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Abstract
Growth is a major component of fitness in all organisms, an important mediator of competitive interactions in plant 
communities, and a central determinant of yield in crops. Understanding what limits plant growth is therefore of 
fundamental importance to plant evolution, ecology, and crop science, but each discipline views the process from a 
different perspective. This review highlights the importance of source–sink interactions as determinants of growth. 
The evidence for source- and sink-limitation of growth, and the ways in which regulatory molecular feedback systems 
act to maintain an appropriate source:sink balance, are first discussed. Evidence clearly shows that future increases 
in crop productivity depend crucially on a quantitative understanding of the extent to which sources or sinks limit 
growth, and how this changes during development. To identify bottlenecks limiting growth and yield, a holistic view 
of growth is required at the whole-plant scale, incorporating mechanistic interactions between physiology, resource 
allocation, and plant development. Such a holistic perspective on source–sink interactions will allow the development 
of a more integrated, whole-system level understanding of growth, with benefits across multiple disciplines.

Key words: Carbon, crops, models, nitrogen, plant growth, regulation, sink, source.

Introduction
Growth rates of plants vary widely: even in constant envi-
ronmental conditions, relative growth rate can vary six-fold 
among species (Grime and Hunt, 1975). This is not surpris-
ing given the astonishing variety of ecological niches occupied 
by plants in all the major biomes, where adaptation comes in 
part from matching growth rate to available resources (Díaz 
et al., 2004). Growth is controlled by proximate physiological 
and developmental mechanisms, but ultimately depends upon 
ecological adaptations and evolutionary history: plants with 
different growth strategies succeed in different ecosystems, and 
in different niches within those ecosystems. For example, in the 
dynamic, diverse rainforest environment, rapidly growing seed-
lings and lianas will quickly colonize gaps, while slow-growing 

epiphytes often stay poised and wait for a gap in the canopy 
before upregulating their rates of photosynthesis and growth 
(Hubbell and Foster, 1992). Ecological life history theory 
points towards a growth-survival trade-off (e.g. Baraloto et al., 
2010), which helps to explain species differences in growth rate 
(Metcalf et al., 2006), and leads to niche partitioning (Wright 
et  al., 2010). Growth rate therefore represents a major axis 
of ecological variation among species, which correlates with 
changes in resource availability and risk of mortality, but 
trades off against defence and storage (Grime, 1977; Herms 
and Mattson, 1992; Rose et al., 2009; Turnbull et al., 2012).

Proximate causes of growth rate variation include both 
external and internal factors (Körner, 1991). Externally, 
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plants are affected by a plethora of abiotic and biotic fac-
tors including nutrient and light levels, temperature, compe-
tition, and herbivory, all of which influence the supply and 
demand for essential resources, and plants must ensure that 
growth rates are attuned accordingly (Bloom et  al., 1985; 
Coley et  al., 1985). Internally, plant growth is constrained 
by molecular, physiological, and developmental processes: 
metabolic rates determine the capacity to take up and store 
resources, while allocation during development, rates of cell 
division and expansion, and developmental transitions from 
vegetative to reproductive growth all have important effects 
on resource use and partitioning. These internal processes 
can all be understood within the framework of source–sink 
interactions: source activity refers to the rate at which essen-
tial external resources are acquired by the plant and made 
available internally, while sink activity refers to the internal 
drawdown of these resources. This drawdown encompasses 
resource sequestration in growth and storage, plus resource 
losses through respiration or exudation. By necessity, the rela-
tionships between sinks and sources are both finely tuned and 
tightly regulated by feedback and feedforward mechanisms, 
many of which are now well characterized within tissues at 
the molecular level (e.g. Smith and Stitt, 2007; Lawlor and 
Paul, 2014). Since plants are sessile and can only influence 
external factors to a limited degree, the internal factors are 
well controlled. As a consequence, it is these internal interac-
tions of source and sink activity that must be responsible for 
the large intrinsic variation in relative growth rate among spe-
cies under common environmental conditions.

The general principles governing the diversity in intrinsic 
growth rate among wild species also underpin the variation 
in yield potential among crop genotypes. The current need to 
increase crop productivity for food and fuel, due to a rapidly 
increasing global population, is urgent and well-documented 
(FAO et al., 2014). Yield increases in rice and wheat due to 
breeding and genetic techniques are currently around 1% per 
year—a trajectory too low to meet future requirements, and 
this has motivated the development of global consortia for 
crop improvement (von Caemmerer et  al., 2012; Reynolds 
et al., 2012; Ort et al., 2015). The primary focus for many of 
these is boosting photosynthetic carbon acquisition (source 
activity), yet sink activity is also believed to limit grain devel-
opment in many major crops (Acreche and Slafer, 2009; 
Peterhansel and Offermann, 2012; Slewinski, 2012). Global 
efforts to elucidate the responses of crop photosynthesis and 
yield to future elevated atmospheric CO2 conditions show that 
the translation of a large and sustained stimulation of pho-
tosynthesis into growth and yield differs markedly between 
species and often falls short of the expected response (Long 
et al., 2006a). Achieving future yield targets requires that this 
translation of improved photosynthesis into yield is made 
effectively through enhanced sink development. To achieve 
the 70% increase in crop productivity required by 2050, a 
greater understanding of the relationships between photo-
synthesis and growth, and the factors underpinning growth 
rates, is therefore essential.

This review discusses current understanding of plant 
growth rates, considering a range of factors from molecular 

to ecological, with a particular focus on source–sink interac-
tions. It emphasises the importance of sources and sinks as 
determinants of growth and as targets for crop improvement. 
For the first time, this review argues the case for a fully inte-
grated network analysis of physiology, allocation, and devel-
opment when considering growth across the diversity of wild 
and crop plants. It highlights source and sink limitation as 
key areas where understanding could be improved, and sug-
gests that quantitative estimates are required of how sources 
and sinks limit growth, the extent to which these limitations 
change at different stages of development within the same 
species, and their differences in species, which vary in alloca-
tion and life history strategies.

Source and sink definitions
Source tissues are net exporters of an elemental resource 
required for plant growth, such as carbon or nitrogen, while 
sink tissues are net importers and are responsible for resource 
assimilation. Mature leaves are net sources of carbon but sinks 
for nitrogen, while root tissues are net sources of nitrogen but 
sinks for carbon. Cells require carbon and nitrogen for growth 
and development; nitrogen to maintain protein turnover; and 
carbon for respiration to fuel metabolic processes. Other ele-
ments are also vital for growth, such as oxygen obtained 
from the air, hydrogen from water, and minerals found in soil 
including the macronutrients potassium and phosphorus, and 
numerous micronutrients. This review focuses on carbon and 
nitrogen only, because these elements are commonly limiting 
for growth, and effectively illustrate the balance between source 
and sink tissues. Carbon is usually exchanged between sources 
and sinks as simple sugars, typically sucrose. The equivalent 
currency of exchange for nitrogen includes both inorganic ions 
(NO3

–) and organic forms (typically amino acids).
Source tissues are generally responsible for the acquisition 

of resources from the external environment, although the 
remobilization of stored resources (e.g. to subsidize reproduc-
tion or regrowth after disturbance) may also turn a sink into 
an internal source. A  general definition of source strength 
should therefore consider the export rate of a particular 
resource from the source tissue. However, C- or N-uptake 
from the external environment is more commonly and eas-
ily measured than internal fluxes of sucrose or inorganic and 
organic nitrogen. Consequently, the term ‘source strength’ 
usually refers to the net rate of uptake (mol s–1) for a particu-
lar resource from the external environment:

 Source strength source size sourceactivity= ×  (1),

where source size refers to the total biomass of source tis-
sue (g), and source activity is the specific uptake rate of the 
resource (mol g–1 s–1; based on Geiger and Shieh, 1993).

