

in MDDR, WOMBAT and ChEMBL databases, respectively, reveals that there is a strong 

agreement between the ten rankings of the weighting schemes. It may be concluded that there 

are statistically significant differences between the performances of the various weighting 

schemes, which is significant at the 0.01 level. The determination of the Kendall‟s W test for 

the MDDR can be seen in Table 4.2(a). From the data in Table 4.2, it is apparent that there is a 

strong correlation between the ten rankings of the schemes using 1% of the MDDR, 

WOMBAT and ChEMBL databases.  The computed value of W for the MDDR is 0.75, and 

(Equation 4.1) 
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this yields a value of X
2
 = 74.28 at the p < 0.01. The overall ranking of the weights for the 

MDDR database is: 

 

R4  >  R3  >  R2  =  NBC >  R1  >  WT1  >  SAF  >  WT2  >  AVID  >  SAS 

 

For the analysis using the WOMBAT database, Table 4.2(b) also provides the rank position of 

the ten weighting schemes computed using the Kendall‟s W test, which gives the value of W = 

0.68, and X
2
 = 85.47. This test is highly significant, with p < 0.01. The resulting ranking of the 

ten SSA weighting schemes is: 

 

R4  =  R3  >  R1  =  R2  = NBC >  AVID  >  SAF  >  WT2  >  WT1  >  SAS 

 

Similar observations can be seen when using the ChEMBL dataset. Table 4.2(c) presents 

highly significant at the 0.01 level and it reveals a strong association between the ten 

rankings of the schemes of all cases.  The computed value for W is 0.54, which yields a value 

of X
2
 = 75.99. The overall ranking of the weighting schemes for the ChEMBL dataset is: 

 

 R4  >  R3  >  NBC  >  R1 > R2  >  WT2  >  SAF  >  AVID  >  WT1  >  SAS 

 

Overall, based on the Kendall‟s W results of the three databases, as discussed above, it is 

shown that all the results are somewhat similar to each other, with the four relevance weights, 

R3, R4, R2 and R1, at the top of all rankings. SAF, WT2, AVID and WT1 performs well; but 

SAS shows a poor performance. Furthermore, based on the Kendall‟s W test, it may be 

concluded that there are statistically significant differences between the performances of the 

various weighting schemes in this study.  

 

In addition, when considering the mean rank for all databases (i.e., MDDR, WOMBAT and 

ChEMBL), Table 4.3 shows a highly significant agreement of performance of the various SSA 

weighting schemes in each database at p < 0.01 level. The calculated value for W is 0.94, with 

a value of X
2
 = 25.34. The resulting ranking of the SSA weighting schemes is: 

 

R4  >  R3  >  NBC  >  R2 > R1  >  SAF  >  AVID  >  WT2  >  WT1  >  SAS 
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4.4.3 Analysis of the SSA R4 fragment weights  

The relevance weighting schemes, termed R4, as originally derived by Robertson and Sparck-

Jones (1976), was modified by Ormerod et al. (1989). It serves to accommodate their use for 

the nature of chemical substructures and was used for comparison with the GA weights. 

Recall that the R4 weight is given by the Equation 2.13. The equation demonstrates that the 

R4 weight evaluates the ratio between the “actives odds” for a particular fragment. For 

example, the proportion between the number of active compounds in which the fragment is 

present and the number in which the fragment is not present (or absent) and its “inactive 

odds”. Robertson and Sparck-Jones (1976) stated that R4 weights yield a comparatively better 

performance than other relevant weights since full, active and inactive compound information 

is available in the equation. ACT(I), NACT, INACT(I) and NINACT particulars are known for 

each fragment. On the other hand, the R4 weight was created based on Assumption 2 and 

Ordering 2 (as discussed in Chapter 2). This method is more realistic and reliable compared to 

Assumption 1 and Ordering 1. The R4 equation shown above incorporates the logarithm 

function as it is based on the summation of weights. The logarithm is undefined for a zero 

value, and hence a prior value needs to be assigned in place of any term in the equation 

equalling zero (Robertson and Sparck-Jones, 1976). Following Ormerod, in order to prevent 

arithmetic problems, any zero-valued component in the formula was substituted with the prior 

value of 0.0000001. 

 

To analyse the effect of the prior value m to the R4 weight, fourteen fragments were chosen 

that contain the following features: (i) Fragments that represent the low, moderate and high 

active compound frequency, and (ii) Fragments that represent a low and high presence in the 

overall compound dataset. Table 4.4 shows the results of SSA R4 weighting scheme applied to 

the training set of COX activity class from the MDDR database, based on the predictive 

analysis. This consists of 10,253 compounds (N), of which 63 are active (NACT). A number of 

SSA R4 weighting values for each fragment are presented; taken into account are the different 

prior values of m used, which were 0.0000001, 0.01, 0.05, 0.1 and 0.5. For instance, the 

weight of fragment ID 1 in the fourth column from the right in Table 4.4 shows that the SSA 

R4 weight equals 2.2089 when zero-valued components were exchanged with 0.01. It should 

be noted that the fragments above carry with them zero-valued components in the equation 

(ACT(I), TOT(I) and INACT(I) for example). The zero values depicted in bold and shaded, as 

listed in Table 4.4. The results were then reordered with respect to the ACT(I) /TOT(I) ratio, 

which defines the probability of the compounds comprising a particular fragment being active. 
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To analyse the weight, the ACT(I)/N (the probability that an active compound contains the 

fragment) and TOT(I) /N (the probability that a compound contains the fragment) ratios were 

also computed. From the Table 4.4, for the case where m=0.0000001, negative weights were 

obtained when ACT(I)/N < 0.1. SSA R4 also gave a negative weight to fragments ID 19, 13, 

17, 74, 67, 127 and 154; it is presumed that the probability the fragments are present in an 

inactive compound is higher. 

 

Further observations from Table 4.4 show that fragment ID 17 gave a much lower weight 

compared to all other fragment weights when assigning m as 0.0000001; instead of either 

0.01, 0.05, 0.1 or 0.5 to all the zero-valued components. In this case, components ACT(I), 

TOT(I), and INACT(I). Thus, molecules which contain fragments ID 17 will be pushed further 

down the ranking when ACT(I) is substituted with 0.0000001, compared to when it is replaced 

by 0.5. For fragment ID 166, the replacements of any zero-valued element with a smaller prior 

value of 0.0000001 causes it to impose a larger R4 fragment weight. This result is confirmed 

by the fact that fragments ID 166 should indeed be emphasised, since the probability that an 

active compound containing this fragments (ACT(I)/N) is higher than for other fragments. 

From these results, it can be concluded that a prior value of 0.0000001 improves the ranking 

of compounds, especially when there are zero-valued elements involved in the determination 

of the fragment weights. 

 

Based on the observations in Figure 4.12, a different m value produces a varied degree of 

smoothing effect on the term weights computation. A large m value of 0.1 caused larger 

smoothing of the R4 weights compared to the small m value of 0.000001. This can be seen in 

Figure 4.12, where the figure shows the distribution of fragment weights obtained using SSA 

R4 weighting. This analysis confirms the perception that the prior value m acts as a smoothing 

correction to the relevant weighting scheme. This perception has been expressed in the 

information retrieval literature by Hiemstra (2001). For the case of the SSA R4 weighting 

scheme, however, applying larger than necessary smoothing correction values reduces the 

capability of SSA R4 to differentiate the active compounds from their pool. As a consequence, 

this may reduce the performance of the SSA R4 scheme. This is also observed in Table 4.5 

where the mean and standard deviation values of the overall 166 fragments weights for prior 

values of 0.0000001, 0.01, 0.05, 0.1 and 0.5 were computed. It is evident that the assignment 

of higher prior values implies a smaller variation of individual fragment weights, hence the 

weaker influence of such individual fragments on the determination of a compound‟s overall 
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score. When comparing SAF weights with SSA R4 weights, a variation between individual 

SAF fragment weights is smaller than individual SSA R4 weight. The SAF weight, therefore, 

unsuccessfully indicates a fragment with a strong association with the activity and a fragment 

which is unrelated to activity.  

 

When comparing SAF weights with SSA R4 weights, the SAF weights failed to incorporate 

information regarding the difference in the number of active or inactive compounds 

containing a particular fragment. For example, the fourth column in Table 4.4 depicts the SAF 

weight for fragment ID 166 to be 0.0062 when ACT(I) = 63, and the SAF weight for fragment 

ID 164 to be 0.0064, when ACT(I) = 62. In this case, the latter weight should receive a 

smaller score than the former, since the latter fragment appears in 62 active compounds, while 

the former fragment, appears in 63. The difference is higher by 1 than the latter fragment, i.e. 

Fragment ID 164. This shows that Fragment ID 166 indicates a stronger association to the 

activity than Fragment ID 164. It can also be seen from the Table 4.5 that SAF fragment 

weights show a small variation between individual weights, which is 0.06 when compared to 

the individual SSA R4 weights, where the variance for the SSA R4 weights is 7.66. This 

therefore indicates that the SAF weights were unsuccessfully differentiated between a 

fragment that had a strong association but was unrelated to the activity. 

 

Overall, the above tests were carried out as a means of observing the effect of varying prior 

value and to quantify its influence on the SSA R4 method. Our tests confirmed that the prior 

value of 0.0000001 chosen by Ormerod improved the performance of SSA R4 scheme, which 

was subsequently applied to the SSA R4 analysis in the experimentations. 

 

4.5  Discussion 

Previous studies have determined that the most effective SSA weight function is R2, while 

SAS has consistently been the least effective scheme (Ormerod, 1989; Cosgrove, 1998; 

Wilton, 2003). Ormerod (1989) also included the R4 scheme in her evaluation of various SSA 

weighting schemes, but still found R2 to be generally better. Based on our predictive study 

using the MDDR, WOMBAT and ChEMBL databases, however, it was found that the 

Robertson-Sparck Jones‟s R4 scheme is clearly superior to other schemes when used in both 

heterogeneous and homogeneous datasets. 
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The results were obtained based on the number of actives in the top 1% and mean rank in the 

predictive studies. From the results, R4 weights consistently retrieve the highest number of 

active compounds in the top 1% compared to other SSA methods. However, the result was not 

much different compared to the other relevance weights (i.e. R3, R1 and R2). This is due to 

their weighting equations, which use all the information about the dataset; they incorporate all 

five variables, the presence and absence of fragments information (i.e. ACT(I) and INACT(I)), 

and the number of compounds with regards to active, inactive and the total (i.e. TOT(I), 

NACT, NINACT). 

 

Furthermore, R3 and R4 schemes exhibit very similar results in retrieval rates. This is because 

both weights are related to the use of the term 'odds', in which R3 represents the ratio between 

the active 'odds' for  the fragment (the ratio between the number of active compounds when it 

is not present and the number in which it is present). R4 meanwhile, represents the ratio 

between the presence of fragments in active odds and the absence of fragments in inactive 

odds. 

 

Based on the experiments, the R1 scheme shows a close relationship to R2, in fact they are 

very similar in performance. Both weights use the information of the presence of fragment I 

(ACT(I)) in active and inactive compounds (NACT, NINACT) in their equations. R1 and R2 

are also related to the use of proportion, where R1 evaluates the ratio of the proportion of 

present fragments in active compounds to the proportion of the present fragments in the entire 

set of compounds. R2, on the other hand, represents the proportion of active compounds over 

inactive compounds. From the data in Table 4.2, a similar performance can be observed 

between NBC Pipeline Pilot and R2 schemes for both MDDR and WOMBAT classes. There 

are, however, marginal differences between the two schemes when performed on ChEMBL 

classes. These results support the previous research finding that the SSA weighting scheme R2 

is mathematically related to NBC Pipeline Pilot as reported by Hert et al. (2006). 

 

These relevance weights are based on two independence assumptions (Assumption 1, 

Assumption 2) and ordering principles (Ordering 1, Ordering 2) as discussed in the literature 

chapter. Robertson and Sparck Jones (1976) state that Assumption 2 is more realistic than 

Assumption 1 and Ordering 2 is correct while Ordering 1 is not. Moreover, among the 

relevance weights, R4 is most likely to be the best since the weight is based on Assumption 2 
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and Ordering 2. From these analyses, it was found that R4 yields the best results; therefore 

these results support the claim made by Robertson and Sparck Jones, as stated above. 

 

Another general trend is observed where there are similar trends in retrieval between 

weighting schemes SAF, WT1, WT2 and AVID. This can be attributed to similarities in their 

weighting equations and the use of variables as well. For instance, the SAF equation is just the 

proportion of active compounds containing fragment I (ACT(I)), against the total number of 

compounds containing fragment I (TOT(I)). Other schemes, such as Avidon's WT1 for 

example, utilise the fragment‟s presence information in inactive compounds, namely the 

variable INACT(I). The WT2 scheme incorporates all three variables (ACT(I)), (INACT(I)) 

and (TOT(I)) in its equation. It could be argued that the weights produced by the schemes may 

only result in a similar weighting strength carried over through the ranking process, thus 

yielding similar ranks. 

 

4.6 Conclusion 

In this chapter, the investigation of the performance of the SSA weighting schemes was 

conducted. From the observation during the predictive studies, the four relevance weights (R1, 

R2, R3 and R4) performed very well compared to other weighting schemes. However, 

between the relevance weights, R4 generally produced a higher retrieval rate in this predictive 

study, while SAS weighting schemes yielded the weakest result. Based on our findings, it was 

decided that the R4 scheme should be used in the predictive approach (using a smaller training 

set).  

 

RNN activity representing the most homogeneous sets gave excellent results of active 

compounds retrievals using the SSA in this study; other homogeneous classes (HIVP, AT1, 

SUBP and THRM) also had good results in this analysis. On the other hand, heterogeneous 

classes (5HT1A, 5HT3 5HT, COX, FXA, PDE4 and D2) were found to deliver poor results. 

The experiments described in this chapter proved that the ten fragment weighting schemes 

performed better for the homogeneous activity classes when compared to the heterogeneous 

activities. A strong justification for this is that homogeneous classes tend to have more 

common identical fragments in the active compounds. This then translates to a high value of 

fragment weights and consequently a high probability that a compound is active. This also 

corresponds to the assumption of fragment weighting schemes, where all fragments in a given 

structure have a degree of influence to the likelihood of the compounds being active. 
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The results reported here are based on the predictive experiments using the ten presented SSA 

weighting schemes via large datasets obtained from MDDR, WOMBAT and ChEMBL 

databases. The predictive results obtained here will be compared to the genetic algorithm 

(GA) approach to weighting schemes via the predictive experiment. Chapter 5 describes an 

extension of the work presented in this chapter to explore the feasibility of a GA-based 

weighting analysis compared to best SSA weighting schemes found in this study, which is R4 

in terms of the improvement in predictive performance. The objective is to validate whether 

the GA-based weighting determination yields similar or improved results when compared to 

the best SSA weighting scheme, i.e., the SSA R4 equation.  
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Figure 4.1: Methodology of experimental procedures conducted in predictive analysis 

 

 

 

Figure 4.2: Pipeline Pilot workflow to generate NBC models using training sets 

. 

 

Figure 4.3: Pipeline Pilot workflow for new candidate screening using generated NBC models

Step 1 

Weight calculation of individual fragments using pre-

determined weighting schemes 

Step 2 

Sum of fragment weights determination of each compound 

Step 3 

Ranking of test compounds, in descending order of sum of 

weights 
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 (a)          (b)  
 

 (c) 

Figure 4.4: Cumulative recall plots of the various SSA weighting schemes for the 5HT3 activity class from the (a) MDDR (b) WOMBAT and (c) 

ChEMBL dataset 
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 (a)         (b)  
 

 (c) 

Figure 4.5: Cumulative recall plots of the various SSA weighting schemes for the COX activity class from the (a) MDDR (b) WOMBAT and (c) 

ChEMBL dataset 
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 (a)          (b)  
 

 (c) 

Figure 4.6: Cumulative recall plots of the various SSA weighting schemes for the D2 activity class from the (a) MDDR (b) WOMBAT and (c) 

ChEMBL dataset 
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 (a)          (b)  
 

 (c) 

Figure 4.7: Cumulative recall plots of the various SSA weighting schemes for the RNN activity class from the (a) MDDR (b) WOMBAT and (c) 

ChEMBL dataset
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 (a)          (b)  
 

 (c) 

Figure 4.8: Cumulative recall plots of the various SSA weighting schemes for the PKC activity class from the (a) MDDR (b) WOMBAT and (c) 

ChEMBL dataset
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Figure 4.9: Comparison of the eleven MDDR activity classes based on the enrichment factor 

of actives in the top 1% of the rankings 

 

 

 

Figure 4.10: Comparison of the fourteen WOMBAT activity classes based on the enrichment 

factor of actives in the top 1% of the rankings 
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Figure 4.11: Comparison of the fifteen ChEMBL activity classes based on the enrichment 

factor of actives in the top 1% of the ranking 

 

 

Figure 4.12: Comparison of fragment weights of 166 fragments, at m equals 0.0000001, 0.01, 

0.05, 0.1 and 0.5. The SSA R4 weights are computed using the training sets of predictive 

analysis of COX activity class in the MDDR database 
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Table 4.1: Enrichment factor of actives retrieved in the top 1% of the ranked compounds of 

(a) The eleven activity class in MDDR (b) The fourteen activity class in WOMBAT dataset, 

and (c) The fifteen activity classes in ChEMBL dataset 

 

Activity  
Actives  

Actives Retrieved 
 

Class SAF SAS WT1 WT2 AVID R1 R2 R3 R4 NBC 

(a) 
 

5HT3 677 10.78 6.94 10.93 10.64 9.60 19.94 19.94 20.38 20.38 21.86 

5HT1A 744 10.48 8.33 10.48 10.48 10.48 13.84 13.84 13.84 13.84 14.78 

5HT 323 12.38 8.05 12.69 12.38 11.15 13.62 13.62 10.53 10.53 13.31 

D2 356 6.46 4.49 6.46 6.46 5.90 8.99 9.27 13.20 13.20 9.27 

RNN 1017 17.99 8.36 17.80 17.70 16.81 52.51 52.41 60.96 60.96 40.51 

AT1 849 32.51 22.38 32.39 32.27 32.39 42.52 42.40 43.93 43.82 37.69 

THRM 723 19.09 26.00 19.23 19.09 18.53 31.26 31.40 31.26 31.26 29.18 

SUBP 1121 11.78 10.62 11.69 11.60 11.95 21.59 21.59 23.28 23.37 20.61 

HIVP 675 22.37 7.26 22.67 22.37 20.59 29.48 29.63 33.33 33.48 29.04 

COX 572 20.28 12.59 20.10 20.28 21.68 26.22 26.22 25.52 25.52 28.15 

PKC 408 16.91 14.22 16.91 16.91 17.89 20.83 20.83 23.04 23.04 24.02 

(b) 
 

5HT1A 533 28.52 11.44 28.14 28.52 27.77 42.78 42.78 46.72 46.72 38.65 

5HT3 198 35.35 33.84 35.35 35.35 35.35 27.27 27.27 39.90 39.90 35.35 

ACHE 453 41.72 26.27 41.50 41.72 46.80 47.02 47.02 48.12 48.12 48.12 

AT1 652 35.43 33.74 35.12 35.43 37.88 66.41 66.41 78.99 78.83 52.45 

COX 869 43.96 52.47 43.61 43.96 44.42 60.64 60.53 63.18 63.18 59.49 

D2 819 12.33 8.55 12.33 12.33 11.48 28.94 29.06 27.47 27.47 25.64 

FXA 758 11.48 14.91 11.48 11.48 11.61 36.54 36.54 37.99 37.99 24.67 

HIVP 1015 15.76 11.63 15.67 15.76 15.67 31.72 31.72 39.21 39.21 22.76 

MMP 625 18.40 21.12 18.40 18.24 17.60 59.36 59.36 57.76 57.92 54.24 

PDE 536 20.52 27.43 19.59 20.34 32.84 37.13 37.13 44.59 44.59 37.50 

PKC 128 64.06 67.97 63.28 63.28 67.19 62.50 62.50 71.88 71.88 71.88 

RNN 427 17.56 4.68 17.56 17.56 11.71 60.66 60.66 70.49 70.49 42.86 

SUBP 502 32.67 30.08 32.27 32.27 33.47 44.23 44.23 43.62 43.62 44.22 

THRM 379 20.32 19.26 20.32 20.32 21.11 29.82 29.82 52.77 52.77 30.61 
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Activity  
Actives  

Actives Retrieved 
 

Class SAF SAS WT1 WT2 AVID R1 R2 R3 R4 NBC 

(c) 
 

5HT1A 1335 15.81 11.91 15.73 15.81 15.81 31.69 31.69 28.69 28.69 30.41 

5HT3 192 19.79 14.06 16.67 19.79 19.79 38.54 38.54 33.85 33.85 31.77 

5HT 2202 24.01 19.47 23.69 23.97 24.01 27.33 27.33 24.51 24.51 28.02 

ACHE 665 13.06 13.96 14.56 13.06 13.06 22.82 22.82 25.23 25.23 23.01 

AT1 95 58.33 43.75 56.25 58.33 58.33 58.33 58.33 41.67 41.67 71.58 

COX 125 25.40 24.60 25.40 25.40 25.40 24.60 24.60 27.78 27.78 26.40 

D2 1672 13.51 10.88 13.51 13.51 13.51 23.37 23.37 24.69 24.69 22.67 

FXA 1352 6.36 7.62 6.21 6.36 6.36 25.59 25.59 34.54 34.54 25.74 

HIVP 1941 23.43 8.65 21.42 23.48 23.43 39.55 39.55 46.50 46.50 29.68 

MMP 356 56.46 38.76 58.71 56.46 56.46 48.88 48.88 58.43 58.43 54.21 

PDE 229 10.04 3.06 11.79 10.04 10.04 24.45 24.45 27.51 27.51 22.71 

PKC 190 47.89 50.00 48.95 47.89 47.89 55.79 55.79 55.79 55.79 53.16 

RNN 884 16.97 5.32 15.16 16.97 16.97 46.55 46.55 49.95 49.95 41.63 

SUBP 762 50.85 52.03 51.11 51.25 50.85 61.73 61.47 62.39 62.39 62.20 

THRM 754 11.52 22.25 11.39 11.52 11.52 16.56 16.56 25.43 25.43 14.32 
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Table 4.2: Kendall's W analysis for the top 1% actives retrieved of the ranking for (a) Eleven activity classes in MDDR, (b) Fourteen activity 

classes in WOMBAT, and (c) Fifteen activity classes of the ChEMBL database 

(a) 

SSA Weighting Activity Class Mean Rank 

Schemes 5HT3 5HT1A 5HT D2 RNN AT1 THRM SUBP HIVP COX PKC Rank Position 

R4 7.50 6.50 1.50 8.50 8.50 8.00 7.00 9.00 9.00 5.50 7.50 7.14 1 

R3 7.50 6.50 1.50 8.50 8.50 9.00 7.00 8.00 8.00 5.50 7.50 7.05 2 

R2 5.50 6.50 8.50 6.50 6.00 6.00 9.00 6.50 7.00 7.50 5.50 6.77 3 

NBC 9.00 9.00 7.00 6.50 5.00 5.00 5.00 5.00 5.00 9.00 9.00 6.77 4 

R1 5.50 6.50 8.50 5.00 7.00 7.00 7.00 6.50 6.00 7.50 5.50 6.55 5 

WT1 4.00 2.50 6.00 3.00 3.00 2.50 3.00 2.00 4.00 1.00 2.00 3.00 6 

SAF 3.00 2.50 4.50 3.00 4.00 4.00 1.50 3.00 2.50 2.50 2.00 2.95 7 

WT2 2.00 2.50 4.50 3.00 2.00 1.00 1.50 1.00 2.50 2.50 2.00 2.23 8 

AVID 1.00 2.50 3.00 1.00 1.00 2.50 0.00 4.00 1.00 4.00 4.00 2.18 9 

SAS 0.00 0.00 0.00 0.00 0.00 0.00 4.00 0.00 0.00 0.00 0.00 0.36 10 

 

(b) 

SSA Weighting Activity Class Mean Rank 

Schemes 5HT1A 5HT3 ACHE AT1 COX D2 FXA HIVP MMP PDE PKC RNN SUBP THRM Rank Position 

R3 8.50 8.50 8.00 9.00 8.50 6.50 8.50 8.50 6.00 8.50 8.00 8.50 5.50 8.50 7.93 1 

R4 8.50 8.50 8.00 8.00 8.50 6.50 8.50 8.50 7.00 8.50 8.00 8.50 5.50 8.50 7.93 2 

R1 6.50 0.50 5.50 6.50 7.00 8.00 6.50 6.50 8.50 5.50 0.50 6.50 8.50 5.50 5.86 3 

R2 6.50 0.50 5.50 6.50 6.00 9.00 6.50 6.50 8.50 5.50 0.50 6.50 8.50 5.50 5.86 4 

NBC 5.00 5.00 8.00 5.00 5.00 5.00 5.00 5.00 5.00 7.00 8.00 5.00 7.00 7.00 5.86 5 

AVID 1.00 5.00 4.00 4.00 3.00 1.00 3.00 1.50 0.00 4.00 5.00 1.00 4.00 4.00 2.89 6 

SAF 3.50 5.00 2.50 2.50 1.50 3.00 1.00 3.50 2.50 2.00 4.00 3.00 3.00 2.00 2.79 7 

WT2 3.50 5.00 2.50 2.50 1.50 3.00 1.00 3.50 1.00 1.00 2.50 3.00 1.50 2.00 2.39 8 

WT1 2.00 5.00 1.00 1.00 0.00 3.00 1.00 1.50 2.50 0.00 2.50 3.00 1.50 2.00 1.86 9 

SAS 0.00 2.00 0.00 0.00 4.00 0.00 4.00 0.00 4.00 3.00 6.00 0.00 0.00 0.00 1.64 10 
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(c) 

SSA Weighting Activity Class Mean Rank 

Schemes 5HT1A 5HT3 5HT ACHE AT1 COX D2 FXA HIVP MMP PDE PKC RNN SUBP THRM Rank Position 

R4 5.50 6.50 5.50 8.50 0.50 8.50 8.50 8.50 8.50 7.50 8.50 7.50 8.50 8.50 8.50 7.30 1 

R3 5.50 6.50 5.50 8.50 0.50 8.50 8.50 8.50 8.50 7.50 8.50 7.50 8.50 8.50 8.50 7.30 2 

NBC 7.00 5.00 9.00 7.00 9.00 7.00 5.00 7.00 5.00 3.00 5.00 5.00 5.00 7.00 4.00 6.00 3 

R1 8.50 8.50 7.50 5.50 6.00 1.00 6.50 5.50 6.50 1.50 6.50 7.50 6.50 6.00 5.50 5.93 4 

R2 8.50 8.50 7.50 5.50 6.00 1.00 6.50 5.50 6.50 1.50 6.50 7.50 6.50 5.00 5.50 5.87 5 

WT2 3.00 3.00 2.00 1.00 6.00 4.50 2.50 2.00 4.00 5.00 2.00 1.00 3.00 3.00 2.00 2.93 6 

SAF 3.00 3.00 3.50 1.00 6.00 4.50 2.50 2.00 2.50 5.00 2.00 1.00 3.00 0.50 2.00 2.77 7 

AVID 3.00 3.00 3.50 1.00 6.00 4.50 2.50 2.00 2.50 5.00 2.00 1.00 3.00 0.50 2.00 2.77 8 

WT1 1.00 1.00 1.00 4.00 3.00 4.50 2.50 0.00 1.00 9.00 4.00 3.00 1.00 2.00 0.00 2.47 9 

SAS 0.00 0.00 0.00 3.00 2.00 1.00 0.00 4.00 0.00 0.00 0.00 4.00 0.00 4.00 7.00 1.67 10 

 

 

Table 4.3: Kendall's W analysis for the top 1% based on the average of enrichment factor actives in the top 1% from the MDDR, WOMBAT and 

ChEMBL databases 

SSA Weighting Databses  Mean  Rank  

Schemes MDDR WOMBAT ChEMBL Rank Position 

R4 7.14 7.93 7.30 7.46 1 

R3 7.05 7.93 7.30 7.43 2 

NBC 6.77 5.86 6.00 6.21 3 

R2 6.55 5.86 5.87 6.17 4 

R1 6.77 5.86 5.93 6.11 5 

SAF 2.95 2.79 2.77 2.84 6 

AVID 2.18 2.89 2.77 2.61 7 

WT2 2.23 2.39 2.93 2.52 8 

WT1 3.00 1.86 2.47 2.44 9 

SAS 0.36 1.64 1.67 1.22 10 
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Table 4.4: Fragment weights computed using R4 function for fourteen fragments (1, 2, 5, 19, 13, 17, 74, 67, 38, 53, 166, 164, 127 and 154) at m 

equals to 0.0000001, 0.01, 0.05, 0.1 and 0.5. The weights were derived using training sets in the predictive analysis 

(%)  (%) SAF weight Q R S

Fragment INACTS(I)/

ID (NINACT - INACTS(I)) m = 0.0000001 m  = 0.01 m  = 0.05 m = 0.1 m = 0.5

1 0 0 0.00000000001 0.00000000001 1.000000000 0 0.000000002 63.0000 0.00000000001 2.2088 2.2089 2.2092 2.2095 2.2123

2 0 0 0.00000000001 0.00000000001 1.000000000 0 0.000000002 63.0000 0.00000000001 2.2088 2.2089 2.2092 2.2095 2.2123

5 0 0 0.00000000001 0.00000000001 1.000000000 0 0.000000002 63.0000 0.00000000001 2.2088 2.2089 2.2092 2.2095 2.2123

19 0 1 0.00000000001 0.0001 0.000000100 1 0.000000002 63.0000 0.0001 -4.7912 0.2089 0.9081 1.2095 1.9112

13 0 2 0.00000000001 0.0002 0.000000050 2 0.000000002 63.0000 0.0002 -5.0923 -0.0922 0.6070 0.9084 1.6101

17 0 104 0.00000000001 0.0101 0.000000001 104 0.000000002 63.0000 0.0103 -6.8127 -1.8126 -1.1133 -0.8120 -0.1102

74 6 1288 0.0006 0.1256 0.0047 1282 0.1053 57.0000 0.1439 -0.1358 -0.1358 -0.1358 -0.1358 -0.1358

67 12 2383 0.0012 0.2324 0.0050 2371 0.2353 51.0000 0.3032 -0.1102 -0.1102 -0.1102 -0.1102 -0.1102

38 9 870 0.0009 0.0849 0.0103 861 0.1667 54.0000 0.0923 0.2567 0.2567 0.2567 0.2567 0.2567

53 14 1142 0.0014 0.1114 0.0123 1128 0.2857 49.0000 0.1245 0.3608 0.3608 0.3608 0.3608 0.3608

166 63 10088 0.0061 0.9839 0.0062 10025 630000000.0000 0.0000 60.7576 7.0157 2.0157 1.3168 1.0157 0.3168

164 62 9714 0.0060 0.9474 0.0064 9652 62.0000 1.0000 17.9405 0.5386 0.5386 0.5386 0.5386 0.5386

127 25 4767 0.0024 0.4649 0.0052 4742 0.6579 38.0000 0.8704 -0.1216 -0.1216 -0.1216 -0.1216 -0.1216

154 18 8020 0.0018 0.7822 0.0022 8002 0.4000 45.0000 3.6572 -0.9611 -0.9611 -0.9611 -0.9611 -0.9611

ACTS(I ) TOTS(I) INACTS(I)

R4 weight = (Q/S)

ACTS(I)/N TOTS(I)N ACTS(I)/TOTS(I) ACTS(I)/R NACT-ACTS(I)

when m  is equals to
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Table 4.5: Statistics for 166 fragment weights for m equals 0.0000001, 0.01, 0.05, 0.1 and 0.5. 

The SSA R4 fragment weights are derived using the training set of predictive analysis of 

COX activity classes in the MDDR database 

 

 

Prior Value 

Data Statistics  0.0000001 0.01 0.05 0.1 0.5 SAF 

Min -8.62 -3.62 -2.92 -2.62 -1.59 0.00 

Max 7.02 2.21 2.21 2.21 2.47 1.00 

Mean -0.92 -0.19 -0.09 -0.05 0.07 0.07 

Median -0.15 -0.12 -0.11 -0.11 -0.07 0.01 

Standard Deviation 2.77 1.07 0.90 0.85 0.91 0.25 

Variance 7.66 1.13 0.81 0.72 0.83 0.06 
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Chapter 5 

 

Genetic Algorithm Approach to Substructural Analysis 

 

 

5.1 Introduction 

This chapter describes one of the two central themes of this thesis, which involves the use of 

one specific evolutionary algorithm for the purpose of SSA. This is the Genetic Algorithm 

(GA), focusing on 2D fingerprints analysis. The chapter reviews earlier implementations of 

the GA related to the field of chemoinformatics. It discusses the GA in detail from definitions 

to descriptions of components that form the technique, and subsequently preparations 

required in order to apply the GA-based SSA. To assess the performance of GA for SSA, two 

main experiments were carried out. The first was to identify the best parameterisation set of 

the GA to be used, as the GA has a number of options and alternatives that may define the 

method‟s success. The second experiment deals with analysing the true performance of the 

GA-based SSA on selected molecule databases and their activity classes. Comparisons are 

made against the SSA traditional weighting schemes, as reviewed in Chapter 4, Section 4.3. 

A conclusion is drawn as to whether the GA-based SSA outperforms the earlier schemes. 

 

The GA is a machine learning method, mainly based on the principle of “survival of the 

fittest”, following the theory of biological evolution (Goldberg & Holland, 1988). GA was 

first introduced by John Holland and has since been widely adopted in various disciplines 

(Mitchell, 1998; Goldberg & Holland, 1988). The GA is basically a search heuristic method 

used to generate useful solutions for optimisation and search problems from a multiple set of 

possible solutions mimicking biological chromosomes. The standard GA implementation 

does not require complex mathematical implementation; instead it relies on simple genetic 

operators, specifically the selection, crossover and mutation operations. 

 

5.2 Fundamental components of GA for SSA 

Figure 5.1 describes the basic workflow of the GA. The GA begins with the initialisation of a 

population made up of chromosomes, usually represented in bit strings, real number arrays or 

character strings. Such chromosomes are related to a set of parameters or variables decoded 

from the solution required. 
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The chromosomes are stimulated to repeatedly go through cycles of genetic operations which 

alter the chromosomes‟ elements through a series of crossover and mutation operations. A 

fitness function represents the chromosomes‟ suitability as a solution, in which either a 

perfect, or non-improving solution equates to a stopping criterion. One can think of the best 

possible stopping criterion to be ideally and more practically, the solution that satisfies the 

fitness objective. Alternatively, reaching the maximum number of GA iterations can also be 

considered as another stopping criterion to signal an end to the GA program. The components 

of the GA are described in more detail below. 

 

5.2.1 Encoding of chromosomes 

Encoding of chromosome is an important part of the GA. Encoding is the way to represent 

the solution. The choice of chromosome representation in genetic algorithms depends on the 

variables of the optimisation problem being solved. For example, in the case of a 

minimisation problem of a linear equation, the chromosomes are represented by a series of 

possible integers representing equation variables. This is conducted in order to quantify for 

possible numbers that fit the equation. Similarly, for an optimisation problem within a 

circuitry design, the chromosomes are logically formed by binary flags of different circuit 

paths or gates. The chromosome, once decoded according to the specifics of the coding 

strategy, can then be used to calculate the suitability of the candidate solution to the problem. 

This can be done by performing the fitness function that has been specifically defined for the 

problem domain.    

 

Several types of chromosome encoding are available. The most common is known as binary 

encoding formed with the binary numbers 0 and 1. This is the easiest form of encoding that 

works with genetic operations. Other number-based encoding includes octal or hexadecimal 

encoding which refers to a different number system than the binary one. Apart from number-

based encoding, strings or permutations can also be used for chromosome encoding, which 

are usually specific to recognition-based problems. Tree encoding is another type of 

encoding, but this is almost exclusively not for GA (instead being meant for GP). The choice 

of a suitable encoding scheme depends on the problem specification and the type of fitness 

function required in relation to the problem. 

