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Abstract

This thesis contains work in three areas. The works are presented

chronologically starting with my work on the decomposition and mea-

surement of Chern numbers in four component topological insulators

and superconductors. This is followed by the work done in the discov-

ery and analysis of four new models of topological superconductivity

in three spatial dimensions. Lastly, I present the work done on di-

mensional reduction through localisation of Majorana modes at the

boundary of topological superconductors in three spatial dimensions.

Each work is presented in a separate chapter.
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Chapter 1

Introduction

1.1 Introduction

For many years changes in phases of matter were thought to be completely de-

scribed by Landau’s theory of spontaneous symmetry breaking (SSB) [1]. By

characterising phases of matter by the symmetries that they break, while defin-

ing a local order parameter that contains the information about how the matter

in the system is ordered, a wide variety of different physical systems can be ac-

curately described [2, 3]. It was thought that, given that it could describe such

a wide range of apparently unrelated physical phenomena, SSB might be able to

describe every kind of phase change in physics. This illusion was shattered with

the discovery of the integer quantum Hall effect [4]. The observed quantisation

in the Hall conductance defied explanation by SSB and required a new approach.

It was found that the observed effect was a result of the underlying topology of

the Hilbert space in which the ground state resides [5]. The notion of topological

order was born.

The set of systems that present topological order (TO) is currently quite a

broad church. Further to this, the set of indicators that point the presence of

1



1.1 Introduction

TO is just as varied. A few examples of such indicators include the entanglement

entropy [6, 7, 8]; a degeneracy in the ground state that is linked to the topology

of the underlying manifold and by implication the ability to support non-Abelian

anyonic quasi-particles [9, 10]; the presence of gapless edge modes [11, 12]. As

one might guess from these examples the term ‘topological order’ has a somewhat

contested definition. It has been used to refer to fractional quantum Hall states

[13, 14], which emerge from systems with strong electron-electron interactions. It

can also refer to systems of free fermions which exhibit topologically non-trivial

quasi-particles, such as Majorana fermions trapped at the center of vortex exci-

tations in the Kitaev honeycomb lattice model [10].

For the purposes of this thesis it is sufficient to restrict ourselves mostly to the

discussion of topological phases. By this we refer to a given system supporting

a non-trivial topological index [15, 16, 5, 17, 18, 19]. As shall be discussed in

greater detail in subsequent chapters, these indices are indicators of the topology

of the fiber bundle in which the ground state of a system lives [19]. Such quan-

tities are often defined in terms of projectors onto the bulk ground state wave

functions. These indices are also known as invariants due to their behavior under

adiabatic deformation of the system. Consider an invariant ν(λ) : M→ Z, where

λ =
(
λ1, ... , λN+M

)
∈ M ⊂ RN × CM is a set of coefficients that parametrise

the Hamiltonian of a system. If the system undergoes an adiabatic evolution of

the form λ(t0) → λ(t), we have ν(λ(t0)) = ν(λ(t)) as long as certain spectral

conditions are met. For bulk topological invariants to be well defined, the bulk

ground state wave functions from which they are derived must be energetically

gapped from the excited modes. As long as the system remains spectrally gapped

the topological invariant remains constant. In some circumstances the existence

of a non-trivial topological index is reflected in some other physical characteristic

2



1.1 Introduction

which can be regarded as TO, such as the examples given above. More often

than not this primary indicator of a systems topological phase is not directly

accessible. This is one of the issues that we address in this work.

The set of discrete symmetries that a Hamiltonian obeys determines which

particular index is used. There exists whole schemes for the classification of

Hamiltonians based purely on what symmetries they adhere to. For non-interacting

fermionic systems the celebrated 10-fold way [17, 19, 20] details ten distinct sym-

metry classes delineated by three non-spatial symmetries, time-reversal, particle-

hole, and sublattice. This scheme was then extended to include spatial symme-

tries [21, 22, 23]. Kitaev introduced a means of classifying topological super-

conductors via the types of statistics their quasi-particle excitations obey [10],

sometimes called the 16-fold way. A more recent development has been the real-

isation that in the presence of interactions the 10-fold way classification scheme

gives way to a different landscape of classes. Counter examples [24] show the

adiabatic connection of two distinct classes previously thought to be separate.

This was followed by a more rigorous formulation of the phenomenon [25, 26, 27].

We now present a short summary of the essential elements of the 10-fold way

classification scheme for non-interacting fermionic Hamiltonians, summarising the

excellent work by Chiu et al. [19].

3



1.2 Symmetry protected topological order: the 10-fold way

1.2 Symmetry protected topological order: the

10-fold way

1.2.1 Time-reversal symmetry

Given some state Ψ(r, t) = Ψn(r)e−
i
~Ent that satisfies the Schrödinger equation,

i~
∂

∂t
Ψ(r, t) =

(
− ~2

2m
∇2 + V

)
Ψ(r, t) = HΨ(r, t), (1.1)

one can ask whether the state Ψ(r,−t) is also a solution. Explicit evalua-

tion of (1.1) finds that this is not the case. However the complex conjugate

of Ψ(r,−t), Ψ∗(r,−t) = Ψ∗n(r)e−
i
~Ent is a solution, where the wave function

Ψ∗n(r) = 〈r|Ψ〉∗ = 〈Ψ|r〉.

The time-reversal (TR) operator Θ̂ maps a state onto its time reversed partner,

|Ψ〉 → Θ |Ψ〉. Consider the Taylor expanded, time evolved state

|Ψ(t0 = 0 : t = δt)〉 =

(
1− i

~
Hδt

)
|Ψ〉 . (1.2)

where δt is small. If the evolution of the system is TR symmetric then we have

Θ̂

(
1− i

~
H(−δt)

)
|Ψ〉 =

(
1− i

~
Hδt

)
Θ̂ |Ψ〉 . (1.3)

In order for (1.3) to hold we require that Θ̂iH |Ψ〉 = −iHΘ̂ |Ψ〉. This equality

implies that Θ̂ is an antiunitary operator which takes the general form

Θ̂ = UK (1.4)

where in general U ∈ U(n). K is the complex conjugation operator which acts

on states in the following way

Kc |ψ〉 = c∗K |ψ〉 (1.5)

4



1.2 Symmetry protected topological order: the 10-fold way

and by implication has the properties K = K−1 and K2 = 1. By virtue of

its antiunitarity the TR operator preserves only the absolute value of the inner

product ∣∣∣〈Θ̂ψ|Θ̂φ〉∣∣∣ = |〈ψ|φ〉∗| , (1.6)

i.e. it is antilinear.

Phase ambiguity

If one acts the TR operator twice, any system should remain the same up to a

U(1) phase

Θ̂2 = α, |α| = 1. (1.7)

Using the explicit form of Θ̂ we have

UKUK = UU∗K2 = UU∗ = α. (1.8)

Following on we have U∗ = αU † = α
(
UT
)∗

from which we can derive

U∗ (U∗)† U∗ = α
(
UT
)∗

(U∗)† U∗

U∗ = α
(
UT
)∗
UTU∗

U∗ = α2U∗. (1.9)

This implies α = ±1. In the case of spinless systems the unitary operator

U ∈ U(1), i.e. Θ̂ = eiθK, and Θ̂2 = 1. For spinful systems U is more com-

plex and can lead to situations where Θ̂2 = −1.

The TR operator acts on the angular momentum operator as Θ̂ĴΘ̂−1 = −Ĵ .

For spin-1
2

particles we also require that the spin angular momentum operator Ŝ

transforms as Θ̂ŜΘ̂−1 = −Ŝ. The spin angular momentum operator is given by

Ŝ =
~
2
σ, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (1.10)

5



1.2 Symmetry protected topological order: the 10-fold way

Given this form we can construct a set of equations that characterise Θ in the

case of spin

Θ̂σxΘ̂−1 = UKσxKU−1 = UσxU−1 = −σx,

Θ̂σyΘ̂−1 = UKσyKU−1 = −UσyU−1 = −σy,

Θ̂σzΘ̂−1 = UKσzKU−1 = UσzU−1 = −σz. (1.11)

Equations (1.11) imply that U needs to commute with σy and anticommute with

σx and σz. By inspection we have

Θ̂ = iσyK. (1.12)

We note that iσyKiσyK = −1. If the system has N spin-1
2

particles the TR

operator takes the form

Θ̂ = iσy1iσ
y
2 ...iσ

y
NK

= exp
[
i
π

2
(σy1 + σy2 + ...+ σyN)

]
K

= exp

(
iπ
Sy
~

)
K (1.13)

where Sy is the y-component of the total spin operator Ŝ = ~ (σ1 + σ2 + ...+ σN).

As such

Θ̂2 =

{
1 N is even

−1 N is odd
(1.14)

Kramers degeneracy

Consider a system where the TR operator commutes with the Hamiltonian, i.e.

[H, Θ̂] = 0. The action of the TR operator on the time-independent Schrödinger

equation is given by

Θ̂Ĥ |ψn〉 = ĤΘ̂ |ψn〉 = EnΘ̂ |ψn〉 . (1.15)
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1.2 Symmetry protected topological order: the 10-fold way

where |ψn〉 and En are the eigenvectors and eigenvalues of Ĥ. If we assume that

|ψn〉 and Θ̂ |ψn〉 are the same eigenstate then we must have Θ̂ |ψn〉 = eiθ |ψn〉. If

we act the TR operator onto the state a second time we find

Θ̂2 |ψn〉 = Θ̂eiθ |ψn〉

= e−iθΘ̂ |ψn〉

= e−iθeiθ |ψn〉

= |ψn〉 . (1.16)

If Θ2 = −1 then (1.16) does not hold. This implies that Θ̂ |ψn〉 is a state distinct

from |ψn〉. By (1.15) the two states are degenerate. This is known as a Kramers

degeneracy. In spin-1
2

systems with an odd number of spins of fermionic systems

in general with an odd number of fermions, such degenerate pairs always appear.

Free fermion systems

The concept of TR symmetry can be applied to free fermion tight-binding Hamil-

tonians. Consider a system defined on a lattice which supports a set of second

quantised fermionic operators {
âI , â

†
I

}
I=1,...,N

, (1.17)

where I is some generalised index which can include labels such as position and

spin. These operators act on a fermionic Fock space and obey the canonical

fermionic anticommutation relations{
âI , â

†
J

}
= δIJ (1.18)

Assuming it is not superconducting, the system is described by the Hamiltonian

Ĥ = â†IH
J
I âJ = ψ†Hψ, (1.19)
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1.2 Symmetry protected topological order: the 10-fold way

where in generalHJ
I ∈ C, and Einstein summation convention has been used. H is

the sometimes known as the first quantised, single particle, or kernel Hamiltonian.

TR symmetry is defined in terms of the action of a second quantised antiunitary

operator T̂ on the fermionic creation and annihilation operators

âI → â′I : T̂ âIT̂
−1 = (UT )JI âJ , T̂ iT̂ −1 = −i, (1.20)

where (UT )JI ∈ C. The system is said to be invariant under this transformation

if two conditions are met. The canonical anticommutation relations must be

preserved

T̂
{
âI , â

†
J

}
T̂ −1 =

{
âI , â

†
J

}
, (1.21)

implying that (UT )JI is a unitary matrix. Additionally, the second quantised

Hamiltonian is invariant under its action

T̂ ĤT̂ −1 = Ĥ. (1.22)

If some second quantised Hermitian operator Ô is invariant under the action of

T̂ then constraint (1.22) implies

T̂ Ô(t)T̂ −1 = T̂ eiĤtÔe−iĤtT̂ −1 = Ô(−t). (1.23)

We can derive a constraint on the kernel Hamiltonian from (1.22) and definition

(1.20)

T̂ ĤT̂ −1 = T̂ â†IH
J
I âJT̂

−1

= T̂ â†IT̂
−1T̂ HJ

I âJT̂
−1

= T̂ â†IT̂
−1
(
HJ
I

)∗
T̂ âJT̂

−1

= â†I

(
(UT )KI

)∗ (
HL
K

)∗
(UT )JL âJ

= ψ†IUTH
∗U †TψJ

= Ĥ. (1.24)

8



1.2 Symmetry protected topological order: the 10-fold way

This leads to the explicit constraint on the kernel Hamiltonian

UTH
∗U †T = H

UTKHK−1U †T = H

THT−1 = H. (1.25)

We retrieve the familiar TR operator form T = UTK. We can make the link

back to the preceding section by asking, what happens if we act the TR operator

twice?

(UT )T HU∗T = H∗

U †T (UT )T HU∗TUT = U †TH
∗UT

(U∗TUT )†HU∗TUT = H. (1.26)

Because the second quantised Hamiltonian (1.18) runs over an irreducible repre-

sentation space, by Schur’s lemma U∗TUT is some U(1) multiple of the identity

matrix, U∗TUT = eiθI. Using a similar logic as before we have (UT )T = eiθUT

and by implication e2iθ = 1. This results in two possible outcomes, U∗TUT = ±I.
Therefore twice action of the TR operator T̂ on the fermionic operators âI gives

T̂ 2âIT̂ −2 = ±âI . An operator Ô constructed from n second quantised fermionic

operators transforms as T̂ 2ÔT̂ −2 = (±1)nÔ. So, the final constraint on the TR

operator is written

T̂ 2 = (±1)N̂ , (1.27)

where N̂ =
∑

I â
†
I âI is the total fermion number operator. As before, when

T̂ 2 = −1 the system supports degenerate Kramers pairs.

Reciprocal space

If a system of fermions is translationally invariant and has periodic boundary

conditions it is often useful to rewrite the Hamiltonian in reciprocal space. Let

9



1.2 Symmetry protected topological order: the 10-fold way

us expand the index of our second quantised fermionic operators: âI = âj,Ī where

j ∈ NN is a real space position index of a space of dimension N , and Ī are any

remaining indices. The Fourier transform of this operator is given by

âj,Ī =
∑
p

eip·j âp,Ī . (1.28)

where p is the wave vector confined to the first Brilloiun zone. We note that, by

definition, the TR operator negates the wave vector such that T̂ pT̂ −1 = −p.

Taking (1.19) and performing such a transformation leads to

Ĥ =
∑
p,j,j′

â†
p,Ī
e−ip·jHj′,J̄

j,Ī
eip·j

′
âp,J̄ =

∑
p

ψ†pH(p)ψp. (1.29)

The action of the TR operator on (1.29) is given by

T̂ ĤT̂ −1 =
∑
p,j,j′

T̂ â†
p,Ī

T̂ −1T̂ e−ip·jT̂ −1T̂ Hj′,J̄
j,Ī

T̂ −1T̂ eip·j
′
T̂ −1T̂ âp,J̄T̂

−1

=
∑
p,j,j′

T̂ â†
p,Ī

T̂ −1e−ip·j
(
Hj′,J̄
j,Ī

)∗
eip·j

′
T̂ âp,J̄T̂

−1

=
∑
p,j,j′

â†
p,Ī

(
(UT )K̄Ī

)∗
e−ip·j

(
Hj′,L̄
j,K̄

)∗
eip·j

′
(UT )J̄L̄ âp,J̄

=
∑
p,j,j′

ψ†pUTH
∗(−p)U †Tψp. (1.30)

Therefore the corresponding TR condition on the reciprocal space kernel Hamil-

tonian is given by

TH(−p)T−1 = H(p). (1.31)

1.2.2 Particle-hole symmetry

All finite fermionic systems express a dualism in their formulation. Consider this

representation of the fermionic vacuum for a single particle

|∅〉 = â |1〉 . (1.32)

10



1.2 Symmetry protected topological order: the 10-fold way

This state behaves as we expect it should

â† |∅〉 = â†â |1〉 = |1〉 , â |∅〉 = ââ |1〉 = 0. (1.33)

Is there a transformation that exchanges the roles of the creation and annihilation

operators while preserving the algebra of (1.33)? We define a second quantised

unitary operator Φ̂ = â+ â† that acts on the fermionic operators as Φ̂âΦ̂−1 = â†

and Φ̂â†Φ̂−1 = â. The action of this transformation on the vacuum is

Φ̂ |∅〉 = Φ̂â |1〉

= Φ̂âΦ̂−1Φ̂â†Φ̂−1Φ̂ |0〉

= â†â |1〉

= â† |0〉 ≡ |∅̃〉 . (1.34)

We find that the fermionic vacuum |∅〉 is related to a conjugate state |∅̃〉 under

the exchange of the fermionic creation and annihilation operators. The action of

the fermionic operators on this new vacuum state is

â† |∅̃〉 = â†â† |0〉 = 0, â |∅̃〉 = ââ† |0〉 = |0〉 . (1.35)

A simple relabeling of the states |0〉 → |1〉 and |1〉 → |0〉 and we retrieve the

original algebra given in (1.33) but with the roles of the operators reversed.

Free fermion systems

In much the same way as TR symmetry we can define a general PH symmetry

transformation. Given some system of fermions as given by (1.17), (1.18), and

(1.19), we define the action of the second quantised PH symmetry operator P̂

as

P̂ âIP̂
−1 = (U∗P )JI â

†
J . (1.36)
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1.2 Symmetry protected topological order: the 10-fold way

A system is said to be invariant under this transformation if the canonical fermionic

anticommutation relations (1.18) are preserved (again implying that (UP )JI is a

unitary matrix) and the second quantised Hamiltonian Ĥ is invariant under its

action

P̂ĤP̂−1 = Ĥ. (1.37)

We can derive a condition on the kernel Hamiltonian from condition (1.37), defi-

nition (1.36), and (1.18) in the following way

P̂ĤP̂−1 = P̂ â†IH
J
I âJP̂

−1

= P̂ â†IP̂
−1P̂HJ

I P̂−1P̂ âJP̂
−1

= âI (UP )KI H
L
K (U∗P )JL â

†
J

= −â†J (U∗P )LJ H
K
L (UP )IK âI +HI

I

= −ψ†UPHTU †Pψ + TrH

= Ĥ (1.38)

From this the condition on the kernel Hamiltonian is stated as

UPH
∗U †P = −H

UPKHK−1U †P = −H

PHP−1 = −H, (1.39)

where P = UPK. Using the same arguments as the TR case one can show there

are two types of PH transformations

P̂2 = (±1)N̂ , U∗PUP = ±I. (1.40)
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1.2 Symmetry protected topological order: the 10-fold way

The implication of PH symmetry on a system is as follows. The Hamiltonian

obeys the time independent Schrödinger equation

Ĥ |Ψn〉 = εn |Ψn〉 , (1.41)

where |Ψn〉 and εn are the eigenvectors and eigenvalues of Ĥ. (1.41) transforms

under the PH operator as follows

P̂ĤP̂−1P̂ |Ψn〉 = EnP̂ |Ψn〉

Ĥ |Ψ̃n〉 = εn |Ψ̃n〉 . (1.42)

The implication of (1.42) is that the presence of PH symmetry implies every

eigenstate of Ĥ, |Ψn〉, has a conjugate state |Ψ̃n〉 = P̂ |Ψn〉 which is also an

eigenstate of Ĥ with eigenvalue εn. The kernel Hamiltonian also obeys the time

independent Schrödinger equation which transforms under the PH transformation

as

PHP−1P |ψn〉 = EnP |ψ〉

−H |ψ̃〉 = En |ψ̃〉 . (1.43)

For each eigenstate |ψn〉 with energy En there exists a conjugate eigenstate |ψ̃n〉 =

P |ψn〉 with eigenvalue −En.

Reciprocal space

Using the same procedure as in (1.29) it is possible to show that the PH condition

on the reciprocal space kernel Hamiltonian is

PH(−p)P−1 = −H(p). (1.44)
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1.2 Symmetry protected topological order: the 10-fold way

1.2.3 Chiral (sublattice) symmetry

Given PH and TR symmetry, a third symmetry suggests itself. The chiral (CH)

(sometimes know as sublattice) symmetry transformation Ŝ is the product of

TR and PH symmetries

Ŝ = T̂ P̂. (1.45)

In now familiar language, the action of the second quantised chiral (CH) sym-

metry operator on the fermionic creation and annihilation operators is given by

Ŝ âIŜ
−1 =

(
U †PU

†
T

)J
I
â†J . (1.46)

Using much the same arguments as in the TR and PH cases, the condition on

the kernel Hamiltonian is given by

USHU
†
S = −H, (1.47)

where US = UTUP . Furthermore we have Ŝ 2 = (±1)N̂ . A kernel Hamiltonian

that obeys CH symmetry has the property that it can always be rotated into

block-off-diagonal form. In the basis that US is diagonal the kernel Hamiltonian

takes the form

H =

(
0 D
D† 0

)
. (1.48)

Finally, if a system breaks both TR and PH symmetry it is still possible for CH

symmetry to be preserved.

