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Abstract— This paper deals with the problem of model
reduction by moment matching for linear differential inclusions.
The problem is formally formulated and the notions of moment-
set, perturbed moment trajectory, approximate reduced order
model and robust reduced order model are introduced. Two
sets of results are presented. The first part of the paper deals
with robustness of the reduced order models with respect to
input perturbations. Exploiting this result an enhanced model
reduction scheme for linear differential equations is presented.
In the second part of the paper we focus on the problem of
model reduction by moment matching for time-varying systems
driven by time-varying signal generators. Finally, these two sets
of results are used to solve the problem of model reduction
for linear differential inclusions. The results are illustrated by
means of numerical examples.

I. INTRODUCTION

Differential inclusions are a generalization of differential
equations having multi-valued right-hand side that arise in
a multitude of applications [1]. For instance, they provide a
framework to study the solutions of differential equations with
discontinuous right-hand side [2]. They are a fundamental
mathematical tool to prove the existence of control laws in
optimal control [3]. They are also useful to model systems
with uncertain right-hand side, such as systems in which
some of the parameters are known to belong to a certain set
but cannot be determined precisely [2]. Recently, differential
inclusions have also being used in the literature of hybrid
systems and stochastic hybrid systems to model non-unique
solutions [4], [5].
Computing the solutions of differential inclusions is numer-
ically challenging since each initial condition can produce
a different set of dense solutions. For this reason some
numerical methods for the approximation of these solutions
have been proposed, see e.g. [6], [7]. A possible systematic
approach to approximate differential inclusions is represented
by model order reduction techniques. The objective would
be to determine a reduced order differential inclusion that
approximates, in a sense to be specified, the behavior of
the higher order differential inclusion. Model reduction for
differential equations is a mature field. Several approaches
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have been proposed for linear differential equations [8]–[17],
nonlinear differential equations [18]–[23], and more general
classes of differential equations [24]–[29], just to cite a few.
For differential inclusions the problem of model reduction is
almost completely unexplored, with few possible exceptions.
For instance in [30] differential inclusions are approximated
with higher-order differential equations, whereas in [31] a
multi-scale approach is used to reduce the complexity of the
models. One of the reasons behind this scarcity of results for
the problem of model reduction of differential inclusions is
probably the additional difficulty which arises when dealing
with multi-valued functions. It becomes difficult then to define
a notion of reduced order model and to provide numerical
tools that can efficiently determine such reduced order models.
This paper tries to shed some light on the problem of model
reduction for linear differential inclusions exploiting the
notion of steady-state. We introduce a series of new concepts,
namely the notions of “moment-set”, “approximate reduced
order model”, “perturbed moment trajectory” and “robust
reduced order model”, which help to precisely formulate the
problem (Section II). The problem is solved in two steps.
We first consider the problem of model reduction for linear
differential equations with additive disturbance (Section III).
The solution to this specific problem suggests an enhanced
model reduction scheme for unperturbed systems which
improves the performance of the model reduction technique
firstly introduced in [32] (Section IV). We then consider the
problem of model reduction of linear time-varying systems
driven by time-varying signal generators (Section V). We
finally combine these results to provide a solution to the
problem of model reduction for linear differential inclusions
(Section VI). The results of the paper are illustrated by means
of two numerical examples.
Notation. We use standard notation. R≥0 denotes the set of
non-negative real numbers; C<0 denotes the set of complex
numbers with negative real part; C0 denotes the set of
complex numbers with zero real part. The sum of a set
and a vector denotes the corresponding set shift. The symbol
σ(A) denotes the spectrum of the matrix A ∈ Rn×n. Given
some finite data points set X = {xi ∈ R : i = 1, . . . ,m},
the discrete `p norm of a function f is defined as ||f ||`p,X :=

(
∑m
i=0 |f(xi)|p)

1
p , with 1 ≤ p <∞.

II. PROBLEM FORMULATION

In this section we introduce the class of linear differential
inclusions which are studied in this paper. We recall the
classical definition of steady-state response and we then define
the concepts of “moment-set”, “perturbed moment trajectory”



and “robust reduced order model”.
Let A ⊂ Rn×n be a nonempty, closed set of real matrices. For
x ∈ Rn we say that v ∈ Ax, if there exists a matrix A ∈ A
such that v = Ax. Let D be a set of bounded piecewise
continuous signals δ : R→ R. With this notation, we define
a linear differential inclusion of order n as

ẋ ∈ Ax+ Buu+ Bdδ, y = Cx, (1)

with x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R, δ(·) ∈ D, Bu ⊂ Rn×1,
Bd ⊂ Rn×1 and C ∈ R1×n. Given an initial condition x0 =
x(0), we call a continuous function x : R→ Rn a solution
of (1) if and only if ẋ(t) ∈ Ax(t) + Buu(t) + Bdδ(t) for
almost all t ∈ R. We define the set of solutions with initial
conditions in X0 ⊂ Rn as the set X (X0) := {x is a solution
of (1) : x0 ∈ X0}.

