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Abstract—The Interconnection and Damping Assignment
Passivity-Based Control (IDA-PBC) problem for port-controlled

Hamiltonian systems is revisited. We propose a methodology

that exploits the novel notion of algebraic solution of the so-
called matching equation. This notion is instrumental for te
construction of an energy function, defined on an extended ate-
space, which does not rely upon the solution of any partial
differential equation. This yields, differently from the classical
solution, a dynamic state feedback that stabilizes a deside
equilibrium point. In addition, conditions that allow to pr eserve
the port-controlled Hamiltonian structure in the extended closed-
loop system are provided. The theory is validated on two physal
systems: the magnetic levitated ball and a third order foodehain
system. A dynamic control law is constructed for both these
systems by assigning a damping factor that cannot be assighe
by the classical IDA-PBC.

I. INTRODUCTION

systems [11], electro-mechanical systems [27], underwate
vehicles [37] and mechanical systems with nonholonomic
constraints [10], [33].

A formulation of PBC known as Interconnection and Damp-
ing Assignment (IDA) has been introduced in [21]. A compre-
hensive discussion on IDA-PBC may be found, for instance,
in [24], [33]. In this scenario, control policies should be
interpreted in terms of actions aimed at shaping the energy
of the controlled system to match the desired behavior. This
may be achieved, for instance, by modifying, by means of
feedback, the structure of the interconnection between the
different subsystems and/or by adding damping to the system
A useful advantage of the method is that there is a physical
interpretation of the control action as insertion of vittua
springs, dampers and constraints [26]. The procedure far ID
as described in [22] and [24] involves assigning a closeg-lo
energy function, together with a desired interconnectind a

Port-controlled Hamiltonian (PCH) models, introduced asd@amping structure, from which a static feedback law can be

generalization of Hamiltonian systems, characterize ssotd

developed by solving a set of partial differential equagion

finite dissipation systems, which include for instance - dmet (PDEs), usually referred to as tmeatching equationin the
not limited to - electro-mechanical systems. They arisenfrongnlinear case, and a set of linear matrix equations, in the
network modeling of energy-conserving lumped-parameigfear case. If the matching equation can be solved then the
physical systems with independent storage elements. Aecogriginal control system and the target dynamical system are
ing to the above framework, a dynamical system is essentiadlajg to match. Similar techniques have been reported for PCH
described in terms oenergy which may be possessed Oryng |agrangian systems in [18] and [16]. The Lagrangian
trangformed by the system itself. This formulation appeagdunterpart of the method has been reported in [7]-[9],.[12]
particularly useful whenever the plant to be controlledlis 036). Finally, an attempt to discuss the effect of the chaite
tained as the interconnection of possibly simpler subsyste the interconnection and the damping matrices on the closed-
the individual energies of which determine the responsaef Yioop performances may be found in [15].
resulting gomplex plant. Stabilization probl_ems for thiass Solution to thematching equatiorhas received a lot of
of dynamical systems may be tackled, for instance, by megfgerest because it remains the stumbling block in makingID
of the so-called Passivity-based control (PBC) method.[34]pgc a viable design methodology. In general, the solution of
Passivity-based control stems from the seminal paper [3#le matching equation is difficult to determine. In [35] the
This well-established approach is widely employed for thepgs are simplified by parameterizing the target dynamics
regulation of PCH systems, yielding effective control desi 4 introducing a change of coordinates in the originaksyist
techniques [25] applicable to a wide class of physical sya:set of sufficient conditions on the system for the solution
tems including mechanical systems [2], [19], [22], powesf the PDEs to exist is reported in [8], while [5] and [6]

o _ provide techniques to solve the PDEs. Mechanical systems
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with underactuation degree one are investigated in [2] revtlie
is proved that the PDEs have solutions if the inertia matnick a
the force induced by the potential energy (on the unactuated
coordinates) are independent of the unactuated coordinate
The main results of this paper are achieved by making use
of a dynamic extension and introducing the notioralgfebraic
solution of the matching equation. A similar approach has
been exploited in [28] and [29] to solve optimal controliusb



problems for nonlinear input-affine systems, in [14] for @dato preserve the PCH structure in the extended closed-loop

tive control problems and in [30] and [31] for the analysisystem are discussed in Section V. The above results are then

of some properties of nonlinear control systems. This motiepecialized to the case of linear systems in Section VI. The

is instrumental for the construction of an auxiliary energiheory is validated in Section VIl on two physical systenhg, t

function defined in the extended state-space. The principahgnetic levitated ball, and a third order food-chain syste

contribution of the paper is then twofold. We firstly propos€or the magnetic levitated ball a dynamic control law to

a methodology that permits the application of the IDA-PB@ssign a damping factor in the velocity coordinate that oann

to PCH systems without involving the solution of any partidbe assigned by determining a closed-form solution of the

differential equation. The approach leads to the constmict matching equations is constructed. Finally, a dynamicestat

of a dynamic, in place of static, control law that allows tdeedback controller is designed for the food-chain systgm b

(asymptotically) stabilize a desired equilibrium of thes#d- obtaining a solution to the algebraic matching equatiogesin

loop extended system, without, however, preserving the P@ht matching PDE cannot be solved. The paper is concluded

structure in the closed-loop system. Then, in the secortdbparby Section VIII with some final comments and suggestions

the paper we discuss an alternative dynamic control law thédr future extensions.

under additional technical conditions, allows to presgirvéhe

cIosed—Ioo_ppxtendecSystem,_the PCH struc_ture correspc_mding Il. INTERCONNECTION ANDDAMPING ASSIGNMENT

to the auxiliary energy function and some interconnectioth a PASSIVITY-BASED CONTROL

damping matrices. In addition, as a consequence of the latte ] ) o

result, we show that, if the matching equation does not agmit Consider the class of nonlinear port-controlled Hamikoni

(classical) solution for a desired interconnection and giag  SyStéms described by equations of the form

structure, the above aqxnlary energy function may be etqzﬂb_ i = (J(z) — D(x))VH(z) + g()u,y = g(z) T VH(z), (1)

to construct a (classical) solution to a matching equation

corresponding to interconnection and damping that can Wberexz(t) € R™ denotes the state of the systenf{) € R™

written as the sum of the desired matrices and continuogsthe input andy(t) € R™ is the output,J : R® — R"*",

perturbation terms vanishing at the origin. J(x) = —J(z)T for all z, is the interconnection matrix,
Dynamic extension has already been considered in the same R” — R"*", D(z) = D(x)" for all z, is the damping

context in [4], where it has been shown that the extensiasleanatrix and H : R™ — R is the continuously differentiable

to equivalent matching equations for the extended systai ariamiltonian function. The mapping: R” — R™*"™ and the

in [23], where it has been shown that there is no advantageatrix-valued functions/ and D are continuously differen-

in considering dynamic feedback from the stabilizationwie tiable. Moreover the mappingis assumed to be full (column)

point. Note that in [4] the authors have provided a somewhaink for all z € R™. Note that the system (1) is passive from

negative result showing that the set of solutions of dkegtic  the inputu to the outputy, providedH is positive definite and

matching equation coincides with the set of solutions of th@ > 0, with the Hamiltonian functiort{ as storage function.

