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Long time behaviour of infinite dimensional stochastic
processes

Abstract

We study two examples of infinite dimensional stochastic processes. Situ-

ations and techniques involved are quite varied, however in both cases we

achieve a progress in describing their long time behaviour.

The first case concerns interacting particle system of diffusions. We construct

rigorously the process using finite dimensional approximation and the notion

of martingale solution. The existence of invariant measure for the process is

proved. The novelty of the results lies in the fact, that our methods enable us

to consider such examples, where the generator of the diffusion is subelliptic.

The other project is related to stochastic partial differential equations and

their stability properties. In particular it is shown that Robbins-Monro pro-

cedure can be extended to infinite dimensional setting. Thus we achieve

results about pathwise convergence of solution. To be able to define cor-

responding solution, we rely on so-called variational approach to stochastic

partial differential equations as pioneered by E. Pardoux, N. Krylov and B.

Rozovskii. Our examples covers situations such as p-Laplace operator or

Porous medium operator.
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finite dimensional martingale problem. However the techniques allow
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Chapter five is based upon another article, that is currently in review process:

� Jan Seidler, Frantisek Zak, A note on Continuous-time stochastic ap-
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People who know math understand what other

mortals understand, but other mortals do not un-

derstand them. This asymmetry gives them a

presumption of superior ability.

Daniel Kahneman

0
Introduction

In the given thesis we are concerned with stochastic processes and are partic-

ularly interested in describing their long time behaviour. From the physical

point of view, the processes we study really are d-dimensional. Neverthe-

less, as it has been shown in the last thirty years or so, the use of infinite

dimensional spaces to study these kind of processes often leads to important

progress, as one can employ many useful tools that are available. Hence in

the mathematical sense it is appropriate to describe the processes we study

as infinite dimensional.

The thesis basically consist of two parts, that are connected by common tech-

niques, interests and notions. We begin with the study of interacting particle

system of diffusions. That is, we analyse d-dimensional lattice Zd, where we

put a copy of diffusion particle living in Rn on each site and add finite range

interactions between the particles. Original results are presented in chapters

2 and 3. At first we use now standard theory of Meyn and Tweedie to es-

tablish ergodicity results for finite lattice in chapter 2. The construction of

infinite dimensional process and its invariant measure is presented in chapter

3. Our approach to the construction using solution to the martingale prob-

lem seems new in this context.
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Second project is devoted to the extension of continuous time Robinson-

Monro stochastic approximation to infinite dimension. Therefore here we es-

tablish path-wise convergence results about given stochastic PDEs, to which

the theory can be applied. This work has been done by the author in con-

junction with Dr Jan Seidler. Because we use the relatively heavy machinery

of variational approach to stochastic equations in infinite dimension, we pro-

vide some necessary background in chapter 4. Chapter 5 then includes the

general result about stochastic approximation in infinite dimension. We also

list three particular examples of stochastic PDEs, that can be covered by this

general theorem.

In chapter 1 we summarize some classical results about long time behaviour

of stochastic processes that are useful in our work.

In conclusion in chapter 6 we list questions that arise from the thesis and

remain unsolved.

3



0.1 Notation

Here we give general summary of the notations used throughout the thesis,

for the comfort of reader we may occasionally repeat it, when used precisely.

The related definitions of more advanced notions is provided in the work on

appropriate place. The explanation for some less prevalent notation is also

given in the subsequent text

N,Z,Q,R natural numbers, integers, rationals, real numbers

R∞ the space of all real valued infinite sequences

a ∧ b minimum of a andb

a ∨ b maximum of a and b

A . B ⇔ ∃C > 0 : A < BC

IA indicator (characteristic) function of set A

AC complement of the set A

∂A boundary of the set A

|A| cardinality of the set A

A ⊂⊂ Zd subset with finite cardinality, i. e. |A| <∞
clo A closure of the set A

f+ positive part of function f , i. e. f+ = max(f, 0)

f− negative part of function f , i. e. f− = max(−f, 0)

o(g) function f = o(g) at a ∈ mathbbR, if limx→a
f(x)
g(x)

= 0

i ∈ Zd : ‖i‖max ‖i‖max = max1≤j≤d |ij|
x ∈ Rn : ‖x‖Rn =

‖x‖n = ‖x‖
Euclid norm of vector in Rn

πk : R∞ → Rk projection function into first k coordinates, i. e.

πk(x1, x2, . . .) = (x1, . . . , xk)

(ax, ay, az) ∈ R3 : ‖a‖H ‖a‖H = 4

√
(a2
x + a2

y)
2 + a2

z

λ Lebesgue measure

µ ◦ f−1 the image of measure µ under mapping f
w−→ weak convergence of measures

For a given metric spaces X, Y and f : X → Y we denote

C(X, Y ) space of continuous functions

4



If Y = R we simply write C(X) and similarly for other type of spaces.

Cb(X) space of bounded continuous functions

f ∈ Cb(X) : ‖f‖∞ ‖f‖∞ = supx∈X |f(x)|
Cc(X) space of continuous functions with compact support

Cp(X) space of p-times continuously differentiable functions

(usually either p = 2 or p =∞)

∆f, f ∈ C2(Rd) Laplace operator on Rd, i. e. ∆f =
∑d

i=1
∂2f
∂2xi

∇f, f ∈ C1(Rd) gradient of function f in Rd, i. e. ∇f = ( ∂f
∂x1
, ·, ∂f

∂xd
)

B(X) space of Borel measurable functions

If X ⊂ R∞, dim X = ∞ we have the notion of f : X → R cylindrical

function

CCyl(X) space of cylindrical functions

CCyl
c (X) space of cylindrical compactly supported functions

For Banach spaces E,F we denote

I Identity operator on E, i. e. Ix = x, x ∈ E
E∗ dual space to the space E

E∗〈f, e〉E dual pairing between E∗ and E, i. e.

E∗〈f, e〉E = f(e), f ∈ E∗, e ∈ E

L (E,F ) space of bounded linear operators from E to F

L ∈ L (E,F ), L∗ adjoint operator

If both E and F are Hilbert spaces

〈·, ·〉E inner product on Hilbert space E

L2(E,F ) ideal of Hilbert-Schmidt operators in L (E,F )

For open set G ⊆ E and f : G→ R
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Df(x) Gâteaux derivative of f at point x

D2f(x) second Gâteaux derivative of f at point x

For O ⊆ Rn open we use standard notation

W k,p(O) Sobolev space of functions with weak derivatives up to

order k having finite Lp norm
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1
Limit behaviour of stochastic

processes

The concept of stochastic process is very broad and it is impossible to prove

interesting results about their limit behaviour at this level of generality. Two

important classes that enable non-trivial results are Markov processes and

Martingales. We outline the basic theory for these classes, as our results in

chapters 2 and 5 heavily rely on these classical results.

1.1 Ergodic theory of Markov processes

Our exposition in this section follows mostly lecture notes by M. Hairer32,

L. Rey-Bellet71 and first part of the book22 by G. Da Prato and J. Zabczyk.

Intuitively Markov processes are processes without memory, its future move-

ment depends only on current state. The modern view on Markov process

has been established following foundational work of Dynkin and his students

in 1950s, published in the monograph in 195927. Thorough modern account

of the general theory can be found in books26,12. Since then Markov process

is defined as a family of processes tied by the transition function, rather than

7



a single process.

Definition 1.1.1 ((homogeneous) Markov process). Let S be separable met-

ric space equipped with standard Borel σ-field. A Markov process (Xt, P
x)

is a stochastic process

X : [0,∞)× Ω→ S

and set of probability measures {P x : x ∈ S} on (Ω,F) satisfying the follow-

ing:

1) For each t, Xt is Ft measurable

2) For each t and each Borel subset A of S, the map x→ P x(Xt ∈ A) is

Borel measurable

3) For each s, t ≥ 0, each Borel subset A of S, and each x ∈ S, we have

P x(Xs+t ∈ A|Fs) = φ(Xs), φ(·) = P ·(Xt ∈ A).

With every Markov process one naturally associates so called transition prob-

ability function Pt : S × B(S)→ [0, 1]

Pt(x,A) = P x(Xt ∈ A), x ∈ S, A ∈ Bb(S). (1.1)

Easy computation using point 3) in definition of Markov process (denoting

by Ex the expectation with respect to P x) reveals that

Pt+s(x,A) = ExP x(Xt+s ∈ A|Fs) = ExPXs(Xt ∈ A) =

∫
S
Pt(y, A)Ps(x, dy).

(1.2)

This relationship is called Chapman-Kolmogorov equation. In another words

if we view Pt as an operator on bounded Borel functions on by putting

Ptf(·) =

∫
S
f(Xt)dP

·, f ∈ B(S)

then passing from indicator functions in (1.2) to general functions shows that

Pt satisfies the semigroup property Pt+s = Pt ◦ Ps.
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Dual to the semigroup Pt we define P ∗t the semigroup acting on probability

measures on S as

P ∗t (µ)(·) =

∫
S
Pt(x, ·)dµ(x).

Definition 1.1.2 (Invariant measure). Measure µ is said to be invariant

measure for the Markov process (X,P x), if it is fixed point of semigroup P ∗t ,

i. e. P ∗t µ = µ for all t ≥ 0.

This definition is natural, because the process has stationary distribution if

µ is its initial distribution. To see this, denote

P µ(Xt ∈ A) =

∫
S
P x(Xt ∈ A)dµ(x) =

∫
S
Pt(x,A)dµ(x)

the distribution of process starting from µ. Realize that for times t1 < t2

and A1, A2 ∈ B(S) Markov property implies

P x(Xt1 ∈ A1, Xt2 ∈ A2) = ExP x(Xt1 ∈ A1, Xt2 ∈ A2|Ft1) =

ExI[Xt1∈A1]P
x(Xt2 ∈ A2|Ft1) = ExI[Xt1∈A1]Pt2−t1(Xt1 , A2) =∫

A1

Pt2−t1(y, A2)(P x ◦X−1
t1

)(dy) =

∫
A1

Pt2−t1(y, A2)Pt1(x, dy).

Hence if P ∗t µ = µ, by induction from previous we get for times t1 < · · · < tn

P µ(Xt1+h ∈ A1, . . . , Xtn+h ∈ An)

=

∫
S

∫
A1

· · ·
∫
An−1

Ptn−tn−1(yn−1, An) · · ·Pt1+h(x, dy1)dµ(x) =∫
S

∫
A1

· · ·
∫
An−1

Ptn−tn−1(yn−1, An) · · ·Pt1(x, dy1)dµ(x) = P µ(Xt1 ∈ A1, . . . , Xtn ∈ An),

and X is a stationary process as claimed.

It suffices to find measure µ satisfying P ∗Tµ = µ for some T > 0, as the

measure µ̂

µ̂(A) =
1

T

∫ T

0

P ∗t µ(A)dt

is then invariant for the semigroup Pt. Indeed, we for any f ∈ Cb(S) we
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compute

µ̂f =
1

T

∫ T

0

(P ∗t µ)fdt

P ∗s µ̂f =

∫
S
Psfdµ̂ =

1

T

∫ T

0

(P ∗t µ)Psfdt =
1

T

∫ T

0

(P ∗t+sµ)fdt =

1

T

(∫ T

0

(P ∗t µ)fdt+

∫ T+s

T

(P ∗t µ)fdt−
∫ s

0

(P ∗t µ)fdt

)
,

and the last the integrals cancel, since we assume P ∗Tµ = µ. Therefore in the

study of the questions of existence and uniqueness of invariant measure one

can in principle focus on discrete time only.

Definition 1.1.3 (Feller properties). We say Markov semigroup is Feller, if

it maps continuous bounded functions in itself, i. e.

Ptf ∈ Cb, ∀f ∈ Cb(S).

Pt is strong Feller, if it has smoothing effect, i. e.

Ptf ∈ Cb, ∀Bb(S).

The basic method for finding invariant measure dates back to 1937 and fa-

mous work of Krylov nad Bogoliubov13 on dynamical systems. The method

is robust enough that is easily adapted to the context of Markov processes.

Theorem 1.1.1 (Krylov-Bogoliubov). Let (X,P x) be a Markov process on

separable metric space S with transition function Pt. If the semigroup is

Feller and there exists point x ∈ S such that the set of measures

M =

{
1

T

∫ T

0

Pt(x, ·)dt
}

(1.3)

is tight, then there exists invariant measure for the process.

In fact the condition (1.3) is basically necessary for Feller semigroups, see38

pp. 65.
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Proof. By Prokhorov’s theorem let µ be such measure that

1

Tn

∫ Tn

0

Pt(x, ·)dt
w−→ µ.

With the use of Feller property for arbitrary f ∈ Cb one computes

µf = lim
n→∞

1

Tn

∫ Tn

0

Ptf(x)dt

(P ∗s µ)f = lim
n→∞

1

Tn

∫ Tn

0

Pt+sf(x)dt =

lim
n→∞

1

Tn

∫ Tn

0

Ptf(x)dt+ lim
n→∞

1

Tn

∫ Tn+s

Tn

Ptf(x)dt− lim
n→∞

1

Tn

∫ s

0

Ptf(x)dt.

Consider that ‖Ptf‖ ≤ ‖f‖ < ∞, hence the last two terms are zero and we

have the desired equality (P ∗s µ)f = µf, ∀f ∈ Cb(S).

Very mild condition for Markov semigroup is that of stochastic continuity

(22 pp. 12), that is the equality

lim
t→0

Ptf(x) = f(x), ∀f ∈ Cb(S).

To tie precisely long time behaviour of the process with invariant measure,

it is useful to recall the notion of ergodicity. We say invariant measure µ is

ergodic, if any set A satisfying

PtIA = IA µ-a.s. ∀t > 0

is trivial, i. e. µ(A) ∈ {0, 1}. The basic theorem about ergodic processes,

that is reformulation of famous Birkhoff pointwise ergodic theorem, we can

state in our context as follows.

Theorem 1.1.2. Let Pt be stochastically continuous Markov semigroup with

invariant measure µ. Then the following is equivalent

(i) µ is ergodic

11



(ii) For any A,B ∈ B(S)

lim
T→∞

1

T

∫ T

0

∫
S
PtIA(x)IB(x)dµ(x)dt = µ(A)µ(B).

(iii) For arbitrary f ∈ L2(S, µ)

lim
T→∞

1

T

∫ T

0

Ptf(x)dt =

∫
S
f(x)dµ(x) µ-a.s..

Proof. See22 pp. 26.

For the measure µ we define its support as the smallest closed set of full

measure, i. e.

supp µ = clo (∩A;µ(A) = 1).

As a consequence of Theorem 1.1.2 we see that distinct ergodic measures

must have disjoint support. If µ and ν are ergodic measures and A set with

µ(A) 6= ν(A), then by (iii) we have

lim
T→∞

1

T

∫ T

0

PtIA(x)dt = µ(A) µ− a.s.

lim
T→∞

1

T

∫ T

0

PtIA(x)dt = ν(A) ν − a.s.,

which implies µ and ν are singular. Ergodic behaviour is guaranteed, if one

proves uniqueness of invariant measure.

Theorem 1.1.3. If semigroup Pt has unique invariant measure µ, then this

measure is ergodic.

Proof. Assume µ is not ergodic, i. e. there is set B with µ(B) ∈ (0, 1)

satisfying

PtIB = IB µ-a.s. ∀t > 0.

Define measure µ̂(A) = 1
µ(B)

µ(A ∩ B) for set A. We prove this measure is

also invariant for Pt, which is contradiction to uniqueness assumption. We

12



compute

P ∗t µ̂(A) =

∫
S
Pt(x,A)dµ(x) =

1

µ(B)

∫
B

Pt(x,A)dµ(x) =

1

µ(B)

∫
B

Pt(x,A ∩B)dµ(x) +
1

µ(B)

∫
B

Pt(x,A ∩BC)dµ(x).

Since PtIB = IB µ-a.s., we have

Pt(x,A ∩BC) ≤ Pt(x,B
C) = 0 µ-a.s. for x ∈ B

Pt(x,A ∩B) ≤ Pt(x,B) = 0 µ-a.s. for x ∈ BC .

By invariance of µ it thus follows

P ∗t µ̂(A) =
1

µ(B)

∫
B

Pt(x,A ∩B)dµ(x) =
1

µ(B)

∫
S
Pt(x,A ∩B)dµ(x) =

1

µ(B)

∫
S
IA∩B(x)dµ(x) =

1

µ(B)
µ(A ∩B) = µ̂(A),

which proves the theorem.

Another concept related to uniqueness of invariant measure is its irreducibil-

ity. Markov semigroup Pt is irreducible at time t0, if for any nonempty open

set G and all x ∈ S it holds Pt0(x,G) > 0. Markov semigroup is regular at

time t0, if all transition probabilities Pt0(x, ·), x ∈ S are mutually equivalent.

Immediately by Chapman-Kolmogorov equality we have that irreducibility

or regularity at time t0 implies this property for all time s > t0. It is easy to

see that irreducibility and strong Feller property implies regularity22 pp. 42.

Observation 1.1.4. If a Markov semigroup Pt, t ≥ 0, is strongly Feller at

time t0 > 0 and irreducible at time s0 > 0, then it is regular at time t0 + s0.

The importance of irreducibility for long time behaviour of Markov systems

stems from the following theorem, that has its roots in Doob work24.

Theorem 1.1.5. Let Pt be a stochastically continuous Markovian semigroup

and µ and invariant measure with respect to Pt. If Pt is t0 regular for some

13



t0 > 0, then µ is unique invariant probability measure and for arbitrary x ∈ S
and A ∈ B(S)

lim
t→∞

Pt(x,A) = µ(A). (1.4)

Proof. See22 Theorem 4.2.1.