 

In the case of 2D fingerprints, molecules are represented by a dictionary of fragments 

denoting the presence or absence of individual fragments in a given molecule. For the SSA, 
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such fragment information was used to calculate a series of weight values, based on the 

various weighting schemes available, and these weights are in the form of integers. On this 

basis, it was necessary to adopt the chromosomes in the GA-based SSA in order to have a 

similar weight value combination. The integer encodings of chromosomes seem to be the 

logical choice to represent the fragment weight of a given fragment. 

  

5.2.2 Fitness criterion 

The fitness criterion is an important component of the GA. Otherwise known as the objective 

function. It is usually represented in the form of a function or equation. The fitness function 

serves two main purposes. Its most important function is to evaluate an individual‟s 

suitability as the preferred solution to be produced by the GA.  Considering that most GA 

programs begin with a population set of randomised solutions, the fitness function is 

calculated for each individual in the population so as to guide the selection of potential 

solutions. The selection continues to evolve in subsequent genetic evolutions. A good fitness 

function is critically important in achieving a good success rate with the GA (Koza, 1992). To 

design a suitable fitness function, an accurate understanding of the problem definition is 

required. The fitness function can relate either to a maximisation or minimisation problem. 

Complex optimisation problems may require a multi-objective fitness function rather than a 

single-objective based one. In principle, such a design of an objective function requires a 

form of mathematical representation which can be described by the GA program. In the case 

of fingerprint-based SSA approach of the GA, the definition of the fitness function used is 

described in Section 5.4.3.1. 

 

5.2.3 Chromosome selection methods for genetic operations 

Genetic operations are performed on chromosomes via mating and mutation methods. These 

operations form the core of the GA program. Prior to genetic operations, one or two parent 

chromosomes are first selected to undergo such procedures. Such selections are critical in 

determining how the entire chromosome population will progress. In its most basic form, 

selection for a parent chromosome should be random in nature. The selection, however, may 

also be guided by a certain element of influence, such as fitness suitability or diversity of 

chromosomes‟ characteristics. The two fundamental selection processes related to restrictive 

random chromosomes selection as described below. 
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Roulette wheel selection 

In this method, chromosomes are first ordered in a formation that mimics an actual roulette 

wheel device. Each chromosome takes up a share of the wheel based on their fitness score. 

Chromosomes with higher fitness are given a larger share of the wheel, and thus they have a 

higher probability of being selected. Next, a random number from the range of 0 to the total 

sum of accumulated fitness is then generated. This number then traverses the wheel and stops 

at the wheel portion that encompasses the number, representing the selected parent 

chromosome. A further example is shown in Figure 5.2, where a set of chromosomes is 

listed, along with their fitness values and their percentage of fitness, calculated from the total 

fitness (Figure 5.2a). When sorted in descending order, a random number is generated to 

select the wheel quotient which represents the selected chromosome (Figure 5.2b). Following 

the example from Figure 5.2, the chromosome C5 is shown to have the largest fitness value 

compared to the other chromosomes: thus holding a larger share of the wheel. It should also 

therefore have a higher probability of being selected than the other chromosomes. 

  

Tournament selection 

Tournament selection mimics a tournament style approach in which a series of randomly 

chosen chromosome pairs are pitted against one another. The winner then progresses to the 

next round until only one chromosome remains. Following the example in Figure 5.3, four 

chromosomes were randomly selected and grouped in two pairs (Figure 5.3a). Each pair then 

competes with one another using their fitness value and the winner progresses to the next 

round (Figure 5.3b). The process is repeated again until one chromosome remains, as shown 

in Figure 5.3(c). Zhong et al. (2005) reported the preference and advantage of the tournament 

selection. It is beneficial as it has the ability to converge chromosomes faster into desired 

solutions, since the selection allows for greater consideration of mid to lower ranked 

chromosomes. These can survive the selection process more efficiently compared to the 

roulette wheel method. 

 

5.2.4 Evolutionary operators 

There are two main genetic operations within the GA, specifically the crossover and mutation 

operations. The crossover operation requires two parent chromosomes to be selected and 

mated together to produce an offspring chromosome. The mutation operation, however, 

causes an individual element of one chromosome to be randomly mutated to another value. 

The schematic of the two operations above are described in Figure 5.4. For the crossover 
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operation, it is possible to consider a population of 4 chromosomes encoded in binary (Figure 

5.4a). Two chromosomes are selected at random and a portion of each of the selected 

chromosomes is taken and recombined to produce an offspring chromosome (Figure 5.4b). 

Various crossover methods have been described and proposed (Holland, 1975; Davis, 1985 

Vekaria & Clack, 1998; Kaya, 2011; Kaya, Uyar & Tek, 2011; Kuczkowski, Kolendo, 

Jaworski & Smierzchalski, 2012; Mendes, 2013). Here, three common crossover methods 

associated with evolutionary algorithms are described. The first is known as the One-point 

Crossover. In this method, two selected parents (Parents 1 and 2) are combined using a 

randomly generated combination point. The points lie anywhere between the second elements 

to the second last element of a chromosome index. This example is shown in Figure 5.5(a). 

The ordering of the combination (either parent 1 first, then 2, or vice versa) is also 

determined randomly. The second crossover method is the Two-point Crossover, where the 

two selected parents are recombined with two random recombination points, as opposed to 

one (Figure 5.5b). Finally, the third common crossover method is the Uniform Crossover, 

which functions by recombining a similar ratio of genes from both parents (Figure 5.5c).  

 

The resultant offspring then undergo a mutation process, which identifies a random position 

index and subsequently replaces it with a new randomised value. In the case of a binary string 

such as the above, the highlighted fragment bit of “0” is simply replaced with a “1”. The final 

reproduced and mated chromosome is then evaluated and inserted back into the population 

list. To mimic the natural process of biological mutation and evolution, the frequency of these 

operations can be controlled by assigning a rate of occurrence, ranging from 0 to 1. 0 refers to 

a complete lack of chance (or a non-occurrence) for an operation to be performed, while 1 

signifies an absolute occurrence of such operation at every single evolutionary stage. A high 

rate of crossover and the added "randomness" factor brought about by mutation help to 

increase the chances of reaching global convergence. The process thus effectively determines 

a suitable solution in the long run. 

 

5.2.5 Chromosome’s principle of elitism 

Elitism is mainly concerned with the preservation of fit chromosomes within each generation 

which is carried over to the next generation without any modification. These are usually in 

the order of the most effective solution to the least. These are preserved and brought forward 

into a subsequent series of genetic evolutions. It is primarily a method of preserving the 

desired solutions before they are unwittingly mutated into a lesser form, due to genetic 
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operations. Two main elitism models are available, known as the simple-state model 

(otherwise referred to as generational-state); and the steady-state model. 

 

Simple-state preservation model 

The simple-state model assumes that offspring from parent chromosomes are largely better 

than the parents themselves; as illustrated in Figure 5.6. The offspring chromosomes often 

replace a majority, and in extreme cases, all parents between each generation. For example, 

an elitism of two chromosomes ensures that only the best two chromosomes are retained in 

the next stage of chromosome evolution, while the rest are replaced by offspring. A major 

advantage of this preservation model is that it is possible to reduce the time it takes to 

converge outside the local maximum search space and into the global maximum space more 

rapidly. This is mainly due to the replacement of a large number of chromosomes between 

the evolutions. The drawback, however, is that close-to-ideal chromosomes might be replaced 

too early in the evolution series. This can effectively reduce the chance of arriving at 

desirable solutions at a later stage. In the extreme case of an absolute simple-state model 

(where no chromosomes are preserved between evolution), each generational evolution 

enforces the chromosome to search for its solutions in the global space. The reason is that no 

localised maxima are recorded (except for traces of good parent chromosomes). An ideal 

simple-state mode would usually retain at least 1 or 2 parent elitist chromosomes, which are 

then carried forward into the next GA evolution.  

 

Steady-state preservation model 

An alternative model, the steady-state model replaces only a few chromosomes during each 

GA evolution. Only the last few parents are usually omitted and replaced by more promising 

offspring chromosomes, as depicted in Figure 5.7. This may affect the GA's potential to 

either expand the search space, as it may require further iterations of evolution to arrive at a 

preferred solution, unless a solution is achieved earlier on. A major advantage of the steady-

state model, however, is that it can retain the core of fittest chromosomes within each 

generation, and thus they are not accidentally discarded during intensive rounds of GA 

iterations. This is in sharp contrast to the simple-state model. This employs almost a complete 

replacement of parents with their offspring at each stage of the evolution.  
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5.3 Previous works in GA  

A considerable amount of literature has been published on applications of GAs in more 

general chemical fields (Clark, 2000). GAs have been applied successfully in many fields 

including chemoinformatics and computational chemistry. These include the application of 

the GA in pattern recognition analysis of multivariate chemical data, protein-ligand docking, 

the identification of novel antibacterial peptides, conformational analysis, molecular graphs, 

pharmacophore-mapping, de novo design, hyperstructures, the generation of QSAR models 

and library design (Willett, 2000; Lavine, Davidson & Moores, 2002; Brown, McKay, 

Gilardoni & Gasteiger, 2004; Wang, Krudy, Xie, Wu & Holland, 2006; Fernandez, Caballero, 

Fernandez & Sarai, 2011; Fjell, Jenssen, Cheung, Hancock & Cherkasov, 2011). Here, the 

focus is on previous GA-related studies carried out in Sheffield to exemplify the range of 

problems put to the test with the GA.  

 

Brown, Jones, Willett, and Glen (1994) were probably the first to work on utilising a GA for 

2D chemical matching of query substructures and chemical database structures, as well as 

investigating the GA for the generation of hyperstructures. A chemical hyperstructure is a 

single structure representation of a library, which is generated by the sequential overlapping 

of each molecular graph in the library to the current hyperstructure. The overlapping is 

carried out so as to minimise the size (in terms of numbers of nodes and edges) of the 

resulting hyperstructure. In their research, the GA was found to be less effective than 

conventional search methods, but it showed good potential in terms of hyperstructures 

construction and generation.  

 

Wild and Willett (1996) worked on evaluating the effectiveness of the GA in the alignment of 

molecular electrostatic potentials (MEP) in 3D chemical structure databases for similarity 

searching. This was followed by Holliday and Willett (1997), who investigated the GA to 

identify pharmacophores through a developed program called MPHIL (Mapping 

Pharmacophores In Ligands). In 1997, Jones, Willett, Glen, Leach and Taylor used the GA to 

develop an automatic ligand docking program, known as GOLD (Genetic Optimisation for 

Ligand Docking). The program has been used extensively in drug discovery for identifying 

binding space and ligand conformational space (Jones, Willett, Glen, Leach & Taylor, 1997). 

Gillet, Willett and Bradshaw (1998) later used a GA to calculate weights of activity profiles 

determined by SSA methods, based on high-level structural molecular features. Part of the 
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objective was to investigate the GA‟s capability and potential to enhance drug discovery 

and/or design utilisation of such structural features. The authors experimented with GA 

parameters such as operator weights, population size, chromosome length, mutation rate and 

number of iterations. This was conducted to affect the way evolution converged on two sets 

of SSA weighting schemes (specifically Cramer‟s SAF and Robertson and Sparck-Jones‟s 

R2). They found a good discrimination between active and inactive compounds when 

combining the SSA with a GA, enabling the weights to have more predictive capability and 

an influence when ranking the compounds. However, the approach still requires further 

enhancement and development in tandem with the structural features and bioactivity 

information available. 

 

Bayley, Jones, Willett, and Williamson (1998) employed a GA to calculate the structures of 

proteins using NMR restraints. It was discovered that the algorithm effectively calculated 

structures in which the calculated distance was similar to the geometric distance. Several 

authors have also investigated GAs to solve the ligand docking problem for screening 

chemical databases (Jones & Willett, 1995; Jones, Willett, & Glen, 1995a; Jones, Willett, & 

Glen, 1995b; Jones, Willett, Glen, Leach, & Taylor, 1997; Jones, Willett, Glen, Leach & 

Taylor, 1999). Studies by Gillet, Willett, and Bradshaw (1999) and Gillet, Khatib, Willett, 

Fleming, and Green (2002) analysed the use of a multi-objective GA to derive an optimum 

scoring function for combinational library design in the program MoSELECT. In 

MoSELECT, a typical library design scenario would be to design a library that is not just 

structurally diverse, cheap to synthesise but that also has drug-like physicochemical 

properties. Further evidence of the GA performance was also found in another study, 

achieving successful results in comparing a surface for protein-docking via the application of 

a GA (Gardiner, Willett & Artymiuk, 2003; Gardiner, Willett & Artymiuk, 2001; Poirrette, 

Artymiuk, Rice & Willett, 1997).  

 

Cottrell, Gillet, Taylor and Wilton (2004) worked on applying multi-objective optimisation 

technique of the GA on pharmacophores methods. The aim was to generate valid multiple 

pharmacophores hypothesis from a series of overlay hypotheses, allowing for flexibility and 

diversity in the established structure-activity relationships. An extension of this work was 

further carried out by Gillet (2004), in which the multi-objective GA was explored for the 

design of effective combinatorial libraries that represents different knowledge and 
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compromised objectives. The multi-objective optimisation concept is discussed in further 

details in Section 5.4.3.1. 

 

The successful results of GAs in the studies discussed above led us to use GAs in developing 

a method to predict biological activity. The following section aims to identify whether a set 

of optimised weights can be generated and compared to the existing substructural analysis 

weighting schemes. The objective is to provide a way of evaluating the effectiveness of GAs, 

as suggested in past studies. 

 

5.4 Experiment details 

The main objective of the experiment is to utilise the stochastic approach of the GA when 

determining suitable fragment weights for compound ranking. Results obtained from the GA 

are evaluated against Robertson and Sparck-Jones's R4 weighting scheme for the SSA. This 

is known to be the most consistent and often the highest performing scheme, as reported in 

Chapter 4. Findings from the evaluation of the GA-based SSA may answer the following 

research question: whether an evolutionary algorithm such as the GA is able to improve the 

upper-bound to the performance of the SSA. As a first step, the requirements and setups are 

discussed in order to prepare for the experimentations. 

 

5.4.1 Dataset 

The datasets used for the GA experiments were similar to those reported in Chapter 3. This is 

to ensure that results obtained by the GA-based SSA can be benchmarked against traditional 

SSA weighting schemes as discussed in Chapter 3. They comprise of eleven, fourteen and 

fifteen activity classes from the MDDR, WOMBAT and ChEMBL databases, respectively 

(Table 3.1). The training sets of each activity class contained 10% active and 10% inactive 

molecules as the input dataset to be used in the GA. The remaining 90% of the data were 

subsequently classed as the test set. They were thus used to evaluate the predictive 

performance of the training set.  

 

5.4.2 Hardware 

The GA program developed was executed on a number of concurrent hardware devices with 

different architecture. It was necessary to use these efficiencies in run-time and reduced 

computational costs. Also used was the hardware as listed in Table 3.2. A run-time 

performance benchmark and analysis is presented in Section 5.7.6. 
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5.4.3 Algorithm implementation 

Following Chapter 4, MATLAB was used for the GA investigation for its ease of 

programming and rich access to existing libraries, utilities and data structures. MATLAB is 

packaged with its own global optimisation toolbox, which includes implementations of the 

GA tools. It was decided, however, to code a GA program from scratch to ensure that all 

functions and algorithms could be monitored properly. In this way, it was possible to 

introduce appropriate code optimisations tailored specifically towards fingerprint-based GA 

implementation. Appendix A lists the full pseudo code of the GA-based SSA program written 

in MATLAB. 

 

 

Algorithm 5.1: Main GA program 

1: Initialise a population of chromosomes 

2: Evaluate the fitness of individuals 

3: repeat 

4: Select best individuals to be used for genetic operations 

5: Generate offspring individuals using crossover and mutation 

6: Evaluate fitness of individuals 

7: Replace parent chromosomes in the population with offspring chromosomes 

8: until stopping criterion satisfied 

 

 

Algorithm 5.1 highlights the main GA program developed in MATLAB which conforms to 

the standard GA workflow. The program consists of several important steps. The first is the 

initialisation of a chromosome population, which is a representation of properties to 

determine the solution required from the GA. The main workflow of the GA program is 

shown in detail in Table 5.1. The chromosomes here are randomly defined by default, but 

special circumstances can be imposed on these chromosome assignments, such as discussed 

in Section 5.2.1. Each chromosome individual is assigned a fitness score to represent its 

suitability as a solution candidate. For the GA-based SSA, the fitness determination is 

explained in detail in Section 5.4.3.1 below. The bulk of the program is processed through 

multitudes of genetic evolution phases, consisting of genetic mating and reproduction 

operations (Section 5.4.3.3) through continuous genetic changes and fitness reassessment. 

The program ends when a suitable solution is found. 
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5.4.3.1 Suitable fitness function for SSA–based GA 

The success of a GA is primarily based on the design of a suitable fitness function that 

describes the problem to be solved. In the case of biological activity prediction for 2D 

fingerprints, the chromosomes represent a series of weights corresponding to a particular 

fragment substructure. The chromosome for the GA is a vector containing N integers, where 

the i-th element is the fragment weight for the i-th bit in the fingerprint; and the fitness 

function for the GA is the number of active molecules that occur in the top-1% of a ranking 

of a training set of active and inactive molecules when the molecules are ranked using the set 

of N weights encoded in a chromosome. The GA, which uses single-point crossover and 

single-bit mutation, is run for a pre-set number of generations or until the weights have 

stabilised, thus providing an estimate of the best possible SSA weights that can be obtained 

using that training set. The resulting weights can then be applied to a separate test set. A score 

for a test set molecule is computed by summing (or otherwise combining) the weights of 

those bits that are set in its fingerprint, this sum representing the overall probability of the 

molecule being active given that it contains a particular pattern of bits. Ideally, the right 

weighting combination should maximise the number of active molecules situated in the top 

ranked portion of the given dataset. Hence, the number of active compounds found in the top, 

defined cut-off of the ranked dataset (usually in the top 1%) is considered to be the objective 

of the GA-based SSA.  

 

An extension of this approach is the multi-objective optimisation technique, which takes into 

account multiple source of information or conditions to be considered as objectives to be 

optimised (Nicolaou & Brown, 2013). Researches in chemoinformatics applying multi-

objective optimisation were extensively performed by Cottrell, Gillet, Taylor and Wilton 

(2004), and Gillet (2004), as previously described in Section 5.3. Such optimisation approach 

was also explored in detail by others, notably Li, Yang and Liu (2014, 2015a, 2015b), in 

which they addressed challenges of evolutionary algorithms in applying multi-objective 

optimisation problems. Their work focused on the popular Pareto efficiency, a concept to 

achieve optimal solution from multiple objectives without introducing a dominant solution 

for one objective, known to be a common problem. 

 

For the purpose of simplicity and to prove the effectiveness of the GA-based SSA, however, a 

single-objective fitness definition is preferred for the experimentation. The corresponding 

fitness function should therefore be defined as the number of active compounds in a ranked 
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compound list. This is based on a given set of fragment weights. In mathematical terms, this 

can be represented as Equation 5.1 below: 

 

𝐹 =  (∑ 𝑎𝑛
𝑖=1 )                 (Equation 5.1) 

     

Where i equals the rank position; 

And n equals the index at X percent in the molecules data; 

And a is the molecule activity state, which is either 0 for inactive, and 1 for active 

 

To calculate the fitness score of a given chromosome, the chromosome consisting of 

randomised fragment weights is applied to the molecule dataset. Each fragment‟s individual 

scores are then added together to represent the molecule total score. The molecules are 

subsequently ranked based on their scores in descending order. The molecule‟s activity state 

is highlighted. From Equation 5.1, the ranked molecules‟ activity states were observed to 

calculate the number of active molecules present in the first X percent of the ranked list, 

usually in the top 1 percent of the data. Another variation of the equation above can also be 

performed, for example, in the top 2 percent or 10 percent instead. Hence, the fitness function 

used in our GA is simply the number of active molecules ranked in higher threshold rank 

position. This is also emphasised in Algorithm 5.2 below. 

 

 

Algorithm 5.2: Fitness function evaluation of individuals 

1: for each molecule 

2:  for each fragment  

3:   Multiply fragment’s presence with chromosomes’ fragment weight 

4: end 

5: Sum the fragments’ scores to get molecule score 

6: end 

7: Sort molecules based on the molecule score in descending order 

8: Fitness is number of active molecules in top X percent of ranked molecules 

 

 

A simpler example of the fitness function for the GA-based SSA is further demonstrated, as 

shown in Table 5.1. Consider a molecule dataset comprising of five molecules, defined by a 

dictionary of five fragments as in Table 5.1(a). In the example, the molecule M1 contains the 
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second and fifth fragments F2 and F5 respectively. The molecules‟ activity states are defined 

in Table 5.1(b), where 0 denotes an inactive molecule and 1 is for an active molecule. The 

table states that molecules M1, M3 and M5 are active, while the rest are inactive. An initial 

population of chromosomes is generated with the initial weight values assigned by a random-

number generator (Table 5.1c). Each chromosome is then used to compute the sum-of-

weights for each molecule, as shown in Table 5.1(d). For example, M1 contains F2, F4 and F5, 

so its sum-of-weights using C1 is the sum of W2, W4 and W5, i.e. 3; using C2 the sum is 16; 

and so on for C3-6. Considering just C1, the sums-of-weights for molecule M1-6 are 3, 13, 7, 13 

and 2 respectively; hence the fragment weights represented by chromosome C1 results in the 

following ranking of the training set: 

 

M2 = M4 > M5 > M3 > M1 

 

On the other hand, C2 yields the ranking: 

 

M3 > M1 > M2 > M5 > M4 

 

Taking the example dataset above and observing only the top three ranked molecules to 

represent the fitness criterion, the fitness value for chromosome C1 is calculated as 1 out of 3 

since the top two ranked molecules are inactive ones. Similarly, chromosome C2 scores a 

fitness value of 2 out of 3, or 0.667. If the fitness scores of all the chromosome sets are 

calculated, chromosome C3 will obtain the perfect fitness value based on the ranking below. 

In this case, the active molecules are ranked in the first three positions: 

 

M1 = M3 > M5 > M2 > M4 

 

5.3.3.2 Weight polarity to overcome overfitting 

Hawkins (2004) refers to overfitting as a problem in which a statistical model describes a 

random error or noise instead of the underlying relationship. It is a known problem in relation 

to machine learning methods and received special attention in the study of its causes and of 

methods to overcome this problem (Santos, Sabourin & Maupin, 2009; Hawkins, 2004; 

Domingos, 2012). 

In its simplest form, an overfitting case occurs when a solution from one dataset, trained with 

a machine learning technique, fails to arrive at both successful and similar conclusions when 
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applied to another dataset. This may occur when performed on another „unseen‟ dataset. It is 

a classic case of the generalisation failure, in which a training dataset does not represent the 

complexities present in the general untrained data. As the GA belongs to a non-deterministic 

class of algorithms, the optimal solution found for the GA may vary each time the algorithm 

is rerun with the same input data and GA parameters. For the GA-based SSA, a particular 

feature was introduced for the purpose of regulating the weight distribution in the fragment 

dictionary, and ultimately to overcome overfitting. This was achieved by manipulating the 

frequency of fragment occurrence in both active and inactive molecules. It is argued that a 

fragment should be strictly active-influenced if such a fragment is present in more active 

molecules than inactive ones, and vice versa. This property is referred to as the weight 

activity tendency. To illustrate this feature, see Table 5.2. Several familiar variables common 

to most SSA weighting schemes (Chapter 3) were identified for use as weight regulation, and 

these variables are listed in Table 5.2(a). The variables NACT and NINACT represent the 

number of active and inactive molecules in the dataset respectively. ACT(I) is defined as the 

number of active molecules containing fragment Fi while INACT(I) is defined as the number 

of inactive molecules containing fragment Fi. From these determinations, two ratio values can 

be calculated: the rate of actives ROA is defined as Equation 5.2 and the rate of inactives ROI 

is defined as Equation 5.3. The equations of both rates are given below: 

 

𝑅𝑂𝐴 =  
𝐴𝐶𝑇(𝐼)

𝑁𝐴𝐶𝑇
 

                                             

𝑅𝑂𝐼 =  
𝐼𝑁𝐴𝐶𝑇(𝐼)

𝑁𝐼𝑁𝐴𝐶𝑇
 

 

ROA is defined as the total active molecules (ACT) containing fragment Fi against NACT, 

while ROI is defined as the total number of inactive molecules (INACT) over NINACT. These 

are shown in Table 5.2(b). In the case of fragment F1, its ROA is determined as 0.333, against 

a ROI of 1. This therefore means that the fragment F1 has a larger presence in the inactive 

molecules group. For the fragment F2, the ROA and ROI are 0.667 and 0 respectively, thus 

conveying the weight polarity as having a greater active molecule presence.  It is argued that 

the weight tendency can be further used as a representation of fragment influence, and this 

can be interpreted in terms of positive and negative weight values. This behaviour is observed 

to be similar to the fragment weights distribution when using the SSA R4 weighting scheme.  

(Equation 5.2) 

(Equation 5.3) 
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Table 5.2(c) shows the weight values and their polarity when calculated using the SSA R4 

scheme. It was observed that both the SSA R4 weight polarity correlate to the simple ROA 

and ROI case in Table 5.2(b). Based on this, a strong justification can be made for combining 

the weight polarity criterion and constraining the GA operation itself. First, the SSA R4 

weighting scheme was selected to derive fragment polarity restriction. The reason is that it is 

formulated algebraically and is more sophisticated than the ROA and ROI examples shown 

above. Second, it is clear that the initialisation of chromosomes does not necessarily have to 

be purely random. The SSA R4-based weight polarity restriction can be applied during the 

initialisation of chromosomes itself. Table 5.3 shows the example of the fitness determination 

process; but this time with a SSA R4-weight polarity based values. In this example, the 

weight introduced was randomised and constrained to its SSA R4 equivalent polarity, as in 

Table 5.3(a). The subsequent scoring and ranking, as shown in Tables 5.3(b-d), allows for the 

active compounds to be placed in the top ranking much more easily. This is achieved by 

lowering the irrelevant fragment scores. Figure 5.8 highlights an updated workflow of the 

GA, with inclusion of the weight polarity feature. The GA flowchart highlights two additional 

processes in the workflow: (i) weight polarity determination, and (ii) enforcement of weight 

polarity. All of the other operations remain the same, including the fitness function definition. 

The process is also described in Algorithm 5.3 below. 

 

Algorithm 5.3: Modified GA workflow based on fragment polarity limitation 

1 : Determine fragment polarity based on SSA R4 weights. 

2 : Initialise a population of chromosomes based on fragment polarity 

3 : Evaluate the fitness of individuals 

3 : Repeat 

4 : Select best individuals to be used for genetic operations 

5 : Perform crossover  

6 : Perform mutation  

7 : Evaluate fitness of new individual 

8 : Replace the worst chromosomes in the population with offspring 

chromosomes 

9 : until stopping criterion satisfied 
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5.4.3.3 Selection of chromosomes and genetic operations 

The fundamental implementation of chromosome selections and genetic operations covered 

in the earlier sections of this chapter is described in greater detail, for use in GA-based SSA. 

Selection acts as the driving force in a GA by directing the genetic search towards promising 

regions in the search space. Selection often chooses more fit individuals in analogy to 

Darwin‟s theory of evolution – survival of fittest (Fogel, 1995). In practise however, every 

individual should have a chance to be selected into the mating pool, although such chances of 

an individual can be weighted or biased, dependent on its fitness. Selection pressure is an 

informal term associated with the selection scheme which indicates the probability of better 

individuals to be favoured over the average ones. A higher selection pressure increases the 

likelihood for a better individual to be selected. An extreme selection pressure, however, may 

cause the chromosome population to be stuck in a local maximum (and decreases diversity). 

A lower selection pressure on the other hand may lead to slower convergence rate and 

prolonged evolutions to reach optimal solutions. In principal, selection pressure drives the 

GA to improve the population fitness over successive generations. The convergence rate of a 

genetic algorithm is largely determined by the magnitude of the selection pressure, with 

higher selection pressures resulting in higher convergence rates and vice versa. 

 

Selection schemes can be classified into two broad categories, namely, proportional-based, 

and ordinal-based selection methods. Proportionate selection method picks out individuals 

based on their fitness values relative to the fitness of the other individuals in the population. 

Roulette wheel selection is an example of proportionate selection. Ordinal-based selection 

method meanwhile selects individuals based on their rank within the population, and the 

tournament selection is a prime example of this method. The principle of roulette selection is 

a linear search through a roulette wheel with the slots in the wheel weighted in proportion to 

the individual‟s fitness values. Here, selection begins by sorting all chromosomes based on 

their fitness value in descending order, from the largest fitness valued chromosomes to the 

smallest at the bottom of the rankings. A total fitness is calculated by adding the fitness of the 

sorted chromosomes cumulatively. Each chromosome is then assigned a segment of the 

roulette wheel, where the segment is proportional to the value of the fitness of the 

chromosome.  A higher fitness value, for example, constitutes to a larger portion of the 

roulette wheel.  Mimicking a roulette wheel spin, a random number is generated whereby the 

number limit is the total cumulative fitness. The chromosome corresponding to the segment 
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on which roulette wheel stops, is then selected. This will be the parent chromosome used 

further for genetic operations.  

 

Roulette wheel is the simplest selection approach. The rate of evolution depends on the 

variance of fitness‟s in the population. The average fitness of the population for ith generation 

in roulette wheel selection is calculated as: 

 

𝐹𝑅𝑊𝑖,𝑗  =  
∑ 𝐹𝑅𝑊𝑗
𝑁
𝑗=1

𝑁
   

 

where i varies from 1 to ngen and j varies from 1 to N. 

Therefore, the probability for selecting the j
th

 string is  

 

𝑃𝑅𝑊𝑗  =  
𝐹𝑅𝑊𝑗

∑ 𝐹𝑅𝑊𝑗
𝑁
𝑗=1

   

 

where N is the population size and FRWj is the fitness of individual j. 

 

Apart from the simplest random-based chromosome selection, the roulette wheel approaches 

are implemented as shown in Algorithms 5.4. 

 

Algorithm 5.4: Roulette wheel selection 

Set k=1, j=1, i=nogen 

While k <= mpool 

Begin 

     While j<=N 

Begin 

     Compute FRWi,j 

End 

Set j=1, S=0 

    While j<=N 

Begin 

     Compute S=S+FRWi,j 

   End 

Generate random number r from interval (0,S) 

Set j=1, S=0 

While j<=N 

            Begin 

               Calculate cj = cj-1 + FRW i,j 

               If r <= cj, Select the individual j 

    End 

k=k+1 

End 

 

(Equation 5.4) 

(Equation 5.5) 
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Algorithm 5.5: Tournament selection 

1: P is population 

2: t is tournament size 

3: Best is individual picked at random from P depending on their fitness value    

   with replacement  

4: for i from 2 to t do  

5: Next is individual picked at random from P depending on their fitness 

value with replacement  

6: If Fitness (Next) > Fitness (Best) then  

7:   Select Next 

8: return Best  

 

The tournament selection process follows the Algorithm 5.5. A pair of chromosomes is firstly 

selected at random, known as a pair-bracket, and their fitness values observed. The highest 

ranking of that pair-bracket is selected from the chromosome that has a larger fitness score. It 

is then carried forward to the next round. The process is repeated for another pair-bracket to 

obtain another optimum ranking. When two of these are selected, they are paired together in a 

new bracket for selection. The best chromosome in the final round is finally selected as the 

parent chromosome.  

 

Following the selection of chromosomes, the immediate genetic operation is the crossover 

operation. This method is described via Algorithm 5.6 below. Once the two parent 

chromosomes are determined, a random index number is chosen with a maximum number 

limit of n-1, in which n is the size of chromosome1. The contents of the two chromosomes 

are swapped with each other, in which the swapping point is defined by the random number 

generated earlier. The crossover operation can be implemented either by producing only one 

offspring chromosome or both the modified parents together, equalling to two offspring 

chromosomes. For the implementation of the GA-based SSA, the generation of one child 

chromosome from the crossover operation is preferred, as this gives a greater degree of 

freedom for the creation of new offsprings without requiring both modified parents to be 

selected forcefully. 
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Algorithm 5.6: Crossover operation 

1: Select parent chromosome1 

2: Select parent chromosome2 

3: Generate a random index number of up to maximum size of chromosome1 - 1 

4: Flip parent chromosome1 with parent chromosome2 from random index  

Number to index of maximum chromosome size 

 

The mutation operation is a simple one in which the chromosome (often having already 

undergone crossover reproduction) gets to select one particular fragment weight to mutate. 

From Algorithm 5.7, the fragment weight selection is done randomly and a new number is 

generated (within the constraints of weighting regularisation) to replace the old fragment 

weight. 

 

 

Algorithm 5.7: Mutation operation 

1: Select a chromosome 

2: Select a fragment weight to mutate 

3: Generate a random number from minimum weight to maximum weight value based 

on weight polarity 

4: Replace fragment weight with new generated number 

 

 

5.5 Experimental procedure 

The experiments were divided into two sections; the first experiment was performed to 

identify the best parameters from a varying number of options. The best determined set of 

parameters were then used by the GA to be executed for all activity classes from the three 

databases. It was necessary to list the possible set of values for each specific parameter to be 

rigorously tested under several categorised groups. For example, the parameters‟ population 

size and GA maximum iteration were grouped under the population and generation group. 

Genetic operations such as crossover and mutation rates were defined under the Evolution 

Control parameter group. The complete list of parameters tested and the parameter groups are 

discussed in Section 5.6. 
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The second experiment followed, and involved taking the best identified parameters as a 

default for the GA verification run for all activity classes, where the main purpose is to 

observe the performance of GA-based methods against traditional SSA weighting schemes. 

For benchmarking purposes, the Robertson-Sparck Jones‟s R4 was chosen as the weighting 

scheme for comparing SSA to the GA. All the GA experiments above required an initial run 

on the training sets, followed by predictive verification on the remnant test sets. This process 

was repeated three times for the parameterisation (where the worst results were selected to 

represent the parameter tested) and ten times for the GA benchmark experiments sets, which 

looked at correlation and reliability factors. 

 

5.6 Experiment setup: Parameterisation of GA-based SSA 

The stochastic and random nature of an evolutionary algorithm implies that the end result of 

an evolution may not always be the same. Thus it can be argued that GAs with different sets 

of parameters may possibly arrive at non-identical solutions. Similarly, a small change to one 

parameter can also give markedly different results. Roeva, Fidanova and Paprzycki (2013) 

among others previously investigated the influence of population size on the success of the 

GA, while Goldberg (1991) mainly observed GA parameters, such as crossover / mutation 

rates, crossover methods and parents selection to correlate to GA success. The results 

obtained by both authors were used as a starting point to our parameterisation experiment and 

further variations were explored to seek a possible fit to our search space problem. 

 

To ensure that results obtained from the parameterisation test are consistent and noise-free, 

each GA parameter test is repeated three times to note any large occurring discrepancies. The 

worst performing result was chosen out of the three to effectively represent the results of each 

parameter tested. The predictive sets of the two activity classes from the MDDR database, 

namely the RNN and COX classes, were chosen as input datasets for the parameterisation 

experiments. RNN was selected, as it has the least structural diversity (is the most 

homogenous) of all the classes in the MDDR, WOMBAT and ChEMBL databases.  This 

means that active compounds are more likely to be identical to other actives in the dataset. 

The COX class was identified to have the largest structural diversity (as being the most 

heterogeneous) of all the classes in the three databases.  