“extended matching equations”. The key difference betweenThe objective of the IDA-PBC design consists in determin-

[4] and this paper is that the approach proposed here emplays a control input: such that a desired equilibrium point

the dynamic extension to circumvent partial differentiqie- of the closed-loop system is (asymptotically) stable arat th

tions and search for solutions of algebraic equations éulste the closed-loop system is described by the equations
Preliminary results that introduce the notion of algebraic T

solution of the matching equation and the construction of ¥ = (Ja(x) = Da(z))VHa(z) ,y = g(z) VHa(z), (2)

an energy function on an extended state-space that yieldg,dere Jg i R" — R™" and Dy : R* — R, Jy(z) =

stabilizing dynamic state-feedback for nonlinear and a'me_Jd(I)T andDy(z) = Dy(z)T > 0 for all z, are the desired

systems hg\{ca_ been presented _in [17].. This paper prOViqﬁérconnection and damping matrices aHd : R — R,
a new definition of the algebraic solution, and a dynamig he desired energy function. The desired energy must be

feedback law that preserves the PCH structure and ensWEStinuously differentiable and such the(z*) = 0 with o*
(local) asymptotic stability of the equilibrium. This pamEso 5 trict (local) minimizer offf,.
contains the proofs of the statements in [17] and two adulfio | o gt : R* — RO=mxn denote the full rank left

numerical examples. , _ __annihilator of the mapping), i.e. g*(z)g(x) = 0 for all
The rest of the paper is organized as follows. Section || € R” and rank ofgl is n — m. The classical solution
introduces the problem under examination. The topic of Seg the IDA-PBC design problem hinges upon the solution

tion 11l is the definition of the notion oflgebraic solution ;- . pn _, R of the so-calledmatching equationnamely
of the matching equation together with some basic notatigf, system of equations

This section also discusses the construction of the extende

energy function together with its properties. Such a fuorcti g(z)* [(J — D)VH (z) — (Jq — Da) (VH(z) + K(z))] =0,

is instrumental for the definition of both dynamic controia 3)
mentioned above, described in Sections IV and V, respeghere VH, = VH + K denotes the gradient vector of the
tively. The first main result, namely the proposed stabitizi desired energy functio/;. Note that the mappingC must
dynamic state-feedback, is discussed in Section IV for #se c satisfy the conditiondK/0z = (9K/0x)T, thus ensuring
of nonlinear PCH systems. Sufficient conditions that allomtegrability of .



In the following we suppose, without loss of generalitytthdbe shown to satisfy the requirements in Definition 2 provided
the equilibrium to be stabilized is* = 0. However, we do not additional technical conditions hold.
require that the Hamiltonian system (1) has an equilibridm a

0 for u— 0. Proposition 1:Consider system (1) and the functiéh in

(4) with L = 0. Let J; = —J], Dq = D] > 0 be such
that .J; — Dy is invertible and theC! matrix-valued function
I11. ALGEBRAIC SOLUTION OF MATCHING EQUATIONS A : R™ — R™*" pe such that the following hold.
The main contribution of this section is the definition of (i) For all z in a neighborhoodt’ of the origint
the concept oélgebraic solutiorof the matching equation (3), : 1
which provides an alternative notion of solution of (3) waith skew{(Ja — D)™ [(J — D) N(z) (6)
involving any partial differential equation or inequalitguch —gA(2)]} = skew{N(z)} .
algebraic solution is then instrumental for the constarcti (i) The matrix (J;, — Dy, )" [(Jo — Do) H — g(0)A(0)] is
of an auxiliary energy function. The latter is then employed  positive definite.
in Section IV to construct a stabilizing dynamic control Jawrhan the matrix-valued function s P(z)
which however does not preserve the PCH structure, and in
Section V to define, under additional technical conditioms, P(x) = (Ja—Da) ™" [(J — Ja — D + Da) N (x) — g(z)A(x)]
classical solution of an auxiliary IDA-PBC problem defined (7)
on an extended-state, hence preserving the PCH structurdSci X-algebraic solutionof (3). o

the closed-loop system. . . Proof. To begin with, it is straightforward to note that
Towards this end, assume, without loss of generality, th@fe matrix-valued function? in (7) satisfies item(ii) of
the energy function of the system (1) is described by thepefinition 2, namely solves equation (5). Then, by (6)

defined as

equation it follows that (J; — Dg)~! (g(x)A(z) — (J — D)N(x)) —
_ SN e (9(@)A(@) = (J = D)N(2))" (Ja — Da)™T = N(@) —
H(@)=d+L z+ 9" Hz + h(z), ) N(z)", which implies, rearranging the terms, that the matrix

P(zx) in (7) is symmetric for allz € X C R™. Finally,

thdeR, LeR", H=H" € R"™" andh : R" R, . = =
W © < N an - item (i) of Definition 2 holds by noting thatP + H =

such thati(0) = 0, Vh|z—o = 0 andV?h|,—o = 0. Moreover, ’ - .
let J(x) = J(0) + Ju(x) 2 Jo + Ji(x) and D(x) = D(0) + _(tJdo _”Dd?)Pl [(Jo_t_— Dol)H—g(O)A(Oﬂ and by recalléng
Di(z) 2 Do + D:(z) with Jy and D, constant matrices and ' (i1) 0 roposition L. _ -
J1(0) = 0 and D1(0) = 0. Similarly, let Jy(z) = J4(0) + Note that, if the matrix-valued functionV, which is
Ja,(2) 2 Jg, + Ja,(z) and Dg(z) = Dg(0) + Dg, (z) £ not uniquely defined, can be given a symmetric struc-

D, + Dg, (). ture for all z € R”, then the condition in (6) reduces
Definition 1: The equilibriumz* = 0 is assignableif 0 requiring that(.Jg —TDd)fl [(J—Q)N(x)—gf\(x)] =
g(0):(Jo — D)L = 0. [(J = D)N(z) — gA(z)] (Ja—Da)™".

