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ABSTRACT

Graphical representations are invaluable for visualising physical systems and processes. In

quantum information theory, the Bloch vector representation of a single qubit is ubiquitous,

but visualising higher-dimensional quantum systems is far less straightforward. The quantum

steering ellipsoid provides a method for geometrically representing the state of two qubits,

the most fundamental system for studying quantum correlations. This thesis constitutes a

significant development of the steering ellipsoid formalism. As well as offering new insight

into the study of two-qubit states, we extend this powerful geometric approach to explore

scenarios beyond two qubits.

We find necessary and sufficient conditions for when an ellipsoid inside the Bloch ball

describes a valid (i.e. positive semidefinite) two-qubit state. Combined with the notion of el-

lipsoid chirality, this enables a geometric characterisation of entanglement. We find a family

of ‘maximally obese’ two-qubit states whose ellipsoids have maximal volume. These states

have optimal correlation properties within the set of all two-qubit states with a single max-

imally mixed marginal. We study a three-qubit scenario and discover that ellipsoid volume

obeys an elegant monogamy of steering relationship. From this we can derive the Coffman-

Kundu-Wootters (CKW) inequality for concurrence monogamy, providing an intuitive geo-

metric derivation of this classic result.

Remarkably, we find that steering ellipsoids offer a fresh perspective on questions beyond

quantum state space. Entanglement witnesses are also very naturally represented and classi-

fied using the formalism. This gives a physical interpretation to any ellipsoid inside the Bloch

ball as a block positive two-qubit operator, which we may then classify further. We can also

use steering ellipsoids to derive some highly nontrivial results in classical Euclidean geometry,

extending Euler’s inequality for the circumradius and inradius of a triangle.
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PICTORIAL OVERVIEW

We begin the thesis with an introduction

to Schrödinger’s notion of quantum steering.

Chapter 1 outlines the steering scenario:

when Alice and Bob share a two-qubit state

ρ, a local measurement by Bob alters Alice’s

local state from ρA to ρ′A. Alice’s Bloch vector

changes accordingly as a 7→ a′.

This concept is the basis of the steering ellipsoid formalism for

two-qubit states. In analogy to the Bloch sphere picture for a

single qubit, we can represent a two-qubit state using the Bloch

vectors a and b and Alice’s steering ellipsoid EA. This gives

the set of all Bloch vectors a′ to which Alice can be remotely

steered by Bob. Chapter 2 gives a full derivation of the steering

ellipsoid.

We then proceed to characterise the steering ellipsoid.

Chapter 3 formulates conditions for when an ellipsoid repre-

sents a valid two-qubit state and explores how entanglement is

manifest in the representation. We investigate the separable-

entangled and physical-unphysical boundaries, and then in

Chapter 4 present a family of ellipsoids that have maximal vol-

ume for the ellipsoid centre.

This reveals the family of maximally obese two-

qubit states, which forms the basis for much

of the work in Chapters 5 and 6. These states

are found to have optimal quantum correlation

properties. We study a three-qubit scenario in

which Bob can steer Alice and Charlie to el-

lipsoids EA and EC . This yields a remarkable

monogamy of steering relationship in terms of the

ellipsoid volumes:
√
VA +

√
VC ≤

√
4π
3 .
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In Chapter 7 we show that the steering ellipsoid formal-

ism can be extended to represent more than just quantum

states. Ellipsoids that do not describe states instead correspond

to entanglement witnesses. We investigate how properties such

as witness optimality are manifest in the ellipsoid representa-

tion and provide a new geometric classification for two-qubit

block positive operators.

Finally, we show in Chapter 8 that steering ellipsoids can

be used to derive results in pure Euclidean geometry. We

provide a physically-motivated derivation of known (but

highly nontrivial) inequalities concerning the existence of

a tetrahedron nested between two spheres. Remarkably,

the steering ellipsoid also enables us to formulate results

that are entirely new to the field of classical Euclidean ele-

mentary geometry.

13



CHAPTER 1

BACKGROUND

In this introductory chapter, we motivate the study of quantum steering ellipsoids and provide

an outline of the formalism. We consider what are the desirable features of a graphical rep-

resentation and explain why the Bloch vector is an effective visualisation tool for single qubit

states. The steering ellipsoid is then introduced as an extension of the Bloch vector picture to

two-qubit states.

