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Constructive Interconnection and Damping
Assignment for Port-controlled Hamiltonian

Systems
K. Nunna, M. Sassano and A. Astolfi

Abstract—The Interconnection and Damping Assignment
Passivity-Based Control (IDA-PBC) problem for port-controlled
Hamiltonian systems is revisited. We propose a methodology
that exploits the novel notion of algebraic solution of the so-
called matching equation. This notion is instrumental for the
construction of an energy function, defined on an extended state-
space, which does not rely upon the solution of any partial
differential equation. This yields, differently from the classical
solution, a dynamic state feedback that stabilizes a desired
equilibrium point. In addition, conditions that allow to pr eserve
the port-controlled Hamiltonian structure in the extended closed-
loop system are provided. The theory is validated on two physical
systems: the magnetic levitated ball and a third order food-chain
system. A dynamic control law is constructed for both these
systems by assigning a damping factor that cannot be assigned
by the classical IDA-PBC.

I. I NTRODUCTION

Port-controlled Hamiltonian (PCH) models, introduced as a
generalization of Hamiltonian systems, characterize a class of
finite dissipation systems, which include for instance - butare
not limited to - electro-mechanical systems. They arise from
network modeling of energy-conserving lumped-parameter
physical systems with independent storage elements. Accord-
ing to the above framework, a dynamical system is essentially
described in terms ofenergy which may be possessed or
transformed by the system itself. This formulation appears
particularly useful whenever the plant to be controlled is ob-
tained as the interconnection of possibly simpler subsystems,
the individual energies of which determine the response of the
resulting complex plant. Stabilization problems for this class
of dynamical systems may be tackled, for instance, by means
of the so-called Passivity-based control (PBC) method [34].

Passivity-based control stems from the seminal paper [32].
This well-established approach is widely employed for the
regulation of PCH systems, yielding effective control design
techniques [25] applicable to a wide class of physical sys-
tems including mechanical systems [2], [19], [22], power
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systems [11], electro-mechanical systems [27], underwater
vehicles [37] and mechanical systems with nonholonomic
constraints [10], [33].

A formulation of PBC known as Interconnection and Damp-
ing Assignment (IDA) has been introduced in [21]. A compre-
hensive discussion on IDA-PBC may be found, for instance,
in [24], [33]. In this scenario, control policies should be
interpreted in terms of actions aimed at shaping the energy
of the controlled system to match the desired behavior. This
may be achieved, for instance, by modifying, by means of
feedback, the structure of the interconnection between the
different subsystems and/or by adding damping to the system.
A useful advantage of the method is that there is a physical
interpretation of the control action as insertion of virtual
springs, dampers and constraints [26]. The procedure for IDA
as described in [22] and [24] involves assigning a closed-loop
energy function, together with a desired interconnection and
damping structure, from which a static feedback law can be
developed by solving a set of partial differential equations
(PDEs), usually referred to as thematching equation, in the
nonlinear case, and a set of linear matrix equations, in the
linear case. If the matching equation can be solved then the
original control system and the target dynamical system are
said to match. Similar techniques have been reported for PCH
and Lagrangian systems in [18] and [16]. The Lagrangian
counterpart of the method has been reported in [7]–[9], [12],
[36]. Finally, an attempt to discuss the effect of the choiceof
the interconnection and the damping matrices on the closed-
loop performances may be found in [15].

Solution to thematching equationhas received a lot of
interest because it remains the stumbling block in making IDA-
PBC a viable design methodology. In general, the solution of
the matching equation is difficult to determine. In [35] the
PDEs are simplified by parameterizing the target dynamics
and introducing a change of coordinates in the original system.
A set of sufficient conditions on the system for the solution
of the PDEs to exist is reported in [8], while [5] and [6]
provide techniques to solve the PDEs. Mechanical systems
with underactuation degree one are investigated in [2], where it
is proved that the PDEs have solutions if the inertia matrix and
the force induced by the potential energy (on the unactuated
coordinates) are independent of the unactuated coordinates.

The main results of this paper are achieved by making use
of a dynamic extension and introducing the notion ofalgebraic
solution of the matching equation. A similar approach has
been exploited in [28] and [29] to solve optimal control/robust
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problems for nonlinear input-affine systems, in [14] for adap-
tive control problems and in [30] and [31] for the analysis
of some properties of nonlinear control systems. This notion
is instrumental for the construction of an auxiliary energy
function defined in the extended state-space. The principal
contribution of the paper is then twofold. We firstly propose
a methodology that permits the application of the IDA-PBC
to PCH systems without involving the solution of any partial
differential equation. The approach leads to the construction
of a dynamic, in place of static, control law that allows to
(asymptotically) stabilize a desired equilibrium of the closed-
loop extended system, without, however, preserving the PCH
structure in the closed-loop system. Then, in the second part of
the paper we discuss an alternative dynamic control law that,
under additional technical conditions, allows to preserve, in the
closed-loopextendedsystem, the PCH structure corresponding
to the auxiliary energy function and some interconnection and
damping matrices. In addition, as a consequence of the latter
result, we show that, if the matching equation does not admita
(classical) solution for a desired interconnection and damping
structure, the above auxiliary energy function may be exploited
to construct a (classical) solution to a matching equation
corresponding to interconnection and damping that can be
written as the sum of the desired matrices and continuous
perturbation terms vanishing at the origin.

Dynamic extension has already been considered in the same
context in [4], where it has been shown that the extension leads
to equivalent matching equations for the extended system and
in [23], where it has been shown that there is no advantage
in considering dynamic feedback from the stabilization view-
point. Note that in [4] the authors have provided a somewhat
negative result showing that the set of solutions of thestatic
matching equation coincides with the set of solutions of the
“extended matching equations”. The key difference between
[4] and this paper is that the approach proposed here employs
the dynamic extension to circumvent partial differential equa-
tions and search for solutions of algebraic equations instead.

Preliminary results that introduce the notion of algebraic
solution of the matching equation and the construction of
an energy function on an extended state-space that yields a
stabilizing dynamic state-feedback for nonlinear and linear
systems have been presented in [17]. This paper provides
a new definition of the algebraic solution, and a dynamic
feedback law that preserves the PCH structure and ensures
(local) asymptotic stability of the equilibrium. This paper also
contains the proofs of the statements in [17] and two additional
numerical examples.

The rest of the paper is organized as follows. Section II
introduces the problem under examination. The topic of Sec-
tion III is the definition of the notion ofalgebraic solution
of the matching equation together with some basic notation.
This section also discusses the construction of the extended
energy function together with its properties. Such a function
is instrumental for the definition of both dynamic control laws
mentioned above, described in Sections IV and V, respec-
tively. The first main result, namely the proposed stabilizing
dynamic state-feedback, is discussed in Section IV for the case
of nonlinear PCH systems. Sufficient conditions that allow

to preserve the PCH structure in the extended closed-loop
system are discussed in Section V. The above results are then
specialized to the case of linear systems in Section VI. The
theory is validated in Section VII on two physical systems, the
magnetic levitated ball, and a third order food-chain system.
For the magnetic levitated ball a dynamic control law to
assign a damping factor in the velocity coordinate that cannot
be assigned by determining a closed-form solution of the
matching equations is constructed. Finally, a dynamic state-
feedback controller is designed for the food-chain system by
obtaining a solution to the algebraic matching equation since
the matching PDE cannot be solved. The paper is concluded
by Section VIII with some final comments and suggestions
for future extensions.

