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Abstract. For a given Lévy process X = (Xt)t∈R+
and for fixed s ∈ R+ ∪ {∞} and t ∈ R+ we analyse the

future drawdown extremes that are defined as follows:

D
∗
t,s = sup

0≤u≤t
inf

u≤w<t+s
(Xw −Xu), D∗t,s = inf

0≤u≤t
inf

u≤w<t+s
(Xw −Xu).

The path-functionalsD
∗
t,s andD∗t,s are of interest in various areas of application, including financial mathematics

and queueing theory. In the case that X has a strictly positive mean, we find the exact asymptotic decay as

x → ∞ of the tail probabilities P(D
∗
t < x) and P(D∗t < x) of D

∗
t = lims→∞D

∗
t,s and D∗t = lims→∞D∗t,s

both when the jumps satisfy the Cramér assumption and in a heavy-tailed case. Furthermore, in the case that

the jumps of the Lévy process X are of single sign and X is not subordinator, we identify the one-dimensional

distributions in terms of the scale function of X. By way of example, we derive explicit results for the Black-

Scholes-Samuelson model.

1. Introduction

In recent times various pricing models with jumps have been put forward to address the shortcomings of

diffusion models in representing the risk related to large market movements (see e.g. [8]). Such models allow

for a more realistic representation of price dynamics and a greater flexibility in modeling and calibration of the

model to market prices and in reproducing a wide variety of implied volatility skews and smiles. An important

indicator for the riskiness and effectiveness of an investment strategy is the drawdown, which is the distance of

the current value away from the maximum value it has attained to date. Various commonly used trading rules

are based on the drawdown (see e.g. [27]), while drawdowns have also been deployed as risk-measure (see [5, 33])

and in the context of portfolio optimisation (see [7, 14]). Drawdown processes (also called reflected processes)

are also encountered in various other areas, such as applied probability, mathematical genetics and queueing

theory (see [9, 10]). See [21, 23, 32] and references therein for further applications and results concerning

drawdown processes.

In this paper we analyse a number of path-functionals of the increments of a given general Lévy process

X = (Xt)t∈R+ that are closely related to the drawdowns and drawups. In particular, we consider the future

drawdown and future drawup extremes that are defined by for given s, t ∈ R+ by

D
∗
t,s = sup

0≤u≤t
inf

u≤w<t+s
(Xw −Xu), D∗t,s = inf

0≤u≤t
inf

u≤w<t+s
(Xw −Xu),(1.1)

U
∗
t,s = sup

0≤u≤t
sup

u≤w<t+s
(Xw −Xu), U∗t,s = inf

0≤u≤t
sup

u≤w<t+s
(Xw −Xu),(1.2)

and we denote the infinite-horizon versions by

D
∗
t = lim

s→∞
D
∗
t,s, D∗t = lim

s→∞
D∗t,s, U

∗
t = lim

s→∞
U
∗
t,s, U∗t = lim

s→∞
U∗t,s.

The functionals D
∗
t,s, D

∗
t,s, U

∗
t,s and U∗t,s are concerned with the variation in u ∈ [0, t] of the smallest and largest

of the increments {Xw − Xu, w ∈ [u, t + s]}. These functionals may be explicitly represented in terms of the

(maximal) drawdown and drawup (see Proposition 2.1).
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Since, as is straightforward to check, we have D∗t,s = −Û
∗
t,s and D

∗
t,s = −Û

∗
t,s, where ·̂ denotes the quantity

calculated for the dual process X̂ = −X, we may (and often do) restrict ourselves in subsequent analysis to

future drawdown extremes, without loss of generality.

The future drawdown and drawup processes arise in various applications, including in financial risk analysis

and queueing models. We note that, under an exponential Lévy model Pt = P0 exp(Xt) for the stock price, the

random variables D
∗
t,s and D∗t,s are path-dependent risk indicators: D

∗
t,s and D∗t,s are the maximal and minimal

values of the lowest future log-return log(Pw/Pu) achieved for w in the time-window [u, t+s], where u is ranging

over [0, t]. Another application comes from telecommunications and queueing models, where U
∗
t = lims→∞ U

∗
t,s

and U∗t = lims→∞ U∗t,s describe the supremum and the infimum of the workload process over a finite time

horizon t in a fluid model with netput X, respectively (see [10] for a survey about Lévy-driven queues).

In the mentioned applications it is of interest to obtain the laws of the random variables D
∗
t,s, D

∗
t,s, U

∗
t,s and

U∗t,s for finite and infinite horizons s, and in particular the tail-probabilities and their asymptotic behaviour.

Restricting ourselves to the case s =∞ we identify the exact asymptotic decay as x→∞ of the tail probabilities

P(D
∗
t,s < −x) and P(D∗t,s < −x) of D

∗
t,s and D∗t,s. We do so in the distinct cases of a light-tailed and a heavy-

tailed Lévy measure. In the former setting we also consider the asymptotics when x and s tend to infinity

in a fixed proportion. Furthermore, when the jumps of X are of single sign only and X is not subordinator,

we explicitly identify the Laplace transform in time of the one-dimensional distributions in terms of the scale

function. As example, we analyze in detail (future) drawdowns and drawups under the Black-Scholes model,

identifying in particular the mean of the value Pt = P0 exp(Xt) under the measure P(γ) defined in (3.21) (for γ

given in Assumption 1) and the laws of D
∗
t and D∗t .

Contents. The remainder of the paper is organized as follows. In Section 2 we present the main representa-

tion in terms of drawup and drawdown processes. In Section 3 we identify the Cramér asymptotics and describe

the associated drawup and drawdown measures in Section 3.1. We analyse the heavy-tailed case in 4. Finally,

in Section 5 we derive exact distributions of future drawup and drawdowns in case X has jumps of single sign

and we present an application to the Black-Scholes model in Section 5.1.

2. Main representation

Let (Xt)t∈R+ be a general Lévy process (i.e., a process with stationary and independent increments with

cádlág paths such that X0 = 0) defined on some filtered probability space (Ω,F , {Ft}t∈R,P) with Ft =

σ({Xs, s ≤ t}) denoting the completed filtration generated by X. The law of X is determined by its char-

acteristic exponent Ψ which is the map Ψ : R→ C that satisfies E[eiθX1 ] = exp(Ψ(θ)).

