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Abstract

Occlusive vascular disease affecting arterial circulations is the major and fastest grow-

ing health problem worldwide, and underlies common conditions such as heart attack,

stroke and peripheral vascular disease. Although vascular diseases may be assessed ac-

cording to clinical history, screening may be required to evaluate health conditions or

courses of treatment. Vasculature in the retina and other organs such as the brain have

similar anatomical properties and regulatory mechanisms. Changes in the morphology

of retinal vasculature may be associated with vascular-related conditions such as hy-

pertension and stroke. Owing to its high cost-effectiveness, eye fundus photography is

often used to study changes in the retinal vasculature.

This research proposes a probabilistic pixel labelling method based on analysis

of local and global features of the image to enhance the detail of vessel structures.

Our approach produces a probability map that could be further used by contextual

approaches (e.g. Markov Random Fields) for segmenting vessel networks as future

application. We first correct contrast variation due to non-uniform illumination and

reflections produced by eye tissue using statistical methods to locally estimate the con-

trast behind vasculature structures.

Our labelling method is based on the Hessian matrix to locally estimate the max-

imum probability of the principal local curvature—given by eigenvalues—matching an

ideal vessel curvature. We defined a realistic model based on imaging physics to pro-

duce the ideal vessel curvature governed by the Beer-Lambert Law for estimating the

absorption of energy as it is propagated through uniformly filled objects.

The local maximum posterior probability—based on Bayes’ rule—was even-

tually estimated by combining the prior (using the proposed background estimation)

and the likelihood produced by Monte Carlo simulations. The proposed method in this

research was compared with one of the most popular vessel detectors due to Frangi

showing similar results.
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Chapter 1
Introduction

Occlusive vascular disease affecting arterial circulations is the major and fastest grow-

ing health problem worldwide, and remains as the most important causes of death in

industrialised societies. Occlusive vascular disease underlies common conditions such

as heart attack, stroke and peripheral vascular disease (PVD).

The World Health Organisation estimates that these diseases were responsible

for 17.3 million deaths worldwide in 2008, forecast to rise to 23.6 million in 2030. The

National Institute of Health and Clinical Excellence of the United Kingdom (NICE)

estimates more than 5 million people in the UK are living with either heart attack or

stroke disease. The British Heart Foundation estimates that around 111,000 people

have a stroke for the first time every year (2010) [81].

According to the Department of Health, more than 20 million people in the UK

suffer at least one Long-Term Condition (LTC) [22]. Due to an ageing population,

it is estimated that by 2043 the number of people in England suffering at least one

LTC will increase by 23%, particularly the number of those people with more than one

condition at once [21]. The World Health Organisation defines a long-term condition as

a health problem that cannot, at present, be cured but can be controlled by medication

and other treatment or therapies. Long-term conditions include a wide range of health
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problems including physical, mental or emotional. In the UK for instance, vascular-

related diseases such as hypertension, coronary heart disease and stroke are among the

ten main prevalent long-term conditions [21]. Besides, other long-term conditions such

as Age-related Macular Degeneration (AMD), diabetic retinopathy and glaucoma are

estimated to be among the main causes of partial sight loss and blindness in developed

and industrialised countries as the UK [10, 11, 88] and set to rise in the forthcoming

years [1, 13, 57, 80, 88].

Occlusion of arteries is naturally compensated, to some extent, by the develop-

ment of minor channels to carry blood around the occlusion, termed collateral circu-

lation [12, 50, 71, 98, 123]. Formation of new channels around occlusions, changes

in calibre of vessels and anatomical changes in vessel networks can be used as mark-

ers of vascular diseases. Analysis of retinal vessels in the fundus of eye can provide

signs of eye-related conditions, some of which are responsible for sight loss, and sys-

temic diseases including arteriosclerosis, hypertension, diabetic retinopathy, leukemic

retinopathy, macular degeneration and retinal vasculitis [1, 2, 24, 45, 92].

Currently the success of vascular condition-related treatments is judged on clin-

ical endpoints like improved exercise ability or fewer amputations; such endpoints are

massively confounded by other variables apart from blood flow changes. Moreover,

access to supervised exercise programmes is variable and many are not provided by

health systems.

The economic impact of long-term conditions including vascular and sight loss-

related conditions play an important role for both health and social systems due to the

high costs that primary and secondary care represents. Clinic appointments, imaging,

therapy, surgery and benefits are some of these services where governments spend

money every year. Informal care and productivity losses are another important aspect

affecting the economies of countries. For instance, it is estimated that people with

an LTC account for the 50% of all GP appointments every year in the UK [22] and to

mention an economic impact, cardiovascular disease alone costs to the National Health

Service (NHS) and UK economy £30 billion every year [74].

The Department of Health estimates the average cost of health and care for peo-

ple with at least one LTC to be three times the cost of those people with no LTC [22].



Chapter 1. Introduction 3

Moreover, people with one LTC are prone to develop more LTC conditions increasing

health and care costs [22].

Although assessment of vascular diseases may be carried out through clinical

history, screening may be required for the identification and evaluation of vascular-

related health conditions or evaluate courses of treatment. Treatment of vascular de-

mentia and stroke for instance, may require an assessment of the cerebral vasculature.

Positron Emission Tomography (PET) and Magnetic Resonance Imaging (MRI) are

some of the imaging techniques actually used that produce an advanced understanding

of the vasculature system. Nonetheless, these scan modalities are often expensive and

not be available in all hospitals. The cost of a PET scan in the UK is estimated being

around £1,000 (2007) [18].

The brain and retina have similar anatomical vasculature properties and vascular

regulatory process. Hence, changes in the retinal vessel network may mirror similar

changes in the brain vessel network [90]. Also, changes in the retinal vasculature has

been shown to be associated with long-term conditions such as hypertension and stroke

[5, 6, 47, 83, 99, 118].

Retinal photography—also known as eye fundus imaging—is a non-invasive

technique that allow the visualisation of retinal vasculature in vivo. The use of retinal

digital image analysis offers methods to analyse the appearance of the vessel network

and other objects in the eye. Abnormalities in the retinal vasculature can be interpreted

as markers of vascular pathologies while eye-related pathologies such as AMD and

diabetic retinopathy can also be studied by analysing the fundus of the eye.

An eye fundus image can be described as a representation of the eye vessel

network projected onto a plane. Due to the nature of tissue of the objects involved,

images are usually obtained from reflected light beams from the back of the eye, where

the intensity captured by a camera sensor represents the intensity of light beams which

cross a set of layered soft tissues twice, producing a 2D image representation of the

eye.

Eye fundus cameras, also known as ophthalmoscopes, are widely used to photo-

graph the back of the eye since it is less invasive and a highly cost-effective method [1].

Other image representations can be obtained using other techniques, such as fluores-

cein angiography (FA) and Optical Coherence Tomography (OCT) [27, 117], involving
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the injection of a contrast compound into the arterial system to increase the contrast of

objects of interest, offering more reliable data. The nature of the fundus camera imag-

ing technique may produce loss of data due to problems presented in the hardware such

as noise added by the camera and problems in the photographed environment such as

light reflection and scattering due to properties of ocular tissues. In addition, image

compression methods used to digitise images plays an important role in preserving a

good quality of images.

Screening is usually evaluated by anatomical measurements of a vessel network

including collateral beds leading to diagnoses of some long term conditions and eye-

related health problems. Quantifying the properties of the networks is difficult due to

the tortuosity of affected vessels, complexity of the collateral bed, diameter of these

vessels, and the imaging technique used. Usually, labelling and diagnosis of screening

is carried ut manually, which is laborious and error prone.

In this thesis a vessel pixel labelling method based on a probabilistic approach is

proposed. The method has four stages. Firstly, due to the uneven light intensity across

a retinal image, the background of the image is estimated using statistical models. In

the proposed model, vessel pixels are regarded as undesired objects while background

pixels are the target. Approaches such as Xu et al. [119] estimate the background by

using a mean filter with a kernel size large enough to remove the vasculature compo-

nents; Wang et al. [114] locally estimate background intensities using a least-squares

fitting model. The goal of this first approach is to provide a crude vessel segmentation

allowing a prior vessel probability estimation and normalisation of the image.

Secondly, using the estimated intensity of the background, the image is nor-

malised to compensate for changes in the contrast across the image. Feature extraction

is carried out using the produced image. Methods such as line detectors and multi-

scale representation were employed to cope with segmentation of vessels at a range of

diameters.

Thirdly, a probabilistic method, based on Bayes’ rule and Monte Carlo

simulations—to estimate vessel and background likelihood information—were used to

estimate the local maximum posterior probability of a pixel being a true vessel pixel.

Here, a true vessel pixel was taken as a pixel with the maximum vessel-ness response

that naturally occurs along the centreline of a vessel structure. Synthetic images were
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used to model an ideal maximum vessel-ness response. Finally, the proposed method

was evaluated and compared with one of most popular vessel segmentation algorithms

(Frangi et. al [35]) using a Receiver Operating Characteristic (ROC) and Area Under

Curve (AUC) plots.

1.1 Outline of thesis

In Chapter 2, a literature review is presented including topics related to feature extrac-

tion to enhance vessel pixels in medical images. Three of the most popular vessel-

detection algorithms and their vessel-ness measures are described. In order to compare

the performance of the selected segmentation algorithms, a method to construct syn-

thetic vessel images is developed based on the physics of image formation. DRIVE

[110] (Digital Retinal Images for Vessel Extraction), a public retinal-image database

much used for the probabilistic labelling method proposed is described. In Chapter 3,

an assessment of the selected vessel detection algorithms is presented using a set of

synthetic data. This analysis was published in the MIUA 2012 Conference [109].

Chapter 4 and Chapter 5 describe the probabilistic pixel-labelling method pro-

posed to enhance vessel pixels in retinal images. The proposed method comprises two

stages: firstly, a background extraction approach is proposed in Chapter 4. The method

is based on Least Median Squares (LMS) to estimate the intensity of pixels behind

vessel structures producing a vessel segmentation approach. Secondly, a probabilistic

labelling approach is proposed in Chapter 5. Estimation of the posterior probability of

a pixel being a vessel object is based on Bayes’ rule. Receiver Operating Characteristic

(ROC) and its Area Under Curve (AUC) were used to measure the performance of the

proposed approach.

Conclusions, discussion and future work are outlined in Chapter 6.
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Review of Literature

2.1 Introduction

Relevant material surrounding medical image analysis, especially those focused on

vessel networks detection, is reviewed in this chapter. This research is focused on

pixel-labelling based on enhancement of local features to distinguish blood-vessel-

pixels from background in retinal images. In order to do so, vessel structures can be

regarded as line-like objects contained in 2D retinal images, or tube-like objects in

volumetric data such as Magnetic Resonance Imaging (MRI) dataset.

This chapter is composed of six areas covering topics related to the enhancement

of vessel structures in 2D images for the proposed pixel-labelling method based on a

probabilistic approach; the latter is developed in Chapter 5.

• Eye fundus imaging modalities and image formation process. Imaging

modalities used in clinical practice for either the purpose of diagnosis or mea-

suring drug-treatment improvements were studied. In addition, the image for-

mation process in imaging devices is reviewed to develop synthetic images used

in Chapter 3.
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• Challenges: illumination, unwanted and phantom objects. Description of

some—probably the most common—problems making vessel segmentation in

eye fundus images difficult are reviewed. The aim of this study was understand-

ing image processing algorithms that can deliver unexpected results due to the

content of images. In that case, additional pre-processing work may need to be

carried out to overcome those unwanted results.

• Taxonomy of blood vessel presentations. A classification of wanted objects—

vessel structures—is outlined to study local features that can enhance better

vessel-pixels from the background.

• Scale-space theory. Object detection can be associated with an image resolu-

tion. Nonetheless, vessel structures can appear at a range of diameters in retinal

images. The scale-space theory—introduced by Lindeberg [64]—was studied to

develop the proposed vessel-pixel labelling method capable of detecting vessel

structures at a range of sizes using a defined set of local features.

• Descriptors. Vessel networks can be regarded as line-like structures in retinal

images due to the difference in contrast between the interesting structures and

background pixels. Line-detector algorithms were studied, allowing enhance-

ment of local properties of pixels making vessel-pixels distinguishable from the

background.

• ‘Vesselness’ measure. Previously published vessel detector algorithms and their

principles were studied to compare their performance with the proposed proba-

bilistic labelling method.

2.2 Eye fundus imaging

Analysis of the eye fundus has been developed in the last two centuries with the inven-

tion of the ophthalmoscope in 1851 by von Helmholtz [51, 91]. In the 1920’s, fundus

photography was introduced and since then, it has been used to analyse structure of

components at the back of the eye [42]. The technologies which emerged have al-

lowed the use of digital photography to capture eye fundus images based on an optical

system model making eye fundus analysis more efficient.
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In the most basic form, an optical system is formed by a source of light, a

subject, a lens and a sensor. Reflected light beams from the surface of an object are

refracted by the lens and then captured by the sensor which eventually can represent

signals as an image. Figure 2.1 shows the anatomy of the eye and the required elements

when an object is observed.

to brain

Optic disc

Optic nerve

Fovea

Macula

Sclera

Choroid

Retina

Lens

Iris

Object

Cornea

Pupil

Vitreous
body

Figure 2.1: Anatomy of the human eye. Light reflected from the object being observed is
projected onto the macula of the retina, where the sharpest vision—termed fovea—
is found.

In order to photograph the fundus of the eye with a fundus camera, some light is

projected onto the back of the eye using the natural eye lens as a gateway between the

light source and the target. An amount of light is absorbed and scattered as it crosses

the semi-transparent eye tissue. Due to the properties of the back of the eye, light

is reflected and sent back through the eye lens. Hence, transmitted light beams can

be captured by a sensor—an imaging device—that eventually can convert the beam

intensity into an image.

Eye fundus imaging can be regarded as a two-dimensional representation of a

three-dimensional phenomenon—retinal tissue and eye components—projected onto

a plane. The intensities of pixels in the formed image represent the amount of light

crossing the eye tissue twice—as it is reflected by the back wall of the eye—and cap-

tured by a sensor similar to X-ray image formation due to energy absorption by tissue.
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In addition to the wavelength of light employed, compounds injected into the blood

system can be used to enhance objects of interest. Some of the eye fundus imaging

techniques currently used are listed below.

• Colour. White light is used to illuminate the back of the eye. Three wavelength

(red, green and blue—RGB) are used producing a colour image. The image

produced quantifies the amount of reflected light in each of the wavebands. The

colour of the eye fundus image can be described as lying in the red end of the

spectrum due to pigment of the choroid and retina [79] (see Figure 2.2(a)).

• Red-free. A filter—commonly green—can be used to suppress the red wave-

band allowing a better visualisation of details not easily identifiable with the

use of white light. Haemoglobin, for instance, absorbs red light, hence haem-

orrhages can be seen as low-contrast regions [56]. This modality enhances the

contrast producing a better resolution of small blood vessels. Enhancement of

vessels can be observed in Figure 2.2(b), a photograph captured using a green

filter [8].

• Angiography. Fluorescein Angiography (FA) and Indocyanine Green Angiog-

raphy (ICGA) are two angiography imaging modalities used in recent years. The

method involves a dye injected into the patient’s circulation. Both methods rely

on the fact that the compound employed fluoresces in a visible light waveband.

In FA for instance, the sodium-based dye used absorbs blue light, the optimal

excitation is at 490nm and the peak fluorescence occurs at 520nm (green colour

space).

In ICGA, activation and reflection of wavelengths takes place near the infrared

segment in the spectrum—805nm and 835nm respectively—[89]. A fundus cam-

era fitted with appropriate lenses can be used to capture the fluorescence of the

dye employed as it circulates through the vessel network in the retina. Hence,

the intensities of pixels in the formed image represent the number of emitted

photons from the dye [1]. FA and ICGA image samples are shown in Figures

2.2(c)-(d) respectively.

Optical Coherence Tomography (OCT), a technique used as a cross-section

imaging method, has been used for diagnosis purposes such as diabetic macular degen-

eration and retinopathy [1]. The principle of OCT is similar to an ultrasound technique
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but OCT uses light near the infrared part of the electromagnetic spectrum rather than

sound waves to collect information [46, 48]. The principle of OCT is based on low-

coherence interferometry [46, 48]—a contactless way to measure reflected light from

semi-transparent materials such as the retina. The image produced displays the amount

of reflected light using a range of intensities. In coloured images, reflectance is mea-

sured at a range from red to green indicating the most and the least reflective tissues

and white to black in greyscale imaging. OCT, however, cannot be regarded as eye

fundus imaging since it is a cross-sectional view of the eye tissue using reflected light

as it crosses layered tissue [1]. Figure 2.3 shows a cross sectional view of eye-tissue

layers for analysis of the fovea.

fovea optic nerve

macula

(a) (b)

(c) (d)

Figure 2.2: Eye fundus imaging samples [8]: (a) Colour eye fundus photography, wide-angle
photograph showing the optic nerve, retina and choroid; (b) Red-free eye fundus
photography, a green filter (peak transmission at 560nm) image illustrates charac-
teristic lesions of Stargardts’ disease; (c) Fluorescein Angiography (FA), illustrates
vascular filling defects; (d) Indocyanine Green Angiography (ICGA), image cap-
tured using infrared illumination showing circulation patterns of the retinal and
choroidal vessels.



Chapter 2. Review of Literature 11

Figure 2.3: Optical Coherence Tomography (OCT) [8]. A cross-sectional view of the normal
retinal architecture and foveal depression (colour code: red, high-; black, low-;
and green, intermediate reflectivity).

2.2.1 Image formation process

As described in Section 2.2, a fundus camera is usually employed to photograph the

back of the eye. This imaging device is formed by a set of lenses making the camera

capable of illuminating the back of the eye through the natural eye’s lens, and captur-

ing the reflected light beams from the retina producing colour-images. As light beams

cross the eye tissue, including the eye’s vasculature, they are attenuated due to absorp-

tion and scattering properties of tissue. This can be seen as lower contrast in regions

where light crosses more layers of tissue.

In Figure 2.4, an eye fundus imaging process is illustrated: the light beams are

attenuated as they pass throughout eye tissue twice due to reflection from the back of

the eye, and their intensities are captured by an imaging device.

Fundus
camera ‘Doughnut’

of light

Illuminating
light rays

Dilated
pupil

Imaging
lights rays

Figure 2.4: The fundus camera projects a ‘doughnut’ of light through the dilated pupil to il-
luminate the interior of the eye. These ‘illuminating’ rays reflect off the retina,
and pass back through the centre of the ‘doughnut’ and into the optical system of
the fundus camera. These ‘rays’ continue back through the fundus camera optics
which focuses the image on a film plane [102].