1.2.4 Bogoliubov de-Gennes systems

Of particular note for us are Bogoliubov de-Gennes (BdG) systems. All super-

conducting systems are written in this form and they exhibit a set of intrinsic

symmetries that come not from the single particle Hamiltonian but from the
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1.2 Symmetry protected topological order: the 10-fold way

many-bodied level. While the basic element of (1.19) is the fermionic operator

âI , in BdG systems the basic element in the Nambu spinor

Γ̂I =

(
âI
â†I

)
Γ̂†I =

(
â†I âI

)
. (1.49)

where
{

Γ̂I , Γ̂
†
J

}
= δab. The operators Γ̂I and Γ̂†I are related by the transformation

(
σxΓ̂I

)T
= Γ̂†I . (1.50)

The single particle Hamiltonian in terms of Nambu spinors is written

H =
1

2
Γ̂†IH

J
I Γ̂J = Γ†HΓ (1.51)

Because of the relation (1.50) we have

H =
1

2

(
σxΓ

)T
H
(
Γ†σx

)T

= −1

2
Γ† (σxHσx)T Γ +

1

2
Tr
(
σxHσx

)
. (1.52)

where σx acts on Nambu space. This leads to the condition

σxH∗σx = −H (1.53)

which is the PH symmetry condition. This is completely independent of the form

of H, coming only from the behavior of the Nambu spinor. Furthermore, BdG

single particle Hamiltonians can be written in the following way

H =

(
Ξ Ω
Ω† −Ξ

)
, (1.54)

where Ξ = Ξ† corresponds to the normal state, including chemical potential and

tunneling terms, and Ω = −Ω† corresponds to the superconducting pairing terms.
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1.2 Symmetry protected topological order: the 10-fold way

1.2.5 Topological invariants

Sometimes a system can be characterised by a topological invariant (topological

index). These are quantities that are defined in such a way that they are invariant

under adiabatic deformations of the system. Consider a system with Hamiltonian

H(λ) that is parametrised by λ ∈ RN . The Hamiltonian has ground state |ψg(λ)〉
which is spectrally separated form the excited states by an energy gap ∆E(λ).

We can define a quantity ν(λ) : RN → R where R is a ring of integers. ν(λ)

is only well defined when ∆E(λ) 6= 0. Given some adiabatic evolution of the

system λ(t = t0)→ λ(t = tf ) the invariant obeys the condition

ν(λ(t0)) = ν(λ(tf )), (1.55)

as long as ∆E(t) 6= 0 for all t0 ≤ t ≤ tf . The particular integer ring R that the

system’s invariant maps to is dependent on the presence and type or absence of

PH, TR, and CH symmetries, as well as the number of spatial dimensions. In

some cases, particular combinations of these factors mean that it is not possible

for a system’s invariant to take non-zero values.

Throughout this work many different examples of topological invariants will

be discussed from Chern number to the winding number in 1D, 2D, and 3D. In

the systems we will be considering, a non-zero topological index can be indicative

of topologically protected edge states and non-Abelian quasi-particle excitations.

1.2.6 The classes

The absence, or presence and nature of these symmetries tell us much about the

of the system without ever having to look at the details of the Hamiltonian [17].

For example, a system which is TR invariant with T̂ 2 = 1 consists of particles

with zero or integer spin, while if T̂ 2 = −1 then the system’s fermions are spinful,
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1.2 Symmetry protected topological order: the 10-fold way

T P S 1 2 3

A 0 0 0 0 Z 0

AIII 0 0 1 Z 0 0

AI + 0 0 0 0 0

BDI + + 1 Z 0 0

D 0 + 0 Z2 Z 0

DIII - + 1 Z2 Z2 Z
AII - 0 0 0 Z2 Z2

CII - - 1 Z 0 Z2

C 0 - 0 0 Z 0

CI + - 1 0 0 Z

Table 1.1: The symmetry classes of the 10-fold way. The left hand column gives

the name of the classes, in the format defined by Altland and Zirnbauer [29]. From

the left, the next three columns indicate whether the class obeys TR, PH and CH

symmetries. The symbols +,−, 0, 1 indicate whether the relevant operator exists and its

transformation properties, i.e. Ô2 = ±1. The final three columns indicate, depending

on the spatial dimension, to which integer ring the associated topological invariant

maps. An entry of 0 implies the invariant is always zero.

i.e. half-integer spin. Superconducting systems with P̂2 = 1 support spin-triplet

pairing, whereas P̂2 = −1 implies spin-singlet pairing. Furthermore, T̂ 2 = −1

implies Kramers’ degeneracy [28], while the presence of TR symmetry of either

form means the energy spectrum is symmetric about zero energy.

All the possible combinations of symmetries enumerate ten distinct equiv-

alence classes of Hamiltonians, or symmetry classes. These classes and their

required symmetries are shown in tab. 1.1. The class naming convention is taken

from the original Altland and Zirnbauer paper [29], in which the symmetry classes

are shown to correspond to different Cartan symmetric spaces. Also shown in tab.

1.1 is the existence (or not) of topologically non-trivial ground states and nature
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1.3 1D topological superconductor

of a given class’ topological index, dependent on the number of spatial dimen-

sions. The topological index for a given class and dimension can take many forms.

For example, we shall see that for 2D systems the index can be represented as a

Chern number or a winding number, with both representations being equivalent.

1.3 1D topological superconductor

In order to illustrate the essential elements of a topological condensed matter sys-

tem, we now present a construction and analysis of the simplest superconducting

lattice model, the Kitaev wire [30].

1.3.1 Dirac fermions

Given N Dirac fermions, hereby referred to simply as fermions, they can be

represented by a set of second quantised fermionic field operators {âj}j=1,...,N

and their Hermitian conjugate partners
{
â†j

}
j=1,...N

. They obey the following

anticommutation relations{
âi, â

†
j

}
= δij

{
â

(†)
i , â

(†)
j

}
= 0 (1.56)

where δij Kronecker delta function. These operators act on a tensor product of

Fock states. A general state of the system, |ψ〉 can be written as

|ψ〉 =
∑
ni=0,1

(
αn1,...,nN

N⊗
i=1

|ni〉
)
, (1.57)

where αn1,...,nN ∈ C,
∑

ni
|αn1,...,nN |2 = 1 and

N⊗
j=1

|nj〉 =

(
N⊗
j=1

(
â†j

)nj)( N⊗
j=1

|0〉
)
. (1.58)
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1.3 1D topological superconductor

Figure 1.1: A schematic representation of the Kitaev 1D wire. A set of N sites

denoted by the black dots and indexed by j = 1, .., N are connected by black lines. To

each site we associate a fermion aj to which we associate a chemical potential µ ∈ R.

We allow for fermions to tunnel to adjacent sites with amplitude t ∈ R and pair with

adjacent fermions with amplitude ∆ ∈ R

1.3.2 Real space tight-binding model

We take a chain of N sites indexed by j = 1, ..., N and to each site we associate

a fermion âj. To each fermion we associate the same chemical potential µ and

we allow for nearest neighbor tunneling and pairing with amplitudes t and ∆

respectively, with µ, t,∆ ∈ R. This arrangement is shown in fig. 1.1. With this

information we can write down a tight binding Hamiltonian

H =
N∑
j=1

(
µ

2
â†j âj −

1

4
+ tâ†j âj+1 + ∆âj âj+1

)
+ H.c., (1.59)

where H.c. denotes the Hermitian conjugate. The factor of 1
4

is included for

convenience in subsequent calculations and results in an overall energy shift. We

have chosen periodic boundary conditions such that N + 1 ≡ 1.

1.3.3 Reciprocal space

Because (1.59) is translationally invariant and has periodic boundary conditions,

we will transform it into reciprocal space via the Fourier transform. The trans-

formation is defined as

âj =
∑
p

eipj âp â†j =
∑
p

e−ipj â†p, (1.60)
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1.3 1D topological superconductor

where p ∈ [−π, π), also called the Brillouin zone (BZ). The transformed Hamil-

tonian is written as

H =
∑
p

[µ+ t cos(p)]
(
â†pâp − â−pâ†−p

)
+ i∆ sin(p)

(
âpâ−p − â†−pâ†p

)
. (1.61)

We can now write the Hamiltonian in Bogoliubov-de Gennes form

H =
∑
p

ψ†ph(λ, p)ψp, (1.62)

where ψp =
(
âp, â†−p,

)T
, λ =

(
µ, ∆, t

)
, and h(p) is a 2× 2 Hermitian matrix

given by

h(λ, p) =

(
ε(µ, t, p) Ξ(∆, p)
Ξ∗(∆, p) −ε(µ, t, p)

)
(1.63)

where ε(µ, t, p) = µ + t cos(p) and Ξ(∆, p) = i∆ sin(p) and h(λ, p) is the kernel

Hamiltonian. From the kernel Hamiltonian we can extract many useful quantities

such as the energy spectrum and the model’s topological invariant, the winding

number.

1.3.4 Symmetries

The Kitaev wire obeys both TR and PH (and by implication CH) symmetries.

In the basis that (1.62) is written, the PH operator is P = σxK while the TR op-

erator is given by T = σzK. These two operators satisfy the symmetry equations

Th(λ,p)T−1 = h(λ,−p) Ph(λ,p)P−1 = −h(λ,−p) (1.64)

As we have the further relations P 2 = 1 and T 2 = 1, referring to Tab. 1.1, we find

that the Kitaev wire lies in the symmetry class BDI. We could introduce some

new couplings to our Hamiltonian, for example next nearest neighbor complex

tunneling, that break TR symmetry which would place the model in the class D.
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Figure 1.2: Left : The energy gap, ∆E of the Kitaev wire as a function of the chemical

potential, µ, and the superconducting order parameter ∆. The data was obtained via

exact diagonalisation of (1.63). Right : The winding number, ν1D, of the Kitaev wire.

Each gapped phase is separated by a gapless line as depicted in the diagram of the gap

on the left. The data was obtained via numerical evaluation of (1.69).

1.3.5 Energy spectrum and ground state

The model supports a pair of eigenvalues and eigenvectors, E±(λ, p) and |ψ±(λ, p)〉.
As the model is PH symmetric the spectrum will be symmetric about zero energy.

This is confirmed when we look at the analytic expression for the eigenvalues of

(1.63),

E±(λ, p) = ±
√
|ε(µ, t, p)|2 + |Ξ(∆, p)|2. (1.65)

We define the energy gap, denoted ∆E(λ), to be

∆E(λ) = 2 minp
∣∣E+(λ, p)

∣∣ . (1.66)

In fig. 1.2 Left we plot ∆E(λ) as a function of µ and ∆. The diagram is sep-

arated into four regions where ∆E(λ) 6= 0 which are separated by lines where

∆E(λ) = 0.
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1.3 1D topological superconductor

Figure 1.3: A schematic representation of the behavior of vector ŝ. As the toroidal

Brillouin Zone is spanned, the 3-vector ŝ winds around the unit 2-sphere an integer

number of times.

We take the system to be at half filling. This means that all of the negative

energy states are occupied and the ground state is eigenstate associated with

E−(λ, p), |ψg(λ, p)〉 = |ψ−(λ, p)〉.

1.3.6 Winding number

The topological phase of the system is determined by the winding number, ν1D.

In order to define ν1D we must first define a unit vector ŝ(p) which parametrises

the kernel Hamiltonian

h(λ, p) = s(λ, p) · σ = |s(λ, p)| ŝ(λ, p) · σ (1.67)

where σ =
(
σx σy σz

)T
and ŝ(λ, p) : T 1 → S2. The vector ŝ(λ, p) is a map

between the unit circle that is the BZ and the unit 2-sphere. In the case of the

Kitaev wire we have

ŝ(λ, p) =
1√

|Ξ(λ, p)|2 + |ε(λ, p)|2

 0
Ξ(∆, p)
ε(µ, t, p)

 . (1.68)

We define ν1D : R3 → Z as

ν1D(λ) =

∫
BZ

dp θ(λ, p) · û(λ, p), (1.69)
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1.3 1D topological superconductor

Figure 1.4: The winding of ŝ(λ, p) for the Kitaev wire. The blue and red lines

differentiate the paths for p and −p. Left : The case when |µ| > |t|. The vector passes

through both poles of S2 giving ν1D = ±1 depending on the sign of ∆. Right : The

case when |µ| < |t|. The vector passes through the same pole twice. Because Ξ(λ, p) is

odd in p, the contributions from the ±p paths cancel giving ν1D = 0.

where θ(λ, p) = ŝ(λ, p)× ∂
∂p
ŝ(λ, p) and ûi(λ, p) = |θi(λ,p)|

|θ(λ,p)| . Integral (1.69) counts

the number of times the vector ŝ(λ, p) winds around S2 as the BZ is spanned.

We can gain some intuition about the behavior of (1.69) by studying the be-

havior of (1.68) as p varies. First we note that ŝ(λ,±π) = sgn [−µ+ t] ẑ while

ŝ(λ, 0) = sgn [µ+ t] ẑ, where ẑ is the unit vector pointing in the z direction.

Therefore if |µ| > |t| then ŝ(λ, p) will pass through both poles of S2. Whereas if

|µ| < |t| then ŝ(λ, p) passes through the same pole twice. When we combine this

with the fact that Ξ(λ, p) is an odd periodic function of p we have two distinct

cases for the path of ŝ, as shown in Fig. 1.4. The sign of ∆ affects the sign of

the winding number by changing the orientation of the path ŝ(λ, p) follows.

Fig. 1.2 right depicts the winding number for the Kitaev wire as a function

of µ and ∆ and t. The figure was produced via direct numerical evaluation of

(1.69). There are two distinct topological phases with ν = ±1 and two separated
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1.3 1D topological superconductor

trivial phases with ν = 0. The phase transition between the topologically trivial

phases and the non-trivial phases occurs at |µ| = |t| as expected from our earlier

analysis. Comparing with Fig. 1.2 left, the winding number is invariant within

each gapped phase, only changing value when ∆E(λ) = 0. This can be under-

stood by looking at the definition of ŝ(λ, p). Comparing (1.65) and (1.68) we see

that |s(λ, p)| = E±(λ, p). Therefore ŝ(λ, p) is singular for some value of p and

λ. These singular points coincide with the points for which ∆E(λ) = 0.

1.3.7 Majorana fermions and edge states

A natural basis for describing topological superconductors is the Majorana basis.

It is related to the Dirac fermion basis in the following way

âj =
γ1,j + iγ2,j

2
â†j =

γ1,j − iγ2,j

2
(1.70)

where γα,j are the Majorana operators. They are self dual, i.e. γα,j = γ†α,j, and

they obey the following commutation relations

{γα,i, γβ,j} = 2δαβδij, (1.71)

implying that γ2
α,j = 1. We can rewrite (1.59) in the Majorana basis to get

H =
i

2

N∑
j=1

[µγ1,jγ2,j + (t+ ∆) γ2,jγ1,j+1 + (−t+ ∆) γ1,jγ2,j+1] . (1.72)

Through judicious choices of µ, ∆ and t we can eliminate different terms in (1.72).

If we break the periodic boundary conditions, the different choices of the coupling

configuration are shown in fig. 1.5. If we pick a point in parameter space that is

in the trivial phase, as depicted in fig. 1.2, such as µ > 0 and ∆ = t = 0 then

(1.72) becomes H = i
2

∑
j µγ1,jγ2,j and the configuration becomes that of fig. 1.5

middle. However if we pick a point in the non-trivial phase, such as µ = 0 and
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1.3 1D topological superconductor

Figure 1.5: Top: The Kitaev chain drawn in the Majorana basis. Each site j supports

two Majorana fermions γ1,j and γ2,j . Middle: The Majorana chain with µ > 0 and

∆ = t = 0, leading to the Majoranas on the same site being paired together. This point

in parameter space is in the trivial phase with ν1D(λ) = 0. Bottom The Majorana chain

with µ = 0 and ∆ = t > 0, leading to Majoranas on adjacent sites being paired together.

Due to the open boundary conditions, there are unpaired Majorana fermions at each

end of the wire.

∆ = t > 0, then (1.72) becomes H = it
∑

j γ2,jγ1,j+1 and as depicted in fig. 1.5

(bottom) we are left with two unpaired Majorana fermions, one at each end of

the chain. These two Majoranas do not appear in the modified Hamiltonian.

If we compute the spectrum of the real space Hamiltonian with open boundary

conditions, when the system is in the topological phase a pair of mid gap states

appear. In the limit of an infinite chain length, these states have zero energy.

They correspond to the two unpaired Majorana fermions at each end of the chain

and are robust against disorder. In the limit of a finite length chain, the states

exponentially decay from the boundary into the bulk of the chain.

1.3.8 Summary

The Kitaev wire is a canonical example of a topological superconductor. It ex-

hibits the basic characteristics that the vast majority of topological insulating

and superconducting systems share. The phase diagram of the model supports a

25
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number of gapped phases separated by gapless regions. In each gapped phase, a

topological index can be defined such that it is invariant within that region. In

order to change the index, the system’s energy gap must close. If the topological

index is non-trivial, the system supports edge states that are robust to disorder

as long as the gap remains open. It is models with these characteristics that shall

be studied in the subsequent chapters.

As we shall see, there are a whole host of other effects that this interesting

class of models exhibit. Notions of bulk-boundary correspondence and topologi-

cally protected defects (of which the Majorana edge states in the Kitaev wire are

just one type) will both be studied in detail later in this work.

1.4 Anyons

1.4.1 Particles exchange statistics and Abelian anyons

Traditionally, particles can be divided into two distinct classes based on their

statistics under exchange. Consider system of N indistinguishable particles {ζ i}
located at positions {ri}i=1,...,N , where ri ∈ R3. We denote the many body wave

function as ψ(ζ1
r1
, ..., ζ iri , ζ

j
rj
, ..., ζNrN ). We define an exchange operator R that

exchanges the positions of two of the particles

Rψ(ζ1
r1
, ..., ζ iri , ζ

j
rj
, ..., ζNrN ) = Uψ(ζ1

r1
, ..., ζ irj , ζ

j
ri
, ..., ζNrN ), (1.73)

where U is some U(1) phase factor. If one acts the exchange operator twice we

have

R2ψ(ζ1
r1
, ..., ζ iri , ζ

j
rj
, ..., ζNrN ) = U2ψ(ζ1

r1
, ..., ζ iri , ζ

j
rj
, ..., ζNrN ). (1.74)
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1.4 Anyons

Figure 1.6: Top: The exchange of two identical particles, twice, in three spatial

dimensions. Paths C2, C1 and the trivial path C0 are shown. Because there exist

a continuous mapping between all of the paths they are homotopically equivalent.

Bottom: The exchange of two particles restricted to two spatial dimensions. While it

is possible to continuously deform C1 → C0, C2 is homotopically inequivalent.

From the reference from of one of the two particles such a double exchange is

equivalent to one particle executing a loop around another. Shown in Fig. 1.6

top is such a loop, denoted C2. Also shown in Fig 1.6 top are two other paths:

C1 is a loop of one particle that does not enclose the other; C0 is the trivial

path. In R3 there exist continuous maps η : C2 7→ C1 and η′ : C1 7→ C0. One

can intuitively see this as bringing C2 over the top or underneath of the particle

it ‘encloses’. One can view this as a result of point particles embedded in R3

being a simply-connected space. As such all paths are said to be homotopically

equivalent. Given that C2 is equivalent to the trivial path C0, (1.74) implies that

U2 = 1. The U(1) phase factor U can take two values

Bosons : U = 1 Fermions : U = −1. (1.75)

What if we embed our particles in R2? The same double exchange operation
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1.4 Anyons

when performed in R2 is shown in Fig. 1.6 bottom. Such an embedding is equiva-

lent to puncturing the plane at the locus of each particle. Therefore adding a par-

ticle turns the simply-connected space of plain old R2 into a multiply-connected

space. In this picture there still exists a continuous map η′ : C1 7→ C0. However

there does not exist a continuous maps between C1 and C2. As such C2 is ho-

motopically inequivalent to C1 and C0. This implies a continuum of solutions to

(1.74)

Anyon : U = eiθ, θ ∈ (0, 2π]. (1.76)

The cases of θ = 0, π correspond to fermions and bosons. However all other so-

lutions are correspond to anyons.

The discussion above can also be described in terms of groups. The exchange

of N identical particles embedded in R3 reduces to the permutation group SN .

N identical particles embedded in R2 reduces to the much richer braid group BN .

