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Abstract

This work concerns the detection of relationships between key information
in biomedical publications, such as treatments for diseases or side-effects
of drugs. Given a sentence containing some medical concepts the goal is
to determine their relationship to each other.

Supervised machine learning methods are a very popular way to address
this problem and often provide reliable results. Those methods require
manually labelled examples to extract characteristics of particular relation-
ships in order to detect similar information in unlabelled data. However,
manually labelled data is not always available and its generation is time
consuming and expensive.

The main objective of this thesis is the exploration of distant supervision, a
method which generates those labelled examples automatically using prior
knowledge to detect relationships between key facts.

First, relation extraction using a limited amount of training data is ex-
plored to detect adverse-drug effects in natural language. Then, work fo-
cuses on automatically labelling data using a large biomedical knowledge
base, the Unified Medical Language System (UMLS). The effectiveness
of a popular evaluation method that does not require manually labelled
data is examined in more detail. The main goal is the investigation of
whether UMLS is suitable to be used to label data automatically so as to
detect similar information in natural language. Finally, a method to reduce
falsely labelled instances in the automatically generated data is presented
and found to improve the detection of relationships.
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Chapter 1

Introduction

Every day people produce textual data containing information related to the life sci-
ences. Data is generated for various purposes and published using different channels
such as news-pages, scientific papers, clinical records or forums. PubMed1 for in-
stance, is a large repository for scientific papers from the biomedical domain. Each
year hundreds of thousands of new publications are added to the repository2 [Zheng
and Blake, 2015]. Valuable information, experimental outcomes and new discoveries,
which are relevant for pharmacological laboratories or doctors might be published in
papers but disappear in the large amount of data. This information is described in natu-
ral language, and therefore, difficult to access by computer programs. It is not possible
for humans to read all documents available to find informations of interest.

For instance, a search request on PubMed to find new or alternative treatments for
depression might provide a large number of documents. Searching for a term such
as “depression”, PubMed returns 333,955 documents3. A more fine-grained search
request such as “pharmacological treatment of depression” decreases the list down to
71,900. PubMed offers numerous search filters to narrow down the list of relevant in-
formation [Ebbert et al., 2003; Lindsey and Olin, 2013], such as a restriction per year,
per journal or by Medical Subject Headings (MeSH4). In PubMed MeSH terms are
used by medical experts to index publications which provide a categorisation. Addi-

1https://www.ncbi.nlm.nih.gov/pubmed/
2https://www.nlm.nih.gov/bsd/medline_cit_counts_yr_pub.html, 19th of

September 2015
3according to a search request on 22th of September 2015
4https://www.nlm.nih.gov/mesh/
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tionally, PubMed offers document ranking by year or relevance. However, it might be
helpful using a program that is able to detect all different mentions of pharmacologi-
cal treatments for depression. Firstly, this could improve the search by selecting only
those publications that are really relevant for the treatment. Secondly, pharmacological
treatments could be extracted in order to select only publications with a treatment of
interest. Moreover, such a program could be used to detect new treatments that are
not known by any database. The example in Figure 1.1 shows a sentence expressing a
treatment for depression. The sentence is taken from a publication with the PubMed-
Id=11092117 (PMID) and mentions the usage of the drug amitriptyline as treatment.
How can those connections between medical concepts (entities) successfully be de-
tected to improve information access?

She had been taking [DRUG:amitriptyline] 75 mg at night for
[DISEASE:depression] for four months before her admission.
(PMID=11092117)

Figure 1.1: Sentence mentions a possible treatment for depression.

Relation extraction addresses the task of detecting relationships between entities
in natural language, such as in the previous example. In this context a relation in a
sentence can express, for instance, that a drug has a particular side effect or that a drug
can be used to treat a disease5.

Relations expressed in natural language can be detected in different ways (see
Chapter 2). Currently, machine learning techniques such as supervised learning have
been proven the most effective for detecting relations in natural language, as shown in
different shared tasks and challenges (see e.g. [Kim et al., 2011; Nédellec et al., 2013;
Segura-Bedmar et al., 2013]).

Classifiers often provide better results when more training data is available6 (see
e.g. in [Banko and Brill, 2001; Brants et al., 2007]). Nevertheless, training data is not
available in all cases. The generation of manually labelled training data is, unfortu-

5Relations are described as binary relations between two entities in this work.
6This statement can be very controversial, because more data does not necessarily lead always to

further improvements, without paying attention to the method [Curran and Osborne, 2002]. However,
using a training data set with a few thousand instances might lead to better results than using only a
hundred training instances, as seen in Thomas et al. [2011] for instance.
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nately, a time consuming and expensive process. Time is usually precious for people,
such as doctors, who might be suitable to carry out a biomedical annotation. This
makes supervised learning methods not ideal for all situations even though the results
are very efficient.

An alternative approach to address relation extraction is distant supervision (DS;
also known as self-supervision or weak supervision). The technique generates training
data automatically using a set of known facts for a relation (e.g. may-treat(‘aspirin’,
‘pain’)). A sentence is labelled as positive if it contains a positively related fact and as
negative if it contains a negative fact. Negative facts are often generated following the
closed-world assumption: If an information is not known to be positive it is assumed
to be negative. Obviously, the assumption of distant supervision is not always correct.
The words aspirin and pain can occur together in a sentence without expressing the
may-treat relation. Contrariwise, a sentence might be labelled as negative even though
the sentences expresses the relation of interest. This situation might occur if the set of
known facts is not complete. Thus, training data generated by distant supervision may
contain noisy (e.g. falsely labelled) examples but, despite this, classification results are
often reasonable (although not as good as using manually labelled data).

This thesis focuses on distantly supervised relation extraction from biomedical ab-
stracts. It aims to address the following research problems:

• The Unified Medical Language System (UMLS) (see Chapter 2.3.2) is a large
medical knowledge base (KB) which contains millions of medical concepts and
relations between them. This thesis examines whether UMLS is a useful knowl-
edge source for distant supervision.

• Distant supervision is typically used if no manually labelled training data exists.
This means that often also no evaluation data is available. Consequently, this
work analyses the efficiency of existing evaluation techniques related to distant
supervision. In particular, a commonly used evaluation technique held-out is
examined to determine whether it is useful to estimate the quality of a classifier.

• Distant supervision labels training data automatically using given facts. How-
ever, distantly labelled data may contain false annotations. This work examines
a method to reduce the amount of false labels.

15



• In general supervised learning methods using manually labelled training data
provide more reliable results than using much larger amounts of (noisy) dis-
tantly labelled training data. This work investigates under which circumstances
distantly labelled data can support supervised learning methods to reduce the
amount of required manually labelled data.

1.1 Contribution

This thesis makes the following research contributions:

• The thesis explores the utility of the UMLS Metathesaurus for relation extraction
and shows that UMLS is a useful knowledge source for distant supervision.

• Various evaluation methods related to distant supervision are explored. In this
context the following contributions and findings are made:

– held-out evaluation provides reasonable results, in particular for entity-
level evaluation

– system optimisation against held-out data does not necessarily improve
system performance against a gold standard data

• This work introduces a novel method to reduce false negatives in distantly la-
belled data using inference learning.

• The thesis explores the advantage of using distantly labelled data when only a
limited amount of training data is available.

1.2 Published Material

Parts of in this thesis have been published in a range of peer reviewed conferences and
workshops:

• Roller and Stevenson [2015a] explore methods to support supervised learning
with a limited amount of training data using distantly labelled data. The content
of the paper is included in Chapter 3.

16



• In Roller and Stevenson [2014a], held-out evaluation results are presented for a
range of UMLS relations. The work described in Chapter 4 is partially based on
this paper.

• Chapter 5 compares evaluation strategies for distantly supervised relation ex-
traction against distantly and manually labelled data. Parts of the results of this
chapter are published in Roller and Stevenson [2015b].

• Roller et al. [2015] explore the usage of inference learning to detect potentially
false negatives in distantly labelled data. The work is presented in Chapter 6.

• Roller and Stevenson [2014b] describe the first attempt to use UMLS for distant
supervision. The publication unveiled the difficulties of evaluating a distantly
supervised classifier without gold standard data. The systems serves as baseline
for Chapter 4. Furthermore, it triggered the experiment described in Chapter 5.

• Parts of the system architecture, including the processing of natural language
(e.g. stemming, dependency parsing) have been developed in Roller and Steven-
son [2013] to detecting genia events and are used, with slight modifications,
throughout the thesis (in particular Chapter 3 and Chapter 4).

1.3 Thesis Overview

The remainder of this thesis is structured as follows:

Chapter 2 (Related Work and Background) describes related work on relation extrac-
tion. The chapter starts with a brief overview of the history of relation extraction
and reports different supervised methods in a biomedical context. Then the chapter
presents related work in the context of distantly supervised relation extraction from in
and outside the biomedical domain, followed by an overview of evaluation methods
for distant supervision. Finally, a range of relevant resources are presented, including
UMLS and MetaMap.

Chapter 3 (Bootstrapping Limited Training Data) explores relation extraction using
a limited amount of manually labelled training data. In the context of adverse-drug

17



effects a small set of instances is used to train a supervised classifier. The chapter in-
vestigates whether it is possible to improve classification results by using a large set
of automatically labelled training instances. The new training data is generated from
facts provided by the small set of manually labelled training instances.

Chapter 4 (Detecting relations from the UMLS Metathesaurus in Medline abstracts)
introduces the relations from the UMLS Metathesaurus used in this thesis. It describes
how distantly labelled data from sentences of PubMed abstracts is generated. It also
describes a range of different filtering techniques that are applied in order to provide
a good quality of distantly labelled data. Furthermore, the chapter presents distantly
supervised classification results for a range of different UMLS Metathesaurus relations
from two different vocabularies (NDF-RT and NCI). The results are evaluated using
the held-out approach and a small gold standard of two different UMLS relations. The
chapter supports the assumption that UMLS is a useful knowledge source for distantly
supervised relation extraction.

Chapter 5 (Comparison of Evaluation Strategies for Distantly Supervised Relation Ex-
traction) examines the efficiency using held-out evaluation for distantly supervised re-
lation extraction in more detail. The question that is explored in this chapter is whether
held-out is a useful method to evaluate distant supervision and what the results mean.
To ensure reliable results distantly labelled data is manually re-annotated to generate a
new gold standard. Then a classifier is trained and evaluated on the evaluation subset;
once using the distant labels and once using the manual labels.

Chapter 6 (Reduction of Falsely Labelled Data) explores a technique to remove po-
tential false negatives from the distantly labelled data to improve classification results.
The proposed approach uses an inference learning method implemented in the path
ranking algorithm (PRA) [Lao and Cohen, 2010; Lao et al., 2011]. Using the same set
of relations from Chapter 4, this chapter shows that the proposed method significantly
improves the classification results.

Chapter 7 (Conclusions) finishes this thesis with a summarisation and a conclusion.
Moreover, the final chapter provides an overview of possible future directions for the
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research described in this thesis.
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Chapter 2

Related Work and Background

This chapter presents literature and resources related to this thesis. First, an overview
of different relation extraction approaches is provided, in particular supervised and
distantly supervised relation extraction. Then, different techniques are presented to
evaluate distant supervision. Finally, an overview about some relevant resources is
provided.

2.1 Relation Extraction

Relation extraction is an important topic in natural language processing (NLP) [Zeng
et al., 2015] and focuses on the detection of relationships between entities (concepts,
things) from natural language. Given a sentence with some key entities, the task is
to determine their relationship to each other. In the biomedical domain a relationship
can be described, for instance, between a drug and its contraindicating effect, proteins
which interact with each other or a disease and a drug which prevents it. Figure 2.1
shows an example of the relation PREVENT (PREV) taken from the Rosario & Hearst
[Rosario and Hearst, 2004] data set. The sentence describes a prevention of swine

enzootic pneumonia by using a vaccination.
Relation extraction can be defined in various ways and be addressed using dif-

ferent methods. Relations can be extracted with information across documents [Yao
et al., 2010], across sentence boarders [Roberts et al., 2008; Swampillai and Steven-
son, 2011] or combined using co-reference resolution [Chowdhury and Zweigenbaum,
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A field study was carried out to evaluate the effect
of [vaccination] against [swine enzootic pneumonia] in
different production systems. (PMID=11129801)

Figure 2.1: Example of the relation PREVENT

2013; Xu et al., 2008], a method that is able to detect pronouns of target entities. In
some cases relation extraction includes the detection of entities beforehand (named en-
tity recognition; also called NER) [Björne and Salakoski, 2013; Kang et al., 2014] and
in some other cases those entities are already provided [Chowdhury and Lavelli, 2012;
Liu et al., 2013; Rosario and Hearst, 2004]. This thesis focuses on the task of detecting
relations between given entities in single sentences. NER can be a challenging task, in
particular in the biomedical domain due to nomenclature, abbreviations and ambiguity
[Kim et al., 2004; Zhu and Shen, 2012]. For this reason relation extraction is carried
out by MetaMap (see Section 2.3.3), a widely used tool to annotate UMLS concepts to
natural language [Simpson and Demner-Fushman, 2012].

According to Angeli et al. [2014] relation extraction can be divided into one of four
approaches: supervised relation extraction [Björne and Salakoski, 2013; Gurulingappa
et al., 2012a], distant supervision [Abad and Moschitti, 2014; Nunes and Schwabe,
2014; Yao et al., 2010], rule-based systems [Riloff, 1993; Soderland et al., 1995]
and open information extraction [Banko et al., 2007; Wu and Weld, 2010], which ac-
quires related information without prior knowledge and without training data. Another
method that could be included in this list is minimal supervised learning1 or bootstrap-
ping (such as [Agichtein and Gravano, 2000; Batista et al., 2015; Brin, 1999; Riloff
and Jones, 1999; Yangarber et al., 2000]) which uses a small set of given instances
(examples of related information, called seeds), or patterns to acquire further exam-
ples from a large corpus by applying an iterative process. While this approach does
not require labelled training data it often suffers from low precision or semantic drift
[Mintz et al., 2009]. However, grouping systems into one to those categories can be
sometimes difficult; approaches might combine techniques across different categories.
For this work supervised relation extraction and, in particular, distant supervision are

1also sometimes referred as semi-supervised
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of interest with a focus on the biomedical domain.

2.1.1 Biomedical Supervised Relation Extraction

In the last decade machine learning techniques became very popular for relation ex-
traction (such as [Culotta, 2004; Giuliano et al., 2006; Zelenko et al., 2003; Zhou
et al., 2005]), in particular supervised learning. Supervised relation extraction is a
method that requires training data, usually consisting of positive and negative training
examples to train a classifier. There are different methods and techniques to address
supervised relation extraction. In the biomedical domain various shared tasks have
been developed for different relations and use cases. These challenges often provide a
good overview about efficient approaches to solve different problems such as relation
extraction. Some relevant competitions include the following:

• BioNLP Shared Task [Kim et al., 2011; Nédellec et al., 2013], including many
sub-challenges such as Genia Event (GE) [Kim et al., 2013], Cancer genetics
(CG) [Pyysalo et al., 2013] or Bacteria Biotopes (BB) [Bossy et al., 2013]

• Drug-Drug Interaction (DDI) challenge [Segura-Bedmar et al., 2011b, 2013]

• Chemical Disease Relation (CDR) task [Wei et al., 2015]

Some other challenges address a range of further problems related to clinical data,
such as:

• i2b2 challenge [Uzuner et al., 2011]

• CLEF eHealth Evaluation Lab [Goeuriot et al., 2015]

Competitions such as BioNLP or DDI are more relevant for this work, since both
aim at relation extraction from biomedical publications as in this work. A short overview
about successful methods is now provided.

An analysis of the BioNLP GE task (the task with the most participants) shows, that
the majority of the participating systems rely on machine learning methods to detect
events and relations [Björne and Salakoski, 2013; Hakala et al., 2013; Li et al., 2013].
The two most successful systems EVEX [Hakala et al., 2013] and TEES [Björne and
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Salakoski, 2013] rely on a support vector machine (SVM) [Joachims, 1999] with a
large set of different features (e.g. token features, sentence features, dependency
chains) [Bjorne et al., 2012]. Some other approaches in the challenge use rule-based
methods [Bui et al., 2013; Tran et al., 2013]. The BioSEM system of Bui et al. [2013]
for instance is ranked third and uses a rule-based approach by generating patterns for
each event (e.g. binding, regulation).

The situation within the DDI 2013 challenge is similar. The best systems here
(FBK-irst [Chowdhury and Lavelli, 2013a], WBI [Thomas et al., 2013] and UTurku
[Björne et al., 2013]) also rely on machine learning methods using a SVM. The win-
ning system, FBK-irst, combines a range of different kernel methods such as a feature
based kernel [Chowdhury and Lavelli, 2013b], shallow linguistic (SL) kernel [Giu-
liano et al., 2006] and path-enclosed tree (PET) kernel [Moschitti, 2004]. Moreover,
the authors introduced a technique to reduce less informative candidate sentences in
the training data.

Supervised machine learning techniques are very efficient to detect relations in nat-
ural language, but require annotated data (positively and negatively labelled sentences)
to train the classifier. Machine learning methods tend to provide better classification
results the more training data is available (see e.g. [Banko and Brill, 2001; Brants et al.,
2007]). Unfortunately data is not always available for all different tasks. Moreover,
the generation of an annotated data set for training can be time consuming [Kim et al.,
2008] and expensive [Angeli et al., 2014]. In particular in the biomedical domain often
expert knowledge is required to annotate medical data (such as in [Kim et al., 2008;
van Mulligen et al., 2012]). For this reason, distantly supervised relation extraction has
become a popular alternative to supervised learning and is introduced in the following
subsection.

2.1.2 Distant Supervision

Distant supervision (also known as self-supervision or weak supervision)2 is a widely
applied technique for training relation extraction systems [Krause et al., 2012; Nunes

2Depending on the literature there might be different names for the same method, but also various
interpretations of the different terms. However, in this work the three terms (distant supervision, self-
supervised learning and weak supervision) are considered to be equivalent according to Riedel et al.
[2010].
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and Schwabe, 2014; Ritter et al., 2013; Roth and Klakow, 2013; Vlachos and Clark,
2014] that avoids the need for annotated training data. In particular in the last 5-7 year
the technique gained popularity. According to Mintz et al. [2009] distant supervision
is defined as follows:

“The distant supervision assumption is that if two entities participate in a relation,
any sentence that contain those two entities might express that relation.”.

Hence, training examples are annotated automatically using known facts (usually from
a knowledge base, for example [Ellendorff et al., 2014; Pershina et al., 2014; Poon
et al., 2015]). These facts are matched against text and used as training examples. For
example, a knowledge base may assert that the entity pair (“hair loss”,“paroxetine”)
is an instance of the relationship adverse-drug effect. Distant supervision approaches
normally assume that sentences containing both entities assert the relation between
them and, consequently, the sentence in Figure 2.2 would be used as a positive exam-
ple of the adverse-drug effect relation.

Findings on discontinuation and rechallenge supported the
assumption that the hair loss was a side effect of the
paroxetine. (PMID=10442258)

Figure 2.2: Correctly labelled sentence using distant supervision.

However, this assumption does not always hold which can lead to sentences con-
taining entity pairs being mistakenly identified as asserting a particular relation be-
tween them. For example, the sentence in Figure 2.3 contains the same entity pair but
does not assert the adverse-drug effect relation.

There are a few case reports on hair loss associated
with tricyclic antidepressants and serotonin selective
reuptake inhibitors (SSRIs), but none deal specifically
with paroxetine. (PMID=10442258)

Figure 2.3: Falsely labelled sentence using distant supervision.
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Distantly supervised relation extraction normally requires positive and negative
training examples. Negative data can be generated in different ways. Ling et al. [2013]
for instance produce negative data for the relation has-part in a controlled way. Ex-
amples are generated by reverse pairs (if e1 has-part e2, then e2 NOT-has-part e1) and
transitive characteristics of existing negative instances. Nonetheless, this technique
cannot be applied for all target relations. Thomas et al. [2011] focus on protein-protein
interactions and use Negatome [Smialowski et al., 2010] to generate negative data, a
knowledge base that contains protein pairs which are known to not interact with each
other. Nevertheless, in most of the cases knowledge bases do not contain negative
relations. For this reason negative data is often generated following a closed world
assumption (such as Nguyen and Moschitti [2011a]; Takamatsu et al. [2012]). If an
entity pair is not known as instance of a relation, the entity pair is considered to be
negative. Those negative entity pairs can be generated by creating new combinations
between existing entities of a relation. However knowledge bases are often incomplete,
thus this process might lead to false negative training data.

Data annotated using distant supervision is noisy and unlikely to be of as high qual-
ity as manually labelled data (see e.g. analysis in [Riedel et al., 2010]). Despite this,
distantly supervised relation extraction provides reasonable results compared to those
based on supervised learning (see e.g. in [Thomas et al., 2011]). Furthermore, dis-
tant supervision has the advantage that large amounts of training data can be generated
without the need for manual annotation.

