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 5 

Abstract: This paper presents a comprehensive experimental study of the buckling behavior 6 

of ferritic stainless steel tubular section beam-column structural members subjected to 7 

unequal end moments. Testing was carried out on two cold-formed and seam-welded cross-8 

sections – one rectangular hollow section (RHS) 100×40×2 and one square hollow section 9 

(SHS) 60×60×3 made of grade AISI 410 (EN 1.4003) stainless steel. The experimental 10 

investigation included a series of material tensile coupon tests, initial local and global 11 

geometric imperfection measurements and twenty-four beam-column tests under unequal end 12 

moments. The experimental setup and procedures are described, and the test observations, 13 

including the key test results, the load–deformation histories and the failure modes, are fully 14 

reported. The experimental results were carefully analyzed and then compared with the 15 

design strength predictions determined according to the current European code, American 16 

specification and Australian/New Zealand standard for stainless steel structures, enabling the 17 

accuracy of each codified method to be evaluated. Generally, the European code resulted in 18 

the most conservative and scattered strength predictions among the three codified approaches, 19 

owing principally to the use of the same treatment for stainless steel beam-columns under 20 

both equal and unequal end moments. The American specification and Australian/New 21 
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Zealand standard employ an equivalent uniform moment factor to consider the beneficial 22 

effects of moment gradient on beam-column strengths. These approaches were shown to offer 23 

more accurate and consistent capacity predictions for ferritic stainless steel beam-columns 24 

under unequal end moments, though further improvements remain possible. 25 

 26 

Keywords: Beam-columns; Cold-formed; Design standards; Equivalent moment factor; 27 

Experiments; Ferritic stainless steel; Structural design; Unequal end moments;  28 

 29 

1. Introduction 30 

 31 

The aesthetic appeal, favorable mechanical properties and good ductility, coupled with the 32 

excellent corrosion resistance and minimal maintenance requirements, make cold-formed 33 

stainless steel structural members an increasingly attractive choice in a variety of engineering 34 

applications (Gardner 2008a). Given the high initial material cost of stainless steels, 35 

appropriate grade selection and structural design efficiency are primary concerns. For the 36 

design of stainless steel elements under combined loading, although a number of established 37 

structural design codes exist, the provisions were generally developed based on the 38 

corresponding carbon steel design rules, which often fail to reflect accurately the true 39 

structural response of stainless steel members. This has prompted research aimed at 40 

investigating the structural performance of stainless steel members under combined loading, 41 

assessing the accuracy of the existing design provisions and devising more refined design 42 

methods. A brief review of previously studies in this area is given below. At the cross-43 

sectional level, a series of experimental and numerical studies on eccentrically-loaded SHS 44 

and RHS (Zhao et al. 2015a, b, c; Arrayago and Real 2015) and circular hollow section (CHS) 45 

(Zhao et al. 2016a, b) stub columns has been carried out to systematically investigate the 46 



           

 

 

local buckling behavior of stainless steel profiles under combined loading. The studies have 47 

highlighted undue conservatism in the existing stainless steel design codes, which results 48 

mainly from the neglect of strain hardening in the determination of cross-section resistances. 49 

Improved design rules (Zhao et al. 2015b, c, 2016b) have been proposed through extension of 50 

the deformation-based continuous strength method (CSM) (Ashraf et al. 2008; Gardner 51 

2008b; Gardner et al. 2011; Afshan and Gardner 2013a; Liew and Gardner 2015; Buchanan 52 

et al. 2015) to the case of combined loading, which was shown to lead to enhanced strength 53 

predictions by allowing a rational exploitation of strain hardening. At the member level, a 54 

series of beam-column tests has been carried out on SHS and RHS members made of 55 

austenitic (Talja and Salmi 1995; Zheng et al. 2015), duplex (Huang and Young 2013; Lui et 56 

al. 2014) and ferritic (Hyttinen 1994; Zhao et al. 2016c) stainless steels, and on austenitic 57 

stainless steel CHS structural members (Burgan et al. 2000; Zhao et al. 2016d). The obtained 58 

test results generally revealed shortcomings in existing codified beam-column interaction 59 

curves, which principally stemmed from inaccurate predictions of the column buckling and 60 

bending end points of the design curves and from inaccurate interaction factors. Revised 61 

interaction factors and design formulae for stainless steel beam-columns have been proposed 62 

by Macdonald et al. (2007), Greiner and Kettler (2008), Lopes et al. (2009), Huang and 63 

Young (2015) and Zhao et al. (2016e). 64 

 65 

The present investigation, as part of a wider study on stainless steel beam-columns by the 66 

authors, focuses on the structural behavior of stainless steel beam-column members subjected 67 

to moment gradients. A program of experiments was firstly carried out on twenty-four beam-68 

column specimens subjected to unequal end moments. The end moment ratios were varied to 69 

provide a wide range of moment gradients along the specimen lengths. The obtained 70 

experimental data are fully reported herein, and then employed to assess the accuracy of the 71 



           

 

 

existing provisions given in EN 1993-1-4 (CEN 2006), SEI/ASCE-8 (ASCE 2002) and 72 

AS/NZS 4673 (AS/NZS 2001) for the design of stainless steel beam-columns subjected to 73 

moment gradients. 74 

 75 

2. Experimental investigation 76 

 77 

2.1 General 78 

 79 

A test program was conducted to study the member buckling behavior of ferritic stainless 80 

steel tubular beam-columns under unequal end moments. Two cross-sections made of grade 81 

AISI 410 (EN 1.4003) stainless steel were utilized in the experiments – SHS 60×60×3 and 82 

RHS 100×40×2. Overall, the experimental program comprised a series of material tensile 83 

coupon tests to determine the material stress–strain responses of the specimens, geometric 84 

imperfection measurements to obtain the initial local and global geometric imperfections, and 85 

twenty-four beam-column tests to investigate the member buckling behavior of beam-86 

columns subjected to unequal end moments. For each type of test, the employed experimental 87 

setup and procedures, and the test observations, including the key test results, load–88 

deformation histories and failure modes are fully reported in the following sections.  89 

