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Abstract— In this paper, we propose a novel distributed fault
detection method to monitor the state of a linear system, par-
titioned into interconnected subsystems. The approach hinges
on the definition of a partition-based distributed Luenberger
estimator, based on the local model of the subsystems and
that takes into account the dynamic coupling terms between
the subsystems. The proposed methodology computes — in a
distributed way — a bound on the variance of a properly defined
residual signal, considering the uncertainty related to the
state estimates performed by the neighboring subsystems. This
bound allows the computation of suitable local thresholds with
guaranteed maximum false-alarms rate. The implementation
of the proposed estimation and fault detection method is
scalable, allowing Plug & Play operations and the possibility
to disconnect the faulty subsystem after fault detection. Theo-
retical conditions guaranteeing the convergence of the estimates
and of the bounds are provided. Simulation results show the
effectiveness of the proposed method.

I. INTRODUCTION

In recent years, the research dealing with design of sys-
tems which are reliable and robust with respect to uncer-
tainties, changing environment and communication failures
has grown in importance, especially in relation with dis-
tributed control and monitoring of large-scale and networked
systems [1]. In this respect, the distributed state estimation
problem is certainly central.

The problem dealt with in the paper consists in estimating
the state of a large-scale system, characterized by intercon-
nected subsystems, and taking decisions about the health
status of the system, using a network of local diagnosers
equipped with sensing, communication and computation
capabilities. Differently from many contributions in the lit-
erature, where the full state of the system is estimated by
all subsystems, (e.g., techniques based on consensus and
diffusion strategies [2], [3]), here each local diagnosis unit
only estimates a part of the global state vector. More specif-
ically, by using a partition-based estimation technique and
exchanging information with the diagnosers of neighboring
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subsystems, each local diagnoser monitors in a distributed
way the state of the associated local subsystem only.

Recently, several different partition-based approaches have
been proposed: for example, [4], [5], [6] propose Kalman-
filter-based estimation schemes for discrete-time systems
affected by stochastic noise, while [7], [8] assume that the
system is affected by bounded noise. In this paper, we
consider linear discrete-time systems affected by stochastic
noises. We adapt the partition-based distributed estimation
method introduced in [9] in order to compute an estimate
of the local state, proposing a different definition of the
correction gains. We then locally compute an upper bound
for the covariance matrix of the estimation error and we use
this bound to derive a suitable fault detection threshold for
a local residual signal, aiming at guaranteeing a maximum
false-alarms rate.

In the past few years, quite a few distributed model-
based fault detection schemes have been proposed based
on observers (see, for instance, [10], [11], [12], [13], [14],
where process and sensor faults can be detected by means
of a group of local detection agents). These methods usually
consider deterministic bounds for noises and uncertainties in
order to suitably determine detection thresholds. On the other
hand, here, similarly to [15], [16], we consider a stochastic
characterization of the noises and the definition of time-
varying bounds that guarantee probabilistic performance.
While [16] proposes a sensor network to monitor a system
characterized by stochastic uncertainties, where each sensor
takes noisy measurements of the entire state, in this paper
only a part of the state is considered by each diagnoser.

Moreover, the proposed method is scalable and allows the
unplugging of faulty subsystems in order to avoid or reduce
the propagation of faults in the interconnected large-scale
system. Once the issue has been solved, the disconnected
subsystem can be re-connected to the network of subsystems.
The reconfiguration process involves only communication
with neighboring subsystems, in a scalable architecture. With
respect to [15], where a Plug & Play (PnP) fault detection
architecture is proposed dealing with nonlinear systems and
possibly overlapping decompositions, here we do not assume
to know the mean and variance of the coupling uncertainty as
a given element of the problem, but we are able to compute a
bound for the influence on the uncertainty of the neighboring
estimates. Furthermore, in the present paper we remove the
assumption, used in [15], that the state is fully measurable.

To sum up, the main contributions of the paper are (i) the
design of a distributed estimation and fault detection scheme
able to consider the dynamics of coupling terms between
subsystems; (ii) a recursive equation for computing, in a



distributed fashion, an upper bound on the true covariance
matrix of the estimation error, allowing the design of a
distributed detection threshold that guarantees a maximum
probability of false alarms at each time step and (iii) a proof
that this upper bound converges.

The design and the online implementation of the proposed
estimation scheme involve only transmission of a limited
amount of data among neighboring subsystems. This enables
PnP operations, meaning that, when a new subsystems issues
a plug-in request, (i) the possibility of adding it without spoil-
ing convergence of the estimation scheme is automatically
checked and (ii) only subsystems that are at most two-hops-
away from the new unit need to update local estimators and
fault detectors.

