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MISO Networks with Imperfect CSIT: A
Topological Rate-Splitting Approach

Chenxi Hao and Bruno Clerckx

Abstract—Recently, the Degrees-of-Freedom (DoF) region of
multiple-input-single-output (MISO) networks with imperfect
channel state information at the transmitter (CSIT) has at-
tracted significant attention. An achievable scheme, known
as Rate-Splitting (RS), integrates common-message-multicasting
and private-message-unicasting. In this paper, focusing on the
general K-cell MISO IC with an arbitrary CSIT quality of each
interfering link, we firstly identify the DoF region achieved by
RS. Secondly, we introduce a novel scheme, so called Topological
RS (TRS), whose novelties compared to RS lie in a multi-layer
structure and in transmitting multiple common messages to be
decoded by groups of users rather than all users. The design
of TRS is motivated by a novel interpretation of the K-cell IC
with imperfect CSIT as a weighted sum of a series of partially
connected networks. We show that the DoF region achieved
by TRS yields the best known result so far, and we find the
maximal sum DoF via hypergraph fractional packing. Lastly,
for a realistic scenario where each user is connected to three
dominant transmitters, we identify the sufficient condition where
TRS strictly outperforms conventional schemes, and show that
TRS is optimal for some CSIT qualities.

I. INTRODUCTION

Channel state information at the transmitter (CSIT) is cru-
cial in downlink multi-user transmissions. However, acquiring
accurate CSIT is challenging in practical systems. In wireless
systems like LTE, the CSIT is obtained by uplink-downlink
reciprocity in the Time Division Duplex setup, or by user
feedback in the Frequency Division Duplex setup. In multi-cell
scenarios, the CSIT has to be shared among the transmitters
in order to perform coordinated beamforming and/or joint
transmission. Those procedures result in imperfect CSIT due to
the channel estimation error, quantization error and the latency
in the feedback link and backhaul link. Performing interference
mitigation techniques designed for perfect CSIT using imper-
fect CSIT results in undesirable multi-user interference, which
deteriorates the system performance. Hence, the fundamental
question that should therefore be addressed is how to design
proper transmission strategies for the imperfect CSIT setting.

Recent work [1] found the optimal DoF region of a two-
user multiple-input-single-output (MISO) broadcast channel
(BC) with a mixture of perfect delayed CSIT and imperfect
instantaneous CSIT. However, one corner point of the optimal
DoF region is achieved by a Rate-Splitting (RS) approach
which does not rely on delayed CSIT and is applicable to the
scenario with only imperfect instantaneous CSIT. Reminiscent
to the Han-Kobayashi scheme [2], [3], each user’s message in
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RS is split into a common and a private part. The private
messages are unicast to their respective intended users along
Zero-Forcing (ZF) precoders using a fraction of the total
power. The common messages are encoded into a super
common message, and the super common message is multicast
using the remaining power. At the receiver side, each user
firstly decodes the super common message and proceeds to
decode the desired private message afterwards using succes-
sive interference cancellation (SIC). This RS approach can
be easily applied to the K-user MISO BC. Considering that
the CSIT error of user k decays with signal-to-noise-ratio
(SNR) as SNR−αk where 0≤α1≤ · · ·≤αK≤1 is commonly
termed as the CSIT qualities, the sum DoF achieved by RS is
1+
∑K−1
k=1 αk. The optimality of this result was shown in [4].

Since then, there have been extensive researches on RS. The
sum rate analysis in the presence of quantized CSIT and the
precoder optimization were investigated in [5] and [6], [7],
respectively. Literature [8] extended the idea of RS into the
massive Multiple-Input-Multiple-Output (MIMO) deployment
and proposed a Hierarchical RS (HRS) which tackles the
multi-user and multi-group interference using a two-layer RS
approach. Other related works on MISO BC can be found
in [9]–[13]. The application of RS to the two-cell MISO
interference channel (IC) was reported in [14]. The scheme
was later on extended to the MIMO case with asymmetric
number of antennas in [15].

However, designing a scheme suitable for the K-cell IC
is a non-trivial step, because the interference overheard by
a single user comes through K−1 different links and the
CSIT qualities may vary across links. A promising idea can be
drawn from the HRS designed under massive MIMO setting
[8]. In HRS, users are clustered based on the similarity of
their transmit correlation matrices. Then, the users in different
groups are separated by statistical Zero-Forcing beamforming
(ZFBF) using long term CSIT, while the users in the same
group are separated by ZFBF using instantaneous CSIT. Due
to the imperfect grouping and imperfect instantaneous CSIT,
there exists residual intra- and inter-group interference that
impacts the system performance. To deal with this problem,
RS is enhanced into HRS by integrating an outer RS and an
inner RS. The outer RS tackles the inter-group interference by
multicasting a system common message to be decoded by all
users, while the inner RS tackles the intra-group interference
by transmitting a group common message for each group.
Using SIC, each user decodes the system common message,
the group common message of the corresponding group and
the desired private message sequentially.

A similar problem occurs in the K-cell IC if the users
can be categorized into groups such that there are identical
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intra-group CSIT qualities, and the intra-group CSIT quality
is smaller than the inter-group CSIT qualities. Then, the users
belonging to the same and different groups are separated by
ZFBF using intra- and inter-group CSIT, respectively. The
residual inter- and intra-group interference is tackled by the
outer- and inner-layer RS, respectively. Although such a user-
grouping method is only applicable to a very limited class of
CSIT quality topologies, the concepts of transmitting group
common messages in a multi-layer structure sheds light on the
central idea to design a transmission strategy for the general
K-cell IC with an arbitrary CSIT quality topology. The main
contributions are stated as follows.

1) Achievable DoF region of RS: Focusing on the K-cell
MISO IC where the CSIT of each interfering link is of an
arbitrary quality, we firstly consider a logical extension of the
RS designed for two-cell MISO IC. Each transmitter divides
the message intended for the corresponding user into a com-
mon and a private part. Each private message is unicast using
an arbitrary fraction of the total power, while the remaining
power at each transmitter is employed to multicast the common
message to be decoded by all users. We characterize the
resultant DoF region and show that it covers the DoF region
achieved by conventional ZFBF (private message transmission
only) with power control.

2) Topological RS with weighted sum interpretation: We
propose a novel scheme so called Topological RS (TRS), that
is suitable for the general K-cell MISO IC with an arbitrary
CSIT quality topology. Unlike RS, each user’s message in TRS
is split into N parts, i.e., Wk,{w1

k,w
2
k, · · · ,wNk }, where w1

k

is a private message to be decoded by user k, while wik,i≥2,
is a common message to be decoded by a group of users
Rik. The power allocated to the common messages and the
user group Rik are determined based on the specific CSIT
quality topology, so that the group common message wik is
drowned into the noise at other users via ZFBF. Compared to
RS, this operation reduces the number of common messages
to be decoded by each user, thus yielding a DoF region no
smaller than that achieved by RS. Besides, an upper-bound of
the DoF region is derived using the key results of [4]. This
result shows that TRS (and RS) is optimal in the two-cell case.

The TRS scheme is inspired by a novel interpretation of
the K-cell MISO IC with imperfect CSIT as a weighted
sum of a series of partially connected networks superposed
in the power domain. The weights of the partially connected
networks stand for their separations in the power domain. This
weighted sum interpretation explicitly shows whether or not a
user is interfered with one another, thus helping us generating
group common messages. Moreover, the DoF region achieved
by TRS is interpreted as a weighted sum of that achieved
in those networks, thus allowing us to employ methodologies
applicable for partially connected networks to analyze the DoF
region achieved with imperfect CSIT.

3) Sum DoF using graph theory tools: As a consequence
of the weighted sum interpretation, studying the sum DoF
achieved by TRS is equivalent to studying the sum DoF in each
obtained partially connected network. Then, for each partially
connected network, we propose two common message group-
casting methods using graph theory tools. These two methods

called orthogonal groupcasting and maximal groupcasting1 are
respectively built upon the packing and fractional packing of
the hypergraph defined by the network topology. The maximal
groupcasting method yields the maximal sum DoF in each
partially connected network, thus giving the maximal sum DoF
achieved by TRS. This sum DoF is no less than that achieved
by RS and ZFBF with power control.

4) Results in realistic scenarios: As it has been shown that
in many practical deployments each user has two dominant
interferers [16], we consider a realistic setting where each user
is connected to its closest three transmitters. We design TRS
for a class of CSIT quality topology, which is featured by
that the two incoming interfering links associated with each
user have unequal CSIT qualities a and b where 0≤a≤b≤1.
With maximal groupcasting, we characterize the sum DoF
achievable by TRS and show that it is within the range[
K
3 (1+ b

2+ 3a
2 ),K3 (1+b+a)

]
. For a cyclic CSIT quality topol-

ogy, we find that the proposed TRS approach strictly outper-
forms ZFBF with power control as long as b+3a> 6

K b
K
2 c−2,

where bK2 c is the maximum integer that is not greater than K
2 .

Moreover, the tightness of the sum DoF achievable by TRS is
evaluated. The key findings are two-fold: 1) TRS is optimal
when b=1, and 2) for nearly half of the values of a and b,
TRS achieves more than 90% of the upper-bound for all the
CSIT quality patterns with K=6,7,8,9.

At the time of submission, another multi-layer RS approach
has been proposed in [17] focusing on a K-cell quasi-static
SISO IC with almost no CSIT. Unlike our scheme where
the power allocation and rate-splitting is designed based on
imperfect CSIT, the proposed scheme in [17] is carried out
with an even power allocation for all the messages, and each
user decides the message set to be jointly decoded and the
message set to be treated as noise according to the local
CSIR. This scheme is shown useful in minimizing the outage
probability and improving the fairness.

The rest of the paper is organized as follows. The sys-
tem model is introduced in Section II. In Section III, we
revisit ZFBF with power control and characterize the DoF
region achieved by RS with common message multicasting.
In Section IV, we propose the generalized framework of TRS
approach together with its weighted sum interpretation, and
study its achievability. Section V studies the sum DoF achieved
by TRS in realistic scenarios and evaluates the tightness.
Section VI concludes the paper.

Notations: Bold upper and lower letters denote matrices
and vectors respectively. A symbol not in bold font denotes a
scalar. (·)H , (·)T and (·)⊥ respectively denote the Hermitian,
transpose and the null space of a matrix or vector. ‖ · ‖ refers
to the norm of a vector. rowrk(A) stands for the row rank of
matrix A, while span(A) refers to the subspace spanned by
A. The term 1M refers to a M×1 vector with all 1 entries. For
a set A, |A| represents its cardinality; for a complex number a,
|a| stands for its absolute value. The term 1C is the indicator
function, it is equal to 1 if condition C holds; otherwise, it is
equal to 0. E [·] refers to the statistical expectation. (a)+ stands

1When a common message is to be decoded by a subset of all users, it is
referred as a common message groupcasting.
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for max(a,0). a mod n calculates the modulus of integer a
with the respect of integer n. bac refers to the maximal integer
that is no greater than a.

