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Abstract. Existing approaches using argumentation to aid or improve machine
learning differ in the type of machine learning technique they consider, in their use
of argumentation and in their choice of argumentation framework and semantics.
This paper presents a survey of this relatively young field highlighting, in partic-
ular, its achievements to date, the applications it has been used for as well as the
benefits brought about by the use of argumentation, with an eye towards its future.
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1. Introduction

Machine Learning (ML) [27] amounts to automatically learning from data and improving
with experience. Nowadays, its use is becoming more and more important as much of
the work on visual processing, language and speech recognition relies on it.

Argumentation (e.g. as overviewed in [37]) has proven successful in several do-
mains, including multi-agent systems [6] and decision support in medicine [16] and en-
gineering [2]. ML and argumentation are brought together in a number of settings, e.g.
to support argument mining (e.g. see [26]) as well as to aid ML, in one sense or another.
Also the integration of argumentation and applications of ML have been proven to be
fruitful (e.g. as in [22]). In this paper we focus on the use of argumentation to aid ML
and provide an overview of this relatively young field, with an eye to guide its future
developments.

Existing approaches using argumentation for ML differ in the type of ML they con-
sider and the specific method they use. Concretely:

• the Argumentation-Based Machine Learning (ABML) approach of [32] extends
the CN2 rule induction algorithm [12] for supervised learning;

• the Argument-Based Inductive Logic Programming (ABILP) approach of [4] ex-
tends Inductive Logic Programming (ILP) for supervised learning;

• the hybrid approach of [21] uses as its starting point the Fuzzy Adaptive Resonance
Theory (ART) model [7] for unsupervised learning;

• the fully argumentative concept learning method of [1] focuses on the version
space learning framework [27] for supervised learning;
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• the multi-agent inductive concept learning of [34] and its computational realisation
[35] have concept learning [27] for supervised learning as their starting point;

• the Argumentation Accelerated Reinforcement Learning (AARL) of [17,18,19]
extends SARSA [39] for reinforcement learning;

• the Classification enhanced with Argumentation (CleAr) method of [8,9] works
with any supervised learning technique, and has been experimented with, in par-
ticular, Naı̈ve Bayes classifiers [25], Support Vector Machines (SVMs) [13] and
Random Forests [5].

Moreover, existing approaches differ in their use of argumentation and in their choice
of argumentation framework/method. Finally, different approaches achieve different (de-
sirable) outcomes, ranging from improving performances to rendering the ML process
more transparent by improving its explanatory power.

The paper is organized as follows. In Section 2 we give an abstract re-interpretation
of ML, in general and for supervised/unsupervised/reinforcement learning, to serve as a
basis for a comparison amongst existing ML approaches using argumentation. In Sec-
tion 3 we overview the different approaches using argumentation for ML, showing in
particular how they use argumentation, and which kind thereof, to contribute to particular
instantiations of the abstract model of Section 2. In Section 4 we provide a comparative
analysis of the different approaches. In Section 5 we conclude, identifying in particular
some challenges/open problems for an even more impactful use of argumentation in ML.

2. Machine Learning in the Abstract

In this section we give an abstract re-interpretation of ML, in general and for su-
pervised/unsupervised/reinforcement learning, to serve as a basis for the comparison
amongst different existing ML approaches using argumentation. Being tailored to pro-
viding an overview of existing approaches to ML using argumentation, this abstract in-
terpretation has no pretence of being general or fully covering (e.g. it completely ignores
the use of probabilistic information in ML).

In the abstract, a ML method can be characterised in terms of the following no-
tions, that will be instantiated differently for the different ML methodologies (su-
pervised/unsupervised/reinforcement learning) and for the different methods for the
methodologies (e.g. CN2 for supervised learning, ART for unsupervised learning, and
SARSA for reinforcement learning):

• H is the hypotheses space, namely the set of all possible “reasoners” that a ML
method may return;

• S is the training input, given to the ML method to trigger the learning process
leading to generating a “reasoner” in H;2

• X is the set of all possible descriptions of inputs for the ML method (the training
input) and for the “reasoner” learnt by the ML method (the unseen input, e.g. used
for testing);

• L is the set of all possible outputs that “reasoners” computed by a ML method
may return, given the inputs.

