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Abstract: In this thesis we investigate the theory of quantum hypothesis
testing and its potential applications for the new area of quantum technolo-
gies. We first consider the asymmetric formulation of quantum hypothesis
testing where the aim is to minimize the probability of false negatives and
the main tool is provided by the quantum Hoeffding bound. In this context
we provide a general recipe for computing this bound in the most impor-
tant scenario for continuous variable quantum information, that of Gaussian
states. We then study both asymmetric and symmetric quantum hypothe-
sis testing in the context of quantum channel discrimination. Here we show
how the use of quantum-correlated light can enhance the detection of small
variations of transmissivity in a sample of photodegrabable material, while
a classical source of light either cannot retrieve information or would de-
stroy the sample. This non-invasive quantum technique might be useful to
realize in-vivo and real-time probing of very fragile biological samples, such
as DNA or RNA. We also show that the same principle can be exploited
to build next-generation memories for the confidential storage of confiden-
tial data, where information can be read only by well-tailored sources of
entangled light.
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Chapter 1

Introduction

1.1 General scope of the thesis

Quantum technologies represent one of the most exciting fields of investigation, at-
tracting the interest of many research groups all over the world, as well as the
interest of research funding bodies and the first big financial investors [11]. Broadly
speaking, quantum technology is that vast interdisciplinary area where the unique
and powerful features of quantum mechanics [59] are exploited to improve the per-
formance of practical tasks with direct application to technology. From this point
of view, quantum information [45] is regarded as a prominent science, for its revolu-
tionary approach to use quantum systems to speed up computing [65], improve the
security of communications [28], and allow for new techniques for manipulating and
transmitting information [7,8,13,26]. In particular, the latest development has been
given by the field of “continuous variable” quantum information, which considers
quantum systems with infinite-dimensional Hilbert spaces, as the optical modes of
the electromagnetic field, described in terms of position and momentum quadra-
tures. The states of these systems have equivalent phase-space representations and
are typically Gaussian [78].

Here we consider one of the central topics in quantum information, which is
quantum hypothesis testing (QHT). This topic is first introduced as a problem of
quantum state discrimination [5,18], where two (or more) states of a quantum system
must be distinguished by means of a quantum measurement. This problem has
closed analytical solutions and a series of bounds which are easy to compute. More
interesting and advanced is the problem of quantum channel discrimination [1,19,20,
32,58], where we aim to distinguish between two (or more) transformations acting on
the states of a quantum system, and the optimal strategy involves an optimization
on both input states and output measurements. The general solution of this problem
is an open question, therefore representing a rich area of research. The application of
this problem to practical examples, as modeling the sensing of far and noisy targets,
a protocol known as “quantum illumination” [31,41,64,73,75,81], or the readout of
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digital memories, a protocol known as “quantum reading” [10, 22, 30, 34, 44, 50, 53],
has demonstrated the possibility of non-trivial boosts based on the use of quantum
entanglement with respect to classical strategies.

In this thesis we aim to further extend this impact in quantum technology in
several aspects. First, we develop a theory of asymmetric quantum state discrimi-
nation with Gaussian states. This means that we derive formulas which specifically
evaluate the probability of false negatives, corresponding to the worst case scenario
where an hypothesis (such as the presence of an illness) is true but the test provides
a negative result (i.e., no illness is detected). These formulas are easily computable
and represent a basic tool for asymmetric quantum sensing where the role of false
positives is less important, such as in biomedical testing.

Second, we exploit this tool and also the approach of symmetric quantum hy-
pothesis testing (where the two hypotheses have the same cost) to show that we can
greatly improve the detection of loss at the low photon regime. This is important
for non-invasive testing of a bacterial/cell samples. By modeling the probing of
biological material as a problem of quantum channel discrimination, we show that
the use of quantum entanglement may retrieve all the relevant information from the
material while using a negligible amount of energy. This technique would be com-
pletely noninvasive, compared to the standard methods used in today’s biological
instruments (e.g., spectrophotometers), which are based on highly energetic thermal
sources. In principle, our approach could pave the way for an in-vivo and real-time
testing and analysis of highly photo-degradable material, which would otherwise be
destroyed by standard spectroscopic techniques.

Finally, we show how the previous methods can be adapted and exploited to
design classical memories where the storage of data is confidential. The use of a
well-tailored entanglement source may enable the complete readout of data from
an optical memory, while any other approach, e.g., with thermal or coherent state
source, would destroy this data. Such a scheme introduces a new layer of technolog-
ical security to data storage.

1.2 Specific contributions

Our first contribution regards the asymmetric formulation of quantum hypothesis
testing, where two quantum hypotheses have different associated costs. In this
problem, the aim is to minimize the probability of false negatives and the optimal
performance is provided by the quantum Hoeffding bound. Here we show how this
bound can be simplified for pure states. Most importantly, we provide a general
recipe for its computation in the case of multimode Gaussian states, also showing
its connection with other easier-to-compute lower bounds. In particular, we provide
analytical formulas and numerical results for important classes of one- and two-
mode Gaussian states. This paper has been published in Physical Review A as
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“Asymmetric quantum hypothesis testing with Gaussian states” [G. Spedalieri, S.
L. Braunstein, Phys. Rev. A 90, 052307 (2014)].

Our second contribution is the study of quantum sensing of loss (or attenuation)
by considering both symmetric and asymmetric quantum hypothesis testing, by ex-
ploiting the tools of the quantum Chernoff bound and quantum Hoeffding bound,
suitably formulated for Gaussian states and continuous variable systems. In both
approaches the use of an entangled source, a so called Einstein-Podolsky-Rosen
(EPR) state, is able to outperform the classical strategy based on coherent state
transmitters, if we assume the regime of low photon numbers. By introducing phe-
nomenological models of bacterial/cell growth and photo-degradability, we show how
the quantum advantage can be made extreme for tasks such as the non-destructive
testing of biological samples and the readout of classical memories. This paper is
under submission to Physical Review A as “Quantum sensing of loss: Implications
for biological testing and data storage” [G. Spedalieri et al.]

Our third contribution is related to a central issue in modern cryptography, i.e.,
the possibility to confidentially store information in a memory for later retrieval.
Here we explore this possibility in the setting of quantum reading, which exploits
quantum entanglement to efficiently read data from a memory whereas classical
strategies (e.g., based on coherent states or their mixtures) cannot retrieve any in-
formation. From this point of view, the technique of quantum reading can provide
a new form of technological security for data storage. This paper has been pub-
lished in the journal Entropy as “Cryptographic aspects of quantum reading” [G.
Spedalieri, Entropy 17, 2218-2227 (2015)].

1.3 Assumed knowledge

This thesis assume the language of quantum information with Gaussian states. The
reader interested in deepening this knowledge may refer to very good reviews in
the field, in particular Ref. [78]. In the appendix we also provide some preliminary
notions that may be used to better understand the tools and notions used in this
thesis.
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Chapter 2

Literature review

The general field which is at the basis of this research work is continuous variable
quantum information, in particular, its formulation with Gaussian states. These
tools are discussed in our Appendix and they are also available in reviews on the
field, such as Refs. [14,78]. In this literature review we just recall some basic notions
on Gaussian states and then we focus on the area of quantum hypothesis testing
and its various formulations.

2.1 Basics of bosonic systems and Gaussian states

A bosonic system of n modes is a quantum system described by a tensor product
Hilbert space H⊗n and a vector of quadrature operators [14,15]

x̂T := (q̂1, p̂1, . . . , q̂n, p̂n). (2.1)

These operators satisfy the vectorial commutation relations

[x̂, x̂T ] := x̂x̂T − (x̂x̂T )T = 2iΩ , (2.2)

where Ω is the symplectic form, defined as

Ω :=
n⊕

k=1

(
0 1
−1 0

)
. (2.3)

Correspondingly, a real matrix S is called ‘symplectic’ when it preserves Ω by con-
gruence, i.e., SΩST = Ω.

By definition, we say that a bosonic state ρ is ‘Gaussian’ when its phase-space
Wigner representation is Gaussian [78]. In such a case, we can completely describe
the state by means of its first- and second-order statistical moments. These are the
mean value or displacement vector x̄ := Tr(x̂ρ), and the covariance matrix (CM) V

with generic element
Vij = 1

2Tr({x̂i, x̂j}ρ)− x̄ix̄j , (2.4)
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where {, } denotes the anticommutator. The CM is a 2n×2n real symmetric matrix,
which must satisfy the uncertainty principle [78]

V + iΩ ≥ 0 . (2.5)

An important tool in the manipulation of Gaussian states is Williamson’s theo-
rem [78]: For any CM V, there is a symplectic matrix S such that

V = SWST , (2.6)

where

W =
n⊕

k=1

νkI , I :=

(
1 0
0 1

)
. (2.7)

The matrix W is the ‘Williamson form’ of V, and the set {ν1, · · · , νn} is the ‘sym-
plectic spectrum’ of V. According to the uncertainty principle, each symplectic
eigenvalue must satisfy the condition νk ≥ 1, with νk = 1 for all k if and only if the
Gaussian state is pure.

2.2 Quantum State Discrimination

Quantum state discrimination [5, 18] is a quantum formulation of the statistical
problem of hypothesis testing. The simplest formulation involves the discrimination
of two arbitrary quantum states (binary discrimination). The scenario is the fol-
lowing: consider a quantum system which is prepared in some unknown quantum
state ρ, which can be ρ0 with a priori probability p0 or ρ1 with a priori probability
p1 = 1− p0. For instance we can imagine one party, say Alice, who prepares such a
system. This system is then passed to Bob, who does not know which choice Alice
made. Thus, Bob must solve a test with the following two hypotheses

Null hypothesis H0 : ρ = ρ0 , (2.8)

Alternative hypothesis H1 : ρ = ρ1 . (2.9)

In order to discriminate between these two hypotheses, i.e., distinguish between
the two states, Bob applies a quantum measurement to the system, described by a
general positive-operator valued measure (POVM) [45]. Without loss of generality,
Bob can always reduce his measurement to be a dichotomic POVM {Πk} with
k = 0, 1 [33]. The outcome k = 0, with POVM operator Π0, is associated to the null
hypotheses H0, while the other outcome k = 1, with POVM operator Π1 = I−Π0, is
associated with the alternative hypothesisH1. Bob’s aim is to apply the best possible
dichotomic POVM to discriminate the two states, minimizing the probability of
making an error. In fact, note that these states may be non-orthogonal, so that no
POVM can achieve perfect discrimination.
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As an example we may consider a Stern-Gerlach (SG) experiment [59]. If Alice
prepares a spin-half particle (qubit) in spin up |↑〉 or spin down |↓〉 along the z

direction, then Bob can always distinguish the two states using a magnetic field
along the z direction. But, if Alice prepares a spin up |↑〉 along z and spin up |→〉
along x, these states are non-orthogonal and no SG experiment is able to distinguish
them perfectly. For instance, using a magnetic field along the z-direction for SG
device, the state

|→〉 =
1√
2

(|↑〉+ |↓〉) (2.10)

will give the same output of |↑〉 half of the time.

In order to better characterize the discrimination problem and quantify its op-
timal performance, we first introduce the notions of type-I and type-II errors with
their associated conditional error probabilities. By definition, the type-I error, also
known as “false-positive”, is when Bob accepts the alternative hypothesis H1 when
the null hypothesis H0 holds. We have a corresponding error probability expressed
by

α := p(H1|H0) = Tr(Π1ρ0). (2.11)

Note that p(H1|H0) is a compact notation for p(accept H1 | holds H0). Then, the
type-II error or “false-negative” is when Bob accepts the null hypothesisH0 when the
true hypothesis is the alternative H1. This error occurs with conditional probability

β := p(H0|H1) = Tr(Π0ρ1). (2.12)

Note that we can introduce other probabilities, but they are fully determined by
α and β. For instance, we may also consider the “specificity” or “true-negativity”
of the test with probability

α′ := p(H0|H0) (2.13)

which is simply given by
α′ = 1− α. (2.14)

Then, we may also consider the “sensitivity” or “true-positivity” of the test with
probability

β′ := p(H1|H1) = 1− β. (2.15)

The costs associated with the two types of error can be very different especially in
the medical and histological settings. For instance, in a medical test, H0 is typically
associated with no illness, while H1 with the presence of the disease. It is therefore
clear that we would like to have tests where the false negative probability (or rate)
β is the lowest possible, so that ill patients are not diagnosed as healthy. For this
reason, in a medical setting, hypothesis testing is asymmetric, meaning that we aim
to minimize one of the two conditional error probabilities while imposing a constraint
on the other.

18



However, in other settings, the two errors have the same importance, e.g., in the
readout of a memory device where H0 may be associated with the bit-value u = 0,
and H1 with the other bit-value u = 1. In this case, it makes sense to consider a
symmetric test where we aim to jointly minimize the two error probabilities.

Here we start by discussing the general meaning of Bayesian cost in the setting
of (quantum) hypothesis testing (Sec. 2.2.1). Then we review the specific case of
symmetric testing in Sec. 2.2.2 and asymmetric testing in Sec. 2.2.3.

2.2.1 Bayesian cost

Let us provide a brief survey of the concept of Bayesian cost. We consider binary
hypothesis testing, but the notion can easily be generalized and formulated forN ≥ 2
different hypotheses. As we have seen before, Bob should distinguish between two
hypotheses, H0 (null) and H1 (alternate), occurring with some a priori probabilities
p0 and p1, respectively. In the quantum setting, these hypotheses are associated with
two possible states, ρ0 and ρ1, taken by some quantum system. On this system, Bob
performs a dichotomic POVM {Πk} with k = 0, 1.

Associated with the test, there is the conditional probability of accepting the
hypothesis Hk when the actual hypothesis is Hi. In the quantum setting, this is
expressed by the Born rule

p(Hk|Hi) = Tr (Πkρi) . (2.16)

Then, we can also introduce a “cost” matrix C, whose generic element Cki represents
the ‘cost’ associated with conditional probability p(Hk|Hi). In general, the goal of
the binary test is to minimize the following Bayes’ cost function

CB :=
∑
i,k

Cki pi p(Hk|Hi) , (2.17)

where p0 and p1 = 1−p0 are the a priori probabilities associated with the hypotheses
H0 and H1.

In particular, we may choose

C =

(
0 C01

C10 0

)
, (2.18)

so that
CB = C10 p0 p(H1|H0) + C01 p1 p(H0|H1). (2.19)

Depending on the cost of the errors, C01 and C10, we may prefer symmetric or
asymmetric testing. When the costs are the same (C01 = C10 = 1), we adopt sym-
metric hypothesis testing. Correspondingly, the cost function becomes equivalent to
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the mean error probability

CB = Perr := p0 p(H1|H0) + p1 p(H0|H1). (2.20)

By contrast, in case of completely unbalanced costs, such as C01 = 1 or C10 = 0,
we adopt asymmetric hypothesis testing, with the cost function collapsing into the
false-negative error probability, i.e., CB = p(H0|H1).

2.2.2 Symmetric testing

In symmetric testing type-I and type-II errors are equivalent (but not necessarily
equiprobable). For this reason, the optimal performance corresponds to minimizing
the average error probability [18]

Perr = p0α+ p1β = p0p(H1|H0) + p1p(H0|H1) . (2.21)

In quantum state discrimination, this means that Bob’s POVM {Π0,Π1} must min-
imize

Perr = p0Tr(Π1ρ0) + p1Tr(Π0ρ1) . (2.22)

Helstrom Bound

Symmetric state discrimination has a closed solution which is known as the “Hel-
strom bound” [33]. Given two states ρ0 (with probability p0) and ρ1 (with probability
p1), Bob is able to distinguish them up to a minimum error probability

Pmin
err =

1
2
(1− ‖γ‖1) (2.23)

where
γ := p0ρ0 − p1ρ1 (2.24)

is a non-positive Hermitian operator called the “Helstrom matrix” and

‖γ‖1 := Tr |γ| (2.25)

is the trace-norm (providing a real number between 0 and 1).

In particular, Bob’s optimal POVM {Π0,Π1 = I −Π0} is given by a projector
Π0 onto the positive part γ+ of the Helstrom matrix γ [33] (we call this optimal
detection the “Helstrom POVM” ). To construct this detection, we may write the
spectral decomposition of the Helstrom matrix as

γ =
∑

k

γ
k
|k〉〈k| (2.26)
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then Π0 is the projector
P (γ+) =

∑
γ+

k

|k〉〈k| (2.27)

where the sum is limited to the positive eigenvalues γ+.

From now on we consider the case where p0 = p1 = 1/2 which means that the
two states (quantum hypotheses) are equiprobable

H0 : ρ = ρ0 p0 =
1
2
, (2.28)

H1 : ρ = ρ1 p1 =
1
2
. (2.29)

In this case the Helstrom matrix is given by

γ =
1
2
(ρ0 − ρ1) (2.30)

and the minimum error probability takes the form

Pmin
err =

1
2

[
1− 1

2
‖ρ0 − ρ1‖1

]
=

1
2
[1−D(ρ0 , ρ1)], (2.31)

where D(ρ0 , ρ1) is the “trace-distance” between the two states. For D = 0, we have
ρ0 = ρ1 and Pmin

err = 1/2 (random guessing), while for D = 1, we have orthogonal
states ρ0 ⊥ ρ1 and Pmin

err = 0 (perfect discrimination).

A particular example is Peres’ formula [48] for discriminating between two equiprob-
able pure states (kets) |ϕ0〉 and |ϕ1〉 of a qubit. In this case, the minimum error
probability computed using the Helstrom bound provides the formula

Pmin
err =

1− sin x
2

2
(2.32)

where x is the angle between the two kets on the Bloch sphere [45]. This angle is
related to their fidelity [37], which is a way to quantify the similarity between the
two states. In fact, their fidelity is given by

F := |〈ϕ0|ϕ1〉|2 = cos2
x

2
. (2.33)

State discrimination as bit encoding/decoding

Note that a binary test where Alice prepares two equiprobable states ρ0 and ρ1

corresponds to encoding a bit of information u = 0, 1 in the quantum system. Cor-
respondingly, Bob’s state discrimination corresponds to decoding that bit from the
system. Since the process is generally affected by an error-probability, Bob cannot
retrieve all the information. There is a simple relation between the minimum error
probability Pmin

err affecting the state discrimination and the maximum amount of
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information Imax in the bit decoding. This is given by:

Imax = 1−H(Pmin
err ) ∈ [0, 1], (2.34)

where
H(p) := −p log2 p− (1− p) log2(1− p) (2.35)

is the binary Shannon Entropy. Note that

Perfect discrimination: Pmin
err = 0⇒ Imax = 1 bit (full decoding) (2.36)

Random guessing: Pmin
err =

1
2
⇒ Imax = 0 bit (no decoding). (2.37)

This connection has been used in the protocols of quantum illumination [31, 41, 64,
73,75,81] of targets and quantum reading of digital memories [10,22,30,34,44,50,53].

Quantum Chernoff Bound

In general the Helstrom bound may be difficult to compute but we can use other
bounds to provide an estimate of the minimum error probability Pmin

err . The most
important one is the quantum Chernoff (QC) bound [3, 4, 46]. This is an upper
bound

Pmin
err ≤ PQC , (2.38)

which is defined as [3]

PQC :=
1
2

inf
s∈[0,1]

Cs , (2.39)

where the generalized overlap Cs is given by

Cs := Tr(ρs
0
ρ1−s

1
) ≤ 1. (2.40)

Note that the QC bound is defined using an infimum in [0, 1] instead of a minimum
because the generalized overlap Cs may have discontinuities at the border points
s = 0, 1 where C0 = C1 = 1. Indeed, this happens when one of the two states is
pure. For instance, if we have

ρ0 = |ϕ0〉〈ϕ0| (2.41)

then
inf
s
Cs = lim

s→0+
Cs. (2.42)

Furthermore, in this special case, the QC bound is directly related to the quantum
fidelity by the formula

PQC =
1
2
F (|ϕ0〉, ρ1) (2.43)

where
F (|ϕ0〉, ρ1) = 〈ϕ0|ρ1 |ϕ0〉. (2.44)

22



Quantum Battacharyya Bound

If we ignore the minimization in s and we set s = 1/2, we derive a bound which it
is easy to compute and helpful in the discrimination of mixed states. This is the
quantum Battacharyya (QB) bound [52,78]

PQC ≤ PQB :=
1
2
C 1

2
=

1
2
Tr[
√
ρ0
√
ρ1 ]. (2.45)

This bound has been used to prove quantum illumination [73].

Fidelity Bounds

Additional bounds can be constructed using quantum fidelity, which is defined as [37]

F =
[
Tr
(√√

ρ0ρ1
√
ρ0

)]2

(2.46)

for two arbitrary states ρ0 and ρ1. Then we may build the upper-bound [25]

PQB ≤ F+ :=
1
2

√
F (2.47)

and the lower-bound [25]

F− :=
1−
√

1− F
2

≤ Pmin
err . (2.48)

In conclusion, we have a chain of inequalities

F− ≤ Pmin
err ≤ PQC ≤ PQB ≤ F+. (2.49)

Formulas for Gaussian States

Given two equiprobable Gaussian states, ρ0 and ρ1, we have a closed formula for the
computation of the generalized overlap

Cs := Tr(ρs
0ρ

1−s
1

) (2.50)

which is involved in the definitions of the QC bound and QB bound.

