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a b s t r a c t 

The effect of thixotropy on the two-dimensional spreading of a sessile drop is modelled using lubrica- 

tion theory. Thixotropy is incorporated by the inclusion of a structure parameter, λ, measuring structure 

build-up governed by an evolution equation linked to the droplet micromechanics. A number of mod- 

els are derived for λ coupled to the interface dynamics; these range from models that account for the 

cross-stream dependence of λ to simpler ones in which this dependence is prescribed through appropri- 

ate closures. Numerical solution of the governing equations show that thixotropy has a profound effect 

on the spreading characteristics; the long-time spreading dynamics, however, are shown to be indepen- 

dent of the initial structural state of the droplet. We also compare the predictions of the various models 

and determine the range of system parameters over which the simple models provide sufficiently good 

approximations of the full, two-dimensional spreading dynamics. 

© 2017 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 
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. Introduction 

Thixotropy is of central importance in a variety of applications,

ue to its presence in a wide range of fluids, which include nat-

ral muds, slurries, clay suspensions, greases, paints, gels and ad-

esives [1] . The mechanism underlying thixotropy is normally at-

ributed to the interactions of polymers, particles and colloids, for

nstance, within the fluid capable of forming a microstructure [2] ;

he evolving microstructure modifies the internal stress of the fluid

nd consequently alters the rheological response. While in this pa-

er, we will model thixotropy by the direct inclusion of a structure

arameter, it has been shown that thixotropy and yield stress be-

aviour can be the natural limit of viscoelastic behaviour, when

he relaxation time is large, [3–5] . Structure parameter models

an be seen to be a natural extension of viscoelastic thixotropy

odels when you take the structure parameter to be the trace

f the conformation tensor. Thixotropy can have a dramatic effect

pon the flow behaviour as exemplified by the chaotic regimes ob-

erved in numerical studies of a highly thixotropic fluid displaced

y a Newtonian fluid [6] . Similarly, fingering instabilities are seen

o grow exponentially, rather than algebraically during the injec-

ion of a thixotropic fluid into a porous medium [7] . Additional

ow regimes have also been found when gravity-driven flows of
� This document is a collaborative effort. 
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hixotropic fluids have been studied [8–10] Finally, in capillary-

riven levelling of a thixotropic fluid [11] , large variations in vis-

osity across a fluid layer were measured. In the present work, we

ill restrict our analysis to capillary-driven flows where inertia is

egligible. 

The aforementioned studies have all used the lubrication ap-

roximation as a key simplification which exploits the naturally

ccurring small aspect ratio; this permits solution for the depth

ependence of the velocity field, and the derivation of an evolu-

ion equation for the interface [12] . It is not possible, however,

o remove the depth dependence completely in the presence of

hixotropy using lubrication theory. Typically, one is left with a

o-called “1.5D model” [13] characterised by a one-dimensional

1D) equation for the interface coupled to a two-dimensional equa-

ion for the structure parameter, that must be integrated over the

epth. Additional simplifications have been proposed to reduce this

urther through an averaged structure [10] or ‘fluidity’ [7] . This is

urther built upon by Livescu et al. [14] where a depth profile is

ssumed for the fluidity that is then linked to the structure param-

ter at the substrate and the interface, yielding three 1D evolution

quations. Alternatively, one can assume a depth profile for the

tructure parameter in the form of a polynomial [15] . Furthermore,

n asymptotic approach is considered by Pritchard et al. [16] where

he thixotropic properties are considered weak and enter at higher

rder. Our goal here is to solve a typical problem of interest, the

volution of a spreading droplet, and then assess which, if any,

f the above simplifying approximations are appropriate via com-
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 
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Fig. 1. Schematic illustration of the coordinate system used to model the spreading. 
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parisons with the solution of the 1.5D model through a paramet-

ric study. It is noted by Pritchard et al. [16] that reduced models

can be insufficient for confined thixotropic flows, due to the pres-

ence of strong transverse gradients in the microstructure. However,

this may not hold true for unconfined flows with free surfaces. In

this present work, we seek to verify the validity of reduced mod-

els with respect to free-surface flows in the presence of moving

contact lines. 