Sink tissues are net receivers of resources from source tis-
sues (Doehlert, 1993). While all tissues have some sink activ-
ity, leaves are net sinks for nitrogen transported from the root 
system, and roots are net sinks for sucrose exported from 
leaves. Sink strength refers to the net rate of uptake (mol s–1) 
for a particular resource by a defined tissue within the plant:
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 Sink strength k size k activity= ×sin sin  (2),

where sink size is the total biomass of sink tissue (g), and 
sink activity refers to the specific uptake rate of the resource 
(mol g–1 s–1). Sink activity involves the utilization of resources 
for the synthesis of new tissues, including the synthesis of 
structural components such as cell walls, or the maintenance 
and modification of existing tissues, including the synthesis 
of non-structural components including enzymes, storage 
and defence compounds. Sink activity also encompasses the 
expenditure of resources in respiration or root exudation. In 
practice, therefore, it is usually quantified via the net accumu-
lation rate of a particular resource in a tissue over time, after 
accounting for the losses from respiration and exudation.

Source tissues thus take up resources from the environment 
and export them to sinks, which draw down resources within 
the plant. The parallels with financial transactions are clear in 
this conceptualization of plant function, and the next section 
considers the molecular currencies traded between sources 
and sinks.

Source and sink tissues
Carbon

Mature leaves are net sources of carbon. Carbon dioxide is 
fixed to generate triose phosphate in photosynthesis, which is 
then converted to starch for diurnal storage in the chloroplast 
(Smith and Stitt, 2007; Gibon et al., 2009; Stitt and Zeeman, 
2012; Pilkington et al., 2015), or to sucrose for export from 
the leaf or storage in the vacuole.

Net carbon sink tissues include roots, tubers, reproduc-
tive structures, and young leaves. Sucrose may itself  be stored 
directly, or it may first be converted to storage polymers. These 
polymers are typically starch or fructans, depending on the 
species; some plants store additional compounds such as raf-
finoses (Atkinson et al., 2012). Starch is stored in the amylo-
plasts and chloroplasts of many higher plants (Müller-Röber 
et  al., 1992); amyloplasts are found in seeds, shoot storage 
tissues, and roots, while chloroplasts are found in leaves and 
stems (and are the only repository for starch within leaves). 
Starch is also the primary carbohydrate in the grains of many 
crops, including wheat, rice, and maize, and in the tubers 
and storage roots of vegetables (Pollock and Cairns, 1991; 
Zeeman et al., 2010). Carbon storage in the stems of many 
temperate grasses consists primarily of fructans (Pollock and 
Cairns, 1991; Scofield et  al., 2009), water-soluble fructose 
polymers which confer some resistance to low temperatures 
(Sandve et al., 2011). Typically, fructans and sucrose are stored 
together in the stem, as in wheat, barley, and oat (Slewinski, 
2012). Significant stem storage of starch is rare in cereals—
rice being a notable exception, storing sucrose in leaves and 
starch in stems (Murchie et  al. 2009), and being unable to 
synthesize fructans naturally (Kawakami et al., 2008). Stem 
storage of carbohydrates is an important buffering system 
for recovery after grazing and for supplying photosynthate 
to cereal ears during grain-filling, especially during drought 

(Schnyder, 1993; Ruuska et al., 2006; Slewinski, 2012), and is 
thus a relatively labile sink. For growth, a major use of pho-
tosynthate is the synthesis of cell wall polysaccharides such as 
cellulose and hemicellulose, in all parts of the plant. Indeed, 
almost half  of plant cell wall biomass is composed of carbon 
(Körner, 2012).

In addition to the assimilation of resources in sink tissues, 
the utilization of resources in respiration and exudation con-
stitute a further sink, since these processes also contribute to 
resource drawdown. Maintenance respiration can represent a 
significant carbon cost to the plant (Penning de Vries, 1975); 
for example, respiration constitutes 70% of the carbon sink 
in Pinus halepensis (Klein and Hoch, 2015). Carbon and 
nitrogen are released through root exudation of a variety of 
compounds including organic acids, sugars, polysaccharides, 
ectoenzymes such as acid phosphatase, and sloughed-off 
cells and tissues (Marschner, 1995). Exuded metabolites have 
many functions (Badri and Vivanco, 2009) such as modifying 
the rhizosphere to provide a desirable environment for benefi-
cial microorganisms and providing signals to aid recruitment 
of arbuscular mycorrhizal fungi, contributing to immunity 
(Cameron et al., 2013). These processes may be substantial—
one meta-analysis of annuals found that 30–60% of net pho-
tosynthetic carbon is allocated to roots, of which 40–90% is 
lost in respiration and exudation (Lynch and Whipps, 1990).

Nitrogen

In contrast to carbon, roots are net sources for nitrogen, 
while shoot tissues are net nitrogen sinks until senescence 
when their nitrogen is remobilized (Aerts and Chapin, 
2000). Annuals remobilize nitrogen for reproduction while 
perennials may remobilize nitrogen for reproduction or for 
growth and storage in subsequent years. Inorganic nitrogen 
is taken up by roots as nitrate (NO3

–) or ammonium (NH4
+), 

and may be utilized in growth or exported from the root. 
Assimilation of nitrogen into amino acids takes place in both 
roots and shoots, although the relative proportions depend 
on the species and are still debated (Nunes-Nesi et al., 2010). 
Approximately 80% of wild plant species benefit from mycor-
rhizal associations in which specialised fungi aid the uptake 
of phosphorus and sometimes organic nitrogen (Read, 1991). 
Organic nitrogen may also be taken up from the soil in the 
form of free amino acids. Nitrogen is exported from roots 
as nitrate (transported in the xylem), amino acids or amides 
(both transported in the phloem).

Root and leaf nitrogen concentrations are positively cor-
related, but a global survey of wild grassland species found 
that leaf nitrogen concentration is more than double that 
of roots in the same species (Craine et al., 2005). The main 
use of nitrogen for growth is in proteins and there is a par-
ticularly high demand in leaves, where the complex, enzyme-
rich photosynthetic machinery is assembled and maintained. 
Photosynthetic proteins encompass the majority of leaf nitro-
gen—for example, Rubisco (EC 4.1.1.39) typically accounts 
for between 10% and 30% of leaf nitrogen content but can 
account for up to 50% of leaf nitrogen content (Ellis, 1979; 
Sage et  al., 1987; Evans, 1989). Through Rubisco, carbon 
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source activity is directly connected with leaf nitrogen sink 
activity, providing one way in which source and sink activity 
are intrinsically coordinated. Nitrogen partitioning into pho-
tosynthetic proteins is a flexible trait, varying between species 
and as resource availability changes (Evans, 1989).