II. SYSTEM MODEL

A. K-cell Interference Channel

In this paper, we consider a K-cell interference channel,
where each transmitter is serving one user in each cell. We
assume that there is a sufficient number of antennas, i.e., K, at
each transmitter, while there is a single antenna at each user. In
the presence of perfect CSIT, this antenna configuration allows
each user to have an interference-free reception of its desired
signal. Thus, it is convenient for us to study the fundamental
impact of having imperfect CSIT so as to derive an effective
transmission strategy. Given this setting, the signal transmitted
by a certain transmitter is denoted by sk∈CK×1,∀k∈K where
K,{1, · · · ,K}, and it is subject to the power constraint P .
Then, the received signals write as

yk=

K∑
j=1

gkjh
H
kjsj+nk,∀k∈K, (1)

where nk is the additive white Gaussian noise with zero mean
and unit variance; hkj∈CK×1 represents the channel between
transmitter j and user k, whose entries are i.i.d Gaussian with
zero mean and unit variance; gkj∈{0,1}, ∀k,j∈K, is a binary
variable. When gkj=1, it means that transmitter j is connected
to user k. When gkj=0, it means that the signal sent out by
transmitter j is drowned into the noise at user k due to the path
loss. For convenience, let us use G,{gkj}∀k,j∈K to denote the
network topology.

Throughout the paper, we consider gkk=1, ∀k∈K, and thus
P is referred to as the SNR. For the interfering links, we
consider that
• in Section III and IV, we have gkj=1, ∀k∈K and
∀j∈K\j. This indicates a fully connected network where
the interference-to-noise-ratio (INR) is equal to SNR;

• in Section V, if j=(k−1)modK,(k+1)modK, we have
gkj=1; otherwise gkj=0. This corresponds to a homoge-
neous cellular network where user k is only connected to
three dominant transmitters [16], i.e., transmitter k, k−1
and k+1. Note that a cyclic setting is assumed such that
user 1 is connected to transmitter K, 1 and 2, while user
K is connected to transmitter K−1, K and 1.

B. CSIT Quality Topology

We consider that the channel vector is expressed as
hkj=ĥkj+h̃kj , where ĥkj is the imperfect CSIT and h̃kj rep-
resents the CSIT error, drawn from a continuous distribution.

For the link with gkj=1, following the classical model firstly
introduced in [1], [18], we define the CSIT quality as

akj,− lim
P→∞

log2 E
[
|hHkjĥ⊥kj |2

]
log2 P

,

∀k∈K,∀j∈K\k,gkj=1, (2)

where the quantity E
[
|hHkjĥ⊥kj |2

]
represents the strength of

the residual interference resulting from the use ZFBF with
imperfect CSIT. The expectation is taken over both the imper-
fect CSIT ĥkj and the channel vector hkj . This expression is
equivalent to E

[
|hHkjĥ⊥kj |2

]
=P−akj+o(P−akj ) when P→∞.

This quantity implies that if transmitter j unicasts a ZF-
precoded private message using power P akj , then the residual
interference at user k is drowned into the noise. From a DoF
perspective, when akj≥1, it is equivalent to having perfect
CSIT because the interference can be forced within the noise
level and the full DoF K can be achieved by ZFBF [1],
[18]; when akj=0, it is equivalent to the case without CSIT
[1], [18], because the interference term is received with the
same power level as the desired signal and the resultant sum
DoF is 1. Hence, in this paper, we only focus on the case
0≤akj≤1,∀k∈K,∀j∈K\k,gkj=1.

However, in Section V, the CSIT quality of the link with
gkj=0 is not defined, as the strength of the signal sent by
transmitter j is drowned into the noise at user k even without
performing ZFBF.

Moreover, we consider that the CSIT qualities vary
across the links. This leads to a CSIT topology defined by
A,{akj}∀k∈K,∀j∈K\k,gkj=1. Note that the CSIT qualities of
the direct links akk, ∀∈K, is assumed to be no smaller than
the CSIT qualities of the interfering links, i.e., akk≥akj . The
CSIT quality of the direct links are not included in the CSIT
topology because their values only offer beamforming gain,
which does not make a difference on the DoF performance. A
CSIT quality topology A can be also defined using a table (see
the fully connected IC in Figure 1(a) for example), where each
row stands for the CSIT qualities of the incoming links of a
certain user, while each column represents the CSIT qualities
of the outgoing links of a certain transmitter.

C. Rate-Splitting
The message of each user is assumed to be split into N

parts, i.e., Wk,{w1
k,w

2
k, · · · ,wNk }, where w1

k is the private
message to be decoded by user k only, while wik,i≥2 is a
common message to be decoded by a group of users Rik. We
consider that each transmitter only has the message intended
for its corresponding user. With imperfect local CSIT, the
knowledge of the network topology G defined in Section II-A,
and the CSIT quality topology A defined in II-B, the encoding
function for each transmitter can be expressed as

sk=f(Wk,ĥkk,{ĥkj}∀j∈K\k,G,A),∀k∈K. (3)

At the receiver side, we consider that there is perfect local
CSIR, namely user k perfectly knows the effective channels,
i.e., the multiplication of the precoders and the channel vec-
tors, so as to decode the desired signal. Let Rik denote the
rate of message wik. A rate tuple

(
{R1

k}k∈K, · · · ,{RNk }k∈K
)

is said achievable if private message w1
k is decoded by user

k, and common message wik,i≥2 is decoded by the group
of users Rik, with an arbitrary small error probability. Then,
the achievable DoF of a certain message wik is defined as
dik, lim

P→∞
Rik

log2P
. The achievable DoF of user k is computed

by dk=
∑N
i=1 d

i
k.
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Throughout the paper, the terminology common message
groupcasting means that a common message wik is to be
decoded by a group of users Rik. When the group contains
all users, i.e., Rik=K, the common message groupcasting
becomes common message multicasting. When the group is
formed by only one user, i.e., Rik={k}, it actually refers to a
private message unicasting.

III. ACHIEVABLE DOF REGIONS BY ZFBF AND RS

In this section, focusing on a fully connected network with
equal SNR and INR, we revisit two benchmark schemes, i.e.,
conventional ZFBF with power control and the RS approach
with common message multicasting. For RS, we also derive
an achievable DoF region in the fully connected K-cell MISO
IC with imperfect CSIT.

A. ZFBF with power control

In conventional ZFBF with power control, transmit-
ter k delivers a private message wk to the correspond-
ing user using power P rk , rk≤1, along a ZF-precoder
pk⊆ span({ĥ⊥jk}∀j∈K\k). The signal received by user k can
be expressed as

yk=hHkkpkwk︸ ︷︷ ︸
P rk

+
∑
j∈K\k

hHkjpjwj︸ ︷︷ ︸
P rj−akj

+ nk︸︷︷︸
P 0

. (4)

By treating the undesired private message as noise, the DoF
achieved by each private message writes as

dk≤
(
rk− max

j:j∈K\k
(rj−akj)+

)+

,∀k∈K. (5)

This expression specifies the DoF region achieved by ZFBF
with power allocation policy r,(r1, · · · ,rK). The DoF region
achieved by ZFBF with power control, denoted by DZF , is
the union of the DoF regions achieved with all the possible
power allocation r where rk≤1,∀k∈K.

Notably, by performing ZFBF, the expression in (4) can
be regarded as the received signal in an IC where the direct
links have unit gain, while the strength of the interfering link
is P−akj , ∀k 6=j. Hence, a concise expression of DZF by
eliminating the variables r can be obtained using [19, Theorem
5].

B. Rate-Splitting with common message multicasting

The RS approach was firstly introduced focusing on a 2-cell
MISO IC with a symmetric CSIT setting, i.e., a12=a21=a. In
[14], one user’s message is split into a common and a private
part, while the other user’s message has a private part only.
By unicasting the private messages along ZF-precoders using
power P a, and multicasting the common message using the
remaining power P−P a, the RS scheme achieves the sum
DoF 1+2a.

The key ingredient of RS lies in forcing the residual interfer-
ence caused by ZFBF with imperfect CSIT to the very weak
interference regime, while introducing a strong interference,
i.e., the common message, which is decodable by treating the
private messages as noise. However, the achievability of RS in

the general K-cell MISO IC remains an open problem. Here,
we propose a logical extension of RS to the K-cell MISO IC.
We consider that a certain group S⊆K of users are active,
while the remaining users are made silent. This assumption
allows us to obtain an achievable DoF region by taking the
union of all the possible subsets S⊆K of users.

Specifically, let us consider a general RS approach where
each active user’s message is split into a private part wpk and a
common part wck, ∀k∈S. These two messages are transmitted
using power P rk and P−P rk , respectively, where rk≤1. The
common messages {wck}k∈S are to be decoded by all the
active users. The transmitted signal and received signal are
expressed as

sk=pckw
c
k︸ ︷︷ ︸

P−P rk

+ppkw
p
k︸ ︷︷ ︸

P rk

,∀k∈S, (6)

yk=
∑
∀j∈S

hHkjp
c
jw

c
j︸ ︷︷ ︸

P

+ppkw
p
k︸ ︷︷ ︸

P rk

+
∑
∀j∈S\k

hHkjp
p
jw

p
j︸ ︷︷ ︸

P rj−akj

+ nk︸︷︷︸
P 0

, (7)

respectively, where ppk⊆ span({ĥ⊥jk}∀j∈S\k) are ZF-
precoders, while pck are random precoders. Note that in the
transmitted signal given by (6), the quantities underneath
represent the exact power of the corresponding terms, whose
summation is subject to the power constraint P . However,
in the received signal given by (7), the quantities underneath
are the dominant part of the received power at infinite SNR,
which are convenient for DoF calculation. In the rest of this
paper, we reuse these notations for all the transmitted and
received signals.