In the following we suppose that* = 0 is assignable. Remark 1:The drift vector field in equations (1) may
Consider now anotion of solution of the system of par-pe replaced by a vector field : R* — R", thus
tial differential equations (3) as detailed in the follogin gpandoning the PCH interpretation of (1). Then condi-
definition. Towards this end, let the matrix-valued funotiotion (5) yields algebraic matching equations of the form
N : R" — R"™ " be such thaVH(z) = N(z)z + L, i.e.  g(2)L [F(z) — (Jy — Dg)P(x)] = 0, where the matrix-valued
N(z)x = Hzx + Vh(z). _ . function F" : R™ — R™*" is such thatf(z) — f(0) = F(x)z.

Definition 2: Consider system (1) and fiX; = —J; and Note, however, that the emphasis on the PCH form of (1) is

Dy =D, >0.AC" matrix-valued function? : R” — R"*",  motivated by the fact that this structure may be preserved in
P(z) = P(z)" for all = € R", is said to be at-algebraic closed-loop, as shown in Section V. A

solutionof (3) if the following conditions are satisfied.
(i) The matrix  + P(0) £ H + P is positive definite.

(i) The condition
n Exploiting the notion of algebraic solution of the matching
()" [(J = D)(L + N(x)x) (5) €quation (3) we construct auxiliary energy function defined
—(Ja—Dg) (N(z) + P(z)) ] =0 on an extended state-space whichijs (locally) positive
definite around the desired equilibrium point, aigl such
that its partial derivative with respect tois described by the
sum of the algebraic solution and an approximation erranter
that depends on the mismatch betwaeand the state of the
dynamic extension, namely

Extended desired energy function

holds for allz € X C R™, whereX is a non-empty open
set containing the origin. I = R™ then P is said to
be analgebraic solutionof (3).

Note that the mapping — P(z)z does not need to satisfy
any integrability condition, namely it may not be the gradie
vector of any scalar function, hence it does not constitute g7, (. ¢) = H(a:)—(LTx+d)+leP(§)a:+l||a:—§||fpb, (8)
solution to the original pde (3). The structure of equatibp ( 2 2

is particularly gppealing from the (_30mp_Utational point @w. 1The notationskew{ A} describes the skew-symmetric part of the matrix
In fact, a solution to (5) can be given in closed-form and cam i.e. skew{A} = J(A— AT).



with ¢ € R", whereR = R is a positive definite matrix to for all (z,£) in a non-empty open sét C R™ x R containing
be determined and whetg |3, denotes the Euclidean normthe origin. Consider the dynamic control law

of the vectorv € R™ weighted by the positive definite matrix ¢ = _KV.H (2,6)

M, namely||v||3, = v" Mv. Note that the energy function EHA S/

Hy:R™ x R™ — R, has a strict local minimizer gtz,¢) = uv = (g9(z)"g(z)) g(z)" [-(J - D)VH
(0,0) for any R. In fact, by the structure off in (4), H, can (1 — DNV Hy— (R —® - L.
be written ast(xJ 3 :71[IT7 gT]Hd[IT7 fT]T + hy(z,€), (Ja a)(VaHg — ( (z,9))(x = &) +v
where the matrixt7y = H, € R*"**" is defined as Then there existd{ = K" > 0 such that(z, &) = (0,0) is
B 7P _ a (locally) stable equilibrium point of the closed-loop t®m
H+P+R —-R g
Hy = R R (1)-(11) for all K > K, with v = 0. Moreover, system (1)-(11)

is passive from the input to the outputy; = g(z) "V, Hy.
and hg : R™ x R" — R is such thathy(0,0) = 0, Finally, if the system (1)-(11) is zero-state detectabléhwi
Vhil(z,e)=0,0) = 0 and V*hg|(ze—0,0) = 0. Moreover, respect tay, then, setting) = —ry,, the point(z, £) = (0,0)
a Schur complement argument shows that the makfix is a (locally) asymptotically stable equilibrium of (1)4(Lfor
is positive definite for anyR > 0 provided item (:) of all K > K andx > 0. o
Definition 2 holds. Finally, if thealgebraic solutionis such
that P(z) = P(z)" > 0 andh(z) > 0 for all z € R™\ {0},
then the extended energy functiéfy in (8) is globally positive
definite.

Proof. Consider system (1) and the energy functifip
in (8). Recalling that” is an algebraic solution of the matching
equation (3) and by the structure of the control law as in,(11)
for all (z,¢) € R™ x R™ the closed-loop system (1)-(11) is
Remark 2: An alternative definition o&lgebraic solutioris  described by
discussed in [17], where a continuously differentiable piag

p:R™ — R" is said to be an algebraic solution if it satisfies t = (Ja=Da)VeHa —[(Ja = Da)
9(2)" [(J = D)VH(x) = (Jg — Da)(VH(z) +p(z))] = 0. (R—®(z,9))(z -] +g(x)v,  (12)
However, mimicking the construction in (8) and according to i = _KVH,

the notion of solution introduced in [17], the extended gger

function H, in (8) contains the term(¢)z, which may prevent The term in (12) that prevents the system from being in
H, from being globally positive definite. A port-controlled Hamiltonian form stems from thmismatch

between the mapping — P(z)x, which may not be the
gradient of any scalar function, and an actual solution ef th
IV. DYNAMIC INTERCONNECTION ANDDAMPING system of partial differential equations (3). Consider rtbe
ASSIGNMENTPASSIVITY-BASED CONTROL time derivative of the energy functiai,; along the trajectories

In this section it is shown that the extended desired energythe system (12), which can be written as
function Hy in (8) permits the construction of a dynamicH e T e OTUM +~CTEO 2 (2 — )17 T
control law that (asymptotically) stabilizes the desireflie ¢ 2" (@ =€) J(M + o' @ =& ] +vav,
librium point z*, provided the latter is assignable. Additionalhere C'(z,£) = [V (z,£) — R] is an x 2n matrix with
conditions that allow to preserve the PCH structure of th@nstant rank, equal to, for all (z,¢) € R™ x R™ and
closed-loop system are discussed in Section V. T

To streamline the presentation of the following result defin M(z,§) = (N7 +P)Da(N +P) Tr
the continuous matrix-valued functio® : R™ x R" — S

R™"™ such that(P(x) — P(&))z = ®(x,&)(z — &) and _ . _oanT B .
the matrix-valued functiofmAr : R" x R®* — R"*" as with I'p = Z(N + P)(Ja + Da)(R q.))' By emp_loylng )
arguments similar to those introduced in [3], the inequalit

Ap(z,8) = U(z,)TRY(R—®(x,8)) ", with U(z,&) = =T . ) ) -
la}%((zf(gg))x)/ag (l:ilogt)e that (accordi(rfggt)o) the above(:éegfi)nitions(lo) implies that the matrix(/ (z, ) is positive definite for
2 > > '

; L o all (z,§) € R™ x R™ in the intersection betweef and
the partial derivatives of the energy functidi; in (8) are the null space of the matriC(, ). This result, in turn,