In context of distant supervision, many approaches exist with similar techniques
but use a different terminology. Contrarily, some of those terms are also used in a dif-
ferent context. To provide a clear definition, in this thesis distantly supervised relation
extraction is defined as follows:

1. Training data is labelled according to prior knowledge (knowledge base, seeds).

2. The distantly labelled data is used as input to train a machine learning classifier.

3. Training data is generated only once; that means, no iterative process is involved
to gather more data (such as usually used in bootstrapping approaches). In other
words, no iterative process is used to increase training data in order to iteratively
increase the amount of distantly labelled data.
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Introducing History of Distant Supervision

The term ‘distant supervision’ was introduced by Mintz et al. [2009] in the context of
relation extraction. The authors use Freebase [Bollacker et al., 2008], a large semantic
knowledge base, and label sentences of Wikipedia for training. However, Craven and
Kumlien [1999], Wu and Weld [2007] and Bunescu and Mooney [2007] are considered
as the first approaches applying distant supervision.

Craven and Kumlien3 introduced the technique of distantly labelling data using
prior knowledge. The authors used the Yeast Protein Database (YPD) [Hodges et al.,
1998] to label training data from Medline abstracts (see Section 2.3.1) for subcellar-
localisation relations. Their relation extraction approach uses bag-of-word features
with a Naive-Bayes classifier.

Some years later Wu and Weld [2007] and Bunescu and Mooney [2007] introduced
a technique using a set of positive and negative seed instances to generate training ex-
amples from a web corpus. The approaches have similarities to bootstrapping methods,
without the need of an iterative knowledge acquisition, but with techniques from ma-
chine learning. Wu and Weld apply a technique where info-boxes of Wikipedia are
used to label training data from Wikipedia articles. Classifiers are trained using a con-
ditional random field (CRF).

The interesting aspect of the work of Bunescu and Mooney is the introduction
of multi-instance learning (MIL) into the use case of noisy labels. MIL is a tech-
nique which deals with incomplete knowledge about labels of training data. The ap-
proach was originally introduced by Dietterich et al. [1997] in context of detecting
drug molecules which bind to a target protein. While some known molecules bind
very well to proteins, other known ones do not bind well. Proteins may have different
shapes but it is not clear which shapes make the molecule bind well. The authors pro-
pose a technique to detect useful shapes of binding molecules, in which each molecule
is modelled as ‘bag’ containing its different shapes. A bag with different shapes of a
molecule that is known to bind well is labelled as positive bag. Conversely, a bag with
the different shapes of a molecule known to bind not well is labelled as negative. The
paper shows that the new method outperforms other approaches which do not take this

3Note, the authors use the terminology ‘weak supervision’, but according to different publications
(e.g. [Riedel et al., 2010; Surdeanu et al., 2012]) the work is considered as the first approach using
distant supervision.
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multi-instance characteristic into account [Dietterich et al., 1997].
Distantly labelled training data has a similar characteristic. Known facts provide

information about which pair of entities express a target relation. Conversely, it is
not known which sentences explicitly express the relation and which not. Hence, sen-
tences containing a positive entity pair can be considered as a bag of examples with
an unknown number of sentences expressing the target relation. Bunescu and Mooney
use an extended relation extraction approach using a SVM to handle MIL in context of
corporate acquisitions and person-birthplace relations. Multi-instance learning became
a very popular and successful technique for distant supervision (such as in [Liu et al.,
2014b; Ritter et al., 2013; Surdeanu et al., 2012]).

Riedel et al. [2010] improve multi-instance learning. Authors such as Craven and
Kumlien or Mintz et al. model the distantly supervised problem as single-instance
single-label supervised learning [Surdeanu et al., 2012]. However, Riedel et al. intro-
duced a novel graphical model that assumes that at least one sentence expresses the
target relation, if a (multi-instance) bag is labelled as positive. The model is able to
predict relations between entities, but also sentences which express the relations. This
setup is different to the previous approaches using distant supervision. Hoffmann et al.
[2011] extends the models of Riedel et al. to a multi-instance multi-label problem,
by taking into account that entity pairs can occur in different relations at once (over-
lapping relations) (e.g. a person might be the CEO and the founder of a company).
The system developed is called MultiR and is publicly available4, easily adjustable for
different knowledge bases and used for the experiments in this thesis (see Section 4.5).

A range of different publications focussed on further improvements of the MIL
method (such as [Ling et al., 2013; Min et al., 2013; Ritter et al., 2013; Surdeanu
et al., 2012]). However, other machine learning methods have been used in context of
distant supervision, such as multi-class logistic regression classifier [Augenstein et al.,
2014; Mintz et al., 2009], SVM (Bobic et al. [2012]; Nguyen and Moschitti [2011a])
or Neural Networks ([Zeng et al., 2015]) for instance.

An overview of distantly supervised relation extraction from out and inside the
biomedical domain is now provided. Finally, some mixture models (supervised and
distantly supervised) are presented.

4http://raphaelhoffmann.com/mr/
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Non-Biomedical Distant Supervision

Distant supervision was introduced in biomedical context [Craven and Kumlien, 1999].
Nonetheless, the technique first found popularity outside of the biomedical domain
(see e.g. Bunescu and Mooney [2007]; Mintz et al. [2009]; Wu and Weld [2007]).
Mintz et al. introduced the use of Freebase, which became a very popular use case for
many different approaches working with distantly supervised relation extraction (such
as [Abad and Moschitti, 2014; Min et al., 2013; Takamatsu et al., 2012; Yao et al.,
2010; Zhang et al., 2013]). Some other approaches use Wikipedia’s info-boxes (such
as [Hoffmann et al., 2010; Wu and Weld, 2007]), YAGO [Suchanek et al., 2007], a
knowledge base derived from WordNet and Wikipedia (such as Nguyen and Moschitti
[2011a]) or DBPedia [Auer et al., 2007] (such as Aprosio et al. [2013]).

Within the last few years many approaches focussed on further improvements on
distant supervision in the non-biomedical domain. A large range of methods aim at the
reduction of noise (such as Intxaurrondo et al. [2013]; Nguyen and Moschitti [2011a];
Ritter et al. [2013]; Roth et al. [2013]; Takamatsu et al. [2012] for instance) or the
reduction of false negatives (such as [Min et al., 2013; Xu et al., 2013] for instance).
Takamatsu et al. [2012] for example work on the reduction of incorrect annotations or
Xu et al. [2013] face the problem of knowledge base gaps. Some other approaches
focus directly on the noise in the data: Intxaurrondo et al. [2013] use a range of heuris-
tics to remove noise in the distantly labelled data and Augenstein et al. [2014] apply
techniques to detect highly ambiguous entity pairs and discard them from their labelled
training set.

Biomedical Distant Supervision

In recent years there has been also an increasing interest on distant supervision in the
biomedical domain. Rather than focussing mainly on one source (such as Freebase)
a wide range of different knowledge sources have been explored. This might be con-
nected to the fact that Freebase contains a large amount of information from outside of
the biomedical domain. On the other hand, there is a large range of different biomedi-
cal topics and domains that are spread across different knowledge bases.

Craven and Kumlien [1999] introduced the idea of distantly supervised relation ex-
traction using YPD (Yeast Protein Database). For many years the technique did not
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attract any attention in the life sciences. Thomas et al. [2011] started using distant su-
pervision in context of protein-protein interactions (PPI) using IntAct and Negatome.
Bobic et al. [2012] extended the approach of Thomas et al. by exchanging the knowl-
edge base to Kansas Proteomics Service (KUPS) database [Chen et al., 2011], which
unifies several PPI knowledge sources. Furthermore, the authors use the database
DrugBank [Knox et al., 2011] to detect drug-drug interactions as well. Ravikumar
et al. [2011] proposed a method to find protein-residue associations using the Protein
Data Bank (PDB) [Berman et al., 2000], Ling et al. [2013] detect meronyms (such
as has-part), Ellendorff et al. [2014] use the Comparative Toxicogenomics Database
(CTD) [Davis et al., 2009] to detect interactions between genes and chemicals and
Poon et al. [2015] the Pathway Interaction Database (PID) [Schaefer et al., 2009] for
the extraction of cancer pathway. As the overview shows, there is a wide range of
different biomedical knowledge bases and, therefore, distant supervision can be used
for different biological and medical fields.

Various approaches have used UMLS (see Section 2.3.2 for more information), as
a knowledge source. Nikolova and Angelova [2011] applied distant supervision to is a

relations of the UMLS Metathesaurus, as well as the relation affect of the UMLS Se-
mantic Network. Liu et al. [2014b] detect genes in brain regions (location-of ) from
literature using the UMLS Semantic Network. Finally, the work of Tymoshenko et al.
[2012] focussed on a method to mine relations of the National Drug File Repository
Thesaurus (NDF-RT or NDFRT) a subset of UMLS Metathesaurus. Their technique
relies on entity-level semantics and uses hierarchical information of UMLS to extract
relation from text. As comparison to their proposed technique, the authors present a
distantly supervised model using some relations of NDF-RT. However, their main fo-
cus is entity-level semantics with UMLS taxonomy and (Wikipedia) link features and
not distant supervision. Furthermore, their setup for the distantly supervised classifier
appears to be unrealistic with a bias5 1:1. Usually the amount of positive and nega-
tive instances are highly unbalanced towards negative data which makes classification
much more challenging.

Many different knowledge bases have been tested and used for distant supervision.
The UMLS Metathesaurus is a large medical knowledge base which has been used
for many different NLP tasks. However, the Metathesaurus has not been examined in

5In this context bias represents the ratio of positive and negative instances to each other.
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detail whether it is a useful source for distantly supervised relation extraction. This
issue will be explored in this thesis.

2.1.3 Mixed Classification Models

Supervised relation extraction often provides reliable results but requires a sufficient
amount of manually labelled training data. Unfortunately, a sufficient number of this
data is not always available and its generation can be time consuming and expensive.
Conversely, distantly supervised relation extraction is able to produce large amount of
data, but of a varying quality, thereby reducing the classification results. Some ap-
proaches make use of both techniques using machine learning in order to achieve fur-
ther improvements. Different terminologies are used for the combination of manually
labelled and automatically labelled data. One frequently used term is semi-supervised
learning, which addresses this task by ‘using large amount of unlabeled data, together
with the labeled data, to build better classifiers’ [Zhu, 2006].

Nguyen and Moschitti [2011b], Pershina et al. [2014] and Angeli et al. [2014] focus
on improving distant supervision by including manually labelled data. Nguyen and
Moschitti [2011b] use a SVM and combine the supervised and the distantly supervised
classifier with a linear combination. Pershina et al. [2014] and Angeli et al. [2014]
integrate the manually labelled data directly within their distantly supervised multi-
instance learning approach.

Kordjamshidi et al. [2015] instead focus on improving supervised learning by using
distantly labelled data. The authors argue that: ‘The main issue of a fully supervised
system is the difficulty to generalise towards unseen patterns. This problem is more
apparent the sparser the data, and the richer the representation.’. Their technique is
tested in biomedical context (Gene Regulation Network).

Chapter 3 presents the use of manually and distantly labelled data in order to im-
prove classification results. In contrast to previous approaches, Chapter 3 explores the
impact of distantly labelled data in combination with an increasing number of manu-
ally labelled training instances. The presented approach is tested in context of adverse
drug effects.
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2.2 Evaluating Relation Extraction Systems

This section discusses how distant supervision can be evaluated. Usually distant su-
pervision is applied when no annotated training data is available. However, this often
means that also no data is available for the evaluation, which raises the issue of how
such a system can be evaluated. Some previous approaches have made use of existing
labelled data sets (with annotations similar to the related information in the knowl-
edge base) to evaluate approaches based on distant supervision, such as Thomas et al.
[2011] and Bobic et al. [2012]. Other approaches such as Craven and Kumlien [1999]
generate their own gold standard to annotate relevant relations of their knowledge base.
But the effort required to generate manually labelled evaluation data somewhat negates
the benefit of distant supervision reducing development time. Unfortunately for many
relations no annotated data set is available, thereby different evaluation techniques are
required, apart from gold standard evaluation.

Figure 2.4: Held-Out Evaluation

An alternative approach, which does not require any labelled data, is held-out (also
sometimes called hold-out) evaluation. This approach splits facts from the knowledge
base into two parts: one to generate distantly supervised training data and the other
to generate distantly supervised evaluation data (such as in [Hoffmann et al., 2010;
Mintz et al., 2009; Riedel et al., 2010]). Consequently the system is both, trained and
evaluated on/with noisy data. Held-out evaluation usually means, that the system is
evaluated against the knowledge base (Is it possible to detect the known facts of held-
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out knowledge base?). Held-out evaluation is visualised in Figure 2.4.
This approach is often combined with a manual evaluation in which a subset of

the predictions is selected to be examined in more detail. For example, Riedel et al.
[2010] supplemented the held-out evaluation of their distant supervision approach for
Freebase by selecting the top 1000 facts and evaluating them manually. Others such as
Surdeanu et al. [2012] and Intxaurrondo et al. [2013] work with the same knowledge
base and are able to re-use the manually labelled data generated by Riedel et al. [2010].
However, this data is only available for some Freebase relations and evaluation data has
to be generated for each new relation. Approaches such as Takamatsu et al. [2012],
Zhang et al. [2013] and Augenstein et al. [2014] combine a held-out evaluation with a
manual evaluation of a randomly chosen subset or the top-k predictions. This technique
is a more reliable evaluation method but requires more effort including (potentially)
domain knowledge and needs to be repeated for each version of the classifier.

Held-out evaluation is also used in this work. Held-out evaluation using distantly
labelled data is a simple and quick technique for estimating the accuracy of distantly
supervised relation extraction systems. Nonetheless, this evaluation data is noisy and
it is unclear what effect this has on the accuracy of performance estimates. Chapter 5
examines evaluation on held-out data in comparison to a manually labelled version of
the same data, in order to examine its advantages and drawbacks.

2.2.1 Evaluation Levels

In this work two evaluation approaches will be used: sentence level evaluation and
entity level evaluation. Sentence level evaluation means that an entity pair will be
considered as correct if the two entities express the relation of interest in the sentence
they occur. Each single prediction (each sentence with the given entity pair) will be
examined and influences the evalution results. Sentence level evaluation can be useful
to find documents and in particular sentences that express relevant information in large
data sets.

Entity level evaluation instead, is evaluated based on the fact whether the extracted
entity pair represents the target relation (evaluation against KB) or not. Predicted sen-
tences are reduced to a set of entity pairs. A prediction is considered as correct if either
a (known) related entity pair is predicted as positive in at least one of the sentences or
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if an entity pair which is not known to be related, is never predicted as positive. In
this context it is not necessarily important, how often an entity pair occurs within a set
of given sentences. Correct and incorrect predictions dependent only on the overall
prediction of an entity entity pair.

Findings on discontinuation and rechallenge supported the
assumption that the hair loss was a side effect of the
paroxetine. (PMID=10442258)

Figure 2.5: Correctly predicted adverse drug effect between target entities.

There are a few case reports on hair loss associated
with tricyclic antidepressants and serotonin selective
reuptake inhibitors (SSRIs), but none deal specifically
with paroxetine. (PMID=10442258)

Figure 2.6: Incorrectly predicted adverse drug effect between target entities.

The given example in Figure 2.5 and Figure 2.6 exemplifies both evaluation levels,
assuming a classifier predicts an adverse drug effect between hair loss and paroxetine

in both sentences. On sentence level each prediction is examined and evaluated based
on the information provided in the sentence. It means, that the classifier predicts the
first sentences correct and the second one incorrect. The incorrect prediction reduces
the quality of the classifier according the metrics presented in the following subsection.

On entity level evaluation only one prediction is considered for the evaluation of
the classifier (for the given example). Assuming that hair loss is a known adverse effect
of paroxetine, at least once the entity pair (hair loss, paroxetine) has to be predicted
as an adverse drug effect. If the entity pair is predicted at least once as positive, the
prediction is counted as a true positive prediction, otherwise as false negative. The
‘false’ prediction of the second sentence does not matter on entity level evaluation since
the context where the information occurs does not matter, only whether an positive
(correct) entity pair can be detected as instance of the relation.
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2.2.2 Evaluation Metrics

Precision, Recall and F1-Score (often just called F-Score or F1) are very common
measures of performance for a classification task, such as relation extraction. The
measures base on the correlation between ‘true’ labels and predicted labels presented
in Table 2.1. In the following the different measures are explained in detail.

annotated (gold standard) labels
positive negative

predicted labels
positive true-positives false-positives
negative false-negatives true-negatives

Table 2.1: Confusion Matrix: Predicting instances

post is defined as the amount of positively predicted relations that are predicted
correctly (true-positive) and posf the amount of positively predicted relations pre-
dicted incorrectly (false positive). negt is the amount of negative predictions that are
correctly predicted as negatives (true-negative) and negf the amount of negative pre-
dictions that are incorrectly predicted as negatives (false negative). Then Precision,
Recall and F1-Score are defined in the following way:

Precision:
Precision defines the proportion of correctly predicted relations in comparison to all
entity pairs predicted as positive.

Precision =
post

(post + posf )

Recall:
Recall defines the proportion of correctly predicted relations in comparison with all
existing relations in the test set.

Recall =
post

(post + negf )
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F1-Score:
The F1-Score is the harmonic mean between Precision and Recall. The F1-Score is
the most frequently used F-Measure. However, variations of the F1-Score exist which
emphasise Precision over Recall (F0.5-Score) or vice versa (F2-Score). The F1-Score
is defined as follows:

F1 = 2 ∗ Precision ∗Recall
(Precision+Recall)

Micro average F1-Score:
The Micro average F1-Score is a technique to deal with the prediction and evaluation
of multiple classes at the same time. It takes under consideration that some classes
involve instances with a higher frequency than other ones. Assuming for example a
classification task with two classes (class A with 10,000 instances and class B with
100 instances) and a classifier which is able to predict class A with an F1-Score of 20
and class B with a F1-Score of 80. In the given example the low F1-Score of the class
A has a stronger impact on the overall results (micro avg. F1) due to the fact that it
contains more instances.

The Micro average F1-Score is calculated by using the harmonic mean of the Micro
avg. Precision (MiPrecision) and the Micro avg. Recall. (MiRecall). MiPrecision and
MiRecall are generated using the true-positives and false-positives of each different
class (c ∈ C), whereas postc defines the amount of true-positives of class c and posfc
the amount of false-positives of class c:

MiPrecision =

∑
c∈C postc∑

c∈C(postc + posfc)

MiRecall =

∑
c∈C postc∑

c∈C(postc + negfc)

2.3 Resources

In the following some key resources that are important for this work are introduced.

35



2.3.1 Medline repository

Medline is a large repository containing abstracts and links to complete publications
from life science and biomedical domain. The data is made freely available on the In-
ternet by the United States National Library of Medicine (NLM) and can be accessed
and searched by the search engine PubMed6. Medline contains selected publications
from generally 1946 to present7 (with some older material) and is a permanently grow-
ing data base. Every day approximately 2,000-4,0007 completed references have been
added since 2005. Currently Medline contains more than 22 million references7 of
biomedical publications. Sentences extracted from Medline abstracts are used to con-
duct the experiments in this work. Many examples given in this thesis are provided
with a PMID (PubMed-ID), which can be used to find the abstract on PubMed the
sentence was extracted from.

2.3.2 UMLS

The Unified Medical Language System8 (UMLS) is a large biomedical knowledge base
containing millions of medical terms and relations between them, and will be used to
train distantly supervised classifiers in this work. Overall UMLS can be divided into
three different parts: the Metathesaurus, the Semantic Network and the SPECIALIST
Lexicon. The SPECIALIST Lexicon provides lexical information about medical terms,
for instance it defines words as nouns or adjectives. For this work only the UMLS
Metathesaurus and parts of the Semantic Network are relevant.

The Metathesaurus is the core of UMLS and unifies existing biomedical knowledge
bases (vocabularies), such as the Gene Ontology (GO) or the National Drug File -
Reference Terminology (NDFRT). Currently UMLS contains more than 120 different
vocabularies. The vocabularies that include the largest number of medical concepts are
SNOMED-CT, NCBI and MSH.

Medical concepts can be described in different ways with different spellings, dif-
ferent abbreviations and also in different languages. UMLS unifies those variations us-
ing the Concept Unique Identifier (CUI). The two most important parts of the UMLS

6https://www.ncbi.nlm.nih.gov/pubmed/
7http://www.nlm.nih.gov/pubs/factsheets/medline.html, date: 26th of

September 2015
8https://www.nlm.nih.gov/research/umls/

36

https://www.ncbi.nlm.nih.gov/pubmed/
http://www.nlm.nih.gov/pubs/factsheets/medline.html
https://www.nlm.nih.gov/research/umls/


Metathesaurus for this work are the subsets MRCONSO and MRREL. Both subsets
can be seen as two large tables.

