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Chapter 1

Modelling tissue self-organization:
from micro to macro models

Pierre Degond, Diane Peurichard

Abstract In this chapter, we present recent works concerned with the deriva-
tion of a macroscopic model for complex interconnected fiber networks from
an agent-based model, with applications to, but not limited to, adipose tis-
sue self-organization. Starting from an agent-based model for interconnected
fibers interacting through alignment interactions and having the ability to
create and suppress cross-links, the formal limit of large number of individ-
uals is first investigated. It leads to a kinetic system of two equations: one
for the individual fiber distribution function and one for the distribution
function of connected fiber pairs. The hydrodynamic limit, in a regime of
instantaneous fiber linking/unlinking then leads to a macroscopic model de-
scribing the evolution of the fiber local density and mean orientation. These
works are the first attempt to derive a macroscopic model for interconnected
fibers from an agent-based formulation and represent a first step towards the
formulation of a large scale synthetic tissue model which will serve for the
investigation of large scale effects in tissue homeostasis.
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1.1 Introduction

Self-organization in biological systems is a process that occurs over time
and leads to the spontaneous emergence of spatio-temporal structures as a
result of simple interactions between agents [7]. The evolution and develop-
ment of biological self-organization of systems proceeds from small, simple
components that are assembled together to form larger structures that have
emergent properties and behaviour, which, in turn, self-assemble into more
complex structures. The latter are then maintained by a permanent turnover
of different cell populations or components, which ensures the proper func-
tioning of the tissue. Multiple evidence show that disrupting this homeostasis
promotes tissue dysfunctions and diseases including cancer. Similar unbalance
is a natural consequence of aging, which becomes a major problem worldwide.
Understanding what factors are responsible for tissue homeostasis disruption
is therefore a major issue in the science of aging. Because self-organization in
biological systems involves several agents and interactions at different scales
and of several types (chemical, mechanical, molecular, genomics), identifying
which mechanisms are primarily involved in this organization is of tremen-
dous difficulty. Mathematical models then provide a way of reducing the
complexity of the problem, by featuring a finite set of agents and interac-
tions that are supposed to contribute the most to the global organization of
the system.

Due to their simplicity and flexibility, the most used models in the litera-
ture are Individual-Based Models (IBM), which describe the motion of each
individual [1, 3, 11, 17]. An other advantage of these models is that they can
incorporate any number of individual-level mechanisms. As a drawback, they
are not suited to the study of large systems since the computational cost of
an IBM tremendously increases with the size of the system.

The behavior of a large system of individuals can be studied through meso-
scopic descriptions based on the evolution of the probability density of finding
individuals in the phase space. These descriptions are usually expressed in
terms of kinetic partial differential equations obtained by scaling (mean-field)
limit of an IBM [18]. Finally, continuum models are proposed to describe the
system at the macroscopic level. These last models describe the evolution
in time of mean variables such as density, mean orientation etc. The main
advantage of such models is their low computational cost. As a drawback, in-
formation on the interactions are lost at the individual level. To overcome this
weakness of the macroscopic models, a possible route is to derive a macro-
scopic model from a microscopic one, topic which has received a lot of atten-
tion these last decades [19, 6, 16, 9]. The classical derivation consists of two
steps: (i) obtain a kinetic version of the microscopic model by asymptotic
limit of large number of individuals and (ii) perform the large scale limit of
the kinetic model to obtain a macroscopic description .

In this chapter, we aim to apply these recent techniques to study the
formation of specific structures in biological tissues. Numerous models of tis-
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sue morphogenesis can be found in the literature, describing the emergence
of self-organization of cells and fibers (see [20] [28] and references therein).
Biological fiber networks alone have also been extensively studied in the liter-
ature. These complex networks are cross-linked dynamical plastic structures
providing mechanical support to the cells and giving to the tissue the ability
to change shape and adapt in response to biological and mechanical stimuli
[8]. At the macroscopic level, numerous continuum models for fibrous media
have also been developed in the literature. Most of them are heuristically
derived from continuum theories such as [2, 27], thermodynamics [21], or
viscous fluid mechanics [22]. The challenge for these models is to construct
accurate constitutive laws and homogenization techniques to incorporate the
dynamics of the fiber network, even if it implies a loss of information at the
individual level.