II. I NTERCONNECTION ANDDAMPING ASSIGNMENT

PASSIVITY-BASED CONTROL

Consider the class of nonlinear port-controlled Hamiltonian
systems described by equations of the form

ẋ = (J(x)−D(x))∇H(x) + g(x)u , y = g(x)⊤∇H(x), (1)

wherex(t) ∈ R
n denotes the state of the system,u(t) ∈ R

m

is the input andy(t) ∈ R
m is the output,J : Rn → R

n×n,
J(x) = −J(x)⊤ for all x, is the interconnection matrix,
D : Rn → R

n×n, D(x) = D(x)⊤ for all x, is the damping
matrix andH : Rn → R is the continuously differentiable
Hamiltonian function. The mappingg : Rn → R

n×m and the
matrix-valued functionsJ and D are continuously differen-
tiable. Moreover the mappingg is assumed to be full (column)
rank for all x ∈ R

n. Note that the system (1) is passive from
the inputu to the outputy, providedH is positive definite and
D ≥ 0, with the Hamiltonian functionH as storage function.

The objective of the IDA-PBC design consists in determin-
ing a control inputu such that a desired equilibrium pointx∗

of the closed-loop system is (asymptotically) stable and that
the closed-loop system is described by the equations

ẋ = (Jd(x) −Dd(x))∇Hd(x) , y = g(x)⊤∇Hd(x), (2)

whereJd : Rn → R
n×n and Dd : Rn → R

n×n, Jd(x) =
−Jd(x)

⊤ andDd(x) = Dd(x)
⊤ ≥ 0 for all x, are the desired

interconnection and damping matrices andHd : Rn → R+

is the desired energy function. The desired energy must be
continuously differentiable and such thatHd(x

∗) = 0 with x∗

a strict (local) minimizer ofHd.
Let g⊥ : R

n → R
(n−m)×n denote the full rank left

annihilator of the mappingg, i.e. g⊥(x)g(x) = 0 for all
x ∈ R

n and rank ofg⊥ is n − m. The classical solution
of the IDA-PBC design problem hinges upon the solution
K : Rn → R

n of the so-calledmatching equation, namely
the system of equations

g(x)⊥ [(J −D)∇H(x) − (Jd −Dd) (∇H(x) +K(x))] = 0 ,
(3)

where∇Hd = ∇H + K denotes the gradient vector of the
desired energy functionHd. Note that the mappingK must
satisfy the condition∂K/∂x = (∂K/∂x)⊤, thus ensuring
integrability ofK.
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In the following we suppose, without loss of generality, that
the equilibrium to be stabilized isx∗ = 0. However, we do not
require that the Hamiltonian system (1) has an equilibrium at
x = 0 for u = 0.

III. A LGEBRAIC SOLUTION OF MATCHING EQUATIONS

The main contribution of this section is the definition of
the concept ofalgebraic solutionof the matching equation (3),
which provides an alternative notion of solution of (3) without
involving any partial differential equation or inequality. Such
algebraic solution is then instrumental for the construction
of an auxiliary energy function. The latter is then employed
in Section IV to construct a stabilizing dynamic control law,
which however does not preserve the PCH structure, and in
Section V to define, under additional technical conditions,a
classical solution of an auxiliary IDA-PBC problem defined
on an extended-state, hence preserving the PCH structure of
the closed-loop system.

Towards this end, assume, without loss of generality, that
the energy functionH of the system (1) is described by the
equation

H(x) = d+ L⊤x+
1

2
x⊤H̄x+ h(x) , (4)

with d ∈ R, L ∈ R
n, H̄ = H̄⊤ ∈ R

n×n andh : Rn → R,
such thath(0) = 0, ∇h|x=0 = 0 and∇2h|x=0 = 0. Moreover,
let J(x) = J(0) + J1(x) , J0 + J1(x) andD(x) = D(0) +
D1(x) , D0 +D1(x) with J0 andD0 constant matrices and
J1(0) = 0 andD1(0) = 0. Similarly, let Jd(x) = Jd(0) +
Jd1

(x) , Jd0
+ Jd1

(x) and Dd(x) = Dd(0) + Dd1
(x) ,

Dd0
+Dd1

(x).
Definition 1: The equilibrium x∗ = 0 is assignableif

g(0)⊥(J0 −D0)L = 0.
In the following we suppose thatx∗ = 0 is assignable.

Consider now anotion of solution of the system of par-
tial differential equations (3) as detailed in the following
definition. Towards this end, let the matrix-valued function
N : Rn → R

n×n be such that∇H(x) = N(x)x + L, i.e.
N(x)x = H̄x+∇h(x).

Definition 2: Consider system (1) and fixJd = −J⊤
d and

Dd = D⊤
d ≥ 0. A C1 matrix-valued functionP : Rn → R

n×n,
P (x) = P (x)⊤ for all x ∈ R

n, is said to be aX -algebraic
solutionof (3) if the following conditions are satisfied.

(i) The matrixH̄ + P (0) , H̄ + P̄ is positive definite.
(ii) The condition

g(x)⊥ [(J −D)(L+N(x)x)

− (Jd −Dd) (N(x) + P (x)) x] = 0
(5)

holds for allx ∈ X ⊆ R
n, whereX is a non-empty open

set containing the origin. IfX = R
n thenP is said to

be analgebraic solutionof (3).

Note that the mappingx 7→ P (x)x does not need to satisfy
any integrability condition, namely it may not be the gradient
vector of any scalar function, hence it does not constitute a
solution to the original pde (3). The structure of equation (5)
is particularly appealing from the computational point of view.
In fact, a solution to (5) can be given in closed-form and can

be shown to satisfy the requirements in Definition 2 provided
additional technical conditions hold.

Proposition 1:Consider system (1) and the functionH in
(4) with L = 0. Let Jd = −J⊤

d , Dd = D⊤
d ≥ 0 be such

that Jd −Dd is invertible and theC1 matrix-valued function
Λ : Rn → R

m×n be such that the following hold.
(i) For all x in a neighborhoodX of the origin1

skew{(Jd −Dd)
−1 [(J −D)N(x)

−gΛ(x)]} = skew{N(x)} . (6)

(ii) The matrix(Jd0
−Dd0

)−1
[
(J0 −D0) H̄ − g(0)Λ(0)

]
is

positive definite.
Then the matrix-valued functionx 7→ P (x) defined as

P (x) = (Jd−Dd)
−1 [(J − Jd −D +Dd)N(x) − g(x)Λ(x)]

(7)
is aX -algebraic solutionof (3). ⋄
Proof. To begin with, it is straightforward to note that
the matrix-valued functionP in (7) satisfies item(ii) of
Definition 2, namely solves equation (5). Then, by (6)
it follows that (Jd − Dd)

−1 (g(x)Λ(x)− (J −D)N(x)) −
(g(x)Λ(x) − (J −D)N(x))

⊤
(Jd − Dd)

−⊤ = N(x) −
N(x)⊤, which implies, rearranging the terms, that the matrix
P (x) in (7) is symmetric for allx ∈ X ⊆ R

n. Finally,
item (i) of Definition 2 holds by noting thatP̄ + H̄ =
(Jd0

− Dd0
)−1

[
(J0 −D0) H̄ − g(0)Λ(0)

]
and by recalling

item (ii) of Proposition 1. �

Note that, if the matrix-valued functionN , which is
not uniquely defined, can be given a symmetric struc-
ture for all x ∈ R

n, then the condition in (6) reduces
to requiring that(Jd − Dd)

−1 [(J −D)N(x)− gΛ(x)] =
[(J −D)N(x)− gΛ(x)]

⊤
(Jd −Dd)

−⊤.