The drawdown and drawup processes of X, (Dt)t∈R+
and (Ut)t∈R+

, are path-functionals of the increments

of X given by

Dt = Xt −Xt, Ut = Xt −Xt,

with Xt = sup0≤s≤tXs and Xt = inf0≤s≤tXs. We note that the drawdown Dt and drawup Ut at time t are

equal to the largest of all increments Xu − Xt, u ∈ [0, t], and the negative of the smallest increment of such

increments.

Before turning to the analysis of the future drawdown and drawup extremes, we recall a number of facts

concerning drawup and drawdown processes which follow from the fluctuation theory of Lévy processes. First

of all, we note that the marginal distributions of the drawup Ut and drawdown Dt, t ∈ R+, can be expressed in

terms of the marginal distributions of X by deploying the Wiener-Hopf factorisation of X, according to which

the characteristic exponent Ψ is related to the marginal distributions of the running supremum and running

infimum of X at an exponential random time eq of parameter q that is independent of F∞ as follows:

q

q −Ψ(θ)
= E[eiθXeq ]E[e

iθXeq ], θ ∈ R, q ∈ R+\{0}.
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Figure 1. Two schematic pictures of a part of the path of X in the cases that (i) the smallest value

of X up to time t+ s has already been attained before time t so that the path-functional D∗t,s is zero

(left-hand picture) or (ii) X attains a new minimum between t and t+ s and the path-functional D∗t,s
is strictly negative (right-hand picture).

Using the duality lemma (see e.g. [2, Proposition VI.3]) that Ut has the same law Xt. Thus the Wiener-Hopf

factorisation may be phrased as follows in terms of the drawdown and drawup processes:

(2.1)
q

q −Ψ(θ)
= E[eiθUeq ]E[e−iθDeq ], θ ∈ R, q ∈ R+\{0}.

Moreover, since Ut has the same law Xt, it follows that, if E[X1] is strictly negative, Ut converges in distribution

as t→∞ to a proper random variable U∞ with the law of all-time supremum X∞. Similarly, if E[X1] is strictly

positive, Dt having the same law as Xt converges to a random variable D∞ as t→∞. The Laplace transforms

of U∞ and D∞ are given explicitly in terms of the Laplace exponents κ and κ̂ of the ascending and descending

ladder-height processes (L−1, H) and (L̂−1, Ĥ) . The ladder time process L−1 = {L−1
t }t∈R+

is equal to

the right-continuous inverse of a local time L of (Dt)t∈R+
at zero. The corresponding ladder-height process

H = (Ht)t≥0 is given by Ht = X(L−1
t ) for all t ≥ 0 for which L−1

t is finite, and defined to be Ht = +∞ otherwise.

We denote κ(β, θ) = − logE[exp{−βL−1
1 −θH1}1{H(1)<∞}], where, for any set A ∈ F , 1A denotes the indicator

of the set A. Similarly, the Laplace exponent of the downward ladder-height process (L̂−1, Ĥ) corresponding to

the dual process X̂ of X, X̂ = −X, we denote by κ̂(β, θ) = − logE[exp{−βL̂−1
1 − θĤ1}1{Ĥ(1)<∞}]. Specifically,

if E[X1] is strictly positive, the Laplace transform of D∞ is given as follows:

E[e−θD∞ ] =
κ̂(0, 0)

κ̂(0, θ)
;(2.2)

see [19] for details.

A first step in the study of the random variables D
∗
t,s, D

∗
t,s, U

∗
t,s and U∗t,s are the following distributional

identities.

Proposition 2.1. Let t, s ∈ R+ and let Ũs
(d)
= Us and D̃s

(d)
= Ds be random variables independent of Ft, where

(d)
= denotes equality in distribution. Denoting U t = sup0≤u≤t Uu, Dt = sup0≤u≤tDu, we have the following

representations:

D∗t,s
(d)
= −max

{
D̃s +Dt, Dt

}
, D

∗
t,s

(d)
= min

{
Ut − D̃s, 0

}
(2.3)

and

U
∗
t,s

(d)
= max

{
Ũs + Ut, U t

}
, U∗t,s

(d)
= max{Ũs −Dt, 0}.(2.4)

In particular, when E[X1] ∈ R+\{0} (E[X1] ∈ R\R+), then D
∗
t and D∗t (U

∗
t and U∗t ) are finite P-a.s.

Remark 2.2. (i) Extending X from R+ to a two-sided version on R and using a time-reversal argument

we find that

(2.5) U
∗
t

(d)
= sup

0≤u≤t
sup

−∞<w≤u
(Xu −Xw), U∗t

(d)
= inf

0≤u≤t
sup

−∞<w≤u
(Xu −Xw).
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Indeed, using the change of variables u′ = t− u and w′ = t− w we see that

sup
0≤u≤t

sup
−∞<w≤u

(Xu −Xw) = sup
0≤u′≤t

sup
w′≥u′

(Xt−u′ −Xt−w′)

(d)
= sup

0≤u′≤t
sup
w′≥u′

(Xw′ −Xu′).

The result for U∗t follows similarly.

The random variables U
∗
t and U∗t arise in a queueing application. Indeed, the workload process Qu of

a queue with net input process X (i.e., input less output) evolves according to the process X reflected

at its infimum, i.e., Qu = Xu − infs≤uXs. If we assume that the workload process is stationary (i.e.,

Q0 follows the stationary distribution, which is equal to the distribution of − inf−∞<s≤0Xs; see [28]),

then the workload Qu is given by:

Qu = sup
−∞<w≤u

(Xu −Xw)

and U
∗
t and U∗t describe the supremum and infimum of the workload process Q over a finite time horizon

t, respectively. For details on queues driven by a Lévy process we refer to the survey book [10].

(ii) We note P(U∗t = 0) = P(
∫∞

0
1(Xs≥0)ds < t) (see for example [2, Lemma 15, p. 170] and [2, Theorem

13, p. 169]).

Proof of Proposition 2.1. As noted in the Introduction, it suffices to establish the statements concerning D
∗

and D∗. Writing [u, t+ s] = [u, t] ∪ [t, t+ s] for given u, t, s ∈ R+ we have

D∗t,s = inf
0≤u≤t

min

{
inf

w∈[t,t+s]
(Xw −Xt) +Xt −Xu, inf

u≤w≤t
(Xw −Xu)

}
.