2Note that the training input excludes any testing input, to be deployed after learning has taken place to test
the computed “reasoners”.
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2.1. Supervised learning

In this setting a “reasoner” in H is a classifier, L is a set of alternative classifications, X is
a set of combinations of features that inputs may exhibit, and each element of the training
input includes the correct classification for a given combination of features, whereas the
unseen inputs only consist of features:

• X is the feature space; for example, a feature may be an attribute/value pair;
• L is the set of possible classifications; for example, if the aim of the supervised

learning method is to learn a concept, then L = {0,1};
• S is the set of training instances; a training instance is of the form (x, l) for x ∈ X

and l ∈ L ; for example, if the aim of the supervised learning method is to learn
a concept, then ({ f1, f2},1) indicates that the combination of features f1, f2 is an
example of the concept, and ({ f1, f3},0) indicates that the combination of features
f1, f3 is not;

• a generic member hs of H can be abstractly seen as a mapping hs : X �→ L ; at an
abstract level, the goal of a supervised ML method is to determine a classifier hs
such that (i) hs(x) = l for all (or for as many as possible) (x, l) ∈ S and (ii) hs
generalises well by classifying instances not in S correctly (during testing).

2.2. Unsupervised learning

In this setting, a “reasoner” in H is also a classifier, but the training instances in S are
given in terms of their feature combinations only, as a correct classification for them is
not available; the most popular unsupervised ML methods then compute clusters an input
may belong to and determine the classifier/classification of the input using the clusters:
here a cluster is a collection of instances which are “similar”, while being “dissimilar”
to instances in other clusters [27]. Thus:

• X is the feature space, as in supervised learning, and S ⊆ X ; for example, inputs
may be images of different fruits, and features may include pixels in these images;

• L is obtained from the “learnt” clusters; for example, one cluster may group to-
gether apples and another oranges;

• a generic member hu of H can be seen as a mapping hu : X �→ L ; abstractly, the
goal of (cluster-based) unsupervised learning is to find a “good” way to assign
inputs to clusters, as a basis for classification.

2.3. Reinforcement learning

In this setting, a “reasoner” is a policy, that, given inputs in the form of observations of
states, returns outputs in the form of actions. Actions, during learning, are not known to
be right or wrong, and thus classifications are not available. Instead, rewards are given
for states reached by performing actions (these rewards are positive if the states are “de-
sirable” and negative otherwise; negative rewards can be interpreted as punishments).
Thus:

• L is the set of actions that can be performed by the learner; for example, if the
learner is a robot, actions may include moves in several directions;
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• X is the set of all possible states; for example, a state may represent the physical
environment a robot is situated in;

• S is the reward function, namely a mapping S : X �→R; for example, a goal state,
that the robot should aim at achieving, could be given a high reward;

• H is the policy space, and a generic member hr of H is a mapping hr : X �→ L ;
at an abstract level, the goal of a reinforcement learning method is to determine,
with as little training as possible, a policy hr which is optimal, namely it gets the
highest possible cumulative reward.

3. Approaches to Argumentation for Machine Learning

Here we show how existing approaches use argumentation, and which form thereof, for
ML, in the context of suitable instantiations of the abstract model in Section 2.

3.1. Argumentation for Supervised Learning

ABML [32]. Here arguments are associated with elements of S and are of the form:
C because Reasons or
C despite Reasons

where C ∈L and Reasons ⊆ X . The first type of argument provides reasons (in terms of
combinations of features) for why a certain training instance is classified as is, whereas
the second type of argument indicates combinations of features that do not play a role in
classifying the training instance the argument is associated with.