Fundus cameras rely on the principle of indirect ophthalmoscopy. This is a tech-

nique where the image being photographed is a virtual image from the retina [93]. The
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optics of a fundus camera is formed by two systems: in the first system, an ophthalmo-

scopic lens—also known as field lens—can be placed either in or out of contact with

the cornea to form an image of the fundus, also termed an aerial image; the second

system is the camera used to record the aerial image which is eventually converted into

a digital format [93].

Prior to capturing a retinal image, the ophthalmoscopic lens is usually adjusted

to obtain the best possible image of the eye fundus. The closer the lens to the cornea,

the wider the field of view (FOV) of the fundus. Figure 2.5 shows a set up of a fundus

camera, where a set of ophthalmoscopic lenses allow a wide FOV due to the arrange-

ment and curvature of the lenses. This allow observation of a larger surface of the

retina.

Stop

Camera optics

Field lens

Contact lens

Eye model

85◦ −85◦

60◦ −60◦

30◦ −30◦
0◦

Figure 2.5: Optics of a fundus camera showing a contact lens, field lens and a camera optics
system for a field of view (FOV) of 170° measured from the centre of the eye’s
globe [93]
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A typical fundus camera can view between 30° and 50° of the retinal region.

An angle of 30°allows a magnification 2.5 times larger than actual measurement. In

wide-angle fundus cameras—capturing between 45°and 140°—magnification is re-

duced proportionately. Similarly, a close angle—typically 20° or less—provides a

larger magnification [103]. Figure 2.6 shows a set of retinal images captured with

distinct field of view measurements.

(a) (b) (c)

Figure 2.6: Image magnification due to the Field of View (FOV) settings in an eye fundus
camera: (a) 20°; (b) 40°; and (c) 60° [103].

Since light beams are attenuated as they cross eye tissue, they hit the camera

sensor with less intensity producing dark pixels as seen in Figure 2.6. The more tissue

light crossings—e.g. large vessels and overlapping vessels, the lower the intensity.

Conversely, regions with fewer tissue traversals produce brighter pixels. A synthetic

image of a single straight vessel is shown in Figure 2.7(a). The surface representation

is shown in 2.7(b), where the grey-level of pixels is mapped onto the z-axis to show the

contrast attenuation across the vessel structure mimicking the light absorption process

described above.
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Figure 2.7: Synthetic imaging of a single straight vessel. (a) 7-pixel diameter synthetic vessel
corrupted by Gaussian noise with a standard deviation of two grey levels. (b)
Surface representation of the section denoted by dashed lines in (a).
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2.3 Challenges: illumination, unwanted and phantom

objects

Uneven illumination, noise and poor contrast in images affect the accuracy of image

analysis methods such as object segmentation. For that reason, enhancement algo-

rithms can be applied as pre-processing work to improve the effectiveness of the image

analysis algorithms.

In retinal images, a variety of reflexes is introduced by the optics of the fundus

camera system. Some illumination effects can be reduced by changing the type of

lamp or light filters used, which allows producing a more uniform illumination across

the field of view in retinal imaging. Another factor to consider is the histology of the

eye fundus that eventually reflects an amount of light [79]. Figure 2.8 shows a variety

of common reflections present in retinal images. As can be seen, reflections can occur

along vessel centrelines, in parallel to vessel structures, surrounding the optic disc and

macula; other random reflections can be introduced due to abnormalities in the eye

fundus. Some approaches have been developed to cope with light reflections. For

instance, Wang et al. [114] modelled the central reflex along vessels using Hermite

basis functions.

Figure 2.8: Variety of normal retinal reflex [79].
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Figure 2.9: Weiss’s reflexes [79].

Phantom objects—formed by light reflections—can be seen near the optic disc

boundaries and macular region. The reflex near the optic disc is concentric to the optic

disc border and is known as Weiss’s reflex [79] (see Figure 2.9). Moreover, in some

cases, reflections surrounding the macula and fovea centre can be observed as shown

in Figure 2.10.

Figure 2.10: Perimacula reflex and reflex from the fovea pit [79].

Linear axial reflections running along the centreline of arteries and veins is an-

other of common reflex observed in retinal images. In arteries, the reflection is sharp,

with uniform width and occupies approximately the middle third of the vessel width.

In veins, reflection is narrower in proportion to the vessel diameter and the intensity of
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reflection is higher [79]. This type of reflection can be observed along the main vessels

in Figure 2.8 (p. 14).

2.4 Taxonomy of blood vessel presentations

A morphology classification of vessel segments, which may appear in real screenings,

can be defined. The idea behind this classification is the evaluation of existing vessel

detectors to construct a robust method for vessel-network segmentation. Five types of

presentations in which vessels can appear in retinal images were defined. Each of the

classes is described below.

2.4.1 Straight and isolated vessel

Is defined as a single straight tube-like structure in a 3D space representation. For 2D

images, the intensity profile across this structure is governed by the Beer-Lambert Law

as a light absorption model. As the tube-like primitive tends to be infinite, the intensity

along the object remains constant. For 3D images, this object can be computed as a

filled cylinder in a 3D space. Definition of this type of vessel segment is essential for

the construction of parallel and crossing vessels.

2.4.2 Parallel vessels

This classification corresponds to an image’s region where two straight vessels (as

described before) appear separated by a constant distance along their direction. This

model can be produced by adding two straight vessels on a background patch, where

the background intensity is also given by Beer-Lambert Law. The vessel radii may

be different, and the separation between them may vary to simulate the close struc-

tures appearing in screenings. Parallel objects may appear in even 2D and 3D images.

Proximity between objects plays an important role as Gaussian filters—discussed in

Section 2.5—can modify the intensity of nearby objects when the distance between

them is smaller than the size of the employed Gaussian kernel.
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2.4.3 Crossing vessels

These are defined as an image with two straight vessels intersecting in a random angle.

This image can be produced by adding two randomly-rotated straight vessels. Owing

to the process of light beams crossing eye tissue, overlapping objects can appear as

cross-junction-like structures in 2D images. Nonetheless, the intensities of pixels in

the intersection area are attenuated due to the light beam having crossed more tissue

layers. This effect can make vessel detection difficult if the detector is based on straight

vessel models only.

2.4.4 Bifurcation

Is formed by a single straight vessel with two daughter vessel structures. The geometry

(angles and radii) of the bifurcation is defined following the nature of arteries branch-

ing, which can be modelled using Murray’s law that states that bifurcation angles of

daughter vessels are equal (≈ 37.5°) when their radii are equal [59]. In order to pro-

duce 2D images, a 3D bifurcation model is constructed within a 3D space, where the

bifurcation direction is along the z-axis and the branch and daughters are placed at the

origin of the x-axis. Afterwards, a 2D image can be computed by integrating the cells

contained in the 3D model along the y-axis and using the Beer-Lambert Law.

2.4.5 Corkscrew-like vessel

Is defined as a curved vessel segment. For 2D images, this structure is considered as

a wave behaviour, whose diameter, wavelength and amplitude values are constant. In

order to produce a 2D image sample, a 3D helical coil can be constructed within a 3D

space. The radius of the coil is associated with the desired vessel radius; the curvature

and length values remain constant. The helical path is then constructed along the z-

axis and the curvature is fixed to the zero position for both x- and y-axis. Due to

symmetry, the integration along either, x- or y-axis generates a 2D image with a wave-

like structure of width given by the coil radius. In that case, the intensity across the
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vessel takes into account the overlapping effect produced by the curvature and length

of the coil. Finally, the Beer-Lambert Law is used to estimate the intensities of pixels.

Figure 2.11 summarises the taxonomy of vessel presentation used in this re-

search, where the vessel centre line and a defined point of interest in the image are

shown.

(a) (b)

(c) (d) (e)

Figure 2.11: Taxonomy of vessel presentation in retinal images for the construction of syn-
thetic images: (a) isolated-straight vessel; (b) parallel vessels; (c) crossing ves-
sels; (d) bifurcation; and, (e) corkscrew-like vessel.

2.5 Scale-space theory

An intrinsic property of objects is that they only exist over a certain range of scales. A

branch of a tree, for instance, can be defined from, say, few centimetres to few meters.

It is insignificant to discuss the idea of a tree branch at nanometre or kilometric scales

[70].

The idea behind the scale-space theory is to separate information across scales

to cope with detection of objects at a range of sizes. In the present research, for in-

stance, vessels over a range of sizes appear within an image and multi-scale representa-

tion can help to cope with feature extraction of narrow and wide vessel-like structures.
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On the contrary, some approaches work at specific scales. For example, Orkisz et

al. [85] apply a mean filter in the direction of the vessels but this, however, shows

problems with detecting vessels over a large size range.

Lindeberg [67] introduced the idea of using a family of normalised derivatives

based on Gaussian kernels to represent an image across scales, where the scale is a

positive real value and the zero-scale corresponds to the original image [67] as it is de-

scribed in Equation 2.1. Figure 2.12 shows different scale-space versions of a synthetic

isolated and straight vessel for a set of linearly-spaced scales.

L(·;σ) =

I, σ = 0

G(·;σ)⊗ I, σ > 0
(2.1)

where I is the original image, σ ∈R+ is the scale parameter, G is a Gaussian kernel of

size σ with zero mean, and⊗ is the convolution operator. The N-dimensional Gaussian

kernel of size σ with zero mean can be defined as:

G( x⇀;σ) =
1

(
√

2πσ)N
e
−

x2
1 + . . .+ x2

N
2σ2 (2.2)

(a) (b)

(c) (d)

Figure 2.12: Scale-space representation of an isolated-straight vessel segment in synthetic X-
ray angiogram: (a) σN = 0 (original image); (b) σN = 2; (c) σN = 6; and, (d)
σN = 10.
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Lindeberg introduced the γ parameter to compensate for the dispersion gener-

ated by the convolution of the original image with Gaussian kernels [67]. Therefore,

the comparison of responses across all scales remains fair. Equation 2.3 shows an

extended version of Equation 2.1 for implementation of the γ-parameter value.

L(·;σ) = σ γ G(·;σ)⊗ I (2.3)

2.5.1 Scale selection

Lindeberg [68] suggests using the local maximum as a way of selecting the best re-

sponse across all scales. This scale-selection method allows extraction of features

from an image when a family of scales is employed. The method has been used in

[35, 53, 72, 73, 106, 116]—multi-scale vessel detection algorithms—and can be de-

fined as:

L(·) = max
σ

L(·;σ) (2.4)

where L(·;σ) is the local response at scale σ .

2.6 Local descriptors

Since vessels can be described as line-like objects in retinal images, line detector al-

gorithms can be used to enhance those structures to be segmented. Rapid changes

of intensity between vessel-like and background-like pixels suggests that algorithms

to detect those changes can be employed. In eye fundus images, the background can

be described as a brighter region than those pixels forming vascular structures. Other

imaging modalities, such as angiography, present vessel pixels brighter than the back-

ground.

If the intensity of an ideal vessel segment—straight and uniformly filled—is

analysed in its cross-section view, the profile can be described as a valley or ridge

based on the imaging modality. Local valley and ridge descriptors [30, 44]—matching

vascular structures due to their geometrical shape—can be used to enhance vessel-like

pixels in a given image.
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The Hessian matrix of an image can be used to estimate the local principal

curvature map. The matrix can be computed by applying second-order derivatives

to the image at a given scale. The Hessian matrix decomposition—eigenvectors and

eigenvalues—can then be used to describe the local curvature at a given point in the

image. In a 2D image, for instance, the first eigenvector—the one whose corresponding

eigenvalue has the largest absolute value—represents the direction of the greatest cur-

vature; and, the second eigenvector—whose corresponding eigenvalue has the smallest

absolute value—gives the direction of the least curvature. Eigenvectors are always or-

thogonal, equivariant to rotation and real valued.

Description of the local curvature due to the Hessian matrix can be used to

match pixels to line-like structures in an image. An analysis of the Hessian matrix

and its use is developed in Section 2.6.1. The aim of the analysis is the use of the

Hessian matrix to describe the local principal curvature for the enhancement of line-

like structures in eye fundus images.

2.6.1 Hessian matrix analysis

Eigenvalue analysis of the Hessian matrix is widely used for vessel detection [35, 73,

106]. The Hessian matrix is the second-order derivative matrix of every pixel in an

image, which provides information about the grey-level curvature around a pixel. The

Hessian matrix can be computed by the convolution of an image with a second-order

derivative of a Gaussian kernel, also known as Laplacian of Gaussian (LoG). For an

N-Dimensional image I, the Hessian matrix at the point x is given by

H (x) =



∂ 2I
∂x1∂x1

∂ 2I
∂x1∂x2

. . .
∂ 2I

∂x1∂xN
∂ 2I

∂x2∂x1

∂ 2I
∂x2

2
. . .

∂ 2I
∂x2∂xN

...
... . . . ...

∂ 2I
∂xN∂x1

∂ 2I
∂xN∂x2

. . .
∂ 2I

∂xN∂xN


(2.5)
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where xi, i∈ {1,2, . . . ,N} are the dimensions of the image I. It is important to underline

that the Hessian matrix is real and symmetric, with real eigenvalues and orthogonal-

eigenvectors.

For simplicity, examples in this analysis are described for a 2D image. Hence,

the Hessian matrix for a pixel is given by Equation 2.6.

H =

Ixx Ixy

Ixy Iyy

 (2.6)

where Ixx , Ixy and Iyy are the second-order partial derivatives of the image I.

Eigenvalue signs and ratios are used for modelling topographical structures in

images by regarding the intensity of pixels as a third dimension [44, 112]. Figure

2.13 shows some surface descriptions using eigenvalues and Hessian coefficients to

compute the θ parameter, defined by Equation 2.7.

0

θ

λ1

λ2

λ 2
=
λ 1

λ
2 +

λ
1 =

0

Dale
Valley

Ridge

Hill

Figure 2.13: Surface shape description based on the Hessian matrix for a 2D image. Eigen-
values λ1, λ2 and orientation θ can be estimated using the second-order partial
derivatives of an image and θ given by Equation 2.7 [112].

θ (x,y) = arctan


√
(Ixx− Iyy)

2 +4I2
xy

Ixx + Iyy

 (2.7)

where Ixx and Iyy are the second-order derivatives along the x- and y- direction respec-

tively; and, Ixy the second-order derivative along the x- and y- direction of an image

I.
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Since the ideal intensity profile across a vessel can be described as a ridge-like

structure, eigenvalue analysis and the Hessian matrix itself have been used for vessel

detection. Krissian et al. [54] for instance, describe the ideal intensity profile across

a vessel as a Gaussian distribution. In a 3D vessel structure, for instance, the profile

in both x- and y-directions is Gaussian, so the intensities across a section view are

given by the 2D Gaussian function (see in Figure 2.14). Yuan et al [121] use the

same definition as do Drechsler and Laura [26] for a quantitative comparison of vessel

detectors. Based on the physical process of absorption, in this analysis it cannot be

assumed that the ideal intensity profile across a vessel is Gaussian.

x

y

z

(a)

x

y

z

(b)

Figure 2.14: Initial model of a vessel. (a) representation of the model; and (b) the Gaussian-
like intensity profile of the cross-section view due to the sum of the Gaussian
profiles along x- and y-direction, Krissian et al. [54].

Although the Hessian matrix provides information about the orientation (see

Equation 2.7), there is not enough information for modelling shapes. Hence based on

linear algebra, eigenvalues and eigenvectors are computed.

Let A be a square matrix of n×n. A scalar λ is said to be an eigenvalue of A if

Au = λu f or some vector u 6= 0 (2.8)

The vector u is called an eigenvector corresponding to λ . In addition, λ is an

eigenvalue of A if and only if

det(A− Iλ ) = 0 (2.9)
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where I is the identity matrix. Finally, u is an eigenvector of A corresponding to λ if

and only if u is a non-zero solution

(A− Iλ )x = 0 (2.10)

Equation 2.8 is known as characteristic equation. Regarding the Hessian matrix

H as the value of A in Equation 2.8, and replacing subscripts in Equation 2.5 by index

subscripts of H, then the characteristic equation for a 2D image can be defined ash11−λ h12

h21 h22−λ

= 0 (2.11)

By taking the determinant of the matrix 2.11, the characteristic equation can be

written as

(h11−λ )(h22−λ )− (h12)
2 = 0 (2.12)

Solving the characteristic equation, of second-order in this case, the eigenvalues

are given by Equations 2.13 and 2.14 respectively.

λ1 =
(h11 +h22)+

√
(h11 +h22)

2 +4h2
12

2
(2.13)

λ2 =
(h11 +h22)−

√
(h11 +h22)

2 +4h2
12

2
(2.14)

Eigenvalue signs and size can be used to describe shapes locally. The eigen-

vectors provide information to estimate the orientation along line-like structures and

it is given by the eigenvector associated with the smallest eigenvalue. Figure 2.15 for

instance, shows the eigenvector orientation for a bright vessel on dark background in a

2D image, where eigenvector e1 is associated with eigenvalue λ1, and |λ1| ≤ |λ2|.
Imaging modalities provide diverse descriptions of the contents of images; for

example, in X-ray angiograms and eye fundus images, objects appear dark on bright

background, and the opposite occurs in MR and Fluorescein Angiograms. Neverthe-

less, this obstacle can be solved by negating the image. Some approaches use different

eigenvalue ordering to describe shapes. In [35], for instance, eigenvalues are sorted by
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Figure 2.15: Synthetic vessel with Gaussian intensity profile, with the eigenvectors shown at
the centre [121].

magnitude in increasing order, and in [106] they are sorted by value in increasing or-

der (negative to positive). Following the work developed in [35], Table 2.1 summarises

structure patterns for shapes in 2D and 3D images using eigenvalue signs and sizes.

Table 2.1: Possible local structures in 2D and 3D, depending on the value of the eigenvalues
(H=high, L=low, N=noise, usually small; +/− indicates the sign of eigenvalues).
The eigenvalues are sorted as |λ1| ≤ |λ2| ≤ |λ3| [35].

2D 3D
λ1 λ2 λ1 λ2 λ3 Orientation pattern

N N N N N Noisy, no preferred direction
L L H- Plate-like structure (bright)
L L H+ Plate-like structure (dark)

L H- L H- H- Tubular structure (bright)
L H+ L H- H+ Tubular structure (dark)
H- H- H- H- H- Blob-like structure (bright)
H+ H+ H+ H+ H+ Blob-like structure (dark)

2.7 Vessel-ness measures

In this section, the Lorenz et al. [72, 73], Sato et al. [106] and Frangi et al. [35] vessel

detector approaches are described. All these approaches base their work on a very

similar methodology: Hessian matrix analysis described in Section 2.6.1 and multi-

scale representation described in Section 2.5. The substantive difference among these

works is the way of using eigenvalues to describe shapes. In addition, Sato introduces

a noise normalisation process which is described in Section 2.7.2.
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2.7.1 Lorenz et al.

In [73] a multi-scale vesselness measure is proposed where all the eigenvalues are

considered in the vesselness measurement. Eigenvalues are sorted by magnitude in

decreasing order. This approach is the only one—of the three studied—that does not

use parameters in the filter function. By considering the eigenvalue order as |λ1| >
|λ2|> |λ3|, structures described on Table 2.2 can be distinguished.