In fact weak convergence result (1.4) can be strengthen to convergence in

total variation norm74. One of the ways to prove strong Feller property

for semigroup on n-dimensional Euclidean spaces is to show the existence

of continuous density of the semigroup with respect to standard Lebesgue

measure.

Theorem 1.1.6. Let Pt be Markov semigroup on Rn with continuous density,

i. e. Pt(x, dy) = pt(x, y) and pt(·, ·) ∈ C(Rn × Rn). Then Pt, t ≥ 0 is strong

Feller semigroup.

Proof. Let xn → x be given sequence in Rn. Since∫
Rn
Pt(xn, dy) =

∫
Rn
pt(xn, y)dy = 1

we can choose compact set K ∈ Rn such that for all xn, x ∈ Rn

∫ C

K

pt(x·, y)dy < ε.

Let f ∈ Bb(Rn), ‖f‖ <∞ and we calculate

lim
n→∞

Ptf(xn)− Ptf(x) =

∫
Rn
f(y)[pt(xn, y)− pt(x, y)]dy =

lim
n→∞

∫
K

f(y)[pt(xn, y)− pt(x, y)]dy +

∫
KC

f(y)[pt(xn, y)− pt(x, y)]dy. (1.5)

When y ∈ K, then using xn → x and fact that continuous function on

14



compact set is uniformly continuous, we have estimate

|f(y)[pt(xn, y)− pt(x, y)]| ≤ ‖f‖2|pt(x, y)|.

Lebesgue dominated convergence theorem now implies that first integral in

(1.5) is zero. The second integral we can make arbitrary small choosing

suitable compact set K. Hence limn→∞ Ptf(xn) − Ptf(x) = 0 and Pt is

indeed Feller.

The theory built so far gives us satisfying conditions to ensure the uniqueness

of invariant measure. Workable condition to ensure the existence of invari-

ant measure and possibly some explicit convergence rates towards invariant

measure (1.4) gives use of Lyapunov function. To this purpose, we define the

generator of Markov process.

Definition 1.1.4 (Infinitesimal generator of Markov process). Let Pt be

Markov semigroup on S. We define its infinitesimal generator L as

Lf(x) = lim
t→0+

Ptf(x)− f(x)

t
x ∈ S.

Its domain DL is the set of functions f : S → A such that the limit exists

for allx ∈ S.

There is in fact whole theory of Hille-Yosida, how to construct Markov pro-

cesses given their generator72 vol. I,26. However this approach is not very

suitable when dealing with diffusions, where weak solutions of SDEs (which

are equivalent to martingale problem approach) gives the optimal results77.

There is now well-established theory of Meyn and Tweedie about exponential

convergence towards invariant measure for Markov processes. The discrete

case results obtained in monograph56 were translated to continuous case

in57,58. Beautiful argument by Hairer and Mattingly in33 offers very short

proof. Having in mind application towards diffusions, we state the result

in the following way (for the precise reference see55 Theorem 2.5 or lecture

notes by Rey-Bellet71)
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Theorem 1.1.7 (Harris - Meyn - Tweedie). Let Xt be a Markov process on

Rn with transition probability Pt and generator L. Suppose that following

hypotheses are satisfied

(1) The Markov process is irreducible

(2) For any t > 0 the Markov semigroup Pt(x, dy) has a density pt(x, y)dy

which is a continuous function of (x, y).

Assume there exists Lyapunov function

V : Rn− > [1,∞), V (x)
‖x‖→+∞−−−−−→ +∞

and constants C, c > 0 such that

LV + cV ≤ C. (1.6)

Then there exists unique invariant measure µ for the process Xt and there

exist constants K,α > 0 such that (Ptf(a) = Eaf(Xt))

sup
{f :|f(x)|≤V (x)}

|Eaf(Xt)− µ(f)| ≤ KV (a)e−αt

for any a ∈ Rn.

In the statement of the theorem one implicitly assumes that V ∈ DL.

1.2 Convergence results for martingales

Martingales are processes, whose study originated in gambling. They cap-

ture rigorously the concept of processes, where knowing the full past doesn’t

influence future mean value. Fortunately their study does not bring such

technicalities as that of Markov processes to begin with. Our exposition here

is based on lecture notes76, or in fact any good book on stochastic processes

will do.
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Definition 1.2.1 (martingale). A stochastic process X = (Xt)t≥0 defined

on stochastic basis (Ω,F ,Ft, P ) is super(sub)martingale with respect to fil-

tration {Ft}, if Xt ∈ L1, ∀t ≥ 0, and

E[Xt|Fs] ≤ (≥)Xs a.s., if s < t.

If a process is both supermartingale and submartingale, then it is a martin-

gale.

Theorem 1.2.1 (Doob martingale convergence theorem). Let {Xt; t ≥ 0}
be Ft-supermartingale (or submartingale) that is right continuous with left

limits. Assume that

sup
t≥0

E|Xt| <∞. (1.7)

Then

X∞ = lim
t→∞

Xt exists a.s., X ∈ L1.

The theorem can be proved as a nice Corollary to Doob’s upcrossing lemma

A.2.1. Let us note that the requirement of existence of càdlàg version of

super(sub)martingale isn’t restrictive, as existence of this modification can

be proved, see70 pp. 63.

Proof. We do the proof for supermartingale, as submartingale case is proved

by switching to −Xt. As we assume (1.7), it suffices to show a.s. existence

of limit Xt and the integrability of limit X∞ follows immediately by Fatou’s

lemma. We refer to Theorem A.2.1 for the definition of upcrossing an interval

there. For given M > 0 we denote IM = Q+ ∩ [0,M ] the index set. For fixed

a < b, a, b ∈ R we denote by N([a, b], IM , X) the number of upcrossing of

interval [a, b] by discrete martingale X = (Xi)i∈IM . Since

N([a, b], IM , X) = sup
{JM⊂IM ;|JM |<+∞}

N([a, b], JM , X),
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ineaulity in Doob’s upcrossing lemma (A.1) implies that

(b− a)E [N([a, b], IM , X)] ≤ a+ sup
t≥0

E[|Xt|] <∞.

By passing M →∞ we deduce

N([a, b], Q+, X) <∞ a.s.

Thence the set

Ω0 = ∩{a<b;a,b∈Q}{N([a, b], Q+, X) <∞}

has measure one. For ω ∈ Ω0 Xq(ω) converges, otherwise there would have

to be infinite number of crossing of some interval [a, b],a, b ∈ Q+ where

lim inf Xq(ω) < a < b < lim supXq(ω).

Thus Xq → X∞ and this in turn implies the convergence of Xt, because for

given ε > 0 one finds q0 ∈ Q such that

|Xq −X∞| <
ε

2
, ∀q ≥ q0.

By the right contunuity of process Xt we conclude that

|Xt −X∞| < ε, ∀t ≥ q0.
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2
Interacting diffusions - finite

lattice case

2.1 Introduction

The study of interacting particle systems has a long and profound history, as

is well evidenced by excellent monographs53 or40. Initially motivated by the

problems of statistical physics, the field has grown into an important area of

Markov processes in itself with interesting problems and rich interplay with

other subjects.

We investigate continuous spin systems with a diffusion particle on each site.

Most results establishing ergodicity properties for interacting particle systems

with unbounded state space are tied with the use of functional inequalities,

see30. As for the diffusions, there has been two independent successful ap-

proaches to this problem in the 1990s, one by Zegarliński82 and other by Da

Prato and Zabczyk21, each to their merit and deficiencies. The approach

in82 constructs the desired semigroup using finite dimensional approxima-

tions and ergodicity results are established via log Sobolev inequality, while

more probabilistic approach in21 uses the theory of SDEs on Hilbert spaces

19



for construction and ergodicity is tied with the dissipativity properties of

underlying operators.

Both these works essentially cover only elliptic case. The question how to

address some subelliptic situation has been resolved under suitable condition

in25 using analytic techniques (very recently the results were extended to

cover even broader class of operators in41 and42). Because in such cases even

ergodicity of the finite system is highly non-trivial, important part of the

result lies in conquering this problem.

Here we present a new probabilistic approach to investigate these issues. The

results obtained go in some way successfully beyond Hilbert space methods

of21. We can cover degenerate multiplicative noise as we show in the case of

Heisenberg group (or Grushin plane). However we cannot prove the unique-

ness of invariant measure, let alone convergence towards it. Notice however

that such results usually require some assumptions about degeneration of the

interactions, they should be tied with the condition on weights of the space

the system live in, see21 for example. Therefore it appears even probable,

that under assumptions we work, the uniqueness of invariant measure for the

system does not hold.

2.1.1 Outline of the strategy

The setting is the following; assume we have a space (Rn)Z
d
, the dynamics

of the system can then formally be described by the operator of the form∑
i∈Zd
Ai + qiBi, (2.1)

where each Ai is the second order differential operator acting on Rn and on

i-th coordinate of the lattice Zd, and Bi is the first order operator acting on

i-th coordinate. We assume that we have interactions qi only in drift term

and they are of finite range.

We construct the infinite dimensional process using finite dimensional ap-

proximations by solving appropriate stochastic differential equations. Of

course such approach is well known and nothing new in the field, see e.g.35,28.
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The main novelty of our approach in comparison with these mentioned lies in

two facts - we use martingale problem as a concept of solution, which allows

us to bypass strong boundedness of coefficients assumption in35, secondly

we benefit from now well established Meyn-Tweedie 1.1.7 theory to prove

ergodicity results in finite dimension.

In this chapter we give a proof of finite dimensional results, that is we show

that for diffusions on finite product space one has exponential convergence

towards invariant measure. Chapter three is devoted to results about infinite

lattice. Using tightness arguments we construct the process corresponding

to (2.1) as a solution to martingale problem. The key and most technical

part follows, where we show under additional assumptions about interaction

functions that the limit of our approximations is unique. This result is uti-

lized to prove that our constructed process is genuine Markov process. The

existence of the invariant measure for the constructed process is established

in the end.

For clarity and brevity of exposition we illustrate our techniques with the

specific example of the operators corresponding to Heisenberg group. How-

ever it should be noted, that many parts of our results are independent of

the specific diffusions considered, so in the last section we also mention some

other natural situation that can be dealt using our methods.

The model studied in Section 2 is one of fundamental examples of semigroup

with subelliptic generator (associated to the simplest nontrivial nilpotent Lie

algebra) where one has hypoellipticity in finite dimensions and a lot of other

informations (as e.g. heat kernel estimates, short and long time behaviour),

but not much was known in infite dimensions. Also, one should note, that

it is natural generalization of Ornstein-Uhlenbeck process into Heisenberg

group setting.

2.1.2 Statement of the results and strategy of the proof

Let H ∼= R3 = (x, y, z) be the Heisenberg group (for the detailed treatment

of Heisenberg group as an example of Stratified Lie group see14, for nice and

brief account of the relation to the matrix Heisenberg group see4) and X, Y
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the generators of Lie algebra on H, i. e.

X = ∂x −
1

2
y∂z

Y = ∂y +
1

2
x∂z.

We denote D = x∂x + y∂y + 2z∂z (so that [X,D] = X, [Y,D] = Y ) the

so-called dilation operator.

We consider the product space (R3)Z
d
, i. e. so-called continuous spin system

where we have a copy of Heisenberg group at every point. We study the

existence and long time behaviour of diffusion associated formally with the

operator

L =
∑
i∈Zd
Lλi + qxiXi + qyiYi, (2.2)

where X·i is the vector field acting on the i-th coordinate, q·i is the interaction

function with finite range, i. e. function whose value depends on all points

i ∈ Zd within some fixed length 0 < r < ∞ counted with maximum metric.

Lλi = X2
i + Y 2

i − λiDi and λi are positive constants.

Very important throughout our work is the notion of cylindrical function.

Definition 2.1.1 (Cylindrical function). Let f : X → R, where X ⊂
R∞, dim X = ∞. We say f is cylindrical function, provided ∃u ∈ N s.

t. ∃g : Ru → R, so that

f(x1, . . . , xu, . . .) = g(x1, . . . , xu).

If g has compact support, we say f is compactly supported cylindrical func-

tion.

While the operator (2.2) is formal, its action on cylindrical function is defined

in a rigorous way. Denote Φf ⊂ Zd the corresponding subset for cylindrical

function f , i. e. f(·) = g(·), g : (R3)Φf → R.Then

Lf = Lfg =
∑

i∈(R3)
Φf

(Lλi + qxiXi + qyiYi)g.
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The interaction function q·i is more precisely following function

q : (R3)Πi → R, where Πi = {j ∈ Zd : ‖j − i‖max ≤ r}, |Πi| = (2r + 1)d.

Πi is therefore the set of all points that i-th particle interacts with. It is

useful to distinguish another subsets of Zd, the interaction boxes

Ξn = {i ∈ Zd : max
j≤d
|ij| ≤ nr}, |Ξn| = (2nr + 1)d.

We introduce metric space S = (S, ρ), S ⊂ (R3)Z
d
, which is given by

S = {a ∈ (R3)Z
d

:
∑
i∈Zd
‖ai‖8

Hw(i) < +∞},

where w(i) > 0 are positive weights. For point a ∈ S we set ‖a‖S =
8
√∑

i∈Zd ‖ai‖8
Hw(i), so that

ρ(a, b) = 8

√∑
i∈Zd
‖ai − bi‖8

Hw(i)

.

Assumptions. To achieve our results it turns out that we need to impose

the following six hypotheses :

� (H1) ∃C > 0 : sup
u∈(R3)(2r+1)d |q·i(u)| ≤ C, i ∈ Zd

� (H2) sup
u∈(R3)(2r+1)d

∑(2r+1)d

j=1 |∂q·i
∂j

(u)u·i |+ |
∂q·i
∂j

(u)| ≤ C, i ∈ Zd

� (H3) infi∈Zd λi > 0, supi∈Zd λi <∞.

� (H4)
∑

i∈Zd w(i) < +∞, w(i) > 0, i ∈ Zd

� (H5) ∃v(i) > 0, i ∈ Zd,
∑

i v(i) < +∞,
∑

i
w(i)
v(i)

< +∞

� (H6) ∃δ ∈ (0, 1) ∃K > 0 s. t.

w(j) ≥ K

i!1−δ
j ∈ Ξi \ Ξi−1, i ∈ N.
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Remark. The first assumption tells us that we work only with bounded

interactions, which is often the limitation, see21,35.

Second hypothesis may seem bit artificial and is dictated to us by the method

we use in the proofs. The second condition means that the rate of change of

interaction is bounded. The boundedness of the first term we could interpret

in a way, that if the value of particle is large, then the interaction strength

does no longer change its value. The third hypothesis is natural, since even

in the case of single diffusion, to get the existence of invariant measure λ

must be positive. So this just ensures that the size of the interaction doesn’t

degenerate, nor does it grow.

(H4) and (H5) ensure that the space is large enough to accommodate some

non-trivial process and invariant measure. It is well known, that some con-

ditions of this form are necessary, the exact form of (H5) is interesting and

comes as a result of our methods.

On the other hand, (H6) limits the size of initial configurations for which we

can prove some long time behaviour. Notice that restrictions of our method

are mild as we allow even factorial growth, since in21 pp. 10 the authors

must assume at most polynomial growth.

We can now summarize our results as follows. While this operator is just

formal, from the definition it is clear, how its action of smooth cylindrical

function looks like.

Theorem 2.1.1 (Inifinite dimensional results). Let L be the operator given

by (2.2). Assume that (H1) - (H6) hold. Then for any a ∈ S there

exists probability measure P a on Ω = C([0,∞), S) such that for the canonical

process At(ω) = ωt on Ω we have P a(A0 = a) = 1 and the process

f(At)− f(A0)−
∫ t

0

Lf(Au)du

is martingale for f ∈ C2,Cyl
c under the measure P a. The pair (At, P

a) is a

Markov process and there exist an invariant measure ν for the semigroup

Ptf(a) = Eaf(A(t)), a ∈ S.
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The Theorem consists of several non-trivial ingredients. The existence of so-

lution to the martingale problem is proved in Theorem 3.1.7, Markov prop-

erty in Theorem 3.2.6 and the existence of invariant measure for the model

is proved in Chapter 3.3.

To reach these results, we firstly proceed by investigating the case of diffusion

on Heisenberg group. Concretely we analyse the asymptotic behaviour of the

Markov process on R3 associated with the operator

L = X2 + Y 2 − λD + qxX + qyY.

Under suitable assumptions on q′·s the process can be constructed by ordinary

Itō stochastic equation and using the theory of Meyn and Tweedie (1.1.7) we

establish exponential convergence in the total variation norm to the invari-

ant measure in section 2. This result can be immediately translated to the

exponential ergodicity of diffusion on (R3)u, u ∈ N with the generator

u∑
i=1

Lλi + qxiXi + qyiYi.

We prove explicitly the following result.

Theorem 2.1.2 (Finite Dimensional results). Let (R3)u, u ∈ N be the state

space and consider the operator

Lu =
u∑
i=1

Lλi + qxiXi + qyiYi, (2.3)

under the corresponding assumptions (H1), (H3). Let us denote Au the

diffusion corresponding to the operator (2.3), i. e. the unique solution to the

Itō SDE with coefficients

b =(q1,x − λ1x1, q1,y − λ1y1,−2λ1z1 +
1

2
(q1,yx1 − q1,xy1), . . .