The paper is structured as follows. In Section II, we intro-
duce the distributed estimation and fault detection method.
In Section Il we propose a bound for the estimation error
covariance matrix and we provide some convergence con-
ditions. The scalability features are analyzed in Section IV.
Finally, simulation results are presented in Section V using
a multi-area power network.

Notation. Given a stochastic variable x, we represent as
E[x] its expected value. The symbols > and > are used to
denote positive semi-definite matrices and positive definite
matrices, respectively. The cardinality of a set N is denoted
with |[A] and the spectral radius of a square matrix A is
o(A). A square matrix is Schur stable if o(A4) < 1. The
Kronecker delta is d;;.

II. FAULT DETECTION PROBLEM FORMULATION

The monitored large-scale system is composed of (or
can be decomposed in) M interconnected subsystems. Each
subsystem 3;, with ¢ = 1,..., M, is described by the
following equations:

i o l’z(k + 1) uxz + Z Azjl'j + wl( )
J#i (D

where x;(k),w;(k) € R™ and y;(k),v;(k) € RPi. We
assume that w;(k) and v;(k) are zero-mean white noises,
for all i = M, and E{w;(k)w] (k)} Qibij
E{vl(k)vj(k)} = Riéij (with R; >0 forallt=1,..., M),
and that E{w;(k)v/ (h)} = 0 for all i,j = 1,...,M
and h,k > 0. For 7 € {1,..., M}, N; denotes the set of
neighbors (also called predecessors in [17]) of subsystem
i defined as N; = {j|A;; # 0} while S; is the set of
successors of subsystem ¢ defined as S; = {j|i € Nj}.
In our setup we assume that subsystem ¢ can receive
information from its neighbors. Note that ¢ is in general
included in S; and AN;. For later use, we also define the
set of strict neighbors and successors N; = AN;\{i} and

S; = S;\{i}, respectively.

Each subsystem is monitored by a local diagnoser that can
communicate with neighboring subsystems. Each diagnoser

locally implements a Luenberger observer to estimate the
local state vector:

= > {Auyi;(k) + Lijly; (k) — C;d;(k)]}
JEN; )
7i(k) = C;z;(k)

Then, each local diagnoser computes a local residual signal
ri(k) == yi(k) — (k)

and uses it, together with a properly designed threshold, to
monitor the corresponding subsystem. Given o > 1 and
taking advantage of the Chebishev inequalities, for each [-th
component 7;; of the residual r; we can write

Pr(Efri.) — ay/Vazlris) < rig < Elrig]+ay/Var(ri,)

1
>1- .

Zi(k+1)

We define component-wise the time-varying threshold

Fii(k) = ay/Var(r, (k)] 3)

Therefore, since E[r;(k)] = 0 for all k, in healthy conditions

|ri (k)| < 7i(k)
with a probability greater than 1 — %

It is now of interest to compute 7;(k). As it will be clearer
in the following, this is possible in a distributed and scalable
fashion at the price of using a suitable upper bound for the
variance of the estimation error.

In order to compute the local threshold in an appropriate
way, we note that the local residual can be written as

where e;(k) = z;(k) — &;(k) is the local estimation error,
whose dynamics is given by

Z{ ij — LijCj)e; (k) —

JjEN;

ei(k+1) Lijvy ()} +wi (k).

4)
We introduce the extended vectors e, v, w, as column vectors
collecting e;, v; and w;, respectively, for all ¢ = 1,..., M.
Moreover, we define the extended matrices A, L, as block
matrices having the (4, j)-th element equal to A;; and L;;,
respectively, © = 1,...,M, 5 = 1,..., M. Finally, C is
a block matrix collecting on the diagonal the matrices C;,
i =1,..., M. We can therefore describe the dynamics of
the extended estimation error as

e(k+1) = (A— LO)e(k) —

The covariance matrix of the extended estimation error IT(k+
1) ;= Ele(k + 1)e" (k + 1)] obeys the recursive equation:

I(k+1) = (A— LOI(k)(A— LC)T + LRLT + Q. (6)

Lo(k) + w(k). 3)

Note that, since the target residual for the diagnoser is
ri(k) = Cie;(k) + v;(k), its covariance matrix (in healthy



conditions) is given by
Elri(k)ri(k) "] = Cilli(k)C]” + Ri, ()

where IT; (k) € R™*™ is the i-th diagonal block of matrix
TI(k). However, equation (6) does not allow for a recursive
distributed update, i.e., where only local computations are
performed and where communication is required only among
neighboring diagnosers. In the following, we define an upper
bound B;(k) to the local estimation error covariance II; (k)
that can be computed in a distributed way and that can be
used for the computation of the local thresholds. This, as
a byproduct, leads to a scalable design procedure for the
estimation gains L;; allowing for PnP operations.