The rest of this paper is organised as follows. In Section 2 ,

we provide details of the problem formulation, in which we set

out the rheological model under consideration via a microstruc-

ture derivation of the model. We also derive the governing 1.5D

model using the lubrication approximation, and demonstrate its

connection to simpler models. In Section 3 , we discuss our numer-

ical results, focusing on the comparison of the predictions provided

by the various models derived in Section 2 . Finally, concluding re-

marks are provided in Section 4 . 
Fig. 2. Results from the numerical solution of Eqs. (20) and (21) , computed with � = 

respectively. Panel (d) shows a zoomed in view of the contact line at t = 25 . In this and 

and blue represent high and low values of λ, respectively. (For interpretation of the refe

this article.) 
. Formulation 

.1. Governing equations 

We consider a slender droplet of density ρ and viscosity ˆ μ ly-

ng on a horizontal, rigid and impermeable substrate; the overlying

as phase is assumed to be hydrodynamically passive and its dy-

amics are neglected. We use a Cartesian coordinate system ( ̂  x , ̂  z )

ith ˆ x and ˆ z orientated parallel and normal to the substrate, re-

pectively and with origin at the centreline of the droplet, such

hat the interface is given by ˆ z = ̂

 h ( ̂  x , ̂  t ) , as shown in Fig. 1 . The

elocity is given by ˆ u = ( ̂  u , ˆ w ) , where ˆ u and ˆ w are the components

n the ˆ x , ̂  z directions, respectively; the hat decoration designates di-

ensional quantities. 

We neglect inertial and gravitational forces such that the gov-

rning equations are given by 

ˆ 
 ˆ x + 

ˆ w ˆ z = 0 , (1)

ˆ 
 ̂

 p = 

ˆ ∇ · ˆ τ , (2)

here the stress tensor is expressed by ˆ τi j = ˆ μ(λ) ̂  γi j , ˆ p denotes

he pressure, the rate of strain tensor is given by ˙ ˆ γi j = ∂ j ̂  u i + ∂ i ̂  u j ,

nd | ̇ ˆ γ | = 

√ 

˙ ˆ γi j 
˙ ˆ γi j is the second invariant of ˙ ˆ γi j . Crucially, we as-

ume that the viscosity depends on a dimensionless structure pa-

ameter λ that describes the evolving structure within the fluid.

e enforce no-slip and no-penetration conditions at the substrate,

ˆ  = ˆ w = 0 at ˆ z = 0 and the kinematic and stress boundary condi-
0 , B = 5 , D b = 10 , and δ = 9 : droplet evolution for t = 1 , 25 , 50 shown in (a)-(c), 

subsequent figures, the colour reflects the degree of structure build-up, where red 

rences to colour in this figure legend, the reader is referred to the web version of 
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Fig. 3. The dependence of λ in z at various values of x , as shown in (a) for t = 20 and for the same values as those used to generate Fig. (2 ). λ( z ) is shown at x = 0 , 0.64 

and 1.28, in panels (b)–(d), respectively. 

Fig. 4. LogLog plot for the position of the leading edge, x c ( t ), (a), (c) (e) and maximum height, h max (b), (d), (f) for different B, D b and δ values, respectively. Unless stated 

otherwise, � = 0 , B = 5 , D b = 10 and δ = 9 . The slopes of 1.7 and −1 / 7 shown in the panels represent the scaling exponents for x c and h max , respectively, associated with 

capillary-driven spreading of a Newtonian fluid drop. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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Fig. 5. Snapshots of the λ field at t = 2 (a, d, g), 20 (b, e, h) and 50 (c, f, i). We fix D b = 10 and δ = 9 and vary B , where B = 0 . 5 (a, b, c), B = 5 (d, e, f) and B = 50 (g, h, i). 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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tions at ˆ z = ̂

 h , respectively given by, 

ˆ h ˆ t + 

ˆ u ̂

 h ˆ x − ˆ w = 0 , (3)

n · ˆ T · n = −σ∇ s · n , (4)

n · ˆ T · t = 0 , (5)

where σ denotes the constant surface tension, ˆ T = −pI + τ in

which I is the identity tensor; n = (−ˆ h x , 1) / (1 + ̂

 h 2 x ) 
1 / 2 and t =

(1 , ̂  h x ) / (1 + ̂

 h 2 x ) 
1 / 2 denote the normal and tangent vectors to the

interface, respectively; ∇ s = (I − nn ) · ∇ is the surface gradient

operator. 