Remark 1: The drift vector field in equations (1) may
be replaced by a vector fieldf : R

n → R
n, thus

abandoning the PCH interpretation of (1). Then condi-
tion (5) yields algebraic matching equations of the form
g(x)⊥ [F (x) − (Jd −Dd)P (x)] = 0, where the matrix-valued
functionF : Rn → R

n×n is such thatf(x)− f(0) = F (x)x.
Note, however, that the emphasis on the PCH form of (1) is
motivated by the fact that this structure may be preserved in
closed-loop, as shown in Section V. N

Extended desired energy function

Exploiting the notion of algebraic solution of the matching
equation (3) we construct anauxiliary energy function defined
on an extended state-space which isi) (locally) positive
definite around the desired equilibrium point, andii) such
that its partial derivative with respect tox is described by the
sum of the algebraic solution and an approximation error term
that depends on the mismatch betweenx and the state of the
dynamic extension, namely

Hd(x, ξ) = H(x)−(L⊤x+d)+
1

2
x⊤P (ξ)x+

1

2
‖x−ξ‖2R , (8)

1The notationskew{A} describes the skew-symmetric part of the matrix
A, i.e. skew{A} = 1

2
(A− A⊤).



4

with ξ ∈ R
n, whereR = R⊤ is a positive definite matrix to

be determined and where‖v‖2M denotes the Euclidean norm
of the vectorv ∈ R

n weighted by the positive definite matrix
M , namely‖v‖2M = v⊤Mv. Note that the energy function
Hd : Rn × R

n → R+ has a strict local minimizer at(x, ξ) =
(0, 0) for anyR. In fact, by the structure ofH in (4), Hd can
be written asHd(x, ξ) =

1
2 [x

⊤, ξ⊤]H̄d[x
⊤, ξ⊤]⊤ + hd(x, ξ),

where the matrixH̄d = H̄⊤
d ∈ R

2n×2n is defined as

H̄d =

[
H̄ + P̄ +R −R

−R R

]

and hd : R
n × R

n → R is such thathd(0, 0) = 0,
∇hd|(x,ξ)=(0,0) = 0 and ∇2hd|(x,ξ)=(0,0) = 0. Moreover,
a Schur complement argument shows that the matrixH̄d

is positive definite for anyR > 0 provided item (i) of
Definition 2 holds. Finally, if thealgebraic solutionis such
thatP (x) = P (x)⊤ > 0 andh(x) > 0 for all x ∈ R

n \ {0},
then the extended energy functionHd in (8) is globally positive
definite.

Remark 2: An alternative definition ofalgebraic solutionis
discussed in [17], where a continuously differentiable mapping
p : Rn → R

n is said to be an algebraic solution if it satisfies
g(x)⊤ [(J −D)∇H(x) − (Jd −Dd)(∇H(x) + p(x))] = 0.
However, mimicking the construction in (8) and according to
the notion of solution introduced in [17], the extended energy
functionHd in (8) contains the termp(ξ)x, which may prevent
Hd from being globally positive definite. N

IV. DYNAMIC INTERCONNECTION ANDDAMPING

ASSIGNMENT PASSIVITY-BASED CONTROL

In this section it is shown that the extended desired energy
function Hd in (8) permits the construction of a dynamic
control law that (asymptotically) stabilizes the desired equi-
librium point x∗, provided the latter is assignable. Additional
conditions that allow to preserve the PCH structure of the
closed-loop system are discussed in Section V.

To streamline the presentation of the following result define
the continuous matrix-valued functionΦ : R

n × R
n →

R
n×n such that (P (x) − P (ξ))x = Φ(x, ξ)(x − ξ) and

the matrix-valued function∆R : R
n × R

n → R
n×n as

∆R(x, ξ) = Ψ(x, ξ)⊤R−1 (R− Φ(x, ξ))⊤, with Ψ(x, ξ) =
1
2∂(P (ξ)x)/∂ξ. Note that, according to the above definitions,
the partial derivatives of the energy functionHd in (8) are
given by

∇xHd = ∇H − L+ P (ξ)x+R(x− ξ)
= (N(x) + P (x))x + (R− Φ(x, ξ))(x − ξ) ,

∇ξHd = Ψ(x, ξ)x −R(x− ξ) .
(9)

Proposition 2:Consider the PCH system (1). LetJd = −J⊤
d

and Dd = D⊤
d ≥ 0. Let P : Rn → R

n×n be an algebraic
solution of (3). LetR be such that

(N⊤ + P )Dd(N + P ) +
1

2
(N⊤ + P )(Jd +Dd)∆

⊤
R

+
1

2
∆R(Jd +Dd)

⊤(N + P ) > 0 ,
(10)

for all (x, ξ) in a non-empty open setΩ ⊆ R
n×R

n containing
the origin. Consider the dynamic control law

ξ̇ = −K∇ξHd(x, ξ) ,

u = (g(x)⊤g(x))−1g(x)⊤ [−(J −D)∇H

+(Jd −Dd)(∇xHd − (R− Φ(x, ξ))(x − ξ))] + v .
(11)

Then there exists̄K = K̄⊤ ≥ 0 such that(x, ξ) = (0, 0) is
a (locally) stable equilibrium point of the closed-loop system
(1)-(11) for allK > K̄, with v = 0. Moreover, system (1)-(11)
is passive from the inputv to the outputyd = g(x)⊤∇xHd.
Finally, if the system (1)-(11) is zero-state detectable with
respect toyd then, settingv = −κyd, the point(x, ξ) = (0, 0)
is a (locally) asymptotically stable equilibrium of (1)-(11) for
all K > K̄ andκ > 0. ⋄

Proof. Consider system (1) and the energy functionHd

in (8). Recalling thatP is an algebraic solution of the matching
equation (3) and by the structure of the control law as in (11),
for all (x, ξ) ∈ R

n × R
n the closed-loop system (1)-(11) is

described by

ẋ = (Jd −Dd)∇xHd − [(Jd −Dd)

(R − Φ(x, ξ))(x − ξ)] + g(x)v ,

ξ̇ = −K∇ξHd .

(12)

The term in (12) that prevents the system from being in
port-controlled Hamiltonian form stems from themismatch
between the mappingx 7→ P (x)x, which may not be the
gradient of any scalar function, and an actual solution of the
system of partial differential equations (3). Consider nowthe
time derivative of the energy functionHd along the trajectories
of the system (12), which can be written as

Ḣd = −[x⊤(x− ξ)⊤](M + C⊤KC)[x⊤(x− ξ)⊤]⊤ + y⊤d v ,

where C(x, ξ) = [Ψ(x, ξ) − R] is a n × 2n matrix with
constant rank, equal ton, for all (x, ξ) ∈ R

n × R
n and

M(x, ξ) =

[
(N⊤ + P )Dd(N + P ) ΓR

Γ⊤
R 0

]

, (13)

with ΓR = 1
2 (N

⊤ + P )(Jd + Dd)(R − Φ). By employing
arguments similar to those introduced in [3], the inequality
(10) implies that the matrixM(x, ξ) is positive definite for
all (x, ξ) ∈ R

n × R
n in the intersection betweenΩ and

the null space of the matrixC(x, ξ). This result, in turn,
guarantees the existence of a matrix̄K = K̄⊤ ≥ 0 such
that M(x, ξ) + C(x, ξ)⊤KC(x, ξ) > 0 for all K > K̄ and
all (x, ξ) ∈ Ω. HenceḢd ≤ y⊤d v, ensuring passivity of the
system (12). Therefore, the proof is concluded by noting that
the definition of the inputv imply that the origin is a (locally)
stable equilibrium point of the closed-loop system. Asymptotic
stability is proved by settingv = −κg(x)⊤∇xHd, κ > 0, and
exploiting the zero-state detectability property together with
LaSalle’s invariance principle. �

Remark 3: By the arguments employed in the proof of
Proposition 2 it appears evident that the assumption of zero-
state detectability of the system (1)-(11) from the outputyd
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may be replaced by assuming that the matrixDd is positive
definite for allx ∈ R

n. N

Exploiting ideas similar to those in the previous remark, the
following result shows that the condition (10) can be (locally)
satisfied provided the desired damping matrixDd is positive
definite.