The goal of this chapter is to summarize some recent works aiming at
deriving a macroscopic model from an agent-based model for interconnected
fibers interacting through alignment interactions first proposed in [10]. We
start from an agent-based model for fibers having the ability to cross-link
and unlink. Two linked fibers interact through alignment interaction at the
cross link. In the asymptotic limit of a large number of individuals, we obtain
a closed system of two equations describing the time evolution of the one-
particle fiber distribution function and of the cross-links distribution function.
The cross-links provide correlations between the fibers and consequently their
distribution can be viewed as related to the two-particle fiber distribution. It
is shown that the knowledge of the one-particle distributions of fibers and of
cross links suffices to provide a physically relevant kinetic description of the
system.

We then derive a macroscopic model by exploring the diffusion limit of
the kinetic model with further scaling assumptions on the model parameters.
In order to obtain a closure of the kinetic model at the level of the fiber
distribution function only, we suppose that the linking/unlinking frequencies
are very large: the typical linking/unlinking time is supposed to be much
smaller than the typical fiber alignment time. The biological relevance of this
assumption may be questioned, our main goal here is to set up a methodology
which will be further refined towards providing an extensive theory of fibrous
media with finite linking/unlinking times.

From these assumptions, the rescaled kinetic problem has the form of a
classical diffusion approximation problem whose leading-order collision oper-
ator comes from the nematic alignment of the fibers due to the cross-links.
This operator has equilibria in the form of generalized von Mises distribu-
tions of the fiber directions. Such equilibria are also observed in other systems
featuring polar or nematic alignment between particles [15, 14, 4]. Therefore,
the fiber distribution function is described at the macroscopic level by a
fiber density and mean local orientation, raising the need for two equations
providing the spatio-temporal evolution of these parameters. As there is no
conservation equation other than mass conservation in the model, the con-
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cept of Generalized Collision Invariants [9] is used to obtain the macroscopic
system of equations for the fiber density and mean orientation. In the case of
a homogeneous fiber distribution, when the density is uniform in space and
constant in time, the resulting macroscopic model consists of a quasilinear
parabolic equation for the fiber local mean orientation.

1.2 Individual Based Model for fibers interacting
through alignment interactions

In this section, we sketch the two-dimensional agent-based model for inter-
connected fibers interacting through alignment interactions at the cross-links
proposed in [10]. In this model, long collagen fibers are modelled as sets of
segments of uniform fixed length having the ability to connect and disconnect
with their intersecting neighbors. In this way, several sequentially cross-linked
fiber elements model a long fiber having the ability to bend or even take pos-
sible tortuous geometries. Moreover, a link between two connected segments
can be positioned at any point along this element (not only the extremities)
and a given segment can be connected to any number of other segments,
thereby allowing to model the branching off of a fiber into several branches.
The topology of the fiber network is constantly remodelled through link cre-
ation/deletion processes, following (random) Poisson processes in time. The
cross-linking process models fiber elongation and symmetrically, spontaneous
unlinking of cross-linked fibers accounts for fiber breakage describing extra-
cellular matrix (ECM) remodelling processes. We consider the following phe-
nomena : (i) all along the link lifetime, cross-linked fibers are forced to stay
linked by means of a restoring force. (ii) To model fiber resistance to bending,
we suppose that pairs of linked fibers are subject to a torque that tends to
align the two fibers with respect to each other. Finally, (iii) the fibers are sub-
ject to random positional and orientational noises to model the movements of
the tissue and (iv) to positional and orientational potential forces, to model
the action of external elements (such as cells or other tissues).