2.2. Rheological model 

The evolution of the structure parameter, λ, is determined via

an approach whereby we assume that the particles within the fluid
reate, or destroy, linkages or bonds between each other; we take

to be the ratio of unbroken bonds to the total possible bonds

t each point in space [17] . Following this definition, we derive

n evolution equation using the approach set out in [18] : we let

 ( x , t) denote the number of inter-particle bonds at each point in

pace and time and m ( x , t) = n max − n ( x , t) the number of broken

onds, where n max is the total possible number of bonds at each

oint. We assume the formation and breakage of inter-particle

onds to be a reversible stochastic process represented by 

 

k b �
k f 

m, (6)

here, k f and k b are the rates of formation and breakdown, respec-

ively. It follows by the law of mass action [19] that 

Dn 

D ̂

 t 
= k f m − k b n = k f (n max − n ) − k b n, (7)
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Fig. 6. Snapshots of the λ field at t = 2 (a, d, g), 20 (b, e, h) and 50 (c, f, i). We fix B = 5 and δ = 9 and vary B , where D b = 1 (a, b, c), D b = 10 (d, e, f) and D b = 10 (g, h, i). 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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here the formation and breakage rates are functions of the num-

er of bonds and shear rate: k f = k f (n, ˙ ˆ γ ) and k b = k b (n, ˙ ˆ γ ) . Note

hat these can be extended to be functions of a variety of physi-

al parameters, thus providing a basis for the model to be gener-

lised. We now introduce the structure parameter, λ, defining it as

= n/n max : 

Dλ

Dt 
= k f (λ, ˙ ˆ γ )(1 − λ) − k b (λ, ˙ ˆ γ ) λ. (8)

Consistent with the commonly used Moore’s model, as set out

n [20] , we take k f to be constant and k b = k b | ̇ ˆ γ | to get 

Dλ

Dt 
= k f (1 − λ) − k b λ| ̇ ˆ γ | . (9) 

hus, in Moore’s model, ‘structuration’ is driven by Brownian mo-

ion, whereas ‘destructuration’ is precipitated by the shear rate.

dditionally, we relate the structure to the viscosity, ˆ μ = ˆ μ(λ) . For

implicity, we take, 

ˆ = μ0 + λ(μ∞ 

− μ0 ) , (10) 

here μ0 and μ∞ 

correspond to the viscosity of the unstructured

nd structured states, respectively; in Section 4 , we revisit the form

f the viscosity dependence and investigate a more general model.
.3. Scaling and cross-sectional averaging 

We let L and H denote the characteristic length and height of

he droplet, respectively, and apply the lubrication approximation,

hich assumes that the aspect ratio is small, ε = H/L � 1 . We then

on-dimensionalise with the following scales: 

( ̂  x , ̂  z ) = L (x, εz) , ( ̂  u , ˆ w ) = U(u, εw ) , (11) 

ˆ p = 

σε

L 
p, ˆ μ = μ0 μ, ˆ t = 

L 

U 

t. (12) 

ssuming that the flow is driven by capillarity, we take the char-

cteristic velocity to be, U = ε3 σ/μ0 . In addition, as in [14] , we as-

ume that k b � U / L or k f � U / L , such that we can neglect convec-

ive effects in the structure evolution, Eq. (9) , so that D/Dt = ∂ /∂ t .

Substitution of the above scaling into the governing equations,

nd expanding in powers of ε, gives the following at leading-

rder 

 x + w x = 0 , (μ(λ) u z ) z = p x , p z = 0 , (13) 

t = 

1 − λ

D 

− Bλ| ̇ γ | . (14) 

b 
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Fig. 7. Snapshots of the λ field at t = 2 (a, d, g), 20 (b, e, h) and 50 (c, f, i). We fix D b = 10 and B = 5 and vary B , where δ = 1 (a, b, c), δ = 9 (d, e, f) and δ = 49 (g, h, i). 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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The viscosity function now reads μ(λ) = 1 + δλ, where δ =
μ∞ 

/μ0 − 1 , and the leading-order strain rate is ˙ γ = u z . We have

two additional dimensionless parameters: D b = U/ (Lk f ) ; the ratio

between the structuration and flow time-scales and B = k b /ε, de-

noting the relative strength of destructuration. The parameters D b 

and B will be varied such that their respective effect upon the

droplet can be investigated. 