Nitrogen may be stored as nitrate in the vacuole, or as 
proteins (Millard, 1988). Vegetative storage proteins (VSPs) 
may comprise up to 50% of soluble protein in vegetative tis-
sues (Liu et  al., 2005). Protein storage occurs primarily in 
seeds, although some legumes, tuber-formers, and deciduous 
trees species have additional storage proteins (Shewry, 1995). 
VSPs have been well-studied in soybean, and the nitrogen 
sink-to-source transition occurring in leaves during ontog-
eny is correlated with a decrease in VSP gene expression in 
this species (reviewed by Staswick, 1990). In both potato and 
soybean, removal of  nitrogen sink tissues upregulates nitro-
gen storage in other parts of  the plant, indicating a buffering 
role for VSPs in maintaining source:sink balance (Staswick, 
1990). In contrast, grasses such as wheat and rice (usually 
grown as annuals) are less reliant on protein stores beyond 
those in the seed, yet can still accumulate nitrogen when con-
ditions are favourable. For example, excess nitrogen in wheat 
accumulates in the lamina of  upper leaves or the true stem 
of the peduncle, and just as stem carbohydrate reserves are 
important for grain-filling in grasses, this stored nitrogen is 
thought to provide a nitrogen buffer for use during grain-
filling (Pask et al., 2012). Non-leaf  nitrogen stores, such as 
the culm in grasses, may also play a role in plant recovery 
after grazing.

Co-limitation and optimization
A plant that has optimized its source:sink ratio can grow 
using balanced allocation of source and sink sizes and activi-
ties (Equations 1–2), facilitated by molecular feedbacks. 
However, at any point in time, most plants are not fully opti-
mized, meaning that the creation of either more source or 
sink tissue could increase growth: in these cases, the potential 
source or sink strength (Equations 1–2) has not been realized 
(Patrick, 1993). The extent to which these potentials are met 
may be investigated using environmental or genetic manipu-
lations, and are discussed later in this review.

Resource uptake changes over time due to fluctuations 
in the external environment, such that the total supply of a 
particular resource over the lifetime of the plant cannot be 
predicted in advance. The plant reacts to these fluctuations in 
resource availability by modifying its investment in resource 
acquisition and consumption (Freschet et al., 2015). At the 
most general level, a suitable balance between leaf and root 
tissues is critical for balancing the acquisition of carbon and 
mineral nutrients. Allocation to shoot and root is adjusted 
depending on available resources so that, for example, the allo-
cation of resources to root growth is increased in low nitro-
gen soil conditions. Co-limitation by carbon and nitrogen has 
been demonstrated experimentally and optimization of these 
resources has been considered in models (Woodrow, 1994; 
Iwasa, 2000; Guilbaud et al., 2015) yet, due to environmental 

and developmental constraints, plants do not always achieve 
perfect co-limitation in vivo.

 Greater insights into this balancing of sources and sinks 
at the whole-plant scale can be gained by analogy with meta-
bolic systems within cells or tissues. In plant metabolic net-
works, control of the overall flux is typically shared between 
several enzyme steps, although many elements in the system 
exert only a limited effect (Fell and Thomas, 1995; e.g. Raines, 
2003; Araújo et al., 2012). If  the dynamic internal system of 
resource fluxes among source and sink tissues is analogous 
to such a metabolic system, then overall control of the flux 
of materials into growth is also likely to be shared among 
multiple elements. This flux control analogy generates two 
predictions.

The first prediction is that multiple elements in the system 
share control of the growth rate, and growth will increase if  
their sizes or activities are raised together. In contrast, most 
elements exert limited control, and are present in excess. The 
most resource-efficient solution for the developing plant is 
therefore to tune down investment in those components with 
little influence, and increase allocation to the elements exerting 
a high degree of control. Such regulation must be a dynamic 
process that balances fluctuations in external resource avail-
ability with ontogenic changes in the demand for resources. 
Analogous examples from metabolism show how such real-
location among elements in the system can optimize enzyme 
activities to increase fluxes (Woodrow, 1994; Zhu et al., 2007). 
However, in a whole-plant system, this optimization process 
must operate within the context of life history strategies of 
investment in growth versus defence or storage (the growth–
survival trade-off).

The second prediction generated by the flux control anal-
ogy is that development of new source and sink organs during 
ontogeny shifts the overall control of growth to different ele-
ments in the system. This effect is expected because changes 
in the number, size, and activity of plant organs during devel-
opment alters the internal capacity of a plant to acquire and 
consume resources, and is well supported by experimental 
evidence. For example, some plants transition from sink to 
source limitation during the shift from vegetative to repro-
ductive growth (examples within Arp, 1991; Marschner, 1995; 
Rogers and Ainsworth, 2006). Equivalent effects arise when 
plants are exposed to external environmental conditions 
which change resource acquisition rates, or if  the numbers 
or activities of source or sink organs are manipulated experi-
mentally. The evidence for such effects is considered in the 
next section of this review.

In combination, these external and internal factors mean 
that the acquisition and consumption of resources must be 
balanced over time by a combination of coarse and fine inter-
nal regulatory controls. This control, in turn, operates within 
a general life history strategy of investment in growth versus 
storage or defence, which means that the growth rate is not 
necessarily maximized under particular internal and external 
constraints.

The situation for crop plants is simpler, since breeders aim 
to maximize lifetime growth and reproductive allocation 
within monospecific communities (Denison, 2012). Current 
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views on source–sink relations in crop plants point towards a 
co-limitation of growth by sources and sinks during grain-fill-
ing (Álvaro et al., 2008; Acreche and Slafer, 2009; Peterhansel 
and Offermann, 2012; Slewinski, 2012) yet growth could be 
further optimized. One line of evidence for the lack of opti-
mization of source and sink to maximize growth comes from 
experiments where plants are grown at elevated CO2 (dis-
cussed later, in Table 1). Such experiments aim to predict the 
responses of plants to future climatic conditions, and increase 
the carbon source activity of plants in a non-invasive man-
ner. The increase in photosynthesis under elevated CO2 dem-
onstrates that source activity typically limits growth under 
ambient CO2 levels. However, the increases in photosynthesis 
and yield seen when plants are grown under elevated CO2 do 
not match the magnitude of those predicted from theoretical 
modelling and extrapolation of chamber experiments (Long 
et  al., 2006a; Ainsworth et  al., 2008; Leakey et  al., 2009). 
These results suggest a degree of sink limitation of growth, 
which could be due to nitrogen limitation. Responses to CO2 
do vary between species (Poorter, 1993) and some plants are 
able to upregulate source and sink in concert. For example, 
high CO2 can stimulate nitrate uptake to balance source and 
sink capacity (Stitt and Krapp, 1999). When external nitrate 
levels are low, elevated CO2 levels cause an increase in both the 
rate of nitrate uptake and the activity of a high affinity nitrate 
transport system in wheat roots (Lekshmy et al., 2009), repre-
senting an upregulation of nitrogen source strength through 
increased activity [Equation (1)].