Each user firstly decodes all the common messages, and sec-
ondly recovers the desired private message after removing the
common messages using SIC. Then, the DoF tuple achieved
by the private messages and the common messages, denoted
by (dp1,· · ·d

p
K) and (dc1,· · ·dcK) respectively, are such that∑

k∈S

dck≤1−max
j∈S

rj ,

dpk≤
(
rk− max

j:j∈S\k
(rj−akj)+

)+

,∀k∈S;

dcj=d
p
j=0,∀j∈K\S. (8)

The achievable DoF region by RS with active user set S and
power allocation policy r, denoted by DRS(S,r), is the set
of all DoF tuple (d1, · · · ,dK)=(dc1, · · · ,dcK)+(dp1, · · · ,d

p
K), for

which (8) holds.
Then, the DoF region achieved by RS results from the union

of the DoF regions achieved with all possible subsets S and
power allocation policy r, i.e., DRS,

⋃
∀S⊆K,∀rDRS(S,r). To

present the closed form expression of the DoF region achieved
by RS, let us introduce user set U whose power allocation
policy is defined as

rk≤0,k∈S\U ; rk− max
j:j∈S\k

(rj−akj)+≥0,k∈U . (9)

Then, with the proof presented in Appendix A, we can
eliminate the variable r and state the DoF region achieved by
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(a) CSIT quality table (b) Weighted sum interpretation

(c) Sum DoF gain offered by TRS over
RS, i.e., min{a,b−a}

max{1+2a,1+b}

Fig. 1: 3-cell IC with hierarchical CSIT quality topology, where
0≤a≤b≤1.

RS as DRS=
⋃
∀S⊆K,∀U⊆S DRS(S,U), where DRS(S,U) is

the set of (d1, · · · ,dK)=(dc1, · · · ,dcK)+(dp1, · · · ,d
p
K) such that

dpk=0,∀k∈K\U ; 0≤dpk≤1,∀k∈U ;
m∑
l=1

dpil≤
m∑
l=1

ail−1il ,∀(i1, · · · ,im)∈ΠU ; (10)

dck=0,∀k∈K\S; 0≤dck≤1,∀k∈S; 0≤dpk+
∑
j∈S

dcj≤1,∀k∈U ;

∑
j∈S

dcj+

m∑
l=1

dpil≤1+ min
j=1,···,m

m∑
l=1,l 6=j

ail−1il ,

∀(i1, · · · ,im)∈ΠU , (11)

where ΠU is the set of all possible cyclic sequences2 of all
subsets of U with cardinality no less than 2.

In (11), we see that for a certain set U , by setting
dck=0,∀k∈K\S , DRS(K,U) becomes DRS(S,U). Then, it is
immediate that DRS(S,U)⊆DRS(K,U). This fact allows us to
settle the achievable DoF region by RS as follows.

Proposition 1. In a fully connected K-cell MISO IC with
equal SNR and INR and with CSIT quality topology A, the
DoF region achieved by RS with common message multicast-
ing is

DRS=
⋃
∀U⊆K

DRS(K,U), (12)

where DRS(K,U) is obtained by taking S=K in (10).

Remark 1. Note that the DoF region achieved by ZFBF with
power control can be obtained by removing the inequalities
related to the common messages, i.e., (11), and setting dk=dpk.

2A cyclic sequence is a cyclically ordered subset of user in-
dices without repetitions [19]. For a certain subset (i1, · · · ,im), there
are (m−1)! distinct cyclic orders. For a user set U , there exist∑|U|

m=2

(|U|
m

)
different subset (i1, · · · ,im) with m≥2. Hence, ΠU have∑|U|

m=2

(|U|
m

)
(m−1)! cyclic sequences. For instance, let U={1,2,3}, then

ΠU={1,2},{1,3},{2,3},{1,2,3},{1,3,2}.

To better understand this achievable region, let us look at
the example illustrated in Figure 1(a), where 0≤a≤b≤1. For
convenience, we let dc=

∑3
k=1 d

c
k. For U={1,2,3}, {2,3},

{1,3}, {1,2}, {3}, {2} and {1}, the corresponding DRS(U)
are given by

DRS({1,2,3})={0≤dck≤1,0≤dpk≤1,0≤dpk+dc≤1,

∀k∈{1,2,3},dp1+dp2≤2b,dp1+dp2+dc≤1+b,

dp1+dp3≤2b,dp1+dp3+dc≤1+b,dp2+dp3≤2a,

dp2+dp3+dc≤1+a,dp1+dp2+dp3≤2b+a,

dp1+dp2+dp3+dc≤1+b+a} , (13)
DRS({2,3})={dp1=0,0≤dck≤1,∀k∈{1,2,3},0≤dpk≤1,

0≤dpk+dc≤1,∀k∈{2,3},dp2+dp3≤2a,

dp2+dp3+dc≤1+a} , (14)
DRS({1,3})={dp2=0,0≤dck≤1,∀k∈{1,2,3},0≤dpk≤1,

0≤dpk+dc≤1,∀k∈{1,3},dp1+dp3≤2b,

dp1+dp3+dc≤1+b} , (15)
DRS({1,2})={dp3=0,0≤dck≤1,∀k∈{1,2,3},0≤dpk≤1,

0≤dpk+dc≤1,∀k∈{1,2},dp1+dp2≤2b,

dp1+dp2+dc≤1+b} , (16)
DRS({3})={dp1=dp2=0,0≤dck≤1,∀k∈{1,2,3},

0≤dp3≤1,0≤dp3+dc≤1} , (17)
DRS({2})={dp1=dp3=0,0≤dck≤1,∀k={1,2,3},

0≤dp2≤1,0≤dp2+dc≤1} , (18)
DRS({1})={dp2=dp3=0,0≤dck≤1,∀k∈{1,2,3},

0≤dp1≤1,0≤dp1+dc≤1} , (19)

respectively. Using (13) through to (19) and Remark 1, it
can be verified that the maximum sum DoF achieved by
RS and ZFBF with power control are max{1+2a,1+b} and
max{2b,min{1+2a,2b+a}}, respectively. Then, we see that
RS offers DoF gain except in the case 1+b≤1+2a≤2b+a.

Next, considering ZFBF with power control and RS with
common message multicasting as benchmark schemes, we
move on to propose a novel transmission strategy that yields
a greater DoF region in the fully connected K-cell MISO IC
with equal SNR and INR and with an arbitrary CSIT quality
topology.

IV. TOPOLOGICAL RATE-SPLITTING

In this section, we firstly introduce the idea of Topolog-
ical Rate-Splitting focusing on the example in Figure 1(a).
Secondly, we propose the generalized framework of the TRS
motivated by a novel weighted sum interpretation of the fully
connected MISO IC with CSIT quality topology A. Then,
the sum DoF achieved by the TRS scheme is studied using
graph theory tools. Lastly, an upper-bound on the DoF region
is proposed.

A. Toy Example

Focusing on the example in Figure 1(a), we propose a
simple TRS scheme that yields a greater sum DoF than RS and
ZFBF with power control. We use the notation wik to represent
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a message transmitted by transmitter k using the ith power
level. The power levels are defined in an increasing order
based on the scaling behavior at infinite SNR. When i=1, it is
a private message as we consider that the private messages are
transmitted using the lowest power level, while i>1 implies
a common message. Using this notation, we design a TRS
transmission block for the considered example as follows.

Similar to RS, we consider that each transmitter uses power
P a to unicast the private messages w1

k along ZF-precoders.
Unlike RS, the remaining power P−P a is further split into
two levels, i.e., P b−P a for common message groupcasting
and P−P b for common message multicasting.

With power P b−P a, we see that the interference from trans-
mitter 1 to user 2 and user 3, the interference from transmitter
2 to user 1 and the interference from transmitter 3 to user 1,
can all be forced within the noise power via ZFBF, because
the CSIT qualities of those links a21=a31=a12=a13=b are
sufficiently good. By doing so, the MISO IC becomes a
partially connected network with two cross links h23 and h32

as illustrated in Figure 1(b) (see the figure in the middle).
In such a network, transmitter 1 can deliver one message w2

1

to user 1 without mixing with the messages transmitted by
the other transmitters. At the same time, transmitter 2 and 3
are able to deliver group common messages to be decoded by
user 2 and user 3, without mixing with w2

1 . Here, as we design
TRS to enhance the sum DoF, for convenience, we consider
that transmitter 2 delivers a group common message w2

2 while
transmitter 3 does not transmit any group common message.

With the remaining power P−P b, since the CSIT qualities
are not good enough, we see that no interference can be
drowned into the noise at any user via ZFBF. This leads to a
fully connected network shown in Figure 1(b) (the right-most
figure). Then, we consider that transmitter 1 multicasts one
common message w3

1 to be decoded by all users.
Accordingly, the transmitted signals write as

s1=p3
1w

3
1︸ ︷︷ ︸

P−P b

+ p2
1w

2
1︸ ︷︷ ︸

P b−Pa

+p1
1w

1
1︸ ︷︷ ︸

Pa

, (20)

s2= p2
2w

2
2︸ ︷︷ ︸

P b−Pa

+p1
2w

1
2︸ ︷︷ ︸

Pa

, (21)

s3=p1
3w

1
3︸ ︷︷ ︸

Pa

, (22)

where p2
1=p1

1⊆ span(ĥ⊥21,ĥ
⊥
31), p2

2⊆ span(ĥ⊥12),
p1
2⊆ span(ĥ⊥12,ĥ

⊥
32), and p1

3⊆ span(ĥ⊥13,ĥ
⊥
23). The received

signals are expressed as

y1=hH11p
3
1w

3
1︸ ︷︷ ︸

P

+hH11p
2
1w

2
1︸ ︷︷ ︸

P b

+hH11p
1
1w

1
1︸ ︷︷ ︸

Pa

+

hH12p
2
2w

2
2+hH12p

1
2w

1
2+hH13p

1
3w

1
3︸ ︷︷ ︸

P 0

+n1, (23)

y2=hH21p
3
1w

3
1︸ ︷︷ ︸

P

+hH21p
2
1w

2
1+hH21p

1
1w

1
1︸ ︷︷ ︸

P 0

+

hH22p
2
2w

2
2︸ ︷︷ ︸

P b

+hH22p
1
2w

1
2︸ ︷︷ ︸

Pa

+hH23p
1
3w

1
3︸ ︷︷ ︸

P 0

+n2, (24)

y3=hH31p
3
1w

3
1︸ ︷︷ ︸

P

+hH31p
2
1w

2
1+hH31p

1
1w

1
1︸ ︷︷ ︸

P 0

+

hH32p
2
2w

2
2︸ ︷︷ ︸

P b

+hH32p
1
2w

1
2︸ ︷︷ ︸

P 0

+hH33p
1
3w

1
3︸ ︷︷ ︸

Pa

+n3, (25)

where all the undesired messages are drowned into the noise.
The decoding procedure starts from the messages with the
highest received power level and then progresses downwards
using SIC. Specifically, user 1 decodes common messages w3

1 ,
w2

1 and private message w1
1; user 2 decodes common messages

w3
1 , w2

2 and private message w1
2; user 3 decodes common

messages w3
1 , w2

2 and private message w1
3 . The DoF achieved

by the common messages are d21=d22=b−a and d31=1−b.
Counting the DoF achieved by the private messages, the sum
DoF achieved by TRS is 1+b+a. The sum DoF gain offered
by TRS over RS is 1+b+a−max{1+b,1+2a}= min{a,b−a},
and is illustrated in Figure 1(c).