The interfacial stress boundary conditions now read 

p = p 0 − h xx and u z = 0 at z = h, (15)

where p 0 represents the non-dimensional atmospheric pressure

and plays no further role in the analysis hereafter. Hence, we can

set p 0 = 0 without loss of generality In addition, the kinematic

condition is given by, 

h t + uh x − w = 0 at z = h, (16)

alongside no-slip and no-penetration conditions at z = 0 . 
Now, Eq. (13) implies that the pressure is independent of the

epth to leading order, thus the pressure is given by 

p = −h xx . (17)

hus, the second equation of Eq. (13) is solved alongside the tan-

ential stress condition (15) , to give, 

(λ) u z = h xxx (h − z) . (18)

ote that μ is a function of the microstructure and therefore of

he depth, thus we can not easily integrate (18) as we would in

he Newtonian case. 

We now depth-average the continuity equation in Eq. (13) to

enerate an evolution equation for the interface following the im-

osition of the kinematic condition at z = h, (16) : 

 t + (h ̄u ) x = 0 . (19)

ere, we rewrite, h ̄u = 

∫ h 
0 u d z = 

∫ h 
0 u z (h − z) d z, via integration by

arts, where ū is the depth-averaged horizontal component of the
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Fig. 8. Effect of initial level of drop structure on the spreading dynamics; λ fields for � = 0 and � = 1 are shown in (a) and (b) and (d) and (e) for t = 2 , t = 20 , respectively. 

Loglog plots for x c ( t ) and h max ( t ) are shown in (c) and (f), respectively, for � = 0 (black lines) and � = 1 (red lines). The rest of the parameters remain unchanged from those 

used to generate Fig. 2 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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elocity. Substitution of Eq. (18) into Eqs. (14) and (19) yields 

 t + 

(
h xxx 

∫ h 

0 

(h − z) 2 

1 + δλ
d z 

)
x 

= 0 , (20) 

t = 

1 

D b 

(1 − λ) − Bλ
(h − z) 

1 + δλ
| h xxx | . (21) 

enceforth, this will be referred to as the 1.5D model. Notably, Eq.

21) retains the z -dependence explicitly; it is natural to attempt to

emove this explicit dependence using various closure approxima-

ions, as discussed below. 

.4. Simplifications 

Here, we will explore two different types of simplifications.

irstly, we will use the methodology set out in [14] , where an as-

umption is made regarding the depth profile of the fluidity. Sec-

ndly, we alternatively assume a depth profile for the structure pa-

ameter. 

.4.1. Fluidity closure 

We next use the simplification presented in [14] in which the

ollowing depth profile of the fluidity is taken 

−1 = μ−1 
s + 

z 

h 

(
μ−1 

f 
− μ−1 

s 

)
, (22) 

here μs and μf are the viscosities at the substrate and interface,

espectively. These are related to the respective structure values by

= 1 + δλ i = s, f . (23)
i i 
hain rule is used, such that 

t | z= hξ = λt − ξh t 

h 

2 
λξ , λx | z= hξ = λx − ξh x 

h 

2 
λξ , (24)

hereafter, we can substitute of ξ = 0 , 1 . Additionally, applying the

o-slip and no-penetration at ξ = 0 and the kinematic condition

t ξ = 1 allows us to obtain the following governing equations for

s ( x, t ) and λf ( x, t ), 

st = 

1 

D b 

(1 − λs ) − Bλs h 

h xxx 

1 + δλs 
. (25) 

f t = 

1 

D b 

(1 − λ f ) , (26) 

dditionally, we have neglected convective effects for λf , which

re shown to be negligible by either direct computation or by

he method of characteristics. Computation of the integral in Eq.