Consider the general case of two n-mode Gaussian states ρ0(x̄0,V0) and ρ1(x̄1,V1)
where their CMs can be decomposed as

V0 = S0 (⊕n
k=1ν

0
kI) ST

0 (2.51)

V1 = S1 (⊕n
k=1ν

1
kI) ST

1 (2.52)

where
{
ν0

k

}
is the symplectic spectrum of V0,

{
ν1

k

}
is the symplectic spectrum of

V1, and S0, S1 are symplectic matrices.
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The generalized overlap Cs can be written in terms of the mean values x̄0 and
x̄1, and the symplectic decompositions (S0, {ν0

k}) and (S1, {ν1
k}) of the two CMs

V0 and V1. In order to give this formulation, we first need to introduce the real
functions

Gs(x) :=
2s

(x+ 1)s − (x− 1)s
(2.53)

and
Λs(x) :=

(x+ 1)s + (x− 1)s

(x+ 1)s − (x− 1)s
(2.54)

which are positive for any x ≥ 1. Then, we also define the “symplectic action” of
Λs over an arbitrary CM

V = S (⊕n
k=1νkI) ST (2.55)

as
Λs(V)∗ = S [⊕n

k=1Λs(νk)I] ST . (2.56)

Given these preliminaries, we can now write the formula. For any s ∈ [0, 1], the
generalized overlap has the Gaussian expression [52]

Cs =
Πs√

detΣs
exp

[
−dTΣ−1

s d
2

]
(2.57)

where
d := x̄0 − x̄1 , (2.58)

Σs := Λs(V0)∗ + Λ1−s(V1)∗ , (2.59)

and finally
Πs := 2nΠn

k=1Gs(ν0
k)G1−s(ν1

k) . (2.60)

A particular case is represented by the discrimination of zero-mean Gaussian
states (x̄0 = x̄1 = 0), for which the previous formula simplifies to

Cs =
Πs√

detΣs
. (2.61)

If we also consider single-mode states (n = 1), the symplectic spectra are made by
a single eigenvalue and we can write the decompositions as

V0 = S0(ν0I)ST
0 = ν0S0ST

0 , (2.62)

V1 = S1(ν1I)ST
1 = ν1S1ST

1 . (2.63)

Then, we have

Σs = Λs(ν0)S0ST
0 + Λ1−s(ν1)S1ST

1 , (2.64)

Πs = 2sGs(ν0)G1−s(ν1). (2.65)
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Finally, another important formula is the fidelity F between two Gaussian states
ρ0(x̄0,V0) and ρ1(x̄1,V1), since the fidelity is used to construct two bounds for the
minimum error probability F− ≤ Pmin

err ≤ F+. This formula is known in the case of
single-mode Gaussian states, for which we have [60,61]

F (ρ0, ρ1) =
2

√
∆ + δ −

√
δ

exp
[
−1

2
dT (V0 + V1)−1d

]
(2.66)

where d := x̄1 − x̄0, and

∆ := det(V0 + V1), δ := det(V0 − 1) det(V1 − 1). (2.67)

Multicopy state discrimination

Until now we have considered the problem of single-copy state discrimination, where
a single system is prepared in two possible quantum states. In general we can extend
the problem to M -copy discrimination [18]. This means that Alice has M quantum
systems which are prepared in two equiprobable multi-copy states

H0 : ρ = ρ⊗M
0 = ρ0 ⊗ ...⊗ ρ0 , (2.68)

H1 : ρ = ρ⊗M
1 = ρ1 ⊗ ...⊗ ρ1 .

These systems are passed to Bob who performs a collective measurement on them.
This general POVM can be chosen to be dichotomic as before. The optimal POVM
is the Helstrom POVM which is a projector onto the positive part of the M -copy
Helstrom matrix

γ = ρ⊗M
0 − ρ⊗M

1 . (2.69)

Correspondingly the minimum error probability is given by the Helstrom bound
which now takes the multicopy form [33]

Pmin
err (M) =

1
2

[
1−D(ρ⊗M

0 , ρ⊗M
1 )

]
. (2.70)

It is typical to study the asymptotic behavior for large M . In this limit (M � 1)
we have an exponential decay of the error probability

Pmin
err (M) ' 1

2
e−Mκ (2.71)

where κ is called the “error-rate exponent”. Apart from the singular case where
the two states are identical ρ0 = ρ1 (for which κ = 0), the error-rate exponent κ
is strictly positive and therefore the error probability is a decreasing exponential in
the number of copies M .

For any number of copies M , we can define the multicopy QC bound which
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provides an upperbound to Pmin
err (M). This is defined as [3]

PQC(M) =
1
2

[
inf

s∈[0,1]
Cs

]M

. (2.72)

We may also consider the multicopy QB bound, which is given by [52]

PQB(M) =
1
2

(
C 1

2

)M
. (2.73)

Here it is important to note that these bounds (QC and QB) are easy to compute
because the generalized overlap is still computed over the single-copy states, i.e.,
Cs = Tr(ρs

0ρ
1−s
1 ), with the number of copies M only appearing as a power in the

formulas.

Similarly we can also extend the fidelity bounds to multicopy discrimination
which become [25]

F+(M) =
1
2
F

M
2 , F−(M) =

1−
√

1− FM

2
, (2.74)

where the fidelity F is evaluated over the single-copy states ρ0 and ρ1. Thus, we
have the following chain of bounds for the multicopy discrimination

F−(M) ≤ Pmin
err (M) ≤ PQC(M) ≤ PQB(M) ≤ F+(M). (2.75)

For large M we find that the QC bound is asymptotically tight, i.e.,

Pmin
err (M) ' PQC(M) for M � 1. (2.76)

More precisely, the QC bound has exactly the same error-rate exponent κ which
characterizes the asymptotic decay of the error probability. In other words, we have

PQC(M) ' e−Mκ, for large M . (2.77)

Explicitly the error-rate exponent can be expressed as

κ = − lim
M→+∞

1
M

lnPQC(M) = − ln
(
inf
s
Cs

)
. (2.78)

2.2.3 Asymmetric testing

As we have previously discussed, in asymmetric testing one hypothesis is more im-
portant than the other, i.e., false negatives must be avoided. For this reason, we are
interested in minimizing the error probability β of false negatives (type-II errors)
given some constraint α < ε for the probability of false positives (type-I errors).
We formulate the problem of asymmetric state discrimination directly in the set-
ting of multi-copy states. Consider the following two hypotheses (without a priori
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probabilities)

H0 : ρ = ρ⊗M
0 , (2.79)

H1 : ρ = ρ⊗M
1 .

The system in the unknown quantum state ρ is detected by a collective dichotomic
POVM {Π0,Π1 = I −Π0} which provides the correct answer up to conditional error
probabilities.

The probability of false positives (type-I errors) is the probability of accepting
the alternative hypothesis H1 despite the null hypothesis H0 being true

αM = p(H1|H0) = Tr(Π1ρ
⊗M
0 ). (2.80)

The probability of false negatives (type-II errors) is the probability of accepting the
null hypothesis H0 despite the alternative H1 being true

βM = p(H0|H1) = Tr(Π0ρ
⊗M
1 ). (2.81)

In the limit of a large number of copies (M � 1), these probabilities go to zero
exponentially. We are then interested in their asymptotic error-rate exponents, also
called “rate limits”, which are defined as [4]

αR = − lim
M→+∞

1
M

lnαM , (2.82)

βR = − lim
M→+∞

1
M

lnβM . (2.83)

Bob’s aim is to maximize the rate-limit βR, so that the error probability of false
negatives βM has the fastest exponential decay to zero.

Here one of the most important results is the “quantum Stein lemma” [4] which
connects βR with the quantum relative entropy between the single-copy states ρ0

and ρ1. For large number of copies M , there is a dichotomic POVM such that the
error probability of the false positives is bounded

αM ≤ ε for any 0 < ε < 1, (2.84)

and the error probability of false negatives goes to zero with error-exponent

βR = S(ρ0||ρ1) = Trρ0(ln ρ0 − ln ρ1). (2.85)

Another important result is the quantum Hoeffding bound [4]. For many copies
M � 1, there is a dichotomic POVM such that the rate-limit of false positives

αR ≥ r for any r > 0 (2.86)
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and the rate limit of false negatives satisfies βR = H(r), where

H(r) := sup
0≤s<1

−r s− lnCs

1− s
(2.87)

with Cs := Tr(ρs
0ρ

1−s
1 ) being the usual generalized overlap between the single-copy

states ρ0 and ρ1. Note that the quantum Hoeffding bound enforces a stronger
constraint on the error probability of false-positives.
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2.3 Quantum Channel Discrimination

Until now we have considered the problem of quantum state discrimination where a
system is prepared in one of two different quantum states by Alice and then subject
to a quantum detection by Bob, with the aim of determining the chosen state. The
problem was to identify the best quantum measurement and the minimum error
probability (average error probability in symmetric testing and false-negative error
probability in asymmetric testing).

Quantum channel discrimination [1,19,20,32,58,78] is a more complex problem
since Alice now chooses between different quantum channels. Recall that a quantum
channel is a suitable linear transformation which maps input states into output states
(see Appendices for more details). In the case of quantum channel discrimination,
finding the optimal strategy involves an optimization on all possible input states of
the unknown channel and all possible measurements at its output. In other words,
we need to solve a double-optimization problem, by adapting the mathematical tools
developed for the theory of quantum state discrimination.

2.3.1 Basic model

The simplest model consists of Alice choosing between two equiprobable quantum
channels E0 and E1. This is equivalent to encoding a bit of information k = 0, 1
into a binary ensemble of channels {Ek}. Alice’s choice is stored in a input-output
black-box which is then passed to Bob (see Fig. 2.1).


k=0 

k=1 
Dichotomic 

detector 

𝓔𝐤 
k 

Unknown 
channel 

Input Ouput 

𝓔𝐤 

𝐤=0,1 

Alice Bob 

Figure 2.1: Basic model of quantum channel discrimination. (Left) Alice encodes
a bit k into an ensemble of channels {Ek}, i.e., she chooses one of two equiprobable
channels E0 and E1, storing her choice in a box. (Right) Bob use an input state ρ
and an output dichotomic detector {Πk} to discriminate between the two possible
channels in the box. For a given input the ensemble of channels {Ek} is mapped into
an ensemble of output states {ρk} for which the optimal detection is known.

The aim of Bob is to discriminate between the two possible channels present
in the box, i.e., to decode Alice’s bit k = 0, 1. To achieve this, Bob feeds the box
with a system prepared in some known quantum state ρ and measures the output
by applying a dichotomic POVM {Π0,Π1}, as shown in Fig. 2.1. The problem is
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to find the optimal discrimination strategy which means optimizing Bob’s decoding
strategy on both the input state ρ and the output POVM {Πk}. For simplicity we
can approach this problem in two steps, one step having a closed solution, the other
step being an open question.

The first step consists of fixing the input ρ state. In this case, channel discrim-
ination becomes a problem of state discrimination, since the ensemble {Ek} of the
two channels is mapped into an ensemble made by two possible output states {ρk}
with ρk = Ek(ρ). This part of the problem has a known solution since the optimal
POVM is Helstrom’s and the minimum error probability is determined by the trace
distance of the output states

Pe,min(ρ) =
1
2

[1−D(ρ0, ρ1)] . (2.88)

Now, the second step is the optimization over the input state ρ. In other words
the minimum error probability affecting the channel discrimination E0 6= E1 is given
by minimizing the Eq. (2.88) over all input states ρ, i.e.,

Pe,min = min
ρ
Pe,min(ρ). (2.89)

The open question in channel discrimination is to find this optimal value, as well
as the optimal input state ρopt. Once this question has been answered the optimal
output detection is automatically found, since it is the Helstrom POVM relative to
the discrimination of the output states E0(ρopt) and E1(ρopt).

2.3.2 Multicopy channel discrimination

We can extend the process from one-copy to many-copy probing of the box [41,73,78].
This means considering M systems prepared in the M -copy input state

ρ⊗M = ρ⊗ ...⊗ ρ︸ ︷︷ ︸
M

. (2.90)

Each copy ρ is transformed by the unknown channel Ek, so that the global output
state is an M -copy state of the form

ρ⊗M
k = ρk ⊗ ...⊗ ρk, where ρk = Ek(ρ). (2.91)

This multi-copy output is finally detected by a collective measurement, which can
be taken to be a dichotomic POVM (see Fig. 2.2).

The minimum error probability will now depend on the number M of copies and
is given by the multi-copy Helstrom bound.

P
(M)
e,min(ρ) =

1
2

[
1−D(ρ⊗M

0 , ρ⊗M
1 )

]
. (2.92)
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Figure 2.2: Multicopy channel discrimination

In order to achieve the optimal discrimination of the two channels {E0, E1} we must
minimize the previous quantity over all input states

P
(M)
e,min = min

ρ
P

(M)
e,min(ρ). (2.93)

2.3.3 Assisted channel discrimination

The most general formulation of the problem of quantum channel discrimination
involves an input state ρ(M,L) consisting of M signal systems (used to probe the
box) and additional L idler systems (which are directly sent to assist the output
detection) [41,73,78]. The output state takes the form

ρk = (E⊗M
k ⊗ I⊗L)ρ(M,L) (2.94)

where the M signals are transformed by the channel E⊗M
k = Ek ⊗ ... ⊗ Ek, while

the idlers are all subject to the identity. At the output, a dichotomic POVM is
collectively applied to all the signal and idler systems. See Fig. 2.3 for a schematic.

For a given input ρ(M,L) we have the conditional error probability

Pe,min[ρ(M,L)] =
1
2

[1−D(ρ0, ρ1)] . (2.95)

The optimal performance of channel discrimination is achieved by optimizing over
all the inputs

P
(M,L)
e,min = min

ρ(M,L)
Pe,min[ρ(M,L)]. (2.96)

Note that this description is very general and can be specified to various particular
cases by fixing the values of M and L. For instance, we have

• Single-copy unassisted strategy for M = 1 and L = 0,

• Single-copy assisted strategy for M = L = 1,

• Multi-copy unassisted strategy for M > 1 and L = 0, with ρ(M) = ρ⊗M
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Figure 2.3: Assisted channel discrimination with M signals and L idlers

• Multi-copy assisted strategy for M = L > 1 and ρ(M,M) = ρ⊗M
SI = ρSI ⊗ ...⊗

ρSI , where each copy is a bipartite state ρSI of a signal system S and an idler
system I.

2.3.4 Bosonic Channel Discrimination

Now we consider the problem of channel discrimination in the case of bosonic systems
where each signal and idler is described by a mode (e.g., an optical wave). In
particular, the bosonic channels we seek to discriminate are assumed to be Gaussian
channels. The simplest case is the discrimination between the identity channel E0 = I

and a pure-loss channel E1 = Eτ with transmissivity τ ∈ [0, 1] (which is equivalent
to a beam-splitter with an environmental vacuum state).

It is important to note that the problem of bosonic channel discrimination is non-
trivial only if we impose an energetic constraint on the input to the box. In fact, if we
are allowed to use arbitrarily high energy, then we can always perfectly discriminate
between two channels E0 6= E1 by using a single input mode. For instance, in the
discrimination of I and Eτ , we could use a coherent input state ρα = |α〉〈α|, giving
the two possible outputs

ρ0 = I (|α〉〈α|) = |α〉〈α| , (2.97)

ρ1 = E1 (|α〉〈α|) =
∣∣√τα〉〈√τα∣∣ . (2.98)

Now even for τ close to 1, we could use a very energetic coherent state with an
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amplitude α large enough so that the output energies

E0 = |α|2 , E1 = τ |α|2 (2.99)

become very different. It is clear that in the limit of |α|2 → +∞ we can perfectly
discriminate the two output energies and therefore the two channels in the box.

By contrast the problem becomes highly non-trivial when we impose an energetic
constraint on the input. In this case perfect discrimination is generally not possible
and we need to identify the optimal input state which satisfies the constraint. From
a practical point of view, the energetic constraint is also important when the box
to probe is a fragile sample, e.g., highly photo-degradable as is the case of specific
biological molecules (RNA etc.). In the following section, we then formulate bosonic
channel discrimination as a constrained optimization problem.

General formulation with constrained energy

As shown in Fig. 2.4, we consider an input state which irradiates M signal modes
on the box plus additional L modes sent to the output detector. In particular, the
total energy of the signal modes is constrained to be equal to N̄ average number
of photons. This means that each signal mode carries an average of N̄/M mean
photons. For a given input state or transmitter ρ(M,L,N̄) we have two possible
output states ρk = (E⊗M

k ⊗ I⊗L)[ρ(M,L,N̄)].

k=0 

k=1 

M signals 

L idlers 

𝓔𝐤 

𝓔𝐤 (𝐌, 𝐋, 𝐍) 
_ 

_ 
N 

Figure 2.4: Bosonic channel discrimination with energetic constraint on the signal
modes.

From the two output states, ρ0 and ρ1, we can compute the conditional error

33



probability for a fixed constrained transmitter ρ(M,L,N̄), i.e.,

Pe,min[ρ(M,L,N̄)] =
1
2

[1−D(ρ0, ρ1)] . (2.100)

The optimal performance of channel discrimination now requires a minimization
over all constrained transmitters ρ(M,L,N̄). In other words, we consider

P
(M,L,N̄)
e,min = min

ρ(M,L,N̄)
Pe,min[ρ(M,L,N̄)]. (2.101)

More generally, we can define the optimal performance at fixed input energy N̄ by
further optimizing over the number of signals M and idlers L, i.e.,

Pe,min(N̄) = min
M,L

P
(M,L,N̄)
e,min . (2.102)

This is the minimum error probability that we can reach by any type of transmitter
with the only constraint given by the number N̄ of mean photons hitting the box.
This problem is non-trivial for low photon numbers N̄ , while it is trivial for N̄ →
+∞ where Pe,min(N̄) → 0. Note also that we are considering here a “global”
constraint [78] where we restrict the total amount of energy hitting the box. Another
possibly could be considering a “local” energetic constraint [78] where we restrict
the mean number of photons n̄ of each signal mode. Assuming a local constraint in
multi-copy discrimination would give a total energy of N̄ = Mn̄, clearly going to
infinity for M → +∞.

Finding the solution of Eq. (2.102) for finite energy N̄ is an open-problem [78].
This is true even if we restrict the transmitters ρ(M,L,N̄) to be M -copy states of the
type

ρ⊗M
SI (N̄) = ρSI(n̄)⊗ ...⊗ ρSI(n̄)︸ ︷︷ ︸

M

(2.103)

where the single-copy ρSI(n̄) is a two-mode entangled state of a signal (with mean
energy n̄ = N̄/M) and an idler (whose energy may be unspecified). For instance
we do not know if a single-copy transmitter ρ⊗1

SI (N̄) = ρSI(N̄) with signal energy N̄
may outperform or not a many-copy transmitter ρ⊗∞SI (N̄) where each signal mode
has energy n̄→ 0.

Despite it being challenging to find an optimal solution, we can however try to
compare the performance of different classes of input states. From this point of
view an important comparison is between assisted and unassisted strategies. Given
a global energetic constraint N̄ , we ask if the use of entangled transmitters as in
Eq. (2.103) may largely outperform the use of multi-copy transmitters of the form

ρ⊗M (N̄) = ρ(n̄)⊗ ...⊗ ρ(n̄)︸ ︷︷ ︸
M

, (2.104)

34



which do not exploit any idler system.

The most natural choice is to consider EPR transmitters, expressed by Eq. (2.103)
with ρSI(n̄) being an EPR state |µ〉SI〈µ| with variance µ = 2n̄+1, compared against
coherent-state transmitters, which are expressed by Eq. (2.104) with ρ(n̄) = |α〉〈α|
such that |α|2 = n̄. This comparison is depicted in Fig. 2.5.

Figure 2.5: (Top) EPR transmitter ρ⊗M
SI (N̄) = |µ〉SI〈µ|⊗M compared to (bottom)

coherent-state transmitter ρ⊗M (N̄) = |α〉〈α|⊗M . Both transmitters irradiate N̄
mean photons on the box (i.e., they have equal signal energy).

Note that the two possible outputs of the EPR transmitter are the states

ρEPR
k = [(Ek ⊗ I)(|µ〉SI〈µ|)]⊗M . (2.105)

The performance of an EPR transmitter ρ⊗M
SI (N̄) = |µ〉SI〈µ|⊗M with M signals and

signal energy N̄ is quantified by

PEPR(M, N̄) =
1
2
[
1−D(ρEPR

0 , ρEPR
1 )

]
. (2.106)

The optimal performance achieved by EPR transmitters with signal energy N̄ is
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given by the maximization over M , i.e.,

PEPR(N̄) = min
M

PEPR(M, N̄) . (2.107)

For a coherent-state transmitter ρ⊗M (N̄) = |α〉〈α|⊗M with M signals and signal
energy N̄ we have the two possible outputs

ρcoh
k = [Ek(|α〉〈α|)]⊗M , (2.108)

and a discrimination performance given by

Pcoh(M, N̄) =
1
2

[
1−D(ρcoh

0 , ρcoh
0 )

]
.