 90 

2.2 Material testing 91 

 92 

Prior to structural testing, a series of tensile coupon tests was conducted in order to determine 93 

the material stress–strain responses of different parts of the test specimens. For each cross-94 

section, three coupons were tested, with two extracted from the flat portions of the specimen 95 

and one taken from the corner regions. Fig. 1 shows the locations of the coupons in the cross-96 



           

 

 

section. The dimensions of the tensile coupons conformed to the requirements of the 97 

Australian Standard AS 1391 (AS 2007) and the American Standard ASTM E8M (ASTM 98 

E8M 1997). The flat coupons were 12.5 mm wide with a 50 mm gauge length while the 99 

corner coupons were 4 mm in width with a gauge length of 25 mm. The tensile coupon tests 100 

were conducted using an MTS 250 kN testing machine under displacement control at the rate 101 

of 0.05 mm/min and 0.2 mm/min up to and beyond 0.2% proof stress, respectively. The test 102 

setup consisted of an extensometer mounted onto the specimens through three-point contact 103 

knife edges and two strain gauges affixed to the mid-length of the coupons. The strain gauge 104 

readings were initially employed to determine the Young’s modulus of the material and then 105 

used to calibrate the strain measurements from the extensometer. The measured tensile 106 

stress–strain curves are shown in Figs. 2 and 3 for the flat and corner coupons, respectively, 107 

while the key obtained results are reported in Tables 1 and 2. The presented material 108 

parameters include the Young’s modulus E, the 0.2% proof stress σ0.2, the 1.0% proof stress 109 

σ1.0, the ultimate tensile strength σu, the strain at the ultimate tensile stress εu, the plastic strain 110 

at fracture εf measured over the standard gauge length, and the strain hardening exponents n, 111 

n’0.2,1.0 and n’0.2,u used in the compound Ramberg–Osgood (R–O) material model (Ramberg 112 

and Osgood 1943; Hill 1944; Mirambell and Real 2000; Rasmussen 2003; Gardner and 113 

Ashraf 2006), as shown in Eqs (1)–(3), where εt,0.2 is the total strain at the 0.2% proof stress, 114 

εt,1.0 is the total strain at the 1.0% proof stress and E0.2 is the tangent modulus at the 0.2% 115 

proof stress point (εt,0.2, σ0.2). Note that Eq. (1) is the basic Ramberg–Osgood expression 116 

(Ramberg and Osgood 1943; Hill 1944), adopted up to the 0.2% proof stress, while Eq. (2) 117 

(Mirambell and Real 2000; Rasmussen 2003) and Eq. (3) (Gardner and Ashraf 2006) are the 118 

proposed second Ramberg–Osgood expressions, used beyond the 0.2% proof stress. 119 

 120 
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 124 

2.3 Initial geometric imperfection measurements 125 

 126 

Initial geometric imperfections are introduced into thin-walled members primarily during the 127 

fabrication process and can significantly influence their structural performance under loading. 128 

Measurements of the initial geometric imperfections in the test specimens were therefore 129 

performed. The test setup and procedures for initial local imperfection measurements were 130 

similar to those employed by Schafer and Peköz (1998), in which, the specimen lying on the 131 

base of a milling machine, was passed under a linear variable displacement transducer 132 

(LVDT) with an accuracy of 0.001 mm, affixed to the machine head. The local imperfection 133 

measurements were not conducted specifically for each test specimen but were carried out 134 

over a representative 500 mm length of each studied cross-section size, which was away from 135 

the specimen ends to avoid measurements being overly influenced by cutting operations and 136 

end flaring due to the release of residual stresses. More detailed analyses of imperfections in 137 

stainless steel members have been carried out by Cruise and Gardner (2006). The maximum 138 

imperfection amplitude for each face was defined as the maximum deviation from a linear 139 

regression line fitted to the data set, while the maximum local imperfection amplitude of the 140 

specimen ω0 was taken as the largest value of the measured maximum deviations from all the 141 

four faces, which was 0.024 mm and 0.033 mm for the SHS 60×60×3 and RHS 100×40×2 142 



           

 

 

specimens, respectively. Figs. 4 and 5 show the measured local geometric imperfection 143 

distributions for the four faces of the two tested cross-sections. Measurements of the initial 144 

global geometric imperfection ωg of each specimen in the direction of buckling were 145 

conducted using a theodolite and based on the readings taken at the mid-height and near the 146 

two ends of the member. 147 

 148 

2.4 Beam-column tests 149 

 150 

In total, twenty-four beam-columns subjected to unequal end moments were tested to 151 

investigate the buckling behavior of stainless steel beam-column structural members under 152 

axial compression and linearly varying first order bending moment (i.e., a linear moment 153 

gradient). In the experimental program, two nominal member lengths were employed for each 154 

cross-section size, with specimen lengths of 500 mm and 1250 mm for the RHS 100×40×2 155 

members, and 600 mm and 1200 mm for the SHS 60×60×3 members. For each of the four 156 

studied member lengths, six beam-column tests, with varying end moment ratios, were 157 

carried out, leading to a total of 24 member tests. Note that, for the RHS 100×40×2 158 

specimens, bending was induced about the minor axis. The definition of the end moment ratio 159 

ψ follows the convention in the European code EN 1993-1-1 (CEN 2005) and Nethercot and 160 

Gardner (2005), in which ψ is equal to the ratio of the smaller end moment to the larger end 161 

moment, and is taken as positive if the end moments lead to single curvature bending along 162 

the member length, but is negative if the end moments cause double curvature bending, e.g., 163 

ψ=1 represents equal but opposite end moments, which results in uniform first order bending 164 

moment and single curvature along the member length, while ψ=-1 corresponds to equal end 165 

moments, which leads to an antisymmetric triangular bending moment distribution and 166 

reverse curvature, as illustrated in Fig. 6. Note that the American specification SEI/ASCE-8 167 



           

 

 