The elements of the braid group correspond to an equivalence class of paths that

can be continuously mapped to each other. In the example given above, C0 and

C1 are represented by the same group element, the identity. To N particles we

associate N−1 generators Ri which correspond to the clockwise exchange of par-

ticles i and i+ 1. The inverse of each generator R−1
i corresponds to anticlockwise

exchange of particles i and i+ 1. The generators obey these relations [32]

RiRj = RjRi, |i− j| ≤ 2

RiRi+1Ri = Ri+1RiRi+1, 1 ≤ i ≤ N − 1. (1.77)

The distinction between SN and BN is that R2 6= 1. This means that while the

number of elements in the permutation group is N !, the size of the braid group

is infinite. In the case described above, the elements of the braid group are the

phases gained by the many-body wave function of the system, eimθ, where m is
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the number of times the particles are exchanged. If the order of exchanges does

not effect the final state of the system then the group is said to be Abelian and

correspond to Abelian anyons.

1.4.2 Non-Abelian anyons

Consider a many-body system with a ground state |Ψ〉 =
∑g

i=1 αi |ψi〉, where

αi ∈ C and |ψi〉i=1,...,g are g degenerate eigenstates. The action of two generators

of the braid group on |Ψ〉 is written

RR′ |Ψ〉 = UU′ |Ψ〉 . (1.78)

The elements of the braid group in this instance are U,U′ ∈ U(n) that act on

the degenerate subspace of eigenstates, e.g. U =
∑

i,j βij |ψj〉 〈ψi|. If there exists

a U and U′ such that [U,U′] 6= 0 then the particles are non-Abelian. Systems

that consist of such particles admit non-trivial unitary transformations on their

ground state under the exchange of particles. Indeed systems of this nature only

admit such transformations when braiding the constituent non-Abelian anyons.

It is not possible to define a local operator that performs the same operation.

Therefore it is possible to encode quantum information in such a state which is

robust to perturbative local interactions with its environment.

Anyon models come an all shapes and sizes, but every anyon model must have

three key elements (all of which will be defined subsequently):

• A set of particle types.

• A set of fusion rules.

• A set of braid statistics.

29
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For reasons which will become clear subsequently, we shall use the Ising anyon

model as the working example. The Ising anyon model has three types of particle

1 : Vacuum

ψ : Fermion

σ : Anyon. (1.79)

The ‘non-trivial’ element in this set is the σ particle. If we have a set of these

particles we can always take two sufficiently far away from the others and con-

sider their composite. This process is called fusion. It is similar to the notion

in superconducting systems where we have phonon mediated electron-electron

(fermion-fermion) pairing which can be treated as a composite boson. In much

the same way we can define the fusion, also known as a fusion channel, of all of

the particle types in the Ising anyon model

1× x = x, x = 1, ψ, σ

ψ × ψ = 1

σ × ψ = σ

σ × σ = 1 + ψ, (1.80)

where ‘×’ denotes the action of fusing two particles. The symbol ‘+’ implies a

multiple possible fusion outcomes, i.e. the fusion of two σ particles can result in

either a 1 or a ψ particle. This ambiguity in the fusion outcome of the σ particles

means that that model is non-Abelian.

Consider four σ particles, we can construct a 2-dimensional Hilbert space

based on the result of fusing them pairwise

|(σ1 × σ2)→ 1 : (σ3 × σ4)→ 1〉 ≡ |0〉

|(σ1 × σ2)→ ψ : (σ3 × σ4)→ ψ〉 ≡ |1〉 . (1.81)
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Alternatively we could construct the Hilbert space in another way

|(σ1 × σ2)→ 1 : (σ3 × σ4)→ ψ〉 ≡ |0〉

|(σ1 × σ2)→ ψ : (σ3 × σ4)→ 1〉 ≡ |1〉 (1.82)

We can view these two formulations a orthogonal bases as the total fusion outcome

in both cases is different. While the total fusion outcome of (1.81) is 1, the total

fusion outcome of (1.82) is ψ. Given one of the two bases (1.81) or (1.82) we can

fuse the anyons in a different order, for example |(σ1 × (σ2 × σ3))× σ4〉. While

the total fusion outcome must always be preserved, using (1.79) we can show:

given some set of anyons with a given total fusion outcome there are multiple

ways of fusing them together to achieve said outcome. Consider the following

f

b
a

σ σ σ σ

→

f

b
c

σ σ σ σ

→

f

d
c

σ σ σ σ

→

f

d
e

σ σ σ σ

(1.83)

f

b
a

σ σ σ σ

→

f

a e

σ σ σ σ

→

f

d
e

σ σ σ σ

(1.84)

Each diagram shows a particular ordering of the fusions of four σ particles to

some final fusion outcome f . Each arrow corresponds to changing the order in

which the anyons are fused by a single F-move. Both (1.83) and (1.84) show

a sequence of F-moves that change from the fusion ordering of the left to the

fusion ordering on the right. The initial and final orderings are the same in both

cases, but the sequence of F-moves in each case is different. We can represent an
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F-move with a matrix element in the following way

f

b
a

σ σ σ σ

=
(
F b
σ1σ2σ3

)c
a

f

b
c

σ σ σ σ

(1.85)

where the matrix F b
σσσ is the F-matrix containing all possible fusion orderings of

three σ particles to a final outcome b. In the case of the Ising anyons, examination

of (1.80) finds that b must always be a σ particle. Axiomatic identification of

(1.83) and (1.84) gives rise to the pentagon equation

(
F f
σσe

)d
a

(
F f
aσσ

)e
b

=
∑
c=1,ψ

(
F d
σσσ

)e
c

(
F f
σcσ

)d
b

(
F b
σσσ

)c
a

(1.86)

which provides a relation between all possible F-matrices of the model. By solving

(1.85) for all values of f = 1, ψ, σ one finds the F-matrix for the model

F σ
σσσ =

1√
2

(
1 1
1 −1

)
. (1.87)

We can apply the F-matrix to the basis state (1.81)

F σ
σσσ |(σ1 × σ2)→ 1 : (σ3 × σ4)→ 1〉 =

1√
2

(
1 1
1 −1

)
|0〉 =

1√
2

(|0〉+ |1〉)

F σ
σσσ |(σ1 × σ2)→ ψ : (σ3 × σ4)→ ψ〉 =

1√
2

(
1 1
1 −1

)
|1〉 =

1√
2

(|0〉 − |1〉) .
(1.88)

The F-matrix is a transformation between two orthogonal bases. As previously

discussed, anyons can acquire a non-trivial phase factor under exchange. We can

represent the exchange of anyons in diagrammatic form

c

σ σ

= Rc
σσ

c

σσ

. (1.89)
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where Rc
σσ is the phase gained by the wave function when two σ particles with

fusion outcome c are braided with one another. There are a set of quantities

Rc
ab, a, b = 1, ψ, σ, that together form the R-matrix which fully characterises the

phases gained under the exchange of all particles in the model. We can combine

this formalism with the F-matrix and construct another pair for transformations

σ σ σ

a

d

−−→
Ra
σσ

σ σ σ

a

d

−−−−−→(
F d
σσσ

)b
a

σ σ σ

d

b
−−→
Rb
σσ

σ σ σ

b

d

(1.90)

σ σ σ

a

d

−−−−−→(
F d
σσσ

)c
a

σ σ σ

d

c

−→
Rd
σc

σ σ σ

c

d

−−−−−→(
F d
σσσ

)b
c

σ σ σ

b

d

(1.91)

Again we take (1.90) and (1.91) to be identical operations. This gives rise to the

hexagon equation

∑
c=1,ψ

(
F d
σσσ

)c
a
Rd
σc

(
F d
σσσ

)b
c

= Ra
σσ

(
F d
σσσ

)b
a
Rb
σσ. (1.92)

Solving this equation using the F-matrix gives the explicit form of the R-matrix
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for the Ising anyon model

Rσσ = e−i
π
8

(
1 0
0 i

)
. (1.93)

Consider the following problem: we create two pairs of σ particles from the

vacuum and braid one particle from each pair with each other and then fuse the

original pairs back together

σ1 σ2

a

σ3 σ4

b

1

−−−−−−→(
F 1
σ1σ2b

)c
a

σ σ σ σ

b
c

1

−−−−−−→(
F 1
cσ3σ4

)d
b

σ σ σ σ

c
d

1

−−−−−→(
Rd
σ2σ3

)2

σ σ σ σ

d

c

1

−−−−−−→(
F 1
cσ3σ4

)b
d

σ σ σ σ

b
c

1

−−−−−−→(
F 1
σ1σ2b

)a
c

σ

a

σ σ σ

b

1

(1.94)

The process shown in (1.94) is equivalent to

F−1R2F |1〉 =
1√
2

(
1 1
1 −1

)
e−i

π
4

(
1 0
0 −1

)
1√
2

(
1 1
1 −1

)
|0〉 = e−i

π
4 |1〉 (1.95)

which is a bit flip operation. The unitary matrix B = F−1R2F is the braiding

operator. We have demonstrated that Ising anyons can be used to store quantum
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information. Furthermore, braiding the anyons around each other can result in

unitary transformations on their Hilbert space.

The Ising anyon model is the simplest non-Abelian anyon model. More com-

plex models such as Fibonacci anyons provide a richer set of braiding statistics.

It is possible to show that the algebra of Majorana fermions is isomorphic to that

of the Ising anyons [33]. If Majorana fermions can be created and controlled in

physical systems, it would be possible to create topologically protected quantum

memories and potentially perform fault tolerant quantum computation.

1.5 Numerical methods

Throughout this work various numerical calculations are performed. These range

from computing the spectrum and eigenstates of a given Hamiltonian to comput-

ing the winding or Chern number of a system with a given ground state. I now

present a short summary of the methods used in these computations.

Chapter 2

The numerical case studies revolved around computing the phase diagram using

the Chern number and decomposed winding number methods.

• The eigenstates and eigenvalues were computed using exact diagonalisation

via singular value decomposition (SVD).

• The Chern number was computed via the method given in [34].

• The winding numbers were computed by explicit numerical evaluation of

the relevant integral over a discretised Brillouin zone using the eigenstates

as computed from SVD.
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Chapter 3

The study of the models in this chapter revolve around computing the phase

diagram, spectrum and edge states.

• The eigenstates and eigenvalues in both the fully periodic and open bound-

ary cases were computed using exact diagonalisation via singular value de-

composition SVD.

• The winding numbers were computed by explicit numerical evaluation of

the relevant integral over a discretised Brillouin zone using the eigenstates

as computed from SVD.

Chapter 4

The need to study large systems in real space requires the use of techniques

distinct from the previous chapters.

• The zero energy eigenstates and eigenvalues (edge states) were computed

using a Lanczos algorithm.

1.6 Summary

This work is divided into four subsequent chapters. Chapter 2 presents work

done on developing a means of experimentally measuring the Chern number in

fermionic systems that have four species of particle. Chapter 3 looks at a set

of new models that exhibit topological superconductivity in three spatial dimen-

sions. Chapter 4 studies the effect of introducing defects onto the boundary of

these new models, resulting in the dimensional reduction of Majorana surface

states. Finally, Chapter 5 is a brief summary of the thesis and a proposal for

future work.
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Chapter 2

Decomposition of the Chern

Number in 2D Systems

The discovery and classification of non-interacting fermionic condensed matter

systems via their symmetries has been one of the most interesting developments in

recent years. So called symmetry protected topological (SPT) order has presented

physicists with a wealth of new physical phenomena, some of which have the po-

tential for use in performing fault tolerant quantum computation [35, 36, 32, 33].

A given single particle Hamiltonian’s adherence, and nature of that adherence, to

three types of symmetries, time-reversal, particle-hole (PH), and chrial, place it

in one of ten equivalence classes [18, 20, 17]. Models that fall into one of these cat-

egories have the potential to support a set of topologically protected degenerate

ground states, depending on whether the system is in a topologically non-trivial

phase.

The key indicator of a systems topological phase is its invariant. There ex-

ist a wide variety of topological invariants that characterise the phases of many

different models, where the specific form of the invariant is determined by the

symmetries of the system. One of the most recognisable is the so called TKNN
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number [5, 16] of the integer quantum Hall effect; it is proportional to the Hall

conductivity. While such a system’s ground state is gapped from the excited

states, continuous adiabatic transformations of the system do not change the

value of the invariant. Only by closing the gap and re-opening can the TKNN

number change. Indeed, if the system at two points in phase space can be adiabat-

ically deformed to one another they are considered to be topologically equivalent.

This typifies the behavior of topological invariants of all kinds.

A non-trivial topological number can be indicative of a number of interesting

phenomena. It can imply the presence of topologically protected edge states; such

states live at the boundary of an open system and are robust to perturbation as

long as the bulk energy gap is maintained. The Kitaev one dimensional topo-

logical superconductor [30] is characterised by a topological invariant called the

winding number, ν1D. When the winding number is non-zero the system supports

zero energy Majorana fermion states, exponentially localised at its boundary. Al-

ternatively, a non-trivial topological number can imply a capacity for supporting

non-trivial quasi-particle excitations. The Kitaev honeycomb lattice model [10]

supports localised Majorana fermions in vortex excitations while its Chern num-

ber is non-zero.

In an ideal world, there would exist observable operators for any quantity we

would like to measure. Sadly this is not always the case, and the Chern number is

not an exception. In some systems there exist secondary measures of topological

order which are experimentally accessible, e.g. the quantum Hall effect, thermal

Hall effect [37, 38, 39], zero-frequency conductivity [40], ground state degener-

acy [41], topological entanglement entropy [42, 7], the existence of edge states,

and the entanglement spectrum [43]. These indicators can be strong evidence of
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topological order, however the ability to measure the relevant invariant directly

provides the most complete characterisation of the topological nature of the sys-

tem.

In the absence of defects, a Chern number can be defined for models in any

symmetry class as long as the number of spatial dimensions is even [17, 18, 20].

On the other hand, winding numbers can be defined in any spatial dimension, the

only restriction being that the Hamiltonian must respect CH symmetry. In sys-

tems that obey both of these constraints in addition to supporting a sufficiently

small number of distinct species of fermion, the winding number and various rep-

resentations of the Chern number can be identified. Furthermore, the winding

number in these cases can be written in terms of quantities which are themselves

written in terms of observable quantities. Therefore, if a means can be found to

access these observables in an experiment, the Chern number can be measured.

The problem with this approach is the constraint on the number of species of

fermion the system may support. For insulating systems we are restricted to two

species, while for superconducting systems the we are allowed only one. Many

proposed models require more and are therefore exempt from this method. The

purpose of this work is to extend the method to allow for twice as many species in

each case. We shall see that through decomposing the Berry phase representation

of the Chern number into contributions from some subspaces defined a priori, we

can write it as a sum of winding numbers associated with each subspace. These

subsystem winding numbers are experimentally accessible and, therefore, we re-

trieve the overall Chern number.
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2.1 Chern number and winding numbers in two spatial dimensions

In the subsequent sections we will present an analytical argument and numer-

ical evidence for this new method. In Sec. 2.1 we review the known definitions

and conventions associated with the Chern number and winding number of sys-

tems in two spatial dimensions. In Sec. 2.2 we derive the analytical argument for

decomposing the Chern number as subsystem winding numbers. In Sec. 2.3 we

present two numerical examples that verify the result within pre-specified limits.

Finally, in Sec. 2.4 we discuss the implementation of the method in systems of

cold atoms.

2.1 Chern number and winding numbers in two

spatial dimensions

The following analysis stands in both the superconducting and insulating cases,

despite the derivation being slightly different. Where necessary, we present here

the definitions and derivations in the context of insulating systems, and the su-

perconducting case will be addressed separately. Translationally invariant lattice

models in two spatial dimensions supporting N = 2 species of fermion, âp and

b̂p, can be written in the form

H =

∫
BZ

d2p ψ†ph(λ,p)ψp, (2.1)

where ψp =
(
âp b̂p

)T
and p =

(
px, py

)
∈ BZ where BZ is the Brillouin

zone. The kernel Hamiltonian h(λ,p) is an 2 × 2 Hermitian matrix where

λ =
(
λ1, ... , λM

)
∈ MM such that MM is in general an M -dimensional com-

plex manifold we call parameter space. For the subsequent derivations we drop

the explicit λ dependence. The ground state of the system is given by

|Ψ〉 =
∏
p

|ψp〉 , (2.2)
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2.1 Chern number and winding numbers in two spatial dimensions

which is defined in terms of the operators â†p and b̂†p acting on the fermionic

vacuum |00〉.
|ψp〉 =

∑
nap,n

b
p=0,1

αnap,nbp
(
â†p
)nap (b̂†p)nbp |00〉 . (2.3)

The kernel Hamiltonian has a pair of eigenvectors and eigenvalues

h(p) |ψ±(p)〉 = E±(p) |ψ±(p)〉 , E−(p) ≤ 0 and E+(p) ≥ 0. (2.4)

We require that the system has an energy gap ∆E = minp [E+(p)]−maxp [E−(p)] 6=
0. We take the system to be at half filling by which we mean we construct the

ground state of the system by filling it up with particles starting with the most

negative energy states until the number of particles in the system is half the max-

imum number available. Because of the condition on the eigenvalues (2.4), this

implies the ground state for h(p) is |ψ−(p)〉. The Chern number, ν2D ∈ Z, that

characterises the topological phase of the system is defined as

ν2D = − i

2π

∫
BZ

d2p tr
(
Pp
[
∂pxPp, ∂pyPp

])
(2.5)

where Pp = |ψ−(p)〉 〈ψ−(p)| is the projector on the ground state of h(p). This is

not the only way we can write the Chern number.

2.1.1 The Berry phase representation of ν2D

The Chern number can also be written in terms of the Berry phase accrued around

the boundary of the BZ. To see this we take the projector definition of the Chern

number (2.5) and substitute in the definition of the projector Pp

ν2D =− i

2π

∫
BZ

d2p 〈ψ−(p)|
[
|∂pxψ−(p)〉 〈ψ−(p)|

+ |ψ−(p)〉 〈∂pxψ−(p)| , |∂pyψ−(p)〉 〈ψ−(p)|

+ |ψ−(p)〉 〈∂pxψ−(p)|
]
|ψ−(p)〉 . (2.6)
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2.1 Chern number and winding numbers in two spatial dimensions

|ψ−(p)〉 is normalised and therefore ∂µ 〈ψ−(p)|ψ−(p)〉 = 0, with µ = px, py, such

that

〈∂µψ−(p)|ψ−(p)〉 = −〈ψ−(p)|∂µψ−(p)〉 . (2.7)

By expanding (2.6) and applying (2.7) we have

ν2D = − i

2π

∫
BZ

d2p εµν 〈∂pµψ−(p)|∂pνψ−(p)〉 . (2.8)

We recognise that the integrand of (2.8) is the Berry curvature F (p)

F (p) = εµν∂µAν = εµν 〈∂pµψ−(p)|∂pνψ−(p)〉 , (2.9)

where A = 〈ψ−(p)|∂|ψ−(p)〉 with ∂ =
(
∂px , ∂py

)
. Using Stokes’ theorem we

can write the Chern number as

ν2D = − i

2π

∫
BZ

d2p F (p) = − i

2π

∮
∂BZ

dp ·A, (2.10)

where ∂BZ is the boundary of the Brillouin zone.

2.1.2 The winding number representation of ν2D

Under the constraint that dim[h(p)] = 2 it can be parametrised in terms of a

normalised vector ŝ(p) : BZ→ S2

h(p) = |ŝ(p)|ŝ(p) · σ, (2.11)

where σ =
(
σx, σy, σz

)
. We can express ν2D as the winding of ŝ(p) over BZ.

Using (2.11) we can write the projector Pp as

Pp =
1

2
(I− ŝ(p) · σ) , (2.12)

where I is the identity matrix. By substituting (2.12) into (2.5) and employing

the identities

(a · σ) (b · σ) = Ia · b+ iσ · a× b (2.13)
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2.1 Chern number and winding numbers in two spatial dimensions

for two 3-vectors a and b, and

tr
(
σασβ

)
= 2δαβ; α, β = x, y, z, (2.14)

we have

ν2D =− i

2π

∫
BZ

d2p tr

(
|ψ−(p)〉 〈ψ−(p)| 1

4

[
∂px ŝ(p) · σ, ∂py ŝ(p) · σ

])
=

1

4π

∫
BZ

d2p ŝ(p) · (∂px ŝ(p)× ∂px ŝ(p))

≡ν̃2D (2.15)

As the BZ is spanned, ŝ(p) winds around the sphere S2 an integer number of

times. If ν2D 6= 0 we say that the system is in a topological phase.