IITI. UPPER BOUND TO THE ERROR COVARIANCE MATRIX
AND CONVERGENCE PROPERTIES

Setting £ = 1 as the initial time instant, we define the
time-varying matrix B;(k), ¢ = 1,...,M for all & > 1,
using the following distributed update scheme

Bi(k+1)=Y_ {(/L-j — Li;Cy)B;(k)(Aij — LiyCy) T
JEN;
+Liy RS LS| + Qi @®)
where, for all ,j = 1,..., M, A;; = /G Ay, C;i = /GG,

and Rz =g R;, and ¢; = |S;].

We have the following result, namely that B;(k) can be
used as an upper bound to II;(k), for all i = 1,..., M and
for all k£ > 1. The proof is omitted due to space constraints.

Theorem 1: If we set, for all ¢ = 1,...,M,
diag(Bi(1),...,Bp(1)) > TI(1) then, for all £ > 1, it holds
that Bl(k) > Hl<k‘) O

Next, we give a centralized condition guaranteeing that,
at the same time, the error dynamics (5) is asymptotically
stable and B;(k) is bounded for all k.

Before to continue, some definitions are in place. We
define, for all i, 7, F = (A LUC) and the matrix
F as the matrix whose blocks are Fj;. Also, we define the
following further matrix.

Fll ®F11 Fl]w ®F1M
F=FOF= ; : )

FM1®FJ\41 FMM®FMJW

where ©® denotes the Khatri-Rao product, while ® denotes
the Kronecker product [18].

Now we are in the position to state the second main result,
whose proof is omitted due to length constraints.

Theorem 2: If matrix [F is Schur stable, then
(i) There exists, for all ¢ = 1,..., M, a matrix B; > 0 such
that B;(k) — B; as k — +o0;
(ii) A — LC is Schur stable. O

IV. SCALABLE DESIGN OF LOCAL ESTIMATORS

As it is evident from the previous section, the key
condition guaranteeing the effectiveness of the proposed

estimation/fault detection scheme is the Schur stability of
the matrix F. This condition can be checked in a scalable
way via the following result.

Proposition 1: For matrices L;; such that F,; is Schur
stable, if the following conditions are fulfilled

= illﬁﬁﬁﬁlﬁo <1, Vi=1,...,M

jG/\77‘, k=0
then I is Schur stable. O

Proof: Using some properties of the Kronecker prod-
ucts (see [18]), one has

|EEE |12 = [(FEF) @ (FEE;)||e0 =
= ||(Ff; ® F§)(Fi; ® Fij)lloe =
_||( 7L®F7L) (F?1®Fw)||oo:||Fsz

(10)

where F;; = Fj; ®Fii and F;; = ~ij ®Ej denote the blocks
composing the matrix F in (9). Then, conditions (10) can be
written as

Z Z\IFQZEJ’HOO <1, Vi=1,...,M.

JEN; k=0

(1)

Since 1:“” is Schur stable, F;; has the same property, because
each eigenvalue of F;; is the product of two eigenvalues of
F}; [18]. Proposition 1 in [19] then shows that conditions
(11) imply the Schur stability of F. [ ]

The quantity «; in (10) depends only upon pieces of
information about subsystem X; (matrices fl“ C‘i and A;j,
Jj € N;), estimator ¢ (matrices L;; and L;;, j € Nj;), and
matrices C'j and parameters ; of strict neighbors j € N; (the
latter are needed for computing matrices /L-j). In particular,
no information about ¥; j # N is required. Therefore,
«; can be computed locally by subsystem i, after having
exchanged information with its strict neighbors. Similarly,
the following design problem can be solved locally and
independently of X, j & N;:

Problem 1: Compute matrices L;;, j € N; such that F”
is Schur stable and (10) holds.

As proposed in [19] for PnP control design, instead of
computing L;; and L;;, j € N; simultaneously, one can
follow the more conservative (but simplified) procedure
described in Algorithm 1.

Algorithm 1 Design of a local estimator for subsystem >2;
(Problem 1)

Input: C;, N;, {Ai;}jen,

(i) Vj € N;, compute the matrix L;; solving the linear
programming problem

in |- (12

(i) Compute L;; such that F“- is Schur stable and «; < 1.
If it does not exist stop.