 

Based on the GA program developed, and following various literatures on GA 

parameterisations, a key number of parameters required by the GA was identified, thus: (a) 
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fitness function of active compounds rate in a selected top ranked percentile; (b) chromosome 

population size; (c) chromosomes‟ weight range of integer values based on weight polarity; 

(d) maximum generation / evolution limits; (e) elite chromosomes, (f) crossover rate; (g) 

mutation rate; and (h) parent selection method for offspring generation. Each parameter is 

changed one at a time to systematically record the performance variation of parameters. This 

ensures that the effect of individual parameter variation is quantified as accurately as 

possible, and noise results are not mistakenly recorded. A set of initial, default parameter 

values were first defined, which consisted of a fitness function of the number of active 

compounds in the top one percent, a 200 chromosome population size, weight range between 

integer values of -100 to +100, 300 maximum iterations, a roulette wheel parent selection, 

elitism of 1 chromosome preservation between evolutions (mimicking simple-state model), a 

one-point crossover method of 0.95 probability rate and a mutation rate of 0.05, as the default 

GA parameters. Individual parameters being investigated were changed while keeping the 

other parameter set mentioned above intact. The parameters were performed and the results 

obtained, are discussed below. To distinguish the most effective parameter, the highest values 

were highlighted as shown in Table 5.4 to 5.8. 

 

5.6.1 Fitness function 

First discussed in Section 5.4.3.1, the fitness function for the GA-based SSA is defined as the 

number of active compounds found in a chosen cluster of ranked compounds. Such cluster 

can be based on the top 1% ranking, or a larger cluster such as the top 10%. The first 

parameterisation test was conducted here to assess the difference of using varying fitness 

function score based on either the active rates in the top 1%, or the top 10% ranking. 

 

Figures 5.9 and 5.10 shows the cumulative recall plots of the different fitness functions used 

on both the MDDR RNN and COX activity class respectively. For the MDDR RNN class, 

applying a fitness function score based on the top 1% (Figure 5.9a) recorded improvement in 

actives retrieval rate over the SSA R4. This trend is seen in the other percentiles, apart from a 

drop specifically at the top 6% ranking. For the fitness function case based on the top 10% 

ranking (Figure 5.9b), however, the actives retrieval rate is seen to struggle against the SSA 

R4. In the case of MDDR COX class, the fitness function score based on the top 1% ranking 

(Figure 5.10a) managed improvement in actives rates over the SSA R4. This is true especially 

in the top 1% of ranked compounds, and in a majority of other percentile up to the top 10% 

ranking. Meanwhile, for the fitness function score based on the top 10% ranking case (Figure 
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5.10b), the GA is seen to struggle in the top 1% of ranked compounds. The active retrieval 

rates are improved, however, in other ranked percentiles. Table 5.4 further shows the actual 

actives recall rate in the top 1% for the different fitness function experimented. The fitness 

function score based on the top 1% ranking is shown to be superior to the one based on the 

top 10% ranking. This is true for both cases of MDDR RNN and COX classes. From these, 

the fitness function score of the number of active molecules in the top 1% ranking is chosen 

as the preferred fitness function definition.  

 

5.6.2 GA weight range of chromosomes 

Weight polarity feature for weight distribution and regularisation to overcome overfitting was 

discussed in Section 5.3.3.2. This follows experimentation with different values of minimum 

and maximum weight ranges in conjunction with chromosome values initialisation. It was 

identified that the weights should represent a series of integers values to reflect suitable 

scores for each individual fragment. A series of weight ranges with different combinations of 

either negative, or positive, or both number limits were investigated. From the results in Table 

5.5, positive-only weights of both “0 to +10” and “0 to +100” performed very poorly, with 

the enrichment value at one percent recording much lower values than even the SSA R4 

schemes. This is evident in the COX activity class, where no active compounds were ranked 

in the top 1% when using the weights range combination of 0 to 10. A larger positive-only 

weight range of “0 to +100” also achieved low results for test sets from both activity classes. 

Meanwhile, the use of both negative and positive weight values improved the active retrieval 

rates rapidly. It was observed that the weight range combination of “-100 to +100” provided 

the best performance of ranked compounds, while a larger negative and positive weight range 

combination did not yield any significant improvements in terms of actives retrieved. From 

this, the weight limit combination of “-100 to +100” were chosen, in conjunction with weight 

polarity restriction. 

 

5.6.3 Population size and generations of evolution 

Two parameters were tested under this category: (i) Chromosome population size, and (ii) 

maximum generation of genetic evolution. For the first parameter in the category, varying 

population sizes of 100, 200, 300, 400 and a maximum size of 500 chromosome population 

were tested, as shown in Table 5.6. In both cases of RNN and COX activity classes, a 

population size of 200, showed peak retrieval of active compounds in the top 1% of the 

ranked molecules data on test sets. Higher population sizes of 300 and above did not show 
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any considerable improvements, although a population of 500 chromosomes does achieve 

identical results to the 200 population size case. It is noted, however, that there was a 

difference in the run time which doubled the total GA running time of the 200 population 

size.  

 

The maximum GA iterations parameter restricts the number of GA iterations leading to 

termination of the GA program itself when the most desirable fitness function is not reached. 

For this specific parameter, the test is done by executing a single instance of the GA imposed 

with a maximum GA iteration of 500. While running, the performance of active retrieved in 

the top 1% was recorded at observed iterations of 100, 200, 300 and 500. The worst 

performing GA instance of the three runs is selected to represent the parameter assessment. 

From the tests, it was confirmed that the maximum GA iteration of 200 recorded peak actives 

retrieval was in the top 1% for both cases of RNN and COX activity classes. Above this 

iteration, the rate of retrieval remained constant, although the GA instance of the COX class 

at 500 iterations recorded a slight increase in the enrichment rate. In general, however, the 

200 maximum iteration parameter showed a marginal increase in active rates, given such a 

large iteration difference. 

 

To further analyse the predictive performance of the GA method, the error plot is referred to 

in Figure 5.11, which tracks the error rate in relation to both the training set and its equivalent 

predicted test set, versus evolutionary iterations. The error rate is defined as the inverse of the 

fitness rate, or simply the rate of actives retrieved in the top one percent of the ranked 

molecules. For instance, if the fitness rate of actives in the top one percent is 0.7, then the 

error rate is the remnant, or 0.3. Similarly, the error rate of one fitness of 0.5, is also 0.5. The 

worst GA run from the iteration parameterisation test (as in Table 5.6) was selected and its 

retrieval performance plotted, up to the 500th iterations. For both the MDDR activity classes 

RNN (Figure 5.11a) and COX (Figure 5.11b), the figure shows consistent error rates between 

the training and test set, signifying a good correlation of the predictive performance 

especially in unseen datasets, such as the test set. It was demonstrated that for longer 

iterations, the GA did not yield any improved weighting scheme for improve the actives 

retrieval rates for both the training and test set data, which is also reflected in Table 5.6. It can 

be concluded that, considering runtime efficiencies, active retrieval and its predictive 

performances, the population size is set to be 200 chromosomes, and the GA maximum 

iterations determined as 200. 
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5.6.4 Elitism model 

The distinction between a simple-state and the steady-state model was looked in further 

detail. Based on the default population list of 200 chromosomes, a variety of elite 

chromosome preservation methods were tested based on the elitism state. For example, a 

chromosome preservation of 0 represents the absolute case of a simple-state model, while a 

preservation of 199 chromosomes (out of 200) represents the absolute steady-state model. 

Note that a preservation of every chromosome in the genetic pool is not possible, as this 

means that no chromosomes are replaced at all between generations of evolution, defeating 

the purpose of the GA method as a means of natural selection and evolution.  

 

The results of the elitism parameter test are outlined in Table 5.7.  From the table, the 

absolute simple-state model (with zero preservation between iterations) was observed to be 

less effective than the same model with at least 2-parent preservation above. The simple state 

model with 2-parent preservation managed to score the highest retrieval rate for all values 

tested. Subsequent larger parent preservation did not yield any considerable improvements, 

while the steady-state model of 150 and 199 chromosomes preservation degraded the 

retrieval performance for test sets of the two activity classes. This was perhaps due to the 

nature of steady-state, which replaces fewer numbers of chromosomes, resulting in a slower 

convergence of the solution search space. To account for this requirement, another slightly 

different parameter set was investigated, specifically the steady-state model with one 

chromosome preservation but with a higher maximum iteration of 1000. It is noted that the 

retrieval performance still did not improve when it was increased to larger number of 

iterations. 

 

5.6.5 Evolution control 

A number of different parameterisation combinations were tested under the evolution control 

group, as listed in Table 5.8. Here, each individual parameter was changed one at a time, 

while others were consistently kept the same. This was so that any variance caused by the 

parameter change could be observed. Firstly, the parent selection method defines how two 

parents‟ chromosomes are selected to be used for the genetic operation or reproduction 

process. The main idea of parent selection is that better individuals get higher chances of 

being selected for reproduction purposes. Three methods are already established in the 

literature, namely the roulette wheel method, tournament selection and random selection; 

these three were extensively tested in our experiments. From the test results as shown in 
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Table 5.8, it was observed that for both activity classes, the roulette wheel method 

consistently obtained higher retrieval rates than the other two methods. 

 

The crossover rate represents the probability that a crossover operation will be performed, 

with a possible range between 0 and 1. Here, a number of different rates were tested, ranging 

from 0.60 to 0.95. The difference in the performance of retrieval is marginal for such 

changes, although a slightly higher and consistent active retrieval was observed in the top 1% 

threshold of ranked dataset when using the crossover rate of 0.95. This was true in both cases 

of RNN and COX activity classes. The mutation rate is the percentage rate of mutation 

occurrence, and is represented in terms of a ratio from 0 to 1. For our test, a high active 

retrieval rate was recorded when using the mutation rate of 0.01 (or 1% in percentage terms). 

Test instances of the RNN and COX activity classes recorded higher actives via this mutation 

rate. Next, the crossover methods were tested between the three described in the earlier 

sections above, namely the: (1) one-point crossover, (2) two-point crossover; and (3) uniform 

crossover. It was confirmed that the one-point crossover method records the highest active 

retrieval rates for both RNN and COX activity classes in the test sets. 

 

5.6.6 Final parameterisation selections 

Extensive parameterisation tests were carried out in order to quantify the influence of each 

parameter for the optimisation of GA search. From the tests, several parameters which are 

critical to GA's performance in maximising active retrieval rates were identified, while other 

parameters were found to be less sensitive. 

 

The GA weight range is found to be the most critical parameter as successful GA searches 

were only achieved when the weight value limits are extended to both negative and positive 

weight range limit. GA runs with positive-only weights failed to generate active recall rates 

which is even at least comparable to the SSA R4. The minimum weight value range 

acceptable was found to be of at least the -100 to +100 combination but any larger, extended 

limit did not yield considerable impact. The second critical parameter is the elitism model. 

From the tests, it was found that having no elite chromosomes, or on the contrary, too many 

elite parents degrade the performance of the GA. An elitism of 1 to 5 is seen to optimise GA-

based results. For the population size and generation limit, the parameters were only 

considerably sensitive if small values were used instead, while having very large populations 

and a longer iteration did not yield any increase in active retrieval performance. Finally, for 
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the evolution control parameters which include the parent selection method, crossover and 

mutation rate, only fine tuning of the parameters were required to maximise active retrieval 

performance. 

 

Based on the parameterisation results shown in this section, it was decided that the following 

GA parameters were appropriate for the next experiment in this chapter. For the GA 

performance benchmark against SSA, and given all the activity classes from all three 

databases, the finalised parameters are as follows: (1) Fitness function score based on number 

of active compounds in the top 1%; (2) GA weight range of -100 to +100; (3) a population 

size of 200 chromosomes; (4) a maximum of 200 GA iterations; (5) Simple-state model with 

elitism of 2 chromosomes; (6) Chromosome parents selection using the roulette wheel 

method; (7) a crossover rate of 0.95; (8) a mutation rate of 0.01; and (9) the one-point 

crossover method. 

 

5.7 Experiment result: Analysis of performance of GA-based SSA 

Based on the finalised parameters, the GA-based SSA was properly executed to quantify its 

performance relative to the R4 weighting scheme. The R4 scheme was found in general to be 

the most consistent scheme in the SSA, as discussed earlier in Chapter 4, Section 4.3. Several 

analyses and tests were also conducted to gauge the level of GA‟s effectiveness. These are 

categorised below: 

 

5.7.1 GA robustness 

To quantify the randomness factor in the solutions obtained from the GA method, a 

robustness test was performed by running and analysing results from multiple instances of the 

GA. This was done using the best set of parameterisations observed earlier in Section 5.6.6. 

The two activity classes RNN and COX from the MDDR database were used as input for the 

GA robustness test. For all ten runs of the GA-based SSA and their subsequent application of 

the weights to their respective test sets, retrieval rates of the two classes above were plotted 

as enrichment curves, shown in Figure 5.12 (a-b). Based on the plots, all ten GA runs were 

observed to obtain improved active retrieval rates in the top 1% of ranked compounds 

compared to SSA R4 results. This trend continued with small to fairly small deviations 

between each GA run for the rest of the remaining top ranked percentile, up to the top 10%. 

From here, it can be concluded that the GA-based SSA does manage to produce effective 
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consistent results, albeit with the small deviations mentioned, confirming the robustness of 

the GA results. 

 

5.7.2 GA weights correlation and consistency of compounds retrieval 

The measure of the relationships of all the GA weights generated by the 10 runs for each 

MDDR RNN and COX classes (Section 5.7.1) were investigated using Pearson‟s r correlation 

coefficient. The Pearson‟s r correlation coefficient was used to measure how well the 

generated GA weights are related in the multiple runs. The correlation results for both activity 

classes are presented in multi-correlation plot format.  

 

For the RNN class, high correlation values with a minimum of 0.74 were observed between 

individual GA run instances, and for the COX class, a minimum correlation value of 0.77. 

The mean and standard deviation for the Pearson‟s r averaged over the 45 pairs of runs for 

each activity class were 0.75 and 0.025 (RNN) and 0.79 and 0.024 (COX). The level of 

consistency was further observed from the ten revised-GA runs. Table 5.9 shows that the first 

GA run (dubbed GA_run1) was assigned as the reference run. Its active molecules in the top 

1% were identified and compared to those of the corresponding nine remaining runs. From 

the table, the upper value for each run denotes the number of different active compounds in 

the top 1% compound ranking, which were not present in the equivalent top 1% of GA_run1. 

The lower values shown in brackets describe the actual number of active molecules retrieved 

in the top 1% of the test set of the ten GA runs. 

 

The most obvious observation is the relatively small difference in active molecules for the 

other nine GA runs compared to reference GA_run1 for both activity classes. For example, 

only 50 active compounds were found to be different in the top 1% (or the first 922 ranked 

compounds) test set ranking of GA_run2 when compared to GA_run1 for the RNN activity 

class (Table 5.9a). It is even smaller for the COX activity class (Table 5.9b), where the 

different active compounds retrieved from multiple runs ranged from 13 to 21. From the total 

of 167 active compounds retrieved in the top 1% of COX GA_run1, this accounts for roughly 

a 7-12% change for the other runs. These results show a strong indication of the level of 

consistency of performance obtained from multiple GA runs, even when there are variations 

in their individual weights. 
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5.7.3 Analysis of GA runs on all activity classes 

Having confirmed the consistency of GA results and the strong correlation of the weights for 

the two MDDR classes, the actual performance of GA-based SSA was verified on all activity 

classes from the three databases via multiple runs of the GA for each class. Results of the GA 

ten runs are summarised in Table 5.10 for the classes from MDDR-dataset, the WOMBAT-

dataset and the ChEMBL-dataset. The tables outline three important results, which are (i) the 

enrichment factor of active molecules in the top 1% (ii) the mean and standard deviation of 

the number of actives in the top 1% for the ten GA runs and (iii) the mean correlation and 

standard deviation between 166 weights using Pearson correlation coefficient for the ten GA 

runs. Based on Table 5.10, high correlation values were observed, in which the mean 

correlation of Pearson‟s r recorded a minimum of 0.74, and on average circa 0.78. Some 

classes were also observed to record a mean Pearson‟s r as high as 0.86. From the mean and 

standard deviation values for the ten GA runs, it can be seen that there is a high degree of 

consistency of the number of actives were retrieved in the top 1% of the ranked data.    

 

Table 5.11 presents the GA-based SSA results of all activity classes from the three databases, 

based on the worst GA run. Actives retrieval performance, the diversity rate and unique 

scaffolds were observed and compared to the SSA R4 results. The highest value was shaded 

lightly. As shown in Table 5.11, all activity classes from the three datasets showed an 

improvement with the GA in the number of active molecules retrieved compared to the SSA. 

It was found that the GA-based SSA retrieved more than 200 molecules against the SSA R4 

in several classes such as the ChEMBL-based 5HT and ChEMBL-based HIVP. A small 

improvement was also observed in the actives retrieval for WOMBAT-based PKC activity 

class, which scored only 93 for retrieval for GA versus 92 active molecules for SSA R4. It is 

deduced that the most likely possible cause of this is the fact that the WOMBAT-based PKC 

class contains the smallest number of active molecules, totalling 142 compounds out of the 

total 134,812 compounds for the whole of the WOMBAT database. An equivalent training set 

of 10% distribution makes up only a total of 14 active molecules against 13,481 inactive 

molecules. This is considered to be too small to be used in the sample test set, despite the 

slightly improved retrieval results. 

 

5.7.3.1 Enrichment curve analysis 

The effectiveness of screening is illustrated diagrammatically by the enrichment (or 

cumulative recall) plots shown in Figures 5.13 to 5.17, representing selected activity classes 



 

124 

 

from the MDDR, WOMBAT and ChEMBL datasets. The selected activity classes are the 

5HT3, COX, D2, RNN and PKC and the worst GA run results are chosen to represent the 

classes. Each such curve shows the percentage of the actives retrieved in the top 1% of the 

ranked predictive test set up to the top 10% (since it is only the top-ranked molecules that are 

of interest in a virtual screening context). From the plots, three distinct trends were observed. 

 

The first trend characterises the GA curves which are consistently above the SSA R4, up to 

the top 10% of ranked molecules. Example plots are from the MDDR and ChEMBL 5HT3 

activity classes (Figure 5.13a, c). The MDDR COX (Figure 5.14a) and MDDR PKC classes 

(Figure 5.17a) both have a somewhat lesser impact for GA in the top ranking, but are still 

superior up to the top 10% of ranked compounds nonetheless. The second trend is defined 

where the GA curve sits above the SSA R4 in the first few portion of the ranked molecules, 

but approaches the SSA R4 curve in later part of the ranked list. An example is the 

WOMBAT COX (Figure 5.14b) class. The third trend defines the case where the GA curve 

sits above the SSA R4 in the first few portion of the ranked molecules, but crosses the SSA 

R4. Such examples are observed in the ChEMBL COX (Figure 5.14c), MDDR, WOMBAT 

and ChEMBL D2 (Figure 5.15a-c), and MDDR and WOMBAT RNN (Figure 5.16a, b) 

classes. A lesser variation of the third trend is found in the following classes, where the 

retrieval performance of the GA-based SSA is superior only in the top 1% or 2%, then 

crosses downwards against the SSA R4. The classes shown are in WOMBAT 5HT3 (Figure 

5.13b), ChEMBL RNN (Figure 5.16c), and WOMBAT and ChEMBL PKC (Figure 5.17b, c) 

classes. 

 

In general, based on the fact the worst GA run is used for comparison, the GA was found to 

be consistently and often markedly superior to the SSA R4. This in terms of the enrichment 

factor of actives retrieved in the top 1% ranked molecules region (full results indicated in 

Table 5.10). Some additional benefits include consistent superiority of the GA results in the 

later part of the ranked molecules for a number of activity classes as well. 

 

5.7.3.2 Analysis of diversity 

Diversity analysis was conducted on the GA results to quantify their ability to identify novel 

bioactive compounds from a diverse space of possible compounds. The methodology of this 

analysis is described in detail in Chapter 3. For this analysis, a breakdown of the diversity of 

actives retrieved using the GA-based weighting scheme and SSA R4 weighting scheme is 
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presented in Table 5.11. The table presents two important results, thus: (i) the number of 

distinct Murcko scaffolds in the top-ranked actives and (ii) the diversity rate (based on 

Tanimoto coefficient). From the table, the GA-based SSA consistently recorded a higher 

diversity of actives retrieved in the top 1% of ranked molecules for all three datasets used. 

Furthermore, the table also shows that the most heterogeneous activity classes in the top 1% 

for each database were found to be the COX (MDDR), PDE (WOMBAT) and COX 

(ChEMBL) when using the GA. Distinct scaffold results of both MDDR and ChEMBL 

results when using the GA method signifies a good improvement of the method when 

compared to SSA R4, except for the WOMBAT-based PKC class, which showed a somewhat 

similar result. 

 

5.7.4 Wilcoxon signed rank test 

Varied improvements were observed in the active recall rates of the GA results when 

compared to the SSA R4 method. To quantify the significance of the performance, results 

were evaluated using the Wilcoxon signed rank test as a statistical measure of the 

hypothetical test. In this test, all the top 1% actives of activity classes in the three datasets are 

collected and their significance of difference tested using the Wilcoxon signed ranks test. 

More explanation about the Wilcoxon signed rank test can also be found in Chapter 3.  

 

The results of both GA and SSA R4 models were found to be significantly different at the 

0.01 significance level for both MDDR and WOMBAT databases based on the W values for 

both which are 0, and at such significance level, the critical value Wcritical is 5 and 12 

respectively. This is more than the value of W, and hence a significant result for both cases 

(Table 5.13 and Table 5.14 respectively). In the case of the ChEMBL database as shown in 

Table 5.15, the conclusion is drawn where both GA and SSA R4 results are significantly 

different based on the value of W = 0, which is less than the critical value i.e. Wcritical of 15 for 

N = 15, given the confidence level of 99% (0.01 significance level). In summary, it can be 

concluded that GA-based SSA is superior to SSA R4 method in all MDDR, WOMBAT and 

ChEMBL databases. Also, the null hypothesis which states that the results from the GA-based 

SSA and from the SSA R4 model are identical can be rejected. 

 

5.7.5 Model validation with Y-randomisation 

A popular approach to validating a predictive method is through the use of Y-scrambling test. 

In chemoinformatics, this validation is performed by taking a dataset consisting of descriptors 
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and bioactivities and randomising the bioactivities while retaining the descriptors, effectively 

scrambling the dataset and making it nonsensical. The main objective of this method 

therefore is to validate whether a particular method in question is able to produce outcomes 

that predict a model, even with deformed data. A model that has a strong correlation in terms 

of performance when applied to both scrambled and predicted datasets can be argued to be 

unreliable, as it is not responsive to valid bioactivities and descriptors relationship. Y-

randomisation (otherwise known as the permutation test) was performed to determine 

statistical validity and the reliability of solutions generated by the GA. Klopman and Kalos 

(1985) first introduced the Y-randomisation test as a method for validating the existence of a 

chance correlation. This method takes an N-compound dataset consisting of both X-value and 

Y-identifier data and repetitively scrambles the Y-identifier while leaving the X-value portion 

intact. Each scrambling is followed by applying the machine learning method in question to 

the so-called scrambled data and recording the subsequent performance. In our study, one of 

the important variables to be analysed is the correlation value (usually Pearson‟s r) between 

the sets of 166 weights computed for each distinct pair of runs for the scrambled instances. 

The observed values should remain low so that one can remain confident about the relevance 

and reliability of the GA method proposed (Rucker, Rucker and Meringer, 2007). 

 

For the scrambling test, an initial training set comprising 10% of active and 10% of inactive 

compounds from the MDDR-based RNN and COX activity classes were selected. The 

compound identifiers were scrambled, while leaving the fingerprints and compound activity 

state intact. The scrambling was repeated 100 times to generate 100 new, individual, 

scrambled training sets. Each of the scrambled training sets was then applied into the GA for 

prediction. The resultant weights given by the GA, based on the scrambled sets, were then 

applied to the test set. 

 

Recall the ten repeated GA runs, as discussed in Section 5.7.1 (GA robustness test). For the 

purpose of model validation, the 10 GA instances are dubbed as the unscrambled GA runs. 

Subsequently, two meaningful variables to be observed were identified: (i) Pearson‟s r 

coefficient, based on the weight distribution when compared to the first run of the 

unscrambled GA result, hereby dubbed unscrambled_GA_run1; and (ii), the active molecule 

retrieval rate in the top 1% of the compound ranking. The hypothesis is that the scrambled 

GA runs should not match or correlate well with unscrambled GA runs, since in doing so, 

means that there is the presence of chance correlation using deformed data. To calculate 
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Pearson‟s r, the set of 166 weights of the unscrambled_GA_run1 were correlated with the sets 

of 166 weights obtained from the 100 scrambled GA runs. The remaining nine unscrambled 

GA runs were also correlated with the unscrambled_GA_run1. Similarly, the percentage of 

actives retrieved in the top 1% of active compounds was observed for both the scrambled and 

unscrambled GA results.  

 

Figure 5.18(a) and 5.18(b) show the Y-randomisation plot for the two MDDR-based activity 

classes; the RNN and COX. The X-axis of the plot represents the retrieval rate in the top 1% 

ranking, while the Y-axis denotes the Pearson‟s r values versus the unscrambled GA_run1. 

From both figures, the ten unscrambled GA results performed positively, clustering in the top 

right side, which signals a similarly high active retrieval rate, while maintaining a good 

correlation with the unscrambled GA_run1. This is the opposite of the scrambled GA runs, 

which recorded very low correlation values of Pearson‟s r (none higher than 0.30). All of the 

scrambled results also failed to retrieve comparable actives in the top 1% of the ranked 

compounds for both classes, especially when compared to the unscrambled ones. The mean 

and standard deviation of the number of actives retrieved in the top 1% of the scrambled GA 

cases were 4.16 and 8.10 (RNN). Two standard deviations above and below the mean creates 

a range from -12.04 to 20.36. So, of the 100 runs, 94 runs fall into this range, which is 94% of 

the runs. Meanwhile, the mean and standard deviation of the numbers of actives retrieved in 

the top 1% of the scrambled GA cases for the COX were 5.31 and 6.96. Two standard 

deviations from the mean create a range from -8.61 to 19.23, which means that 94 runs fall 

into the range. Based on these results, it can be seen that the GA-based SSA is unable to 

arrive at chance correlations with deformed data. 

 

5.7.6 Run-time benchmarks of GA-based SSA 

Execution of the GA-based SSA was fairly intensive on a single computer, depending on data 

size and choice of parameters. Performance of the GA program with different hardware was 

monitored and documented, followed by run-time analysis, in order to understand hardware 

suitability in different data scenarios. The hardware used follows the ones listed in Table 3.2. 

 

For the benchmark test, the RNN activity class was selected for all three database instances, 

with the same parameterisation set as finalised in Section 5.6.6. Table 5.12 lists the 

breakdown of run-time of the GA for individual iteration and subsequently the total run-time 

for a complete GA program. These are based on 200 maximum GA iterations. For the 
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MDDR-based RNN class, the 10% training set is made up of 10,254 compounds, while for 

the WOMBAT-based class, 10% training set is equivalent to a total of 13,812 compounds. 

The ChEMBL-based RNN activity class meanwhile is significantly larger for the case of a 

10% training set, consisting of 135,267 compounds. 

 

For the MDDR-based RNN activity class, as shown in Table 5.12(a), a GA run using 10% 

training set clocks in between 2.10 to 3.30 seconds per GA iteration, with a total run-time for 

the GA program averaging between 468.51 seconds to 660.38 seconds; these are equivalent 

to 7 and 11 minutes respectively. Table 5.12(b) shows the run-time breakdown for the 

WOMBAT-based RNN activity class via a 10% training set of the GA run. The average run 

time for a single iteration is between 2.77 and 4.10 seconds, with the total run-time of all 200 

iterations averaging between 551.23 and 911.95 seconds (9 and 15 minutes), respectively. For 

the ChEMBL case, as shown in Table 5.12(c), it is highlighted that the machine WKST_01 

was not able to execute the GA-based SSA due to its small memory limitation problem of 

having only 4GB DDR physical RAM. Between the SERVER and WKST_01 machines, the 

run-time of a single iteration was clocked-in at 34.20 and 40.10 seconds respectively. The 

total run-time of a complete GA run in the ChEMBL case was 7011.20 seconds for the 

SERVER machine and 8450 seconds for the WKST_01 machine; this translates to 116 and 

140 minutes respectively. 

 

Two objective opinions can be drawn from the above, whereby the primary requirement for a 

GA-based SSA is in the physical memory limitation of the particular hardware, especially if 

the size of the dataset is equivalent or larger than the ChEMBL database. This can be 

mitigated, though, via a smart code optimisation or a programmable data handling feature in 

order to accommodate the limited memory issue. In terms of run-time performance, a fairly 

mild influence of the machine‟s processor architecture was observed in increasing run-time 

efficiencies, but this should not be a critical factor in the consideration of hardware choice for 

running the GA-based SSA. 

 

5.8 Discussion 

Various analyses were performed to gauge the performance level of the GA-based SSA. The 

primary method of analysis was based on the active retrieval rate for each activity class in the 

three databases, which was compared to equivalent implementations of the SSA R4. This was 

determined as the most effective scheme out of the existing ones (as discussed in Chapter 4). 
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The screening results were analysed by comparing the SSA R4 results with the worst of the 

10 GA runs executed for each activity class. Based on the analyses, it was observed that the 

GA method outperformed the SSA R4 in all cases of activity classes. The GAs executed for 

each activity class recorded high correlation values and consistency in terms of active 

compound retrieval as shown in the robustness and consistency tests. GA also showed a 

larger number of Murcko scaffolds and a higher diversity rate of actives in the top 1% when 

compared to the SSA R4 for all cases of activity classes. Permutation tests for model 

validation proved that the GA would not be able to generate a successful solution if trained 

from randomly generated datasets. 

 

Cumulative recall plots showed that the GA is superior to the SSA R4 in the top 1% of the 

ranked compounds for the majority of classes. Most of the curves represent a GA trend that 

consistently outperforms the SSA R4 up to the top 10% ranking, but a number of classes 

demonstrate GA curve behaviour where they cross or dip down below the SSA R4 in later 

percentiles. A Wilcoxon signed rank test was also performed to measure the significance of 

the difference between the performances of the GA and SSA R4. The Wilcoxon test indicated 

that there is a significant difference at the p < 0.01 level in the performance between the 

worst GA and the SSA R4 results. The performance of the GA-based method was statistically 

proven to be better than that of the SSA R4 runs. In terms of suitability of the GA-based SSA 

in real world application, two tests peformed are related for this assessment. Firstly, 

parameterisation tests have established the GA-based SSA‟s parameter sensitivity to be 

critical of only a number of specific parameter conditions. The most important parameters are 

the negative-to-positive weight range limit, followed by an acceptable elitism model. Other 

parameters did not significantly affect GA‟s performance as the ones listed above, in which 

only fine-tuning requirements were stressed. Secondly, results of the run-time benchmark 

indicates that the GA-based SSA require standard hardware resource with the primary 

emphasis on a large physical memory availability (depending on the size of compounds 

database). Both results above affirm the GA‟s practicality in real world applications. 

 

5.9 Conclusion 

Chapter 4 previously compared ten SSA weighting schemes and it was found that the 

Robertson / Sparck-Jones R4 scheme to be consistent in retrieving the highest (or among the 

highest) active molecules for the majority of activity classes in MDDR, WOMBAT and 

ChEMBL datasets. This chapter looked at expanding the SSA method by applying a GA-
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based weighting scheme to determine the suitable set of fragment weights for any possibility 

of an upper-bound to the activity prediction of the SSA. 

In order to address our second research objectives outlined in this thesis, the GA experiment 

results were benchmarked against the SSA method represented by the R4 weighting scheme. 

In this chapter, it can be concluded that the GA-based SSA method is superior to the SSA R4 

scheme, as it successfully manages to provide uplift in the upper-bound of active retrieval 

performance in the top 1% of ranked molecules. The active compounds retrieved by the GA 

also show improved diversity rates and larger amount of scaffolds than its SSA R4 

counterpart. Unlike the SSA, the GA-based approach is considered to be an inherently non-

deterministic process. High correlation and consistency between multiple GA runs however 

means that the method is reliable and effective as an alternative weighting scheme to the SSA 

method. 

 

The GA approach proposed in this chapter has proven to be able to improve on its main 

objective (active retrievals) when compared to the SSA existing weighting schemes. The aim 

of our GA was purely to maximise the number of retrieved active molecules without 

depending on any other optimisation supporting criteria. The key components of the proposed 

GA are chromosome randomisation and a continuous but often unpredictable series of 

evolutions to arrive at a preferable weighting scheme. Despite being a non-deterministic 

method, this study proved that the results obtained are more consistently effective than those 

obtained from existing, deterministic methods for generating such weights. It is therefore 

strongly recommended for the SSA to be further enhanced via the use of a GA in determining 

the best fragment weights combination. This finding hopefully will contribute to standard 

practise in ligand-based virtual screening and guide further enhancement in SSA. 

  

The next chapter of this thesis focuses on exploring the validity of another type of 

evolutionary algorithm, known as the Genetic Programming (GP), which utilises program 

evolution to represent potential solutions for an efficient weighting scheme. 
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Figure 5.1: The basic genetic algorithm flowchart 
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Figure 5.2: Roulette wheel selection after Goldberg (1987). (a) Outlines a set of evaluated 

chromosomes with different fitness scores, and their relative percentage of the total fitness. 