(ASCE 2002) and Australian/New Zealand standard AS/NZS 4673 (AS/NZS 2001) use an 168 

opposite sign convention with positive values of ψ for double curvature bending and negative 169 

values of ψ for single curvature bending. The following designation system was adopted for 170 

the test specimens: the designation begins with the nominal cross-section size, followed by 171 

the buckling axis (MI = minor) and nominal member length (in mm), e.g., RHS 100×40×2-172 

MI-500. The specimens were also assigned an ID code, comprising a number and a letter 173 

(e.g., 1A): the number identifies the test series, with ‘1’ for RHS 100×40×2-MI-500, ‘2’ for 174 

RHS 100×40×2-MI-1250, ‘3’ for SHS 60×60×3-600 and ‘4’ for SHS 60×60×3-1200, and the 175 

letters from A to F indicate the varying end moment ratios employed in each test series. 176 

Measurements of the geometric dimensions and initial local imperfection amplitudes of the 177 

specimens were conducted before 25.4 mm thick end plates were welded to the member ends. 178 

The initial global geometric imperfections were, however, measured after welding in order to 179 

incorporate the effect of welding on the straightness of the specimens. All the obtained 180 

geometric parameters and initial imperfection amplitudes are reported in Table 3, where L is 181 

the member length, B is the outer cross-section width, H is the outer cross-section depth, t is 182 

the material thickness, 
ir  is the internal corner radius, A is the cross-section area, Aeff is the 183 

effective cross-section area, calculated based on the effective width method in EN 1993-1-4 184 

(CEN 2006), and ω0 and ωg are the measured maximum local and global geometric 185 

imperfection amplitudes, respectively. 186 

 187 

The beam-column tests were conducted using an AVERY 1000 kN hydraulic testing machine 188 

with pin-ended bearings at both ends, at a constant speed of 0.2 mm/min. Figs. 7(a) and 7(b) 189 

show a photograph and a schematic diagram of the beam-column experimental setup, 190 

respectively. Each pin-ended bearing consisted of a ‘wedge plate’ containing a knife-edge 191 

wedge, and a ‘pit plate’ with a V-shaped groove, as shown in Figs. 7(a) and 7(b). The 192 



           

 

 

specimens were firstly bolted through their end plates to the top and bottom wedge plates, 193 

which had slotted holes to allow adjustment of the relative position between the centerlines of 194 

the specimen and the knife-edges to achieve the required (nominal) loading eccentricities of 195 

en and ψen at the bottom and top ends of the members, respectively. Note that the vertical 196 

distance from the specimen end to the knife-edge was equal to 87.4 mm, and thus the member 197 

effective length Le is calculated as the sum of the specimen length L and an additional length 198 

of 2×87.4 mm (i.e., Le=L+87.4×2). The specimens, together with the bolted wedge plates, 199 

were then placed in the testing machine between the pit plates. The top pit plate with slotted 200 

holes was connected to the top rigid platen of the test machine through high strength bolts, 201 

and was adjusted such that the distance between the centerlines of the top and bottom pit 202 

plates was equal to en-ψen. The bottom pit plate was seated on a special bearing, which was 203 

initially free to rotate in any direction, and then restrained against twisting and rotation by 204 

tightening the vertical and horizontal bolts under a small alignment load of 2 kN. This 205 

procedure eliminates any possible gap between the knife-edges and V-grooved pit plates. An 206 

anchor device, as shown in Figs. 7(a) and 7(b), was then employed to brace the special 207 

bearing to sustain the horizontal reaction force induced by the unequal end moments through 208 

tightening the eight bolts at each side of the special bearing.    209 

 210 

Two pairs of LVDTs positioned at both ends of the specimens were employed to determine 211 

the respective top and bottom end rotations. Two additional LVDTs were placed at the mid- 212 

and quarter-height of the specimens in order to measure the corresponding lateral deflections. 213 

Strain gauges were affixed to the extreme fibers of the cross-sections at mid- and quarter-214 

height to capture the longitudinal strains on the maximum compressive fiber and the 215 

maximum tensile (or the minimum compressive, in some cases) fiber at these locations. The 216 

two sets of strain gauge readings were utilized to derive the actual initial loading 217 



           

 

 

eccentricities e0 and ψe0 at the bottom and top ends of the members, respectively. The 218 

calculation procedures to determine e0 and ψe0 are as follows. Firstly, the initial global 219 

geometric imperfection pattern is assumed to be sinusoidal with a maximum value of ωg at 220 

mid-height, as defined by Eq. (4). The global imperfection amplitude at the quarter-height of 221 

the specimens 
/4L  is thus equal to  sin / 2 4g e eL L L    , where L is the specimen 222 

length and Le is the effective member length. 223 
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 225 

During testing, the induced horizontal reaction force F at each end of the member can be 226 

calculated from Eq. (5).   227 

0 0  
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Ne Ne
F

L
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 229 

The resultant bending moments at the quarter-height 
/4LM  and mid-height 

/2LM  of the 230 

specimens, resulting from the horizontal reaction force and eccentric axial force, are 231 

determined from Eq. (6) and Eq. (7), where 
/4L  and 

/2L  are the curvatures at the quarter- 232 

and mid-height of the specimens, respectively, /4L  and /2L  are the corresponding lateral 233 

deflection measurements from the LVDTs, and  /4 sin / 2 4L g e eL L L       and 234 

/2L g   are the initial global imperfection amplitudes at each location. 235 
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As indicated by the authors in previous research on beam-columns (Huang and Young 2013; 239 

Zhao et al. 2016c, d), the measured longitudinal strains at the quarter- and mid-height of the 240 

specimens are made up of two components: (i) strains due to the applied compressive load 241 