Proposition 3:Consider the PCH system (1). LetJd = −J⊤
d

and Dd = D⊤
d > 0. Let P : Rn → R

n×n be an algebraic
solution of (3). Then there exists a non-empty open setΩ ⊆
R

n × R
n containing the origin such that the condition (10)

holds for all (x, ξ) ∈ Ω and for anyR = R⊤ > 0, hence the
(asymptotic) stability claims on system (1)-(11) discussed in
Proposition 2 hold. ⋄

Proof. The claim is proved by noting that
∂P (ξ)x

∂ξ

∣
∣
(x,ξ)=(0,0)

= 0, hence ∆R(0, 0) = 0. Then, by
continuity of the functions on the left-hand side of inequality
(10), it follows that (10) holds in an open neighborhood of
the origin providedDd is positive definite. �

Remark 4: Since the dynamics of the auxiliary variableξ
is adesign parameter, the choiceξ̇ = ẋ, ξ(0) = x(0) – which
clearly ensuresξ(t) = x(t) for all t ≥ 0 – seems to be ap-
pealing. In fact, this selection cancels the approximationerror
term in the first partial derivative in (9). A similar approach has
been pursued in [1] where the extended system is expressed
in the error coordinatese = x − ξ. However, it is interesting
to note that the restriction of the energy functionHd to the
invariant submanifold{(x, ξ) ∈ R

n × R
n : ξ = x}, namely

Hd(x, x) = H(x)− (L⊤x+ d) + 1
2x

⊤P (x)x does not allow
to ensure stability of the zero-equilibrium of the system (1).
This is due to the additional term∇λx

⊤P (λ)x|λ=x in the
partial derivative of the restricted energy functionHd(x, x).
The corresponding term in (9) is dynamically compensated
for in Ḣd by ξ̇ = −K∇ξHd. N

Remark 5:Differently from the classical solution of the
IDA-PBC design problem, the algebraic solution does not
allow in general to preserve the port-controlled Hamiltonian
structure, unless additional technical conditions are satisfied,
as discussed in the following section. However, the IDA-PBC
design is given in terms of the solution of a PDE, representing
a serious obstruction to the applicability of the standard
approach outside classes of specially structured systems.N

V. EXTENDED PORT-CONTROLLED HAMILTONIAN

SYSTEMS

Proposition 2 implies that the dynamic control law (11)
stabilizes a desired (assignable) equilibrium of the closed-loop
system without, however, preserving the PCH structure. In this
section we provide sufficient conditions that allow to exactly
preserve the PCH structure in (12). In addition, we employ the
above result to show that, if the matching equation (3) does
not admit a (classical) solution, for a given interconnection and
damping structure, but analgebraic solutioncan be obtained,
then the extended energy functionHd is exploited to construct
a classical, hence static, solution to the partial differential

equation (3) corresponding to the interconnection and damping
structure which can be written as the sum of the desired
matricesJd andDd and some continuous perturbation terms
vanishing at the desired equilibrium.

Towards this end, let

τ(x, ξ) , ε‖∇xHd‖2Mx
+ ‖∇ξHd‖2Mξ

, (14)

with Hd defined in (8), whereε > 0, Mx = M⊤
x > 0 and

Mξ = M⊤
ξ > 0 are to be determined. Moreover, define

Γx(x, ξ) ,
ρR(x,ξ)
τ(x,ξ) (∇xHd)

⊤Mx ,

Γξ(x, ξ) ,
ρR(x,ξ)
τ(x,ξ) (∇ξHd)

⊤Mξ ,
(15)

with ρR(x, ξ) , (Jd−Dd)(R−Φ(x, ξ))(x− ξ), and consider
the submanifoldM ⊂ R

n × R
n defined as

M , {(x, ξ) ∈ R
n × R

n : ∇ξHd(x, ξ) = 0} . (16)

Proposition 4:Consider the PCH system (1). LetJd = −J⊤
d

and Dd = D⊤
d ≥ 0. Let P : Rn → R

n×n be an algebraic
solution of (3). Suppose that there exist positive definite
matricesMx, Mξ andR and a non-empty set̃Ω, containing
the origin, such that

span
{
ρR(x, ξ)(∇xHd)

⊤Mx +Mx(∇xHd)ρR(x, ξ)
⊤
}

(17)
is a subset ofspan{Dd} for all (x, ξ) /∈ M and

ρR(x, ξ)

‖∇xHd‖2
(∇xHd)

⊤Mx +Mx(∇xHd)
ρR(x, ξ)

⊤

‖∇xHd‖2
+Dd ≥ 0

(18)
for all (x, ξ) ∈ M ∩ Ω̃. Then there exist̄ε > 0 and a non-
empty setΩ ⊂ R

n × R
n such that system (1) in closed-loop

with

ξ̇ = −K∇ξHd + Γ⊤
ξ ∇xHd ,

u = (g⊤g)−1g⊤ [(Jd −Dd)∇xHd − εΓx∇xHd

−Γξ∇ξHd − (J −D)∇H ]− κg⊤∇xHd

(19)

can be written in PCH form for all(x, ξ) ∈ Ω and for any
ε ∈ (0, ε̄). ⋄

Proof. By definition ofτ in (14) and recalling that(x, ξ) =
(0, 0) is a strict (local) minimizer ofHd, it follows that
τ(0, 0) = 0 and τ(x, ξ) > 0 for all (x, ξ) in a neighborhood
Ω̂ of the origin. Moreover, noting that each entry of then×n
matrices at numerator and the scalar function at denominator
of Γx and Γξ are, by (9), locally quadratic functions of
(x, ξ) implies that the matrices in (15) are continuous for
all (x, ξ) ∈ Ω̂ \ {0} and bounded for all(x, ξ) ∈ Ω̂ by the
properties ofτ . Then note thatρR is given by

εΓx∇xHd + Γξ∇ξHd =
ρR
τ

(

ε‖∇xHd‖2Mx
+ ‖∇ξHd‖2Mξ

)

.

(20)
Therefore, by (20) and recalling the arguments in the proof of
Proposition 2, the closed-loop system (1)-(19) can be written
as

ẋ = (Jd −Dd)∇xHd − εΓx∇xHd − Γξ∇ξHd + g(x)v ,

ξ̇ = −K∇ξHd + Γ⊤
ξ ∇xHd ,

(21)
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for all (x, ξ) ∈ Ω̂. Let now Γs
x and Γa

x denote the sym-
metric and the antisymmetric parts of the matrixΓx, re-
spectively, namelyΓs

x = sym{Γx} = (Γx + Γ⊤
x )/2 and

Γa
x = skew{Γx} = (Γx − Γ⊤

x )/2. Then, by the assumption
on (17), there exist a sufficiently smallε̄ and a non-empty set
W1 ⊆ Ω̂\M such thatDd+εΓs

x ≥ 0 for all ε ∈ (0, ε̄) and for
all (x, ξ) ∈ W1. Moreover, the matrixDd+εΓs

x, which reduces
to the left-hand side of (18) inM, is positive semidefinite by
assumption for all(x, ξ) ∈ W2 , (M∩ Ω̃)∩ Ω̂. Thus, letting
z = [x⊤, ξ⊤]⊤, system (21) can be written in port-controlled
Hamiltonian form as

ż = (Jz(z)−Dz(z))∇zHd +G(z)v , (22)

with

Jz =

[
(Jd − εΓa

x) −Γξ

Γ⊤
ξ 0

]

, Dz =

[
(Dd + εΓs

x) 0

0 K

]

,

and G(z) = [g(x)⊤ 0]⊤, for all (x, ξ) ∈ W1 ∪ W2, thus
proving the claim. �

Note that the constantε is employed to distribute, in
equation (20), the contribution of the matrix coefficientsΓx

andΓξ, which do not play a symmetric role in the definition
of extended PCH system (22). In fact,Γξ only contributes to
the interconnection matrixJz that does not need to satisfy
any additional requirement apart from being skew-symmetric,
while Γs

x appears inDz that, on the other hand, must be
positive semi-definite.