In order to improve crop yields, a greater, more integrated 
understanding of how plant growth rates are limited by sinks 
and sources for carbon and nitrogen, and the shifts in limita-
tion that occur during the lifetime of a plant, is required. Only 
by grounding modelling and experimental work in mechanis-
tic knowledge of source:sink relationships will plant growth 
be effectively understood—and potentially manipulated—at 
every stage of development in order to maximize yield.

Sources and sinks affect growth and yield
Evidence that growth may be controlled by both source and 
sink strengths comes from manipulation experiments and 
studies of natural variation among species.

Manipulation experiments

Manipulating the source:sink balance shows that source and 
sink strengths often operate below their full potential, due to 
the limitations imposed by environmental and developmen-
tal changes discussed above. Historically, such manipulations 
involved physically manipulating the plant or its environment: 
for example, source activity may be altered by elevated CO2, 
defoliation, or shading, while sink activity may be altered 
by sink removal or sink chilling. However, modern genetic 
approaches may now be used to alter source and sink activity 
with greater elegance. Table 1 outlines a range of source:sink 
manipulations and summarizes their results. Broadly speak-
ing, increasing either source or sink may increase growth, 

suggesting that both can limit growth to a certain extent. 
Sources and sinks regulate each other by molecular feedback 
mechanisms (discussed later), and evidence for these is seen 
at the whole-plant scale when manipulation of the source 
affects sink activity, and vice versa.

Elevated CO2 increases the potential carbon source activity 
of the plant by stimulating photosynthesis, and this typically 
translates into faster growth (Table  1; e.g. McConnaughay 
et al., 1993; Christ and Körner, 1995; Masle, 2000; see also 
Taylor et al., 1994; Ranasinghe and Taylor, 1996; Long et al., 
2006b; Ainsworth and Rogers, 2007; Leakey et  al., 2009), 
also affecting cell patterning, cell expansion, and plant archi-
tecture (Kinsman et al., 1997; Pritchard et al., 1999; Masle, 
2000). Growing plants in large pots increases the poten-
tial carbon sink activity, due in part to increased nitrogen 
availability, generally leading to increased growth (Table  1; 
McConnaughay et al., 1993; Poorter et al., 2012), and experi-
ments comparing species or cultivars with different sink sizes 
reveal that growth is faster when sinks are larger (Table  1; 
Reekie et al., 1998; Aranjuelo et al., 2013).

Reduction of source leaf area by defoliation usually leads 
to an increase in photosynthesis in the remaining leaves, to 
maintain source activity within the plant and support the 
sinks (Table  1; von Caemmerer and Farquhar, 1984; Eyles 
et  al., 2013). This could indicate sink limitation of growth 
because leaves are not carrying out their maximal potential 
rates of photosynthesis under normal conditions. In contrast, 
decreasing sink capacity—for example, by inhibiting sucrose 
export from leaves to reduce the apparent sink demand—
leads to an inhibition of photosynthesis (Table 1; Ainsworth 
and Bush, 2011) mediated by an increase in leaf carbohy-
drates (Sheen, 1990).

Combining experimental treatments that affect both 
source and sink provides evidence that sources and sinks 
work together and feed back on each other. Photosynthetic 
acclimation at elevated CO2 concentration is a decrease in 
photosynthetic capacity that reduces the magnitude of the 
CO2-induced stimulation in photosynthetic rate at elevated 
CO2. Acclimation acts to reduce the ratio of source:sink 
activity and thus adjust source:sink balance towards equi-
librium. Combining defoliation and elevated CO2 treatments 
(which decrease and increase the source, respectively) shows 
that photosynthetic acclimation under elevated CO2 is allevi-
ated by defoliation, supporting the hypothesis that it is sink-
mediated (Table 1; e.g. Bryant et al., 1998; Rogers et al., 1998; 
Ainsworth et al., 2003). The alleviation of acclimation occurs 
because defoliation opposes the effect of elevated CO2 by 
decreasing the source:sink ratio, and higher levels of photo-
synthesis can thus be maintained in the remaining leaves. The 
opposite effect is seen when the source is increased but the 
sink is reduced. For example, when physical removal / restric-
tion of sinks or genetic manipulation to reduce sink size is 
combined with elevated CO2, leading to an increase in the 
source:sink balance, source activity is decreased in order to 
return towards equilibrium (Table  1; Arp, 1991; Ainsworth 
et al., 2004). Combining low nitrogen or low temperature—
which restrict sink development—with elevated CO2 has a 
similar effect (Table  1; Arp, 1991). In contrast, increasing 
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Table 1. Experimental manipulations of the carbon source:sink balance, illustrating that: (a) both sources and sinks affect plant growth; 
(b) sources and sinks regulate each other by feedback mechanisms; (c) source and sink strength can be altered by the plant, to alleviate 
perturbations of the source:sink balance

Species Manipulation Effect Key result Reference

SOURCE MANIPULATIONS
Eucalyptus globulus Defoliation

+
Debudding

Reduces source

Reduces sink

Defoliation increases photosynthesis 
in other leaves; source:sink biomass 
ratio is main driver of this change

(Eyles et al., 2013)

Three chalk grassland species Defoliation
+
Elevated CO2

Reduces source

Increases source

In two species, photosynthetic 
acclimation to elevated CO2 was 
alleviated by defoliation, which 
restores the source:sink balance

(Bryant et al., 1998)

Lolium perenne Canopy-cutting
+
Elevated CO2

Reduces source

Increases source

Photosynthetic acclimation to 
elevated CO2 was alleviated by 
cutting the canopy, which restores 
the source:sink balance

(Rogers et al., 1998)

Phaseolus vulgaris Defoliation /
Reduced light
+
Elevated CO2

Reduces source

Increases source

At ambient and elevated CO2: 
defoliation increases photosynthetic 
rate in other leaves; reduced light 
decreases photosynthetic rate

(von Caemmerer & Farquhar, 
1984)

Lolium perenne Elevated CO2

+
Canopy-cutting
+
Low nitrogen

Increases source

Reduces source

Reduces sink

Photosynthetic rate decreased in 
low nitrogen, but this effect was 
reduced when the source:sink 
balance was restored by 
canopy-cutting

(Ainsworth et al., 2003)

Dactylis glomerata Elevated CO2 Increases source Shortening of cell cycle in shoot and 
root meristems

(Kinsman et al., 1997)

Triticum aestivum Elevated CO2 Increases source Cell division and expansion affected (Masle, 2000)

SINK MANIPULATIONS
Various species Elevated CO2

+
Removal of sinks /
Low nitrogen /
Low temperature

Increases source

All reduce sink

Reducing sink capacity increases 
acclimation of source activity

(Arp, 1991)

Arabidopsis thaliana Low temperature
+
Genetic manipulation of T6P/ 
SnRK1 signalling pathway