MRCONSO - UMLS Metathesaurus

MRCONSO contains concepts, concept names and their identifiers. It maps medical
terms across the different vocabularies to a CUI. It contains information about differ-
ent vocabularies and languages. For instance, the version used in this work9 contains
six different entries in MRCONSO for the string (in lower case) ‘headache’ involv-
ing two different CUIs (C0018681 and C2096315) across five different vocabularies.
Conversely, 268 MRCONSO entries are found for CUI=C0018681. These are defined
within 51 different vocabularies across 17 different languages. For English alone it
is possible to find 51 different strings such as ‘Headache’, ‘headache’, ‘Pain head’,
‘Cranial Pains’ or ‘cephalalgia’. An excerpt of MRCONSO for the CUI C0018681 is
given in Figure 2.2. In the example the most relevant information for this thesis are
highlighted (CUI, source vocabulary and string).

MRREL - UMLS Metathesaurus

MRREL defines binary relations between medical concepts. Each relation instance
is defined by a pair of CUIs. MRREL contains a range of different information for
each entry. However, the most important information beside the two related CUIs are
the relation label (REL), the relation attribute label (RELA) and the source abbreviation
(SAB), which refers to its source vocabulary. REL can be assigned to one of 12 different
labels (see Table 1 in Appendix 110) and defines a more general concept of a relation.
The RELA labels are very useful for this thesis and provide a more detailed name
for each relation, such as has tradename, associated morphology of or part of. If an
MRREL instance does not contain any RELA label it is not always apparent which
relation is described between the two CUIs.

For CUI C0018681 (‘headache’) the MRREL table contains 2809 entries across
47 different vocabularies. The same CUI pair (relation) can be defined within different

9Version 2013AA.
10Data extracted from https://www.nlm.nih.gov/research/umls/

sourcereleasedocs/current/CCC/relationships.html.
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vocabularies, which means that only 1046 of those CUI pairs are unique. Moreover,
a large amount of CUI pairs do not assign a RELA label. However, CUI C0018681

occurs within 28 different relations (with RELA labels), including isa, may-treat, has-

expanded-form, induces or disease-may-have-finding.
Figure 2.3 presents some example instances of MRREL. Slot 1 and Slot 5 con-

tain the related CUI pair, Slot 4 the REL label, Slot 8 RELA label and Slot 11 SAB
(mentioned positions are highlighted). Example 1) contains a sibling (SIB) relation be-
tween the the CUIs (C0000052, C0017915) (‘1,4-alpha-Glucan Branching Enzyme’,
‘Transfer-Glucosidase’). The instance does not specify a value in the field RELA and it
is defined within the source vocabulary MSH (Medical Subject Headings; MeSH). Ex-
ample 2) presents a parent-child relation between two CUIs (C0000163, C0017915)
(‘17-Hydroxycorticosteroids’, ‘Hydrocortisone’). Example 3) defines a vaguely de-
fined relation (C0000039, C0005768) (‘1,2-Dipalmitoyl-Glycerophosphocholine’, ‘blood’).
The instance does not contain any RELA label which specifies the relationship in more
detail. Moreover, the label REL is defined as AQ (allowed qualifier), which is very
general and possibly not useful for distant supervision. Example 4) instead contains
a relation of NDFRT and is defined as has active metabolites (C0000618, C1177390)
(‘6-Thiohypoxanthine’, ‘Azathioprine 75 MG Oral Tablet’).

Usually relations are directed and defined in both directions (see Table 2.3, Ex-
ample 6) and Example 7)): For example MRREL contains the relation disease-may-

have-finding for the CUI-pair (C0018681,C0025149) (‘Headache’, ‘Glioblastoma’).
Thus, MRREL contains also the reverse CUI-pair (C0025149, C0018681) for the rela-
tion may-be-finding-of-disease. To reduce redundancy reverse relations of UMLS are
ignored for this work.

Semantic Network

The Semantic Network assigns semantic types (STY) to each medical concept and
defines semantic relations between the different semantic types. CUI C0018681 for
instance, refers to the semantic type ‘Sign or Symptom’, whereas ‘Sign or Symptom’

can be involved in 68 different relations of the Semantic Network, such as isa(‘Sign

or Symptom’, ‘Finding’), diagnoses(‘Sign or Symptom’, ‘Injury or Poisoning’) and
treats(‘Drug Delivery Device’, ‘Sign or Symptom’). Relations in the Semantic Net-
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work are more general than those in the UMLS Metathesaurus. Obviously, not every
CUI that is assigned to ‘Drug Delivery Device’ can treat a headache.

2.3.3 MetaMap

MetaMap [Aronson and Lang, 2010] is a system to map UMLS concepts to text doc-
uments and can be used to carry out a named entity recognition. In order to generate
distantly labelled data in this work, sentences containing medical concepts related in
UMLS have to be selected for further processing. However, UMLS defines relations
as CUI pairs. For this reason it is essential to ‘annotate’ (map) UMLS-CUIs in text,
such as medical abstracts from the Medline repository. These annotations are provided
by MetaMap.

In order to map CUIs to sentences of the medical domain, MetaMap applies a range
of different lexical and syntactic processing steps [Aronson and Lang, 2010]. First,
MetaMap runs a tokenisation, sentence boundary detection and acronym/abbreviation
identification, followed by a part-of-speech tagging. Next, it applies a lexical lookup
of input words using the UMLS SPECIALIST Lexicon. Finally, phrases and their syn-
tactic heads are identified using a shallow parse. Each phrase is then further examined
in the following way: First, variants of the phrase words are generated (normally us-
ing a lookup table), succeeded by an identification of possible UMLS Metathesaurus
concepts mapping to words in the phrase. This resulting list of candidates are mea-
sured based on how well the input string is matched. In a next step different mappings
(combinations) of MetaMap candidates of the given phrase are generated. Finally, a
Word Sense Disambiguation (WSD) can be applied in order to find its favoured map-
ping of Metathesaurus concepts. MetaMap is highly configurable which influences the
candidate mapping, the selection of the most appropriate concepts and also the output.
An MetaMap example of the sentence ‘AIMS : To study the distribution of clinically
important red cell antibodies in pregnancy, and the associated fetal and neonatal mor-
bidity and mortality.’ (PMID=9536844) is provided in the following. Figure 2.7 shows
how MetaMap segments the sentence into different phrases (phrases are separated by
‘—’). Next, MetaMap searches for possible CUIs for each phrase. Table 2.4 depicts
the list of CUI candidates for the fifth phrase ‘the distribution of clinically important
red cell antibodies’. Figure 2.8 presents the final UMLS-CUIs mapping according to
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the highest ranked mapping results.

AIMS | : | To | study | the distribution of clinically
important red cell antibodies | in pregnancy, | and |
the associated fetal | and | neonatal morbidity | and |
mortality.

Figure 2.7: MetaMap-segmented sentence

C0520511 distribution (Distributing) [Idea or Concept]
C1704711 Distribution [Functional Concept]
C2698777 DISTRIBUTION (Pharmacokinetics: Distribution) [Regu-

lation or Law]
C0037775 Distributions (Spatial Distribution) [Spatial Concept]
C0014792 Red Cell (Erythrocytes) [Cell]
C0007634 THE CELL (Cells) [Cell]
C0003241 Antibodies [Amino Acid, Peptide, or Protein,Immunologic

Factor]
C0332575 Red (Redness) [Finding]
C1260956 Red (Red color) [Qualitative Concept]
C1269647 Cell (Entire cell) [Cell]
C1704653 Cell (Cell Device Component) [Medical Device]
C1948049 Cell (Cell (compartment)) [Spatial Concept]
C0021027 Antibody (Immunoglobulins) [Amino Acid, Peptide, or

Protein,Immunologic Factor,Pharmacologic Substance]
C3282337 Cells (Cells [Chemical/Ingredient]) [Cell]
C0178539 Cellular [Functional Concept]
C1516377 Cellularity [Qualitative Concept]

Table 2.4: CUI candidate list (including semantic types) provided by MetaMap

According to Aronson and Lang [2010] one of the weaknesses of MetaMap is its
focus on English text. Another drawback of the system is its slow processing time
(not appropriate for real-time use) and its reduced accuracy in context of ambiguous
concepts. In the example in Figure 2.8, CUI C0332575 connected to the colour red
refers to the semantic type ‘Finding’ and has the following definition: ‘Coloration of
the skin; sign of inflammation’. This does not seem to be appropriate for the given
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[C1947946:AIMS]: To [C0008976:study] the [C0520511:distri-
bution] of clinically important [C0332575:red] [C0007634:cell]
[C0003241:antibodies] in [C0032961:pregnancy], and the
[C0332281:associated] [C0015965:fetal] and [C1552240:neonatal]
[C0026538:morbidity] and [C0026565:mortality].

Figure 2.8: MetaMap annotation of UMLS-CUIs

context. Moreover, Oellrich et al. [2015] shows that tools such as the NCBO Anno-
tator [Jonquet et al., 2009] and the clinical Text Analysis and Knowledge Extraction
System (cTakes) [Savova et al., 2010] often provide better results (in terms of F-Score)
compared to MetaMap.

However, MetaMap has been used for this thesis due to a range of positive aspects.
First, MetaMap is freely available11, widely used [Simpson and Demner-Fushman,
2012] and a popular tool to annotate UMLS concepts to natural language (used e.g.
by Hanauer et al. [2014]; Liu et al. [2014a]; Preiss et al. [2015]). In this work one
million Medline abstracts are used in order to generate distantly labelled training data,
which might be a problem, due to the slow processing time of MetaMap. However, a
Medline subset which contains already MetaMap annotations was found on the NLM
webpage12 and was used for this work13.

2.4 Summary

This chapter presented an overview of related work and relevant resources. Firstly,
the chapter provided an introduction into supervised relation extraction, presenting a
range of different biomedical state-of-the-art approaches to detect relations in natural
language. It showed that SVMs are successful and popular approaches to the rela-
tion extraction task. Next, distantly supervised relation extraction was presented, in-
cluding the introduction of the general idea, some approaches and knowledge sources

11http://metamap.nlm.nih.gov/
12The subset can be downloaded here: http://mbr.nlm.nih.gov/Download/

MetaMapped_Medline/ and further information can be found here: http://skr.nlm.
nih.gov/resource/MetaMappedBaselineInfo.shtml

13MetaMap version 13 with UMLS 2013AA is used.
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used. This section highlighted that multi-instance learning is a successful and popu-
lar technique to handle distantly labelled data. Then, different evaluation techniques
for distantly supervised relation extraction were presented. Finally, various important
resources for this work, including UMLS and MetaMap were presented.
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Chapter 3

Bootstrapping Limited Training Data

Supervised machine learning techniques have proved to be the most effective approach
to detect relations between entities in natural language (see Chapter 2). However, they
require labelled training data which may not be available in sufficient quantity (or at
all) and is expensive to produce. This chapter proposes a technique that can be applied
when only limited training data is available. The approach uses a form of bootstrapping
or distant supervision (according to the given definition in Chapter 2.1.2) and does not
require an external knowledge base. Instead, it uses information from the training
set to acquire new labelled data and combines it with manually labelled data. The
described technique has similarities to minimally supervised bootstrapping techniques,
semi-supervised learning and techniques described in Section 2.1.3 (e.g. Nguyen and
Moschitti [2011b] and Kordjamshidi et al. [2015]). The approach can be considered
also as a kind of distant supervision.

The goal of this chapter is to identify under which circumstances distantly labelled
data can be used to support supervised learning. Using a small set of manually labelled
instances (gold standard), a supervised classifier is trained to detect adverse-drug ef-
fects. In parallel, seeds (known positive and negative facts) are extracted from the
training data to automatically label further positive and negative examples using dis-
tant supervision (see Section 2.1.2). In addition to the supervised classifier, two further
classifiers are trained, one using the noisy (but large set of) distantly labelled data as in-
put and the other one a mixture of the manually labelled and the distantly labelled data.
The chapter examines, when gold standard data set is better than the larger distantly
labelled data set and vice versa.
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The chapter is structured as follows. The next section introduces the ADE data set
which is used for the experiments. The techniques for generating the distantly super-
vised training data and relational classifier are described in Section 3.2, followed by an
introduction of the relation extraction system in Section 3.3. Section 3.4 describes the
experiment with a data analysis and the results. The chapter ends with a conclusion in
Section 3.5.

3.1 ADE Data

The experiments in this chapter use the ADE data set [Gurulingappa et al., 2012b]
which contains examples of adverse drug effects (ADE). An ADE can be defined as
follows: ‘Adverse drug effect is a response of a drug which is noxious and unintended,
and which occurs at doses normally used in humans for the prophylaxis, diagnosis,
therapy of disease, or for the modification of physiological function.’1 [Gurulingappa
et al., 2012b]. ADEs are responsible for one of the most common causes of death in
industrialised nations and are the fourth leading cause of death in the U.S. [Giacomini
et al., 2007]. To reduce this risk, the side-effects of drugs need to be detected and made
publicly available as quickly as possible. Relation extraction can be used to support
the detection of adverse drug effects.

The ADE data set has been used by Gurulingappa et al. [2012a] and Kang et al.
[2014] in context of relation extraction. Gurulingappa et al. [2012a] address the prob-
lem by using a SVM-based classifier, as described in Section 3.3. Kang et al. [2014]
instead, rely on a data-driven method, using the shortest path between candidate con-
cepts within UMLS. Both methods provide very promising results, however, a direct
comparison is not possible, since generation of parts of the data and exact split into
training and test data remains unknown.

3.1.1 Corpus overview

The ADE data set consists of Medline case reports examined by three human anno-
tators. Sentences in these case reports containing adverse effects between drugs and

1World Health Organization (WHO) glossary of terms used in Pharmacovigilance.
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conditions were extracted and entities annotated to generate the data set. An exam-
ple relation between a drug and a condition from this data set is shown in Figure 3.1.
According to the given sentence the condition pseudoporphyria is caused by the two
drugs naproxen and oxaprozin.

METHODS: We report two cases of [CONDITION:pseudoporphyria]
caused by [DRUG:naproxen] and [DRUG:oxaprozin].
(PMID=10082597)

Figure 3.1: Example of a drug-related adverse effect

The ADE corpus only contains examples of positive relations. Negative examples
are also required to set-up a meaningful ADE prediction task and to train a supervised
ADE classifier. A set of negative examples are generated in a similar way as in Kang
et al. [2014]:

First, named entity recognition is used to detect drugs and conditions. Thus, MetaMap
(see Section 2.3.3) was run on the unannotated sentences of the ADE corpus to detect
biomedical concepts from UMLS. Each annotated UMLS-CUI in the sentence can be
mapped to a semantic type (see Section 2.3.3). Only those CUIs which refer to a
semantic type which belongs to one of the two groups “Chemicals & Drugs” and “Dis-
orders” (according to the definition of Bodenreider and McCray [2003], see Table 2 in
Appendix 1) are kept; all other CUIs are removed. Negative data is generated between
a CUI referring to the group “Chemicals & Drugs” and a CUI referring to the group
“Disorders”. Similar as in the classification tasks of Kang et al. [2014] and Gurulin-
gappa et al. [2012a], nested relations2 are not considered in this generation process.

An example of the negative relation generation process is illustrated in Figures
3.2-3.4. Figure 3.2 presents a sentence with UMLS-CUI annotations provided by
MetaMap. Figure 3.3 shows the different semantic types of each CUI. As seen in the
figure, some CUIs can match to various semantic types. Next, entities with semantic
types that do not belong to the semantic groups “Chemicals & Drugs” or “Disorders”

2In case of a nested relation, one of the entities contains the other one. In the following example
caffeine intoxication, which is the adverse effect of caffeine, embeds the other entity: ‘Severe rhabdomy-
olysis following massive ingestion of oolong tea: caffeine intoxication with coexisting hyponatremia.’
(PMID=10592946)
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[C0060483:Fludarabine monophosphate], a [C1268902:purine
analogue] is [C1524063:used] in the [C0001554:treatment]
of [C1518071:lymphoid] [C0006826:malignancies].
(PMID=12111771)

Figure 3.2: Mapping UMLS annotations to a sentence using MetaMap

[Nucleic Acid, Nucleoside, or Nucleotide,Pharmacologic
Substance:Fludarabine monophosphate], a [Biologically
Active Substance,Nucleic Acid, Nucleoside, or
Nucleotide:purine analogue] is [Functional Concept:used]
in the [Occupational Activity:treatment] of [Qualitative
Concept:lymphoid] [Neoplastic Process:malignancies].
(PMID=12111771)

Figure 3.3: Replacing UMLS-CUIs with semantic types

(see Table 2 in Appendix 1) are removed. The names of the remaining entities are re-
placed with the name of the semantic group, as shown in Figure 3.4. Finally, negative
data is generated by creating new combinations between entities from the semantic
group “Chemicals & Drugs” with entities from the semantic group “Disorders”. Ac-
cording to the given example the two negative combinations (‘fludarabine monophos-

phate’,‘malignancies’) and (‘purine analogue’,‘malignancies’) can be created.
The resulting set of positive and negative instances is used to generate training and

evaluation sets. A set of 16443 ADE abstracts was used for the experiment. 500 ab-
stracts were used to create training data and the remainder used to form the evaluation
set.

3.2 Automatic Generation of Additional Training Data

Distant supervision uses information about related instances (e.g. drugs and known
adverse effects) to automatically generate training data. In the majority of cases this in-
formation is obtained from a knowledge base (see Section 2.1.2). This chapter presents

3That is the amount of abstracts available containing at least one positive instance.
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[Chemicals & Drugs:Fludarabine monophosphate], a [Chemicals
& Drugs:purine analogue] is used in the treatment of
lymphoid [Disorders:malignancies]. (PMID=12111771)

Figure 3.4: Keep entities that match to semantic groups

an approach that makes use of information from a small set of abstracts. For exam-
ple, the sentence shown in Figure 3.1 suggests that there are cases when the drugs
oxaprozin and naproxen cause pseudoporphyria. Consequently unlabelled sentences
containing these two drug-condition entity pairs (i.e. oxaprozin-pseudoporphyria and
naproxen-pseudoporphyria) can be treated as positive examples.

The automatically labelled data used for the experiment in this chapter is generated
by applying a three stage process (see Figure 3.5):

POS

NEG

Named entity detection and 

extraction of drug and conditions 

which occur together in a sentence

1) Using MetaMap to match 

CUIs to to given entities.

ADE:

selected

Medline

abstracts 2) pos 

& neg
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pairs

Medline

including

UMLS

annotation

auto-

matically

labelled 

data

3) Extract sentences from 

Medline which contain positive

 and negative CUI pairs.

Figure 3.5: Automatic generation of training data for ADE relations

1) Map CUIs to related entities in the training data set. First positive sentences
in the manually labelled data are normalised4. As mentioned already (Section 2.3.2),
medical terms can occur in literature with different names, using a different spelling

4This step is not necessary for the negative examples, because they already include CUI information
for each entity (see Section 3.1).
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or abbreviations. For instance Naproxen can be also described as Methoxypropiocin,
MNPA or 6-Methoxy-alpha-methyl-2-naphthaleneacetic Acid. UMLS maps these dif-
ferent names to the same CUI, C0027396. MetaMap is used to annotate sentences
containing positive examples to obtain UMLS-CUIs for each relevant entity. In many
cases it is possible to assign a MetaMap annotation to the existing related entities.
Figure 3.6 shows the original ADE sentence and its MetaMap CUI annotation. In
the original training data, pseudoporphyria is defined as condition and naproxen and
oxaprozin as drug. MetaMap provides UMLS concepts for each of these entities.

METHODS: We report two cases of [CONDITION:pseudoporphyria]
caused by [DRUG:naproxen] and [DRUG:oxaprozin].

[C0025663:METHODS]: We [C0684224:report] [C0205448:two]
[C0868928:cases] of [C0521616:pseudoporphyria]
[C0015127:caused] by [C0027396:naproxen] and
[C0069739:oxaprozin]. (PMID=10442258)

Figure 3.6: Positive ADE sentence (top) and its MetaMap annotation (below)

Only CUIs that can be mapped to the entity in its full length (not only a substring)
are used. An example for incomplete matches is given in Figure 3.7. The original
entity ‘life-threatening complications’ cannot be completely matched against a concept
in UMLS. Instead, MetaMap provides two UMLS concepts for the entity (C2826244
and C0009566). To reduce the possibility of false data the entities in Figure 3.7 are not
used to generate automatically labelled data.