  / 2max ic m n   , and (ii) strains due to the corresponding bending moment 242 

  / 2max ib m n   , where 
max  and 

min  are the strain gauge values of the maximum 243 

compressive fiber and the maximum tensile (or the minimum compressive, in some cases) 244 

fiber, respectively. Thus, the curvatures at the quarter- and mid-height of the specimens 
/4L  245 

and 
/2L  are equal to , /4 / (0.5 )b L H  and , /2 / (0.5 )b L H , respectively, where , /4b L  and , /2b L  246 

are the strains due to the bending moments at the quarter-height and mid-height of the 247 

specimens.  248 

 249 

The initial loading eccentricity at the bottom end of the member e0 and the end moment ratio 250 

ψ can then be calculated by solving Eq. (6) and Eq. (7) simultaneously, as given by Eq. (8) 251 

and Eq. (9).  252 
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 255 

Note that the initial loading eccentricity and end moment ratio for each of the test specimens 256 

were determined as the average calculated values during the early stages of loading (the 257 

authors suggest using no more than 15% of the ultimate load), where the structural behavior 258 

was very close to linear and elastic. 259 

 260 



           

 

 

The key experimental results obtained for each test series are reported in Table 4, where Le is 261 

the effective member length, 
0.2eff crA N   is the non-dimensional column slenderness, 262 

where Ncr is the Euler buckling load about the considered axis of buckling, e0 is the initial 263 

calculated loading eccentricity at the bottom end of the member determined according to Eq. 264 

(8), ψ is the end moment ratio, determined according to Eq. (9), Nu is the ultimate test load, 265 

Mu,b= Nue0 and Mu,t= Nue0ψ are the ultimate test bottom and top end moments, respectively, 266 

ϕu,b and ϕu,t are the corresponding bottom and top end rotations at the ultimate load, and δu,L/2 267 

and δu,L/4 are the mid- and quarter-height lateral deflections at the ultimate load, respectively. 268 

For each test series, the full experimental load–lateral deflection curves at the mid-height and 269 

quarter-height of the specimens are shown in Figs. 8–11. In terms of failure modes, the more 270 

compact SHS 60×60×3 specimens generally exhibited global buckling, while the more 271 

slender RHS 100×40×2 specimens showed an interaction of global and local buckling. For 272 

each test series, the critical cross-section could be seen to migrate from the member ends to 273 

the mid-height of the specimens, as the end moment ratio varied from -1 (antisymmetric 274 

triangular first order bending moment distribution) to 1 (uniform first order bending moment 275 

distribution), as shown in the typical failure modes presented in Figs. 12 and 13. 276 

 277 

3. Discussion and assessment of current design methods  278 

 279 

3.1 General 280 

 281 

In this section, the established codified design provisions for stainless steel beam-column 282 

structural members subjected to moment gradient, set out in the European code EN 1993-1-4 283 

(CEN 2006), American specification SEI/ASCE-8 (ASCE 2002) and Australian/New Zealand 284 

standard AS/NZS 4673 (AS/NZS 2001), are introduced and discussed. The accuracy of each 285 



           

 

 

codified approach is then assessed through comparisons of the test beam-column strengths 286 

with the predicted strengths. The comparisons are presented in terms of the failure load ratio, 287 

Nu/Nu,pred (Zhao et al. 2015c, 2016b, c, d), of which the definition is illustrated in Fig. 14, 288 

where Nu is the test axial load, while Nu,pred is the predicted axial load corresponding to the 289 

intersection of the line between the origin and the test point with the design interaction curve, 290 

assuming proportional loading. Table 5 reports the ratios of test to predicted failure loads for 291 

each design method; ratios greater than unity indicate that the test data points lie on the safe 292 

side of the design interaction curve. Note that all calculations have been made based on the 293 

measured material and geometric properties of the test specimens and with partial factors set 294 

equal to unity. 295 

 296 

3.2 European code EN 1993-1-4 (EC3) 297 

 298 

The European code EN 1993-1-4 (CEN 2006) for stainless steel structures employs the same 299 

design formula for beam-columns subjected to both equal and unequal end moments, without 300 

taking into account the beneficial effect of the moment gradient on the global stability of 301 

beam-columns; this rather conservative approach is partly due to the lack of experimental 302 

data at the time of the development of the European code for structural stainless steel. The 303 

design formula for stainless steel tubular section beam-columns under equal and unequal end 304 

moment is given by Eq. (10), where NEd is the design axial load, MEd= NEde0 is the design 305 

bending moment about the considered axis of buckling, defined as the maximum first order 306 

bending moment induced by the applied unequal end moments, Nb,Rd is the codified column 307 

buckling strength, determined according to Clause 5.4.2 of EN 1993-1-4 for uniform 308 

members in compression, eN is the shift in the neutral axis when slender cross-sections are 309 

subjected to uniform compression, which is equal to zero for doubly symmetric SHS and 310 



           

 

 

RHS, Wpl is the plastic section modulus about the axis of buckling, βW is a factor that is equal 311 

to unity for Class 1 or 2 sections, the ratio of elastic to plastic moduli for Class 3 sections and 312 

the ratio of effective to plastic moduli for Class 4 cross-sections, and k is the buckling 313 

interaction factor, as defined by Eq. (11). 314 
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 317 

The accuracy of the EN 1993-1-4 design rules for ferritic stainless steel beam-columns 318 

subjected to unequal end moments is evaluated by comparing the experimental results with 319 

the predicted strengths. The comparisons, as reported in Table 5, show that the mean ratio of 320 

test to EC3 predicted strengths Nu/Nu,EC3 is equal to 1.48 with a coefficient of variation (COV) 321 

equal to 0.18, revealing a high degree of conservatism and scatter in the strength predictions. 322 

It may also be observed from each test series that the conservatism increases as the end 323 

moment ratio varies from 1 (i.e., uniform first order moment distribution) to -1 (i.e., 324 

antisymmetric triangular first order moment distribution), which generally highlights the 325 

weakness of treating beam-columns subjected to both equal and unequal end moments in the 326 

same manner; this can also be seen in Fig. 15, where the ratio of test to EC3 capacities is 327 

plotted against the end moment ratio ψ for each test series. 328 

 329 

The introduction of equivalent moment factors into the Eurocode stainless steel beam-column 330 

design formula was thus investigated. Two equivalent moment factors, as used for carbon 331 

steel beam-columns in EN 1993-1-1 (CEN 2005), were assessed. The first one, given by Eq. 332 