We show how the steering ellipsoid can be found and review known results relating el-

lipsoid geometry to physical properties of a two-qubit state. For example, the nested tetrahedron

condition states that a two-qubit state is separable if and only if its steering ellipsoid fits inside

a tetrahedron inside the Bloch ball. We thus demonstrate steering ellipsoids to be an intuitive

and physically meaningful representation scheme.

We also consider alternative methods for visualising two-qubit states and discuss how

the steering ellipsoid can be generalised to higher dimensions. This chapter is intended to give

a reasonably non-technical and readable introduction to quantum steering ellipsoids; a thor-

ough mathematical treatment of the formalism, including a full derivation, will be provided in

Chapter 2.
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1. BACKGROUND

1.1 NOTATION

We begin by introducing some terminology that will be used throughout the thesis. This back-

ground material may be found in any standard reference text on quantum information, e.g.

Ref. [7].

A quantum system is associated with a Hilbert space H, and the state of the system is

described by a density operator ρ acting on H. We denote by L(H) the set of linear operators

on H, so that ρ ∈ L(H). By definition, ρ must be Hermitian (ρ = ρ†), unit trace (tr ρ = 1) and

positive semidefinite (ρ ≥ 0). We will use ρ̂ to denote an unnormalised density matrix.

A density operator can be expressed as a probabilistic ensemble via a convex decompo-

sition {pi, ρi}, with pi probabilities (i.e.
∑

i pi = 1 and pi ≥ 0) and each ρi a distinct density

matrix: ρ =
∑

i piρi. Any mixed state ρ has infinitely many convex decompositions, while a

pure state has a unique decomposition ρ = |ψ〉 〈ψ|, with |ψ〉 ∈ H. When a quantum system is

shared between remote parties, local reduced states can be found using the partial trace opera-

tion: say that ρ is shared between Alice and Bob; then ρA = trB ρ gives Alice’s reduced state

and ρB = trA ρ gives Bob’s.

A measurement in quantum mechanics is described by the POVM (positive operator val-

ued measurement) formalism. A POVM is a set of n measurement outcomes
{
Mi|j

}n
i=1

that sat-

isfy Mi|j ≥ 0 and
∑

iMi|j = 1. The index j labels the choice of POVM, whilst the index i labels

the outcome obtained.

When Bob performs the local measurement j on his half of the bipartite state ρ, he obtains

at random an outcome Mi|j . Alice’s local state will ‘collapse’ as follows:

ρA 7→ ρ̂
i|j
A = trB

[
ρ (1⊗Mi|j)

]
, (1.1)

where 1 is the identity operator. Alice’s normalised state will be ρ i|jA = ρ̂
i|j
A /pi|j , where the

normalisation constant pi|j = tr
[
ρ (1⊗Mi|j)

]
gives the probability of Bob obtaining outcome i

given that he has performed POVM j. This transformation is referred to as steering: Bob’s local

measurement has remotely steered Alice’s state. Note that, since
∑

iMi|j = 1, Alice’s uncon-

ditioned state ρA =
∑

i ρ̂
i|j
A is not affected by Bob’s choice of measurement – a manifestation of

the no signalling principle.

1.2 STEERING

The notion of steering originated as a response by Schrödinger to the famous EPR (Einstein-

Podolsky-Rosen) paper of 1935 [8]. Schrödinger both coined the term ‘steering’ and provided
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Figure 1.1: According to the Schrödinger-HJW theorem, when Alice and Bob share the state |ψ〉, Bob’s
measurement can steer Alice to the convex decomposition {pi, ρi} if and only if ρA =

∑
i piρi.

the first proof of what is sometimes called the pure state steering theorem [9, 10]: when Alice

and Bob share a pure entangled state then by performing a suitable measurement, Bob has

‘a non-vanishing probability of driving [Alice’s] system into any state he chooses’.1 In fact,

Schrödinger found this behaviour ‘very disconcerting’ and doubted whether the notion of

steering could really be true.

Unaware of Schrödinger’s work, Hughston, Jozsa and Wootters rediscovered the steering

theorem in 1993 [12], building on earlier work by Gisin [13] (for a more detailed discussion of

the history, see Ref. [14]). The pure state steering theorem is thus sometimes known as the

Schrödinger-HJW theorem. We give this below, expressed in modern terminology, and illustrate

it in Figure 1.1.

Theorem 1.1: Schrödinger-HJW theorem

When Alice and Bob share a pure bipartite state |ψ〉, a measurement by Bob can steer

Alice’s system to the convex decomposition {pi, ρi} if and only if ρA =
∑

i piρi, where

ρA = trB (|ψ〉 〈ψ|).