Remark 2. The key ingredient of the TRS approach above lies
in the multi-layer structure. With ZF-precoders and properly
assigned power levels, the CSIT quality topology in Figure
1(a) is interpreted as a series of network topologies in Figure
1(b). As shown, for power level up to a, the network appears
as a non-interfering network; for power level a to b, and
for power level b to 1, the networks appear to a partially
connected network and a fully connected network, respectively.
This procedure is called weighted sum interpretation. It ex-
plicitly shows that 1) each common message is decoded by a
subset of users, and 2) each user needs to decode a subset of
all common messages. These observations essentially reveal
the effectiveness of the TRS scheme compared to RS. Indeed,
in RS, each common message has to be decoded by all users
and each user has to decode all the common messages due to
the common message multicasting.

B. Building the Generalized Transmission Block

Motivated by the toy example, we present the generalized
transmission block of TRS. We describe the TRS approach
focusing on the active user subset S⊆K, while the remaining
users are made silent.

In TRS, each active transmitter divides the message in-
tended for its corresponding user into N=L+2 parts, i.e.,
Wk,{w1

k,w
2
k, · · · ,wNk }, ∀k∈S. The definition of L will be

introduced later on. Letting pik denote the precoder and Pk,i
denote the power chosen for a certain message wik, the signal
transmitted by transmitter k can be expressed as

sk=

L+2∑
i=1

pikw
i
k︸ ︷︷ ︸

Pk,i

,∀k∈S. (26)

Private message layer: Private message w1
k is intended for

user k and is to be decoded by user k only. It is transmitted
along a ZF-precoder and is unicast with a fraction of the total
power as

p1
k⊆ span({ĥ⊥jk}∀j∈S\k), Pk,1=P rk ,∀k∈S. (27)

Common message layer: The remaining power P−P rk at
each user is employed to deliver the L+1 common messages
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wik,i=2, · · · ,L+2. The power allocated to each common mes-
sage wik and its precoder are obtained based on the CSIT
qualities.

Firstly, as only the users in S are active, we obtain a
subset A(S)⊆A such that akj∈A(S) if and only if k,j∈S.
Secondly, let A(r,S)⊆A(S) denote the set formed by all
the elements of A(S) that are greater than r0,maxk∈S rk,
i.e., A(r,S),{akj}∀akj∈A(S),akj>r0 . Thirdly, letting L de-
note the number of different values of A(r,S), we rep-
resent these L values by aπ(1), · · · ,aπ(L), which satisfy
aπ(1)<aπ(2)<· · ·<aπ(L). Besides, for convenience, we define
aπ(L+1)=1. Using these L+1 variables aπ(1), · · · ,aπ(L+1),
we divide the remaining power P−P rk at each transmitter
into L+1 power levels, i.e., P aπ(1)−P rk , P aπ(2)−P aπ(1) , · · · ,
P aπ(L+1)−P aπ(L) .

Then, we assign these L+1 power levels to the common
messages wik, 2≤i≤L+2, and choose a ZF-precoder for each
of them as

Pk,2=P aπ(1)−P rk ,
Pk,i=P

aπ(i−1)−P aπ(i−2) ,3≤i≤L+2; (28)

pik⊆ span
(
{ĥ⊥jk}∀j∈S\Rik(S,r)

)
, where

Rik(S,r),{j:j∈S\k, ajk<aπ(i−1)}∪k. (29)

Such a precoder and power allocation policy suggests that wik
is a group common message to be decoded by the group of
users Rik(S,r), while it is drowned into the noise at other
users ∀j∈S\Rik(S,r).

With the precoders and power allocation policy given in
(27) through (29), the signal received by user k writes as

yk=
∑
j∈S

L+2∑
i=1

hHkjp
i
jw

i
j+nk (30)

=

L+2∑
i=2

hHkkp
i
kw

i
k︸ ︷︷ ︸

P
aπ(i−1)

+
∑

j:∀j∈S\k,
akj<aπ(i−1)

hHkjp
i
jw

i
j︸ ︷︷ ︸

P
aπ(i−1)

+

∑
j:∀j∈S\k,

akj≥aπ(i−1)

hHkjp
i
jw

i
j︸ ︷︷ ︸

P
aπ(i−1)−akj

+ (31)

hHkkp
1
kw

1
k︸ ︷︷ ︸

P rk

+
∑
∀j∈S\k

hHkjp
1
jw

1
j︸ ︷︷ ︸

P rj−akj

+ nk︸︷︷︸
P 0

, (32)

As expressed in (31), if the CSIT quality of the cross link
hkj is greater than or equal to the allocated power level, i.e.,
akj>aπ(i−1), the common message wij ,i≥2, is drowned into
the noise at user k due to ZFBF; otherwise, wij is received
by user k with power P aπ(i−1) . As expressed in (32), the
undesired private message w1

j ,∀j∈S\k is received by user k
with power P rk−akj . If akj≥rk, w1

j is drowned into the noise;
otherwise, w1

j becomes an undesirable interference overheard
by user k.

The decoding procedure is based on SIC. Let us focus on the
received signal in (30). Firstly, user k decodes common mes-
sages wL+2

k and {wL+2
j }j:akj<aπ(L+1)

by treating all the other

messages as noise. Secondly, after removing those recovered
messages, user k decodes wL+1

k and {wL+1
j }j:akj<aπ(L)

, by
treating all the other messages with lower received power as
noise. This procedure runs for L+1 rounds till all the common
messages are recovered. At last, user k decodes its desired
private message w1

k by treating the undesired private messages
as noise.

For convenience, let us denote the set of common messages
decoded by user k in ith round of SIC by

T ik (S,r),wik ∪ {wij}j:∀j∈S\k,akj<aπ(i−1)
,

where 2≤i≤L+2. (33)

Then, the DoF region achieved by the proposed TRS scheme,
denoted by DTRS , is stated below.

Proposition 2. In a fully connected K-cell IC with equal SNR
and INR and with CSIT quality topology A, the DoF region
achieved by the proposed TRS scheme lies in

DTRS=
⋃

∀S∈K,∀r

DTRS(S,r), (34)

where DTRS(S,r) is achievable with active user subset S and
power allocation policy r for the private messages. It is the
set of the DoF tuples (d1, · · · ,dK)=

∑L+2
i=1 (dik, · · · ,diK) such

that

dik=0,i=1, · · · ,L+2,∀k∈K\S; (35)

0≤d1k≤
(
rk− max

j∈S\k
(rj−akj)+

)+

,∀k∈S; (36)

0≤d2k,
∑

∀j:w2
j∈T 2

k (S,r)

d2j≤aπ(1)−max{rk, max
j∈S\k

rj−akj},∀k∈S; (37)

0≤dik,
∑

∀j:wij∈T ik (S,r)

dij≤aπ(i−1)−aπ(i−2),∀k∈S,3≤i≤L+2, (38)

where T ik (S,r), 2≤i≤L+2, is defined in (33) as a function of
S and r.

Proof. See Appendix B.

We point out that it is cumbersome to obtain a concise
expression of DTRS by eliminating the variables r. This is
because the DoF of the common messages transmitted in each
power layer are characterized by |S| different inequalities,
which strongly depend on the CSIT quality topologies (see
(37) and (38)).

In the rest of this section, we consider an inner-bound
D̄TRS(S,r)⊆DTRS(S,r), obtained by replacing (37) with

d2k=0,∀k∈K\S; 0≤d2k,
∑

∀j:w2
j∈T 2

k (S,r)

d2j≤aπ(1)−r0,∀k∈S; (39)

where r0,maxk∈S rk. When there is an even power al-
location for the private messages, i.e., rk=rj ,∀k,j∈S, we
have D̄TRS(S,r)=DTRS(S,r). Comparing this inner-bound
with the DoF region achieved by RS given in (8), we can
reach the conclusion that the DoF region achieved by TRS
covers that achieved by RS. To see this, let us express any
achievable DoF tuple (dc1, · · · ,dcK) for which (8) holds as∑L+2
i=2 (dc,i1 , · · · ,dc,iK ), where the DoF tuple (dc,i1 , · · · ,dc,iK ) are
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subject to
∑
k∈S d

c,i
k ≤aπ(i−1)−aπ(i−2) and dc,ik =0, ∀k∈K\S .

Then, it readily shows that the DoF tuple (dc,i1 , · · · ,dc,iK ) also
lies in (39) and (38), because the summation of dik is taken
over the set ∀j:wij∈T ik (S,r), which is a subset of S. This
fact implies that the DoF region achieved by TRS covers that
achieved by RS, i.e., DRS(S,r)⊆D̄TRS(S,r)⊆DTRS(S,r).

C. weighted sum Interpretation

We note that the construction of the TRS scheme is mo-
tivated by a novel weighted sum interpretation of the CSIT
quality topology as a series of network topologies superposed
in the power domain. Specifically, with the power and ZF-
precoders chosen for the common messages in (28) and (29),
we observe that a transmitter k is only connected to the group
of users ∀j∈Rik(S,r). Besides, as shown by the received signal
given in (31), the messages wij∈S\T ik (S,r) are forced within
the noise power at user k. This fact implies that user k is
only connected to transmitters ∀j,wij∈T ik (S,r). Accordingly,
this topology can be expressed using a connectivity matrix
Mi(S,r)∈{0,1}|S|×|S|, whose element in row k and column
j, i.e., mkj , is given by

mi
kj=

{
1 if wij∈T ik (S,r);
0 otherwise.