(12), is known as the equivalent uniform moment factor Cm,u (Austin 1961; Lindner 2003; 333 

Greiner and Lindner 2006; Boissonnade et al. 2006), which was derived based on a constant 334 



           

 

 

reference moment, while the second one, shown in Eq. (13), is called the equivalent 335 

sinusoidal moment factor Cm,s (Boissonnade et al. 2002, 2004, 2006), developed on the basis 336 

of a sinusoidal reference moment. Similarly to the interaction factor k, which depends on the 337 

non-dimensional slenderness   and the applied axial load level n=NEd/Nb,Rd, the equivalent 338 

moment factor, accounting for the influence of non-uniform bending moments along the 339 

member length, is also dependent on the level of coexistent axial load and is therefore a 340 

function of   and n, as well as the end moment ratio ψ. However, the effect of    and n is 341 

generally neglected in the determination of equivalent uniform moment factors Cm,u, as 342 

shown in Eq. (12), though it was considered in the development of the equivalent sinusoidal 343 

moment factor Cm,s (Eq. (13)), which may lead to more accurate equivalence. Note that a 344 

lower bound limit of 0.4 is employed for the equivalent uniform moment factor Cm,u in Eq. 345 

(12), in order to prevent underestimations of the equivalent bending moment and thus over-346 

predictions of the beam-column strengths. Comparisons between the equivalent uniform and 347 

sinusoidal moment factors determined respectively from Eq. (12) and Eq. (13) are shown in 348 

Fig. 16, where both factors are plotted against the ratio of NEd/Ncr for varying end moment 349 

ratios ψ.  350 

 351 

, 0.6 0.4 0.4m uC                                                                                                               (12) 352 

 , 0.79 0.21 0.36 0.33 Ed
m s

cr

N
C

N
                                                                                   (13) 353 

 354 

Use of both equivalent moment factors in Eq. (10) (i.e. by multiplying the bending term in Eq. 355 

(10) by Cm,u or Cm,s) is assessed in Table 5, where Nu/Nu,EC3-U and Nu/Nu,EC3-S indicate the 356 

ratios of test to predicted failure loads calculated through the use of Cm,u and Cm,s, 357 

respectively. The results show that the mean ratio of test to predicted failure loads decreases 358 



           

 

 

from 1.43 to 1.18 and the COV decreases from 0.18 to 0.13 if Cm,u was employed, while the 359 

adoption of Cm,s results in a decrease in the mean ratio from 1.43 to 1.28 and a decrease of the 360 

COV from 0.18 to 0.13, both of which represent substantial improvements in the prediction 361 

of stainless steel beam-column strengths under moment gradients, though further 362 

experimental and numerical verification is required.  363 

 364 

3.3 American Specification SEI/ASCE-8 365 

 366 

The American specification SEI/ASCE-8 (ASCE 2002) considers the influence of moment 367 

gradient in the design of beam-columns subjected to unequal end moments, through use of an 368 

equivalent uniform moment factor. The design formula, derived on the basis of second-order 369 

elastic theory, is given by Eq. (14), where Nn is the column buckling strength, calculated in 370 

accordance with Clause 3.4 of SEI/ASCE-8 (ASCE 2002), which employs the tangent 371 

modulus approach to account for the nonlinear material response and gradual yielding of 372 

stainless steel in the design of column members, and Mn is the codified bending resistance 373 

calculated according to Clause 3.3.1.1, in which Procedure II, utilizing the inelastic reserve 374 

capacity, is employed for the determination of the cross-section bending moment resistance 375 

of the non-slender cross-sections. Note that the inelastic reserve capacity provisions only 376 

account for partial plasticity, and the calculated bending resistances are therefore always less 377 

than the plastic moment capacity Mpl. The other terms in Eq. (14) are Cm and αn. 378 

Cm=0.6+0.4ψ is the classic equivalent uniform moment factor, which is equal to unity for a 379 

beam-column subjected to equal end moments (i.e., ψ=1), leading to uniform first order 380 

bending moment along the member length, and is less than unity for unequal end moments 381 

(i.e., 1 1   ), resulting in linearly varying bending moment along the length of the beam-382 



           

 

 

column, and αn is the magnification factor equal to (1-NEd/Ncr) to approximate the second 383 

order bending moment. 384 

1Ed m Ed

n n n

N C M

N M 
                                                                                                                     (14) 385 

 386 

The test strengths of the beam-columns under moment gradient are compared against the 387 

capacity predictions of SEI/ASCE-8 (ASCE 2002) in Table 5. The comparisons show that the 388 

American specification leads to a high level of accuracy and consistency in the strength 389 

predictions on average, with the mean Nu/Nu,ASCE ratio equal to 1.07 and a COV of 0.06. 390 

However, SEI/ASCE-8 also results in unsafe predictions for beam-columns subjected to high 391 

moment gradients, e.g., specimen RHS 100×40×2-MI-500-1A with ψ=-0.59 and specimen 392 

SHS 60×60×3-600-1A with ψ=-0.66, which may be due to an overestimation of the 393 

beneficial effect of the non-uniform bending moment distribution on the beam-column 394 

stability. The European code for carbon steel EN 1993-1-1 (CEN 2005) employs the same 395 

expression for the equivalent uniform moment factor but assumes no further benefits are 396 

obtained for ψ values smaller than -0.5. This is achieved by placing a lower limit of 0.4 on 397 

the Cm factor. Comparisons between the equivalent uniform moment factors from the 398 

European code and American specification are presented in Fig. 17. Use of 0.4 as the lower 399 

limit value of the Cm factor in SEI/ASCE-8 (ASCE 2002) was also evaluated. The results 400 

showed that the Nu/Nu,ASCE ratios increased from 0.96 to 0.98, and 0.97 to 0.99 for specimens 401 