The proof may be found in any of the historical references given above or, perhaps most clearly

using modern quantum information notation, in Ref. [15].

It was not until 2007 that the notion of so-called EPR-steerability was formalised and

extended to mixed states by Wiseman et al. in Refs. [16, 17]. A quantum state can demonstrate

the steering effect that so troubled Schrödinger if and only if we cannot write

ρ̂
i|j
A =

∑
λ

pλ pi|j,λ φλ (1.2)

1Throughout this thesis, we adopt the steering ellipsoid convention set in Ref. [11] that Bob is the steering party
and Alice is the steered party. Note that literature on EPR-steering generally takes Alice to be the steering party
instead.
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for all measurement outcomes Mi|j . Here pλ and pi|j,λ are probability distributions involving a

local hidden variable (LHV) λ, and φλ is a local hidden state (LHS) for Alice. If we can write (1.2)

then Bob’s steering of Alice could be explained simply by underlying classical correlation be-

tween Alice’s LHS and Bob’s LHV.1 Otherwise, we are demonstrating genuine quantum steer-

ing, and the state ρ is steerable from Bob to Alice.

The development of a modern formulation of EPR-steering has led to a remarkable resur-

gence of interest in the phenomenon, and there is now an ever-growing body of work devoted

to examining all the varied facets of quantum steering. To name but a few, topics include the

formulation of steering inequalities, experimental demonstrations of steering, development of

a resource theory of steering, investigations into the use of steering in quantum key distribu-

tion and subchannel discrimination, and the quantification of steerability. For a recent review

of these topics and many more, the reader is referred to Ref. [18].

In the quantum steering ellipsoid picture we consider a slightly different and comple-

mentary perspective to the EPR-steering approach given above. Instead of considering the

existence of a local hidden state model, we focus instead on the set of reduced states to which

Alice can be steered by Bob’s measurement. It is this perspective that will allow us to develop

a powerful tool for visualising two-qubit states.

1.3 VISUALISATION OF QUANTUM STATES

Given a Hilbert space H of dimension d, the number of real parameters required to specify a

quantum state ρ is d2 − 1.2 For the case of a qubit (d = 2), the three parameters can easily

be visualised as a Bloch vector [19]. For higher-dimensional systems, however, there is no

simple geometric picture; already for the system of two qubits it is a significant challenge to

geometrically represent all 15 parameters.

In the following section we recall the Bloch vector representation of a single qubit state.

We then present the quantum steering ellipsoid representation for two-qubit states. A useful

visualisation scheme for quantum states should reveal physical properties of the quantum state

through the representation’s geometric features. Ideally, the scheme should also be faithful,

allowing any state to be represented as well as providing a method for uniquely reconstructing

ρ from the representation. We will see that the steering ellipsoid formalism, like the Bloch

1This places steering as a form of correlation intermediate between Bell-nonlocality and entanglement. A state
is Bell-nonlocal if joint measurement probabilities cannot be explained by a LHV for Alice and Bob; a state is
entangled if joint measurement probabilities cannot be explained by a LHS for Alice and Bob. For pure states,
entanglement, steerability and Bell-nonlocality are all equivalent; for mixed states, the hierarchy is strict [16, 17].

2A general linear operator on the Hilbert space is given by ρ ∈ Cd×d and has 2d2 real parameters. The constraint
tr ρ = 1 and Hermiticity reduce this to d2 − 1.
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Figure 1.2: The Bloch vector representation of a single qubit state: r lies inside the unit ball B.

vector picture, achieves both of these desiderata. At the end of the chapter we present some

alternative schemes for visualising two-qubit states and discuss the representation of systems

beyond two qubits.

1.4 VISUALISING A SINGLE QUBIT: THE BLOCH VECTOR

The single qubit system is the most fundamental unit in quantum information theory, analo-

gous to a bit in classical information [7]. A single qubit state ρ acts on H = C2. The identity

matrix 1 and the Pauli matrices σ = (σx, σy, σz) form a basis for the set of Hermitian operators

onH.1 We may thus parametrise the state of a qubit as

ρ = 1
2(1+ r · σ), (1.3)

where r ∈ R3 is the Bloch vector. Equivalently, letting σ0 = 1, we may write2

ρ =
1

2

3∑
µ=0

rµσµ, (1.4)

with rµ = tr(ρ σµ), and consider instead the four-vector R = (r0, r). This notation will be

extremely useful when we derive the form of the steering ellipsoid using four-dimensional

geometry in Chapter 2.