. . . , qu,x − λuxu, qu,y − λuyu,−2λuzu +
1

2
(qu,yxu − qu,yyu))
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σ =


M1 0 · · · 0

0 M2 · · · 0
... 0

. . .
...

0 · · · 0 Mu

 , where Mi =


√

2 0

0
√

2
−yi√

2

xi√
2

 .

There exists unique invariant measure µu for the process Au. For the function

W k
u = 1 +

∑u
i=1 v(i)((x2

i + y2
i )

2 + z2
i )
k, k ∈ N, where v(i) > 0,

∑
i v(i) < ∞,

there exist constants ck > 0 and Ck > 0 such that

LuW
k
u (au) ≤ −ckW k

u (au) + Ck ∀au ∈ (R3)u. (2.4)

In addition there exist constant Kk
u , α

k
u > 0, such that the following

sup
{f∈B(R3u) : ‖f‖∞≤1}

|Eaf(Au(t))− µu(f)| ≤ Kk
uW

k
u (a)e−α

k
ut (2.5)

holds for any a ∈ (R3)u.

Next we consider an exhausting sequence Λn ⊂⊂ Zd,Λn ↗ Zd of the lattice.

On each (R3)Λn we construct diffusion An that its generator extends the

operator

Ln =
∑
i∈Λn

Lλi + qnxiXi + qnyiYi.

Unfortunately unlike in 35 we are in a situation with unbounded coeffi-

cients, so we are unable to prove the limit of approximations in the strong

sense. Nevertheless we show tightness in appropriate weighted space S,

S ⊂ (R3)Z
d
, i. e. we are able to prove that the distributions of the pro-

cesses Ãn = (An, 0i∈Z\Λn) form a tight sequence in Ω = C([0,∞), S). From

tightness follows the construction of family of measures {P a, a ∈ S} such

that canonical process on Ω solves the martingale problem for (2.2). Our re-

sults are not completely satisfactory since we do not address the uniqueness

of martingale problem for the operator (2.2).

Nevertheless under additional assumptions we can prove that our approxima-

tion procedure yields a unique measure. This is used to show that canonical

process is a proper Markov process under constructed measure. Furthermore

exploiting the results obtained for bounded lattice we prove the existence of
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invariant measure for the unbounded lattice.

In certain aspects therefore - such as requiring no further assumptions on λ in

relevant examples - our results compare favourably to the ones in25,41. How-

ever it should be noted that our methods are only able to handle bounded

interactions q′·s and we also work with much simpler generators than the au-

thors in the above mentioned articles. One could also argue that our proofs

are bit simpler, although that perhaps depends more on the background of

the reader as they are still very technical.

2.2 Finite dimensional case

In this section the case of diffusion on R3, respectively the diffusion on finite

product space (R3)u is investigated. With our assumptions the construction

is immediate and we use Meyn-Tweedie theory to study its long time be-

haviour.

We start by analyzing the diffusion on R3 associated with the second order

operator

L = X2 + Y 2 − λD + qxX + qyY. (2.6)

We will work under the following assumptions (B1) :

� qx, qy ∈ C∞(R3,R), λ > 0

� ∃ C > 0 : ||qx||∞ ∨ ||qy||∞ ≤ C

Under these assumptions we can construct the diffusion as a solution to the

SDE

dA(t) = b(At)dt+ σ(At)dWt.
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Elementary computations with vector fields and matrices reveal that the

coefficients can be chosen as

b = (qx − λx, qy − λy,−2λz +
1

2
(qyx− qxy))

σ =


√

2 0

0
√

2
−y√

2
x√
2

 −→ 1

2
a =

1

2
σσ∗ =

 1 0 −y
2

0 1 x
2

−y
2

x
2

1
4
(x2 + y2)

 .
(2.7)

We aim to show, that At satisfies the condition of Theorem 1.1.7. Every

verification of this result is non-trivial and depends on deep results about

diffusions in Ru. In the remainder of the section we show that the process A

given by SDE with the coefficients (2.7) indeed satisfies the condition of the

above theorem. The existence and smoothness of transition probability den-

sity is the immediate consequence of the Hörmander theorem in probabilistic

settings. The version that is sufficient for our purposes was first established

following Hörmander work36 in37.

Theorem 2.2.1 (Hörmander probabilistic setting, Ichihara - Kunita). As-

sume Xt is the unique strong solution to the Stratonovich SDE

dXt = b(Xt)dt+
d∑
i=1

σ(Xt) ◦ dWt,

where b, σi, 1 ≤ i ≤ d ∈ C∞(Ru,R). Suppose that the following (Hörmander)

condition is satisfied

dim (Lie{σ1, . . . , σd}) = u ∀x ∈ Ru. (2.8)

Then there exists probability density function Pt(x, dy) = pt(x, y)dy such that

pt(x, y) ∈ C∞((0,∞),Ru,Ru).

Remark. The condition (2.8) is a specific instance of the widely known

parabolic Hörmander condition, which ensures the hypoellipticity of ∂t −L∗

(L∗ being the formal L2-adjoint of L), which in turn implies existence of a

smooth density.
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In our case (2.7) the drift in the Stratonovich form is actually the same as in

Itō form. In any case the Lie algebra generated by the diffusion satisfies the

Hörmander condition as elementary computation reveals that [X, Y ] = ∂z

and consequently

dim

(
Lie

{(√
2, 0,
−y√

2

)
,

(
0,
√

2,
x√
2

)})
= 3.

Thence according to the above cited theorem we have the smoothness of

transition probability density for (2.7).

To investigate the irreducibility of diffusion, we would like to use Stroock -

Varadhan support theorem78, so the question is whether that we can solve

the corresponding control problem. The version that accounts for unbounded

coefficients we use, was proved in31.

Let F be the subset of the absolutely continuous functions v : [0, t] → Rd

with v(0) = 0 such that F contains every infinitely differentiable function

from [0, t] to Rd vanishing at zero. For the ordinary differential equation

ẋv(t) = b(xv(t)) +
d∑
i=1

v̇i(t)σi(x
v(t))

xv(0) = x0 ∈ Ru

(2.9)

we denote O(t, x0) = {y ∈ Ru : xv(t) = y, v ∈ F} its orbit.

Theorem 2.2.2 (Stroock - Varadhan support theorem,31). Let Xt be the

solution to the Stratonovich SDE

dXt = b(Xt)dt+
d∑
i=1

σi ◦ dW, X(0) = x, (2.10)

where the coefficients satisfy linear growth assumptions, see (A.1.1), b is

Lipschitz and σi, 1 ≤ i ≤ d are smooth with bounded derivatives. Let Pt be

the transition probability function related to (2.10) and O(t, x) be the orbit

to the corresponding equation (2.9). Then supp Pt(x, ·) = O(t, x).

Lemma 2.2.3. Let Pt be the transition function for the equation (2.7). Then
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supp Pt(x, ·) = R3 for any t > 0 and x ∈ R3.

Proof. We make of use the classical Girsanov transformation A.2.2 to simplify

the control problem. Concretely the statement that the support of diffusions

Xt, Yt

dXt = b(X)dt+ σ(X)dW

dYt = b̃(Y )dt+ σ(Y )dW, (2.11)

where σ and b are as in (2.7) and

b̃ = (−λx,−λy,−2λz)

is the same, if there is u : R3 → R2×1 such that

σu = b− b̃.

However it is easy, since b− b̃ = (qx, qy,
1
2
(qyx− qxy)) and hence

√
2 0

0
√

2
−y√

2
x√
2

( qx√
2

qy√
2

)
=

 qx

qy
1
2
(qyx− qxy)

 .

Therefore to establish the theorem it suffices to prove the irreducibility of

transition function corresponding to (2.11). Since the equation (2.11) satisfies

the Theorem 2.2.2, we only need to prove that the closure of orbit for system

ẋ =
√

2u̇1 − λx
ẏ =
√

2u̇2 − λy

ż = − y√
2
u̇1 +

x√
2
u̇2 − 2λz

(2.12)

for u ∈ H is full space, i. e. to show that from any starting point (x0, y0, z0)

we can choose such u ∈ H that x(t) = xt, y(t) = yt, z(t) = zt, where

(xt, yt, zt) ∈ R3 are prescribed ending points. If we simply choose control

u̇1(s) = as+ b, u̇2(s) = cs+ d, then the problem (2.12) is reduced to solving
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three linear equations with four parameters, so the Lemma is proved.

The proof of existence of Lyapunov function for the operator (2.6) satisfying

(1.6) is elementary, albeit bit tedious.

Lemma 2.2.4. Let L be the operator defined by (2.6) under the assumptions

(B1). For the function V k = ((x2 + y2)2 + z2)k, k ∈ N, there exist constants

ck, Ck > 0 such that

LV k + ckV
k ≤ Ck ∀(x, y, z) ∈ R3. (2.13)

Proof. We first compute the case for V k, k = 1 (and omit the index in such

case) and then proceed to general k. Using that Vxz = Vyz = 0 we calculate

LV + cV = Vx(qx − λx) + Vy(qy − λy) + Vz(−2λz +
1

2
(qyx− qxy))

+ Vxx + Vyy + Vzz
1

4
(x2 + y2) = 4x(x2 + y2)(qx − λx)

+ 4y(x2 + y2)(qy − λy) + 2z(−2λz +
1

2
(qyx− qxy)) + 16(x2 + y2)

+
1

2
(x2 + y2) + cx4 + cy4 + 2x2y2c+ cz2

≤ (x4 + y4 + z2 + 2x2y2)(c− 4λ) + o(x4) + o(y4) + o(z2).

(2.14)

To obtain last inequality one uses bounds for q·’s and then Young inequality,

e. g.

|Czx| . |z|
3
2 + |x|3.

The resulted inequality obviously implies that for any λ > 0 we can choose

c > 0 in such way, that LV + cV is bounded. For V k we get

LV k + ckV
k = V k−2k

(
V Vx(qx − λx) + V Vy(qy − λy)

+ V Vz(−2λz +
1

2
(qyx− qxy)) + (k − 1)V 2

x + V Vxx

+ (k − 1)V 2
y + V Vyy +

1

4
(x2 + y2)(V Vzz + (k − 1)V 2

z )

− y(k − 1)VxVz + x(k − 1)VyVz +
ck
k
V 2
)
.

(2.15)
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In a similar manner as we obtained (2.14), (2.15) can be estimated as

LV k + ckV
k ≤ V k−2k

(
(
ck
k
− 4λ)(x8 + y8 + z4)

+ x4y4(
4ck
k
− 8λ) + o(x8) + o(y8) + o(z4)

)
.

Notice that we not only proved boundedness of LV k+ckV
k, but even obtained

LV k + ckV
k ‖(x,y,z)‖→+∞−−−−−−−−→ −∞.

The Meyn - Tweedie theory as stated in Theorem 1.1.7 now ensures exponen-

tial convergence to equilibrium for diffusion corresponding to the operator

(2.6).

Proof of Theorem 2.1.2. The proof does not contatin adidtional ideas com-

pared to what we just showed in the case of diffusion on R3. This is thanks

to the structure of our coefficients b and σ and assumptions (H1), (H3). As

for the support problem, the situation is pretty much the same as in Lemma

2.2.3, and the smoothness of transition probability follows again immediately

from Hörmander type theorem 2.2.1.

It remains to show that for W k there exist constants ck, Ck > 0 such that

LuW
k
u + ckW

k
u ≤ Ck

holds uniformly regardless of u ∈ N. By denoting V k
i = ((x2

i + y2
i )

2 + z2
i )
k

and Li = X2
i + Y 2

i − λiDi + qxiXi + qyiYi, we can write

LuW
k
u + ckW

k
u = ck +

u∑
i=1

w(i)(LiV k
i + ckV

k
i ). (2.16)

The analysis of expression LiV k
i + ckV

k
i was done in previous Lemma 2.2.4.

Notice that thanks to the assumption infi∈Zd λi > 0 and the fact that bound

for q·’s is uniform, the ck can be chosen in such way, that the following is
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true

∃C̃k > 0 : ∀1≤i≤u LiV k
i + ckV

k
i ≤ C̃k.

We insert this into (2.16) and use hypothesis
∑∞

i=1w(i) < ∞ to infer the

desired bounds

LuW
k + ckW

k ≤ ck +
u∑
i=1

u(i)C̃k

≤ ck + C̃k

∞∑
i=1

w(i) := Ck < +∞.

Hence indeed the Theorem 1.1.7 can be applied to prove the statement.

Remark. It should be noted that the constants in the formula (2.5) cannot

be chosen in such a way, that they would be independent of the dimension,

even though the constants in (2.4) are. It cannot be expected that one could

prove the convergence in the total variation norm in the infinite dimension

for interacting particle system, at least for interesting systems. Let us add a

simple reason for this fact.

Observation 2.2.5. Let $ and % be two probability measures on R, such

that $ 6= %. Then for the product measures $u and %u on Ru it holds that

‖$u − %u‖TV
u→∞−−−→ 1,

where ‖ · ‖TV means the total variation norm.

Proof. As $ 6= %, there exists f ∈ Cb(R), such that $f 6= %f .

Put ε = |$f−%f | > 0. Define sets Au = {x ∈ Ru : | 1
u

∑u
i=1 f(xi)−$f | < ε

2
}.

Weak Law of large numbers asserts $u(Au)→ 1, while %u(Au)→ 0.

Therefore even for the system without any interactions, one cannot have

the constants independent of the dimension, unless the convergence to the

invariant measure happens in finite amount of time.
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3
Infinite system of interacting

diffusions

3.1 Construction of the infinite dimensional measure

The goal of this section is to construct solution to the martingale problem

associated with the operator (2.2). This is done by approximation by finite

dimensional stochastic equations and using compactness arguments.

There are several papers dealing with infinite dimensional martingale prob-

lems (2,7,81) that establish uniqueness as well, but all are based in elliptic

settings and none can be directly applied to our case.

The following version of Arzelà - Ascoli theorem follows easily from the gen-

eral version proved in59 Theorem 47.1.

Theorem 3.1.1 (Arzelà - Ascoli). Let Y be a complete metric space and

fn ∈ C([0,∞), Y ), n ∈ N sequence of equicontinuous functions. Endow

C([0,∞), Y ) with the topology of uniform convergence on compacts. If {fn(t)}
is precompact in Y on a dense set of t ∈ [0,∞), then {fn} is precompact in

C([0,∞), Y ).
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To prove equicontinuity we use a variant of Kolmogorov continuity theorem

(see8 chap. 8 for details).

Theorem 3.1.2. Let Xn be continuous processes taking values in some met-

ric space (S, ρ). Suppose for any T > 0 there exist constants C(T ), ε > 0 and

p > 0 such that

sup
n
E ρ(Xn

s , X
n
t )p ≤ C(T )|t− s|1+ε 0 ≤ s ≤ t ≤ T.

Then {Xn} is equicontinuous family of processes with probability 1.

The space on which we construct our measure is dictated to us by our Lya-

punov function for (2.6), so that we will be able to utilize the uniform bound

(2.5). However we also have to choose space such that the Theorem 3.1.2

will be satisfied. For the sake of completeness let us clarify, that function of

V type indeed equips R3 with the metric.

Lemma 3.1.3. Endow R3 with the following operation d :

d(a, b) = 4

√
((ax − bx)2 + (ay − by)2)2 + (az − bz)2.

(R3, d) is then a metric space.

Proof. The only non-trivial part is the triangle inequality. Hence we want to

prove
4

√
((ax − bx)2 + (ay − by)2)2 + (az − bz)2 ≤

4

√
((ax − cx)2 + (ay − cy)2)2 + (az − cz)2

+ 4

√
((cx − bx)2 + (cy − by)2)2 + (cz − bz)2.

(3.1)

Notice that (3.1) is clearly valid if either terms on z axis are zero, or both x

and y terms are zero. Therefore it remains to prove that if forA,B,C,D,E, F ≥
0

4
√
A ≤ 4

√
B +

4
√
C

4
√
D ≤ 4

√
E +

4
√
F ,

(3.2)
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then

4
√
A+D ≤ 4

√
B + E +

4
√
C + F . (3.3)

The left side in (3.3) is clearly maximized, if the left sides in (3.2) is maxi-

mized. This happens, if we have equality in (3.2). Hence it suffices to prove

4

√
(

4
√
B +

4
√
C)4 + (

4
√
E +

4
√
F )4 ≤ 4

√
B + E +

4
√
C + F ,

but this follows from ordinary Minkowski inequality for 4 - norm on R2.

Remind our weighted space S

S = {a ∈ HZd :
∑
i∈Zd
‖ai‖8

Hw(i) < +∞}.

For now it suffices to assume that weights satisfy (H4). From the Lemma

above we can infer following usual procedure that S with the metric

‖a− b‖S = 8

√∑
i∈Zd
‖ai − bi‖8

Hw(i), a, b ∈ S

is a complete separable metric space. Therefore Ω = C([0,∞), S) is Polish

too. Let us describe compact sets of S.

Lemma 3.1.4. Let M ⊂ S. Assume that M is bounded and the following

condition

∀ε > 0 ∃n0 ∈ N ∀a ∈M :
∞∑
i=n0

‖ai‖8
Hw(i) < ε.

Then M is precompact in S.

Proof. We show that from any sequence {an} one can extract a Cauchy

sequence. By assumptions for a given ε > 0 we find n0, so we control the rest

of the sequence, and on the first n0−1 coordinates we simply choose a Cauchy

sequence step by step, which is possible by the boundedness assumption.
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3.1.1 Moments estimates and tightness of approximations

Let Λn, |Λn| = N < +∞ be the exhausting sequence of Zd, i. e. Λn+1 ⊇ Λn,⋃
n Λn = Zd. We wish to construct martingale solution for the operator

L =
∑
i∈Zd
Lλi + qxiXi + qyiYi . (3.4)

Suppose we have maximum metric on Zd and we assume there exists constant

r > 0 such that q·i depends only on neighbours within distance r. More

precisely we assume about interaction functions q’s (H1), the constants λi

are subjected to (H3).