We consider a set of N fiber segments of uniform and fixed length L,
each described by its center Xi ∈ R2 and its angle θi ∈ [−π2 ,

π
2 ) modulo π

with respect to a fixed reference direction. Each of the previously described
phenomena (i-iv) is related to an energy functional, namely the energy for the
maintenance of the links Wlinks, the energy for the alignment torque Walign,
the energy for the noise contribution Wnoise and the energy for the action of
the external elements Wext. The total energy is then defined as the sum of
all these energies:

Wtot = Wlinks +Walign +Wnoise +Wext.
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All these energies are functions of the N fiber positions (Xi)
N
i=1 and orienta-

tions (θi)
N
i=1. Since Wnoise is rather an entropy than an energy, Wtot is indeed

the total free energy of the system. Fiber motion and rotation during a time
interval between two fiber linking/unlinking events are supposed to follow
the steepest descent direction of the total free energy, according to:

dXi

dt
= −µ∇XiWtot, ∀i ∈ {1, . . . , N}, (1.1)

dθi
dt

= −λ∂θiWtot, ∀i ∈ {1, . . . , N}. (1.2)

Eqs. (1.1) and (1.2) express the motion and rotation of the individuals in an
overdamped regime in which the forces due to friction are very large compared
to the inertial forces. Fiber velocity and angular speed are proportional to
the force exerted on the fiber through two mobility coefficients µ and λ which
are considered given.

We recall that link creation and suppresion are supposed to follow Poisson
processes of frequencies νf and νd respectively. The probability that a link
is created (resp. deleted) in the time interval [tk, t] is 1 − e−νf (t−tk) (resp.
1− e−νd(t−tk)). Given a time t at which no linking/unlinking process occurs,
the set of cross-links between fibers is well defined and supposed to have
K elements. The energies Wlinks and Walign of the total free energy of the
system are supposed to be the sums of elementary binary potential elements
computed between pairs of linked fibers, ranging over the K links of the
system at time t:

Wlinks =

K∑
k=1

V (Xi(k), θi(k), Xj(k), θi(k)) (1.3)

Walign =

K∑
k=1

b(θi(k), θj(k)) =

K∑
k=1

α sin2(θi(k) − θj(k)). (1.4)

The potential element V relating two linked fibers numbered i(k) and j(k) at
their junction k is supposed to derive from a spring-like force that attracts the
attachment sites of the two fibers as soon as they are displaced with respect
to each other (see Fig. 1.1). The corresponding binary potential element V
depends on the positions Xi(k), Xj(k) and orientations θi(k), θj(k) of the two

linked fibers, as well as on the attachment sites Xk
i(k), X

k
j(k) defined by:

Xk
i(k) = Xi(k) + `ki(k)ωi(k), X

k
j(k) = Xj(k) + `kj(k)ωj(k),

where ωi = ω(θi) =

(
cos θi
sin θi

)
is the unit directional vector of fiber i, `ki(k) ∈

[−L/2, L/2] (resp. `kj(k)) is the algebraic distance of the attachment site of

fiber i(k) (resp. j(k)) to its center, at the time of creation of the link. We stress
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out the fact that the quantities `ki(k) and `kj(k) remain constant throughout
the link lifetime.

Fig. 1.1 Left: Link k connecting fibers i(k) and j(k). The associated link lengths `i(k)
and `j(k) are indicated on the Figure. Right: restoring potential V between linked fibers
i(k) and j(k).

The linked fiber-fiber alignment potential element b is supposed to be
proportional to the square of the sine of the angle between two linked fibers
i(k), j(k) and only depends on the orientational angles θi(k), θj(k).

The external potential Wext associated with the external forces is supposed
to be the sum of potential forces U(Xi, θi) acting on each of the N fibers:

Wext =

N∑
i=1

U(Xi, θi).

In the case where the system describes the collagen fibers in a tissue, U aims
to model the presence of cells or other organs.

We include random positional and orientational motion of the fiber ele-
ments which, in the context of biological tissues, originate from the random
movements of the subject. With this aim, we introduce an entropy term:

Wnoise = d

N∑
i=1

log(f̃)(Xi, θi), (1.5)

where f̃ is a ’regularized density’ describing fibers located around point Xi

and of orientation around θi (see [10] for details). Such an entropy term gives
rise to diffusion terms at the level of the mean-field kinetic model.

In [26], simulations of this 2D microscopic model have been performed on a
square domain with periodic boundary conditions, and it has been shown that
Eqs. (1.1)-(1.2) correspond to a gradient descent for a quadratic penalization
of a minimization problem related to the model of [25]. This last model has
proved its efficiency in the modeling of complex cross-linked structures such
as the ECM of adipose tissues. The study was supported by quantitative com-
parisons between numerical simulations and images acquired from biological
experiments. From the physical point of view, phase transitions have been
shown to take place when some of the model parameters are varied, namely
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the fiber linking/unlinking frequencies and the cross-linked fiber alignment
force. However, this model was shown to be very time-consuming for simula-
tions at the scale of the whole tissue, raising the need for the formulation of
a macroscopic level.