RHS 100×40×2-MI-500-1A and SHS 60×60×3-600-1A, respectively, indicating reduced 402 

unconservatism in the predictions. The remaining unconservatism may result from over-403 

prediction of the column buckling end point of the design beam-column interaction curve 404 

(Zhao et al. 2016c).  405 

 406 

 407 



           

 

 

3.4 Australian/New Zealand standard AS/NZS 4673 408 

 409 

The Australian/New Zealand standard AS/NZS 4673 (AS/NZS 2001) employs the same 410 

beam-column design formula as the American specification SEI/ASCE-8 (ASCE 2002), but 411 

adopts different provisions for the determination of bending moment capacities and column 412 

buckling strengths. With regards to bending moment capacities, both codes employ the 413 

inelastic reserve capacity approach, but the Australian/New Zealand standard allows use of 414 

the full plastic moment capacity below a specified slenderness limit. For the calculation of 415 

column buckling strengths, an explicit method (Rasmussen and Rondal 1997), developed 416 

based on the Perry-Robertson buckling formulation with a series of imperfection parameter s 417 

for different stainless steel grades to account for the differing levels of nonlinearity, is 418 

provided in AS/NZS 4673 (AS/NZS 2001) as an alternative to the tangent modulus method. 419 

As highlighted by Afshan and Gardner (2013b) and Zhao et al. (2016c), the tangent modulus 420 

method often results in unsafe column buckling strength predictions, while the use of the 421 

explicit method leads to more conservative but safe strength predictions. Thus, the AS/NZS 422 

4673 beam-column design formula (AS/NZS 2001) maintains the general format of Eq. (14) 423 

but with the more conservative column buckling strength predictions Na and more accurate 424 

bending moment capacity predictions Ma, replacing those from the American specification.  425 

 426 

A numerical evaluation of the Australian/New Zealand standard AS/NZS 4673 (AS/NZS 427 

2001) is reported in Table 5, showing that, overall, AS/NZS 4673 yields slightly less accurate 428 

capacity predictions than SEI/ASCE-8, with the mean ratio of test to predicted strengths 429 

equal to 1.16, and similar scatter, with the COV equal to 0.06, but all the predictions now lie 430 

on the safe side. This can also be seen in Fig. 18, where the ratios of test beam-column 431 



           

 

 

strengths to predicted strengths from the American specification and Australian/New Zealand 432 

standard are plotted against the end moment ratio ψ.  433 

 434 

3.5 Summary 435 

 436 

Overall, the European code EN 1993-1-4 (CEN 2006) leads to the most conservative and 437 

scattered strength predictions among the considered codified methods; this is mainly due to 438 

the lack of consideration of the moment gradient in the design of stainless steel beam-439 

columns subjected to unequal end moments. Use of two equivalent moment factors in the 440 

Eurocode stainless steel beam-column formula was also assessed, and shown to result in 441 

more accurate and consistent capacity predictions. The American specification SEI/ASCE-8 442 

(ASCE 2002) and Australian/New Zealand standard AS/NZS 4673 (AS/NZS 2001) employ 443 

an equivalent uniform moment factor to account for the moment gradient in the design of 444 

beam-columns. The SEI/ASCE-8 yielded a high level of accuracy and consistency in the 445 

prediction of beam-column strengths under unequal end moments, on average, but with some 446 

unsafe predictions for beam-columns subjected to high moment gradients. The 447 

Australian/New Zealand standard was found to offer the most suitable design provisions, 448 

leading to safe but slightly conservative predictions. Comparisons between the three codified 449 

methods are shown in Fig. 19, where the test beam-column strengths are plotted against the 450 

predicted strengths. Overall, all the current existing design provisions for stainless steel 451 

beam-columns subjected to unequal end moments exhibit some shortcomings, and a 452 

comprehensive numerical study for the development of improved provisions is therefore 453 

underway as part of a wider study. 454 

 455 

 456 



           

 

 

4. Conclusions 457 

 458 

A comprehensive experimental study of ferritic stainless steel tubular section beam-columns 459 

subjected to moment gradients has been conducted. The test program included material 460 

tensile coupon tests, initial local and global imperfection measurements and twenty-four 461 

beam-columns tests under unequal end moments. The end moment ratios were varied to 462 

enable a wide range of moment gradients to be examined. The test setup and experimental 463 

procedures for each type of test have been fully described. Key test results, including the 464 

ultimate loads and the corresponding deformation parameters at the ultimate loads have been 465 

tabulated, while the full load–deformation histories and typical buckling modes of the test 466 

specimens have also been presented. The experimental results were carefully analyzed and 467 

then used to evaluate the accuracy of the current established design methods for beam-468 

columns subjected to unequal end moments, given in the European code EN 1993-1-4 (CEN 469 

2006), American specification SEI/ASCE-8 (ASCE 2002), and Australia and New Zealand 470 

standard AS/NZS 4673 (AS/NZS 2001). Generally, the European code, which neglects the 471 

effect of moment gradient in the design of beam-columns under unequal end moments, was 472 

found to give the most conservative and scattered strength predictions among the three 473 

methods. The American specification and Australian/New Zealand standard employ an 474 

equivalent uniform moment factor in the determination of beam-column strengths under non-475 

uniformly distributed bending moment, which leads to an increased level of accuracy on 476 

average, but with some unsafe predictions from SEI/ASCE-8 (ASCE 2002) and some unduly 477 

conservative predictions from AS/NZS 4673 (AS/NZS 2001). Therefore, it is concluded that 478 

improvements in the design of stainless steel beam-columns subjected to moment gradients 479 

are required, and further research is underway in this area. 480 

 481 
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Fig. 1. Locations of coupons in the cross-section. 

 

 

 

 

             (a) RHS 100×40×2. 

 

                 (b) SHS 60×60×3.  

Fig. 2. Material stress–strain curves from flat coupon tests. 

 

 

 

Fig. 3. Material stress–strain curves from corner coupon tests. 
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Fig. 4. Measured local geometric imperfection distributions for the RHS 100×40×2 specimen. 