For example, let S represent credit applications and L represent whether the credit
was approved or not. Then, a training instance (x, l) ∈ S with

x = {PaysRegularly = no,Rich = yes,HairColor = blond}
l =CreditApproved

may be associated with arguments

CreditApproved because Rich = yes (1)

CreditApproved despite PaysRegularly = no (2)

In ABML, arguments of these two forms are used to modify the CN2 rule induction
algorithm for supervised ML so as to learn “better” hypotheses, while also reducing the
size of H and providing explanations for classifications. Here, hypotheses are rules of
the form IF F1 AND . . . AND Fn THEN C, for n > 0, Fi ∈ X , C ∈ L .

For example, from the credit approval example above, CN2 alone may obtain
the rule IF HairColor = blond THEN CreditApproved, whereas using argument (1),
ABML may obtain the “better” rule IF HairColor = blond AND Rich = yes THEN
CreditApproved.

ABML does not make use of any particular argumentation framework in the litera-
ture, but uses ad hoc arguments of the forms given earlier, suitable for the specific ML
setting considered. Moreover, ABML does not make use of any argumentation semantics
or methodology for assessing the acceptability/strength of arguments (these are taken at
face value instead).

ABILP [4]. Here arguments are as in ABML but they are integrated within ILP.
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Concept Learning as Argumentation (CLA) [1]. This method reinterprets concept
learning in argumentation terms. Here arguments are obtained from S and H and are of
the form 〈h,x, l〉 for h ∈ H ∪{ /0}, x ∈ X and l ∈ L such that

if h = /0 then (x, l) ∈ S , and
if h 	= /0 then h(x) = l,

namely each training instance in S and each hypothesis in H gives an argument. More-
over, an argument a attacks an argument b by rebutting if the two arguments give differ-
ent classifications for the same features, or by undercutting if a is drawn from an example
and b is drawn from a hypothesis which disagrees with the example.

This method then uses standard semantics of extensions [14] applied to abstract
argumentation frameworks with arguments obtained from S and H as above, and a
relation of defeat between arguments such that a defeats b iff a attacks b by rebutting
or undercutting and b is not preferred to a, where given a preference relation over H,
standardly used in concept learning:

• arguments obtained from S are stronger than arguments obtained from H;
• arguments obtained from most preferred hypotheses are stronger than arguments

obtained from less preferred hypotheses.

For example, consider X = {x1,x2}, S = {(x1,c1),(x1,c2)}3, L = {c1,c2,c3,c4} and
H = {h1,h2} with h1(x1) = c1, h1(x2) = c1, h2(x1) = c2, and h2(x2) = c1. The cor-
responding abstract argumentation framework has arguments a1 = 〈 /0,x1,c1〉, a2 =
〈 /0,x1,c2〉, a3 = 〈h1,x1,c1〉, a4 = 〈h1,x2,c1〉, a5 = 〈h2,x1,c2〉 and a6 = 〈h2,x2,c1〉. Also,
assuming that the two hypotheses are equally preferred, the defeat relation is such that
a1 defeats a2, a1 defeats a5, a1 defeats a6, a2 defeats a1, a2 defeats a3 and a2 defeats a4.
The resulting abstract argumentation framework has an empty grounded extension and
two preferred/stable extensions ε1 = {a1,a3,a4} and ε2 = {a2,a5,a6}, both classifying
x2 as c1.

The grounded extension of the abstract argumentation framework corresponding to
a given concept learning setting corresponds to the output of the version space method
for concept learning when the latter is applicable, namely when the given S is not in-
consistent. Moreover, if S is inconsistent (as in our earlier illustration), argumentation
can still return an output, e.g. c1 or c2 for x1.

Argumentation for Multi-Agent Inductive Concept Learning (MAICL) [34,35]. In this
approach, L = {0,1} and S is assumed to be consistent as well as distributed amongst
agents, so that each agent is only aware of some subset of S . Arguments are hypothe-
ses induced by individual agents from training instances they are aware of. These hy-
potheses/arguments are rules. For uniformity of presentation, we assume here that these
rules/hypotheses/arguments are in the same form as the rules learnt by CN2, presented
earlier. Then an argument IF F1 AND . . . AND Fn THEN C attacks an argument IF F ′

1
AND . . . AND F ′

m THEN C′ iff C 	=C′ and {F1, . . . ,Fn} ⊇ {F ′
1, . . . ,F

′
m}.