Fig. 1. Plug-in of ¥g at time Tp,p in a network composed by 7
subsystems. Solid edges: coupling graph of the original network induced
by sets N; and S;, @ = 1,...,7. Dashed blue edges: new coupling links

given by Nz = {3} and Sg = {1, 2}. Dashed blue nodes: subsystems that
must succesfully run Algorithm 1 (in order to allow the plug-in of Xg) and
use new estimators from time 7p,,p . Red nodes: subsystems that must
update the dynamics (8) from time T'p,, p.

This approach is justified by the fact that, o; can be
bounded from above as

o0 o0
= S SCNEEEGIZ < S ENE ST 1E] .
k=0

JEN; k=0 JEN;
(13)

Therefore, matrices L;; in step (i) of Algorithm 1 minimize
the upper bound. According to step (ii) of Algorithm 1, the
computation of L;; can be carried out by solving a nonlinear
optimization problem. We defer the reader to [20, Chapter
4] for a discussion about some numerical aspects.

A. PnP operations

After the addition or the removal of a subsystem, the up-
date of the local state estimators and dynamics (8) might be
needed for some subsystems. Next, we detail these changes,
showing that they may impact at most on subsystems that
are two-hops away from the entering/leaving unit. In both
cases, the starting point is a network of subsystems equipped
with observers produced by Algorithm 1. We denote with
Tp,p the planned plug-in/out time and use “* for quantities
that must be used after the plug-in/out event (if it takes

n
place). For each subsystem i, we define p]” = - where
¢ = |S;/|. We start noting that once a matrix L;; has

been computed using (12), it never changes. Indeed, L;;
minimizes ||4;; + Li;Cj|s and, since Aj; = \/p?flij
and C‘j‘ = \/EC', it also minimizes ||/i;§ +Lijéj||ooa
irrespectively of p;".

Suppose, for example, that subsystem 3 ,,,; needs to be
plugged-in and be connected with predecessors N M+1 and
SUCCessors 3M+1 (Figure 1 provides an example with M +
1=8, Ng = {3} and Sz = {1,2}).

First, each subsystem j € Nj;11 sends q;r to its succes-
sors. In order to preserve properties (i) and (ii) of Theorem 2,

one must design new estimators through Algorithm 1 for
subsystem M + 1 and for

o all subsystems in S/ 1, as they will be affected by new
coupling terms (see the dashed blue edges in Figure 1);
o all subsystems j € N1 because, without changing
the gain L;;, one would have
Pt + 7
Fo=\/p; Fjj (14)
and, since pj > 1, neither Schur stabiity of F JJ; nor
04;“ < 1 is guaranteed.

If a single instance of the optimization problem in step (ii)
of Algorithm 1 is infeasible, the plug-in of X, is denied.
Otherwise it is allowed and new estimators are activated at
time Tp,p. Subsystems that must update dynamics (8) and
use it from time Tp, p, are, besides Xps41,

o subsystems in S M+1, as they must include new coupling
terms;

o subsystems j € NM+1 as p] > 1 and (8) must use the
matrix F+ in (14);

. subsystems in Unr1 = Uje /\/M+ 3 Indeed, for each

Jj € NM+1, the quantity ,0 > 1 has been sent to

all subsystems ¢ € S and matrices Agj, C’ and RJ,
used in (8) by subsystems le SJ, must be updated by

multiplying them by

Summarizing the above points, all subsystems in the set
Ny U SMH U Ups41 must update dynamics (8) (see the
red nodes in Figure 1). We highlight that no other subsystem
in the network need to change the corresponding local
estimators or dynamics (8). This motivates the scalability
of the plug-in operation.

We discuss now the unplugging of a subsystem (say %)
at time Tp,p. First, each subsystem j € N, having a
successor less, sends <j+ to its successors. Then,

e subsystems 7 € S, can update the local estimator (2)
by just using the new set ./yiJr and without changing
gains L;; and L;; Indeed, J\/;.Jr will have one element
less and so will the sum in (10). Moreover, in (10),
matrices F;r = Af; — Li;C; verify

Ff =\/p] Fy; (15)
with
af < 1 Fmally, by using the matrix L;; previously

designed, matrices FJr and F}; are related by (14) with
pj‘ < 1. This shows that Schur stability of F;{ i
guaranteed. ~

o subsystems j € N, will have one successor less.
Therefore, as shown in the previous point, without

changing gains L;; and L¢;, ¢ € SJr one has that

< 1. The above conditions guarantee that

matrices F‘L are Schur stable and aé < 1.