20) gives, 

 t + 

[
h 

3 h xxx 

12 

(
3 μ−1 

s + μ−1 
f 

)]
x 

= 0 . (27)

.4.2. Structure closures 

Here, we assume that λ takes the form of a perturbation ex-

ansion 

∼ λ0 (x, t) f (z) + ελ1 (x, z, t) , (28)

here we choose f ( z ) such that f ′ (h ) = 0 and enforce that f ( h ) >

 (0), inspection of Eq. (21) , shows this to be true. 

The lowest order polynomial which satisfies the above condi-

ions is given by f (z) = 1 . Thus, the structure across the depth is
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Fig. 9. Loglog plots of the leading edge position, x c ( t ) (a, c and e) and maximum height, h max (b, d and f) showing comparisons between the predictions of the 1.5D 

and simplified models for B = 0 . 5 , 5 and 50, depicted in (a)-(b), (c)-(d) and (e)-(f), respectively; � = 0 , D b = 10 and δ = 9 remain fixed. The prediction of the 1.5D model 

are shown by black solid lines, while those of the fluidity, isostructural and cubic closure models are shown by the dashed red, black and green lines, respectively. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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uniform in z and λ̄ = λ0 (x, t) , we refer to this as the ‘isostruc-

tural’ closure. We then compute the integral in Eq. (20) and depth-

average Eq. (21) to obtain 

h t + 

[
h 

3 h xxx 

3(1 + δλ̄) 

]
x 

= 0 , (29)

λ̄t = 

1 

D b 

(1 − λ̄) − B ̄λ

2(1 + δλ̄) 
h | h xxx | , (30)

where ū is expressed by 

ū = 

h 

2 h xxx 

3(1 + δλ̄) 
. (31)

In this system of equations the explicit depth dependence has

been removed, and the partial differential equations only depend

on x and t . However, the isostructural closure assumes that the

depth variation of the microstructure has a small variance from

average, which may not be sufficient for certain applications [15] .

This is addressed via use of the following relation, which we refer
o henceforth as the ‘cubic’ closure 

f (z) = 

z 

h 

2 
( 2 h − z ) . (32)

ollowing the same methodology as that employed above, Eqs.

20) and (21) become 

 t + [ h xxx I h ] x = 0 , (33)

0 t + 

λ0 

2 h 

h t = 

1 

D b 

(
3 

2 

− λ0 

)
− 3 

2 

Bhh xxx I λ, (34)

here I h = 

∫ h 
0 

(h −z) 2 

1+ δ f (z) λ0 
d z and I λ = 

∫ h 
0 

f (z)(h −z) 
1+ δ f (z) λ0 

d z, which are inte-

rals that are evaluated using quadrature. 

Note, inspection of Eqs. (28) and (32) indicate that λ| z=0 =
 (ε) , which is at odds with Eq. (21) . Thus, we expect the predic-

ions associated with the structure closures to diverge from those

rovided by Eq. (21) as λ| z=0 grows to be larger than o ( ε). We turn

ur attention to the discussion of the results which is presented

ext. 
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Fig. 10. Streamwise variation of the depth averaged λ, λ̄ obtained from the 1.5D model (black line), and isostructural (red dashed line) and cubic (blue dashed line) closure 

models, for B = 0 . 5 , 5 and 50 shown in (a)-(b), (c)-(d) and (e)-(f), respectively; the rest of the parameter values remain unaltered from Fig. 9 . ˆ λ profiles are shown at t = 2 

(a, d, g), 20 (b, e, h) and t = 50 (c, f, i). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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. Results 

.1. Numerical procedure 

The evolution Eqs. (20) and (21) are solved using a numer-

cal procedure, by first transforming the z co-ordinate as in

ection 2.4 , such that ξ = z/h . The numerical scheme employs

nite-differences to discretise the spatial derivatives in both the x

nd ξ directions: centred differences are utilised over the whole

f the computational domain except at the end points where one-

ided differences are used. Typically, 1600 and 17 points are used

n x and ξ (to evaluate the integrals in Eq. (20) using quadrature);

onvergence was achieved upon mesh-refinement. The solution is

dvanced in time using Gear’s method, implemented with DASSL,

21] . 