For example, let S = {e1,e2,e3} represent a mammal dataset where
e1 = ({hair,milk,backbone} ,1)
e2 = ({toothed,backbone, twolegged} ,1)

3Note that this set is inconsistent, as it classifies differently the same features.
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e3 = ({toothed,backbone} ,0)
and 1 stands for mammal, 0 stands for non-mammal. Consider two agents, ag1 and ag2,
aware of {e1,e2} and {e3}, respectively, and let

IF backbone THEN 1
IF backbone AND toothed AND twolegged THEN 1

be the rules learnt by ag1 and
IF backbone AND toothed THEN 0

be the rule learnt by ag2. Then, ag1’s second rule/argument attacks ag2’s rule/argument.
In this approach, agents communicate arguments and attacks to construct dialectical

trees as defined in [11,38] and determine which arguments are defeated/undefeated. For
example, in the earlier illustration, ag2’s rule/argument is defeated. Here, argumentation
helps building hypotheses in a distributed manner when examples are not held centrally.
Also, this method is supported by a computational realisation [35].

CleAr [8,9]. In this approach, arguments and relations amongst them are drawn from
a given set of templates (an Argument base) for a given testing instance that has already
been classified by means of a “reasoner” (classifier) learnt by any standard supervised
learning methods. The relations amongst arguments are of attack or support and thus the
resulting argumentation frameworks, associated with training instances, are bipolar [10].
In addition, a base score is associated with arguments, as in QuAD frameworks [2,36].
Arguments are either elements of L or express domain knowledge of the learning task
at hand and, in this latter case, are of the form

Premise ⇒Conclusion
where Premise may represent any information, including, but not limited to, combina-
tions of elements of X , and Conclusion is either an element of L or it represents a state-
ment agreeing or disagreeing with the Premise of some other argument.

For example, consider the task of determining sentiment polarity in tweets. Then
L = {positive,negative} and X are (syntactic or semantic) features extracted from
tweets. Suppose that some existing classifier h assigns positive polarity to the tweet:

‘more depressed than you could ever imagine that I wont be going to Vegas.
I hate having to be financially responsible’

The resulting argumentation framework, for this testing instance, may include arguments
positive and negative (the elements of L ) as well as arguments

‘hate’ occurs in the tweet ⇒ negative
a negation (‘wont’) occurs in the tweet ⇒ negative

and, in addition, that the arguments attack positive and/or support negative.
In this approach, base scores for the arguments are derived from the output or the

performances of h (the given classifier) or are drawn from the given Argument Base.
The dialectical strength of each classification in L is then computed using a quan-

titative semantics (e.g. as in [15,2,36]) and the classification with maximal strength is
assigned as the final classification for the testing instance. In our earlier illustration, as-
suming that positive and negative have a base score of 0.6 and 0.4 respectively and the
other two arguments above are supporters of negative and have a base score of 0.4, the
computed strength may be 0.75 for negative and 0.6 for positive. Hence, the use of ar-
gumentation, in this case, would change the classification to negative. In general, in this
approach, argumentation contributes a (possibly revised) classification and a justification
thereof.
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3.2. Argumentation for Unsupervised Learning

Argumentation for ART (A-ART) [21]. In this approach, arguments, attacks and seman-
tics are as in DeLP [20,11,38], but instantiated so as to reason with the output of a fuzzy
ART network, when this assigns a training instance to different clusters. In this case, the
classification choice for the given instance by the hu being learnt is, conventionally, that
of a randomly chosen cluster. By arguing, instead, this choice can be “reasoned” upon.