On each space (R3)N we consider diffusion An with generator that coincides

on C2
c ((R3)Λn) functions with

Ln =
∑
i∈Λn

Lλi + qnxiXi + qnyiYi. (3.5)

Remember that the interaction functions q·i are the functions of all neigh-

bours in distance r (we assume the max metric). Therefore in case point

i ∈ Λn does not contain all neighbours in distance r, we must redefine qn·i , so

that its behaviour is dependent only on ”available” points, i. e. on set

{j ∈ Zd : j ∈ Πi = {j ∈ Zd : |j − i|max ≤ r} ∩ Λn}.

The redefinition is arbitrary, we only have to demand interaction functions

still obey (H1). If

Πi ⊂ Λn, we put qn·i = q·i . (3.6)

Notice that if An is a solution to the corresponding stochastic equation

dAn = bn(An)dt+ σn(An)dWt on (R3)Λn ,

then whenever Πi ⊂ Λn (i. e. all points that i-th particle interacts with),

the bni no longer depends on n and we can just write in such cases bni =

bi. Naturally the situation with σ is even simpler, since the coefficients are
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independent of the n, there are no interactions in the diffusion term. Setting

Ãn = (An, 0i∈Zd\Λn),

each Ãn(t) has values in S and therefore Ãn lives in Ω = C([0,∞), S).

Lemma 3.1.5. Let a ∈ S. For n ∈ N define An as above with initial

condition An(0) = πΛn(a) and subsequently define Ãn. Assume (H1), (H3),

(H4). Let T > 0 be given. Then there exist constants C(T ) > 0

sup
n
∀0≤s≤t≤T E‖Ãn(t)− Ãn(s)‖8

S ≤ C(T )|t− s|2 (3.7)

∀δ > 0 ∀t ≥ 0 ∃N0(t, δ) : sup
n

E
∞∑

i=N0(t)+1

‖Ani (t)‖8
Hu(i) < δ. (3.8)

Proof. First notice that the assumptions lead to the existence of constant K

such that (bn, σn being the coefficients of SDE for An)

|bni,x(a)| ∨ ‖σni,x(a)‖R2N ≤ K(1 + |ai,x|)
|bni,y(a)| ∨ ‖σni,y(a)‖R2N ≤ K(1 + |ai,y|)

|bni,z(a)| ∨ ‖σni,z(a)‖R2N ≤ K(1 +
3∑
j=1

|ai,j|).
(3.9)

Suppose 0 < s < t ≤ T , we have (remind |Λn| = N)

E‖Ãn(t)− Ãn(s)‖8
S = E

N∑
i=1

‖Ani (t)− Ani (s)‖8
Hw(i)

=
N∑
i=1

E(((Ani,x(t)−Ani,x(s))2 +(Ani,y(t)−Ani,y(s))2)2 +(Ani,z(t)−Ani,z(s))2)2w(i)

.
N∑
i=1

w(i)
(
E(Ani,x(t)− Ani,x(s))8 + E(Ani,y(t)− Ani,y(s))8 + E(Ani,z(t)− Ani,z(s))4

)
.

(3.10)

The x term is now estimated using (3.9), Burkholder - Davis - Gundy and
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Hölder inequalities

E(Ani,x(t)− Ani,x(s))8 = E

(∫ t

s

bni,x(A
n(u))du+

∫ t

s

σni,x(A
n(u))dW (u)

)8

. |t− s|7E(

∫ t

s

|bni,x(An(u))|8du) + |t− s|3E(

∫ t

s

‖σni,x(An(u))‖8du)

. |t− s|2 + |t− s|
∫ t

s

E|Ani,x(u)|8du.

Similarly handling the y and z we get

E(Ani,y(t)− Ani,y(s))8 . |t− s|2 + |t− s|
∫ t

s

E|Ani,y(u)|8du)

E(Ani,z(t)− Ani,z(s))4 . |t− s|2 + |t− s|
∫ t

s

3∑
j=1

E|Ani,j(u)|4du.

Individual terms we treat

E|Ani,x(u)|8 = E

∣∣∣∣|ai,x|+ ∫ u

0

bni,x(A
n(v))dv +

∫ u

0

σni,x(A
n(v))dW (v)

∣∣∣∣8

. |ai,x|8 + 1 +

∫ u

0

E|Ani,x(v)|8dv,

analogically one gets

E|Ani,y(u)|8 . |ai,y|8 + 1 +

∫ u

0

E|Ani,y(v)|8dv

E|Ani,z(u)|4 . |ai,z|4 + 1 +

∫ u

0

3∑
j=1

E|Ani,j(v)|4dv.

Altogether we derived existence of some constant K(T ) > 0 such that

E|Ani,x(u)|8 + E|Ani,y(u)|8 +
3∑
j=1

E|Ani,j(u)|4 ≤ K(T )(‖ai‖8
H + 1)
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+K(T )

∫ u

0

(
E|Ani,x(u)|8 + E|Ani,y(u)|8 +

3∑
j=1

E|Ani,j(u)|4
)
du.

Invoking the Grönwall’s inequality we can deduce existence of some constant

K1(T ) > such that ∀u ∈ [s, t]

E|Ani,x(u)|8 + E|Ani,y(u)|8 +
3∑
j=1

E|Ani,j(u)|4 ≤ K1(T )(1 + ‖ai‖8
H). (3.11)

Hence

E(Ani,x(t)− Ani,x(s))8 + E(Ani,y(t)− Ani,y(s))8 + E(Ani,z(t)− Ani,z(s))4

. |t− s|2 + |t− s|2K1(T )(1 + ‖ai‖H).

Inserting back to (3.10) we obtain, thanks to (A2) and the fact that a ∈ S
the existence of some constants L(T ), C(T ) > 0 such that

E‖Ãn(t)− Ãn(s)‖8
S ≤

N∑
i=1

w(i)|t− s|2L(T )(1 + ‖ai‖8
H)

≤ C(T )|t− s|2,

which is what we wanted to prove in (3.7).

To prove (3.8) we simply utilize the key estimate (3.11), which gives us

E
∞∑

N0(t)+1

‖Ani (t)‖8
Hw(i) .

∞∑
N0(t)+1

u(i)K1(t)(1 + ‖ai‖8
H),

therefore for given δ > 0 it suffices to choose N0(t) such that the sum

∞∑
i=N0(t)+1

w(i)(1 + ‖ai‖8
H)

is sufficiently small.

Corollary 3.1.6. Let Ãn be as in Lemma 3.1.5. Then P ◦ (Ãn)−1, n ≥ 1 is

a tight sequence of measures in Ω.
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Proof. The estimate (3.7) implies according to Theorem 3.1.2 that equicon-

tinuity condition is satisfied. Since boundedness is immediately implied by

equicontinuity and boundedness at zero, to prove precompactness on a dense

subset it remains to show by Lemma 3.1.4 that for given ε > 0

P

∀t∈Q∩(0,∞) ∀δ∈(0,∞)∩Q ∃N0(t,δ) :
∞∑

i=N0(t,δ)+1

‖Ani (t)‖8
Hw(i) < δ

 > 1− ε.

(3.12)

For any ε > 0 and given fixed t and δ application of Chebyshev inequality in

conjunction with the estimate (3.8) yields

P

 ∞∑
i=N0(t,δ)+1

‖Ani (t)‖8
Hw(i) < δ

 = 1− P

 ∞∑
i=N0(t,δ)+1

‖Ani (t)‖8
Hw(i) ≥ δ


≥ 1−

E
∑∞

i=N0(t,δ)+1 ‖Ani (t)‖8
Hw(i)

δ
> 1− ε.

Considering we have only countably many δ’s and t’s, countable additivity

of probability measure gives that (3.12) is indeed fulfilled.

3.1.2 Solution to the Martingale problem

Now we show that weak limit of sequence {P ◦ (Ãn)−1} can be used to con-

struct martingale solution to the operator (3.4).

We let At(w) = w(t), w ∈ Ω to be the canonical process on Ω = C([0,∞), S)

with σ-algebra F = σ(w(s), s ≥ 0), Ft = σ(w(s), 0 ≤ s ≤ t) denotes

the usual filtration. We further introduce spaces Ωn = C([0,∞), (R3)Λn),

Bn
t (ωn) = ωn(t) the canonical process on Ωn and the mappings

χn : (R3)Λn → S, χn(a1, . . . , aN) = (a1, . . . , aN , 0i∈Zd\Λn) (3.13)

ψn : Ωn → Ω, ωn → [t→ (ωn(t), 0i∈Zd\Λn)]. (3.14)

For given a ∈ S we denote An,a and Ãn,a the processes constructed in previous

section to accentuate their dependence on a, i. e. An,a is the solution to SDE
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with generator extending the (3.5), An(0) = πΛn(a) and Ãn = (An, 0i∈Zd\Λn).

In addition we denote by P a the weak limit of measures P ◦ (Ãn,a)−1, that we

just proved in Corollary 3.1.6 to exist. To simplify the notation we denote

P̃ a
n = P ◦ (Ãn,a)−1 and P a

n = P ◦ (An,a)−1. The matching expectations to

these three measures will be denoted Ea, Ẽa
n, respectively Ea

n . Notice that

P̃ a
n = P a

n ◦ ψ−1
n , as following calculation reveals : for C ∈ F

P̃ a
n (C) = P (Ãn,a(·) ∈ C) = P ((An,a, 0)(·) ∈ C) = P (ψn(An,a) ∈ C)

= P a
n ◦ ψ−1

n (C).

We introduce two families of cylindrical functions. We say that f ∈ C2,Cyl
c (S),

if there exists Φf ⊂⊂ Zd such that there is g ∈ C2
c ((R3)Φf ,R) and f(a) =

g(πΦf (a)), analogically f ∈ C2,Cyl(S), if such g ∈ C2((R3)Φf ,R). With this

notation we arrive at the following theorem.

Theorem 3.1.7 (Existence of solution to the martingale problem). Let a ∈
S. Then there exists probability measure P a on Ω such that :

P (A0 = a) = 1 (3.15)

f(At)− f(A0)−
∫ t

s

Lf(Au)du (3.16)

is Ft-martingale under P a for any f ∈ C2,Cyl
c (S) and Ft-local martingale

under P a for any f ∈ C2,Cyl(S).

Proof. Define P a as above, so that we have P̃ a
n

w−→ P a. Then with the aid of

Portmanteau theorem A.2.3

P (A0 = a) = 1−
∑
k

P a(‖A0 − a‖S >
1

k
)

≥ 1−
∑
k

lim inf
n

P

(
‖Ãn,a(0)− a‖S >

1

k

)
,

since by construction lim infn P
(
‖Ãn,a(0)− a‖S > 1/k

)
= 0, we see that

(3.15) is indeed satisfied. Let f ∈ C2,Cyl
c (S) be given. To prove that (3.16)
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is martingale it suffices to show (following standard procedure in measure

theory - see34 Lemma 3.1) that for arbitrary G ∈ C(C([0, s], S), [0, 1]), s < t

Ea

[(
f(At)− f(As)−

∫ t

s

Lf(Au)du

)
G(ω·)

]
= 0. (3.17)

By weak convergence P̃ a
n

w−→ P a the formula in (3.17) is a limit of

Ẽa
n

[(
f(At)− f(As)−

∫ t

s

Lf(Au)du

)
G(ω·)

]
. (3.18)

We compute

Ẽa
nf(At(ω)) = Ẽa

nf(ωt) = Ea
nf([ψnωn]t) = Ea

n(f ◦ χn)(Bn
t (ωn))

Ẽa
nG(ω·) = Ea

nG((ψnωn)·) = Ea
n(G ◦ ψn)((ωn)·).

(3.19)

Since f is cylindrical the operator L acting on f in fact reduces to Lf , i. e.

the operator

Lf =
∑
i∈Φf

Lλi + qxiXi + qyiYi.

Consider that for n large enough every point from Φf has all neighbours in

Λn and hence Lf equals to Ln on Φf , where Ln is the operator corresponding

to An as defined in (3.5). Then we adjust

Ẽa
n

∫ t

s

Lf(Au) = Ea
n

∫ t

s

Lff([ψnωn]u) = Ea
n

∫ t

s

Lff(χn(Bn
u(ωn))

= Ea
n

∫ t

s

Ln(f ◦ χn)(Bn
u(ωn)).

Altogether we found out that (3.18) is equal to

Ea
n

[(
(f ◦ χn)(Bn

t )− (f ◦ χn)(Bn
s )−

∫ t

s

Ln(f ◦ χn)(Bn
u)du

)
(G ◦ ψn)((ωn)·)

]
,

but since we know that P a
n solves the martingale problem for Ln on Ωn, this

expression equals to zero and therefore also (3.17) is zero.

The argument, why (3.16) for f ∈ C2,Cyl(S) is local martingale, is the same
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as in finite dimension thanks to the cylindricity assumption.

3.2 Uniqueness of approximating procedure

In the previous section we showed that our approximation scheme is tight,

from which we derived the existence of solution to the martingale problem.

It is showed here that the limit point is unique. So although we do not es-

tablish uniqueness of martingale problem, we are able to exploit uniqueness

of limit point to prove that our solution to martingale problem is indeed

Markov process. The proof of uniqueness is based on technical result about

behaviour of different approximations schemes in fixed region Λ ⊂ Zd.

To make the calculations as simple as possible (although still far from trivial)

we distinguish specific approximation scheme related to the size of our inter-

actions, namely the boxes Ξn. Recall that 0 < r < ∞ is the parameter of

length of interactions for the functions q’s and we impose on the interactions

additional assumption (H2). This assumption ensures that the equation for

An has globally Lipschitz drift. More precisely we need the following ob-

servation. Remind that the i-th coefficients of equation whose solution is

An are independent of n provided that Πi ⊂ Λn, see (3.6) for more detailed

discussion there.

Lemma 3.2.1. Let Λn ⊃ Ξk+1 and we denote bk = (b1, . . . , bK) (notice this

does not depend on n, since we assume Λn ⊃ Ξk+1) the first K = |Ξk|
coordinates of drift for the equation

dAn = bn(An)dt+ σn(An)dWt.

For the element cn ∈ (R3)Λn we denote cnk = (cn1,x, . . . , c
n
K,z). Then there

exists constant J > 0 s. t.

‖bk(an)− bk(dn)‖2
(R3)Ξk

≤ J‖ank+1 − dnk+1‖2
(R3)Ξk+1

, ∀an, dn ∈ (R3)Λn . (3.20)

J is independent of k, n.
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Proof. The proof is straightforward and follows from assumptions (H1),

(H2), (H3). The terms in the drift that complicate Lipschitz condition

- and force us to use k + 1 in (3.20) - are the ones containing q·’s, since they

depend on all nearest (2r+ 1)d neighbours. As an example, how one obtains

(3.20) in these cases, we handle using the notation just introduced the term

qi,y(·)ani,x. Because of the finite range of our interactons qi,x(·)ani,x is a smooth

function of (2r + 1)d variables for i, 1 ≤ i ≤ K, hence application of mean

value theorem together with (H2) yields(
qi,y(a

n)ani,x − qi,y(dn)dni,x
)2 ≤ ‖∇qi,y(·) ·i,x ‖∞‖anΠi − d

n
Πi
‖

(R3)(2r+1)d

≤ C‖anΠi − d
n
Πi
‖

(R3)(2r+1)d .

We then take into account that every point i ∈ Zd has the same finite fixed

amount of neighbours. Hence handling the other terms in the obvious way,

we indeed arrive at the existence of some L > 0 such that

‖bk(an)− bk(dn)‖2
(R3)Ξk

≤ L‖ank+1 − dnk+1‖2
(R3)Ξk+1

, ∀an, dn ∈ (R3)Λn .

We need to restrict our class of starting points a ∈ S, so that the space

includes only configurations that does not grow too fast, i. e. we require

(H6). The key to proofs in this section are two technical Lemmas about

behaviour of solutions An to the SDE’s related to the operator Ln. If we

take some fixed given set Γ ⊂ Zd and two supersets Γn,Γk ⊃ Γ, such that

we have corresponding solutions An, Ak of SDE’s on (R3)Γn resp. (R3)Γk ,

then we cannot claim that (Ani )i∈Γ and (Aki )i∈Γ have the same distribution,

because we have to redefine the interaction functions at the boundary of the

sets Γn,Γk, and hence (Ani )i∈Γ and (Aki )i∈Γ differ as they depend on all An

resp. Ak via interactions. Therefore we can never have precise equality, even

though the coefficients of equations on (R3)Γ will be the same for both An

and Ak, once both Γn and Γk includes all neighbours of Γ. Nevertheless

one would intuitively expect, that the further we are from boundary, the

smaller the effect of redefinition should be on Γ. Next Lemma formalizes
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and justifies this intuition. Then we can also interpret technical assumption

(H6) by saying, that the effect of redefining at the boundary will be small,

provided we do not start from very fast growing initial configuration.

For the rest of the section we assume conditions (H1) - (H4), (H6).