Table 2.2: Structures distinguished based on the eigenvalues sorted by magnitude in decreasing
order. All eigenvalues in either 2D and 3D images are included in the shape models
[73].

2D 3D Structure

λ1 < 0 λ1,λ2 < 0 Bright line
|λ1| large |λ1|, |λ2| large
|λ2| small |λ3| small

λ1 > 0 λ1,λ2 > 0 Dark line
|λ1| large |λ1|, |λ2| large
|λ2| small |λ3| small

λ1 < 0 Bright plane
|λ1| large
|λ2|, |λ3| small

λ1 > 0 Dark plane
|λ1| large
|λ2|, |λ3| small

In 2D images, a dark line structure on a bright background is described by a

large positive second-order derivative across the line and a small second-order deriva-

tive along the line. Thus, a large positive and a small eigenvalue of positive or negative

sign are considered. It can be said that this approach bases the filter function on the

eccentricity definition.

The local Lorenz vesselness function for a 2D or 3D image at scale σ is given

by Equations 2.15 and 2.16 respectively.

VL (·;σ) =
|λ1|
|λ2|

(2.15)

VL (·;σ) =
|λ1|+ |λ2|

2|λ3|
(2.16)
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2.7.2 Sato et al.

This approach describes a curvilinear structure detector in 3D images based on a multi-

scale representation. Like Lorenz et al. [73], the Hessian matrix is computed to

evaluate each point of a given image, and then, the highest response over all scales

corresponds to the filter outcome. This work is focused on bright line detection on

dark background images, hence the eigenvalues order contrasts to the Lorenz et al.

[73] order. The eigenvalues of the Hessian matrix are denoted by λ1, λ2, λ3 where

λ1 > λ2 > λ3, and their corresponding eigenvectors e1, e2, e3. The eigenvector e1 rep-

resents the direction along the highest second-order derivative; this is the z-axis which

is also the direction of the line.

In the ideal case—a straight bright line-like(2D) or tube-like(3D) on a dark

background—the profile across the structure is given by Equation 2.17 where x and y

are the distances from the origin (central section of the structure) in the horizontal and

vertical axes and are normal to the longitudinal direction of the structure; z is the cross-

sectional view of the structure; and σ , is the standard deviation that defines the spread

of the intensity profile. Furthermore, the eigenvalue λ1 is regarded as close to zero

and λ2, λ3 as similar but of high-negative values. Table 2.3 summarises the structures

defined by Sato et al. [106] regarding eigenvalue ratios for analysis of 3D images.

I (x,y,z) = exp

(
−
(
x2 + y2)
2σ2

)
(2.17)

Table 2.3: Description of structures in 3D images determined by the size of eigenvalues.
Eigenvalues are sorted in increasing order [106].

3D image Structure

λ1 ≈ 0 Line
λ2 ≈ λ3� 0

|λ3| � 0 Sheet
|λ3| � |λ2|
|λ2| ≈ 0

λ1 < 0 Blob
|λ1| ≈ |λ2|
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Sato’s vesselness function for a point in a 3D image at scale σ is given by

VS (·;σ) = f (λ1;λc)×λc (2.18)

where

λc = min(λ2;λ3) =−λ2 (2.19)

and

f (λ1;λc) =



exp

(
− λ 2

1

2(α1λc)
2

)
, λ1 ≤ 0,λc 6= 0

exp

(
− λ 2

1

2(α2λc)
2

)
, λ1 > 0,λc 6= 0

0, λc = 0

(2.20)

where α1 < α2 and their values were fixed to 0.5 and 2.0 respectively based on experi-

mentation. Furthermore, Sato et al. [106] pointed out that responses were high at small

scales for both line structures and noise components. Therefore, scale selection in this

approach is not given by selecting the highest response over all scales. Sato introduced

the notion of multi-scale integration rather than the normalisation of scaled images

using the γ-parameter as Lindeberg suggested in [67]. The multi-scale integration is

given by

max
i

1
ni

Li (x,y,z) (2.21)

where ni is the standard deviation of the noise amplitude at scale i, and Li (see Equation

2.18) is the line filter response at scale i. ni is calculated using a region of the image

from which curvilinear structures are absent. In practice this process is not easy to

compute for an automatic image processing tool.

2.7.3 Frangi et al.

A multi-scale vesselness measure is proposed in this approach based on the analysis

of the Hessian matrix. Eigenvalues are used for modelling a vesselness function based

on a geometrical design. Eigenvalues are sorted by magnitude in increasing order

denoted as |λ1| ≤ |λ2| ≤ |λ3|. Hence, λ1 is in the plane with the lowest curvature,
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and its eigenvector û1 indicates the orientation of the vessel. Figure 2.16 shows the

geometrical model used, where the eigenvalues describe the shape of the object [35].

λ1λ2

λ3

Figure 2.16: Orientation of local eigenvalues describing the principal direction of a 3D tube-
like structure [35].

This approach uses all the three eigenvalues for modelling shape. Table 2.1

(p.25) summarises the structures defined by Frangi et al. regarding eigenvalues sorted

by magnitude in increasing order. Frangi et al. defined two geometric ratios expressed

by RB and RA in order to differentiate line- from blob-like structures. The Frangi’s

vesselness response for a given image at scale σ is given by

VF (·;σ)=


0, λ1 > 0 or λ3 > 0(

1− exp
(
−R2

A
2α2

))
exp
(
−R2

B
2β 2

)(
1− exp

(
−S 2

2c2

))
, otherwise

(2.22)

where

RB =
|λ1|√
|λ2λ3|

(2.23)

RA =
|λ2|
|λ3|

(2.24)

and

S =
√

∑
j≤D

λ 2
j (2.25)

The ratio RB measures the deviation from a blob-like structure. RA measures

the eccentricity of the plane orthogonal to eigenvector û1, and S is a measure of

the second-order structure. S becomes low in the background where no structure is

present and the eigenvalues are small due to lack of contrast. In addition, Frangi et
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al. defined three normalisation factors to control the sensitivity of the filter: α , β and

c. The α and β values were fixed to 0.5 and the value of c depends on the grey-scale

range of the image and was obtained by experimentation.

For 2D images, Frangi et al. proposed the Equation 2.26, where RB = λ1/λ2

is the blobness measure and accounts for the eccentricity of the second-order ellipse.

The conditions in Equations 2.22 and 2.26 consider detection of bright curvilinear

structures. Therefore, the conditions or images should be inverted for dark objects in

bright background.

VF (·;σ) =


0, λ2 > 0

exp
(
−R2

B
2β 2

)(
1− exp

(
−S 2

2c2

))
, otherwise

(2.26)

2.7.4 Vesselness response selection

The approaches studied in this section are based on the multi-scale representation intro-

duced by [65, 67, 68, 69, 70] to cope with scale variation. Lindeberg suggested using

the γ parameter to compensate for dispersion when scale increases (see Equation 2.3,

p.20). This parameter works as a normalisation method to compare the response over

all scales. Therefore, the local maximum response is the resultant vesselness measure

given by the vessel detector employed.

Figure 2.17 shows the multi-scale and local maxima representation for the se-

lection of best response in a 2D image analysis. In the figure, x and y axes represent

the width and height of a given image; a set of stacked layers denoted by σ represent

the scales; finally, for every cell in the image, the highest response across all scales is

selected to form the resulting filtered image.

Lorenz, Sato and Frangi vesselness response, from a synthetic crossing-vessels

patch, across a set of selected scales σ = {0,1,3,10} are shown in Figure 2.19. The

crossing-vessels sample is formed by two straight vessels of the same diameter (8.5

pixel-units) crossing at the central point of the image lattice. For simplicity, the angle

between the two vessels was set to 90°. The image was corrupted by Gaussian noise

of power σ = 2.6 and randomly rotated (26°) producing the image shown in Figure

2.18. The resulting filtered image for each vessel detector (see Figure 2.20) is formed
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Figure 2.17: Searching the local maximum response in a scale-space representation [70].

by selecting the best local vesselness response across all scales; the brighter the pixel

intensities, the higher the vesselness response.

Figure 2.18: Synthetic crossing-vessels patch formed by two straight vessels crossing at the
central point of the image lattice.

2.8 Conclusions

In this chapter, the image formation process in eye fundus cameras was studied. This

type of device uses a lamp to illuminate the back of the eye. Due to properties of the

eye tissue, light is reflected and beams are captured by the camera sensor. This allow

production of an image where the intensities of pixels can be seen as the amount of

light crossing eye tissue layers: the fewer the number of eye tissue crossed higher the

intensities of pixels.

In the ideal case, uniform background and vascular structures should be shown

in a retinal image. Nonetheless, there are some factors that introduce unwanted ob-
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Lorenz et al. [73]

σ = 10

Sato et al. [106] Frangi et al. [35]

σ = 3

σ = 1

σ = 0
Figure 2.19: Lorenz, Sato and Frangi vesselness response from a crossing-vessels sample

across a set of selected scales σ = {0,1,3,10}.

Lorenz et al. [73] Sato et al. [106] Frangi et al. [35]

Figure 2.20: Lorenz, Sato and Frangi filtered image due to the local maximum response across
all scales.
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jects into the image formed. In the simplest form, noise is added to the image by the

hardware when the signal is captured and converted into a digital representation. Other

factors such as uneven lighting, eye tissue effects due to health conditions and reflexes

due to the semi-transparent tissue properties, deterioration of the transmittance of light

beams eventually produce unwanted shapes in the computed image.

A model described as line-like structures was defined to represent the desired

objects—vessel segments—in retinal images. Therefore, line detector algorithms

based on analysis of rapid changes in intensities of pixels were studied. In addition,

local curvature analysis given by computing the Hessian matrix to estimate a vessel-

ness measure was reviewed. Three of the most popular vessel detector algorithms were

studied: Lorenz et al. [72, 73], Sato et al. [106] and Frangi et al. [35]. The studied

algorithms are based on the analysis of the eigenvalues and eigenvectors of the com-

puted Hessian matrix to define their vesselness functions. Those algorithms integrate

the scale-space theory to cope with the segmentation of vessels of a range of calibres.

Integration of the reviewed topics can be used to develop a robust vessel de-

tector method able to cope with the common problems that make vessel segmentation

difficult. Further analysis of eigenvalue signs, ratios, and sizes used by vesselness

functions can be used to estimate the local likelihood or membership function of a

pixel belonging to a vessel-like structure.



Chapter 3
Vessel segmentation approaches

3.1 Introduction

In medical imaging, segmentation of vessel networks is essential for several medi-

cal applications such as diagnosis of vascular-related diseases or assessing a course

of treatment over time. Advances in imaging modalities yield capturing images able

to—at some extent—distinguish interesting objects based on the medical application

domain. X-ray imaging, for instance, produces images where objects appear with

larger contrast relative to the background. Other imaging modalities such as Magnetic

Resonance Imaging (MRI) produces volumetric data that can be reconstructed for the

analysis of scanned parts of the body.

A wide variety of imaging modalities exist producing images with varying fea-

tures and medical applications. We cannot assume that a developed segmentation

method can be applied to any of the images produced by the different current scanners.

Images used for a particular medical purpose can be studied to develop segmentation

methods based on either the principles of the imaging modality, features of target ob-

jects and variations that can make their segmentation difficult.
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Previously published vessel segmentation approaches are reviewed in this chap-

ter. Since the methods reviewed can use similar techniques in their process, their clas-

sification can be based on the features in contrast to other approaches. There are meth-

ods, for instance, focused on vessel centreline detection, others enhance the edges of

vessel networks.

A performance comparison of three previously published vessel detectors is also

described in this chapter. The comparison has been published in Performance compar-

ison of low-level vessel detection algorithms for segmentation of x-ray angiograms

[109] as part of this thesis. The comparison is based on Monte Carlo simulations to

measure the performance of the tested algorithms by analysing local features in syn-

thetic vessel images. A set of synthetic images were generated by varying features

such as vessel radius, noise, focus and orientation. The formation process of synthetic

vessels is based on an ideal vessel model defined as a uniformly-filled cylinder repre-

senting a straight vessel structure, where the intensities of vessel-pixels are governed

by the Beer-Lambert Law [19] describing the absorption of light beams as they cross

the cylindrical structure, mimicking X-ray angiography imaging.

By analysing the performance of the vessel detectors examined, the best rated

algorithm was selected to compare the vessel-pixel labelling method proposed in this

thesis.

3.2 Vessel segmentation approaches

Analysis of local features, connected components and tracking methods are some of

the image processing algorithms much-used to enhance vessel structures in medical

images. Pattern recognition, template matching [125] and classifiers such Artificial

Neural Networks (ANN) [82, 95] and Support Vector Machines (SVM) [97] have also

been employed for segmentation of vessel structures where vessel-pixels are com-

monly regarded as objects of interest and the rest of the pixels as unwanted objects

or background. Other approaches use geometric models and active contour models

for vasculature segmentation. Gooya et al. [41], for instance, use geometric models

and theory of curve evolution of geometric flows for vessel segmentation in 2D retinal

angiograms and MRA data sets.
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Kirbas et al. [52], Abràmoff et al. [1] and Fraz et al. [37] surveyed methods for

the vessel segmentation in medical images where the approaches studied are grouped

based on the techniques used. The approaches surveyed follow two main phases: en-

hancement of vessel-like structures by analysing pixel features, and classification of

pixels yielding a vessel-pixel segmentation approach. The material of interest for the

vessel-pixel labelling method proposed in this thesis is the enhancement of vessel-like

structures.

Analysis of local features of pixels, intensities for instance, can be used to es-

timate low-level features used to locally associate pixels to a defined vessel model.

A prior analysis of the intensities of vessel pixels in retinal images suggests that

the intensity profile across blood vessels may be approximated by a Gaussian curve

[14, 26, 29, 60, 77, 94, 113]. Nonetheless, we cannot assume that the ideal profile

across a vessel is Gaussian based only in the analysis of histogram of the studied im-

ages. The vessel model used in this thesis is discussed in Section 3.3.2 (p.39). Matched

filtering methods has been developed using local curvature estimations to approximate

low-level features to a Gaussian-like profile representing the cross-section of a vessel

model. Some detectors based on vessel models with Gaussian-like profile across the

model are described below.

Chaudhuri et al. [14] were the first to use a matched filter for vessel detection in

retinal images [63]. Their approach is based on a set of Gaussian-like kernels applied to

retinal images, where kernels are aligned along a discrete number of directions to cover

all possible orientations of vessels. In addition, kernels are scaled to detect vessels at a

range of diameters. The best response across the combined kernel-scale is selected as

the local maximum response producing a filtered image.

Koller et al. [53] propose a curvilinear structure detector using derivatives to

enhance edges in 2D and 3D data. A Gaussian-like filter is scaled and used to convolve

the image producing a scale-space representation of the initial image. The applied

filter is steerable in orientation to cope with the detection of vessels at a range of

orientations. The Hessian matrix of the image—that can be estimated by convolving

the image with second-order derivatives of a Gaussian function—is used to estimate

the local direction in which the filter is applied, and is given by the largest negative
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eigenvalue. Filter responses across a family of scales is integrated to select the best

response for every pixel generating a filtered image.

Li et al. [61] use the Hessian matrix to detect aneurysms and micro calcifica-

tions in cerebral images. As targeted objects can be described as circular-like objects,

the Hessian matrix can be used to enhance pixels where there is not a predominant

local direction—contrary to the detection of line-like objects—based on the analysis

of the eigenvectors. Ma et al. [76] use a blob detection in X-ray images based on the

Hessian matrix.

Eigenvalue ratios is essential for shape modelling based on low-level descrip-

tors. In [4, 43, 44], for instance, a set of surfaces is defined based on the eigenvalues of

the Hessian matrix. As described above, the Hessian matrix has been used in medical

applications to enhance blob-, line- or tubular-like structures in 2D and 3D data.

A comparison of three previously published and much-used vessel detector al-

gorithms based on the Hessian matrix is discussed in Section 3.3. The aim of that

comparison is to select a vessel detector as a base for the vessel-pixel labelling method

proposed in this thesis. The work developed in Section 3.3 as part of this thesis has

been published in [109].

3.3 Performance comparison of low-level vessel detec-

tion algorithms on synthetic images

A stochastic method was used to compare the performance of three much-used multi-

scale vessel detectors: Frangi et al. [35], Sato et al. [106] and Lorenz et al. [73]. All

the three algorithms calculate the eigen-decomposition of the Hessian matrix of the

image at multiple scales based on the scale-space theory introduced by Lindeberg[66].

They compute some scalar measure of ‘vessel-ness’ at each scale and select as the final

vessel-ness measure, the maximum response across all scales. Essentially, the analysed

vessel detectors only differ in how the hand-crafted scalar measures are calculated

from the eigenvalues of the Hessian matrix λ1 and λ2 in 2D data. The analysed vessel

detectors are briefly described in Section 3.3.1.
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Synthetic vessel images were used to measure the performance of the vessel de-

tectors. A proposed method to generate synthetic images is detailed in Section 3.3.2.

A Monte Carlo simulation was carried out to gather the eigen-decomposition of the

Hessian matrix from the synthetic images that eventually allow the performance mea-

surement of the vessel detectors. The Monte Carlo simulation is described in Section

3.3.3. Obtained results are described in Section 3.3.4.

3.3.1 Vessel-ness measure

The Frangi detector [35] computes as a measure of eccentricity RB = λ1/λ2, where

|λ1| ≤ |λ2|. For some scale σ , the measure of vessel-ness LF is given by Equation

2.26 (p. 30). We used Frangi’s suggestions of taking β = 0.5 and adjusting c for best

results. Frangi vessel detector is detailed in Section 2.7.3 (p. 28).

Sato et al. [106] also sort eigenvalue by magnitude in ascending order |λ1| ≤
|λ2|. The vessel-ness due to Sato [106] is defined by:

LS(σ) =


−λ2 exp

(
− λ 2

1

2(α1λc)
2

)
, (λ2 < 0)∧ (λ1 < 0)

−λ2 exp

(
− λ 2

1

2(α2λc)
2

)
, (λ2 < 0)∧ (λ1 > 0)

(3.1)

where α1 < α2. We have used Sato’s suggested values of α1 = 0.5 and α2 = 2. Sato’s

vessel detector is detailed in Section 2.7.2 (p. 27). 2.15

Lorenz et al. [73] defined a parameter-less vessel-ness equation. For some scale

σ , the vessel-ness due to Lorenz [73] is given by LL(σ) = |λ1|/|λ2|, where |λ1| ≤ |λ2|.