Since D̃s := − inft≤w≤t+s(Xw −Xt) is independent of Ft and is equal in distribution to Ds, we find that D∗t,s
is equal in distribution to

inf
0≤u≤t

min

{
Xt −Xu − D̃s, inf

u≤w≤t
(Xw −Xu)

}
= min

{
−Dt − D̃s, inf

0≤u≤t
inf

u≤w≤t
(Xw −Xu)

}
= −max

{
Dt + D̃s, sup

0≤w≤t
sup

0≤u≤w
(Xu −Xw)

}
,

which yields the first identity in (2.3).

For the second identity in (2.3) we note that the function u 7→ infu≤w≤t+s(Xw −Xu) attains its supremum

over [0, t] at Gt− or Gt where Gt = sup{u ≤ t : Xu = Xt}. In the case that Gt+s ≤ t (i.e., when Xt+s = Xt)

we have Gt = Gt+s (see Figure 1, left-hand picture) and D
∗
t,s = 0, while in the case that Gt+s > t (see Figure 1,

right-hand picture) we find

D
∗
t,s = Xt+s −Xt < 0.

Hence, writing Xt+s = min{inft≤u≤t+s(Xu −Xt) +Xt, Xt} we deduce that

D
∗
t,s

(d)
= min

{
Xt −Xt + inf

0≤w≤s
X̃w, 0

}
,

where X̃ denotes an independent copy of X, from which the expression for D
∗
t,s follows.

Taking s→∞ in (2.3) and noting that − infs≥0Xs is finite P-a.s. if E[X1] ∈ R+\{0} we conclude that also

D
∗
t and D∗t are P-a.s. finite. �
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3. Asymptotic future drawdown — the light-tailed case

In this section we study the asymptotics of the tail probabilities P(−D∗t > x) and P(−D∗t > x) in the case

that the Lévy measure is light-tailed. More specifically, in this section we will make the following assumptions.

Assumption 1. The Cramér condition holds, i.e.,

(3.1) there exists a γ ∈ R+\{0} satisfying E[e−γX1 ] = 1,

The mean of X1 is positive and finite, E[X1] ∈ R+\{0}, and E[e−γX1 |X1|] ∈ R+\{0}.

Assumption 2. X has non-monotone paths and either 0 is regular for R+\{0} or the Lévy measure of X is

non-lattice.

Under condition (3.1) the characteristic exponent Ψ can be extended to the strip Sγ = {θ ∈ C : =(θ) ∈ [0, γ]}
of the complex plane, by analytical continuation and continuous extension. The Laplace exponent ψ(θ) =

logE[eθX1 ] of X is finite on the maximal domain Θ = {θ ∈ R : ψ(θ) <∞}, which contains the interval [−γ, 0].

Restricted to the interior Θo, the map θ 7→ ψ(θ) is convex and differentiable, with derivative ψ′(θ).1

Under (3.1) the Wiener–Hopf factorisation (2.1) remains valid for θ in the strip Sγ .

Lemma 3.1. If Assumption 1 is satisfied, we have

(3.2) E[e−γUeq ] + E[eγDeq ] <∞.

Proof. It follows from the Wiener–Hopf factorisation (2.1) that

(3.3) E[e−iθDeq ] = q(q −Ψ(θ))−1E[eiθUeq ]−1

for all θ in the interior of the strip Sγ . We note that E[eiθUeq ] is continuous and strictly positive on the set A =

{θ : −iθ ∈ [0, γ]}. Moreover, Ψ(θ) can be analytically extended to A. Indeed, note that Ψ(θ) = Ψ1(θ) + Ψ2(θ)

where Ψ1(θ) is entire function by [29, Lem. 25.6, p. 160] and Ψ2(θ) =
∫
|x|>1

e−γx V̂(dx) is finite by Assumption

1 and [19, Thm. 3.6, p. 76] for a Lévy measure V̂ of X. This, combined with the fact Ψ(iγ) = 0, yields (3.2). �

In [3] it was shown that under Assumptions 1 and 2, Cramér’s estimate holds for the Lévy process X, i.e.,

(3.4) P(D∞ > y) ' Cγe−γy, Cγ =
κ̂(0, 0)

γ
[
∂
∂θ κ̂(0,−θ)

]
|θ=γ

> 0, as y →∞,

where we write f(x) ' g(x) as x → ∞ if limx→∞ f(x)/g(x) = 1. Cramér’s estimate can be extended to the

decay of the finite time probability P(Ds > x) when x, s jointly tend to infinity in some fixed proportion, that

is when we have x = vs + o(s1/2). The proportions v are to be positive and lie in the range of ψ′. This leads

to the following definition.

Definition 3.2. A proportion v ∈ R+\{0} is feasible if there exists a ξv ∈ Θo such that ψ′(ξv) = −v.

More specifically, it was shown in [25] that if the proportion v is feasible and satisfies 0 < v < −ψ′(−γ) the

Höglund’s estimates hold for X, i.e., if Assumptions 1 and 2 are satisfied, then for x and s tending to infinity

such that x = vs+ o(s1/2) we have

P(Ds > x) ∼ Cγe−γx,(3.5)

where we write f ∼ g if limx,s→∞,x=vs+o(s1/2) f(x, s)/g(x, s) = 1.

Using the representations in Proposition 2.1 we identify the exact asymptotic decay of the tail probabilities

of D∗t,s and D
∗
t,s as follows:

1For θ ∈ Θ\Θo, ψ′(θ) is understood to be limη→θ,η∈Θo ψ
′(η).
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Theorem 3.3. Suppose that Assumptions 1 and 2 hold, and let t ∈ R+\{0}.
(i) Then the following limit hold true:

(3.6) P(−D∗t > x) ' CγE[eγDt ] e−γx, x→∞

and

(3.7) P(−D∗t > x) ' CγE[e−γUt ] e−γx x→∞.

(ii) Let 0 < v < −ψ′(−γ). If x and s tend to infinity such that x = vs+ o(s1/2) for some feasible proportion

v then we have the following limits:

P(−D∗t,s > x) ∼ CγE[e−γUt ] e−γx,(3.8)

P(−D∗t,s > x) ∼ CγE[eγDt ] e−γx.(3.9)

Remark 3.4. In specific cases the Wiener–Hopf factors are known in explicit analytical form, so that the

constants in (3.6) can be identified.