In the next sections, we sketch the recent results of [10] which represent a
first step towards the derivation of a macroscopic model for interconnected
fiber networks from its underlying microscopic model. The formal deriva-
tion consists of two main steps: (i) derivation of a kinetic model from the
microscopic formulation, in the limit of a large number of fibers and cross-
links and (ii) a diffusion limit of the kinetic model under appropriate scaling
assumptions to obtain the macroscopic model.

1.3 Derivation of a kinetic model

In order to obtain a kinetic description of the previously described micro-
scopic model, the empirical measure of the individual fibers, fN (x, θ, t), is
introduced:

fN (x, θ, t) =
1

N

N∑
i=1

δ(Xi(t),θi(t))(x, θ),

where δ(Xi(t),θi(t))(x, θ) is the Dirac delta located at (Xi(t), θi(t)). Classically,
fN (x, θ, t) gives the probability to find a fiber within a volume dx about x
with orientational angle within dθ about θ at time t. The empirical measure
gK(x1, θ1, `1, x2, θ2, `2, t) of the fiber links is given by:

gK = 1
2K

∑K
k=1 δ(Xi(k),θi(k),`ki(k),Xj(k),θj(k),`

k
j(k)

)(x1, θ1, `1, x2, θ2, `2)

+δ(Xj(k),θj(k),`kj(k),Xi(k),θi(k),`
k
i(k)

)(x1, θ1, `1, x2, θ2, `2),

with a similar definition of the Dirac deltas. It gives the probability of finding
a link with associated lengths within a volume d`1d`2 about `1 and `2, this
link connecting a fiber located within a volume dx1

dθ1
π about (x1, θ1) with a

fiber located within a volume dx2
dθ2
π about (x2, θ2). One notes that (`1, `2)

is defined in [−L2 ,
L
2 ]2. Then, at the limit N,K → ∞, K

N → ξ, where ξ > 0
is a fixed parameter, fN → f , gK → g where f and g satisfy the equations
given in the following theorem (see [26]):

Theorem 1.1. The formal limit of Eqs. (1.1), (1.2) for K,N →∞, K
N → ξ,

where ξ > 0 is a fixed parameter reads:

∂f

∂t
−µ
(
∇x·((∇xU)f)+ξ∇x·F1+d∆xf

)
−λ
(
∂θ((∂θU)f)+ξ∂θF2+d∂2

θf

)
= 0,

(1.6)
and
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∂g

∂t
−µ

(
∇x1
·
(
g∇xU(x1, θ1) + ξ

g

f(x1, θ1)
F1(x1, θ1)

)
+∇x2

·
(
g∇xU(x2, θ2) + ξ

g

f(x2, θ2)
F1(x2, θ2)

)
+d∇x1 · (

g

f(x1, θ1)
∇xf(x1, θ1)) + d∇x2 · (

g

f(x2, θ2)
∇xf(x2, θ2))

)
−λ

(
∂θ1
(
g∂θU(x1, θ1) + ξ

g

f(x1, θ1)
F2(x1, θ1)

)
(1.7)

+∂θ2
(
g∂θU(x2, θ2) + ξ

g

f(x2, θ2)
F2(x2, θ2)

)
+d∂θ1(

g

f(x1, θ1)
∂θf(x1, θ1)) + d∂θ2(

g

f(x2, θ2)
∂θf(x2, θ2))

)
= S(g),

where

F1(x1, θ1) =
∫

(g∇x1V )(x1, θ1, `1, x2, θ2, `2)d`1d`2
dθ2
π dx2,

F2(x1, θ1) =
∫ (
g(∂θ1V + ∂θ1b)

)
(x1, θ1, `1, x2, θ2, `2)d`1d`2

dθ2
π dx2,

and S(g) is given by:

S(g) = νff(x1, θ1)f(x2, θ2)δ¯̀(x1,θ1,x2,θ2)(`1)δ¯̀(x2,θ2,x1,θ1)(`2)− νdg, (1.8)

where δ¯̀(`1) denotes the Dirac delta at ¯̀, i.e. the distribution acting on test
functions φ(`1) such that 〈δ¯̀(`1), φ(`1)〉 = φ(¯̀)

This kinetic model consists of two evolution equations. Eq. (1.6) is an equa-
tion for the individual fibers and describes the evolution of the one-particle
distribution function f . Eq. (1.7) is an equation for the links between fiber
pairs, where g describes the cross-link distribution function. It can be related
to the two-particle fiber distribution function. As the links are tightly tied
to the fibers, they are convected by them and follow their motion. Simulta-
neously, they constrain the linked fibers to move together, so they directly
influence their motion. The action of the links on the individual fiber motion
is contained in the force terms F1 and F2 of Eq. (1.6) where V is the restor-
ing potential which forces cross-linked fibers to stay connected (contained
in the term Wlinks of the microscopic model). The second and fifth terms
of Eq. (1.6) describe transport in physical and orientational spaces due to
the external potential U (contained in the potential Wext of the microscopic
model). The kinetic counterpart of the alignment force between linked fibers
(contained in the term Walign of the microscopic model) is encompassed in
the second term of the force F2 and only acts on the orientation of the fibers.
The fourth and seventh terms of Eq. (1.6) are diffusion terms of amplitude
λd and µd respectively. They represent the random motion of the fibers and
originate from the interactions described in Wnoise of the microscopic model.
The individual motion of the fibers is thus related to the motion of their
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linked neighbors. The left-hand side of Eq. (1.7) describes the evolution of
the links between fibers. It is composed of the convective terms generated
by the external potential and by the diffusion terms. The forces induced by
the restoring potential generated by the links again give rise to the nonlocal
terms F1 and the first term of F2. The right hand side S(g) of Eq. (1.7)
results from the Poisson processes of linking/unlinking intersecting fibers at
frequencies νf and νd, respectively. The first term of Eq. (1.8) describes the
formation of the link and the Dirac deltas indicate that, at the link creation
time, the link lengths `1 and `2 (in [−L/2, L/2]) are set by the geometric
configuration of the intersecting fibers at the attachment time. The second
term describes fiber unlinking at the rate set by the Poisson process, i.e. νd.

The rigorous proof of the convergence of the microscopic model to the
kinetic model is still an open question, and this derivation still needs vali-
dation through theoretical analysis and numerical simulations. However, this
model is to our knowledge a unique explicit example of a kinetic model writ-
ten in terms of the one and two particle distribution functions and closed
at this level. Moreover, the distribution function g can be seen as a way of
describing the random graph of the fiber links, a description which could be
useful to describe other kinds of random networks. In the sequel, the diffusion
limit of this kinetic model is performed via rescaling of space and time, and
introducing scaling assumptions on the model parameters.

1.4 Scaling and macroscopic model

In order to perform a diffusion limit of the kinetic model of the previous
section, we introduce a small parameter ε � 1 and set x̃ =

√
εx and t̃ = εt.

This leads to ˜̀ =
√
ε`, f̃(x̄, θ) = ε−1f(x, θ) and g̃(x̃1, θ1, ˜̀

1, x̃2, θ2, ˜̀
2) =

ε−3g(x1, θ1, `1, x2, θ2, `2). We then introduce the following scaling hypothesis
on the model parameters: We suppose that the external potential U(x, θ) is
decomposed into U(x, θ) = U0(x) + U1(θ), where U0 is acting on the space
variable only and U1 is a π-periodic potential only acting on the fiber orienta-
tion angles. The external potential acting on the space variables is supposed
to be one order of magnitude stronger than the one acting on the fiber ro-
tations: U0 = O(1), U1 = O(ε). The strength of the alignment potential is
supposed to be (large) of order O(ε−1). The intensity of the alignment po-
tential between linked fibers is supposed to be (small) of order O(ε), and
the diffusion coefficient and parameter ξ (ratio between the total number of
fibers and total number of links) are supposed to stay of order 1. The main
assumption in this scaling, which is introduced to simplify the analysis of
the system, consists in supposing that the processes of linking and unlinking
occur at a very fast time scale, i.e. νf , νd = O( 1

ε2 ).
It is noteworthy that these scaling hypothesis are done for technical rea-

sons, and in this regime it has first been shown (see [10]) that the two particle
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distribution function g reduces to:

gε(x1, θ1, `1, x2, θ2, `2) =
νf
νd
fε(x1, θ1)fε(x2, θ2)δ¯̀(x1,θ1,x2,θ2)(`1) δ¯̀(x2,θ2,x1,θ1)(`2)

+O(ε2).