;o (13

given by guarantees the existence of a matfix = K ' > 0 such
V:Hy = VH-L+Pz+R(x—¢) that M (z,¢) + C(z,&) T KC(z,€) > 0 for all K > K and
= (N(x)+ P@)z+ (R—®(z,8))(x—¢), all (z,€) € Q. HenceH, < y] v, ensuring passivity of the
VeH, = W(z,&)z— R(x—£). system (12). Therefore, the proof is concluded by noting tha

9) the definition of the input imply that the origin is a (locally)
stable equilibrium point of the closed-loop system. Asyotipt
Proposition 2:Consider the PCH system (1). Léf = —J;  stability is proved by setting = —kg(z) "V, Hq, x > 0, and
and Dy = D; > 0. Let P : R" — R"*" be an algebraic exploiting the zero-state detectability property togetiith
solution of (3). LetR be such that LaSalle’s invariance principle. O

(NT + P)Dy(N + P) + %(NT + P)(Ja+ Da)Ag Remark 3: By the arguments employed in the proof of
1 (10) Proposition 2 it appears evident that the assumption of-zero
+§AR(Jd +Dg) (N +P)>0, state detectability of the system (1)-(11) from the output



may be replaced by assuming that the maftix is positive equation (3) corresponding to the interconnection and dagnp
definite for allxz € R™. A structure which can be written as the sum of the desired
hmatricest and D, and some continuous perturbation terms
vanishing at the desired equilibrium.

Towards this end, let

Exploiting ideas similar to those in the previous remark, t
following result shows that the condition (10) can be (Ibgal
satisfied provided the desired damping matkix is positive
definite. 7(x,€) £ | Vo Hal3, + IVeHallys, » (14)

Proposition 3:Consider the PCH system (1). Léf = —JdT with H, defined in (8), where > 0, M, = MJ > 0 and
and Dg = Dj > 0. Let P : R" — R™*" be an algebraic )/, = M, > 0 are to be determined. Moreover, define
solution of (3). Then there exists a non-empty open(set
R" x R™ containing the origin such thatTthe condition (10) L.(z,8) £ P:}ng’ (VoHa)" M,,
?a(l)slgfnﬁgt?c”)(zt’a%|i€tchE?r?1;O(;narslil/ftemR(l)ilol') sodste Pe(w,€) & S (VeHa) T Me,
Proposition 2 hold. o with pr(z,&) £ (Jg— Dg)(R—®(x,))(z— &), and consider

Proof. The claim is proved by noting thatthe submanifold\i C R™ x R™ defined as

OP(&)x
5| (s 6-(0,0) = 0 hence Ap(0,0) = 0. Then, by M2 {(,6) eR" xR : VeHy(w,§) =0}, (16)

continuity of the functions on the left-hand side of inedyal

(10), it follows that (10) holds in an open neighborhood of Proposition 4:Consider the PCH system (1). L&f = _J;—

the origin providedD, is positive definite. O andD, = D:ir > 0. Let P : R* — R"*" be an algebraic
solution of (3). Suppose that there exist positive definite
matricesM,, M, and R and a non-empty sdd, containing
the origin, such that

(15)

Remark 4: Since the dynamics of the auxiliary varialge
is adesign parametetthe choicet = i, £(0) = x(0) — which
clearly ensureg(t) = z(t) for all t > 0 — seems to be ap-
pealing. In fact, this selection cancels the approximagioor span {pr(z, E)VuHy) " M, + M, (V. Hy)pr(z, g)T}
term in the first partial derivative in (9). A similar apprdetas a7)
been pursued in [1] where the extended system is expresised subset ofpan{D,} for all (z,{) ¢ M and
in the error coordinates = x — £. However, it is interesting pr(@,€) pr(z,6)T
to note that the restriction of the energy functiéfy to the VT’Q(VIH@TME + Mz(vad)W +Dqg >0
invariant submanifold{(z,¢) € R” x R” : ¢ = z}, namely V2 Hal IV Hal (18)
Hy(,7) = H(x) = (L"2 4 d) + 32" P(x)z does not allow for gl (4,¢) € M N Q. Then there exist > 0 and a non-

to ensure stability of the zero-equilibrium of the systen (1empty setQ ¢ R x R” such that system (1) in closed-loop
This is due to the additional terz " P(\)z|x—, in the with

partial derivative of the restricted energy functiéfy(z, z). : T
The corresponding term in (9) is dynamically compensated ¢ = —KVeHa+T¢ VoHa,
forin Hqg by { = —KV¢H,. A —— (ng)*lgT [(Ja — D4)VyHyg — el V. Hy (29)

Remark 5:Differently from the classical solution of the —LeVeHa — (J = D)VH] = rg" Vo,
IDA-PBC design problem, the algebraic solution does nean be written in PCH form for al(z,£) € © and for any
allow in general to preserve the port-controlled Hamilgani ¢ € (0, £). o
structure, unlgss additiongl techn_ical conditions arésfeed, Proof. By definition of 7 in (14) and recalling thatz, ¢) =
as c_hscgssgd m_the following secuo_n. However, the IDA'PE_’ ,0) is a strict (local) minimizer ofH,, it follows that
de5|gr_1 is given in te_rms of the solutl(_)n o_f_a PDE, represegntin 0,0) = 0 and7(z,£) > 0 for all (z,¢) in a neighborhood
a serious obs_truct|0n to the appllcab|llty of the standa of the origin. Moreover, noting that each entry of the n
approach outside classes of specially structured systems. matrices at numerator and the scalar function at denominato
of I'y, and I'c are, by (9), locally quadratic functions of
V. EXTENDED PORT-CONTROLLED HAMILTONIAN (z,&) implies that the matrices in (15) are continuous for
SYSTEMS all (z,€) € Q\ {0} and bounded for allz, &) € Q by the

Proposition 2 implies that the dynamic control law (11?“)Ioertles ofr. Then note thapy, is given by

stabilizes a desired (assignable) equilibrium of the ddsep . v m, + [eVeHy = PR (EHVdeH?w + | VeHal%, ) .
system without, however, preserving the PCH structurehig t ' T ’ ' 220)
section we provide sufficient conditions that allow to eKaCtTherefore, by (20) and recalling the arguments in the préof o
preserve the PCH structure in (12). In addition, we empley t roposition 2, the closed-loop system (1)-(19) can be exitt
above result to show that, if the matching equation (3) dogg

not admit a (classical) solution, for a given interconrmatand

damping structure, but amlgebraic solutioncan be obtained, © = (Ja— Da)VaHa = elsVoHa = TeVeta + g(z)v,
then the extended energy functiéh is exploited to construct ¢ = —KV¢H;+ F;vmﬂd )

a classical, hence static, solution to the partial difféegn (22)



for all (z,¢) € Q. Let now I'¥ and I'? denote the sym- exists a classical, static, solution to a matching equation
metric and the antisymmetric parts of the matfix, re- corresponding to the interconnection and damping stractur
spectively, namelyl'¥ = sym{I.} = (I'x + I'})/2 and given by the sum of the desired matrices and some continuous
'Y = skew{l',} = (I, — T'[)/2. Then, by the assumptionfunctions ofz, which vanish at the desired equilibrium.