The optimal performance achievable by coherent-state transmitters with signal en-
ergy N̄ is then equal to

Pcoh(N̄) = min
M

Pcoh(M, N̄) . (2.109)

Now the main task is proving the strict inequality

PEPR(N̄) < Pcoh(N̄), (2.110)

for sufficiently low photon numbers N̄ , so that EPR transmitters outperform stan-
dard coherent-state transmitters at low energy. The possibility of having Eq. (2.110)
identifies quantum entanglement as a powerful resource to discriminate channels us-
ing a small number of photons. This advantage relies in the quantum correlations
between signals and idlers which may greatly boost the sensitivity of the discrimi-
nation. We note that this kind of advantage has been already found in various other
applications, e.g., in quantum illumination [41,73] or in other problems of quantum
metrology [45]. As we explain in the next chapter, we aim to exploit this unique
feature of the quantum correlations to probe biological material in a noninvasive
way.
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Chapter 3

Novel work

Here we present the three main contributions. We start with the asymmetric formu-
lation of quantum hypothesis testing, where two quantum hypotheses have different
associated costs. In this problem, the aim is to minimize the probability of false neg-
atives and the optimal performance is provided by the quantum Hoeffding bound.
Here we show how this bound can be simplified for pure states and, most impor-
tantly, we show how it can be computed for Gaussian states.

The numerical results presented in this chapter are obtained with the help of
the software “Mathematica”. One of the core procedures is the computation of the
symplectic diagonalization of covariance matrices, i.e. their symplectic spectra and,
whenever needed, the symplectic matrices involved in their Williamson’s decomposi-
tions. The formulas for the quantum Chernoff bound and quantum Hoeffding bound
not only involve these kinds of diagonalizations but also the general optimization
over the real parameter involved in the definition of the generalized overlap between
two Gaussian states. The latter problem can often be by-passed by choosing specific
values for s (for instance, s = 1/2) which however leads to generally larger upper
bounds.

3.1 Quantum Hoeffding bound

As we discussed earlier, quantum hypothesis testing (QHT) is a fundamental topic in
quantum information theory [45]. It can be formulated as symmetric testing, where
the quantum hypotheses have the same cost [5,18,33], or asymmetric testing, where
these hypotheses have different associated costs [5,18,33]. In the latter approach, we
focus on minimizing the probability that the alternative hypothesis is confused for
the null hypothesis, an error which is known as ‘false negative’. This minimization
has to be done by suitably constraining the probability of the other type of error
(‘false positive’), where the null hypothesis is confused for the alternative one. This
is clearly the best approach for instance in medical-type testing, where the null hy-
pothesis typically represents absence of a disease, while the alternative corresponds
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to the presence of a disease.

In the quantum setting, asymmetric QHT is formulated as a multi-copy dis-
crimination problem, where a large number of copies of the two possible states are
prepared and subjected to a collective quantum measurement. From this point of
view, the aim is to maximize the error-exponent describing the exponential decay of
the false negatives, while placing a reasonable constraint on the false positives. For
this calculation, we can rely on the recently-introduced quantum Hoeffding bound
(QHB) [4].

In this section, we first show how the computation of the QHB simply reduces
to that of the quantum fidelity [37] in the presence of pure states. Then, we provide
a general recipe for computing the QHB in the case of multimode Gaussian states,
for which it can be expressed in terms of their first- and second-order statistical
moments. In the general multimode case, we derive a relation between the QHB
and other easier-to-compute bounds, which are based on well-known mathematical
inequalities. Finally, we derive analytical formulas and numerical results for the
most important classes of one-mode and two-mode Gaussian states.

3.1.1 Asymmetric testing with pure states

Asymmetric testing becomes very simple when one of the states (or both) is pure.
In this case, we can in fact relate the QHB to the quantum fidelity between the two
states. Let us start by considering the case where only one of the states is pure, e.g.,
ρ0 = |ψ0〉 〈ψ0|. We can write [70]

inf
s
Cs = F (|ψ0〉 , ρ1), (3.1)

where F is the fidelity between |ψ0〉 and ρ1. Eq. (3.1) implies Cs ≥ F . By using the
latter inequality in Eq. (2.87), we derive the fidelity-bound

H(r) ≤ HF (r) := sup
0≤s<1

−r s− lnF
1− s

. (3.2)

This bound can be further simplified by explicitly performing the maximization
with regard to the parameter s. After a calculation we find

HF (r) =


ln 1

F , for r ≥ ln 1
F ,

+∞, for r < ln 1
F ,

(3.3)

which depends on the comparison between the parameter r and the fidelity F of the
two states.

More specifically, in the discrimination of two pure states, we find that the
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previous fidelity-bound becomes tight

H(r) = HF (r) . (3.4)

In fact, for pure states ρ0 = |ψ0〉〈ψ0| and ρ1 = |ψ1〉〈ψ1|, and for any 0 < s < 1, we
can write

Cs = Tr(|ψ0〉〈ψ0|s|ψ1〉〈ψ1|1−s) = Tr(|ψ0〉〈ψ0|ψ1〉〈ψ1|)

= |〈ψ0|ψ1〉|2 = F (|ψ0〉, |ψ1〉). (3.5)

Therefore we can replace lnCs = lnF in the QHB of Eq. (2.87), which implies
Eq. (3.4).

3.1.2 Asymmetric testing with Gaussian states

Quantum Hoeffding bound for Gaussian states

Our goal is to find a general recipe for the calculation of the QHB for Gaussian
states. We start from the general formula in Eq. (2.87) involving the logarithm
of the generalized overlap Cs. Given two n-mode Gaussian states, ρ0 and ρ1, we
can write an explicit Gaussian formula for the generalized overlap in terms of their
statistical moments (x̄0, V0) and (x̄1, V0). This is given by [52,70]

Cs =
Πs√

detΣs
exp

[
−dTΣ−1

s d
2

]
, (3.6)

where d := x̄0 − x̄1 is the difference between the mean values, while Σs and Πs

depends on the CMs V0 and V1. See Eqs. (2.59) and (2.60) for their explicit
expressions. In particular, these quantities depend on the symplectic decompositions
of the two CMs

V0 = S0 (⊕n
k=1ν

0
kI) ST

0 , V1 = S1 (⊕n
k=1ν

1
kI) ST

1 , (3.7)

where {ν0
k} and {ν1

k} are the symplectic spectra, with S0 and S1 being suitable
symplectic matrices.

Substituting Eq. (3.6) into Eq. (2.87), corresponds to explicitly computing the
logarithmic term lnCs, yielding

lnCs = ln Πs −
1
2
{
ln detΣs + dTΣ−1

s d
}
. (3.8)

In particular for zero-mean Gaussian states we have d = 0 and the previous expres-
sion simplifies to

lnCs = ln Πs −
1
2

ln detΣs . (3.9)
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Other computable bounds

Note that computing the generalized overlap Cs and its logarithmic form lnCs could
be difficult due to the presence of the symplectic matrices, S0 and S1, in the term
Σs. A possible solution is to compute an upper bound, known as the ‘Minkowski
bound’, which depends only on the two symplectic spectra [9]. Specifically, we have
Cs ≤Ms, where

Ms := 4n

[
n∏

k=1

Ψs(ν0
k , ν

1
k) +

n∏
k=1

Ψ1−s(ν1
k , ν

0
k)

]−n

, (3.10)

and

Ψs(x, y) := {[(x+ 1)s + (x− 1)s][(y + 1)1−s − (y − 1)1−s]}1/n. (3.11)

Another easy-to-compute upper bound is the ‘Young bound’ Ys [80] which satisfies

Cs ≤Ms ≤ Ys, (3.12)

where [52]

Ys := 2n
n∏

k=1

Γs(ν0
k)Γ1−s(ν1

k) , (3.13)

and
Γs(x) :=

[
(x+ 1)2s − (x− 1)2s

]− 1
2 . (3.14)

Taking the negative logarithm of Eq. (3.12), we can write the following inequality
for the QHB

H(r) ≥ HM (r) ≥ HY (r), (3.15)

where

HM (r) := sup
0≤s<1

−r s− lnMs

1− s
, (3.16)

HY (r) := sup
0≤s<1

−r s− lnYs

1− s
. (3.17)

In the specific case where one of the two Gaussian states is pure, we can compute
their fidelity F and apply the upper bound given in Eqs. (3.2) and (3.3), which
becomes tight when both states are pure [see Eq. (3.4)]. In particular, for two
multimode Gaussian states ρ0 = |ψ0〉 〈ψ0| and ρ1, we can easily write their fidelity
F in terms of the statistical moments [70]

F =
2n

√
detL

exp
(
−dTL−1d

2

)
, (3.18)
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where L := V0 + V1. As a result, we can use Eq. (3.3) with

ln
1
F

=
1
2

[
ln
(

detL
4n

)
+ dTL−1d

]
. (3.19)

3.1.3 Discrimination of one-mode Gaussian states

In this section, we examine the case of one-mode Gaussian states. This means we fix
n = 1 in the previous formulas of Sec. 3.1.2, with matrices becoming 2× 2, vectors
becoming 2-dimensional, and symplectic spectra reducing to a single eigenvalue. For
instance, the generalized overlap can be more simply computed using the expressions

Πs = 2 Gs(ν0) G1−s(ν1), (3.20)

Σs = Λs(ν0) S0ST
0 + Λ1−s(ν1) S1ST

1 , (3.21)

where the real functions Gs and Λs are given in Eqs. (2.53) and (2.54). In particular,
here we derive the analytic formulas for the QHB for two important classes: Coherent
states and thermal states.

Asymmetric testing of coherent amplitudes

The expression of the QHB is greatly simplified in the case of one-mode coherent
states ρ0 = |α0〉 〈α0| and ρ1 = |α1〉 〈α1|. Since both states are pure, the QHB is
equal to the fidelity bound in Eq. (3.3), i.e., H(r) = HF (r). Therefore, it is sufficient
to compute the fidelity between the two coherent states, which is given by

F = |〈α0| α1〉|2 = e−|α0−α1|2 , (3.22)

so that ln 1
F = |α0 − α1|2 := σ, and we can write

H(r) =


σ , for r ≥ σ ,

+∞ , for r < σ .

(3.23)

Assuming that we impose a good control on the rate of false positives (so that
r ≥ σ), then the error-exponent for the false negatives is simply given by H(r) = σ.
More explicitly, this corresponds to an asymptotic error rate

βM =
1
2
e−Mσ =

FM

2
. (3.24)

Note that, if we have poor control on the rate of false positives, i.e., r < σ, then
the QHB H(r) is infinite. This means that the probability of false negatives βM

goes to zero super-exponentially, i.e., more quickly than any decreasing exponential
function.
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Asymmetric testing of thermal noise

In this section we derive the QHB for one-mode thermal states ρ0 = ρth(ν0) and
ρ1 = ρth(ν1), with variances equal to ν0 and ν1, respectively (in our notation,
ν = 2n̄ + 1, where n̄ is the mean number of thermal photons). These Gaussian
states have zero mean (x̄0 = x̄1 = 0) and CMs in the Williamson form V0 = ν0I

and V1 = ν1I (so that S0 = S1 = I). Thus, we can write

Σs = εsI, εs := Λs(ν0) + Λ1−s(ν1), (3.25)

and derive

Cs =
Πs

εs
=

2
(ν0 + 1)s(ν1 + 1)1−s − (ν0 − 1)s(ν1 − 1)1−s

. (3.26)

This is the generalized overlap to be used in the QHB of Eq. (2.87).

Given two arbitrary ν0 ≥ 1 and ν1 ≥ 1, the maximization in Eq. (2.87) can be
done numerically. The results are shown in Fig. 3.1 for thermal states with variances
up to 3 vacuum units (equivalent to 1 mean thermal photon). From the figure we
can see an asymmetry with respect to the bisector ν0 = ν1 which is a consequence
of the asymmetric nature of the hypothesis test. The bottom-right part of the figure
is related to the minimum probability of confusing a nearly-vacuum state (ν1 ' 1)
with a thermal state having one average photon (ν0 ' 3). By contrast, the top-left
part of the figure is related to the probability of confusing a thermal state having one
average photon (ν1 ' 3) with a nearly-vacuum state (ν0 ' 1). These probabilities
are clearly different.

We are able to derive a simple analytical result when we compare a thermal
state with the vacuum state. Let us start by considering the vacuum state to be
the null hypothesis (ν0 = 1) while the thermal state is the alternative hypothesis
(ν1 := ν > 1). In this specific case, we find

lnCs = (1− s) ln
(

2
1 + ν

)
, (3.27)

and we get

P (r, s) = ln
(

1 + ν

2

)
− rs

1− s
. (3.28)

Since ν is a constant, the maximization of P over 0 ≤ s < 1 corresponds to
minimizing the function rs(1− s)−1, whose minimum occurs at s = 0. As a result,
we have

H(r) = P (r, 0) = ln
(

1 + ν

2

)
.

Since ν = 2n̄ + 1, we can write the QHB in terms of the mean number of thermal
photons, i.e.,

H(r) = ln(n̄+ 1). (3.29)
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Figure 3.1: We plot the QHB associated with the discrimination of two thermal
states: ρth(ν0) as null hypothesis, and ρth(ν1) as alternative hypothesis. We consider
low thermal variances 1 < ν0, ν1 ≤ 3 and we have set r = 0.1 for the false positives.

This is the optimal error exponent for the asymptotic probability of false negatives,
i.e., of confusing a thermal state with the vacuum state.

Let us now consider the thermal state to be the null hypothesis (ν0 := ν > 1)
while the vacuum state is the alternative hypothesis (ν1 = 1). In this case, we derive

P (r, s) =
s

1− s

[
ln
(

1 + ν

2

)
− r
]
, (3.30)

which leads to the following expression for the QHB

H(r) =


0 for r ≥ ln

(
1+ν
2

)
,

+∞ for r < ln
(

1+ν
2

)
.

(3.31)

This is related to the minimum probability of confusing the vacuum state with a
thermal state. Note that this is very different from Eq. (3.29).
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3.1.4 Discrimination of two-mode Gaussian states

In this section we consider two important classes of two-mode Gaussian states. The
first is the class of Einstein-Podolsky-Rosen (EPR) states, also known as two-mode
squeezed vacuum states. The second (broader) class is that of two-mode squeezed
thermal (ST) states, for which the computation of the QHB is numerical.

Asymmetric testing of EPR correlations

The expression of the QHB in the case of EPR states is easy to derive. Since EPR
states are pure, the QHB H(r) is given by HF (r) of Eq. (3.3). As a result, we need
only compute the fidelity between the two states.

An EPR state has zero mean and CM

VEPR(µ) =

(
µI

√
µ2 − 1Z√

µ2 − 1Z µI

)
, (3.32)

with µ ≥ 1, I is the 2× 2 identity matrix and

Z :=

(
1 0
0 −1

)
. (3.33)

Given two EPR states with parameters µ0 and µ1, their fidelity is computed via
Eq. (3.18), yielding

F =
4√

detL
, (3.34)

where L = VEPR(µ0) + VEPR(µ1). After simple algebra, we find

F =
2

1 + µ0µ1 −
√

(µ2
0 − 1)(µ2

1 − 1)
, (3.35)

to be used in Eq. (3.3).

Squeezed thermal states

In this section we consider symmetric ST states ρ(µ, c), which are Gaussian states
with zero mean and CM

VST(µ, c) =

(
µI cZ

cZ µI

)
, (3.36)

where µ ≥ 1 and |c| ≤ µ [49, 55] (in particular, without loss of generality, we
can assume c ≥ 0). These are called symmetric because they are invariant under
permutation of the two modes.

Note that, for c = 0, we have no correlations, and the ST state is a tensor-product
of thermal states, i.e., ρ(µ, 0) = ρth(µ)⊗2. For c =

√
µ2 − 1 the correlations are
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maximal, and the ST state becomes an EPR state, i.e., ρ(µ,
√
µ2 − 1) = ρEPR(µ).

Finally, for c = µ − 1, we have maximal separable correlations. In other words,
ρ(µ, µ − 1) is the separable ST state with the strongest correlations (e.g., highest
discord).

The symplectic decomposition of a symmetric ST state is known. From the CM
of Eq. (3.36), one can check that the symplectic spectrum is degenerate and given
by the single eigenvalue

ν =
√
µ2 − c2. (3.37)

The symplectic matrix S which diagonalizes VST(µ, c) in Williamson form ν(I⊕ I)
is given by

S =

(
ω+I ω−Z

ω−Z ω+I

)
, (3.38)

where

ω± :=

√
µ± ν
2ν

. (3.39)

As a result, the generalized overlap between two symmetric ST states, ρ0 and
ρ1, can be computed using the simplified formulas

Πs = 4 G2
s(ν

0) G2
1−s(ν

1), (3.40)

Σs = Λs(ν0) S0ST
0 + Λ1−s(ν1) S1ST

1 , (3.41)

where ν0 (ν1) is the degenerate eigenvalue of ρ0 (ρ1), computed according to Eq. (3.37),
and S0 (S1) is the corresponding diagonalizing symplectic matrix, computed accord-
ing to Eqs. (3.38) and (3.39).

Let us start with simple cases involving the asymmetric testing of correlations
with specific ST states. First we consider the asymmetric discrimination between
the uncorrelated thermal state ρ0 = ρ(µ, 0) as null hypothesis and the correlated
(but separable) ST state ρ1 = ρ(µ, µ− 1) as alternative hypothesis. A false negative
corresponds to concluding that there are no correlations where they are actually
present. It is straightforward to derive their degenerate symplectic eigenvalues which
are simply ν0 = µ and ν1 =

√
2µ− 1. Then, we have S0 = I ⊕ I, while S1 can be

easily computed from Eqs. (3.38) and (3.39). By substituting these into Eqs. (3.40)
and (3.41), we can compute the generalized overlap Cs = Πs/

√
detΣs and therefore

the QHB H(r) via Eq. (2.87). The results are plotted in Fig. 3.2, for values of
thermal variance µ up to 3 (i.e., from zero to 1 mean photon) and small values
of the parameter r, bounding the rate of false-positives. As expected, the QHB
improves for decreasing r and increasing µ.

Now let us consider the asymmetric discrimination between ρ0 = ρ(µ, 0) and the
EPR state ρ1 = ρEPR(µ), i.e., the most correlated and entangled ST state. Thanks
to the simple symplectic decomposition of the EPR state (ν1 = 1), we can further
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Figure 3.2: (Asymmetric discrimination between the thermal state ρ0 = ρ(µ, 0) and
the ST state ρ1 = ρ(µ, µ − 1) with maximal separable correlations. We plot the
QHB as a function of the thermal variance µ and the false-positive parameter r. As
we can see the QHB improves for lower r and for higher µ.
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simplify the previous Eqs. (3.40)-(3.41) and write

Πs = 4 G2
s(µ), Σs = Λs(µ) (I⊕ I) + VEPR(µ), (3.42)

with VEPR(µ) being given by Eq. (3.32). As before, we compute the QHB which
is plotted in Fig. 3.3, for 1 ≤ µ ≤ 3 and r ≤ 2. As expected the QHB improves
for decreasing r and increasing µ. Note a discontinuity identifying two regions, one
where the QHB is finite, and the other where it is infinite (white region in the figure).

Figure 3.3: Asymmetric discrimination between the thermal state ρ0 = ρ(µ, 0) and
the EPR state ρ1 = ρEPR(µ). We plot the QHB as a function of the thermal variance
µ and the false-positive parameter r. The QHB improves for lower r and for higher
µ. In particular, there is a threshold value after which the QHB becomes infinite
(white region).

By expanding the term P (r, s) in Eq. (2.87) for s→ 1−, we find that

P (r, s) ' N

s− 1
+O(s− 1), (3.43)

where

N := r − ln
(

1 + 3µ2

4

)
. (3.44)

For values of r and µ such that N > 0, we find that the term P (r, s) diverges at the
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border, making the QHB infinite. For a given r, this happens when

µ > µ̃(r) :=

√
4er − 1

3
. (3.45)

Finally, we consider the most general scenario in the asymmetric testing of corre-
lations with ST states. We consider two generic ST states, ρ(µ, c0) and ρ(µ, c1), with
the same thermal noise but differing amounts of correlation. For this computation,
we use Eqs. (3.37)-(3.39) with c = c0 or c1, to be replaced in Eqs. (3.40)-(3.41),
therefore deriving the generalized overlap and the QHB. At small thermal variance
(µ = 3) and for the numerical value r = 0.1, we plot the QHB as a function of
the correlation parameters c0 and c1. As we can see from Fig. 3.4, the QHB is not
symmetric with respect to the bisector c0 = c1 (where it is zero) and increases away
from this line.

Figure 3.4: Asymmetric discrimination between two ST states with the same thermal
variance (µ = 3) but different correlations c0 and c1. Setting r = 0.1, we plot the
QHB as a function of c0 and c1. We can see that the QHB increases orthogonally
to the bisector c0 = c1.

3.1.5 Discussion

In this Section 3.1 we have considered the problem of asymmetric quantum hypothe-
sis testing by adopting the recently-developed tool of the quantum Hoeffding bound.
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We have shown how the QHB can be simplified in some cases (pure states) and esti-
mated using other easier-to-compute bounds based on simple algebraic inequalities.

In particular, we have applied the theory of asymmetric testing to multimode
Gaussian states, providing a general recipe for the computation of the QHB in the
Gaussian setting. Using this recipe, we have found analytic formulas and shown
numerical results for important classes of one-mode and two-mode Gaussian states.
In particular, we have studied the behavior of the QHB in the low energy regime,
i.e., considering Gaussian states with a small average number of photons.