Reduces sink

Affects integration of sucrose 
levels and growth

Altered signalling pathway reduced 
plant capacity to recover from sink 
limitation

(Nunes et al., 2013)

Various species Inhibition of sucrose export from 
source leaves

Reduces apparent sink demand Inhibition of photosynthesis (Ainsworth and Bush, 2011)

Glycine max Elevated CO2

+
Genetic modification to make 
a determinate line of a cultivar 
normally showing indeterminate 
growth

Increases source

Reduces sink

Reduced sink capacity and 
decreased photosynthesis, due to 
increase in source:sink balance

(Ainsworth et al., 2004)

Solanum tuberosum Transgenic reduction of ADP- 
glucose pyrophosphorylase

Reduces sink capacity by 
reducing starch synthesis

Tuber sinks adapted by increasing 
sucrose content

(Müller-Röber et al., 1992)

Solanum tuberosum Transgenic reduction of ADP- 
glucose pyrophosphorylase
+
Transgenic expression of fructan 
biosynthesis enzymes

Reduces sink capacity by 
reducing starch synthesis

Increases sink

Plants avoided yield reductions by 
synthesizing fructan instead

(Zuther et al., 2011)

Tricitum aestivum Transgenic modification to 
increase sucrose uptake in 
developing grains

Increases sink Storage protein synthesis increased (Weichert et al., 2010)

36 | White et al.
 at U

niversity of Sheffield on January 4, 2016
http://jxb.oxfordjournals.org/

D
ow

nloaded from
 

http://jxb.oxfordjournals.org/


carbon sink capacity under elevated CO2, by using high-yield-
ing cultivars or adding nitrogen, facilitates increased photo-
synthesis (Table 1; Farage et al., 1998; Aranjuelo et al., 2013).

Differences among species

In some species, developmental plasticity allows for greater 
flexibility when the source:sink balance is perturbed. Potato 
and citrus may easily increase their sink size, so tend to suf-
fer less from feedback inhibition of photosynthesis (Paul and 
Foyer, 2001), and nitrogen-fixing legumes are easily able to 
increase their sink size in response to elevated CO2 (Rogers 
et al., 2009).

The physical mechanism of carbon export is important for 
the coordination of source and sink. Growth determinacy in 
soybean prevents an increase in photosynthesis at high CO2, 
while poplar trees have high photosynthate export and main-
tain elevated photosynthesis at high CO2 (Table 1; Ainsworth 
et al., 2004; Ainsworth and Bush, 2011). Species which are 
symplastic loaders (many trees and shrubs) transport sucrose 
from source tissues into the phloem through developmen-
tally fixed plasmodesmata, whereas apoplastic loaders (many 
herbaceous species) use developmentally plastic membrane 
transporters (Ainsworth and Bush, 2011). Therefore, at high 
CO2, symplastic loaders cannot upregulate photosynthate 
export to the same extent as apoplastic loaders. As a result 
they tend to accumulate more non-structural carbohydrates 
in their leaves (Körner et al., 1995) and can show a smaller 
increase in photosynthesis under elevated CO2. However, 
despite their symplastic loading strategy, trees are gener-
ally well able to maintain photosynthetic stimulation under 
elevated CO2 (Ainsworth and Rogers, 2007) although some 
species are capable of both symplastic and apoplastic loading 
and many species have not yet been characterized.

Taken together, this evidence clearly demonstrates that 
sources and sinks can both limit growth, and that feedbacks 
enable a degree of compensation. Species with greater plastic-
ity can be more flexible in their response to manipulations of 
source and sink.

Regulation of sinks and sources
Regulation of source:sink balance is essential for enabling 
plants to maintain a growth rate appropriate for a given avail-
ability of resources. Storage allows the assimilation of more 
resources than are needed in growth, to create a reserve for 
future development in a fluctuating environment or recovery 
from disturbances such as herbivory. However, carbon assim-
ilation must be appropriate for the available sink strength, in 
order to create a sufficiently large store that is still within the 
limits imposed by sink potential—thus sinks must feed back 
on sources to regulate their activity. Similarly, source activity 
must influence sink strength so that appropriate sinks may 
develop and plants can fully realize their growth potential for 
a given resource availability. Furthermore, the high metabolic 
costs of carbon and nitrogen assimilation mean that regula-
tion of source and sink is vital to avoid wasting energy.

A complex molecular network including carbon- and 
nitrogen-derived signals and phytohormones has evolved to 
integrate the uptake, assimilation, and allocation of resources 
(Nunes-Nesi et al., 2010). Many mechanisms of these molec-
ular interactions are now well established although the puzzle 
remains incomplete at the whole-plant scale. Figure 1 illus-
trates key feedforward and feedback mechanisms regulating 
the source:sink relationship. Carbon- and nitrogen-derived 
feedforward and feedback signals act on sources and sinks of 
both carbon and nitrogen. This allows sources and sinks to 
modify their own activity, and also to regulate that of other 
tissues, creating molecular signalling links between source 
and sink.

Carbon feedbacks

Leaf carbohydrates feed into a complex network, affecting tran-
scription, translation, and post-translational processes in order 
to balance carbon supply and demand (reviewed in Fig. 1). For 
example, a high carbon status upregulates nitrogen source and 
sink activity (Fig. 1; arrows 7 and 9) and carbon sink activ-
ity (arrows 5a and 5c), while downregulating photosynthesis 

Species Manipulation Effect Key result Reference

Triticum aestivum Elevated CO2

+
Addition of nitrogen in propor-
tion to growth

Increases source

Increases sink

Acclimation of photosynthesis did 
not occur when nitrogen was added 
in this way

(Farage et al., 1998)

Abutilon theophrasti and
Setaria faberii

Elevated CO2

+
Large size /
High nutrients

Increases source

Both increase sink

Increase in growth and yield in 
response to elevated CO2 was 
higher when sink capacity was also 
increased

(McConnaughay et al., 1993)

Triticum aestivum Elevated CO2

+
Cultivars with high and low 
harvest index

Increases source

Different sink sizes

Increase in photosynthesis and 
growth was dependent on high sink 
strength: only seen in cultivar with 
high harvest index

(Aranjuelo et al., 2013)

Brassica spp. Elevated CO2

+
Species had different sink sizes

Increases source

Different sink sizes

Long-term growth increases 
were dependent (to an extent) on 
species-specific sink size

(Reekie et al., 1998)

‘+’ denotes treatments applied in combination; ‘/’ denotes alternative treatments.

Table 1. Continued
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(arrows 2 and 3). In contrast, a low carbohydrate content in the 
leaf leads to the repression of carbon sink activity (arrow 5b). 
The presence of such a regulatory feedback loop in the leaf has 
long been investigated: in 1868, Boussingault first proposed 
that assimilate accumulation could decrease photosynthesis by 
feedback (Neales and Incoll, 1968), yet the precise mechanism 
for sucrose signalling remains unknown (Reda, 2015).