(b) The chromosomes are sorted and fitted into a roulette wheel model where larger 

chromosomes take a bigger portion of the wheel. A random number generated ranging from 0 

to 100% will iterate through the wheel until the value is achieved, thus selecting the parent 

chromosome 

 

 

 

Figure 5.3: Tournament selection. (a) Four chromosomes are selected at random and assigned 

as paired opponents. Fitness scores are observed between opponents and the winner 

progresses to the next round. (b) The winners of round 1 pitted against one another in round 2 

by observing their fitness score. (c) The winner of round 2 is selected as the parent 

chromosome for the next genetic operation. This process is repeated to select the other parent 

chromosome as genetic operation requires two parents to proceed 
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Figure 5.4: Genetic operations in the genetic algorithm. (a) A population list consisting of 

chromosomes represented as bit-strings. (b) Two parent chromosomes selected from the 

population list to perform a crossover operation, which takes a portion of each chromosome‟s 

genes and recombines them into a single, new chromosome. (c) Mutation operation flips a 

random bit of the chromosome. (d) Child chromosome inserted back into the population list 

 

 

 

Figure 5.5: Crossover methods in the GA. (a) One point crossover method; (b) Two points 

crossover, and (c) Uniform crossover 
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Figure 5.6: Simple-state elitism model with six chromosomes created at initialisation. After 

going through reproduction process, each generation concludes with modification to the 

population. In this case, an elitism of two parents ensures that all the chromosomes are 

replaced through genetic operations except for the two best parent chromosomes 

 

 

 

Figure 5.7: Steady-state elitism model with six chromosomes created at initialisation. During 

the replacement process only one chromosome, being the worst performing one, is replaced 

with a reproduced, offspring chromosome. The remaining chromosomes are maintained, 

which is also known as the overlapping population method 

 

 

 

 

 

 



 

135 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: The genetic algorithm flowchart with inclusion of weight polarity constraining 

operations. The GA assumes normal operation except that the weight polarity needs to be 

identified first, and both the population initialisation and subsequent genetic operations 

include conditional weight assignment based on the polarity criterion 

 

Crossover operation 
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 (a)          (b)  
 

Figure 5.9: Cumulative recall plots of the GA-based SSA against SSA R4 for the RNN activity class from the MDDR dataset based on the 

different fitness function (a) In the top 1%; and (b) In top 10% of ranked compounds 
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 (a)          (b)  
 

Figure 5.10: Cumulative recall plots of the GA-based SSA against SSA R4 for the COX activity class from the MDDR dataset based on the 

different fitness function (a) In the top 1%; and (b) In top 10% of ranked compounds 
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(a) 

 

 

(b) 

 

Figure 5.11: Error plot of training set versus predicted test set of the GA-based SSA 

following GA iterations for MDDR (a) RNN and (b) COX activity classes. Both GA 

instances were executed based on a chromosome population of 200 and maximum iteration of 

500 to signify (i) Overfitting case, and (ii) Presence of improved recall rates in large 

iterations 
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(a) 

 

 

(b) 

Figure 5.12: The cumulative recall of active compounds plotted against the entire compound 

over 10 runs of the GA program: (a) GA instances for MDDR-based RNN activity class; (b) 

GA instances for MDDR-based COX activity class 
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 (a)          (b)  
 

 (c) 

Figure 5.13: Cumulative recall plots of the GA-based SSA against SSA R4 for the 5HT3 activity class from the (a) MDDR (b) WOMBAT and 

(c) ChEMBL dataset. Plots represent the worst performing run of each method 
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 (a)          (b)  
 

 (c) 

Figure 5.14: Cumulative recall plots of the GA-based SSA against SSA R4 for the COX activity class from the (a) MDDR (b) WOMBAT and (c) 

ChEMBL dataset. Plots represent the worst performing run of each method 
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 (a)          (b)  
 

 (c) 

Figure 5.15: Cumulative recall plots of the GA-based SSA against SSA R4 for the D2 activity class from the (a) MDDR (b) WOMBAT and (c) 

ChEMBL dataset. Plots represent the worst performing run of each method 



 

143 

 

 (a)          (b)  
 

 (c) 

Figure 5.16: Cumulative recall plots of the GA-based SSA against SSA R4 for the RNN activity class from the (a) MDDR (b) WOMBAT and (c) 

ChEMBL dataset. Plots represent the worst performing run of each method 
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 (a)          (b)  
 

 (c) 

Figure 5.17: Cumulative recall plots of the GA-based SSA against SSA R4 for the PKC activity class from the (a) MDDR (b) WOMBAT and (c) 

ChEMBL dataset. Plots represent the worst performing run of each method 
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(a) 

 

 

 

(b) 

 

Figure 5.18: Permutation plots (Y-randomisation) of the MDDR-based (a) RNN and (b) COX classes, 

with weights calculated and applied to non-permuted test sets 
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Table 5.1: Example of a GA operation based on a population containing five molecules, with 

six chromosomes created at initialisation. (a) Fingerprints for five molecules M1-5 encoding 

five different substructural fragments F1-5; (b) The molecule activity state, 1 referring to an 

active molecule, while 0 represents inactive ones. (c) Six chromosomes C1-6 encoding the 

weights W1-5 for F1-5; and (d) Sums-of-weights using each chromosome C1-6 for each 

molecule M1-5 

 

Molecule F1 F2 F3 F4 F5 

 

M1 0 1 0 1 1 

M2 1 0 1 1 0 

M3 1 0 0 1 1 

M4 1 0 1 0 0 

M5 0 1 1 0 1 

(a) 

 

Molecule Activity State  

(1-active; 0-inactive) 

M1 1 

M2 0 

M3 1 

M4 0 

M5 1 

(b) 

 

Chromosome W1 W2 W3 W4 W5 

C1 6 2 5 0 1 

C2 4 3 1 8 5 

C3 9 9 3 6 7 

C4 1 7 5 1 3 

C5 8 4 8 2 8 

C6 5 8 4 7 2 

(c) 

 

Chromosome M1 M2 M3 M4 M5 

C1 3 11 7 11 8 

C2 16 13 17 5 9 

C3 22 18 22 12 19 

C4 11 7 5 6 15 

C5 14 18 18 16 20 

C6 17 16 14 9 14 

(d)  
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Table 5.2: Weight polarity determination using the SSA R4 weighting scheme, following the 

example molecule and activity dataset in Table 5.1. (a) Summary of a five-fragment 

dictionary based on the common properties in SSA weighting schemes. (b) Weight polarity 

for fragments is determined on the basis of greater value between the rate-of-actives (ROA) 

against the rate-of-inactives (ROI). (c) The equivalent weight values and its polarity 

calculated using the SSA R4 weighting scheme 

 

 F1 F2 F3 F4 F5 

NACT 3 3 3 3 3 

NINACT 2 2 2 2 2 

ACT(I) 1 2 0 2 2 

INACT(I) 2 0 2 1 1 

  (a)   

      

ROA 0.333 0.667 0 0.667 0.667 

ROI 1 0 1 0.5 0.5 

Simple Weight Polarity (I) negative positive negative positive positive 

  (b)   

      

SSA R4 -0.48 0.48 0.70 0.2 0.2 

SSA R4 Weight Polarity (I) negative positive negative positive positive 

  

(c) 
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Table 5.3: Fitness score calculation using chromosome C3 with its weights restricted by the 

weight polarity. (a) Chromosome C1 weights combination and the corresponding weight 

polarity. (b) Assignment of chromosome weight to each fragment in the molecule set. (c) Sum 

of fragments‟ score of each molecule. (d) Ranking of chromosome based on molecule score 

in descending order from largest to smallest. All the active molecules are seen to benefit from 

SSA R4 weight polarity assignment based on their rankings at the top 

 

  W1 W2 W3 W4 W5 

SSA R4 

Weight 

Polarity 

negative positive negative positive positive 

C3 -14 27 -88 23 66 

    (a)   

 

M FW1 FW2 FW3 FW4 FW5  M SCR  M SCR ACT(I) 

M1 0 27 0 23 66  M1 116  M1 116 1 

M2 -14 0 -88 23 0  M2 -79  M5 93 1 

M3 -14 0 0 23 66  M3 75  M3 75 1 

M4 -14 0 -88 0 66  M4 -36  M4 -36 0 

M5 0 27 0 0 66  M5 93  M2 -79 0 

  (b)     (c)   (d)  
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Table 5.4: Top 1% active retrieval rates for the fitness function parameter test. Listed are test 

set enrichment values for MDDR‟s RNN and COX activity classes. GAs were performed on 

training set of 10% active and inactive compounds, where the resultant weights are 

subsequently applied on the predicted test set of 90% active and inactive compounds. The 

worst enrichment values of 3 GA runs are listed below. Each parameter was executed three 

times and the worst result is selected to represent the individual parameters.  

 

Fitness function 
 

Enrichment factor of actives in the top 1% 

 

Test Set 
 

Fitness function active rate 
 

RNN COX 
Active rate of compounds in the top 

1% 

 
70.10 30.37 

Active rate of compounds in the top 

10%  55.95 22.69 
 

 

 

 

Table 5.5: Top 1% active retrieval rates for the GA weight range parameter group. Listed are 

test set enrichment values for MDDR‟s RNN and COX activity classes. GAs were performed 

on training set of 10% active and inactive compounds, where the resultant weights are 

subsequently applied on the predicted test set of 90% active and inactive compounds. The 

worst enrichment values of 3 GA runs are listed below. Each parameter was executed three 

times and the worst result is selected to represent the individual parameters. 

 

Chromosome initialisation 
 

Enrichment factor of actives in the top 1% 

 

Test Set 
 

GA Weight value range 
 

RNN COX 

0 to 10 

 
21.10 0.00 

0 to 100 

 
29.50 0.50 

-10 to 10  67.80 28.30 

-100 to 100  71.20 30.14 

-150 to 150  71.10 29.90 

-200 to 200  70.18 30.10 
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Table 5.6: Top 1% active retrieval rates for the GA Population and Generation parameter 

group. Listed are test set enrichment values for MDDR‟s RNN and COX activity classes. 

GAs were performed on training set of 10% active and inactive compounds, where the 

resultant weights are subsequently applied on the predicted test set of 90% active and inactive 

compounds. The worst enrichment values of 3 GA runs are listed below. Each parameter was 

executed three times and the worst result is selected to represent the individual parameters 

 

Population and Generation 
 

Enrichment factor of actives in the top 1% 

 

Test Set 
 

Population Size 

 

RNN COX 

100 

 
69.60 30.90 

200 

 
70.88  30.12  

300 

 
70.67 30.11 

400  70.78 30.12 

500  70.88 30.12 
 

Iteration 

 

RNN COX 

100 
 

68.93 28.15 

200 
 

71.04 30.27 

300 
 

71.04 30.27 

500 
 

71.04 30.27 
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Table 5.7: Top 1% active retrieval rates for the elitism model parameter. Listed are test set 

enrichment values for MDDR‟s RNN and COX activity classes. GAs were performed on 

training set of 10% active and inactive compounds, where the resultant weights are 

subsequently applied on the predicted test set of 90% active and inactive compounds. The 

worst enrichment values of 3 GA runs are listed below. Each parameter was executed three 

times and the worst result is selected to represent the individual parameters 

 

Elitism model 
 

Enrichment factor of actives in the top 1% 

 

Test Set 
 

Elite chromosome 

preservation 

 

RNN COX 

0 
 

61.40 29.80 

1  70.67 30.11 

2 
 

70.88 30.12 

5  70.12 30.04 

10  69.70 30.10 

50  68.93 28.15 

100  57.30 22.30 

150  55.40 24.70 

199  29.50 00.50 
 

199 (using 1000 GA 

maximum iterations)  
29.10 0.70 
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Table 5.8: Top 1% active retrieval rates for the evolution control parameter group. Listed are 

test set enrichment values for MDDR‟s RNN and COX activity classes. GAs were performed 

on training set of 10% active and inactive compounds, where the resultant weights are 

subsequently applied on the predicted test set of 90% active and inactive compounds. The 

worst enrichment values of 3 GA runs are listed below. Each parameter was executed three 

times and the worst result is selected to represent the individual parameters 

 

Evolution control 
 

Enrichment factor of actives in the top 1% 

 

Test Set 
 

Parent selection method 
 

RNN COX 

Roulette wheel 

 
70.10 30.30 

Tournament 

 
69.70 30.10 

Random  65.80 23.50 
 

Crossover rate 

 

RNN COX 

0.60 
 

67.90 24.80 

0.65 
 

68.80 29.80 

0.70 
 

67.00 28.80 

0.75 
 

66.20 28.10 

0.80 
 

67.90 28.30 

0.85 
 

67.50 25.10 

0.90 
 

67.60 30.40 

0.95 
 

70.50 31.70 
 

Mutation rate 

 

RNN COX 

0.005 
 

63.79 28.50 

0.003 
 

65.80 27.10 

0.050 
 

64.70 21.60 

0.020 
 

65.10 26.50 

0.010 
 

70.10 31.80 

0.100 
 

70.00 30.67 
 

Crossover Method 

 

RNN COX 

One-point 
 

70.60 29.80 

Two-point 
 

65.50 22.10 

Uniform 
 

69.80 26.00 

. 
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Table 5.9: The top-ranked molecules in ten GA runs based on test set applied data, showing 

the occurrences of ranked compounds based on GA run-1 that fall outside the top 1% in the 

other nine remaining GA runs using the (a) RNN and (b) COX activity classes in the MDDR 

dataset. The numbers in brackets show the number of actives actually retrieved in the top 1% 

for that particular GA-run 

 

(a) 

Rank 
GA Run 

1 2 3 4 5 6 7 8 9 10 

Top 1% (922) 
 

(701) 

50 

(713) 

48 

(720) 

37 

(725) 

38 

(717) 

61 

(706) 

49 

(705) 

63 

(702) 

47 

(722) 

51 

(717) 

 

(b) 

Rank 
GA Run 

1 2 3 4 5 6 7 8 9 10 

Top 1% (922) 
 

(167) 

13 

(163) 

15 

(161) 

12 

(174) 

21 

(171) 

11 

(170) 

22 

(164) 

20 

(161) 

15 

(163) 

15 

(169) 
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Table 5.10: Enrichment curve of actives count in the top 1% for ten GA runs of (a) Eleven activity classes in MDDR dataset; (b) Fourteen 

activity classes in WOMBAT dataset and; (b) Fifteen activity classes in ChEMBL dataset. Included are the mean and standard deviation for the 

Pearson correlation coefficients between the sets of 166 weights computed for each distinct pair of runs 

 

Activity GA Runs       Weight Pearson's r 

 Class Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Mean  σ 
 

 σ Mean 

(a) 

5HT3 42.25 40.77 42.39 42.10 40.47 40.47 40.92 40.03 40.32 42.10 41.18 0.92 
 0.02 0.79 

5HT1A 21.10 18.82 20.16 18.55 18.68 19.49 18.55 18.95 19.09 18.82 19.22 0.82 
 0.01 0.75 

5HT 18.27 17.34 17.34 18.89 16.72 16.72 18.58 18.27 17.65 19.20 17.89 0.87 
 

0.01 0.76 

D2 17.98 16.85 17.98 17.13 16.57 19.66 17.13 16.57 16.85 17.13 17.39 0.94 
 0.02 0.77 

RNN 71.29 68.93 70.80 70.11 70.40 70.50 70.50 70.50 70.99 70.21 70.42 0.63 
 0.02 0.75 

AT1 48.65 47.59 47.94 47.70 47.47 47.23 47.70 48.53 48.29 48.53 47.96 0.50 
 

0.02 0.77 

THRM 49.24 47.58 50.21 47.30 48.41 48.27 48.82 47.30 47.30 48.82 48.33 0.98 
 0.02 0.80 

SUBP 28.99 30.60 30.42 27.56 29.62 29.62 28.99 29.88 28.37 27.56 29.16 1.07 
 0.02 0.79 

HIVP 48.89 48.30 49.48 42.07 48.30 47.56 48.44 44.89 47.11 45.33 47.04 2.28 
 

0.02 0.79 

COX 28.15 30.42 29.20 29.55 29.90 29.72 28.67 28.85 29.37 29.02 29.28 0.66 
 0.02 0.79 

PKC 30.15 31.62 30.64 28.43 27.94 26.96 30.39 29.66 25.74 28.68 29.02 1.81 
 0.02 0.78 
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Activity GA Runs       Weight Pearson's r 

 Class Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Mean  σ 
 

 σ Mean 

(b) 

5HT1A 56.85 57.22 53.47 55.35 54.03 58.16 53.28 56.29 55.53 56.29 55.65 1.64  0.01 0.78 

5HT3 43.43 43.43 41.41 42.42 49.49 42.93 41.41 42.93 42.93 44.44 43.48 2.30  0.02 0.76 

ACHE 50.99 51.66 50.77 50.11 50.77 52.98 49.23 50.77 50.99 52.98 51.13 1.16  0.02 0.77 

AT1 80.67 80.98 80.67 79.91 83.28 79.45 79.91 79.6 81.44 80.98 80.69 1.12  0.02 0.78 

COX 67.66 68.01 67.09 66.86 66.86 67.55 66.97 67.55 68.01 67.66 67.42 0.45 
 

0.02 0.77 

D2 41.76 42.74 40.42 40.9 38.95 41.27 41.39 40.29 39.32 40.42 40.75 1.13 
 

0.02 0.78 

FXA 49.74 46.7 43.93 43.93 44.46 46.97 44.33 44.59 46.97 45.12 45.67 1.88 
 

0.02 0.78 

HIVP 55.37 57.34 49.56 56.45 51.43 52.02 54.78 51.53 52.61 54.48 53.56 2.50 
 

0.02 0.81 

MMP 63.84 62.56 64.00 62.72 63.52 63.36 62.4 63.68 64.00 64.00 63.41 0.63 
 

0.02 0.77 

PDE 48.69 50.75 48.32 48.69 48.32 48.88 48.88 51.68 48.51 50.00 49.27 1.15 
 

0.02 0.77 

PKC 74.22 77.34 73.44 75.00 73.44 72.66 72.66 73.44 73.44 74.22 73.99 1.38 
 

0.02 0.75 

RNN 80.80 77.52 82.67 80.33 78.69 77.28 79.86 77.52 76.11 76.81 78.76 2.09 
 

0.02 0.78 

SUBP 52.59 48.41 52.19 47.21 49.80 49.80 47.81 48.01 48.21 48.21 49.22 1.86 
 

0.02 0.79 

THRM 58.84 58.58 55.94 54.88 54.35 57.78 54.88 55.67 54.88 55.41 56.12 1.66 
 

0.02 0.77 

(c) 

5HT1A 39.78 40.37 39.10 40.37 39.33 39.78 39.33 39.10 39.33 40.75 39.72 0.59 
 

0.02 0.80 

5HT3 55.73 57.81 53.65 53.13 57.81 53.65 54.17 54.17 53.13 57.29 55.05 1.93 
 

0.02 0.78 

5HT 34.88 34.33 34.33 33.33 35.51 35.15 32.11 35.51 34.88 35.15 34.52 1.07 
 

0.02 0.78 

ACHE 36.09 37.44 36.24 36.39 36.09 36.99 37.44 36.84 37.14 36.99 36.77 0.53 
 

0.01 0.79 

AT1 80.00 84.21 83.16 83.16 83.16 77.89 77.89 81.05 82.11 81.05 81.37 2.22 
 

0.02 0.75 

COX 41.60 41.60 40.00 41.60 36.00 35.20 36.00 40.00 35.20 36.00 38.32 2.86 
 

0.03 0.78 

D2 31.46 31.70 31.34 33.37 31.22 31.46 31.70 31.22 33.37 31.34 31.82 0.84 
 

0.03 0.83 

FXA 46.89 48.37 47.34 47.12 47.26 47.26 47.34 48.37 46.89 47.12 47.40 0.54 
 

0.03 0.83 

HIVP 63.83 64.97 63.83 68.21 64.97 64.40 64.76 64.76 64.76 64.04 64.85 1.26 
 

0.04 0.86 

MMP 71.35 67.42 65.73 67.42 67.42 71.35 67.13 71.35 67.42 71.35 68.79 2.26 
 

0.04 0.86 

PDE 38.86 37.55 38.86 38.86 42.79 42.79 43.67 37.12 38.86 42.79 40.22 2.49 
 

0.04 0.79 

PKC 59.47 58.42 57.37 58.95 58.95 58.42 59.47 59.47 57.37 58.42 58.63 0.79 
 

0.04 0.74 

RNN 56.56 57.47 57.47 56.45 56.45 56.45 56.45 56.45 56.56 56.11 56.64 0.45 
 

0.04 0.80 

SUBP 68.50 70.08 70.08 71.65 70.08 71.65 68.50 70.08 70.08 70.08 70.08 1.05 
 

0.04 0.81 

THRM 48.01 47.88 44.96 44.96 45.76 47.88 46.29 47.88 48.01 46.02 46.76 1.30   0.04 0.80 



 

156 

 

Table 5.11: Screening results using the GA-based SSA and its comparison to the SSA R4 

weighting scheme for the (a) MDDR; (b) WOMBAT and (c) ChEMBL datasets. The number of 

actives retrieved at the top 1% based on the worst performing GA runs is recorded for the 

calculation of Tanimoto coefficient and the BemisMurckoAssemblies based diversity analysis 

 

Activity 
  

Actives  
  

NBC  
  

Worst 

run   Murcko scaffolds    Diversity rate  

class   test set   SSA R4   GA   SSA R4 GA   SSA R4 GA 

                                                                 (a) 

      5HT3 
 

677 

 

138 
 

271 

 

75 83 

 

0.38 0.39 

5HT1A 
 

744 

 

103 
 

138 

 

52 63 

 

0.36 0.36 

5HT 
 

323 

 

34 
 

54 

 

17 20 

 

0.32 0.38 

D2 
 

356 

 

47 
 

59 

 

24 30 

 

0.29 0.31 

RNN 
 

1017 

 

620 
 

701 

 

192 205 

 

0.28 0.29 

AT1 
 

849 

 

372 
 

401 

 

131 139 

 

0.31 0.33 

THRM 
 

723 

 

226 
 

342 

 

99 151 

 

0.25 0.38 

SUBP 
 

1121 

 

262 
 

309 

 

120 129 

 

0.34 0.36 

HIVP 
 

675 

 

226 
 

284 

 

106 115 

 

0.33 0.40 

COX 
 

572 

 

146 
 

161 

 

36 37 

 

0.46 0.46 

PKC 
 

408 

 

94 
 

105 

 

34 38 

 

0.39 0.40 
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Activity 
  

Actives  
  

NBC  
  

Worst 

run   Murcko scaffolds    Diversity rate  

class   test set   SSA R4   GA   SSA R4 GA   SSA R4 GA 

                                                                 (b)   
     5HT1A  533  249  284  58 64  0.34 0.35 

5HT3  198  79  82  23 25  0.33 0.40 

ACHE  453  218  223  67 69  0.30 0.31 

AT1  652  514  518  105 106  0.37 0.37 

COX  869  549  581  32 39  0.36 0.36 

D2  819  225  319  61 65  0.32 0.34 

FXA  758  288  333  75 86  0.31 0.45 

HIVP  1015  398  503  127 143  0.35 0.37 

MMP   625   362   390   86 97   0.23 0.24 

PDE  536  239  259  84 86  0.48 0.58 

PKC 
 

128 

 

92 
 

93 

 

15 15 

 

0.40 0.46 

RNN 
 

427 

 

301 
 

325 

 

73 76 

 

0.32 0.34 

SUBP 
 

502 

 

217 
 

237 

 

52 54 

 

0.31 0.38 

THRM 
 

379 
 

200 
 

206 
 

73 77 

 

0.41 0.43 

                                                                 (c) 

      5HT1A 

 

1335 

 

383 

 

522 

 

114 141 

 
0.36 0.38 

5HT3 

 

192 

 

65 

 

102 

 

14 25 

 
0.34 0.38 

5HT 

 

2202 

 

540 

 

707 

 

107 117 

 
0.51 0.52 

ACHE 

 

665 

 

168 

 

240 

 

83 99 

 
0.40 0.42 

AT1 

 

95 

 

40 

 

74 

 

8 22 

 
0.28 0.28 

COX 

 

125 

 

35 

 

44 

 

9 12 

 
0.73 0.75 

D2 

 

1672 

 

413 

 

522 

 

120 154 

 
0.31 0.31 

FXA 

 

1352 

 

467 

 

634 

 

141 163 

 
0.37 0.37 

HIVP 

 

1941 

 

903 

 

1239 

 

264 324 

 
0.42 0.51 

MMP 

 

356 

 

208 

 

234 

 

57 62 

 
0.44 0.45 

PDE 

 

229 

 

63 

 

85 

 

19 25 

 
0.54 0.60 

PKC 

 

190 

 

106 

 

109 

 

23 26 

 
0.25 0.25 

RNN 

 

884 

 

438 

 

496 

 

68 69 

 
0.36 0.38 

SUBP 

 

762 

 

476 

 

522 

 

104 105 

 
0.37 0.43 

THRM   754   192   339   90 120 

 
0.32 0.39 
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Table 5.12: GA run-time benchmark at different iterations using the 10% training set of the 

RNN activity class, based on the (a) MDDR, (b) WOMBAT and (c) ChEMBL databases. 

Parameterisation of the GA is based on the final chosen ones as in Section 5.7.5, among them 

the population of 200 chromosomes, and a maximum iteration 200 evolutions 

 

(a) 

Machine 
Time (seconds) at GA iteration Average runtime per 

iteration (seconds) 1 100 200 

SERVER 2.00 217.25 468.51 2.10 

WKST_01 2.80 288.42 601.74 2.99 

WKST_02 3.00 331.16 660.38 3.30 
        Based on 10,254 compounds in training set 

 

(b) 

Machine 
Time (seconds) at GA iteration Average runtime per 

iteration (seconds) 1 100 200 

SERVER 2.60 284.50 551.23 2.77 

WKST_01 3.50 381.20 759.22 3.77 

WKST_02 4.00 458.20 911.95 4.10 
        Based on 13,812 compounds in training set 

 

(c) 

Machine 
Time (seconds) at GA iteration Average runtime per 

iteration (seconds) 1 100 200 

SERVER 34.20 3560.40 7011.20 35.05 

WKST_01 Insufficient memory issue, not executable 

WKST_02 40.10 4215.20 8450.00 42.25 
        Based on 135,267 compounds in training set  
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Chapter 6  

 

Genetic Programming Approach to Substructural Analysis 

 

 

6.1 Introduction 

Following the investigation into the use of GA for SSA in chapter 5 and its encouraging 

results with regard to an improvement in the retrieval of actives over SSA weighting 

schemes, this chapter investigates the applicability of another class of evolutionary algorithm, 

specifically the Genetic Programming (GP), tailored for SSA. Similar to the GA, the GP-

based SSA required two experiments. The first was to identify and understand various 

parameterisation options existing in the GP, and finalise a suitable parameter set. The second 

experiment analysed GP-based SSA and quantified its performance in comparison to the 

reviewed SSA weighting schemes and GA-based SSA. 

 

Genetic programming (GP) is a type of machine-learning based, problem-solving technique, 

derived from the domain of evolutionary algorithms which also include genetic algorithms 

(GA). Both GP and GA are considered to be stochastic and heuristic in their approach to 

problem solving. GP, however, differs in that it uses blocks of computer programs for its 

population, instead of the single representations of a bit string in GA. The GP's population is 

frequently presented in the shape of a tree-structured plan. Similar to GA, GP is capable of 

exploring the algorithmic search space and evolving computer programs to perform a defined 

task. Although GP can be traced back to the 1950s, it was not until the 1990s that John R 

Koza pioneered GP for the optimisation of real-world and complex problems (Koza, 1990).  

 

6.2 Fundamental components of GP for SSA 

Both GP and GA belong a class of evolutionary algorithms where the aim of the optimisation 

is to evolve a population of candidate solutions that, when evaluated, produce individuals as 

close as possible to the desired goal. The main difference between GP and GA, however, is in 

their representation of the candidate population. In the case of GP, population members are 

represented as computer programs or a complex algorithm made up of functions (primitive by 

default) and variables usually connected in the form of a tree. As described in the earlier 

Chapter 5, Section 5.2.1, GA defines its population as comprising of fixed-length binary 
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string or some other data structure values. In both cases, however, the population is still 

manipulated by the computer program to perform a series of evolutions mimicking the 

genetic lifecycle.  

 

Figure 6.1 describes the basic functionality of GP. First, a population of random programs is 

generated. Each of the candidate programs runs through the evolutionary cycle, essentially 

via genetic operations such as crossover and mutation (much like the GA) and their solution 

capability, or fitness, is quantified. The repeated cycle should lead to the continuous breeding 

of fitter programs, which will ideally lead to the preferable solution. A distinct feature of GP 

is that it does not function to simply optimise parameters such as GA (and perhaps other 

machine learning methods). Instead, GP works by searching for an ideal sequence of 

functions and variables to form a computer program. In general terms, this should be 

understood as automated programming. GA strives only to solve a specific set of problems 

where the termination criteria are known (or expected). However, it will not go beyond that 

instance of the problem. GP has been claimed to be an effective general machine learning 

paradigm, which was proven based on successful application of GP to solve a wide range of 

problems (Koza, 1992). 

 

Koza (1992) stated that the GP has five major preparatory steps that the user is required to 

specify. As chromosomes are based on blocks of computer programs, the user first needs to 

identify suitable variables and operands categorised as individual nodes based on the 

following:  

(i) Terminal sets consisting of individual, independent variables. 

(ii) Operator functions that essentially represent simple operation(s) which 

connect the terminal recursively.  

(iii) Fitness measurement of the candidate solution's accuracy. 

(iv) Choice of evolution and generational methods. 

(v) Termination criterion, which signals to the GP to terminate if a criterion is 

satisfied.  

 

The last three steps are similar to the requirements of the GA preparation. Table 6.1 

summarises the main differences between GA and GP implementation as discussed above 

and based on the following criteria below. 
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6.2.1 Encoding of Chromosomes 

Based on the terminal and function pools, the chromosomes in GP are set up as a connection 

of nodes resembling a tree with a singular parent node at the top. This follows the branches of 

child nodes known as sub-trees which are usually replaced, modified or mutated during the 

lifecycle of the GP in order to drive the evolution process. Figure 6.2 describes a simple tree 

model representation of a GP program candidate. The tree consists of nodes made up of 

individual variables or functions, which are connected in a chain from top to bottom. The tree 

starts out with one defined terminal at the top and is expanded downwards by various 

randomly generated function sets and child terminal sets. The tree in Figure 6.2(a) can be 

read mathematically as shown in Equation 6.1: 

 

𝑎 / (𝑏 + (𝑐𝑜𝑠(𝑐))) 

 

This in itself is a valid equation that follows mathematical logic. There are, however, 

instances when tree modelling can become particularly complex and care should be taken to 

only generate valid trees. Figure 6.2(b) shows an example of an invalid tree, read as shown in 

Equation 6.2: 

 

𝑎 / (𝑏 + (× 𝑐)) 

 

The equation above can be translated back and forth into a GP tree. It is, however, impossible 

for such an equation to be valid simply because an operand is missing within the 

multiplication term at the end of the equation. This can be modified to include another 

operand i.e. a child node underneath the multiplication node. This requirement is also known 

as the arity criterion. Recalling the multiplication function, the arity value is thus defined as 

2, while a primitive function like the cosine function in Figure 6.2(a) has an arity of 1, 

meaning that it requires only 1 node to be its child. A variable node does not yield a child, 

giving it an arity of 0 and this is where a sub-tree terminates for that branch.  A sensible GP 

program should ensure that the arity criterion is enforced; this can be done by applying 

exception controls. For example, a program can check for errors when generating sub-nodes, 

such as forcing a parent mathematical node to produce two children when the arity of that 

node is equal to 2. 

 

(Equation 6.1) 

(Equation 6.2) 
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6.2.2 Population growth 

Koza (1992) describes several ways of initialising a tree-based chromosome population. 

There are fundamentally two ways to construct the trees: the grow and the full methods. The 

grow method allows for the tree to grow its nodes from both primitive sets of terminals and 

functions, until it reaches the maximum allowable tree depth as defined by the user. The term 

“depth” here is defined as the depth from the root node (otherwise known as depth 1) to the 

lowest point of the traversed node, as shown in Figure 6.3. An example of the grow method is 

shown in Figure 6.3. A maximum tree depth is set during initialisation; in this case it is set at 

3. The first iteration must have a function primitive selected as the parent node so that the tree 

can grow larger. Subsequent iterations, however, allow for primitives to be selected from 

both the terminals and functions pool. For the above figure, iteration 2 selected variable a, 

thus terminating any possibility of growth on the left side of the tree branch, even though the 

maximum tree depth has not yet been reached on this side. Continuing from iteration 3 to 5, 

the tree continues to grow on the right side until it reaches the maximum tree depth at 4. Note 

that the grow method also allows for the tree to be smaller than the maximum tree depth. 

Following again the example from Figure 6.3, if the tree were to choose another variable on 

the right side in iteration 3, this would mean that the tree would not grow any larger. It would 

be finalised with only 3 nodes, which is acceptable for the grow method. 

 

In the full method, the tree is forced to grow until it reaches the maximum defined tree depth. 

This is illustrated in Figure 6.4. In this method, the first node of the tree can only be selected 

from function primitives. Subsequent child nodes can only select primitive functions (as 

selecting terminals will end the growth), until it reaches the maximum tree depth. When it 

reaches the maximum tree depth, it will then end the growth by selecting variables. Referring 

to the example from the figure, iteration 2 selects a function node. However, since the 

maximum depth is reached in iteration 4 at the left side of the tree and with a function of 2-

arity, it is forced to complete this branch with 2 variables. Similarly, iteration 5 chooses a 

function, while iteration 6 completes the former with a variable. 

 

Another popular variant of the population initialisation method combines both the full and 

grow methods. This method was also introduced by Koza and is known as the ramped half-

and-half method. In this method, half of the population uses the grow method with a depth 

randomly defined from the maximum depth allowed, while the other half of the population is 

defined using the full method. This method ensures that the population of the GP is filled 
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with varying tree size to ensure a higher diversity of potential solution terms in the 

chromosomes. 

 

6.2.3 Evolutionary operators 

Genetic operations for the GP remain largely similar to those for GA, being mainly the 

crossover and mutation operations. The difference is largely in the implementation of the 

operations themselves. Figure 6.5 describes an example of a crossover operation involving 

two chromosome trees. From the figure, the two parent chromosomes are selected and the 

node depth identified (usually randomly) as a starting point for the crossover to take place. 

Nodes from that depth down to the lowest level of the parent chromosomes are removed and 

exchanged with each other. Koza (1992) also describes two types of mutation that are 

possible in a tree-like representation, as illustrated in Figure 6.6. The first type of mutation is 

also known as the single terminal mutation (Figure 6.6a). It replaces only a random single 

terminal from the tree with another valid terminal. For example, a mathematical function that 

undergoes this type of mutation can be replaced by any other function terminal that has the 

same criterion as the original terminal, such as its arity requirement, or some other 

prerequisite. Likewise, a variable terminal can choose any other variable, although it is not 

allowed to mutate into a function as this would change the whole tree branch structure below 

the mutate terminal. The second type of mutation is known as sub-tree mutation (Figure 

6.6b). This allows the entire sub-tree of the randomly chosen terminal to be replaced by 

another randomly generated sub-tree. 

 

6.3 Previous works in GP 

There have been extensive reports on the success of applications of GP in various fields. 

McPhee, Poli and Langdon (2008) have compiled many GP-based works across different 

domains; this includes applications in financial trading (Chen & Liao, 2005; Chen, & Yeh, 

2002; Samanidou, Zschischang, Stauffer & Lux, 2007), medicine, biology and bioinformatics 

(Handley, 1993; Koza & Andre, 1996). 

 

In relation to chemoinformatics application, Nachbar (1998) demonstrated the use of GA and 

GP to manipulate molecule topology for chemical structure optimisation, using 

representations of tree-based data structures and sets of algorithms. Birchall (2005) studied 

high-throughput screening using reduced graph approaches, by utilising machine learning 

methods, which in his case was done via GP. It was argued that the predictive power of GP 
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may be able to assist with the enormous search space as represented by HTS data. Birchall 

implemented both single-objective and multi-objective GPs, which only accounted for small 

improvements in the predictive performance of the reduced graph, plus some other less 

notable benefits (Birchall, 2011). 

 

Nicolotti et al. (2002) reported on the investigation of multi-objective method in quantitative 

structure-activity relationships using genetic programming. The objectives comprise of model 

fitting, the total number of terms and the occurrence of non-linear terms. The study reported 

that the multi-objective model was found to be at least as good as the model obtained from 

existing statistical methods. The model can also be used by chemists in interpreting the 

statistical robustness of chemicals. 

 

6.4 Experimental details 

The main objective of this experiment was to utilise GP to identify effective equations that 

can generate a set of suitable fragment weights for use in the ranking of SSA-based 

compounds. It was noted that the GA-based SSA application was found to be superior to 

traditional SSA methods. The main goal of the experiment was to explore any possibility of 

improving the SSA method when using the GP approach. The results gained using GP are 

evaluated against the GA-based SSA scheme and existing SSA weighting schemes (i.e. 

Robertson and Sparck-Jones's R4) for performance evaluation. 

 

6.4.1 Dataset 

The datasets used for the GP experiments were discussed in detail in Chapter 3, Section 3.2. 

They comprise eleven, fourteen and fifteen activity classes from the MDDR, WOMBAT and 

CHEMBL databases respectively (Table 3.1). Similarly, this study used the predictive sets of 

each activity class to represent the training set. They contained 10% active and 10% inactive 

molecules as the input dataset to be used in the GP. The remaining 90% of the data were 

classed as the test set, and used to evaluate the predictive performance of the training set. The 

GP was run on the training set in order to calculate the fitness of an individual during the 

search and learning process.  

 

6.4.2 Hardware 

Similar to the GA, similar hardware was used as listed in Table 3.2. The performance of the 

hardware when performing the GP was observed and is discussed in this chapter. 
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6.4.3  Algorithm Implementation 

MATLAB remains the software of choice to program the main algorithms and the required 

functions for the GP, as most of the main genetic functions such as chromosome generation, 

population control, fitness initialisation and measurement and others were already in place. 

The main GP algorithm is similar to the GA algorithm (Algorithm  5.1). The exception is that 

the GP program handles a different chromosome population consisting of variable-length 

program blocks (further divided into terminal and function sets), instead of the fixed binary 

or string arrays as employed in the GA. Hence, the genetic reproduction operations of the GP 

differ slightly compared with the GA in its reproduction and mating procedures. Appendix B 

lists the full pseudo code of the GP-based SSA program written in MATLAB. 