2) Extract a set of positive and negative seed instance pairs. In the next step, all
CUI pairs from the positive ADE examples are extracted and added to a set of positive
instance pairs P . Furthermore, CUI pairs from negative ADE examples are extracted
and added to a negative instance pair set N . CUI pairs which occur in both sets (P
and N ), are removed from N . Considering the example in Figure 3.6 it is possible
to extract the positive CUI pairs (C0027396,C0521616) and (C0069739,C0521616)
from the ‘known’ ADE pairs (naproxen, pseudoporphyria) and (oxaprozin, pseudo-

porphyria).
3) Extract sentences containing positive and negative seed instances from abstracts.

The automatically labelled training data is generated using 3,000,000 Medline ab-
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We now report the first known cancer patient who developed
[CONDITION:life-threatening complications] after treatment
with topical [DRUG:5-FU] and was shown subsequently to have
profound DPD deficiency.

We [C1948052:now] [C3273238:report] the [C1552608:first
known] [C1516213:cancer patient] who developed
[C2826244:life-threatening] [C0009566:complications]
[C0001758:after treatment] with [C0332237:topical]
[C0016360:5-FU] and was [C1547282:shown] subsequently
[C1883351:to] have [C0439808:profound] [C1959620:DPD
deficiency]. (PMID=10473079)

Figure 3.7: Example of an insufficient entity normalisation

The phenylpropionic acid derivative group of nonsteroidal
anti-inflammatory drugs, especially [C0027396:naproxen], is
known to cause [C0521616:PP]. (PMID=17266758)

Figure 3.8: Automatically labelled positive example

stracts with MetaMap-UMLS annotations5 (see Section 2.3.3). Then sentences from
this subset containing positive and negative CUI pairs are extracted and labelled as
positive and negative examples. The sentence in Figure 3.8 for instance is a distantly
labelled sentence containing the positive CUI pair (C0069739, C0521616).

The automatically generated data is biased towards negative examples. Using a
much larger number of negative instances than positive ones has several disadvan-
tages. First, it can lead to a high precision but to a relatively low recall. Second,
using approximately 8-10 times more negative instances than positive ones increases
the training time required. If the positive data is relatively large it might also lead
to memory errors. As seen in Thomas et al. [2011] for instance, the ratio of positive
to negative instances influences the classification results. For this reason the bias of
the distantly labelled data will be always adjusted to the same ratio as the manually
labelled training data being used.

5Downloaded from http://mbr.nlm.nih.gov/Download/MetaMapped_Medline/.
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3.3 Relation Extraction System

This chapter focuses on improving relation extraction when only a small set of man-
ually labelled instances is available. A successful way to detect relations in natural
language (using manually labelled data) is supervised learning using a SVM, as seen
in the related work (Section 2.1.1). Gurulingappa et al. [2012a], a previous approach
using the ADE data set to detect adverse drug effects, used the Java Simple Relation
Extraction6 (JSRE) system to train a supervised classifier. The system bases on the
SVM implementation LibSVM [Chang and Lin, 2011]. The classifier includes an im-
plementation of the shallow linguistic (SL) kernel and is a combination of two kernel
methods, the global context kernel and the local context kernel. The global context
kernel considers n-grams of the words (and other information such as stemmed words
and part of speech tags) between the two entities of the whole sentence. The local
context kernel considers only a limited amount (window-size) of information around
each entity.

JSRE has been used in different publications [Airola et al., 2008; Giuliano et al.,
2006; Segura-Bedmar et al., 2011a]. It has proved to be an effective classifier and is
freely available. Furthermore also Gurulingappa et al. [2012a] used JSRE to detect
adverse drug effects. Unfortunately a direct comparison is not possible since training
split and the exact generation of negative data could not be reproduced. For these
reasons however, the experiment in this chapter uses the JSRE system.

Token Unaccountable severe hypercalcemia in a patient treated for
hypoparathyroidism with dihydrotachysterol .

Stemmed Data unaccount sever hypercalcemia in a patient treat for hy-
poparathyroid with dihydrotachysterol .

POS VBP JJ NN IN DT NN VBN IN NN IN NN .
Named Type O O DISORDER O O O O O O O DRUG O
Entity Label O O A O O O O O O O T O

Table 3.1: Data input for classifier of a positive sentence from publication PMID
10048291, taken from ADE data set.

Sentences are first stemmed using the Porter Stemmer [Porter, 1997]. Next the

6https://hlt.fbk.eu/technologies/jsre
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Charniak-Johnson Parser [Charniak and Johnson, 2005] is run on each sentence to
generate part-of speech (POS) tags. An example of the input data of JSRE is given in
Table 3.1. The entity label defines the agent (A) and target (T) of the relation.

3.4 Experiment

The goal of this experiment is to examine the impact of a large set of automatically la-
belled training data in comparison to a small set of manually labelled instances. Thus,
three different methods with a different amount of training data are examined: super-
vised relation extraction, distantly supervised relation extraction and relation extraction
using a mixture-model. The supervised model uses a set of manually labelled abstracts
(1-500) as input (seed abstracts; SA). The distantly supervised model takes the boot-
strapped data as input (see Section 3.2). Its size varies depending on the size of the
manually labelled data. The mixture model merges the automatically generated and
manually labelled training data to form a combined training set. The JSRE system, as
described in previous section, is used as the classifier.

Starting with a single abstract, the number of seed abstracts is gradually increased
to 500. In parallel the automatically labelled data set is generated for each training
set, using the given ADE seed facts of the training data for distant supervision. The
more information the manually labelled data contains, the more different seeds can be
extracted which increases the size of the distantly labelled data. Thereafter both data
sets are combined to a mixture-model.

3.4.1 Analysis of Generated Data

A maximum of 500 abstracts are used for training. In order to provide reliable results
the experiment is repeated five times with a different set of 500 abstracts (randomly
selected). In the following this training data is analysed more in detail.

Each setup (of those five runs) contains different positive and negative seeds, thereby
producing different data. In the first run, the manually labelled data contains 4064 pos-
itive and 4660 negative sentences. Those sentences contain 812 different positive and
1975 different negative CUI pairs, but only 595 different positive and 1018 different
negative CUI pair combinations occur within the Medline subset used for this exper-
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iment. The combination (‘Cyclosporine’,‘Nephrotoxicity’), for instance, occurs 1199
times as positive example in the distantly labelled data. Conversely, the same CUI pair
occurs only 2 times within the 500 manually labelled training abstracts. 551 of the
positive CUI pairs occur fewer than 100 times in the distantly labelled data and 371
fewer than 10 times.

#seeds manually lab. distantly lab.
#SA pos neg pos neg pos neg
10 12 49 57 108 484 990
25 33 111 168 246 801 1271
50 72 209 378 480 1404 1799
100 154 403 773 921 3444 4036
150 226 610 1162 1378 7278 8591
200 317 805 1573 1840 9140 10683
250 408 1002 2027 2305 11080 12646
300 496 1205 2459 2783 13335 15115
400 673 1615 3332 3760 16795 18961
500 827 2028 4139 4731 20124 23024

Table 3.2: ADE training data size (mean across five runs)

Table 3.2 shows the size of the different sets of training data averaged across five
runs. #seeds indicates the number of different positive and negative entity pairs ex-
tracted from the given abstracts, manually lab. indicates the number of manually la-
belled (gold standard) positive and negative sentences extracted from the seed abstracts
and containing the given seeds and distantly lab. indicates the number of automatically
labelled positive and negative sentences using the given seeds. #SA describes the num-
ber of abstracts used for training.

Table 3.2 shows that the amount of distantly labelled data is much larger than the
manually labelled data at each classification step. Larger amounts of manually labelled
data increase the number of ADE seed instances that can be extracted which leads to
more distantly supervised examples. 50 training abstracts (SA) contain approximately
72 different positive and 209 different negative seed instances (seeds). Using those
seed instances, it is possible to generate approximately 1404 distantly labelled positive
and 17997 distantly labelled negative instances.

7Ratio adjusted to the same as of manually labelled data.
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3.4.2 Results

The results of the ADE experiments using manually and distantly labelled data are
presented in Table 3.3. The results reported are the mean of all five runs. The table
presents the results of all three different models (supervised model, distantly super-
vised model, mixed model), including precision, recall and F1-Score, using a varying
amount of training data. The size of the training data is connected to the number of
seed abstracts used (see Section 3.4.1).

The results show that the performance for all models improves as the amount of
data increases. Performance of the supervised classifier increases sharply as the num-
ber of abstracts is increased from 1 to 10. Increasing the size of the training data to
50 abstracts produces a further improvement of approximately 30%. These results
demonstrate that even small amounts of training data are sufficient to provide reason-
able results on the ADE data set.

supervised model distant supervision mixture model
#SA prec. rec. F1 prec. rec. F1 prec. rec. F1
1 63.40 34.91 39.32 52.32 46.40 47.92 53.54 41.14 44.95
5 64.15 49.61 51.52 66.82 40.64 44.44 69.42 51.08 53.65
10 63.85 59.81 57.72 70.29 67.41 68.16 70.19 71.73 69.26
25 70.13 68.11 68.93 71.28 76.93 73.93 73.13 78.72 75.80
50 72.57 78.60 75.46 64.96 91.76 75.98 69.88 89.63 78.47
100 74.56 81.78 77.95 67.17 92.99 77.94 72.64 91.73 81.06
150 76.24 84.69 80.23 70.53 90.82 79.39 74.93 90.91 82.11
200 77.51 85.47 81.29 68.51 93.34 78.99 74.38 92.13 82.28
250 78.75 86.52 82.45 68.75 93.86 79.31 75.02 92.64 82.89
300 79.44 87.55 83.30 68.18 94.90 79.31 74.71 93.71 83.13
350 79.95 87.83 83.70 68.76 94.93 79.73 75.31 93.65 83.48
400 79.93 88.63 84.05 68.63 95.08 79.70 75.64 93.78 83.74
450 80.42 88.38 84.20 68.86 94.66 79.71 76.25 93.78 84.12
500 80.49 88.85 84.46 69.25 94.57 79.94 76.72 93.64 84.34

Table 3.3: Effect of varying size of training data set

Performance of the distantly supervised classifier shows a similar pattern. Increas-
ing the number of seed abstracts results in a larger distantly labelled training data set
which improves classification results. The distantly supervised classifier outperforms
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the supervised one when there are fewer than 100 seed abstracts. The reason for this
is the supervised classifier does not have access to a sufficient volume of training data
while the distant supervision is able to generate more. As the number of seed abstracts
increases the situation is reversed with the supervised classifier outperforming the dis-
tantly supervised one. When more than 100 abstracts are available the supervised
classifier has the advantage of having access to sufficient accurately labelled examples
to train a relation extraction system. The distantly supervised classifier still has access
to more data but it is not as accurate.

The mixture model produces the best results of all approaches when between 5 and
250 abstracts are used. The mixture model tends to achieve higher precision but lower
recall than the distantly supervised approach, possibly because the training data used
by the mixture model is more accurate and contains fewer “false positive” examples.
On the other hand, the precision and recall of the mixture model are often higher than
the supervised model. The increase in recall is presumably caused by having access
to additional training data and the precision scores suggest that the classifier is not
harmed by some of these containing noisy labels.

The difference in performance between the supervised and the mixture-models gets
smaller as the number of seed abstracts increases. Using 300 or more abstracts, the su-
pervised classifier outperforms the mixture model. At this point the supervised classi-
fier has access to sufficient amount of training data (more than 5000 manually labelled
instances versus 28000 distantly labelled instances) and provides better results than
using the larger set of distantly labelled data in addition. However the results for the
mixture model are significantly better than the results of the supervised classifier in
terms of F-Score to a seed abstract size of 150 (one-tailed paired t-test, p ≤ 0.05). Us-
ing 200 training abstracts the result of mixture model shows only a weak evidence to
be better than the supervised model (p ≤ 0.1).

3.5 Conclusion

This chapter explored of the effect using automatically labelled data to improve clas-
sification results for adverse-drug effects. The presented method showed that if only
a small set of manually labelled training instances is available, a bootstrapping tech-
nique to generate a large set of distantly labelled data can improve the classification

55



results. However, the benefit of using distantly labelled data decreases as the amount
of manually labelled data available increases.
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Chapter 4

Detecting relations from the UMLS
Metathesaurus in Medline abstracts

This chapter describes several important aspect of this thesis. First, the chapter de-
scribes the generation of distantly labelled data from Medline abstracts using related
information of the UMLS Metathesaurus. The data will be used for all the remain-
ing experiments in this thesis. Section 2.3 introduced Medline, UMLS and MetaMap
which are used in this chapter. However, this chapter analyses UMLS in detail in order
to select a subset of relations which are used to train classifiers.

Furthermore, this chapter also presents results using a set of UMLS Metathesaurus
relations for distant supervision. Two vocabularies of UMLS are selected: NDF-RT

(National Drug File - Reference Terminology) and NCI (National Cancer Institute The-
saurus). A classifier is trained and evaluated using held-out evaluation at entity-level.
In addition an evaluation on the manually labelled gold standard is also conducted.

The chapter is structured as follows. First, a more detailed overview of the UMLS
Metathesaurus is provided and relations selected for the experiments. Section 4.2 de-
scribes the generation of distantly labelled data from Medline abstracts using the se-
lected relations. Then, in Section 4.4, filter techniques are presented to improve the
quality of the data. The relation extraction system used for the following experiments
is introduced in Section 4.5. Section 4.6 describes the distantly supervised classifica-
tion experiments using the UMLS Metathesaurus in combination with held-out eval-
uation. First, an overview about the experimental setup is given. Then, the results of
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the held-out experiment are presented. The end of Section 4.6 presents the results of
the classifier using manually labelled data. The chapter finishes with a conclusion in
Section 4.7.

4.1 Selection of UMLS Metathesaurus relations

This section provides more details about the relations in the UMLS Metathesaurus in
order to identifying those which are potentially useful for distant supervision. UMLS
contains a large number of relations from different vocabularies. Some relations con-
tain hundreds of thousands of related instance pairs (CUI pairs) while other ones in-
volve only a few hundred instances. In general, each vocabulary includes medical
terms and relationships associated with a particular topic. For example, the FMA
(Foundational Model of Anatomy) contains biomedical relationships associated with
anatomical knowledge (e.g. has muscle attachment, has nerve supply and has physical state)
and GO (Gene Ontology) contains information about gene products, cellular compo-
nents and molecular functions (e.g. occurs in, positively regulates and part of ).

Information about relations in the UMLS Metathesaurus is stored within MRREL
(see Section 2.3.2). Table 4.1 presents the number of instances1 of the 25 most fre-
quent relations (according to RELA labels) within MRREL. Even if some relations
and relation instances can be defined across several vocabularies, this table depicts the
situation of frequencies of the related instances. The most frequent kind of relations
are those defined between two CUIs without any further definition and without any
RELA label, followed by the isa relation.

The largest set of relations, those ones without RELA label, do not seem to be use-
ful for detecting relationships between entities in natural language, since it is not clear
which relationship they describe. Another large set of related instance pairs defines
taxonomical relations such as isa (e.g. SNOMEDCT contains 542,485 of those in-
stance pairs) and sibling relations (e.g. GO contains 1,487,492 sibling instance pairs).
This information might be very valuable for a different use case or even in combination
with other relations. However, similar relations have been already explored in a range

1Note, the frequency describes how often a relation (instance pairs per relation) occurs within MR-
REL and not the number of distinct instance pairs for each relation. Multiple occurrences of instance
pairs per relation can be possible.
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RELA frequency
no RELA label 29293384
isa 2170609
has translation 1181911
has ingredient 984373
classifies 658781
has member 598785
sib in isa 553804
mapped to 550486
has expanded form 413523
same as 235628
has finding site 194754
has component 190256
has clinical course 167613
has episodicity 167558
severity of 166759
method of 160810
part of 150052
has dose form 149039
sib in part of 136240
has associated morphology 123075
has tradename 118251
has priority 106209
constitutes 105857
has permuted term 105695
sib in branch of 96316

Table 4.1: Relation frequencies in the UMLS Metathesaurus

of different publications, such as Snow et al. [2004], Pantel and Pennacchiotti [2006],
Wu and Weld [2007] or Nikolova and Angelova [2011]. Also other relations such as
meronyms (e.g. part-of ) or localisation relations also show a high frequency. Those
relations have also been addressed in a different context e.g. Bossy et al. [2013] or
Ling et al. [2013]. For this reason, relations such as isa or part-of are less interesting
for this thesis. One goal of this thesis is to investigate, whether the UMLS Metathe-
saurus is a useful source for distant supervision. Relations which have not been used
previously are more interesting than relations which have already been used. If rela-
tions have been successfully used in a different context, it is likely that they are also
useful for the context of UMLS. So this problem does not need to be explored again.
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UMLS vocabulary, RELA-label example: related instance pair

RXNORM, dose form of

C0709583=‘Exelderm 1 % Topical Cream’
C0991551=‘Topical Cream’
C1245694=‘Cyclacillin Oral Suspension’
C0991537=‘Oral Suspension’

SNOMEDCT, active ingredient of

C2585241=‘Oral form calcitriol’
C0006674=‘Calcitriol’
C2315140=‘Oral form cyanocobalamin’
C0042845=‘Cyanocobalamin’

GO, regulates

C1817638=‘Schwann cell differentiation’
C1817639=‘regulation of Schwann cell differentia-
tion’
C2247665=‘maintenance of sister chromatid cohe-
sion’
C2247671=‘regulation of maintenance of sister
chromatid cohesion’

UWDA, branch of

C0503881=‘Right anteromedial basal pulmonary
artery’
C0226062=‘Right anterior basal segmental artery’
C0735513=‘Meningeal branch of right fourth sacral
nerve’
C0735548=‘Transverse branch of meningeal branch
of right fourth sacral nerve’

Table 4.2: UMLS Metathesaurus relation examples

UMLS also defines nested relations (examples are given in Table 4.2, line 1-3) which
do not appear useful nor interesting to focus on.

MRREL contains a large range of different vocabularies with different amounts of
relation instances. Figure 4.3 shows the different vocabularies with the largest num-
ber of relation instances. The first column presents the SAB label, which is shown
within MRREL, the second column shows the name of the source vocabulary and the
last column the frequency within UMLS. SNOMEDCT contains more than 3 million
instances within MRREL. However, not all vocabularies appear to be useful or inter-
esting for this work. Some of the vocabularies containing the most frequent relations
also contain redundant information. Vocabularies such as MDRFRE or MDRGER rep-
resent a language specific version (French and German) of MDR (Medical Dictionary
for Regulatory Activities (MedDRA)). The defined relation instances are all identical
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SAB label Name Relation
Instances

SNOMEDCT Systematized Nomenclature of Medicine (SNOMED)
Clinical Terms US Edition

3075104

SCTSPA SNOMED Clinical Terms, Spanish Language Edition 2907412
MSH Medical Subject Headings 2853848
RXNORM RXNORM Vocabulary 2448434
LNC Logical Observation Identifier Names and Codes 2340736
GO Gene Ontology 1808194
NCBI NCBI (National Center for Biotechnology Informa-

tion) Taxonomy
1626382

MDRJPN MedDRA Japanese 1588956
MDRSPA MedDRA Spanish 1577052
MDRPOR MedDRA Portuguese 1577052
MDRITA MedDRA Italian 1577052
MDRHUN MedDRA Hungarian 1577052
MDRGER MedDRA German 1577052
MDRFRE MedDRA French 1577052
MDRDUT MedDRA Dutch 1577052
MDRCZE MedDRA Czech 1577052
MDR MedDRA (Medical Dictionary for Regulatory Activ-

ities)
1394706

MTHSPL FDA Structured Product Labels 1325370
ICD10PCS International Classification of Diseases, 10th Revi-

sion, Procedure Coding System
1174716

MEDCIN MEDCIN 1169784
UWDA Digital Anatomist 1149564
FMA Foundational Model of Anatomy 1104998
MTH Metathesaurus Names 1047578
NCI NCI (National Cancer Institute) Thesaurus 883070
ICD10CM International Classification of Diseases, 10th Revi-

sion, Clinical Modification
788992

NDFRT National Drug File - Reference Terminology 645942
MSHRUS MeSH (Medical Subject Headings) Russian 642102
MSHSPA MeSH Spanish 642072
MSHPOR MeSH Portuguese 641046
MSHPOL MeSH Polish 590948

Table 4.3: Top-30 vocabularies of the UMLS Metathesaurus based on relation in-
stances
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within the language specific vocabularies. Some other vocabularies consist of either
mainly relations without RELA labels (such as MTH) or taxonomical relations (such
as ICD10CM or UWDA).