(i) If X is spectrally positive, then Cγ = 1 and

(3.10) E[eγDeq ] =
Φ̂(q)

Φ̂(q)− γ
, q > 0,

where γ = Φ̂(0), with Φ̂(q), q ≥ 0, the largest root of the equation ψ̂(θ) = q where ψ̂(θ) = logE[e−θX1 ]

is the Laplace exponent of the dual process X̂ = −X. These expressions hold since Deq has the same

law X̂eq and hence follows an exponential distribution with parameter Φ̂(q). By inverting the Laplace

transforms in q we find the following explicit expression in terms of the one-dimensional distributions

of X:

(3.11) E[eγDt ] = 1 + γ

∫ t

0

E[e−γXzX−z ]z−1dz,

where X−t = min{Xt, 0}. Indeed, note that E[eγDt ] = E[eγÛt ]. Moreover, on account of Kendall’s

identity (P(τ+
x ∈ dt) = x

t P(X̂t ∈ dx) for x, t ∈ R+\{0} and the first passage time τ+
x = inf{t ≥ 0 : X̂t >

x}), it follows that

(3.12)

∫ ∞
0

e−qtE[e−γX̂tX̂+
t ]t−1dt =

1

Φ̂(q) + γ
,

where X̂+
t = max{X̂+

t , 0}. Further, from [19, eq. (8.2)] and fact that ψ̂(γ) = ψ(−γ) = 0,

(3.13) E[e−γUeq ] = E[e
γX̂eq ] =

q

q − ψ̂(γ)

[
1− γ

Φ̂(q)

]
= 1− γ

Φ̂(q)
.

Hence, we have

E[e−γUt ] = 1− γ
∫ t

0

E[X−z ]z−1 dz.

(ii) If X is spectrally negative, then we have Cγ = ψ′(0)
|ψ′(−γ)| and

(3.14) E[e−γUeq ]−1 = E[eγDeq ] =
Φ(q) + γ

Φ(q)
,

where γ and Φ(q), q ≥ 0, are the largest roots of ψ(−θ) = 0 and ψ(θ) = q for the Laplace exponent

ψ(θ) = logE[eθX1 ]. Hence

(3.15) E[eγDt ] = 1 + γ

∫ t

0

E[X+
z ]z−1dz, E[e−γUt ] = 1− γ

∫ t

0

E[e−γXzX+
z ]z−1 dz.
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(iii) The Wiener–Hopf factors may also be identified for the meromorphic Lévy processes [17, Def. 1]:

E[eγUeq ] =
∏
n≥1

1− γ
ρn

1− γ
ζn(q)

, E[eγDeq ] =
∏
n≥1

1− γ
ρ̂n

1− γ

ζ̂n(q)

,

where {−iρn, iρ̂n}n≥1 are the poles of Ψ (which is meromorphic) and {−iζn(q), iζ̂n(q)}n≥1 are the roots

of q + Ψ(θ) = 0. The above Laplace transforms in q can be numerically inverted giving E[eγUt ] and

E[eγDt ] (see for details [17, Sec. 8]).

Proof of Theorem 3.3. (i) From Proposition 2.1 it follows that for s, t ∈ R+,

(3.16) P(−D∗t,s ≤ x) =

∫
[0,x]

P(Ds ≤ x− z)P(Dt ∈ dz,Dt ≤ x)⇔

P(−D∗t,s > x) = P(Dt > x) +

∫
[0,x]

P(Ds > x− z)P(Dt ∈ dz,Dt ≤ x).

By letting s→∞ in (3.16) we arrive at the identity

(3.17) P(−D∗t > x) = P(Dt > x) +

∫
[0,x]

P(D∞ > x− z)P(Dt ∈ dz,Dt ≤ x).

Denote by P(γ) the Cramér measure which is defined on (Ω,Ft) by P(γ)(A) = E[e−γXt1A], A ∈ Ft. The Cramér

asymptotic decay (3.4) implies that

(3.18) eγxP(D∞ > x) = E(γ)[e
−γ(X̂

τ
+
x
−x)

] ' Cγ , as x→∞.

In view of the facts that t 7→ Xt is non-decreasing and DTDx
− x ≥ 0 for TDx = inf{t ≥ 0 : Dt > x} and any

x ∈ R+\{0}, we find2

P(Dt > x) = P(TDx < t) = e−γxE(γ)[e
γ(XTDx

+x)
1{TDx <t}]

= e−γxE(γ)[e
−γ(DTDx

−x−XTDx )
1{TDx <t}]

≤ e−γxE(γ)[eγXt1{TDx <t}] = o(e−γx), as x→∞,(3.19)

where the expectation in (3.19) converges to zero by virtue of the dominated convergence theorem and the facts

that E(γ)[eγXt ] < ∞ (by Lemma 3.1) and TDx → ∞ P(γ)-a.s. as x → ∞ (as Xt → −∞ as t → ∞, P(γ)-a.s.).

Combining (3.17) with (3.19), the Cramér asymptotics (3.18) and the dominated convergence theorem yield

lim
x→∞

eγxP(−D∗t > x) = Cγ

∫
R+

eγzP(Dt ∈ dz) = CγE[eγDt ], t ∈ R+.

As far as D
∗
t is concerned, we deduce from Proposition 2.1, the Cramér asymptotics (3.4), Lemma 3.1 and

the dominated convergence theorem that

P(D
∗
t > x) =

∫
R+

P(D∞ > x+ z)P(Ut ∈ dz)(3.20)

' Cγe−γx
∫
R+

e−γzP(Ut ∈ dz) = Cγe−γxE[e−γUt ].

(ii) Let v be a feasible proportion. The proof follows by a line of reasoning that is analogous to the one given

in part (i), deploying Höglund’s estimate (3.5) instead of Cramér’s estimate. In particular, combining (3.5),

(3.16), (3.19) and the dominated convergence theorem shows that when 0 < v < −ψ′(−γ)

eγxP(−D∗t,s > x) ∼ Cγ
∫

[0,∞)

eγzP(Dt ∈ dz) = CγE[eγDt ].