on (17), there exist a sufficiently smalland a non-empty set Theorem 1:Consider the PCH system (1). Ldf = —J]

V}fl < Q\A}/ﬁvsutl\:/lh tha@dtﬁr Zto.;;)r aIIIie (EIZ ‘? andd for andp, = D > 0 and suppose that the matching equation (3)
all (z,£) € W, Moreover, the matrisDq+eI', which reduces admits analgebraic solution P. Then there exist continuous

to the left-hand side of (18) i, is positive semidefinite by g ; . mn nxn _

assumption for al(z, &) € Wy & (M N Q) NS Thus, letting ma(\g;x la'ﬂ‘f,d(;‘)’?cf:jjg . I;in :Z [ﬁ{nxn }])S(?g) _ 8
z=[zT, ¢T]T, system (21) can be written in port—controlledéS () = D S(x)r "and ans e'nergy functior .SRn 4R
Hamiltonian form as that solves the partial differential equations (3) asgedido

3= (J.(2) = D.(2))V.Hq + G(2)v, (22) the interconnection and damping structure givenJy- J,
ith and D, + D;, respectively. o
Wi
(Ju— eT%) r (Da+cT3) 0 Proof. By definition of algebraic solution
d— T —1¢ d T
Ja = [ r] 0 ] D= = [ 0 x| 9@ (I = D)VH = g(z)~(J = D)(L + N(x)z)

= g(2)*(J4 — Da)(N(2) + P(z))x
= g(x)J-(JE - Da)vad - FngHd s
with Jo = Jg—elg(z,§) andD, = Dg+el;(x,§), where the

last equation is obtained by (5), and the results in Projoosit
rTalnd Corollary 1. Recalling now that:, £) = (0,0) is a strict

and G(z) = [g(x)" 0]T, for all (z,£) € Wy UW;, thus
proving the claim. O

Note that the constant is employed to distribute, in
equation (20), the contribution of the matrix coefficieits
andI'¢, which do not play a symmetric role in the definitio e X
of extended PCH system (22). In fag¥ only contributes to ‘0@l minimizer of fy, it follows that VeHal(@.6=0,0) = 0
the interconnection matrix/, that does not need to satisfyand vffHdl(””-f):(O-P) > 0. Th.us, by the. Impllc_lt Functlon.
any additional requirement apart from being skew—symm,etriTheorem there exists a continuously differentiable fuorcti

R™ — R" such thatVeHgl¢—y ) = 0. Then, by

while T% appears inD, that, on the other hand, must be’ _ d
positive semi-definite. [4, Prop. 3], the functionH(x) = Hy(x,v(x)) solves the

matching equation (3) corresponding to the interconnactio

Corollary 1: Consider the PCH system (1). Lé§ = —J; j, — el (x,~(z)) and the dampingDy + el (z, y(z)).
and Dy = D; > 0. Let P : R* — R™*" be an algebraic As discussed in Remark 6 the matrid, (z,~(z)) does
solution of (3) Suppose that there exists a non-empt)ﬂset not depend UpOIE. Moreover, by the properties of it
containing the origin, such that (18) holds for @i §) € MN  follows that ||V, Hy(z, v(2))|3,,, namely the denominator
2. Then there exist > 0 and a non-empty sét C R" x R™  of ", (2,v(z)), is (locally) positive definite and given by
such that the closed-loop system (1)-(19) can be written fRe sum of quadratic functions of and higher order terms.
PCH form for all (z,£) € © and for anye € (0,¢). ¢ Finally, the choiceR = ®(0,7(0)) = 0, which renders

Proof. The claim follows immediately from the argumentdn€ function Hu(z,~(x)) (locally) positive definite in the

employed in the proof of Proposition 4 and by noting thdgstrictedx state-space, is such that each entry of the matrix at
Dy is positive definite. B the numerator ofI', (z,v(x)) has at least cubic terms in the

variablez. Therefore, the matrixI',(z,v(x)) is continuous

Remark 6:As suggested by the proof of Proposition 4for all z € R™ and such thatI';(0,~v(0)) = 0, concluding
the matrix eI",,, which perturbs the desired interconnectiothe proof. O

and damping matrices, can be rendered arbitrarily small in

some non-empty set containing the equilibrium by selectir}gI

a sufficiently smalle. Moreover, the neighborhoow/; and S - ;
the constant are strongly related since the set, can be empty compact se&f, containing the origin, such that the exis-

enlarged by considering increasingly smaller values.odn tﬁnce _Of a solu';lon tt} the dynf;:mlc m_atchmgh_equatlon |_mpl|es
the other hand, for allz, ) € M, the matrix the existence of a solution to the static matching equation ¢

(0.0 (. responding to an interconnectidp and dampingD, structure
p(x,§ T p(x,§ T satisfying sup; N(Ja(x))ij — (Je())ijll < 1
el'y =¢ (VoHy)' M, = ———=5—(V.Hy)' M, i,j€{1,...,n},z€C d 2] e 2]

7(@,€) Ve Hall3, and sup, jc 1, njvec [(Da(@))ij — (De(@))ij| < p In
does not depend upan hence it cannot be rendered arbitraril)?ther words, the solution to the dynamic matching equation

small for sufficiently smalk, motivating the rationale behind |mp||e_s the eX|stence.of a local golutlon to th_e static maigh .
inequality (18). equation corresponding to an interconnection and damping

structure arbitrarily close to the desired one. A
We are now in the position to state the following result,

which shows that if the matching equation (3) does not admitRemark 8: The nature of the results in Theorem 1 is
aclassicalsolution for a desired interconnection and dampinigtrinsically local by definition ofy as in the Implicit Function
structure but it does admit amlgebraic solution, then there Theorem. Hence, even though Theorem 1 shows that there

Remark 7: The results of Theorem 1 can be interpreted as
lows. Given any positive constapt> 0 there exists a non-




exists a (local) classical static solution to an IDA-PBClpro Let R = 0, then the pointz, £) = (0, 0) is a stable equilibrium
lem corresponding to interconnection and damping matricekthe closed-loop system (23)-(25) for &l > 0 andx > 0.
arbitrarily close to the desired ones, it may be preferable If, in addition, (23)-(25) is zero-state detectable witlspect
implement the dynamic control law (19), in place of the statito the outputy, = B'(H + P)z, then, for anys > 0,
feedback provided by Theorem 1, since the latter may enforcg) asymptotically converges to the origin. Moreover, (25)
a smaller domain of stability of the assigned equilibriuma. reduces to the classical (static) solution of the IDA-PBEigle