Our results could be exploited in protocols of quantum information with continu-
ous variables. In particular, they could be useful for reformulating Gaussian schemes
of quantum state discrimination and quantum channel discrimination in such a way
as to give more importance to one of the quantum hypotheses. This asymmetric
approach could be the most suitable in the development of quantum technology for
medical applications.
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3.2 Quantum sensing of loss

3.2.1 Introduction

The tools of quantum hypothesis testing can be employed to solve problems of
quantum channel discrimination. Here, an unknown quantum channel, E0 or E1,
is prepared inside an input-output black-box and passed to a reader [42, 50, 53,
69], whose aim is to distinguish the two channels by probing the input port and
measuring the output. This problem can be restricted to the bosonic setting with
Gaussian channels [78], in particular, lossy channels Eτ which are characterized by
a single transmissivity parameter τ ∈ [0, 1]. These channels can be dilated into
beam-splitters subject to vacuum noise.

In this section, we are interested in sensing the presence of loss, which corre-
sponds to the discrimination between a lossless channel (i.e., the identity channel I)
from a lossy channel with some transmissivity τ < 1. In other words, we consider
transmissivity τ0 = 1 as our null hypothesis H0, and transmissivity τ1 := τ < 1
as our alternative hypothesis H1. This is relevant in biologically-related problems,
such as the detection of small concentrations of cells or bacteria. The connection is
established by the Lambert-Beer law [36]. According to this law, the concentration
c of species within a sample can be connected with its absorbance or transmissivity
τ by the formula

τ = 10−εlc, (3.46)

where ε is the molar attenuation coefficient of the material at the considered wave-
length (measured in m2/mol or L/mol/cm), l is the optical path length (measured in
cm) and, of course, c is the concentration (measured in mol/L also known as molar
M). Thus, from an optical point of view, the sample is equivalent to a lossy channel
with concentration-dependent transmissivity τ = τ(c). Our problem can be mapped
into the discrimination between non-growth (c = 0) and growth (c > 0) within a
biological sample.

The values of the various parameters present in Eq. (3.46) may vary widely. To
give an idea of possible values, consider that the concentration c may virtually be
any number between zero and one molar; l is typically between 1 mm and 1 cm; and
ε may be of the order of 120 L/mol /cm for an amino acid like cystine at 280 nm,
or equal to much higher values, of the order of 3× 104 L/mol /cm for bacteria like
E. Coli at 280 nm [71].

To discuss a potential practical application, consider human serum albumin with
ε = 32810 at 280 nm in a cuvette of 1 mm. An extremely small concentration of
c = 10−6 would provide an optical transmissivity of about 10−0.003 ' 99% which
is where quantum light will be shown to work the best. From this point of view,
quantum sensing may reduce the amount of material needed for a diagnosis or,
equivalently, it might be used to diagnose a disease in advance, thanks to the better
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ability to detect extremely small concentrations.
An important issue is related to the amount of energy employed to probe the

black-box or, equivalently, the sample in the biological setting just described. First of
all, a problem of Gaussian channel discrimination makes sense only if we assume an
energetic constraint for the optical mode probing the box, otherwise any two distinct
channels can always be perfectly distinguished (using infinite energy). Second, we
assume that this constraint imposes an effective regime of a few photons, so that
the box is read in a non-invasive way, which fully preserves its content. This is
particularly important from a biological point of view, since bacteria may be photo-
degradable and DNA/RNA extracts in samples can easily be degraded by strong
light (especially, at the UV regime).

Thus, in our quantum sensing of loss, we assume a suitable energetic constraints
at the input, which may be of two kinds:

(1) Local energetic constraint, where we fix the mean number of photons employed
in each single readout of the box; in particular, we are interested in the use
of a single readout and in the limit of many readouts (e.g., using a broadband
signal).

(2) Global energetic constraint, where we fix the mean number of photons which
are used in total, i.e., in all the readouts of the box.

Imposing one of these constraints and a suitable regime of few photons, our work
aims to prove the superiority of quantum-correlated sources with respect to classical
sources for the non-invasive sensing of loss.

As shown by the setups of Fig. 3.5, we first consider a classical strategy where
a single-mode S, prepared in a classical state (in particular, a coherent state), is
irradiated through the sample and detected at the output by an optimal dichotomic
POVM. Then, we compare this approach with the quantum strategy where two
modes, signal S and reference R, are prepared in a quantum correlated state, in
particular, an Einstein-Podolsky-Rosen (EPR) state [78]. Only the signal mode
is irradiated through the sample, while the reference mode is directly sent to the
measurement device where it is subject to an optimal dichotomic POVM jointly
with the output mode S′ from the sample.

The readout performance of these two setups are compared by constraining the
energy of the signal mode S, by fixing the mean number of photon n̄ per mode
(local constraint), or the total mean number of photons N̄ = Mn̄ in M probings of
the sample. The performance is evaluated in terms of minimum error probability
considering both symmetric and asymmetric testing.

3.2.2 Classical Benchmark

In the classical setup of Fig. 3.5(a), the input signal mode S is prepared in a co-
herent state |α〉 and transmitted through the sample. At the output receiver, one
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Figure 3.5: Configurations for sensing the presence of loss in a sample via a trans-
mitter (source) and a receiver (detector). Panel (a). In the classical setup, a signal
mode S is prepared in a coherent state and irradiated through the sample, with the
output mode S′ subject to optimal detection. Panel (b). In the quantum setup,
the transmitter is composed of two quantum-correlated modes, S and R. Only S is
irradiated through the sample. The output S′ is combined with R in a joint optimal
quantum measurement.
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can use a photodetector which counts the number of photons transmitted. This is
then followed by digital post-processing, e.g., based on a classical hypothesis test.
The performance of this receiver can always be bounded by considering an optimal
dichotomic POVM (e.g., the Helstrom POVM [33] in symmetric testing and other
suitable dichotomic POVMs in the asymmetric case [4]).

Let us solve this problem in the general multi-copy scenario, where the sample
is probed M times, so that the input state is given by the tensor product

|α〉⊗M = |α〉 ⊗ · · · ⊗ |α〉︸ ︷︷ ︸
M

. (3.47)

It is clear that the output states will be either |α〉⊗M (under hypothesis H0) or
|
√
τα〉⊗M (under hypothesis H1).

Since the two possible outputs are pure states, we can easily compute the Hel-
strom bound (for symmetric testing) and the QHB (for asymmetric testing). In fact,
when both the states are pure, i.e., σ0 = |ϕ0〉 〈ϕ0| and σ1 = |ϕ1〉 〈ϕ1|, we can write
the Helstrom bound Pmin

err := p̄ as

p̄ =
1−D

(
|ϕ0〉⊗M , |ϕ1〉⊗M

)
2

, (3.48)

where the trace distance D can be here computed from the fidelity as

D =
√

1− F
(
|ϕ0〉⊗M , |ϕ1〉⊗M

)
(3.49)

=
√

1− F (|ϕ0〉 , |ϕ1〉)M , (3.50)

where
F (|ϕ0〉 , |ϕ1〉) = |〈ϕ0 |ϕ1〉|2 . (3.51)

Then, for the QHB we can write

H(r) = HF (r) =


− lnF for r ≥ − lnF ,

+∞ for r < − lnF ,

(3.52)

depending on our control r on the false positives.

Thus, we just need to compute the fidelity between the single-copy output states.
From Eq. (3.53), we obtain

F
(
|α〉 ,

∣∣√τα〉) = exp
(
−
∣∣α−√τα∣∣2) (3.53)

= exp[−n̄(1−
√
τ)2], (3.54)

where n̄ = |α|2 is the mean number of photons of the single-copy coherent state at
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the input. Using Eqs. (3.48)-(3.51), we derive the following Helstrom bound for the
coherent state transmitter

p̄coh =
1−

√
1− e−N̄(1−

√
τ)2

2
. (3.55)

We can see that the minimum error probability depends on the total mean number
of photons N̄ = Mn̄. This means that it makes no difference to use: (i) Either M
identical faint coherent states each with n̄ mean photons, (ii) or a single energetic
coherent state with N̄ mean photons. Also note that, for N̄(1−

√
τ)2 � 1, we have

p̄coh ' 1/2, i.e., random guessing. Discrimination becomes therefore challenging at
low photon numbers.

Note that it is also easy to compute the quantum Chernoff bound (QCB). Since
the two states are pure, we can write it in terms of the quantum fidelity as specified
by Eq. (2.43), i.e.,

p̄QCB =
FM

2
. (3.56)

which here becomes
p̄QCB
coh =

1
2

exp[−N̄(1−
√
τ)2]. (3.57)

This is an upper-bound to the minimum error probability of Eq. (3.55), becoming
tight in the limit of large number of copies M � 1.

In the case of asymmetric quantum discrimination, we aim to minimize the prob-
ability of false negatives p(H0|H1). In a biological sample, this means to minimize
the probability of concluding that there is no growth of bacteria when there actu-
ally is. More precisely, we aim to derive the QHB which maximizes the error-rate
exponent βR of p(H0|H1) in the regime of many copies M , while constraining the
error-rate exponent for the false positives αR ≥ r. By using Eq. (3.52), we derive

Hcoh(r) =


− lnF = n̄(1−

√
τ)2 for r ≥ n̄(1−

√
τ)2

+∞ for r < n̄(1−
√
τ)2

(3.58)

Here we note that for bad control of the false positives r < n̄(1 −
√
τ)2, the

QHB has a super-exponential decay in M . In contrast, for good control of the false
positives r ≥ n̄(1−

√
τ)2, the QHB has the following asymptotic exponential decay

pcoh(H0|H1) '
1
2

exp[−M H(r)] (3.59)

' 1
2

exp
[
−N̄(1−

√
τ)2
]
, (3.60)

which is the same as the QCB in Eq. (3.57). This an intuitive result because in the
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case of good control, besides Eq. (2.87), we also have

pcoh(H1|H0) '
1
2

exp[−M r] (3.61)

≤ 1
2

exp
[
−N̄(1−

√
τ)2
]
. (3.62)

Thus, by replacing Eqs. (2.87) and (3.62) in the average error probability of Eq. (2.20),
we retrieve

p̄coh .
1
2

exp
[
−N̄(1−

√
τ)2
]
. (3.63)

3.2.3 Quantum Transmitter

In the quantum setup of Fig. 3.5(b), we consider a transmitter composed of two
quantum-correlated modes, the signal S and the reference R. The signal mode, with
n̄ mean photons, is irradiated through the sample and its output S′ is combined with
the reference mode in an optimal quantum measurement. For a fixed state ρSR of
the input modes S and R, we get two possible states

σ0 = (I ⊗ I)(ρSR) = ρSR, (3.64)

σ1 = (Eτ ⊗ I)(ρSR), (3.65)

for the output modes S′ and R at the receiver. In general, for multi-copy discrimi-
nation, the input tensor product ρ⊗M

SR is transformed into either σ⊗M
0 or σ⊗M

1 .

As the single-copy state ρSR let us consider an EPR state, also known as a two-
mode squeezed vacuum state. This is a zero-mean pure Gaussian state |µ〉SR with
covariance matrix (CM) [78]

V(µ) =

(
µI

√
µ2 − 1Z√

µ2 − 1Z µI

)
,

Z := diag(1,−1),
I := diag(1, 1),

(3.66)

where µ ≥ 1 quantifies both the mean number of thermal photons in each mode,
given by n̄ = (µ−1)/2, and the amount of signal-reference entanglement [78]. Using
such a state at the input, we get two possible zero-mean Gaussian states at the
output: One is just the input EPR state σ0 = |µ〉SR 〈µ|, while the other state σ1 is
a mixed state with CM.

V1(µ, τ) =

(
(τµ+ 1− τ)I

√
τ(µ2 − 1)Z√

τ(µ2 − 1)Z µI

)
. (3.67)

To compute the CM of the output state ρ1 in Eq. (3.67), we dilate the lossy
channel into a beam splitter (with transmissivity τ), mixing the signal mode S with
a vacuum mode v. Thus, we have a Gaussian unitary transformation from the input
state ρin = |0〉v 〈0|⊗ |µ〉SR 〈µ| of modes (v, S,R) into the output state ρout of modes
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(v′, S′, R), i.e.,
ρout = [ÛvS(τ)⊗ ÎR]ρin[ÛvS(τ)⊗ ÎR]†, (3.68)

where ÛvS(τ) is the beam-splitter unitary [78] applied to modes v and S, while the
reference mode R is subject to the identity. In terms of CMs, we have

Vout = [BvS(τ)⊕ IR]Vin[BvS(τ)⊕ IR]T , (3.69)

where Vin = Iv ⊕VSR(µ) and

BvS(τ) =

( √
τI

√
1− τI

−
√

1− τI
√
τI

)
(3.70)

is the symplectic transformation of the beam splitter. After simple algebra, we get
an output CM of the form

Vout =

(
W C

CT V1(µ, τ)

)
, (3.71)

where the blocks W and C are to be traced out, while V1(µ, τ) is given in Eq. (3.67).

For symmetric testing we compute the QCB, which can directly be derived from
the quantum fidelity, as specified in Eq. (3.56). The multi-copy minimum error
probability p̄quant is upper-bounded by p̄QCB

quant = FM/2, where the fidelity F =
〈µ|σ1 |µ〉 is determined by the CMs of the two Gaussian states. This fidelity is
equal to

F =
4√

det[V(µ) + V1(µ, τ)]
=
[
1 + n̄

(
1−
√
τ
)]−2

. (3.72)

Thus, we have

p̄quant ≤ p̄QCB
quant =

1
2
[
1 + n̄

(
1−
√
τ
)]−2M

. (3.73)

For the asymmetric testing we compute the QHB. From

H(r) ≥ − lnF , (3.74)

we may write
Hquant(r) ≥ 2 ln

[
1 + n̄

(
1−
√
τ
)]
. (3.75)

More precisely, if control on the false-positives is good, so that r ≥ − lnF , then the
QHB and the QCB coincide and we have

H(r) = − lnF for r ≥ − lnF. (3.76)

According to Eq. (3.76), we may write

Hquant(r) = 2 ln
[
1 + n̄

(
1−
√
τ
)]
, (3.77)
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for r ≥ 2 ln [1 + n̄ (1−
√
τ)]. Finally, we have numerically checked that for r <

2 ln [1 + n̄ (1−
√
τ)] the QHB Hquant(r) can become infinite.

3.2.4 Comparison and Quantum Advantage

In this section, we perform the comparison between the classical and the quantum
strategy for non-invasive sensing of loss, showing how the use of quantum correla-
tions enables us to outperform the classical benchmark achieved with coherent-state
inputs. For the symmetric testing, we consider the difference or gain

∆ := p̄coh − p̄QCB
quant ≤ p̄coh − p̄quant, (3.78)

using the expressions in Eqs. (3.55) and (3.73). Its positivity is a sufficient condition
for the superiority of the quantum transmitter (while ∆ ≤ 0 corresponds to an
inconclusive comparison). In particular, for ∆ close to 1/2, we have that p̄quant ' 0
and p̄coh ' 1/2, which means that the quantum strategy allows for perfect sensing
while the classical strategy is equivalent to random guessing.

We start considering a single probing of the sample, i.e., M = 1. Then, we plot
∆(n̄, τ) considering the regime of small photon numbers (n̄ ≤ 10) and for 0 ≤ τ < 1.
As we can see from Fig. 3.6, the quantum transmitter is better in most of the
parameter plane, with very good performances for τ close to 1 (which corresponds
to sensing an almost transparent growth). To better explore this region we consider
the expansion for τ ' 1. By setting τ = 1− ε, we get the first-order expansion

p̄coh '
1
2

(
1 +
√
n̄

2
ε

)
, p̄QCB

quant '
1
2

(1− n̄ε) , (3.79)

so that

∆ '
(√

n̄+ 2n̄
4

)
ε (3.80)

which is always positive.

We then analyze the multi-probing case where the samples is queries M times
where we fix the mean number of photons per signal mode n̄ (local energy con-
straint). We then specify the gain ∆(M, n̄, τ) for M = 20, and we plot the results
in Fig. 3.7. We see that the good region where ∆ approaches the optimal value of
1/2 is again for transmissivities τ ' 1.

Asymptotic multi-copy behavior

Here we keep the local energy constraint, i.e., we fix the mean number of photons per
signal modes n̄, and we compare the two transmitters in the limit of large number
of copies M � 1. In this limit the mean error probability in the symmetric test is
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Figure 3.6: Comparison between the quantum transmitter (EPR state) and the
classical transmitter (coherent state) for single-copy probing M = 1. We plot the
gain ∆ in the range 0 ≤ τ < 1 and n̄ ≤ 10. In the black region we have ∆ ≤ 0
(inconclusive comparison). Outside the black region, we have ∆ > 0 proving the
superiority of the EPR transmitter, with better performances for τ ' 1. Also note
that, for increasing n̄, the region with quantum advantage tends to shrink towards
higher transmissivities.
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Figure 3.7: Comparison between the quantum transmitter (EPR state) and the
classical transmitter (coherent state) for multi-copy probing M = 20. We plot the
gain ∆ in the range 0 ≤ τ < 1 and n̄ ≤ 10. In the black region we have ∆ ≤ 0
(inconclusive comparison). Outside the black region, we have ∆ > 0 proving the
superiority of the EPR transmitter, with better performances for τ ' 1. Despite
the fact they are not visible in the figure, for n̄ ' 0 we have ∆ = 0, as expected.
Similarly, we have ∆ = 0 at exactly τ = 1.
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Figure 3.8: We plot the asymptotic ratio R = κquant/κcoh in terms of transmissivity
τ and mean number of photons in the signal mode n̄. Note that R > 1 in almost all
the plane and becomes O(103) close to τ ' 1 (even though we have a discontinuity
at exactly τ = 1, where R must be 1). Black region corresponds to the coherent
transmitter outperforming the EPR one (R ≤ 1).

well approximated by the QCB, so that, from Eqs. (3.57) and (3.73), we can write

p̄coh ' p̄QCB
coh =

1
2
e−Mκcoh , (3.81)

where κcoh := n̄(1−
√
τ)2, and

p̄quant ' p̄QCB
quant =

1
2
e−Mκquant , (3.82)

where κquant := 2 ln[1 + n̄(1−
√
τ)]. Thus, the asymptotic gain can be measured by

the ratio
R =

κquant

κcoh
. (3.83)

It is clear that for R > 1, the error probability of the EPR transmitter goes to zero
more rapidly than that of the coherent-state transmitter (while R ≤ 1 corresponds to
the opposite behavior). This ratio is shown in Fig. 3.8. We see that for high values of
the transmissivity, the EPR transmitter has an error exponent κquant which becomes
orders of magnitude higher than the classical one κcoh.
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Asymptotic multi-copy behavior: Asymmetric testing

Assuming the local energy constraint we now compare the quantum and the classical
coherent transmitter from the point of view of asymmetric testing. We consider the
ratio between the two QHBs, i.e., for any control r we define

RQHB(r) =
Hquant(r)
Hcoh(r)

. (3.84)

According to Eqs. (3.58) and (3.75), we have

Hcoh(r) =


rcoh for r ≥ rcoh

+∞ for r < rcoh

and 
Hquant(r) = rquant for r ≥ rquant

Hquant(r) ≥ rquant for r < rquant

where
rcoh := n̄(1−

√
τ)2, rquant := 2 ln

[
1 + n̄

(
1−
√
τ
)]
.

If we assume a good control on the false positives, i.e., r ≥ max{rcoh, rquant},
then we have that the false negative probability is well approximated by the QCB,
i.e., p(H0|H1) ' p̄QCB. As result, the ratio in Eq. (3.84) asymptotically coincides
with the previous ratio in Eq. (3.83), i.e., RQHB(r) ' R, and the same result shown
in Fig. 3.8 also applies to the asymmetric study.

Let us study what happens in the presence of a moderate control on the false
positives. Let us consider the case rcoh < rquant which happens in a delimited region
of the plane (n̄, τ) corresponding to the non-black area in Fig. 3.9. Then, we assume
r = rcoh, so that Hcoh(r) remains finite, while Hquant(r) can become infinite. As
we see from Fig. 3.9, there is a wide area where RQHB(r) = +∞, meaning that the
quantum EPR transmitter provides a super-exponential decay for the false-negative
probability, while it remains exponential for the classical transmitter.

If we consider the opposite case r = rquant < rcoh, which may only occur in the
black area of Fig. 3.9, then we have that Hcoh(r) becomes infinite while Hquant(r)
remains finite. In other words, we have RQHB(r) = 0 in all the black region. Finally,
for r < min{rcoh, rquant} there are indeterminate forms which do not allow us to
provide a simple description of the situation.

From these results it is clear that, for low photon numbers per mode (n̄ . 10)
and high transmissivities (here τ & 0.5), the quantum EPR transmitter greatly
outperforms the classical transmitter in the asymmetric quantum discrimination of
loss.
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Figure 3.9: Plot of the ratio RQHB(r) for r = rcoh < rquant in the plane (n̄, τ).
The black area has to be ignored since it is not compatible with the condition
rcoh < rquant. We can see that there is region where the ratio is finite and a wider
one where it becomes infinite.
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Comparison under the global energy constraint

In order to study the case of the global constraint we set n̄ = N̄/M in the QCB in
Eq. (3.73), so that it can expressed as p̄QCB

quant(τ, N̄/M,M). As we show in Fig. 3.10,
the value of p̄QCB

quant decreases for increasing M , at fixed total energy N̄ and trans-
missivity τ . In other words, it is better to use a large number of copies (M � 1) of
the EPR state with vanishingly small number of photons per copy (n̄� 1), instead
of a single energetic EPR state with N̄ mean photons . Remarkably the asymptotic
behavior is rapidly reached after a finite number of copies, e.g., M ' 5 for N̄ = 1.
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Figure 3.10: Behaviour of p̄QCB
quant in terms of τ and M at fixed total energy N̄ . We

see that at any fixed transmissivity τ , the QCB of the EPR transmitter is optimized
by increasing the number of copies M . This plot refers to N̄ = 1 but behavior is
generic in N̄ .