(40)

Note that the value of mi
kj in (40) represents whether or not

wij is decoded by user k.
The DoF tuple (39) and (38) achieved by the common

messages transmitted with power layer i can be interpreted
as (aπ(i−1)−aπ(i−2))×D̂iTRS(S,r), where

D̂iTRS(S,r): d̂2k=0,∀k∈K\S; 0≤d̂2k,∀k∈S,
Mi(S,r)×d̂i≤1|S|,2≤i≤L+2, (41)

represents the set of DoF tuples d̂i=(d̂i1, · · · ,d̂iK) achieved
by common message groupcasting in the partially connected
network defined by the connectivity matrix Mi(S,r). The
weights aπ(i−1)−aπ(i−2), i≥2, stand for the fractions of
channel use of the partially connected networks in the power
domain (Note that we assume aπ(0)=r0). For clarity, let
{ŵik}k∈S denote the common messages transmitted in the
partially connected network defined by topology Mi(S,r).
The achievable DoF of ŵik is represented by d̂ik. Then, the
DoF dik of the common message wik transmitted in TRS
is obtained by dik=(aπ(i−1)−aπ(i−2))d̂ik. Consequently, the
DoF region D̄cTRS contributed by all the common messages∑L+2
i=2 (di1,· · ·diK) can be expressed by the weighted sum of the

DoF region achieved in the L+1 partially connected networks,
i.e.,

D̄cTRS=

L+2∑
i=2

(aπ(i−1)−aπ(i−2))×D̂iTRS(S,r). (42)

Similarly, when rk≤minj∈S\k ajk, ∀k∈S, the private mes-
sage unicasting part is interpreted as a partially connected
network formed by |S| parallel direct links, because all the
interference is drowned into the noise.

This weighted sum interpretation bridges the DoF region
achieved TRS with the achievable DoF region in partially con-
nected networks, thus allowing us to employ methodologies

applicable for partially connected networks to analyze the DoF
region achieved by TRS. Motivated by this, we study the sum
DoF achieved TRS in the next subsection.

D. Sum DoF Characterization Using Graph Theory Tools

In this part, we aim to find the maximal sum DoF given
the DoF region D̄TRS(S,r) specified by (36), (39) and
(38). To do so, it is straightforward that the maximum DoF
of the private messages achieved by the TRS scheme is
d1k=

(
rk−maxj∈S\k(rj−akj)+

)+
. Then, the work consists

in computing the maximum sum DoF contributed by all the
common messages. As a consequence of the weighted sum
interpretation in (42), this sum DoF maximization is decoupled
into a series of optimization problems

Pi: max d̂is(S,r),
∑
k∈S

d̂ik,∀i=2, · · · ,L+2 (43)

s.t. (d̂ik)k∈S∈D̂iTRS(S,r)

⇒ 0≤d̂ik,k∈S,Mi(S,r)×d̂i≤1|S|. (44)

For convenience, we drop the variables (S,r) in the fol-
lowing analysis. As explained in Section IV-C, solving the
problem Pi, i≥2, is related to maximizing the sum DoF
achieved by common message groupcasting in a partially
connected network. In recent years, the DoF of a partially
connected network has received a lot of attention in [20]–
[25]. Although all of these works look at symmetric DoF
as a figure of merit, graph theory methodologies have been
identified as a useful means because of its powerful ability to
describe whether or not a user’s message is interfered with
one another. Motivated by that, we solve our problems in a
similar way.

We model the partially connected network with connectivity
matrix Mi as a hypergraph Hi(Ŵi,T i), where Ŵi,{ŵik}k∈S
is the vertex set of the hypergraph and T i,{T ik }k∈S with
T ik defined in (33) is the hyperedge set of the hypergraph.
Note that a member of T i is actually a subset of Ŵi. If
each member of T i has two vertices, e.g., T ik={ŵik,ŵij}, then
T ik actually means an edge between ŵik and ŵij , and the
hypergraph Hi(Ŵi,T i) is actually a graph. When an element
of T i has more than two elements, i.e., |T ik |≥3, then T ik is
called an hyperedge with |T ik | vertices.

In the following, focusing on the hypergraph Hi(Ŵi,T i),
we interpret the optimization problem Pi as two classical
problems in graph theory, which lead to a sub-optimal solution
and the optimal solution.

1) Orthogonal Groupcasting: We firstly propose a sub-
optimal solution, so called orthogonal groupcasting, by assum-
ing that each user only decodes at most one common message.
In other words, no two of the common messages {ŵik}∀k∈S are
received by a single user. This assumption imposes a constraint
d̂ik∈{0,1} to the optimization problem Pi in (43).

Then, a DoF tuple (d̂ik)k∈S achieved by orthogonal group-
casting defines a subset X i⊆Ŵi which contains all the mes-
sages with DoF 1, i.e., X i={ŵik}∀k,d̂ik=1. The sum DoF is
identical to the cardinality of X i, i.e., |X i|. According to
the definition of orthogonal groupcasting, this subset has the
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property that no two elements of X i are together in the
same member of T i. Therefore, this subset X i⊆Ŵi is called
a packing in the hypergraph Hi(Ŵi,T i) [26]. Finding the
maximum sum DoF is equivalent to finding the largest size
of a packing, and the largest size is defined to be the packing
number p(Hi(Ŵi,T i)) of Hi(Ŵi,T i). Hence, the sum DoF
achieved by the orthogonal groupcasting is stated as follows.

Proposition 3. In a fully connected K-cell MISO IC with
equal SNR and INR and with CSIT quality topology A, the
sum DoF achieved by TRS designed with orthogonal common
message groupcasting is

dorth
s,TRS= max

∀S⊆K,∀r
dorth
s,TRS(S,r), (45)

where dorth
s,TRS(S,r) is given by

dorth
s,TRS(S,r)=

K∑
k=1

(
rk− max

j∈S′\k
(rj−akj)+

)+

+

L+2∑
i=2

(aπ(i−1)−aπ(i−2))×p(Hi(Ŵi,T i(S,r))), (46)

where p(Hi(Ŵi,T i(S,r))) refers to the packing number of
a hypergraph Hi(Ŵi,T i(S,r)) defined by vertex set Ŵi and
hyperedge set T i(S,r) defined in (33).

2) Maximal groupcasting: To find the optimal solution to
problem Pi, let us firstly look at the following problem

P̃i: max
∑
k∈S

d̃ik (47)

s.t. Mi×d̃i≤t×1|S|,d̃ik∈Z+,∀k∈S, (48)

where t is a positive integer. A feasible (d̃ik)k∈S satisfying
(48) defines a multiset X i which contains ŵik if d̃ik>0. The
multiplicity3 of ŵik in X i is d̃ik, and the sum DoF is equal to
|X i|.

In this way, the inequality (48) can be interpreted as follows.
For the vertices in the same member of T i, the sum of their
multiplicity in X i is smaller than or equal to t. According
to [26], a multiset X i with such a property is called a t-
fold packing of the hypergraph Hi(Ŵi,T i). When t=1, the
t-fold packing collapses to the packing of the hypergraph
Hi(Ŵi,T i) that is introduced in Section IV-D1. Consequently,
the optimization problem P̃i is interpreted as finding the
largest size of a t-fold packing, and the largest size is defined
as the t-fold packing number pt(Hi(Ŵi,T i)).

So far, we are one step closer to our objective. According
to [26, Section 1.2], the optimal result of Problem Pi in (43)
can be found using the result of Problem P̃i in (47) by taking
t→∞ as

pf (Hi(Ŵi,T i))= lim
t→∞

pt(Hi(Ŵi,T i))
t

. (49)

This quantity is called fractional packing number of the
hypergraph Hi(Ŵi,T i). Besides, the DoF of message ŵik is

3The multiset X i may have multiple identical elements. For instance, one
has X i={ŵi

1,ŵ
i
2,ŵ

i
2}, and the multiplicity of ŵi

1 is 1 and the multiplicity
of ŵi

2 is 2.

Fig. 2: 3-cell IC with a cyclic CSIT quality topology

expressed as d̂ik= limt→∞
d̃i∗k
t , where d̃i∗k is the result of the

t-fold packing problem P̃i.
Therefore, we may state an achievable sum DoF resulting

from the maximal groupcasting as follows.

Proposition 4. In a fully connected K-cell MISO IC with
equal SNR and INR and with CSIT quality topology A, the
sum DoF achieved by TRS with maximal groupcasting is

dmax
s,TRS= max

∀S⊆K,∀r
dmax
s,TRS(S,r), (50)

where dmax
s,TRS(S,r) is given by

dmax
s,TRS(S,r)=

K∑
k=1

(
rk− max

j∈S′\k
(rj−akj)+

)+

+

L+2∑
i=2

(aπ(i−1)−aπ(i−2))×pf (Hi(Ŵi,T i(S,r))), (51)

where pf (Hi(Ŵi,T i(S,r))) refers to the fractional packing
number of a hypergraph Hi(Ŵi,T i(S,r)) defined by the
vertex set Ŵi and the hyperedge set T i(S,r) defined in (33).

Note that both common message groupcasting methods
suffice to achieve the sum DoF in the example illustrated
in Figure 1(a). To highlight the gain offered by the maximal
groupcasting, let us focus on the 3-cell scenario with a cyclic
CSIT quality topology illustrated in Figure 2.

Following the footsteps presented in Section IV-B, the
transmitted signal consists of three power levels, P a, P b−P a
and P−P b, which are used for private message unicasting,
common message groupcasting and common message mul-
ticasting. To highlight the benefit of performing maximal
groupcasting, we only discuss the sum DoF achieved by the
messages transmitted in the second power level.

With the power P b−P a and ZF-precoders, three interfer-
ing links can be “removed”, and the remaining links form
a cyclic partially connected network as illustrated in Fig-
ure 2. In this network, with the orthogonal groupcasting
method, only one message can be successfully transmitted,
e.g., (d21,d

2
2,d

2
3)=(b−a,0,0), (0,b−a,0) or (0,0,b−a). Oth-

erwise, there will be some users receiving a mixture of
two common messages, which contradicts the philosophy of
the orthogonal groupcasting method. However, the maximal
groupcasting method requires each user to decode multiple
common messages. By doing so, although the DoF of each
common message decreases, the sum DoF can be enhanced
since more common messages can be transmitted. Specifically,
since each user receives the mixture of two common messages,
it is straightforward that the per common message DoF b−a

2
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is achievable, thus leading to the sum DoF of 3
2 (b−a), which

outperforms b−a achieved by orthogonal groupcasting.
Counting the DoF 3a achieved by the private messages

and the DoF 1−b achieved by common message multicasting
with power P−P b, the sum DoF achieved by TRS designed
with maximal groupcasting is 1+ b+3a

2 . Note that this result
outperforms the sum DoF 1+2a achieved by RS, and the sum
DoF max{a+b,3a} achieved by ZFBF with power control.