. . roblem for linear PCH systems. o
Finally, an alternative result that allows to preserve t¢iP P 4

structure, provided an additional technical assumptiothen ~ Proof. Note that, sinceR = 0, (H + P)z = V,Hy, and

algebraic solutior? is satisfied and if the matri® is allowed the closed-loop system becomes, with= 0, by definition
to vary over time, is presented. of w in the second of equations (25) and by definitionfof

. . in (24) T = (Jd — Dd)V Hd,f = —KV§Hd Then, Hd =
Proposition 5:Consider the PCH system (1). L&} = —JJ  blockdiag(H + P ,0), which allows to prove the first claim
andDg = Dj > 0. Let P be an algebraic solution of (3) py recalling thatd + P is positive definite by assumption.
such that®(z,§) = ®(x,€)" > 0 in some non-empty 0pen The dynamics of in (25) become — 0, hence the second
neighborhood? of the origin. LetR(t) = ®(x(),£(t)) for  equation reduces to the classical static state-feedbdekigo

all t > 0. Then the closed-loop system (1)-(11) reducgfe |DA-PBC problem for system (23). 0

to 2 - (J: — D:)V.Hg for all (z,€) € Q, with J. = The statement of Corollary 2 entails that stability of the
blockdiag(Js,0) and D = blockdiag(Dy, K). ¢ zero equilibrium of the extended system (23)-(25) is erddrc
Proof. The claim follows directly recalling the argumentgvithout additional restrictions on the choice of the matrix
in the proof of Proposition 2, namely the structure of systedt. The following proposition proves that the same result is
(12). O achieved by showing that system (23) in closed-loop with an
alternative dynamic control law exhibits a PCH structure.
Remark 9: Despite the fact that the clos_(_ed-loop sy_s_tem Proposition 6: Consider the PCH system (23). Ldf =
(1)-(_11) possesses a PCH strTucture, an additional condgio —J] andDy = D] > 0. Let P be a solution of (24) and
required to ensure thdty g Ya Vs due to the depend_ency ofConsider the dynamic control law
the energy functiorf{; on time via the matrixz. In particular, )

following the same arguments as those in the proof of Preposi ¢ = (Ja+ Da)VoHy — KV¢Hq,
tion 2, the conditiont T 1RV < Q(NT-FP)Dd(N-i-P) u = (BTB)leT[(Jd _ Dd)((H + p)x) (26)
implies the existence ok = K " such thatH,(t,z,&) <y v _ .
for all K > K. A (J—D)(L-FHZC)]—I{B V.Hy.
Then the closed-loop system (23)-(26) can be written in PCH
form. o

VI LINEAR SYSTEMS Proof. Note that, settingy = 0, according to Corollary 2

In this section we specialize the results to the case offineghe closed-loop system (23)-(25) can be written as
time-invariant, PCH systems, namely i (Ju— Da)(H + Pz,
d — Hd

. 27
= (J — D)VH + Bu, (23) ¢ (Ja+ Da)VoHa — KV¢Hq. 0

where the energyd is defined as in (4), with the function Consider now the gradient of the auxiliary functidf; as
h identically equal to zero, and® € R"*™ has rankm. in (9) which reduce, in the linear case, to

The proposed approach leads, under standard assumptithns an V.Hy = (H+P)r+R(x—¢)

for a specific choice of the design parameters, exactly to the ’ (28)
classical solution of the IDA-PBC problem for linear sysgeem VeHg = —R(x-—¢).

The matching equation (3) reduces to Note now that H + P)z = V. Hy+ V¢ Hg, which, substituted

1 — DV(L + Ha) — — DN + Pl = 24 intp the closed-loop system (27), proves that the latter beay
[(7 )L+ He) = (Ja (H + P)a] =0, (24) written as the PCH systeth= (J — D)V, Hy, with
for all x € R", where the matrixB+ € R("~™)x" of rank . J (Ja — Dy)

n—m is such thatB* B = 0. Note that in the linear case the J = (J4+ Dy) 0
desired energy function becomés(z) = 32" Hyz.

Corollary 2: Consider the PCH system (23). L&t = —J ]

and Dy = D; > 0. Let P be a solution of (24) such that VII. A PPLICATIONS MAGNETIC LEVITATED BALL AND A
H + P > 0 and consider the dynamic control law THIRD ORDER FOODCHAIN SYSTEM

and D = blockdiag(Dg, K ), hence the claim. 0

= —KV:H,, We motivate the constructive IDA-PBC approach presented
- L in this paper by designing a state-feedback controller for a
u = (B'B)"'B [(Ja=Da)(H + Pz + R(x =) magnetically levitated ball and a third order food-chaisteyn.
—(J—D)(L+ Hz)]—kB'V,Hy. In both cases, the control design is based on the theory
(25) discussed in Sections IV and V.



the interconnection structure of system (31). This negativ
result may be intuitively explained by noting the lack of
coupling between the electrical and the mechanical subs\sst
resulting from the interconnection matrikassociated to (31),
which couples only the velocity with the position. Therefor
an Interconnection and Damping Assignment passivity-dbase
control problem should be solved. It is shown in [21] that
selecting the desired interconnection matsix such that it
couples the fluxz; and the velocityrs - while preserving the
damping structure of system (30) or removing the damping
from the electrical subsystem and adding it to the position -
yields a system of partial differential equations of thenidB),

the solution of which can be provided in closed-form, seqd [21
for more details.

Figure 1. A schematic representation of the magneticaihtaid system TQ iIIu_strate the rF{SUItS presente_d in Section V we !et the
desired interconnection and damping structure be defined by
the matrices

A. Magnetic levitated ball

1) Model: A magnetic levitated system which consists of 0 a B diy dip dys
an iron ball of massn, in a vertical magnetic field created J¢ = | =@ 0 v | ,Da= | diz dx doz |, (32)
by a single electromagnet is shown in Figure 1. The flux -8 = 0 diz  dy3  d33

generated by the magnet is assumed to be unsaturated,

A = n(0)i whered is the difference between the position ofvhere «,j3,y are functions to be defined and

the center of the ball and its nominal position, with thexis @11 ,d12,d13 , d22 , d23 anddss, are such that, is positive

oriented downward; is the current flowing through a coil definite. Note that/; is such that the flux:; is coupled with

of resistance, 7(#) denotes the value of the inductance. B§he velocityzs, as in [21], and the position> and, unlike

combining Kirchoff's voltage law and Newton’s second lawn [21], a positive definite damping matrix is considered.