For large M , we find the optimal asymptotic expression

lim
M→+∞

p̄QCB
quant(τ, N̄/M,M) =

1
2

exp
[
−2N̄(1−

√
τ)
]
, (3.85)

and we can study the optimal gain

∆opt := p̄coh(τ, N̄)− 1
2

exp
[
−2N̄(1−

√
τ)
]

for values of τ and N̄ , as shown in Fig. 3.11. We can see that, for relatively small
numbers of photons N̄ ≤ 50 globally irradiated over the sample, the EPR transmitter
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clearly outperforms the classical strategy, especially for high transmissivities τ ' 1.
In other words, the use of a quantum source has non-trivial advantages for the
non-invasive detection of small concentrations.

Luckily, we do not have to consider the limit of M →∞ for approaching the opti-
mal performance of the EPR transmitter since, as we have already seen in Fig. 3.10,
this performance is approximately reached after a small finite M . Indeed this is
explicitly check in Fig. 3.12, where we plot ∆ = p̄coh(τ, N̄) − p̄QCB

quant(τ, N̄/5, 5) and
we see that the result is already pretty close to that of Fig. 3.11.
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Figure 3.11: Optimal gain ∆opt as a function of τ and N̄ . Note that ∆opt approaches
1/2 in the top part of the plot. The small black area at the bottom right corresponds
to an inconclusive comparison (∆opt ≤ 0).
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Figure 3.12: Assuming M = 5 copies of the EPR state, we plot the gain ∆ as a
function of τ and N̄ . Note that the behavior of ∆ approximates that of ∆opt in
Fig. 3.11. The black area corresponds to an inconclusive comparison (∆ ≤ 0).

3.2.5 Phenomenological models of biological growth

As discussed in Sec. 3.2.1, the concentration c of species within a sample can be
connected with its transmissivity τ by the formula τ(c) = 10−εlc, where ε is an
absorption coefficient and l is the path length. Thus, the sample is a lossy channel
with concentration-dependent transmissivity τ(c) and the problem of loss detection
can be mapped into the discrimination between non-growth (c = 0) and growth
(c > 0) within the sample. For simplicity, in the following we set εl = 1, so that
τ(c) = 10−c.

We then introduce a phenomenological model of bacterial/cell growth in the
sample, so that the concentration depends on time t in a typical exponential law

c(t) = c0 [1− exp(−gt)] , (3.86)

where g is a saturation parameter and c0 is the asymptotic concentration (at infinite
time). Using Eq. (3.86) we can write τ as a function of time t as follows

τ(t) = 10−c0[1−exp(−gt)] . (3.87)

Note that Eq. (3.86) is one of the possible biological growth models that we may
consider. It captures an initial linear growth, followed by an exponential growth
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and ending with an asymptotic saturation. It well describes biological population
in a finite habitat. This analytical form has been introduced by Brody [17] and is
also known as monomolecular. It also represents a particular case of a Koya-Goshu
growth function [38].

Now we can analyze how well we can distinguish between unit transmissivity (no
growth) and τ(t) < 1 (growth) at any specified time t. For this aim, we replace τ(t)
in the error probabilities associated with the classical and quantum EPR transmit-
ter. We consider the case of symmetric testing and we assume the global energy
constraint, so that we fix the mean total number of photons N̄ irradiated over the
sample.

We then substitute τ(t) in the formula of p̄coh(τ, N̄) of Eq. (3.55) for the clas-
sical transmitter, so that we can write p̄coh(t, N̄). Similarly, for the quantum EPR
transmitter, we substitute τ(t) in the formula of p̄QCB

quant(τ, n̄,M) of Eq. (3.73) where
n̄M = N̄ . In this case, we can write p̄QCB

quant(t, N̄ ,M) and study the two extreme
conditions of a single-mode EPR transmitter (M = 1) and the broadband EPR
transmitter with M → +∞ (any other EPR transmitter with arbitrary M will have
a performance between these two extremes).

As before we can make the comparison by using the gain ∆ = p̄coh− p̄QCB
quant whose

maximal value is 1/2. Specifically, we consider the gain given by the single mode
EPR transmitter

∆1(t, N̄) = p̄coh(t, N̄)− p̄QCB
quant(t, N̄ , 1),

and the optimal gain given by the broadband EPR transmitter, i.e.,

∆opt(t, N̄) = p̄coh(t, N̄)− p̄QCB
quant(t, N̄ ,+∞).

We compare the performances of the classical and quantum transmitters plotting
∆1(t, N̄) and ∆opt(t, N̄) in Fig. 3.13.

As we can see from Fig. 3.13, the EPR transmitter outperforms the classical
strategy at short times, i.e., at low concentrations, when the mean total number
of photons N̄ is restricted to relatively small values. This means that, in this non-
destructive regime, the EPR transmitter is able to provide a much faster detection
of bacterial/cell growth in the sample. This is also evident from Fig. 3.14, where we
explicitly compare the performances of the transmitters at N̄ = 500 photons. As
we can see, the quantum transmitter allows us to detect the presence or not of a
growth in extremely short times (< 0.05 time units in the figure), while we need to
wait much more times (at least 0.4 time units) for obtaining the same performance
by means of a classical transmitter.

Note that in real world time, the time unit depends on how we express the
saturation parameter g in Eq. (3.86). When we account for physical dimensions, we
may have g expressed as seconds−1 or minutes−1 or hours−1. Therefore a unit may
be a second or a minute or an hour. In turn, this depends on the material we are
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Figure 3.13: Plot of the gains ∆1(t, N̄) (left panel) and ∆opt(t, N̄) (right panel)
versus mean total energy N̄ irradiate over the sample and time t of detection. In
the left panel, the black area corresponds to ∆1 ≤ 0 (inconclusive comparison). We
can see that the values approach 1/2 at short timescales, corresponding to very low
concentrations. Right panel shows a clear improvement of the performance given
by the use of a broadband EPR transmitter. In both panels, we have chosen c0 = 1
and g = 0.2 for the growth model of Eq. (3.86).

observing. For instance, if we are considering the growth of E. Coli in the sample,
this is a process which typically takes one day, so that it may be convenient to use
hours as basic units.

3.2.6 Photodegradable effects

Here we study the quantum readout of fragile samples in the presence of pho-
todegradability, so that the greater is the input energy (mean number of photons)
the greater is the adverse effect on the sample as suitably modeled below. We study
the readout mechanism assuming symmetric hypothesis testing and evaluating the
number of bits extracted from the sample (since this is a discrimination between
two possible hypotheses, the maximum information that can be extracted is equal
to one bit).

As before consider a sample which is read in transmission and assume that the
two hypotheses are represented by a bit which is encoded in two different transmis-
sivities, τ0 and τ1. We design a possible saturation behavior in such a way that the
two transmissivities tend to coincide if we increase the amount of energy adopted for
readout. Assuming this model, we find wide regions of parameters where the EPR
transmitter is able to retrieve the maximum value of 1 bit, while the classical coher-
ent transmitter decodes ' 0 bits. As we discuss in Sec. 3.3, this striking difference
can also be exploited as a cryptographic technique.

67



0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

Time

P
ro

ba
bi

lit
y

C
on

ce
nt

ra
ti

on

Figure 3.14: Error probabilities of the various transmitters (operated at N̄ = 500
photons) as a function of time t (abstract units). The red curve refers to the proba-
bility of the classical coherent transmitter p̄coh. The Blue curves refer to the quantum
EPR transmitter p̄QCB

quant for single-mode probing M = 1 (dashed curve) and broad-
band probing M → +∞ (solid curve). We also show the corresponding behavior of
the concentration (solid black curve) which increases in time.

Let us start by describing the photodegradable model, assuming, as in the pre-
vious sections, that τ0 = 1 and τ1 := τ < 1. We can introduce a simple saturation
effect by imposing that the lower transmissivity τ tends to 1 for increasing energies.
This may be realized by imposing the exponential law

τ = 1− θ1 exp(−θ2N̄) (3.88)

where N̄ is the mean total number of photons employed in the readout, while θ1
and θ2 are parameters of the phenomenological model. More specifically, parameter
θ1 provides the value at zero energy (which is 1 − θ1), and parameter θ2 gives
the speed of convergence to 1. Note that the literature on mathematical modeling
of photodegradable effects is very limited. Our model corresponds to an inverted
Brody model, to be interpreted as a death rate superimposed to the population. See
Fig. 3.15 for numerical examples.

In order to evaluate the effects of this saturation behavior, we have to combine
the law of Eq. (3.88) with the energy-dependent performances of the quantum and
classical transmitters. First of all, we connect the error probability in the channel
discrimination p̄ with the amount of information retrieved I. This connection is
given by the formula

I(p̄) = 1−H(p̄),

where H(p̄) := −p̄ log2 p̄− (1− p̄) log2(1− p̄) is the binary Shannon entropy. Thus,
for the coherent transmitter, we have Icoh := I(p̄coh) where p̄coh(τ, N̄) is given
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in Eq. (3.55). For the quantum EPR transmitter, we have Iquant := I(p̄QCB
quant) ≤

I(p̄quant), where the QCB p̄QCB
quant(τ, n̄,M) is given in Eq. (3.73) and n̄M = N̄ . Thus,

for any fixed choice of the parameters θ1 and θ2, we can replace τ(N̄) into the pre-
vious information quantities, so to have Icoh = Icoh(N̄) and Iquant = Iquant(N̄ ,M).

At fixed values of the energy N̄ , we then compare the number of bits retrieved by
the classical transmitter Icoh(N̄) with those retrieved by the quantum EPR trans-
mitter Iquant(N̄ ,M) for M = 1 (i.e., a single energetic mode with N̄ mean photons)
and for M → +∞ (i.e., an infinite number of modes with vanishing mean pho-
tons N̄/M). The performance of the quantum transmitter for arbitrary M will be
bounded by these two extremal curves. This comparison is shown in Fig. 3.16 where
we assume several values for the parameters θ1 and θ2. From the previous figure it is
clear that we can consider photodegradable models such that the classical transmit-
ter is not able to retrieve any information, while the EPR transmitter can retrieve
almost all the information in a range of energies, depending on the θ’s.

Thus our analysis shows that entanglement can be indeed exploited for non-
invasive readout of fragile samples which tend to fade out as a consequence of being
irradiated with energy. Our study considers a specific model of photo-degradation.
We are currently looking at biological material whose behavior may approximate
this law in order to propose an experiment.

Also note that this extreme situation could be exploited for cryptographic tasks.
An optical memory could be purposely constructed to be photo-degradable in such
a way to hide its encoded classical data from any standard optical drives based on
the use of coherent (or thermal) light. Only an advanced laboratory able to engineer
a quantum entangled source in the correct window of energy will be able to read out
the stored confidential data. From this point of view, quantum reading can provide
a potential technological layer of security based on the fact that the generation of
entanglement and other non-classical features is only possible in more advanced labs
of quantum optics. Furthermore, the range of energy to be used must also be very
well-tailored depending on the specific parameters θ1 and θ2 employed during data
storage, which means that even an eavesdropper with an advanced laboratory is
likely to destroy the data. These concepts are clearly preliminary but the basic
ideas could further be developed into potential practical applications.
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Figure 3.15: Lower transmissivity τ versus mean total number of photons N̄ for
various choices of the parameters θ1 and θ2 in the exponential law of Eq. (3.88). We
have (θ1, θ2) = (5×10−3, 10−4) in panel (a); (θ1, θ2) = (10−2, 7×10−4) in panel (b);
(θ1, θ2) = (5× 10−2, 7× 10−3) in panel (c) and (θ1, θ2) = (10−1, 28× 10−3) in panel
(d). As we can see from the panels, we have different types of saturation depending
on the chosen values of the θ’s. Note that the main difference between these plots
is in the different range of values for the axes.
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Figure 3.16: Number of bits which are retrieved by irradiating N̄ mean total number
of photons. In each panel, the red curve close to zero is the performance of the
classical coherent transmitter Icoh(N̄). The dashed blue curve is the performance
of a single-mode EPR transmitter Iquant(N̄ ,M = 1), while the solid blue curve is
the performance of a broadband EPR transmitter Iquant(N̄ ,M → +∞). Any EPR
transmitter at fixed energy N̄ and arbitrary number of modes M has a performance
between the dashed and the solid blue curves. Panels refer to various choices of
θ1 and θ2 in the exponential law of Eq. (3.88). As in Fig. 3.15 we have (θ1, θ2) =
(5 × 10−3, 10−4) in panel (a); (θ1, θ2) = (10−2, 7 × 10−4) in panel (b); (θ1, θ2) =
(5× 10−2, 7× 10−3) in panel (c) and (θ1, θ2) = (10−1, 28× 10−3) in panel (d).
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3.2.7 Model combining growth and photo-degradability

In this section, we combine the two models of growth and photo-degradability into
a single model. The simplest way to combine the two models is to consider the
multiplication of the two effects described by Eqs. (3.87) and (3.88), so to have

τ(t, N̄) = 10−c0[1−exp(−gt)]
[
1− θ1 exp(−θ2N̄)

]
. (3.89)

This law provides the behavior of the transmissivity in terms of time t and input
energy N̄ for various possible parameters of growth (c0 and g) and photodegrad-
ability (θ1 and θ2). In Fig. 3.17 we show how the performance of the quantum
and classical transmitters behave in terms of the input energy at different times.
The plots show that the quantum transmitter is clearly outperforming the classical
benchmark in a very wide range of energies and this property is maintained over
time, even if at longer times and higher energies the classical transmitter starts to
become comparable in performance.

3.2.8 Discussion

We have shown how the use of quantum sources (in particular, EPR states) greatly
outperforms the use of classical strategies (based on coherent state transmitters)
for the quantum sensing of loss at low photon numbers, with natural applications
to the non-invasive detection of small concentrations in biomedical samples. In our
study we consider both the cases of symmetric and asymmetric quantum hypothesis
testing, using the recently-developed tools of quantum Chernoff bound and quantum
Hoeffding bound.

The advantage of the quantum probe is remarkable at short times, so that a
potential application is also related with the fast detection of a slow growing diseases.
The strong correlations of quantum light can in fact pick very small changes in
the properties of a sample (e.g., a blood sample) well in advance with respect to a
standard source, not to mention comparison with the very inefficient thermal sources
used in today’s labs.

Introducing phenomenological models of bacterial/cell growth and photo-degradability,
we have shown how the quantum advantage can be made extreme for tasks such as
the non-destructive testing of biological samples. These principles could be exploited
to design more advanced types of biological instrumentations, such as non-invasive
quantum-enhanced spectro-photometers for concentration detection and measure-
ment.

72



0 50 100 150 200
0.0

0.1

0.2

0.3

0.4

N

bi
ts

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

N

bi
ts

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

N

bi
ts

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

N

bi
ts

(a)

(c)

(b)

(d)

Figure 3.17: Number of bits which are retrieved by irradiating N̄ mean total number
of photons at different times t = 0, 1, 5, and 10 from top left panel (a) to bottom right
panel (d). In each panel, the red curve is the performance of the classical coherent
transmitter Icoh(t, N̄). The dashed blue curve is the performance of a single-mode
EPR transmitter Iquant(t, N̄ ,M = 1), while the solid blue curve is the performance
of a broadband EPR transmitter Iquant(t, N̄ ,M → +∞). Any EPR transmitter at
fixed energy N̄ and arbitrary number of modes M has a performance between the
dashed and the solid blue curves. Panels refer to the dynamical model in Eq. (3.89).
We have chosen (θ1, θ2) = (10−1, 28× 10−3) and (c0, g) = (1, 0.02).
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3.3 Cryptographic quantum reading

A practical scenario where the quantum detection of loss is important is that of
quantum reading [50], where the aim is to boost the retrieval of classical data from
an optical disk by exploiting quantum entanglement at low photon numbers. A basic
setup for quantum reading consists of a series of cells, each one encoding a bit of
information. This is physically done by picking two different reflectivities, r0 and
r1, each encoding a different bit value. A target cell is then read by shining optical
modes on it (generated by the transmitter) and detecting their reflection back to
a receiver. The use of an entangled source is known to retrieve more information
than any classical source (e.g., based on mixture of coherent states). With respect to
previous literature [42,50,53,69], we now show that the advantage given by quantum
EPR transmitter can be made extreme by introducing a suitable photodegradable
model for the memory.

3.3.1 Introduction

Quantum cryptography [78] aims to realize a completely unbreakable scheme for
the distribution of a secret key between two remote parties, usually called Alice
and Bob. Indeed quantum key distribution (QKD) relies its security on one of
the most fundamental physical laws, the uncertainty principle, which is actively
exploited for detecting and overcoming the presence of a malicious eavesdropper,
usually called Eve. In this scenario, an important role is also played by quantum
entanglement, which can be exploited to make QKD protocols device-independent,
i.e., more robust to practical flaws (e.g., in the detectors) which may potentially be
exploited by Eve. Very recently, quantum discord [43] has also been identified as a
useful resource for device-dependent QKD with trusted noise [51], e.g., in scenarios
such as measurement-device independent QKD [16,47,54,57].

In this section, we investigate a different but still important problem: The confi-
dential storage of information on a physical device, such as an optical memory. It has
recently been proven that quantum entanglement can provide an advantage in the
readout of classical data from optical memories, especially in the low-energy regime,
i.e., when a few photons are irradiated over the memory cells. This approach is
known as quantum reading [42,50,53,69], a notable application of quantum channel
discrimination to a practical task as the memory readout.

Here we show how the performance advantage given by quantum reading can be
exploited to completely hide classical information in optical memories. The strategy
is to design a photo-degradable optical memory whose cells have very close reflectiv-
ities (each reflectivity encoding a bit-value). Because of the photodegrable effects,
each cell can only be read with a limited number of photons. In these low-energy
conditions, we find that only well-tailored quantum sources (in particular, entan-
gled) are able to discriminate two very close reflectivities and, therefore, retrieve the
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information stored in the cell. Specifically, we derive a simple analytical formula
which relates the reflectivities of the memory cell with the mean number of photons
to be employed by the quantum source.

This approach would provide a layer of technological security to the stored data,
in the sense that only an advanced laboratory equipped with quantum-correlated
sources would be able to read the information, whereas any other standard optical
reader based on classical states, such as coherent states or even thermal states, can
only extract a negligible number of bits.

The discussion is organized as follows. In Sec. 3.3.2, we briefly review the basic
setup of quantum reading and we discuss the performances achievable by quantum
entanglement and classical (coherent) states. Then, in Sec. 3.3.3 we show how to
design memories which are not accessible to classical methods. Finally, Sec. 3.3.4 is
for discussions.

3.3.2 Basic setup for quantum reading

For our purpose we consider the simplest version of quantum reading, considering
only ideal optical memories, i.e., with high reflectivities, and neglecting decoherence
effects. Each memory cell is assumed to be in one of two hypotheses: Non-unit
reflectivity r0 := r < 1 (encoding bit-value 0) or unit reflectivity r1 = 1 (encod-
ing bit-value 1). Mathematically, this is equivalent to distinguish between a lossy
channel Er whose loss parameter is the reflectivity r < 1 and an identity channel I.

In symmetric quantum hypothesis testing, these two hypotheses have the same
cost, so that we aim to optimize the mean error probability. In other words, we
need to minimize p̄ := p(H1|H0)p0 + p(H0|H1)p1, where p0 and p1 are the a priori
probabilities of the two hypotheses, while p(H1|H0) is the probability of a false
positive and p(H0|H1) is the probability of a false negative. For simplicity, we
consider here equiprobable hypotheses, i.e., p0 = p1 = 1/2, which means that a
bit of information is stored per cell. The amount of information which is retrieved
in the readout process is therefore given by Iread(p̄) = 1 − H(p̄), where H(p̄) =
−p̄ log2 p̄− (1− p̄) log2(1− p̄) is the binary formula of the Shannon entropy [21].

To distinguish between the two hypotheses Alice exploits an input source of
light (a transmitter) and an output detection scheme (a receiver). In the classical
reading setup, the transmitter consists of a single bosonic mode, the signal (S),
which is prepared in a coherent state |α〉 sent to the memory cell. At the output,
the receiver is typically a photodetector counting the number of photons reflected,
followed by a digital processing based on a classical hypothesis test. The performance
of this receiver can be bounded by considering an optimal quantum measurement,
constructed from the Helstrom matrix ρ0 − ρ1 of the two possible output states
ρ0 = |

√
rα〉 〈

√
rα| and ρ1 = |α〉 〈α|.

The minimum error probability is given by the Helstrom bound [33] which is
here very simple to compute since the two states are pure. By a simple adaptation
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of previous derivations we write the mean error probability

p̄coh(n̄, r) =
1−

√
1− e−n̄(1−

√
r)2

2
, (3.90)

where n̄ = |α|2 is the mean number of photons of the input coherent state. Thus,
this transmitter is able to read an average of Iclass

read = Iread(p̄class) bits per cell.

In the quantum reading setup, we consider a transmitter composed of two en-
tangled modes, the signal (S) and the reference (R). This is taken to be an EPR
state, i.e., a two-mode squeezed vacuum state [78]. As already discussed in previous
sections, this is a zero-mean pure Gaussian state |µ〉SR with CM

V(µ) =

(
µI

√
µ2 − 1Z√

µ2 − 1Z µI

)
,

Z := diag(1,−1),
I := diag(1, 1),

(3.91)

where µ ≥ 1 quantifies both the mean number of thermal photons in each mode,
given by n̄ = (µ − 1)/2, and the amount of entanglement between the signal and
reference modes.