Definition 1: [33] Let B ⊂ Rn and suppose x(·) is defined
for all t ≥ 0 and for all x0 ∈ B. The omega limit set of the
set B, denoted Ω(B), is the set of all points x ∈ Rn for which
there exists a sequence {xk} of solutions xk ∈ X (B) and a
sequence {tk}, with lim

k→∞
tk =∞, such that lim

k→∞
xk(tk) =

x.
Definition 2: [34] Suppose the solutions of system (1),

with initial conditions in a closed and positively invariant set
X , are ultimately bounded with ultimate bounded subset B.
A steady-state response is any solution with initial condition
x0 ∈ Ω(B).

Consider an autonomous linear differential inclusion de-
scribed by

ω̇ ∈ Sω, u = Lω, (2)

with ω(t) ∈ Rν , S ⊂ Rν×ν , L ∈ R1×ν . Assume that S
is non-empty, closed and all the matrices S ∈ S are non-
derogatory1. Moreover, we consider only initial conditions
ω(0) for which the triple (L, S, ω(0)) is minimal2.

Definition 3: Consider the differential inclusion (1), an
input u described by (2) and let D = ∅. Suppose that for each
solution x in the set of steady-state responses X (Ω(B)) there
exists a map Π : R → Rn×ν : t 7→ Π(t) such that x = Πω
and let P := {Π(·) : x = Πω for all x ∈ X (Ω(B))}. The
moment-set of system (1) at (L,S) is defined as the set CP
of the mappings CΠ(·), with Π(·) ∈ P .

We are now ready to provide two formulations of the
problem of model reduction for differential inclusions, a full
problem and an approximate problem (in brackets).

Problem 1: Consider the differential inclusion (1)
equipped with a moment-set CP at (L,S). The problem of
(approximate) model reduction by moment matching consists
in determining a differential inclusion of order ν < n
equipped with a moment-set HP at (L,S) such that for each
steady-state output mapping CΠ(·) belonging to (a subset
of) CP , there exists a steady-state output mapping H(·)P (·)
belonging to (a subset of) HP such that CΠ(t) = H(t)P (t)
for all t ∈ R.

1A matrix is non-derogatory if its characteristic and minimal polynomials
coincide.

2Details on the meaning of the minimality assumption can be found in
[35], see also [36].

Definition 4: Let D = ∅. A differential inclusion solving
Problem 1 is called an (approximate) reduced order model
of (1) at (L,S).

While we provide a solution to the non-approximate version
of Problem 1, from a practical point of view it is impossible to
determine the moment-set of a differential inclusion in closed
form because the moment-set is itself the solution of another
differential inclusion. Since model reduction is motivated
by practical applications, it is imperative to formulate an
approximate version of the problem which can be numerically
solved. Before explaining the motivation behind the particular
chosen formulation, we recall an important fact about model
reduction by moment matching.

Remark 1: A reduced order model by moment matching of
a linear differential equation for a class of inputs u generated
by (2) when S is single-valued has the property of having
the same steady-state output response of the original system
to this specific class of inputs. However, in general there is
no guarantee regarding the approximation error provided for
inputs that do not belong to the given class.

In the case of differential inclusions, it seems sensible
to extend this idea of “zero steady-state error” for the
interpolated signals also to the class of systems to be reduced.
In particular, we want that the error between the steady-state
output response of the reduced differential inclusion and the
steady-state output response of a subset of systems belonging
to (1) is zero. In other words, we are looking for reduced
order models which provide “zero steady-state error” for the
“interpolation” signals and the “interpolation” systems. We
now consider the case in which D 6= ∅ and we formulate a
robust version of the problem.

Definition 5: Consider the differential inclusion (1), an
input u described by (2) and let D 6= ∅. A perturbed moment
trajectory of system (1) at (L,S) is defined as a steady-state
output response of system (1).

Definition 5 is motivated by the expectation that when
D 6= ∅ the steady-state solution is equal to the sum of Πω
and a perturbation term. Hence, we can define a perturbed
trajectory but not a perturbed moment.

Problem 2: Consider an (approximate) reduced order
model of (1) at (L,S). The problem of robust (approximate)
model reduction by moment matching consists in minimizing
(with respect to some norm) the error between the perturbed
moment trajectories of the two systems.

Definition 6: A differential inclusion solving Problem 2
is called a robust (approximate) reduced order model of (1)
at (L,S).

Exploiting linearity we can first solve the problem of robust
model reduction for single-valued systems and then extend the
results to differential inclusions. Thus, in the following we first
focus on linear systems described by differential equations
subject to an unknown additive disturbance and then we study
the problem of model reduction for unperturbed differential
inclusions. Finally, we combine the results to provide a
solution to Problems 1 and 2. Note that this approach, in
addition to simplifying the presentation, provides individual
contributions, such as robust reduced order models and time-



varying reduced order models, which are of interest per se.

III. MOMENT MATCHING WITH ADDITIVE DISTURBANCES

In this section we solve the problem of model reduction
by moment matching for the differential inclusion (1) when
A, Bu, Bd and S are single-valued. In this case, the solution
of the differential inclusion is equivalent to the solutions of
the differential equations

ẋ = Ax+Buu+Bdδ, y = Cx, (3)

for all δ(·) ∈ D, whereas the signal generator is described
by the equations

ω̇ = Sω, u = Lω. (4)

We begin providing a characterization of the steady-state
response of the interconnection of system (3) and the signal
generator (4). The result, which combines concepts already
known in the literature, is not new. We provide a proof for
completeness.