As suggested in the analysed vessel detectors, we compute the Hessian matrix

over ten linearly-spaced scales of σ=1 to 10 pixel units and take the overall vessel-ness

measure as the maximum detector response across all scales. We then threshold this

measure to decide a label (vessel of non-vessel).
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3.3.2 Synthetic vessel images

Obtaining ground-truth data in medical image processing is an enduring problem due

to the uncertainties of inter- and intra-expert hand labelling. Here we adopt the well-

established procedure of using synthetic data based on a physically-realistic model of

the image formation process.

Starting with an assumption of an isolated, straight vessel of infinite extent and

circular cross-section irradiated with a uniform light beam normal to the longitudinal

vessel direction. We assume the vessel is uniformly filled with contrast agent. As the

light passes through the vessel, the intensity of the light will be reduced based on the

physics of energy transmittance through objects. The intensity of the light projection—

based on a monochromatic X-ray and its attenuation model—decreases exponentially

as the light propagates through objects considering objects of uniform material [15].

It is, the number of photons removed (attenuation) from a light beam of N photons

depends directly on N. This leads to the concept of exponential absorption: if the

thickness of the object is ∆t then the number of photons removed is defined by:

∆N =−µ∆t (3.2)

where µ is the absorption coefficient. Integration of Equation 3.2 produces

N = N0exp(−µt) (3.3)

where N is the number of transmitted photons and N0 is the number incident [3]. An

illustration of the attenuation of a light beam as it is propagated through an object of

uniform material is shown in Figure 3.1.

In terms of radiation intensity, Equation 3.3 can be written as

I = I0exp(−α`) (3.4)

where I is the transmitted intensity, I0 is the incident intensity, α is the absorption

coefficient and ` is the path length through the material (vessel)—also termed the Beer-

Lambert Law.
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Figure 3.1: Light beam attenuation as it passes through an object of uniform material [15].

Therefore we assume the intensity profile across the vessel object is governed

by the Beer-Lambert Law. Figure 3.2 illustrates the light intensity attenuation as the

beams cross a uniformly filled cylindrical object, and the lower section shows the

resulting intensity profile projected onto the camera’s focal plane. In Equation 3.4,

`= `(x) where x is the spatial dimension of the vessel.
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Figure 3.2: Formation of the vessel intensity model for a vessel of diameter d based on the
Beer-Lambert Law [19]. The lower figure shows the projected intensity profile.

The value for α was selected to give maximum contrast at the largest vessel di-

ameter considered while allowing ±3σ ‘headroom’, where σ is the standard deviation

of the added noised to the image, for the largest noise perturbations of the pixel values

in the output image.
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A distinguishing feature of the proposed work is the realistic image formation

based on an illumination absorption process: previous work, for example Krissian et

al. [55], has usually assumed the projected vessel intensity profile is Gaussian with a

physically-implausible infinite region of support. Drechsler and Laura [26] used the

data of Krissian et al. in a qualitative comparison of vessel detectors.

We have no a priori reason to suppose that a vessel will present at any particular

orientation to, or displacement from the image lattice so we select a uniformly-random

orientation θ ∈ [0...45°] and a displacement ∆x ∈ [−0.5 pixel ...+0.5 pixel] from the

notional origin in Figure 3.2. In practice, these are applied by an affine transformation

of the projected intensity image above.

To account for the limitations of the imaging optics, we convolve the affine-

transformed image with a Gaussian of σPSF = 1 and then add Gaussian-distributed

noise of some σN which assumes that the dominant noise process is due to thermal

noise in the camera/electronics. Finally, we quantise the pixel intensities into the range

[0...255] to mimic analogue-to-digital conversion in the camera. This final image con-

taining a single vessel, as shown in Figure 3.3, is passed to one of the analysed vessel

detectors.

Figure 3.3: Synthetic vessel image, true Monte Carlo trial: diameter = 14.6 pixel-units; x-
displacement=-0.1 pixel-units; power noise σ=2.6; and, rotation=24° from vertical
direction.

In assessing a detector, we consider only the label of the central pixel of the

image through which the centreline of the vessel passes. Our rationale here is that the

signal-to-noise ratio is maximised at the centre of the vessel—if the vessel cannot be

detected at its centre, it cannot probably be detected anywhere else across its diameter.

We thus implicitly investigate the upper bound of the detectors’ performance.
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3.3.3 Monte Carlo simulation

Each synthetic image containing a vessel represents an independent Monte Carlo trial.

To form counter-example images (i.e. genuine absence of a vessel) we form an image

of uniform background intensity but with each pixel corrupted by noise of the same

variance as the positive vessel examples.

We have repeated the above steps of generating positive and negative vessel ex-

amples in a Monte Carlo experiment with 1000 trials. Every trial has been labelled

with each of the vessel detectors using various thresholds to construct receiver oper-

ating characteristic (ROC) plots. We also use the area-under-the-curve (AUC) as a

summary statistic for the ROC plot.

3.3.4 Results

We have considered a range of vessel diameters (D ∈ [1,3,5,7...,15] pixel units) and

noise powers (σN ∈ [5,10,15,20,25]). Due to the large number of parameter per-

mutations, the most representative values were selected describing the parameters as

categories as follow. For vessel diameter, 1 and 3 pixel-units of diameter are regarded

as narrow vessels; 5 pixel-units as medium-range; and, 15 pixel-units as big vessels.

Power of noise was classified as no-noise, low- and high-noise for σN = {0,5, and 25}
although in practice, absence of noise is a physically unrealistic case. The selected pa-

rameters are the most representative in the detectors’ performance and between which

there is a more-or-less smooth variation.

For the (physically unrealistic) absence of noise (σN = 0) all three detectors

perform ‘perfectly’ (AUC = 1.0) apart from the case of unit vessel width (D= 1) where

the Frangi and Lorenz detectors are tied (AUC = 0.95) and perform slightly worse than

Sato (AUC = 0.97).

Figure 3.4(a) shows the ROC plot for D = 1 and low noise (σ = 5) where all

three vessel detectors perform to some degree although the Sato and Frangi detectors

(with similar behaviour) are better than Lorenz. The straight line segments of the ROC

plots are due to the discontinuities introduced by the case λ2 = 0 in Equation 2.26 (p.
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30). The detectors’ behaviour is quite complex with the ROC plots crossing although

there is generally little to choose between Frangi and Sato.

(a) (b)

(c) (d)

Figure 3.4: Vessel detectors’ performance for small isolated and straight vessels: D=1 and (a)
low-noise (σN = 5) and (b) high-noise (σN = 25). D=3 and (c) low-noise (σN = 5)
and (d) high-noise (σN = 25).

For the case of high noise (Figure 3.4(b)), the performance of all three detectors

reduces to little better than random guessing (the 45° line) might be expected since the

signal-to-noise (SNR) ratio becomes very low for this case. Since we have use a fixed

value of attenuation coefficient (α), the SNR reduces as a function of reducing vessel

diameter, hence small vessels are intrinsically harder to label.

For D = 1 and 3, and σN = 25 (high noise) shown in Figures 3.4(b), (d), there is

little to choose between the performances of all three detectors. There is, however, an

interesting transition between D = 3 and D = 5 (see Figure 3.4(d) and 3.5(b)) where

the Frangi and Sato algorithms begin to out-perform Lorenz, with Frangi slightly ahead
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of Sato, a trend which continues up to large diameters. Figures 3.5(c) and 3.5(d) show

(a) (b)

(c) (d)

Figure 3.5: Vessel detectors’ performance for medium-range and big isolated and straight ves-
sels: D=5 and (a) low-noise (σN = 5) and (b) high-noise (σN = 25). D=15 and (c)
low-noise (σN = 5) and (d) high-noise (σN = 25).

the corresponding plots for D = 15. At this stage, the Sato and Frangi algorithms

both perform ‘perfectly’ (AUC = 1) regardless of noise power. The Lorenz detector,

however, is clearly inferior, even for low noise powers.

As a summary, Figure 3.6 shows the AUC statistic vs. vessel diameter D. The

region between these two pairs of curves (low noise and high noise) delineates the

useful operating envelope of the two detectors.
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(a) (b) (c)

Figure 3.6: AUC summary plots for vessel diameter D vs. noise σN = {5,10,15,20,25}: (a)
Frangi, (b) Sato, and (c) Lorenz.

3.4 Discussion

Vessel segmentation methods rely on the imaging modality as images can be analysed

due to features such as intensities of pixels. In the reviewed approaches, there are two

main phases: enhancement of vessel-like structures and segmentation. The first phase

is usually taken as analysis of the local-features to—at some extent—label pixels as

vessel and non-vessel. In the enhancement process—based on the analysis of local

curvature, the studied approaches regard the cross-section curvature profile of an ideal

vessel model being Gaussian based on the histogram distribution of images used as

calibration.

We propose a vessel intensity-profile model based on an illumination

absorption-based imaging process where the intensity of pixels is reduced exponen-

tially as light beams pass through a uniformly filled cylindrical object representing a

vessel structure. Three vessel detectors, Frangi et al. [35], Sato et al. [106] and Lorenz

et al. [73]—all of them based on the analysis of the Hessian matrix and scale-space

representation—were tested using Monte Carlo simulations and generated synthetic

images. The performances of Frangi and Sato detectors are clearly better. These

methods seem to offer some promise for segmenting fine vessels if combined with a

contextual approach (e.g. Markov random fields).

The results obtained are limited to straight, isolated vessels. Qualitative obser-

vations suggest the Frangi detector does not perform well at vessel bifurcations and

junctions since there is not a clearly dominant local primary curvature [26].
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3.5 Conclusions

In this chapter, some of the much-used vessel segmentation approaches were reviewed.

The approaches are based on the analysis of low-level features to locally match every

visited pixel into a vessel model.

From constructing a physics-based model of the process by which the image

of a vessel is formed in digital-subtraction X-ray angiography, we have compared the

performances of the vessel detectors devised by: Frangi et al. [35], Sato et al. [106]

and Lorenz et al. [73]. On the basis of the obtained results, the Lorenz detector is

clearly inferior to the Frangi and Sato detectors between which there is little to choose

for anything other than the smallest vessel diameters. Whether Frangi or Sato is better

for vessels on the 1 pixel scale would seem to depend on the exact operating point.



Chapter 4
Background extraction

4.1 Introduction

Retinal images usually have large changes in illumination producing a non uniform

background. This makes it difficult for vessel segmentation based on global features.

Another problem is that vessel networks and the optic disc are not always located in

a fixed place. In this case, segmentation over fixed-size regions does not guarantee a

uniform intensity background. Figure 4.1 shows the use of the Otsu [87] thresholding

method based on global features and using fixed-size regions in a greyscale retinal

image. Changes in illumination across the image are evident suggesting it would be

difficult to perform vascular network segmentation.

The label of a given pixel belonging to the vessel networks can be estimated us-

ing a probabilistic approach. This membership value—also termed posterior probabil-

ity in a Bayesian framework—is based, among other parameters, on prior knowledge:

proportion of vessel pixels to non-vessel (background) pixels. The prior probability
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(a) (b) (c)

Figure 4.1: Thresholding with Otsu’s method [87]: (a) Greyscale retinal image. Thresholding
using (b) global histogram and (c) based on fixed-size regions of 20×20 pixels.

involves the estimation of the number of vessel pixels in the image. In order to ac-

curately estimate this probability, a method to remove background pixels and enhance

vessel networks is proposed in this chapter.

In retinal images, vessel pixels have lower contrast than the background. En-

hancement of the intensities of vessel pixels can be used to estimate the background

behind those structures. Thus, the background behind vessel pixels can be estimated

by analysing a region surrounding a treated pixel. This method yields a vessel network

segmentation by subtracting the estimated background from the input image. Post-

processing algorithms can be used to compute the density of the enhanced pixels as a

statistical analysis to estimate the prior probability to be used in a Bayesian approach.

As mentioned above, the prior probability is essential to estimate the posterior prob-

ability of a given pixel belonging to the vessel network in an image. The proposed

probability labelling method based on a Bayesian approach is detailed in Chapter 5.

A local background estimation motivated by the Savitzky-Golay filter [107] for

smoothing of signals is proposed in this chapter. Savitzky-Golay used statistical meth-

ods to smooth data to reduce the effect of noise. The fundamental notion is to fit a

polynomial function to a local data set and select the one giving the best fit based on a

defined metric. The proposed novel insight here is to treat the foreground as undesired

objects. Background pixels in the image are regarded as inliers and those in the vessel

networks and other objects as outliers. Here, the proposed method aims to remove the

vessel pixels allowing a smooth background estimation.
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The estimated background is given by replacing the initial value of a pixel with

a polynomial function based on the statistical method used. Least Squares (LS), for

instance, aims to fit a polynomial to a set of data points by minimising the Sum of

Squared Errors (SSE) [58]. The error or residual value is defined as the difference be-

tween the data point and the estimated value given by the selected polynomial. For Lin-

ear Least Squares (LLS), the residual formulation is described in Equation 4.1 where

i = 1, . . . ,m data points; yi is the data point response; and, β0 and β1 the coefficients of

a linear polynomial.

ri(x) = yi− (β0−β1xi) (4.1)

The optimisation problem is given by Equation 4.2, where β0 and β1 are the

coefficients of the polynomial giving the best fit. This method is efficient when data

points are normally distributed without outliers. Nonetheless, the performance is read-

ily affected by the presence of aberrant data points or outliers. In Figure 4.2(a) a set

of 1D data points is plotted, and the LLS fitting is severely affected by the two outliers

marked by the open bullets. Hence, other methods are used for better results.

min SSE =
n

∑
i=1

((yi− (β0−β1xi))
2 (4.2)

RANdom SAmple Concensus (RANSAC) [34] and Least Median Squares

(LMS) [100] are used for robust regression analysis and outlier detection [78]. The

idea is simple: in 1D, for instance, two elements from a dataset are randomly selected

defining a line that is ranked using a metric. RANSAC, for instance, ranks the line by

the number of data points falling within a distance threshold—inliers. If the number

of inliers satisfies a condition, RANSAC returns the tested line as a good model. The

process can be repeated on a number of iterations to select the best ranked model. In

Figure 4.2(b) the line formed by the data points a and b is ranked by the number of

data points falling within the distance marked by the dotted lines. A disadvantage of

RANSAC is that it requires a priori knowledge to define the threshold for inliers.

An alternative method is the Least Median Squares (LMS), which ranks a line

(the same line used for the RANSAC example) with the median of residual values

between a set of data source points and the equation corresponding to the tested line

in the example. In LMS, a number of samples or iterations (lines in the example) are
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used to select the best fit based on the selected type of score, for LMS is the smallest

median residual value across all the testes lines.

(a)

a

b

(b)

Figure 4.2: Robust line estimation. The filled points are inliers and open bullets outliers. (a)
Least Squares is severely affected by the two outliers. (b) In the RANSAC algo-
rithm, the line from a to b is supported by the number of points within the threshold
distance denoted by dotted lines [58].

Owing to the poor performance of LS and the prior information required to

determine settings for RANSAC, LMS was used as an optimisation method to esti-

mate the background behind the vessel networks. This background estimation conveys

essential information used in Chapter 5 for vessel network segmentation using a prob-

abilistic approach.

4.2 Fitting Least Median Squares (LMS)

Least Median Squares was introduced by Rousseeuw [100] and is mathematically sim-

ple but is a robust outlier detector. The idea of this algorithm is to select a subset of

data points—also called a sample—with a random method, and fit a polynomial to this

subset. The polynomial is fitted by minimising the mean of squared residual values

(see Equation 4.1 for residual computation). The optimisation is to select the small-

est median residual squared value using a number of samples i as shown in Equation

4.3. A limitation of LMS is its deficient performance when more than fifty percent of

observations in the sample are outliers. Retinal images typically satisfy this.

min median
i

r2
i (4.3)
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A polynomial can be obtained by solving a system of linear equations that are

formed by the data points. A system can be expressed as shown in Equation 4.4.

Ax∼= b (4.4)

where A is an known m×n matrix, x is a n-vector and b an m-vector. The solution of

the system is the vector x that minimises the distance between the left and right side of

the system of the equation.

A system of equations is overdetermined when there are more equations than

unknowns. That is, the dimension of matrix A is m > n. In that case, the solution x can

be found using the n× n symmetric linear system also termed the normal equation,

shown in Equation 4.5.

AT Ax = AT b (4.5)

The vector x is a unique solution when the columns of matrix A are linearly

independent, which makes AT A invertible. Thus,

x = (AT A)−1AT b (4.6)

If A is a non-square matrix, it does not have an inverse. In that case, the pseudo-

inverse of A can be estimated using Singular Value Decomposition (SVD). The singular

value decomposition of a general m×n matrix A has the form:

A =UΣV T (4.7)

where U is an m×m orthogonal matrix, Σ is an m× n diagonal matrix—where the

diagonal elements contain the singular values of A, and V is an n×n orthogonal matrix.

The SVD of the pseudo inverse for a general matrix A is defined by Equation 4.8.

A+ =V Σ+UT (4.8)

where Σ+ is estimated by transposing and inverting all non-zero entries.

Since A in Equation 4.6 may be a non-square matrix, its inverse can be estimated

using the SVD method by solving the Equations 4.7 and 4.8, where the matrix AT A is
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taken as the definition of general matrix A in Equation 4.7. Therefore, the solution x

(Equation 4.6) giving the minimum least squares is found by

x = (V Σ+UT )AT b (4.9)

where V, Σ and U are the SVD elements of the square matrix AT A.

Eventually, the residual value for each element in the LMS sample is given by

the difference between the sample’s observations and the estimated value from the

solution x.

4.2.1 Number of samples

The number of samples to select the best polynomial can be estimated from the prob-

ability that a chosen sample is free of outliers. That is, the pixels forming an outlier-

free sample makes the fitted plane return small residual values. This can improve the

smoothness because the selected polynomial is based on the median of those residual

values. The data space from where the LMS samples are formed and the sample size

are discussed in Section 4.2.2.

If the data points are uniformly distributed, the probability p, that at least one

of the random samples is free of outliers can be taken as 0.99. Furthermore, if the

distribution of the outliers is known, the probability ε that a data point is an outlier can

be defined as 1−ω , where ω is the probability that a data point is an inlier. Therefore,

the least number of samples required to select a sample free of outliers is given by

Equation 4.10 if the outlier distribution is known. For the problem in Figure 4.2 on

page 50, the sample size s = 2 as only two data points are randomly selected to fit the

finite collection of data points to a straight line. The probability ε = 2/12 = 1/6 as

two of the data points are outliers. Thus, the estimated minimum number of samples

in the discussed LMS line-fitting problem is four.

N =
log(1−p)

log(1− (1− ε)s)
(4.10)
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Some examples of N number of samples for p = 0.99 and a given s and ε are

presented in Table 4.1.

Table 4.1: The number of samples required to ensure, with a probability p=0.99, that at least
one sample is outlier free for a given sample size s and a proportion of outliers ε
[58].