In order to show that UMLS Metathesaurus is a useful source for distant supervi-
sion, relations from two vocabularies are selected for the experiments in the following
chapters. First, some relations of NDFRT (National Drug File - Reference Terminol-
ogy) are selected. NDRFT defines relations connected to drugs and diseases such as
may-treat or may-prevent which are easy to understand for a biomedical non-expert.
This simplifies the analysis of the instance pairs and distantly labelled annotations later
on. An overview about different NDF-RT relations is given in Table 4.4. The table
shows a range of potentially useful relations. On the other hand, some other relations
appear to be less useful, such as has print name (relation with itself) or has participant

(many instances are nested relations).
Additionally, relations form NCI are selected. NCI contains information related to

genes and cancer. The advantage of this vocabulary is that it often contains a large
number of instance pairs for each relation. Furthermore, many sentences containing
NCI instance pairs can be found in Medline abstracts allowing distantly labelled data
to be generated (as seen e.g. in Table 4.5). Other vocabularies such as SNOMEDCT,
GO or FMA seem to contain also useful relations for distant supervision. Although,
this thesis examines relations from two vocabularies of UMLS, the approach could be
extended to other UMLS subsets with similar characteristics (large number of related
information, large number of positively labelled sentences using known CUI pairs).

4.2 Data Generation

A set of relations from NDFRT and NCI are used to generate distantly labelled data
from sentences in Medline abstract. Relations are selected according to factors such as
number of instance pairs in the Metathesaurus, number of distantly labelled sentences
found or promising results in preliminary experiments (the list of relations can be found
in Table 4.5). The generation is divided into three steps and has similarities to the
process described in Section 3.2:

1) Generation of positive and negative instance pairs: CUI pairs which occur
multiple times within the same relation set are removed since this information is re-
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freq. RELA example instance
48298 may treat C0010200=‘Coughing’,

C0976389=‘DIHYDROCODEINE BITARTRATE
16MG CAP’

36782 has product component C0004261=‘Hyoscyamine Sulfate’,
C0974688=‘Belladonna Alkaloids 0.00672 MG/ML
Oral Suspension’

36251 has contraindicated drug C0304925=‘Human serum albumin preparation’
C0018802=‘Congestive heart failure’

25823 has physiologic effect C1371672=‘Decreased Immunologically Active
Molecule Activity’,
C0057992=‘diflorasone diacetate’

23630 has ingredient C0065864=‘medroxyprogesterone acetate’,
C1648910=‘medroxyprogesterone acetate 400
MG/ML Injectable Suspension’

15007 has mechanism of action C2757023=‘Norepinephrine Uptake Inhibitors’,
C0011812=‘Dextroamphetamine’

14610 has participant C0043031=‘Warfarin’,
C2926987=‘ROMIDEPSIN/WARFARIN’

12387 has dose form C1154181=‘Inhalant Solution’,
C0980200=‘Sodium Chloride 0.45% Inhalation So-
lution’

12337 has print name C0975677=‘Ciprofloxacin 500 MG Oral Tablet’
C0975677=‘Ciprofloxacin 500 MG Oral Tablet’

6048 may prevent C0030193=‘Pain’,
C0282232=‘Levomethadyl Acetate Hydrochloride’

2228 has contraindicating class C0033858=‘Psoralens’,
C0025684=‘Methoxsalen’

967 may diagnose C0242350=‘Erectile dysfunction’,
C0979270=‘Papaverine 150 MG Oral Capsule’

762 has pharmacokinetics C1373187=‘Renal Excretion’,
C1533036=‘Ipratropium bromide 17mcg HFA in-
haler’

714 induces C0026961=‘mydriasis’,
C0977488=‘homatropine ophthalmic 5% oph-
thalmic solution’

674 has contraindicating
mechanism of action

C1373090=‘Cholinergic Nicotinic Antagonists’,
C0001714=‘Polymyxin B Sulfate’

Table 4.4: NDF-RT relations
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dundant. Next, self-relations (CUIs which are related to themselves) are removed from
the list of positive candidates (see Example 5 in Table 2.3). The same technique is also
applied by Bobic et al. [2012], who argue that self-relations are likely to produce false
positives. Instance pairs which occur within different UMLS Metathesaurus relations
are also removed from the list of positive candidates (also used by e.g. Tymoshenko
et al. [2012]). Those entity pairs can express different relations so it is likely that they
will produce false positives.

Unfortunately, the majority of UMLS Metathesaurus relations do not contain neg-
ative entity pairs for a target relation. Thus, negative data for each target relation is
generated using the closed world assumption (see Section 2.1.2). Given all entity pairs
for each relation, negative entity pairs are generated by producing new combinations
between all entities (without changing the order of the entities in the pairs). All of those
entity pairs which are not known to be related within UMLS are then considered as a
negative instance pair of that relation. This step follows the closed world assumption.

2) Preparing textual data: Distantly labelled data is generated from Medline ab-
stracts. A corpus of 1,000,000 Medline abstracts is split into sentences and annotated
with UMLS-CUIs using MetaMap.

3) Selecting sentences containing positive and negative seed instances: Finally,
UMLS-annotated Medline sentences are extracted to generate distantly labelled data.
Sentences containing positive seed instances of a target relation are labelled as positive
instance of the target relation and sentences containing negative seed instances are
labelled as negative examples.

4.3 Corpus Statistics

Table 4.5 shows the results of the automatic generation process. The upper part of
the table shows the NDF-RT relations and the lower part the NCI relations. The table
shows the number of CUI pairs for the relations that are useful to generate distantly
labelled data. The middle part “instance pairs” presents the generation process of the
seed instances. The Column #given shows the number of positive instances originally
defined within the UMLS Metathesaurus. The Column #pos shows the number of
positive instances remaining after the first filtering process (reduction of doubles, self-
relation, occurrences in multiple relations, see Section 4.2). The Column #neg presents
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the amount of negative seed instances generated from #pos using the closed world
assumption (see Section 4.2). The columns on the right hand side of the table “CUI

pairs in baseline data” present the statistics for the distantly labelled data generated
from the Medline abstracts. Column #pos defines the number of sentences of each
target relation that are found. #u-pos presents the number of different (unique) CUI
pairs found within #pos.

The table shows that only a small number of CUI pairs can be found within the
Medline abstracts. Likewise, Column #neg and Column #u-neg show the number of
sentences containing negative seed instances and the number of different unique nega-
tive seed instances found.

4.4 Further filtering steps

Distantly labelled data often contains false positive and false negative examples for
different reasons. In order to remove some false labels, various filtering steps (which
have been used by previous approaches) are applied:

1) Reduction of sentences containing both positive and negative instances: In
biomedical literature medical concepts are often mentioned within a list (e.g. a,b,c,

and d), such as seen in the two sentences in Figure 4.1 (“generalized and focal epilep-

sies, including special epileptic” and “myocardial infarction and stroke”). In both
examples one of the entities within the list is an instance of a positive relation (may-

treat(“antiepileptic drugs”, “epileptic”), may-treat(“aspirin”, “myocardial infarction”)),
while the other entities are either detected incorrectly by MetaMap (entity should be
“generalized epilepsies” rather than just “generalized”) or entities describe an un-
known (and therefore negative) relation (“focal epilepsies” and “stroke”) according
to UMLS. To reduce the risk of annotating false negatives, sentences containing both
positive and negative relations are removed from the set of candidates. Other authors
address the issue of entity lists, including Liu et al. [2014b] and Bing et al. [2015].

2) Reducing word distance: Distantly labelled sentences may contain a large
number of words between the candidate entities. The assumption is that the more
words that occur between two target entities the less likely they express the relation of
interest. For this reason candidate sentences are deleted if they contain more than five
words between candidate entities. A setting of five words provided the best results in
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Valproic acid (VPA) is considered to be a drug of
first choice and one of the most frequently-prescribed
[C0003299:antiepileptic drugs] worldwide for the therapy
of [C0205246:generalized] and [C0014547:focal epilepsies],
including [C0205555:special] [C0014544:epileptic].
(PMID=18201150)

BACKGROUND AND PURPOSE : [C0004057:Aspirin] reduces
the risk of [C0027051:myocardial infarction] and
[C0038454:stroke] by inhibiting thromboxane production in
platelets. (PMID=19466986)

Figure 4.1: Group of CUIs might cause false negatives

preliminary experiments. However, an optimal word distance might differ for each re-
lation. Filtering according to a restricted number of words between entities is used by
a range of different approaches, including Takamatsu et al. [2012], Abad and Moschitti
[2014], Poon et al. [2015] and Zheng and Blake [2015].

3) Remove entity pairs with low frequency: Entity pairs with a low frequency
are removed from the candidate list. An entity pair which occurs only a few times
within one million documents might not be useful. In particular in context of positive
examples, it is less likely that entity pairs occurring only within a few sentences contain
at least one (true) positive example than entity pairs with a higher frequency. For this
reason entity pairs (positives and negatives) which occur fewer than five times in a
sentence are deleted.

Activation of hypothalamic-pituitary-adrenal (HPA) axis
[C0018790:inhibits] development of [C0026549:morphine]
tolerance. (PMID=18053645)

Figure 4.2: Using non-nouns for distant supervision might cause errors

4) Restricting entities to noun phrases: All CUIs that refer to non-nouns are
removed from the set of candidates to accommodate for errors in MetaMap’s annota-
tions. Restriction to noun phrases has been also used by authors such as Augenstein
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et al. [2015]. The example in Figure 4.2 describes the (negative) relation NOT-may-

treat(“cardiac arrest”, “morphine”). The concept C0018790=“cardiac arrest” was
mapped to the verb “inhibits” by MetaMap.

4.5 MultiR - Relation Extraction

In Chapter 3 (Bootstrapping Limited Training Data) a SVM-based (JSRE) relation
extraction system was used to detect biomedical relations. In previous context JSRE
was a good choice for the following reasons: The classifier has been used by other
authors using the same data set (ADE). The system is easy to setup, experiments can
be carried out quickly and results are relatively efficiently. Furthermore, the presented
technique had the objective to use DL data support and improve a supervised classifier.
However, SVM-based systems tend to be a popular choice for supervised learning.

In contrast to Chapter 3, multi-instance learning will be used for this and the follow-
ing chapters, rather than a classical supervised learning method. In context of distantly
supervised relation extraction, a range of systems transform distant supervision with
noisy input data to traditional supervised learning by using a single-instance single-
label technique1 [Surdeanu et al., 2011], such as in the work of Bellare and McCallum
[2007], Mintz et al. [2009] or Nguyen and Moschitti [2011a]. In the more recent years
however, multi-instance learning became much more popular to train relational clas-
sifiers with automatically labelled data, such as in Surdeanu et al. [2012], Ritter et al.
[2013] or Liu et al. [2014b]. Multi-instance learning bases on the idea of using bags
of labelled instances/sentences as input, rather than single instances, in order to better
deal with noisy input data. A bag labelled as positive contains at least one positive
example. Conversely a bag labelled as negative contains no positive instance at all (see
Section 2.1.2). The relation extraction system used in the next chapters is exchanged
for the following reasons:

This work focusses on exploring a new domain in context of distantly supervised
relation extraction. Introducing a new system (which has not been used for distantly
labelled data) would raise the question whether an already established method would
do better on this new domain. In this case a direct comparison to existing methods of

1as usually used for supervised learning; each single (noisy) example is used as input
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that area is required. However, this work does not focus on introducing new machine
learning methods for distantly supervised relation extract. Instead it focuses on detect-
ing biomedical relation using distant supervision, in particular for relations of UMLS.
For this reason, this and the following chapters will rely on MultiR [Hoffmann et al.,
2011], a well established and frequently used method for distantly supervised relation
extraction. In comparison to the previous chapter, the goal was to examine whether it
is possible to support a supervised classifier with distantly labelled data if the number
of manually labelled training instances is small. In the following chapters instead, no
manually labelled data is available for training.

Moreover, Ray and Craven [2005] compare different multi-instance learning meth-
ods with supervised learning algorithms on a range of different domains. First of all,
the authors show, that ordinary supervised methods are doing well on different tasks
in comparison to multi-instance learning. However, the authors also show that multi-
instance approaches often outperform their supervised counterparts. This might be a
reason why multi-instance learning became popular in recent years to train a classifier
with noisy data. Moreover, also in context of distantly supervised relation extraction,
Surdeanu et al. [2011] for instance show, that their multi-instance method outperform
an approach trained on single instances, such Mintz et al. [2009].

MultiR is a probabilistic, graphical model which bases on multi-instance learning.
The method takes positive and negative ‘bags’ (sets) of instances as input rather than
single instances. A bag labelled as positive contains at least one positive example and
a bag labelled as negative contains no positive instance at all. For this use case it
means that all sentences containing a particular entity pair are considered as one bag
(labelled according to the label of the entity pair in UMLS). Assuming that an entity
pair is known as an instance of a relation, the approach expects that at least one of the
sentences containing the entity pair is a true positive (see also Section 2.1.2). MultiR is
a frequently used state-of-the-art approach for distantly supervised relation extraction
(see Section 2.1.2). For this reason it appears to be more appropriate to explore the
usage of UMLS in context of distantly supervised relation extraction. Software to
implement the system is freely available1.

MultiR features described by Surdeanu et al. [2011] are used for all further experi-

1MultiR can be downloaded here: http://aiweb.cs.washington.edu/ai/raphaelh/
mr/index.html.
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Argument Features - Head words (CUIs) of related entities, their combination
and order
- Entity mention and words around the entity
- Semantic type of entity mentions and their combination

Syntactic Features - Sequence of labels in the dependency path connecting the
two entities
- Stemmed words in the dependency path

Surface Features - Sequence of words and POS tags between entities
- Distance between related entities
- Counts of semantic types in sentence

Table 4.6: Selection of features used for distant supervision

ments. These features are adjusted to the biomedical context by using Semantic Types.
Features can be divided into three groups: argument features, syntactic features and
surface features. An overview of the different features is listed in Table 4.6. Sentences
in the training and test data are processed with the Porter Stemmer [Porter, 1997] and
the Charniak-Johnson Parser [Charniak and Johnson, 2005]. In addition the Stanford
Parser [Klein and Manning, 2003] is used to generate dependency tree features.

4.6 Experiment

In this section a distantly supervised classifier for relations of the UMLS Metathe-
saurus is presented. The presented classifier is trained on relations of the UMLS vo-
cabularies NDF-RT and NCI and will be evaluated using two different techniques.
First, the evaluation is carried out using held-out evaluation, followed by an evaluation
against a small manually labelled gold standard containing annotations of two different
relations. Following the example of most other distantly supervised relation extraction
systems, the experiment will be conducted at entity level (against the KB). In context
of using automatically labelled evaluation data, entity level reduces the risk of false
labels.

The objective of the following experiments is to show that the UMLS Metathe-
saurus is a useful source for distant supervision. Even though relations of only two
subsets are used for the following experiment, it can be expected that other relations
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with similar characteristics (such as similar frequencies in UMLS or similar number
of distantly labelled sentences) provide similar results. NDF-RT has been used for
distant supervision before by Nikolova and Angelova [2011]. However, the distantly
supervised classifier was only considered as a lower baseline for a different method.
Furthermore, the DS system was implemented with a SVM and used with an unnatural
bias of 1:1 (positives/negatives). Usually the number of negative instances in distantly
labelled data is much larger, as seen in Table 4.5, which makes the classification task
more challenging. The relations of NCI have not previously been used for distant
supervision.

4.6.1 Setup

In the following experiment a classifier is trained and evaluated for a range of different
UMLS relations. In order to provide reliable results, the experiment is carried out using
a 4-fold held-out cross validation. Results are then averaged across the four steps and
compared to a naive baseline. This baseline is a simple technique which predicts each
instance as positive. Hence, the baseline achieves a low precision and a perfect recall.
For the experiments the multi-instance learning method MultiR is used (see Section
4.5).

In the following the generation and the usage of the data in the experiment is de-
scribed in more detail:

4-fold held-out cross validation

Evaluation data of an n-fold cross validation is usually generated by splitting data into
n equally sized subsets (folds). Then, each of the single folds is selected once as test
set and using all the remaining sets for training. For this experiment however, a ran-
dom split into four equally sized sets would be not appropriate, since the evaluation is
carried out at entity level (and evaluated against the knowledge base). Using a random
split, it is very likely that entities of the test set might also occur within the training
data and would be known in advance. This can make the evaluation less reliable and
possibly less efficient. For this reason the split into different evaluation sets is carried
out by assigning the different CUI pairs into different folds to ensure a held-out evalu-
ation setup (see Section 2.2). In this way, each fold contains a different set of positive
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and negative CUI pairs. However, this n-fold split based on entity occurrences makes it
difficult to generate equally sized folds (some CUI pairs occur more often in distantly
labelled sentences than other ones). In order to generate folds with a similar size, the
data for the cross validation is generated in the following way:

Each positive entity pair occurring within the distantly labelled data of a relation is
sorted by its frequency. Then, according to this frequency (and starting with the most
frequent pair), entity pairs are assigned sequentially to the different folds. The most
frequent pair is assigned to the first fold, the second most frequent one is assigned to
the second fold and so on. Next, all sentences containing a CUI pair which is assigned
to a particular fold are then sorted into that fold. This step is repeated for positive and
negative CUI pairs for all relations.

Bias adjustment

As illustrated in Table 4.5, the distantly labelled data of each relation contains a larger
number of negative sentences than positive ones. In context of relation extraction and
other machine learning tasks, highly unbalanced training data is a known issue (e.g.
Chawla et al. [2004]; Swampillai and Stevenson [2011]) and might cause problems to
train a classifier. Using a much larger number of negative training instances might re-
sult in a restrictive model (high precision, low recall), whereas a larger number of posi-
tive training examples, might result in a less precise model (high recall, low precision).
In context of using distantly labelled data, it can happen that negative examples out-
perform positive examples by more than 10 times (see e.g. contraindicating class of

in Table 4.5).
In addition, using a large number of training instances can significantly increase the

runtime of a classifier and might result in memory errors. Hence, if the training data is
very large and unbalanced (towards negative instances), it appears to be reasonable to
reduce the number of negatives.

Adjusting the ratio of positive to negative training instances can have a influence
on the classification results, as seen in Thomas et al. [2011]. Authors such as Surdeanu
et al. [2012] or Riedel et al. [2010] for instance, randomly reduce the number of neg-
ative instances in their data (under-sampling). In order to deal with the large number
of negative instances in this experiment, negative instances are randomly reduced as
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well. For the following experiment a bias of 1:2 (positives:negatives) has been chosen.
This setup provided the most promising results. However, a further examination how
to deal with imbalanced data in the best way, is not carried out and its exploration is
not in the focus of this thesis.

Figure 4.3: Adjusting bias of training data (Held-Out Setup)

Figure 4.3 visualises the bias adjustment (P:positives; N:negatives). Line 1 shows
a given training and test fold of a cross validation step including the ratio of positive
and negative instances. Line 2 represents the setup of the following experiment. Using
the data from line 1, the number of negative instances is randomly reduced to a bias of
1:2 (the grey area represents the removed instances). However, instances from the test
fold are not removed.

4.6.2 Held-Out Evaluation

Table 4.7 presents the held-out classification results in comparison to the naive base-
line. In the upper part of the table the overall classification result (micro-avg. f1-score)
is presented, followed by results for NDF-RT. The lower part of the table presents
results for NCI relations. The naive baseline is located in the rightmost part of the
table.

The results show that the classifier is able to extract related instances of the UMLS
Metathesaurus with a higher f1-score than the baseline. In particular the relations from
NCI are detected well. All NCI relations provide an f1-score above 40 and the relation
gene product has biochemical function results in a f1-score above 60. The relations
of NDF-RT seem to be more difficult to detect, in particular a relation such as con-

traindicating class of. The classification result is close to the naive baseline. These
low results might be connected to the fact that related entity pairs of NDF-RT occur
more often in a context outside the relation. Likewise, contraindicating class of con-

73



MRREL relation Results Naive Baseline
Prec. Rec. F1 Prec. Rec. F1

Overall (micro-avg.) 44.72 54.23 49.02 15.41 100.0 26.71
NDF-RT relations

contraindicating class of 16.84 32.21 21.96 8.76 100.0 16.10
may prevent 29.17 26.47 27.57 7.79 100.0 14.45

may treat 51.47 42.68 46.29 20.45 100.0 33.95
mechanism of action of 48.88 65.63 55.56 21.05 100.0 34.78

NCI relations
biological process involves gene product 49.71 46.97 48.17 18.36 100.0 31.02

disease has normal cell origin 34.32 80.41 48.04 13.54 100.0 23.85
gene product has associated anatomy 35.67 61.41 45.10 8.91 100.0 16.36

gene product has biochemical function 60.07 73.06 65.81 21.67 100.0 35.63
process involves gene 54.03 52.68 52.83 21.61 100.0 35.55

Table 4.7: Best results using held-out
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Figure 4.4: Precision/Recall Curve for Held-out data

tains a much larger amount of negative instances compared to positive ones (see Table
4.5). Using a strongly unbalanced test set often leads to lower results. Furthermore,
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relations with a smaller training/test set (such as in case of contraindicating class of

or may prevent) tend to achieve lower results than relations with a larger number of
instances (e.g. may treat or biological process involves gene product).