Lemma 1: Consider the interconnection of system (3)
and the signal generator (4). Assume σ(A) ⊂ C<0 and
σ(S) ⊂ C0. The steady-state response of the output of such
interconnection is

y(t) = CΠω(t) +

∫ t

−∞
CeA(t−τ)Bdδ(τ)dτ,

for all t ∈ R, where Π is the unique solution of the Sylvester
equation

AΠ +BuL = ΠS. (5)
Proof: Since σ(S) ∩ σ(A) = ∅, equation (5) has a

unique solution Π, see [37]. Define the variable z := x−Πω
and compute its derivative with respect to time, namely

ż = ẋ−Πω̇ = Ax+Buu+Bdδ −ΠSω
= A(x−Πω) + (AΠ +BuL−ΠS)ω +Bdδ
= Az +Bdδ.

The solution of this differential equation is z(t) = eAtz(0) +∫ t
0
eA(t−τ)Bdδ(τ)dτ , which yields

x(t) = Πω(t) + eAt(x(0)−Πω(0)) +

∫ t

0

eA(t−τ)Bdδ(τ)dτ.

Note now that the term eAt(x(0) − Πω(0)) is a transient
response that converges to zero exponentially, whereas the
term

∫ t
0
eA(t−τ)Bdδ(τ)dτ is a forced response. By definition

we can compute the steady-state of this last term starting
the integration from −∞ (in fact, in this way the transient
will be zero at t = 0), obtaining

∫ t
−∞ eA(t−τ)Bdδ(τ)dτ . This

concludes the proof.
We can now provide a first family of robust reduced order

models.
Lemma 2: Consider the interconnection of system (3) and

the signal generator (4). Assume σ(A) ⊂ C<0 and σ(S) ⊂
C0. The system described by the equations

ξ̇ = Fξ +Gu+Mδ, ψ = Hξ, (6)

with ξ(t) ∈ Rν , ψ(t) ∈ R, F ∈ Rν×ν G ∈ Rν×1,
M ∈ Rn×1, H ∈ R1×n, is a robust reduced order model of

system (3) at (L, S) if ν < n, there exists a unique solution
P of the equation

FP +GL = PS, (7)

such that
HP = CΠ, (8)

where Π is the unique solution of (5), and in addition

M := arg min
M̂

∣∣∣∣∣∣HeFtM̂ − CeAtBd∣∣∣∣∣∣2
`2,R≥0

. (9)

Proof: The claim is a direct consequence of Definition 4
and Lemma 1. In fact note that equation (7) defines the
moments HP of system (6), whereas equation (8) is the
matching condition between the moments of system (3)
and the moments of system (6). The resulting model solves
Problem 1 when D = ∅. Given such a model, condition (9)
provides the matrix M which minimizes the error between
the respective perturbed moment trajectories (note that the
squared `2 norm is strictly convex and thus M is unique).

Before presenting the next result, we introduce some
auxiliary definitions. Define the time-snapshots Yp ∈ Rp×1
and Ψp ∈ Rp×ν as

Yp=
[
CBd CeAt1Bd · · · CeAtpBd

]>
,

and
Ψp =

[
H HeFt1 · · · HeFtp

]>
,

where 0 < t1 < · · · < tp, p ≥ ν, with lim
p→∞

tp = ∞. If the

matrix Ψp is full-rank, let

M := lim
p→∞

(
Ψ>p Ψp

)−1
Ψ>p Yp. (10)

We now simplify the conditions in Lemma 2, providing
a family of parametrized robust reduced order achieving
moment matching.

Proposition 1: Consider system (3) and the signal gener-
ator (4). Assume σ(A) ⊂ C<0 and σ(S) ⊂ C0. Then the
system described by the equations

ξ̇ = (S −GL)ξ +Gu+Mδ, ψ = CΠξ, (11)

where Π is the unique solution of (5) and M is given by
equation (10), is a robust reduced order model of system (5)
at (L, S) for any fixed G such that σ(S) ∩ σ(S −GL) = ∅
and the pair (S −GL,CΠ) is observable.

Proof: For model (6), F , G, H and M are free
parameters which must be used to solve the conditions (7), (8),
(9). To this end note that selecting P = I , yields F = S−GL
from equation (7) and H = CΠ from equation (8). Observe
that any other selection P̃ 6= I (invertible) yields a change
of coordinates and that the systems expressed in the new
coordinates would still have matrices of the form given in
(11) (see Remark 4). Problem 1 is then solved for any G such
that σ(S) ∩ σ(S − GL) = ∅. Consider now one of these
matrices G solving Problem 1. If G is such that the pair
(S −GL,CΠ) is observable, then it is possible to determine
a set of sampling times ti such that the matrix Ψp evaluated at
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Fig. 1. A schematic overview of the enhanced method.

these ti has full-rank for any p ≥ ν. Hence, we can compute
M as in (10), which is the solution of the linear least-squares
problem (8).

Remark 2: We have deliberately chosen to exclude G,
which is a free parameter, from the minimization of the
error between the perturbed moment trajectories. In fact, note
that we still want to use G to impose other properties upon
the reduced order model. For instance G can be used to set
the eigenvalues or the zeros of the reduced order model, see
[32]. Thus Problems 1 and 2 have been formulated bearing in
mind a two steps procedure: first we determine an unperturbed
reduced order model; we then augment such a model by means
of M , which we use as a parameter to minimize the error.
This provides the greatest design flexibility since G can or
can not be used to minimize the error between the perturbed
moment trajectories.