The partitioning of carbon into starch and sucrose is an impor-
tant point of carbon source–sink regulation (directly affecting 
arrows 2 and 5 in Fig. 1) and is controlled by several factors. For 
example, trehalose-6-phospate is believed to influence starch syn-
thesis by redox-regulation of AGPase, a key enzyme in starch syn-
thesis, while the degradation of starch is regulated by a variety of 
enzymes, by the circadian clock, and possibly by starch-derived 
signals or even the level of starch itself (Smith and Stitt, 2007). 
It is important to note that most research into sugar and starch 
regulation has been carried out in Arabidopsis and it is therefore 
necessary to expand current knowledge of regulatory mecha-
nisms in crop plants, which may not share the same mechanisms. 
For example, the starch degradation pathway in the endosperm of 
cereal grains differs from that in Arabidopsis leaves (Smith, 2012), 
while mutation of PGM, an enzyme important in starch synthesis 
and essential for normal growth in Arabidopsis, does not affect all 

species equally, suggesting the use of different metabolic pathways 
or storage compounds (Stitt and Zeeman, 2012).

Nitrogen feedbacks

Just as carbon availability impacts both on carbon and nitro-
gen source and sink activities, nitrogen availability regulates 
the uptake and storage of carbon (reviewed in Fig. 1). A high 
nitrogen status increases the rate of carbon acquisition in 
photosynthesis and also upregulates carbon sinks (Fig.  1; 
arrows 1 and 4). Nitrogen also increases the assimilation of 
nitrate by the enzyme nitrate reductase, to upregulate nitro-
gen source and sink activity (Fig.  1; arrows 6 and 8), and 
increases shoot:root allocation, enabling the plant to acquire 
more carbon and make use of the available nitrogen (arrow 
10). Furthermore, nitrate increases root cytokinin production 
and export (Fig. 1, arrow 10), important for meristem genera-
tion and function in shoot and root (Su et al., 2011).

Crosstalk

Tight control of the source–sink relationship is facilitated by 
points of crosstalk between carbon- and nitrogen-signalling 

Fig. 1. A range of feedback mechanisms fine-tunes the source:sink balance and therefore plant growth. Signals derived from both carbon (green) and 
nitrogen (blue) regulate source–sink relationships. Feedbacks operate at the tissue level (arrows 1–4 and 6–9) and at the whole-plant level (arrows 5 and 
10). Narrow grey arrows represent net movement of carbon and nitrogen from source (lighter) to sink (darker) tissues within the plant.
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pathways. This enables plants to maintain a degree of co-
limitation for sources and sinks, and carbon and nitrogen. 
Starch synthesis is regulated by nitrate as well as by sugar: 
nitrate downregulates transcription of the gene encoding the 
regulatory subunit of AGPase, an enzyme involved in starch 
synthesis. This negative regulation by nitrate lowers starch 
accumulation and allows more leaf sugar to be exported for 
growth when nitrate levels are high (discussed by Stitt and 
Krapp, 1999). Leaf sugars are involved in the transcription 
and post-translational regulation of nitrate reductase (Fig. 1, 
arrow 9), enabling plants to coordinate carbon and nitrogen 
supply (Stitt and Krapp, 1999; Kaiser et  al., 2002): sugars 
increase the level of nitrate reductase (Reda, 2015) while low 
sugar levels repress its transcription (Klein et al., 2000).

Coordination is enhanced still further by crosstalk between 
sugars and phytohormones [for recent review, see Lastdrager 
et  al. (2014)]. This contributes to developmental processes 
such as meristem activity (which is generally upregulated 
by cytokinins, e.g. Fig. 1, arrow 4) and lends an added layer 
of complexity to growth regulation (Eveland and Jackson, 
2012). For example, sugars interact with abscisic acid (Teng 
et al., 2008) and with auxin (Stokes et al., 2013). Sugars can 
also act directly on development, independently of phytohor-
mones, and are believed to be important for regulating mer-
istem activities (Eveland and Jackson, 2012). Furthermore, 
sugar levels influence the transcription of thousands of genes; 
sugars and the circadian clock regulate each other; and sug-
ars induce phytochrome-interacting factors, which regulate 
growth (Lastdrager et al., 2014).

In summary, molecular feedbacks including carbon- and 
nitrogen-derived signals regulate sources and sinks for carbon 
and nitrogen. Crosstalk exists both between these signals and 
with growth regulators. With such elaborate molecular mech-
anisms in place—and given sufficient resources—increasing 
the sink activity of a plant might be expected to increase its 
source activity, and vice versa. However, as discussed above, 
experimental manipulations of sink strength and of source 
strength reveal that growth cannot always be altered as 
expected (e.g. Long et al., 2006a). It has thus become impor-
tant to increase knowledge of the potential strengths of source 
and sink, the limits to their physiological interactions, and 
to better incorporate known molecular mechanisms of the 
source–sink relationship into models of whole-plant growth. 
Moreover, in order to effectively increase crop yield, it may 
be necessary to manipulate the molecular feedback mecha-
nisms between source and sink, in addition to manipulating 
the strengths of source and sink themselves. A source–sink-
based perspective on growth is therefore an essential cross-
disciplinary tool for understanding and increasing the growth 
and yield of crops.

Alternative perspectives on growth
Different disciplines have alternative perspectives of plant 
growth. Advancing the mechanistic understanding of growth 
that is necessary to realize improvements in crop growth 
will require a unification of these disciplinary perspectives. 

Here, a parsimonious model of plant growth which unites 
these different perspectives is presented. An extremely sim-
plified system is used for illustration. Various factors have 
been omitted for simplicity, clarity, and ease of unification. 
These are both intrinsic (additional resources and tissue types 
within the plant, and feedbacks between internal processes) 
and extrinsic (environmental limitations on physiological 
and developmental processes), since plant growth and devel-
opment are the product of genetic and environmental pro-
cesses (e.g. Prusinkiewicz et  al., 2009; Pantin et  al., 2012). 
Rather than provide comprehensive models of growth, this 
section highlights key processes of interest for each of the 
three perspectives on growth, and uses equations to demon-
strate the focus of each. In each perspective, the processes 
of interest depend on source and sink activities and tissues, 
and the equations are finally united to form a basic holistic 
model of plant growth which is underpinned at every level by  
source–sink interactions.

Growth may be conceptualized in a number of different 
ways, and may be viewed through different lenses depend-
ing on the perspective adopted. Three classic perspectives on 
growth are based on: the physiology of resource acquisition 
and loss; the internal allocation of resources to source and 
sink organs; and the morphogenetic development of source 
and sink tissues. Crucially, these three alternative perspec-
tives, adopted by communities of scientists from different 
disciplines are all readily conceptualized within the context 
of source–sink interactions.

Here, equations have been used to illustrate each defini-
tion of growth, by considering a highly simplified system in 
which a single resource (carbon) is acquired by a source tissue 
(leaves) and used by sinks (in both leaves and roots). This sys-
tem enables the limitations on growth to be formally defined 
in a readily interpreted form, yet still allows growth to be 
viewed through the three alternative lenses presented. Each 
of the three perspectives presented is, by mathematical defini-
tion, true. However, each is based implicitly upon an alterna-
tive hypothesis about the critical intrinsic controls on growth.