Lemma 3.2.2. Let a ∈ S and Ξk be defined as above. Suppose we have two

exhausting sequences {Λl}, {Λm} of Zd and correspondingly two sequences of

processes {Am,a}, {Al,a}. We denote by Am,ak the part of Am,a on (R3)Ξk , i.

e. An,ak = (An1,x, . . . , A
n
K,z). For any ε > 0 and T > 0 there exists N > 0 such

that for any l,m ≥ N

E sup
t∈[0,T ]

‖Al,ak (t)− Am,ak (t)‖2
(R3)Ξk

≤ ε. (3.21)

Proof. Not to overload already heavy notation, we will be little ambiguous

and write ak = (a1,x, . . . , aK,z) for the restriction of a to (R3)Ξk , while we also

denote aj = (aj,x, aj,y, aj,z) when j ∈ Zd. Also when dealing with the norms

on spaces Rn for different n we omit the index in the norm, as it should not

lead to confusion and instead enhance readability. Using the Lemma 3.2.1

and routine calculations for SDE’s we compute

E sup
t∈[0,T ]

‖Al,ak (t)− Am,ak (t)‖2

. E sup
t∈[0,T ]

(∥∥∥∥∫ t

0

bk(A
l,a)− bk(Am,a)ds

∥∥∥∥2

+

∥∥∥∥∫ t

0

σk(A
l,a)− σk(Am,a)dWs

∥∥∥∥2
)

. T

(
E

∫ T

0

‖bk(Al,a)− bk(Am,a)‖2ds+ E

∫ T

0

‖σk(Al,a)− σk(Am,a)‖2ds

)
. T

(∫ T

0

E‖Al,ak+1(t1)− Am,ak+1(t1)‖2dt1

)
.

Therefore we obtained the existence of constant C > 0 such that

E sup
t∈[0,T ]

‖Al,ak (t)− Am,ak (t)‖2 ≤ CT

∫ T

0

E‖Al,ak+1(t1)− Am,ak+1(t1)‖2dt1.

Assuming l,m are large enough so we can repeat the procedure above, we
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get

E‖Al,ak+1(t1)− Am,ak+1(t1)‖2 ≤ Ct1

∫ t1

0

E‖Al,ak+2(t2)− Am,ak+2(t2)‖2dt2

· · · ≤ Cn−1t1

∫ t1

0

t2

∫ t2

0

· · ·
∫ tn−1

0

E‖Al,ak+n(tn)− Am,ak+n(tn)‖2dtn . . . dt1.

(3.22)

Thanks to the Linear growth of coefficients of our SDE (3.9), there is some

KT > 0 such that

E‖Al,ak+n(tn)− Am,ak+n(tn)‖2 ≤ KT (1 + ‖an+k‖2).

Using this and then calculating the iterated integrals, we obtain from (3.22)

the estimate

E sup
t∈[0,T ]

‖Al,ak (t)− Am,ak (t)‖2 ≤ (CT 2)n

(2n− 1)!!
KT (1 + ‖an+k‖2),

where (2n−1)!! = (2n−1)·(2n−3) · · · 3·1 denotes the odd (double) factorial.

Using the trivial bound

‖an+k‖2
(R3)Ξn+k

≤
(2(n+k)r+1)d∑

j=1

3 + ‖aj‖8
H,

we need to prove only

lim
n→∞

Ln

n!

(2(n+k)r+1)d∑
j=1

(1 + ‖aj‖8
H) = 0

for arbitrary constant L > 0. Clearly it suffices to show

lim
n

∑(2(n+k)r+1)d

j=1 ‖aj‖8
H

n!1−
δ
2

= 0, (3.23)

where δ is from the assumption (H5). We apply (H5) and

‖aj‖8
Hu(j) ≤ ‖a‖8

S,
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to conclude that

lim
n

∑
j∈Ξn+k+1\Ξn+k

‖aj‖8
H

n!1−
δ
2 ((n+ 1)1− δ

2 − 1)

≤ ‖a‖
8
S

K
lim
n

(2(n+ k + 1)r + 1)d − (2(n+ k)r + 1)d)(n+ k + 1)!1−δ

n!1−
δ
2

= 0.

(3.24)

The fact that (3.24) implies (3.23) is well known as Stolz - Cesàro Theorem

A.2.4.

Lemma 3.2.3. Let k ∈ N, a ∈ S and t > 0 be given. Let Am,a be approxi-

mating sequence defined with respect to exhausting boxes Ξm. For any ε > 0

there exists η > 0 such that ∀m ≥ k

‖b− a‖S < η =⇒ E‖Am,ak (t)− Am,bk (t)‖2 < ε. (3.25)

Proof. Since we know that our SDE has continuous dependence on initial

condition, the Lemma is nontrivial only for infinite number of m and hence

we concentrate in our computations on large m. Again for simplification we

will not write the index to the norms through computations. Similarly to

the last Lemma we get for some constants C > 0 and Kt > 0 after n steps

(to make last sum meaningful let us formally define (−1)!! = 1)

E‖Am,ak (t)− Am,bk (t)‖2 ≤ C‖ak − bk‖2 + Ct

∫ t

0

E‖Am,ak+1(t1)− Am,bk+2(t1)‖2dt1

≤ C‖ak − bk‖2 + C2t2‖ak+1 − bk+1‖2

+ Ct

∫ t

0

Ct1

∫ t

0

E‖Am,ak+2(t2)− Am,bk+2(t2)‖2dt2dt1

≤ C‖ak − bk‖2 + C2t2‖ak+1 − bk+1‖2 + · · ·+ Cnt2n−2

(2n− 3)!!
‖ak+n−1 − bk+n−1‖2

+ E sup
0≤s≤t

‖Am,ak+n(s)− Am,bk+n(s)‖2 (Ct2)n

(2n− 1)!!

≤
n∑
j=1

Cjt2j−2‖ak+j−1 − bk+j−1‖2

(2j − 3)!!
+Kt

 ∑
i∈Ξk+n

3 + ‖ai‖8
H + ‖bi‖8

H

 (Ct2)n

(2n− 1)!!
.
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Same calculations like in Lemma 3.2.2 together with Stolz - Cesàro Theorem

gives

lim
n→∞

Kt

 ∑
i∈Λk+n

3 + ‖ai‖8
H + ‖bi‖8

H

 (Ct2)n

(2n− 1)!!
= 0. (3.26)

Because

lim
n→∞

Cnt2n−2nl

((2n− 1)!!)
δ
2

= 0

for l > 1, we obtain using previously established convergence results that

∞∑
j=1

Cjt2j−2‖ak+j−1 − bk+j−1‖2

(2j − 3)!!
< +∞. (3.27)

Therefore combining (3.26) and (3.27) for given ε > 0 we can choose N ∈ N
such that

∞∑
j=N

Cjt2j−2‖ak+j−1 − bk+j−1‖2

(2j − 3)!!

+ sup
j≥N

Kt

 ∑
i∈Ξk+j

3 + ‖ai‖8
H + ‖bi‖8

H

 (Ct2)j

(2j − 1)!!
<
ε

2
.

For the first N − 1 terms we can choose η > 0 in (3.25) thanks to the

continuous dependence on parameters for the Am,a in such way that

N−1∑
j=1

Cjt2j−2‖ak+j−1 − bk+j−1‖2

(2j − 3)!!

+ sup
j≤N−1

E sup
0≤s≤t

‖Am,ak+j(s)− A
m,b
k+j(s)‖

2 (Ct2)j

(2j − 1)!!
<
ε

2
,

and the Lemma is established.

The first crucial property that follows from Lemma 3.2.2 is independence of

the limit measure P a on the choice of convergent subsequence. By the well

known properties of weak convergence this implies that the sequence {P̃ a
n}
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itself weakly converges. In addition this limit doesn’t depend on the choice

of approximating sequence Λn.

Theorem 3.2.4. Let Ãm,a, Ãn,a be the sequences of approximating processes

on Ω, a ∈ S. Then there exists probability measure P a on Ω such that

lim
m→∞

P ◦ (Ãm,a)−1 = lim
l→∞

P ◦ (Ãl,a)−1 = P a.

Proof. By Corollary 3.1.6 we know that any two such sequences has weakly

convergent subsequence. So it remains to show that the limit point is the

same for any two weakly convergent subsequences (to simplify notation we

call the convergent subsequences againm and l) {P ◦(Ãl,a)−1}, {P ◦(Ãm,a)−1}.
To prove this it clearly suffices to show that for any f ∈ Cb(Ω)

lim
l
Ef(Ãl,a(·)) = lim

m
Ef(Ãm,a(·)). (3.28)

First let f ∈ CCyl
b,Lip(Ω), i. e. there exists k ∈ N and g ∈ Cb,Lip(ΩΞk) such that

f(ω) = g((πΞkω)·), ΩΞk = C([0,∞), (R3)Ξk) and g is Lipschitz, that is there

exists constant L > 0 s. t.

|g((ωk)·)− g((ω̃k)·)| ≤ ‖ωk − ω̃k‖ΩΞk
∀ωk, ω̃k ∈ ΩΞk .

Then we get for m, l large enough

|Ef(Ãl,a(·))− Ef(Ãm,a(·))|2 = |Eg(Al,ak (·))− Eg(Am,ak (·))|2

≤ E|g(Al,ak (·))− g(Am,ak (·))|2 ≤ E‖Al,ak (·)− Am,ak (·)‖2,

hence Lemma 3.2.2 implies (3.28) holds for f ∈ CCyl
b,Lip(Ω).

Next let f ∈ CCyl
b (Ω), then there exists bounded sequence fn ∈ CCyl

b,Lip(Ω)

such that fn → f . Finally for f ∈ Cb(Ω) consider cylindrical approximation

by {fn}, that is fn(ω·) = f((πΞnω)·) and the result follows by Lebesgue’s

dominated convergence theorem.
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3.2.1 Markov property

To translate Lemma 3.2.3 into desired properties, we recall equivalent defi-

nition of weak convergence. Its proof follows immediately from Skorokhod

representation theorem (see also72 pp. 168).

Lemma 3.2.5. Let S be a Polish space and µn, µ probability measures on

S. Suppose µn
w−→ µ. Let {fn}, f ∈ C(P ) be such that functions {fn} are

uniformly bounded and

xn → x in S =⇒ fn(xn)→ f(x). (3.29)

Then µnfn → µf.

We apply this Lemma to show that canonical process on Ω is a genuine

Markov process under the measures P a.

Theorem 3.2.6. Let At(w) be canonical process on Ω = C([0,∞), S) and

P a the unique limiting measure produced by Corollary 3.1.6. (At, P
a) is then

a Markov process.

Proof. Denote S the σ-algebra on S. We need to show these two properties

(I) a→ P a(At ∈ C) is measurable for any C ∈ S (3.30)

(II) P a(As+t ∈ C|Fs) = φ(As), φ(·) = P ·(At ∈ B), ∀ C ∈ S, 0 ≤ s ≤ t.

(3.31)

To prove (3.30) we show that a → Eaf(A(t)) is continuous function for

any f ∈ CCyl
b,Lip(S), the measurability for general f ∈ Cb(S) will then follow

through same procedure as in Theorem 3.2.4. By the uniqueness just proved,

we can consider approximation {An} living on the boxes Ξn. So let f(a) =

g(πΞk(a)), we then calculate

|Eaf(At)− Ebf(At)|2 = | lim
n
E[f(Ãn,a(t))− f(Ãn,b(t))]|2

≤ lim sup
n

E|g(An,ak (t))− g(An,bk (t))|2 ≤ lim sup
n
‖An,ak (t)− An,bk (t)‖2.
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From Lemma 3.2.3 we derive that this estimate establishes the desired con-

tinuity.

To prove (3.31) one strives to establish ∀f ∈ Cb(S)

Ea[f(As+t)|Fs] = EAsf(At). (3.32)

If we denote ϕ(·) = E·[f(At)], this then means - for any C ∈ Fs∫
C

f(As+t)dP
a =

∫
C

ϕ(As)dP
a.

We consider first f ∈ CCyl
b,Lip(S), then we know from the first part of the

proof that ϕ(·) is continuous. By approximation this reduces to necessity of

demonstrating

Ea[f(As+t)h(ω·)] = Eaϕ(As)h(ω·), (3.33)

where h is arbitrary, but fixed continuous bounded Fs - measurable function.

By weak convergence P̃ a
n → P a the left side of (3.33) is a limit of (the same

calculations as we made in the proof of Theorem 3.1.7 are hidden there)

Ẽa
n[f(As+t)h(ω·)] = Ea

n[(f ◦ χn)(Bn
s+t)(h ◦ ψn)((ωn)·)].

The finite dimensional result, i. e. the fact that P a
n solves the martingale

problem on Ωn, tells us that

Ea
n[(f ◦ χn)(Bn

s+t)(h ◦ ψn)((ωn)·)] = Ea
n[ϕn(χn(Bn

s ))(h ◦ ψn)((ωn)·)],

if ϕn(χn(Bn
s )) = E

χn(Bns )
n [(f ◦ χn)(Bn

t )]. We observe that

ϕ(a) = Eaf(At) = lim
n
Ẽa
nf(At) = lim

n
Ea
n[(f ◦ χn)(Bn

t )],

hence (3.33) will established using Lemma 3.2.5, provided we can prove the

implication

an → a in S =⇒ Ẽan
n [f(At)]→ Ea[f(At)]. (3.34)
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For given ε > 0 we find N from weak convergence such that

|Ea[f(At)]− Ẽa
n[f(At)]| <

ε

2
∀n ≥ N.

Like in the first part we also have the estimate

|Ẽan
n [f(At)]− Ẽa

n[f(At)]|2 ≤ lim sup
n
‖An,ank (t)− An,ak (t)‖2,

so Lemma 3.2.3 implies we can find δ > 0, Ñ ∈ N such that

‖a− an‖ < δ =⇒ |Ea[f(At)]− Ẽan
n [f(At)]| < ε ∀n ≥ Ñ .

Therefore from Lemma 3.2.5 we conclude that (3.33) holds for f ∈ CCyl
b,Lip(S).

We infer the validity of (3.32) for general f ∈ Cb(S) by routine approximation

procedure.

This result implies that if we set Pt(a, C) = P a{At ∈ C}, then Pt is a gen-

uine transition probability function and Ptf(a) = Eaf(A(t)) is the Markov

semigroup acting on all f ∈ Bb(S) satisfying the Chapman - Kolmogorov

equality12 chap. I.

3.3 Existence of invariant measure for the semigroup

We now derive the tightness of measures {νn} and consequently show that

any limit point is an invariant measure for the Markov semigroup constructed

above.

We need to enlarge our space S to assure that it accommodates invariant

measure. The assumption that fits the bill is (H5). Thus for the remainder

of the chapter we work under assumptions (H1) - (H6).

Theorem 3.3.1. The sequence of measures {νn} is tight.

Proof. We want to show that for given ε > 0 there is compact set Kε in S

such that ∀n ∈ N one has νn(Kε) ≥ 1− ε.
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Let us recall the estimate (2.4)

LnW
2
n(an) ≤ −cW 2

n(an) + C. (3.35)

Remind that νn = µn ◦χ−1
n (3.13), and µn is an invariant measure for process

An on (R3)Λn . Hence we have the equality

µn(LnW
2
n) = 0. (3.36)

Clearly

µn(LnW
2
n) = µn(LnW

2
nILnW 2

n>0) + µn(LnW
2
nILnW 2

n≤0),

and from (3.35) it follows that µn(LnW
2
nILnW 2

n>0) ≤ C, so that

µn(LnW
2
nILnW 2

n≤0) ≥ −C. (3.37)

Notice that in our notation it holds

W 2
n(an) =

N∑
i=1

V 2
i (ai)v(i) =

N∑
i=1

v(i)‖ai‖8
H.

For given ε > 0 we define the set Kε as

Kε =

{
a ∈ S : ∀i ∈ Zd ‖ai‖8

Hu(i) ≤ u(i)

(
C + 1

cεv(i)
+

C

cv(i)

)}
.

Thanks to the assumption (H5) this set is compact in S according to Lemma

3.1.4. We calculate

νn(KC
ε ) = µn(χn(KC

ε )) = µn

(
b ∈ (R3)Λn : ∃i ∈ Λn : ‖bi‖8

H >
C + 1

cεv(i)
+

C

cv(i)

)
.

Hence for an ∈ χn(KC
ε ) we have

LnW
2
n(an) ≤ −c

(
C + 1

cεv(i)
+

C

cv(i)

)
v(i) + C ≤ −C + 1

ε
.

Therefore if νn(KC
ε ) > ε holds, we get the contradiction with (3.37), which
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finishes the proof.

Theorem 3.3.2. There exists an invariant measure for the Markov process

(A,P a) from Theorem 3.2.6.

Proof. We fix some weakly convergent sequence of measures {νn} and its

limit point ν. To show that ν is invariant, we prove that for any f ∈ Cb(S)∫
S

Ptf(a)dν(a) =

∫
S

f(a)dν(a). (3.38)

We show (3.38) holds for f ∈ CCyl
b,Lip(S), the general case follows by approx-

imation as before. Recall that νn = µn ◦ χ−1
n and that µn is the invariant

measure for process An on (R3)Ξn , so that the equality∫
(R3)Ξn

Ein(en)
n h(Bn

t )dµn(en) =

∫
(R3)Ξn

h(en)dµn(en) ∀h ∈ Cb((R3)Ξn)

holds. Arguing like in the proof of (3.31), we may use Lemma 3.2.5 to prove

the equality

lim
n

∫
S

Ẽa
nf(At)dνn(a) =

∫
S

Eaf(At)ν(a).