Remark 3: The determination of an approximation of M
computed truncating the matrices Ψp and Yp to a finite value
tp has a computational complexity that is independent of the
order of the system to be reduced. In fact, it depends on the
order ν < n of the reduced order model and on the number
of sample times p.

IV. AN ENHANCED MODEL REDUCTION APPROACH

The results of the previous section suggest an enhanced
model reduction scheme for linear, unperturbed, systems.
Consider the linear system described by the equations

ẋ = Ax+Bu, y = Cx, (12)

and the problem of obtaining a reduced order model that
matches the moment of this system. We can rewrite sys-
tem (12) as

ẋ = Ax+Buω +B(u− uω), y = Cx, (13)

where uω = Lω. System (13) has the form of system (3)
with δ = u− uω , Bu = B and Bd = B. We can then apply
the result of Proposition 1, obtaining the robust reduced order
model

ξ̇ = (S −GL)ξ +Guω +M(u− uω), ψ = CΠξ.
(14)

The resulting reduced order model possesses the following
two properties.

Property 1: If the input of the reduced order model (14)
is the signal generated by (4), then the steady-state error
between y and ψ is zero.

In fact note that in this case u = uω and the model (14)
reduces to ξ̇ = (S −GL)ξ +Guω , ψ = CΠξ.
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Fig. 2. Case u = Lω. Top: time history of the output of system (12)
(solid/blue), time history of the output of the robust reduced order model (14)
dashed/black, time history of the output of the nominal reduced order model
(dotted/green). Bottom: time history of the corresponding absolute errors.
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Fig. 3. Case u 6= Lω. Top left: time history of the output of system (12)
(solid/blue) and time history of the output of the nominal reduced order model
(dotted/green). Bottom left: time history of the corresponding absolute error.
Top right: time history of the output of system (12) (solid/blue) and time
history of the output of the robust reduced order model (14) (dashed/black).
Bottom right: time history of the corresponding absolute error.

Property 2: If the input of the reduced order model (14) is
not the interpolated signal generated by (4), then the steady-
state error between y and ψ is minimized in the sense of
Proposition 1.

In fact note that the resulting model is a robust reduced
order model with disturbance δ = u − uω. A schematic
interpretation of the reduced model (14) is shown in Fig. 1.

Example 1: We illustrate the enhanced approach with a
numerical example. All the quantities in this example have
been randomly generated. The results, which are consistent
for each random iteration, can be reproduced as follows
(obviously obtaining different figures). We have generated
a random stable system of order n = 25 with the function
rss of MATLAB. We have generated random vectors L, ω(0)
and x(0) with the function rand. We have set ν = 5 and
we have selected a matrix S with an eigenvalue at 0 and



two pairs of randomly generated imaginary eigenvalues. We
have computed a nominal reduced order model assigning the
eigenvalues of S−GL using G. Two eigenvalues are selected
as the slowest eigenvalues of the matrix A. Two eigenvalues
are selected as the eigenvalues with the largest imaginary
part of A. The last eigenvalue is a randomly selected real
eigenvalue. The matrix M has been computed approximating
(10) with tp = 20 and p = 2000 (evenly spaced). Fig. 2
shows the results of a simulation in which u = Lω. In the
top graph, the solid/blue line is the time history of the output
of system (12), the dashed/black line is the time history of
the output of the robust reduced order model (14) and the
dotted/green is the time history of the output of the nominal
reduced order model i.e. ξ̇ = (S −GL)ξ + Gu, ψ = CΠξ.
The bottom graph displays the corresponding absolute errors.
As expected the robust and nominal reduced order model
have the same output responses to u = Lω and both are good
asymptotic approximation of the system.
We now consider the input u(t) =

∑4
i=1 ai sin(bit + ci) +

a5 + 20 θ(t), where the ai, bi and ci are randomly generated
scalars and θ(t) is a normally distributed noise. Note that the
noise is large, i.e. comparable with the natural response of
the system. Fig. 3 shows the same quantities as Fig. 2 for the
new input u for the nominal reduced order model on the left
and for the robust reduced order model on the right. We see
that the robust reduced order model approximates very well
the response of the system (note the small steady-state error
in the bottom graph). The behavior of the nominal reduced
order model instead is unsatisfactory. The output response
undergoes oscillations with intensities ten times greater than
the expected value.

V. MODEL REDUCTION FOR LINEAR TIME-VARYING
SYSTEMS

We now address the problem of model reduction of
unperturbed differential inclusions described by

ẋ ∈ Ax+ Bu, y = Cx. (15)

To solve this problem we first study a related, simpler,
problem. Defining a suitable selection criterion, see [38],
the linear differential inclusion (15) can be seen as a way
of simultaneously considering all time-varying matrices A :
R → A and B : R → B, and the associated time-varying
linear system

ẋ = A(t)x+B(t)u, y = Cx. (16)

Similarly, the linear differential inclusion (4) can be seen as
a way of simultaneously considering all the solutions of the
time-varying system

ω̇ = S(t)ω, u = Lω. (17)

with S : R→ S . We also assume that A(·), B(·) and S(·) are
piecewise continuous functions of t and that A(·) and S(·) are
bounded on any finite time interval. Let (t, t0) 7→ Λ(t, t0) and
(t, t0) 7→ Σ(t, t0) be the state transition matrices, see [39], of
systems (16) and (17), respectively. We recall the definition
of exponential stability for linear time-varying systems.