The overall classification result takes all predicted relations into account, including
their evaluation data size. Those results are very encouraging. The distantly supervised
classifier of the overall result achieves an improvement of f1-score of more than 80%
compared to the naive classifier.

Figure 4.4 presents a precision/recall curve computed using MultiR’s output proba-
bilities for all different relations. The graph highlights that instances with a high output
probability tend to have a high precision. With the increasing amount of positive pre-
dictions the precision decreases.

4.6.3 Manual Evaluation

In order to support the held-out classification results, a distantly supervised classifier
is additionally evaluated on a manually labelled data set. The evaluation set consists of
800 sentences containing annotated may-treat and may-prevent relations of the UMLS
Metathesaurus. Each relation consists of 400 sentences each, including a varying num-
ber of positive and negative entity pairs. A detailed overview about the data set is
provided in the Section 5.1 (next chapter).

For the experiment the same setup (bias 1:2 for training) as in the previous held-out
experiment is used. However, as already mentioned in Section 4.6.1 (‘Setup’), results
are assumed to be more reliable if entity pairs in the evaluation data are not already
known from the training data. To ensure a held-out setup, training data is generated
in a different way as in the previous experiment. Instead of assigning CUI pairs into
different folds, sentences containing CUI pairs from the manually labelled test data
are removed from the distantly labelled data. Then, the bias of this data is adjusted
to 1:2 (positives:negatives) by randomly reducing the number of negative sentences.
The remaining instances are used to train a single classifier for the manual evalua-
tion experiment. The classification results are then compared to a naive classification
baseline.

The results of the manual evaluation are presented in Table 4.8. In case of may-

prevent the naive baseline achieves an f1-score of 21.50 with a precision of 12.05.
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May-treat contains a larger number of different positive entity pairs, thus, the naive
classification results in a precision of 28.11 and a f1-score of 43.88. In comparison
with the may-prevent baseline (and the baseline of the held-out experiment) the naive
f1-score of may-treat is relatively high.

DS Classification Naive Classification
relation Prec. Rec. F1 Prec. Rec. F1

may prevent 58.06 30.00 39.56 12.05 100.00 21.50
may treat 45.21 47.14 46.15 28.11 100.00 43.88

Overall (micro-avg.) 47.46 42.00 44.56 20.41 100.00 33.90

Table 4.8: Evaluation of distantly labelled classifier using manually labelled data

However, the results of the distantly supervised classifier outperform the naive
baseline in all cases. In case of may-prevent precision increases by more than four
times the precision of the naive classifier. The f1-score of distantly supervised classi-
fier nearly doubles, even though the recall is only 30. The DS result for the may-treat

relation also outperforms the baseline. The precision increases by approximately 60%.
However, due to the fact the may-treat baseline is already very strong, the f1-score of
46.15 only represents an improvement of less than 3 points.

The overall classification result (micro average) takes into account that may-treat

contains more instances. Also in this case the distantly supervised classifier outper-
forms the naive baseline by more than 10 points compared to the naive baseline.

4.7 Summary

This chapter presented a distantly supervised classifier to detect relations from two
different UMLS Metathesaurus vocabularies. The system has been evaluated in two
different ways. A first experiment evaluated the system using a held-out portion of the
data within a 4-fold cross-validation. A second experiment used a small gold standard
as additional evaluation measure.

The system has been trained with a state-of-the-art relation extraction system Mul-
tiR, evaluated on entity level and compared with a simple baseline method. However,
the results are encouraging and show that parts of UMLS are a useful knowledge source
from which to generate distantly labelled data for a relational classifier.
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Chapter 5

Comparison of Evaluation Strategies
for Distantly Supervised Relation
Extraction

Distant supervision is an effective and commonly used technique when manually la-
belled data is not available. However, without manually labelled data it is difficult to
carry out an evaluation to estimate the quality of the classifier. Held-out evaluation
is an alternative method which is able estimate the quality of a distantly supervised
classifier and does not require any manually labelled data. The approach splits facts
from a knowledge base into two parts. One part is used to generate distantly supervised
training data and the other one to generate distantly supervised evaluation data [Hoff-
mann et al., 2010; Mintz et al., 2009; Riedel et al., 2010] (see Chapter 2.2). Held-out
evaluation using distantly labelled data is a simple and quick technique for estimating
the accuracy of distantly supervised relation extraction systems. Notwithstanding, this
evaluation data is noisy and it is unclear what effect this has on the accuracy of per-
formance estimates. The objective of this chapter is to investigate the question how
useful held-out evaluation is without any additional manually labelled evaluation set
and without any prior knowledge about the target domain.

The issue is explored in this chapter by evaluating relation extraction systems for
two biomedical relations using both distantly and manually labelled data. Held-out
data is automatically generated and then manually annotated by medical experts to al-
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low direct comparison. Then, a distantly supervised classifier is trained and evaluated
on both data sets. This chapter shows that a large portion of the labels generated by
distant supervision for the two relations are incorrect. However, this chapter makes two
contributions in context of held-out evaluation. Firstly, the chapter finds that evaluating
classifiers using distantly supervised held-out data tends to overestimate performance
compared to manually labelled data. Secondly, the experiments show that improve-
ments in performance observed in evaluation against distantly supervised data are not
necessarily reflected in improved results when measured against manually labelled
data. This is the first direct comparison of evaluating distantly supervised classifiers
against distantly and manually labelled gold standards. Analysis in previous work has
been restricted to determining the true labels for a set of positively predicted labels
(such as in Takamatsu et al. [2012]; Zhang et al. [2013]).

The remainder of this chapter is structured as follows. Section 5.1 describes the
creation of the distantly supervised data and a manually labelled subset. A compari-
son of the automatically and manually generated labels is carried out in Section 5.2.
A relation extraction system is introduced in Section 4.5. Section 5.3 evaluates a re-
lation extraction system using distantly labelled and manually labelled data sets and
compares the performance obtained. The chapter ends with a conclusion in Section
5.4.

5.1 Data Generation

This section describes the generation of the (gold standard) data used for the experi-
ments. The following Section 5.1.1 describes how distantly labelled data is generated
(for more detailed information see previous Chapter 4). Then, in Section 5.1.2 a small
portion is extracted as held-out test data and manually re-annotated.

5.1.1 Distant labelling

For this experiment two biomedical relations (may-treat and may-prevent) are selected,
which are easy to understand even for biomedical non-experts. These relations de-
scribe connections between a pharmacological substance (e.g. drug) and a disease (or
symptom) and are taken from the UMLS vocabulary NDF-RT (National Drug File -
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Reference Terminology). For example, the following sentence expresses a may-prevent

relationship between the entities fluoride and dental caries:

“Although fluoride is clearly a major reason for the decline in the preva-

lence of dental caries, there are no studies of the incremental benefit of

in-office fluoride treatments for low-risk patients exposed to fluoridated

water and using fluoridated toothpaste.” (PMID=10698247)

Distantly labelled data for the two relations was generated from biomedical ab-
stracts from Medline annotated with UMLS concepts by MetaMap. The detailed
overview about the generation process is already presented in the previous Chapter
4.

5.1.2 Manually labelled Test Data

A set of 400 distantly labelled sentences were randomly selected for each relation to
generate held-out test data. Although the distantly labelled data contains more nega-
tively labelled sentences than positive ones, equal numbers of positive and negative
examples (200 of each) are selected to ensure that a sufficient number of positive
instances are included in the data set. This data set is referred to as DL (Distantly
Labelled).

The DL data set was then manually annotated. Two annotators were recruited, both
of whom were studying graduate degrees in subjects related to medicine at the Univer-
sity of Sheffield. Both annotators were instructed to follow an annotation guideline to
carry out the labelling task. The guideline can be found in the Appendix 2. Both anno-
tators did not have any experience with annotating medical text nor natural language
processing.

The annotation task was carried out as follows: Given a sentence with a highlighted
pharmacological substance and a highlighted disease, the annotators had to determine
whether a sentence expresses the relationship of interest between two presented entities
or not. The annotators were not shown the labels generated by the distant supervision
process. The annotators were asked to only label sentences as positive if it contains a
clear indication that the pharmacological substance either treats or prevents the disease.
For example, the following sentence mentions that a study has been carried out to
determine whether the drug voriconazole treats paracoccidioidomycosis:
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“A pilot study was conducted to investigate the efficacy, safety, and tol-

erability of [DRUG:voriconazole] for the long-term treatment of acute

or chronic [DISEASE:paracoccidioidomycosis], with itraconazole as the

control treatment.” (PMID=17990229)

However, the sentence does not contain any indication that the drug successfully treats
the disease and should therefore be annotated as a negative example of the relation.

Annotation Process

The annotation task can be divided into four stages. Within the first stage each anno-
tator was asked to label all 400 sentences for each relation. The first stage resulted in
325 agreements for may-prevent and 324 agreements for may-treat.

Next, each annotator was assigned to one relation and re-examined the disagree-
ments of that relation. Each annotator had the opportunity to either change the previ-
ously given label or to write an explanation why the given label should remain different
to the label of the other annotator. The second stage resulted in 364 agreements for
may-prevent and 366 agreements for may-treat.

Within the third annotation stage each annotator again re-examined the remaining
disagreements for the other relation. Again, the annotator had to decide whether the
previous label should be changed or not. Unlike the previous stage, the annotator was
able to take the comment of the other annotator into consideration. The third stage
resulted in 390 agreements for may-prevent and 383 agreements for may-treat. Inter-
annotator agreement [Cohen, 1960] after this stage was of κ = 0.94 for may-prevent

and κ = 0.91 for may-treat. Each annotator spend at least 10 hours on the three
annotation stages.

Finally, the remaining disagreements were resolved (stage four) by the author based
on comments provided by both annotators and the annotation guidelines. The manually
annotated version of the data set is referred to as ML (Manually Labelled).1

1The annotated corpus is available here: https://sites.google.com/site/
umlscorpus/home.
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5.2 Label Comparison

This section presents the differences between distantly labelled and manually labelled
annotation. The experiments in this chapter (Section 5.3) are carried out at sentence
and at entity level (see Section 2.2). For this reason annotation differences at both
levels are considered. First, the labels for each single sentence are examined (Sec-
tion 5.2.1). The analysis presents the amount of falsely labelled sentences in the DL
data, including the number of false positives and false negatives. Then the differences
between DL and ML at entity level are examined (Section 5.2.2).

5.2.1 Sentence Level Labels

Table 5.1 shows differences in annotations generated by the two labelling techniques
evaluated at sentence level. The DL data set contains for both relations 200 positive
and 200 negative sentences. Conversely, the ML data set for may-treat contains 173
positive and 227 negative examples, whereas the ML data set for may-prevent contains
139 positives and 261 negatives examples. A comparison of the DL and ML data sets
shows that 40.25% of the labels changed for may-treat and 39.75% for may-prevent.
The distant supervision process generated a larger number of false positives (may-

treat=94, may-prevent=115) than false negatives (may-treat=67, may-prevent=54) for
both relations. First of all, this shows that (as expected) distantly labelled data is
noisy. Not every sentence containing a positive entity pair expresses the target relation.
Moreover, instances known to be negatives, turn out to be positive (in a given sentence)
less frequently.

distantly labelled (DL)
may-treat may-prevent

pos neg # pos neg #

manually labelled (ML)
pos 106 67 173 85 54 139
neg 94 133 227 115 146 261

200 200 200 200

Table 5.1: Comparison of manual and distantly labelled annotations

Assuming that a classifier is able to identify the may-treat and may-prevent rela-
tions with perfect accuracy then performance on the ML data sets would be preci-
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sion=1.0, recall=1.0 and f1-score=1.0. However, the false labels on the DL data sets
would lead to performance of the same classifiers being estimated as precision=0.61,
recall=0.53 and f1-score=0.57 for may-treat and precision=0.61, recall=0.43 and f1-
score=0.50 for may-prevent. Hence, the two data sets may provide quite different esti-
mates of system performance. It also means that an improvement in terms of f1-score
using distantly labelled data does not necessarily provide improvements on the ‘real’
annotation labels. This issue will be explored in detail in the next section.

5.2.2 Entity Level Labels

The analysis in Section 5.2.1 (Sentence Level Labels) presented annotation differences
between distantly labelled and manually labelled sentences. The following analysis in-
stead, presents annotation differences for the different entity pair (entity level labels).
Each relation in the ML data set contains 200 positively and 200 negatively labelled
sentences. Those sentence are labelled as positive, if the given entity pair is known
as positive instance within UMLS, and labelled as negative according to the closed
world assumption (not known to be related according to UMLS). However, an entity
pair might occur several times within different sentences. While the previous analy-
sis examined the correct labelling of each single sentence, this analysis examines the
correct labelling of entity pairs. This means, that entity pairs which are considered to
be negative according to the closed world assumption might be (manually) labelled at
least once as positive within one of the sentences. In this case the original negative
label has to be reconsidered. In context of entity level labels this means, that the nega-
tive DL label of an entity pair will be re-labelled as positive, if it occurs within at least
once positive sentence (in the manually labelled data). Conversely it can happen that
a positive entity pair which has been extracted from UMLS (DL), never occurs within
a positive sentence. Although the number of selected sentences is relatively small, we
cannot prove that the entity pair will ever occur within a positive sentence. For this
reason, positive entity pairs (DL) which do not occur within at least one positive sen-
tence will be re-labelled as negative in the ML set. The situation of different positive
and negative entity pairs according to UMLS (DL) and according to their occurrence
in the sentences (ML) is presented in the following.

Table 5.2 presents the number of different positive and negative entity pairs within
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the set of sentences. Within the distantly labelled data, may-treat contains 124 posi-
tives and 186 negatives and may-prevent 41 positives and 147 negatives. The number
of positives and negatives for both relations is lower compared to sentence level labels.
This can be explained by the fact, that entity pairs can occur within multiple sentences.
Furthermore the table shows that the data of may-treat contains a larger number of dif-
ferent CUI pairs than may-prevent. This might be connected to the fact that may-treat

contains a larger number of CUI pairs within UMLS and generates a larger number
of distantly labelled sentences (as seen in Table 4.5 in previous Chapter 4.3). Thus, a
random selection of sentences from a larger data set with a larger number of different
CUI pairs leads to a larger number of positive and negative instance pairs in the ML
data set.

distantly labelled (DL)
may-treat may-prevent

pos neg # pos neg #

manually labelled (ML)
pos 76 64 140 22 38 60
neg 48 122 170 19 109 128

124 186 41 147

Table 5.2: Comparison of manual and distantly labelled annotations at entity level

Table 5.2 shows the difference between DL and ML entity level labels. For in-
stance, sentences of may-treat contain 124 different positive entity pairs according to
UMLS and 186 negative entity pairs according to the closed world assumption. These
entities are labelled as DL. Entity pairs are then examined and re-labelled according to
the fact, whether the entity pair occurs at least once within a (manually labelled) posi-
tive sentence. An analysis of the different sentences reveals, that 64 (of 186) different
negative entity pairs occur at least once within a positive sentence. Those entity pairs
are then manually re-labelled as positive. Furthermore, 48 (of the 124) positive entity
pairs extracted from UMLS never occur within at least one positive sentence are then
manually re-labelled as negative entity pairs.

In contrast to the comparison at sentence level, the data contains a larger number
of false negatives than false positives. As seen in Table 5.2 some CUI pairs which are
known to be correct never occur within a sentence expressing the relation of interest
(may-treat=48, may-prevent=19). Conversely, a larger number of negative (unknown)
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CUI pairs are re-labelled as positives (may-treat=64, may-prevent=38). Using a larger
number of sentences for each positive CUI pair would probably further decrease the
false positives. The number of false negatives shows that CUI pairs which are not
known to be related may also occur in a positive sentence. This shows that UMLS is
not necessarily complete.

5.3 Experiment

In this section a distantly supervised relation classifier is trained for two UMLS Metathe-
saurus relations may-treat and may-prevent using MultiR. The classifier is trained for
both relations and is evaluated using manually and distantly labelled versions of the
test data.

This section is structured as follows. First, the experimental setup is described.
Then, two experiments are presented. The first experiment is an evaluation carried
out using entity level evaluation, i.e. precision and recall are computed based on the
proportion of correctly identified entity pairs which occur in sentences labelled as pos-
itive examples (according to the annotations contained within DL or ML). Entity level
evaluation is commonly used to evaluate distantly supervised relation extraction sys-
tems (see Section 2.2). Results at sentence level are then presented following the same
experimental setup. Sentence level evaluation measures precision and recall by exam-
ining the correct prediction of each sentence (see Section 2.2).

5.3.1 Experimental Setup and Overview

In order to examine different classification results on the DL and ML evaluation data,
several experiments are carried out with a different number of training instances. Since
machine learning methods tend to provide better results using more data, the experi-
ment is conducted with a different amount of training data. Starting with 2,000 in-
stances (1,000 instances of may-treat and 1,000 instance of may-prevent), the number
of training examples is increased to 12,000 in increments of 2,000. Note, no instance
of the training data occurs in the evaluation data (held-out). For all experiments in
this chapter, the same proportion of positive and negative sentences is used for training
(1:1) in order to use the same proportion as given in the DL test data (1:1). However,
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the important aspect of this chapter is that improvements in performance observed in
evaluation against distantly supervised data are not necessarily reflected in improved
results when measured against manually labelled data. This aspect does not depend on
the bias of the training data.

The following experiments present results in different ways. First, classification
results are examined for each relation separately. This analysis shows how efficiently
may-treat and may-prevent can be detected independently. Then, the overall classifica-
tion results are presented. These results analyse how well instances can be predicted.
This analysis takes into account that one relation (may-treat) contains a larger number
of positive instances. Results are always reported for both labels (DL and ML) from
the test data, in order to have a direct comparison between held-out evaluation and
evaluation using manually labelled data.

The highlighted (bold) f1-score results in the tables indicate which classifier ob-
tains better results on the data set (DL or ML) for each training data. Underlined re-
sults indicate that an increase in f1-score on DL data (compared to the previous result
using less data) leads to a decrease of f1-score on ML data (compared to the previous
result) and vice versa. The underline shows that an improved result in terms of f1-
score on distantly labelled data does not imply necessarily imply an improvement on
the (usually not known) true labels of the manually labelled data.

5.3.2 Entity level evaluation

This section presents the results using entity level evaluation. Table 5.3 shows the
results for may-prevent and Table 5.4 the results for may-treat. The highlighted (bold)
f1-scores indicate which classifier obtains better results on the data set (DL or ML).
The underlined results indicate that an increase in f1-score using DL data, compared
to the previous result using less data, leads to a decrease of f1-score using ML data
compared to the previous result and vice versa1.

In general, increasing the amount of training data leads to improved results on the
DL data. In particular, an increase in recall is observed when there is a larger amount of
training data. However, a different pattern is observed for the ML data and increasing
the amount of training data does not always lead to an improvement in the f1-score.

1a decrease compared to the previous result on the DL data leads to an increase on the ML data

85



Results also show that the performance estimates obtained using the DL and ML data
sets are only loosely associated. The results are more similar for smaller training data
sets but diverge as the amount of training data increases.

may-prevent
evaluation on DL evaluation on ML

# prec rec f1 prec rec f1
2000 64.71 26.83 37.93 58.82 16.67 25.97
4000 43.33 31.71 36.62 66.67 33.33 44.44
6000 48.84 51.22 50.00 46.51 33.33 38.83
8000 47.17 60.98 53.19 49.06 43.33 46.02

10000 50.00 58.54 53.93 45.83 36.67 40.74
12000 47.37 65.85 55.10 43.86 41.67 42.74

Table 5.3: Results for relation extraction system evaluated against DL and ML data
sets (may-prevent)

may-treat
evaluation on DL evaluation on ML

# prec rec f1 prec rec f1
2000 51.28 48.39 49.79 52.99 44.29 48.25
4000 57.58 45.97 51.12 56.57 40.00 46.86
6000 60.00 43.55 50.47 53.33 34.29 41.74
8000 58.20 57.26 57.72 45.90 40.00 42.75

10000 63.89 55.65 59.48 51.85 40.00 45.16
12000 63.00 50.81 56.25 48.00 34.29 40.00

Table 5.4: Results for relation extraction system evaluated against DL and ML data
sets (may-treat)

In addition, the tables highlight that for both relations the performance estimates
using the DL data are in general higher than those obtained using ML. This trend
becomes more pronounced as the amount of training data used increases. The most
likely reason for this difference is that the classifiers are trained using distantly super-
vised data and therefore model the labels in the DL data set more closely than those
found in ML.