At its most fundamental level, growth may be defined as 
an increase in plant mass over time. For simplicity, growth 
is considered equivalent to net organic carbon gain, and the 
acquisition of other resources is ignored. The dry weight of 
organic carbon in the plant is WP, referred to in this section 
as mass, and absolute growth rate (AGR) is thus net carbon 
gain over time, in g d–1:

 

dW
dt

= Absolute growth rateP

 
(3).

Growth may now be defined in various ways according to the 
perspective adopted, but the central definition [Equation (3)] 
is retained. The different approaches to explaining growth 
focus attention on different primary limitations.

Physiology

The first approach is physiological: a flux balance of organic 
carbon for the plant based on the loss and acquisition of this 
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essential resource to and from the atmosphere via the pro-
cesses of respiration and photosynthesis (Lambers et  al., 
1989; Poorter and van der Werf, 1998).

This carbon-based balance viewpoint on growth is adopted 
widely in crop production models and in Ecosystem and 
Earth System Models (EESMs), which simulate the physical 
properties and carbon exchange of the vegetated land surface 
(e.g. Knorr, 2000; Sitch et al., 2003; Lu and Ji, 2006; Zaehle 
and Friend, 2010), and are ultimately used to project future 
global change (Friedlingstein et al., 2014; IPCC, 2014). This 
flux balance approach expresses the AGR as the difference 
between photosynthesis and respiration:

 

dW
dt

A W R WP
L P= × ×−

 (4a),

where A is gross photosynthetic carbon uptake in g C d–1 g-1 
leaf mass, WL is total leaf mass (g), and R is respiratory car-
bon loss in g C d–1 g–1 plant mass. Note that not all of the 
inorganic carbon captured by photosynthesis is converted to 
biomass, and so R includes the metabolic costs of biosynthe-
sis, translocation, exudation, and the uptake and assimilation 
of nitrogen needed for growth (‘growth respiration’), as well 
as those associated with maintaining existing tissues (‘main-
tenance respiration’) (reviewed by Amthor, 2000).

Respiration may be partitioned between photosynthetic 
and non-photosynthetic tissues:

 

dW
dt

A W R W R WP
L L L R R= × × − ×( ) ( ) ( )−

 
(4b),

where the subscripts L and R denote leaf and root tis-
sues, respectively. A simple case is considered here, but this 
approach may be easily extended to include other sink tissues 
such as storage organs, stems, and reproductive tissues.

This basic model views growth as the net accumulation of 
organic carbon. However, the approach is limited because, 
while respiration is one component of sink activity, the sink 
activities of growth and storage are not explicitly considered, 
and accounting for sink limitation requires modifications to 
the model (Fatichi et al., 2013). Furthermore, recent authors 
have argued that A and R do not control plant growth rate. 
Instead, it is argued that growth is controlled by the supply of 
mineral nutrients and water, and the plant regulates A and R 
to meet its growth requirements (Körner, 2012; Fatichi et al., 
2013; Körner, 2013). Without accounting for sink activities 
and their feedbacks on photosynthesis, the approach illus-
trated by Equations (4a) and (4b) cannot provide a complete 
description of the processes controlling growth.

Allocation

A second approach considers the internal allocation of resources 
to either photosynthetic or non-photosynthetic tissues. These 
tissues represent net carbon sources and sinks, respectively.

The philosophy underlying this approach is that allocation of 
resources to leaves (especially to leaf area) accelerates growth, 
whereas allocation to non-photosynthetic tissues (in this case, 

roots) has an opposing effect. Allocation is an important deter-
minant of growth rate, and this viewpoint is classically adopted 
by ecologists when considering the ecological strategies of 
plants (Grime and Hunt, 1975), resource limitations on growth 
(McConnaughay and Coleman, 1999; Yang and Midmore, 2005), 
and the growth-allocation trade-off as a constraint on life history 
decisions (Bazzaz et al., 1987). It is also considered dynamically 
in relation to resource limitation in global vegetation models (e.g. 
Higgins and Scheiter, 2012) and in crop simulation models (e.g. 
Weir et al., 1984; Brisson et al., 1998; Jamieson et al., 1998).

The change in plant mass over time is the product of leaf 
area ratio, net assimilation rate, and plant mass:

 

dW
dt

LAR NAR WP
P= × ×

 
(5a),

where LAR is leaf area ratio (m2 leaf area g–1 plant mass) and 
NAR is net assimilation rate (g carbon m–2 leaf area d–1), remem-
bering that carbon is equivalent to mass in these examples.

Viewed through the lens of carbon allocation, growth depends 
critically on the availability of photosynthetic tissue, expressed 
as the LAR. The LAR is in turn a product of SLA, the ratio of 
leaf area to leaf mass (efficiency of leaf area deployment, m2 g–1 
leaf mass), and LMR, the ratio of WL to WP (dimensionless):

 LAR SLA LMR= ×  (5b),

Both SLA and LMR vary with WP. At any point in time, by 
definition, leaf area (L, in m2) is therefore given by the follow-
ing equation:

 L SLA W LMR W WP P P= ( ) × ( ) ×  (5c),

where SLA(WP) and LMR(WP) denote WP-dependent values 
of SLA and LMR. The LAR changes over time in accordance 
with changes in allocation during growth, and the compo-
nents of LAR therefore vary with plant mass, WP:

 

dL
dt

SLA
W

W
t
LMR W

LMR
W

W
t

SLA W

W
t
SLA LMR

P

P
P

P

P
P

P

= ∂
∂

∂
∂

×

+ ∂
∂

∂
∂

×

+ ∂
∂

×
 

(5d),

where ∂ ∂SLA WP/  and ∂ ∂LMR WP/  describe the effects of 
allocation changing over time as plant mass changes.

The allocation perspective on growth, like the physiologi-
cal perspective, can be interpreted in terms of source–sink 
interactions. For carbon, leaves constitute a net source while 
roots constitute a net sink. Thus Equation (5d) describes the 
change in the carbon source over time, and equivalent equa-
tions for roots would describe the change in the carbon sink.

These first two perspectives, which look at growth through 
the lenses of physiology and allocation, are ultimately 
resource-driven. The physiological perspective defines growth 
as being driven by carbon acquisition from, and losses to, the 
external environment, although in reality sink feedbacks are 
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also important here. The allocation perspective is driven by 
the allocation of carbon to structures that are responsible for 
its net acquisition or consumption.

Development

The third perspective encompasses the developmental pro-
cesses of organ initiation, growth, and termination. These 
processes represent carbon sinks.

In contrast to the first two approaches, which are resource-
driven, the third perspective considers the developmental 
process explicitly, and this is the approach applied by develop-
mental biologists working on growth in Arabidopsis and crop 
plants. This perspective also impinges on large-scale macroevo-
lutionary comparisons among species, since the evolution of 
development must inevitably drive changes in potential growth 
rate, for example, in transitions between woody and herba-
ceous life forms (Dodd et al., 1999) or in transitions between 
determinate and indeterminate growth (Shishkova et al., 2008).