Sample size Proportion of outliers ε
s 5% 10% 20% 25% 30% 40% 50%

2 2 3 5 6 7 11 17
3 3 4 7 9 11 19 35
4 3 5 9 13 17 34 72
5 4 6 12 17 26 57 146
6 4 7 16 24 37 97 293
7 4 8 20 33 54 163 588
8 5 9 26 44 78 272 1,177

4.2.2 Selection of sample space

An LMS sample is formed by a subset of data points—also called observations—

within a defined space. Since LMS aims to estimate the background based on neigh-

bours, the sample space can be defined as a region encompassing the pixel being tested.

If data points are uniformly distributed in the space, the observations can be chosen

with a random function to form an LMS sample. The aim of this method is to have a

representation of the data distribution. Nonetheless, due to similarities between data

points, a sample may be useless if the selected observations cover a small region in the

sample space. In order to avoid this, data points are grouped in blocks, which can be

randomly selected.

This technique of clustering data points is also called bucketing [16, 49, 122].

The idea is to divide the sample space into non-overlapping blocks to spread the ob-

servations across the space [49]. A bucket size can be defined in several ways. The

sample space can be arbitrarily divided along one or several dimensions [16]; how-

ever, fixed-size buckets are suggested in [122] as shown in Figure 4.3. Since buckets

or blocks are regarded as uniformly distributed, Equation 4.10 remains valid. As an

optimisation method, an LMS sample can be formed by non-repeated blocks.

To smooth 1D signals, for instance, the sample space can be defined as a set

of data points before and after the location being tested as shown in Figure 4.4. This
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x

y

Figure 4.3: Buckets dividing data space and gathering data points. [16]

principle can be extended to 2D signals, where the sample space can be defined by

a region of m×m pixels enclosing the pixel being tested. In the bucketing for a 1D

signal, the sample space is divided into blocks of n-pixels and into n× n pixels for a

2D signal.

The method to construct an LMS sample for a 1D signal linear-fitting problem

is shown in Figure 4.4. The image illustrates a cross-section view of the ideal inten-

sity profile in a retinal image, where the intensity is governed by light-beams passing

through a single and straight vessel. The signal profile can be described as Gaussian-

like function as suggested in [62, 121]. Notice that the signal is not corrupted in this

example. The location being tested correspond to the lowest value in the continuous

signal. The data points forming the constant horizontal—background intensity—are

regarded inliers and those in the Gaussian profile as outliers. Thus, the aim of the LMS

is to enhance the intensity of the tested location to make the whole signal more uniform.

The sample space is defined as a set of locations delimited by the two pairs of verti-

cal dashed lines. A number of non-overlapping blocks of n-data points are distributed

covering the space. The signal has been sampled for this fitting example: Eventually,

a set of non-duplicated blocks is randomly selected to form an LMS sample.
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Intensity profile

10 samples

100 samples

1,000 samples
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Figure 4.4: Least Median Squares sample formation to smooth 1D signals.
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The method described above can be extended in order to smooth 2D signals.

The sample formation process is shown in Figure 4.5 from bottom to top in three key

stages: First, the pixel at which the background estimate is sought is defined. Then,

the sample space is defined as a m×m region enclosing the pixel and the space is

divided into blocks of n× n pixels. Finally, the contents of every randomly selected

block—n×n pixels—become the LMS sample.

Pixel where the background
is to be estimated

Bucketing method

Bucket contents

Buckets

Sampling space

Lattice image representation

Figure 4.5: Least Median Squares sample formation to smooth 2D signals.

For the example of Figure 4.4, the LMS method was carried out to estimate the

background at the indicated location. An LMS sample was defined as a set of three

buckets of three data points. The proportion of outliers was regarded as an unknown

parameter. The line-fitting results for a set number of LMS samples were compared

based on the estimated Minimum Median Squared Error (MMSE) (see Table 4.2).

Table 4.2: LMS to smooth a 1D signal with a Gaussian-like intensity profile of Figure 4.4

LMS
samples MMSE Abs(Estimated - Expected)

10 0.995 1.141
100 0.017 0.345

1,000 0.000 0.006
3,000 0.000 0.000

As the number of samples increases, the Minimum Median Squared Error

(MMSE) and the difference between the estimated and the expected value or ground

truth are reduced. If the data points in the Gaussian are regarded as outliers (29 from
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the 57 data points), the minimum N number of samples required to find an outlier-

free sample is near 3000 (see Equation 4.10, p. 52). The best fitted polynomials for

the LMS samples listed in Table 4.2 are shown in Figure 4.4. It can be seen as the

tested polynomials approach the background intensity as the number of samples in-

creases. The estimated background value at the required location is given by replacing

the measured image intensity with the estimated value from the fitted polynomial. The

above process is then repeated for every pixel in the image. This procedure is similar

to the Savitzky-Golay procedure.

As described in Section 2.2 (p. 7), red-free imaging modalities increase the

contrast between vessel structures and the background. The DRIVE database [110],

however, contains JPEG (Joint Photographic Experts Group) compressed colour im-

ages. JPEG compression is one of the most common image format used for medical

imaging [31, 120] since it compresses images in size without compromising—at some

extent—the quality of images.

Using a monochromatic version of the original eye fundus image can enhance

vasculature structures due to suppression of other colours. Approaches such as [36, 84,

97, 101, 104, 119] suggest using the green component of the RGB colour space since

it presents the largest contrast between vessels and the background in the mentioned

database. Figure 4.6 shows the decomposition of an original image into the R, G

and B components of the RGB colour space, and a greyscale version given by the I

component of HSI colour space. The effect of using a monochromatic version can be

seen in the image, where various vessel structures become more or less visible.

Since the green component presents the largest contrast between vessel struc-

tures and the background, the background estimation and subsequent processes are

based on that version of the original eye fundus image.

The estimated background of some retinal images from the DRIVE database

[110] are shown in Figure 4.7. In order to describe the local fitted behaviour, the

estimated background was subtracted from the input image (see Figure 4.7(e), (f)). A

negative difference between the input and the fitted values is obtained when the fitted

values exceed the input image. Conversely, a positive difference is computed when

the estimated background values remain below the input image. Hence, large negative
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(a) (b)

(c) (d) (e)

Figure 4.6: RGB decomposition of an eye fundus image from the DRIVE database [110]: (a)
Original image; (b) Greyscale I=(R+G+B)/3 (RGB-to-HSI conversion); (c) Red,
(d) Green, and (e) Blue component.

values are shown as dark and large positive as a bright intensity (see Figures 4.7(e),

(f)).

In the contrasted images shown in Figures 4.7(e), (f), the transition from inside

the optic disc to the background shows an effect: large positive values inside and large

negative out the optic disc. It is important to mention that this unwanted behaviour

is described in Section 2.3 (p. 14). When the image is processed, our LMS-based

fitting method implicitly assumes that the background intensity is locally a smooth

function. Nonetheless, the reflex of the eye tissue (as described in Section 2.3) makes

the changes of intensity rapid, forming an edge-like behaviour. The discontinuity of

the optic disc edge affects the plane-fitting. For the pixels inside the optic disc, fitted

values are below the intensity in the input image and the opposite effect occurs with

pixels from the background. An enhancement method described in Section 4.3 was

developed to improve the background estimation in the region on the optic disc edge.

The Minimum Median Squared Error maps are shown in Figures 4.7(g), (h). A
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.7: Background estimation for retinal images from the DRIVE database [110]: (a),
(b) input images (Green component of the original image); (c), (d) locally esti-
mated background; (e), (f) background subtraction; and, (g), (h) Minimum Median
Squared Error (MMSE).
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large residual suggests that the best fitting polynomial was affected by the proportion

of outliers. Regions surrounding large vessels and the optic disc show a considerable

residual values. Increasing the sample space to incorporate more blocks of pixels from

the background may reduce the effect; however, the plane-fitting performance relies

on the background being locally representable as a linear function. There is thus a

trade-off between patch size and outlier rejection.

4.3 Optic disc refinement

The performance of the proposed background estimation method is affected when the

sample space contains a large proportion of outliers. Hence, a background enhance-

ment method was developed to improve the estimated background in regions with a

large MMSE. At the optic disc boundaries, for instance, the sample space covers a

region with pixels from each side of the optic disc edge. The intensity of those pixels

produce a step-like function that makes the linear function difficult to fit. Since the

LMS plane-fitting is linear, it compresses upper values and enhances the lower ones.

Figure 4.8 shows a comparison between the input data and the estimated background.

The data plotted belong to a given row crossing the optic disc region. The data were

taken from the images in Figure 4.7(a) and the row set to 255.

The plot in black depicts the intensity profile in the input image and the plot

in green the estimated background. The signal rises rapidly after column 50, remains

above 200 in intensity and falls quickly before column 130 on the x-axis. Pixels in the

mentioned region are those falling in the optic disc.

As shown in the plot of Figure 4.8, in general, the LMS plane-fitting compressed

the intensity of pixels in the optic disc and enhanced those in the background. The

influence of this effect on further analysis of the retinal image is described in Section

4.4. In order to reduce the effect, a fitting refinement method was implemented and

applied to enhance the background estimation in the optic disc edge region. Like the

LMS plane-fitting, the proposed refinement is based on an LMS linear fitting approach.

In that case, a piecewise function was used to re-estimate the background inside and

outside the optic disc separately. The condition of the piecewise function is outlined

by the optic disc edge.
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Figure 4.8: Input and estimated-background intensity profile along row 255 crossing the optic
disc region from Figure 4.7(a).

Other approaches have been developed to automate the location and segmen-

tation of the optic disc based on its shape, colour and size. Welfer et al. [115], for

instance, propose a method based on the vascular tree as reference to initiate an adap-

tive method that eventually reaches the optic disc boundaries. Giachetti et al. [39]

propose an ellipse-fitting method using a snake-based contour refinement method. The

method proposed by Chrástek et al. [17] is based on active contours and the Hough

transform to converge into an ellipse-like shape. Fiorini et al. [33] suggest that the op-

tic disc has a more relevant information in the red component for retinal images in the

RGB colour space, which allows the optic disc detection by analysing this component.

Bhalerao et al. [9] suggest a mixture of Gaussians model to locate the optic disc on the

green component—RGB colour space—on colour fundus images. A pre-processing

stage involves a low-pass filter (to blur the components in the image) and normalisa-

tion of the image. Osareh et al. [86] propose a snake-based contour converging into

the desired optic disc shape using retinal images in the Lab colour space.

Since the refinement region only covers a section of the optic disc boundaries,

the to-be treated region was, for simplicity, outlined by manually drawing an arc seg-

ment along the optic disc edge as shown in Figure 4.9(a). The automated location of

the refinement area is discussed in the future work section of Chapter 6.



Chapter 4. Background extraction 61

For every pixel forming the drawn arc segment, the background estimation was

carried out using an LMS fitting method using a piecewise function. Since the refine-

ment method aims to smooth pixels near the optic disc edge, the sample space covered

a region containing pixels from inside and outside the optic disc. The orientation of

each pixel in the arc segment was used as a reference to define the 1D sample space as

follows: when the orientation from the y-direction is ±30°, the sample space covers a

set of locations along a vertical line crossing the pixel on the arc; when orientation is

±30° from the x-direction, the sample space is along the horizontal; and in any other

case, follows a ±45° direction. Figure 4.9(b) shows the sample space for each pixel

forming the arc segment shown in 4.9(a). The orientation of the sample space (90°,

45° or 0°) is given by the orientation of the pixel on the arc segment.

(a) (b)

Figure 4.9: Optic disc refinement region and LMS linear-fitting sampling space. (a) Arc seg-
ment manually defined along the interior section of the optic disc edge; (b) sample
space for every data point forming the arc segment to re-estimate the background
near by the optic disc’s edge.

As described above, a piecewise function was used for the background refine-

ment in the optic disc edge. The function was formed by two intervals where each

interval was a quadratic polynomial outlining the inside and the outside section of the

optic disc using the defined sample space. The two intervals of the piecewise function

are separated by the optic disc’s edge as follows: pixels in the sample space falling

within the optic disc are fitted to a negative parabola and those outside the optic disc

(falling in the background region) to a positive curve.

Some changes in the LMS method were adapted for this refinement. The LMS

sample size for instance, was reduced to the minimum number of data points needed

to build a parabola—three pixels from the sample space on each side of the optic disc
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edge. The LMS linear-fitting for each interval of the piecewise function were carried

out separately. Finally, the estimated background of pixels on the optic disc’s edge is

given by the average of the two selected quadratic polynomials—fitting the inside and

outside the optic disc’s edge.

The refinement method for the signal plotted in Figure 4.8 (p. 60) is shown in

Figure 4.10. Since the plotted data belongs to a row-pixels crossing the optic disc in

a retinal image, there is only one location marked as optic disc’s edge. In the Fig-

ure 4.10, the solid black point is the to-be treated pixel on the optic disc edge. The

sample space—following 0° due to the "edge pixel orientation"—is delimited by the

grey dashed boxes containing pixels from inside and outside the optic disc region; and,

the best fitting polynomials are shown in red and green plots for their corresponding

inside and outside LMS fitting process. The re-estimated background on the optic

disc edge—solid blue point—is given by the average of the two polynomials at that

point. Results of the refinement method for the input image in Figure 4.9(a) is shown

in Figure 4.11.
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Figure 4.10: LMS linear fitting using a piecewise function to smooth the sharpness of the
transition from one side to the other of the optic disc edge. The estimated value
on the edge is given by the average of the two polynomials.

In order to show the results of the refinement method, the MMSE before and

after the enhancement method were compared. The MMSE of the 142 pixels forming

the arc segment are shown in Figure 4.12. As shown in the figure, the residual values
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(a) (b) (c)

Figure 4.11: Background re-estimation along the optic disc edge band. (a) Input image. (b)
Image before the optic disc refinement. (c) Optic disc boundaries enhanced.

given by the first LMS plane-fitting approach were reduced to near zero using the

proposed refinement method.
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Figure 4.12: Minimum Median Squared Error comparison before and after the optic disc re-
finement.

4.4 Post-processing

The proposed background estimation method allows the vessel structure enhancement

by subtracting the estimated background from the input image as shown on Figure

4.7(e), (f) (p. 58). Segmentation methods can be used to cluster pixels in either vessel

or background to estimate the area covered by vessel networks as a statistical analysis

of the image. Thresholding, for example, is used to separate object pixels from the
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background pixels based on intensity. Since pixels can take only one of two labels

{background, vessel}, their classification can be based on the distribution of the in-

tensity values across the image to find the threshold. An unsupervised thresholding

method can be used for the automatic threshold selection for any given image.

In the next section, the Otsu [87] method is described as it was used to separate

the vessel pixels from the background. In some cases, the estimated threshold misclas-

sified background as vessel pixels and conversely. In order to reduce this effect, small

groups of pixels were removed as they were regarded as noise in the segmentation

process. The latter process is described in Section 4.4.2

4.4.1 Thresholding

The Otsu [87] method analyses the histogram of image intensities to find, in the ideal

case, a deep and sharp valley separating two peaks representing objects and back-

ground in a two-class image. The global optimum threshold is found in the region

where both peaks are separated as shown in Figure 4.13(a). Thresholding can be ex-

tended to work with more than two clusters of pixels as illustrated in Figure 4.13(b)

where two thresholds are used to cluster pixels in three groups. Nonetheless, a single

threshold is adequate for the vessel network segmentation in this work.

T

(a)

T1 T2

(b)

Figure 4.13: Grey-level histograms that can be partitioned by (a) a single threshold, and (b)
multiple thresholds [40].

On the grounds that Otsu is based on a histogram distribution, the contrast

image—estimated background subtracted from input image—is quantised into the
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range [0 . . .255] greylevels. A thresholded image g(x,y) is a binary image defined

by applying Equation 4.11 at every grey-level pixel.

g(x,y) =

 1 : f (x,y)> T

0 : f (x,y)≤ T
(4.11)

where f (x,y) is the grey level at point (x,y) of the processed image and T is the thresh-

old. Objects are usually defined as 1 and background as 0.

The segmentation method using the Otsu threshold was applied to the contrast

images before and after the optic disc refinement to show the enhancement gained.

Before the optic disc refinement, the Otsu method classified pixels near the optic disc

edge as objects as shown in Figure 4.14(a). This labelling suggests that the difference

between the input image and the estimated background was large in size and with a

negative sign as it occurs. The ‘halo’ effect was reduced with the optic disc refinement

discussed in the previous section and results are shown in Figure 4.14(b).

(a) (b) (c)

Figure 4.14: Global threshold Otsu in the optic disc edge band: (a) using the LMS plane-fitting
approach; (b) after the optic disc refinement with an LMS linear fitting, and (c)
pixels removed ((a) - (b)).

Small unwanted ‘blobs’ can appear after the thresholding due to variations in

the difference between the input image and the estimated background. Analysis and

operations over binary images can be used to remove those blobs, regarded as noise.

In the next section, the method used to remove those blobs is detailed.
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4.4.2 Detection and removal of blobs

Algorithms for analysis of binary images are used to perform many tasks, such as

recognition, localization and inspection [108]. Morphological operators can be used to

remove small blobs as these operators erode a defined number of pixels from the con-

tour of the white components in an image. Vessel networks, however, can be affected

and in some cases, small structures disappear. Connected-components labelling, for

instance, can be used to detect and remove blobs of a given size, where the size is

defined as the number of connected pixels.

A flood-fill algorithm with an eight-neighbourhood scan was used to detect

blobs greater than a defined size. This algorithm aims to find all the connected pixels

from a given starting pixel. Connectivity can be defined as the similarity between the

reference pixel and those in the defined neighbourhood. If connectivity is found by

following the direction shown in Figure 4.15(a), the process is carried out recursively

until there are no more connected pixels. Eventually, the component is removed—set

to zero—if its size satisfies a defined condition. In Figure 4.15(b) for instance, only

the object A remains when removing blobs with less than four pixels in size. The steps

followed by the flood-fill algorithm are illustrated in red lines.

Removing large-sized connected components, can also remove significant pix-

els from vessel networks. This effect can occur when branches are fragmented in the

thresholding process. In order to reduce the loss of vessel pixels, blobs less than three

pixels in size were removed as they were considered noise. Figure 4.16 shows a com-

parison of the binary images before and after removing small connected groups of

pixels with a flood-fill algorithm.

4 3 2
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(b)

Figure 4.15: Flood-fill algorithm for analysis of connected components. (a) Scan order for
a eight-neighbour pixel; (b) Detection of two connected components (seven and
three pixels in size) with a flood-fill algorithm.
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(a) (b) (c)

Figure 4.16: Removal of small connected groups of pixels from the segmented vessel net-
works. (a) Vessel segmentation using Otsu [87] thresholding method; (b) Pro-
cessed binary image after blobs of three-pixel in size were removed with a flood-
fill algorithm, and (c) small blobs removed ((a) - (b)).