Remembering the calculations (3.19) we compute∫
S

f(a)dν(a) = lim
n

∫
S

f(a)dνn(a) = lim
n

∫
(R3)Ξn

(f ◦ χn)(an)dµn(an)

= lim
n

∫
(R3)Ξn

Eχn(an)
n (f ◦ χn)(Bn

t )dµn(an) = lim
n

∫
S

Ea
n(f ◦ χn)(Bn

t )dνn(a)

= lim
n

∫
S

Ẽa
nf(At)dνn(a) =

∫
S

Eaf(At)ν(a) =

∫
S

Ptf(a)dν(a),

what we wanted to show.

3.4 Examples of other operators

We list some other relevant examples, that can be handled using our strategy

without any additional difficulty :
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� Of course the elliptic case lies naturally within our framework. Take

standard Euclidean space R3 with standard Laplacian ∆, D = x∂x +

y∂y + z∂z, X = ∂x (etc. for Y , Z), Lλ = ∆−λD and consider operator

L =
∑
i∈Zd
Lλi + qi,xXi + qi,yYi + qi,zZi

acting on (R3)Z
d
. Lyapunov function here can be chosen just x2k +

y2k + z2k, for k = 2 we get the same tightness as we had in Corollary

3.1.6.

� The Grushin plane1 : Take R2 as the basic space and consider vector

fields X = ∂x, Y = −x∂y. D is given by D = x∂x + y∂y and operator

L =
∑
i∈Zd

X2
i + Y 2

i − λiDi + qi,xXi + qi,yYi

on (R2)Z
d
. For the Lyapunov function works V = x4k + y2k, the tight-

ness (3.1.6) works again for k = 2. The σ and u in Girsanov theorem

to simplify the control problem can be chosen in the following way

σ =

(√
2 0

0
√

2x

)
u =

(
qx√

2
qy
x

)
.

Then we have

σu = b− b̃ = (−λx,−λy).

� We cannot quite handle the example of Martinet distribution as in25.

Take R3 and let X = ∂x − y2∂z, Y = y∂y. The problem that arises

lies in the nonlinear term in z-axis. We can not hope for our strategy

to be successful, as in the last section definitely linear growth together

with strong Lipschitz condition is required. But at least the finite

dimensional case is almost conquered by our methods - If one puts

D = x∂x + y∂y + z∂z and consider

L = X2 + Y 2 − λD + qxX + qyY
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as operator on R3, then the SDE corresponding to this operator has

coefficients

b = (qx − λx, qy − λy,−λz − qxy2), σ =


√

2 0 0

0
√

2 0

0 0
√

2y2

 .

Due to nonlinearities, not even global existence of process is a priori

clear. However, if we set Vk = x2k + y6k + z2k, we calculate that Vk is

the Lyapunov function giving global existence and invariant measure.

The smoothness of density holds from Theorem 2.2.1 as well. However

to our best knowledge, we are unable to investigate the irreducibility

of the process.

In general we can say, that our strategy is successful whenever we can estab-

lish finite dimensional results as in Theorem 2.1.2 with Lyapunov function,

that will enable us to construct the diffusion using tightness arguments as in

chapter three. To finish the strategy with desired results, it is then essential

that we can impose on the interaction such constraints that lead to the con-

ditions in Lemma 3.2.1.
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4
Variational approach to

stochastic partial

differential equations

We outline the basic results about so-called variational approach to stochastic

differential equations in infinite dimension. This approach was founded by

Pardoux in65 and Krylov and Rozovskii in45. The chapter serves reference

purpose and is motivated by our use of these solution in the next one. Our

presentation is based on books68,54, see also19 for more recent treatment.

4.1 Definition of solution and admissible coefficients

Let H and K be real separable Hilbert spaces, B a reflexive Banach space

embedded continuously and densely in H. Upon identifying H with its dual

H∗ we get a Gelfand triple B ⊆ H ⊆ B∗; note that – in this representation

– the restriction of the dual pairing 〈·, ·〉B∗,B to H × B coincides with the

scalar product 〈·, ·〉H in H. Assume that
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(A1) f : R≥0 × B −→ B∗ and σ : R≥0 × B −→ L2(K,H) (for definition

of Hilbert-Schmidt operators see (A.1.3) ) are Borel functions, µ is a

Borel probability measure on H,

and consider a stochastic evolution equation

dX = f(t,X) dt+ σ(t,X) dW, X0 ∼ µ. (4.1)

Note that in54 the authors admit random coefficients, but as we do not

need it for our purposes, we stick to deterministic case. Randomness does

not bring additional difficulties, except perhaps complicating notation and

assumptions. The variational solution to equation (4.1) we shall define as

follows.

Definition 4.1.1 (variational solution). A triple ((Ω,F , (Ft),P ),W,X) is

called a (variational) solution to the stochastic evolution equation (4.1) pro-

vided (Ω,F , (Ft),P ) is a stochastic basis satisfying the usual conditions on

which a standard cylindrical (Ft)-Wiener process W (A.1.2) on K and a

B∗-valued (Ft)-progressively measurable process X are defined such that

i) X(0)#P = µ (i.e., the law of X(0) is µ),

ii) there exists an (Ft)-progressively measurable B-valued process X̃ sat-

isfying ‖X̃‖B ∈ Lploc(R≥0) P -almost surely for some p ∈ (1,∞), X = X̃

λ⊗ P -almost everywhere on R≥0 ×Ω,

iii) ‖f(·, X̃(·))‖p/(p−1)
B∗ + ‖σ(·, X̃(·))‖2

L2(K,H) ∈ L1
loc(R≥0) and

X(t) = X(0) +

∫ t

0

f(s, X̃(s)) ds+

∫ t

0

σ(s, X̃(s)) dWs in B∗

for all t ≥ 0 P -almost surely.

We follow the presentation in54, hence we distinguish formally between X

and X̃. Note though that X̃ is just progressively measurable version of X

in smaller space B. Instead of assuming the existence of X̃, we could have

assumed the existence of progressively measurable modification of X with

respect to this smaller space B.
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It turns out, that we need to impose the following four conditions upon the

coefficients.

(G1) (Hemicontinuity) For all u, v, w ∈ B, and t ∈ [0,∞) the map

λ→B∗ 〈f(t, u+ λv), w〉B, λ ∈ R

is continuous.

(G2) (Weak monotonicity) There exist c ∈ R such that for all u, v ∈ B and

T > 0

2B∗〈f(·, u)− f(·, v), u− v〉B + ‖σ(·, u)− σ(·, v)‖2
L2(K,H)

≤ c‖u− v‖H on [0, T ]

(G3) (Coercivity) There exist α ∈ (1,∞), c1 ∈ R, c2 ∈ (0,∞) and g ∈
L1

loc(R≥0) such that for all v ∈ B, t ≥ 0

2B∗〈f(t, v), v〉B + ‖σ(t, v)‖2
L2
≤ c1‖v‖2

H − c2‖v‖αB + g(t).

(G4) (Boundedness) There exist c3 ∈ (0,∞) and h ∈ L
α
α−1

loc (R≥0) such that

for all v ∈ V, t ≥ 0

‖f(t, v)‖B∗ ≤ h(t) + c3‖v‖α−1
B ,

where α is from (G3).

When investigating, whether particular f and σ satisfy (G1) - (G4), one can

focus on f in isolation. Indeed, if f satisfies (G2), (G3) and for all t ≥ 0 the

map u → σ(t, u) is Lipschitz with constant independent of t, then f and σ

satisfy (G2), (G3).

From linearity we also see that if f, σ satisfy (G2), (G3), and f̃ satisfies

(G2),(G3), then f + f̃ , σ satisfy (G2), (G3).

Likewise, if f and f̃ satisfy (G1), (G4), so does f + f̃ .
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4.2 Main Existence result and Examples

The basic theorem about existence of variational solution we copy from54 pp.

91 following pioneering work45.

Theorem 4.2.1. Let f, σ be functions as in (A1) satisfying (G1)-(G4) with

X0 ∈ L2(H) P -almost surely. Then there exists a unique solution X to (4.1)

in the sense of Definition 4.1.1. Moreover

E( sup
t∈[0,T ]

‖X(t)‖2
H) <∞.

Let us provide some interesting examples of coefficients related to our work

in next chapter, that satisfy above described condition (G1) - (G4).

Example 4.2.1. We cover the case, when f is given by Laplace operator ∆,

consult54 Example 4.1.7 for more details. Let D̃ ⊆ Rd be bounded open set

with sufficiently smooth boundary ∂D. We want f to be an extension of ∆

to a properly chosen Banach space B so that f : B → B∗ and f is continuous

with respect to ‖·‖B and ‖·‖B∗ . Natural choice is the classical Sobolev space

W 1,2
0 (D̃) with Dirichlet boundary condition (A.1.4). It is readily shown that

W 1,2
0 (D̃) is embedded continuously and densely (cf.16) in L2(D̃). Thence

upon identifying L2(D̃) with its dual we get Gelfand triple

B = W 1,2
0 (D̃) ⊂ H = L2(D̃) ⊂ B∗ = W 1,2

0 (D̃)∗.

To extend ∆ with initial domain C∞c (G) to a bounded linear operator

f : B → B∗

we note that ∆u for u ∈ C∞c has values in B∗. Using integraton by parts for

u, v ∈ B we obtain

|B∗〈∆u, v〉B| = |〈∆u, v〉H | =
∣∣∣∣−∫

D̃

〈∇u(x),∇v(x)〉dx
∣∣∣∣

≤ ‖∇u‖L2‖∇v‖L2 ≤ ‖∇u‖L2‖v‖1,2.
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Therefore for all u ∈ C∞c (D̃) we get

‖∆u‖B∗ ≤ ‖∇u‖L2 ≤ ‖u‖1,2. (4.2)

Thus ∆ with domain C∞c extends uniquely to a bounded linear operator

f : B → B∗. We claim that (G1)-(G4) holds for f .

(G1) is obvious from linearity of A. For u, v ∈ B consider sequences un, vn ∈
C∞c (D̃) such that un → u, vn → v in B. Again relying on integration by

parts

B∗〈A(u)− A(v), u− v〉B = lim
n→∞
〈∆(un − vn), un − vn〉H

= − lim
n→∞

∫
|∇(un − vn)(x)|2dx ≤ 0,

which shows (G2). Furthermore,

B∗ < A(v), v >B= lim
n→∞

< ∆vn, vn >H= − lim
n→∞

∫
|∇vn(x)|2dx

= −
∫
|∇v(x)|2dx ≤ (‖v‖2

H − ‖v‖2
1,2).

So (G3) is satisfied with α = 2 and (G4) with α = 2 is clear by (4.2).

Example 4.2.2. With B and H as above, we consider the so called p-

Laplacian ∆p, p ≥ 2, on a open bounded set D̃,54 Example 4.1.9. Precisely,

for given u ∈ B = W 1,2
0 (D̃) define f : W 1,2

0 (D̃)→ W 1,2
0 (D̃)∗ by

B∗〈f(u), v)〉V := −
∫
D̃

|∇u(x)|p−2〈∇u(x),∇v(x)〉dx ∀v ∈ B. (4.3)

Notice that for p = 2 we get ordinary Laplacian ∆. To show that f : B → B∗

is well-defined operator, one simply uses Hölder’s inequality to get

B∗〈f(u), v〉B ≤ ‖u‖p−1
1,p ‖v‖1,p,

so f(u) is well-defined element of W 1,p
0 (D̃)∗ and we have estimate

‖f(u)‖B∗ ≤ ‖u‖p−1
B .

62



This estimate clearly implies (G4) with α = p. (G1) and (G2) follows by

rather routine calculations (54 pp. 82). (G3) is more intriguing as the proof

uses Poincaré’s inequality A.2.5. For u ∈ B we compute

B∗〈f(u), u〉B = −
∫
|∇u(x)|pdx ≤ −1 ∧ C

2
‖u‖p1,p,

where C is from Poincaré’s inequality. Therefore (G3) holds with α = p and

c1 = 0.

Example 4.2.3. We present porous medium operator here, more details

may be found e.g. in54 Example 4.1.11 and69. Let again D̃ be open bounded

set with smooth boundary and p ≥ 2, we set B = Lp(D̃), H = W 1,2
0 (D̃)∗.

For u ∈ W 1,2
0 (D̃) we define

‖u‖W 1,2
0

:=

(∫
D̃

|∇u(x)|2dx
) 1

2

.

Now Poincaré’s inequality A.2.5 implies that this is equivalent norm with

‖ ·‖1,2, so one can consider W 1,2
0 (D̃) with this norm and corresponding scalar

product

〈u, v〉W 1,2
0

=

∫
〈∇u(x),∇v(x)〉dx, u, v ∈ W 1,2

0 (D̃).

Since W 1,2
0 (D̃) ⊂ (L

p
p−1 ) continuously and densely, we also have Lp(D̃) ⊂

W 1,2
0 (D̃)∗ continuously and densely, hence indeed B ⊂ H ⊂ B∗ is Gelfand

triple. Space H∗ = W 1,2
0 (D̃) can be identified with H via Riesz isomorphism.

Recall the definition of Laplacian ∆ in this context (4.3). We note however

that the dualities appearing in this example must be handled with some care.

In particular consider the following Lemma (54 pp. 85 for proof).

Lemma 4.2.2. The map

∆ : W 1,2
0 (D̃)→ (Lp(D̃))∗

extends to a linear isomorphic isometry

∆L
p
p−1 (D̃)→ (Lp(D̃))∗ = B∗
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and

B∗〈∆u, v〉B = −
L

p
p−1
〈u, v〉Lp = −

∫
u(x)v(x)dx

∀u ∈ L
p
p−1 (D̃), v ∈ Lp(D̃).

Therefore we have surprising dualization between Lp and (Lp)∗, since

(Lp)∗ = ∆(L
p
p−1 ) 6= L

p
p−1 .

To define porous medium operator, we let Ψ : R→ R be a function with the

following properties:

(Ψ1) Ψ is continuous

(Ψ2)

(t− s)(Ψ(t)−Ψ(s)) ≥ 0 ∀s, t ∈ R

(Ψ3) There exist p ≥ 2, a > 0, c ≥ 0 such that for all s ∈ R

sΨ(s) ≥ a|s|p − c.

(Ψ4) There exist c3, c4 > 0 such that for all s ∈ R

|Ψ(s)| ≤ c4 + c3|s|p−1,

where p is from (Ψ3).

Notice that (Ψ4) implies that

Ψ(v) ∈ L
p
p−1 (D̃) ∀v ∈ Lp(D).

Following this, we define porous medium operator A : B → B∗ by setting

A(u) := ∆Ψ(u), u ∈ Lp(D̃).

One routinely checks that (G1)-(G4) are now satisfied for such operator A.

Typical example of function satisfying (Ψ1)-(Ψ4) provides porous medium

equation, i. e. for p ∈ (2,∞) we take function Ψ(s) = s|s|p−2.
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5
Continuous-time stochastic

approximation in infinite

dimensions

Stochastic approximation was originally introduced as a procedure for se-

quentially finding a zero or an extremum point of a function which can be

observed only with a random measurement error; it has found many appli-

cations e.g. to recursive estimation, adaptive control or learning algorithms,

see the books9,10,15,18,46 or48 for a thorough information about the stochas-

tic approximation methods. The seminal Robbins-Monro procedure may be

roughly described as follows: Let R : R→ R be a function which is known to

have a unique root x0 but the observation of R(x) at time k ∈ N is corrupted

by a noise ek(x). Let αn > 0 be such that

∞∑
n=0

αn =∞,
∞∑
n=0

α2
n <∞

and set

Yn+1 = Yn + αn
(
R(Yn) + en+1(Yn)

)
.
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Then under suitable assumptions upon the function R and the random

variables ek(x) it may be shown that Yn → x0 almost surely as n → ∞.

M. B. Nevel’son and R. Z. Khas’minskĭı in their book61 studied a continuous-

time version of stochastic approximation. In particular, they introduced

a continuous-time analogue of the Robbins-Monro procedure: Consider a

stochastic differential equation

dX = α(t)
(
R(X) dt+ σ(t,X) dW

)
, X0 = x, (5.1)

where W is a Wiener process and α is a strictly positive function in L2(R≥0)\
L1(R≥0). Sufficient conditions for Xt to converge to the zero set of R almost

surely as t → ∞ were found in terms of existence of a suitable Lyapunov

function for (5.1). One may consult the book43 or the papers66,17,49,50,51,52

for further results in this direction. Due to powerful tools from stochastic

analysis, proofs in the continuous-time case may be presented in a very lucid

way (cf. also17 for a discussion of this point).

Our aim in this chapter is to extend the stochastic analysis approach, in the

form proposed by Nevel’son and Khas’minskĭı, to infinite-dimensional Hilbert

spaces. Several results on discrete-time stochastic approximation in infinite-

dimensional spaces are available, cf. e.g.6,29,47,62,79,80, but the only paper using

infinite-dimensional stochastic analysis to study stochastic approximation we

are aware of is5 § 4. However,5 treats stochastic delay equations, whilst we are

interested in stochastic partial differential equations. We confine ourselves

to procedures of the Robbins-Monro type in the case of a unique root, since

we see our task in indicating how the ideas from61 may be combined with

techniques from the theory of stochastic evolution equations, not in obtaining

the strongest possible results. A typical example we can cover is the following:

Consider a nonlinear elliptic equation

∆u+ r(u) = f in D, u = 0 on ∂D, (5.2)

where D̃ ⊆ Rd is a bounded domain with a smooth boundary ∂D̃, and a
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stochastic parabolic equation

dX = α(t)
(
∆X + r(X)− f

)
dt+ α(t)σ(t,X) dW, X|R>0×∂D̃ = 0, X0 = y

(5.3)

in L2(D), driven by an infinite-dimensional Wiener process W , where α ∈
L2(R≥0) \ L1(R≥0) is again a strictly positive function. Sufficient conditions

on r will be found for the solution X of (5.3) to converge almost surely to

the (unique) solution u0 ∈ W 1,2
0 (D) of (5.2) (see Example 5.3.1 below).