Cells divide and expand at a rate that is ultimately limited 
not by the speed of resource acquisition from the external 
environment (although this does influence meristem activity, 
e.g. Pritchard et al., 1999; Granier et al., 2007) but by intrinsic 
constraints set by the internal resource balance, the cell cycle 
and developmental programme. Again, internal source–sink 
interactions underpin these processes. Because cell division 
and expansion, and the creation of new meristems through 
branching constitute sinks for carbon, modelling growth 
from a developmental perspective places greater empha-
sis on the limitation of growth by sink rather than source 
activity. Ultimately, cell division rate is limited by molecular 
constraints: for example, plant genome size is negatively cor-
related with cell cycle time (Francis et al., 2008) and with root 
meristem growth rate (Gruner et al., 2010).

Complex formulations for organ initiation, expansion, and 
termination have been developed, but a simple case is con-
sidered, for illustrative purposes. If  growth is considered in 
terms of morphogenetic constraints and development, with-
out taking into account environmental parameters, it can be 
expressed as a function of the number and mass of cells:

 

dW
dt

dC
dt

mP = ×
 

(6a),

where C is the number of cells in the plant, dependent on the 
division rate dC/dt in cells d–1, and m is the mass of organic 
carbon in each cell, g cell–1.

As in Equation (4b), this can be partitioned into develop-
mental processes occurring in leaves and in roots, where WL 
and WR refer to the dry mass of organic carbon in the leaf 
and root, respectively:

 

dW
dt

dW
dt

dW
dt

dC
dt

m
dC
dt

mP L R L
L

R
R= + = × + ×

 
(6b).

Unification

The three perspectives on growth can be unified to show 
their interrelated nature, and to illustrate the overarching 

dependence of growth on source–sink relationships. While the 
physiological perspective focuses on metabolic processes which 
exchange carbon with the external environment, the allocation 
perspective focuses on the tissues that carry out net acquisition 
and drawdown of carbon, and the developmental perspective 
focuses on the rate of cell division in these tissues, all three per-
spectives are underpinned by source:sink interactions.

The mass of leaf and root tissues, seen in Equations (4b) and 
(6b) (relating to physiology and development, respectively), are 
dependent on allocation and can be expressed as follows:

 W LMR WL P= ×  (7a),

 W LMR WR P= ( ) ×1−  (7b).

Substituting for dWP/dt in Equation (6b) using Equation (4b) 
unifies the physiological and developmental perspectives:

 

A W R W R W
dC
dt

m
dC
dt

m

L L L R R

L
L

R
R

×( ) ×( ) ×( )
= × + ×

− −

 

(8a),

and substituting in the definitions of WL and WR seen in 
Equations (7a) and (7b) incorporates the allocation perspec-
tive, to give:

A LMR W R LMR W R LMR W
dC
dt

m
dC
dt

m

P L P R P

L
L

R
R

× × × × × ( ) ×

= × + ×

− − −1

 

(8b),

where the dependence of SLA and LMR on WP has been sup-
pressed for ease of presentation.

This unifies the three lenses for looking at growth, and can 
be rearranged as:

A LMR W
dC
dt

m R LMR WP
L

L L P× × = × + × ×⎡
⎣⎢

⎤
⎦⎥

.
 

 
( )+ × + × ×⎡

⎣⎢
⎤
⎦⎥

dC
dt

m R LMR WR
R R P1−

 
(9a),

which is an expression of, for carbon:

Source strength leaf sin strength root sin strength= +k k  (9b).

Equation (9) illustrates an important point: it is relatively 
easy in a single mathematical formulation to encapsulate the 
intrinsic limitations on growth imposed by the physiology of 
resource capture, internal resource partitioning, and mor-
phogenetic constraints on organ development. Equation (9) 
is not intended to be a realistic and detailed representation of 
growth—as discussed, it makes manifold simplifying assump-
tions and ignores several important components. Rather, it is 
intended to illustrate the potential value of taking such a uni-
fying approach, as in the more realistic, detailed representa-
tions of the plant system developed by Chew et al. (2014) and 
Evers et al. (Evers et al., 2010; Vos et al., 2010). This unifica-
tion is conceptually useful for understanding how the critical 
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processes of source and sink development and activity inter-
act to limit growth in different species. A key step forwards 
will be model representation of the mechanisms that govern 
the crosstalk and interactions between different components.

Crucially, Equation (9) shows that source–sink interactions 
underpin all the aspects of growth described in the preceding 
equations. A balance between source and sink is essential for 
plants to grow and develop efficiently. Increased organ initia-
tion, faster cell growth, and larger organ size will strengthen 
sinks; changes in the root:shoot ratio or leaf area ratio can 
alter the balance between carbon and nitrogen source and 
sink tissues; while uptake rates of carbon and mineral nutri-
ents are primary determinants of source strength. A  holis-
tic understanding of growth rate should therefore draw on 
the concepts of source and sink strength, recognizing that 
each depends on the size and activity of the relevant tissue 
[Equations (1) and (2)]. Integrating molecular interactions at 
the tissue level (Fig. 1) with the behaviours of whole plants in 
terms of physiological regulation, allocation to different tis-
sues and developmental processes will be critical for building 
a picture of the interactions between the three components 
discussed above. In order to increase crop yield effectively, 
it will be essential to build comprehensive growth models in 
which the source:sink balance is the cornerstone underpin-
ning physiological, allocation-based, and developmental 
mechanisms for growth limitation. This will create an inte-
grated perspective that allows the effects of this vital determi-
nant of growth to be realized.

Conclusions and recommendations
An integrated understanding of source–sink relationships, 
growth, and yield is a vital next step in ongoing efforts to 
increase crop productivity, and requires a number of key 
‘unknowns’ to be addressed: (1) Which components in the 
plant system of sources and sinks exert the strongest control 
over growth in major crops? (2) How do these source and sink 
limitations change during the crops’ lifetimes? (3) Through 
what developmental or physiological mechanisms do these 
limitations arise? (4) Via genetic modification or selective 
breeding, to what extent is it possible to manipulate these pro-
cesses to upregulate source and sink together, at the appropri-
ate stage of development, to improve crop production?

We advocate the development of an integrated perspec-
tive, unifying physiological limitations on fluxes, controls 
on growth allocation, and the development of sink tissues, 
to successfully improve crop growth. A holistic view of the 
mechanistic interactions between sinks and sources is needed 
at the whole-plant scale during the trajectory of growth and 
development, in order to identify bottlenecks limiting growth 
rate. To address this knowledge gap, it will be vital to develop 
a greater understanding of the physiological processes operat-
ing at intermediate scales between molecular mechanisms and 
whole-plant traits. Ideotypes for future crops have been pro-
posed (Sreenivasulu and Schnurbusch, 2012; Bennett et al., 
2012; von Caemmerer et al., 2012; Reynolds et al., 2012; Ort 
et al., 2015), but reaping the maximum possible gains from 

these approaches requires a parallel effort in understanding 
how and when source and sink capacity limit growth and 
yield.
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