4.5 Results

The proposed background extraction method is based on a low-level analysis of pixels

for the local estimation of the background behind vessel networks. Consequently the

estimated background can be extracted from the input image to enhance the vessel

pixels. The histogram distribution from the resulting image was used to estimate the

optimum threshold value to cluster the pixels into two groups: vessel- and background-

pixels. With the resulting binary image, the density of vessel pixels was estimated to

give the prior probability that a pixel lies in the vessel networks.

The proposed method was applied to retinal images from the DRIVE database

[110]. For the background estimation, a Least Median Squares (LMS) method was

used to locally estimate the background by fitting a set of polynomials. 1000 LMS

samples were used to select the best polynomial giving the smallest median residual.

Each of the samples was formed by a set of 10 blocks of pixels from a region of 9×9

blocks enclosing every pixel visited. Each block was defined as a 3×3 region of pixels.

Therefore, every LMS plane-fitting sample was formed by a set of 90 pixels from a

27×27-pixels region, approximately 12% of the total pixels in the sample space.
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The refinement region along the optic disc boundaries was outlined by hand,

superimposing an arc segment. Adaptations to the LMS fitting method were carried

out for the refinement process: the sampling space was formed by seven contiguous

pixels from each side of the optic disc boundary. Since the LMS refinement used a

piecewise function formed by two quadratic polynomials, each of them was treated

separately with two LMS approaches: pixels falling in the optic disc region while the

other LMS procedure was used outside the optic disc. The size of the LMS samples

was reduced to only three single-pixels in either LMS refinement since that is the min-

imum number of data points required to fit a parabola. The re-estimated background

on the optic disc edge was given by replacing its value with the average of the best

two quadratic polynomials. Finally, small groups of connected pixels—less than three

pixels in size—were removed as they were regarded noise.

Figure 4.17 shows the analysis of the vessel segmentation for some samples

from the DRIVE database [110]. In the figure, the background extraction and seg-

mented vessels are presented. The binary image containing the enhanced vessel net-

works was compared with the ground truth, in which the vessel networks were manu-

ally segmented by a human observer [110] (see Figure 4.18).

The estimated vessel segmentation was measured by comparing the resulting

image with the ground truth. Tanimoto [28]—also known as Jaccard [20]—and Dice

[23] similarity coefficients were used. For comparison purposes, in both similarity

measures the ground truth image is represented by set A and the proposed segmentation

method by set B. The Jaccard [20] similarity is given by the number of pixels in the

intersection set divided by the number of pixels in the union set as shown in Equation

4.12.

J(A,B) =
|A∩B|
|A∪B| (4.12)

The Dice [23] similarity can be described as the ratio of twice the intersection

set to the sum of the individual sets as shown in Equation 4.13; vertical bars represent

the cardinality of a set or binary operations on these sets.

D(A,B) =
2∗ |A∩B|
|A|+ |B| (4.13)
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Figure 4.17: Background extraction and vessel segmentation, DRIVE retinal images database

[110].
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Figure 4.18: Comparison of estimated vessel segmentation and ground truth of images in Fig-

ure 4.17. From left to right: ground truth, estimated vessel segmentation and
vessel pixels in the ground truth and not in the estimated segmentation.
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The similarity measures used range between 0 and 1, where 0 indicates that A

and B are completely different and 1 means that the match fully agrees. For instance,

Jaccard yields a similarity of 1/3 for two half-overlapping equally sized regions and

Dice gives 1/2. For a region fully encompassing another region of half its size, Jaccard

yields 1/2 and Dice 2/3. This comparison indicates that the Dice measure weights the

intersection area more heavily than Jaccard [124].

Table 4.3 shows the quantification of vessel pixels from the ground truth and the

automated vessel segmentation of the samples in Figure 4.17. The density of vessel

pixels was estimated from a region demarcated by an initial mask used to remove

uninteresting pixels from the image. The completely dark region shown in the input

images of Figure 4.17 illustrates the mask used to remove ‘uninteresting’ pixels from

the image. The estimation of the Jaccard and Dice similarity measures is shown in

Table 4.4.

Table 4.3: Quantification of vessel pixels in both ground truth and automated vessel segmen-
tation for samples in Figure 4.18.

Image Region of Ground truth (G) Estimated vessel segmentation (E)
Sample interest Background Vessel Density Background Vessel Density

A 198,402 175,274 23,128 0.117 186,329 12,073 0.061
B 200,373 172,386 27,987 0.140 185,699 14,674 0.073
C 200,417 164,358 36,059 0.180 181,818 18,599 0.093
D 200,070 170,530 29,540 0.148 187,672 12,398 0.062
E 199,707 176,719 22,988 0.115 182,355 17,352 0.087

Table 4.4: Jaccard [20] and Dice [23] similarity coefficients of samples described in Table 4.3.
|G| and |E| are the number of vessel pixels in the ground truth and the estimaged
vessel segmentation.

Image
sample |G| |E| |G ∪ E| |G ∩ E| Jaccard Dice

A 23,128 12,073 23,548 11,653 0.495 0.662
B 27,987 14,674 28,574 14,087 0.493 0.660
C 36,059 18,599 36,643 18,015 0.492 0.659
D 29,540 12,398 30,153 11,785 0.391 0.562
E 22,988 17,352 25,443 14,897 0.586 0.739

The Jaccard coefficient was severely affected by some factors. The intensity of

vessel pixels in thin branches or bordering large ones, for instance, can disappear in

the thresholding stage if their intensity is very similar to the estimated background.

This occurs because the difference between the estimated background and the input
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intensity can be so small that the Otsu threshold labels the pixels as background. In

order to show the effect, the vessel pixels in the ground truth and not in the estimated

segmentation are shown on the right column in Figure 4.18. Thin vessels and contour

of big vessels are shown in the unsegmented-pixel image indicating that the ground

truth encompasses the segmented vessel network.

As mentioned above, Dice [23] similarity more heavily weights the overlapping

area than Jaccard [20]. Therefore, Dice coefficient is greater than Jaccard as shown in

Table 4.4. Although a similarity coefficient greater than 0.7 indicates excellent over-

lapping agreement [7], the meaning of similarity is difficult to interpret. Nonetheless,

this value can be used to compare the similarities between measured pairs [124].

4.6 Discussion

In this chapter, a local background estimation method based on LMS was proposed

to extract the background and enhance the vessel networks in retinal images. This

method aims to fit data to a plane approximating to the ideal background intensity and

where this is not possible, a piecewise function is used. An improvement method to

re-estimate the background near the optic disc boundaries was proposed since large

contrast difference between pixels bordering the optic disc edge did not allow plane-

fitting, as expected.

For the background re-estimation method, a piecewise function—formed by

two quadratic polynomials—was used considering sets of pixels inside and out the

optic-disc region independently. Vessel branches falling in the 1D-sampling-space

can disappear in the thresholding process since the fitted polynomial can return small

MMSE values. This led to a small difference in intensity between the input image

and estimated background for which the thresholding method regarded those pixels as

background. In addition, intensity attenuation of pixels from fine vessels and bordering

big vessel branches allowed only a little enhancement after the background estimation.

The thresholding method used clusters pixels into two groups: true vessels and its

complement. Fine vessels and pixels bordering big vessels can be mislabelled by the

thresholding method if the MMSE is small, showing a similar behaviour to the MMSE

computed in background regions.
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The images used in this chapter can be found in the DRIVE [110] database.

They are stored in an 8-bit colour TIFF (Tagged Image File Format) format and were

projected to grey level for analysis. The DRIVE ground truth appears to have been

produced using a high resolution monitor with a bigger pixel intensity range. There

are many fine vessels in the DRIVE ground truth for which we can see absolutely no

evidence in the TIFF images, which alone produces a significant source of error. For an

ideal vessel model represented by a cylindrical object, the contrast decreases towards

the edge of the vessel. In addition, it is assumed that noise remains constant in the

image. Giving the last two premises, the signal-to-noise ratio gets worse at the edges

of vessels leading us to expect more detection of errors in the border-region of vessel

structures. The same arguments hold for fine vessels which are expected to fragment

more.

4.7 Conclusions

The proposed background extraction method yields a quantification of vessel pixels in

a given image. This can be simplified as the prior probability that a pixel belongs to the

vessel networks in a particular image. The proposed background extraction is based on

a simple analysis of the neighbouring pixels to locally estimate the background behind

vessel networks. Vessel pixels with little difference between their input intensities and

the estimated background are usually misclassified as background by the threshold-

ing method based on Otsu [87]. Pixels in fine vessels and bordering vessel branches

usually present this condition. Since the thresholding method clusters pixels into two

groups, the loss of bordering pixels can be interpreted as if its intensity was closer

to the background than the intensity along the centreline of a large vessel, the latter,

described as the best vesselness definition.

In order to cope with the loss of fine vessels and bordering pixels, a probabilistic

labelling method is presented in Chapter 5. The aim of the labelling method is to

estimate the posterior probability that a pixel belongs to a vessel. The estimation of that

probability requires the prior probability is estimated using the proposed background

extraction presented in this chapter. The probabilistic labelling method can be used

with contextual approaches to make further analysis on a defined neighbourhood to
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enhance pixels with weak probability but surrounded by strong evidence allowing a

better vessel network segmentation.



Chapter 5
Probabilistic labelling of vessels

5.1 Introduction

In medical image analysis, desired objects can be described by their texture, shape and

size among other features. For instance, blood vessels can appear at a range of diame-

ters, size and contrast in retinal images and Magnetic Resonance Angiograms (MRAs).

Blood vessels can be described as tubular structures. An ideal vessel model can be

defined as a straight cylindrical object following a straight direction with constant di-

ameter. In retinal imaging, a uniformly-filled tubular structure can be represented with

a large contrast along the centreline with the contrast decreasing towards the structure

walls. A synthetic image of a single straight vessel is shown in Figure 2.7 (p. 13).

The attenuation ratio is based on the ‘ideal vessel’ model used. Frangi [35], Sato

[106] and Lorenz [73], for instance, defined this attenuation as a Gaussian-like func-

tion. These approaches use the Hessian matrix as local descriptor since it describes

the maximum and minimum directional derivatives locally [44]. Sukanya[112], for

instance, described some surface shapes by analysing eigenvalues and the local orien-

tation. In [26, 35, 54, 72, 106, 121] authors estimate a ‘vesselness’ measure based on
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the local curvature and direction using eigenvalues and eigenvectors. Some of these

‘vesselness’ measures were explained in Section 2.7 (p. 25).

The novel vessel-pixel labelling method presented in this chapter is based on

a Bayesian approach. Unlike deterministic approaches [35, 73, 106], the proposed

labelling method aims to estimate the probability that vessel-pixels are located along a

vessel’s structure by quantifying local and global features. Since blood vessels can be

described as tubular structures, the Hessian matrix can be used as local a descriptor to

estimate the probability that a local curvature fits an ideal vessel curvature.

As mentioned above, the ideal curvature is given by modelling local features

along the centreline of a single, straight vessel. As a global feature, quantification

of pixels along the vessel network is required to estimate the probability of selecting

a vessel pixel. This feature is not a directly observable variable from computing the

Hessian matrix. Thus, an estimation of vessel pixels in a whole image was carried out

using the method described in Chapter 4. With the local and global features, Bayes’

rule can then be used to estimate the local probability that a pixel belongs the centreline

of a vessel. Bayes’ rule is explained in Section 5.2; computation of its components

leading to the posterior probability are fully described in the subsequent sections.

5.2 Bayes’ rule

Bayesian analysis can be defined as an approach that allows making inferences from

data using probability models based on observed data and prior knowledge. Bayes’ rule

was first suggested by Thomas Bayes (c.1701−1761) and published in 1763 after his

death [111]. Bayes’s rule is a simple equation used to estimate conditional probabili-

ties. This rule expresses the conditional probability—termed posterior probability—of

an event A after B is observed in terms of prior knowledge of A, prior knowledge of B,

and the conditional probability of B given A.

Since Bayes’ rule is expressed in terms of probability relations, some axioms

of probability theory are reviewed to derive Bayes’ rule. In this work, the commonly

used notation for the probability of an event A denoted by P(A) is used. Let A and B
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be two events, the probability that both A and B occur can be written as the probability

that both B and A occur; this is a commutable estimation (see Equation 5.1).

P(A and B) = P(B and A) (5.1)

The probability of a conjunction is defined as the probability of A being multi-

plied the probability of B given A (see Equation 5.2).

P(A and B) = P(A)P(B|A) (5.2)

Since the operation in Equation 5.1 is commutable and by definition 5.2, it also

yields:

P(B and A) = P(B)P(A|B) (5.3)

In addition, since left half of the last two equations are equal to P(A and B), it

produces:

P(B)P(A|B) = P(A)P(B|A) (5.4)

This means that there are two ways to estimate the probability of a conjunction.

If P(A) is known, then it is multiplied by the probability P(B|A). Conversely, if P(B)

is known, it is multiplied by P(A|B) [25]. Finally, if both halves in Equation 5.4 are

divided by P(B), it produces:

P(A|B) = P(A)P(B|A)
P(B)

(5.5)

Equation 5.5 is known as Bayes’ rule that expresses the probability of A given B.

This is equal to the probability of A, multiplied by the probability of B given A, divided

by the probability of B. P(A) is the probability of the hypothesis A and is termed the

prior probability or just the prior since it can be estimated before knowing data B. The

probability of the observed data B under the hypothesis A is denoted by P(B|A) and

termed the likelihood. The denominator P(B) is the probability of the data B under

any hypothesis, this is often termed the normalising constant, marginal likelihood or

evidence [25, 111]. Finally, P(A|B) is termed the posterior probability or just the

posterior given by the probability of the hypothesis A after data B are observed.
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Additional to the Bayes’ rule derivation described above, an alternative notation

can be formulated using some other assumptions:

P(B) = P(A and B)+P(Ac and B) (5.6)

where Ac is the complementary event of A, often termed ‘not A’ and denoted by ¬A.

Following the conjunction definition 5.2, the probability P(B) can be written as

in Equation 5.7.

P(B) = P(A)P(B|A)+P(¬A)P(B|¬A) (5.7)

An alternative Bayes’ rule definition is shown in Equation 5.8 by replacing the

denominator in Equation 5.5 by its equivalence in Equation 5.7.

P(A|B) = P(A)P(B|A)
P(A)P(B|A)+P(¬A)P(B|¬A)

(5.8)

A typical Bayesian analysis can be outlined by dividing it in the following a set

of steps, like those suggested in [38]:

1. Set up a probability model for all observable and unobservable quantities in the

problem. In this stage, the local and global features are used for the vessel-pixel

labelling in Bayes’ rule.

2. Estimate the prior distribution before the data are observed based on background

information.

3. Estimate the evidence and likelihood based on the observable data.

4. Compute the posterior probability by combining steps 2 and 3.

5. Evaluate the fit of the model and implications of the resulting posterior proba-

bility.

As discussed in Section 5.1, eigenvalues from the Hessian matrix were used as a

local descriptor for every analysed pixel to estimate the maximum probability of being

along the vessel central section. This can be regarded as the event B in Bayes’ rule.

The labelling problem can be described as a two-class labelling problem: vessel (V)

and background (B) pixels. Thus, the alternative Bayes’ rule Equation 5.8 was used to
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estimate the posterior probability and it can be written as:

P(V |λ ) = P(V )P(λ |V )

P(V )P(λ |V )+P(B)P(λ |B) (5.9)

where V is the desired vessel label, λ the local eigenvalues defined in Equation 5.10

and B—the complementary event of a vessel—denotes background. Note that B in

Equation 5.8 has been replaced by λ and ¬A by the literal B to refer to the local

descriptor and Background pixels respectively.

λ = (λ1 λ2)
T (5.10)

Following the Bayesian analysis plan described above, the first task is the defi-

nition of a probability model that is given by Equation 5.9 where two labelling-classes

were defined. Steps two and three focused on the estimation of the Bayes’ rule compo-

nents. Since the evidence has been extended, the denominator in Bayes’ rule requires

the likelihood estimation of both vessel and background classes. Estimation of the

Bayes’ rule components is described in the next sections and the posterior probability

is detailed in Section 5.7

5.3 Prior-vessel probability

The probability of vessel pixels denoted by P(V ) can be estimated before obtaining

the local features of each pixel for labelling. Since this is not a directly observable

variable, an approximate vessel segmentation was carried out to estimate this prior

from the image.

As a first approach, a vessel network segmentation was estimated using the

background extraction method described in Chapter 4. The outcome is a binary image

containing an approximation of the vessel network segmentation as shown in Figure

5.1. The estimated background is shown in Figure 5.1(b) that is subtracted from input

image 5.1(a) and with some post-processing work the vessel network is segmented

from the background (see Figure 5.1(c)).
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(a) (b) (c)

Figure 5.1: Vessel network segmentation using the background extraction approach described
in Chapter 4. (a) Input image. (b) Estimated background. (c) Segmented vessel
network by subtracting the estimated background and post-processing to compute
a binary image.

Quantification of pixels in the segmented network produces an estimated distri-

bution of vessel pixels that can be used as a probability measure. The prior probability

P(V ) is then given by dividing the number of segmented vessel pixels (the binary

image) by the number of pixels in the processed region from the image:

P(V ) =
A(Estimated vessel network)

A(Region o f interest)
(5.11)

Note that the number of pixels in the analysed region is given by a initially

defined mask for every processed image (see Figure 5.2).

x

y

Region
of

Interest

Figure 5.2: Processed Region of Interest (RoI) in an image.

Some image samples from the DRIVE [110] database are shown in Figure 5.3

(p. 81). The vessel network segmentation was based on the approach fully described

in Chapter 4. Data analysis of the processed images is summarised in Table 5.1.
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Image sample

A

Vessel-network segmentation

B

C

D

E
Figure 5.3: Estimated vessel network segmentation, DRIVE [110] database samples.
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Table 5.1: Prior vessel pixel probability P(V ) estimation for images in Figure 5.3. Table shows
the quantification of pixels in the processed region (Region of Interest) and the
estimated vessel-network for the prior vessel probability estimation.

Image Region of Estimated Vessel- Estimated
Sample interest Network Area P(V )

A 198,402 12,073 0.061
B 200,373 14,674 0.073
C 200,417 18,599 0.093
D 200,070 12,398 0.062
E 199,707 17,352 0.087

5.4 Prior-background probability

As described in Section 5.2, the event A in the initial Bayes’ rule (see Equation 5.8

on page 78) has two possible values: vessel or background pixel. These two classes

are mutually exclusive. Therefore, the sum of their probability is 1. In Section 5.3,

the prior probability of vessel pixels was estimated. Thus, the estimated background

probability P(B) for each treated image is given by solving Equation 5.12 for P(B).

P(V )+P(B) = 1 (5.12)

A summary of the estimated probabilities P(V ) and P(B) for the sample images

used in Figure 5.3, is shown in Table 5.2.

Table 5.2: Estimated prior probabilities for some DRIVE [110] sample images. Table showing
the prior vessel and background probability.