As an example, consider a fuzzy ART network which identifies three clusters
c+1 ,c

−
2 ,c

−
3 ∈ L for an instance e, such that c+1 subsumes c−3 . Suppose also that, from the

given DeLP program, DeLP arguments can be constructed with the following informal
reading:

+ because e belongs to c+1
− because e belongs to c−3

with the second argument attacking the first but not vice versa, as c+1 subsumes c−3 . Then,
the dialectical analysis of [11,38] gives classification −, drawn from membership of e in
c−3 .

3.3. Argumentation for Reinforcement Learning

AARL [17,18,19]. In this approach, arguments represent recommendations of actions
to individual agents in a multi-agent system and are of the form:

Conclusion IF Premise

where Conclusion is an action (in L ) to be performed by an agent and Premise describes
conditions under which the argument is applicable and may, for example, amount to
properties of the state (in X) of the environment where the agent is situated. Then an
argument attacks another argument iff

• the arguments support the same action but for different agents, or

• the arguments support different actions by the same agent.

For example, in a given state of the environment in which a RoboCup agent is situated,
the applicable arguments may be

agent a1 should tackle the ball IF a1 is closest to the ball keeper
agent a1 should mark agent a2 IF a1 is closest to a2

with the two arguments attacking one another. At each iteration of learning one such ab-
stract argumentation framework is generated, by instantiating a set of argument templates
given up-front, representing domain knolwedge.

AARL then uses preferences over arguments and adapts value-based argumentation
[3] to choose actions (supported by arguments in some extension, e.g. the grounded ex-
tension) and shape rewards, thus modifying the reward function S . For example, if tack-
ling is more preferred than marking, for our earlier illustration, then the attack from the
second to the first argument is deleted, as in value-based argumentation, and tackling
gets extra reward at the current iteration of learning.
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4. A Comparative Analysis of Argumentation for Machine Learning

In this section we provide a comparative analysis of the different approaches we have
overviewed in Section 3. First, we note that existing approaches differ considerably in
their choice of argumentation framework/semantics:

• ABML and ABILP use ad hoc arguments and no argumentation framework or
semantics;

• CLA and AARL instantiate abstract argumentation, with arguments equipped with
preferences, and deploy standard semantics of extensions;

• MAICL uses abstract argumentation, but deploys the dialectical trees of [11,38] as
a semantics, rather than extensions;

• A-ART uses the DeLP argumentation framework and again the dialectical trees of
[11,38] as a semantics;

• CleAr uses bipolar abstract argumentation extended with base scores or, equiva-
lently, QuAD frameworks, and quantitative semantics.

Moreover, some approaches (i.e. ABML and AARL) use argumentation during learning,
some (i.e. MAICL, CleAr and A-ART) use argumentation after learning, to process the
output of standard ML techniques, and some (i.e. CLA) use argumentation instead of
learning, to re-interpret the learning process. Furthermore, some approaches (i.e. MAICL
and AARL) are developed to coordinate agents in multi-agent systems. Finally, different
approaches are used for different applications and have different advantages over stan-
dard ML techniques, ranging from improving performances to rendering the ML process
more transparent by improving its explanatory power or using argumentation to better
elicit domain knowledge, of benefit to the learning process, from users. In the remainder
of this section we analyse how the approaches overviewed in Section 3 have been applied
and evaluated as well as their advantages.

ABML [32]. Compared with standard CN2, ABML has the advantage of reducing the
size of the hypotheses space H, in that it forces the rules to be learnt to take into ac-
count the arguments associated with the examples, and thus allowing fewer rules to be
legitimate hypotheses.

ABML was tested on several domains (notably law [31], medicine [40] and zoology
[28]), and was shown to improve classification accuracy across the board. For exam-
ple, by including arguments, the accuracy was improved on a zoo dataset from 94.51%
to 96.75% [28]. Also, on a dataset related to severe bacterial infections [40], ABML
achieved similar accuracy to CN2 and a further ML technique, C4.5 (88%), whilst Naı̈ve
Bayes (NB) and Logistic Regression performed worse (with accuracy under 86.5%). Fur-
ther, using AUC (Area Under the Curve, an alternative measure to standard accuracy),
ABML outperformed all other classifiers, the improvement varying between 0.03% and
0.2%. ABML was also tested on chess, improving the initial accuracy of 72% to 95%
when learning the concept of bad bishop [29] of 84% to 91% when learning the concept
of an attack on the castled king [30].