The signal mode, with n̄ mean photons, is sent to read the memory cell and its
reflection S′ is combined with the reference mode in an optimal quantum measure-
ment. Given the state ρSR = |µ〉SR 〈µ| of the input modes S and R, we get two
possible states

σ0 = (Er ⊗ I)(ρSR), (3.92)

σ1 = (I ⊗ I)(ρSR) = ρSR, (3.93)

for the output modes S′ and R at the receiver. One is just the input EPR state,
while the other state σ0 is a mixed Gaussian state with CM

V0(µ, r) =

(
(rµ+ 1− r)I

√
r(µ2 − 1)Z√

r(µ2 − 1)Z µI

)
. (3.94)

The minimum mean error probability is given by the Helstrom bound p̄quantum =
[1−D(σ0, σ1)]/2, where D(σ0, σ1) is the trace distance between σ0 and σ1. As usual,
we resort to the easier-to-compute quantum Chernoff bound (QCB) [3, 4, 46,52]

p̄QCB
quantum :=

C

2
, C := inf

s∈(0,1)
Cs, (3.95)

where Cs := Tr(σs
0σ

1−s
1 ) is the generalized overlap between the two states. In the

specific case where one of the output states is pure σ1 = |ϕ〉 〈ϕ|, we may write
C = F , using the quantum fidelity F = 〈ϕ|σ0 |ϕ〉. For zero-mean Gaussian states,
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this fidelity can easily be computed in terms of their CMs. In fact, we have

F =
4√

det[V(µ) + V0(µ, r)]
=
(
1 + n̄+ n̄

√
r
)−2

. (3.96)

As a result, the mean error probability associated with this quantum transmitter is
upperbounded by the QCB as follows

p̄quantum ≤ p̄QCB
quantum =

(1 + n̄+ n̄
√
r)−2

2
. (3.97)

Thus, the EPR transmitter is able to read at least Iquant
read = Iread(p̄

QCB
quantum) bits per

cell.

3.3.3 Data secured by quantum reading

We can compare the readout performances of the two transmitters by considering
the information gain ∆ := Iquant

read − I
class
read . Its positivity means that quantum reading

outperforms the classical readout strategy. In particular, for ∆ ' 1 bit per cell
we have that the EPR transmitter reads all data, while the classical transmitter is
not able to retrieve any information. Here we aim to exploit this feature to make
the data storage secure in absence of entanglement (and, more generally, quantum
resources). As we can see from Fig. 3.18, the value of the gain ∆ is close to the
maximum value of 1 bit per cell when the memory cell is characterized by very
high reflectivities, i.e., r ' 1. In particular, the good region where ∆ > 0.95 is
particularly evident at low photon numbers, while it tends to shrink towards r = 1
for increasing energy.

We now discuss how we can exploit this advantage of quantum reading for de-
signing a secure classical memory. Let us expand the information quantities Iclass

read

and Iquant
read at the leading order in (1− r) ' 0. We find

Iclass
read '

n̄(1− r)2

ln 256
, Iquant

read '
n̄2(1− r)2

ln 4
. (3.98)

At high reflectivities, there is a different behavior of these quantities in the mean
number of photons n̄. In particular, we may write

Iquant
read ' 4n̄Iclass

read . (3.99)

According to Eq. (3.98), a non-trivial difference between Iclass
read and Iquant

read arises by
imposing the condition

1− r = n̄−1 . (3.100)

77



0.4

0.5

0.6

0.7

0.8
0.9

0.9
0.95

> 0.95

0 10 000 20 000 30 000 40 000 50 000
0.990

0.992

0.994

0.996

0.998

1.000

n

r

Figure 3.18: We plot ∆(n̄, r) in the high-reflectivity range 0.99 ≤ r < 1 and wide
range of n̄ up to 5 × 104. We see how the EPR transmitter is superior for r ' 1,
where ∆ becomes close to 1 bit per cell.

This leads to the following behavior for large n̄

Iclass
read '

1
n̄ ln 256

→ 0, Iquant
read '

ln
(

2048
81

)
− 7 ln

(
9
7

)
ln 512

' 0.235. (3.101)

From the latter equation we see that only quantum reading enables to retrieve
non-zero information from the memory (combining this performance with suitable
error correcting codes would enable us to achieve a complete readout of the memory).
In the following Fig. 3.19, we show the behavior of the two information quantities
Iclass
read and Iquant

read in terms of the mean photon number n̄ and assuming the condition
of Eq. (3.100).

We can see that, at any fixed energy n̄ irradiated over the memory cell, there
is a memory with reflectivity r satisfying Eq. (3.100) which is readable by using a
quantum transmitter with signal energy n̄ but unreadable by a classical transmitter
with the same irradiated energy n̄. More precisely, any classical transmitter with
energy up to n̄ is inefficient. In fact, let us fix some value n̄max and consider a
memory with 1 − r = n̄−1

max, then the performance of all classical transmitters with
signal energy n̄ ≤ n̄max is shown in Fig. 3.20. We see that the optimal classical
transmitter is that with the maximal energy n̄max as clearly expected from the
monotonic expression in Eq. (3.90).

Thus, if we construct a theoretical memory which can be irradiated with at most
n̄max photons per cell (otherwise data is lost, e.g., due to photodegrable effects)
and having reflectivity r satisfying Eq. (3.100), then this will be unreadable by any
classical transmitter based on coherent states while its data can be retrieved by a
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Figure 3.19: We plot Iclass
read (lower curve) and Iquant

read (upper curve) versus the mean
photon number n̄ ≥ 1. We assume a memory with reflectivity r satisfying the
condition of Eq. (3.100).
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Figure 3.20: We plot the information quantity Iclass
read in log-scale for n̄ ≤ n̄max. We

consider the readout of a memory with 1−r = n̄−1
max. Here we consider the numerical

value n̄max = 1000 but the behavior is generic.
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quantum transmitter with signal energy ' n̄max.

Note that we can design a memory with reflectivity r such that

1− r = cn̄−1, (3.102)

for some constant c. For large n̄, we have Iclass
read → 0, while Iquant

read tends to a
constant ≤ 1 which depends on c. For instance, we have Iquant

read → 0.895 for c = 0.1,
and Iquant

read → 0.997 for c = 0.01. In Fig. 3.21, we show the behavior of the two
information quantities Iclass

read and Iquant
read assuming Eq. (3.102) with c = 0.1. We see

how the memories remain unreadable by classical means while the performance of
quantum reading approaches 1 bit/cell.
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Figure 3.21: We plot the information quantities Iclass
read (lower curve) and Iquant

read (up-
per curve) versus the mean photon number n̄ ≥ 1. We consider memories with
reflectivity r satisfying Eq. (3.102) with c = 0.1.

3.3.4 Discussion

In this study on the cryptographic aspects of quantum reading, we have shown how it
is possible to construct classical memories which cannot be read by classical means,
namely coherent states but still they can be read using quantum entanglement.
In particular, we have considered an EPR state and we have connected the mean
number of photons to be employed by this quantum source with the reflectivities to
be used in the memory cells, see Eq. (3.100) and also its generalization in Eq. (3.102).
Note that other non-classical states may also provide non-trivial advantages with
respect to coherent states and their mixtures. In general, the security provided by
the scheme relies on the technological difference between two types of laboratories,
one limited to classical sources and the other able to access quantum features, such
as entanglement or squeezing.

It is interesting to discuss the connections between our scheme of data-hiding
by quantum reading and the traditional technique of quantum data hiding [23, 74].
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The latter stores classical information into entangled states, so that it can only be
retrieved by joint measurements. It is clearly an application of quantum state dis-
crimination. By contrast, data-hiding by quantum reading is related to the problem
of quantum channel discrimination. Classical data is stored in a channel (not a
state) and quantum entanglement is used as an input resource to be processed by
the channel. This is a crucial difference, also for practical purposes, since data stored
in a classical memory does not decohere (like the entangled states typically prepared
in quantum data hiding), and quantum entanglement is used a resource on demand,
which is needed only for the readout of the information (not for the storage process).

Note that our study can be extended in several ways. We have only considered
ideal memories where the cells are addressed individually and have very high reflec-
tivities (in particular, we have assumed unit reflectivity for one of the two bit values
stored in the cell). There is no inclusion of additional noise sources in the model,
e.g., coming from stray photons scattered during the readout process, neither anal-
ysis of diffraction or other optical effects. Finally, we have also assumed that high
values of entanglement can be generated. While this is possible theoretically, it is
very hard to achieve experimentally. This would not be a problem if we were able
to construct memories which are extremely photo-sensitive, so that the maximum
values of tolerable energies are of the order of n̄max . 10 photons per cell.
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Chapter 4

Conclusions and future

directions

This thesis has contributed to advance research in the field of quantum hypothesis
testing in various aspects. First of all we have developed the theory of asymmetric
quantum state discrimination in the context of Gaussian states, by deriving a proce-
dure on how to compute the central tool of the quantum Hoeffding bound for these
very important states. Our results can be used in quantum optics and continuous
variable quantum information whenever one needs to compute the probability of
false negatives in an asymmetric test which involves the use of Gaussian sources of
light.

Using this approach and also that of the more standard symmetric quantum
hypothesis testing, we have investigated practical applications in the context of
quantum sensing and data readout, with potential applications in quantum tech-
nologies. In general, we have shown how quantum correlations (entanglement) may
be used to boost the performance of quantum channel discrimination well-above the
standard unassisted and classical strategies. This advantage has been proven at low
energies, i.e., for low photon numbers.

In particular, we have discussed how we can model the probing of a biologi-
cal sample (for retrieving information about a potential growth) as a problem of
quantum channel discrimination. Using the Lambert-Beer law we have mapped this
problem into a problem of Gaussian channel discrimination, for which we need to
enforce an energetic constraint at the input. Imposing the non-invasive regime of
few photons, we have proven that the use of entangled states (in particular, EPR
states) outperforms any classical strategy which is based on the use of uncorrelated
light (in particular, coherent states or thermal states as it happens in today’s instru-
ments such as spectrophotometers). This can have potential long-term implications
for in-vivo and/or real-time screening of biological samples (e.g. RNA, DNA) and
medical tissues.

Next directions involve the analysis of the performance of this non-invasive quan-
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tum sensing scheme in the presence of a blank sample which is not necessary an
identity operation on the input state, but having some intrinsic transmissivity T0.
This is certainly a further step toward an experimental realization of the idea. Also
it is an important step to formulate this more advanced scheme in the context of
quantum metrology, where tools as the quantum Fisher information are very well
studied in the literature.

A further step towards an experimental implementation is the characterization of
biological material for which the photo-degradable effects are more evident. This is
certainly true for DNA/RNA at UV frequencies. In today’s labs we use spectropho-
tometers equipped with a UV lamp, UV-transparent cuvettes (depending on the
instrument) and a solution of purified DNA. Absorbance readings are performed at
260nm where DNA absorbs light most strongly. Direct DNA damage occurs when
the absorption of a UV photon affects thymine base pairs (next to each other in
genetic sequences) in such a way that they bond together into pyrimidine dimers.
This causes a disruption in the strand, which means that reproductive enzymes can-
not copy anymore. RNA is subject to similar problems at roughly the same UV
frequencies.

It would also be interesting to identify biological material which is very fragile at
optical frequencies (say 400-800nm) where the tools of quantum optics are currently
more developed. Besides looking at the literature, this investigation would need a
close interaction between a biology lab and a quantum optics lab, so to find the best
compromise between potential samples and currently available sources of quantum
light. The identification of an extremely photo-degradable material at the optical
frequencies will also be useful for implementing the idea of cryptographic quantum
reading, where this material would be used to encode confidential data in the cells
of a memory.
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Appendix A

Continuous-variable systems

A.1 Quantization of the electromagnetic field (basic in-

tuition)

By solving Maxwell’s equations within an infinite square box, we derive the decom-
position of the electromagnetic field into planar waves or bosonic modes [40,77]. In
particular, a single mode of the field is a propagating wave with fixed frequency ν,
fixed direction of propagation ~k and fixed polarization ~z. Its electric field can be
written as

~E(~r, t) = E ~z[q cos(ωt− ~k · ~r) + p sin(ωt− ~k · ~r)], (A.1)

where E contains all the physical units. For fixed ν, ~k and ~z, we have that q and p
remain free parameters. In a few words, in classical electromagnetism, the state of
the mode is determined by two “classical quadratures” q and p.

According to Eq. (A.1), the quadratures represent two components of the electric
field. In particular, the position-quadrature q is the in-phase component of the field
with respect to a reference signal ≈ cos(ωt−~k ·~r), while the momentum-quadrature
p is the out-phase component (having a π/2 dephasing with respect to the reference
signal). Note that they are called position and momentum quadratures, because
they are similar to the position and momentum of a mechanical oscillator.

The position and momentum quadratures span a bi-dimensional real vector space
which is called the “phase-space”. In this space, the classical state of a mode corre-
sponds to a single point x = (q, p)T . From an intuitive point of view, the extension
from the classical to the quantum description of the field corresponds to the intro-
duction of quantum noise in the phase-space, so that the single point is replaced by
a continuum set of points which can be taken with different probabilities.

More precisely, the quantization of a mode corresponds to introducing a quasi-
probability distribution, called the “Wigner function” W (x), which is defined over
the entire phase space. Mathematically,W (x) is normalized to one, i.e.,

∫
dxW (x) =

1 (as a probability density), but it can have negative values in the general case
W (x) � 0 (contrarily to what happens to probability densities which are positive).
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The Wigner function may be used to represent the quantum state of a mode. Its
contour identifies the set of the most probable points, an intuitive picture which
is particularly appropriate for Gaussian states, i.e., those quantum states having
Gaussian Wigner function.

A.2 Bosonic systems and quadrature operators

A more rigorous way to quantize the electromagnetic field is replacing the classi-
cal quadratures, q and p, in the expression of the mode of Eq. (A.1), with two
non-commuting quantum operators, q̂ and p̂, with [q̂, p̂] = 2i, so that we have the
quantum electric field [40,77]

Ê(~r, t) = E ~z[q̂ cos(ωt− ~k · ~r) + p̂ sin(ωt− ~k · ~r)]. (A.2)

This procedure transforms the mode from being a classical system to being a bosonic
quantum system.

Formally, a bosonic system (or bosonic mode) is a quantum system with an
infinite-dimensional Hilbert space H, which is associated with two quadrature oper-
ators, q̂ and p̂, such that [q̂, p̂] = 2i. Given an arbitrary state ρ of the system, the
two quadratures have mean values

q̄ = 〈q̂〉ρ = Tr (q̂ρ) , p̄ = 〈p̂〉ρ = Tr(p̂ρ), (A.3)

and variances
V (q̂) =

〈
q̂2
〉
ρ
− 〈q̂〉2ρ , V (p̂) =

〈
p̂2
〉
ρ
− 〈p̂〉2ρ . (A.4)

Because of [q̂, p̂] = 2i, we have that the two quadratures must satisfy the uncertainty
principle

V (q̂)V (p̂) ≥ 1, (A.5)

which expresses the incompressibility of the quantum noise.

A.3 Ladder operators and Fock basis

Besides the two quadratures q̂ and p̂, a bosonic mode may be characterized by two
“ladder operators”, known as the annihilation operator

â =
q̂ + ip̂

2
(A.6)

and the creation operator

â† =
q̂ − ip̂

2
, (A.7)
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with commutation relation
[
â, â†

]
= 1. Equivalently, we may write

q̂ = â+ â†, p̂ =
â† − â
i

. (A.8)

From the ladder operators we define the “number operator”

n̂ := â†â =
q̂2p̂2

4
− 1

2
, (A.9)

which is an observable representing the number of photons in the bosonic mode. In
fact, adopting the procedure of quantization (q, p)→ (q̂, p̂), the energy of the mode
becomes the following observable

E =
1
2
(q2 + p2)→ Ê =

1
2
(q̂2 + p̂2). (A.10)

Using Eqs. (A.8) and (A.9) in Eq. (A.10), we obtain

Ê = 2n̂+ 1 , (A.11)

so that the energy of the mode is expressed in terms of number of photons n̂ plus
the energy of the vacuum (equal to 1, in our notation).

Using the number operator n̂ we can construct a basis for the Hilbert space of
the mode. This corresponds to solving the eigensystem

n̂|n〉 = n|n〉 , (A.12)

were n = 0, 1, ...+∞ are the eigenvalues of n̂ (representing the number of photons),
and |n〉 are the eigenkets of n̂ (representing those states with number of photons
exactly equal to n). The eigenset {|n〉}+∞n=0 provides an orthonormal basis, which is
called the “Fock basis” or the “number basis”. This is also a basis for the energy,
since n̂ and Ê are compatible observables.

Thus we have a bosonic mode whose ∞-dimensional Hilbert space H is spanned
by the Fock basis. An arbitrary ket |ϕ〉 ∈ H can be decomposed in this basis as

|ϕ〉 =
+∞∑
n=0

ϕn|n〉 (A.13)

where the coefficients are given by the inner product ϕn = 〈n |ϕ〉. Here p(n) = |ϕn|2

is the probability that the state |ϕ〉 contains n photons. It is the probability that
we measure n photons when we detect the mode by using a positive operator-valued
measure (POVM) {Π̂n} with measurement operator Π̂n = |n〉〈n|, i.e., a quantum
measurement which projects on the Fock basis.

Finally, we discuss the action of the ladder operators on the Fock states. The
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annihilation operator â destroys one photon. Given a Fock state |n〉, we have

â|n〉 =
√
n|n− 1〉 for n ≥ 1, (A.14)

â|0〉 = 0 . (A.15)

On the contrary, the creation operator â† generates one photon, i.e., we have

â†|n〉 =
√
n+ 1|n+ 1〉. (A.16)

An arbitrary Fock state |n〉 can be generated by n consecutive applications of the
creation operator â† starting from the vacuum state

|n〉 =
(â†)n

√
n!
|0〉. (A.17)

A.4 Coherent states and displacement operator

Coherent states are defined as the eigenkets of the annihilation operator â with
complex eigenvalues α ∈ C

â|α〉 = α|α〉. (A.18)

Given a coherent state |α〉 with amplitude α, it can be generated from the vacuum
state |0〉 by applying the so-called “displacement operator” D̂(α), i.e., we have

|α〉 = D̂(α)|0〉. (A.19)

The displacement operator can be defined in terms of the ladder operators as

D̂(α) = exp[αâ† − α∗â], (A.20)

and it is a unitary operator

D̂†(α) = D̂−1(α) = D̂(−α). (A.21)

The displacement operator can also be expressed in terms of the quadratures
operators q̂ and p̂. Using Eqs. (A.6) and (A.7) in Eq. (A.20), we derive the Weyl
operator

D̂(x) = exp
[
i

2
(pq̂ − qp̂)

]
, (A.22)

where x = (q, p)T . In particular, we may displace along a specific quadrature, since

D̂(q) ≡ D̂(q, 0) = exp−
i
2
(qp̂) (A.23)
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displaces in position q, while

D̂(p) ≡ D̂(0, p) = exp
i
2
(pq̂) (A.24)

displace in momentum p.

Coherent states are correctly normalized 〈α|α〉 = 1, but they are non-orthogonal
since they have non-zero overlap

〈α|β〉 = exp
(
α∗β − |α|

2 + |β|2

2

)
6= 0. (A.25)

Despite this, they form a basis for the Hilbert space H, so that an arbitrary ket
|ϕ〉 ∈ H can be written as

|ϕ〉 =
∫

C
d2ϕ(α)|α〉 .

Finally, it is important to note that coherent states are quantum states with mini-
mum uncertainty, since they saturate the uncertainty principle in a symmetric way
V (q̂) = V (p̂) = 1.

A.5 Squeezed states and squeezing operator

There exist quantum states which are of minimum uncertainty but their quantum
noise is distributed asymmetrically between the two quadratures. In other words,
they satisfy V (q̂)V (p̂) = 1 with V (q̂) 6= V (p̂). These states can be derived from the
vacuum state applying a particular unitary operator called “squeezing operator”

|r〉 = Ŝ(r)|0〉 (A.26)

where
Ŝ(r) = exp[

r

2
(â2 − â†2)], (A.27)

with the real number r being the squeezing factor. The pure state |r〉 is called the
“squeezed vacuum” and has quadratures with variances equal to

V (q̂) = e−2r, V (p̂) = e2r . (A.28)

Therefore, we see that for r > 0 we have squeezing in position, while for r < 0
we have squeezing in momentum. In general, we may consider a displaced squeezed
state with squeezing r and amplitude α, which is achieved by displacing the squeezed
vacuum

|α, r〉 = D̂(α)|r〉 = D̂(α)Ŝ(r)|0〉. (A.29)
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A.6 Infinitely-squeezed states

Starting from the squeezed states we can construct the eigenstates of the quadra-
tures, i.e, those states where the quadratures are perfectly defined. These eigenstates
are realized in the limit of the infinite squeezing. For instance, from the squeezed
vacuum state

|0, r〉 = Ŝ(r)|0〉, (A.30)

we can take the two limits r → +∞ or r → −∞.In the first case (r → +∞), we
realize an asymptotic state with zero position

|q = 0〉 = lim
r→+∞

|0, r〉. (A.31)

In the second case (r → −∞) we realize an asymptotic state with zero momentum

|p = 0〉 = lim
r→−∞

|0, r〉. (A.32)

By using the Weyl operators, we can now displace these states to create all the other
states with q and p arbitrary, i.e.,

|q〉 = D̂(q)|q〉, |p〉 = D̂(p)|p〉 . (A.33)

These asymptotic states represent the eigenkets of the quadratures operators q̂ and
p̂, i.e. we have

q̂|q〉 = q|q〉, p̂|p〉 = p|p〉 . (A.34)

It is important to note that the asymptotic states |q〉 and |p〉 lie outside the
Hilbert space of the system. Indeed, they are not normalizable, despite the fact that
they form an orthogonal set, i.e., we have

〈q|q′〉 = δ(q − q′), 〈p|p′〉 = δ(p− p′) , (A.35)

where δ is the Dirac-delta defined by

δ(x− x′) =

{
0 for x 6= x′ ,

+∞ for x = x′ ,
(A.36)

extending the Kronecker-delta δkk′ to continuous variables.