and by considering an approximation for the inductance, ti&e latter matrix allows to conclude asymptotic stability o

dynamics of the system may be described by the equations [ﬂ’]_q desired equilibrium without the need for the additional
passive output injection, namely with = 0. The interest in

Atrio= u, (29) the selection of/; and Dy as in (32) lies in the fact that,
mf = F—mg, with this choice, the resulting matching equations (3)
where F' is the force induced by the electromagnet, which is
proportional to the derivative of the inductance with retpe (a+ d12)3_’C + d223_’C (- d23)3_’C _
to the displacemend and to the square of the curreit 0z Oz2 Oz3
i.e. F oc (On/06)i%, while g denotes the acceleration due to OH OH OH
gravity. In particular, borrowing the approximation fro21]] —(a+ d12)3—xl - d223—562 + (7 = das - 1)3—173 )

we letn(0) = k/(1 — 0), wherek is some positive constant oK oK oK
that depends on the number of coil turns, in the domain (8 +dy3)— + (y +doz)=— + dzz— =
6 € (—oo,1). It has been shown in [21] that the system Oz Oz Oz

(29) can be written in PCH form with the state variable —(ﬁ+d13)a—H (7 + o — 1)8_H —d338—H,

x = [\, 0, mb], and the Hamiltonian function Oxy 0xs 0xs
H(x) = ig —x0)x? + %xg + mgxs (30) Which have been obtained by letting
m
yielding N 01 0
_ 7= [0 0 1] ’
r 0 0 OH 1
i=]10 0 1| =)+ |0|u. (31)
0 -1 0 Oz 0 do not admit a solutioriC : R3 — R. However, we show
_— in the following that, by letting the desired interconneati
J—D . . . . .
and damping matrices be possibly functiorugfan algebraic
The equilibrium to stabilize is:, = [/2kmg,x2+,0], i.e. @ solution can be determined for the above Interconnection
constant position of the ball. and Damping Assignment passivity-based control problem,

2) Controller design:It has been shown in [21] that theleading to a dynamic control law of the form (19). Towards
energy shapingroblem cannot be solved for system (31) witlthis end, and to fit into the theoretical framework introdiice
H as in (30),i.e. the equilibriumz, cannot be stabilized by in the previous sections, consider the change of coordinate
assigning a desired energy functiéfy(x) while preserving z = z—uz.. In the new coordinates the gradient of the function



[ ci? 0 0 T
N 1 3miy — 2k + 6mEi- 1
Dq = m(3cz? + 4) 12mk(3cz? + 4) 3m | - (35)
o B3mii—2k+6mE- 1 (F1 + 2z1+) (ci2 + 1)
12mk(3cz? + 4) 3m 2k(3cz? + 4) i
r 0 cil 41 (@14 2010)(2eT +3) T
m(3ci? +4) 2k(3cz? +4)
71+ 1 3m@1 + 2k + 6mi- 1
Ja2 e 0 ! LA I 36
¢ m(3ci? + 4) 2mk(a +4) | 3m (36)
(F1 4 2x1+)(2ci1 +3)  3mid 42k +6ma- 1 0
L 2k(3cz? + 4) 12mk(3cz? + 4) 3m _
; It is now easy to show that the matrix-valued function
al . 2 1 1
_ _ | P@ 2|1 2+ci? 1 (35)

1 1 2

’ ° ' " ’ ° solves the algebraic equation (5) in the form discussed in
details in Remark 1, namely it is such thatz):[(J —
D)N(z) — (Jg— Dq)P(z)] = 0. The above under-determined
system of equations has been solved by fixing a desired
structure for one of the independent variables, nanitland
consequently computingy; and D; by means of standard
software performing symbolic computations. Note tf#atn
Figure 2. Top graph: Time history of the staig(t), in the original z- (35)_ c_i_epends On_ th_e parameter- O Moreover’ |temQ of
coordinates, of the electrical subsystem of (31) in cldsep- with the Definition 2 is satisfied by the functiaR in (35). Interestingly,
dynamic control law (11). Bottom graph: Time histories o ttates, in the the mappingz — P(x)a: is not the gradient of any scalar

original z-coordinates, of the mechanical subsystem of (31), namely) iti i ; . .
ands(t), gray and dark line, respectively. positive definite function. In fact, the Jacobian matrix

T9,T3

time(s)

. OP(x)x ; 21 !
H in (30) becomes 9~ | TH2cmme crit+2 1
1 1 2
1 N
E(l—xg* —1‘2)($1 +$1*) _ _ ) ) N
1 is not symmetric for all: € R3, whenever: is strictly positive,
VH — mg — ﬂ(iﬁ +21+)? (33) which is on the other hand the requirement needed to enforce
1 ’ (local) positive semi-definiteness of the damping matpix
—3 In the following numerical simulation the objective is to
m

stabilize the ball ats+ = 1. Letr = m = k£ = 1 and consider
the damping and interconnection structure in (35) and (36),
respectively. The dynamic control lawis obtained according
to (19) withc = 0.1 ande = 10~3, which renders the origin

which yields L = [z;+(1 — 29+)/k 0 0]T & [¢; 0 0]
according to the definition off in (4). Suppose that the

desired equilibrium to stabilize ig;- = 1, then a non- of the Z-coordinates a strict local minimizer of the extended
symmetric matrixV, as in Definition 2, can be defined: desired energyi, defined in (8), ands — diag({10,10, 10}).
0 _1(561 +a1:) 0 Note_ thaF the control If_;lw (19) preserves the Port-contdolle
1/1 k Hamiltonian structure in the closed-loop extended system,
N@E) =| —= (—:El + x1*> 0 0 ) which allows, together with the fact that the damping matrix
k 1 D, is positive definite, to enforce local asymptotic stabitify
0 0 — the origin in thez-coordinates without the additional output

(34) injection, namely withx = 0 in the second equation of (19).
Considering the equation (5) introduced in Definition 2 to- The top graph of Figure 2 shows the time history of the
gether with the comments contained in Remark 1,/lgtbe state, in the originat-coordinates, of the electrical subsystem
defined as in (35) which is locally positive definite providedf (31) for the initial conditionst(0) = [0,0,0] and£(0) =
¢ >0, andJ; be defined as in (36). [10, —20, 10] in closed-loop with the dynamic control law (11).
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limitation the damping of the closed-loop system is modified
\‘ | | | | to be D, = diag(0, 0, x3) which is clearly positive semi-
o = T definite. To address this IDA-PBC problem and illustrate the
-10-~ ~ ~ ~ ~ 1 results presented in Section IV consider a shift of coortdima

‘ ‘ ‘ ‘ & = x — Z. The dynamics of the system in the new

05 . L 2 25 coordinates is described by the matrix

0 :flli‘Q + i’g:ﬂp 0
*i‘li'g — .%21‘1* *.’2’1 .’fgfg + .’zg.’El* + :12'3 5
0 —ToX3 — ToT1+ — I3 —T2 — I3