Corollary 1: Consider the PCH system (1). LetJd = −J⊤
d

and Dd = D⊤
d > 0. Let P : Rn → R

n×n be an algebraic
solution of (3). Suppose that there exists a non-empty setΩ̃,
containing the origin, such that (18) holds for all(x, ξ) ∈ M∩
Ω̃. Then there exist̄ε > 0 and a non-empty setΩ ⊂ R

n ×R
n

such that the closed-loop system (1)-(19) can be written in
PCH form for all (x, ξ) ∈ Ω and for anyε ∈ (0, ε̄). ⋄
Proof. The claim follows immediately from the arguments
employed in the proof of Proposition 4 and by noting that
Dd is positive definite. �

Remark 6:As suggested by the proof of Proposition 4,
the matrix εΓx, which perturbs the desired interconnection
and damping matrices, can be rendered arbitrarily small in
some non-empty set containing the equilibrium by selecting
a sufficiently smallε. Moreover, the neighborhoodW1 and
the constant̄ε are strongly related since the setW1 can be
enlarged by considering increasingly smaller values ofε̄. On
the other hand, for all(x, ξ) ∈ M, the matrix

εΓx = ε
ρ(x, ξ)

τ(x, ξ)
(∇xHd)

⊤Mx =
ρ(x, ξ)

‖∇xHd‖2Mx

(∇xHd)
⊤Mx

does not depend uponε, hence it cannot be rendered arbitrarily
small for sufficiently smallε, motivating the rationale behind
inequality (18). N

We are now in the position to state the following result,
which shows that if the matching equation (3) does not admit
a classicalsolution for a desired interconnection and damping
structure but it does admit analgebraic solution, then there

exists a classical, static, solution to a matching equation
corresponding to the interconnection and damping structure
given by the sum of the desired matrices and some continuous
functions ofx, which vanish at the desired equilibrium.

Theorem 1:Consider the PCH system (1). LetJd = −J⊤
d

andDd = D⊤
d > 0 and suppose that the matching equation (3)

admits analgebraic solutionP . Then there exist continuous
matrix-valued functionsJs : R

n → R
n×n Js(0) = 0,

Js(x) = −Js(x)
⊤, and Ds : R

n → R
n×n, Ds(0) = 0,

Ds(x) = Ds(x)
⊤, and an energy functionHs : R

n → R

that solves the partial differential equations (3) associated to
the interconnection and damping structure given byJd − Js
andDd +Ds, respectively. ⋄

Proof. By definition of algebraic solution

g(x)⊥(J −D)∇H = g(x)⊥(J −D)(L +N(x)x)

= g(x)⊥(Jd −Dd)(N(x) + P (x))x

= g(x)⊥(Jε −Dε)∇xHd − Γξ∇ξHd ,

with Jε = Jd−εΓa
x(x, ξ) andDε = Dd+εΓs

x(x, ξ), where the
last equation is obtained by (5), and the results in Proposition 4
and Corollary 1. Recalling now that(x, ξ) = (0, 0) is a strict
local minimizer ofHd, it follows that ∇ξHd|(x,ξ)=(0,0) = 0
and ∇ξξHd|(x,ξ)=(0,0) > 0. Thus, by the Implicit Function
Theorem there exists a continuously differentiable function
γ : R

n → R
n such that∇ξHd|ξ=γ(x) = 0. Then, by

[4, Prop. 3], the functionHs(x) , Hd(x, γ(x)) solves the
matching equation (3) corresponding to the interconnection
Jd − εΓa

x(x, γ(x)) and the dampingDd + εΓs
x(x, γ(x)).

As discussed in Remark 6 the matrixεΓx(x, γ(x)) does
not depend uponε. Moreover, by the properties ofτ it
follows that ‖∇xHd(x, γ(x))‖2Mx

, namely the denominator
of εΓx(x, γ(x)), is (locally) positive definite and given by
the sum of quadratic functions ofx and higher order terms.
Finally, the choiceR = Φ(0, γ(0)) = 0, which renders
the function Hd(x, γ(x)) (locally) positive definite in the
restrictedx state-space, is such that each entry of the matrix at
the numerator ofεΓx(x, γ(x)) has at least cubic terms in the
variablex. Therefore, the matrixεΓx(x, γ(x)) is continuous
for all x ∈ R

n and such thatεΓx(0, γ(0)) = 0, concluding
the proof. �

Remark 7: The results of Theorem 1 can be interpreted as
follows. Given any positive constantµ > 0 there exists a non-
empty compact setC, containing the origin, such that the exis-
tence of a solution to the dynamic matching equation implies
the existence of a solution to the static matching equation cor-
responding to an interconnectionJe and dampingDe structure
satisfying supi,j∈{1,...,n},x∈C ‖(Jd(x))i,j − (Je(x))i,j‖ < µ
and supi,j∈{1,...,n},x∈C ‖(Dd(x))i,j − (De(x))i,j‖ < µ. In
other words, the solution to the dynamic matching equation
implies the existence of a local solution to the static matching
equation corresponding to an interconnection and damping
structure arbitrarily close to the desired one. N

Remark 8: The nature of the results in Theorem 1 is
intrinsically local by definition ofγ as in the Implicit Function
Theorem. Hence, even though Theorem 1 shows that there
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exists a (local) classical static solution to an IDA-PBC prob-
lem corresponding to interconnection and damping matrices
arbitrarily close to the desired ones, it may be preferable to
implement the dynamic control law (19), in place of the static
feedback provided by Theorem 1, since the latter may enforce
a smaller domain of stability of the assigned equilibrium.N

Finally, an alternative result that allows to preserve the PCH
structure, provided an additional technical assumption onthe
algebraic solutionP is satisfied and if the matrixR is allowed
to vary over time, is presented.