Definition 7: [40] System (16), or simply A, is exponen-
tially stable on [t0,∞) if there exists α ∈ R>0 and γ ∈ R>0

such that
||Λ(t, s)|| < γe−α(t−s),

for any t0 ≤ s ≤ t <∞.
The next result provides a description of the steady-state

response of the interconnection of system (16) and the signal
generator (17).

Lemma 3: Consider the interconnection of system (16) and
the signal generator (17). Assume system (16) is exponentially
stable and the signal u is bounded backward and forward
in time. The steady-state response of the output of such
interconnection is

y(t) = CΠ(t)ω(t),

with

Π(t) =

∫ t

−∞
Λ(t, τ)B(τ)LΣ(τ − t)dτ, (18)

which is the unique steady-state solution of the differential
Sylvester equation

Π̇(t) = A(t)Π(t)−Π(t)S(t) +B(t)L. (19)

Proof: We begin proving that Π(·) is the unique steady-
state solution of (19). First of all note that (18) is the limiting
motion of

Π(t)=

(
Λ(t, t0)Π(t0)+

∫ t

t0

Λ(t, τ)B(τ)LΣ(τ, t0)dτ

)
Σ(−t, t0),

when t0 = −∞ (i.e. it is its steady-state solution). Note that
this last expression of Π(·) solves the differential equation
(19). In fact, differentiating the quantity Π(t)Σ(t, t0) with
respect to time yields

Π̇(t)Σ(t, t0) + Π(t)S(t)Σ(t, t0) = A(t)Λ(t, t0)Π(t0)

+
d

dt

∫ t

t0

Λ(t, τ)B(τ)LΣ(τ, t0)dτ = A(t)Λ(t, t0)Π(t0)

+A(t)

∫ t

t0

Λ(t, τ)B(τ)LΣ(τ)dτ + Λ(t, t)B(t)LΣ(t),

where the last expression is obtained using the “differentiation
under the integral sign” formula. As a result

Π̇(t)Σ(t, t0)+Π(t)S(t)Σ(t, t0) = A(t)Π(t)+B(t)LΣ(t, t0),

which yields (19) once we multiply by Σ(t, t0)−1. Note that
the solution of the differential equation (19) is unique if A(·),
S(·) and B(·) are piecewise continuous functions of t and
A(·) and S(·) are bounded on any finite time interval, see
[41, Theorem 3.2]. Moreover, the steady-state solution is
well-defined since system (16) is exponentially stable and
the signal u is bounded backward and forward in time, see
[34]. We now define the variable z(t) := x(t) − Π(t)ω(t)
and compute its derivative with respect to time, namely

ż = ẋ− Π̇ω −Πω̇ = Ax+Bu− Π̇ω −ΠSω =

= A(x−Πω) + (AΠ +BL− Π̇−ΠS)ω =
= A(x−Πω).



Hence,

x(t) = Π(t)ω(t) + Λ(t, t0)(x(t0)−Π(t0)ω(t0)).

The claim follows since Λ(t, t0)(x(t0)−Π(t0)ω(t0)) is the
transient response that converges to zero exponentially.

We provide now a family of time-varying reduced order
models of system (16).

Lemma 4: Consider the interconnection of system (16) and
the signal generator (17). Assume system (16) is exponentially
stable and the signal u is bounded backward and forward in
time. The system described by the equations

ξ̇ = F (t)ξ +G(t)u, ψ = H(t)ξ, (20)

with F : R → Rν×ν G : R → Rν×1, H : R → R1×n, is
a reduced order model of system (16) at (L, S) if ν < n
and there exists a unique steady-state solution P (·) of the
equation

Ṗ (t) = F (t)P (t) +G(t)L− P (t)S, (21)

such that
H(t)P (t) = CΠ(t), (22)

where Π is given by (18).
Proof: The claim is a direct consequence of Definition 4

and Lemma 3.
We now simplify the conditions in Lemma 4, providing a

simple family of reduced order models.
Proposition 2: Consider system (16) and the signal gen-

erator (17). Assume system (16) is exponentially stable and
the signal u is bounded backward and forward in time. Then
the system described by the equations

ξ̇ = (S(t)−G(t)L)ξ +G(t)u, ψ = CΠ(t)ξ,
(23)

where Π is given by (18), is a reduced order model of
system (16) at (L, S) for any G such that S(t) − G(t)L
is exponentially stable.

Proof: Similarly to the proof of Proposition 1, we
select P (t) = I which yields F (t) = S(t) − G(t)L from
equation (21) and H(t) = CΠ(t) from equation (22). As a
result, for any selection of G(t) such that S(t)−G(t)L is
exponentially stable, the model (23) has the same moments
of system (16) at (L, S).