Image Estimated Estimated
Sample P(V ) P(B)

A 0.061 0.939
B 0.073 0.927
C 0.093 0.907
D 0.062 0.938
E 0.087 0.913

5.5 Vessel-likelihood

In general, a likelihood or conditional probability can be denoted as P(b|A). Here,

the definition aims to estimate the probability that observed data B has the value b
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given the assumed parameter value A. This conditional probability is called likelihood

of A since for a given parameter A, it estimates how likely are the data [111]. The

relevance of the likelihood is that it analyses the distribution of the possibly observable

values for an occurring event. When considering all possible values of A and B—in

the conditional probability—the likelihood can be defined as a function [111]. In this

manner, the likelihood allows us to describe how the probability of the event B changes

when the event A has occurred. Likelihood is a Probability Density Function (PDF)

since the estimated probability is a function of the observable variable λ given the

fixed conditions on {V (vessel), B (background)}.

The two likelihood estimations defined in Bayes’ rule (see Equation 5.9 on page

79) were computed to describe the eigenvalue distribution for each class (vessel, back-

ground) over possible conditions in which vessels can appear. Their estimations are

based on similar processes but vary in the observed data used. In Bayes’ rule numer-

ator, the vessel likelihood P(λ |V ) is first defined; its estimation is described below.

Estimation of the other likelihood—background P(λ |B)—is detailed in Section 5.6 to

complete the estimation of all components forming Bayes’ rule.

The vessel likelihood P(λ |V ) was estimated using a Monte Carlo simulation to

describe the eigenvalue distribution for vessel pixels in synthetic images. Afterwards,

the computed bank of eigenvalues were analysed to construct a probability density

function. Since analysed images are in 2D, λ holds two eigenvalues. Thus, the PDF

was defined as a normalised two-dimension histogram describing the probability of

every pair λ given the vessel class. Settings used in the Monte Carlo simulation are

detailed in the next section and the PDF computation in Section 5.5.2.

5.5.1 Monte Carlo simulation

A Monte Carlo trial yielded a pair of eigenvalues λ from some location in a syn-

thetic image that represents a class of pixels—vessel or background. In this approach,

eigenvalues from pixels falling in a synthetic vessel object were used for the vessel-

likelihood estimation. A synthetic straight and uniformly filled cylinder was the model

used to represent the ideal vessel, where the intensity profile across the vessel object

was determined by the Beer-Lambert Law [19]. The synthetic image formation process
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is detailed in Section 3.3.2 (p. 39). In order to take into account features from retinal

images, the background intensity and noise power were computed from the estimated

background.

In the vessel formation process, a maximum intensity projection is defined to

create a uniform background from which, the intensity is attenuated generating a syn-

thetic vessel. The maximum projection is given by the mean contrast computed from

the estimated background. Thus, a Monte Carlo simulation can be performed after

estimating the background, mean background contrast and noise power for a particular

image. The background estimation process is detailed in Chapter 4. The mean contrast

from the estimated background of some DRIVE [110] image samples is summarised

in Table 5.3.

Table 5.3: Estimated mean grey-level and standard deviation of the estimated background.

Image
Sample

RoI
Area

Mean
Grey-level

Standard
Deviation

Image
Sample

RoI
Area

Mean
Grey-level

Standard
Deviation

21 198,402 119.622 16.931 31 200,408 110.174 27.832
22 200,373 102.426 13.623 32 197,792 118.423 13.228
23 200,843 119.627 20.208 33 200,436 120.865 15.914
24 200,417 119.924 11.339 34 199,293 100.232 42.498
25 200,070 89.746 12.218 35 200,357 90.479 18.058
26 197,945 63.807 9.099 36 199,924 95.287 16.156
27 200,504 113.405 18.430 37 199,897 97.574 18.794
28 200,037 116.843 13.950 38 199,000 128.063 14.417
29 200,028 71.800 13.748 39 200,173 92.353 9.433
30 199,965 58.338 9.519 40 199,707 75.961 10.473

As mentioned above, a Monte Carlo trial is formed by the eigenvalues λ be-

longing to a sample pixel from a vessel object. Samples were randomly selected from

a space of size equal to the vessel diameter. Due to symmetry and simplicity, the

sampling space was defined as a set of pixels normal to the vessel orientation. Fig-

ure 5.4 illustrates the sampling-space from which vessel-sample pixels were randomly

selected and termed a Monte Carlo trial.

10,000 trials were computed using randomly-varying parameters when con-

structing synthetic vessels to integrate features that can be found in retinal images.

Vessel diameter, for example, ranged over [1...15] pixel-units in a continuous domain

to incorporate vessel diameters that can appear in low-resolution retinal images as

shown in [75]. Vessel orientation was simulated by randomly rotating the image. Since
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WBackground Background

Vessel pixels
(V)

Figure 5.4: Vessel-pixel sampling space. The sampling space is delineated by W, where W is
equal to synthetic vessel width.

a synthetic vessel was straight and, due to symmetry in the rotation process, the range

of rotation was defined as [0◦ . . .45◦]. Despite eigenvalues being invariant to rotation,

this operation was carried out to approximate the pixellation effects when capturing an

image. Finally, Gaussian-distributed noise was added to mimic the noise produced by

the imaging device when capturing an image. The noise power was obtained from a

prior analysis from retinal images as follows.

The proposed method aims to estimate the eventual thermal noise, which can be

regarded as Gaussian noise, produced by the imaging device. A free-of-vessel patch

can be used to estimate the noise power as suggested in [105]. Nonetheless, it is

difficult to define a fixed size and location for the patch to be analysed due to the

vessel distribution varying in images. Thus, the noise power was computed from the

estimated background, and it is assumed to be approximated to the signal captured

by the camera if there were no objects. Unlike selecting a single patch, the proposed

method regarded all regions in the image; except that the estimated background will be

low-pass filtered by the noise-power estimation process leading to—at some extent—

an underestimation of the noise.

Standard deviation of noise was estimated with an algorithm due to Rank [96].

The algorithm is based on an iterative histogram analysis using a filtered version of the

image, where difference operators were applied in vertical and horizontal directions

[96]. The aim of the operators is to reduce the influence of the content. The estimated

standard deviation of noise for the tested images is summarised in Table 5.4.

As described above, the mean background intensity and noise power estimation

in conjunction with a set of random variables were used to setting up the Monte Carlo



Chapter 5. Probabilistic labelling of vessels 86

Table 5.4: Estimated standard deviation σ of noise for images in the DRIVE [110] database.

Image Estimated Image Estimated
Sample σ noise Sample σ noise

21 2.609 31 2.713
22 2.551 32 2.472
23 3.344 33 2.655
24 2.842 34 4.717
25 2.353 35 3.055
26 2.512 36 2.946
27 2.719 37 3.729
28 2.800 38 2.597
29 2.666 39 2.540
30 2.350 40 2.535

simulations to estimate the vessel likelihood. For every image being treated, the Monte

Carlo simulation parameters are estimated. Figure 5.5 shows synthetic-vessel-images

generated by using the estimated mean background intensity and noise power.

Dispersion of the Monte Carlo trials is shown in Figure 5.6, where the x and y

axes are given by the eigenvalues λ . Eigenvalues are in ascending order based on its

magnitude as suggested in [35].

5.5.2 Probability Density Function

A Probability Density Function (PDF) can be approximated with a normalised his-

togram. A histogram is a graphical representation of a set of counts x given by group-

ing a set of data N [111]. The sum of counts x equals the number of elements in a data

set N, as it is only a distribution representation of N. Normalisation of the histogram

yields the PDF; the area under the PDF equals to one. Figure 5.7 illustrates a histogram

and PDF for a data set N, formed by 10,000 random values over a uniform distribution,

divided into 20 bins.

The example in Figure 5.7 works for a single variable. A Monte Carlo trial is

formed by two variables: eigenvalues (λ1,λ2), thus, the PDF can be approximated by

combining two single PDFs in which bounds are given by the eigenvalue measures and
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Image sample

21

Estimated background Synthetic vessel sample

22

24

25

40
Figure 5.5: Synthetic vessel images. Uniform background defined by the mean background

intensity (see Table 5.3); Gaussian-distributed noise was added using the standard
deviation of noise presented in Table 5.4
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Figure 5.6: 10,000 vessel Monte Carlo trial dispersion. Eigenvalues are in ascending order
|λ1|≤ |λ2| as suggested in [35].
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Figure 5.7: Histogram and probability density representation. (a) Histogram of N = 10,000
random values with uniform distribution. The histogram was formed by grouping
the values into x number of bins (20). Label at the top of a bin represents the counts
in the bin. (b) Normalised histogram. This approximates the probability density
function (PDF) [111]. Label at the top of greyed bins describes the normalised
counts in the bin.

.

the number of bins can be independently defined. The proposed PDF was formed as

follows.

For each eigenvalue, the minimum and maximum of the variate are used to

divide the range into a number of intervals termed bins. The range of measured λ1

values was divided into a set of y number of equally-sized bins and the range in λ2 into

x number of equally-sized bins; note that x and y are treated individually. Finally, the

Monte Carlo trials falling within every pair of (x, y) bins were counted.

Normalisation of the counts yields a 2D-PDF. It can be seen as a normalised

two-dimension histogram formed by vertical columns, where the height of each col-

umn mirrors the probability for a λ falling in a particular pair (λ1, λ2) bin. When the

range of measured eigenvalues is grouped into a small number of bins, the histogram

does not describe the distribution of data very well. Similarly, when the range of mea-

surements is grouped into a large number of bins, the histogram may not give a good
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sense of the data distribution. There is thus a trade-off between the number of bins

which data are grouped in and the sense of the distribution of observations.

The Monte Carlo simulation described in Section 5.5.1 was analysed due to the

computed PDF. The number of bins in which a variable was divided is independent

from the other bin distributions. For instance, range values in λ2 and λ1 were divided

into 50 equally-sized bins producing the two-dimension histogram shown in Figure5.8.

1.76
12.52

23.28
34.04

44.79
55.55

−2.09

0.81

3.71

6.61

9.5

12.4

0

50

λ2
λ1

H
is
to
ga
m

0

10

20

30

40

50

60

Histogram

Figure 5.8: Monte Carlo-trials histogram for the vessel-likelihood estimation. Range of λ1 and
λ2 measures are grouped into 50 equally-sized bins. Height of bars is equal to the
number of trials falling within a (λ2, λ1) bin.

The counts in every cell of the histogram were divided by the number of accu-

mulated trials in the histogram—10,000 Monte Carlo trials—to generate a normalised

histogram which was taken as the PDF. The resulting PDF can be described as a map

of probabilities where axes are given by the bins in which eigenvalues were grouped.

Figure 5.9 shows the PDF from the data plotted in Figure 5.8. The probability

map can be used as the likelihood P(λ |VC) in Bayes’ rule.

Smoothing the probability density function

A smoothing process, based on a bi-triangular smoothing kernel, was applied to com-

pute the vessel probability density function. The aim of this process is to generate a

smoother probability density function, which may better mirror the distribution of the

eigenvalue variates. The triangular distribution is a simple method that allows smooth-

ing data sets.
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Figure 5.9: Vessel Probability Density Function (Normalised histogram in Figure 5.8). The
sum of the entries (probabilities) is equal to One.

A triangular function principle was extended producing a pyramid-shape ele-

ment to cope with the smoothing of the λ1 and λ2 variates. The length and width of the

element is given by the bin size in the histogram, which is regarded as uniform along

the axes. The volume under the pyramid is taken as one. The element is centrally

placed on the (λ1,λ2) sample position and the partial volume of the pyramid covering

the bin area is taken as the gain for that bin. In the ideal case, a sample falling at

the central point of a bin produces a unit-gain for the bin since the pyramid matches

the bin bounds. Nonetheless, when a sample is not centrally located within a bin, the

pyramid element usually overlaps adjacent bins producing a sharing of the unit-gain.

See Appendix A for details of the smoothing process.

The resulting smoothed probability probability function in Figure 5.9 is shown

in Figure 5.10.

5.6 Background-likelihood

The background likelihood denoted by P(λ |P(B)) in Bayes’ rule denominator de-

scribes the eigenvalue distribution for the background-pixel class. In the synthetic

images used, the intensity of the background is initially set as uniform based on

the estimated background contrast and then, Gaussian-distributed noise is added to
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Figure 5.10: Smoothed vessel probability density function

mimic the thermal noised introduced by the imaging device when capturing an im-

age. Background-pixel samples were generated to draw the eigenvalue dispersion that

eventually yields the PDF. Similarly to the vessel likelihood estimation (Section 5.5), a

Monte Carlo simulation was used to generate a set of background samples to estimate

the likelihood P(λ |B). Randomly selected parameters were used to produce synthetic

images with features similar to those found in retinal images. The Monte Carlo sim-

ulation settings are described in the next section and the PDF estimation in Section

5.6.2.

5.6.1 Monte Carlo simulation

A Monte Carlo simulation was implemented to analyse the dispersion of the estimated

λ from a set of background-pixel samples. Synthetic vessel images were constructed

using the method described in Section 3.3.2 (p. 39). The ideal background can be

described as uniform contrast given the maximum projection defined for the treated

image. The maximum projection is considered as the situation which light beams

cross eye tissue with uniform light-absorption properties. For an image being treated,

the maximum projection is taken as the mean contrast computed from the estimated

background process. Gaussian-distributed noise of power σ is added to the background

patch and finally, the resulting patch is randomly rotated as described in Section 3.3.2.
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The process described above is valid for the estimation of an ideal background

patch, with no vasculature structures. Pixels bordering vessel structures, however, are

regarded as background but their intensity is affected by the transition from the vessel-

to the background-like intensity value. This may not result in fair background-pixel

samples being selected from a noisy background patch. In order to make the back-

ground class definition fairer, pixels from synthetic images containing a vessel struc-

ture were used. Background-pixel samples were selected from a delineated sampling

space covering pixels bordering the synthetic vessel. Therefore, a Monte Carlo trial is

formed by the eigenvalues λ belonging to a randomly selected pixel from a sampling

space.

Rather than defining the sampling space as any pixel in the image except those

falling within the vessel structure of width w, the sampling space was defined as a set

of contiguous pixels normal to the vessel orientation and its length is given by

D =
W ∗ (1−P(V ))

P(V )
+W (5.13)

where W is the mean vessel width, and P(V ) is the prior vessel probability. The

equation is valid for any−w/2≤ x≤w/2 where w is the known width of the synthetic

vessel.

The rationale for using Equation 5.13 is to estimate the space based on features

of the image. In the equation, the prior vessel probability excludes the vessel pixels as

the estimated vessel-pixel area is regarded being formed by vessel structures of a mean

width equal to W , eight pixel-units in the tests. Figure 5.11 illustrates the sampling

space from where background-pixel samples—Monte Carlo trials—are randomly se-

lected.

The Monte Carlo simulation was based on the process implemented for the

vessel-pixels described in Section 5.5.1. Random variates were used to generate 10,000

synthetic vessel images. Background samples were then selected from a delineated

sampling space.

Dispersion of the Monte Carlo trials is shown in Figure 5.12 where the x and y

axes are given by the eigenvalues λ measures. Eigenvalues are in ascending order due

to its magnitude as suggested in [34].



Chapter 5. Probabilistic labelling of vessels 93

WBackground Background

Background pixels
(B)

D D

Figure 5.11: Background-pixel sampling space. The parameter D is used to estimate the size
of the sampling space. Global features are used to exclude pixels falling within
the vessel object.
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Figure 5.12: 10,000 background Monte Carlo trial dispersion. Eigenvalues are in ascending
order |λ1|≤ |λ2| as suggested in [35].

5.6.2 Probability Density Function

Monte Carlo trials from Section 5.6.1 were binned producing a 2D histogram. As

described in Section 5.5.2, the range of eigenvalue measures were divided into a set

of equally-sized segments termed bins. Eventually, every Monte Carlo trial λ was

binned yielding a histogram. Figure 5.13 shows the histogram generated from binning

the 10,000 Monte Carlo trials in the test using 50 equally-sized bins for both of the

eigenvalue measures.

Normalisation of the histogram yields the PDF. Therefore, the counts in every

cell of the histogram were divided by the number of the accumulated values in the

histogram—10,000 trials in the test—producing the probability density function shown

in Figure 5.14.

The accumulating method, however, was modified to produce a smoother his-

togram. Rather than increasing in 1 the value of the cell where a sample falls, the
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Figure 5.13: Monte Carlo-trials histogram for the background-likelihood estimation. Range
of λ1 and λ2 measures are grouped into 50 equally-sized bins. Height of bars is
equal to the number of trials falling within a (λ2, λ1) bin.
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Figure 5.14: Vessel Probability Density Function (Normalised histogram in Figure 5.8). The
sum of the entries (probabilities) is equal to One.

unit-entry is blurred using the method described in Section 5.5.2 yielding the smoother

histogram shown in Figure 5.15.

5.7 Vessel posterior probability

Based on Bayes’ rule outlined in Equation 5.9 (p. 79), prior probability and likelihood

estimations for the classes under consideration are essential to estimate the posterior
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Figure 5.15: Smoothed background probability density function

probability. Vessel and non-vessel denoted as background are the two classes in the

proposed Bayesian labelling approach.

The prior probability P(V ) is estimated using the background extraction method

described in Chapter 4. The method estimates the vessel-pixel density by subtract-

ing the estimated background from the initial image. Post processing work yields a

segmented vessel-network approach represented by a binary image from where the

normalised vessel-pixel density is estimated yielding the prior vessel probability P(V ).

Since both classes are regarded as mutually exclusive, the prior background probability

is defined as 1−P(V ).

Vessel- and background-likelihood estimations were described in Sections 5.5

and 5.6 using synthetic vessel images and Monte Carlo simulations. The process to

estimate the likelihood is connected to the background estimation process due to the

mean background contrast and noise estimations are essential to generate synthetic

images.

Having all the prior probabilities and likelihoods calculated, the posterior vessel

probability P(V |λ ) can be estimated by solving Baye’s rule. The method used to

locally estimate the posterior vessel probability as a labelling approach is described

in the next section.
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5.7.1 Retinal image normalisation

Unlike the studied vessel detectors in [35, 73, 106], we do not use the original image

for the labelling. The initial image, which is the Green component of the RGB colour

space, is normalised to reduce the light variation effect in the image. The normalised

initial image is then used by the labelling method.

The normalisation method aims to correct contrast variation in the original im-

age. The method uses the estimated background detailed in Chapter 4 which is based

on statistical methods to estimate the contrast behind vessel structures by analysing

neighbours. The normalised contrast is given by Equation 5.14 where E is a normalis-

ing ratio (see Equation 5.15) calculated from the estimated background contrast image.

N(x,y) = E · I(x,y) (5.14)

E =
C

E(x,y)
(5.15)

where C is the mean background contrast and E(x,y) the local background estimate.