Numerical solutions were obtained starting from the initial con-

ition, 

 (x, 0) = 

{
1 − x 2 + h ∞ 

| x | < 1 , 

h ∞ 

| x | > 1 , 
(35) 
h

(x, z, 0) = �, (36) 

here � represents the initial degree of structuration in the

roplet; � is taken to be zero for the majority of the simulations in

his work. In Eq. (35) , we have introduced a thin precursor film of

eight, h ∞ 

, to remove singularities associated with moving contact

ines. The initial condition described by Eqs. (35) and (36) corre-

ponds, therefore to a droplet of constant curvature deposited on

n ultra-thin precursor film with a prescribed constant level of mi-

rostructure. In addition, we switch off the term governing the in-

rease in λ within the precursor film, so that it is only a device for

ealing with the contact line singularity. We have checked that the

recursor film has no effect on the computed solution when it is

uitably small; we take h ∞ 

= 10 −4 . 

Numerical solutions are obtained subject to the following

oundary conditions on h 

 x = h xxx = 0 at x = 0 , (37) 

 x = h xxx = 0 at x = L , (38) 
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Fig. 11. Loglog plots of the leading edge position, x c ( t ) (a, c and e) and maximum height, h max (b, d and f) showing comparisons between the predictions of the 1.5D 

and simplified models for D b = 1 , 10 and 100, depicted in (a)-(b), (c)-(d) and (e)-(f), respectively; � = 0 , B = 5 and δ = 9 remain fixed. The prediction of the 1.5D model 

are shown by black solid lines, while those of the fluidity, isostructural and cubic closure models are shown by the dashed red, black and green lines, respectively. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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where L is the length of the computational domain. As additional

checks, the mass of the fluid, 
∫ ∞ 

0 h d x is conserved during the com-

putation. Finally, the code was validated against results presented

in [14] . 

3.2. Parametric study 

We begin by considering the evolution of a typical thixotropic

droplet, as shown in Fig. 2 . We set the parameters to be B =
5 , D b = 10 and δ = 9 , which reflect a balance between struc-

turation and destructuration, we set � = 0 which reflects an

initially unstructured drop. The thixotropic effects are charac-

terised by the appearance of a structured region at the core of

the droplet, and a highly-viscous skin near the interface. This

to be expected upon inspection of Eq. (21) , where we observe

the shear rate, ˙ γ , to be smallest near the centreline and inter-

face of the droplet. Furthermore, the structured zones penetrate

into the bulk of the droplet with increasing time. However, we

do not expect the drop to become fully-structured due to the

presence of large shearing near the contact line, creating a destruc-

tured region which facilitates drop spreading. This is shown more

clearly in Fig. 2 (d) which depicts an enlarged version of the contact

line region and the associated λ field. 
Fig. 3 displays the z -dependence of the structure parameter,

, at t = 20 for x = 0 , 0 . 64 , 1 . 28 that coincide with the centreline,

id-stream and near-contact line locations (see Fig. 3 (a)), for the

ame parameters as those used to generate Fig. 2 . Inspection of the

profiles depicted in Fig. 3 (b)–(d) reveals that the z -dependence

f λ is rather weak near the centreline, becoming progressively

tronger as we move towards the contact line; moreover, λ at-

ains its highest average value at x = 0 , decreasing downstream.

his trend can be explained by noting that structure-building and

estructuration effects dominate the flow dynamics near the cen-

reline and contact line regions, respectively. Furthermore, at every

 location, the value of λ is highest at the interface z = h, and low-

st at the wall, z = 0 since the shear stress is lowest and highest at

he free surface and substrate, respectively; the difference between

he maximal and minimal values of λ for a given x is largest in the

ontact line region. 