Remark 4: There is no loss of generality in selecting
P (t) = I . In fact, assume that the equation

˙̃
P (t) = F̃ (t)P̃ (t) + G̃(t)L− P̃ (t)S, (24)

has a unique solution P̃ (t) 6= I which is invertible for all
t ∈ R and consider the model

ξ̇ = F̃ (t)ξ + G̃(t)u, ψ = H̃(t)ξ. (25)

Define the new variable z(t) := P (t)−1ξ(t) and note that

ξ̇ =
˙̃
P (t)z+ P̃ (t)ż = F̃ (t)ξ+ G̃(t)u = F̃ (t)P̃ (t)z+ G̃(t)u.

Solving this equation with respect to ż yields

ż = P̃ (t)−1(F̃ (t)P̃ (t)− ˙̃
P (t))z + P̃ (t)−1G̃(t)u.

Substituting equation (24) in the last expression we obtain

ż = P̃ (t)−1(P̃ (t)S(t)− G̃(t)L)z + P̃ (t)−1G̃(t)u
= (S(t)−G(t)L)z +G(t)u,

where G = P̃−1G̃, and note that as a result F = P̃−1(F̃ P̃ −
˙̃
P ). Finally note that the matching condition for system (25)
is

H̃(t)P̃ (t) = CΠ(t),

which yields H̃(t) = CΠ(t)P̃ (t)−1 and ψ = H̃(t)ξ =
CΠ(t)z.

We consider now the problem of selecting G(t) such that
the reduced order model (23) is exponentially stable. The
solution of this problem is given in the next result.

Theorem 1: Let Φ(t, t0) be the state transition matrix of
system (23). The following statements are equivalent.

(ES1) The matrix G(t) is such that there exists a bounded
non-negative definite matrix Z(t) which satisfies

Ż(t) = (S(t)−G(t)L)Z−Z(S(t)−G(t)L)>+G(t)G(t)>.
(26)

(ES2) The matrix G(t) is such that

Z(t) =

∫ t

t0

Φ(t, τ)G(τ)G(τ)>Φ(t, τ)>dτ (27)

is bounded and non-negative.
(ES3) System (23) is exponentially stable.

Proof: (ES1) ⇐⇒ (ES2). Computing the derivative of
(27) with respect to time we see that (27) is the solution of
equation (26).
(ES1) ⇐⇒ (ES3). Note that the standing assumption that all
the triples (L, S, ω(0)) are minimal implies that all the pairs
(L, S) that we consider are observable. This implies that there
exists a bounded piecewise continuous matrix G(t) such that
S(t)−G(t)L is exponentially stable, see [40, Definition 2.6
(b)]. The result follows from [40, Proposition 2.5 (b)].

VI. MODEL REDUCTION OF LINEAR DIFFERENTIAL
INCLUSIONS

We can now summarize the main result of the paper in the
next statement which solves Problem 1 and provides a family
of reduced order models for the differential inclusion (1). We
omit the solution of Problem 2 for reasons of space.

Proposition 3: Consider the differential inclusion (15) and
the signal generator (2). Assume that all matrices A : R→ A
are exponentially stable and the signal u is bounded backward
and forward in time. Then the differential inclusion described
by

ξ̇ ∈ Fξ + Gu, ψ = Hξ, (28)

is a reduced order model of the differential inclusion (15) at
(L,S) if
• G := {G : R → Rν×1 : S(t) −G(t)L is exponentially

stable, ∀S : R→ S}.
• F := {F : R → Rν×ν : F (t) = S(t) − G(t)L, ∀S :

R→ S, ∀G : R→ G}.
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Fig. 4. Time history of the three components of the vector CΠ(t) for all
the time-varying systems in Ā, S̄. One particular solution is highlighted
with a solid/black line.
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Fig. 5. Set of the outputs of the differential inclusion (15) (solid/blue) and
set of the outputs of the approximate reduced order model (4) (dotted/red).
Each horizontal line is constant in time.

• P := {Π : R → Rn×ν : Π̇ ∈ AΠ + BL − ΠS} =
{Π : R → Rn×ν : Π̇(t) = A(t)Π(t) + B(t)L −
Π(t)S(t), ∀A : R→ A, ∀B : R→ B, ∀S : R→ S}.

• H := {H : R → R1×ν : H(t) = CΠ(t), ∀Π : R →
P}.

The differential inclusion (28) is an approximate reduced
order model of the differential inclusion (15) at (L, S̄, Ā, B̄)
if

P := {Π : R→ Rn×ν : Π̇ ∈ ĀΠ + B̄L−ΠS̄},

where Ā, B̄ and S̄ are subsets of A, B and S, respectively.
Proof: The proposition is a direct consequence of the

results proved in the previous sections.
Example 2: We illustrate Proposition 3 with a numerical

example. Consider the class of linear differential inclu-
sions (15) and of signal generators (4). The sets have been
generated as follows. For graphical clarity we select n = 10,
but similar results have been obtained with n > 100. Let
An be a randomly generated stable matrix and let Ap =
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Fig. 6. Top: time history of the output of the differential inclusion (15)
(solid/blue) and of the output of the approximate reduced order model (4)
(dotted/red). Bottom: time history of the corresponding absolute error.