A common approach to equations like (5.3) is to interpret them in the mild

sense, as an equation

Xt = U(t, 0)y +

∫ t

0

U(t, s)r(Xs) ds+

∫ t

0

α(s)U(t, s)σ(s,Xs) dWs,

where U is the evolution operator generated by α(·)∆. However, our proofs

rely heavily on the use of Lyapunov functions, while mild solutions are not

semimartingales and the Itô formula cannot be applied directly to them.

Approximations of a rather technical nature is needed, thence one may very

well argue that our use of technically more demanding notion of variational

solutions makes things simpler. Moreover, this choice makes it possible to

deal with quasilinear problems (see Examples 5.3.2, 5.3.3), which are not

amenable to mild solution approach.

Before stating our main results we have to discuss Itô’s formula for variational

solutions we shall need. This is done in the next sections; the main results are

stated and proved in Section 5.2, in Section 5.3 some illustrative examples

are provided.

5.1 Itô’s formula for variational solutions

Since the process X solving (4.1) is in general only B∗-valued, the Itô formula

cannot be used to compute ϕ(X) for an arbitrary ϕ ∈ C2(H) and extra

assumptions on ϕ are needed. We state here two Itô formula-type results

which we shall need later.
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First, let (Ω,F , (Ft),P ) be a stochastic basis satisfying the usual conditions

and carrying a standard cylindrical (Ft)-Wiener process W on K. Assume

that:

1◦ u0 : Ω −→ H is an F0-measurable random variable,

2◦ Z : R≥0 × Ω −→ L2(K,H) is a progressively measurable process such

that ‖Z‖L2 ∈ L2
loc(R≥0) P -almost surely,

3◦ v : R≥0×Ω −→ B∗ is a progressively measurable process with ‖v‖B∗ ∈
L
p/(p−1)
loc (R≥0) P -almost surely for some p ∈ (1,∞),

4◦ if u is the B∗-valued proces defined by

u(t) = u0 +

∫ t

0

v(s) ds+

∫ t

0

Z(s) dWs, t ≥ 0, (5.4)

then there exists a B-valued process ũ such that ũ ∈ Lploc(R≥0;B) P -

almost surely and u = ũ λ⊗ P -almost everywhere on R≥0 ×Ω.

Then u has sample paths in C(R≥0;H) P -almost surely and

‖u(t)‖2
H = ‖u0‖2

H +

∫ t

0

{
2〈v(s), ũ(s)〉B∗,B + ‖Zs‖2

L2

}
ds

+ 2

∫ t

0

〈Z(s)∗u(s), ·〉K dWs

for all t ≥ 0 P -almost surely, see65 Théorème 3.1 on p. 57,45 Theorem 2.17

or54 Theorem 4.2.5.

Comparing this result with Definition 4.1.1 we see that any solution X of

(4.1) has path continuous in H P -almost surely.

In order to establish the Itô formula for functions more general than ‖ · ‖2
H

one needs an additional hypothesis (A.1.5)

(C) Both B and B∗ are uniformly convex.

Let I be the set of all functions ϕ ∈ C1(H) such that the second Gâteaux

derivative D2ϕ(x) exists at all points x ∈ H, the functions ϕ, Dϕ and D2ϕ
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are bounded on bounded sets in H, the mapping x 7−→ D2ϕ(x) is continuous

from H to (L (H),weak∗), the restriction Dϕ|B maps continuously (B, ‖ · ‖)
to (B,weak) and there exists a constant k < ∞ such that ‖Dϕ(x)‖B ≤
k(1 + ‖x‖B) for every x ∈ B. If the process u defined by (5.4) satisfies the

hypotheses 1◦–4◦ above and ϕ ∈ I then

ϕ(u(t)) = ϕ(u0)

+

∫ t

0

{〈
v(s), Dϕ(ũ(s))

〉
B∗,B

+
1

2
Tr
(
D2ϕ(u(s))Z(s)Z∗(s)

)}
ds

+

∫ t

0

〈
Z(s)∗Dϕ(u(s)), ·

〉
K

dWs

for all t ≥ 0 P -almost surely, see65 Théorème 4.2 on p. 65, cf. also44 Theorem

3.1. In particular, ϕ(u) is a continuous real-valued semimartingale, hence the

process ψ(t, ϕ(u(t))) may be expressed by means of the real-valued case of

the Itô formula, provided ψ belongs to the set C1,2 of all functions ζ ∈
C1(R≥0 × R) such that ζ(t, ·) ∈ C2(R) for all t ≥ 0 and (t, x) 7−→ ∂2ζ

∂x2 (t, x)

is a continuous function on R≥0 × R. We shall denote by K the set of all

functions ξ on R≥0 × H of the form ξ(t, x) = ψ(t, ϕ(x)), ψ ∈ C1,2, ϕ ∈ I.

For ξ ∈ K one gets the expected equality

ξ(t, u(t)) = ξ(0, u0) +

∫ t

0

{∂ξ
∂t

(s, u(s)) +
〈
v(s), Dxξ(ũ(s))

〉
B∗,B

+
1

2
Tr
(
D2
xξ(u(s))Z(s)Z∗(s)

)}
ds

+

∫ t

0

〈
Z(s)∗Dxξ(u(s)), ·

〉
K

dWs.

Note that Dxξ(t, x) = ∂ψ
∂x

(t, ϕ(x))Dϕ(x), so the term 〈v(t), Dxψ(t, ũ(t))〉B∗,B
remains well defined. In the examples below a special case, following from

the product rule for semimartingales, is sufficient:

d
(
g(t)ϕ(u(t))

)
= g′(t)ϕ(u(t)) dt+ g(t) dϕ(u(t))

whenever g ∈ C1(R≥0).
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Remark 5.1.1. a) The hypothesis (C) is obviously satisfied if B is a Hilbert

space. Let us emphasize that (C) can be omitted if ϕ = ‖ · ‖2
H or, more

generally, if processes of the form ψ(t, ‖u(t)‖2
H) with ψ ∈ C1,2 are considered.

b) An Itô formula for the process χ(t, u(t)), where χ is a suitable smooth func-

tion on R≥0 ×H, is proved in19 Theorem 7.2.1, but under rather restrictive

additional assumptions on u.

5.2 Main results

Following61, we derive the convergence of a Robbins-Monro type procedure

as an immediate corollary to a theorem providing sufficient conditions for

the convergence of path of any solution of (4.1) to a singleton, which will be

established first. Hence, let us consider the equation (4.1), that is

dX = f(t,X) dt+ σ(t,X) dW, X0 ∼ µ,

and denote by L the Kolmogorov operator associated with it, namely, if

h ∈ K, then we set

Lh(t, x) =
∂h

∂t
(t, x) +

〈
f(t, x), Dxh(t, x)

〉
B∗,B

+
1

2
Tr
(
D2
xh(t, x)(σσ∗)(t, x)

)
,

t ∈ R≥0, x ∈ B.

Further, let us consider the following conditions:

(H1) ϕ : R≥0 ×H −→ R≥0 is a Borel function and x0 ∈ H a point such that

inf
t≥0

inf
‖x−x0‖H≥ε

ϕ(t, x) > 0 for any ε > 0. (5.5)

(H2) V ∈ K is a function satisfying

lim
x→x0

sup
t≥0

V (t, x) = 0 in H, (5.6)

inf
t≥0

inf
‖x−x0‖H≥ε

V (t, x) > 0 for any ε > 0, (5.7)
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x0 being the point introduced in (H1), and∫
H

V (0, y) dµ(y) <∞. (5.8)

(H3) α, γ : R≥0 −→ R>0 are Borel functions such that α ∈ L1
loc(R≥0) \

L1(R≥0), γ ∈ L1(R≥0).

Now we are prepared to state and prove the main theorem.

Theorem 5.2.1. Suppose that (A1) and (C) are satisfied and there exist

functions ϕ, V , α and γ satisfying (H1)–(H3) and

LV (t, x) ≤ −α(t)ϕ(t, x) + γ(t)
[
1 + V (t, x)

]
for all t ≥ 0, x ∈ B. (5.9)

Let ((Ω,F , (Ft),P ),W,X) be any solution to (4.1), then

lim
t→∞
‖Xt − x0‖H = 0 P -almost surely. (5.10)

Remark 5.2.1. Tracing the proof below one may check easily that – as in

the finite-dimensional case – it suffices to assume instead of (5.5)–(5.7) that

V ≥ 0, there exists τ ≥ 0 such that

lim
x→x0

sup
t≥τ

V (t, x) = 0,

and that for any ε > 0 there exists τ ′ = τ ′(ε) such that

inf
t≥τ ′

inf
‖x−x0‖H≥ε

V (t, x) > 0, inf
t≥τ ′

inf
‖x−x0‖H≥ε

ϕ(t, x) > 0.

Remark 5.2.2. The singleton {x0} may be replaced with an arbitrary closed

set Γ ⊆ H. Let (5.5)–(5.7) be modified in the following way:

lim
dist(x,Γ )→0

sup
t≥0

V (t, x) = 0 in H,

inf
t≥0

inf
dist(x,Γ )≥ε

V (t, x) ∧ ϕ(t, x) > 0 for all ε > 0

and let V = 0 on R≥0 × Γ . Then dist(Xt, Γ ) −→ 0 as t → ∞ P -almost
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surely. The proof requires only very straightforward changes; unfortunately,

this result is usually too weak to be applied to equations with multiple roots

(cf. the discussion in61, Chapter 5).

Proof. a) The first two steps of the proof are essentially known from stability

theory of stochastic PDEs, but we provide them for completeness and as we

shall refer to parts of the argument in the sequel. Set

U(t, x) = exp
(∫ ∞

t

γ(r) dr
)[

1 + V (t, x)
]
, (t, x) ∈ R≥0 ×H.

Since γ ∈ L1(R≥0), U is obviously well defined, U ≥ 0 on R≥0 × H and

U ∈ K. An easy calculation shows that

LU(t, x) ≤ −α(t)ϕ(t, x) for all t ≥ 0, x ∈ B, (5.11)

in particular LU ≤ 0 on R≥0 ×B.

b) We aim at proving that (U(t,Xt), t ≥ 0) is a supermartingale. To this

end, set

τn = inf
{
t ≥ 0; ‖Xt‖H ≥ n

}
∧ inf

{
t ≥ 0;

∫ t

0

‖σ(r, X̃r)‖2
L2
≥ n

}
, n ∈ N

(with the convention inf ∅ = +∞), where X̃ is the process introduced in

Definition 4.1.1. Plainly, τn ↗∞ as n→∞ P -almost surely. Using the Itô

formula and (5.11) we get

U(t ∧ τn, X(t ∧ τn))− U(0, X0)

=

∫ t∧τn

0

LU(r, X̃r) dr +

∫ t∧τn

0

〈σ(r, X̃r)
∗DxU(r,Xr), ·〉K dWr

≤
∫ t∧τn

0

〈σ(r, X̃r)
∗DxU(r,Xr), ·〉K dWr.

Note that

E

∫ t∧τn

0

‖σ(r, X̃r)
∗DxU(r,Xr)‖2

K dr <∞

for any t ≥ 0 due to the definition of τn and boundedness of DxU on bounded
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subsets of R≥0 ×H, as∫ t∧τn

0

‖σ(r, X̃r)
∗DxU(r,Xr)‖2

K dr

≤ sup
0≤r≤t
‖z‖H≤n

‖DxU(r, z)‖2
H

∫ t∧τn

0

‖σ(r, X̃r)‖2
L2

dr.

We see that ∫ ·∧τn
0

〈σ(r, X̃r)
∗DxU(r,Xr), ·〉K dWr

is a martingale, hence

EU(t ∧ τn, X(t ∧ τn)) ≤ EU(0, X0) ≤ e‖γ‖L1EV (0, X0) <∞

for all t ≥ 0 and n ∈ N by (5.8). Since U ∈ C(R≥0 ×H) and the paths of X

are continuous in H, we obtain

EU(t,Xt) = E lim
n→∞

U(t ∧ τn, X(t ∧ τn)) ≤ lim inf
n→∞

EU(t ∧ τn, X(t ∧ τn))

≤ EU(0, X0)

by the Fatou lemma. Thus U(t,Xt) ∈ L1(P ) for every t ∈ R≥0. Analogously,

for any 0 ≤ s ≤ t, we have

U(t∧τn, X(t∧τn))−U(s∧τn, X(s∧τn)) ≤
∫ t∧τn

s∧τn
〈σ(r, X̃r)

∗DxU(r,Xr), ·〉K dWr;

so

E
[
U(t ∧ τn, X(t ∧ τn))

∣∣ Fs

]
− U(s ∧ τn, X(s ∧ τn) ≤ 0.

The Fatou lemma for conditional expectations now implies that

E
[
U(t,Xt)

∣∣ Fs

]
≤ lim inf

n→∞
E
[
U(t ∧ τn, X(t ∧ τn))

∣∣ Fs

]
≤ lim inf

n→∞
U(s ∧ τn, X(s ∧ τn))

= U(s,Xs)

P -almost surely, which is the supermartingale property. For further use, let
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us note that proceeding as above, we get

−E
∫ t∧τn

0

LU(r, X̃r) dr = EU(0, X0)−EU(t ∧ τn, X(t ∧ τn))

≤ EU(0, X0),

whence

−E

∫ ∞
0

LU(r, X̃r) dr ≤ EU(0, X0) <∞, (5.12)

again by the Fatou lemma.

Since U(t,Xt) is a continuous nonnegative supermartingale, the martingale

convergence theorem yields a random variable U∞ ∈ L1(P ) such that

lim
t→∞

U(t,Xt) = U∞ P -almost surely.

From the definition of U it follows that there exists Ωs ∈ F , P (Ωs) = 1,

such that 1 ≤ U∞(ω) <∞ and

lim
t→∞

V (t,X(t, ω)) = V∞(ω) ≡ U∞(ω)− 1

for any ω ∈ Ωs.

c) Since ∫ ∞
0

α(r)ϕ(r, X̃r) dr ≤ −
∫ ∞

0

LU(r, X̃r) dr on Ω

by (5.11), the integral on the right-hand side is a nonnegative random variable

with a finite expectation by (5.12), and X = X̃ λ-almost everywhere on R≥0

P -almost surely, there exists Ωi ∈ F , P (Ωi) = 1, such that∫ ∞
0

α(r)ϕ(r,X(r, ω)) dr <∞

for every ω ∈ Ωi.

d) Now we check that

lim inf
t→∞

‖X(t, ω)− x0‖H = 0 (5.13)
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for all ω ∈ Ωi. Striving for a contradiction assume that ω ∈ Ωi but

lim inf
t→∞

‖X(t, ω)− x0‖H > 0.

Then there exists t0 ∈ R≥0 and ε > 0 such that ‖X(t, ω)− x0‖H ≥ ε for any

t ≥ t0; by (H1) we may find δ > 0 satistying ϕ(t,X(t, ω)) ≥ δ for all t ≥ t0,

therefore ∫ ∞
t0

α(r)ϕ(r,X(r, ω)) dr ≥ δ

∫ ∞
t0

α(r) dr = +∞

by (H3), however, this contradicts the definition of Ωi.

e) It remains to prove that

lim
t→∞
‖X(t, ω)− x0‖H = 0 for all ω ∈ Ωi ∩Ωs. (5.14)

Assume that ω ∈ Ωi ∩ Ωs but (5.14) fails. Then there exist tn ↗ ∞ and

ε > 0 such that ‖X(tn, ω)− x0‖H ≥ ε. By (5.7), a η > 0 may be found such

that V (tn, X(tn, ω)) ≥ η, consequently

η ≤ lim
n→∞

V (tn, X(tn, ω)) = V∞(ω).

On the other hand, by (5.13) there exist sn ↗∞ such that

‖X(sn, ω)− x0‖H → 0 as n→∞,

hence

0 ≤ V∞(ω) = lim
n→∞

V (sn, X(sn, ω)) ≤ lim
n→∞

sup
r≥0

V (r,X(sn, ω)) = 0

by (5.6). This contradiction proves (5.14) and the proof of Theorem 5.2.1 is

completed. Q.E.D.

Remark 5.2.3. By (5.6) and Theorem 5.2.1,

lim
t→∞

V (t,Xt) = 0 P -almost surely. (5.15)
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The estimate

EV (t,Xt) = e−
∫∞
t γ drEU(t,Xt)− 1 ≤ EU(0, X0) <∞, t ≥ 0,

was established in the course of the proof. Therefore, if ν ∈ (0, 1) then the

set {V (t,Xt)
ν , t ≥ 0} is uniformly integrable and (5.15) implies that

lim
t→∞

EV (t,Xt)
ν = 0.

Now we may proceed to a theorem on stochastic approximation.

Corollary 5.2.2. Let (C) be satisfied, let R : B −→ B∗ and σ : R≥0×B −→
L2(K,H) be Borel function and µ a Borel probability measure on H. Let

x0 ∈ B be such that R(x0) = 0. Suppose that there exist V ∈ I ∩ L1(µ) and

a Borel function ϕ : H −→ R≥0 satisfying

V (x0) = 0, inf
‖x−x0‖H≥ε

{
V (x) ∧ ϕ(x)

}
> 0 for any ε > 0,〈

R(x), DV (x)
〉
B∗,B

≤ −ϕ(x) for all x ∈ B, (5.16)

and

Tr
(
D2V (x)(σσ∗)(t, x)

)
≤ K

(
1 + V (x)

)
(5.17)

for some K <∞ and all (t, x) ∈ R≥0 ×B.