 

6.4.3.1 Chromosomes population and generation 

Chromosomes in the GP program are represented as program blocks made up of terminal (or 

variables) and function sets. The combination of both terminals and functions are what allows 

an equation to be formed, in which the most suitable will be determined through the course of 

genetic evolution. Here, the implementation of the GP in the case of biological activity 

prediction via the SSA method is essentially based on the assignment of SSA-based variables 

and simple mathematical operations to yield a set of fragment weights.  

 

A series of variables and primitive functions were investigated, as summarised in Table 6.2. 

The terminal sets were identified based on the following variables used in most SSA 

equations (listed as VARIABLES_A combination set in the table): (i) N or the total number 

of compounds, (ii) NACT or the number of active compounds, (iii) NINACT or the number of 

inactive compounds, (iv) TOT(I) or the total number of compounds containing fragment I, (v) 

ACT(I) or the total number of active compounds containing fragment I, (vi) INACT(I) or the 

total number of inactive compounds containing fragment I. All of these variables were 

discussed in detail in Chapter 2, Section 2.9.3. In conjunction with this, a number of additions 

were also proposed to the basic terminal set, which consisted of smaller terms used in various 

SSA weighting schemes. These are listed in Table 6.2, defined as the VARIABLES_B 

terminals set. For example, the SSA R1 equation is defined as “(ACT(I) / NACT) / (TOT(I) / 

N)”. Hence it is possible to divide the equation into two smaller terms: (i) “ACT(I) / NACT‖, 

and (ii) “TOT(I) / N‖. The argument for using these smaller terms as terminals is that the 

equation terms presented in the various SSA equations are equation components that are 

more appropriate. It is predicted that the equations may be able to converge faster when a set 
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of predefined terminals consisting of logical terms is available from the start of the GP 

program. The objective was also to reduce the generation of extreme terms in an equation 

which may pose the likelihood of overfitting problems at a later stage. The effects of the 

definition of both terminal sets is investigated and discussed in the GP parameterisation 

experiment. 

 

For the chromosome function set, four fundamental mathematical expressions were used by 

default to be experimented. These consisted of (i) the plus operation, (ii) the minus operation, 

(iii) the multiplication operation, and (iv) the division operation. Several other complex 

operations were investigated. These consisted of (v) the logarithmic function or log, (vi) the 

exponent 2 function, and (vii) the square root operation. These functions are listed in Table 

6.2(b) and grouped as the FUNCTIONS_A function set. The modulus operation was 

excluded as it is a rather complex operator to be used in designing an SSA-based 

mathematical equation. The limitation of the power function to only the power of 2 was to 

minimise the weight calculation complexity. Having a weight calculated based on a variable 

with a power of n, however, would almost certainly cause the fragment values to be larger 

than necessary. Likewise, for the function set combinations, a special function known as the 

FUNCTIONS_B function set was included. This set consisted of a log operation enforced to 

each GP equation. It is argued that the equation generated by the GP may sometimes 

unnecessarily enforce several conditions to be excessively enlarged. To illustrate this, the 

Figure 6.7 is referred. An equation is given and translated to its equivalent fragment weights. 

Note that for fragments 137, 138, 146, 148 and 150, the weighting values were determined to 

be excessively large values due to the presence of two large variables (TOT(I)) being 

multiplied by one another unchecked. There may be another possibility of such an 

occurrence; for example, a variable consisting of large values further encapsulated by 

multitudes of exponent 2 operations. To solve this problem, it was necessary to enforce 

mandatory implementation of the log function at the end of every generated GP equation, as 

can be seen in Figure 6.8. Here, the same equation was encapsulated with a log function. The 

said fragments containing the excessively large values were then stabilised to sensible 

numbers in a small range. This effect is also demonstrated in terms of the performance 

analysis in the GP experimentation section. 
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6.4.3.2 Suitable fitness function design for GP-based SSA 

Fitness determination for the GP is similar to that used in the GA-based SSA. The fitness of 

one chromosome is measured as the active retrieval rate resulting from the fragment weights 

generated by the chromosome. Specifically, a chromosome yields an equation, which, when 

computed, produces a specific set of fragment weights. The fragment weights are applied to 

each compound and the sum of weights act as the compound‟s score. The compounds are 

then categorised based on the score.  

 

Figure 6.9 illustrates a simplified example of a GP lifecycle from population definition to 

fitness evaluation. The GP program starts by identifying the parameters to be translated into 

chromosomes for manipulation by GP. In the case of GP-based SSA, the parameters are 

derived from variables; these describe the characteristics of the 2D fingerprint dataset, as 

shown in Figure 6.9(a). For the GP-based SSA, the main objective is to generate an equation 

that is able to maximise the active retrieval rate. Thus, a chromosome can be defined from a 

pool of variables containing the SSA variables. A function set therefore consists of 

mathematical operations to connect the variables. Figure 6.9(b) illustrates several examples 

of a series of randomly generated chromosome-based equations. Taking an example of such 

an equation as shown in Figure 6.9(c), the fitness value of this equation can be determined by 

firstly assigning the equation to be translated to fragment weights. These are then applied to 

the 2D fingerprint datasets. Subsequently, a compound‟s score is calculated as the sum of all 

of its fragments‟ scores. The compounds are then ranked based on their scores, in descending 

order, as shown in Figure 6.9(d). Finally, a fitness value is computed as the number of active 

compounds found in the top 1% list of ranked compounds. These steps are then repeated for 

all of the other chromosomes to generate a fitness table, as shown in Figure 6.9(e). 

 

6.5 Experimental procedure 

The experiments were divided into two parts. The first experiment was conducted to identify 

the best set of parameters from a varying number of parameter options. It was necessary to 

first identify the possible sets of values for each specific parameter under several different 

parameter groups. The following parameter groups were identified: (i) Terminal and function 

set for chromosome generation, (ii) Population size and maximum evolution, (iii) Elitism 

mode, (iv) Bloat control and (v) Evolution control. The parameters were tested by changing 

the values one at a time while retaining the other parameters at the determined default value 

to observe the impact of changing one parameter. The second part of the experiment focused 
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on analysing the actual performance of the GP-based SSA compared to the traditional SSA 

methods and the GA-based SSA. For benchmarking purposes, the best SSA method was 

used: the Robertson / Sparck-Jones R4 method. This was employed to represent the SSA 

based approach to be compared against the GP-based SSA program. All of the GP 

experiments above required an initial run on a training set, followed by its predictive 

verification on the remaining test sets. The process was repeated three times for each 

parameter value in the parameterisation experiments, while the benchmarking experiment of 

each activity class was repeated ten times. 

 

6.6 Experiment setup: Parameterisation of the GP-based SSA 

The first part of the experiment was performed to identify suitable parameters of the GP to be 

applied for all runs of the different activity classes from both databases. The majority of the 

parameter groups were similar to the GA experiment, and thus they were tested here as well 

as other parameters unique to the GP, which are discussed below. 

 

Similar to the GA experiment performed in the previous chapter, each parameter was tested 

individually to observe potential changes in that particular parameter. The same procedure 

was used as in the previous SSA and GA experiments, whereby the least and most 

heterogeneous activity classes from the MDDR database, COX and RNN respectively, were 

tested. A training dataset of 10% active and inactive compounds was used to test each 

parameter. The subsequent GP-produced equation was used to generate a set of fragment 

weights calculated from the test dataset. The weights were then applied to the predicted test 

set and its retrieval performance was observed. For the parameterisation experiments, each 

GP run of a parameter value was run and repeated three times and their active retrieval rates 

were observed. It is argued that the run with the worst retrieval rate of the three instances 

should suitably represent the parameter being tested as it seeks to present a stable score from 

the three runs. Once all of the parameter values had been assigned their parameter score, it 

was then necessary to choose the parameter value with the highest score from all of the 

available parameter options being investigated. The best performing option is shaded in the 

parameter tables accompanying the tests below. 

 

To ensure that results obtained from the parameterisation test are consistent and noise-free, 

each GP parameter test is repeated three times to note any large occurring discrepancies. The 

worst performing result out of the three was selected in order to effectively represent the 



 

169 

 

results of each parameter tested. The predictive sets of the two activity classes from the 

MDDR database, namely the RNN and COX classes, were chosen as input datasets for the 

parameterisation experiments for the same reason as in the GA experiments. Based on the GP 

program developed, and following various literatures on GP parameterisations, the 

experimenter identified a key number of parameters required by the GP thus: (a) fitness 

function at a selected percentile; (b) chromosome population size; (c) maximum generation / 

evolution limits; (d) elite chromosomes, (e) crossover rate; (f) mutation rate; and (g) parent 

selection method for offspring generation. 

 

Each parameter is changed one at a time to systematically record the performance variation of 

parameters. This ensures that the effect of individual parameter variation is quantified as 

accurately as possible, and noise results are not mistakenly recorded. A set of initial, default 

parameter values were first defined. They consisted of a fitness function score based on 

ranked active compounds, the top one percent, a 100 chromosome population size, weights 

determined by formula derived from FUNCTIONS_A and VARIABLES_A set, 300 

maximum iterations, a roulette wheel parent selection, elitism of 1 chromosome preservation 

between evolutions (mimicking simple-state model), a one-point crossover method of 0.95 

probability rate and a mutation rate of 0.05, as the default GA parameters. Individual 

parameters being investigated were changed while the other parameter set mentioned above 

remained intact. The parameters were performed and the results obtained, are discussed 

below. To distinguish the most effective parameter, the highest values shown in Table 6.3 to 

6.8 are highlighted. 

 

6.6.1 Fitness function 

Similar to the fitness function parameter test conducted in Section 5.6.1, the fitness function 

definition is experimented for the GP. Two sets of parameter options were tested: The fitness 

function score based on the top 1% ranking, and another fitness function based on the top 

10% ranking. 

 

Figures 6.10 and 6.11 show cumulative recall plots of the different fitness functions used in 

the GP for both the MDDR RNN and COX activity class respectively. For the MDDR RNN 

class, the fitness function score based on the top 1% (Figure 6.10a) recorded improvement in 

actives retrieval rate over the SSA R4. It is also stable in other ranked percentile, except for a 

drop particularly at the top 3% ranking. On the fitness function based on the top 10% ranking 
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(Figure 6.10b) however, the actives retrieval rate is seen to severely struggle against the SSA 

R4. It only achieved improved actives retrieval rate over the SSA specifically at the top 10% 

ranked percentile. For the MDDR COX class, the fitness function score based on the top 1% 

ranking (Figure 6.11a) managed improvement in actives rates over the SSA R4. This is true 

especially in the top 1% of ranked compounds, and in a majority of other percentiles up to the 

top 10% ranked percentile. For the fitness function score based on the top 10% ranking 

(Figure 6.11b), the GP is able to achieve improved rate of actives in the top 1% of ranked 

compounds and in other ranked percentile as well. A closer comparison however shows that 

the fitness function based on the top 1% achieved a slight improvement over the other fitness 

based on the top 10% ranking. Table 6.2 further shows the actual actives recall rate in the top 

1% for the different fitness functions experimented. The fitness function score based on the 

top 1% ranking is shown to be superior to the one based on the top 10% ranking. This is true 

for both cases of MDDR RNN and COX classes. From this, a fitness function score based on 

the top 1% ranking is chosen as the preferred fitness function definition for the GP-based 

SSA. 

 

6.6.2 Terminal and function sets for chromosome generation 

Two different combinations of terminal sets, as well as two combinations of function sets as 

shown in Table 6.3 were tested. The objective was to determine the most efficient sets of 

variables and functions that allowed for the best active retrieval performance. It was 

important to identify some of the conditions and problems that may arise as discussed earlier 

in section 6.4.3.1. For the terminal set parameterisation, a combination of VARIABLES_A 

only set, and another GP implementation using both VARIABLES_A and VARIABLES_B 

sets were tested. 

 

Based on the enrichment table in Table 6.4, it can be seen that the GP instance using both 

variable sets is able to outperform the VARIABLES_A only set in terms of active retrieval 

rate for both the MDDR RNN and COX activity classes. The effect of the different terminal 

set combinations were analysed for both the MDDR RNN and COX activity classes using the 

error plots shown in Figure 6.12 and Figure 6.13 respectively. The error plots compare the 

error rate of the training set with its application in the predicted test set based on each of the 

GP‟s iteration. This is to show any evidence of overfitting in the solution generated by the 

training set, when applied on the predicted test set. In the case of GP-based SSA, the error 
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rate is calculated as the inverse of the rate of active compounds retrieved in the top 1% of the 

ranked molecules.  

 

For the MDDR RNN activity class, it was found that a GP run using only the 

VARIABLES_A set showed large overfitting error from around GP iteration 50 onwards 

(Figure 6.12a). The training error here recorded reduction in the error rate, but its equivalent 

test error marks a large increase in the test set error. In contrast, the alternative GP 

implementation using terminals consisting of both the VARIABLES_A and VARIABLES_B 

sets records a consistent performance of the GP for the predicted test set instances, as seen in 

Figure 6.12b. It was noted that both types of GP implementation recorded a similar training-

based retrieval performance, as witnessed by their training error rate of around 0.41, but their 

equivalent predicted-test set performance for both varies. A slightly different trend is 

witnessed for the MDDR COX activity class, where the GP implementation using only 

terminals of the VARIABLES_A set (Figure 6.13a) causes a large gap in performance 

between the training set and the predicted test set instances, particularly in the early iterations 

of 20 onwards. It is only in the later iterations of 160 onwards that the training and test set 

performance is stabilised. This contrasts with the GP implementation using both the 

VARIABLES_A and VARIABLES_B terminal sets (Figure 6.13b), which maintains a 

consistent performance between the training and test set instances. With regard to the 

functions, the combination of FUNCTIONS_A sets with a log function wrapping the 

equation introduced by FUNCTIONS_B shows a slight increase in the enrichment values for 

both activity classes when compared to only FUNCTIONS_A set. 

 

6.6.3 Chromosome structure 

Model simplicity is the primary goal of the law of parsimony, otherwise known as Occam‟s 

razor, in which a solution should not be excessively complex if it can be solved by another 

simpler solution. In GP, a critical issue may arise when the model becomes too complicated, 

but does not yield improved solution suitability with each added complexity. This is often 

known as the “bloating problem”. Bloating occurs when within each generation of 

chromosome evolution, the chromosome continues to grow larger in size but without having 

any similar (positive) effect on fitness suitability. Several studies have suggested that 

restrictions be imposed on chromosomes in order to minimise the bloating effect (Langdon, 

1999; Poli et al., 2007). Here, two parameters were tested: (i) a chromosome tree depth 
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consisting of the following tested values: 4, 6, 8 and 10; and (ii) the maximum number of 

nodes with the following values: 20, 25, 30, 35, 40 and 50.  

 

Several observations can be made from the enrichment table in Table 6.5. First, it is stressed 

that while the maximum tree depth parameter is set to a certain value, the actual depth of the 

generated chromosome is often much smaller than the depth limit defined. For example, 

consider the case of a tree depth parameter of 10 from the table, in which the generated 

chromosomes for both the MDDR RNN and COX activity classes yield equations with a 

smaller tree depth of 6. Similar behaviour is observed with regard to the maximum nodes 

parameter, where in the case of a maximum node size of 30, the actual node size generated 

for both classes are 25 and 18 respectively. 

 

In terms of the actual performance of the various parameters in this group, a maximum tree 

depth of 6 and a maximum node of 30 were observed to achieve the highest retrieval rates 

when compared with the other parameter options presented. The larger tree depth and node 

size limits, however, did not yield any significant benefit in terms of the active retrieval rate. 

 

6.6.4 Population size, generation and tree properties 

It is stated that programs within GP populations tend to increase rapidly in size as the 

population evolves and, if unchecked, they might consume excessive machine resources 

(Langdon 2000). A traditional way to overcome this is by enforcing a size or depth limit on 

the programs, in which the effects of size and depth limits are presented in Section 6.6.3 

above. Under this parameter group, three parameters were tested which define the 

chromosome population. These can assist in the management of population and solution 

search space: (i) the population size, (ii) the maximum GP evolution iteration, and (iii) the 

construction method of the chromosome tree. 

 

With regard to the chromosome population size parameter, several different values were 

tested beginning with the smallest value of 100, 200, 300, and 500. On the maximum 

evolution iteration, the following values were also tested: 50, 100, 200, 300 and 500. One of 

the main objectives was to identify the maximum limit of population and iteration count that 

had a direct impact on the run time efficiency. For example, if one GP run with a large 

population size and an equally large maximum iteration remains stagnant after a designated 

iteration. It is necessary to consider smaller values of both parameters, as no benefits are to be 
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gained with the larger ones. For the population size parameter test, except for the population 

size parameter of 100, there was a somewhat similar level of performance in terms of 

retrieval rate for both activity classes between the population sizes of 200, 300 and 500, even 

though the size parameter of 200 is slightly higher than the others. It is argued that the 

population size of 100 may not have reached the convergence state due to it being smaller. 

Having a larger population size, in this case a value of 500, does not dictate the performance 

rate, especially when compared to the population size of 200. 

 

For the iteration parameter, the test was setup in such a way that the GP application was 

executed with a maximum iteration of 500, reflecting the largest iteration value to be tested, 

as listed in Table 6.6. It was necessary to record the performance of active retrievals in the 

predicted test set at iterations of 50, 100, 200, 300 and finally 500. From the table, it was 

observed that (somewhere) between iteration 100 and 200, both activity classes recorded their 

peak retrieval performance, which remained stagnant up to the 500
th

 iteration. 

 

Three chromosome population construction methods were tested: (i) the grow method, (ii) the 

full method and (iii) the ramped half-and-half method. Based on the retrieval performance for 

each parameter, it was found that the grow method generally yielded higher retrievals 

compared to the other two methods. It was therefore chosen as the population tree 

construction method of choice. 

 

6.6.5 Elitism model 

The elitism model serves to preserve high fitness valued chromosomes during each evolution 

iteration, which might otherwise become mutated into lesser chromosomes. Elitism ensures 

that the chromosome is untouched and brought forward to the next generation of genetic 

evolution. For this parameter, the following elite chromosome preservations were tested: 0 or 

no preservation, 1, 2, 3, 5 and 10. Similar to the GA parameterisation test, also tested were 

the steady state model for verification, in which 199 chromosomes are preserved for each 

evolution out of the 200 total chromosomes. Table 6.7 shows an elitism of 0 was not able to 

achieve high retrieval rates compared to the different values tested. This is strikingly similar 

to the behaviour in the GA program, in which zero elitism causes all chromosomes to be 

mated and mutated completely at random. This subsequently affects the chance of self-

preservation of the promising candidates. An elitism of 2 shows a higher degree of retrieval 

rate for both activity classes than the other parameter values. Likewise, the steady state model 
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of 199 elitism recorded very low enrichment rates much like its counterpart in the GA 

program. 

 

6.6.6 Evolution control 

As in the GA experiment, the following parameter sets grouped under the evolution control 

category were identified: (i) the Parent selection method, (ii) the Crossover rate, and (iii) the 

Mutation rate. From these parameters, a number of different parameterisation combinations 

were tested, with the options and their corresponding results listed in Table 6.8. The parent 

selection method deals with the method of choosing two parents for crossover and mutation 

purposes. Three methods are already established in the literature. These are: (i) the roulette 

wheel method, (ii) tournament selection and (iii) the random selection method. From the test 

results, it was observed that in both activity classes, the roulette wheel method performed 

slightly better than the other two methods tested. The crossover and mutation rate selected, 

however, were somewhat different from the values obtained in the GA experiment, with the 

best crossover rate recorded at 90 percent and a mutation rate of 20 percent for both cases of 

RNN and COX activity classes. 

 

6.6.7 Final parameterisation selections 

Extensive parameterisation tests of the GP were carried out in order to maximise GP search 

potential. From the tests, several parameters were found to be critical to GP's performance 

while other parameters were less sensitive. 

 

The GP‟s choice of terminal variables for its chromosomes definition was found to be the 

most critical. A combination of both the six main SSA variables and sub-terms extracted from 

various SSA equations was found to maximise GP‟s search capability, as well as ensuring that 

the GP does not introduce a high probability of overfitting. Tests have also showed that the 

relevancy of mandatory log operations can stabilise weight values generated by the equations. 

Similar to the GA‟s case, the elitism parameter was also found to require values in the range 

of 1 to 5 to optimise GP-based results, as having either zero or extreme elitism values 

negatively affects the GP‟s performance. Tests showed that the chromosome tree depth and 

tree node size parameters retrieved comparable performance between the values in each 

parameter. The exception was the use of a small value for the maximum tree depth which 

affected the GP‟s results. For the chromosome population size and generation limit, the 

parameters were sensitive when small population and iteration values were used. By contrast, 
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its performance was not significantly affected by larger population and longer iterations. 

Finally, for the evolution control parameters, which include the parent selection method, 

crossover and mutation rate, much like the GA-based SSA, only fine tuning of the parameters 

were required to maximise active retrieval performance. 

 

Based on the parameterisation results shown in this section, it was decided to apply the 

following GP parameters for the next experiment to benchmark the GP performance against 

GA and SSA, given all of the activity classes from both databases. The finalised parameters 

are as follows: (1) Fitness function of active rates in the top 1% of ranked compounds; (2) GP 

terminal set formed of the VARIABLES_A and VARIABLES_B sets and GP primitive 

function set formed of FUNCTIONS_A and a mandatory log operation at the end of the 

equation based on the FUNCTIONS_B set (both terminal and function sets as listed in Table 

6.4); (3) Chromosome maximum population of 200; (4) GP maximum evolution at 200 

iterations; (5) the grow population construction method; (6) An elitism of one chromosomes; 

(7) maximum tree depth of 6; (8) 30 maximum nodes in a tree; (9) The roulette wheel parents 

chromosome selection method; (10) Crossover rate of 0.85; and (11) Mutation  rate of 0.20.  

 

6.7 Experiment result: Analysis of the performance of GP-based SSA 

Having finalised the suitable parameterisation of the GP, it was possible to run the GP-based 

SSA in order to quantify its performance relative to both the GA-based SSA and the R4 

weighting scheme. Several performance analysis criteria are discussed below. 

 

6.7.1 GP robustness 

To quantify the randomness factor in the solutions obtained from the GP method, a robustness 

test was performed by analysing the results of the 10 GP runs. The main focus was on the two 

activity classes RNN and COX from the MDDR database as inputs into the GP robustness 

test. The retrieval rates of the two classes above are plotted as enrichment curves, shown in 

Figure 6.14 (a-b). The deviations in the retrieval rates at different ranked percentiles were 

small for both classes, and in comparison, were much smaller than its GA-based counterpart 

(Figure 5.12). It is concluded that the GP-based SSA is capable of producing effective and 

consistent results, confirming the robustness of the GP results. 
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6.7.2 GP weights correlation and consistency of compounds 

Similar to the GA, the relationship of the fragment weights generated by the 10 GP runs was 

measured for both the MDDR RNN and COX classes (Section 5.7.1) using the Pearson‟s r 

correlation coefficient. The Pearson‟s r correlation coefficient is an indication of how well the 

generated GP weights relate to one another between the multiple run instances.  

 

For the RNN class, high correlation values were obtained with a minimum of 0.85 between 

the individual GP run instances (Figure 6.16a), and similarly for the COX class in which a 

minimum correlation value of 0.99 was recorded (Figure 6.16b). The mean and standard 

deviation for the Pearson‟s r averaged over the 45 pairs of runs for each activity class are 0.91 

and 0.015 (RNN) and 0.99 and 0.001 (COX). The correlation levels are indeed higher when 

compared to the 10 runs of the GA-based SSA analysed in Chapter 4.  

 

The consistency level of the compounds retrieved for the ten GP-based SSA runs was further 

analysed. The results are shown in Table 6.9, where the first GP run (dubbed GP_run1) is 

assigned as the reference run. Its active molecules in the top 1% are identified and compared 

to those of the corresponding nine remaining runs. The upper value for each run describes the 

number of different active compounds in the top 1% compound ranking which are not present 

in the equivalent top 1% of the GP_run1. The lower values shown in brackets describe the 

actual number of active molecules retrieved in the top 1% of the test set of the ten GP runs. 

There were marked smaller differences in the active molecules for the other nine GP runs 

with reference to the GP_run1 for both activity classes, especially when compared with the 

GA-based SSA results. In particular, for GP_run2 of the MDDR RNN class, the active 

compounds retrieved were identical to those obtained in the reference GP_run1. Other GP 

runs recorded a small level of variation with a maximum of 25 different active compounds 

retrieved in GP_run9 (Table 6.9a). The trend is similar for the MDDR COX activity class 

(Table 6.9b), where the different active compounds retrieved from multiple runs ranged from 

0 to 20. From the total of 173 active compounds retrieved in the top 1% of the COX 

GP_run1, this accounts for roughly a 0-10% change for the other runs. These results show a 

strong indication of consistency in performance obtained from multiple GP runs, thus 

outperforming the GA-based SSA in this respect. 
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6.7.3 Analysis of GP runs on all activity classes 

Table 6.10 presents the enrichment factor of actives retrieved in the top 1% of the ten GP 

runs for each activity class from all three databases. Each row of the table corresponds to a 

single activity class which lists the total number of actives retrieved in the test set using the 

GP weighting scheme. The final two columns on the right for both Table 6.10 contain the 

mean and standard deviation of the number of actives retrieved in the top 1% of the ranked 

molecules. From the mean and standard deviation values, it can be seen that there is a high 

degree of clustering of active compounds in the top 1% of the ranked data. The variation in 

the actives retrieved in the top 1% is less dispersed between the multiple runs. Table 6.10 also 

provide the mean Pearson correlation coefficient and its standard deviation between the sets 

of 166 weights for the 10 runs on each class. The mean correlation values for all activity 

classes across the three databases are small with low standard deviations. For the MDDR 

database, the majority of the classes achieved a mean correlation score of 0.80 and above, 

except for the AT1 class which scored a mean r value of 0.75. Three classes in SUBP, COX 

and PKC all scored a perfect correlation score of 1, meaning that for the 10 GP runs 

executed, the resulting equations generated were similar for each class. Similarly, for the 

WOMBAT database, 5 out of 14 activity classes scored a complete r value of 1. These are the 

5HT3, ACHE, AT1, PDE and THRM classes. The least correlated class is the MPP activity 

class with a mean R of 0.79. Finally, for the ChEMBL database, 7 activity classes achieved a 

complete r value of 1. These are the 5HT3, AT1, COX, D2, FXA, MMP and PDE classes, 

while the lowest mean correlation is much higher than the other database, with a minimum 

score of 0.92.  

 

Three observations can be made regarding the results from Table 6.11 of this study. First, it 

was observed that the GP-based SSA method performs better than the SSA R4 in all cases 

when comparing both the GP runs (i.e. the worst, the best and the mean of the ten runs) in 

each activity class. Second, however, when comparing the GP and GA in each activity class, 

the GP-based SSA was found to be slightly less effective than the GA searches from all 

databases. The GP-based SSA (i.e. the worst run) was better for 11 of the 40 activity classes 

(from the MDDR database, the classes are 5HT, D2, AT1 and COX; from WOMBAT the 

classes are ACHE, PKC and THRM) and from ChEMBL the classes are AT1, MMP, PKC 

and SUBP), while the remaining 29 activity classes achieved improvements using the GA 

method. Moreover, upon comparing the number of actives using the evolutionary 

computation method (i.e. the best run of GP and GA), the GP run showed less actives 



 

178 

 

compared to the GA method, only 6 out of 40 activity classes (from the MDDR database, the 

classes are 5HT, D2 and COX; from WOMBAT the class is PKC and from ChEMBL the 

classes are MMP and PKC). Furthermore, the mean number of actives for the ten GP and GA 

runs was also determined to evaluate the effectiveness of the GP application. Tables 6.12 

shows that the mean values derived from the use of GA are consistently superior to the GP in 

most cases (except for 4, 1 and 2 classes of MDDR, WOMBAT and ChEMBL respectively).  

 

Third, the most interesting finding was that although the GP technique was found to slightly 

increase the number of actives, the GP method showed a high degree of clustering of actives 

in the top 1% between the ten runs.  In most cases across all activity classes (except for COX 

class from MDDR and THRM activity class from ChEMBL) the GP showed  low standard 

deviation values between the ten GP runs. This indicates  that the GP method has a fair 

degree of repeatibility compared to the GA-based SSA  scheme.  The GP technique was also 

found to increase the active retrieval rate when compared to the SSA methods. 

 

6.7.3.1 Enrichment curve analysis 

Similar to the SSA and GA experiments, cumulative recall plots of the five activity classes 

(5HT3, COX, D2, RNN, and PKC) were extracted from the three databases. These included a 

comparison to the best performing SSA equation (the R4 scheme) and the worst run instance 

of the GA-based SSA (Figures 6.16 to 6.20). Several observations can be made and these are 

discussed below. 

 

For the 5 classes displayed, three trends can be observed from the curve plots, and they are 

described below. The first trend shows a number of classes which reveal total superiority of 

enrichment value obtained by the GA when compared to the investigated GP-based SSA. 

Examples are from the ChEMBL 5HT3, WOMBAT and ChEMBL COX (Figure 6.16b-c), 

WOMBAT and ChEMBL D2 (Figure 6.17b-c), and RNN classes from all three databases 

(Figure 6.18a-c). In some cases, like the MDDR 5HT3 (Figure 6.15a), the uplift of the GA 

results is as much as 15% compared to the investigated GP-based SSA in the top 1% ranked 

compounds.  

 

Several classes showed that the GP is at least similar, or superior to the GA counterpart. 

WOMBAT 5HT3 class (Figure 6.15b) can be seen to obtain a slightly higher active retrieval 

rate than the GA in the top 1%. This is followed by other classes such as the MDDR COX 
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(Figure 6.16a) and WOMBAT PKC (Figure 6.19b). From all the plots, two classes show 

distinct superiority of the GP-based SSA over the GA and SSA R4 from the top 1% to the top 

10% of ranked compounds. These classes are the MDDR D2 (Figure 6.17a), and the 

ChEMBL PKC (Figure 6.19c). 

 

From the plots, it can be seen that the GP enrichment results are more stable in the top 10% of 

recall rates when compared to the GA. The GP results are seen to maintain steady 

improvements over the SSA R4 results, except for a few instances where the SSA R4 exhibit 

extreme superiority of retrieval rates in the later ranked percentiles (WOMBAT PKC in 

Figure 6.19b). 

 

6.7.3.2 Analysis of diversity 

A diversity analysis was conducted on the GP results to quantify the structural diversity of 

the ranked compounds. The results are compared with those of the GA-based SSA and the R4 

scheme. The number of distinct Murko scaffolds in the top 1% of ranked actives was 

calculated using Pipeline Pilot software. The mean pairwise similarity values were also 

observed by calculating the similarities between each compound in the activity classes using 

the Tanimoto coefficient. The average of the similarity values was considered to show the 

diversity level of the number of actives retrieved for each activity class using the GP method.  

The diversity of the actives achieved from the worst run using the GA and the GP-based 

weighting schemes. The actives obtained from SSA R4 are compared in Table 6.11. From the 

table, it is clear that the GA results possess the highest diversity of compounds, followed by 

the GP method, and finally the SSA R4 method. The method with the highest diversity for 

each class is also shaded in the table.   

 

6.7.4 Kendall’s W analysis 

For further analysis, Kendall‟s W was used to quantify the degree of association between 

eleven, fourteen and fifteen sets of rankings from the MDDR, WOMBAT and ChEMBL 

datasets, respectively, from the 3 weighting schemes (i.e. GP-based, GA-based and SSA R4). 

The results of the Kendall‟s W analysis are summarised in Table 6.12. It can be seen that the 

performance of the SSA weighting schemes is listed in decreasing order based on the mean 

ranking of the actives in the top 1% for each activity class when summed across all of the 

rankings. The results obtained from the Kendall‟s W analysis for the MDDR searches are 

shown in Table 6.12(a). The computed value of W is 0.77. References to the critical values 
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table reveal that the value of W is significant at the p < 0.01 level. A similar ranking trend 

was obtained when using the WOMBAT and ChEMBL databases, with a 1% cut-off value as 

shown in Tables 6.12(b) and 6.12(c). The value obtained for W was computed as 0.75 and 

0.88, respectively, at the p < 0.01 level of statistical significance. Overall, the Kendall‟s W 

test for the ranked compounds in each class of the MDDR, WOMBAT and ChEMBL 

databases revealed that there is a strong agreement between the three weighting schemes. The 

analysis indicated the following rankings: 

 

GA-based SSA > GP-based SSA > SSA R4 

  

Taken together, these results indicate that the GP-based method performs less well than the 

GA-based method, while the SSA R4 performs worst in all the MDDR, WOMBAT and 

ChEMBL datasets, respectively. 

 

6.7.5 Wilcoxon signed rank test 

It was observed that the GA outperforms the GP for all databases as revealed by the 

Kendall‟s W test. The research therefore proceeded to use the Wilcoxon signed rank test to 

determine the direction of superiority of a measure between the performance of the GP-based 

and GA-based results for each class. To conduct the test, the enrichment factor of actives of 

the top 1% of  the worst and best runs using the GP and GA methods (as reported in Chapter 

5) was observed. Further information on the statistical tests can also be found in Chapter 3, 

Section 3.5.3. Overall, the results that compared the worst run obtained from the GP and GA-

based methods show that the observed W for both databases is larger than Wcritical (i.e. W ≥ 

Wcritical) at p ≤ 0.01, as referred to in the table of critical values of the Wilcoxon signed rank 

test. No significant differences were found between the the worst run of the GP and GA for 

all three database cases. It can be concluded that the performance of the GP-based method 

was similar to that of the GA-based run. However, when comparing the best GP and GA 

runs, the Wilcoxon signed rank revealed that there was a significant difference between the 

two runs except for MDDR. 

 

Furthermore, to identify whether the GP-based method is practical for SSA application, the 

mean of the ten GP and GA runs were compared. The Wilcoxon signed rank test was also 

used to quantify the magnitude of the superiority of a measure against the two methods. The 

results show that these differences were statistically significant except for the MDDR dataset. 
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In summary, these results indicate that there were significant differences between the means 

of the ten GP and the GA runs; hence, the performance of the GP-based method can be said 

to be less than that of the GA runs. 

 

6.7.6 GP-generated equations  

Equations produced by the GP-based SSA were observed. Table 6.13 presents both the worst 

and the best solutions obtained on all the three and for each activity class. Note that the 

equations listed in Table 6.13 have been simplified from their original form: an example is 

provided in Figure 6.21. The freely available Wolfram Alpha Expression Simplifier tool 

(n.d., Retrieved from http://www.wolframalpha.com/) was used. From Table 6.13, several 

observations were made.  

 

First, it was found that there was no occurence of repeated, identical equations generated by 

the GP in at least two different activity classes from the three databases. Several activity 

classes, however, were observed to obtain exactly identical equations produced during its 10 

GP runs, such as those seen in the MDDR SUBP; WOMBAT ACHE, PDE and THRM; and 

ChEMBL AT1, COX and PDE classes. 

 

In terms of variable population, several equations were found to be formed using all six main 

variables (N, NACT, NINACT, TOT, ACT, INACT). These can be seen in the best equations of 

the MDDR 5HT and D2; and WOMBAT 5HT3 classes; or in the worst equation of the 

ChEMBL THRM class. In contrast, the equation with the least amount of variables used are 

found in the worst equation of WOMBAT PKC class, or the best equation of ChEMBL FXA 

class. All of them employed only three types of variables. It can be seen that the most 

frequent variable used to form the equation is the ACT (the number of particular fragments 

present in the active compounds), followed by INACT, TOT, N and NACT. The least used 

variable in the equations was determined as NINACT (the number of inactive compounds in 

the database), which appeared only 13 times in the GP equations across all databases. The 

variable ACT was observed to appear in all of the equations generated for each activity class. 