diag(Ap
11, . . . , A

p
nn), Ap

ii > 0, be a randomly generated
diagonal matrix such that maxAp

ii ≤ max real eig(An). The
set A has been defined as A := {A : An

ij − Ap
ij ≤

Aij ≤ An
ij + Ap

ij , i, j = 1, . . . n}. Let S := {S =
[0, S12, 0; −S12, 0, 0; 0, 0, 0], 1.5 ≤ S12 ≤ 4.5}. The
matrix L, C and the single-valued B have been randomly
generated. The set A is approximated by the finite set
Ā containing k time varying matrices Ak(t) generated as
Akij(t) = An

ij + Ap
ijcos(t+ φk), with φk = −π, . . . , π. The

set S is approximated in a similar fashion. The steady-state
solution of equation (19) is computed for each time-varying
system associated to the differential inclusion. Fig. 4 shows
the time history of the three components of the vector CΠ(t)
for all the time-varying systems in Ā, S̄ . For each component,
the figure shows one particular solution with a solid/black
line.
The approximate reduced order model (28) has been con-
structed as follows. The matrix Gn has been computed
assigning the eigenvalues of the matrix F n = Sn − GnL.
The time-varying matrix G(t) is generated as time-varying
perturbation of Gn, namely Gki (t) = Gn

i + Gp
i cos(t + φk),

Gp
i ∈ R, for all i = 1, . . . , ν, such that the resulting

S(t)−G(t)L are exponentially stable. Thus the set F , G and
H have been constructed as in Proposition 3. Fig. 5 shows
the set of the outputs of the differential inclusion (15) as it
evolves in time in solid/blue line and the set of the outputs
of of the approximate reduced order model (4) as it evolves
in time in dotted/red line for one randomly generated initial
condition. The two sets converge asymptotically to each other
as expected.
We now consider a matrix Ã(t) ∈ A \ Ā, to test the
approximate reduced order model for systems that we have
not interpolated by means of an associated time-varying
system. Fig. 6 shows the time history of some selected output
of the differential inclusion (15) in solid/blue and of some
selected output of the approximate reduced order model (4)
in dotted/red line. The bottom graph shows the corresponding



absolute error. The matrix Π used in the simulation is the
one obtained with the closest matrix to Ã in A. We see that
the error does not converge to zero but the approximation is
close.

VII. CONCLUSION

Introducing the notions of moment-set, perturbed moment
trajectory, approximate reduced order model and robust
reduced order model we have formulated and solved the
problem of model reduction by moment matching for linear
differential inclusions. We have also provided robust reduced
order models with respect to input perturbations, an enhanced
model reduction scheme for linear differential equations and
reduced order models for time-varying systems driven by
time-varying signal generators. Many open problems need to
be addressed by further research. For instance the selection
of the interpolating subsets Ā ⊂ A, B̄ ⊂ B, S̄ ⊂ S is of
paramount importance to achieve a satisfactory approximation
for the whole sets A, B and S. Other research directions
include the extension of these results to other classes of
inclusions, such as difference inclusions, nonlinear inclusions
and hybrid inclusions.
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Birkhäuser Boston, 2010.

[4] R. Goebel, R. G. Sanfelice, and A. R. Teel, “Hybrid dynamical systems,”
IEEE Control Systems, vol. 29, no. 2, pp. 28–93, April 2009.

[5] A. R. Teel and J. P. Hespanha, “Stochastic hybrid systems: A
modeling and stability theory tutorial,” in Proceedings of the 54th
IEEE Conference on Decision and Control, Osaka, Japan, December
15-18, 2015, pp. 3116–3136.

[6] P. Saint-Pierre, “Approximation of slow solutions to differential
inclusions,” Applied Mathematics and Optimization, vol. 22, no. 1, pp.
311–330, 1990.

[7] A. Puri, V. Borkar, and P. Varaiya, ε-Approximation of differential
inclusions. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp.
362–376.

[8] K. Glover, “All optimal Hankel-norm approximations of linear multi-
variable systems and their L∞-error bounds,” International Journal of
Control, vol. 39, no. 6, pp. 1115–1193, 1984.

[9] M. G. Safonov, R. Y. Chiang, and D. J. N. Limebeer, “Optimal Hankel
model reduction for nonminimal systems,” IEEE Transactions on
Automatic Control, vol. 35, no. 4, pp. 496–502, 1990.

[10] B. C. Moore, “Principal component analysis in linear systems: con-
trollability, observability, and model reduction,” IEEE Transactions on
Automatic Control, vol. 26, no. 1, pp. 17–32, 1981.

[11] D. G. Meyer, “Fractional balanced reduction: model reduction via a
fractional representation,” IEEE Transactions on Automatic Control,
vol. 35, no. 12, pp. 1341–1345, 1990.

[12] S. Lall and C. Beck, “Error bounds for balanced model reduction of
linear time-varying systems,” IEEE Transactions on Automatic Control,
vol. 48, no. 6, pp. 946–956, 2003.

[13] T. T. Georgiou, “The interpolation problem with a degree constraint,”
IEEE Transactions on Automatic Control, vol. 44, pp. 631–635, 1999.

[14] A. C. Antoulas, J. A. Ball, J. Kang, and J. C. Willems, “On the solution
of the minimal rational interpolation problem,” Linear Algebra and
Its Applications, Special Issue on Matrix Problems, vol. 137-138, pp.
511–573, 1990.