ABML was shown to be robust, in the presence of noise in the examples as well as
random arguments. Indeed, ABML performed better in the presence of noise, compared
to CN2, on a welfare benefit dataset [31]: the class of each example was randomly re-
placed with a value from L with probability p% (for p ∈ {0,2,5,10,20,40}) with dis-
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tribution (0.5, 0.5), and the average accuracy of ABML was better than CN2 by 0.3% at
0% noise, by 3.3% at 20% noise and by 1.7% at 40% noise. Moreover, ABML was tested
in the presence of random arguments, and shown to still outperform or perform similarly
to the original CN2 [32]: here, random arguments were given for k randomly selected
examples (k ∈ {2,5,10,20}), each example could have up to five random arguments and
each argument could have up to five random reasons. Thus, ABML is robust in that it is
not negatively affected by “bad” domain knowledge.

ABML has been shown to support knowledge elicitation well [23,24,41] by identi-
fying critical examples (namely instances that the learnt hypotheses, using ABML, do
not classify well) and eliciting arguments for them and retraining, using ABML again.
On a medical dataset, this knowledge elicitation-enriched ABML increased the perfor-
mance from 60% to 80% for CN2 [23] and, on a larger medical dataset, from 52% to 82%
[24]. Knowledge elicitation was also employed during an interactive learning session us-
ing python code [41] to distinguish between classifications in L = {basic,advanced}
programming style achieving 87.1% accuracy when using ABML compared to 86.7%
manual student classification.

ABILP [4]. This approach is in the same spirit as ABML. The advantages of this ap-
proach are potentially the same as for ABML.

CLA [1]. The advantages of this approach are theoretical, rather than of an experimen-
tal nature. Indeed, CLA can handle inconsistent sets S of training instances, whereas
standard concept learning cannot. Thus, the method is robust. In addition, by using argu-
mentation, CLA supports in principle the generation of explanations for classifications.

MAICL [34,35]. At a theoretical level, MAICL allows agents to agree classifications
even when they hold partial information, in the form of subsets of the set S of training
instances. A-MAIL [35], an implementation of a generalisation of MAICL, not restricted
to L = {0,1}, uses four datasets [33] to test experimentally whether this method can
work in practice and, in particular, whether the method can cope with a large number
of agents and several forms of data distribution. The experiments showed, in particular,
that the use of A-MAIL can lead to a recall increase, which is higher for five agents,
each having the same portion of S , than with two agents. In the case of more agents
(10 or 20), more examples need to be exchanged by communication, as expected, but
recall increases can still be observed (e.g., with 20 agents, from 0.35% to 0.88%). In
the case of unbalanced distributions of training instances between two agents when ag1
receives only p% of S (p∈ {50,30,10,0}), using A-MAIL results in an improvement in
recall for ag1 at the cost of arguments exchanged as ag1 has more information to obtain
from ag2. Overall, the experiments show that A-MAIL can improve performances at a
relatively reasonable cost in terms of number of messages being exchanged.

CleAr [8,9]. CleAr has been applied to two problems within the computational
linguistic setting: cross-domain sentiment polarity classification [8,9], with L =
{Positive,Negative}, and relation-based argument mining to determine relations be-
tween pieces of text [9], with L = {Attack,Support,Neither}. In these two settings,
CleAr has been instantiated with three types of supervised ML methods (i.e. NB, Sup-
port Vector Machines (SVM) and Random Forests (RF)) with suitably defined Argument
Bases. Deploying CleAr with these Argument Bases gives an increase in accuracy of up
to 14% for Sentiment Polarity Classification, from 50% to 64%, and performance im-
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provements varying between 0.006% and 0.022% on various datasets for relation-based
argument mining, with respect to using the standard ML methods alone.