Note that as ε → 0, the correlations built by the fiber links disappear since
the two-particle distribution function then corresponds to the product of two
one-particle distribution functions. This property comes from the fact that in
this scaling limit, links appear and disappear almost instantaneously, making
the timescale of the action of the restoring force much longer than the lifetime
of a link.

Moreover, in this scaling limit, it can be shown that the one particle dis-
tribution function fε formally satisfies (neglecting the terms in O(ε2), see
[10]):

ε

[
∂tf

ε − ∂θ
([
∂θU

1 + ξG[fε](x, θ)

]
fε
)
− µd∆xf

ε

]
= Q(fε), (1.9)

where Q(f) is the following collision operator:

Q(f) = d∂2
θf + ξ∂θ(∂θΦ[f ]f), (1.10)

and

Φ[fε](x1, θ1) = C1

π
2∫

−π2

sin2(θ − θ2)fε(x1, θ2)
dθ2

π
(1.11)

G[fε](x1, θ1) = C2

2∑
i,j=1

∂2

∂xi∂xj

π
2∫

−π2

fε(x1, θ2)Bij(θ1, θ2)
dθ2

π
, (1.12)

C1 =
αL2νf

2νd
, C2 =

αL4νf
48νd

, (1.13)

with α the alignment force intensity (see Eq. 1.4). Finally,

B(θ1, θ2) = sin 2(θ1−θ2)[ω(θ1)⊗ω(θ1)+ω(θ2)⊗ω(θ2)] =
(
Bij(θ1, θ2)

)
i,j=1,2

,

(1.14)
where A⊗B is the tensor product between vectors A andB: (A⊗B)ij = AiBj .
Eq. (1.9) shows that the interactions at leading order are contained in the
so-called collision operator Q(f) (Eq. (1.10)), which expresses that the align-
ment potential (contained in the functional Φ[f ](x, θ)) is counter-balanced
by the diffusion term which tends to spread the particles isotropically on the
sphere. It is noteworthy that the alignment force is local in space and con-
sists of a sum of elementary alignment forces generated by intersecting fibers.
The other terms (left-hand side of Eq (1.9)) act at lower order ε and contain
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the contribution of the external potential in orientation, the next order con-
tribution of the alignment force between linked fibers (term G[f ]) and the
diffusion in space (due to fiber random motion in the microscopic model).

We now aim to study the limit ε → 0 in Eq (1.9). Formally, if we let
fε → f , as Q(fε) = O(ε), we have Q(f) = 0. Therefore, f is an equilibrium
of the collision operator, and consists of a Von Mises distribution f(x, θ, t)
(see [10]):

f(x, θ, t) = ρ(x, t)Mθ0(x,t)(θ)

Mθ0(x,t)(θ) =
er cos 2(θ−θ0(x,t))∫ π

2

−π2
er cos 2θ dθ

π

,

where ρ(x, t) is the fiber density, θ0(x, t) the fiber local orientation and r the
order parameter given by:

r =
ξαL2ρ(x, t)c(r)νf

4dνd
, c(r) =

∫ π
2

−π2
cos 2θM0(θ)

dθ

π
.

Note that c(r) does not depend on θ0. Therefore in the limit ε → 0, the
one particle distribution function is fully described by the density ρ(x, t) and
the mean local orientation θ0(x, t). Therefore, we need to find two equations
to determine ρ(x, t) and θ0(x, t). Let us note that the local fiber number
is the only quantity conserved by the interactions. In particular, there is
no momentum conservation. Therefore, the only collision invariants of the
collision operator are the constants. The integration of Eq. (1.9) against these
invariants does not allow us to find the evolution equation for the mean
orientation. In order to obtain an equation for θ0, inspired from [9], the
concept of Generalized Collision Invariants (GCI), i.e. of collision invariants
when acting on a restricted subset of functions f , is used. Thanks to this new
concept and in the case of a homogeneous fiber distribution ρ(x, t) = ρ0 (see
[10]), the local fiber orientation θ0(x, t) solves:

∂tθ0 −
2∑

i,j=1

∂xi
(
aij(θ0)∂xjθ0

)
+ α5h(θ0) = 0, (1.15)

where aij ∈ R for i, j = 1, 2 are the coefficients of a 2×2 matrix A such that:

A(θ) =

(
α2 − α3 cos 2θ −α3 sin 2θ
−α3 sin 2θ α2 + α3 cos 2θ

)
. (1.16)

The coefficients α1, α2, α3 and α5 are fully determined by the parameters
r, d and L. Their expression is omitted here for the sake of simplicity (see
[10]). Finally, the function h is the macroscopic counterpart of the external
potential U and reads:



12 Pierre Degond, Diane Peurichard

h(θ0) =

∫ π
2

−π2
U ′(θ)Mθ0(θ)

dθ

π
. (1.17)

In [26] it has been shown that, in the stationary case, Eq. (1.15) is a quasi-
linear elliptic equation, and the existence of solutions was proven under stuc-
tural conditions for the external potential h(θ0).

Numerical simulations of the stationary solutions of Eq. (1.15) on a 2D
square domain with Dirichlet boundary conditions have been performed in
[26]. For an external rotation potential U forcing the fibers to reach orienta-
tion ±π2 , the fiber network could be seen as a continuum medium subjected
to compressive stress. In this case, a buckling phenomenon was observed,
corresponding to an instability characterized by a sudden sideways failure
of the structure subjected to high compression. The boundary conditions
determined the mode of bending, the load corresponded to the external po-
tential force and the point of failure depended on the elastic modulus of the
fiber network contained in parameter α3. In Fig. 1.2, we show an example of
simulation obtained for the following external force:

U(θ) = cu sin2(θ − π

2
),

where cu is the intensity of the force. We consider a 2D square domain
[−0.5, 0.5] × [−0.5, 0.5] with Dirichlet boundary conditions on the left and
right sides of the domain (θ = 0.98π4 and θ = −π4 respectively), and periodic
boundary conditions on the top and bottom. Details on the numerical method
can be found in [26]. In this setting, we can show that the solution θ does
not depend on the y-direction and we plot in Fig. 1.2 the fiber orientation as
function of x for y = 0.2, for four different values of the external potential
intensity cu.

Fig. 1.2 Fiber orientation as function of x for four different values of the external potential

cu: cu = 0 (black dots), cu = 0.5 (blue curve), cu = 1 (red curve) and cu = 10 (green
curve). Boundary conditions θ(−0.5, y) = 0.98π

4
and θ(0.5, y) = −π

4
for all y ∈ [−0.5, 0.5].
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As shown by Fig. 1.2, two stationary states are obtained when introducing
the rotation potential: (i) a symmetric state with respect to the x-direction
(black dots and blue curve), and (ii) an asymmetric state in which all the
fibers are oriented in −π2 (red curve). There exists a critical cu for which
the solutions are in the unstable configuration: a slight increase of cu leads
the solution to buckle and change for configuration (ii). These simulations
highlight the physical relevance of the macroscopic model to describe inter-
connected networks as elastic materials with internal resistance depending
on the density of the fiber links.

Moreover, numerical simulations showed a very good agreement between
the macroscopic model and the microscopic formulation in a well chosen
regime of fiber linking/unlinking. We illustrate this in Fig. 1.3, where we
show simulations of the microscopic model given by Eqs. (1.1)-(1.2) rescaled
with the scaling of section 1.4 with ε = 1

4 , and small linking/unlinking ratio
νf
νd

= 0.1. Figs. 1.3 (A1) to (A3) show simulations for increasing values of

the noise d: d = 10−4, d = 10−3 and d = 5.10−3, and external potential
cu = 0.01. In Fig. 1.3 (B) we present the simulations for cu = 0.1. For each,
we show the microscopic simulation at equilibrium, and we plot the profiles
of θ as function of x, averaged over the y-direction. Black curves correspond
to the solutions of the microscopic model, red curves are the profiles of the
solutions of the macroscopic one. For small d and small external potential
cu = 0.01 (A1,A2), fibers are oriented towards ±π2 on the left and right hand
sides of the domain, with a zone of fibers horizontally oriented in the center,
as predicted by the macroscopic model. For increasing d (A3), the fibers are
disorganized and have mean orientation ±π2 . The macroscopic model captures
the same features for the same parameters.