[15] C. I. Byrnes, A. Lindquist, and T. T. Georgiou, “A generalized entropy
criterion for Nevanlinna-Pick interpolation with degree constraint,”
IEEE Transactions on Automatic Control, vol. 46, pp. 822–839, 2001.

[16] C. A. Beattie and S. Gugercin, “Interpolation theory for structure-
preserving model reduction,” in Proceedings of the 47th IEEE Confer-
ence on Decision and Control, Cancun, Mexico, 2008.

[17] S. Gugercin, A. C. Antoulas, and C. Beattie, “H2 model reduction
for large-scale linear dynamical systems,” SIAM Journal on Matrix
Analysis and Applications, vol. 30, no. 2, pp. 609–638, 2008.

[18] S. Lall, P. Krysl, and J. Marsden, “Structure-preserving model reduction
for mechanical systems,” Physica D, vol. 184, pp. 304–318, 2003.

[19] K. Fujimoto, “Balanced realization and model order reduction for
port-Hamiltonian systems,” Journal of System Design and Dynamics,
vol. 2, no. 3, pp. 694–702, 2008.

[20] J. M. A. Scherpen and W. S. Gray, “Minimality and local state
decompositions of a nonlinear state space realization using energy
functions,” IEEE Transactions on Automatic Control, vol. 45, no. 11,
pp. 2079–2086, Nov 2000.

[21] W. S. Gray and J. Mesko, “General input balancing and model reduction
for linear and nonlinear systems,” in European Control Conference,
Brussels, Belgium, 1997.

[22] W. S. Gray and E. I. Verriest, “Balanced realizations near stable
invariant manifolds,” Automatica, vol. 42, no. 4, pp. 653–659, 2006.

[23] G. Scarciotti and A. Astolfi, “Data-driven model reduction for linear
and nonlinear, possibly time-delay, systems,” Submitted to Automatica,
2016.

[24] G. Gu, P. P. Khargonekar, and E. B. Lee, “Approximation of infinite-
dimensional systems,” IEEE Transactions on Automatic Control, vol. 34,
no. 6, 1992.

[25] J. Soberg, K. Fujimoto, and T. Glad, “Model reduction of nonlinear
differential-algebraic equations,” IFAC Symposium Nonlinear Control
Systems, Pretoria, South Africa, vol. 7, pp. 712–717, 2007.

[26] G. Scarciotti and A. Astolfi, “Model reduction of neutral linear
and nonlinear time-invariant time-delay systems with discrete and
distributed delays,” IEEE Transactions on Automatic Control, vol. 61,
no. 6, pp. 1438–1451, 2016.

[27] ——, “Model reduction by matching the steady-state response of
explicit signal generators,” IEEE Transactions on Automatic Control,
vol. 61, no. 7, pp. 1995–2000, 2016.

[28] G. Scarciotti, “Steady-state matching and model reduction for systems
of differential-algebraic equations,” Submitted to IEEE Transactions
on Automatic Control, 2017.

[29] G. Scarciotti and A. Astolfi, “Model reduction for hybrid systems
with state-dependent jumps,” in IFAC Symposium Nonlinear Control
Systems, Monterey, CA, USA (to appear), 2016.

[30] G. S. Zivanovic and P. Collins, “Higher order methods for differential
inclusions.”

[31] G. Grammel, Order Reduction of Multi-scale Differential Inclusions.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 296–303.

[32] A. Astolfi, “Model reduction by moment matching for linear and
nonlinear systems,” IEEE Transactions on Automatic Control, vol. 55,
no. 10, pp. 2321–2336, 2010.

[33] R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid Dynamical Systems:
Modeling, Stability, and Robustness. Princeton University Press, 2012.

[34] A. Isidori and C. I. Byrnes, “Steady-state behaviors in nonlinear systems
with an application to robust disturbance rejection,” Annual Reviews
in Control, vol. 32, no. 1, pp. 1–16, 2008.

[35] G. Scarciotti, Z. P. Jiang, and A. Astolfi, “Constrained optimal reduced-
order models from input/output data,” in Proceedings of the 55th IEEE
Conference on Decision and Control, Las Vegas, NV, USA, December
12-14 (to appear), 2016.

[36] A. Padoan, G. Scarciotti, and A. Astolfi, “A geometric characterisa-
tion of the persistence of excitation condition for the solutions of
autonomous systems,” Conditionally accepted on IEEE Transactions
on Automatic Control, 2016.

[37] A. Antoulas, Approximation of Large-Scale Dynamical Systems.
Philadelphia, PA: SIAM Advances in Design and Control, 2005.

[38] D. Angeli, P. De Leenheer, and E. D. Sontag, “Chemical networks with
inflows and outflows: A positive linear differential inclusions approach,”
Biotechnology Progress, vol. 25, no. 3, pp. 632–642, 2009.

[39] R. W. Brockett, Finite dimensional linear systems, ser. Series in
Decision and Control. Wiley, 1970.

[40] A. Ichikawa and H. Katayama, Linear Time Varying Systems and
Sampled-data Systems, ser. Formal Approaches to Computing and
Information Technology. Springer, 2001.

[41] H. K. Khalil, Nonlinear Systems, 3rd ed. Englewood Cliffs: Prentice
Hall, 2001.