Quadrature eigenstates are bases for the Hilbert space H. For any ket |ϕ〉 ∈ H,
we may write its decomposition in the position basis {|q〉} as

|ϕ〉 =
∫ +∞

−∞
dq ϕ(q)|q〉 , (A.37)

where ϕ(q) = 〈q |ϕ〉 is called the “wave-function” (in position) of the state. Its
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squared modulus P (q) = |ϕ(q)|2 gives the probability density that we measure the
value q of the position. This type of measurement is known as homodyne detection
and is described by a POVM {Π̂q} with measurement operator Π̂q = |q〉〈q|. As one
can easily verify, given a ket |ϕ〉, the outcome q is achieved with probability

P (q) = Tr(Πq |ϕ〉〈ϕ|) = 〈ϕ| Π̂q |ϕ〉 (A.38)

= 〈ϕ| q〉〈q |ϕ〉 = |ϕ(q)|2. (A.39)

Equivalently, we may decompose |ϕ〉 in the momentum basis {|p〉} as

|ϕ〉 =
∫ +∞

−∞
dp ϕ(p)|p〉 (A.40)

with ϕ(p) = 〈p |ϕ〉 the wave function in the momentum p. Then, P (p) = |ϕ(p)|2

gives the probability density of the momentum. This is the output provided by
a homodyne detector {Π̂p} with measurement operator Π̂p = |p〉〈p|. In general a
POVM is a “Homodyne” detection if it realizes a projection on one of the quadratures
(position q or momentum p).

A.7 Thermal states

Given the Fock basis {|n〉}, an arbitrary ket (pure state) can be decomposed as

|ϕ〉 =
+∞∑
n=0

ϕn|n〉, ϕn = 〈n|ϕ〉. (A.41)

More generally, an arbitrary density operator (mixed state) can be decomposed as

ρ =
∑
n,m

ρn,m |n〉〈m| , ρn,m = 〈n|ρ|m〉. (A.42)

A thermal state is a particular mixed state which is diagonal in the Fock basis.
It is defined as

ρ(n̄) =
+∞∑
n=0

n̄n

(n̄+ 1)n̄+1
|n〉〈n| , (A.43)

where n̄ is a positive parameter (n̄ ≥ 0) and corresponds to the mean number of
photons in the mode. It is also called “thermal number” and is related to the
temperature T of the environment.

In fact, a bosonic mode with frequency ν, which at thermal equilibrium with an
environment at temperature T , is described by thermal state with mean number of
photons equal to

n̄ =
1

exp( hν
KT )− 1

, (A.44)

where K is the Boltzmann constant and h the Plank’s constant [59]. This is known
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as the Planck law of the black-body radiation.
Note that the thermal state has quadrature with variances

V (q̂) = V (p̂) = 2n̄+ 1 , (A.45)

which are increasing in n̄. Thus, for these states, the parameter n̄ describes both
the average energy (mean number of photons) and the noise of the state (variance
of the quadratures). For n̄ = 0, the thermal state becomes the vacuum state, i.e.,
ρ(0) = |0〉〈0|.
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Appendix B

Phase-Space Representations

Given a bosonic mode with Hilbert space H we can associate a corresponding phase-
space K. This is a 2-dimensional real vector space (w R2) spanned by the two
quadratures q and p, i.e., the eigenvalues of the quadrature operators q̂ and p̂ (these
are “continuous variables” of the mode).

Mathematically, there is a one-to-one correspondence between a density operator
ρ, acting on the Hilbert space H, and a real function called the “Wigner function”
W (q, p), which is defined over the phase-space K, i.e., ρ↔W (q, p). In other words,
a quantum state can equivalently be described by a density operator or by a cor-
responding Wigner function. The connection between these representations can be
realized by means of the Weyl operator

D̂(ξ) = exp
[
ix̂T Ωξ

]
, (B.1)

where ξ ∈ R2, x̂ = (q̂, p̂)T and Ω is called the “symplectic form” and defined by

Ω =

(
0 1
−1 0

)
. (B.2)

As a first step we connect ρ to a “characteristic function” defined by

χ(ξ) = Tr[ρD̂(ξ)] . (B.3)

Then we introduce the Wigner function W (x) as a Fourier transformation of the
characteristic function

W (x) = FT [χ(ξ)] =
∫

R2

dξ

4π2
eix

T Ωξχ(ξ), (B.4)

where x = (q, p)T ∈ K is the conjugate variable of ξ.

It is important to note that the Wigner function is a quasi-probability distri-
bution meaning that, in general, it can take negative values, even if it is correctly
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normalized to one ∫
R2

d2x W (x) = 1. (B.5)

B.1 Single-mode Gaussian States

By definition, the quantum state ρ of a bosonic mode is called Gaussian if its Wigner
function W (x) is Gaussian, i.e., taking the form

W (x) =
1

2π
√

detV
exp

[
−1

2
(x− x̄)T V−1 (x− x̄)

]
. (B.6)

In this case,the Wigner function is positive W (x) ≥ 0, therefore representing a
bona-fide probability density.

As we may see from Eq. (B.6), a Gaussian W (x) is fully characterized by the
first- and second-order statistical moments, which are the mean value x̄ and the
covariance matrix (CM) V. Explicitly, the mean value has components x̄ = (q̄, p̄)T

with
q̄ = Tr(q̂ρ), p̄ = Tr(p̂ρ), (B.7)

while the CM can be written as

V =

(
V (q̂) C(q̂, p̂)
C(q̂, p̂) V (p̂)

)
, (B.8)

where V (q̂), V (p̂) are the variances of the quadratures and

C(q̂, p̂) =
〈q̂p̂+ p̂q̂〉

2
− q̄p̄ (B.9)

is their covariance. The CM has important mathematical properties. It is a 2 × 2
real and symmetric matrix V ∈M(2× 2, R), VT = V. It is positive-definite V > 0
and, more strongly, it must satisfy the uncertainty principle, which is expressed by

V + iΩ ≥ 0 (B.10)

where Ω is the symplectic form of Eq. (B.2).

Thus, a Gaussian state is one-to-one with its first- and second-order statisti-
cal moments {x̄,V}. This is because a density operator ρ is one-to-one with its
Wigner function W (x) and, for a Gaussian state, the Wigner function is one-to-one
with {x̄,V}. Clearly this is not true for a non-Gaussian state, whose non-Gaussian
Wigner function generally depends an all the statistical moments. Because of the
equivalence

Gaussian ρ←→ {x̄,V} , (B.11)

we have that a few number of real parameters completely characterize the Gaussian
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state. In particular, we have 5 real parameters for a single-mode Gaussian state.
Afterwards, when we consider multi-mode Gaussian states, we will see that the
number of real parameters is still small in the sense that it grows polynomially in
the number N of modes, as 2N2 + 3N . This efficient description of Gaussian states
gives a non-trivial theoretical advantage. Furthermore, Gaussian states are very
important experimentally too, since they are the most typical and common states
which are generated in quantum optics labs.

B.1.1 Examples of Gaussian states

We review here the phase-space representation of the main Gaussian states of a
bosonic mode. Mathematically, it is sufficient to give the expressions of their first
two statistical moments x̄ and V. Geometrically, we can represent these states by
designing their contours in the phase-space K. We first identify a center point, which
is given by the mean value x̄, and then we design a contour whose shape and size
depend on the CM. We may define the contour of a Gaussian Wigner function W (x)
as that curve C of the phase-space where the value of W (x) is constantly equal to
(2π
√
e)−1 (which is the value of the function which corresponds to one-standard

deviation). In other words, the contour identifies that region of the phase-space
where the quadratures q and p take the most probable values. It is therefore a very
intuitive way to represent the quantum noise of the Gaussian state.

Let us review and represent the most important single-mode Gaussian states
which are: vacuum state, coherent state, squeezed state and thermal state.

Vacuum State.

The vacuum state |0〉 is a pure Gaussian state with the simplest statistical moments

x̄ = 0, V = I, (B.12)

where I is the 2-by-2 identity matrix. In other words, we have symmetric noise in
the quadratures V (q̂) = V (p̂) = 1, which is the minimal possible allowed by the
uncertainty principle (as already discussed). This unit value is the “quantum shot-
noise” of the vacuum also known as the “vacuum noise”. In the phase-space, the
vacuum state is represented by a circular contour centered in the origin, as shown
in Fig. B.1.

Coherent states.

A coherent state corresponds to a displaced vacuum state |α〉 = D̂(α)|0〉, with
α = (q̄ + ip̄)/2 being its complex amplitude. Its statistical moments are given by

x̄ =
(
q̄

p̄

)
, V = I. (B.13)
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Figure B.1: Phase-space contour of the vacuum state (centered at the origin) and
that of a coherent states with amplitude α.

Its phase-space contour is shown in Fig. B.1. Physically, a coherent state represents
a semiclassical description for an electromagnetic wave, where the average signal
profile of the electric field has superimposed quantum noise. Indeed, in the high-
energy limit n̄ = |α|2 → +∞, a mode in a coherent state well describes a classical
electromagnetic wave (with the ratio between the variances of the quadratures and
their mean value going to zero).

Squeezed states.

First we consider the squeezed vacuum state, which is achieved by applying the
squeezing operator to the vacuum state

|0, r〉 = Ŝ(r)|0〉 (B.14)

with r ∈ R being the squeezing factor. This is a pure Gaussian state with

x̄ = 0 (B.15)

and

V =

(
e−2r 0

0 e2r

)
. (B.16)

As we can see from the previous CM and the contours in Fig. B.2, positive squeez-
ing (r > 0) shrinks the quantum noise in the position quadrature, while negative
squeezing (r < 0) shrinks the noise in the other quadrature. In the limit of infinite
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squeezings (r → ±∞), we realize the asymptotic quadrature eigenstates |q = 0〉 and
|p = 0〉.

Figure B.2: Left panel. Squeezed vacuum states in position |0, r > 0〉 and momen-
tum |0, r < 0〉. Right panel. Displaced squeezed state |α, r〉 with amplitude α and
squeezing r.

In general, we can have a displaced squeezed state, which obtained by applying
the displacement operator to a squeezed vacuum state

|α, r〉 = D̂(α)|0, r〉 = D̂(α)Ŝ(r)|0〉. (B.17)

This has mean value x̄ = (q̄, p̄)T with components given by the amplitude of the
displacement α = (q̄ + ip̄)/2, and the same CM as before in Eq. (B.16).

Thermal states.

A thermal state is a mixed Gaussian state with density operator ρ(n̄) depending on
the thermal number n̄ ≥ 0 (mean number of photons). Its statistical moments are

x̄ = 0, V = µI (B.18)

where
µ = 2n̄+ 1. (B.19)

According to Eq. (B.19), all energy in the state (parameter n̄) is in form of quantum
noise (variance parameter µ). Clearly, we have the vacuum state for n̄ = 0. The
phase-space contour of the thermal state is shown in Fig. B.3.
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Figure B.3: Contour of a thermal state with variance parameter µ.

B.1.2 Gaussian unitaries or symplectic transformations

Until now we have studied single-mode Gaussian states, discussing some specific ex-
amples. We have also seen that pure Gaussian states, as coherent states and squeezed
states, can be generated from the vacuum by applying some unitary transformation
(displacement and squeezing operators). Such a procedure can be generalized.

By definition, we say that a unitary operator Û is Gaussian if transforms Gaus-
sian states into Gaussian states, i.e., the output state Û |ϕ〉 is Gaussian for any
Gaussian state |ϕ〉 at the input. Using Gaussian unitaries we can generate all the
pure Gaussian states starting from the vacuum. In other words, given an arbitrary
pure Gaussian state |ϕ〉 we can write

|ϕ〉 = Û |0〉 (B.20)

for some suitable Gaussian unitary Û . In particular, the most general single-mode
pure Gaussian state can be written as a rotated and displaced squeezed state

|α, θ, r〉 = D̂(α)R̂(θ)Ŝ(r) |0〉, (B.21)

where the vacuum is first squeezed by Ŝ(r), then rotated by R̂(θ) = exp(−in̂θ) and
finally displaced by D̂(α).

Similarly to Gaussian states, Gaussian unitaries too have simple descriptions in
the phase space, in terms of transformations on the two statistical moments x̄ and
V. In fact, a Gaussian unitary Û acting on the Hilbert space H is equivalent to
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an affine transformation in the phase space K, which transforms the two statistical
moments according to the following rules:

x̄→ x̄′ = x̄+ d, (B.22)

V→ V′ = SVST , (B.23)

where d is a displacement vector and S is a symplectic transformation, i.e., a matrix
preserving the symplectic form

SΩST = Ω . (B.24)

Under this correspondence, the displacement operator D̂(α) corresponds to the
transformation of the first moments according to Eq. (B.22) with d = (Reα, Imα)T .
Squeezing operator Ŝ(r) corresponds to transforming the CM according to Eq. (B.23)
by using the squeezing matrix

S(r) =

(
e−r

er

)
=

(
ξ−1

ξ

)
, ξ = er . (B.25)

Rotation operator R̂(θ) corresponds to using the rotation matrix

R(θ) =

(
sin θ cos θ
− cos θ sin θ

)
. (B.26)

It is therefore easy to express the most general pure Gaussian state |α, r, θ〉 in
terms of the pair {x̄,V}. Using Eq. (B.21) and the phase-space representation of
D̂, R̂ and Ŝ, we have that |α, r, θ〉 has mean value x̄ = (Reα, Imα)T and CM

V = R(θ)S(r) I S(r)TR(θ)T = R(θ)S2(r)RT (θ). (B.27)

B.2 Two-mode bosonic states

We consider two bosonic modes, labeled as A and B, with joint Hilbert space
HAB = HA ⊗ HB and quadratures operators x̂A = (q̂A, p̂A)T and x̂B = (q̂B, p̂B)T ,
respectively. The quadrature operators must satisfy the commutation relations

[q̂A, p̂A] = [q̂B, p̂B] = 2i (B.28)

and
[q̂A, q̂B] = [q̂A, p̂B] = [p̂A, q̂B] = [p̂A, p̂B] = 0. (B.29)

As a consequence of these commutators we have that we cannot measure position
and momentum of the same mode with arbitrary precision, but we can measure
these observables if they correspond to different modes. In fact, from Eq. (B.28) we
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can derive the uncertainty principle

V (q̂k)V (p̂k) ≥ 1, for k = A,B (B.30)

while Eq. (B.29) do not pose constraints on the other product of variances. Here we
have V (Ô) = 〈Ô2〉 − 〈Ô〉2 with 〈Ô〉 := Tr(ρABÔ).

We can introduce a compact vector notation to describe the quadrature operators
of the two modes. We consider a quadrature vector defined as

x̂ =


q̂A

p̂A

q̂B

p̂B

 =


x̂1

x̂2

x̂3

x̂4

 . (B.31)

Then the commutation relations take the compact form

[x̂k, x̂l] = 2iΩk,l (k, l = 1, ..., 4), (B.32)

where Ωk,l is the generic element of symplectic form for two modes

Ω =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 = ΩA ⊕ ΩB (B.33)

which is achieved by direct sum ⊕ of the symplectic forms of each bosonic mode.

The CM of a two-mode state ρAB can be written in the form

V =

(
A C

CT B

)
(B.34)

where the blocks A,B,C are 2 × 2 real matrices and we have A = AT and B =
BT . Here A is the CM of the reduced state ρA = TrB(ρAB), B is the CM of the
reduced ρB = TrA(ρAB) of mode B, while the off-diagonal block C accounts for the
correlations between the two modes. The generic element Vkl of the CM is defined
as

Vkl =
1
2
〈x̂kx̂l + x̂lx̂k〉 − 〈x̂k〉 〈x̂l〉 (B.35)

where k, l = 1, 2, ..., 4. In terms of the CM, the uncertainty principle takes a very
compact form which is expressed by [68]

V + iΩ ≥ 0, (B.36)

which means that the matrix M ≡ V + iΩ must have non-negative eigenvalues.
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B.2.1 Two-mode Gaussian states

A two-mode Gaussian state ρAB is equivalent to a Gaussian Wigner function W (x)
which, in turn, is completely characterized by its mean value x̄ ∈ R4 and 4×4 CM as
in Eq. (B.34). In particular, zero-mean Gaussian states (x̄ = 0) are fully equivalent
to their CMs.

The most important example of two-mode Gaussian state is the ”Einstein-
Podolski-Rosen” (EPR) state [78]. This is a pure Gaussian state with zero mean
and CM of the form

VEPR(µ) =

(
µI

√
µ2 − 1Z√

µ2 − 1Z µI

)
(B.37)

where µ ≥ 1 and

I = diag(1, 1) =

(
1 0
0 1

)
, (B.38)

Z = diag (1,−1) =

(
1 0
0 −1

)
. (B.39)

According to the previous CM of Eq. (B.37), we have the following variances and
covariances for the quadratures

V (q̂A) = V (p̂A) = V (q̂B) = V (p̂B) = µ (B.40)

and
C(q̂A, q̂B) =

√
µ2 − 1, C(p̂A, p̂B) = −

√
µ2 − 1. (B.41)

The EPR state has maximum correlations between modes A and B. These EPR
correlations represent a typical form of entanglement and they are increasing in µ.
In the trivial case where µ = 1, we have

VEPR(1) = I⊕ I (B.42)

which means that we have the tensor product of two vacuum states

ρEPR(1) = |0〉〈0|A ⊗ |0〉〈0|B . (B.43)

This is the only case where the EPR state is separable, being entangled for any
µ > 1. In the limit case µ→ +∞, we have an ideal EPR state, for which q̂A → q̂B

and p̂A → −p̂B [24]. In other words, positions become perfectly correlated and
momenta become perfectly anti-correlated.

It is important to note that the reduced states of the EPR state ρA = TrB(ρEPR)
and ρB = TrA(ρEPR) are two identical thermal states ρA = ρB = ρth(µ) with CM
µI. As we can see, the parameter µ also quantifies the mean number of thermal pho-
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tons in each mode. These thermal numbers are equal n̄A = n̄B = n̄ and determined
by

µ = 2n̄+ 1. (B.44)

The EPR state is also known as two-mode squeezed vacuum state (TMSV) state.
In fact, it is generated by applying the two-mode squeezing operator [77,78] ŜAB(µ)
to a pair of vacuum states. In other words we have ρEPR = |µ〉〈µ|EPR, where

|µ〉EPR = ŜAB(µ)(|0〉A ⊗ |0〉B) . (B.45)

In quantum optics labs a two-mode squeezing operator is realized by the process
of spontaneous parametric down-conversion (SPDC) which happens when a specific
type of optical crystal (BBO-crystal) is pumped by a strong laser [77].

B.2.2 Symplectic decomposition (Williamson’s theorem)

Consider an arbitrary two-mode Gaussian state ρ(x̄,V) with mean value x̄ and
CM V. There is an important decomposition for its CM known as Williamson’s
theorem [79] (here specified for the two-mode case).

Theorem. Given the CM V of a two-mode Gaussian state, there is a symplectic
matrix S such that

V = SWST (B.46)

where

W = ν1I⊕ ν2I =


ν1 0 0 0
0 ν1 0 0
0 0 ν2 0
0 0 0 ν2

 (B.47)

is called Williamson form and the diagonal entries ν1 and ν2 are called “symplectic
eigenvalues”.

The decomposition in Eq. (B.46) is also known as “symplectic decomposition”
of the CM V. This is completely specify by the symplectic spectrum {ν1, ν2} and
the symplectic matrix S. While S is not easy to compute in general, we have a
standard recipe to compute the symplectic spectrum, which is equal to the standard
spectrum of the matrix

M = iΩV. (B.48)

In fact, matrix M is diagonalizable and its eigenvalues turn out to be of the form
λ1 = ν1, λ2 = −ν1, λ3 = ν2, and λ4 = −ν2. Therefore it is sufficient to take the
modulus of these eigenvalues to derive the symplectic spectrum of the original CM
V. This is a procedure which can be extended to CM of N modes as we will see
afterwards.

In the specific case of two-mode CMs, we also have a direct formula to compute
the symplectic spectrum. Given a CM V in block-form of Eq. (B.34), its symplectic
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eigenvalues {ν+, ν−} are equal to [62,63]

ν± =

√
∆±

√
∆2 − 4 detV

2
(B.49)

with
∆ := detA + detB + 2 detC. (B.50)

B.2.3 Thermal decomposition

According to Williamson’s theorem, we can decompose an arbitrary CM of two
modes

V = SWST = S (ν1I⊕ ν2I) ST , (B.51)

for some symplectic matrix S. Note that: (i) the direct sum ⊕ in the phase space
corresponds to a tensor-product ⊗ in the Hilbert space; (ii) A CM of the form νI

describes a thermal state ρth(ν) with variance ν = 2n̄+1 (n̄ being the mean number
of photons).