Proposition 5:Consider the PCH system (1). LetJd = −J⊤
d

and Dd = D⊤
d ≥ 0. Let P be an algebraic solution of (3)

such thatΦ(x, ξ) = Φ(x, ξ)⊤ > 0 in some non-empty open
neighborhoodΩ of the origin. LetR(t) = Φ(x(t), ξ(t)) for
all t ≥ 0. Then the closed-loop system (1)-(11) reduces
to ż = (Jz − Dz)∇zHd for all (x, ξ) ∈ Ω, with Jz =
blockdiag(Jd, 0) andDz = blockdiag(Dd,K). ⋄

Proof. The claim follows directly recalling the arguments
in the proof of Proposition 2, namely the structure of system
(12). �

Remark 9: Despite the fact that the closed-loop system
(1)-(11) possesses a PCH structure, an additional condition is
required to ensure thaṫHd ≤ y⊤d v, due to the dependency of
the energy functionHd on time via the matrixR. In particular,
following the same arguments as those in the proof of Proposi-
tion 2, the conditionΨ⊤R−1Φ̇R−1Ψ < 2(N⊤+P )Dd(N+P )
implies the existence of̄K = K̄⊤ such thatḢd(t, x, ξ) ≤ y⊤d v
for all K > K̄. N

VI. L INEAR SYSTEMS

In this section we specialize the results to the case of linear,
time-invariant, PCH systems, namely

ẋ = (J −D)∇H +Bu , (23)

where the energyH is defined as in (4), with the function
h identically equal to zero, andB ∈ R

n×m has rankm.
The proposed approach leads, under standard assumptions and
for a specific choice of the design parameters, exactly to the
classical solution of the IDA-PBC problem for linear systems.
The matching equation (3) reduces to

B⊥
[
(J −D)(L + H̄x)− (Jd −Dd)(H̄ + P̄ )x

]
= 0 , (24)

for all x ∈ R
n, where the matrixB⊥ ∈ R

(n−m)×n of rank
n−m is such thatB⊥B = 0. Note that in the linear case the
desired energy function becomesHd(z) =

1
2z

⊤H̄dz.

Corollary 2: Consider the PCH system (23). LetJd = −J⊤
d

and Dd = D⊤
d ≥ 0. Let P̄ be a solution of (24) such that

H̄ + P̄ > 0 and consider the dynamic control law

ξ̇ = −K∇ξHd ,

u = (B⊤B)−1B⊤[(Jd −Dd)((H̄ + P̄ )x+ R(x− ξ))

− (J −D)(L + H̄x)] − κB⊤∇xHd .
(25)

LetR = 0, then the point(x, ξ) = (0, 0) is a stable equilibrium
of the closed-loop system (23)-(25) for allK > 0 andκ ≥ 0.
If, in addition, (23)-(25) is zero-state detectable with respect
to the outputyd = B⊤(H̄ + P̄ )x, then, for anyκ > 0,
x(t) asymptotically converges to the origin. Moreover, (25)
reduces to the classical (static) solution of the IDA-PBC design
problem for linear PCH systems. ⋄

Proof. Note that, sinceR = 0, (H̄ + P̄ )x = ∇xHd, and
the closed-loop system becomes, withκ = 0, by definition
of u in the second of equations (25) and by definition ofP̄
in (24), ẋ = (Jd −Dd)∇xHd , ξ̇ = −K∇ξHd. Then,H̄d =
blockdiag(H̄ + P̄ , 0), which allows to prove the first claim
by recalling thatH̄ + P̄ is positive definite by assumption.
The dynamics ofξ in (25) becomeξ̇ = 0, hence the second
equation reduces to the classical static state-feedback solving
the IDA-PBC problem for system (23). �

The statement of Corollary 2 entails that stability of the
zero equilibrium of the extended system (23)-(25) is enforced
without additional restrictions on the choice of the matrix
R. The following proposition proves that the same result is
achieved by showing that system (23) in closed-loop with an
alternative dynamic control law exhibits a PCH structure.

Proposition 6: Consider the PCH system (23). LetJd =
−J⊤

d andDd = D⊤
d ≥ 0. Let P̄ be a solution of (24) and

consider the dynamic control law

ξ̇ = (Jd +Dd)∇xHd −K∇ξHd ,

u = (B⊤B)−1B⊤[(Jd −Dd)((H̄ + P̄ )x)

(J −D)(L + H̄x)] − κB⊤∇xHd .

(26)

Then the closed-loop system (23)-(26) can be written in PCH
form. ⋄

Proof. Note that, settingv = 0, according to Corollary 2
the closed-loop system (23)-(25) can be written as

ẋ = (Jd −Dd)(H̄ + P̄ )x ,

ξ̇ = (Jd +Dd)∇xHd −K∇ξHd .
(27)

Consider now the gradient of the auxiliary functionHd as
in (9) which reduce, in the linear case, to

∇xHd = (H̄ + P̄ )x+R(x− ξ) ,

∇ξHd = −R(x− ξ) .
(28)

Note now that(H̄+P̄ )x = ∇xHd+∇ξHd, which, substituted
into the closed-loop system (27), proves that the latter maybe
written as the PCH systeṁz = (Ĵ − D̂)∇zHd, with

Ĵ =

[
Jd (Jd −Dd)

(Jd +Dd) 0

]

andD̂ = blockdiag(Dd,K), hence the claim. �

VII. A PPLICATIONS: MAGNETIC LEVITATED BALL AND A

THIRD ORDER FOOD-CHAIN SYSTEM

We motivate the constructive IDA-PBC approach presented
in this paper by designing a state-feedback controller for a
magnetically levitated ball and a third order food-chain system.
In both cases, the control design is based on the theory
discussed in Sections IV and V.
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Figure 1. A schematic representation of the magnetically levitated system

A. Magnetic levitated ball

1) Model: A magnetic levitated system which consists of
an iron ball of massm, in a vertical magnetic field created
by a single electromagnet is shown in Figure 1. The fluxλ
generated by the magnet is assumed to be unsaturated,i.e.
λ = η(θ)i whereθ is the difference between the position of
the center of the ball and its nominal position, with theθ-axis
oriented downward,i is the current flowing through a coil
of resistancer, η(θ) denotes the value of the inductance. By
combining Kirchoff’s voltage law and Newton’s second law
and by considering an approximation for the inductance, the
dynamics of the system may be described by the equations [21]

λ̇+ ri = u ,

mθ̈ = F −mg ,
(29)

whereF is the force induced by the electromagnet, which is
proportional to the derivative of the inductance with respect
to the displacementθ and to the square of the currenti,
i.e. F ∝ (∂η/∂θ)i2, while g denotes the acceleration due to
gravity. In particular, borrowing the approximation from [21]
we let η(θ) = k/(1 − θ), wherek is some positive constant
that depends on the number of coil turns, in the domain
θ ∈ (−∞, 1). It has been shown in [21] that the system
(29) can be written in PCH form with the state variable
x = [λ, θ,mθ̇], and the Hamiltonian function

H(x) =
1

2k
(1− x2)x

2
1 +

1

2m
x2
3 +mgx2 , (30)

yielding

ẋ =





−r 0 0
0 0 1
0 −1 0





︸ ︷︷ ︸

J−D

∂H

∂x
(x) +





1
0
0



u . (31)

The equilibrium to stabilize isx∗ = [
√
2kmg, x2∗ , 0], i.e. a

constant position of the ball.
2) Controller design: It has been shown in [21] that the

energy shapingproblem cannot be solved for system (31) with
H as in (30),i.e. the equilibriumx∗ cannot be stabilized by
assigning a desired energy functionHd(x) while preserving

the interconnection structure of system (31). This negative
result may be intuitively explained by noting the lack of
coupling between the electrical and the mechanical subsystems
resulting from the interconnection matrixJ associated to (31),
which couples only the velocity with the position. Therefore,
an Interconnection and Damping Assignment passivity-based
control problem should be solved. It is shown in [21] that
selecting the desired interconnection matrixJd such that it
couples the fluxx1 and the velocityx3 - while preserving the
damping structure of system (30) or removing the damping
from the electrical subsystem and adding it to the position -
yields a system of partial differential equations of the form (3),
the solution of which can be provided in closed-form, see [21]
for more details.