 

6.7.7 Model validation with Y-randomisation 

Similar to the GA experimentation, a model validation of the GP-based SSA using the Y-

randomisation technique was performed to investigate presence of chance correlation. The 

technique utilises scrambling the training dataset and is used to predict a model. For our 
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scrambling test, the previously generated 100 scrambled training set comprising 10% of 

active and 10% inactive compounds from the MDDR-based RNN and COX activity classes 

were used previously employed in Chapter 5. Note that the training sets above contain 

scrambled compounds activity state while leaving the fingerprints and compounds class 

labels intact. The resultant weights from GP-based SSA using the scrambled sets above were 

then applied to the test set.  

 

Recall the ten repeated GP runs, as discussed in Section 6.7.1 (GP robustness test). For the 

purpose of model validation, the 10 GP instances are referred to as the unscrambled GP runs. 

Subsequently, it was possible to identify two meaningful variables to observe: (i) Pearson‟s r 

coefficient, based on the weight distribution when compared to the first run of the 

unscrambled GP result, hereby dubbed unscrambled_GP_run1; and (ii), the active molecule 

retrieval rate in the top 1% of the compound ranking. The scrambled GP runs should not 

match or correlate well with unscrambled GP runs, since in doing so, it means that there is the 

presence of chance correlation using deformed data. To calculate Pearson‟s r, it was necessary 

to correlate the sets of 166 weights of the unscrambled_GP_run1 with the sets of 166 weights 

obtained from the 100 scrambled GP runs. The remaining nine unscrambled GP runs were 

also correlated with the unscrambled_GP_run1. Similarly, the percentage of actives retrieved 

in the top 1% of active compounds was observed for both the scrambled and unscrambled GP 

results.  

 

Figure 6.20 (a-b) shows the Y-randomisation plot for the two MDDR-based activity classes; 

the RNN and COX. The X-axis of the plot represents the retrieval rate in the top 1% ranking, 

while the Y-axis denotes the Pearson‟s r values versus the unscrambled GP_run1. From both 

figures, the ten unscrambled GP results performed positively, clustering in the top right side. 

This signals a similarly high active retrieval rate, while maintaining a good correlation with 

the unscrambled GP_run1. This is the opposite of the scrambled GP runs, which recorded 

very low correlation values of Pearson‟s r (none higher than 0.35). All of the scrambled 

results also failed to retrieve comparable actives in the top 1% of the ranked compounds for 

both classes, especially when compared to the unscrambled ones. The mean and standard 

deviation of the number of actives retrieved in the top 1% of the scrambled GP cases were 

8.64 and 15.68 (RNN). Two standard deviations above and below the mean creates a range 

from -22.72 to 40.01. Hence, of the 100 runs, 95 runs fall into this range, which is 95% of the 

runs. The mean and standard deviation of the numbers of actives retrieved in the top 1% of 
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the scrambled GP cases for the COX were 5.05 and 7.22. Two standard deviations from the 

mean create a range from -9.40 to 19.50, where 91 runs fall into the range. Based on these 

results, it can be seen that the GP-based SSA is unable to arrive at chance correlations with 

deformed data. 

 

6.7.8 Run-time benchmarks of GP-based SSA 

Similar to the GA, the execution of the GP-based SSA was fairly intensive on a single 

computer, depending on the data size and choice of parameters. A run-time analysis to 

understand hardware suitability in different data scenarios is discussed here. The hardware 

used follows the ones listed in Table 3.2. 

 

The RNN activity class was used as the benchmarked class for all three database instances, 

with the same parameterisation set as discussed in Section 6.6. Table 6.14 lists the breakdown 

of the run-times of the GP for the individual iterations and subsequently the total run-time for 

a complete GA program. These are based on 200 maximum GP iterations. For the MDDR-

based RNN class, the 10% training set is made up of 10,254 compounds, while for the 

WOMBAT-based class, the 10% training set is equivalent to a total of 13,812 compounds. 

The ChEMBL-based RNN activity class is significantly larger for the case of a 10% training 

set, consisting of 135,267 compounds. 

 

For the MDDR-based RNN activity class, as shown in Table 6.14(a), a GP run using 10% 

training set runs on average between 2.70 and 3.50 seconds per GP iteration, with a total run-

time for the GA program averaging between 532.5 seconds and 721.4 seconds, equivalent to 

8.8 and 12 minutes respectively. Table 6.14(b) shows the run-time breakdown for the 

WOMBAT-based RNN activity class via a 10% training set of GP run. The average run time 

for a single iteration is between 2.80 and 4.10 seconds, with the total run-time of all 200 

iterations averaging between 578.4 and 933.1 seconds (9.64 and 15.5 minutes), respectively. 

For the ChEMBL case shown in Table 6.14(c), similar to the GA case reported in Chapter 4, 

it was noted that the machine WKST_01 was not able to execute the GP-based SSA due to 

the problem of its small memory limitation; it only has 4GB DDR of physical RAM. Between 

the SERVER and WKST_01 machines, the run-time of a single iteration was timed at 37.20 

and 48.10 seconds respectively. The total run-time of a complete GP run in the ChEMBL case 

was 7621.50 seconds for the SERVER machine and 9680.5 seconds for the WKST_01 

machine; this translates to roughly between 127 and 161 minutes respectively. From the 



 

184 

 

above, it may be summarised that in terms of run-time performance, a fairly mild influence of 

the machine‟s processor architecture on increasing the run-time efficiencies was observed. 

This should not however, be a critical factor in the consideration of hardware choice for 

running GP-based SSA. This is a similar behaviour to the GA-based SSA. 

 

6.8 Discussion 

Various analyses were performed to gauge the performance level of the GP-based SSA. The 

primary method of analysis was based on the active retrieval rates for each activity class in 

the three databases. These were compared to equivalent implementations of the SSA R4 and 

GA-based SSA. The screening results were analysed by determining the worst, mean and best 

results of the 10 runs executed for both the GP and GA, and also from the SSA R4 obtained 

results. Based on this analysis, it was observed that the GP method outperformed the SSA R4 

in all cases of activity classes. Compared to the GA method, however, it was generally found 

that the GP is less effective than the GA in its comparison of the worst, mean and best runs of 

the two methods. The exceptions were a few cases where the GP obtained superior retrieval 

of active rates to that of the GA-based SSA, particularly the MDDR 5HT,D2,COX and AT1; 

WOMBAT PKC, ACHE and THRM; and ChEMBL MMP, PKC and AT1 classes. On the 

other hand, a positive outcome of the GP is seen in its extremely high correlation between 

runs, based on an investigation into the GP‟s robustness and consistency of active compound 

recall in the top 1% of ranked molecules. The diversity rates of actives in the top 1% and 

Murcko scaffolds show the GP to be less effective when compared to the GA. Several class 

instances, however, demonstrate the GP‟s capability of improvement in the two values above. 

Permutation tests for model validation proved that the GP would not be able to generate a 

successful solution if trained from randomly generated datasets. 

 

Cumulative recall plots show that the GP-based SSA, similar to the GA, maintains a stable 

trend of improved retrieval rates in the top 10% of ranked molecules over the SSA R4. 

Several classes across all three databases showed that the GP outperformed both the SSA and 

GA methods in up to the top 10% of ranked molecules, such as the ChEMBL PKC class. 

 

A Wilcoxon signed rank test was performed to measure the significance of the difference 

between the performances of the GP and GA. This was followed by a Kendall‟s W statistical 

test to measure the significance of the agreement in the results obtained by the GP and GA 

methods. The Wilcoxon test indicated that there is no significant difference at the p < 0.01 
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level in the performance between the worst GP and GA results. With regard to the mean and 

best performance comparison of the GP and GA, a significant difference at the p < 0.01 level 

in the performance of the mean, was found. It was the best run of the GP and GA results 

particularly for the WOMBAT and ChEMBL databases. The performance of the GP-based 

method was statistically proven to be less than that of the GA runs.  

 

The Kendall‟s W test for the ranked compounds in each class of the MDDR, WOMBAT and 

ChEMBL databases revealed that there is a strong statistical agreement between the 

performance of the three weighting schemes in all three databases at the p < 0.01 level. The 

GA-based SSA was the best weighting scheme, followed by the GP-based SSA and finally 

the SSA R4. Based on the Kendall‟s W statistical test results, retrieval rate performance of 

the GP was seen to be less effective than the GA. The performance of GA and GP, however, 

was observed as comparable if Kendall‟s assessments were made based on the mean of the 

GA and GP‟s 10 runs. Therefore, the observed differences between the GP and GA methods 

in this study were not significant for any of the activity classes in the three databases. 

 

An assessment was made of the suitability of the GP-based SSA in real world application 

from two related tests. The parameterisation experiments have established the GP-based 

SSA‟s performance sensitivity to be critical of several parameters as follows: (i) Terminal 

variables set for chromosome definition requires the combination of both variables and sub-

terms from SSA equations to maximise retrieval performance and overcome overfitting, 

while (ii) a compulsory log operation performed on the GP equation helps in stabilising 

weight values. Finally, (iii) an acceptable elitism model was also proven to affect GP‟s 

performance. Similar to the case of GA in Chapter 5, other parameters, however, did not 

significantly affect GP‟s performance as those listed above, other than the requirements of 

parameter fine-tuning. In terms of run-time performance, hardware, benchmark tests recorded 

similar results to those obtained by the GA-based SSA in Chapter 5. The results above 

demonstrate good practicality of GP-based SSA in real-world pharmaceutical application. 

 

6.9 Conclusion 

This study investigated the application of a GP-based SSA method. The research performed 

rigorous evaluation of the effectiveness of the GP-based weighting schemes in a 

chemoinformatics application pertaining to 2D fingerprint datasets. In this chapter, it was 

concluded that the GP-based SSA method is inferior to the GA-based SSA method in most 
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cases. It can be argued that the main reason of GP‟s lesser performance is due to its strict 

requirement to evolve equations without any direct access to individual weights, as opposed 

to the GA, which explicitly seeks to obtain weight that will optimise the ranking of the test 

set. However, both the GP and GA methods successfully provide uplifts in the upper-bound 

of the active retrieval performance especially in the top 1% of ranked molecules. As a 

consequence to inconsistencies in results obtained by the GP for the three databases, the GP 

method is considered to be less suitable as an alternative to the R4 weighting scheme. 
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Figure 6.1: Genetic programming basic flow, (after Poli, Langdorn, McPhee & Koza, 2008) 

 

 

 

Figure 6.2: Simple structure of a tree model in GP, (a) a valid tree model compared to (b) 

invalid tree with incomplete equation portion in its child branch, highlighted in red 

 

 

 

(a) (b) 
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Figure 6.3: Chromosome tree creation using the grow method. Tree defined with a maximum 

depth of 3 levels 

 

 

 

Figure 6.4: Chromosome tree creation using the full method. Tree defined with a maximum 

of 3 levels of tree depth 
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Figure 6.5: GP's crossover operation diagram 

 

 

 

Figure 6.6: GP‟s mutation example showing the (a) Single terminal mutation, and (b) Sub-

tree mutation



 

190 

 

 

Equation: 

𝑇𝑂𝑇 (𝑇𝑂𝑇 × 𝑙𝑜𝑔 ((
√𝑁𝐼𝑁𝐴𝐶𝑇

𝐼𝑁𝐴𝐶𝑇
 × 𝐴𝐶𝑇))) 

 

Fragment weights: 

FRAGMENT 
… 

137 138 
… 

146 
… 

148 
… 

150 
… 

WEIGHT 2.1507e+07 7.1095e+06 2.0446e+07 1.8531e+07 1.8326e+07 

 

Figure 6.7: A GP equation producing chaotic fragment weights of inappropriate large values. 

The multiplication of a large variable TOT with itself while enhanced by the accompanying 

exponential term causes a number of weights to be significantly larger in value 

 

 

Equation: 

log(𝑇𝑂𝑇 (𝑇𝑂𝑇 × log (
√𝑁𝐼𝑁𝐴𝐶𝑇

𝐼𝑁𝐴𝐶𝑇
 × 𝐴𝐶𝑇))) 

 

Fragment weights: 

FRAGMENT 
… 

137 138 
… 

146 
… 

148 
… 

150 
… 

WEIGHT 7.33257 6.85183 7.31060 7.26789 7.26306 

 

Figure 6.8: An equation from Figure 6.7 now wrapped by a mandatory log function generates 

much smaller weight values
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Figure 6.9: GP representation of chromosomes towards fitness determination. (a) A training set made up of compounds via 2D fingerprints 

description. (b) A GP population representing chromosome equations made up of parameters to explain training set. (c) Chromosome chr1 is 

translated from the equation form to weight values, applied to training set to determine compound score.  (d) Compounds are ranked in 

descending order.  (e) Fitness of chromosome is calculated as the rate of the active retrieval in the top percentile of the ranked compounds set 

(a (b

(e(d(c
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 (a)          (b)  
 

Figure 6.10: Cumulative recall plots of the GP-based SSA against SSA R4 for the RNN activity class from the MDDR dataset based on the 

different fitness function in (a) The top 1%; and in (b) The top 10% of ranked compounds 
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 (a)          (b)  
 

Figure 6.11: Cumulative recall plots of the GP-based SSA against SSA R4 for the COX activity class from the MDDR dataset based on the 

different fitness function in (a) The top 1%; and in (b) The top 10% of ranked compounds 
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(a) (b) 

Figure 6.12: Error plot of training set versus predicted test set of the GP-based SSA for 

MDDR RNN activity class, based on (a) VARIABLES_A set only, and (b) VARIABLES_A 

and VARIABLES_B combination 

 

 

       

(a) (b) 

Figure 6.13: Error plot of training set versus predicted test set of the GP-based SSA for 

MDDR COX activity class, based on (a) VARIABLES_A set only, and (b) VARIABLES_A 

and VARIABLES_B combination 
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(a) 

 

 

(b) 

Figure 6.14: The Cumulative recall of active compounds plotted against the entire compound 

over 10 runs of the GP program: (a) GP instances for MDDR-based RNN activity class; (b) 

GP instances for MDDR-based COX activity class
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 (a)          (b)  
 

 (c) 

Figure 6.15: Cumulative recall plots of the GP-based SSA against SSA R4 and GA-based SSA for 5HT3 activity class for the (a) MDDR (b) 

WOMBAT and (c) ChEMBL dataset. Plots represent the worst performing run of each method 
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 (a)          (b)  
 

 (c) 

Figure 6.16: Cumulative recall plots of the GP-based SSA against SSA R4 and GA-based SSA for COX activity class for the (a) MDDR (b) 

WOMBAT and (c) ChEMBL dataset. Plots represent the worst performing run of each method 
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 (a)          (b)  
 

 (c) 

Figure 6.17: Cumulative recall plots of the GP-based SSA against SSA R4 and GA-based SSA for D2 activity class for the (a) MDDR (b) 

WOMBAT and (c) ChEMBL dataset. Plots represent the worst performing run of each method 
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 (a)          (b)  
 

 (c) 

Figure 6.18: Cumulative recall plots of the GP-based SSA against SSA R4 and GA-based SSA for RNN activity class for the (a) MDDR (b) 

WOMBAT and (c) ChEMBL dataset. Plots represent the worst performing run of each method 
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 (a)          (b)  
 

 (c) 

Figure 6.19: Cumulative recall plots of the GP-based SSA against SSA R4 and GA-based SSA for PKC activity class for the (a) MDDR (b) 

WOMBAT and (c) ChEMBL dataset. Plots represent the worst performing run of each method 
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(a) 

 

 

(b) 

 

Figure 6.20: Permutation plots (Y-randomisation) of the MDDR-based (a) RNN and (b) COX classes, 

with weights calculated and applied to non-permuted test sets 
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Original equation from GP: 

log

(

 
 
 
√√√

𝐼𝑁𝐴𝐶𝑇

𝑁
 × 

𝐴𝐶𝑇

𝑁𝐴𝐶𝑇−𝐴𝐶𝑇

𝑇𝑂𝑇

𝑁−𝑇𝑂𝑇

)

 
 
 

 

  

 

 

Simplified equation: 

  

log

(

 
𝐴𝐶𝑇 √

𝐼𝑁𝐴𝐶𝑇
𝑁

8

 ×  (𝑁 − 𝑇𝑂𝑇)

𝑇𝑂𝑇 × (𝑁𝐴𝐶𝑇 − 𝐴𝐶𝑇)

)

  

 

Figure 6.21: Example of a GP-based SSA (a) Original equation and (b) The simplified equation using 

Wolfram Alpha expression simplifier online tool 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 
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Table 6.1: Summary of differences between GA and GP 

 Genetic Algorithm Genetic Programming 

Inventor John Holland John R Koza 

Typical 

Application 

domain 

Combinatorial optimisation Computer program / function design 

Features Attempt to find best solution by genetically breeding 

population of individual over a series of generations 

Attempt to let computer solve problems without 

explicitly programmed, via design of complex 

algorithm genetically bred over a series of 

generations 

Representation Arrays of binary or string representation (other forms of 

representation possible) 

Tree structure consisting of arithmetic, logical 

formula or primitive functions and programs, 

alongside terminal variables 

Chromosome Size Fixed Tree in GP may vary in depth and width 

Recombination N-point or uniform Exchange of sub-trees 

Mutation Bitwise bit-flipping with fixed probability Random changes in trees 

Survivor Selection Generational placement All children replace parents 
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Table 6.2: Top 1% active retrieval rates for the GP fitness function definition test. Listed are 

test set enrichment values for MDDR‟s RNN and COX activity classes. GPs were performed 

on a training set of 10% active and inactive compounds, where the resultant weights are 

subsequently applied on the predicted test set of 90% active and inactive compounds. Each 

parameter was executed three times and the worst result is selected to represent the individual 

parameters. The best parameter value is shaded 

 

Fitness function 
 

Enrichment factor of actives in the top 1% 

 
Test Set 

    Fitness function active rate 
 

RNN COX 
Active rate of compounds in 

the top 1% 

 
63.32 30.19 

Active rate of compounds in 

the top 10% 

 
47.98 28.78 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

205 

 

Table 6.3: Terminal and function variable combinations used for chromosome initialisation. 

(a) List of tested variable combinations defined for the GP chromosome terminal set; (b) List 

of tested operator functions for the GP chromosome function set 

 

(a) 

Combination Terminals 

VARIABLES_A N, NACT, NINACT, TOT ACT, INACT  

VARIABLES_B 

 

Terminal combination Used by SSA equation 

ACT / TOT 

TOT * NACT 

NACT / N 

TOT  * NACT / N 

ACT – TOT * NACT / N 

ACT / NACT 

TOT  / N 

INACT / NINACT 

(NACT – ACT) 

ACT / (NACT – ACT) 

N – TOT 

TOT / (N – TOT) 

NINACT – INACT 

INACT / (NINACT – INACT) 

ACT / INACT 

(ACT – INACT) / TOT 

SAF 

SAS 

SAS, Hodes‟ 

SAS, Avidon‟s 

SAS 

R1, R2 

R1 

Mayer & Sens, R2 

Mayer & Sens, R3, R4 

R3, R4 

R3 

R3 

R4 

R4 

WT1 

WT2 

  

 

(b) 

Combination Functions 

FUNCTIONS_A plus, minus, multiplication, division, log, power-of-2  

FUNCTIONS_B Mandatory log wrapping the whole GP equation 

 

 

 

 

 

 

 

 

 



 

206 

 

Table 6.4: Top 1% active retrieval rates for the GP terminal and function set combination test. 

Listed are test set enrichment values for MDDR‟s RNN and COX activity classes. GPs were 

performed on a training set of 10% active and inactive compounds, where the resultant 

weights are subsequently applied on the predicted test set of 90% active and inactive 

compounds. Each parameter was executed three times and the worst result is selected to 

represent the individual parameters. The best parameter value is shaded 

 

Terminal / Function set 

combination  
Enrichment factor of actives in the top 1% 

 
Test Set 

    Combination set 
 

RNN COX 

VARIABLES_A only 

 
52.21 30.15 

VARIABLES_A and 

VARIABLES_B 

 
63.21 30.66 

 

Log-function wrapping 
 

RNN COX 

FUNCTIONS_A only 

 
62.8 30.1 

FUNCTIONS_A and 

FUNCTIONS_B 

 
63.0 30.2 
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Table 6.5: Top 1% active retrieval rates for the GP‟s chromosome structure tests. Listed are 

test set enrichment values for MDDR‟s RNN and COX activity classes. Each parameter‟s tree 

depth and node size values obtained are listed as well. The GPs was performed on a training 

set of 10% active and inactive compounds, where the resultant weights are subsequently 

applied on the predicted test set of 90% active and inactive compounds. Each parameter was 

executed three times and the worst result is selected to represent the individual parameters. 

The best parameter value is shaded 

 

Chromosome 

structure  

Enrichment factor of actives 

in the top 1%  

Final tree depth  
 

Test Set  
 

Maximum tree depths 
 

RNN COX  RNN COX 

4 

 
55.20 27.40  4 4 

6 

 
63.32 30.24  6 5 

8  62.15 30.24  5 5 

10  63.32 30.15  6 6 
 

 

   

 

Final tree nodes  
  

 
 

Maximum nodes 
 

RNN COX  RNN COX 

20 

 
61.60 30.60  15 17 

25 

 
62.80 30.80  21 17 

30  63.20 31.20  25 18 

35  62.40 30.80  22 21 

40  63.20 30.60  18 20 

50  62.10 29.70  26 18 
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Table 6.6: Top 1% active retrieval rates for the GP‟s population and generation based 

parameter tests. Listed are test set enrichment values for MDDR‟s RNN and COX activity 

classes. GAs were performed on a training set of 10% active and inactive compounds, where 

the resultant weights are subsequently applied on the predicted test set of 90% active and 

inactive compounds. Each parameter was executed three times and the worst result is selected 

to represent the individual parameters. The best parameter value is shaded 

 

Population and Generation 
 

Enrichment factor of actives in the top 1% 

 
Test Set 

 

Population size 
 

RNN COX 

100 

 
60.20 29.25 

200 

 
62.87 30.94 

300  62.84 30.80 

500  62.77 30.80 
 

 

Iteration 
 

RNN COX 

50 

 
61.80 29.70 

100 

 
62.53 30.13 

200  62.87 30.94 

300  62.87 30.94 

500  62.87 30.94 
 

 

Tree construction 
 

RNN COX 

Grow 

 
62.23 31.05 

Full 

 
61.04 30.24 

Ramped half and half  61.87 30.94 
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Table 6.7: Top 1% active retrieval rates for the GP‟s elitism model parameter tests. Listed are 

test set enrichment values for MDDR‟s RNN and COX activity classes. GPs were performed 

on a training set of 10% active and inactive compounds, where the resultant weights are 

subsequently applied on the predicted test set of 90% active and inactive compounds. Each 

parameter was executed three times and the worst result is selected to represent the individual 

parameters. The best parameter value is shaded 

 

Elitism model 
 

Enrichment factor of actives in the top 1% 

 
Test Set 

 

Population size 
 

RNN COX 

0 

 
60.10 28.90 

1 

 
63.32 30.24 

2  63.82 31.64 

3  62.87 30.94 

5  62.50 30.94 

10  61.70 29.80 

199 (steady state, only 1 

chromosome change per 

evolution running on 1000 

maximum iterations)  

45.21 15.50 
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Table 6.8: Top 1% active retrieval rates for the GP‟s evolution control parameter tests. Listed 

are test set enrichment values for MDDR‟s RNN and COX activity classes. GPs were 

performed on a training set of 10% active and inactive compounds, where the resultant 

weights are subsequently applied on the predicted test set of 90% active and inactive 

compounds. Each parameter was executed three times and the worst result is selected to 

represent the individual parameters. The best parameter value is shaded 

 

Evolution control 

 
Enrichment factor of actives in the top 1% 

 
Test Set 

 

Parent selection 
 

RNN COX 

Roulette wheel 

 
62.80 31.40 

Tournament 

 
61.50 29.25 

Random  62.10 30.80 
 

 

Crossover rate 
 

RNN COX 

0.80 

 
61.50 30.80 

0.85 

 
62.10 30.45 

0.90  63.40 31.20 

1.00  62.80 31.20 
 

 

Mutation rate 
 

RNN COX 

0.00 

 
60.40 29.90 

0.01 

 
61.70 30.85 

0.05  61.70 29.80 

0.10  62.50 30.94 

0.20  63.20 31.20 

0.50  62.80 30.80 
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Table 6.9: The top-ranked molecules in ten GP runs based on test set applied data, showing 

the occurrences of ranked active compounds based on GP run-1 that fall outside the top 1% in 

the other nine remaining GP runs using the (a) RNN and (b) COX activity classes in the 

MDDR dataset. The numbers in brackets show the number of actives actually retrieved in the 

top 1% for that particular GP-run 

 

(a) 

Rank 
GP Run 

1 2 3 4 5 6 7 8 9 10 

Top 1% (922) 
 

(649) 

0 

(649) 

18 

(646) 

18 

(646) 

18 

(646) 

16 

(644) 

0 

(649) 

0 

(649) 

25 

(644) 

18 

(646) 

 

(b) 

Rank 
GP Run 

1 2 3 4 5 6 7 8 9 10 

Top 1% (922) 
 

(173) 

20 

(181) 

0 

(173) 

20 

(181) 

20 

(181) 

0 

(173) 

0 

(173) 

20 

(181) 

20 

(181) 

20 

(181) 
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Table 6.10: Enrichment curve of actives count in the top 1% for ten GP runs of (a) Eleven activity classes in MDDR dataset; (b) Fourteen 

activity classes in WOMBAT dataset and; (b) Fifteen activity classes in ChEMBL dataset. Included are the mean and standard deviation for the 

Pearson correlation coefficients between the sets of 166 weights computed for each distinct pair of runs 

Activity GP Runs    Weight Pearson's r 

Class Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Mean σ  σ Mean 

(a) 

5HT3 26.74 26.74 26.29 26.74 26.74 26.74 26.74 26.29 26.74 26.74 26.65 0.19  0.07 0.91 

5HT1A 15.46 16.26 15.46 14.92 15.19 15.73 15.73 16.26 16.26 16.26 15.75 0.50  0.06 0.88 

5HT 20.43 20.43 20.43 18.89 18.89 20.43 18.89 18.89 20.43 20.43 19.81 0.80  0.00 0.98 

D2 21.63 23.03 23.03 23.03 23.03 23.03 21.63 21.63 21.63 23.03 22.47 0.73  0.00 0.98 

RNN 63.82 63.82 63.52 63.52 63.52 63.32 63.82 63.82 63.32 63.52 63.60 0.20  0.02 0.91 

AT1 48.53 48.53 48.53 48.41 48.53 48.53 48.53 48.41 48.53 48.53 48.50 0.05  0.31 0.75 

THRM 43.71 44.95 44.12 43.98 44.12 44.12 44.95 44.95 44.95 44.95 44.48 0.51  0.01 0.99 

SUBP 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 0.00  0.00 1.00 

HIVP 40.30 40.30 39.85 39.85 40.00 40.00 40.30 40.00 39.85 40.00 40.04 0.19  0.03 0.93 

COX 30.24 31.64 30.24 31.64 31.64 30.24 30.24 31.64 31.64 31.64 31.08 0.72  0.00 0.99 

PKC 25.49 25.49 24.51 24.51 25.49 24.51 25.49 25.49 24.51 25.49 25.10 0.51  0.00 0.99 
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Activity GP Runs       Weight Pearson's r 

 Class Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Run 10 Mean  σ 
 

 σ Mean 

(b) 

5HT1A 48.97 48.97 48.97 48.97 48.97 48.78 48.97 48.97 48.97 48.97 48.95 0.06  0.39 0.72 

5HT3 42.42 42.42 42.42 40.91 40.91 42.42 40.91 42.42 42.42 42.42 41.97 0.73  0.00 0.99 

ACHE 49.45 49.45 49.45 49.45 49.45 49.45 49.45 49.45 49.45 49.45 49.45 0.00  0.00 1.00 

AT1 78.99 78.99 78.99 78.99 78.99 78.99 78.99 78.99 78.99 78.99 78.99 0.00  0.00 1.00 

COX 64.10 64.10 63.75 63.75 64.10 64.10 64.10 64.10 64.10 64.10 64.03 0.15  0.00 0.99 

D2 36.02 35.78 35.78 36.02 35.78 35.78 36.02 35.78 36.02 36.02 35.90 0.13  0.05 0.92 

FXA 40.63 40.63 39.84 39.84 39.84 40.63 40.63 39.84 40.63 39.84 40.24 0.42  0.00 0.99 

HIVP 42.07 42.07 42.76 42.76 42.07 42.07 42.07 42.07 42.76 42.07 42.28 0.33  0.01 0.99 

MMP 62.24 63.20 62.56 62.24 63.20 63.20 63.20 63.20 62.56 63.20 62.88 0.43  0.13 0.79 

PDE 44.96 44.96 44.96 44.96 44.96 44.96 44.96 44.96 44.96 44.96 44.96 0.00  0.00 1.00 

PKC 75.78 77.34 75.78 77.34 77.34 77.34 77.34 76.56 76.56 77.34 76.88 0.66  0.10 0.84 

RNN 75.88 73.54 74.71 73.54 75.88 75.88 74.71 73.54 75.88 74.71 74.82 1.03  0.07 0.83 

SUBP 47.01 47.01 47.01 47.01 45.62 47.01 47.01 47.01 45.62 47.01 46.73 0.59  0.01 0.99 

THRM 55.15 55.15 55.15 55.15 55.15 55.15 55.15 55.15 55.15 55.15 55.15 0.00  0.00 1.00 

(c) 

5HT1A 33.11 32.43 33.11 33.11 33.11 32.43 31.91 32.43 31.91 33.11 32.67 0.50  0.00 0.92 

5HT3 51.56 51.56 51.56 51.56 51.56 51.56 51.56 50.52 50.52 51.56 51.35 0.44  0.00 0.99 

5HT 29.79 29.79 29.79 29.79 29.56 29.56 29.79 29.79 29.56 29.79 29.72 0.11  0.02 0.97 

ACHE 29.92 28.87 29.92 29.92 28.87 29.92 29.92 29.92 28.87 28.87 29.50 0.54  0.00 0.99 

AT1 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 0.00  0.00 1.00 

COX 31.20 31.20 31.20 31.20 31.20 31.20 31.20 31.20 31.20 31.20 31.20 0.00  0.00 1.00 

D2 28.23 27.81 27.81 28.23 28.23 28.23 27.81 28.23 28.23 27.81 28.06 0.22  0.00 0.99 

FXA 39.13 39.13 39.28 39.28 39.28 39.28 39.28 39.28 39.28 39.28 39.25 0.06  0.00 0.99 

HIVP 49.92 49.92 49.92 49.05 49.41 49.92 49.92 49.41 49.41 49.41 49.63 0.33  0.01 0.97 

MMP 73.03 73.03 73.03 73.03 73.03 73.03 73.03 73.03 73.03 73.03 73.03 0.00  0.00 1.00 

PDE 29.69 29.69 29.69 29.69 29.69 29.69 29.69 29.69 29.69 29.69 29.69 0.00  0.00 1.00 

PKC 61.05 61.05 61.05 61.05 61.05 61.05 61.05 61.05 61.05 61.05 61.05 0.00  0.00 1.00 

RNN 51.13 51.13 51.13 50.90 51.13 51.13 51.13 50.90 51.13 50.90 51.06 0.11  0.02 0.96 

SUBP 70.08 70.08 69.16 70.08 70.08 70.08 70.08 70.08 70.08 70.08 69.99 0.29  0.01 0.99 

THRM 37.93 37.93 35.15 35.15 35.15 37.93 35.15 37.93 37.93 37.93 36.82 1.44  0.02 0.90 
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Table 6.11: Screening results using the GP-based SSA and its comparison to the SSA R4 and GA-based SSA weighting scheme for the (a) 

MDDR; (b) WOMBAT and (c) ChEMBL datasets. The number of actives retrieved at the top 1% based on the worst performing GA runs is 

recorded for the calculation of Tanimoto coefficient and the BemisMurckoAssemblies based diversity analysis 

Activity    Actives    NBC    Best run   Mean of ten runs 
 

σ of ten runs 
 

Worst run   Murcko scaffolds    Diversity rate  

class   test set   
SSA 

R4 
  GA GP   GA GP   GA GP   GA GP   

SSA 

R4 
GA GP   SSA R4 GA GP 

 (a) 

5HT3  677  138  287 181  278.80 180.40  6.21 1.26  271 178  75 83 80  0.38 0.39 0.38 

5HT1A  744  103  157 121  143.00 117.20  6.13 3.71  138 111  52 63 54  0.36 0.36 0.37 

5HT  323  34  62 66  57.80 64.00  2.82 2.58  54 61  17 20 22  0.32 0.38 0.28 

D2  356  47  70 82  61.90 80.00  3.35 2.58  59 77  24 30 43  0.29 0.31 0.31 

RNN  1017  620  725 649  716.20 646.80  6.44 2.04  701 644  192 205 187  0.28 0.29 0.29 

AT1  849  372  413 412  407.20 411.80  4.26 0.42  401 411  131 139 144  0.31 0.33 0.33 

THRM  723  226  363 325  349.40 321.60  7.06 3.69  342 316  99 151 136  0.25 0.38 0.32 

SUBP  1121  262  343 264  326.90 264.00  12.03 0.00  309 264  120 129 123  0.34 0.36 0.33 

HIVP  675  226  334 272  317.50 270.30  15.42 1.25  284 269  106 115 143  0.33 0.40 0.36 

COX  572  146  174 181  167.50 177.80  3.75 4.13  161 173  36 37 47  0.46 0.46 0.43 

PKC  408  94  129 104  118.40 102.40  7.40 2.07  105 100  34 38 36  0.39 0.40 0.38 

 

 

 

 

 



 

215 

 

Activity    Actives    NBC    Best run   Mean of ten runs 
 

σ of ten runs 
 

Worst run   Murcko scaffolds    Diversity rate  

class   test set   
SSA 

R4 
  GA GP   GA GP   GA GP   GA GP   

SSA 

R4 
GA GP   

SSA 

R4 
GA GP 

             (b)            

5HT1A   533   249   310 261   296.60 260.90   8.72 0.32   284 260   58 64 61   0.34 0.35 0.33 

5HT3 
 

198 

 

79 
 

98 84 

 

86.10 83.10 
 

4.56 1.45 

 

82 81 

 

23 25 25 

 

0.33 0.40 0.33 

ACHE 
 

453 

 

218 
 

240 224 

 

231.60 224.00 
 

5.27 0 

 

223 224 

 

67 69 70 

 

0.30 0.31 0.30 

AT1 
 

652 

 

514 
 

543 515 

 

526.10 515.00 
 

7.34 0 

 

518 515 

 

105 106 105 

 

0.37 0.37 0.37 

COX 
 

869 

 

549 
 

591 557 

 

585.90 556.40 
 

3.87 1.26 

 

581 554 

 

32 39 35 

 

0.36 0.36 0.36 

D2 
 

819 

 

225 
 

350 295 

 

333.70 294.00 
 

9.21 1.05 

 

319 293 

 

61 65 65 

 

0.32 0.34 0.31 

FXA 
 

758 

 

288 
 

377 308 

 

346.20 305.00 
 

14.23 3.16 

 

333 302 

 

75 86 91 

 

0.31 0.45 0.44 

HIVP 
 

1015 
 

398 
 

582 434 
 

543.60 429.10 
 

25.37 3.38 
 

503 427 
 

127 143 139 
 

0.35 0.37 0.32 

MMP 
 

625 
 

362 
 

400 395 
 

396.3 393.00 
 

3.92 2.67 
 

390 389 
 

86 97 97 
 

0.23 0.24 0.23 

PDE 
 

536 
 

239 
 

277 241 
 

264.10 241.00 
 

6.15 0 
 

259 241 
 

84 86 83 
 

0.48 0.58 0.52 

PKC 
 

128 
 

92 
 

99 99 
 

94.7 98.40 
 

1.77 0.84 
 

93 97 
 

15 15 15 
 

0.40 0.46 0.30 

RNN 
 

427 
 

301 
 

353 324 
 

336.30 319.50 
 

8.91 4.38 
 

325 314 
 

73 76 82 
 

0.32 0.34 0.29 

SUBP 
 

502 
 

217 
 

264 236 
 

247.10 234.60 
 

9.33 2.95 
 

237 229 
 

52 54 53 
 

0.31 0.38 0.39 

THRM 
 

379 
 

200 
 

223 209 
 

212.70 209.00 
 

6.27 0 
 

206 209 
 

73 77 77 
 

0.41 0.43 0.45 
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Activity    Actives    NBC    Best run   Mean of ten runs 
 