On the other hand, due to the complicated expression of
the sum DoF achieved by TRS, the general sufficient and
necessary condition where TRS strictly outperforms RS and
ZFBF with power control is yet to be characterized. In an
extreme case where the CSIT of the interfering links associated
to a single user have equal qualities, i.e., akj=αk, ∀k∈K,
∀j∈K\k, following the footsteps presented in Section IV-B,
we can see that there always exists a user who has to decode
all the common messages. As a result, the sum DoF achieved
by TRS is essentially impacted and is no greater than the
sum DoF achieved by RS. This observation implies that TRS
is more useful in the scenario when the CSIT qualities of the
interfering links associated to each user have a larger variance.

E. Upper-bound

While we discuss the achievability in this paper, it is worth
mentioning that the optimal DoF region/sum DoF performance
of the considered MISO IC with imperfect CSIT remains an
open problem. Tackling this problem is extremely challenging
due to the varying CSIT qualities across the interfering links.
In this part, using the methodology proposed in [4], we derive
an upper-bound on the DoF region and sum DoF to evaluate
the tightness of the DoF achievable by TRS.

Let us start with a two-cell case where the CSIT qualities
of the two interfering links are equal to a. We enhance the
MISO IC by assuming perfect CSIT for the direct links and
providing user 1’s message to user 2. Then, according to
Fano’s inequality and through some simple manipulations, we
have

nR1≤I(W1;yn1 |U)≤n logP−h(yn1 |U ,W1)+no(logP )

=n logP−h(ȳn1 |U)+no(logP ), (52)
nR2≤I(W2;yn2 |U ,W1)≤h(yn2 |U ,W1)+no(logP )

≤h(ȳn2 |U)+no(logP ), (53)

where U,{hkj ,ĥkj ,k,j=1,2,G,A} denotes the set of perfect
global CSI, imperfect global CSI, network topology and CSIT
quality topology, while ynk denotes the received signal from
the first time slot to the nth time slot and ȳk=hHk2s2+nk is
obtained by removing the signal sent by transmitter 1. The
equalities are due to the fact that translation (i.e., from ynk to
ȳhk ) does not change the differential entropy.

Then, to derive an upper-bound on the sum DoF, it remains
to bound h(ȳn2 |U)−h(ȳn1 |U). As ȳn2 can be considered as
the received signals in a two-user BC, it readily shows that
this quantity is bounded by anlogP following the footsteps
in [4]. Consequently, the DoF region of the considered two-
cell MISO IC is bounded by d1≤1, d2≤1 and d1+d2≤1+a.
This upper-bound indicates that TRS and RS are the optimal
schemes.

(a) CSIT quality table and network topology

(b) Weighted sum interpretation

Fig. 3: 5-user examples with realistic setting, where 0≤a≤b≤1.

However, in the general K-cell case, it is not possible
to apply the methods in [4] to obtain an upper-bound on
the sum DoF. For example, in the three-cell case, by giv-
ing W1 to user 2 and user 3, and giving W2 to user 3,
the upper-bound on the sum rate contains the following
term h(yn2 |U ,W1)−h(yn1 |U ,W1). After removing W1 (i.e., the
transmitted signal from transmitter 1), the residual terms in yn2
and yn1 consist of the transmitted signals from transmitter 2
and 3, which cannot be considered as a BC and the method
in [4] is no longer applicable. Despite of that, we can obtain
an upper-bound on the DoF of any subset of two users, and
the upper-bound writes as the following proposition.

Proposition 5. In a fully connected K-cell MISO IC with
equal SNR and INR and with CSIT quality topology A, the
DoF region lies in

dk≤1,dj≤1,dk+dj≤1+ min{akj ,ajk},k,j∈K,k 6=j. (54)

Moreover, the upper-bound on the sum DoF d1+ · · ·+dK
can be obtained by solving a linear program given the con-
straints in (54). For the three-cell scenarios illustrated in Figure
1(a) and 2, the sum DoF d1+d2+d3 is upper-bounded by
3
2+b+a

2 and 3
2+ 3a

2 , respectively. It can be shown that TRS
achieves the upper-bound when b=1 in the cyclic scenario
illustrated in Figure 2. More tractable and insightful analysis
on the tightness is provided in the next section for a particular
realistic scenario.

V. REALISTIC SCENARIOS

So far, we have identified the achievability of the TRS
scheme in the fully connected IC where gkj=1, ∀k,j∈K.
In this section, we show that the philosophy of the TRS
scheme is also applicable to partially connected networks with
imperfect CSIT. To see this, we switch our attention to a
realistic scenario in the homogeneous cellular network [16],
where each user typically only receives the signal sent by its
serving transmitter, and is interfered by the signals sent by two
adjacent transmitters, i.e., user k only sees sk, sk+1 and sk−1.
The signals sent out by farther transmitters are assumed to be
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negligible due to the long distance. Note that it is assumed
that user 1 is connected to transmitter K, 1 and 2, while user
K is connected to transmitter K−1, K and user 1.

In the following, we firstly design a TRS approach for
a class of CSIT quality topologies, where for each user,
one incoming interfering link has CSIT quality b, while
the other interfering link has CSIT quality a, i.e., either
(ak,k+1,ak,k−1)=(a,b) or (ak,k+1,ak,k−1)=(b,a), ∀k∈K. It is
assumed that a≤b. A 5-cell example is illustrated in Figure
3(a). Secondly, we find a closed-form expression for the
maximal sum DoF achieved by the proposed TRS. Lastly, we
compare the results with the sum DoF achieved by ZFBF with
power control.

A. TRS scheme

Without sum DoF maximization, we design the TRS by
considering that all users are active and each transmitter uses
power P a, i.e., rk=a,∀k∈K, to unicast the private message.
Following the footsteps presented in Section IV-B, the trans-
mitted signal is expressed as

sk=p3
kw

3
k︸ ︷︷ ︸

P−P b

+ p2
kw

2
k︸ ︷︷ ︸

P b−Pa

+p1
kw

1
k︸ ︷︷ ︸

Pa

, (55)

where p2
k⊆ span({ĥ⊥jk}j=k+1,k−1,ajk=b), and

p1
k⊆ span(ĥ⊥k+1,k,ĥ

⊥
k−1,k) are ZF-precoders, while p3

k

is a random precoder. The message w1
k is a private message

intended for user k, w2
k is a common message to be decoded

by user k and user j for some j=k+1,k−1,ajk=a, while
w3
k is a common message to be decoded by user k, k−1 and

k+1.
The signal received by user k writes as

yk=

k+1∑
j=k−1

hHkjp
3
jw

3
j︸ ︷︷ ︸

P

+hhkkp
2
kw

2
k︸ ︷︷ ︸

P b

+

∑
j=k−1,k+1,akj=a

hHkjp
2
jw

2
j︸ ︷︷ ︸

P b

+
∑

j=k−1,k+1,akj=b

hHkjp
2
jw

2
j︸ ︷︷ ︸

P 0

+

hHkkp
1
kw

1
k︸ ︷︷ ︸

Pa

+
∑

j=k−1,k+1

hHkjp
1
jw

1
j︸ ︷︷ ︸

P 0

+ nk︸︷︷︸
P 0

. (56)

The sets of the common messages that are decoded by user k
are defined as T 1

k ,{w1
k}, T 2

k ,w
2
k∪w2

j , j=k+1,k−1,ajk=a

and T 3
k ,{w3

k,w
3
k+1,w

3
k−1}. By performing SIC, the achiev-

able DoF lies in

d1k≤a,
∑
j∈T 2

k

d2j≤b−a,
∑
j∈T 3

k

d3j≤1−b,∀k∈K. (57)

With the definition of T ik , the weighted sum interpretation of
the CSIT quality topology in Figure 3(a) is illustrated in Figure
3(b). The left, middle and right figures respectively stand for
the partially connected networks where the private message
unicasting, common message groupcasting and common mes-
sage multicasting are performed. Next, given the achievable
DoF region in (57), we study the maximal achievable sum
DoF.

B. Sum DoF achieved by the proposed TRS

Firstly, it is clear that the maximum sum DoF achieved by
the private messages {w1

k}k∈K is Ka.
Secondly, the maximum sum DoF achieved by the

common messages {w3
k}k∈K can be found as follows.

The inequalities in (57) related to w3
k can be explic-

itly written as d31+d32+d33≤1−b, d32+d33+d34≤1−b, · · · ,
d3K−1+d3K+d31≤1−b and d3K+d31+d32≤1−b. Summing these
K inequalities yields 3

∑K
k=1 d

3
k≤K(1−b), leading to the sum

DoF
∑K
k=1 d

3
k≤K3 (1−b). The equality holds by simply taking

d31=d32= · · ·=d3K= 1−b
3 .

Thirdly, it remains to compute the maximal achievable DoF
of the common messages {w2

k}k∈K. To this end, according
to the definition of set T 2

k , we obtain a partially connected
network with the topology matrix M2, whose elements are
determined following (40). Specifically, if j=k or akj=a, we
have mkj=1; otherwise, we have mkj=0. An example of the
obtained partially connected network is illustrated in Figure
3(b). Then, finding the sum DoF achieved by {w2

k}k∈K subject
to (57) is equivalent to computing the sum DoF

∑
k∈K d̂

2
k

given M2d̂2≤1K , where d̂2k stands for DoF of common
message ŵ2

k transmitted in the partially connected network
defined by M2. The DoF d2k achieved in TRS is obtained by
(b−a)d̂2k.

According to the CSIT quality topology mentioned at the
beginning of this section, we see that each set T 2

k ,∀k∈K has
two elements, and each row of M2 has two “1”s. Then, follow-
ing the definition introduced in Section IV-D, the hypergraph
H2(Ŵ2,T 2) is actually a graph. A member of T 2, i.e., T ik ,
refers to an edge between vertex ŵ2

k and its neighbor ŵ2
j

if akj=a. Next, we characterize the sum DoF
∑
k∈K d̂

2
k by

evaluating the row rank of M2.
When M2 has a full row rank, it means that there is

no redundant inequality in (57). In other words, there is no
overlapping edge in T 2. Moreover, since a vertex ŵ2

k can only
have an edge with either ŵik−1 or ŵik+1, the graphH2(Ŵ2,T 2)
is actually a circuit. An example is illustrated Figure 4(a). It
can be verified that the sum DoF of the common messages
{ŵ2

k}k∈K is K
2 (obtained by adding up all the K inequalities

involved in M2d̂2≤1K and dividing the sum by 2).
When M2 has a deficient row rank, it means that some

edges of the graph H2(Ŵ2,T 2) are redundant. This fact
breaks the circuit when M2 has full row rank into pieces.
Clearly, if the row rank of M2 is rowrk(M2)=K−1, the
graph is a chain (see Figure 4(b)); if the row rank of M2

is rowrk(M2)=K−2, the graph consists of two separated
chains (see Figure 4(c)), then the maximum sum DoF can be
computed by adding up the sum DoF achieved in each chain.
Hence, when rowrk(M2)=r, the graph has K−r separated
chains. The remaining work is to characterize the maximum
sum DoF for a single chain.