Next, we present in Fig. 4 log-log plots of the temporal evolu-

ion of the contact line location, x c , and the maximal film thick-

ess, h max , for different values of B, D b , and δ. As is clearly seen

n this figure, an enhanced spreading rate is promoted via an in-

rease in B and D b , and a decrease in the value of δ. We further

uantify the effect of the ‘thixotropic’ parameters on the dynamics

y examining the parametric dependence of the structure build-up
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Fig. 12. Streamwise variation of the depth averaged λ, λ̄ obtained from the 1.5D model (black line), and isostructural (red dashed line) and cubic (blue dashed line) closure 

models, for D b = 1 , 10 and 100 shown in (a)-(b), (c)-(d) and (e)-(f), respectively; the rest of the parameter values remain unaltered from Fig. 11 . ̂  λ profiles are shown at t = 2 

(a, d, g), 20 (b, e, h) and t = 50 (c, f, i). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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patio-temporal evolution on B, D b , and δ. As shown in Figs. 5–7 ,

ncreasing B and D b , and decreasing the value of δ, have similar ef-

ects upon the droplet structure, which is commensurate with the

rends shown in Fig. 4 . With increasing B or D b , the rate of struc-

uration decreases and this has a marked effect on structure build-

p in various parts of the drop. Specifically, for low values of B and

 b , it is seen in panels (a)–(c) of Figs. 5 and 6 that λ achieves its

aximal value over the majority of the drop rapidly, except near

he contact line. For the largest values of B and D b studied, struc-

uration is delayed considerably and appears to be confined to the

entreline and near-interface regions. An increase in δ leads to an

ncrease in the viscosity, which acts to retard the spreading such

hat there is more time for structuration; as can be seen in Fig. 7 ,

owever, the evolution of λ appears to be weakly-dependent on

ariations in δ. 

We now examine the effect of the initial state of the drop on

ts evolution. In particular, the question is whether the influence

f the drop initial internal structure, parametrised by �, will have

 lasting effect on the spreading dynamics. In Fig. 8 , we show the

volution of λ and the temporal variation of x c starting from two

r  
nitial conditions for λ: characterised by � = 0 and 1. Inspection of

ig. 8 shows clearly that the late-time dynamics exhibit a weak de-

endence on the initial conditions. Apart from a narrow strip near

he centreline in which structuration is particularly intense, the λ
eld for the initially unstructured drop at t = 20 is very similar to

hat associated with � = 1 (see Fig. 8 (b) and (d)). In Fig. 8 (e), it

s also seen that the contact line of the initially structured drop

ventually catches up with that of the unstructured one. 

.3. Comparison of models 

We now compare the predictions of the 1.5D model, Eqs.

20) and (21) , with those provided by the evolution equations re-

ulting from the simplifications set out in Section 2.4 . To quan-

ify the difference between the 1.5D and simplified models, we

ill consider the depth-averaged microstructure λ̄ = 

1 
h 

∫ h 
0 λ d z, the

aximum height, h max , of the droplet and the position of the con-

act line, x c . We begin by examining how variation in B affects the

alidity of the relevant closures. As shown in Fig. 9 , the tempo-

al variation of x c and h max exhibits a relatively weak dependence
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Fig. 13. Loglog plots of the leading edge position, x c ( t ) (a, c and e) and maximum height, h max (b, d and f) showing comparisons between the predictions of the 1.5D and 

simplified models for δ = 1 , 9 and 49, depicted in (a)-(b), (c)-(d) and (e)-(f), respectively; � = 0 , B = 5 and D b = 10 remain fixed. The prediction of the 1.5D model are shown 

by black solid lines, while those of the fluidity, isostructural and cubic closure models are shown by the dashed red, black and green lines, respectively. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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on the choice of closures, which are in good agreement with the

predictions of the 1.5D model, with the possible exception of the

cubic closure; this demonstrates the largest divergence from the

predictions of the rest of the models for the smallest value of B

studied. In Fig. 10 , we show that for low B values, the isostruc-

tural model is in close agreement with the 1.5D model predictions

in terms of the streamwise-variation of λ̄ from early to late times,

and out-performs the cubic closure model; this trend is reversed

at large B . For intermediate B values, both of the closure models

provide reasonably good approximations to the 1.5D model predic-

tions. Similar trends in terms of agreement between the 1.5D and

simplified models can be seen in Figs. 11 and 12 . 

We have also examined the effect of varying δ on the agree-

ment between the simplified and 1.5D models for fixed B and D b .

As shown in Fig. 13 , all closure models are in close agreement with

the 1.5D model for all but the largest δ values examined at which

considerable divergence can be seen; the largest such divergence is

associated with the cubic closure model, while the fluidity closure

model provides the closest agreement across the δ range explored.