These results demonstrate that evaluation using distantly labelled data tends to
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overestimate performance compared to gold standard. In some cases the discrepancy
is large (up to 13.19 for may-prevent and 16.25 for may-treat). However, it does not
seem to be consistent or particularly predictable. Consequently, improving the perfor-
mance of a relation extraction system relative to distantly labelled evaluation data does
not necessarily imply an increase in performance when measured against a manually
annotated gold-standard.

Overall
evaluation on DL evaluation on ML

# prec rec f1 prec rec f1
2000 52.99 43.03 47.49 53.73 36.0 43.11
4000 54.26 42.42 47.62 58.91 38.0 46.20
6000 56.39 45.45 50.34 51.13 34.0 40.84
8000 54.86 58.18 56.47 46.86 41.0 43.73

10000 59.62 56.36 57.94 50.00 39.0 43.82
12000 57.32 54.55 55.90 46.50 36.5 40.90

Table 5.5: Results for relation extraction system evaluated against DL and ML data
sets (Overall)

Table 5.5 presents the classification results of both relations together (overall re-
sults) and takes the frequency of different entity pair of each relation into account
(micro-avg. f1-score). The results indicate similar characteristics as the may-prevent

and may-treat tables. The maximum difference between results on DL and ML is 15.00
(for 12,000 examples).

5.3.3 Sentence level evaluation

A second experiment was conducted to examine the suitability of using held-out data
for sentence level evaluation. Results of may-prevent and may-treat are presented in
Table 5.6 and Table 5.7 and show a similar pattern of results to those obtained using
entity level evaluation. Results obtained using the distantly labelled data tend to be
higher than those for the manually labelled data in terms of f1-score (up to 7.45 for
may-prevent and 17.72 for may-treat), precision and occasionally also in terms of re-
call. Similar to entity level evaluation, improving performance on distantly labelled
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evaluation data does not imply an increase in performance when measured against a
manually annotated gold-standard.

may-prevent
evaluation on DL evaluation on ML

# prec rec f1 prec rec f1
2000 72.73 8.0 14.41 45.45 7.19 12.42
4000 61.40 17.5 27.24 59.65 24.46 34.69
6000 50.72 17.5 26.02 43.48 21.58 28.85
8000 53.57 22.5 31.69 36.90 22.30 27.80

10000 59.41 30.0 39.87 46.53 33.81 39.17
12000 54.00 27.0 36.00 40.00 28.78 33.47

Table 5.6: Sentence-level results for relation extraction system evaluated against DL
and ML data sets (may-prevent)

may-treat
evaluation on DL evaluation on ML

# prec rec f1 prec rec f1
2000 57.75 41.0 47.95 48.59 39.88 43.81
4000 64.29 40.5 49.69 50.00 36.42 42.14
6000 64.29 36.0 46.15 44.64 28.90 35.09
8000 63.95 47.0 54.18 44.22 37.57 40.63

10000 69.17 46.0 55.26 48.87 37.57 42.48
12000 70.87 45.0 55.05 44.09 32.37 37.33

Table 5.7: Sentence-level results for relation extraction system evaluated against DL
and ML data sets (may-treat)

The overall results at sentence level are presented in Table 5.8 and show similar
characteristics as the results of the single relations. Using the maximum number of
training instances the discrepancy between DL and ML is 10.31. Surprisingly the f1-
score discrepancy at sentence level is smaller than than the discrepancy at entity level.
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Overall
evaluation on DL evaluation on ML

# prec rec f1 prec rec f1
2000 59.76 24.50 34.75 48.17 25.32 33.19
4000 63.39 29.00 39.79 53.01 31.09 39.19
6000 59.12 26.75 36.83 44.20 25.64 32.45
8000 60.17 34.75 44.06 41.56 30.77 35.36

10000 64.96 38.00 47.95 47.86 35.90 41.03
12000 63.44 36.00 45.93 42.29 30.77 35.62

Table 5.8: Sentence-level results for relation extraction system evaluated against DL
and ML data sets (Overall)

5.4 Conclusion

This chapter explored the effect of evaluating a biomedical relation extraction system
using held-out data annotated via distant supervision. Test data for two biomedical
relations was generated using distant supervision and then manually annotated. The
manual and automatic labels differ for a large portion of the sentences. A distantly
supervised relation extraction system was evaluated using both data sets. The experi-
ments show, that evaluation using distantly labelled held-out data tends to overestimate
performance. Likewise the experiments show that there is no clear connection between
improved performance measured against distantly and manually labelled data.

At first glance the use of held-out data does not look promising nor reliable. The
results at sentence level appear to be even less reliable (than at entity level) considering
the fact that entities can express something different within each sentence. At entity
level, false negatives (facts which are correct but not contained in the KB) are the
main problem. Those instances might be detected by the relation extraction system but
considered as a false prediction which decreases the precision of the results. The data
set used for this experiment is relatively small. The re-annotation process changed the
‘truth’ of some entity pairs, because they never occur within a positive example in any
sentence - even though the pair is positive according to the KB. Using more data might
increase the probability to find a sentence with the entity pair expressing the relation
of interest.

The use of distantly labelled held-out data is a cheap and quick method to evaluate
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relation extraction systems. However the chapter demonstrates that results obtained
should be considered with some caution and, ideally, systems should also be evaluated
against manually labelled data as well. In the following chapter work will focus at
entity level evaluation for the following reasons: Even though distantly labelled data
at entity level suffered the problem of false positives (entities known to be positive but
never occur as positives in given sentences), the evaluation only at entity level appears
to be more reliable. An evaluation at sentence level is always connected to uncertainty
whether a sentence is labelled correctly. However, at entity level this uncertainty also
exists, but using a sufficient amount of sentences for each positive entity pair increases
the probability that at least once sentence is a true positive. This supports the use of
filtering step 3) in Section 4.4. In Section 6 (Reduction of Falsely Labelled Data) an
inference technique will be introduced in order to reduce the number of false negatives
in the data.
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Chapter 6

Reduction of Falsely Labelled Data

This chapter focuses on increasing the quality of training data to improve classifica-
tion results. Distantly labelled data contains a large number of falsely labelled in-
stances (see Section 5.2). This chapter addresses the problem of noisy training data by
detecting potential false negatives using a knowledge inference method, an approach
motivated in Section 6.1. Section 6.2 introduces the inference learning method PRA
(Path Ranking Algorithm) which is used to identify potentially false negatives. The
experimental setup is described in Section 6.3, followed by results in Section 6.4. Sec-
tion 6.5 presents an analysis of the relation paths and the reduced data. The chapter
ends with a conclusion in Section 6.6.

6.1 Motivation

Falsely labelled data reduces the effectiveness of distantly supervised relation extrac-
tion systems. A system trained with false labels might be less accurate and an evalua-
tion on noisy labels less meaningful. False positives occur more frequently than false
negatives in distantly labelled data, as seen in Table 5.1. This thesis has attempted
to address the issue of false positives in two ways: a) using a multi-instance classifier
MultiR (see Section 4.5) and b) restriction to entity level evaluation (see Section 5.4) in
combination with the reduction of low frequency entity pairs (see Section 4.4). MultiR
is able to deal with noisy input data and the latter approach increases the probability
that at least one sentence expresses the target relation. This chapter addresses the issue
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of false negatives.
UMLS is a knowledge source with millions of related entities (see Section 2.3.2 and

Section 4.1). Nonetheless, knowledge bases tend to be incomplete. There are different
reasons for the lack of information. One is certainly the fact that many knowledge
bases are created and updated manually. At the same time new discoveries are made
and are hidden in the large amount of medical papers which are published every year.
Consequently, it might take some time until new information are included into a new
UMLS version, which is published twice a year.

The issue of false negatives is approached by detecting missing information in the
knowledge base and removing them from the negative data. The detection of missing
data is tackled with a preliminary processing step using an inference learning method
applied on UMLS. This technique is able to detect new connections (relations) between
entities, based on existing (and similar) connections seen in the data. The inference
learning and reduction technique is described in Section 6.2. This section instead,
provides a motivation and idea of the reduction of potentially false negatives1.

Figure 6.1: Using isa-relations to reduce false negatives

1The described entity pairs are called ‘potentially false negatives’ (often just ‘false negatives’),
because it is difficult for individuals without biomedical expert knowledge to determine whether entities
express a target relation or not. Moreover, the main objective is to improve the classification results, not
the prediction of false negatives.
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In this work negative training data is generated using the closed world assumption
(see Section 2.1.2). Negative data is generated by creating new entity pair combina-
tions from the set of related entity pairs. However, this process might produce false
negative entity pairs since the knowledge base is incomplete.

Figure 6.1 and Figure 6.2 present two examples of potentially false negatives. Fig-
ure 6.1 shows that Aspirin can be used to treat pain according to the UMLS Metathe-
saurus. Moreover, Aspirin is defined as an antipyretics and antipyretics is defined as a
drug, according to isa relations of UMLS. However, UMLS does not contain any rela-
tion between (pain, antipyretics) and (pain, drug). Using the closed world assumption
it might happen that these entity pairs are constructed as negatives of may-treat. Con-
versely, it might be likely that the mentioned entity pairs occur in context of may-treat,
due to its close connection.

The example in Figure 6.2 goes a step further. According to the Metathesaurus,
Oxazepam can be used to treat anxiety disorders. Oxazepam is a benzodiazepine drug
which is contained in Serax 10mg Capsule2. Furthermore, a tradename of Oxazepan

is Serax3. In both cases (Serax 10mg Capsule and Serax) entities are closely related to
Oxazepam. On the other hand, neither of the two entities includes any relationship to
the treatment of anxiety disorder.

Both examples show entity pairs which are not defined within UMLS Metathe-
saurus. However, according to common-sense it is possible that those entity pairs
occur together within a positive relation. Consequently, those entity pairs might de-
crease the quality of the distantly labelled data. UMLS is a linked knowledge base
and it is likely that further useful connections, similar as those presented in the exam-
ples, exist. The idea of this chapter relies on using a technique which automatically
detects potential relation paths (e.g. if may-treat(Y,Z) then also may-treat(X,Z) if the
instance has-ingredient(X,Y) exists) with the aim to remove new connections (entity
pairs) from the negative data set. An inference learning method such as PRA might be
an ideal technique to detect those connections to detect false positives.

2Also known as e.g. Oxazepam 10 MG Oral Capsule [SERAX].
3There are a range of different other brand names (not all are covered within UMLS) according

to Wikipedia, such as e.g. Alepam, Murelax or Opamox (https://en.wikipedia.org/wiki/
Oxazepam, date: 2nd of November 2015).
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Figure 6.2: Using more relations to reduce false negatives (example 2)

6.2 PRA-Reduction

The path ranking algorithm PRA [Lao and Cohen, 2010; Lao et al., 2011] is an al-
gorithm that infers new relation instances from knowledge bases. By considering a
knowledge base as a graph, where nodes are connected through typed relations, it
performs random walks over it and finds bounded-length relation paths that connect
graph nodes. These paths are used as features in a logistic regression model, which
predicts new relations in the graph. Although initially conceived as an algorithm to
discover new links in the knowledge base, PRA can also be used to learn relevant re-
lation paths for any given relation. For instance, if x and y are related via a sibling

relation, the model trained by PRA would learn that the relation path parent(x,a) ∧
inverse-parent(a,y)4 is highly relevant, as sibling share the same parents.

PRA was used for this thesis because it can construct inference methods that scale
to large knowledge bases, such as UMLS. Furthermore, the results provided by PRA
appear to address the task of detecting potentially false negatives in a good way. Fi-
nally, the software is freely available5 and could be easily adjusted to the UMLS task.

4∧ represents a path composition and inverse-parent defines the inverse relation of parent.
5Available on http://www.cs.cmu.edu/˜nlao/.
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6.2.1 Removing False Negative Instances

In this chapter knowledge graphs were extracted from the NDF-RT and NCI vocabular-
ies generating approximately 200, 000 related instance pairs for NDF-RT and 400, 000

for NCI (only relations with a RELA label were considered). PRA is then run on both
graphs in order to learn paths for each target relation. Table 6.1 and Table 6.2 show ex-
amples of the paths PRA generated for the relation biological-process-involves-gene-

product and contraindicating-class-of together with their weights. Paths with a higher
weight are considered to be more useful than those ones with a lower weight. For this
reason only relation paths with positive weights generated by PRA are considered for
this work.

path weight
gene-encodes-gene-product(x,a) ∧ inverse-gene-plays-role-in-process(a,y) 10.53
inverse-isa(x,a) ∧ biological-process-involves-gene-product(a,y) 6.17
isa(x,a) ∧ biological-process-involves-gene-product(a,y) 2.80
gene-encodes-gene-product(x,a) ∧ inverse-gene-plays-role-in-process(a,b) ∧
isa(b,y)

-0.06

Table 6.1: Example PRA-induced paths and weights for the NCI relation biological-
process-involves-gene-product.

path weight
inverse-contraindicating-class-of(x,a) ∧ inverse-CHD(a,y) 0.32556
CHD(x,a) ∧ inverse-ingredient-of(a,b) ∧ contraindicating-class-of(b,y) 1.64169
product-component-of(x,a) ∧ contraindicating-class-of(a,y) 4.59762
inverse-CHD(x,a) ∧ CHD(a,b) ∧ ingredient-of(b,y) -0.12166
may-treat(x,a) ∧ may-treat(a,b) ∧ contraindicating-class-of(b,y) 1.76046

Table 6.2: Example PRA-induced paths and weights for the NDF-RT relation
contraindicating-class-of.

The paths induced by PRA are used to identify potential false negatives in the neg-
ative training examples. Each negative training example is examined to check whether
the entity pair is related in UMLS by following any of the relation paths extracted by
PRA for the relevant target relation. Examples containing related entity pairs are as-
sumed to be false negatives, since the relation can be inferred from the knowledge base,

95



and removed from the set of negatives training examples. For instance, using the path
in the top row of Table 6.1, sentences containing the entities x and y would be removed
if the path gene-encodes-gene-product(x,a) ∧ inverse-gene-plays-role-in-process(a,y)

could be identified within UMLS.
The CUI pair (C0072916, C0014806) (‘Cisapride’, ‘Erythromycin’), a negative ex-

ample of the relation contraindicating-class-of, will be removed according to the first
line in Table 6.2. The following CUI instances can be found within UMLS: inverse-
contraindicating-class-of(C0072916=‘Cisapride’, C0014809=‘Erythromycin Estolate’)
∧ inverse-CHD(C0014809=‘Erythromycin Estolate’, C0014806=‘Erythromycin’).

6.3 Experimental Setup

The experiment is conducted using the MultiR system with the same features as de-
scribed in Chapter 4.5. Overall, the following experiment uses the same relations and
same configuration as Chapter 4.

6.3.1 Training Data Sets

Three datasets were created to train MultiR and evaluate performance: Unfiltered,
Pra-Reduced and Random-Reduced. The (Unfiltered) training set uses the data ob-
tained using distant supervision without removing any examples identified by PRA. It
is exactly the same training data as used for the experiment in Chapter 4. The PRA-
reduced dataset is created by applying PRA reduction (Section 6.2) to the Unfiltered

dataset to remove a portion of the negative training examples. Removing these ex-
amples produces a dataset that is smaller than Unfiltered and with a different bias.
Changing the bias of the training data can influence the classification results. Con-
sequently the Random-reduced dataset was created by removing randomly selected
negative examples from Unfiltered to produce a dataset with the same size and bias
as PRA-reduced. The random reduction step is repeated four times. Results are then
averaged across the four steps.

Figure 6.3 visualises the construction of the data. Line numbers 3-5 present the
data used for the following experiment and line numbers 1-2 present the data from
Chapter 4 (see also Figure 4.3). Line 2 and Line 3 show that the training data of
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Held-Out and Unfiltered are the same, only the test data changes. For the training of
the PRA-reduced classifier further sentences of the negative data are removed. Line
5 shows, that the same number of sentences are also randomly removed from the
Random-reduced training data.

Figure 6.3: Bias adjustment

6.3.2 Evaluation

Two approaches were used to evaluate performance: held-out evaluation and evalu-
ation on the gold standard. The Held-out datasets consist of the Unfiltered, PRA-

reduced and Random-reduced data sets. The set of entity pairs obtained from the
knowledge base is split into four parts and a process similar to 4-fold cross validation
applied. In each fold the automatically labelled sentences obtained from the pairs in
3 of the quarters are used as training data and sentences obtained from the remaining
quarter used for testing. Each training split is adjusted according to the description in
Section 6.3.1. The average ratio of positive to negative sentences in the Held-out eval-
uation set is 1:5.1 (after applying further filtering steps from Section 4.4 to the data in
Table 4.5). However, this changes to an average bias of 1:2.3 after removing examples
identified by PRA.

The Manually labelled dataset is described in Section 5.1.2. This dataset is more
balanced than the held-out data with a ratio of 1:1.3 for may-treat and 1:1.8 for may-

prevent.
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As in previous experiment, entity level evaluation is used since this is the most
appropriate approach to determine suitability for database population. Precision and
recall are computed based on the proportion of entity pairs identified. For the held-
out data the set of correct entity pairs are those which occur in sentences labelled as
positive examples of the relation and which are also listed as being related in UMLS.
For the manually labelled data it is simply the set of entity pairs that occur in positive
examples of the relation.

6.4 Results

6.4.1 Held-out data

Table 6.3 shows the results obtained using the held-out data. Overall results, averaged
across all relations, are shown in the top portion of the table and indicate that apply-
ing PRA improves performance. Although the highest precision is obtained using the
Unfiltered classifier, the PRA-reduced classifier leads to the best recall and F1-score.
Performance of the Random-reduced classifier indicates that the improvement is not
simply due to a change in the bias in the data but that the examples it contains lead
to an improved model. The results of the PRA-reduced classifier are significantly bet-
ter than the results of the Unfiltered classifier in terms of F1-Score (one-tailed paired
t-test, p ≤ 0.05).

The lower part of Table 6.3 shows results for each relation. The PRA-reduced

classifier produces the best results for the majority of relations and always increases
recall compared to Unfiltered.

It is perhaps surprising that removing false negatives from the training data leads
to an increase in recall, rather than precision. False negatives cause the classifier to
generate an overly restrictive model of the relation and to predict positive examples of
a relation as negative. Removing them leads to a less constrained model and higher
recall.

There are two relations where there is also an increase in precision (contraindicating-

class-of and mechanism-of-action-of ) and these are also the ones for which the fewest
training examples are available. The classifier has access to such a limited amount of
data for these relations that removing the false negatives identified by PRA allows it to
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Figure 6.4: Precision/Recall Curve for Held-out data using PRA

learn a more accurate model.
Figure 6.4 presents a precision/recall curve computed using MultiR’s output prob-

abilities. Results for the PRA-reduced and the Random-reduced classifiers show that
reducing the amount of negative training data increases recall. However, using PRA-

reduced generally leads to higher precision, indicating that PRA is able to identify
suitable instances for removal from the training set. The Unfiltered classifier produces
good results but precision and recall are lower than PRA-reduced.

6.4.2 Manually labelled

Table 6.4 shows results of evaluation on the manually labelled data set. The best overall
performance is once again obtained using the PRA-reduced classifier. There is an
increase in recall and a slight decrease in precision for both relations. Performance
of the Random-reduced classifier does not lead to any improvements. The precision
achieves comparable results to those of the PRA-reduced classifier. However, the recall
is much lower than using the other two classifiers. These results confirm that removing
examples identified by PRA improves the quality of training data. This supports the
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initial hypothesis that removing potential false negatives from training data improves
classifier predictions.

Unfiltered Random-reduced PRA-reduced
relation Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

may prevent 58.06 30.0 39.56 56.62 25.67 35.32 56.76 35.0 43.30
may treat 45.21 47.14 46.15 42.59 45.57 44.03 42.25 56.43 48.32

Overall (micro) 47.46 42.00 44.56 44.75 39.60 42.02 44.64 50.00 47.17

Table 6.4: Evaluation using manually labelled data

Further analysis indicated that the PRA-reduced classifier produces the fewest false
negatives in its predictions on the manually annotated dataset. It incorrectly labels 82
entity pairs (45 may-treat, 37 may-prevent) as negative while Unfiltered predicts 120
(73, 47) and Random-reduced 114 (69, 45).

6.5 Data Analysis

The following section investigates why the PRA-reduction step tends to achieve im-
proved classification results. First, the differences (in terms of classification results)
between the PRA-reduced and the Random-reduced data set are examined. Then, a
range of paths for different relations are examined.

6.5.1 Examination of PRA-reduced data

Negative instances removed by using PRA are compared to those which are randomly
reduced. The entity pairs and sentences which occur in the Random-reduced but not
in the PRA-reduced data might provide an answer why the usage of PRA leads to
better classification results. It is likely that exactly those sentences contain some false
negatives, otherwise the result would not improve. The following examination serves
only as example and focusses on one cross-validation step of may-prevent.