To illustrate the results presented in Section V we let the
desired interconnection and damping structure be defined by
the matrices

Jd =





0 α β
−α 0 γ
−β −γ 0



 , Dd =





d11 d12 d13
d12 d22 d23
d13 d23 d33



 , (32)

where α , β , γ are functions to be defined and
d11 , d12 , d13 , d22 , d23 and d33, are such thatDd is positive
definite. Note thatJd is such that the fluxx1 is coupled with
the velocityx3, as in [21], and the positionx2 and, unlike
in [21], a positive definite damping matrix is considered.
The latter matrix allows to conclude asymptotic stability of
the desired equilibrium without the need for the additional
passive output injection, namely withκ = 0. The interest in
the selection ofJd and Dd as in (32) lies in the fact that,
with this choice, the resulting matching equations (3)

(α+ d12)
∂K
∂x1

+ d22
∂K
∂x2

− (γ − d23)
∂K
∂x3

=

−(α+ d12)
∂H

∂x1
− d22

∂H

∂x2
+ (γ − d23 − 1)

∂H

∂x3
,

(β + d13)
∂K
∂x1

+ (γ + d23)
∂K
∂x2

+ d33
∂K
∂x3

=

−(β + d13)
∂H

∂x1
− (γ + d23 − 1)

∂H

∂x2
− d33

∂H

∂x3
,

which have been obtained by letting

g⊥ =

[
0 1 0
0 0 1

]

,

do not admit a solutionK : R
3 → R. However, we show

in the following that, by letting the desired interconnection
and damping matrices be possibly function ofx, an algebraic
solution can be determined for the above Interconnection
and Damping Assignment passivity-based control problem,
leading to a dynamic control law of the form (19). Towards
this end, and to fit into the theoretical framework introduced
in the previous sections, consider the change of coordinates
x̃ = x−x∗. In the new coordinates the gradient of the function
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Dd ,





















cx̃
2

1 0 0

0
1

m(3cx̃2

1
+ 4)

3mx̃1 − 2k + 6mx̃1∗

12mk(3cx̃2

1
+ 4)

−

1

3m

0
3mx̃1 − 2k + 6mx̃1∗

12mk(3cx̃2

1
+ 4)

−

1

3m

(x̃1 + 2x1∗)(cx̃
2

1 + 1)

2k(3cx̃2

1
+ 4)





















. (35)

Jd ,























0
cx̃

2

1 + 1

m(3cx̃2

1
+ 4)

−

(x̃1 + 2x1∗)(2cx̃
2

1 + 3)

2k(3cx̃2

1
+ 4)

−

cx̃
2

1 + 1

m(3cx̃2

1
+ 4)

0
3mx̃1 + 2k + 6mx̃1∗

12mk(3cx̃2

1
+ 4)

+
1

3m

(x̃1 + 2x1∗)(2cx̃
2

1 + 3)

2k(3cx̃2

1
+ 4)

−

3mx̃1 + 2k + 6mx̃1∗

12mk(3cx̃2

1
+ 4)

−

1

3m
0























. (36)

0 0.5 1 1.5 2 2.5
0
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Figure 2. Top graph: Time history of the statex1(t), in the original x-
coordinates, of the electrical subsystem of (31) in closed-loop with the
dynamic control law (11). Bottom graph: Time histories of the states, in the
original x-coordinates, of the mechanical subsystem of (31), namelyx2(t)
andx3(t), gray and dark line, respectively.

H in (30) becomes

∇H =











1

k
(1− x2∗ − x̃2)(x̃1 + x1∗)

mg − 1

2k
(x̃1 + x1∗)

2

1

m
x̃3











, (33)

which yields L = [x1∗(1 − x2∗)/k 0 0]⊤ , [ℓ1 0 0]
according to the definition ofH in (4). Suppose that the
desired equilibrium to stabilize isx2∗ = 1, then a non-
symmetric matrixN , as in Definition 2, can be defined:

N(x̃) =









0 − 1

k
(x̃1 + x1∗) 0

− 1

k

(
1

2
x̃1 + x1∗

)

0 0

0 0
1

m









.

(34)
Considering the equation (5) introduced in Definition 2 to-
gether with the comments contained in Remark 1, letDd be
defined as in (35) which is locally positive definite provided
c > 0, andJd be defined as in (36).

It is now easy to show that the matrix-valued function

P (x̃) ,





2 1 1
1 2 + cx̃2

1 1
1 1 2



 (35)

solves the algebraic equation (5) in the form discussed in
details in Remark 1, namely it is such thatg(x̃)⊥[(J −
D)N(x̃)− (Jd−Dd)P (x̃)] = 0. The above under-determined
system of equations has been solved by fixing a desired
structure for one of the independent variables, namelyP , and
consequently computingJd and Dd by means of standard
software performing symbolic computations. Note thatP in
(35) depends on the parameterc > 0. Moreover, item (i) of
Definition 2 is satisfied by the functionP in (35). Interestingly,
the mappingx 7→ P (x)x is not the gradient of any scalar
positive definite function. In fact, the Jacobian matrix

∂P (x)x

∂x
=





2 1 1
1 + 2cx1x2 cx2

1 + 2 1
1 1 2





is not symmetric for allx ∈ R
3, wheneverc is strictly positive,

which is on the other hand the requirement needed to enforce
(local) positive semi-definiteness of the damping matrixDd.

In the following numerical simulation the objective is to
stabilize the ball atx2∗ = 1. Let r = m = k = 1 and consider
the damping and interconnection structure in (35) and (36),
respectively. The dynamic control lawu is obtained according
to (19) with c = 0.1 andε = 10−3, which renders the origin
of the x̃-coordinates a strict local minimizer of the extended
desired energyHd defined in (8), andK = diag({10, 10, 10}).
Note that the control law (19) preserves the Port-controlled
Hamiltonian structure in the closed-loop extended system,
which allows, together with the fact that the damping matrix
Dd is positive definite, to enforce local asymptotic stabilityof
the origin in thex̃-coordinates without the additional output
injection, namely withκ = 0 in the second equation of (19).

The top graph of Figure 2 shows the time history of the
state, in the originalx-coordinates, of the electrical subsystem
of (31) for the initial conditionsx(0) = [0, 0, 0] and ξ(0) =
[10,−20, 10] in closed-loop with the dynamic control law (11).
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Figure 3. Top graph: Time histories of the dynamic extensionξ1(t) (solid),
ξ2(t) (dash-dotted),ξ3(t) (dashed). Bottom graph: Time history of the control
input u in (11).

The bottom graph, on the other hand, displays the time
histories of the states, in the originalx-coordinates, of the
mechanical subsystem of (31), namelyx2(t) and x3(t). Fi-
nally, Figure 3 shows the time histories of the states of the
dynamic extension,ξ(t), and of the control lawu in (11), top
and bottom graph, respectively.

B. Third order food-chain system

1) Model: Consider the normalized third order food-chain
system from [13] for which an IDA-PBC controller has been
designed in [20]. In this food-chain system the variablexi

for i = 1, 2, 3 represents the population of thei-th species
involved in the system. The growth rates of the population is
given by

ẋ1 = f1(x) − x1 ,
ẋ2 = −f1(x) + f2(x) − x2 ,
ẋ3 = −f2(x)− x3 + u .

(38)

The functionsf1(x) andf2(x) describe the predation mech-
anism, such as for instance Lotka-Volterra mechanism. It is
assumed that the rate of predation upon the prey is propor-
tional to the rate at which the predators and prey meeti.e.
f1(x) = x1x2 andf2(x) = x2x3. The terms−x1, −x2, −x3

represent the rate of loss of predators due to natural death or
emigration and the control actionu is the rate of preys being
added to the system. It is clear that the food-chain system (38)
can be written in a PCH form withH = x1 + x2 + x3,
g = [0, 0, 1]⊤ and

J =





0 x1x2 0
−x1x2 0 x2x3

0 −x2x3 0



 , D =





x1 0 0
0 x2 0
0 0 x3



 .