As depicted in Fig. 1.3, we obtain a very good agreement between the
microscopic and macroscopic simulations for a small linking/unlinking ratio.

However, it was shown that the fiber links density has a strong impact on
the final structures obtained by the microscopic model that the macroscopic
model does not capture. This is due to the fact that the scaling supposes that
the linking/unlinking process is quasi instantaneous. This assumption makes
the action of the links vanish in the macroscopic model, and no memory effect
of the fiber cross-links remains. Works are in progress to better account for
these effects in the macroscopic model.

These simulations are a first step towards the validation of the macro-
scopic model for interconnected fibers and its derivation from a microscopic
description. In conclusion, we give some exciting perspectives of this study.

1.5 Conclusion

The works presented in this chapter are, to our knowledge, the first attempt
to derive as rigorously as possible a macroscopic model for temporarily cross-
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Fig. 1.3 Simulations of the microscopic model with external potential cu = 0.01 and

ratio ξ = 0.1. From A1 to A3: for increasing values of the noise d: d = 10−4, d = 10−3

and d = 5.10−3. First line: simulation at equilibrium, second line: profiles of the solutions
to the microscopic model averaged over the y-direction and over 10 simulations (black

curves), and profiles of the solutions to the macroscopic model (red curves). For small d

and small external potential cu = 0.01 (A1,A2), fibers are oriented towards ±π
2

on the left

and right hand sides of the domain, with a zone of fibers horizontally oriented in the center,

as predicted by the macroscopic model. For increasing d (A3), the fibers are disorganized
and have mean orientation ±π

2
. The macroscopic model captures the same features for

the same parameters. (B) Case cu = 0.1 and d = 10−3. In this case, all the fibers reach

orientation ±π
2

due to the large intensity of the external potential for both models.

linked fibers interacting through alignment at their links from a microscopic
model. The kinetic model obtained in the limit of a large number of individ-
uals of the microscopic model involves two distribution functions: the fiber
distribution function and the cross-link distribution function, and is closed at
the level of the two-particle distribution function. The diffusive limit of the
kinetic model in the regime of instantaneous fiber linking/unlinking leads to
a system of two coupled nonlinear diffusion equations for the fiber density
and mean orientation. In the homogeneous density case, physical proper-
ties of the solutions of the macroscopic model have been observed and the
numerical comparison between the macroscopic model and the microscopic
one has shown the relevance of the model in an appropriately chosen fiber
linking/unlinking regime.
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These works present numerous exciting perspectives in the mathemati-
cal and biological fields. Mathematically, rigorously proving the convergence
of the particle model towards the mean-field limit or proving existence and
uniqueness of smooth solutions for the macroscopic diffusion system with
non-homogeneous fiber density are immediate perspectives. In the latter case,
the much more complex system of two coupled highly non linear equations
- for fiber density and local mean orientation - requires the development
of advanced numerical methods. Further perspectives on this model include
numerical simulations of the complete kinetic model and comparisons with
the microscopic formulation. Finally, the establishment of a hydrodynamic
scaling based on a more realistic assumption for fiber linking/unlinking dy-
namics would enable to understand how the presence of fiber links affects the
macroscopic dynamics.

From the biological viewpoint and in the long-term, the hope is to couple
the macroscopic model for fiber networks with a macroscopic model for the
cells. The resulting coupled model will provide a complete ”synthetic tissue”
model, i.e. a large scale counterpart of the agent-based tissue model described
in [25]. It will serve for the investigation of large scale effects in general tissue
homeostasis. Obviously, biological relevance will require to extend the models
to three spatial dimensions. As the present derivation could be extended to
the 3D case without further complications, the main challenge lies in the
modelling of the fibers and the links. For fibers, one could consider ellipsoids
and further development is needed for the fiber links, which would lead to a
different source term in the macroscopic model.
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