 

 

 

 

Fig. 5. Measured local geometric imperfection distributions for the SHS 60×60×3 specimen. 
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(a) ψ=1. 

 

(b) ψ=-1. 

Fig. 6. Illustration of end moment ratio ψ. 
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                   (a) Experimental setup. 

 

              (b) Schematic diagram of the test setup. 

Fig. 7. Beam-column test configuration. 
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      (a) At mid-height. 

 
           (b) At quarter-height  

Fig. 8. Load–lateral deflection curves for RHS 100×40×2-500 specimens. 
 

 

 

 

 

 

 

 
      (a) At mid-height. 

 
           (b) At quarter-height.  

Fig. 9. Load–lateral deflection curves for RHS 100×40×2-1250 specimens. 
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      (a) At mid-height. 

 
           (b) At quarter-height.  

Fig. 10. Load–lateral deflection curves for SHS 60×60×3-600 specimens. 
 

 

 

 

 

 

 

 
      (a) At mid-height.  

 
           (b) At quarter-height.  

Fig. 11. Load–lateral deflection curves for SHS 60×60×3-1200 specimens. 
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Fig. 12. Experimental failure modes for RHS 100×40×2-MI-1250 specimens (from left to right, the end moment 

ratios ψ are equal to -0.71, -0.35, 0.07, 0.31, 0.75 and 1.00). 

 

 

Fig. 13. Experimental failure modes for SHS 60×60×3-600 specimens (from left to right, the end moment ratios 

ψ are equal to -0.66, -0.26, -0.03, 0.31, 0.75 and 1.00). 



 

Fig. 14. Definition of Nu and Nu,pred on axial load–moment interaction curve. 
 

 

 

 

 

 

 
Fig. 15. Comparison of test results with EN 1993-1-4 strength predictions 
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Fig. 16. Comparisons between Cm,u and Cm,s equivalent moment factors. 

 

 

 
 
 

 

 

Fig. 17. Comparisons between equivalent uniform moment factors from American specification Cm and 

European code Cm,u. 
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Fig. 18. Comparisons of test results with the AS/NZS 4673 and SEI/ASCE-8 strength predictions. 

 

 

 

 

 

 

 

Fig. 19. Comparisons of test results with the codified strength predictions. 
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Table 1 Average measured tensile flat material properties. 

Cross-section E σ0.2 σ1.0 σu εu εf R-O coefficient 

  (GPa) (MPa) (MPa) (MPa) (%) (%) n n'0.2,u n'0.2,1.0 

RHS 100×40×2 197 449 457 483 14.5 29.2 8.8 2.3 3.4 

SHS 60×60×3 199 470 485 488 7.4 21.1 7.3 10.9 7.6 

 

 

 

 

 

Table 2 Average measured tensile corner material properties. 

Cross-section E σ0.2 σ1.0 σu εu εf R-O coefficient 

  (GPa) (MPa) (MPa) (MPa) (%) (%) n n'0.2,u n'0.2,1.0 

RHS 100×40×2 193 601 – 638 1.2 9.6 5.5 17.2 – 

SHS 60×60×3 200 579 – 648 1.1 13.2 4.0 7.3 – 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 3 Measured geometric dimensions and imperfections of the beam-column specimens. 

Test series Specimen  
L H B t ri A Aeff ω0 ωg 

(mm) (mm) (mm) (mm) (mm) (mm
2
) (mm

2
) (mm) (mm) 

RHS 100×40×2-

MI-500 

1A 500.0 40.0 100.0 1.89 3.40 500.7 346.7 0.033 0.254 

1B 500.0 40.0 100.1 1.90 3.40 503.7 349.3 0.033 0.381 

1C 500.0 39.9 100.0 1.91 3.40 505.4 351.6 0.033 0.254 

1D 500.0 40.0 100.0 1.91 3.40 505.8 351.9 0.033 0.127 

1E 500.0 40.1 100.2 1.90 3.40 504.4 349.8 0.033 0.254 

1F 500.0 40.0 100.0 1.90 3.40 503.3 349.3 0.033 0.254 

RHS 100×40×2-

MI-1250 

2A 1250.0 40.1 100.1 1.89 3.40 501.5 347.1 0.033 0.762 

2B 1250.0 40.0 100.0 1.90 3.40 503.3 349.3 0.033 0.508 

2C 1250.0 40.0 100.0 1.90 3.40 503.3 349.3 0.033 0.381 

2D 1250.0 40.0 100.0 1.90 3.40 503.3 349.3 0.033 0.508 

2E 1250.0 40.0 100.1 1.90 3.40 503.7 349.3 0.033 0.635 

2F 1250.0 40.3 100.0 1.89 3.40 501.8 347.8 0.033 0.635 

SHS 60×60×3-

600 

3A 600.0 60.0 60.0 2.82 3.40 621.6 621.6 0.024 0.127 

3B 600.0 60.1 60.0 2.83 3.40 624.2 624.2 0.024 0.254 

3C 600.0 59.8 59.9 2.83 3.40 621.9 621.9 0.024 0.381 

3D 600.0 60.0 60.1 2.85 3.40 628.3 628.3 0.024 0.381 

3E 600.0 59.8 59.9 2.84 3.40 624.0 624.0 0.024 0.254 

3F 600.0 59.8 60.0 2.85 3.40 626.6 626.6 0.024 0.381 

SHS 60×60×3-

1200 

4A 1200.0 60.1 60.1 2.83 3.40 624.8 624.8 0.024 0.508 

4B 1200.0 60.0 60.1 2.85 3.40 628.3 628.3 0.024 0.508 

4C 1200.0 59.8 60.0 2.83 3.40 622.5 622.5 0.024 0.635 

4D 1200.0 60.2 60.1 2.84 3.40 627.4 627.4 0.024 0.762 

4E 1200.0 59.8 60.2 2.85 3.40 627.8 627.8 0.024 0.635 

4F 1200.0 60.1 60.0 2.85 3.40 628.3 628.3 0.024 0.762 

Note: MI indicates beam-column tests, in which bending was induced about the minor axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 4 Summary of beam-column test results. 