2.1.3 Observability of the winding number

The winding number is of particular interest as it is directly observable. It is easy

to show that

ŝ(p) = 〈ψ−(p)|σ|ψ−(p)〉 = 〈ψp|Σ|ψp〉 (2.16)

where Σ = ψ†pσψp are the second quantised representations of the Pauli opera-

tors explicitly given by

Σx =â†pb̂p + b̂†pâp,

Σy =− iâ†pb̂p + ib̂†pâp,

Σz =â†pâp − b̂†pb̂p (2.17)

In systems of cold atom systems, by studying how the cloud of atoms ex-

pands when the trap is switched off, one can obtain a set of time of flight images

from which one can extract the expectation values of the number operators â†pâp

and b̂†pb̂p. As such the σz component of (2.16) can be measured and the σx,y

components can be obtained through suitable rotations.
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2.2 Decomposition of the Chern number into subsystem winding
numbers

2.1.4 Breakdown of the winding number representation

If the number of species of fermion in the system N > 2 then h(p) can no longer be

expanded in the Pauli basis. We can choose to expand it in terms of some higher

dimensional basis of matrices, then however dim[ŝ(p)] > 3 and the derivation of

the winding number in sec. 2.1.2 is no longer sound. While it would, in principle,

be possible to construct the components of some higher dimensional ŝ(p) from

time of flight images, we no longer know how to reconstruct the Chern number

from them.

2.2 Decomposition of the Chern number into

subsystem winding numbers

We now present the analytic argument for decomposing the Chern number as a

sum of winding numbers associated with each subsystem. We present first present

the argument for topological insulators that preserve particle number and then

show that it also holds for parity conserving topological superconductors.

2.2.1 Derivation for topological insulators

Consider a system with four different species of fermion â1, â2, b̂1, and b̂2 where

the a/b bi-partition can correspond to a number of different physical distinctions

(e.g. spin degrees of freedom, atomic levels, different sectors of some discrete

symmetry). Assuming translational invariance and periodic boundary conditions

we can write the Hamiltonian as (2.1) with ψp =
(
â1,p â2,p b̂1,p b̂2,p

)T
. A

general state in the Hilbert space of the system can be written as

|Ψ〉 =
∏
p

 ∑
nij,p=0,1

αna1,p,na2,p,nb1,p,nb2,p |n
a
1,p, n

a
2,p, n

b
1,p, n

b
2,p〉

 , (2.18)
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2.2 Decomposition of the Chern number into subsystem winding
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where we have expressed the state in the occupational basis

|na1,p, na2,p, nb1,p, nb2,p〉 =
(
â†1,p

)na1,p (
â†2,p

)na2,p (
b̂†1,p

)nb1,p (
b̂†2,p

)nb1,p |0000〉 . (2.19)

Here {nij,p} = 0, 1 are the fermionic occupation numbers and |0000〉 is the

fermionic vacuum. The eigenstates of (2.1) will be of the form (2.18) with the

further condition of normalisation, i.e.
∑

nji,p=0,1

∣∣∣αna1,p,na2,p,nb1,p,nb2,p∣∣∣2 = 1.

As stated previously, we restrict the system to a fixed particle number, i.e.

[H,N ] = 0 where N =
∑
p,α=1,2

(
â†α,pâα,p + b̂†α,pb̂α,p

)
. Furthermore, we fix the

system to be at half filling, which means that the ground state |ψp〉 satisfies the

condition
∑

i,j n
i
j,p = 2. This restriction means that a complete local basis for

each momentum component of the ground state is given by

{|1100〉 , |1010〉 , |1001〉 , |0110〉 , |0101〉 , |0011〉} . (2.20)

Now we can divide the ground state into two orthogonal subspaces

|ψp〉 =A |na1,p + na2,p ⇔ even;nb1,p + nb2,p ⇔ even〉

+B |na1,p + na2,p ⇔ odd;nb1,p + nb2,p ⇔ odd〉

≡A |e; e〉+B |o; o〉 , (2.21)

where
∑

j n
i
j,p are either both even or both odd and |A|2 + |B|2 = 1. The next

step is to perform a Schmidt decomposition on each part of the state, |e; e〉 and

|o; o〉, which can be written

|e; e〉 = cos θe |ae〉 ⊗ |be〉+ sin θe |ãe〉 ⊗ |b̃e〉 ,

|o; o〉 = cos θo |ao〉 ⊗ |bo〉+ sin θo |ão〉 ⊗ |b̃o〉 , (2.22)

where θe, θo ∈ [0, π/2) ensuring that the Schmidt coefficients are non-negative.

We stipulate that the states |ae/o〉 |be/o〉 are written in the same basis as (2.19).
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2.2 Decomposition of the Chern number into subsystem winding
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The states in (2.22) obey the orthogonality conditions 〈ae/o|ãe/o〉 = 0 and 〈be/o|b̃e/o〉 =

0. More explicitly we have

|ao〉 =
(
α01â

†
2,p + α10â

†
1,p

)
|00〉 , |ão〉 =

(
α∗10â

†
2,p − α∗01â

†
1,p

)
|00〉 ,

|bo〉 =
(
β01b̂

†
2,p + β10b̂

†
1,p

)
|00〉 , |b̃o〉 =

(
β∗10b̂

†
2,p − β∗01b̂

†
1,p

)
|00〉 (2.23)

and

|ae〉 = eiφa |00〉 , |ãe〉 = eiφ̃a â†1,pâ
†
2,p |00〉 ,

|be〉 = eiφb b̂†1,pb̂
†
2,p |00〉 , |b̃e〉 = eiφ̃b |00〉 , (2.24)

where |α01|2 + |α10|2 = |β01|2 + |β10|2 = 1. The phases φa/b and φ̃a/b are in general

non-zero however, after multiplying |ψp〉 by a global phase of e−i(φa+φb), we can

transfer them to the |o; o〉 subspace via a U(1) local gauge transformation given

by

â†1,p → e−i(φ̃a+φ̃b−φa−φb)â†1,p. (2.25)

After this transformation the only momentum dependence in the |e; e〉 subspace

is in the real and positive Schmidt coefficients cos θe and sin θe. Having prepared

the state we can now write ν2D

ν2D = − i

2π

∮
∂BZ

A2 〈e; e|∂|e; e〉 · dp− i

2π

∮
∂BZ

B2 〈o; o|∂|o; o〉 · dp (2.26)

where terms containing A∂A or B∂B do not contribute because A∂A+B∂B =

∂(A2 + B2)/2 = 0 which follows from the reality condition on A and B. Di-

rect evaluation of the integrand in the |e; e〉 case finds it to be zero because

cos θe∂ cos θe + sin θe∂ sin θe = ∂(cos2 θe + sin2 θe)/2 = 0. Noting that 〈io|∂|io〉 =

− 〈̃io|∂ |̃io〉 and using the positivity and normalisation of the Schmidt coefficients,

a direct evaluation gives

ν2D = − i

2π

∑
i=a,b

∮
∂BZ

S 〈io|∂|io〉 · dp, S = |B|2T, (2.27)
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2.2 Decomposition of the Chern number into subsystem winding
numbers

where T = cos2 θo − sin2 θo is a measure of the entanglement between the a and

b subsystems.

The Chern number is now written as a sum of exclusive contributions from

each subsystem. If S = 1 then (2.27) is simply a sum of Berry phases associ-

ated with each subsystem which can, by (2.15), be written as a sum of winding

numbers of a pair of vectors ŝa(p) and ŝb(p). However as we shall see that the

decomposition only fails when S → 0, when the subsystems are maximally entan-

gled. In section 2.3 we present examples that show that the method only diverges

from the theoretical values when T → 0.

2.2.2 Subsystem winding numbers as physical observables

We will now construct the subsystem winding numbers as a function of two vectors

ŝa(p) and ŝb(p), which are themselves given in terms of the expectation values of

the ground state, |ψp〉, with some set of observable operators associated with each

subsystem. In analogy with (2.17) we can construct the observables associated

with the a and b subsystems, Σa =
(
Σx
a, Σy

a, Σz
a

)
and Σb =

(
Σx
b , Σy

b , Σz
b

)
,

and they are given explicitly by

Σx
a =â†1,pâ2,p + â†2,pâ1,p Σx

b = b̂†1,pb̂2,p + b̂†2,pb̂1,p

Σy
a =− iâ†1,pâ2,p + iâ†2,pâ1,p Σy

b = −ib̂†1,pb̂2,p + ib̂†2,pb̂1,p

Σz
a =â†1,pâ1,p − â†2,pâ2,p Σz

b = b̂†1,pb̂1,p − b̂†2,pb̂2,p (2.28)

Now we can calculate the expectation values

〈ψp|Σi|ψp〉 = |A|2 〈e; e|Σi|e; e〉+ |B|2 〈o; o|Σi|o; o〉 (2.29)

where cross terms between the even and odd subspaces do not appear since the

operators given in (2.28) conserve particle number. By direct evaluation of the
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2.2 Decomposition of the Chern number into subsystem winding
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|e; e〉 term we see that it vanishes. Evaluation of the |o; o〉 term gives

〈o; o|Σi|o; o〉 = cos2 θo 〈io|Σi|io〉+ sin2 θo 〈̃io|Σi |̃io〉 = T 〈io|Σi|io〉 (2.30)

where we have used the tracelessness of the Σi operators which implies 〈̃io|Σi |̃io〉 =

−〈io|Σi|io〉. Each case is explicitly given by

〈ψp|Σa|ψp〉 = S 〈ψa(p)|σ|ψa(p)〉

〈ψp|Σb|ψp〉 = S 〈ψb(p)|σ|ψb(p)〉 , (2.31)

where |ψa(p)〉 =
(
α01, α10

)T
and |ψb(p)〉 =

(
β01, β10

)T
. We can normalise the

vectors given in (2.31) and relabel them as

ŝi(p) =
si(p)

|si(p)| = 〈ψi(p)|σ|ψi(p)〉 , (2.32)

where |si(p)| = |B|2|T |2. In much the same way as presented in 2.1 we can define

subsystem Chern numbers for the |io〉 states as Berry phases

νi2D = − i

2π

∮
∂BZ

〈io|∂|io〉 · dp (2.33)

or as subsystem winding numbers

νi2D =
1

4π

∫
BZ

d2p ŝi(p) ·
(
∂px ŝi(p)× ∂py ŝi(p)

)
(2.34)

We can view |ψi(p)〉 as the ground state of some fictitious kernel Hamiltonian

hi(p) = ŝi(p) · σ. We have shown that each subsystem Berry phase (2.33) is

proportional to its corresponding subsystem winding number (2.34) and that the

winding numbers are physically observable. We now show that, with slight modi-

fications, the above method applies to topological superconductors that conserve

particle parity.
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2.2 Decomposition of the Chern number into subsystem winding
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2.2.3 Derivation for topological superconductors

Again we take the Hamiltonian of the system to be (2.1), but now the spinor

takes the form ψp =
(
âp â†−p b̂p b̂†−p

)T
. A general state in the Hilbert space

can be written as in (2.18) but with the Fock space ordered as

|nap, na−p, nbp, nb−p〉 =
(
â†p
)nap (â†−p))n

a
−p

(
b̂†p

)nbp (
(b̂†−p

)nb−p |0000〉 (2.35)

Superconductors only preserve total parity, i.e. [H,P ] = 0 with

P = exp

(
iπ
∑
p

(
â†pâp + b̂†pb̂p

))
= PaPb (2.36)

while subsystem parities, Pa and Pb, are not independently conserved. Without

loss of generality we assume that the ground state is in the total even parity sector.

This means that the subsystems are correlated such that Pa = Pb, which in turn

means that the ground state complies with the condition of overall momentum.

Under these conditions the ground state is given in the basis spanned by the

states

{|0000〉 , |0011〉 , |1100〉 , |1111〉 , |0110〉 , |1001〉} . (2.37)

As in the insulating case we divide the ground state into even and odd subspaces

|ψp〉 = A |e; e〉+B |o; o〉 . (2.38)

Performing the Schmidt decomposition between the a and b subspaces in this

parity sector we obtain a general expression which has the same form as (2.22)

but with the Schmidt bases given by

|ae〉 =
(
α00 + α11â

†
pa
†
−p

)
|00〉 , |ãe〉 =

(
α∗11 − α∗00â

†
pâ
†
−p

)
|00〉 ,

|be〉 =
(
β00 + β11b̂

†
pb
†
−p

)
|00〉 , |b̃e〉 =

(
β∗11 − β∗00b̂

†
pb̂
†
−p

)
|00〉 ,

(2.39)
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and

|ao〉 = eiφaa†−p |00〉 , |ão〉 = eiφ̃a â†p |00〉 ,

|bo〉 = eiφb b̂†p |00〉 , |b̃o〉 = eiφ̃b b̂†−p |00〉 . (2.40)

In a similar way to the insulating case, all coefficients except those in the |o; o〉
subspace can be made real via U(1) gauge transformations. With this in mind,

the decomposition of the Berry phase proceeds in the same way as the insulating

case with the only difference being that the contribution from the |o; o〉 subspace

vanishes and we are left with

ν2D = − i

2π

∑
i=a,b

∮
∂BZ

S 〈io|∂|io〉 · dp, S = |A|2T. (2.41)

The observable operators, Σi, used to evaluate the subsystem winding numbers

are now given by

Σx
a =â†pâ

†
−p + â−pâp, Σx

b = b̂†pb̂
†
−p + b̂−pb̂p,

Σy
a =− iâ†pâ†−p + iâ−pâp, Σx

b = −ib̂†pb̂†−p + ib̂−pb̂p,

Σz
a =â†pâp − â†−pâ−p, Σz

b = b̂†pb̂p − b̂†−pb̂−p. (2.42)

When we compute the expectation values we find that only the |e; e〉 subspace

terms contribute. The expectation values are given by

〈e; e|Σa|e; e〉 = 〈ψa(p)|σ|ψa(p)〉

〈e; e|Σb|e; e〉 = 〈ψb(p)|σ|ψb(p)〉 (2.43)

where |ψa(p)〉 =
(
α00, α11

)T
and |ψb(p)〉 =

(
β00, β11

)T
. Therefore, as in the

insulating case, (2.43) can be used to evaluate the subsystem winding numbers

(2.34). Under the condition of non-maximal entanglement we shall show that the

Chern number becomes additive in these winding numbers. The entanglement
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between the subsystems can be accessed experimentally by measuring the quan-

tity |ŝi(p)| which is proportional to the entanglement. As such a given choice of

bi-partition can be assessed for the applicability of this method.

2.3 Case studies

In this section we present two numerical case studies showcasing the method.

The examples we use are the quantum spin Hall insulator [44] and a staggered

topological superconductor [45]. We find that in both cases the phase diagrams

are accurately reproduced, with any discrepancies occurring only when the en-

tanglement between the subsystems is particularly high.

2.3.1 Example 1: The quantum spin Hall Insulator

The time-reversal invariant quantum spin Hall insulator is defined on a honey-

comb lattice [44] and its tight binding Hamiltonian is given by

ĤQSH =t
∑
〈ij〉

â†ib̂j + iλSO

∑
〈〈ij〉〉

ξSO

(
â†iσ

zâj + b̂
†
iσ

zb̂j

)
+ λv

∑
i

(
â†iâi − b̂

†
ib̂i

)
+ iλR

∑
〈ij〉

â†i

(
σ × d̂i

)
z
b̂j (2.44)

where the spinors âi =
(
âi,↑, âi,↓

)T
and b̂i =

(
b̂i,↑, b̂i,↓

)T
denote the two sub-

lattice degrees of freedom of the lattice. The terms with coefficients t and λv

are the spin-independent nearest-neighbor tunneling and the sublattice energy

imbalance, respectively. The terms with coefficients λR and λSO are the near-

est and next-nearest neighbor spin-orbit coupling, respectively. Finally we have

ξSO = sgn
[
d̂1 × d̂2

]
, where d̂1 and d̂2 are vectors that connect the next-nearest

neighbor sites.

After Fourier transforming (2.44) we can write it in the form (2.1), where the
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Figure 2.1: Left : Theoretical phase diagram in the parameter-space λR/λSO, λV /λSO

of Hamiltonian (2.44). The trivial phase corresponds to νs
2D = 0, while the QSH phase

corresponds to ν2D = 1. Middle: Numerical computation of the phase diagram as the

winding spin Chern number (ν̃↑ − ν̃↓)/2. Right : The minimum of the spin component

entanglement measure across the Brillouin zone, minp|ŝi(p)|. When minp|ŝi(p)| is

small the entanglement is large. The spin components become maximally entangled

(blue regions) only around the transitions between the two trivial insulators, while

between trivial and spin Hall phases we find a discontinuity.

spinor is now given by ψp =
(
âp,↑, âp,↓, b̂p,↑, b̂p,↓

)T
. Kane and Mele showed

that this model supports two distinct phases, the quantum spin Hall phase and

the trivial insulator phase, which are distinguished by a Z2 topological invariant

[44]. In each phase the system has an energy gap; the gap closes as the system

transitions between the two phases. Their Z2 invariant, analogous to the TKNN

invariant [5], was shown by Sheng et al. [46] to be related to the spin Chern

numbers, ν↑/↓, in the following way

νs2D =
ν↑ − ν↓

2
(2.45)

where ν↑ = −ν↓. The phase diagram of system is shown in fig. 2.1 left.

In line with our method, we can associate the spin up and spin down compo-

nents in (2.44) with the |ae/o〉 and |be/o〉 subspaces in the Schmidt decomposition,
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2.3 Case studies

as defined in the derivation in sec. 2.2.1. Therefore, the observable operators

needed for computing the subsystem winding numbers are given by

Σx
↑/↓ = â†↑/↓,pb̂↑/↓,p + b̂†↑/↓,pâ↑/↓,p,

Σy
↑/↓ = −iâ†↑/↓,pb̂↑/↓,p + ib̂†↑/↓,pâ↑/↓,p,

Σz
↑/↓ = â†↑/↓,pâ↑/↓,p − b̂

†
↑/↓,pb̂↑/↓,p (2.46)

It is now possible to construct the two maps ŝ↑(p) and ŝ↓(p) and, by substituting

them into (2.34), we can calculate the subsystem winding numbers, ν̃↑ and ν̃↓.

After subtracting them as in (2.45) we find that the method perfectly reproduces

the phase diagram of the model, as presented in fig. 2.1 middle. The subsystem

entanglement is shown in fig. 2.1. We see that in the QSH phase the subsystems

are minimally entangled. This lends evidence to the claim that the method works

when the subsystems are non-maximally entangled.

2.3.2 Example 2: Topological superconductor with stag-

gered sublattices

The second example we present is the topological superconductor with a staggered

chemical potential [45]. The model supports a variety of topological phases with

Chern numbers ν2D = 0,±1,±2. The real space tight-binding Hamiltonian is

given by

Ĥ =
∑
j

[
(µ− δ) â†j âj + (µ+ δ) b̂†j b̂j + t

(
iâ†j b̂j − ib̂†j âj+x̂ + â†j âj+ŷ + b̂†j b̂j+ŷ

)
+ ∆

(
â†j b̂
†
j + b̂†j âj+x̂ + â†j â

†
j+ŷ + b̂†j b̂j+ŷ

)
+ h.c.

]
, (2.47)

where âj and b̂j are the two sublattice fermions which are distinguished by the

difference in the sign of the coefficient δ in the chemical potential. The coeffi-

cients t and ∆ correspond to tunneling and pairing between adjacent lattice sites.
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2.4 Experimental implementation

Figure 2.2: Left : The phase diagram as computed via the Berry phase. The colour

encodes the magnitude of the spectral gap while the dashed lines indicate the phase

boundaries. Middle: The phase diagram as a sum of the winding numbers of the a

and b sublattices. Right : The sublattice entanglement as characterised by minp|ŝi(p)|.
When minp|ŝi(p)| is small the entanglement is large.

We partition the system by sublattice and therefore relevant observable oper-

ators are given by (2.42). Evaluation of (2.34), after calculating ŝa(p) and ŝb(p),

leads to a reproduction of the phase diagram, as shown in fig. 2.2. The left pane

shows the phase diagram as calculated using the Berry phase representation of

the Chern number, while the middle pane shows the phase diagram as a sum of

subsystem winding numbers. The two are largely in agreement, diverging only

when the entanglement between the sublattices is maximal, as shown in fig. 2.2

right. It is also worth noting that the discrepancy is only in the sign of the Chern

number, and as such all of the topological phases are distinguished.