J(z)—D(z)

i 1‘.5 2 25 ~
time(s) g=100,0,1]T, H =2+ &+ a3 andi = u — 2(x1- + 1).
Let the desired interconnection and damping matrices be

Figure 3. Top graph: Time histories of the dynamic extengioft) (solid),

£2(t) (dash-dotted)¢s (¢) (dashed). Bottom graph: Time history of the control 0 a f d 0 0
input « in (11). Jix)=1| —a 0 v | ,Dgz)= 0 dy O
-5 =y 0 0 0 ds

~The bottom graph, on the other hand, displays the timghered; > 0 for i = 1,2,3, so thatD, is positive definite.
histories of the states, in the originatcoordinates, of the The structure off; and D is motivated by the interconnection
mechanical subsystem of (31), namely(t) and z3(¢). Fi- and damping matrices of the original system and by noting

nally, Figure 3 shows the time histories of the states of thRat the resulting matching equation (38) that are obtaimed
dynamic extensiorg(¢), and of the control law: in (11), top |etting

and bottom graph, respectively. n 1 00
g = )
0 1 0
B. Third order food-chain system do not admit a solutiork : R? — R. Note that the achiev-

1) Model: Consider the normalized third order food-chaifble equilibrium[0,0, 0] satisfies the conditiog[(Jo —
system from [13] for which an IDA-PBC controller has beed?)L] = 0 with L = [1,1,1]" and that the matrix}V'
designed in [20] In this food-chain system the variable in Definition 2 is the zero matrix. To find a matrix-valued
for i = 1,2,3 represents the population of thieth species function P that satisfies items)and (i) of Definition 2, let
involved in the system. The growth rates of the population {2a(z) = I and.J; be defined to be

given by 2Z9 +x1+ + 1
b = filz) -, 0 1 TS
':'CQ - _fl(x)+f2(a:) — T2, (38) _1 O 3562 +ZC1* +2
i3 = —fa(z) -3 +u. Tg+1
The functionsf, (z) and f»(z) describe the predation mech-| _2¥2 +21- + 1 3%z + 21+ +2 0
anism, such as for instance Lotka-\olterra mechanism. It T2 +1 To+1

assumed that the rate of predation upon the prey is prophris easy to show that the matrix-valued functiéhin (39)
tional to the rate at which the predators and prey met is a solution of the algebraic matching equation (5), namely
fi(z) = z129 and f2(x) = w223 The terms—x1, —xq, —23  g(2)*[(J — D)L — (Ja — Da)P(Z)] = 0 and satisfies itemi)
represent the rate of loss of predators due to natural deathodDefinition 2. The mapping — P(Z2)Z is not the gradient
emigration and the control actianis the rate of preys being of any positive definite scalar function. This can be infdrre
added to the system. It is clear that the food-chain systé@h (®y noting that the Jacobian matrix &7 )z is not symmetric
can be written in @ PCH form wittf = zy 4+ 22 + 23, for all z € R3.

g=1[0,0,1]T and The numerical simulations of the third order food-chain
system have been performed to stabilize the population at

J _IOI Ilon xox Do 13 a? 8 = [1,1,2], ie z;- = 1. The dynamic control law (19)
- 12 P I 2 is obtained withk = 0 and ¢ = 0.01, where x and ¢
0 —Tox3 0 0 0 3

are the parameters introduced in Section V. The control law
The evolution of the system is restricted to the positiveant renders the origin of the extended desired system inzthe
with « > 0. The control objective is to stabilize a given noneoordinates a strict local minimizer while preserving thetp
zero equilibriumz € R3.. Note that the achievable equilibriacontrolled Hamiltonian structure of the closed-loop syste
arer = [Z1, To, 71) ' = [x1+, 1, 1 + 23] 7, with z1- > 0. Local asymptotic stability of the origin of the extendedtsys

2) Controller design:It has been shown in [20] that thein the Z-coordinates is enforced since the damping mafrix
matching equation PDE cannot be solved whin= J and is positive definite for alk: € R3.
with a D4 > 0 because the distribution spanned by the vector Figure 4 shows the time histories of the states namely:
fields defined by the column vectors obtained from the firandzs in the originalz-coordinates for the initial conditions
2 rows of J(z) — D(z) is not involutive. To overcome this 2(0) = [2,2,4] and £(0) = [10,10,12] with the dynamic
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Figure 4. Top graph: Time history of the state;(¢) in the original z-
coordinates, of the food-chain system (40) in closed-logih the dynamic
control law(11). Bottom graph: Time histories of the stategt) andz3(¢)

in the original z-coordinates in dashed-dotted grey and solid dark lines,

respectively.
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i
35

2 25 35
time(s)

i
0.5 15

Figure 5. Top graph: Time histories of the dynamic extengioft) (solid),
&2(t) (dash-dotted)ss (¢) (dashed). Bottom graph: Time history of the control
input w in (19).

control law (19). The top graph of Figure 5 depicts the tim
histories of the states of the dynamic extenstorand the
bottom graph the control law which is positive as required
by the physics of the system.

VIIl. CONCLUSIONS

The IDA-PBC design methodology for PCH systems hagf]
been revisited. An alternative solution to the problem has

been proposed by exploiting the notion afebraic solution

of the matching equation. Such solution is instrumental for
the construction of an auxiliary energy function defined in

an extended state-space, without involving the solutioarnyf
partial differential equation. The extended energy florctias
been employed to pursue two different approaches. To begin
with, under mild assumptions, we have provided a control
law that (asymtptotically) stabilizes a desired equililomi of

the closed-loop system, without however preserving the PCH
structure. Differently from the classical solution, thalstizing
control law is given in terms of a dynamic state-feedback.
Then, under additional technical assumptions, the auyilia
energy function has been instrumental for the construatfon

a dynamic control law that retains the PCH structure of the
extended system. As a noteworthy consequence of the latter
result we have shown that if the matching equation does not
admit a (classical) solution for a desired interconnectad
damping structure, the auxiliary energy function may be ex-
ploited to construct a (classical) solution to matchingagtpns
corresponding to an interconnection and damping structure
which can be written as the sum of the desired matrices and
continuous perturbation terms vanishing at the equiliriu
Finally, it is shown that, under the standard assumptidres, t
proposed approach yields the classical solution in the ohse
linear PCH systems. The approach has been validated on a
magnetic levitated system and a third order food-chairesyst

by assigning an interconnection and damping structure that
cannot be imposed with the standard approach. Future odsear
directions include the application of the proposed approac
to classes of port-controlled Hamiltonian systems, such as
underactuated mechanical systems.
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