Test series Specimen  
Le   e0 ψ Nu Mu,b Mu,t ϕu,b ϕu,t δu,L/2 δu,L/4 

(mm)  (mm)  (kN) (kNm) (kNm) (deg) (deg) (mm) (mm) 

RHS 100×40×2-

MI-500 

1A 674.8 0.52 20.6 -0.59 101.3 2.09 -1.23 0.84 0.13 1.53 1.75 

1B 674.8 0.52 20.6 -0.22 96.2 1.98 -0.44 1.04 0.43 2.38 2.43 

1C 674.8 0.52 19.6 -0.11 104.0 2.04 -0.22 1.08 0.52 2.61 2.68 

1D 674.8 0.52 19.5 0.23 95.9 1.87 0.43 1.19 0.82 3.40 3.22 

1E 674.8 0.52 19.6 0.70 88.7 1.74 1.22 1.32 1.20 4.43 3.94 

1F 674.8 0.52 20.3 1.00 77.6 1.58 1.58 1.44 1.44 5.26 4.37 

RHS 100×40×2-

MI-1250 

2A 1424.8 1.09 19.8 -0.71 82.2 1.63 -1.16 2.27 0.72 10.80 10.67 

2B 1424.8 1.09 19.9 -0.35 76.2 1.52 -0.53 2.88 1.78 17.53 15.39 

2C 1424.8 1.09 20.0 0.07 66.5 1.33 0.09 3.24 2.51 21.47 18.07 

2D 1424.8 1.09 19.8 0.31 66.3 1.31 0.41 3.07 2.58 21.32 17.43 

2E
a
 1424.8 1.09 20.2 0.75 62.2 1.26 0.94 – – – – 

2F 1424.8 1.08 19.7 1.00 55.5 1.09 1.09 3.10 3.10 23.39 18.25 

SHS 60×60×3-

600 

3A 774.8 0.54 19.3 -0.66 203.0 3.92 -2.59 1.90 0.28 3.62 4.35 

3B 774.8 0.54 20.7 -0.26 188.3 3.90 -1.01 2.25 0.93 5.91 6.16 

3C 774.8 0.54 20.0 -0.03 182.9 3.66 -0.11 2.23 1.21 6.74 6.65 

3D 774.8 0.54 20.1 0.31 172.1 3.46 1.07 2.39 1.70 8.42 7.74 

3E 774.8 0.54 20.3 0.75 158.2 3.21 2.41 2.23 2.02 9.28 8.03 

3F 774.8 0.54 19.8 1.00 150.4 2.98 2.98 2.34 2.34 10.05 8.34 

SHS 60×60×3-

1200 

4A 1374.8 0.95 20.6 -0.80 164.5 3.39 -2.71 2.37 0.59 10.30 10.87 

4B 1374.8 0.96 19.2 -0.40 146.1 2.81 -1.12 2.63 1.45 14.60 13.29 

4C 1374.8 0.96 20.6 -0.03 135.8 2.80 -0.08 2.92 2.09 18.26 15.65 

4D 1374.8 0.95 18.8 0.32 130.8 2.46 0.79 2.94 2.40 19.81 16.43 

4E 1374.8 0.96 20.3 0.75 116.9 2.37 1.78 2.98 2.76 21.38 16.72 

4F 1374.8 0.96 19.0 1.00 112.3 2.13 2.13 2.96 2.96 22.32 17.41 
a
 No rotation and lateral deflection data were obtained due to a sudden electrical shutdown.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 5 Comparison of beam-column test results with predicted strengths. 

Test series Specimen e0 ψ Nu/ Nu,EC3 Nu/ Nu,EC3-U Nu/ Nu,EC3-S Nu/ Nu,ASCE Nu/ Nu,AS/NZS 

RHS 100×40×2-

MI-500 

1A 20.6 -0.59 1.72 1.08 1.32 0.96 1.03 

1B 20.6 -0.22 1.63 1.13 1.34 1.02 1.10 

1C 19.6 -0.11 1.70 1.24 1.44 1.12 1.19 

1D 19.5 0.23 1.55 1.26 1.40 1.13 1.20 

1E 19.6 0.70 1.45 1.34 1.41 1.18 1.24 

1F 20.3 1.00 1.30 1.30 1.32 1.13 1.19 

RHS 100×40×2-

MI-1250 

2A 19.8 -0.71 2.01 1.42 1.53 1.11 1.24 

2B 19.9 -0.35 1.86 1.38 1.54 1.15 1.26 

2C 20.0 0.07 1.63 1.35 1.46 1.11 1.22 

2D 19.8 0.31 1.62 1.41 1.51 1.17 1.27 

2E 20.2 0.75 1.53 1.46 1.52 1.20 1.30 

2F 19.7 1.00 1.34 1.34 1.38 1.10 1.19 

SHS 60×60×3-

600 

3A 19.3 -0.66 1.41 1.00 1.12 0.97 1.08 

3B 20.7 -0.26 1.35 1.00 1.14 1.02 1.12 

3C 20.0 -0.03 1.29 1.02 1.14 1.04 1.14 

3D 20.1 0.31 1.21 1.04 1.12 1.05 1.14 

3E 20.3 0.75 1.12 1.07 1.10 1.07 1.15 

3F 19.8 1.00 1.05 1.05 1.07 1.05 1.13 

SHS 60×60×3-

1200 

4A 20.6 -0.80 1.59 1.17 1.22 1.04 1.15 

4B 19.2 -0.40 1.37 1.05 1.15 1.00 1.10 

4C 20.6 -0.03 1.32 1.09 1.18 1.05 1.14 

4D 18.8 0.32 1.21 1.08 1.14 1.04 1.12 

4E 20.3 0.75 1.12 1.08 1.12 1.03 1.10 

4F 19.0 1.00 1.04 1.04 1.07 1.00 1.07 

Mean 1.43 1.18 1.28 1.07 1.16 

COV 0.18 0.13 0.13 0.06 0.06 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