�

2f(x) = o(g(x)) for x→∞ if |f(x)/g(x)| → 0 as x→∞.
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3.1. Asymptotic drawdown and drawup measures. Conditional on −D∗t,s being large, for fixed s, t ∈ R+,

or on −D∗t,s being large, Xt admits a limit in distribution, as we show next. These limits are given by the

“drawup-measures” P(s)
and the “drawdown measures” P(s), s ∈ Θ, that are defined as follows on the measurable

space (Ω,Ft):

P(s)
(A) = E

[
e−sUt

E[e−sUt ]
1A

]
, P(s)(A) = E

[
esDt

E[esDt ]
1A

]
, A ∈ Ft.(3.21)

Corollary 3.5. Suppose Assumptions 1 and 2 hold, and let t ∈ R+\{0}.
(i) Then, conditional on {D∗t < −x} and on {D∗t < −x}, Xt converges in distribution as x→∞:

P[Xt ≤ x| −D∗t > x] ' P(γ)[Xt ≤ x],(3.22)

P[Xt ≤ x| −D
∗
t > x] ' P(γ)

[Xt ≤ x].(3.23)

(ii) Let 0 < v < −ψ′(−γ). If x and s tend to infinity such that x = vs+ o(s1/2) where v is feasible then the

following limits hold true:

P[Xt ≤ x| −D∗t,s > x] ∼ P(γ)[Xt ≤ x],(3.24)

P[Xt ≤ x| −D
∗
t,s > x] ∼ P(γ)

[Xt ≤ x].(3.25)

Proof of Corollary 3.5. (i) By following a similar line of reasoning as the proof of Theorem 3.3 it is straightfor-

ward to show that for θ ∈ [0, γ], as x→∞,

E[eθXt1{−D∗t>x}] ' Cγe−γxE[eθXt+γDt ],

E[eθXt1{−D∗t>x}
] ' Cγe−γxE[eθXt−γUt ].

Bayes’ lemma then yields the stated identities. The proof of (ii) is similar and is omitted. �

4. Asymptotic future drawdown — the heavy-tailed case

We continue the study of the asymptotic behaviour of the tail probabilities of D
∗
t and D∗t in the case that

the Lévy measure V of X̂ = −X belongs to the class S(α) of convolution-equivalent measures which, we recall,

is a subset of the class L(α) defined as follows.

Definition 4.1. (Class L(α)) For a parameter α ∈ R+ we say that measure G with tail G(u) := G((u,∞))

belongs to class L(α) if

(i) G(u) > 0 for each u ∈ R+,

(ii) limu→∞
G(u−y)

G(u)
= eαy for each y ∈ R, and G is nonlattice,

(iii) limn→∞
G(n−1)

G(n)
= eα if G is lattice (then assumed of span 1).

Definition 4.2. (Class S(α)) We say that G belongs to class S(α) if

(i) G ∈ L(α);

(ii) for some M0 ∈ R+, we have

lim
u→∞

G∗2(u)

G(u)
= 2M0,(4.1)

where G∗2(u) = G∗2(u,∞) and ∗ denotes convolution.

The asymptotics are derived under conditions on the Lévy measure Π of the downward ladder height process

Ĥ, which according to the Vigon [31] identity is related to the Lévy measures V of X̂ by

Π(z) = Π((z,∞)) = −
∫
R\R+

V(u− y)V (dy), z ∈ R+,
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for the renewal measure V (dy) =
∫∞

0
P(Ht ∈ dy)dt and V(y) = V(y,∞). Throughout this section we assume

that for some fixed α ∈ R+\{0} the following three conditions hold true:

Π ∈ S(α);(4.2)

ψ̂(α) = ψ(−α) ∈ R\R+;(4.3)

κ̂(0, 0) + κ̂(0,−α) ∈ R+\{0}.(4.4)

Theorem 4.3. Assume that E[X1] ∈ R+\{0} and let t ∈ R+\{0}. Under conditions (4.2)–(4.4) we have:

P(−D∗t > x) ' const+
t Π(x), P(−D∗t > x) ' const−t Π(x),

where functions const+
t and const−t ∈ R+ are given by

(4.5) const+
t = E[eαX̂t ] +

∫
[0,t]

E
[
eαX̂t−z

]−1

µ(dz) = E[e−αXt ] +

∫
[0,t]

E
[
e−αXt−z

]−1

µ(dz),

and

const−t = E[e−αX̂t ] = E[eαXt ],

with the Borel measure µ on (R+,B(R+)) given by

(4.6) µ(dz) =

∫ ∞
0

P(L̂−1
m ∈ dz)e−κ̂(0,−α)m [1−mκ̂(0,−α)] dm.

Remark 4.4. (i) By straightforward calculations it can be verified that

(4.7) (Lµ)(q) =
1

q
· κ̂(q, 0)

(κ̂(q, 0) + κ̂(0,−α))2
,

where Lµ denotes the Laplace-Stieltjes transform of the measure µ.

(ii) If V ∈ S(α) for α > 0 then (4.2) holds and

Π(x) ' 1

κ(0,−α)
V(x);

see [15, Proposition 5.3].

(iii) If X is spectrally positive, then from (3.11) and (3.13):

(4.8) E[e−αXt ] = 1 + α

∫ t

0

E[e−αXzX−z ]z−1dz, E[e±αXt ] = etψ(∓α) ± α
∫ t

0

e(t−z)ψ(∓α)EX−z z−1 dz.

Moreover, since κ̂(q, 0) = q/Φ̂(q) and κ̂(0,−α) = −ψ̂(α)/(Φ̂(0) + α), we have

q (Lµ)(q) =
κ̂(q, 0)

(κ̂(q, 0) + κ̂(0,−α))2
=

qΦ̂(q)

(q − Φ̂(q)2 ψ̂(α)

Φ̂(0)+α
)2
.

Proof of Theorem 4.3. We first prove the statement concerning D∗t . The starting point of the proof is to take

the identity noted earlier in (3.17) and replace the fixed time t by an independent exponential random variable

eq with parameter q, which yields

(4.9) P(−D∗eq > x) = P(Deq > x) +

∫
[0,x]

P(D∞ > x− z)P(Deq ∈ dz,Deq ≤ x).

We show that both terms on the right-hand side of (4.9) are asymptotically equivalent to the tail-measure

Π(x) of the ladder process Ĥ as x → ∞ and identify the constant. As before we denote the first upward and

downward passage times of X̂ across the level x by τ+
x = inf{t ≥ 0 : X̂t > x} and τ−x = inf{t ≥ 0 : X̂t < x}.

To establish this result it suffices to show asymptotic equivalence of the two terms on the right-hand side of

(4.9) to the probability P(τ+
x < eq), since it is known from [15, Theorem 4.1] and [24, Lemma 5.4, eq. (5.6)]

that under the conditions stated in the theorem

(4.10) P(τ+
x < eq) '

κ̂(q, 0)

(κ̂(q, 0) + κ̂(0,−α))2
·Π(x), q ≥ 0,
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with the interpretation P(τ+
x < ∞) = P(τ+

x < e0) for q = 0. Note that the constant in (4.10) is strictly

positive for all q ≥ 0 by the condition (4.4) and κ̂(0, 0) > 0 (as E[X̂1] is strictly negative by the assumption that

E[X1] > 0).