It follows that the unplugging of ¥, can be always performed
without spoiling properties (i) and (ii) of Theorem 2, and,
similarly to the plug-in operation, subsystems in N, US, U,

will have to update dynamics (8) from time Tp,,p.



V. SIMULATION RESULTS

In this section, we provide some simulation results il-
lustrating the effectiveness of the proposed distributed fault
detection technique.

As a quite significant case-study, we consider a power
network system including a number of power generation
areas coupled through tie-lines. The dynamics of each power
generation area, equipped with primary control and lin-
earized around the equilibrium value for all variables, is
described by the following continuous time LTI model [21]:

i(t) = AGai(t) + Bfu; + LiAPL, + > ASx;, (16)
JEN;

where z; = (A6;, Aw;, AP,,,,AP,,) is the state, u; =

APy, is the control input of each area, and APy, is the

local power load. Note that the letter A is used to denote the

deviation from steady-state. The matrices of system (16) are

0 1 0 0
-~ ezj\lgl o - 2211' oH 0
A‘;L = 0 ¢ 0 ! ot 1 )
Ty, Tri
1
0 T RiTy, 0 T Ty,
0 o 0 0 0 0
1
B; = 8 AG = 2;111 0 0 0 L L= | T2
9 00 0 0 0 0
Tg, 0 0 0 0 0

where the parameters and their numerical values are defined
in [21]. Since both AP,y and APy, are assumed to be
constant and known, for the sake of simplicity, we neglect
them in our analysis.

We discretize the process (16) with a sampling interval T =
1 sec according to the technique proposed in [22], leading
to the discrete-time model (1) where the matrices A;;, A;j
can be easily constructed from (16). The matrix C; is

1 0 0 0
Ci_[()loo}

For i = 1,...,M, Ef[ww;] = Q; = 0.0001I; and
E [viv; } = R; = 0.000175 where I is the identity matrix
of order k.

In this section we consider the scenario 1 in [21], where
M = 4 and where the adjacency matrix Ad, defining the

neighboring relationships between areas', is

01 0 O

1 0 1 0
Ad = 01 0 1
0 0 1 O

namely, Ad;; # 0 if and only if 2P # # 0.

The gains L;; of the Luenberger observer proposed in
(2), have been computed based on the steady state solu-
tions of suitable local Riccati equations introduced in [23],
where a distributed Kalman filtering scheme with theoretical
guarantees has been proposed. We have verified that the
corresponding matrices Fij = (Aij - LijCN'j) satisfy (10).

'In this example, neighboring relations are induced by electric lines and
they are symmetric since electric power flows in both directions.

At time instant ¢ = 100, the following fault occurs in
area 1: the inertia constant H; is reduced from 12 to 1,
which means, from an electrical point of view, that there is
a fault in a local generator and hence the faulty area must
be isolated for safety reasons, not to propagate faults in the
PNS. In order to define the threshold, we set o« = 2.7. In
Figure 2, where the experiment is repeated 100 times using
random initial conditions and noise realizations, we can see
residuals and thresholds signals for each area of the PNS.
We can see that the local diagnosers are able to detect the
fault in Area 1 and that the false-alarms are rare events. In
Figure 3, we can see the detection by the local diagnoser in
Area 1 for component 2 of the residual (i.e. r1 2(k)), for a
single experiment.

Area 1 Component 2

Residual
0.09+ — Threshold 4

0.081
0.07

0.06

0.05f HA

0.04} 4
0.03} 1

0 50 100 150
Time

Fig. 3. Residual signal 71 2(k) (in blue) and threshold 71 2(k) (in red)
for Area 1 component 2 for a single experiment. The inertia constant H1
is reduced from 12 to 1 at time k£ = 100.

Finally, we tested the fault detection scheme on different
scenarios with different faults and with faults in different
areas and we obtained similar results.

VI. CONCLUDING REMARKS

In this paper, we propose a novel distributed fault de-
tection method for interconnected linear systems, allowing
the computation of suitable local thresholds with guaranteed
maximum false-alarms rate. This is achieved by a partition-
based distributed estimation method that takes into account
the dynamic coupling terms between subsystems. Moreover,
a bound on the variance of the estimation error that is
computed in a distributed way. Notably, the proposed estima-
tion and fault detection method enjoys scalability features,
allowing PnP operations. As a future work, we are going to
analyse the conservativeness of the proposed bound on the
variance of the estimation error and we will provide extensive
simulation analysis.
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