Intuitively, as two connected vertices correspond to a sum
DoF constraint d̂2k+d̂2k+1≤1, the maximum sum DoF for a
single chain is equal to the number of disjoint vertices. Hence,
denoting the length of a chain by Kn, the sum DoF is Kn

2 if
Kn is an even number and Kn+1

2 if Kn is an odd number.
The rigorous proof is presented in Appendix C.
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(a) rowrk(M2)=5

(b) rowrk(M2)=4

(c) rowrk(M2)=3

Fig. 4: The hypergraph H2(W2,T 2).

In general, when rowrk(M2)=r, the sum DoF of common
messages {ŵ2

k}k∈K writes as

∑
k∈K

d̂2k=


K
2 if r=K∑K−r
n=1

Kn
2 1Kn is even+

Kn+1
2 1Kn is odd if r<K

(58)

=
K

2
+
ε

2
, (59)

where ε stands for the number of chains that have odd
number of vertices. Then, the maximum sum DoF achieved
by {w2

k}k∈K transmitted in TRS is (b−a)
(
K
2 + ε

2

)
.

According to the above analysis and counting the sum
DoF achieved by {wik}k∈K,i=1,3, we state the maximum
achievable sum DoF in the considered scenario as follows.

Proposition 6. In a K-cell MISO IC where 1) each user is
connected to its closest three transmitters, and 2) the CSIT
qualities of the two incoming interfering links associated to
each user are a and b with 0≤a≤b≤1, the maximum sum DoF
achieved by TRS designed by unicasting private messages with
power P a is

dmax
s,TRS(K,r=a)=

K

3
+
K

6
b+

K

2
a+

b−a
2
ε, (60)

where ε is defined in (59) and r=a means that rk=a,∀k∈K.

Obviously, the sum DoF achieved by the proposed TRS
scheme strongly depends on ε, i.e., the number of chains with
odd number of vertices. Since there are at least two elements
in a chain, the shortest length of a chain with odd number of

(a) All users are active.

(b) 5 active users, k=1,2,3,4,5.

(c) 4 active users, k=1,2,3,5.

(d) 3 active users, k=1,3,5.

Fig. 5: Illustration of computing the sum DoF achieved by ZFBF
with power control

vertices is 3. Hence, the maximal value of ε is ε∗=K
3 , K−2

3
and K−4

3 when K mod 3=0, K mod 3=2 and K mod 3=1,
respectively. This indicates that the best topology that yields
the greatest sum DoF has the property that in the generated
graph there exist ε∗ chains with three vertices and K−3ε∗

2
chains with two vertices. Then, by substituting ε∗ into (60), we
find that the best sum DoF is K

3 (1+b+a)−km3 (b−a), where
km,2K mod 3. Besides, the worst topology has the property
that all the chains have an even number of vertices. The worst
sum DoF is equal to K

3 (1+ b
2+ 3a

2 ).

C. Discussion

1) Comparison with conventional schemes: In this part, we
compare the sum DoF achieved by the proposed TRS scheme
with the sum DoF achieved by preliminary schemes. In RS,
each user employs a fraction of the total power to unicast
the private message, while employs the remaining power to
transmit the common message. However, unlike the received
signal presented in (7), in the considered realistic scenarios,
each user only decodes three common message transmitted by
the dominant transmitters rather than all common messages.
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This fact implies that the DoF achieved by the common
messages are specified by |S| different inequalities, rather than
the single inequality

∑
k∈S d

c
k≤1−maxj∈S rj in (8). Hence,

the achievable DoF region specified in Proposition 1 cannot
be used to evaluate the DoF region achieved by RS in the
considered realistic scenarios. Instead, we look at the sum DoF
achieved by ZFBF with power control.

According to Remark 1, finding the maximum sum DoF
achieved by ZFBF with power control requires a huge amount
of efforts for evaluating the DoF region obtained for all the
possible active user set U⊆K. To find a tractable result, we
focus on the cyclic CSIT quality topology, i.e., ak,k+1=a and
ak,k−1=b, ∀k∈K, where the index k is based on modulus K.
We evaluate the achievable sum DoF for each possible active
user set U using (10) with S=K, and the maximum of them
yields the sum DoF achieved by ZFBF with power control.

A 6-user example is shown in Figure 5. Note that the 1 in
row k and column j with j 6=k−1,k+1 is obtained because the
DoF achieved by ZFBF in the considered scenario is identical
to the DoF achieved by ZFBF in a fully connected MISO
IC with CSIT quality akj=1, ∀j∈K\{k,k−1,k+1}. When
all the users are active, the achievable sum DoF 6a is given
by inequality

∑m
l=1 d

p
il
≤
∑m
l=1 ail−1il , where the cyclic user

sequence is (i1,· · ·i6)=(1,6,5,4,3,2). Similarly, when there are
5 active users, the achievable sum DoF is 1+4a, given by
the cyclic user sequence (1,5,4,3,2). When there are 4 active
users, the best active users set that yields the maximum sum
DoF is {1,2,3,5} because user 5 does not interfere and is not
interfered by the other three users. The achievable sum DoF
is 2+2a. When there are 3 active users, the sum DoF 3 can
be achieved by simply scheduling user 1, 3 and 5. Hence, the
maximum sum DoF achieved by ZFBF with power control is
max{6a,1+4a,2+2a,3}.

In general, when K is an even number, by applying the same
method as above, the maximum sum DoF achieved by ZFBF
with power control is maxn:K2 ≤n≤K

{K−n+(2n−K)a},
where n stands for the number of active users. Thus, if a≥ 1

2 ,
we have ds,zfbf=Ka; otherwise, we have ds,zfbf=K

2 .
When K is an odd number, the maximum sum

DoF is achieved by ZFBF with power control is
max{bK2 c,b

K
2 c−1+a+b,2bK2 c−n+1+(2n−2bK2 c−1)a},

where bK2 c+2≤n≤K. The number bK2 c−1+a+b is the
achievable sum DoF when there are bK2 c+1 active users.
It is achieved by scheduling user 1, 3, · · · , 2bK2 c−3 who
are not interfered by each other, and scheduling another
two adjacent users, i.e., user 2bK2 c−1 and user 2bK2 c. The
quantity 2bK2 c−n+1+(2n−2bK2 c−1)a is the achievable
sum DoF when there are n active users. It is achieved by
scheduling 2bK2 c−n separated users, and 2n−2bK2 c adjacent
users. Through some calculations, it can be verified that
when a≥ 1

2 , we have ds,zfbf=Ka; when 1−b≤a≤ 1
2 , we have

ds,zfbf=bK2 c−1+a+b; when a≤1−b and a≤ 1
2 , we have

ds,zfbf=bK2 c.
According to the analysis in Section V-B, in the cyclic

CSIT quality topology, the sum DoF achieved by the proposed
TRS is dmax

s,TRS(K,a)=K
3 (1+ b

2+ 3a
2 ). Then, it can be verified

that dmax
s,TRS(K,a)>ds,zfbf as long as b+3a> 6

K b
K
2 c−2. This

(a) Average tightness, i.e.,
dmax
s,TRS

dupper

(b) Proportion of CSIT topologies that achieve
dmax
s,TRS

dupper
≥90%

Fig. 6: Tightness evaluation for the 6, 7, 8 and 9-cell scenarios

implies that the condition b+3a> 6
K b

K
2 c−2 is a sufficient

condition for TRS to yield a sum DoF strictly greater than
ZFBF with power control. When this condition does not hold,
we can seek for an optimal active user set S∗ and optimal
power allocation policy r∗, which maximize the sum DoF
achieved by TRS.

2) Tightness: In this part, we evaluate the tightness of the
sum DoF achievable by TRS in the considered scenario. Using
Proposition 5, we can obtain an upper-bound on the DoF
region as given by (61) at the top of next page.

With the above constraints, one can calculate the upper-
bound dupper= max

∑K
k=1 dk on the sum DoF numerically

using MATLAB. In Figure 6(a), we evaluate the average
tightness, i.e.,

dmax
s,TRS

dupper
, for all the 26 + 27 + 28 + 29=960

possible CSIT quality patterns of 6, 7, 8 and 9-cell scenarios.
As shown, for all the CSIT quality topologies and all the
possible values of a and b, TRS achieves more than 60% of
the upper-bound, and the tightness increases with the values of
a and b. It is worth mentioning that TRS is optimal when b=1.
Besides, Figure 6(b) illustrates the proportion of the CSIT
quality topologies that achieve 90% of the upper-bound. We
can see that for nearly half of the values of a and b (the yellow
grids), TRS achieves more than 90% of the upper-bound for
all the CSIT quality topologies.
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{
dk≤1,dj≤1,dk+dj≤1+ min{akj ,ajk} if (k,j)=(1,K) or j=k+1,∀k=2,· · ·,K−1;

dk≤1,dj≤1,dk+dj≤2 else. (61)

VI. CONCLUSION

This paper, for the first time to our knowledge, studies
the DoF of a K-cell interference channel with an arbitrary
CSIT qualities of the interfering links. We firstly consider a
Rate-Splitting approach where each user’s data is split into
a common part and a private part. The private messages are
unicast along ZF-precoders using a fraction of the total power,
while the common messages are multicast using the remaining
power and are to be decoded by all users. With an arbitrary
power allocation for the private messages, we characterize the
DoF region achieved by RS, and show that it covers the DoF
region achieved by ZFBF with power control. Secondly, we
propose a novel scheme called Topological RS. Compared to
RS, the novelty lies in splitting the power used to transmit
common messages into multiple layers. In each layer, with the
properly assigned power level and ZF-precoders, we transmit
common messages to be decoded by groups of users rather
than all users. This multi-layer structure reduces the number
of common messages decoded by each user, thus enhancing
the DoF achieved by the common messages. The DoF region
achieved by TRS is derived and is shown as a superset of the
DoF region achieved by RS and ZFBF with power control.
Besides, the sum DoF is studied using Graph Theory tools and
the sum DoF of a class of realistic scenarios is characterized.

Apart from that, we would like to emphasize the usefulness
of the weighted sum interpretation that is used to design
the TRS scheme. It bridges the MISO IC with imperfect
CSIT and partially connected networks, thus providing an
illustrative view of how many common messages can be
transmitted. To this end, graph theory methodologies can be
introduced as powerful tools to analyze the DoF performance.
This weighted-sum interpretation can be applied to many
other scenarios, such as MISO networks with alternating CSIT
qualities.