2.4 Experimental implementation

In this section we describe how this method might be implemented in systems

of cold atoms. Use of systems of cold atoms trapped in optical lattices to simu-

late different topological states of matter has come on leaps and bounds over the

last decade. In particular, attempts have been made to measure various physical

54



2.4 Experimental implementation

observables including but not limited to time-of-flight measurements [47, 45, 48],

analysis of wave packet dynamics [49], interferometric measurements of the Berry

phase [50, 51], measurements of the Hall conductance [52, 53], measurements of

the center of mass of atomic gases [54], and direct measurements of the Skyrmion

number [55]. Many of these methods are defined for specific systems and are

potentially unrealistic for actual experiments.

The specifics of how one might go about measuring the relevant observables

for our method are analogous to [45]. We can take some specific tight binding

model, such as that proposed in [45], and map it to a system of cold atoms

trapped in an optical lattice. Couplings such as tunneling and chemical poten-

tials can be modulated via Raman-assisted tunneling [56, 57, 58]. Furthermore,

we can implement nearest neighbor pairing if we allow for two internal atomic

states and s-wave Feshbach resonances [59, 60].

We must measure the components of the vectors ŝi(p), with i = a, b, in order

to access the subsystem winding numbers. Time-of-flight images give direct ac-

cess to the momentum space densities 〈â†pâp〉 and 〈b̂†pb̂p〉 which by, (2.42), gives

us ŝi,z(p). Each sublattice can be treated independently due to the imbalance in

the chemical potential, allowing each to be released from the trap separately. The

ŝi,x(p) and ŝi,y(p) components can be accessed by first switching off the pairing

and tunneling before switching off the trap. This is equivalent to rotating the

observables Σx
i and Σy

i to Σz
i .

While the above steps are specific to the staggered topological superconduc-

tor, in principle any four component system in which the relevant observables can

be accessed are susceptible to our method. For example, angle-resolved photo-
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emission spectroscopy has been shown to be successful in measuring both spin

textures [61] and orbital textures [62] in condensed matter systems.

Another issue is the prospect of disorder. Real systems are rarely transla-

tionally invariant, and as such the reciprocal space representation of the winding

number is no longer valid. Luckily, the winding number is also expressible in

terms of real space observables [10]. As long as a system with disorder continues

to have an energy gap, the subsystem winding numbers can be accessed and our

method is valid.

2.5 Conclusions

Here we have derived an analytic decomposition of the Chern number of four

component topological superconductors and insulators into subsystem winding

numbers. We show that each of these winding numbers is expressed in terms

of the expectation values of a set of observable operators. Therefore, the Chern

number of such systems can be experimentally accessed, assuming one can find a

way of measuring these observables. It was shown numerically that the method

works in the case of the quantum spin Hall effect, where the subsystems cor-

respond to the spin components, and the sublattice degrees of freedom in the

staggered p + ip superconductor, where in both cases the phase diagram was

accurately reproduced. The method can be viewed as a generalisation of the

detection of Chern numbers from time-of-flight images [47, 45, 48]. As such the

method is particularly suited to cold atom experiments, where multiple internal

atomic states are often used to synthesise the pairing terms, spin-orbit couplings

and gauge fields required for topological phases to emerge [63, 64, 65, 66, 67, 68].

Being able to independently measure the time-of-flight images of the components
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is sufficient to be able to construct the subsystem winding numbers and hence

the full Chern number.

The accuracy of the method is limited only by the entanglement between the

components with respect to which the observables have been defined. We found

that errors due to the discretisation of the Brillouin zone become significant as

the subsystems become more entangled, which leads to the winding numbers be-

coming unreliable. Luckily, it is possible to use the observables to evaluate the

subsystem winding numbers to probe the entanglements between the subsystems.

Given that we can access the entanglement between the subsystems, we can make

a judicious choice of partitions such that the entanglement between them is low.

In both the case studies that are presented, any discrepancies between the true

values and our method directly correspond to regions of the phase diagram for

which the partitions are maximally entangled.

An open question is the generalisation of the analytic argument for the Chern

number decomposition to n component systems. While Schmidt decompositions

are hard to generalise for systems with more than two components [69], a possible

avenue might be to use convoluted multi-partite Schmidt decompositions.
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Chapter 3

Three Dimensional Topological

Superconductors

1D and 2D TSs have been well studied, and there exist several tight binding mod-

els such as the Kitaev wire [30], the Kitaev honeycomb lattice [10], and the p+ ip

superconductor [45] that have been studied extensively. The Kitaev wire has

even been probed experimentally [70, 71, 72, 73, 74] in hybrid superconductor-

semiconductor nano-wires, to some success. Through study of their tight binding

models, they have been theoretically shown to exhibit topologically non-trivial

quasi-particles; the Kitaev wire supports zero energy Majorana modes localised

at its boundary; the Kitaev honeycomb lattice and p + ip superconductor trap

Majorana fermions trapped at the center of vorticies [75, 76]. Surprisingly, at the

time of the inception of this work, little effort had been afforded to the study of

3D TS tight binding models [77, 78].

There has been intense work in the search for topological superconductivity in

real materials. Of particular note are CuxBi2Se3 [79] and Sn1−xInxTe [80]. Both

share the same effective description, developed by Fu and Berg [81]. Both of

these materials have been studied at their surfaces extensively, with some strong
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evidence of non-trivial pairing occurring. However there has been no conclusive

detection of topological superconductivity, such as direct measurement of the

bulk invariant. There already exist a few examples of TS tight binding models.

The earliest example is Schnyder et al.’s construction of an inter-penetrating di-

amond lattice model in the symmetry class CI [82]. The model supports phases

where the three dimensional winding number takes values ν3D = 0,±2. Shortly

afterwards, Fu and Berg’s contribution came in the form of a model related to the

known superconductor CuxBi2Se3, which was shown to be in the symmetry class

DIII and to support winding numbers ν3D = 0,±1[81]. Of particular note, was

Deng et al.’s brilliant work in developing a systematic protocol for constructing

tight binding models for TIs and TSs that can support arbitrary winding numbers

[83]. Through a beautiful quaternionic construction, they are able to realise tight

binding models in the symmetry classes that support topological indexes in the

Z domain. While through this process they achieve arbitrary winding numbers,

for higher winding numbers they require correspondingly long range interactions.

We chose to develop a model in the symmetry class DIII. Such models are

characterised by possessing both TR, PH, and by implication SL, symmetries.

We choose our system to have two species of fermion, which can be interpreted as

a spin degree of freedom. Furthermore, we enforce a maximum interaction length.

To each interaction within the maximum interaction length we assign a parameter

λi which may be real or complex depending on the type of interaction. Together

they form a vector λ which is a point on a manifold M ⊂ RN ×CM . In order to

identify specific example models we perform a random search in M, where possible

calculating the topological invariant and determining if it is non-zero. Through

this process we arrive at four different models that all exhibit a variety of topo-

logical phases. All of the models present zero energy helical Majorana modes,
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3.1 The general model

exponentially localised at their boundary, which present as modes crossing zero

energy in the energy spectrum [84]. When an effective Zeeman field is applied

to their boundary TR symmetry is broken [85, 86, 87], creating an energy gap.

The resultant system on the boundary can be shown to be a 2D TS in its own

right, with its own topological invariant. We find that the topological invariant

of the bulk system and the boundary system coincide, and that this is no accident.

The rest of this chapter is divided into several sections. In Section 3.1 we

define the general DIII model from which we will derive the specific examples.

Section 3.2 discusses the definitions and conventions associated with the winding

number in 3D. Section 3.3 outlines the numerical search procedure used to find

topologically non-trivial examples. In Section 3.4 are presented the four examples

models that support a variety of different winding numbers. Presented in Section

3.5 is an analysis of the boundary physics of each model.

3.1 The general model

We now present the generic model from which we shall derive the specific exam-

ples. Consider a cubic lattice onto which we place two different species of fermion

â1 and â2, one at each vertex. We order the fermions periodically on the lattice

such that we create a unit cell that lies along the x axis, as shown in fig. 3.1. To

each unit cell we associate a spatial index j =
(
jx, jy, jz

)
which runs over the

whole lattice. The tight binding Hamiltonian is given by

H =
∑
j

(∑
k

[
µâ†kj âkj

]
+
∑
k,k′,s

[
tkk′sâ

†
kj âk′j+s + ∆kk′sâkj âk′j+s

])
+ H.c., (3.1)

where tkk′s ∈ R and ∆kk′s ∈ C are the tunneling and pairing coefficients respec-

tively, µ ∈ R is the chemical potential and s = sxx̂+syŷ+szẑ, with sx, sy, sz ∈ Z,
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3.1 The general model

is a vector that connects different unit cells. We constrain the interactions to a

maximum distance of |s| =
√

2.

When we impose periodic boundary conditions we may transform the Hamilto-

nian (3.1) into reciprocal space using the Fourier transformation âkj =
∑
p e

ip·j âkp,

where p =
(
px, py, pz

)
∈ BZ = [0, 2π) × [0, 2π) × [0, 2π). The Hamiltonian

can then be cast into Bogoliubov-de Gennes form H =
∑
pψ

†
ph(p)ψp, where

ψp =
(
â1,p, â†1,−p, â2,p, â†2,−p

)T
and the kernel Hamiltonian h(p) is a 4 × 4

Hermitian matrix. We would like to restrict the Hamiltonian to the DIII sym-

metry class. As such we introduce two symmetry operators, the time reversal

operator CTR and the particle-hole operator CPH and require that

Th(−p)T−1 = h(p), Ph(−p)P−1 = −h(p) (3.2)

where T 2 = −1 and P 2 = 1. We are free to choose explicit forms for these oper-

ators and as such we define T = σy ⊗ IK and CPH = I⊗ σxK.

For reasons that will become apparent shortly, we would like to unitarily rotate

h(p) into the spin triplet basis [88, 89]. Through application of the unitary

Us.t. =
1√
2


i −1 0 0
0 0 1 −i
i 1 0 0
0 0 1 i

 (3.3)

we place h(p) in the basis

ψp =


iâ1,p − â†1,−p
â2,p − iâ†2,−p
iâ1,p + â†1,−p
â2,p + iâ†2,−p

 (3.4)

such that the kernel takes the form

h(p) =

(
ε(p)I Θ(p)
Θ†(p) −ε(p)I

)
(3.5)
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3.2 3D winding number

Figure 3.1: The cubic lattice onto which are placed Dirac fermions at the vertices.

There are two species of fermion â1 and â2 that are placed alternately along the x axis.

They form the unit cell that is indexed by j = (jx, jy, jz).

where ε(p) denotes the normal state, I is the 2 × 2 identity matrix and Θ(p) =

i (d(p) · σ)σy is the spin triplet pairing function. The spin triplet form immedi-

ately allows us to access the degenerate energy spectrum E±(p) = ±
√
ε2(p) + |d(p)|2.

We take the system to be in its lowest energy state, i.e. both negative valence

bands are occupied. Due to the particle-hole symmetric nature of the spectrum,

the system’s energy gap is given by ∆E = minp [E+(p)].

3.2 3D winding number

Winding around the 3-sphere

We can determine the topological nature of the gapped regions of the phase

diagram by calculating the 3D winding number, ν3D. While there are many

different representations of ν3D, we start with the definition that is commensurate
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3.2 3D winding number

with that given for ν2D in the previous chapter. That definition is as follows [89]

ν3D =
1

12π2

∫
BZ

d3p εijkεabcdη̂a∂iη̂b∂j η̂c∂kη̂d (3.6)

where BZ = T 3 and η(p) = (d1(p), d2(p), d3(p), ε(p)) is a 4-vector that maps

between the BZ and S3. As in the ν2D case, as the BZ is spanned (3.6) counts the

number of times η̂ wraps around S3. This representation is quite cumbersome,

but luckily there exists a more concise and illuminating representation [89].

Pole counting

Consider the set of points {p∗} in the Brillouin Zone that satisfy

d(p∗) = 0. (3.7)

These are the points in the BZ where η(p) points to the poles of S3. Without loss

of generality we can perform the rescaling ε(p) → aε(p), where a � 1. Taylor

expanding η(p) around p∗ we have

ηa(p) = ∂βda(p)
∣∣∣
p=p∗

(p− p∗)β, a = 1, 2, 3. (3.8)

where η4 = ε(p). Near p∗ we approximate

η̂a(p) =
∂βda(p)

∣∣∣
p=p∗

(p− p∗)β
ε(p∗)

, (3.9)

as
√
ηaηa ≈ |ε(p∗)|. This implies η̂4(p) = ε(p∗)

|ε(p∗| = sgn [ε(p∗)]. The derivative of

the components of η̂ are given by

∂αη̂a(p) =∂α

∂βda(p)
∣∣∣
p=p∗

(p− p∗)β
ε(p∗)


=
∂βda(p)

∣∣∣
p=p∗

ε(p∗)
δαβ

=
∂αda(p)

∣∣∣
p=p∗

ε(p∗)
. (3.10)
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3.2 3D winding number

We also have that, near p∗, d̂(p) ≈ d(p)
|ε(p∗) . With this in mind we have

det
[
J
(
d̂(p)

)]
= ±1 = sgn

(
det
[
J
(
d̂(p)

)])
, (3.11)

where J
(
d̂(p)

)
is the Jacobian. We split the integral over the sphere into two

parts as the linear approximation is only well defined for one of the two poles

(the surface area of the three-sphere is 2π2). We can now rewrite (3.6) as

ν3D =
1

12

∑
p=p∗

sgn [ε(p∗)] εijkε4abc
∂ida(p)

∣∣∣
p=p∗

∂jdb(p)
∣∣∣
p=p∗

∂kdc(p)
∣∣∣
p=p∗

|ε(p∗)|3

=
1

2

∑
p=p∗

sgn [ε(p∗)]
det [J (d(p))]

|ε(p∗)|3

=
1

2

∑
p=p∗

sgn [ε(p∗)] det

[
1

|ε(p∗)|J (d(p))

]
=

1

2

∑
p=p∗

sgn [ε(p∗)] det
[
J
(
d̂(p)

)]
=

1

2

∑
p=p∗

sgn [ε(p∗)] sgn
[
det
[
J
(
d̂(p)

)]]
=

1

2

∑
p=p∗

sgn [ε(p∗)] sgn

[
1

|ε(p∗)|3 det [J (d(p))]

]
=

1

2

∑
p=p∗

sgn [ε(p∗)] sgn

(
1

|ε(p∗)|3
)

sgn [det [J (d(p))]]

=
1

2

∑
p=p∗

sgn [ε(p∗)] sgn [det [J (d(p))]] ,

(3.12)

or

ν3D =
1

2

∑
p=p∗

sgn [ε(p∗)] sgn [det [J (d(p))]] . (3.13)

This form follows from the fact that in order for η̂(p) to wrap S3, it must pass

through the poles. What is nice about this representation is it explicitly shows
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3.3 Numerical search method

the dependence of the sgn [ν3D] on the sign of the couplings ∆ and µ.

Projectors

For the subsequent numerical evaluations of ν3D a different representation of the

winding number was used. As discussed in Sec. 1.2.3, a Hamiltonian which obeys

SL symmetry can be brought into block-off-diagonal form

h(p) =

(
0 D(p)

D†(p) 0

)
. (3.14)

Given (3.14) we can define a projection operator

Q(p) =

(
0 q(p)

q†(p) 0

)
(3.15)

where q(p) = − D(p)
E+(p)

. The winding number is defined as a map between the

Brillouin zone and the space of projection operators Q(p)

ν3D =
1

24π2

∫
BZ

d3p εijktr
[(
q−1∂iq

) (
q−1∂jq

) (
q−1∂kq

)]
. (3.16)

3.3 Numerical search method

We now address how we arrive at models with specific sets of couplings. The

coupling coefficients of the general model, µ, ∆kk′s and tkk′s, form a space M =

R2 × C56 we call parameter space (the chemical potentials are restricted to be

real while all other parameters are allowed to be complex). As such, a point

λ =
(
λ1, ... , λ58

)
∈M defines a specific example of a model. In order to find

a specific model with a non-trivial winding number we perform a random search

within parameter space. To each coefficient λi we assign a normal distribution

with standard deviation σ = 2, centered about zero. In the case of complex

coefficients the distribution is two dimensional over the complex plane. Then the

following procedure is followed
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1. Sample a point λα ∈M.

2. Compute ∆E(λα).

3. If ∆E(λα) 6= 0 compute ν3D(λα), else return to step 1.

4. If ν3D(λα) 6= 0 store λα, else return to step 1.

5. Return to step 1.

After repeating this protocol for a sufficiently long period of time we have a set of

points {λα} that return non-zero winding numbers. At this stage, the elements of

each λα are not ‘nice’ numbers. We can attempt to change this by incrementally

varying each (λα)i to an integer value without allowing the energy gap to close;

by preventing the energy gap from closing, we assure that the winding number

remains constant. Through this process we arrive at a ‘nice’ value for λα. Finally,

we can choose to parametrise our Hamiltonian in a variety of ways. The simplest

and most natural way is to associate a single parameter µ to all chemical potential

terms, a single parameter t to all tunneling terms, and a single parameter ∆ to all

pairing terms. We can now explore the phase diagram of each model and perform

the usual analyses.

3.4 Specific models

In this section we present four different specific examples of models that support

a variety of winding numbers. The four models with Hamiltonians H1, H2, H3,

and H4 support winding numbers ν3D = 0,±1, ν3D = 0,±2, ν3D = 0,±1,±3, and

ν3D = 0,±2,±4 respectively.
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Figure 3.2: The phase diagram of the ν3D = ±1 model. The colour map shows the

energy gap ∆E as a function of the chemical potential µ and the pairing coefficient ∆.

The phase space is separated into eight different gapped regions separated by gapless

lines. The number in each gapped region indicates the value of ν3D in that phase as

computed via (3.16) . The energy gap is in units of t.

3.4.1 Model 1: ν3D = 0,±1

The real space tight binding Hamiltonian H1 is given by

Ĥ1 =
∑
j

{ ∑
k=1,2

[
µâ†k,j âk,j +

1

2

+ tâ†k,j âk,j−x̂ + 2tâ†k,j âk,j−x̂+ẑ + tâ†k,j âk,j+ŷ + tâ†k,j âk,j−ŷ+ẑ

+ ∆âk,j âk,j−x̂ + ∆âk,j âk,j−x̂+ẑ −∆âk,j âk,j+ŷ + ∆âk,j âk,j−ŷ+ẑ

]
− 2i∆

(
â1,j â2,j+ŷ + â2,j â1,j+ŷ

)
+ 2i∆

(
â1,j â1,j+x̂+ŷ − â2,j â2,j+x̂+ŷ

)
+ H.c.

}
,

(3.17)

with µ, t,∆ ∈ R. H1 contains a mixture of s and p wave pairing terms without

spin-orbit coupling terms. In reciprocal space the elements of the kernel Hamil-
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Figure 3.3: The phase diagrams for H2, H3 and H4 from left to right respectively.

The colour map encodes the bulk energy gap while the numbers show the value of the

winding number in each gapped region. The energy gaps are in units of t.

tonian h(p) are given by

ε(p) = t
[

cos(px − pz) + cos(px) + 2 cos(py − pz) + cos(py)
]
− µ,

dx(p) = ∆
[

sin(px − pz) + sin(px) + 2 sin(py − pz)− sin(py)
]
,

dy(p) = 2∆ sin(py)

, dz(p) = 2∆ sin(px + py). (3.18)

The phase diagram as a function of µ and ∆, with t = 1, for H1 is shown in fig.

3.2. There are eight distinct gapped regions separated by gapless lines. Of note

is the adherence of the sign of ν3D to the definition (3.13).

Below we present the real space Hamiltonians and components of (3.5) for

each of the other three models.
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3.4.2 Model 2: ν3D = 0,±2

The real space tight binding Hamiltonian H2 is given by

Ĥ2 =
∑
j

{ ∑
k=1,2

[
µâ†k,j âk,j +

1

2
+ tâ†k,j âk,j−x̂ + tâ†k,j âk,j−x̂+ẑ

−∆âk,j âk,j+x̂ + ∆âk,j âk,j−x̂+ẑ

]
− 2i∆

(
â1,j â2,j+ŷ + â2,j â1,j+ŷ

)
+ 2i∆

(
â1,j â1,j+x̂+ŷ − â2,j â2,j+x̂+ŷ

)
+H.c.