The ratio E aims to balance the contrast. It enhances the contrast when the

difference between the mean contrast is bigger than the estimated local background

contrast. Conversely, the ratio reduces the contrast when the mean is smaller than the

locally estimated contrast. In Figure 5.16, a retinal image (the Green component only)

and its normalised version are presented.

Histograms shown in Figures 5.16(c), (d) describe contrast variation in the im-

ages. Histograms are normalised for their comparison. Contrast distribution in the

original image exhibits an asymmetrical behaviour. On the other hand, the normalised

image presents a smoother behaviour. Even though the graph is clearly not bimodal,

it can be decomposed into two Gaussians suggesting the distribution of vessel- and

background-pixel contrast. Gaussian Mixture Model (GMM) was applied to fit two

Gaussians to the histogram in the normalised image as shown in Figure 5.17.
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Figure 5.16: Retinal image normalisation, DRIVE [110] image sample: (a) Green component
of the RGB colour space; (b) normalised image; and, (c), (d) normalised his-
togram.
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Figure 5.17: Gaussian decomposition for the normalised image histogram. The first Gaussian
(plot in green) covers 0.839% of the Gaussian mixture model, and the second
Gaussian (plot in blue) covers the 0.161% of the model.



Chapter 5. Probabilistic labelling of vessels 98

5.8 Vessel-pixel labelling

The vessel-pixel labelling method is based on a Bayesian approach where the image

being labelled is given by normalising the retinal image. Here, the normalisation pro-

cess detailed in Section 5.7 is implemented to reduce contrast variation. As described

in previous sections, components of Bayes’ rule are calculated independently for the

image being treated. The labelling process can be implemented after the components

of Bayes’ rule are calculated and the retinal image normalised.

The labelling method is based on the scale-space representation [66] to cope

with the labelling of vessel structures at a range of diameters. The Hessian matrix

of the scaled images is calculated; eigenvalues are placed in ascending order of their

magnitude as suggested in [35]. Selection of eigenvalues across scales is based on the

Frangi [35] criteria as follows. The Frangi [35] formula is applied to the eigenvalues

and, following the Frangi criteria to select the best response across scales, the eigenval-

ues λ belonging to the best scale-response are selected by the labelling method. Even-

tually, the posterior vessel probability is calculated for the selected λ using Bayes’

rule. The process is repeated to label all pixels in a given image.

Likelihood estimates can be described as lookup tables where eigenvalues are

the input and the estimated probability for the provided pair (λ1,λ2) is the output.

Therefore, posterior vessel estimates may vary due to the number of bins defined in

the likelihood configuration. Large number of bins may produce small posterior prob-

ability estimates as the number of entries in the likelihood is spread out. Conversely,

small number of bins may increase the posterior probability estimates where the like-

lihood presents large concentrations. There is thus a trade-off between the number of

bins in the likelihood and the smoothness of the posterior probability estimates. The

labelling produced by using two likelihood configurations is shown in Figure 5.18.

Posterior vessel estimates in Figure 5.18(b), where λ1 and λ2 were grouped

into 150 bins over each of the ranges, seem to be higher than the estimates in Figure

5.18(b), where the likelihood configuration grouped the eigenvalues into 25 bins (5-

bins over each eigenvalue’s range). Note that this is a the visual effect produced when

data are converted into an 8-bit image as probabilities are scaled into the range [0...255]

intensity values.
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(a) (b)

Figure 5.18: Maximum posterior vessel probability using: (a) 5 bins in each of eigenvalue’s
range, and (b) 150 bins.

.

Bright similarity among the labelled pixels in Figure 5.18(b) suggests that the

posterior estimates are also similar. Figure 5.18(a) shows brighter areas in big vessel

structures suggesting the posterior vessel probability is higher in those regions which

can be interpreted as having stronger ‘vesselness’.

A quantitative analysis of the proposed Bayesian vessel-pixel labelling method

is detailed in Section 5.9 to measure the performance of the proposed labelling method.

Likelihood configurations were analysed due to the labelling performance and the best

configuration was compared with the Frangi [35] vessel detector using receiver oper-

ating characteristic (ROC) plots.

5.9 Quantitative analysis of the labelling

Measures of overlap of labelled regions in an image and the ground truth, such as

Jaccard and Dice coefficients, have been extensively used to evaluate segmentation

algorithms in medical image analysis. We know the ground truth in the used retinal

images is formed by a binary image where pixels within desired objects are labelled as

1 and the remaining pixels as 0. The proposed vessel-pixel labelling method uses the

estimated vessel posterior probability to generate the resulting labelled image. Hence,



Chapter 5. Probabilistic labelling of vessels 100

vessel-label estimates range between 0 and 1, being the lowest value taken as fully

background and the highest value as vessel.

A method to compare the resulting labelled image with the ground truth is re-

quired to the measure the performance of the labelling method. Both images should

be within the same domain for a fair comparison. A simple method is, converting the

labelled image into a binary image and compute the agreed pixels to estimate an agree-

ment measure. Image thresholding is a simple method to separate pixels by analysing

their intensities using a threshold. The method aims to convert the labelled-image

into a binary-image where intensities pixels above the selected threshold are set to 1—

desired objects—and those below the threshold are set to 0—unwanted objects, usually

background. Nonetheless, the problem exists in the method to select the threshold that

best approximates the segmentation to the ground truth which eventually yields the

best agreement.

Receiver Operating Characteristic (ROC) plot—a technique to visualise the per-

formance of classifiers [32]—was used to measure the performance of the labelling by

varying the threshold producing binary images that were compared with the ground

truth. Having both images in the same domain (binary), the true positive (TPR) and

false positive (FPR) rates were estimated to construct ROC curve. Estimation of the

Area Under the Curve (AUC) yields a statistical measure for the ROC plot, which even-

tually was regarded as the performance. AUC is a fraction of the unit-square of the

ROC plot, so it ranges between 0 and 1. As the ROC curve approximates the upper left

corner (100% TPR, 100% FPR), the AUC approximates to 1—perfect classification—

meaning better the performance.

ROC plots for the labelled images in Figure 5.18—using two configurations for

the PDF estimation—are compared in Figure 5.19. In the figure, the performance using

only 25-bins (5 bins for each eigenvalue’s range of measures) to form the probability

density function, exhibits a better performance than the second configuration (150 by

150 bins).

The number of thresholds used in the ROC plot is limited to the number of bins

used in the PDF. This may produce a less continuous graph when the PDF is set up

using fewer bins as shown in the blue graph in Figure 5.19.
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Figure 5.19: ROC plot for two configurations in the probability density function estimation.
Graph in blue, 5 bins at the range of λ1 measures and 5 bins at the range of λ2
measures (AUC=0.890); and, graph in red, 150 bins in each of the eigenvalue
measures (AUC=0.806).

The overall performance of the labelling was measured by varying the configu-

ration of probability density function (PDF). The resulting AUC for each of the config-

urations is summarised in Figure 5.20. In the figure, axes are given by the number of

bins used to group the measured eigenvalues ([5,25,50,75,100,125,150,175,200]),

and the z− axis mirrors the AUC obtained for every configuration. The computed

AUCs varies from 0.75 to 0.90 in the analysed image.
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Figure 5.20: AUC summary for different initial configurations for the probability density func-
tion estimation.

Eigenvalues are in ascending order by their magnitude, so λ1 measures are near

zero. Thus, the range of λ1 measures is usually small. The range of λ2 measures is
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larger since it describes the principal local curvature given by the vessel width which

varies from 1 to 15-pixel units in the synthetic images. As shown in Figure 5.20, in-

creasing the number of λ1-bins severely reduces the AUC. On the other hand, the range

of λ2 measures allows—at some extent—a better distribution for a selected number of

λ1-bins. Better AUCs were computed using a reduced number of λ1-bins.

The performance obtained using 5 λ1-bins—the best λ1 configuration—and

varying the number of bins in λ2 is summarised in Figure 5.21. As shown in the

figure, there is a little to choose between the λ2-bins from 50 to 150.
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Figure 5.21: ROC plot for 5 bins in λ1 measures and all λ2-bin configurations.

The maximum AUC obtained was compared with the Frangi’s [35] perfor-

mance. In order to make the performance comparison fair, both methods used the

normalised image as input. Computing of AUC was based on the ground truth to es-

timate the true positive and false positive rates used for ROC plots. The performance

obtained with the proposed probabilistic labelling method was AUC = 0.900 while

Frangi’s method reached AUC = 0.925. ROC plots are shown in Figure 5.22.

It is important to review the resulting labelled images to judge the performance

of the labelling methods. Analysis of the labelling outcomes, the normalised-input im-

age and the ground truth can be used to support the measured performance AUC. The

resulting labelled images for both, the proposed probabilistic labelling and Frangi’s

[35] method, are presented in Figure 5.23 (p. 104) for a sample image from the DRIVE

[110] database. Analysis of the labelled images is discussed in the next section.
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Figure 5.22: Proposed probabilistic labelling vs. Frangi [35] performance

5.10 Discussion

The proposed probabilistic vessel-pixel labelling method relies on prior probabilities

estimations obtained from an initial analysis of the image and a model used to anal-

yse the behaviour of selected local features. Firstly, an initial vessel-pixel density

is estimated using a proposed background extraction method. The approach aims to

estimate the contrast (background) of pixels behind vessel structures. A simple image-

subtraction and global-threshold segmentation were used to separate the vessel struc-

tures from the estimated background yielding a basic vessel network segmentation.

The global thresholding segmentation, however, reduces the number of vessel-pixels

as pixels bordering vessel structures are usually classified as background rather than

vessels. Intensities of vessel-bordering pixels are better approximated by the average

background, so the global-thresholding misclassifies those pixels. Underestimating the

prior vessel probability influences on the estimation of posterior vessel probabilities.

Compensation for loss of bordering pixels may improve posterior estimates.

Secondly, the method used to estimate the likelihood is based on features from

the image being treated. Mean contrast, and power-of-noise are some estimates influ-

encing features of synthetic images which eventually produce the likelihood for a given

image. Misestimating those values may propagate an underestimation to the posterior

probabilities.
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Figure 5.23: Comparative of labelling approaches: (a) Normalised-input image, (b) ground
truth, (c) proposed probabilistic labelling, (d) Frangi [35], and (e), (f) 3D view of
the resulting labelling.



Chapter 5. Probabilistic labelling of vessels 105

The model used to produce synthetic images idealises vessels as cylindrical

straight objects. We assumed that vessels lie in a plane and can be imaged normal

to their longitudinal direction. Nonetheless, in reality, fundus eye photography image

vessel structures uses light reflected by the retina which has a degree of concavity. In

addition, it is highly likely that vessels will present orientation variations. These and

other conditions such overlapping introduce a component to the 2D images that make

the enhancement of vessel pixels difficult.

Configuration of the probability density function—termed likelihood—is an-

other factor affecting accuracy of the posterior vessel estimates. Changes in the num-

ber of bins for each eigenvalue measure vary the posterior estimations. For a large

number of bins, even though all vessel pixels were labelled, posterior probabilities

are small that the overall performance drops to AUC=0.75, 1 being the perfect perfor-

mance. Small numbers of bins in λ1 exhibit a better performance. Results are fairly

alike for the number of bins in λ2 when combined with a reduced number of bins in

λ1.

5.11 Conclusions

Details of the proposed probabilistic vessel-pixel labelling was provided in this chap-

ter. We used a physics-based model of the process by which the image of a vessel is

formed. The model provides a framework to generate synthetic vessel images which

were used to analyse low-level features with Monte Carlo simulations in order to en-

hance vessel structures in retinal images.

The proposed probabilistic labelling method relies on other estimated probabil-

ities. Firstly, the prior vessel probability is estimated using a proposed background

extraction method. Based on further analysis of a normalised-image’s histogram,

distributions of intensities were modelled by Gaussian distributions as vessel- and

background-like pixels. The analysis suggests that the vessel-pixel density was un-

derestimated by the initially used method. Secondly, light absorption coefficient is one

of the parameters used to generate synthetic images to estimate the likelihood. Varying
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the coefficient may produce more errors due to noise affecting the vessel pixels. Even-

tually, underestimation of probabilities is propagated to the posterior vessel probability

estimates.

The proposed probabilistic labelling produced AUC = 0.9 being AUC = 1 the

perfect performance. The meaning of the performance is difficult to interpret in med-

ical image analysis since it is a statistical measure. It is well known, for instance, that

some vessel detectors based on line-detection methods have problems with junctions

and bifurcations, which can produce a qualitative low performance for some purposes

in medicine. Nonetheless, this value can be used to compare with other approaches

under similar conditions. Results were compared with Frangi [35], a much-used ves-

sel detector algorithm, under the same criteria to form the resulting labelled image.

Frangi’s performance was AUC = 0.925. Even though our probabilistic labelling ap-

proach did not outperform Frangi in the experiments, in the next chapter some infor-

mation suggesting future work may improve our results is detailed.



Chapter 6
Conclusions and future directions

In this thesis, we presented a novel vessel-pixel labelling based on Bayes’ rule for

enhancement of multi-scale vessel structures in eye fundus images. Unlike many cur-

rent vessel detectors, our approach is based on a probabilistic approach to label pixels

with the estimated probability of falling within the central section of a vessel structure.

Our approach combines local low-level- and global- features to estimate the maximum

posterior vessel probability.

In this chapter we summarise the main contributions of this work and discuss

future work.

6.1 Contributions

First, we measured the performance of some much-used vessel detectors in order to

select the one showing the best performance. The aim of the study was to select a

vessel detector to fairly compare our probabilistic labelling method under the same

conditions. Frangi [35] showed the best performance under constrained conditions.

The resulting analysis yielded a conference paper publication.
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Second, we proposed a local background estimation method based on statistical

analysis of the intensities of neighbouring pixels. The method aimed at background

contrast estimation by analysing randomly selected neighbour pixels, and the group of

pixels showing the most uniform behaviour was selected to estimate the contrast. Even

though the re-estimation carried out along the optic disc bounds was based on a manual

method to locate the region, the background estimates were enhanced. Automated

optic disc location is suggest and discussed in the next section.

Third, unlike many studied vessel detector approaches, we used the green com-

ponent only, of the RGB colour space, from images in our experimentation. We for-

mulated an image normalisation that reduced contrast variation across the image. The

resulting normalised image was eventually used for the labelling.

Four, a solid physics-based model was proposed to generate synthetic images.

The model mimics the process by which the image of a vessel is formed. The model

was used to mirror the eye fundus imaging process, and assumes light absorption by

eye tissue is uniform. Synthetic images were generated using variates such as noise

and orientation to cover possible feature values in real images.

Five, the probabilistic method was fairly compared with Frangi vessel detector.

Both approaches are based on multi-space image representation to cope with detection

of vessels at a range of diameters, compute the Hessian matrix and use eigenvalues to

describe the principal local curvature. Even though the performance of our approach

was unable to outperform the Frangi detector, there are some suggestions discussed in

the next section promising better results.

6.2 Future work

Our proposed vessel labelling approach is based on realistic models to generate syn-

thetic images and probabilistic methods for using Bayes’ rule as probabilistic ap-

proach. The overall performance achieved .9 out of 1. There are further refinements

that can achieve improvements in some sections of the process to produce better la-

belling.

Analysis of the histogram of normalised images suggested that vessel-pixel den-

sity, taken as prior vessel probability, was underestimated. A more solid method than
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the two-class global thresholding segmentation might better approximate the vessel

density estimation if bordering pixels are weighted and classified as vessels.

An automated-optic-disc location method can be integrated into our approach to

make the background estimation a human-interaction independent tool. Also, further

analysis around the re-processed region can reduce fragmentation of vessels that follow

orientation of the used scan-line to re-estimate the background contrast.

Tuning of the absorption coefficient, a parameter to generate synthetic vessel

images, may vary the likelihood estimations. By decreasing the absorption coefficient,

the signal is prone to being affected by noise. The number of trials used in Monte

Carlo simulations can better describe vessel features—eigenvalues—due to the number

of variates (such as power-of-noise and vessel diameter) to cover all possible values

presented in real images.

The ground truth does not penalise light reflections produced along the central

section of some main vascular structures. Our approach, however, labelled those pixels

with smaller probability producing labelling of parallel narrow structures. This issue

may represent a reduction on the quantitative performance.



Appendix A
2D-Histogram smoothing using a

triangular distribution function

The triangular smooth is a smoothing algorithm based on a weighted smoothing func-

tion. The method replaces each point in the signal with the estimated value given by

a triangular function covering an n adjacent points termed smooth width. Usually n is

an odd number yielding a symmetrically balanced triangle function around the central

point—the point to be replaced.

In 1D-dataset and three-point smooth denoted by n = 3, for instance, the esti-

mated replacing value is given by (Y−1 +2Y0 +Y+1)/4, where Yi is the response of the

adjacent points. When the resulting value is equal to the original data, the smoothing

results in a unit-gain smooth. In 1D, for instance, it can be described as a straight

line, where the central- and adjacent-points have the same value. In the example de-

scribed above, there is assumed x-axis intervals in the dataset being uniform allowing

to preserve the triangular function symmetrically balanced.

The method can be extended to smooth 2D-data by combining triangular func-

tions, where they can be dimensionally distinct one from the other. The smoothing
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process remains valid by sliding the 2D-smoothing function over the data where the

function is centrally placed on every cell in the 2D-data to estimate its replacing value.

The proposed histogram-smoothing method, however, does not intend to

smooth the counts in the 2D-dataset of a histogram. The aim of the proposed method

is, rather than increasing by 1 the bin’s counts where a sample falls, the entry is blurred

into the histogram by estimating the gain for both, the current- and the adjacent-bins.

A pyramid-shaped element is centrally located on the sample’s position. Length

and width of the element are given by the bin size where the sample falls. In the

ideal but most-likely unrealistic case, if a sample falls at the central point of a bin the

pyramid-shaped element matches the bin boundaries producing a unit-gain since the

volume under the element is normalised and taken as 1.

If a sample does not fall at the central point of a bin, the pyramid element

overlaps adjacent bins. The method then estimates the volume of the pyramid—gain—

sharing with the adjacent bins. Eventually, the estimated gains are counted into their

corresponding bins. Figure A.1(a) illustrates how the base of the pyramid element

overlaps three adjacent bins. In the figure, the fraction of the pyramid falling into each

of the overlapping regions denoted by {a,b,c,d} contributes to the overlapped bin.
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Figure A.1: Smoothing histogram entries. (a) The unit-gain of a sample (λ2,λ1) is shared with
the adjacent bins overlapped by the pyramid element. The fraction volume of the
pyramid falling within the regions a,b,c, and d contributes to their bins. (b) A
sample (λ2,λ1) falling within the histogram bounds producing loss of fractional
entries.

This method of distributing the unit-gain is also employed at the end of the

histogram range such that a sample which falls within the histogram bounds may be

partially accumulated into the histogram producing loss of fractional entries as shown

in Figure A.1(b).
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