A-ART [21]. The advantages of this approach, as presented in [21], are theoretical,
rather than of an experimental nature. Here, argumentation is used to resolve inconsis-
tency amongst classifications of clusters to which an instance is assigned as well as to
explain the final classification dialectically.

AARL [17,18,19]. AARL has been deployed in RoboCup, and in particular for Keep-
Away and TakeAway games, as well as other standard RL benchmarks. Experimentally,
AARL, combined with a distance-oriented reward system, performs better overall when
compared with SARSA or hand-coded strategies in terms of stability, average conver-
gence time and average optimal performance. Moreover, this method is robust to errors
in arguments.

Method ML AF Semantics D/A Multi Advantages Apps.

method ML agent

ABML

CN2 � � D experimental law;
(accuracy, medicine;
robustness); zoology;
elicitation chess;

coding
ABILP ILP � � D

CLA

concept AA extensions � theoretical
learning with (inconsistency

prefs. tolerance);
explanation

MAICL

concept AA dialectical A � experimental
learning trees (recall);

partial info

CleAr

Random Bipolar quantitative A experimental Sentiment
Forests; AA/ (accuracy) Analysis;
NB; QuAD Argument
SVM Mining

A-ART
Fuzzy DeLP dialectical A explanation;
ART trees inconsistency

resolution

AARL

SARSA Value- extensions D � experimental RoboCup;
based (stability; Wumpus
AA convergence

time;
optimal
performance)

Table 1. Overview of approaches using argumentation to aid ML (D=During, A=After, Apps. = Applications).
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[11] Chesñevar, C.I., Simari, G.R.: A lattice-based approach to computing warranted beliefs in skeptical ar-
gumentation frameworks. In: Proceedings of the 20th International Joint Conference on Artifical Intel-
ligence. pp. 280–285. IJCAI’07 (2007)

[12] Clark, P., Niblett, T.: The CN2 induction algorithm. Machine Learning 3(4), 261–283 (1989)
[13] Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297 (Sep 1995)
[14] Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning,

logic programming and n-person games. Artificial Intelligence 77(2), 321 – 357 (1995)
[15] Evripidou, V., Toni, F.: Argumentation and voting for an intelligent user empowering business directory

on the web. In: Web Reasoning and Rule Systems - 6th International Conference, RR. pp. 209–212
(2012)

[16] Fox, J., Glasspool, D., Grecu, D., Modgil, S., South, M., Patkar, V.: Argumentation-based inference and
decision making–a medical perspective. IEEE Intelligent Systems 22(6), 34–41 (2007)

[17] Gao, Y., Toni, F.: Argumentation accelerated reinforcement learning for robocup keepaway-takeaway.
In: Theory and Applications of Formal Argumentation - Second International Workshop, TAFA. vol.
8306, pp. 79–94 (2013)

[18] Gao, Y., Toni, F.: Argumentation accelerated reinforcement learning for cooperative multi-agent sys-
tems. In: ECAI 2014 - 21st European Conference on Artificial Intelligence. pp. 333–338 (2014)

5. Conclusion

We have surveyed existing approaches using argumentation to aid ML, focusing on the
type of ML method they augment, the form of arguments and argumentation frameworks
and semantics they deploy, as well as their advantages, ranging from improving per-
formances to rendering the ML process more transparent by improving its explanatory
power. Table 1 summarises our analysis.

The existing approaches show promise for further future developments and substan-
tial potential impact in ML, to improve performances and allow the incorporation of do-
main knowledge by users as well as user-friendly explanations and transparency of the
output of ML.
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[22] Grosse, K., González, M.P., Chesñevar, C.I., Maguitman, A.G.: Integrating argumentation and sentiment
analysis for mining opinions from twitter. AI Communications 28(3), 387–401 (2015)
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