We treat both terms separately, starting with the first term. We first derive upper and lower bounds for the

ratio P(Deq > x)/P(τ+
x < eq). By an application of the strong Markov property and the definition of U we

have

P(Deq > x) ≥ P(τ+
x < τ−−ε ∧ eq, Deq > x) + P(τ−−ε < τ+

x ∧ eq, Deq > x)

= P(τ+
x < τ−−ε ∧ eq) + P(τ−−ε < τ+

x ∧ eq)P(Deq > x) and(4.11)

P(Deq > x) ≤ P(τ+
x < τ−−ε ∧ eq) + P(τ−−ε < τ+

x ∧ eq)P(Deq > x) +Aq with

Aq = P(X̂eq > −ε, x+ ε ≥ X̂eq − X̂eq ≥ x) = P(X̂eq > −ε)P(x+ ε ≥ X̂eq ≥ x),(4.12)

where in the last line we used that X̂eq and X̂eq − X̂eq are independent (by the Wiener–Hopf factorisation) and

X̂eq − X̂eq and X̂eq have the same distribution. Hence we find from (4.11) and (4.12) that

P(Deq > x)

P(τ+
x < eq)

≥
P(τ+

x < τ−−ε ∧ eq)

P(τ−−ε ≥ τ+
x ∧ eq)P(τ+

x < eq)
and(4.13)

P(Deq > x)

P(τ+
x < eq)

≤
P(τ+

x < τ−−ε ∧ eq)

P(τ−−ε ≥ τ+
x ∧ eq)P(τ+

x < eq)
+

P(τ+
x < eq)− P(τ+

x+ε < eq)

P(τ+
x < eq)

.(4.14)

The first terms on the right-hand sides of (4.13) and (4.14) may be simplified by using that, by the Markov

property, we have

P(τ+
x < τ−−ε ∧ eq) = P(τ+

x < eq)− P(τ−−ε < τ+
x < eq)(4.15)

= P(τ+
x < eq)− E

[
1{τ−−ε<τ

+
x ∧eq}PX̂

τ
−
−ε

(τ+
x < eq)

]
.

Furthermore, since Π ∈ S(α) we note that

(4.16) lim
x→∞

P(τ+
x+ε < eq)

P(τ+
x < eq)

= e−αε, ε > 0.

From the dominated convergence theorem and Definition 4.1(ii)–(iii) it then follows that

(4.17) lim
x→∞

E
[
1{τ−−ε<τ

+
x ∧eq}PX̂

τ
−
−ε

(τ+
x < eq)

]
P(τ+

x < eq)
= E

[
e
αX̂

τ
−
−ε1{τ−−ε<eq}

]
,

and an application of the Markov property yields

(4.18) E
[
e
αX̂

τ
−
−ε1{τ−−ε<eq}

]
=

E
[
e
αX̂eq1{τ−−ε<eq}

]
E
[
e
αX̂eq

] .

Taking first x→∞ in (4.13) and (4.14) and using (4.15), (4.16), (4.17) and (4.18) and that P[τ−−ε = eq] = 0 we

find

E
[

e
αX̂eq

∣∣∣ τ−−ε > eq

]
E
[
e
αX̂eq

] ≤ lim inf
x→∞

P(Deq > x)

P(τ+
x < eq)

≤ lim sup
x→∞

P(Deq > x)

P(τ+
x < eq)

≤
E
[

e
αX̂eq

∣∣∣ τ−−ε > eq

]
E
[
e
αX̂eq

] + 1− e−αε.

Letting subsequently ε ↓ 0 and using

lim
ε↓0

E
[

e
αX̂eq

∣∣∣ τ−−ε > eq

]
= 1,
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which in turn holds as the conditional expectation is bounded above by 1 and bounded below by e−αε, we get

the following asymptotics:

P(Deq > x) ' BqΠ(x), with(4.19)

Bq =
κ̂(q, 0)

(κ̂(q, 0) + κ̂(0,−α))2

1

E
[
e
αX̂eq

] .
Next, we turn to the proof of the asymptotic decay of the second term on the right-hand side of (4.9). Note

that it equals ∫
[0,x]

P(X̂∞ > x− z)P(Deq ∈ dz,Deq ≤ x)

=

(∫
[0,y′]

+

∫
(y′,x−y′]

+

∫
(x−y′,x]

)
P(X̂∞ > x− z)P(Deq ∈ dz,Deq ≤ x).(4.20)

We next show that the second and third integral of the right-hand side of (4.20) tend to zero as we let first

x and then y tend to infinity. Indeed, concerning the second integral we use (4.2), Definition 4.1(ii)–(iii) and

(4.10) to show that

lim
x→∞

∫
(y′,x−y′] P(X̂∞ > x− z)P(Deq ∈ dz,Deq ≤ x)

P(τ+
x <∞)

=

∫
(y′,∞)

eαzP(X̂eq ∈ dz),

which tends to 0 as y′ →∞.

For the third integral, we obtain the bound∫
(x−y′,x]

P(X̂∞ > x− z)P(Deq ∈ dz,Deq ≤ x) ≤ P(X̂∞ > y′)P(X̂eq > x− y′)

≤ P(τ+
y′ <∞)P(τ+

x−y′ <∞).

After dividing the integral in the display by P(τ+
x <∞) and letting first x→∞ and then y′ →∞, it tends to

zero.

Finally, the first integral on the right-hand side of (4.20) is asymptotically of the same order as the left-hand

side. Indeed, using (4.2) and Definition 4.1(ii)–(iii), (4.10) and the dominated convergence theorem we find

(4.21) lim
x→∞

∫
[0,y′]

P(X̂∞ > x− z)P(Deq ∈ dz,Deq ≤ x)

P(τ+
x <∞)

=

∫
[0,y′]

eαzP(Deq ∈ dz),

which converges to
∫∞

0
eαzP(Deq ∈ dz) = E[eαX̂eq ] := B̃q as y′ →∞.

By combining the previous estimates we have the following asymptotics of the tail probability P(−D∗eq > x):

(4.22) lim
x→∞

P(−D∗eq > x)

qΠ(x)
= q−1(Bq + B̃q).