}
. (3.19)

The spin-triplet form of h(p) is given by the terms

ε(p) =t
[

cos(px) + cos(px − pz)
]
− µ

dx(p) =∆[sin(px) + sin(px − pz)]

dy(p) =2∆ sin(py)

dz(p) =2∆ sin(px + py). (3.20)

The phase diagram for H2 is shown in fig. 3.3 left.

3.4.3 Model 3: ν3D = 0,±1,±3

The real space tight binding Hamiltonian H3 is given by

Ĥ3 =
∑
j

{ ∑
k=1,2

[
µâ†k,j âk,j +

1

2

+ tâ†k,j âk,j−x̂ − tâ†k,j âk,j−x̂+ẑ − tâ†k,j âk,j+ŷ + tâ†k,j âk,j−ŷ+ẑ − tâ†k,j âk,j+2ŷ

−∆âk,j âk,j−x̂ −∆âk,j âk,j−x̂+ẑ −∆âk,j âk,j+ŷ − 2∆âk,j âk,j+ŷ+ẑ

]
− 2i∆

(
â1,j â2,j+ŷ + â2,j â1,j+ŷ

)
+ 2i∆

(
â1,j â1,j−x̂+ŷ − â2,j â2,j−x̂+ŷ

)
+ H.c.

}
.

(3.21)

69



3.5 Boundary properties

The spin-triplet form of h(p) is given by the terms

ε(p) =− t
[
− cos(px) + cos(px − pz) + cos(2py)− cos(py + pz) + cos(py)

]
+ µ

dx(p) =∆[− sin(px)− sin(px − pz) + sin(2py)− sin(py)− sin(py + pz)]

dy(p) =2∆ sin(py)

dz(p) =2∆ sin(px − py). (3.22)

3.4.4 Model 4: ν3D = 0,±2,±4

The real space tight binding Hamiltonian H4 is given by

Ĥ4 =
∑
j

{ ∑
k=1,2

[
µâ†k,j âk,j +

1

2
− 2tâ†k,j âk,j−ŷ + tâ†k,j âk,j−x̂−ẑ

+ ∆âk,j âk,j+x̂+ẑ

]
+ 2i∆

(
â1,j â2,j+ẑ + â2,j â1,j+ẑ

)
+ 2i∆

(
â1,j â1,j+x̂+ŷ − â2,j â2,j+x̂+ŷ

)
+H.c.

}
. (3.23)

The spin-triplet form of h(p) is given by the terms

ε(p) =t
[

cos(px + pz)− 2 cos(py)
]

+ µ

dx(p) =−∆ sin(px + pz)

dy(p) =− 2∆ sin(pz)

dz(p) =2∆ sin(px + py). (3.24)

3.5 Boundary properties

As in many systems in physics, interesting things happen on the boundary. In this

spirit, we now study the physics of the boundary of our models. For this purpose,

we consider the lattice to extend between two parallel planes, both perpendicular

to the z axis. The Bottom plane (B) is positioned at z = 1 and the Top plane
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3.5 Boundary properties

(T) is positioned at z = l, where l is a positive integer. The lattice is periodic in

the x and y directions. It is necessary to specify that we consider the boundary

as a whole to consist of the combination of these two surfaces. As such, any

subsequent reference to ‘the boundary’ refers to the union of both the top and

bottom surfaces. The generic Hamiltonian the system is given by

Ĥ◦ = Ĥ + ĤΩ, HΩ =
∑
j

ψ†ΩB · σψΩ, (3.25)

where ψΩ =
(
â1,j â2,j

)T
and B =

(
Bx By Bz

)T ∈ R with B = 0 for 1 < jz <

Nz. The boundary term HΩ can be viewed as an effective Zeeman field. The

reciprocal space form of (3.25) is given by

Ĥ◦ =
∑
p̄,z,s

ψ†z,p̄h(p̄)ψz,p̄ +
∑
p̄

(
ψ†1,p̄hBψ1,p̄ +ψ†l,p̄hTψl,p̄

)
(3.26)

where ψz,p̄ =
⊕

z

(
â1,z,p̄, â†1,z,−p̄, â2,z,p̄, â†2,z,−p̄

)T
, z is the position in the z di-

rection, and p̄ ∈ [0, 2π)× [0, 2π) = BZ2D. The kernel Hamiltonian is a Hermitian

matrix of dimension 4Nz that contains the coupling and phase information of

the bulk system. We choose this basis for (3.26) to ease subsequent discussion of

the boundary fields and their physics. The terms hB and hT encode additional

on site interactions that lie on the bottom and top z planes, respectively. For

our purposes, we choose hB = hT = B · σ ⊗ I. They correspond to inter-species

couplings within the unit cell. We note that if B 6= 0 then
{
hB/T , CTR

}
= 0

meaning that terms hB,T break time-reversal symmetry on the boundary.

3.5.1 Zero energy Majorana edge states

We begin our analysis by taking B = 0. When ν3D 6= 0, bulk-boundary cor-

respondence requires that the model supports a number of gapless chiral edge

71



3.5 Boundary properties
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Figure 3.4: Left A cross section of the energy dispersion at py = 0 for model H1 while

in the ν3D = 1 phase (t = 1, ∆ = 2, µ = 3) with open boundaries at z = 1 and z = 20.

A single double degenerate cone appears, with each state corresponding to one of the

two open surfaces. Right When the Zeeman field on the boundary takes value By 6= 0

the gapless modes acquire a gap ∆E◦. Inset The energy gap ∆E◦ as a function of By.

modes N◦ = |ν3D| at each surface. Furthermore, all edge modes on a given sur-

face have the same chirality [17]. Such states manifest as 2D gapless Majorana

cones in the dispersion relation. This behavior is shown for the H1 model in fig.

3.4 left. The spectrum is doubly degenerate and has two so called Dirac cones,

one per surface, as depicted in fig 3.5. For the models that support higher winding

numbers, the configuration of zero energy Majorana cones on their boundaries is

depicted in fig. 3.6. The plots depict each model in the max(ν3D) phase, clearly

showcasing the N◦ = |ν3D| correspondence. If we place the model in the ν3D = 0

phase, we find that the constraint N◦ 6= ν3D no long holds.
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3.5 Boundary properties

Figure 3.5: A schematic representation of the zero energy Majorana cones for the

ν3D = 1 phase of H1. The boundary of the system consists of two dislocated planes (T

and B) lying at z = 1 and z = l. A single Majorana cone exists at each surface.
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Figure 3.6: The center of the Majorana cones on the boundaries of models H2, H3,

and H4, ordered from left to right. The plots show each model in the max(ν3D) phase

(µ = 0.1, ∆ = t = 1). The number of cones on each surface of the boundary N◦ is

equal to ν3D.
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3.5 Boundary properties

3.5.2 The boundary as a 2D TS in the class D

Turning on the Zeeman field with B 6= 0, we find that the Bx and Bz terms

change the position of the Majorana cones in the BZ2D plane. More usefully,

when By 6= 0 we induce an energy gap ∆E◦ in the surface states, as seen in fig.

3.4 right where the cones have become paraboloids. While it is entirely possible

to treat each surface independently, if we take hB = hT then the entire boundary

can be considered as a single two dimensional TS in the symmetry class D [17]

that is dislocated between the two surfaces that constitute the boundary. This

class is characterised by preserving the same kind of particle-hole symmetry as

the class DIII while breaking time reversal symmetry. While the choice of sgn [By]

is free, in order to make a valid comparison between the boundary and bulk sys-

tems, we enforce the constraint sgn [By] = sgn [∆].

As with all TSs, we would like to determine their topological phase by evalu-

ating the corresponding invariant. Happily, now that the edge states are gapped,

we can associate a fractional 2D winding number ν∂2D(O) to each cone O on each

surface [5, 90]. It is defined in terms of the projector Pp̄(O) onto each state and

is given by

ν∂2D(O) = − i

2π

∫
BZ2D

d2p tr
(
Pp̄(O)

[
∂pxPp̄(O), ∂pyPp̄(O)

])
. (3.27)

To each surface we associate a partial winding number νb, where b = T,B, which

is defined as the sum of all the fractional winding numbers of all the cones living

on that surface

νb =
∑
∀O on b

ν∂2D(O). (3.28)

74



3.5 Boundary properties

(µ,∆,t) ν∂2D(OT ) ν∂2D(OB) ν2D ν3D

(3.0, 2.0, 1.0) 0.505 0.504 1.009 +1

(−3.0,−2.0, 1.0) 0.505 0.499 1.004 +1

(−3.0, 2.0, 1.0) −0.505 −0.499 −1.004 −1

(3.0,−2.0, 1.0) −0.505 −0.504 −1.009 −1

Table 3.1: The numerical values for νT and νB are calculated by approximating the

formula for the model H1 system with l = 5 sites and By = 0.025. Because H1 has a

single cone OT/B on each surface, we have νT/B = ν∂2D(OT/B). The fractional winding

number ν∂2D is approximated from (3.27) applied to the individual Dirac cones OT/B
on the top and bottom surfaces. We confirm that ν2D =

∑
b νb, for b = B, T , and is in

agreement with ν3D.

Finally, we define the winding number ν2D of the whole boundary as the sum of

the partial winding numbers of both surfaces

ν2D =
∑
b

νb. (3.29)

In order to numerically evaluate (3.27) we must lift the degeneracy of all the O

on either surface. To do this, we vary Bx and Bz which shifts the cones on each

surface in momentum space relative to one another, and allows us to distinguish

the apex of each cone. The integral’s primary contribution comes from the region

around these apexes and therefore, after shifting the cones, we can get a good

approximation of ν∂2D(O) in each case.

Tab. 3.1 shows the output of such a numerical evaluation of the partial winding

numbers for the H1 model in all of the topologically non-trivial phases. We see

the contribution to ν2D from each cone is fractional, with each one contributing

|ν∂2D(O)| ≈ 0.5. Furthermore, we have sgn [νT ] = sgn [νB]; this is ensured by the

fact that cones on opposite surfaces have opposite helicities, which compensates

for the orientation of unit vector normal to each surface. When ν3D = 0 we have
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3.5 Boundary properties

Model ∆ ν3D ν2D N◦

H2 +1.0 2.001 2.002 2

H2 −1.0 −1.984 −2.007 2

H3 +1.0 3.019 2.874 3

H3 −1.0 −3.009 −2.876 3

H4 +1.0 4.000 3.877 4

H4 −1.0 −4.000 −3.880 4

Table 3.2: Numerical data for ν3D and ν2D for models H2, H3, and H4 with t = 2 and

µ = 0.1. ν3D was computed by approximating (3.6) and ν2D can approximated from

(3.27). In all cases |By| ≤ 0.05 depending on the model. The number of Dirac cones

for each model was counted manually.

N◦ = 2 where cones on the same surface have opposite helicities. As such when

computing ν∂2D(O) the contributions from each cone differ sign. By (3.28), this

means the partial winding numbers νb are zero for both surfaces, and by (3.29)

ν2D = 0. The numerical values for ν3D and ν2D for the other models is shown in

tab. 3.2.

What is becoming apparent is the correspondence between the bulk winding

number, ν3D, and the winding number of the boundary system, ν2D. In fact, under

the pre-agreed sign conventions, our numerical study finds that in all models

ν3D = ν2D (3.30)

This bulk-boundary correspondence is robust, with the topological phase of the

boundary changing only when the bulk system undergoes a phase transition. The

phase transition of the boundary is driven by the change in the number of edge

states at the boundary when ν3D varies.
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3.6 Conclusions

3.6 Conclusions

We have presented four distinct topological spin-triplet superconductors that sup-

port variety of bulk winding numbers. These models, while being novel in their

own right, support a new manifestation of 2D TSs in the class D at their boundary.

These 2D systems are composite, consisting of both the top and bottom surfaces

that constitute the boundary of their 3D host model. The winding number asso-

ciated to the 2D boundary model were found, both numerically and analytically,

to be equal to the winding number of their bulk systems. This bulk-boundary

correspondence in the topological phase is robust to changes in the phase of the

bulk, such that a change of phase of the bulk leads to a corresponding change

of phase of the boundary. Conversely, the phase of the boundary is protected

by the robust nature of the topological phase of the bulk. The effect is a result

of the stability of the number of surface states when the bulk has a non-zero

winding number. Each surface state contributes an equal fraction of the overall

2D winding number, and the number of surface states at each surface is equal, as

long as ν3D remains the same so will ν2D.

The spatial dislocation of the boundary system can provide further protec-

tion for external pertubations. As an example, consider placing a 2D system with

ν2D = ±1 onto one of the surfaces. Such a 2D system has an effective description

as a pair of massive Majorana fermions [10]. If we introduce some perturbative

interactions between this invader and one of the surfaces of our 3D system, one

of these massive Majoranas can pair with one of the Majorana edge modes on

the boundary, resulting in a single massive Dirac fermion [15]. Crucially, these

pair of massive Majoranas have opposite helicity and as such, when we adiabati-

cally connect the two systems, only the Majoranas with opposite helicity will pair
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3.6 Conclusions

Figure 3.7: Left Four pairs of Majorana fermions into which one can encode a logical

qubit. Each Majorana is at the terminus of a vortex that penetrates the bulk of the

sample. Such a vortex has a finite string tension. Right Shows a pair of Majoranas

created on the same surface. The finite string tension means such a creation will not

propagate through the system and will quickly annihilate. Also shown is a pair of

Majoranas braiding. The two Majoranas on the top surface are braided while their

partners on the bottom surface remain static. The finite string tension means this

logical operation is thermodynamically suppressed.

together. Therefore, the total number of Majoranas at the surface remains con-

stant and their helicities are all the same and, by implication, the partial winding

number associated with that surface remains constant.

The boundary system could potentially support non-Abelian anyons in the

form of vortices that localise Majorana fermions at their centers [91, 92]. Con-

sider fig. 3.7 left where we have created four vortex pairs such that each vortex

terminates on opposite surfaces. It is possible to store, and manipulate through

braiding operations, a single qubit in the degenerate ground space of a set of

four Majorana fermions [33]. In this case, by braiding the vortices around one

another, the Majorana fermions localise at their end points will undergo the stan-
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3.6 Conclusions

dard unitary evolution associated with a braiding operation. What happens in

the case of thermal errors in this system? Fig. 3.7 right shows a vortex whose

ends terminate on the same surface. Such a vortex is typical of local thermal

excitations. A finite density of such errors could lead to a phase transition due to

vortex nucleation [93, 94]. However, the vortex strings have a finite energy which

is proportional to the string length, also called a string tension [95]. As such,

for sufficiently low temperatures, it will be energetically favorable for any vortex

whose ends terminate on the same surface to shrink and eventually annihilate

itself [96]. Vortices that terminate on different surfaces will reach an equilibrium

when the length of the vortex is minimised, as shown in fig. 3.7 [97, 98]. The non-

proliferation of vortex errors means that the topological phase of the boundary

is protected, and any quantum information stored is safe.
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Chapter 4

Defects on the Boundary of 3D

Topological Superconductors

The study of zero energy modes localised at defects in topological condensed mat-

ter and other systems has been long and fruitful [99, 100, 101, 102, 103, 104, 105],

from the prediction of solitons in polyacetylene [106, 107] and vortex fermions

[108], to Majorana modes trapped at vortex cores in the p + ip superconduc-

tor [109]. Specific experimental implementations that give rise to Majorana zero

modes have been proposed in superconducting-insulating heterostructures [87] as

well as semiconductor-superconductor heterostructures [110, 86, 111, 112].

The famed 10-fold way classification [17] was modified to classify the different

kinds of defects that can arise in topological systems in various spatial dimensions

[113]. By relating the dimension of a defect with the dimension of the system into

which it is embedded, the traditional periodic table of symmetry classes tab. 1.1

is rewritten. The classes are no longer demarcated by the spatial dimension of the

model d but by the parameter δ = d−D, where D is the dimension of a surface

that encloses the defect. The traditional AZ classification scheme considers only

D = 0, i.e. defects that occur at the boundary of the system such as zero energy
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Majorana fermions at the end of the Kitaev wire [30] or chiral edge modes of the

quantum spin Hall effect [44].

We are interested in three particular elements of this revised periodic table.

Namely class DIII with δ = 3 − 0, class D with δ = 2 − 0 and δ = 2 − 1.

Consider that we start with a topological superconductor in the class DIII with

open boundary conditions in the z direction. As has been shown, 2D helical zero

energy Majorana fermions are supported at its boundary. This configuration cor-

responds to the initial δ = 3 − 0 configuration. We found that the introduction

of a uniform Zeeman field over the boundary breaks time reversal symmetry and

opens an energy gap. The boundary can be then be considered to be a class D

topological superconductor in its own right. As we saw in the previous chapter,

the topological invariants of the bulk and boundary systems were found to be in

agreement. The purpose of the work in this chapter is to introduce defects of

dimension δ = 2− 0 and δ = 1− 0 onto this boundary class D system such that

we trap zero energy Majorana modes of corresponding dimensionality.

Given some purely 2D class D topological superconductor, the introduction of

a domain wall results in a number of chiral Majorana zero modes appearing. The

nature of the domain wall and the value of the topological invariant determines

the number of modes that appear. For example, a p + ip superconductor with

ν2D = 1 on a open ended cylinder supports one chiral edge mode per edge. More

generally, given some interface between two systems with differing topological

index, the number of zero modes at the interface is the absolute value of the

difference in the indicies of each system. From this perspective, we would consider

a topologically non-trivial system with an open boundary to be the interface

between two systems, one with a non-zero and one with zero topological index. An
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example of a case when we have a topologically non-trivial system on either side

of the interface is the Kitaev wire with a change in the sign of the superconducting

order parameter at some point in the chain. By the phase diagram Fig. 1.2, a

change in the sign of the order parameter leads to a change in the sign of the

winding number. The difference between the winding numbers of the two systems

is two. The number of zero energy Majorana modes that appear at the interface

is also two. This correspondence is enshrined in an index theorem [114]. Given

two TS with bulk invariants ν+ and ν−, it is known that the number of gapless

states N at the interface between the two systems is given by

N = |ν+ − ν−|. (4.1)

A system with an open boundary is equivalent to having ν− = 0 and as such the

number of gapless edge states is simply |ν+|.

We study the behavior of Majorana modes at the boundary of a 3D TS in class

DIII, which has both particle-hole (PH) and time-reversal (TR) symmetries. We

initially consider a 3D model periodic in all three spatial dimensions that is char-

acterised by a 3D winding number ν3D ∈ Z. We then create a boundary by break-

ing the periodicity in the z direction. The two disconnected surfaces naturally

support gapless helical Majorana modes exponentially localised at the boundary.

In order to gap these modes we introduce a TR-breaking Zeeman field thus ef-

fectively creating a 2D TS in class D. The topological phases at each boundary

are unlike purely 2D TS as each of the two surfaces of the boundary is described

by partial Chern numbers. As each surface can be manipulated independently it

is intriguing to investigate how Majorana modes configure themselves around a

variety of defects. To probe this we first introduce line defect in the Zeeman field

between two regions with opposite field orientation. We numerically demonstrate
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that localised 1D Majorana modes live along these defect lines. In order to create

0D Majorana modes, we consider crossing 1D defect lines in the configuration of

the effective Zeeman field. We demonstrate that quasi-0D Majorana modes are

localised in the crossing points. We demonstrate our analysis for TS with ν3D = 1

and ν3D = 2. Overall we observe a generalisation of the well known index theorem

(4.1) that determines the number of states at the interface between two system of

differing bulk topological invariant. Motivated by this we demonstrate that the

number of gapless Majorana modes is the difference in the partial contributions to

the Chern number of the boundary system, either side of a magnetic domain wall.

In Section 4.1 we introduce the notation and conventions associated with the

real space representations of the Hamiltonian. Section 4.2.1 outlines the nature

of the open boundaries and definitions and notation associated with the effective

Zeeman field. Section 4.3 introduces a Zeeman field configuration with 1D mag-

netic domain walls. We present numerical and analytical evidence showing this

induces dimensional reduction of the surface states from 2D to 1D. Section 4.4

introduces the ‘chessboard’ configuration of effective Zeeman fields. We present

numerical evidence showing the reduction of the Majorana modes from 2D to

0D. Finally, in section 4.5 we summarise the preceding sections and suggest pos-

sible implementations using magnetic impurities or superconducting-to-magnetic

material heterostructures.
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4.1 Real space eigenvalues, eigenvectors and spectral fermions

4.1 Real space eigenvalues, eigenvectors and spec-

tral fermions

We can factorise the Hamiltonian

Ĥ1 =
∑
j

{ ∑
k=1,2

[
µâ†k,j âk,j +

1

2

+ tâ†k,j âk,j−x̂ + 2tâ†k,j âk,j−x̂+ẑ + tâ†k,j âk,j+ŷ + tâ†k,j âk,j−ŷ+ẑ

+ ∆âk,j âk,j−x̂ + ∆âk,j âk,j−x̂+ẑ −∆âk,j âk,j+ŷ + ∆âk,j âk,j−ŷ+ẑ

]
− 2i∆

(
â1,j â2,j+ŷ + â2,j â1,j+ŷ

)
+ 2i∆

(
â1,j â1,j+x̂+ŷ − â2,j â2,j+x̂+ŷ

)
+ H.c.