As a result, the diagonal Williamson’s form W corresponds to the tensor-product
of two thermal states, whose variances are given by the symplectic eigenvalues ν1

and ν2. In other words, we have that W is associated with the Gaussian state

ρ(0,W) = ρth,A(ν1)⊗ ρth,B(ν2). (B.52)

Now, since a symplectic matrix S corresponds to a Gaussian unitary ÛS in the
Hilbert space, we have that symplectic decomposition of the CM V corresponds to
the following decomposition of the corresponding Gaussian state

ρ(0,V) = ÛS ρ(0,W) Û †S . (B.53)

In general, an arbitrary Gaussian state ρ(x̄,V) with non-zero mean value takes the
form of Eq. (B.53) up to a displacement, i.e., we have

ρ (x̄,V) = D̂(x̄) ρ(0,V) D̂†(x̄) . (B.54)

In conclusion, the interpretation of Williamson’s theorem in the Hilbert space is the
following: An arbitrary Gaussian state ρ(x̄,V) can be decomposed into a tensor
product of thermal states up to a Gaussian unitary. In particular, this unitary can
be written as

Û(x̄,S) = D̂(x̄) ÛS . (B.55)

B.2.4 Importance of the symplectic spectrum

It is clear from the previous thermal decomposition that the symplectic eigenvalues
quantify the thermal noise present in the two-mode Gaussian state. In fact, ν1 and
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ν2 represent the variances of the two thermal states in which the original state can be
decomposed. For this reason, many quantum properties depend on the symplectic
spectrum. For instance, we can easily express the uncertainty principle (V+iΩ ≥ 0)
as a simple bona-fide condition for the symplectic eigenvalues, which corresponds to
imposing

νk ≥ 1, for k = 1, 2 . (B.56)

Then, the von Neumann entropy S(ρ) = −Tr(ρ log2 ρ) can be easily given in
terms of its symplectic spectrum as

S(ρ) = g(ν1) + g(ν2) (B.57)

where
g(x) =

(
x+ 1

2

)
log2

(
x+ 1

2

)
−
(
x− 1

2

)
log2

(
x− 1

2

)
(B.58)

is defined for any x ≥ 1 and equal to zero for x = 1. As a corollary, we also see
that a Gaussian state is pure if and only if ν1 = ν2 = 1, since this latter condition
implies S(ρ) = 0.

B.2.5 Entanglement criterion for two-mode Gaussian states

For a two-mode Gaussian state ρ(x̄,V) it is easy to decide if it is separable or
entangled. From the CM V of the state, we compute the partially-transposed CM

Ṽ = Λ V ΛT , (B.59)

where Λ is the following partial-transposition transformation

Λ :=


1

1
1
−1

 =

(
I

Z

)
. (B.60)

Then, we derive the symplectic spectrum {ν̃−, ν̃+} of the Ṽ, where ν̃− ≤ ν̃+.

Now we can apply the following entanglement criterion [67]: The two-mode
Gaussian state ρ is separable if and only if the minimum symplectic eigenvalue ν̃− of
the partially-transposed CM is greater than or equal to 1. In other words, we have

ρ separable ⇔ ν̃− ≥ 1 , (B.61)

ρ entangled ⇔ ν̃− < 1 . (B.62)

Luckily, there is a simple formula which connects the eigenvalue ν̃− to the blocks
of the original CM V expressed in the block-form of Eq. (B.34). In fact, we can
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write

ν̃− =

√
∆̃−

√
∆̃2 − 4 detV

2
, (B.63)

where
∆̃ := detA + detB− 2 detC. (B.64)

Entanglement not only can be tested by a criterion but also be quantified by a
proper measure. One of the most used is the so called “log-negativity” [76]. For a
Gaussian state, this is given by

N (ρ) = max {0,− log ν̃−} . (B.65)

We see that for a separable state (ν̃− ≥ 1) we have N (ρ) = 0, while for an entangled
state (ν̃− < 1) we have N (ρ) > 0, with the value of N (ρ) quantifying the amount
of entanglement in the state.

As an example, consider an EPR state so that its CM V has blocks

A = B = µI, C =
√
µ2 − 1Z. (B.66)

We compute
∆̃ = 4µ2 − 2, detV = 1, (B.67)

which give

ν̃2
− =

4µ2 − 2−
√

4µ2 − 6
2

. (B.68)

Once can verify that ν̃− < 1 for any µ > 1. For large µ, we have

ν̃− '
1
2µ

(B.69)

and the log-negativity is equal to

N (ρ) = 1 + log2 µ. (B.70)

B.3 Multimode bosonic system

In general, a bosonic system of n modes is a quantum system associated with a
infinite dimensional Hilbert space H = ⊗n

j=1Hj and a set of 2n quadrature operators

x̂T = (q̂1, p̂1, ...q̂n, p̂n) (B.71)

satisfying the commutation relations

[x̂k, x̂l] = 2iΩkl, (k, l = 1, ..., 2n) (B.72)
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where Ωkl is the generic element of the n-mode symplectic form

Ω = ⊕n
k=1

(
0 1
−1 0

)
. (B.73)

An arbitrary density operator ρ is equivalent to a Wigner function W (x), which
is a quasi-probability distribution defined over a 2n-dimensional real vector variable

xT = (q1, p1, ..., qn, pn) ∈ R2n. (B.74)

The real vector x represents the continuous variables of the system (eigenvalues of
the quadrature operators x̂) and spans a 2n-dimensional vector space which is the
phase-space of the n-mode system. Remind that a tensor product of Hilbert spaces
HAB = HA ⊗ HB corresponds to a direct sum of phase-spaces KAB = KA ⊕ KB,
where dimensions sum up. Therefore, by composing n bosonic modes, we construct
a phase space K = ⊕n

l=1Kl which is 2n-dimensional.

Given a Wigner function W (x) we can consider all its statistical moments. As
we know, the first moment is mean value

x̄ = Tr(x̂ρ) ∈ R2n, (B.75)

and the second moment is the CM V, which is now 2n× 2n real symmetric matrix
with generic element

Vkl =
1
2
〈{x̂k, x̂l}〉 − x̄kx̄l (B.76)

where
{x̂k, x̂l} = x̂kx̂l + x̂kx̂l (B.77)

is the anticommutator. In order to be physical, the CM must satisfy the uncertainty
principle which takes the form

V + iΩ ≥ 0 (B.78)

where Ω is the general symplectic form of Eq. (B.73). Note that Eq. (B.78) implies
V > 0.

B.3.1 Multimode Gaussian states

Given a bosonic system of n modes, its state ρ is Gaussian if its Wigner function is
Gaussian

W (x) =
exp[−1

2(x− x̄)TV−1(x− x̄)]
(2π)n

√
detV

. (B.79)

Equivalently, we can describe the Gaussian state using the first two statistical mo-
ments

ρ = ρ(x̄,V). (B.80)
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Since x̄ ∈ R2n and V is 2n × 2n real matrix, we only need a total of 2n2 + 3n
real parameters to fully characterize an n-mode Gaussian state. Since this number
of parameters is polynomial in the number of modes n, we have that multimode
Gaussian states can be described efficiently.

B.3.2 Multimode Gaussian unitaries

In general, a unitary Û acting on a n-mode bosonic state ρ → ρ′ = ÛρÛ † is a
Gaussian unitary if transforms Gaussian states into Gaussian states. In the 2n-
dimensional phase-space K, a Gaussian unitary Û corresponds to an affine map
(S, d) which transforms the statistical moments of the state as

x̄→ x̄′ = Sx̄+ d (B.81)

and
V→ V′ = SVST (B.82)

where d ∈ R2n is a displacement vector, and S is a 2n × 2n symplectic matrix
(SΩST = Ω). In general, we can always decompose a Gaussian unitary as

Û(S,d) = D̂(d)ÛS (B.83)

when D̂(d) is the Weyl displacement operator and ÛS is a canonical unitary which
is one-to-one with the symplectic matrix S.

Any Gaussian unitary can be implemented using linear optics in the lab. For
instance, a canonical unitary ÛS, i.e., a symplectic transformation S, can be de-
composed into n single-mode squeezers, plus an interferometer (i.e., a suitable con-
catenation of beam-splitters and phase-shifters), and another set of n single-mode
squeezers. This is known as Euler-decomposition [2] or Block-Messiah reduction [12].
In other words, any n-mode symplectic matrix can be written as

S = [⊕n
i=1S(ri)] K [⊕n

i=1S(r′i)] , (B.84)

where S(ri) and S(r′i) are single-mode 2×2 squeezing matrices, and K is the 2n×2n
symplectic matrix describing the interferometer.

B.3.3 Williamson’s theorem for n modes

The symplectic decomposition can be extended to CMs of multimode Gaussian
states. Given an n-mode Gaussian state with CM V, there is a symplectic ma-
trix S such that

V = SWST (B.85)

where
W = ⊕n

k=1νkI (B.86)
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is the Williamson form and {ν1, . . . , νn} is the symplectic spectrum.
Such a symplectic decomposition in phase space corresponds to a thermal de-

composition in the Hilbert space. Given a zero-mean Gaussian state ρ(0,V), the
decomposition of its CM as in Eqs. (B.85) and (B.86) corresponds to write

ρ(0,V) = ÛSρ(0,W)Û †S (B.87)

where
ρ(0,W) = ⊗n

k=1ρth(νk) (B.88)

is a tensor product of thermal states. In general, for a displaced Gaussian state
ρ(x̄,V) we have

ρ(x̄,V) = D̂(x̄)ρ(0,V)D̂†(x̄) (B.89)

where D̂(x̄) is the n-mode displacement operator and ρ(0,V) is decomposed in
thermal states as in Eqs. (B.87) and (B.88).

As we know, the symplectic spectrum contains all the essential information about
the noise of the state. For this reason, it can be used to formulate very important
properties of the state. For n modes we can write the uncertainty principle as

νk ≥ 1 (k = 1, ..., n). (B.90)

Then, the von Neumann entropy of a n-mode Gaussian state is given by

S(ρ) =
n∑

k=1

g(νk) (B.91)

where g(x) is defined in Eq. (B.58). In particular, a Gaussian state ρ is pure (S(ρ) =
0) when νk = 1 for any k. In other words, a pure state has a symplectic spectrum
which is the minimal possible according to the uncertainty principle Eq. (B.90), such
that there is no thermal noise but only quantum vacuum noise. It is also important
to note that

detV = Π
n

k=1ν
2
k = ν2

1ν
2
2 ...ν

2
n , (B.92)

so that Gaussian state is pure if and only if

detV = 1 . (B.93)
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Appendix C

Gaussian Channels

C.1 Brief review of quantum channels

A quantum channel E is a linear map transforming density operators into den-
sity operators. Mathematically, E must be a completely positive trace preserving
(CPT) map. In fact, density operators are positive ρ ≥ 0 and unit-trace Tr(ρ) = 1
(properties which mirror those of the probability distributions for which pi ≥ 0 and∑

i pi = 1). Therefore, the map E must provide an output which is positive E(ρ) ≥ 0
and having the same trace of the input. This corresponds to impose E to be positive
and trace-preserving.

More strongly, the map E must be completely-positive, which means that its
output must be positive also when E is applied locally to one subsystem. In other
words, given two systems A and B, prepared in some arbitrary density operator ρ,
the application of the map on system B must provide a global state which is positive,
i.e., we must have [45]

(I ⊗ E)ρAB ≥ 0 . (C.1)

A quantum channel is reversible when it is described by a unitary Û . In this case
(Û † = Û−1), we have the transformation rule

ρ→ ρ′ = E(ρ) = ÛρÛ † , (C.2)

and the inverse map is given by

ρ′ → ρ = E−1(ρ′) = Û †ρ′Û . (C.3)

C.2 Unitary dilations

A convenient way to represent a quantum channel is to use a unitary defined on
a larger Hilbert space describing both the system and the environment. In fact, a
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quantum channel E can be dilated into a unitary Û according to the formula

E(ρA) = TrE [ÛAE(ρA ⊗ σE)Û †AE ], (C.4)

where the state ρA of the system and the state σE of the environment are evolved by
joint unitary ÛAE , after which the environment is traced out. In particular, we can
always choose an environment which is large enough to be described by a pure state
σE . In this case, the dilation is known as “Stinespring dilation” [72]. See Fig. C.1
for a pictorial representation of a quantum channel as a quantum communication
process between two parties and the corresponding dilation of the channel into an
environment.

Alice Bob 

r (r) E E r’= 

Channel 

Alice Bob 

Environment 

r 

E 
U A 

s 
(r  ) E A 

AE 

Unitary dilation 

(i) 

(ii) 

Figure C.1: (i). Quantum channel E in a communication scenario where the input
state ρ of Alice is transformed into an output state ρ′ = E(ρ) for Bob. (ii) Unitary
dilation of the previous channel. The channel can be described considering a unitary
interaction ÛAE between the input state ρA and the state σE of the environment E.
The output of the environment is traced out. If σE is pure we have a Stinespring
dilation.

Given an arbitrary dilation {σE , ÛAE} of a quantum channel E , we can always
construct a Stinespring dilation by purifying the state σE of the environment1. This
means to enlarge the environment to include another system e which, together with
E, is described by a pure state |Φ〉Ee. See Fig. C.2. The mixed state σE represents
a reduced state of this global pure state, i.e.,

σE = Tre(|Φ〉Ee 〈Φ|) . (C.5)

Then, we can also extend the unitary ÛAE to ÛAE⊗ Îe, where the identity is applied
to the new system e. In a few words, we have constructed a Stinespring dilation

1In general, a purification of a mixed state ρA means that we find a pure state ΦAB = |Φ〉AB 〈Φ|
of a larger system AB whose partial trace gives the original state ρA = TrB(ΦAB ).
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{|Φ〉Ee , ÛAE ⊗ Îe} of the channel E . Output states are given by

E(ρA) = TrEe(ÛAE ⊗ Îe)(ρA ⊗ |Φ〉Ee 〈Φ|)(Û
†
AE ⊗ Îe). (C.6)

s 

Alice Bob 

Larger Environment 

r 

Ee 

U A 
(r  ) E A 

AE 

 𝚽  

E 

E 

e 

Figure C.2: Purification of the environment. A unitary dilation (with a mixed envi-
ronmental state σE) can always be transformed into a Stinespring dilation involving
a large environment Ee in a global pure state |Φ〉Ee.

C.3 Bosonic Gaussian Channels

The study of bosonic channels play a central role in the quantum information theory,
representing the standard way to model noise in quantum communication protocols.
By definition, a quantum channel is “bosonic” when it refers to bosonic modes, i.e.,
it transforms the quantum states of a bosonic system. In particular, it is a also a
“Gaussian channel” when it transforms Gaussian states into Gaussian states.

Given a Gaussian channel transforming the state of n modes (also called n-
mode Gaussian channel) we can always construct a Gaussian dilation involving a
Gaussian unitary ÛS combining the n input modes with nE ≤ 2n environmental
modes, prepared in a pure Gaussian state |ϕ〉E . In particular, this can be chosen to
be the multimode vacuum state |ϕ〉E = ⊗n

k=1 |0〉k.
We can describe the action of an arbitrary Gaussian channel in terms of trans-

formations on the first two statistical moments of the input Gaussian state ρ(x̄,V).
In fact, the mean value is transformed according to the rule [78]

x̄ −→ x̄′ = Kx̄+ d (C.7)

where d ∈ R2n is a displacement vector, and K is a 2n× 2n real matrix.

At the same time, the CM becomes [78]

V→ V
′
= KVKT + N (C.8)
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where N = NT is a 2n× 2n real symmetric matrix. In particular, the two channel
matrices K and N must satisfy the condition

N + iΩ−KΩKT ≥ 0 (C.9)

which is equivalent to enforce the complete-positivity [78].

Therefore an arbitrary Gaussian channel E is fully characterized by two matrices
K and N satisfying Eq (C.9), and a displacement vector d

ρ→ ρ′ = E(ρ)⇐⇒ {x̄,V} N,K,d−→ {x̄′
,V

′} . (C.10)

For N = 0 and K symplectic matrix, the Gaussian channel represents a Gaussian
unitary Û(K,d).

C.4 Single-mode Gaussian channels

In the case of a single bosonic mode (n = 1) the description of a Gaussian channel
is very easy. In fact, it is equivalent to a bi-dimensional displacement vector d ∈ R2

and a pair of 2× 2 real matrices K and N such that [78]

N = NT ≥ 0, detN ≥ (detK− 1)2. (C.11)

According to the Holevo classification [35] we can apply local Gaussian unitaries (at
the input and output of the channel) and reduce any single-mode Gaussian channel
into a “canonical form” which is a simplified Gaussian channel with d = 0 and K,
N being special diagonal matrices.

An example of canonical form is the additive-noise Gaussian channel (also known
as B2 form). It is characterized by d = 0, K = I, and N = εI with ε ≥ 0.
For instance, by applying this channel to a coherent state ρ = |α〉〈α| (having CM
V = I) we get a thermalized state ρ′ at the output with the same displacement of
the input but noisier CM V′ = (ε+ 1)I.

The most important canonical form is the lossy channel which is described by
d = 0,

K =
√
τI and N = (1− τ)ωI , (C.12)

where τ ∈ [0, 1] is the transmissivity and ω ≥ 1 quantifies the thermal noise of the
channel. By replacing Eq. (C.12) into Eq. (C.8), we get the explicit transformation
rules

x̄ −→ x̄′ =
√
τ x̄ , (C.13)

V→ V
′
= τV + ω(1− τ)I . (C.14)

A lossy channel is therefore characterized by two parameters only, i.e., τ and ω. In
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particular, it is called “pure-loss channel” when ω = 1 and, therefore, it is completely
specified by its transmissivity τ .

As an example the action of a lossy channel Eτ,ω on a coherent state ρ = |α〉〈α|
(having CM V = I and mean value x̄) provides a Gaussian state with a contracted
mean value x̄′ = τ x̄ and thermalized CM V′ = µI with

µ = τ + (1− τ)ω ≥ 1. (C.15)

(Note that the final state will still be coherent V′ = I if the channel is pure-loss,
i.e., ω = 1).

In a pure-loss channel, the transmissivity τ quantifies the difference in energy
(mean number of photons) between the input and output states. In other words τ
quantifies how many photons are transmitted and (1 − τ) is the fraction which is
lost in the environment.

C.5 Dilation of a lossy channel

Consider a lossy channel Eτ,ω with transmissivity τ ∈ [0, 1] and thermal noise ω ≥ 1.
This can be dilated into a beam splitter with transmissivity τ which mixes the input
state ρA with an environmental thermal state σE(ω) with variance ω (see Fig. C.3).
For a thermal state, the variance is equal to ω = 2n̄ + 1, where n̄ is the mean
number of photons in the state. Thus, the action of the beam splitter is to transmit
τ photons of the input, replacing the remaining 1− τ photons with thermal photons
coming from the environment.

The beam splitter transformation is a Gaussian unitary ÛAE(τ) which is equiv-
alent to the following symplectic matrix

SAE(τ) =

( √
τI

√
1− τI

−
√

1− τI
√
τI

)
. (C.16)

Before the beam splitter the global input state is the tensor product ρA(x̄,V) ⊗
σE(ω). Then, the global output of transmitted signal (B) and environment (E′) is
given by

ρBE′ = ÛAE(τ)[ρA(x̄,V)⊗ σE(ω)]Û †AE(τ). (C.17)

This is a Gaussian channel with CM is given by

VBE′ = SAE(τ)(V ⊕ ωI)ST
AE(τ) = (C.18)

=

(
τV + ω(1− τ)I

√
τ(1− τ)(ωI−V)√

τ(1− τ)(ωI−V) (1− τ)V + τωI

)
(C.19)

=

(
VB C

CT VE′

)
. (C.20)
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Figure C.3: Dilation of a lossy channel Eτ,ω into a beam splitter with transmissivity
τ mixing the input state ρA with an environmental thermal state σE with variance
ω.

Now the output state of Bob is the reduced state ρB = TrE′(ρBE′), obtained by
tracing out the output of the environment. Its CM VB the top-left diagonal block
in the global CM VBE′ , i.e., we have

VB = τV + ω(1− τ)I . (C.21)

This is exactly the transformation of the input CM under a lossy channel with
transmissivity τ and thermal noise ω, as we can check from Eq. (C.14). Similarly,
we can derive the transformation of the mean value, specified by Eq. (C.13). By
purifying the thermal state of the environment σE(ω) = Tre[ΦEe(ω)] into an EPR
state ΦEe(ω), we derive a Stinespring dilation of the lossy channel, as we also show
in Fig. C.4.

The Stinespring dilation is particularly simple in the case of a pure-loss channels
(ω = 1) in which case it only includes a single mode E of the environment prepared
in the vacuum state |0〉E .

Finally, it is worth to say that the lossy channel is the standard model for noisy
quantum communication over optical fibres. Its Stinespring dilation is also called
“entangling-cloner” and represents the typical attack considered in continuous vari-
able quantum cryptography, where the environment is identified with an eavesdrop-
per [29].
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Figure C.4: Stinespring dilation of a lossy channel. The thermal state of the envi-
ronment σE(ω) is purified into an EPR state of modes E and e. Only mode E is
mixed with the input mode A via the beam splitter.
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