Noting that the right-hand side of (4.22) is a pointwise limit of Laplace transforms of measures and is itself such

a Laplace transform, it follows from (an extension of) the continuity theorem (see [13, Theorem 15.5.2]) that the

corresponding measures also converge to the limiting measure with Laplace transform given by q−1(Bq + B̃q).

Hence the first assertion of the theorem follows by inverting the Laplace transform q−1(Bq + B̃q) (see Remark

4.4).

Concerning D
∗
t , note that by (3.20) we have

P(−D∗t > x) =

∫
(−∞,0]

P(τ+
x+z <∞)P(X̂t ∈ dz).

Asymptotics (4.10), the dominated convergence theorem and part (ii) and (iii) of Definition 4.1 establish that

the asymptotic decay of P(−D∗t > x) is as stated. �
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5. Exact distributions

From Proposition 2.1 it follows that the distributions of D
∗
t,s, D

∗
t,s, U

∗
t,s and U∗t,s can be identified if one

is able to identify the law of the finite time supremum and the resolvent of the Lévy process reflected at its

infimum. In the case of a spectrally one-sided Lévy process X such explicit expressions are provided by existing

fluctuation theory.

In this section we suppose that X is spectrally negative (as noted in the Introduction, the case of spectrally

positive Lévy process follows from by considering the dual of X). Many fluctuation results for X can be

conveniently formulated in terms of its scale function W (q) that is defined as the unique continuous increasing

function on R+ with Laplace transform∫ ∞
0

e−λxW (q)(x) dx =
1

ψ(λ)− q
for any λ > Φ(q).

Note that by convexity of the Laplace exponent ψ its right inverse Φ(q) is well-defined for all q ≥ 0. Moreover,

let Z(q) denote the function on R+ given by

Z(q)(x) = 1 + q

∫ x

0

W (q)(y)dy, x ∈ R+,

let eβ be an exponentially distributed random variable with parameter β > 0 (independent of eq and X).

Proposition 5.1. Let x ∈ R+. (i) If E[X1] ∈ R ∪ {−∞}\R+ then

P(U
∗
eq,eβ

> x) =
1

Z(q)(x)

[
1 + q

∫ x

0

e−Φ(β)zW (β)(z)dz

]
and

P(U∗eq,eβ > x) =
q

q − β
e−Φ(β)xΦ(β)− Φ(q)

Φ(q)
.

(ii) If E[X1] ∈ R+\{0} then

P(−D∗eq,eβ > x) = Φ(q)

∫ ∞
0

e−Φ(q)zZ(β)(x+ z)dz − β

Φ(β)
Φ(q)

∫ ∞
0

e−Φ(q)zW (β)(x+ z)dz and

P(−D∗eq,eβ > x) = q
β

Φ(β)

∫
[0,x]

(W (β)(x− z)− βZ(β)(x− z))W (q)(z)dz

− β

Φ(β)

W (q)(x)

W
(q)′
+ (x)

∫
[0,x]

(W (β)(x− z)− βZ(β)(x− z))W (q)(dz)

+Z(q)(x)− qW
(q)(x)2

W
(q)′
+ (x)

,

where W
(q)′
+ (x) denotes the right-derivative of W (q) at x.

The proof of Proposition 5.1 is based on the representations derived in Proposition 2.1 and the form of the

q-resolvent measures RUx and RDx of U and D killed upon crossing the level x > 0, which are defined by

RUx (dy) =

∫ ∞
0

e−qtP(Ut ∈ dy, TUx > t)dt and RDx (dy) =

∫ ∞
0

e−qtP(Dt ∈ dy, TDx > t)dt,

where TUx and TDx are the first-passage times of U and D over x, TUx = inf{t ≥ 0 : Ut > x}, TDx = inf{t ≥ 0 :

Dt > x}. In [26, Theorem 1] it was shown that these resolvent measures have a density a version of which is

given by

RUx (dy) =
W (q)(x− y)

Z(q)(x)
dy, y ∈ [0, x],(5.1)

RDx (dy) = W (q)(x)
W (q)(dy)

W
(q)′
+ (x)

−W (q)(y)dy, y ∈ [0, x].(5.2)
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Proof. Recall that by Proposition 2.1 we have

P(U
∗
eq,eβ

> x) = E
[
e−qT

U
x

]
+ q

∫
[0,x]

P(Xeβ > x− z)RUx (dz),

where by [26, Proposition 2],

E
[
e−qT

U
x

]
=

1

Z(q)(x)

and

P(Ueβ > x− z) = P(Xeβ > x− z) = e−Φ(β)(x−z).

Similarly,

P(U∗eq,eβ > x) =

∫ ∞
0

P(Ueβ > x+ z)P(Deq ∈ dz),

where by [20]:

P(Deq ∈ dz) = P(−Xeq ∈ dz) =
q

Φ(q)
W (q)(dz)− qW (q)(z) dz, z ∈ R+.

Straightforward calculations complete the proof of (i).

The proof of (ii) follows by a similar reasoning using the identity

E
[
e−qT

D
x

]
= Z(q)(x)− qW

(q)(x)2

W
(q)′
+ (x)

;

see [26, Proposition 2]. �

Corollary 5.2. Let x ∈ R+. (i) If E[X1] ∈ R ∪ {−∞}\R+

P(U
∗
eq > x) =

1

Z(q)(x)

[
1 + q

∫ x

0

e−Φ(0)zW (q)(z)dz

]
and

P(U∗eq > x) = e−Φ(0)xΦ(q)− Φ(0)

Φ(q)
.

(ii) If E[X1] ∈ R+\{0} then

P(−D∗eq > x) = 1− ψ′(0)Φ(q)

∫ ∞
0

e−Φ(q)zW (x+ z)dz and

P(−D∗eq > x) = 1 + qψ′(0)

∫
[0,x]

W (x− z)W (q)(z)dz

−ψ′(0)
W (q)(x)

W
(q)′
+ (x)

∫
[0,x]

W (x− z)W (q)(dz).