}
,

(4.2)

into the form

H = Ψ†ΛΨ, where Ψ =
⊕
j


â1,j

â†1,j
â2,j

â†2,j

 . (4.3)

The kernel Λ is a square matrix of dimension dim(Λ) = 4NxNyNz. The positive

eigenvalues of Λ are enumerated En, 0 ≤ n ≤ dim(Λ)/2, where E1 ≤ E2 ≤ ... ≤
Edim(Λ)/2. The eigenstates of Λ are given by

|κn〉 =
∑
j

∑
k=1,2

∑
ρ= ,

αjkρ |j〉 ⊗ |kρ〉 , (4.4)

where |j〉 are the position basis states and |kρ〉 are mode basis states given by

|1 〉 = (1, 0, 0, 0), |1 〉 = (0, 1, 0, 0),

|2 〉 = (0, 0, 1, 0), |2 〉 = (0, 0, 0, 1). (4.5)

In (4.4) the complex number αkρj is the amplitude of the âk (ρ = ) or â†k

(ρ = ) fermionic mode at the site j. Particle-hole symmetry dictates that for

every eigenstate |κn〉 with eigenvalue En there exists a conjugate state |κ−n〉 with

eigenvalue E−n = −En such that |κ−n〉 = CPH |κn〉 where CPH =
⊕

j I2 ⊗ σx.
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4.1 Real space eigenvalues, eigenvectors and spectral fermions

The Hamiltonian (3.17) can be rewritten in the diagonal basis

H =
∑
n

(
En˜̂a†n

˜̂an + E−n˜̂a†−n˜̂a−n

)
, (4.6)

where ˜̂an = 〈κn|Ψ and ˜̂an = ˜̂a†−n (see Appendix A). These ‘spectral’ Dirac

fermions obey the canonical fermionic anticommutation relations. We can de-

compose these fermions into spectral Majorana modes in the following way

˜̂an =
γ̃1,n + iγ̃2,n

2
, (4.7)

where γ̃g,n = γ̃†g,n and {γ̃g,n, γ̃g′,n′} = 2δnn′δgg′ . In this basis Hamiltonian (4.6) is

given by

H = i
∑
n

Enγ̃1,nγ̃2,n, (4.8)

up to a constant shift in energy. It is possible to extract the amplitude of a given

spectral Majorana fermion at a given site j, hereby denoted |Γg,n(j)|, from the

eigenstates of the kernel Λ (see Appendix A).

Each time we introduce a defect the Majorana modes may become localised

around it. To describe this behavior we introduce a vector of real parameters,

ξ = (ξx, ξy, ξz), that describes the localisation of a Majorana mode around a

defect point, line or surface, in the following way. A spectral Majorana mode will

decay as

|Γg,n(J)| ∝ e−‖ξ·(j−j0)‖, (4.9)

where ξx, ξy, ξz ∈ R are inversely proportional to the localisation length along

their corresponding direction and ‖ξ · (j − j0)‖ =
∑

i=x,y,z |ξi(ji − (j0)i)|. The

parameter j0 defines the point, line or plane to which a state is localised. For

example, a state localised to the plane located at z = Nz has j0 = jxx̂+jyŷ+Nzẑ,

where Nzẑ define the position of the plane in the z direction and jx, jy are the

coordinates on the plane. On the other hand a state localised in the x direction

to a line that passes through the point (0, a, b) has j0 = jxx̂+ aŷ + bẑ.
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4.2 Open boundaries

Figure 4.1: A schematic representation of the boundary of the 3D superconductor.

Due to the periodic boundary conditions in the x and y directions, the top and bottom

surfaces that constitute the boundary can be viewed as a pair of tori, T 2
T located at

jz = Nz, and T 2
B located at jz = 1.

4.2 Open boundaries

4.2.1 2D Majorana modes

We initialise the system in the ν3D = 1 phase (µ = 3, t = ∆ = 1) and break

the periodic boundary condition in the z direction. The system’s boundary can

be viewed as a pair of toroidal surfaces T 2
T , located at jz = Nz, and T 2

B, lo-

cated at jz = 1, as shown in Fig. 4.1. The energy spectrum of the kernel Λ

acquires a set of four mid-gap states {|κ1〉 , |κ2〉 , |κ−1〉 , |κ−2〉} that have eigen-

values {E1, E2,−E1,−E2} respectively. In the current configuration we have

E1 = E2 = 0. The four states correspond to two spectral Dirac fermions ˜̂ai,

where i = 1, 2, and their PH symmetric partners. As previously asserted, these

spectral Dirac fermions can be decomposed into four spectral Majorana modes

γ̃g,1 and γ̃g,2. If we plot the spatial distribution of these four gapless Majorana

modes, we find that γ̃1,1 and γ̃1,2 are supported on T 2
T , while γ̃2,1 and γ̃2,2 are sup-

ported on T 2
B. All of the Majoranas are completely delocalised in the x-y plane

while being exponentially localised to their respective surfaces in the z direction.
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4.2 Open boundaries

This is succinctly expressed as

|Γ1,n(j)| ∝ e−‖ξ·(j−j0,T )‖, |Γ2,n(j)| ∝ e−‖ξ·(j−j0,B)‖, (4.10)

where j0,T = jxx̂+jyŷ+ ẑ, j0,B = jxx̂+jyŷ+Nzẑ, and ξ = (0, 0, ξz). Numerical

evaluation finds that ξz ≈ 1.6.

4.2.2 Effective Zeeman field

We can induce an energy splitting in the gapless states by introducing an effective

Zeeman field at the boundary. The Hamiltonian (3.17) becomes

H ′ = H +HΩ, HΩ =
∑
j

ψ†B · σψ, (4.11)

where ψ =
(
â1,j â2,j

)T
and B = (Bx, By, Bz) where B = 0 for 1 < jz < Nz. We

find that ∆E ∝ By for 0 ≤ By < 1.5. The other parameters Bx and Bz change

the position of the Dirac cones in momentum space [115], but have no effect on

the magnitude of ∆E. Due to the bulk-boundary correspondence [113] the edge

states are separated from the bulk states and only a phase transition can mix

them. As a consequence, we can consider how the boundary Hamiltonian HΩ

acts on the edge states alone. We can achieve that by projecting the boundary

Hamiltonian onto the surface states |ψi〉 = 2˜̂a†i
⊗

j |0â10â2〉, where
⊗

j |0â10â2〉 is

the fermionic vacuum. The resulting effective Hamiltonian is given by

Heff = N
∑
ij

〈ψi|HΩ|ψj〉 |ψi〉 〈ψj| , (4.12)

where N is a fitting parameter that is dependent on system size. We introduce it

to account for the fact that the effective Hamiltonian is a two-dimensional object

derived from three-dimensional states. The eigenvalues of Heff, denoted ∆ẼF ,

are degenerate and numerical evaluation finds that they are equal to the energy
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4.3 1D Majorana zero modes

splitting ∆E. The Zeeman field induces a position dependent, local coupling

between the spatially varying (pseudo-)spin degrees of freedom. One can rewrite

the Heff in terms of Majorana operators and show that the effective Zeeman field

couples all the various gapless Majorana modes. Given that the effective Zeeman

field term is local, only zero energy Majoranas that have support on the same site

will contribute to the energy splitting. Further to this, if the spatial distribution

of the surface states |ψi〉 remains constant over the x-y plane as a function of By

then ∆Ẽ ∝ By. This is consistent with our previous findings [115].

4.3 1D Majorana zero modes

4.3.1 Effective Zeeman field configuration

We now present a scheme for reducing the dimensionality of the gapless Majorana

modes from two to one dimension. We modify the effective Zeeman field such

that sgn(By) = 1 for Ny/4 < jy < 3Ny/4 and sgn(By) = −1 elsewhere. This

creates a pair of magnetic domain walls on each surface of the boundary. This

configuration is depicted in Fig. 4.2 Top. If we initialise the system with a large

magnitude Zeeman field, we find that the four mid-gap states are still present.

The spatial distribution of the four gapless Majorana modes has changed. Each

of the four Majoranas are still localised to the same tori as in the uniform field

configuration. However, the modes on each surface are now spatially separated

such that each is exponentially localised to a different single magnetic domain

wall, as depicted in Fig. 4.2 Bottom. In terms of the previously defined notation

the Majorana modes are localised as

|Γ1,1(j)| ∝ e−‖ξ·(j−j0,T,1)‖, |Γ2,1(j)| ∝ e−‖ξ·(j−j0,B,2)‖,

|Γ1,2(j)| ∝ e−‖ξ·(j−j0,T,2)‖, |Γ2,2(j)| ∝ e−‖ξ·(j−j0,B,1)‖, (4.13)
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4.3 1D Majorana zero modes

Figure 4.2: Top A schematic representation of the configuration of local effective

Zeeman fields when localising the Majorana modes to 1D. The system is periodic in

the x and y directions while having open boundaries in the z direction. A locally

varying effective Zeeman field has been applied such that sgn(By) = 1 for Ny/4 ≤ jy ≤
3Ny/4 and sgn(By) = −1 elsewhere. Gapless Majorana modes appear at the interfaces

between the different local effective Zeeman fields, indicated by the red dashed lines.

Bottom The four gapless Majorana modes localised to the four interfaces between

regions of differing effective Zeeman field.

where j0,T,1 = jxx̂+ Ny
4
ŷ+Nzẑ, j0,T,2 = jxx̂+ 3Ny

4
ŷ+Nzẑ, j0,B,1 = jxx̂+ Ny

4
ŷ+ ẑ

and j0,B,2 = jxx̂+ 3Ny
4
ŷ + ẑ and coherence lengths ξ = (0, ξy, ξz), with ξz ≈ 1.90

and ξy ≈ 0.94.

Fig. 4.3 Top depicts ξy and ∆E (computed via exact diagonalisation) as a

function of |By|. The localisation parameter ξy was computed directly from the

spatial amplitudes |Γg,n(j)| and was found to be proportional to |By|. The energy

splitting follows a linear increase which transitions into an exponential decay to
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4.3 1D Majorana zero modes

zero. The eigenvalue of the effective Hamiltonian Heff is also shown in Fig. 4.3; it

exactly corresponds to the energy splitting as computed via exact diagonalisation.

The behavior of the energy splitting can be attributed to the gapless Majorana

modes on each surface coupling in the presence of the effective Zeeman field, while

simultaneously being localised by that same field. This is made plain if we plot

ω = ∆ẼF/By, as shown in Fig. 4.3. As the magnitude of the effective Zeeman

field increases, the spatial overlap in the presence of the coupling field between

the different states decreases exponentially.

4.3.2 Theoretical model

We can further reinforce this picture by theoretically modelling this behaviour.

We define four ansatz wave functions ψi(r) with i = 1, 2, 3, 4, trapped at four

potentials of height |By| located at r1
0 = Ly

4
ŷ + Lzẑ, r2

0 = 3Ly
4
ŷ + Lzẑ, r3

0 =

3Ly
4
ŷ+ ẑ, and r4

0 = 3Ly
4
ŷ+ ẑ, where Lx, Ly and Lz are the system sizes in the x,

y and z directions. The states can be written as

ψ1D
i (r) =

√
ξyξz

2LxȲ Z̄
e−

ξy
2
|y−yi|e−

ξz
2
|z−zi|, (4.14)

where Ȳ = (1 − e−ξyLy) and Z̄ = (1 − e−ξzLz). If we calculate the energy shift

associated with the overlap between the two states on each surface, neglecting

overlaps between states on different z levels, we have

∆Ẽ1D = 4
∑
i 6=j

∫ Lx

0

∫ 3Ly
4

Ly
4

∫ l

0

dz dy dx ψ1D
i (r)V0ψ

1D
j (r), (4.15)

where we have periodic boundary conditions and V0 = |By|(1− H(l − z)), where

H(l − z) =
∫ l−z
−∞ δ(s)ds is the Heaviside function and |By| is the strength of the

potential that couples the 1D localised states. The Heaviside function is intro-

duced as the Zeeman field is applied exclusively on the surface. The parameter l
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Figure 4.3: Top A plot of the energy splitting ∆E and the localisation in the y

direction ξy as a function of |By| (25 × 50 × 14, µ = 3, ∆ = t = 1) for the 1D

defect configuration. The quantity ω = ∆ẼF /By decreases exponentially as the states

are progressively localised and their spatial overlap decreases. The eigenvalue of Heff

is shown as ∆ẼF and corresponds exactly to ∆E. ∆Ẽ1D and ∆Ẽ2D correspond to

the theoretical predictions for the energy splitting based on the ansatz wave functions

ψ1D
i (r) (4.14) and ψ2D

i (r) (4.17). Bottom The energy gap ∆E and coherence length

ξy for the system in the 1D defect configuration while varying the system size in the

y direction, for |By| = 1.5. As the system size increases the size of the sgn(By) region

remains Ny/4 < jy < 3Ny/4. As the overlap between the gapless modes decreases the

energy gap, ∆E, decreases exponentially. The predicted energy gap, ∆Ẽ, accurately

reproduces the numerically observed values.
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4.3 1D Majorana zero modes

reflects the fact that in the continuum case the Zeeman field penetrates the bulk.

We use l as a fitting parameter to map the continuum model to the discrete case.

Evaluating this we find that

∆Ẽ1D = ξy|By|Lye−
ξy
4
Ly
(
1− e−ξzl

)
. (4.16)

The plot of ∆Ẽ1D as a function of |By| is shown in Fig. 4.3 Top. By a numerical

fit to the exact diagonalisation data we find that l ≈ L−1
y . In the region |By| > 0.2

of Fig. 4.3, there is a strong agreement between the behaviour of the numerical

observations and the modelling of the states by 4.14. We note that the value of ξy

is derived from the numerical data of the state amplitudes only on the boundary.

Similarly, the value of ξz is taken to be an average over the surface. A more

careful analysis would require ξy = ξy(z) and ξz = ξz(y), which might explain

the slight deviation between the numerical and the predicted values of ∆E. By

averaging over the relevant spatial variables we find a good match for the overall

behaviour of the surface physics. We also apply this formula for varying Ly, as

shown in Fig. 4.3 Bottom. In the region |By| < 0.2, the states are transitioning

between their extended 2D form and an exponentially localised 1D form. For

small values of |By|, the states are closer to the form

ψ2D
i (r) =

√
ξz

LxLyZ̄
e−

ξz
2
|z−zi|. (4.17)

The overlap of two of these states on the same surface in the presence of the

potential V0 = |By|(1− H(l − z)) is given by

∆Ẽ2D = |By|
(
1− e−ξzl

)
. (4.18)

The behaviour of this model is shown in Fig. 4.3, where we have again taken

l ≈ L−1
y . The initial linear increase in ∆E is accurately reproduced by assuming

that the states are spread evenly throughout the 2D surface, as modelled by

(4.17).
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4.3 1D Majorana zero modes

4.3.3 1D reciprocal space

To determine the discretion relation of the 1D Majorana modes, we Fourier trans-

form the Hamiltonian in the x direction, giving

H ′ =
∑
px

Ψ†pxΛ(px)Ψpx , (4.19)

where Ψpx =
⊕

j̄

(
â1,j̄,px , â†

1,j̄,px
, â1,j̄,px , â†

1,j̄,px

)T
with j̄ =

(
jy, jz

)
and px ∈

[−π, π). The energy dispersion as a function of px is shown in Fig. 4.4. The

spectrum is PH symmetric and the bulk negative energy states are separated from

the bulk excited states by a bulk energy gap. There is a set of eigenvalues that

cross zero energy at px = 0. Because, the mapping that takes us to the spectral

Majorana modes is unitary, the crossing states correspond to the four gapless

Majorana modes γ̃g,n now given by γ̃g,n,px . In reciprocal space, the Majorana

modes no longer obey the reality condition and we have γ̃g,n,px = γ̃†g,n,−px . This

implies that the spectrum for px > 0 is an inverted copy of px < 0. Furthermore,

the eigenvalue of γ̃1,n,px is equal in magnitude to the eigenvalue of γ̃2,n,px but

with opposite sign. This leads us to conclude that γ̃1,1 and γ̃1,2 propagate in the

same direction, but in the opposite direction to γ̃2,1 and γ̃2,2, as shown in Fig. 4.2

Bottom.

4.3.4 Fractional Chern numbers and edge states

The behavior of the surface states in the presence of magnetic domain walls is

commensurate with our understanding of chiral 2D TS. Given a pair of 2D class

D topological superconductors on a torus, the number of gapless Majorana states

at the interface is equal to the difference of their Chern numbers, as given in (4.1)

[114]. This configuration is shown in Fig. 4.5 Top. In the presence of a uniform

non-zero effective Zeeman field the union of the top and bottom surfaces of the 3D
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−5
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E

Figure 4.4: The energy dispersion of the system in the 1D defect configuration (Ny =

50, Nz = 14, µ = 3, ∆ = t = 1), having Fourier transformed the system in the x

direction. The system supports two pairs of degenerate counter propagating gapless

Majorana modes indicated in red, each localised at a different defect line. The grey

regions contain the bulk bands, not explicitly shown here.

DIII model can be considered to be a 2D class D TS [115]. The sign of the partial

contribution to the Chern number of each boundary surface is equal to the sign

of By at that surface. When the magnetic domain walls are introduced we can

effectively view each magnetic domain as one-half of a 2D class D superconductor

in its own right. The systems either side of a domain wall have partial Chern

numbers of opposite sign, as shown in Fig. 4.5 Bottom. We find that the number

of Majorana modes at each interface is equal to the difference in the partial Chern

numbers in each magnetic domain on a surface. This suggests the relation

N = |νb,+ − νb,−|, (4.20)

where νb,± are the partial Chern numbers either side of a magnetic domain wall.

We can demonstrate the validity of 4.20 by starting from relation 4.1 that

gives the number of edge states between surfaces with integer Chern numbers. It

is known that the Chern number of a composite system of two non-interacting
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Figure 4.5: Top A schematic representation of a pair of 2D class D TS on a torus. The

dashed lines indicate a periodic boundary. The Chern numbers of the systems differ

by a sign. Such chiral superconductors possess a pair of chiral counter-propagating

Majorana modes at their boundaries. The orientation of the modes is defined up to a

sign in the Chern number. Bottom A schematic representation of a single surface of

our 3D DIII system. The two magnetic domain walls trap one Majorana fermion each.

The number of Majorana modes is the difference of the partial Chern numbers in each

magnetic domain.

2D subsystems is equal to the sum of the Chern numbers of the two subsystems.

This property holds true even if one of the Chern numbers is half integer, e.g.

when one of the subsystems is the 2D boundary of a 3D system. Consider now

two neighbouring TS with bulk invariants ν+ and ν− with N = |ν+− ν−| gapless

states at their interface. We superpose to them a gapped 2D surface of a 3D

system that has Chern number νb = 1/2. This surface supports no edge modes

hence it will not change the total number N of edge states. But it will modify the

total Chern number at either side of the interface to become half-integer, giving

eventually 4.20.
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It is also possible to show the consistency of this new relationship with the

original index theorem. The Chern number of the whole boundary of a system is

defined as ν2D =
∑

b νb. Take two copies of the 3D bulk system with Zeeman field

of opposite sign. One of the systems has a boundary with Chern number ν2D,+ =∑
b νb,+ while the other has a boundary with Chern number ν2D,− =

∑
b νb,−.

We now glue them together such that we have periodic boundary conditions in

the x and y directions with the 1D defect configuration on the boundary of the

composite system, as described previously. The index theorem (4.1) relates the

Chern numbers of the boundaries of both systems (the union of the top and

bottom surfaces of each) to the number of states that appear at their interface.

In the case when ν3D = 1 (4.1) tells us there should be two states at the interface.