Let α : R≥0 −→ R>0 be a Borel function such that∫ ∞
0

α(r) dr =∞,
∫ ∞

0

α2(r) dr <∞.

Then any solution (Ω,F , (Ft),P ),W,X) of the equation

dX(t) = α(t)R(X(t)) dt+ α(t)σ(t,X(t)) dW (t), X(0) ∼ µ, (5.18)

satisfies

lim
t→∞
‖X(t)− x0‖H = 0 P -almost surely.
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If, moreover, V (x) ≥ L‖x− x0‖2
H for some L ∈ R>0 and all x ∈ H, then

lim
t→∞

E‖X(t)− x0‖ν = 0

for any ν ∈ (0, 2).

Remark 5.2.4. a) Note that (5.16) may be satisfied only if x0 is the unique

root of R.

b) As in Theorem 5.2.1, we do not assume that there exists a unique solution

of (5.18), we only claim that if a solution exists, then it converges to the

root of R. Of course, in examples the problem of existence and uniqueness

of solutions gains prominence.

5.3 Examples

Example 5.3.1. Let D̃ ⊆ Rd be a bounded open set with a sufficiently

smooth boundary ∂D̃, g : R −→ R a Borel function and f a (generalized)

function on D̃. Let us consider a nonlinear elliptic equation

∆u+ g(u) = f in D̃, u = 0 on ∂D̃. (5.19)

Set H = L2(D̃), B = W 1,2
0 (D̃) and denote by G the superposition operator

defined by g. Assume that G is a continuous mapping from B to H and that

there exists % ∈ R such that〈
G(u)−G(v), u− v

〉
H
≤ %‖u− v‖2

H , (5.20)〈
G(u), u

〉
H
≤ %
(
1 + ‖u‖2

H

)
, ‖G(u)‖H ≤ %

(
1 + ‖u‖B

)
for all u, v ∈ B. Note that (5.20) is surely satisfied if g is either Lipschitz

continuous or nonincreasing. Let σ : R≥0 × B −→ L2(K,H) be a Borel

function such that

sup
0≤t≤T

sup
x∈B

‖σ(t, x)‖L2

1 + ‖x‖H
+ sup

0≤t≤T
sup
x,y∈B
x 6=y

‖σ(t, x)− σ(t, y)‖L2

‖x− y‖H
<∞ (5.21)
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for any T ∈ R≥0. Finally, let α : R≥0 −→ R>0 satisfy

α ∈ L2(R≥0) \ L1(R≥0) and 0 < inf
[0,T ]

α ≤ sup
[0,T ]

α <∞ (5.22)

for any T ∈ R≥0, let f ∈ B∗ and let µ be a Borel probability measure on H

with a finite second moment, i.e. ‖·‖H ∈ L2(µ). Then it may be checked easily

that all hypotheses of Theorem 4.2.1 (as in Example 4.2.1) are satisfied and

hence there exists a unique solution ((Ω,F , (Ft),P ),W,X) to the stochastic

parabolic equation

dX = α(t)
(
∆X +G(X)− f

)
dt+ α(t)σ(t,X) dW (t), X(0) ∼ µ,

the Dirichlet Laplacian ∆ being interpreted as an operator in L (B,B∗) in

a natural way. Assume that there exists a weak solution u0 ∈ B of (5.19);

one may consult e.g.3,67 Chapter 9 or references therein for results in this

direction. We want to apply Corollary 5.2.2 with V = ‖ · −u0‖2
H . Since u0

solves (5.19),〈
∆u+G(u)− f,DV (u)

〉
B∗,B

= 2
〈
∆(u− u0) +G(u)−G(u0), u− u0

〉
B∗,B

and it is known that〈
∆(u− u0), u− u0

〉
B∗,B

≤ −κ‖u− u0‖2
H

for some κ > 0 and all u ∈ B, so Corollary 5.2.2 implies that

lim
t→∞
‖X(t)− u0‖H = 0 P -almost surely and lim

t→∞
E‖X(t)− u0‖2−ε = 0

(5.23)

for all ε ∈ (0, 2), provided〈
G(u)−G(u0), u− u0

〉
H
≤ (κ − η)‖u− u0‖2

H (5.24)

for some η > 0 and all u ∈ B, and

sup
t≥0

sup
x∈B

‖σ(t, x)‖L2

1 + ‖x‖H
<∞. (5.25)
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As we have already mentioned, (5.24) is satisfied if g is either nonincreasing,

or Lipschitz continuous with a sufficiently small Lipschitz constant.

Example 5.3.2. Let D̃ ⊆ Rd be a bounded domain with a sufficiently

smooth boundary and p ∈ (2,∞). Set B = W 1,p
0 (D̃) and H = L2(D̃),

we shall consider the p-Laplacian

∆pu = div
(
|∇u|p−2∇u

)
,

that is, rigorously, an operator ∆p : B −→ B∗ defined by

〈∆pu, v〉B∗,B = −
∫
D

|∇u(r)|p−2〈∇u(r),∇v(r)〉 dr, u, v ∈ B.

Let f ∈ H. It follows from3 Theorem 2.6.8 that the quasilinear elliptic

equation

∆pu = f in D̃, u = 0 on ∂D̃ (5.26)

has a unique weak solution u0 ∈ B. Likewise, the stochastic equation

dX = α(t)
(
∆pX − f

)
dt+ α(t)σ(t,X) dW (t), X(0) ∼ µ

has a unique variational solution ((Ω,F , (Ft),P ),W,X) if α and σ satisfy

(5.22) and (5.21), respectively, and µ is a Borel probability measure on H

with a finite second moment, see Example 4.2.2. Again we shall use Corol-

lary 5.2.2 with V = ‖ · −u0‖2
H . Due to the inequality〈

‖t‖p−2t−‖s‖p−2s, t−s
〉
≥ cp‖t−s‖p for a cp > 0 and all s, t ∈ Rd (5.27)

(see e.g.75 p. 210) the operator −∆p is strongly monotone,

〈∆pu−∆pv, u− v〉B∗,B =

−
∫
D̃

〈
‖∇u(r)‖p−2∇u(r)− ‖∇v(r)‖p−2∇v(r), u(r)− v(r)

〉
dr ≤ −cp‖u− v‖pB
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for all u, v ∈ B, whence we have

〈∆pu− f,DV (u)〉B∗,B = 2〈∆pu−∆pu0, u− u0〉B∗,B
≤ −2cp‖u− u0‖pB
≤ −c̃‖u− u0‖pH

for some constant c̃ > 0 and all u ∈ B. Therefore, if σ satisfies (5.25) then

(5.23) holds true for all ε ∈ (0, 2).

Example 5.3.3. In this example equations involving the porous medium

operator (Example 4.2.3) will be considered. Let D̃ ⊆ Rd be a bounded

domain with a sufficiently smooth boundary and p ∈ (2,∞), set B = Lp(D̃),

H = (W 1,2
0 (D̃))∗ and Ψ(s) = s|s|p−2 for s ∈ R, and define

A : B −→ B∗, u 7−→ ∆Ψ(u).

Let σ : R≥0×B −→ L2(K,H) and α : R≥0 −→ R>0 satisfy (5.21) and (5.22),

respectively, let f ∈ B∗ and let µ be a Borel probability measure on H with

a finite second moment. Then there exists a unique solution X of

dX = α(t)
(
A(X)− f

)
dt+ α(t)σ(t,X) dW (t), X(0) ∼ µ.

Using the inequality (5.27) with d = 1 one may check that −A is strongly

monotone:

〈A(u)− A(v), u− v〉B∗,B = 〈∆(Ψ(u)− Ψ(v)), u− v〉B∗,B

= −
∫
D̃

(Ψ(u(r))− Ψ(v(r)))(u(r)− v(r)) dr

≤ −cp‖u− v‖pB.

It follows, first, that the problem Au = f has a unique solution u0 ∈ B and,

secondly, choosing V = ‖ · −u0‖2
H we get

〈A(u)− f,DV (u)〉B∗,B ≤ −ĉ‖u− u0‖pH

for some ĉ > 0 and any u ∈ B. Therefore, (5.23) holds provided (5.25) is
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satisfied.
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6
Unsolved questions related

to the thesis

There are several direction, where one might improve the results contained

in chapters two and three. As the most important or intriguing we mention

� There is the question of uniqueness of solution to martingale problem

we considered in Theorem 3.1.7. As mentioned previously, uniqueness

of martingale problems in infinite dimension is notoriously hard ques-

tion with very few satisfying results so far.

� We manage to prove the uniqueness of our approximating procedure,

which enables us to construct proper Markov process. More crucial here

is the question of ergodicity. That is, whether the invariant measure we

constructed in Theorem 3.3.2 is unique. Since our assumptions don’t

tie the size of interactions with the space where process lives, one is

tempted to believe that the answer is no. However, we have no rigorous

answer in this direction.

� Possibly just a curiosity, but nevertheless nice exercise in Analysis

seems the question about which spaces the condition (H5) allow. Ob-
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viously, we see that if the weights w(i) decays faster than 1
n2+ε for ε > 0,

the space is large enough, since one can take v(i) to be 1

n1+ ε
2

. We would

be interested, whether one can say more. Perhaps it would be nice, to at

least decide, whether weights 1
n1+α , α ∈ (0, 1] can satisfy this condition

or not

� Tracing our proofs, one see that seemingly artificial restrictions to in-

teractions (H2) stems from our proof of uniqueness of approximat-

ing procedure. The solution to martingale problem itself, we can con-

struct without any such restrictions. Hence the question arises, whether

one could devise some more inventive method, how to rigorously proof

uniqueness under less restrictive assumptions.
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The results obtained in chapter five are more complete and in a way pro-

vide satisfying extension of continuous Robbins-Monro procedure to infinite

dimensional setting. Nevertheless, one can naturally ask, if some other pro-

cedures could find its infinite dimensional analogue. Concretely let us note

� Instead of searching for root of an unknown function, one can try to

use stochastic approximation to locate maximum point x0 of an un-

known function f . The method to do so was suggested by Kiefer and

Wolfowitz in discrete setting in39. Nevel’son and Khas’minskĭı in61

pp. 94 describe continuous version of Kiefer-Wolfowitz procedure. To

present their approach, we let f = f(x1, · · · , xd) be smooth function,

which we cannot directly observe, but have advance knowledge, that

its maximum exists and is unique. In another words one attempts to

solve equation ∇f = 0. Let (ei)1≤i≤d be basis in Rd and let ∇cf denote

vector with coordinates f(x+c(t)ei)−f(x−c(t)ei)
2c(t)

for some non-zero function

c : [0,∞) → R. Then Kiefer-Wolfowitz procedure leads to (compare

with equation (5.1)) the stochastic differential equation

dX = a(t)∇cf(X)dt+
a(t)

c(t)
σ(t, x)dW. (6.1)

Under several conditions on the coefficients it can be proved that indeed

X(t) a. s. converges to the maximum x0. To find some non-trivial

infinite dimensional application of these ideas would clearly provide

nice extension of our results.
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A
Auxiliary theorems and

concepts

The order of appearance of auxiliary results follows its appearance in the

text.

A.1 Definitions of concepts

Definition A.1.1 (Linear growth and locally Lipschitz condition). Let b :

Ru → Ru, σ : Ru → Rd×u, u, d ∈ N be Borel measurable functions. We say b

and σ satisfy linear growth condition, if

∃K > 0 : ‖b(x)‖u ∨ ‖σ‖d×u ≤ K(1 + ‖x‖u) ∀x ∈ Ru.

We say b and σ are locally Lipschitz, provided that for any bounded open

A ⊂ Ru we have

∃K > 0 : ‖b(x)− b(y)‖u ≤ K‖x− y‖u ∀x, y ∈ A
‖b(x)− b(y)‖d×u ≤ K‖x− y‖u ∀x, y ∈ A.
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b and σ are globally Lipschitz, provided the condition holds for any x, y ∈ Ru

Definition A.1.2 (Cylindrical Wiener process). Let U be Hilbert space and

Q bounded, self-adjoint, strictly positive, i. e. Qx 6= 0 for x 6= 0, operator on

U . Let U0 = Q1/2(U) with the induced norm ‖u‖0 = ‖Q−1/2(u)‖, u ∈ U0, and

let U1 be an arbitrary Hilbert space such that U is embedded continuously

into U1 and the embedding of U0 into U1 is Hilbert-Schmidt. Let {ej} be

an orthonormal basis in U0 and {Bj} a family of independent real valued

standard Wiener processes. The formula

W (t) =
∞∑
j=1

ejBj(t), t ≥ 0

is convergent almost surely in space U1. It holds that

E〈u,W (t)〉〈v,W (s)〉 = (t ∧ s)〈Qu, v〉 u, v ∈ U.

If tr Q =∞ then W is called cylindrical Wiener process, for Q = I we speak

about standard cylindrical Wiener process, see23 pp. 96 for more thorough

discussion.

Definition A.1.3 (Hilbert-Schmidt operators). Let T : K → H be bounded

linear operator between Hilbert spaces K and H. T is called Hilbert-Schmidt,

if ∑
k∈N

‖Tek‖ <∞,

where ek, k ∈ N is an orthonormal basis of K.

Definition A.1.4 (Sobolev space with Dirichlet boundary condition). Let

D ⊆ Rd be bounded open set. For u ∈ C∞c (D) and p > 1 define

‖u‖1,p =

(∫
(|u(x)|p + |∇u(x)|pdx

)1/p

.

Then set

W 1,p
0 (D) := completion of C∞c (D)with respect to ‖ · ‖1,p.
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W 1,p
0 is called the Sobolev space of order one with Dirichlet boundary condi-

tion.

Note that there is natural extension of operator ∇ : C∞c (D) → L2(D) to

domain W 1,p
0 (D). Indeed, if un, u ∈ W 1,p

0 , n ∈ N with ‖un − u‖1,p → 0,

then {∇un} is a Cauchy sequence in Lp(D), hence there exists limit of this

sequence independent of the choice of sequence {un}.

Definition A.1.5 (Uniformly convex space). A uniformly convex space is a

normed vector space B such that, for every 0 < ε ≤ 2 there is some δ > 0

such that for any two vectors u, v ∈ B with ‖u‖ = ‖v‖ = 1, the condition

‖u− v‖ ≥ ε implies that ∥∥∥∥u+ v

2

∥∥∥∥ ≤ 1− δ.

For our usage it suffices to note that

� Every Hilbert space is uniformly convex

� Every closed subspace of a uniformly convex Banach space is uniformly

convex

� Lp, 1 < p <∞ is uniformly convex, as observed first by Clarkson in20.

A.2 List of theorems used

Theorem A.2.1 (Doob’s upcrossing lemma). Let Xk be a supermartingale

and a < b, a, b ∈ R given points. Define recursively times

S1 = min{k : Xk ≤ a} T1 = min{k > S1 : Xk ≥ b}

Si+1 = min{k > Ti : Xk ≤ a} Ti+1 = min{k > Si+1 : Xk ≥ b}.

The number of upcrossings Un before time n is Un = max{j : Tj ≤ n}. Then

EUn ≤
1

b− a
E[(Mn − a)−]. (A.1)
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Proof. See8 Theorem A.34

Theorem A.2.2 (Girsanov theorem). Let X and Y be solutions to stochastic

differential equations

dX(t) = b(X(t))dt+ σ(X(t))dWt

dY (t) = b̃(Y (t))dt+ σ(Y (t))dWt,

where the coefficients satisfy condition (A.1.1). Suppose that there exists

bounded Borel function u : Rd → R, satisfying

σu = b̃− b.

Let Pt be the transition function corresponding to Xt, Qt associated with Yt.

We then have

supp Pt(x, ·) = supp Qt(x, ·) ∀t > 0,∀x ∈ Ru.

Proof. See64 pp. 166.

Girsanov theorem is usually stated with much weaker assumptions about u,

however this version is sufficient for our purposes.

Theorem A.2.3 (Portmanteau theorem). Let {Pn}, P be probability mea-

sures on metric space S. The following conditions are equivalent

(i) Pn
w−→ P

(ii) lim supn Pn(F ) ≤ P (F ) ∀F closed.

(iii) lim infn Pn(G) ≥ P (G) ∀G open.

Proof. See11 pp. 16.

Theorem A.2.4 (Stolz-Cesàro theorem). Let {bn} be sequence that is strictly

increasing and limn→∞ bn =∞. Let {an} be a given sequence and assume

lim
n→∞

an+1 − an
bn+1 − bn

= l, l ∈ R.
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Then

l = lim
n→∞

an
bn
.

Proof. See60 pp. 85.

Theorem A.2.5 (Poincaré’s inequality). Suppose that p ≥ 1 and D is

bounded open set in Rd. Then there exists a constant C > 0 (depending

on D, p and dimension of the problem d) such that

∀u ∈ W 1,p
0 (D) ‖u‖Lp(D) ≤ C‖∇‖Lp(D).

Proof. See16 pp. 290.
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its applications, Stoch. Partial Differ. Equ. Anal. Comput. 1 (2013),

152–174
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[68] C. Prevot, M. Röckner, A Concise course on Stochastic Partial differ-

ential equations, Springer LN in Math. 1905, Berlin 2007
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