The evolution of the system is restricted to the positive orthant
with u ≥ 0. The control objective is to stabilize a given non-
zero equilibriumx̄ ∈ R3

+. Note that the achievable equilibria
are x̄ = [x̄1, x̄2, x̄1]

⊤ = [x1∗ , 1, 1 + x1∗ ]
⊤, with x1∗ > 0.

2) Controller design: It has been shown in [20] that the
matching equation PDE cannot be solved whenJd = J and
with a Dd > 0 because the distribution spanned by the vector
fields defined by the column vectors obtained from the first
2 rows of J(x) − D(x) is not involutive. To overcome this

limitation the damping of the closed-loop system is modified
to be Dd = diag(0, 0, x3) which is clearly positive semi-
definite. To address this IDA-PBC problem and illustrate the
results presented in Section IV consider a shift of coordinates
x̃ = x − x̄. The dynamics of the system̃̇x in the new
coordinates is described by the matrix




0 x̃1x̃2 + x̃2x1∗ 0
−x̃1x̃2 − x̃2x1∗ −x̃1 x̃2x̃3 + x̃2x1∗ + x̃3

0 −x̃2x̃3 − x̃2x1∗ − x̃3 −x̃2 − x̃3





︸ ︷︷ ︸

J(x)−D(x)

,

g = [0 , 0 , 1]⊤, H̃ = x̃1 + x̃2 + x̃3 and ũ = u − 2(x1∗ + 1).
Let the desired interconnection and damping matrices be

Jd(x) =





0 α β
−α 0 γ
−β −γ 0



 , Dd(x) =





d1 0 0
0 d2 0
0 0 d3



 .

wheredi > 0 for i = 1, 2, 3, so thatDd is positive definite.
The structure ofJd andDd is motivated by the interconnection
and damping matrices of the original system and by noting
that the resulting matching equation (38) that are obtainedby
letting

g⊥ =

[
1 0 0
0 1 0

]

,

do not admit a solutionK : R3 → R. Note that the achiev-
able equilibrium[0 , 0 , 0]⊤ satisfies the conditiong⊥[(J0 −
D0)L] = 0 with L = [1, 1, 1]⊤ and that the matrixN
in Definition 2 is the zero matrix. To find a matrix-valued
functionP that satisfies items (i) and (ii ) of Definition 2, let
Dd(x) , I andJd be defined to be









0 1 −2x̃2 + x1∗ + 1

x̃2 + 1

−1 0
3x̃2 + x1∗ + 2

x̃2 + 1

−2x̃2 + x1∗ + 1

x̃2 + 1
−3x̃2 + x1∗ + 2

x̃2 + 1
0










.

It is easy to show that the matrix-valued functionP in (39)
is a solution of the algebraic matching equation (5), namely
g(x̃)⊥[(J −D)L− (Jd −Dd)P (x̃)] = 0 and satisfies item (i)
of Definition 2. The mapping̃x 7→ P (x̃2)x̃ is not the gradient
of any positive definite scalar function. This can be inferred
by noting that the Jacobian matrix ofP (x̃2)x̃ is not symmetric
for all x ∈ R

3.
The numerical simulations of the third order food-chain

system have been performed to stabilize the population at
x̄ = [1, 1, 2], i.e. x1∗ = 1. The dynamic control law (19)
is obtained withκ = 0 and ǫ = 0.01, where κ and ε
are the parameters introduced in Section V. The control law
renders the origin of the extended desired system in thex̃-
coordinates a strict local minimizer while preserving the port-
controlled Hamiltonian structure of the closed-loop system.
Local asymptotic stability of the origin of the extended system
in the x̃-coordinates is enforced since the damping matrixDd

is positive definite for all̃x ∈ R3.
Figure 4 shows the time histories of the states namelyx1, x2

andx3 in the originalx-coordinates for the initial conditions
x(0) = [2, 2, 4] and ξ(0) = [10, 10, 12] with the dynamic
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x̃2x1∗ + x̃1x̃2 = −+ d1

(
∂K
∂x̃1

+ 1

)

+ α

(
∂K
∂x̃2

+ 1

)

+ β

(
∂K
∂x̃3

+ 1

)

,

−x̃1 + x̃3 − x̃1x̃2 + x̃2x̃3 = −d2

(
∂K
∂x̃2

+ 1

)

− α

(
∂K
∂x̃1

+ 1

)

+ γ

(
∂K
∂x̃3

+ 1

)

,

(38)

P =










1
2 + 4x̃2 + x̃2

2 + x1∗

x̃2 + 1
1

2 + 4x̃2 + x̃2
2 + x1∗

x̃2 + 1

6 + 22x̃2 + 23x̃2
2 + 5x̃3

2 ++5x2
2x1∗ + x2x

2
1∗ + 18x2x1∗ + 9x1∗ + 3x2

1∗

(x̃2 + 1)2
4 + x̃2(8 + x1∗) + 2x̃2

2 + 3x1∗

x̃2 + 1

1
4 + x̃2(8 + x1∗) + 2x̃2

2 + 3x1∗

x̃2 + 1
x̃2 + 3










(39)
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Figure 4. Top graph: Time history of the state,x1(t) in the original x-
coordinates, of the food-chain system (40) in closed-loop with the dynamic
control law(11). Bottom graph: Time histories of the statesx2(t) andx3(t)
in the original x-coordinates in dashed-dotted grey and solid dark lines,
respectively.
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Figure 5. Top graph: Time histories of the dynamic extensionξ1(t) (solid),
ξ2(t) (dash-dotted),ξ3(t) (dashed). Bottom graph: Time history of the control
input u in (19).

control law (19). The top graph of Figure 5 depicts the time
histories of the states of the dynamic extensionξ and the
bottom graph the control lawu which is positive as required
by the physics of the system.

VIII. C ONCLUSIONS

The IDA-PBC design methodology for PCH systems has
been revisited. An alternative solution to the problem has
been proposed by exploiting the notion ofalgebraic solution
of the matching equation. Such solution is instrumental for
the construction of an auxiliary energy function defined in

an extended state-space, without involving the solution ofany
partial differential equation. The extended energy function has
been employed to pursue two different approaches. To begin
with, under mild assumptions, we have provided a control
law that (asymtptotically) stabilizes a desired equilibrium of
the closed-loop system, without however preserving the PCH
structure. Differently from the classical solution, the stabilizing
control law is given in terms of a dynamic state-feedback.
Then, under additional technical assumptions, the auxiliary
energy function has been instrumental for the constructionof
a dynamic control law that retains the PCH structure of the
extended system. As a noteworthy consequence of the latter
result we have shown that if the matching equation does not
admit a (classical) solution for a desired interconnectionand
damping structure, the auxiliary energy function may be ex-
ploited to construct a (classical) solution to matching equations
corresponding to an interconnection and damping structure
which can be written as the sum of the desired matrices and
continuous perturbation terms vanishing at the equilibrium.
Finally, it is shown that, under the standard assumptions, the
proposed approach yields the classical solution in the caseof
linear PCH systems. The approach has been validated on a
magnetic levitated system and a third order food-chain system
by assigning an interconnection and damping structure that
cannot be imposed with the standard approach. Future research
directions include the application of the proposed approach
to classes of port-controlled Hamiltonian systems, such as
underactuated mechanical systems.
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