We can rewrite (4.1) in the following way

N = |ν2D,+ − ν2D,−|

= |νT,+ + νB,+ − νT,− − νB,−|

= |νT,+ − νT,−|+ |νB,+ − νB,−|

= NT +NB. (4.21)

where Nb = 1. The decomposition in the second step is allowed because the

quantities νb,+−νb,− have the same sign. The original index theorem is preserved

as the total number of states at the interface between the two boundary systems

is 2.
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4.3.5 The ν3D = 2 model

To demonstrate the generality of our results, we now consider the defects at the

boundary of a ν3D = 2 TS. We consider the tight binding Hamiltonian H2

Ĥ2 =
∑
j

{ ∑
k=1,2

[
µâ†k,j âk,j +

1

2
+ tâ†k,j âk,j−x̂ + tâ†k,j âk,j−x̂+ẑ

−∆âk,j âk,j+x̂ + ∆âk,j âk,j−x̂+ẑ

]
− 2i∆

(
â1,j â2,j+ŷ + â2,j â1,j+ŷ

)
+ 2i∆

(
â1,j â1,j+x̂+ŷ − â2,j â2,j+x̂+ŷ

)
+H.c.

}
. (4.22)

When in the ν3D = 2 phase (µ = ∆ = t = 1) and with open boundary con-

ditions in the z directions, the model supports two helical Majorana cones per

surface. When gapped by a uniform positive effective Zeeman field, each surface

contributes νT = νB = 1 to the total Chern number of the boundary system such

that ν2D = 2. In the language of the previous section, it supports eight mid-gap

states {|κn〉 , |κ−n〉}, n = 1, 2, 3, 4. This corresponds to eight gapless Majorana

modes γ̃g,n, g = 1, 2. A plot of |Γg,n(j)| finds that the states are localised as

|Γ1,1(j)| ∝ e−‖ξ·(j−j0,T,1)‖, |Γ2,1(j)| ∝ e−‖ξ·(j−j0,B,2)‖,

|Γ1,2(j)| ∝ e−‖ξ·(j−j0,T,2)‖, |Γ2,2(j)| ∝ e−‖ξ·(j−j0,B,1)‖,

|Γ1,3(j)| ∝ e−‖ξ·(j−j0,T,1)‖, |Γ2,3(j)| ∝ e−‖ξ·(j−j0,B,2)‖,

|Γ1,4(j)| ∝ e−‖ξ·(j−j0,T,2)‖, |Γ2,4(j)| ∝ e−‖ξ·(j−j0,B,1)‖, (4.23)

where ξ = (0, ξy, ξz), with ξz = 1.90 and ξy = 0.94. Each magnetic domain

wall supports two gapless Majorana modes. The difference in the partial Chern

numbers either side of a magnetic domain wall is equal to the number of states

localised to it; this is commensurate with (4.20).
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Figure 4.6: A schematic representation of the configuration of local effective Zeeman

fields when localising the Majorana modes to 0D. The system is periodic in the x and

y directions while having open boundaries in the z direction. The black dots indicate

the points at which the Majorana modes are localised. In the central darker regions

sgn(By) = −1, the lighter corner regions have sgn(By) = 1 and the white regions have

By = 0.

4.4 Quasi-0D Majorana modes

We now consider the next iteration of nested defects where we reduce their di-

mensionality from 1D to 0D and study the arrangement of the surface Majorana

modes in this new configuration. Taking the ν3D = 0,±1 model with Hamiltonian

(3.17), to produce the defects we divide the boundary surfaces into nine domains

where the magnitude of the effective Zeeman field is either zero or ±By, as shown

in Fig. 4.6. Numerical evaluation finds that the four mid-gap states {|κn〉 , |κ−n〉},
n = 1, 2, are still present. Calculation of the amplitudes of the four associated

gapless Majorana modes finds that they are localised at the following points

γ̃1,1 : j0,T,a =
Nx

4
x̂+

Ny

4
ŷ +Nzẑ,

γ̃1,2 : j0,T,b =
3Nx

4
x̂+

3Ny

4
ŷ +Nzẑ,

γ̃2,1 : j0,B,a =
Nx

4
x̂+

Ny

4
ŷ + ẑ,

γ̃2,2 : j0,B,b =
3Nx

4
x̂+

3Ny

4
ŷ + ẑ. (4.24)
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We expect that the Majorana modes should be exponentially localised to their

respective points in regions of non-zero effective Zeeman field, as in the 1D case.

In the regions of zero effective Zeeman field there is no suppressing field and

as such we expect a less stringent form of localisation. Numerical evaluation of

the amplitudes |Γg,n| finds that they are not rotationally symmetric about their

respective points. As expected, they are exponentially localised in the regions

of non-zero effective Zeeman field and polynomially localised in the regions with

zero effective Zeeman field. Due to the polynomial nature of the localisation into

the regions of zero effective Zeeman fields, we say that the Majorana modes are

quasi-0D. A plot of |Γ1,1| is shown in Fig. 4.8.

Assuming that Nx = Ny, we introduce the localisation parameter ξxy that

refers to the exponential decay coefficient corresponding to the decay of the gap-

less Majorana modes along the straight line that passes through both quasi-0D

Majoranas on a surface, which are shown in Fig. 4.6. Fig. 4.7 Top shows the

energy gap ∆E and ξxy for varying |By|. We have presented data from systems of

various sizes. As |By| increases, we identify in Fig. 4.7 Top two distinct behaviors.

For small |By| we see ∆E increasing in a similar manner to the 1D case studied

in Sec. 4.3. The states are transitioning between their 2D delocalised form to

their quasi-0D form. This initial linear increase is commensurate with the gap

induced by the effective Zeeman field on some 2D surface states, as previously

discussed. For larger |By| the energy gap exponentially decays to some constant

value that depends on the system size. Fig. 4.8 Top shows the value of ∆E for

varying system size, with |By| = 1.5. A numerical fit finds that ∆E ∝ N−2
xy , and

so for sufficiently large system sizes ∆E → 0. Using this behaviour to extrapolate

Fig. 4.7, we deduce that for a sufficiently large system size and sufficiently large

effective Zeeman field we have quasi-0D zero energy states bound at the point-like

defects.
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∆Ẽ50
F

∆Ẽ50
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Figure 4.7: Top The energy splitting ∆E and localisation parameter ξxy as a function

of |By|, for the chessboard configuration of effective Zeeman fields. Shown is data from

systems of sizes Nx = Ny = 50, Nx = Ny = 60, Nx = Ny = 70, Nx = Ny = 80,

and Nx = Ny = 90. Bottom The eigenvalues of the effective Hamiltonian Heff, ∆ẼF ,

and the corrective effective Hamiltonian H̄eff, ∆ẼF̄ . (Inset) The values of ∆E (black

dots) and ∆ẼF̄ (blue crosses) for |By| = 1.5 for different system sizes. When ∆ẼF̄ is

multiplied by a factor of 1.85 the two quantities are the same at all system sizes.

An effective description of the surface system is two fold. The parts of the

surface that experience a non-zero Zeeman field are described by the effective

Hamiltonian Heff, as in the 1D case. Its eigenvalues ∆ẼF as a function of |By| are

shown in Fig. 4.7 Bottom. For small values of |By|, Heff accurately reproduces the
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4.4 Quasi-0D Majorana modes
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Figure 4.8: Top The energy splitting ∆E for chessboard configuration of boundary

fields for |By| = 1.5 for varying system size in the x and y directions, such that Nx = Ny.

A numerical fit of the curve finds that ∆E ∝ N−2
x,y and will decay to zero in the

thermodynamic limit. Bottom The amplitude of γ̃1,1 over the x-y plane at z = Nz.

numerically evaluated energy gap ∆E. For larger values of |By|, ∆ẼF diverges

from ∆E decaying too quickly as |By| increases. As the magnitude of the Zeeman

field becomes large the regions of the surface that experience no Zeeman field still

support a significant proportion of the state. Despite the fact that they do not

experience the coupling of their local degrees of freedom via the Zeeman field they

still provide a contribution the energy gap. This contribution arises due to the
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4.5 Conclusions

surface states being significantly modified by the nested defects so that they are

no longer zero eigenstates of the bulk Hamiltonian, H. This extra contribution

can be seen by defining a second effective Hamiltonian

H̄eff =
∑
αβ

〈ψα|H|ψβ〉 |ψα〉 〈ψβ| . (4.25)

The eigenvalues of H̄eff are degenerate and denoted ∆ẼF̄ . Fig. 4.7 shows ∆ẼF̄

as a function of |By|. For small values of |By|, ∆ẼF̄ is small and does not make

a significant contribution to ∆E. As |By| becomes large ∆ẼF̄ converges to a

constant value dependent on system size. It is this contribution which accounts

for the behaviour of ∆E for large values of |By|. This can be seen in Fig. 4.7

Bottom (Inset). The values of ∆E and ∆ẼF̄ for |By| = 1.5 are the same up to a

constant factor of 1.85.

This field configuration traps gapless Majorana modes at 0D points that are

at the interface between regions of the surface that have partial Chern numbers

νb = ±1
2
. As in the 1D case, the number of Majorana modes at each point is

the difference of the partial Chern numbers either side of the interface. Where

there are interfaces between regions of non-zero Zeeman field and regions that

experience no Zeeman field, no well localised Majorana modes appear. We suspect

that this is because (4.20) is not well defined for gapless regions. An examination

of this field configuration implemented in the ν = 2 model given in (4.22) finds

that we simply double the number of gapless Majorana modes at the four points

given in (4.24).

4.5 Conclusions

In this chapter we have investigated the response of helical Majorana modes at

the boundary of a 3D TS in the symmetry class DIII in the presence of nested de-

fects. Gapless Majorana modes become localised at these defects, allowing states
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4.5 Conclusions

of dimension 2, 1 and quasi-0 to appear at the boundary of the system depending

on the effective Zeeman field configuration. Furthermore, we observed a generali-

sation of the index theorem (4.1) whereby the number of gapless Majorana modes

trapped at a given magnetic domain wall is the difference in the possibly partial

Chern numbers either side of a wall, as defined in (3.27). This relation holds in

the case of edge states localised at both 1D and 0D domain walls.

We suggest two possible implementations of such an effective Zeeman field.

First, in recent years much work has been done on implementing effective Zeeman

fields through doping materials with polarised magnetic impurities [116, 117,

118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133].

Through judicious doping of sections of the surface of the superconductor, such

that magnetic domain walls are created in place of the defect lines in our model,

we can induce an effective Zeeman field coupling between the different pseudo-

spin components of our model. Second, we could construct a superconductor

to magnetic material heterostructure. By depositing a layer of ferromagnetic

material on the surface of the superconductor, we can induce a spin-orbit coupling

in the surface of the superconductor [134, 135, 113]. If a magnetic domain wall is

created in the magnetic material, this would correspond to a change in the sign

of the effective spin-orbit coupling, as needed of the implementation of nested

defects.
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Chapter 5

Summary and Outlook

Throughout the course of this PhD I have looked at a wide variety of models

of topological condensed matter systems. There exists a staggering diversity in

both the types of system that fall under this umbrella and the variety of different

means of analysing them.

My study of the decomposition of the Chern number [90] of four component

systems presents a means of measuring this topological index in such systems.

The method is quite general in its theoretical formulation, from the perspective

of what kind of system it is applicable to. However, there are still questions to

answer about the generalisation of this method to an arbitrary number of com-

ponents. As stated, the generalised Schmidt decomposition, upon which such an

extension could be based, is complex.

Attempts to find topologically non-trivial models for superconductivity in

three spatial dimensions were successful [115]. Through a random numerical

search we managed to discover four distinct models in the symmetry class DIII

that support a wide variety of winding numbers. Each of these modes support

helical Majorana edge modes. In the presence of an effective Zeeman field, these
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states become energetically gapped and form a 2D topological superconductor in

the class D. A bulk-boundary correspondence was observed between the bound-

ary system’s Chern number and the bulk system’s winding number. Furthermore,

by adding spatial variations to the effective Zeeman field on the boundary, we

reduced the dimensionality of the zero energy Majorana modes from 2D to 1D

and quasi-0D.

This method of numerical search for new and interesting models was quite

successful. However, it is difficult to see how the resultant models might be re-

alisable outside of some very advanced systems of cold atoms. In the coming

months I intend to develop this numerical search method in the hopes of discov-

ering new physically realisable models of topological superconductivity. As was

discussed, we arrived at the new models by defining the most general Hamiltonian

for the symmetry class DIII for a given finite range of interactions. By randomly

selecting a point in parameter space and computing the topological index, we

eventually arrived at a non-trivial model. The only restriction we had was that

the Hamiltonian should be TR and PH symmetric symmetric. In effect, this con-

straint projects us into a subspace of the overall model space. However within

this subspace is contained the multitude of different microscopic realisations of

3D DIII models. Of this subset of models only a small number are practically

realisable or in any way related to real materials. The question is then, ‘is there

a way of imposing a larger number of constraints on the Hamiltonian such that

the model we arrive at obeys an arbitrarily large number of constraints?’

One of the variety of metaheuristic methods can be applied to the search for

and characterisation of new analytically tractable and physically implementable

models. Indeed, with judicious construction of such algorithms, the structural
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characteristics of the resultant models can be decided a priori. As an example,

consider the following problem. I wish to find a 3D tight-binding model that has

• A given point group.

• A given number of species of fermion.

• A given symmetry class.

• A fixed maximum coupling length.

• A bulk gap of a certain size.

• A bulk topological invariant of a given value.

We call this the target HamiltonianHT (λT ), where λT = (λT,1, ..., λT,m) parametrises

the couplings. One can write down a general Hamiltonian H(λ) that contains

all possible couplings parametrised by λ = (λ1, ..., λn), where m ≤ n, within

the bounds of these criteria. Assuming the criteria we have defined are not too

stringent, within this general model lies the precise example we are looking for.

What we desire is an algorithm that performs the following operation

H(λ)→ HT (λT ) (5.1)

More precisely, we desire a means of finding λT and the relationships between λT,i.

If we decide to use a MC algorithm to do our optimisation. Therefore, we define

a cost function that preferentially weights our search to the desired characteris-

tics. For example, we require that the couplings are preferentially constrained to

adhere to the given point group. One of the primary problems with this method

is the fact that it is not possible to define a local gradient in the topological

invariant. By their very nature they are invariant to small changes in the values
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Figure 5.1: An abstract representation of the phase diagram of a general Hamiltonian

H(λ) with an energy gap ∆E(λ) and bulk topological invariant ν. The points c1,2 are

the critical points at which the Hamiltonian is gapless. Each gapped phase has an

associated value of the invariant ν0,1,2. In this instance ν0 = ν1 = 0.

of the couplings. Only a closure of the bulk gap can result in a change in the

invariant. However what can be found easily are critical points. The boundary

between different topological phases lies at the points in phase space where the

bulk gap closes. As such, we can include a term in the cost function that leads

the search to these critical points. In the case shown in the Fig. 5.1 there are

two critical points c1 and c2 that separate different phases. The most desirable

outcome of any search is finding the critical point c2 that lies at the boundary of

a topologically non-trivial phase. The challenge is to develop an algorithm that

preferentially finds c2 over c1.

There are many possible avenues of study for potentially resolving this problem.

• The ‘brute force’ method.

– Involves simply performing a simulated annealing MC search repeat-

edly until the desired critical point is found.

– This approach would be viable if performed using GPU parallelisation.

• Parallel tempering.
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– Using some sort of modified parallel tempering algorithm.

• Evolutionary algorithm.

– Implementation of some kind of evolutionary algorithm, either for the

whole search procedure or as a tertiary process once a set of critical

points have been found.

Such a means of constructing new topological models is generic. As such most

systems that can be written down in tight-binding form can be subject to these

kinds of optimisation procedures. This might apply to TS, topological insulators,

Weyl semi-metals, and more. Furthermore, the ability to generate models of

arbitrary symmetry class with specific properties presents a number of potential

avenues of study. Such availability of new models would facilitate the study of

• The nature of topological phase transitions between symmetry classes.

• The behavior of heterostructures of various new combinations of topological

systems.

• What kinds of superconducting pairing gives rise to different kinds of topo-

logical phase.
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Appendix A

Representation Transformations

There exist a set of transformations depicted in Fig. A.1 that map between dif-

ferent basis representations of

H =
∑

k,k′,j,j′

âk,jΛ
k′,j′

k,j âk′,j′ = Ψ†ΛΨ (A.1)

There are four distinct representations that are all related by a set of unitary

rotations
{
Uγ, V, Ũγ

}
. The four representations are as follows

• Ψ: constituent Dirac fermions, ak,j .

• Ψγ: constituent Majorana modes, γg,j .

• Ψ̃: spectral Dirac fermions, ãn.

• Ψ̃γ: spectral Majorana modes, γ̃g,n.

If we start with the H in the constituent fermion basis as given in (4.3) we can

rewrite Λ as its singular value decomposition Λ = V DV †, where V is a unitary

matrix who’s columns are the eigenvectors of Λ and D is a diagonal matrix

containing the eigenvalues of Λ

V =
(
|κn〉 , |κ−n〉 , . . . , |κ1〉 , |κ−1〉

)
,

diag(D) =
(
En, E−n . . . , E1, E−1

)
. (A.2)
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Figure A.1: A diagram showing the set of transformations that map between the

different fermion pictures. Ψ are the constituent Dirac fermions, Ψγ are the constituent

Majorana modes, Ψ̃ are the spectral Dirac fermions and Ψγ are the spectral Majorana

modes. V is the unitary matrix found via the singular value decomposition of Λ.

By contracting V with the spinor Ψ we put the Hamiltonian in the form H =

Ψ̃†DΨ̃ where Ψ̃ = V †Ψ. The elements of Ψ̃ are the spectral Dirac fermionic

operators that diagonalise the Hamiltonian, such that H =
∑

nEnã
†
nãn, and each

spectral Dirac fermion operator can be written as a sum of the constituent Dirac

fermion operators

ãn = 〈κn|Ψ =
∑
jk

(
ακijk

)∗
ak,j +

(
ακijk

)∗
a†k,j ,

ã−n = 〈κ−n|Ψ =
∑
jk

ακijk ak,j + ακijk a
†
k,j . (A.3)

where ακijkρ come from the relevant eigenstates |κi〉 and we note that ã†n = ã−n.

These spectral Dirac fermion operators can act on a fermionic Fock vacuum |∅〉 =⊗
j |0a10a2〉, such that

|ψi〉 = 2ã†i |∅〉 = 2
∑
j,k

ακijk a
†
k,j |∅〉 , (A.4)

where the factor of 2 renormalises the state. |ψi〉 are the eigenstates of H in the

Fock representation.

Another useful representation is the Majorana fermion basis. Via the unitary
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matrix

Uγ =
⊕
j

1√
2


1 1 0 0
−i i 0 0
0 0 1 1
0 0 −i i

 , (A.5)

we can rotate the Hamiltonian into a new basis H = Ψ†U †γUγΛU
†
γUγΨ = Ψ†γΛγΨγ.

The elements of Ψγ are the constituent Majorana fermion operators γg,j , given

by

γ1,j =
a1,j + a†1,j

2
, γ2,j =

a1,j − a†1,j
2i

,

γ3,j =
a2,j + a†2,j

2
, γ4,j =

a2,j − a†2,j
2i

. (A.6)

The eigenstates of Λγ are

|κn〉γ =
∑
j

4∑
g=1

βjg |j〉 ⊗ |g〉 . (A.7)

The final corner of the diagram in Fig. A.1 corresponds to the spectral Ma-

jorana fermion basis. It is related to the spectral Dirac fermion basis via the

unitary rotation Ũγ, given by

Ũγ = Idim(Λ)/2 ⊗
(

1 1
−i i

)
, (A.8)

where Idim(Λ)/2 is the dim(Λ)/2 dimensional identity matrix. The elements of

the spinor Ψ̃γ = ŨγΨ̃ are the spectral Majorana fermion operators γ̃g̃,n, where

g̃ = 1, 2, such that

γ̃1,n =
ãn + ã†n

2
, γ̃2,n =

ãn − ã†n
2i

, (A.9)
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where each gapless Majorana can be expressed as a linear sum of the γi,j operators

γ̃1,n =
1√
2

∑
j

[
<
{
βκij1
}
γ1,j −<

{
βκij2
}
γ2,j

+ <
{
βκij3
}
γ3,j −<

{
βκij4
}
γ4,j

]
,

γ̃2,n =
1√
2

∑
j

[
=
{
βκij1
}
γ1,j −=

{
βκij2
}
γ2,j

+ =
{
βκij3
}
γ3,j −=

{
βκij4
}
γ4,j

]
. (A.10)

where βκijg come from the relevant eigenstates |κi〉γ.
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