Within the selected cross-validation step 319 different CUI pairs are removed from
the set of negative may-prevent instances. Considering one Random-reduced setup of
the same cross-validation step 278 CUI pairs (of the 319) occur as negatives in the
data set. 20 of those CUI pairs were randomly selected and examined including all
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Does the prophylactic administration of [C0001047:N-acetyl-
cysteine] prevent [C0022660:acute kidney injury] following
cardiac surgery? (PMID=20570977)

Figure 6.5: PRA-reduced example 1

[C0052796:Azithromycin] for treating uncomplicated
[C0041466:typhoid] and paratyphoid fever (enteric fever).
(PMID=18843701)

Figure 6.6: PRA-reduced example 2

sentences containing those entities. 4 different CUI pairs include sentences expressing
a prevention in a wider sense such as shown in Figure 6.5. Furthermore, seven CUI
pairs occur in sentences in context of a treatment such as shown in Figure 6.6. For
the given example of 20 CUI pairs, 20% of them occur in a close context of the target
relation. Another 35% of entity pairs occur as falsely labelled data in context of a
relation similar to may-prevent.

The given example shows that PRA was able to identify entity pairs that are closely
connected to the target relation. Removing those entity pairs from the negative data
can help to generate distantly labelled data of a higher quality (less noise). Thus,
PRA-induced paths are able to decrease the amount of false negatives in the training
data. Since may-treat and may-prevent are closely connected, also false negatives of
may-treat are removed from the data set.

6.5.2 Pattern Analysis

A subset of relation paths taken from two relations are examined to demonstrate that
paths generated by PRA appear to be very useful for the reduction of false negatives.

Table 6.5 presents a selection of PRA-induced patterns generated for biological-

process-involves-gene-product. Many relation paths appear to be reasonable accord-
ing to the examples presented in the motivation (see Figure 6.1 and Figure 6.2). The
table shows that many paths involve the main target relation in combination with re-
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lations such as isa, inverse-gene-product-is-physical-part-of or inverse-gene-product-

has-associated-anatomy.

path weight
inverse-CHD-isa ∧ biological-process-involves-gene-product 6.11759
inverse-gene-product-is-physical-part-of ∧ biological-process-involves-gene-
product

0.46255

inverse-gene-product-has-associated-anatomy ∧ gene-product-has-
associated-anatomy ∧ biological-process-involves-gene-product

1.21214

inverse-gene-product-affected-by-chemical-or-drug ∧ inverse-chemical-or-
drug-has-physiologic-effect ∧ inverse-CHD-isa

0.01531

gene-encodes-gene-product ∧ CHD-isa ∧ process-involves-gene 9.67983
gene-product-has-biochemical-function ∧ biological-process-involves-gene-
product

0.84485

Table 6.5: Example PRA-induced paths and weights for the NCI relation biological-
process-involves-gene-product .

Table 6.6 presents a selection of PRA-induced patterns generated for may-prevent.
At the first glance the results are surprising. Many relation paths contain the relation
may-treat and only a few paths contain may-prevent relations. However, CUI pairs
of may-treat and may-prevent are closely connected. Many instances of may-prevent

also occur as instance within may-prevent, such as CUIs connected to Vitamin E and
Alzheimer. An analysis of UMLS reveals, that may-prevent contains 4838 different
CUI pairs. 2416 of those CUI pairs also occur in may-treat which expresses a close
connection of both relations. Accordingly, it seems reasonable that may-treat occurs
in the relation paths of may-prevent.

Taking the similarity between both relations into account, relation paths also appear
to be very reasonable. Many PRA-induced paths generated for may-prevent combine
relations such as CHD (child/parent relations), ingredient-of or product-component

which also support the motivation of this chapter.

6.6 Conclusions

This chapter proposed a novel approach to identifying potentially incorrectly labelled
instances generated using distant supervision. The method targets in particular false
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path weight
may-treat 5.64337
may-treat ∧ inverse-CHD ∧ CHD 2.81085
may-treat ∧ inverse-CHD ∧ inverse-ingredient-of 1.76814
may-treat ∧ inverse-CHD ∧ inverse-product-component-of 0.66923
may-treat ∧ ingredient-of 0.78277
may-treat ∧ ingredient-of ∧ inverse-product-component-of 0.58369
may-treat ∧ inverse-may-prevent ∧ may-treat 4.66815
may-treat ∧ mechanism-of-action-of ∧ inverse-mechanism-of-action-of 0.56310
may-treat ∧ physiologic-effect-of ∧ inverse-physiologic-effect-of 1.78688
may-treat ∧ drug-contraindicated-for ∧ drug-contraindicated-for 0.22314

Table 6.6: Example PRA-induced paths and weights for the NCI relation may-prevent.

negative entity pairs and sentences in the negative data which are closely connected
to the target relations. The presented method bases on the idea of using an inference
learning method applied to the UMLS knowledge graph in order to detect potentially
falsely labelled instances in the negative data.

The presented experiments in this chapter showed that removing those inferred
instances from the negative data improves significantly the classification results for
many UMLS relations. The method has been evaluated using held-out and gold stan-
dard data. Furthermore, an analysis of the removed data supported the assumption
that inference learning can be used to clean distantly labelled training data for relation
extraction.
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Chapter 7

Conclusions

The final chapter of this thesis provides a summary of the work described in this thesis
and possible future directions.

7.1 Summary of thesis

This thesis explored the detection of biomedical relations using distant supervision.
Distantly supervised relation extraction is very useful when no manually labelled train-
ing data is available. The technique uses a knowledge base and labels training data
automatically using given facts. Thus, large amount of training data can be generated
easily but it is usually of lower quality than manually labelled instances.

In a first step the thesis showed that when only a small set of manually labelled data
is available, distantly labelled data can significantly improve the classification results.
This technique has been tested in the context of adverse-drug effects.

The main focus of this work is the examination whether UMLS is a useful source
for distant supervision. Based on two example UMLS source vocabularies NDF-RT
and NCI, this thesis shows that it is indeed a very useful source to detect similar infor-
mation in natural language.

The thesis also explores evaluation of distantly supervised relation extraction when
no manually labelled data is available. A very popular method for this use case is using
held-out data. Held-out data is generated by splitting facts from a knowledge base into
two sets to generate a distantly labelled training and a distantly labelled evaluation
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set. This means that the classifier is trained and evaluated against noisy data. Many
approaches use held-out evaluation to measure the efficiency of their system. However,
this work examined how useful an evaluation against held-out data is and what exactly
the results tell us. Overall, the results show that evaluation using held-out data tends to
overperform an evaluation on the same data using gold labels. Furthermore, the results
show that system improvements based on held-out data do not necessarily imply an
improvement on gold data.

Finally, a new method was introduced with the aim to improve the quality of dis-
tantly labelled data and increasing the classification results of UMLS relations. The
method presented an inference learning method with the goal to detect potentially
missing information in the knowledge base to reduce the amount of false negatives in
the data. The method is able to detect false negatives but also true negatives. However,
results show that using the inference learning method to reduce ‘potentially’ falsely
labelled instances improves the classification results.

7.2 Future directions

The thesis explores a range of different methods in the context of distantly supervised
relation extraction in the biomedical domain. Future directions include the following:

Detecting and examining new instances

This work examined whether UMLS is a useful source for distantly supervised relation
extraction. The results have been carried out on gold standard and on held-out data.
Evaluation was carried out using precision, recall and f1-score and the quality of a
system measured with numbers between 0-100. The presented work shows that related
instance pairs of UMLS can be detected within sentences of publications. However, in
future work it would be interesting to put focus on new predictions itself (exploration
of facts which are not known according to UMLS).

Figure 7.1 for instance, presents a sentence that expresses the usage of dapsone for
the prophylaxis of pneumocystis carinii pneumonia (but may have a negative effect).
The CUI pair in this example does not occur as related in UMLS. In future work
it would be desirable to examine positively predicted instance pairs in more detail.
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Second, the inadvertent simultaneous administration of
low doses of oral iron with [C0010980:dapsone] for the
prophylaxis of [C0032305:Pneumocystis carinii pneumonia] in
HIV-positive patients may have been associated with excess
mortality. (PMID=11166657)

Figure 7.1: Example sentence of a positively predicted, but unknown entity pair

Which new entity pairs can be detected? Why are those pairs are not within UMLS?
Do entities occur in contraindicating sentences or do entities describe novel findings in
biomedical research?

The examination could be interesting for the biomedical community and could be
potentially used to support the development of UMLS. The advantage is, that further
system extensions are not necessarily required. The system used in Chapter 6 seems to
be already sufficient to address this task. However, in order to find and evaluate new
instance pairs of a relation predicted information need to be examined manually. This
requires a collaboration with a biomedical expert who might be able to provide a new
perspective to new detected entity pairs.

Processing of relations

This thesis shows that relations from UMLS can be detected in natural language. In
a next step it might be useful to use the extracted information for further processing
steps.

Particular relations could be extracted from a large number of Medline publications
published in different years or published in different countries. For instance lung can-
cer treatments might have changed over the years. Using relation extraction it could be
possible to explore differences of treatments across years and countries - also in com-
bination with side effects of those treatments. It could be possible to explore questions
such as ‘How did lung cancer treatment change in the last 10 years?’.

The implementation of a system capable of solving this task is relatively simple
and could be addressed with the previously reported relation extraction system. The
relation extraction system could run on PubMed subsets in order to extract a relation
containing a target entity pair (e.g. ‘lung cancer’). Next, statistics of treatments can be
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extracted and used for further analysis. Furthermore, this data could be used to identify
trends of medical treatments using methods similar as to Lukasik et al. [2015].

Improving selection of named entities

As Augenstein et al. [2015] already mentioned, “An important first step in distant su-
pervision is to identify named entities (NEs) and their types to determine if a pair of
NEs is a suitable candidate for the relation.” In this thesis MetaMap has been used
to detect medical concepts in natural language. Named entities provided by MetaMap
were in general considered as correct. However, some named entities are predicted (or
selected) incorrectly. A closer analysis of the data actually reveals a range of different
errors and problems connected to MetaMap. An example is given in figure 7.2. The
sentence annotates a surname as pharmacological substance (C0039736).

Leon [C0039736:Thal] and the therapeutic age of
[C0002395:Alzheimer’s disease]. (PMID=18631999)

Figure 7.2: False named entity recognition

This work focuses on biomedical relation extraction and not on named entity recog-
nition. Named entities were taken as granted. Only little attempt has been taken to re-
duce false labels (such as reducing non-nouns). Biomedical named entity recognition
is an ongoing challenge and an important task. Improving the quality of biomedi-
cal named entity recognition might positively influence tasks which rely on a correct
named entity recognition, such as relation extraction, summarisation or sentiment anal-
ysis.

In order to improve the current MetaMap-NER task various possibilities exist. One
possibility could take the mappings of MetaMap as baseline and apply some expert-
rules to discard some falsely labelled entities. Using additional POS information for
instance might help to reduce errors such as mentioned in Section 2.3.3 (a colour is
annotated as disease) or Figure 7.2 (e.g. other noun phrases are next to the annotation).

Another possibility to improve the annotation could be the disambiguation of the
MetaMap candidate list. As mentioned in Section 2.3.3, MetaMap provides a large list
of candidates for different words and medical concepts in text. In order to reduce noise
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(many instances were not useful) only the highest ranked mappings has been chosen.
Approaches such as Agirre et al. [2014] or Weissenborn et al. [2015] use random walks
over a knowledge base to disambiguate the list of candidates. This technique could be
applied for UMLS as well, maybe in combination with some background knowledge
such as a restriction to a domain vocabulary or a focus on particular target semantic
types.
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Appendix 1

REL label Definition
AQ allowed qualifier

CHD has child (narrower hierarchical term)
DEL deleted concept
PAR has parent (broader hierarchical term)
QB can be qualifier by
RB has a broader relationship
RL has similar or like relationship
RN has narrower relationship
RO has relationship other than synonymous, narrower or broader
RQ related and possibly synonymous
SIB has sibling
SY source-asserted synonymy

Table 1: Relationship definitions of MRREL
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Semantic Group Semantic Type (STY)

Chemicals & Drugs

Amino Acid, Peptide, or Protein
Antibiotic
Biologically Active Substance
Biomedical or Dental Material
Carbohydrate
Chemical
Chemical Viewed Functionally
Chemical Viewed Structurally
Clinical Drug
Eicosanoid
Element, Ion, or Isotope
Enzyme
Hazardous or Poisonous Substance
Hormone
Immunologic Factor
Indicator, Reagent, or Diagnostic Aid
Inorganic Chemical
Lipid
Neuroreactive Substance or Biogenic Amine
Nucleic Acid, Nucleoside, or Nucleotide
Organic Chemical
Organophosphorus Compound
Pharmacologic Substance
Receptor
Steroid
Vitamin

Disorders

Acquired Abnormality
Anatomical Abnormality
Cell or Molecular Dysfunction
Congenital Abnormality
Disease or Syndrome
Experimental Model of Disease
Finding
Injury or Poisoning
Mental or Behavioral Dysfunction
Neoplastic Process
Pathologic Function
Sign or Symptom

Table 2: Semantic groups according to Bodenreider and McCray [2003].
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Appendix 2

Annotation Guidelines

Please read these instructions carefully before starting the annotation:

Annotation of relationships between medical concepts

The goal of this annotation task is to determine whether two medical concepts express a
particular target relationship within the given sentence or not. The annotated sentences
will be used to evaluate a relation extraction system.

The annotation task provides sentences with two highlighted medical concepts,
one labelled as DRUG and the other as DISEASE. You have to decide whether the two
highlighted concepts describe the target relation or not.

There will be two different annotation tasks with two different relations to annotate:
may-prevent and may-treat. Each target relation includes 400 sentences, split into 20
sub-tasks with 20 sentences each. If you start a new sub-task, it is recommended that
you work through the complete sub-task and finish it, otherwise your results will not
be saved in the database. If you are unsure about a sentence just make the best guess.

Target relation MAY-PREVENT:

This task will focus on the annotation of the relation may-prevent, according the fol-
lowing definition:

You should decide for each given pair of highlighted entities, whether they describe
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‘preventative use or indication of a generic ingredient
preparation or drug’

the relation according the definition. The annotation is always either true or false.
Some positive and negative examples which will help you to annotate the data set are
provided below.

The two medical concepts are highlighted with brackets and enhanced with the
concepts DRUG or DISEASE in capital letters. The sentences are taken from medical
abstracts and processed with different scripts. Therefore, sometimes the format might
look incorrect. Furthermore, since the detection of the two entities was carried out
with a program, it might contain errors. Highlighted entities which do not make sense
should be annotated as false. If you spot an error (e.g. entities are highlighted in a
wrong way), you can write down the number of the sentence and send it to me.

Examples MAY-PREVENT:

“It is unlikely that [DRUG:dipyridamole] leads to a permanent reduction in blood
pressure and that this would explain why this drug might prevent [DISEASE:strokes]
rather than coronary events.” (PMID=12958322)
→ The sentence expresses, that “dipyridamole” may be used to prevent “strokes”.

Therefore it is a positive example and should be annotated as “true”.

“CONCLUSION: [DRUG:Ondansetron] and ondansetron plus dexamethasone were
equally effective in preventing early [DISEASE:nausea] and vomiting in children fol-
lowing strabismus surgery.” (PMID=15089065)
→ The annotation should be “true”, since “Ondansetron” and “nausea” express the

relation may-prevent within the sentence. It is important to note, that the sentence con-
tains also another drug (“ondansetron”) and another disease (“vomiting”) which also
describe the target relation. Since these words are not highlighted, they are not of in-
terest at this point.

“There is no easily identifiable magic bullet for preventing [DISEASE:caries] in that
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age group, but the use of evidence-based preventive interventions (such as [DRUG:
fluoride]) should suffice.” (PMID=14739966)
→ “true”

“Etidronate increases the lumbar bone mineral density (BMD), and prevents new verte-
bral fractures, in patients with [DISEASE:osteoporosis], while alendronate and [DRUG:
risedronate] increase the lumbar and femoral neck BMDs, and prevent new vertebral
and femoral neck fractures.” (PMID=14584089)
→ the prevention of “osteoporosis” refers to “Etidronate” and NOT to the high-

lighted drug “risedronate”, therefore the annotation should be “false”

“A meta-analysis of randomised, placebo-controlled trials for the secondary preven-
tion of [DISEASE:seizures] after alcohol withdrawal showed lorazepam to be effec-
tive, whereas [DRUG:phenytoin] was ineffective.” (PMID=14594442)
→ “false”

“An open and multicentric study was conducted with 66 patients with mild to severe
diastolic arterial hypertension and echocardiographic [DISEASE:left ventricular hy-

pertrophy], the evolution of diastolic function, by means of doppler transmitral flow
echocardiography, under treatment with [DRUG:ramipril], an angiotensin converting
enzyme inhibitor, at a dose of 2.5 and 5 mg/day, or combined with a diuretic, after
three and six months of treatment.” (PMID=9580230)
→ “false”

“The efficacy of [DRUG:nedocromil sodium] (NED) (8mg twice daily in control-
ling the clinical symptoms of [DISEASE:asthma] (score symptoms), the pulmonary
parameters (FEV1, FVC) and bronchial hyperreactivity to histamine was assessed.”
(PMID=9489432)
→ “false”

“The [DISEASE:caries] resistance concept was shown to be erroneous 25 years ago,
but the new paradigm is not yet fully adopted in public health dentistry, so we still await
real breakthroughs in more effective use of [DRUG:fluorides] for caries prevention.”
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(PMID=15153687)
→ “false”. The sentence indirectly expresses, that “fluorides” can be used to pre-

vent “caries” - even if it is not the best method, but the word “fluorides” refers to
another “caries” in the sentence. The highlighted “caries” expresses something else.
For this reason the annotation should be “false”. It is important that you just consider
the two highlighted words to determine the relation.

“Efficacy and safety of [DRUG:UFH] and enoxaparin are similar for the treatment
[DISEASE:of deep vein thrombosis].” (PMID=15151480)
→ “false”. The highlighted entities in the sentence express a treatment and not a

preventive usage. First of all, the may-treat relation will be annotated in another task
and second, usually a preventive usage will be applied before a disease occurs.

Target relation MAY-TREAT:

This task will focus on the annotation of the relation may-treat, according the following
definition:

‘therapeutic use or indication of a generic ingredient
preparation or drug’

You should decide for each given pair of highlighted entities, whether they de-
scribe the relation according the definition. The annotation is always either true or
false. Some positive and negative examples which will help you to annotate the data
set are provided below.

Examples MAY-TREAT:

“CONCLUSIONS: [DRUG:Tamoxifen] is safe and effective for the treatment of [DIS-
EASE:gynecomastia].” (PMID=18357357)
→ “true”
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“[DRUG:Ivermectin] is also affective in the treatment of [DISEASE:ascariasis] and
cutaneous larva migrans.” (PMID=15318139)
→ “true”

“Comparison was made between pregnancies with severe [DISEASE:lupus] requir-
ing [DRUG:cyclophosphamide] and those that did not.” (PMID=16175930)
→ “false”

“The frequency of [DISEASE:eczema] (p < 0.005) and exhaled [DRUG:nitric ox-

ide] levels (p < 0.001) were higher among atopic patients.” (PMID=16683051)
→ false

“There is no easily identifiable magic bullet for preventing [DISEASE:caries] in that
age group, but the use of evidence - based preventive interventions (such as [DRUG:
fluoride]) should suffice.” (PMID=14739966)
→ false

Further Instructions

Please annotate the two highlighted words as “true” only if the sentences express that
the two highlighted concepts (and only those) express the relationship.

Does the sentence clearly expresses that a substance can be used to prevent or treat
a disease or does the sentences just express whether it will be examined?

Even if the sentence expresses a prevention or a treatment of a disease, is this rela-
tion expressed by the two highlighted entities?

“The results show that mixing X1 and X2 can result in temporary blindness, while
the intake of [DRUG:X1] has been successfully tested to prevent [DISEASE:Y].”
→ this case would be correct, since X1 refers to Y and expresses the may-prevent

relation, but:
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“The results show that mixing [DRUG:X1] and X2 can result in temporary blindness,
while the intake of X1 has been successfully tested to prevent [DISEASE:Y].”
→ In this case X1 does not refer with a may-prevent relation to Y. The highlighted

X1 refers to “temporary blindness” and would be more a kind a side-effect

Sometimes, sentences just express, that they examine something, but it is not a fact,
that it works: e.g. a title of a publication might be: [DRUG:X1] for the treatment of
[DISEASE:Y].

Maybe the terms DRUG and DISEASE might be a bit confusing, depending on the
context. DRUG can be for example concepts such as “Pharmacologic Substance”,
“Clinical Drug”, “Organic Chemical” and DISEASE for example “Disease or Syn-
drome”, “Sign or Symptom”.
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