So far, the optimal DoF region and/or sum DoF of a K-cell
interference channel with imperfect CSIT remains an open
problem due to the lack of tight outer-bound. Our proposed
TRS drives the inner-bound one step further, and the obtained
insights are transferrable to practical deployments.

APPENDIX

A. Proof of Proposition 1

The proof follows the footsteps in [19, Section III.B and
Appendix D]. It has two steps. The first step is to charac-
terize DRS(S,U). As it will be shown later on, the union of
DRS(S,U) over U is a subset of DRS(S),

⋃
∀rDRS(S,r). The

second step is to show DRS(S)⊆
⋃
∀U∈SDRS(S,U).

1) Step 1: For user k∈S\U , we choose rk=0 (Note that
this choice is equivalent to rk=−∞ from a DoF perspective).
Besides, we consider a polyhedral relaxation on the DoF tuple
specified in (8) by requiring rk−maxj:j∈S\k(rj−akj)+ to be

non-negative. Then, the achievable DoF region via polyhedral
relaxation is the set of the DoF tuples such that

0≤dpk≤rk− max
j:j∈U\k

(rj−akj)+,∀k∈U ,∑
k∈S

dck≤1−max
j∈S

rj . (62)

The polyhedral relaxation requires that the power exponents
r such that the power of interference overheard by user k
is lower than the received power of user k’s desired private
message. Otherwise, the power exponents r are regarded
as achieving an invalid DoF tuple. However, according to
(8), those power exponents actually lead to a valid DoF
tuple. Hence, the DoF region is shrinked by the polyhedral
relaxation. Now, denoting dc=

∑
k∈S d

c
k, we rewrite (62) as

dpk≤rk−(rj−akj)⇒rj−rk≤akj−dpk,∀k∈U ,∀j∈U\k,(63)
dpk≤rk⇒− rk≤− d

p
k, (64)

dpk≥0, (65)
dc≤1−rk⇒rk≤1−dc,∀k∈U . (66)

Following the footsteps in [19, Section III.B], we de-
fine a fully connected directed graph G(V,E), where
V={v0,v1, · · · ,v|U|} is the vertex set and E is the set of
the arcs. The length assigned to the arc from vj to vk is
l(vj ,vk)=akj−dpk for i,j 6=0, and the length assigned to the arc
from vk to v0 is l(vk,v0)=1−dc, while the length assigned to
the arc from v0 to vk is l(v0,vk)=− dpk.

As defined in [27], a function f is called a potential if
for every two vertices, a and b, such that l(a,b)≥f(a)−f(b)
holds. Then, by setting f(v0)=0 and f(vk)=rk, we see that
any achievable DoF tuple such that (62) holds, corresponds
to a potential function for the directed graph. Moreover, the
potential theorem [27, Theorem 8.2] suggests that there exists
a potential function for a directed graph if and only if each
circuit of G has a non-negative length. Thus, a DoF tuple is
said satisfying (62) if and only if each circuit of G has a non-
negative length.

• For the circuits (v0,vk,v0), we have 1−dc−dpk≥0, yield-
ing dc+dpk≤1, ∀k∈U .

• For the circuits (vi0 , · · · ,vim) with
i0=im, ∀(i1, · · · ,im)∈ΠU , ∀m≥2, we have∑m
l=1 d

p
il
≤
∑m
l=1 ail−1il .

• For the circuits formed by (vi1 , · · · ,vij ,v0,vij+1
, · · · ,vim)

with v0 between vij and vij+1
, ∀(i1, · · · ,im)∈ΠU , we

have dc+
∑m
l=1 d

p
il
≤1+

∑m
l=1,l 6=j ail−1il . Considering all

the possible positions of v0, we have the minimum
operator in the last inequality of (11).

Consequently, DRS(S,U) characterized by (10) and (11) is
immediate.
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2) Step 2: To show DRS(S)⊆
⋃
∀U∈SDRS(S,U), we firstly

introduce D′RS(S,U) as

D′RS(S,U)={(dc1, · · · ,dcK ,d
p
1, · · · ,d

p
K)∈DRS(S,U),

dpk>0,∀k∈U}. (67)

Then, it is clear that D′RS(S,U)⊆DRS(S,U), the remaining
work is to show DRS(S)⊆

⋃
∀U∈SD′RS(S,U). We aim to show

that a DoF tuple lying outside
⋃
∀U∈SD′RS(S,U) also lies

outside DRS(S). Such a DoF tuple has at least one of the
following features:

• dpk<0 or dpk>1 or dc+dpk>1 for some user k∈S.
•
∑m
l=1 d

p
il
>
∑m
l=1 ail−1il for some cyclic sequence

∀(i1, · · · ,im)∈ΠU .
• dc+

∑m
l=1 d

p
il
>1+

∑m
l=1,l 6=j ail−1il for some users

∀(i1, · · · ,im)∈ΠU .

It has been shown in [19] that the DoF tuple satisfying
the first and second feature cannot be included in DRS(S). It
remains to show that the DoF tuple satisfying the third feature
cannot belong to DRS(S). To this end, we employ the similar
method in [19]. Assuming the DoF tuple satisfying the third
feature lies in DRS(S). Then, there exists some ril ’s such that

dc+

m∑
l=1

ril− max
ik∈S\il

(rik−ailik)+>1+

m∑
l=1,l 6=j

ail−1il

⇒dc−1+

m∑
l=1

ril− max
ik∈S\il

(rik−ailik)+−
m∑

l=1,l 6=j

ail−1il>0.

(68)

Since maxik∈S\il(rik−ailik)+≥ril−1
−ailil−1

, the l.h.s. of
(68) can be upper-bounded as

dc−1+rij−1
− max
ik∈S\ij−1

(rik−aij−1ik)++

m∑
l=1,l 6=j

ril−1
− max
ik∈S\il−1

(rik−ail−1ik)+−ail−1il

≤dc−1+rij−1− max
ik∈S\ij−1

(rik−aij−1ik)++

m∑
l=1,l 6=j

ril−1
−ril−1

+ail−1il−ail−1il≤0, (69)

which contradicts (68). This implies that
DRS(S)⊆

⋃
∀U∈SD′RS(S,U), which completes the proof.

B. Proof of Proposition 2

We firstly show the DoF tuple achieved by common message
{wik}k∈S ,i≥2 in (37) and (38), and secondly show the DoF
tuple achieved by private messages {w1

k}k∈S in (36).
For user k,∀k∈K, when common messages of set T ik (S,r)

are decoded, it is assumed the common messages of set
T lk (S,r),∀l>i, have been successively recovered and removed.

Then, denoting the noise plus the interferences within the noise
power by ñk, the received signal is expressed as

ỹk=
∑

j:wij∈T ik (S,r)

hHkjp
i
jw

i
j︸ ︷︷ ︸

P
aπ(i−1)

+

i−1∑
l=2

∑
j:wij∈T ik (S,r)

hHkjp
i
jw

i
j︸ ︷︷ ︸

P
aπ(l−1)

+

hHkkp
1
kw

1
k︸ ︷︷ ︸

P rk

+
∑
j∈S\k

hHkjp
1
jw

1
j︸ ︷︷ ︸

P rj−akj

+ ñk︸︷︷︸
P 0

. (70)

This system corresponds to a multiple-access-channel (MAC)
where user k wishes to decode messages of set T ik (S,r).
Following the capacity region of MAC [16], the sum rate of
any non-empty subset M⊆T ik (S,r) of messages are given by∑

j:wij∈M

Rj≤I(M;ỹk|T ik (S,r)\M)

=h(ỹk|T ik (S,r)\M)−h(ỹk|T ik (S,r)), (71)

Considering that the input are random Gaussian codes, the
entropies in (71) are equal to

h(ỹk|T ik (S,r)\M)=aπ(i−1) log2 P+O(1),i≥2, (72)

h(ỹk|T ik (S,r))=aπ(i−2) log2 P+O(1),i≥3, (73)

h(ỹk|T 2
k (S,r))=max{rk, max

j∈S\k
rj−akj} log2 P+

O(1), (74)

where O(1) refers to the terms that do not change with P .
Substituting (72), (73) and (74) into (71) and dividing them
by log2 P lead to (37) and (38).

When user k decodes private message w1
k, all the common

messages have been recovered and removed. By treating the
undesired private messages as noise, the rate of w1

k writes as

R1
k≤I(w1

k;yk|T ik (S,r),i=2, · · · ,L+2) (75)
=h(yk|T ik (S,r),i=2, · · · ,L+2)−
h(yk|T ik (S,r),i=2, · · · ,L+2,w1

k) (76)

=h(
∑
j∈S

hHkjp
1
jw

1
j+ñk)−h(

∑
j∈S\k

hHkjp
1
jw

1
j+ñk) (77)

=rk log2 P− max
j∈S\k

(rj−akj)+ log2 P+O(1). (78)

Then, (36) is immediate.

C. Proof of the sum DoF of the realistic scenario considered
in Section V

Without loss of generality, we consider the case
rowrk(M2)=K−1 and the edges T 2

k ={ŵ2
k,ŵ

2
k+1},

∀k=1,K−1, and TK=TK−1. Clearly, in this scenario,
there is one chain with length K. The inequality M2d̂i≤1 is
explicitly expressed as d̂1+d̂2≤1, d̂2+d̂3≤1, d̂3+d̂4≤1, · · · ,
d̂K−1+d̂K≤1. Adding up the inequalities with odd index
yields

If K is even,

K
2∑
l=1

d̂22l−1+d̂22l=

K∑
k=1

d̂2k≤
K

2
; (79)

If K is odd,

K−1
2∑
l=1

d̂22l−1+d̂22l=

K−1∑
k=1

d̂2k≤
K−1

2
. (80)
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Inequality (79) provides an upper-bound on the sum DoF of
common messages {ŵ2

k}k∈K when K is an even number. The
equality holds with d̂21=d̂23= · · ·=d̂2K−1=1. When K is an
odd number, we obtain an upper-bound on the sum DoF of
common messages {ŵ2

k}k∈K by adding d̂2K to both sides of
(80) as

K∑
k=1

d̂2k≤
K−1

2
+d̂2k≤

K+1

2
. (81)

The inequality (81) is obtained due to the fact that
d̂2K≤1. Then, using (81) we can obtain the maximum sum
DoF of common messages {ŵ2

k}k∈K as K+1
2 by taking

d̂21=d̂23= · · ·=d̂2K−2=d̂2K=1.
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