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Comment on “Finite-size scaling of survival probability in branching processes”
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R. Garcia-Millan et al. [Phys. Rev. E 91, 042122 (2015)] reported a universal finite-size scaling form of the
survival probability in discrete time branching processes. In this comment, we generalize the argument to a wide
range of continuous time branching processes. Owing to the continuity, the resulting differential (rather than
difference) equations can be solved in closed form, rendering some approximations by R. Garcia-Millan et al.
superfluous, although we work along similar lines. In the case of binary branching, our results are in fact exact.
Demonstrating that discrete time and continuous time models have their leading order asymptotics in common,
raises the question to what extent corrections are identical.
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In the following we will briefly outline the derivation of the
survival probability in continuous time branching processes,
many aspects of which are covered by textbooks such as
Ref. [1]. In the process considered, each individual node
undergoes branching with Poissonian rate λ, replacing it
with probability pk by k ∈ N nodes. In particular, k = 0
corresponds to spontaneous extinction of an individual and
k = 1 to no change. As in Ref. [2], the generating function
f (s) = ∑∞

k=0 pks
k establishes normalization via f (1) = 1,

the mean as m = f ′(1), and the variance σ 2 via f ′′(1) =
σ 2 + m2 − m. While f (s) characterizes the branching, the
generating function G(s,t) is concerned with the process as a
whole. If Nt denotes the number of individuals at time t , then
G(s,t) is the expectation of sNt so that

G(s,t) = se−λt +
∫ t

0
dτ λe−λτ f (G(s,t − τ )), (1)

where the first term accounts for no branching and the second
for (the first) branching at time τ , leaving the process time t − τ

to develop further. The probability P0(t) of extinction by time
t , which is the probability of Nt = 0, is given by lims→0 G(s,t)
and obeys Ṗ0/λ = f (P0) − P0, by differentiating Eq. (1) with
respect to t . Solving P0 in closed form is generally dependent
on the precise choice of f (s). The procedure is particularly
easy if all pk vanish for k > k∗. In the following, we will
expand f (s) about its smallest fixed point, recovering exact
results for k∗ = 2, i.e., quadratic f (s).

The eventual extinction probability q = limt→∞ P0(t) is
given by the smallest fixed point of the offspring generating
function [3], f (q) = q with q = 1 for m � 1 and q < 1
otherwise. P0 approaches q from below as t increases. Defining
Q = q − P0, it obeys

Q̇(t) = −λQ
[
1 − f ′(q) + 1

2f ′′(q)Q + O(Q2)
]

(2)

by expanding f (q − Q) to second order in small Q, which
is expected for t � λ−1. In the subcritical regime, m < 1, it
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follows that q = 1, and therefore Q is the complement of P0, or
the survival probability Psurv = 1 − P0. Using the expansion
in Eq. (2), which is exact for k∗ = 2, we find

Psurv(t) ≈ 1

tf ′′(1)

2y exp (yλ)

exp (yλ) − 1 − 2(1−m)
f ′′(1)

, (3)

where y = t(m − 1) (using the notation of Ref. [2]). In
large t 	 λ−1 with y fixed, f ′′(1) converges to σ 2 and
(1 − m)/f ′′(1) vanishes, recovering Eq. (4) of Ref. [2]. In
the critical regime, m = 1 and we find

Psurv(t) ≈ (
1 + 1

2λσ 2t
)−1

, (4)

which has the same asymptote in t as Eq. (3) for small
y � 1. The supercritical regime, m > 1, is somewhat messier,
because the smallest fixed point q of f (s) is no longer
unity, whereas mean and variance of the offspring number
derive from properties of f (s) there. Because f (1) = 1 and
f (s) is strictly convex on [0,1], we have f ′(s) < 1 and
Q = q − 1 + Psurv therefore follows the derivation in the
subcritical regime, resulting in

Psurv(t) ≈ 1 − q + 2(f ′(q) − 1)

f ′′(q)

× exp(λ(f ′(q) − 1)t)

exp(λ(f ′(q) − 1)t) − 1 − 2(1−f ′(q))
f ′′(q)q

(5)

exact for k∗ = 2 and extending the result in Ref. [2] to q not
necessarily close to unity. In Ref. [2], f ′(q) is approximated by
2 − m and f ′′(q) by σ 2, after some algebra recovering Eq. (3)
above. Noticeably, Eq. (5) does not rely on the introduction of
the “critical variance” σ 2

c in Ref. [2]. In summary, we recover
for the continuous time branching process the asymptotes
determined by Ref. [2]. The approximate signs in Eqs. (3), (4),
and (5) become equalities in the case of a branching process
producing at most two offspring at a time, k∗ = 2, which is
equivalent to a birth-death process with constant birth and
extinction rates for each individual.

Given the similarity between the continuous time branching
process and the Galton-Watson process analyzed by Ref. [2]
and the fact that the latter is embedded in the former [3], the
shared asymptotics may not come as a great surprise. However,
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not much is known about the universal finite-size scaling
of these processes, derivable in the present case in closed
form. This is obviously the major advantage of considering

a continuous time process such as the present one. Finding
subleading terms, even just in 1 − q for the supercritical case
[Eq. (5)], amounts to a great challenge for discrete time models.
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