Proof. Note that by negative drift condition E[X1] ∈ R ∪ {−∞}\R+ we have that ψ′(0) = E[X1] < 0 and by

convexity of ψ we can conclude that Φ(0) > 0. Moreover, since U∞ has the same law as X∞, which follows an

exponential distribution with parameter Φ(0), we have for any x ∈ R+

P(U
∗
eq ≤ x) =

∫
[0,x]

∫ y

0

Φ(0)e−Φ(0)zdzP(z + Ueq ∈ dy, eq < TUx )

=
qΦ(0)

Z(q)(x)

∫ x

0

∫ y

0

e−Φ(0)zW (q)(x− y + z)dz dy

=
1

Z(q)(x)

[
q

∫ x

0

(1− e−Φ(0)y)W (q)(y) dy

]
.

Furthermore, from (3.10),

P(U∗eq ≤ x) = P(Ũ∗0 −Deq ≤ x)

= Φ(0)

∫
R+

∫ x

−y
e−Φ(0)(z+y)dzP(Deq ∈ dy) = 1− e−Φ(0)xΦ(q)− Φ(0)

Φ(q)
.
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The proof of (ii) follows by a similar reasoning, using the form of the resolvent and the fact that D∞ has the

same law as −X∞, which is given by P[−X∞ < x] = ψ′(0)−1W (x) for x ∈ R+ (see e.g. [20]), where we use fact

that ψ′(0) = E[X1] > 0. �

Remark 5.3. (i) By inverting the Laplace transform we find that

P(U∗t > x) = e−Φ(0)x (1− Φ(0)E[Ut]) .

(ii) Straightforward calculations show that the double Laplace transforms LU (r, s) and LD(r, s) of P(U∗T ≤
u) and P(−D∗T ≤ u) in T and u are given by:

LU (r, s) =
Φ(0)(Φ(s) + r)

(Φ(0) + r)sΦ(s)
, LD(r, s) = rψ′(0)Φ(s)

ψ(r)− s
s2ψ(r)(r − Φ(s))

.

This agrees with the forms of LD(r, s) and LU (r, s) obtained in [9].

(iii) In the literature numerical methods have been developed for the evaluation of scale functions, based

on Markov chain approximation (see [22]) or Laplace inversion (see [18, 30]), which may be used for

numerical evaluation of the expressions given in Proposition 5.1.

(iv) From the proofs of the propositions above it is clear that we can identify the bivariate Laplace transform

of U
∗
t,s, U

∗
t,s, D

∗
t,s and D∗t,s with respect of t and s as long as the laws of Xeq , Xeq and resolvents of

reflected process RUa , RDa are known. This could be done not only for spectrally one-sided Lévy processes.

For example, one can consider the Kou model, where the log-price X = (Xt)t∈R+ is modelled by a jump-

diffusion with constant drift µ and volatility σ > 0, with the upward and downward jumps arriving at

rate λ+ and λ− with sizes following exponential distributions with mean 1/α+ and 1/α−,

Xt = µt+ σWt +

N+
t∑

j=1

U+
j −

N−t∑
j=1

U−j ,

where N± are independent standard Poisson processes with rates λ±, independent of a Brownian motion

W , and U±i ∼ Exp(α±) are independent. Then the important ingredients are identified in [1, Lemma 1

and Proposition 3] (also applied for the dual process).

5.1. (Future) drawdowns and drawups under Black–Scholes model. Consider a risky asset whose price

process P = (Pt)t∈R+
is given as follows:

(5.3) Pt = P0 exp(Xt), t ∈ R+,

where X = (Xt)t∈R+
is a Lévy process. In the case of the Black–Scholes model, P is a geometric Brownian

motion, with rate of appreciation µ ∈ R and the volatility σ, and X = (Xt)t∈R+ is given by the linear Brownian

motion

Xt =

(
µ− σ2

2

)
t+ σWt.

Let µ > σ2/2. This model is widely used in practice as a benchmark for other models.

For this model we have ψ(θ) = σ2θ2/2 + (µ− σ2/2)θ, Φ(q) = −ω + δ(q) with

δ(q) = σ−2
√

(µ− σ2/2)2 + 2σ2q

and ω = µ
σ2 − 1

2 and

W (q)(x) =
1

δ(q)σ2

[
e(−ω+δ(q))x − e−(ω+δ(q))x

]
,

Z(q)(x) =
q

δ(q)σ2

[
1

−ω + δ(q)
e(−ω+δ(q))x +

1

ω + δ(q)
e−(ω+δ(q))x

]
.
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Hence from Corollary 5.2 we have

P(−D∗eq > x) = 1 +
1

σ4δ(q)ω
(µ− σ2/2)(Z(q)(x)− 1)

+
q

σ4δ(q)ω
(µ− σ2/2)

(
1

δ(q)− ω
e−(δ(q)+ω)x − 1

δ(q) + ω
e(δ(q)−ω)x − 2ω

δ2(q)− ω2
e−2ωx

)
+(µ− σ2)

W (q)(x)

W (q)′(x)

(
δ(q) + ω

δ(q)− ω
e−(δ(q)+ω)x +

δ(q)− ω
δ(q) + ω

e(δ(q)−ω)x − 2δ(q)

δ2(q)− ω2
e−2ωx

)
and

P(−D∗eq > x) =
−ω + δ(q)

ω + δ(q)
e−2ωx, q > 0.

Hence we find for t ∈ R+

P(−D∗t > x) = E[e−2ωUt ]e−2ωx.

Moreover,

E(γ)
[Pt] = P0

E
[
e−γUt+Xt

]
E [e−γUt ]

= P0eψ(1)tE(1)[e−γUt ]

E [e−γUt ]
,

E(γ)[Pt] = P0eψ(1)tE(1)[eγDt ]

E [eγDt ]
,

where E(γ)
and E(γ) are the expectations with respect of measures P(γ)

and P(γ) given in (3.21) (for γ given

in Assumption 1), respectively, and the measure P(1) is defined via P(1)(A) = E[eXt−ψ(1)t1A] for A ∈ Ft and

γ = 2ω. Under P(1) we have

Xt =

(
µ− 3

2
σ2

)
+ σWt.

We note that E[e−2ωUt ] = E[e−γUt ] and E(1)[e−γUt ] may be identified using [4, (1.1.3), p. 250] and E[eγDt ]

and E(1)[eγDt ] using [4, (1.1.3), (1.2.3) p. 250-251].
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[24] Palmowski, Z. and Vlasiou, M. (2011). A Lévy input model with additional state-dependent services. Stoch. Proc. Appl.

121(7), 1546–1564.

[25] Palmowski, Z. and Pistorius, M.R. (2009). Cramér asymptotics for finite time first passage probabilities of general Lévy
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