σ of ten runs 
 

Worst run   Murcko scaffolds    Diversity rate  

class   test set   
SSA 

R4 
  GA GP   GA GP   GA GP   GA GP   

SSA 

R4 
GA GP   

SSA 

R4 
GA GP 

             (c)            

5HT1A 

 

1335 

 

383 

 

544 442 

 

530.30 436.10 
 

7.90 6.72 

 

522 426 

 

114 141 127 

 

0.36 0.38 0.37 

5HT3 

 

192 

 

65 

 

111 99 

 

105.70 98.60 
 

3.71 0.84 

 

102 97 

 

14 25 21 

 

0.34 0.38 0.37 

5HT 

 

2202 

 

540 

 

782 656 

 

760.10 654.50 
 

23.58 2.42 

 

707 651 

 

107 117 120 

 

0.51 0.52 0.50 

ACHE 

 

665 

 

168 

 

249 199 

 

244.50 196.20 
 

3.50 3.61 

 

240 192 

 

83 99 93 

 

0.40 0.42 0.47 

AT1 

 

95 

 

40 

 

80 76 

 

77.30 76.00 
 

2.11 0 

 

74 76 

 

8 22 24 

 

0.28 0.28 0.29 

COX 

 

125 

 

35 

 

52 39 

 

47.90 39.00 
 

3.57 0 

 

44 39 

 

9 12 11 

 

0.73 0.75 0.73 

D2 

 

1672 

 

413 

 

558 472 

 

532.00 469.20 
 

13.98 3.61 

 

522 465 

 

120 154 131 

 

0.31 0.31 0.30 

FXA 

 

1352 

 

467 

 

654 531 

 

640.80 530.60 
 

7.28 0.84 

 

634 529 

 

141 163 162 

 

0.37 0.37 0.40 

HIVP 

 

1941 

 

903 

 

1324 969 

 

1258.80 963.30 
 

24.45 6.36 

 

1239 952 

 

264 324 292 

 

0.42 0.51 0.36 

MMP 

 

356 

 

208 

 

254 260 

 

244.90 260.00 
 

8.03 0 

 

234 260 

 

57 62 76 

 

0.44 0.45 0.44 

PDE 

 

229 

 

63 

 

100 68 

 

92.10 68.00 
 

5.70 0 

 

85 68 

 

19 25 23 

 

0.54 0.60 0.52 

PKC 

 

190 

 

106 

 

113 116 

 

111.40 116.00 
 

1.51 0 

 

109 116 

 

23 26 27 

 

0.25 0.25 0.27 

RNN 

 

884 

 

438 

 

508 452 

 

500.70 451.40 
 

4.00 0.97 

 

496 450 

 

68 69 69 

 

0.36 0.38 0.36 

SUBP 

 

762 

 

476 

 

546 534 

 

534.00 533.30 
 

8.00 2.21 

 

522 527 

 

104 103 109 

 

0.37 0.43 0.39 

THRM   754   192   362 286   352.60 277.60   9.78 10.84   339 265   90 120 109   0.32 0.39 0.37 
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Table 6.12: Kendall's W analysis for the top 1% actives retrieved of the ranking for (a) Eleven activity classes in MDDR, (b) Fourteen activity 

classes in WOMBAT, and (c) Fifteen activity classes of the ChEMBL database 

(a) 

Weighting Activity Class Mean Rank 

Schemes 5HT3 5HT1A 5HT D2 RNN AT1 THRM SUBP HIVP COX PKC Rank Position 

GA 2.00 2.00 1.00 1.00 2.00 1.00 2.00 2.00 2.00 1.00 2.00 1.64 1 

GP 1.00 1.00 2.00 2.00 1.00 2.00 1.00 1.00 1.00 2.00 1.00 1.36 2 

SSA R4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3 

 

(b) 

Weighting Activity Class Mean Rank 

Schemes 5HT1A 5HT3 ACHE AT1 COX D2 FXA HIVP MMP PDE PKC RNN SUBP THRM Rank Position 

GA 2.00 2.00 1.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.00 2.00 2.00 1.00 1.79 1 

GP 1.00 1.00 2.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 1.00 1.00 2.00 1.14 2 

SSA R4 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 3 

 

(c) 

Weighting Activity Class  Mean  Rank  

Schemes 5HT1A 5HT3 5HT ACHE AT1 COX D2 FXA HIVP MMP PDE PKC RNN SUBP THRM Rank Position 

GA 2.00 2.00 2.00 2.00 1.00 2.00 2.00 2.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.73 1 

GP 1.00 1.00 1.00 1.00 2.00 1.00 1.00 1.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 1.27 2 

SSA R4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3 
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Table 6.13: The worst and best performing GP equations selected from the 10 runs of each activity class, based on the (a) MDDR, (b) 

WOMBAT, and (c) ChEMBL18 datasets. All equations are simplified from its original form 

 

(a) 

Activity 

Class 

Worst performing GP equation Best performing GP equation 

5HT 

 

 

 

 

5HT1A 

 

 

 

 

5HT3 

 

 

 

 

AT1 
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COX 

 

 

 

 

D2 

 

 

 

 

 

HIVP 

 

 

 

 

 

PKC 

 

 

 

 

RNN 
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SUBP 

 

 

 

THRM 
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(b) 

Activity Class Worst performing GP equation Best performing GP equation 

5HT1A 

 

 

 

 

5HT3 

 

 

 

 

ACHE 

 

 

 

AT1 

 

 

 

 

COX 
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D2 

 

 

 

 

FXA 

 

 

 

 

 

HIVP 

 

 

 

 

MMP 

 

 

 

 

PDE 

 

 

PKC 

 

 

 

 

RNN 
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SUBP 

 

 

 

 

THRM 
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(c) 

Activity Class Worst performing GP equation Best performing GP equation 

5HT  

 

 

 

5HT1A 

 

 

 

 

5HT3 

 

 

 

ACHE 

 

 

 

AT1 
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COX 

 

 

D2 

 

 

 

FXA 

 

 

 

HIVP 

 

 

 

MMP 

 

 

 

 

PDE 
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PKC 

 

 

 

RNN 

 

 

 

SUBP 

 

 

 

THRM 
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Table 6.14: GP run-time benchmark at different iterations using the 10% training set of the 

RNN activity class, based on the (a) MDDR, (b) WOMBAT and (c) ChEMBL databases. 

Parameterisation of the GP is based on the final chosen ones as in Section 6.6.1.6, among 

them the population of 200 chromosomes, and a maximum iteration 200 evolutions 

 

(a) 

Machine 
Time (seconds) at GP iteration Average runtime per 

iteration (seconds) 1 100 200 

SERVER 2.7 289.4 532.5 2.66 

WKST_01 3.25 339.1 670.7 3.35 

WKST_02 3.50 371.2 721.4 3.60 

       Based on 10,254 compounds in training set 

 

(b) 

Machine 
Time (seconds) at GP iteration Average runtime per 

iteration (seconds) 1 100 200 

SERVER 2.80 289.5 578.4 2.89 

WKST_01 3.70 389.2 780.5 3.90 

WKST_02 4.1 431.2 834.3 4.17 

       Based on 13,812 compounds in training set 

 

(c) 

Machine 
Time (seconds) at GP iteration Average runtime per 

iteration (seconds) 1 100 200 

SERVER 37.2 3928.5 7621.5 38.10 

WKST_01 Insufficient memory issue, not executable 

WKST_02 48.1 4902.0 9680.5 48.40 

       Based on 135,267 compounds in training set 
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Chapter 7 

 

Investigations Into The Application of Data Fusion   

 

 

7.1 Introduction 

Both the GA and GP methods for SSA were extensively experimented in the previous 

chapters and improvements in the number of active retrieved were reported. This chapter 

further investigates the application of data fusion for improvements in retrieval performance 

utilising the multiple runs information of the GA and GP-based SSA. The chapter presents a 

brief background of data fusion and the experiment details in order to implement the fusion 

of SSA data. Results of the experiments are analysed and discussed in terms of any observed 

improvement in the predictive performance of the fused screening method.  

 

7.2 Data fusion 

Data fusion is a method of combining the information gained from different sensors to 

achieve an effective or improved decision, compared to when only a single sensor is 

considered (Hall & McMullen, 2004). This method can be utilised for ligand-based virtual 

screening. The sensors to be combined are used as functions that score molecules in a 

database on their likelihood of exhibiting some required biological activity. The combination 

of different sources of information is already practiced in most human daily activities, such as 

in decision-making processes. A simple example is the use of different sensors in our 

everyday lives that include our sense of smell, taste, feeling, hearing and seeing. In a more 

practical sense, for instance, a manager considering at hiring a new employee makes 

informed decisions based on the different traits of the candidate, such as their skills, 

experience and communication abilities. These traits collectively produce a decision about 

the candidate‟s eligibility to be hired. Data fusion is increasingly used to combine the outputs 

of different types of digital or analogue sensors.  

 

Data fusion has been successfully used in different fields, such as medicine, defence and 

information retrieval. The findings on combining more than one query in the field of 

information retrieval were first discussed by Belkin, Kantor, Fox and Shaw (1995). The study 

on data fusion was carried out in two different projects, at Rutgers University and the Virginia 
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Technology Institute. Together, these projects found that fusing the multiple queries is far 

more effective in increasing search performance, yielding better retrieval rates than using a 

single query. 

 

In virtual screening, many studies related to data fusion have been carried out, especially 

regarding similarity searching. Similarity search is based on three main components: the 

molecule representation used to describe the molecular structures, the weighting scheme used 

to compute the score of a particular compound structure to produce compound rankings, and 

the similarity coefficient used to calculate the degree of similarity between the reference 

molecule and the database molecules. Essentially, data fusion in similarity searching can be 

further divided into similarity fusion and group fusion. Similarity fusion is the combination of 

scores gathered from multiple similarity measures by using a single reference structure for 

searching a chemical database (Whittle, Gillet, Willett, Alex & Loesel, 2004). For instance, 

the data fusion ranking is obtained by combining three rankings from different similarity 

coefficients, for example Tanimoto, Dice and Cosine. Several studies on similarity fusion 

were carried out by fusing different similarity coefficients in a similarity search (Sheridan & 

Kearsley, 2002; Ginn, Willett & Bradshaw, 2000; Salim, Holliday & Willett, 2003). The 

group fusion approach fuses rankings produced from different reference structures by using 

the same similarity coefficient and molecular representation (Hert et al., 2004b). Group 

fusion can utilise either similarity scores or rankings (Willett, 2013). For instance, assuming 

one type of 2D descriptor such as the MDL fingerprints, the similarities between reference 

structure and other structures in the database are measured using the Tanimoto coefficient. 

They are then ranked in descending order based on their similarity score.  

 

Comparing the two fusion techniques, similarity fusion tends to perform better than group 

fusion when the actives are strongly clustered in structural space (Whittle, Gillet, Willett & 

Loesel, 2006), By contrast, group fusion is best employed when the actives are structurally 

diverse (Hert et al., 2006). Numerous studies have compared these two data fusion techniques 

in similarity searching. Other studies have found that group fusion is effective as a general 

approach in similarity searching (Chen et al., 2010, Whittle et al., 2006; Williams, 2006; 

2006; Hert et al., 2004a, Hert et al., 2004b). Based on the encouraging results obtained using 

GA and GP in the previous chapters, the application of data fusion to the GP-based SSA and 

GA-based SSA weighting schemes are examined in this chapter in order to enhance the 

retrieval performances of 2D-based fingerprint predictive method. Extensive studies on data 
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fusion have been carried out on similarity-based rankings, but there is still a lack of findings 

on data fusion using genetic algorithm techniques in chemoinformatics.  

 

7.3 Experimental details 

7.3.1 Datasets 

For this experiment, the available ten runs of the GA-and-GP-based SSA generated in the 

previous chapters, and for each class in the MDDR, WOMBAT and ChEMBL databases were 

used. Tables 5.10 and 6.10 represent the number of actives retrieved in the top 1% of the ten 

GA and GP runs respectively. Alternatively, their resulting enrichment factor of actives are 

also summarised in Table 5.11 and 6.11.  

 

7.3.2 Fusion rules 

In order to perform data fusion, it was necessary to extract the ranking output of the ten runs 

(of the GA and the GP) for each activity class to be fused. Five types of fusion rules, namely 

the SUM, MAX, MED, MIN and RKP rules were identified. Most rules were first discussed 

by Belkin, Kantor, Fox and Shaw (1995); however, the RKP was initially described by Nuray 

and Can (2006). These rules are presented in Figure 7.1. In the figure, dj denotes an 

individual compound listed in the sets of machine learning technique rankings, MLi {dj} 

which consists of n GA or GP rankings. Observing the first fusion rule, SUM computes the 

mean value of the compound scores or ranks of the rankings. In this case, this is achieved by 

aggregating all the scores of each database structure, then dividing the score by n. For the 

MAX, MIN and MED fusion rules, the scores for each database structure dj are computed by 

taking the largest, the smallest and the middle score (or median) in the n rankings, 

respectively. The final rule used for consensus scoring is known as the RKP fusion rule, 

whereby a compound dj score is computed by adding the reciprocal of the non-zero scores 

after the ranking is truncated to a certain percentage p; for instance, 100% (i.e. the whole 

database), 50%, 5% and 1%. Notably, the formula of the RKP rule is measured by using the 

rank position of each molecule to be fused as used by Nuray and Can (2006) in text retrieval.  
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Fusion Rule Formula 

SUM 
1

𝑛
∑  𝑀𝐿𝑖  ( 𝑑𝑗)

𝑛

𝑖=1

 

MAX max{𝑀𝐿1 (𝑑𝑗),𝑀𝐿2 (𝑑𝑗), … 𝑀𝐿𝑖  (𝑑𝑗), …  𝑀𝐿 (𝑑𝑗)} 

MED med{𝑀𝐿1 (𝑑𝑗),𝑀𝐿2 (𝑑𝑗), … 𝑀𝐿𝑖 (𝑑𝑗), …  𝑀𝐿 (𝑑𝑗)} 

MIN min{𝑀𝐿1 (𝑑𝑗),𝑀𝐿2 (𝑑𝑗), … 𝑀𝐿𝑖  (𝑑𝑗), …  𝑀𝐿 (𝑑𝑗)} 

RKP ∑
1

𝑀𝐿𝑖 (𝑑𝑗)

𝑝

𝑖=1

 

Figure 7.1: Fusion rules 

 

Several studies have reported on success of similarity fusion using the SUM fusion rule in 

applications of similarity searching (Ginn, Willet and Bradshaw, 2000; Whitle, Gillet Willet 

and Loese, 2006). Other studies have reported that the MAX rule is the best fusion rule for 

group fusion in similarity searching (Hert, Willett, Wilton, Acklin, Azzaoui, Jacobyn & 

Schuffenhauer, 2004a; Hert, Willett, Wilton, Acklin, Azzaoui, Jacoby & Schuffenhauer, 

2004b; Nasr, Swamidass & Baldi, 2009). Several comparisons on consensus scoring were 

also reported with applications in docking (Oda, Tsuchida, Takakura, Yamaotsu & Hirono, 

2006; Yang, Chen, Shen, Kristal & Hsu, 2005) and in 2D and 3D similarity searching (Zhang 

& Muegge, 2006). In 2009, however, Cormack, Clarke and Buettcher reported that RKP 

fusion is the most effective fusion rule for combining multiple document rankings from an 

information retrieval system (Cormack, Clarke, & Buettcher, 2009). In another study, Chen, 

Mueller and Willett (2010) found that group fusion can even be superior to similarity fusion. 

This is case when the RKP fusion rule is applied for combining individual search outputs in 

similarity-based virtual screening.  

 

Following the fusion rules criteria, it was determined that two variables could be used in the 

computation of the GA-and-GP-based fusion scores: (1) the score of compounds, which is the 

sum of GA and GP weights, or (2) the ranking of compounds in the ten sets of GA and GP 

runs. The first four rules, SUM, MAX, MED and MIN were used to fuse the ten sets of GA 

and GP runs using both score-based and rank-based data. For the RKP equation, the rule is 
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applicable only fusing n sets of ranks; hence the RKP rule was applied with rank-based data 

only. For this study, p value was set as 100%, which otherwise means that the whole database 

of ranked outputs were fused. In total, nine fusion rules were employed in which a number of 

the rules are based on ranking information of the data, with the rules listed as Rank RKP, 

Rank Max, Rank Sum, Rank Med and Rank Min. The other fusion rules are based on the 

scoring information of compounds in a dataset, where these fusion rules are referred to as 

Score Max, Score Sum, Score Med and Score Min.  

 

7.4 Results and discussion 

7.4.1 GA and GP-based fusion performance analysis  

The ranked compounds output of the ten GA-and GP-based SSA for each activity class were 

combined and used by data fusion using the nine fusion rules mentioned in Section 7.3.2. The 

enrichment factor of actives retrieved in the top 1% obtained by GA-based fusion based on 

various fusion rules is shown in Table 7.1. The fusion results are listed and compared against 

the mean of the ten GA-runs results. Likewise, the GP-based fusion results are listed in Table 

7.2 and compared against both the mean of the ten GP-runs results. The highest values are 

shown as lightly shaded.  

 

Visual inspection of Tables 7.1 indicates that the performance of the GA-based fusion is seen 

to be more effective than the mean GA results for all activity classes in all three databases. In 

the case of the GP-based fusion as shown in Table 7.2, data fusion manages to improve the 

individual rankings in several cases, outperforming the GP-based results in 23 out of 40 

activity classes from all MDDR, WOMBAT and ChEMBL databases. In contrast, the 

remaining 17 activity classes attained similar results when using data fusion. These are (D2, 

SUBP and COX classes from the MDDR database; ACHE, AT1, PDE, SUBP and THRM  

from WOMBAT and AT1,COX, D2, FXA, MMP, PDE, PKC, SUBP and THRM classes from 

ChEMBL database). Based on the number of actives retrieved in the top 1% for all activity 

classes, the differences between data fusion methods to either GA or GP-based SSA is often 

very small. On average, there is about one to five to fifteen active compounds retrieval 

differences recorded. 
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7.4.2 Kendall’s W analysis 

The impact of the GA and GP-based fusion were studied further by employing the Kendall's 

W test of statistical significance to measure the agreement of the fusion rules performance in 

all three databases. The results are discussed below. 

 

GA-based fusion 

For the GA-based fusion, the results obtained from Kendall‟s W analysis are presented in 

Table 7.3. The table shows the performance of the nine fusion rules in terms of its rank 

positions in each activity class for the three databases. The rankings are determined based on 

the enrichment factor of actives in the top 1% (or 1% cut-off value). The rankings were listed 

in decreasing order. 

 

Kendall‟s W analysis of the fusion rules in MDDR classes is listed in Table 7.3(a), in which 

the total computed value of W is 0.46. The significance of this value was tested using X
2
 

distribution, giving a value of 45.38 for X
2 

at a significance level of p < 0.01. The analysis 

therefore suggests the following ranking: 

 

Rank RKP > Score Max > Rank Max > Score Sum > Rank Sum > Rank Min > Score 

Med > Rank Med > Score Min > Mean GA 

 

Similar to the MDDR case, the results in Table 7.3(b) indicates a similar ranking trend for the 

fusion rules in WOMBAT-based classes. The value obtained for W is computed as 0.30 and 

the significance of the X
2
 distribution is valued at 42.26, at a significance level of p < 0.01. 

The following ranks the fusion rules, from the best to worst performing ones: 

 

Rank RKP > Rank Max > Score Max > Score Sum > Rank Sum > Score Min > Rank 

Min > Score Med > Rank Med > Mean GA 

 

In the case of fusion on ChEMBL classes as shown in Table 7.3(c), it was found that the 

value W was equivalent to 0.38, and 50.92 for X
2
 (p < 0.01) followed by the ranking 

determination as below: 

 

Rank RKP > Rank Max > Score Sum > Score Max > Rank Sum > Rank Min > Rank 

Med > Score Min > Mean GA > Score Med  
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In essence, at a significance level of p < 0.01, the Rank RKP was found to be the best 

performing rule for the GA-based fusion in MDDR datasets for WOMBAT and ChEMBL 

sets. The rest of the fusion rules exhibit mixed results across all three databases. The worst 

performing method can be seen in the Mean GA and Score Med which were consistently 

placed in the lower tier of the ranking position. 

 

GP-based fusion 

The fusion ranking results of the Kendall‟s W analysis for all databases are shown in Table 

7.4. Following the Kendall's W test, a value of χ2 as 23.44 and the value of W is 0.21 were 

derived for the MDDR case (Table 7.4a). This yields a significance value at p < 0.01. Based 

on the mean of ranks information, the following performance were summarised in decreasing 

order: 

 

Rank RKP > Rank Max > Score Sum > Score Max > Rank Sum > Score Med > Rank 

Min > Mean GP > Score Min > Rank Med  

 

Similarly, Table 7.4(b) shows the result of the rank position based on the mean recall for the 

WOMBAT. Here, the value of χ2 is 16.07, and the value of W is 0.13, resulting in a highly 

significant value at p < 0.05. The resulting ranking for the nine fusion rules is as follows: 

 

Rank RKP > Rank Max > Score Sum > Score Max > Score Med > Rank Sum > Rank 

Min > Rank Med > Score Min > Mean GP 

 

In the case of fusion on ChEMBL classes (Table 7.4c), the computed value for W is 0.21, 

yielding a value of 27.92 for χ2, hence the following rankings are suggested below at p < 

0.05 level: 

 

Rank RKP > Score Max > Rank Sum > Rank Max > Score Sum > Score Med > Score 

Min > Mean GP > Rank Med > Rank Min  

 

Based on the analysis above, similar performance behaviour to the GA-fusion was observed. 

The Rank RKP rule was shown to perform the best for the MDDR, WOMBAT and ChEMBL. 

Rank Med, Mean GP and Rank Min were the lowest in terms of the number of actives count 

in the top 1% of the ranking for MDDR, WOMBAT and ChEMBL respectively.  
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Table 7.5 highlighted fusion rules based on the mean rank for all three databases (i.e., 

MDDR, WOMBAT and ChEMBL). Here, it was possible to obtain the following 

observations for GA-based fusion (Table 7.5a), whereby the calculated value W = 0.94 which 

gives a value of X
2
 = 25.40. For the GP-based fusion shown in Table 7.5(b), Kendall‟s W 

results for all three databases yields the value of W = 0.88, and the value of X
2
 = 23.79. Both 

these results denote a significant value at p < 0.01. Subsequently, the best overall ranking of 

data fusion using GA-based fusion is as follows: 

 

Rank RKP > Rank Max > Score Max > Score Sum > Rank Sum > Rank Min > Rank 

Med > Score Med > Score Min > Mean GA 

 

For the GP-based fusion, the following ranking is derived: 

 

Rank RKP > Sxore Max > Rank Max > Score Sum > Rank Sum > Score Med > Rank 

Min > Score Min > Rank Med > Mean GP 

 

It was concluded that when comparing all the nine fusion rules using the ten runs of GA-

based SSA and GP-based SSA methods in all MDDR, WOMBAT and ChEMBL activity 

classes, the RKP rule was found to perform better than other rules in most cases. This is in 

agreement with the results reported by Chen, Mueller and Willett (2010), who found that 

RKP is superior to the other rules in group fusion. In contrast to the best fusion rule 

determined, it was consistently observed that both Score and Rank MED and MIN rules 

jointly yielded the worst performances in recall rate for most classes from both databases. 

This occurred when applying fusion on GA-based SSA and the GP-based compounds ranking 

results.  

 

7.4.3 Wilcoxon signed rank test 

Based on the Kendall‟s W analysis performed, the GA-based data fusion was deemed more 

effective than the mean of ten GA-runs in all databases. Thus, it was necessary to use the 

Wilcoxon signed rank test to quantify the significance of the difference between the 

performance of data fusion and the  mean of the ten GA and GP runs. To conduct the test, the 

enrichment factor results in the top 1% from both the the mean of ten runs GA and the GP, 

against the best data fusion rule were observed. A measure of significance following W is 

measured by referring to the table of critical values for the Wilcoxon test (i.e. Wcritical). In the 
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Wilcoxon signed rank test, if two scores of any pair are equal (i.e. there is no difference 

between the two compared entities), then such pairs are discarded from the analysis. This can 

be observed in the case of the WOMBAT database, where the sample is reduced to 12 (i.e. N-

2 = 12) since the THRM and HIVP classes had tied recall rates. These were consequently 

ignored (Ott & Longnecker, 2015). Further information about the statistical tests can also be 

found in Chapter 3, Section 3.5.3.  

 

For the case of the MDDR database and comparing the mean of ten GA runs against the RKP 

method, the Wilcoxon signed rank test showed a value of W = 0 and the critical value of W 

for N = 11 at p < 0.01 is 5. In the case of WOMBAT, the value of W = 3 and the critical value 

of W for N = 14 at p < 0.01 is 12. Finally, for the ChEMBL sets, the value of W = 0 with the 

value of Wcritical for N = 15 at p < 0.01 is 15. Overall, the data fusion results appear to be 

significant when compared against mean results of the GA runs. Hence, it can be concluded 

that Rank RKP fusion rules provide good enhancement of recall rates when compared with 

the mean of individual GA.  

 

Similar to the comparison of mean of ten GP runs against the best fusion rule Rank RKP for 

both MDDR and WOMBAT sets, and the ChEMBL, W values were determined to be equal to 

0, 16 and 3, calculated for N equivalent to 10, 10 and 10 based on the MDDR, WOMBAT and 

ChEMBL sets respectively. The observed difference between data fusion method and the 

mean result of the ten GP runs in this analysis was significant in the MDDR and ChEMBL 

dataset. It was, however, not significant for the case of WOMBAT dataset. The argument here 

is that the GP results are highly consistent between the multiple runs for each class in all three 

databases. Referring to Table 6.10, there is a very high degree of consistency in the retrieval 

of identical actives compounds from the ten different GP runs. The number of actives 

retrieved in the top 1% for the ten runs were also similar. This indicates that actives 

compounds are clustered closely in the top rank of the ranked data. This is in agreement with 

the results reported by Wu and Huang. It was found that the diversity of the relevant 

documents in the ranked list of documents can affect the performance of data fusion. Better 

performance of data fusion is more likely with a higher rate of diversity in the fused input 

(Wu & Huang, 2014). 
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7.5 Conclusion 

This chapter described the investigation of data fusion which sought to combine retrieval 

results from multiple, individual GA-based SSA and GP-based SSA results for each activity 

class. From the experiment and various analyses performed. It can be concluded that, the data 

fusion was found to perform better in each activity class from the three databases utilising the 

Rank RKP. By contrast, the Rank Min, Score Min, Rank Med and Score Med and fusion rules 

were found to be the worst fusion rule performers in the MDDR, WOMBAT and ChEMBL 

databases. It was also found that for the comparison of data fusion to the mean of ten runs of 

the GA and GP, the difference was found to be significant for both the GA-based SSA and 

GP-based fusion. However, for the GP case of WOMBAT dataset, the difference was instead, 

not significant. The GA and GP is essentially a robust and non-deterministic process. Hence, 

data fusion can be used as a deterministic measure to produce a single, unified outcome. It 

was found that the fusion of multiple rankings of the GA-based SSA and GP-based SSA 

produced a significant improvement in the final ranking results, with easy implementation. 

These conclusions confirm that the data fusion approach SSA is found to be highly effective 

technique in enhancing the retrieval performance of SSA specifically for the GA-based SSA 

and GP-based SSA.  
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Table 7.1: Enrichment factor of actives when using combination of different GA runs for top 1% in (a) MDDR dataset for eleven activity classes 

(b) WOMBAT dataset for fourteen activity classes and (c) ChEMBL dataset for fifteen activity classes 

Activity 

Actives  

Actives Retrieved   
Class Mean GA Rank RKP  Rank Max Rank Med Rank Sum Rank Min Score Med  Score Sum Score Max Score Min 

                   (a)       

5HT3 677 41.18 43.57 43.43 41.80 42.84 42.54 42.69 43.28 42.69 41.65 

5HT1A 744 19.22 20.16 19.76 19.09 19.89 19.35 19.62 19.89 19.62 19.62 

5HT 323 17.89 18.89 18.58 18.27 19.20 19.20 19.50 18.89 18.89 17.96 

D2 356 17.39 18.26 17.98 14.33 17.13 19.38 19.66 17.42 19.38 14.04 

RNN 1017 70.42 72.17 72.47 71.78 71.98 71.29 71.88 71.78 72.27 69.32 

AT1 849 47.96 49.00 49.00 49.47 48.88 48.76 48.53 48.88 49.35 47.94 

THRM 723 48.33 49.52 49.79 48.96 49.93 49.10 47.58 49.93 48.96 48.82 

SUBP 1121 29.16 30.87 30.42 28.90 30.24 29.97 28.90 30.51 30.51 28.90 

HIVP 675 47.04 49.04 49.04 47.70 48.74 47.70 45.33 48.89 49.48 47.85 

COX 572 29.28 30.24 30.59 30.77 30.77 29.55 29.02 30.24 30.77 30.94 

PKC 408 29.02 31.13 30.88 28.43 29.41 30.39 29.66 30.64 31.37 26.72 

(b) 

5HT1A 533 55.65 58.72 57.60 58.54 57.41 57.04 53.10 57.41 56.47 55.72 

5HT3 198 43.48 44.44 44.44 43.43 44.44 43.94 43.43 44.44 46.46 43.43 

ACHE 453 51.13 51.43 52.10 50.33 51.88 50.99 53.20 51.21 49.89 54.30 

AT1 652 80.69 82.98 82.98 83.74 83.44 83.13 82.52 82.98 82.36 83.59 

COX 869 67.42 67.55 67.55 67.43 67.43 67.43 66.86 67.55 67.55 67.78 

D2 819 40.75 41.88 41.03 42.74 41.76 40.90 42.00 41.39 41.39 41.27 

FXA 758 45.67 47.76 44.99 41.16 43.01 47.89 43.27 44.59 40.37 45.65 

HIVP 1015 53.56 57.34 57.14 51.33 54.68 55.47 55.47 55.67 56.35 54.19 

MMP 625 63.41 64.64 64.96 64.64 64.64 63.68 63.84 64.64 64.96 62.56 

PDE 536 49.27 51.87 52.05 49.81 51.68 51.68 49.81 51.87 52.80 48.32 

PKC 128 73.99 72.66 73.44 71.88 71.88 71.88 72.66 71.88 75.00 71.09 

RNN 427 78.76 80.56 80.56 80.56 80.80 80.33 77.52 81.03 81.03 81.73 

SUBP 502 49.22 51.59 52.59 49.80 52.79 50.80 50.80 52.19 51.00 51.39 

THRM 379 56.12 58.84 58.58 55.15 57.78 58.58 58.84 57.78 58.05 55.15 
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Activity 
Actives  

Actives Retrieved   

Class Mean GA Rank RKP  Rank Max Rank Med Rank Sum Rank Min Score Med  Score Sum Score Max Score Min 

     
              (c) 

      
5HT1A 1335 39.72 40.22 40.45 40.45 40.67 40.15 39.48 40.52 40.60 40.52 

5HT3 192 55.05 59.38 56.25 57.81 58.33 53.65 53.13 57.29 56.25 55.73 

5HT 2202 34.52 35.10 35.42 33.42 34.51 35.06 32.97 34.74 35.79 33.92 

ACHE 665 36.77 37.14 40.90 33.83 35.79 41.50 41.20 38.20 35.79 31.13 

AT1 95 81.37 84.21 84.21 85.26 85.26 81.05 82.11 84.21 85.26 84.21 

COX 125 38.32 40.00 39.20 40.00 39.20 37.60 39.20 37.60 39.20 35.20 

D2 1672 31.82 32.48 33.37 31.46 32.95 34.03 31.70 33.13 30.68 30.56 

FXA 1352 47.40 50.00 49.63 46.97 48.45 47.86 47.56 49.11 50.00 47.34 

HIVP 1941 64.85 68.38 67.51 65.86 67.25 66.84 63.80 67.66 66.63 65.04 

MMP 356 68.79 69.66 69.38 67.98 69.38 69.10 67.98 69.10 69.94 67.13 

PDE 229 40.22 41.48 44.54 39.30 41.48 42.36 39.30 42.79 40.61 45.85 

PKC 190 58.63 60.00 58.42 58.42 58.42 59.47 57.37 58.42 58.95 58.95 

RNN 884 56.64 58.71 59.39 56.45 58.26 58.37 56.11 58.94 56.90 56.33 

SUBP 762 70.08 72.97 73.23 70.47 71.78 72.44 71.39 71.65 72.83 70.47 

THRM 754 46.76 48.28 48.67 48.28 48.41 48.01 47.48 48.81 48.28 45.36 
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Table 7.2: Enrichment factor of actives when using  a combination of  different GP runs for the top 1 % in (a) MDDR dataset of eleven activity 

classes (b) WOMBAT dataset of fourteen activity classes and (c) ChEMBL dataset for fifteen activity classes 

Activity Actives  Actives Retrieved   

Class 
 

Mean GP Rank RKP  Rank Max Rank Med Rank Sum Rank Min Score Med  Score Sum Score Max Score Min 

                   (a)       

5HT3 677 26.65 26.88 25.85 26.14 26.44 25.85 26.29 27.03 26.74 26.44 

5HT1A 744 15.75 16.40 15.99 13.84 15.05 15.73 15.46 15.99 16.53 15.19 

5HT 323 19.81 21.05 20.74 20.12 21.05 19.81 18.89 20.43 20.43 20.43 

D2 356 22.47 22.75 21.91 22.75 22.19 21.91 23.03 22.47 23.03 21.63 

RNN 1017 63.60 63.62 63.82 62.73 63.32 63.72 64.01 63.13 62.54 63.82 

AT1 849 48.50 48.65 48.88 48.41 48.53 47.23 48.41 48.29 48.53 48.53 

THRM 723 44.48 45.23 46.06 44.67 45.64 46.06 43.98 45.64 44.95 44.12 

SUBP 1121 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 23.55 

HIVP 675 40.04 42.52 41.48 40.59 41.93 40.74 40.00 41.78 39.85 40.30 

COX 572 31.08 31.47 31.47 31.47 30.94 31.29 31.64 31.29 31.64 30.24 

PKC 408 25.10 25.74 25.74 24.51 25.25 26.23 25.49 25.98 25.49 24.51 

      (b) 

5HT1A 533 48.95 49.53 48.97 49.91 49.53 48.78 48.97 49.91 49.34 48.97 

5HT3 198 41.97 41.92 42.42 43.94 41.92 42.42 37.88 41.41 40.91 40.91 

ACHE 453 49.45 49.45 49.45 49.45 49.45 49.45 49.45 49.45 49.45 49.45 

AT1 652 78.99 78.99 78.99 78.99 78.99 78.99 78.99 78.99 78.99 78.99 

COX 869 64.03 64.33 64.21 63.75 64.10 64.10 64.10 64.21 64.10 63.75 

D2 819 35.90 36.51 36.39 34.19 35.16 35.78 36.02 36.39 36.63 35.78 

FXA 758 40.24 39.71 41.03 39.05 38.92 40.24 41.03 39.05 41.03 39.05 

HIVP 1015 42.28 43.55 42.66 42.56 42.17 42.07 42.76 42.56 42.46 42.07 

MMP 625 62.88 61.44 63.20 64.16 64.32 63.20 63.20 63.20 63.84 63.20 

PDE 536 44.96 44.96 44.96 44.96 44.96 44.96 44.96 44.96 44.96 44.96 

PKC 128 76.88 78.13 77.34 75.00 75.78 76.56 77.34 78.13 77.34 77.34 

RNN 427 74.82 76.81 75.18 74.71 76.11 75.88 74.71 76.35 76.11 75.88 

SUBP 502 46.73 46.81 47.01 44.82 46.81 47.01 47.01 46.81 46.81 47.01 

THRM 379 55.15 55.15 55.15 55.15 55.15 55.15 55.15 55.15 55.15 55.15 
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Activity 
Actives  