In terms of λ̄, it is seen clearly from Fig. 14 that although the sim-

plified models provide good qualitative agreement with the 1.5D
odel, the isostructural model is the most reliable one, exhibiting

he closest such agreement over the range of δ studied. 

Finally, we study briefly the case wherein the dependence of

he viscosity on the structure parameter is altered such that it is

iven by the following expression 

= (1 − λ) −δ. (39)

n Fig. 15 , we show a comparison of the evolution of structure

uild-up within the drop associated with μ = 1 + δλ [see panels

a) and (b)], and with μ given by Eq. (39) (see panels (c) and (d),

nd (e) and (f), generated with δ = 1 and 2, respectively). It is seen

learly that the degree of structuration increases markedly when

he relation between μ and λ is modelled using Eq. (39) ; as shown

n Fig. 15 (f), for δ = 2 , λ achieves its maximal value over the large

ajority of the droplet, except for a narrow strip at the contact

ine. 

It is also instructive to explore the effect of altering the μ( λ)

odel on the temporal evolution of the contact line location. As

hown in Fig. 15 (g), the switch to the model described by Eq.

39) leads to a decrease in the spreading rate. Intriguingly, the

ate of structuration is sufficiently high for μ = (1 − λ) −2 that x c 
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Fig. 14. Streamwise variation of the depth averaged λ, λ̄ obtained from the 1.5D model (black line), and isostructural (red dashed line) and cubic (blue dashed line) closure 

models, for δ = 1 , 9 and 49 shown in (a)-(b), (c)-(d) and (e)-(f), respectively; the rest of the parameter values remain unaltered from Fig. 13 . ˆ λ profiles are shown at t = 2 

(a, d, g), 20 (b, e, h) and t = 50 (c, f, i). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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eaches a constant value at long times, which signifies contact line

inning following a period of spreading. This behaviour has been

bserved previously in evaporating droplets containing particles,

22] . 

. Concluding remarks 

We have considered the two-dimensional spreading dynamics

f a sessile drop in the presence of thixotropic effects. A hierar-

hy of models for the spreading were derived using the lubrication

pproximation for slender drops. The most complex model derived

orresponds to a pair of coupled evolution equations for the in-

erface and for a parameter that describes the level of structure

uild-up within the drop, and makes no assumptions regarding

ts dependence on the wall-normal direction; this was termed the

1.5D model” in this work. The remaining models introduce clo-

ure relations for this dependence, which result in the derivation of

implified, one-dimensional evolution equations. All of the models

xamined account for capillary-driven spreading, and thixotropy,

hich built in construction and shear-induced destructuration ef-
ects upon the structure and consequently on the viscosity. The

odels are solved numerically for a wide range of dimensionless

arameters which reflect the relative significance of the various

echanisms in operation during the spreading process. 

Our numerical results reveal that structuration is promoted in

ow-shear regions, which coincide with those near the centreline

nd the interface, and away from the moving contact line; the high

evel of shear in the latter region leads to destructuration as re-

ected by low values of the structure parameter. A comparison of

he predictions of the 1.5D and simplified models is made, showing

hat the simplest closure model, which neglects the dependence of

he structure parameter on the wall-normal direction, is the most

obust; this model provides a very good approximation of the 1.5D

odel over the wide range of parameters explored. A discussion of

he parameter space over which the simplified models breakdown

as also provided. Finally, we show that for a particular choice of

he dependence of the viscosity on the structure parameter, con-

act line pinning is observed. 
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Fig. 15. Effect of altering the dependence of μ on λ on the evolution of the λ field, and contact line motion. Solutions for λ are shown in (a)-(b), (c)-(d), and (e)-(f), for 

μ = 1 + 9 λ, μ = (1 − λ) −1 , and μ = (1 − λ) −2 , respectively; the panels in the left and right columns correspond to solutions obtained at t = 0 . 5 and t = 8 , respectively. The 

temporal evolution of x c is shown in (g) in which the red, black, and blue curves are associated with the results shown in panels (a)-(b), (c)-(d), and (e)-(f), respectively. 

The rest of the parameters are � = 0 , B = 5 and D b = 1 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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