Actives Retrieved   

Class Mean GP Rank RKP  Rank Max Rank Med Rank Sum Rank Min Score Med  Score Sum Score Max Score Min 

     
              (c) 

      
5HT1A 1335 32.67 33.71 32.81 32.73 33.11 32.51 32.43 32.96 33.26 31.76 

5HT3 192 51.35 52.08 51.04 51.56 52.08 51.04 51.56 52.08 51.56 51.56 

5HT 2202 29.72 30.43 29.70 29.79 30.20 29.43 29.79 30.11 29.79 29.56 

ACHE 665 29.50 30.08 30.08 30.08 30.38 27.22 28.87 29.92 29.92 29.92 

AT1 95 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 80.00 

COX 125 31.20 31.20 31.20 31.20 31.20 31.20 31.20 31.20 31.20 31.20 

D2 1672 28.06 28.11 28.23 27.63 28.11 28.11 27.81 28.11 28.23 28.23 

FXA 1352 39.25 39.20 39.28 39.13 39.20 39.20 39.20 39.20 39.28 39.13 

HIVP 1942 49.63 53.99 50.54 49.46 50.80 49.41 49.92 49.92 52.55 49.05 

MMP 356 73.03 73.03 73.03 73.03 73.03 73.03 73.03 73.03 73.03 73.03 

PDE 229 29.69 29.69 29.69 29.69 29.69 29.69 29.69 29.69 29.69 29.69 

PKC 190 61.05 61.05 61.05 61.05 61.05 61.05 61.05 61.05 61.05 61.05 

RNN 884 51.06 51.58 51.47 50.79 51.36 52.04 51.13 51.58 51.13 51.13 

SUBP 762 69.99 69.95 69.95 69.95 69.95 69.42 70.08 69.95 70.08 70.08 

THRM 754 36.82 37.93 37.00 37.00 37.00 36.07 37.53 36.74 37.93 37.53 
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Table 7.3: Kendall‟s W analysis for the number of actives retrieved in top 1% of the GA searches and after application of data fusion on (a) 

MDDR dataset of eleven activity classes (b) WOMBAT dataset of fourteen activity classes and (c) ChEMBL dataset of fifteen 

 (a) 

Fusion  Activity Class Mean  Rank  

Rules 5HT3 5HT1A 5HT D2 RNN AT1 THRM SUBP HIVP COX PKC Rank Position 

Rank RKP 9.00 9.00 5.00 6.00 7.00 6.50 6.00 9.00 7.50 3.50 8.00 6.95 1 

Score Max 4.50 4.00 5.00 7.50 8.00 8.00 3.50 7.50 9.00 7.00 9.00 6.64 2 

Rank Max 8.00 6.00 3.00 5.00 9.00 6.50 7.00 6.00 7.50 5.00 7.00 6.36 3 

Score Sum 7.00 7.50 5.00 4.00 3.50 4.50 8.50 7.50 6.00 3.50 6.00 5.73 4 

Rank Sum 6.00 7.50 7.50 2.00 6.00 4.50 8.50 5.00 5.00 7.00 3.00 5.64 5 

Rank Min 3.00 2.00 7.50 7.50 2.00 3.00 5.00 4.00 2.50 2.00 5.00 3.95 6 

Score Med 4.50 4.00 9.00 9.00 5.00 2.00 0.00 1.00 0.00 0.00 4.00 3.50 7 

Rank Med 2.00 0.00 2.00 1.00 3.50 9.00 3.50 1.00 2.50 7.00 1.00 2.95 8 

Score Min 1.00 4.00 1.00 0.00 0.00 0.00 2.00 1.00 4.00 9.00 0.00 2.00 9 

Mean GA 0.00 1.00 0.00 3.00 1.00 1.00 1.00 3.00 1.00 1.00 2.00 1.27 10 

 

(b) 

Fusion  Activity Class Mean  Rank  

Rules 5HT1A 5HT3 ACHE AT1 COX D2 FXA HIVP MMP PDE PKC RNN SUBP THRM Rank Position 

Rank RKP  9.00 6.50 5.00 4.00 6.50 7.00 8.00 9.00 5.50 6.50 5.50 4.00 6.00 8.50 6.50 1 

Rank Max 7.00 6.50 7.00 4.00 6.50 2.00 5.00 8.00 8.50 8.00 7.00 4.00 8.00 6.50 6.29 2 

Score Max 3.00 9.00 0.00 1.00 6.50 4.50 0.00 7.00 8.50 9.00 9.00 7.50 4.00 5.00 5.29 3 

Score Sum 5.50 6.50 4.00 4.00 6.50 4.50 4.00 6.00 5.50 6.50 2.50 7.50 7.00 3.50 5.25 4 

Rank Sum 5.50 6.50 6.00 7.00 3.00 6.00 2.00 3.00 5.50 4.50 2.50 6.00 9.00 3.50 5.00 5 

Score Min 2.00 1.00 9.00 8.00 9.00 3.00 6.00 2.00 0.00 0.00 0.00 9.00 5.00 0.50 3.89 6 

Rank Min 4.00 4.00 2.00 6.00 3.00 1.00 9.00 4.50 2.00 4.50 2.50 2.00 2.50 6.50 3.82 7 

Score Med  0.00 1.00 8.00 2.00 0.00 8.00 3.00 4.50 3.00 2.50 5.50 0.00 2.50 8.50 3.46 8 

Rank Med 8.00 1.00 1.00 9.00 3.00 9.00 1.00 0.00 5.50 2.50 2.50 4.00 1.00 0.50 3.43 9 

Mean GA 1.00 3.00 3.00 0.00 1.00 0.00 7.00 1.00 1.00 1.00 8.00 1.00 0.00 2.00 2.07 10 
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(c) 

Fusion  Activity Class Mean  Rank  

Rules 5HT1A 5HT3 5HT ACHE AT1 COX D2 FXA HIVP MMP PDE PKC RNN SUBP THRM Rank Position 

Rank RKP  3.00 9.00 7.00 5.00 4.50 8.50 5.00 8.50 9.00 8.00 4.50 9.00 7.00 8.00 5.00 6.73 1 

Rank Max 4.50 4.50 8.00 7.00 4.50 5.50 8.00 7.00 7.00 6.50 8.00 2.50 9.00 9.00 8.00 6.60 2 

Score Sum 6.50 6.00 5.00 6.00 4.50 1.50 7.00 6.00 8.00 4.50 7.00 2.50 8.00 4.00 9.00 5.70 3 

Score Max 8.00 4.50 9.00 2.50 8.00 5.50 1.00 8.50 4.00 9.00 3.00 6.50 4.00 7.00 5.00 5.70 4 

Rank Sum 9.00 8.00 3.00 2.50 8.00 5.50 6.00 5.00 6.00 6.50 4.50 2.50 5.00 5.00 7.00 5.57 5 

Rank Min 2.00 1.00 6.00 9.00 0.00 1.50 9.00 4.00 5.00 4.50 6.00 8.00 6.00 6.00 3.00 4.73 6 

Rank Med 4.50 7.00 1.00 1.00 8.00 8.50 2.00 0.00 3.00 1.50 0.50 2.50 2.00 1.50 5.00 3.20 7 

Score Min 6.50 3.00 2.00 0.00 4.50 0.00 0.00 1.00 2.00 0.00 9.00 6.50 1.00 1.50 0.00 2.47 8 

Mean GA 1.00 2.00 4.00 4.00 1.00 3.00 4.00 2.00 1.00 3.00 2.00 5.00 3.00 0.00 1.00 2.40 9 

Score Med  0.00 0.00 0.00 8.00 2.00 5.50 3.00 3.00 0.00 1.50 0.50 0.00 0.00 3.00 2.00 1.90 10 
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Table 7.4: Kendall‟s W analysis for the number of actives retrieved in top 1% of the GP searches and after application of data fusion on (a) 

MDDR dataset of eleven activity classes (b) WOMBAT dataset of fourteen activity classes and (c) ChEMBL dataset of fifteen 

(a) 

Fusion  Activity Class Mean  Rank  

Rules 5HT3 5HT1A 5HT D2 RNN AT1 THRM SUBP HIVP COX PKC Rank Position 

Rank RKP  8.00 8.00 8.50 6.50 5.00 8.00 5.00 4.50 9.00 6.00 6.50 6.82 1 

Rank Max 0.50 6.50 7.00 1.50 7.50 9.00 8.50 4.50 6.00 6.00 6.50 5.77 2 

Score Sum 9.00 6.50 5.00 4.50 2.00 1.00 6.50 4.50 7.00 3.50 8.00 5.23 3 

Score Max 7.00 9.00 5.00 8.50 0.00 6.00 4.00 4.50 0.00 8.50 4.50 5.18 4 

Rank Sum 4.50 1.00 8.50 3.00 3.00 6.00 6.50 4.50 8.00 1.00 3.00 4.45 5 

Score Med  3.00 3.00 0.00 8.50 9.00 2.50 0.00 4.50 1.00 8.50 4.50 4.05 6 

Rank Min 0.50 4.00 1.50 1.50 6.00 0.00 8.50 4.50 5.00 3.50 9.00 4.00 7 

Mean GP 6.00 5.00 1.50 4.50 4.00 4.00 2.00 4.50 2.00 2.00 2.00 3.41 8 

Score Min 4.50 2.00 5.00 0.00 7.50 6.00 1.00 4.50 3.00 0.00 0.50 3.09 9 

Rank Med 2.00 0.00 3.00 6.50 1.00 2.50 3.00 4.50 4.00 6.00 0.50 3.00 10 

 

(b) 

Fusion  Activity Class Mean  Rank  

Rules 5HT1A 5HT3 ACHE AT1 COX D2 FXA HIVP MMP PDE PKC RNN SUBP THRM Rank Position 

Rank RKP  6.50 4.50 4.50 4.50 9.00 8.00 4.00 9.00 0.00 4.50 8.50 9.00 3.50 4.50 5.71 1 

Rank Max 3.00 7.50 4.50 4.50 7.50 6.50 8.00 7.00 4.00 4.50 5.50 3.00 7.50 4.50 5.54 2 

Score Sum 8.50 3.00 4.50 4.50 7.50 6.50 2.00 5.50 4.00 4.50 8.50 8.00 3.50 4.50 5.36 3 

Score Max 5.00 1.50 4.50 4.50 4.50 9.00 8.00 4.00 7.00 4.50 5.50 6.50 3.50 4.50 5.18 4 

Score Med  3.00 0.00 4.50 4.50 4.50 5.00 8.00 8.00 4.00 4.50 5.50 0.50 7.50 4.50 4.57 5 

Rank Sum 6.50 4.50 4.50 4.50 4.50 1.00 0.00 2.00 9.00 4.50 1.00 6.50 3.50 4.50 4.04 6 

Rank Min 0.00 7.50 4.50 4.50 4.50 2.50 5.50 0.50 4.00 4.50 2.00 4.50 7.50 4.50 4.04 7 

Rank Med 8.50 9.00 4.50 4.50 0.50 0.00 2.00 5.50 8.00 4.50 0.00 0.50 0.00 4.50 3.71 8 

Score Min 3.00 1.50 4.50 4.50 0.50 2.50 2.00 0.50 4.00 4.50 5.50 4.50 7.50 4.50 3.54 9 

Mean GP 1.00 6.00 4.50 4.50 2.00 4.00 5.50 3.00 1.00 4.50 3.00 2.00 1.00 4.50 3.32 10 
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(c) 

Fusion  Activity Class Mean  Rank  

Rules 5HT1A 5HT3 5HT ACHE AT1 COX D2 FXA HIVP MMP PDE PKC RNN SUBP THRM Rank Position 

Rank RKP  9.00 8.00 9.00 7.00 4.50 4.50 4.50 4.00 9.00 4.50 4.50 4.50 7.50 3.00 8.50 6.13 1 

Score Max 8.00 4.50 5.00 4.00 4.50 4.50 8.00 8.50 8.00 4.50 4.50 4.50 3.00 8.00 8.50 5.87 2 

Rank Sum 7.00 8.00 8.00 9.00 4.50 4.50 4.50 4.00 7.00 4.50 4.50 4.50 5.00 3.00 4.00 5.47 3 

Rank Max 5.00 0.50 2.00 7.00 4.50 4.50 8.00 8.50 6.00 4.50 4.50 4.50 6.00 3.00 4.00 4.83 4 

Score Sum 6.00 8.00 7.00 4.00 4.50 4.50 4.50 4.00 4.50 4.50 4.50 4.50 7.50 3.00 1.00 4.80 5 

Score Med  1.00 4.50 5.00 1.00 4.50 4.50 1.00 4.00 4.50 4.50 4.50 4.50 3.00 8.00 6.50 4.07 6 

Score Min 0.00 4.50 1.00 4.00 4.50 4.50 8.00 0.50 0.00 4.50 4.50 4.50 3.00 8.00 6.50 3.87 7 

Mean GP 3.00 2.00 3.00 2.00 4.50 4.50 2.00 7.00 3.00 4.50 4.50 4.50 1.00 6.00 2.00 3.57 8 

Rank Med 4.00 4.50 5.00 7.00 4.50 4.50 0.00 0.50 2.00 4.50 4.50 4.50 0.00 3.00 4.00 3.50 9 

Rank Min 2.00 0.50 0.00 0.00 4.50 4.50 4.50 4.00 1.00 4.50 4.50 4.50 9.00 0.00 0.00 2.90 10 
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Table 7.5: Kendall's W analysis for the top 1% based on the average of enrichment factor 

actives in the top 1% of (a) The GA-based SSA and (b) GP-based SSA from the MDDR, 

WOMBAT and ChEMBL databases 

 

(a) 

Fusion  Databases Mean Rank 

Rules MDDR WOMBAT ChEMBL Rank Position 

Rank RKP  6.95 6.50 6.73 6.73 1 

Rank Max 6.36 6.29 6.60 6.42 2 

Score Max 6.64 5.29 5.70 5.87 3 

Score Sum 5.73 5.25 5.70 5.56 4 

Rank Sum 5.64 5.00 5.57 5.40 5 

Rank Min 3.95 3.82 4.73 4.17 6 

Rank Med 2.95 3.43 3.20 3.19 7 

Score Med  3.50 3.46 1.90 2.95 8 

Score Min 2.00 3.89 2.47 2.79 9 

Mean GA 1.27 2.07 2.40 1.91 10 

 

(b) 

Fusion  Databases  Mean  Rank  

Rules MDDR WOMBAT ChEMBL Rank Position 

Rank RKP  6.82 5.71 6.13 6.22 1 

Score Max 5.18 5.18 5.87 5.41 2 

Rank Max 5.77 5.54 4.83 5.38 3 

Score Sum 5.23 5.36 4.80 5.13 4 

Rank Sum 4.45 4.04 5.47 4.65 5 

Score Med  4.05 4.57 4.07 4.23 6 

Rank Min 4.00 4.04 2.90 3.65 7 

Score Min 3.09 3.54 3.87 3.50 8 

Rank Med 3.41 3.32 3.50 3.41 9 

Mean GP 3.00 3.71 3.57 3.43 10 
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Chapter 8 

 

Conclusion and Future Work 

 

  

8.1 Introduction 

This chapter summarises the use of evolutionary algorithms for the purpose of chemical 

substructure search and analysis. It is discussed in general both the performance and impact 

of the experimented GA and GP methods for SSA, and their subsequent data fusion 

application. Also considered are several key points related to potential future work that follow 

this study‟s findings. 

 

Virtual screening methods are increasingly used to improve the cost-effectiveness of drug 

discovery programmes. In the drug discovery pipeline, virtual screening is performed during 

the lead identification process. This mainly involves the screening and analysis of large-scale 

data, usually amounting to millions of compounds. Hence, a small enhancement in the virtual 

screening methods has the potential to improve the effectiveness of the drug discovery life-

cycle. There have been many published works on various ligand-based virtual screening 

methods, such as similarity searching, QSAR and pharmacophore mapping (Frearson & 

Collie, 2009; Lengauer et al., 2004; McInnes, 2007; Willett, 2009). Such progress, however, 

is limited with regards to the SSA ever since its introduction by Cramer et al. (1974, 1976), 

apart from published works by Hodes et al. (1977), Klopman (1984, 1992), Ormerod et al. 

(1998), Gillet et al. (1998), Cosgrove et al. (1998), Wilton et al. (2003) and Hert et al. (2006). 

This largely reflects industry's preferences for other methods: e.g. similarity methods when 

compared to SSA. The challenge lies in improving the SSA technique to allow for better 

identification of suitable and diverse potentially active compounds. It is also important to 

further demonstrate a higher degree of sophistication in the data analysis of these compounds. 

SSA has the potential to yield improved and efficient results when optimising for lead 

searching, as currently, it is relatively simple (albeit logical) in implementation. The present 

study resolved to quantify the possibility of meaningful increase in active compounds 

rankings by harnessing the non-deterministic nature of GA and GP. Such methods are known 

to allow for a greater degree of freedom in determining independent parameters and 

relationships, which are otherwise constrained in traditional weighting calculations. 
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8.2 Contributions 

8.2.1 The comparison of existing SSA weighting schemes  

Various weighting schemes are readily available in SSA, some of which are closely related to 

each other.  While several studies have been conducted to analyse the effectiveness of such 

weighting schemes (Ormerod, 1992), these evaluations were restricted to legacy molecular 

databases with limited activity classes. Based on the results described in Chapter 4, an 

updated analysis of the effectiveness of established SSA weighting schemes was presented to 

measure the predictive performance of a given biological activity class using three large 

databases, MDDR, WOMBAT and ChEMBL. In this analysis, a predictive experiment was 

conducted and the molecules were represented using the MDL fragment description, 

consisting of a 166 key-set. SSA was applied in three general steps: First, weights of the 

individual fragments were determined based on the equation governed by the chosen SSA 

weighting scheme. Second, either the total or mean value of the scores of each compound in 

the training set were calculated, again depending on the SSA scheme used. Finally, ranking of 

the compounds in the database was achieved in order of descending score value. Ten SSA 

weighting schemes were evaluated in comparison to previous works performed (Ormerod, 

Willett and Bawden, 1989; Cosgrove and Willett, 1998; Wilton, Willett, Lawson and Mullier, 

2003). In the earlier findings, it was found that the R2 scheme proved to be more effective in 

SSA than other existing weighting schemes. Such test, however, was conducted on a 

relatively small dataset.  

 

Through rigorous experimentation as described in this thesis, it was possible to establish 

several trends. The first and the best trend was discovered to be the R4 and R3 weighting 

schemes, which performed well for a majority of activity classes from the three databases. A 

second trend follows the R1, R2 and NBC weighting schemes; all placed in the mid-tier of 

the weighting scheme performance. The third trend is the less effective schemes which 

include the original SAF, AVID, WT2 and the WT1 schemes. These schemes usually have 

fairly average retrieval performance for most activity classes. The worst performing 

weighting scheme is found to be the SAS weighting scheme, annotated as the fourth trend. It 

should be noted that the R3 and R4 schemes, alongside the R1 and R2 were in fact originally 

designed for document-based classification and retrieval. From the experiments, it was found 

that the Robertson-Sparck Jones R4 weighting scheme generally works best for the majority 

of the activity classes tested. This scheme was subsequently selected as a benchmark for 

performance analysis to other methods proposed in this thesis. The results shown above 
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signify that the choice of weighting scheme is deemed significant to the distribution of 

actives / inactives especially in the top 1% of ranked compounds. 

 

8.2.2 The use of GA to the SSA method 

Chapter 5 discussed the application of the GA in SSA for fragment weighting determination. 

In this section of the work, the possibility of uplift in the approach of a GA on fragment 

weighting determination when compared to the SSA R4 weights was evaluated. For the GA, 

the chromosome is a vector containing N integers, where the i-th element is the fragment 

weight for the i-th bit in the fingerprint. The fitness function for the GA is the number of 

active molecules that occur in the top 1% of a ranked training set based on the N weights 

representing the chromosomes.  

 

From the parameterisation tests, it was discovered that the GA-based SSA can be successfully 

implemented when taking into account the influence of SSA R4 weights (i.e. its weights 

polarity). This was applied during the initialisation of the chromosome population and for 

subsequent genetic operations. For instance, if the R4 scheme determines that a particular 

fragment contains negative weights, it was necessary to put in place a similar restriction 

during the construction and manipulation of the chromosome weights. This was conducted in 

order to retain its weighting characteristics following R4. The GA is run for a pre-set number 

of generations or until the best GA weights have stabilised. It thus provides an estimate of the 

best possible GA-based SSA weights that can be obtained using a training set. The resulting 

weights are then applied to a separate test set, and its performance evaluated. 

 

The experimental results from Chapter 5 confirmed that the developed GA-based SSA 

weighting scheme performed consistently well by yielding improved trends of higher active 

retrieval rates in the first 1% ranking for all of the activity classes in all of the databases, 

MDDR, WOMBAT and ChEMBL, compared to the SSA R4. The findings of this study 

suggest that the GA provides a possible non-deterministic method for generating fragment 

weights to be used in SSA-based virtual screening method. More importantly, this study 

strengthens the view that the GA-based SSA method was able to produce improved active 

retrieval performance when compared to the existing weighting schemes in the SSA. Despite 

the GA‟s evolutionary and non-deterministic nature, this study proved the effectiveness of 

such a method in improving virtual screening methods for lead identifications in drug 

discovery. Taken together, these findings indicate that the GA-based SSA method is 
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applicable and yields better performance of the active retrieval rate than the existing SSA 

techniques. 

 

8.2.3 Investigation of the use of GP in the SSA method 

Chapter 6 discussed in detail the investigation into the use of GP for the SSA. The GP method 

is fundamentally similar to the GA in terms of the manipulation of chromosomes to evolve 

into solutions via genetic operations. The difference in the GP method is found in its use of 

variables and terminals. These are formed into equations to represent the chromosomes as the 

main entities on which to perform evolution, instead of the binary or decimal vectors used in 

GA. In one sense, this approach is similar to any existing weighting schemes under SSA, 

such as the SAF weighting scheme, or the Robertson-Sparck Jones schemes (i.e. R1, R2, R3 

and R4). Here, an equation is translated to fragment weights and subsequently applied for 

compound ranking purposes. The approach to the GP was to utilise all of the variables, 

mathematical operators and sub-terms found in those SSA weighting equations. The aim was 

to find through evolutionary means a new equation which may improve active retrieval 

performance compared to the methods explored earlier. Based on the analysis of the GP-

based SSA application, it is possible to identify several important facts, which are discussed 

below. 

 

First, it was found that the GP-based SSA was able to outperform the SSA R4 weighting 

schemes in all of the activity classes across the three databases. The improvement, however, 

varied significantly from borderline to good. Regarding its comparison with the GA-based 

SSA, the GP-based SSA recorded a higher increase in active retrieval performance for several 

activity classes across the three databases, such as the MDDR COX and RNN classes, the 

WOMBAT PKC, and the ChEMBL 5HT3 class. In the rest of the classes, however, the GP 

runs recorded a varying degree of performance. In the majority of cases, they were not able to 

achieve a similar level of active retrieval rates compared to the GA-based SSA.  

 

This finding provided insights into the advantages of the GA and its relatively superior 

performance compared to both the GP method and the traditional SSA schemes. It was argued 

that the GA-based SSA‟s superiority lies in its ability to evolve weights directly for each 

fragment in order to elevate active compounds to the top 1% of the ranked data. This is in 

contrast to the GP-based SSA and the traditional SSA weighting schemes, which require 

fragment weight determination to be dictated and translated based on the equation that 
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follows. Nevertheless, the GP-based SSA still manages to deliver positive improvements over 

the existing SSA methods. 

 

8.2.4 Investigation into the use of data fusion to the GA-and GP-based SSA  

The study further explored both GA and GP's potential for further upper-bound improvements 

in the retrieval of actives, considering that multiple runs of the two methods above for each 

activity class is available. Based on the findings in Chapter 7, the fusion experiments 

discussed in this thesis fused rankings and compound scores using nine fusion rules. These 

were Rank RKP, Rank Max, Rank Sum, Rank Med, Rank Min, Score Max, Score Sum, Score 

Med and Score Min. The results obtained from the fused GA-based SSA and GP-based SSA 

searches were compared to the mean of the multiple GA and GP runs. The findings from this 

study offer several contributions to the current literature. First, the results of this investigation 

show that the fusion of multiple rankings of the GA-based SSA and GP-based SSA produced 

significant results in terms of an improvement in the active retrieval rate. 

 

The second major finding was that the most effective fusion rule to be used in the GA and GP 

SSA-based weighting schemes were determined as the Rank RKP rule. On the other hand, the 

fusion rules MED and MIN showed the worst performances relative to the three MDDR, 

WOMBAT and ChEMBL databases. The findings of this investigation also complement those 

of earlier studies which found that the resultant combined ranking will generally be, at least 

as good as, and often superior to, the individual ranking (Ginn et al., 2006, Hert et al., 2006). 

The findings of this experiment could be used to help the standard practice of data fusion in 

virtual screening, and to guide further enhancement in SSA. 

 

8.3 Suggestion for future work 

There were several alternative experimentation methods and testing choices available which 

were not pursued during the course of this research. These are listed below as suggestions to 

further the findings of the research in this thesis: 

i. In this study, the MDL fingerprint was used to evaluate the performance of the GA-

and GP-based SSA weighting schemes developed. It would be interesting to assess the 

performance of the GA-based SSA and GP-based SSA when other popular binary 

descriptors in chemoinformatics are used, such as ECFP_4, BCI and Sunset 

fingerprints.  

ii. A simple approach to the GA-and GP-based SSA methods was developed. While it 
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can be seen that the GA-based SSA was able to outperform and significantly increase 

the upper-bound performance of active retrievals in some cases, the GP-based SSA 

remains largely less effective than its GA counterpart. This was despite the fact that 

both methods were shown to improve on the traditional SSA weighting schemes. For 

the GP-based SSA method, the following are suggested for improvements. (i) One 

recommended approach is to test a different chromosome population, perhaps by 

introducing a number of different variables defining the characteristics of the 

fragments and molecules that make up the molecule set, other than those already used 

by the SSA equations; (ii) It is beneficial to consider cross-validation methods based 

on the training set and test set combination. This is to serve two goals: The first goal 

follows the current one, which aims to increase the chance of finding a good solution 

by maximising actives retrieval. The second goal is as a support method to the fitness 

function in validating chromosome suitability (reducing the chance of overfitting). 

Indeed, further tests of the cross-validation method could also be applied to the GA-

based SSA too. 

iii. To explore more sophisticated fitness function such as the implementation of multi-

objective GA and GP approach. Other information can be utilised for fitness 

determination such as properties defined by Lipinski‟s rule of 5. Example properties 

are molecular weight, hydrogen bond donors and bond acceptors, log P and molecular 

mass. Also, by checking the solubility of the compounds. This is to lower the cost of 

high clinical failure rates during the drug development process. 

iv. To explore parallelisation and code optimisation of the GA-and GP-based SSA. 

Benchmark results have shown that the run-time of both methods is normally 

acceptable. It is stressed, however, that the application run-time can be enhanced 

further by exploring the parallel computing option. Developing the GA and GP 

program using a low-level language that dictates memory usage and monitoring may 

also help with runtime efficiencies. This would be especially useful when performing 

the GA-and GP-based SSA on a much larger database than the ChEMBL (itself 

comprising of over a million compounds). This is also beneficial in circumstances 

where a retrospective study needs to be conducted on one whole database. 

 

8.4 Conclusion  

The findings from this study offer several contributions to the current literature, which are 

discussed below: 
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i. Application of evolutionary algorithms via GA and GP were investigated for SSA 

methods. Here, we found good to significant improvements of such methods on SSA 

performance in ligand-based virtual screening. Specifically, it was shown that the GA-

based SSA is consistently superior to both the GP-based SSA and traditional SSA 

methods. We conclude that the GA-based SSA is clearly a step-up as an alternative to 

the NBC and other existing SSA weighting scheme introduced nearly 40 years ago. 

We have also demonstrated the real world practicality aspect of a GA-based SSA 

approach based on successful investigation of such method on large datasets 

(ChEMBL) on standard machine resources, with room for more deployment 

optimisation. 

ii. Secondly, our study also revealed that the GA-based SSA results can be further 

enhanced using data fusion method to provide a deterministic measure of providing a 

single unified outcome. The study showed that fusion of GA-based SSA produced 

somewhat effective and significant final ranking results, with relatively easy 

implementation. This result overall complements previous findings on data fusion‟s 

advantages in information retrieval and chemoinformatics. We hence recommend this 

as the most effective method overall for GA-based SSA virtual screening. 

iii. The outcomes from this study may hopefully help pharmaceutical researchers to 

increase the chance of lead identification through alternative method of SSA via 

evolutionary-based approaches. This study has shown a positive indication of 

potential future researches into machine learning methods in ligand-based virtual 

screening. In conclusion, this research has proven the GA-based SSA, and machine 

learning method in general, to be a novel, positive addition to the armamentarium of 

drug discovery methods in medicinal chemistry. 
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Appendix A: The GA-based SSA pseudocode 

 

// Main program execution 

set chromosomes_size, num_of_weights, min_weight_value, max_weight_value 

set crossover_rate, mutation_rate, maximum_iterations, elite_chromosomes_to_keep 

initialise ideal_fitness_value  // function InitIdealFitness 

initialise chromosomes   // function AssignChromosomes 

 

REPEAT 

FOR (parents_to_keep + 1) to end_of_chromosomes 

// function SelectTwoParents 

select two chromosomes from chromosomes 

  // function PerformCrossover  

  if (crossover_rate) perform crossover operation  

// function PerformMutation 

if (mutation_rate) perform mutation operation    

insert chromosome_child into new_chromosomes 

ENDFOR 

insert chromosome_1 to elite_chromosomes_to_keep into new_chromosomes 

 

 // function CalculateFitness 

 calculate new_chromosomes_fitness 

// function EvalFitness   

evaluate new_chromosomes_fitness   

sort new_chromosomes based on new_chromosomes_fitness 

set chromosomes as new_chromosomes 

UNTIL iteration equals maximum_iterations or fitness_condition met 

 

 

// Function to randomise the chromosomes initial values 

Function AssignChromosomes(chromosomes_size, num_of_weights, min_weight_value, max_weight_value) 

 set weight_polarity based on SSA R4 weight value 

set chromosomes as randomised array based on chromosomes_size,… num_of_weights, min_weight_value and 

max_weight_value and weight_polarity 

 

// Function to calculate the most ideal active rate (100% active at the very top) 

Function InitIdealFitness(compounds) 

set ideal_fitness_value as the maximum number of active compounds in the top 1% of the given dataset 

 

// Function to select two parents for GA operation, using roulette wheel method 

Function SelectTwoParents(chromosomes) 

 set total_fitness as sum of chromosome_fitness 

 set a roulette_value from a random number not more than total_fitness 

 select chromosome_parent1 where roulette_value points at in total_fitness 

 select chromosome_parent2 where roulette_value points at in total_fitness 

and not equal to chromosome_parent1 

 

// Function to perform GA crossover operation 

Function PerformCrossover(chromosome_parent1, chromosome_parent2) 

 set index from a random number not more than num_of_weights 

 set order_of_crossover from a random condition of either parent1 or parent2  

first 

 IF order_of_crossover equals left 

  set chromosome_child as joining of chromosome_parent1(1,index) and … 

   chromosome_parent2(index+1,end) 

 ELSE 

  set chromosome_child as joining of chromosome_parent2(1,index) and … 

   chromosome_parent1(index+1,end) 

 ENDIF 

 

 

 

// Function to perform GA mutation operation 

Function PerformMutation(chromosome_child) 

 set index from a random number not more than num_of_weights 
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 set index of chromosome_child to a random, new weight value based on  

weight_polarity 

 

// Function to calculate chromosomes fitness 

Function CalculateFitness(new_chromosomes, compounds) 

 FOR each new_chromosomes 

  FOR each compound 

   set compound_score as compound * chromosome 

  ENDFOR 

  sort compounds based on chromosome_score 

  set new_chromosome_fitness as the rate of active compounds in sorted  

top 1% 

 ENDFOR 

 

// Function to evaluate chromosomes fitness 

Function EvalFitness(new_chromosomes, fitness_score) 

 sort new_chromosomes based on fitness_score 

FOR each new_chromosomes 

  if (new_chromosome_fitness >= ideal_fitness_value) terminate program 

ENDFOR 
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Appendix B: The GP-based SSA pseudocode 

 

// Main program execution 

set chromosomes_size, terminal_set_definition, function_set_definiton 

set tree_method, maximum_depth, maximum_size 

set crossover_rate, mutation_rate, maximum_iterations, elite_chromosomes_to_keep 

initialise ideal_fitness_value  // function InitIdealFitness 

initialise chromosomes   // function AssignChromosomes 

 

REPEAT 

FOR (parents_to_keep + 1) to end_of_chromosomes 

// function SelectTwoParents 

select two chromosomes from chromosomes 

  // function PerformCrossover  

  if (crossover_rate) perform crossover operation  

// function PerformMutation 

if (mutation_rate) perform mutation operation    

insert chromosome_child into new_chromosomes 

ENDFOR 

insert chromosome_1 to elite_chromosomes_to_keep into new_chromosomes 

 

 // function CalculateFitness 

 calculate new_chromosomes_fitness 

// function EvalFitness   

evaluate new_chromosomes_fitness   

sort new_chromosomes based on new_chromosomes_fitness 

set chromosomes as new_chromosomes 

UNTIL iteration equals maxium_iterations or fitness_condition met 

 

 

// Function to randomise the chromosomes initial values 

Function AssignChromosomes(chromosomes_size, terminal_set_definition,… function_set_definiton, tree_method) 

set chromosomes as randomised equation based on chromosomes_size,… terminal_set_definition, 

function_set_definiton and tree_method 

 

// Function to calculate the most ideal active rate (100% active at the very top) 

Function InitIdealFitness(compounds) 

set ideal_fitness_value as the maximum number of active compounds in the top 1% of the given dataset 

 

// Function to select two parents for GP operation, using roulette wheel method 

Function SelectTwoParents(chromosomes) 

 set total_fitness as sum of chromosome_fitness 

 set a roulette_value from a random number not more than total_fitness 

 select chromosome_parent1 where roulette_value points at in total_fitness 

 select chromosome_parent2 where roulette_value points at in total_fitness 

and not equal to chromosome_parent1 

 

// Function to perform GP crossover operation 

Function PerformCrossover(chromosome_parent1, chromosome_parent2) 

 set index from a random number not more than maximum_depth 

 set order_of_crossover from a random condition of either parent1 or parent2  

first 

 IF order_of_crossover equals left 

set chromosome_child as joining of chromosome_parent1(1,index) and 

chromosome_parent2(index+1,end) 

 

 ELSE 

set chromosome_child as joining of chromosome_parent2(1,index) and 

chromosome_parent1(index+1,end) 

 ENDIF 

 

 

 

// Function to perform GP mutation operation 

Function PerformMutation(chromosome_child) 
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 set index from a random number not more than maximum_depth 

 set index of chromosome_child to a random, new equation 

 

// Function to calculate chromosomes fitness 

Function CalculateFitness(new_chromosomes, compounds) 

 FOR each new_chromosomes 

  translate equation to weights 

  FOR each compound 

   set compound_score as compound * weights 

  ENDFOR 

  sort compounds based on chromosome_score 

  set new_chromosome_fitness as the rate of active compounds in sorted  

top 1% 

 ENDFOR 

 

// Function to evaluate chromosomes fitness 

Function EvalFitness(new_chromosomes, fitness_score) 

 sort new_chromosomes based on fitness_score 

FOR each new_chromosomes 

  if (new_chromosome_fitness >= ideal_fitness_value) terminate program 

ENDFOR 
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