Note that by construction ρ is unit trace (r0 = 1). The constraint of positivity, ρ ≥ 0, is

equivalent to r ≤ 1, where r := |r|. We can thus identify the Bloch vector of a single qubit state

as a point inside the unit ball B (see Figure 1.2).

1Under the Hilbert-Schmidt inner product (A,B) := tr(A†B) this is in fact an orthonormal basis after normalisa-
tion.

2We adopt the general convention that Greek indices run from 0 to 3 whilst Latin indices run from 1 to 3.
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We could of course have represented ρ by a different set of three parameters, which could

then be depicted using some other geometric picture. The significance of the Bloch vector

representation, and the reason for its ubiquity, is that there is substantial physical meaning

underlying the representation. Some interesting physical properties of a single qubit state and

the corresponding geometric interpretation in the Bloch vector picture are given below.

• The purity of a state is given by tr(ρ2) = 1
2(1 + r2) and thus directly relates to the mag-

nitude of the Bloch vector. In particular, any pure state lies on the Bloch sphere, i.e. the

surface of the Bloch ball, denoted ∂B. The maximally mixed state ρ = 1
21 is given by the

origin.

• Orthogonal pure states are given by antipodal points on the Bloch sphere.

• The expectation of some observable A corresponding to four-vector (a0,a) is tr(ρA) =

1
2(a0 + a · r). In particular, note that if A is the spin operator along some unit direction

â then the expectation value is simply given by an inner product: tr(ρA) = r · â. The

probability of obtaining the measurement outcome corresponding to ±1 is 1
2(1 ± r · â).

Finding these probabilities geometrically corresponds to projecting the Bloch vector onto

â and then comparing the lengths of line segments.

• Unitary operations on the qubit correspond to rotations of the Bloch vector.

1.5 VISUALISING TWO QUBITS: THE STEERING ELLIPSOID

Most of the interesting features in quantum information theory arise only when we consider

multiple qubits and how they interact. In particular, entanglement between qubits is a key re-

source that lies at the heart of almost all quantum information protocols. More fundamentally,

the nature of quantum correlations underlies many results in the foundations of quantum me-

chanics. Indeed, in the same paper in which he introduced the notion of steering, Schrödinger

famously described entanglement as ‘not ... one but rather the characteristic trait of quantum

mechanics’ [9].

A system of two qubits is the most fundamental unit for studying such correlations. A

two-qubit state ρ ∈ L(C2 ⊗C2) can be expressed in the basis (1,σ)⊗2 as

ρ =
1

4
(1⊗ 1+ a · σ ⊗ 1+ 1⊗ b · σ +

3∑
i,j=1

Tij σi ⊗ σj). (1.5)

Alternatively, using the four-vector notation, we can write

ρ =
1

4

3∑
µ,ν=0

Θµν σµ ⊗ σν , (1.6)
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Figure 1.3: An example of the geometric data that describes a two-qubit state: Alice’s steering ellipsoid
EA and the two local Bloch vectors a and b inside the Bloch ball B.

with Θµν = tr(ρ σµ ⊗ σν). As a block matrix we have Θ =
(
1 bᵀ

a T

)
.

A two-qubit state is thus described by two Bloch vectors a and b and a correlation matrix

T ∈ R3×3. The Bloch vectors describe local behaviour of Alice’s and Bob’s individual qubits,

whilst any interesting non-local behaviour associated with the two-qubit state is encoded in the

correlation matrix. Note that ρ is unit trace and Hermitian by construction. However, finding

constraints to ensure that ρ is positive semidefinite and hence represents a physical quantum

state is a much less trivial task than it was for a single qubit. We will find such conditions

in Chapter 3; for now we assume that ρ ≥ 0 in order to facilitate a reasonably non-technical

presentation.

1.5.1 DEFINITION

Visualising the two Bloch vectors is straightforward: a and b can simply be represented as

points inside the Bloch ball B. The structure of correlations between Alice and Bob will be

captured by Alice’s steering ellipsoid, which we denote EA. This ellipsoid will always lie inside

the Bloch ball; we write this as EA ⊆ B. Thus the geometric data associated with a single qubit

state was a Bloch vector r; the geometric data associated with a two-qubit state is (a, b, EA).

Figure 1.3 illustrates a typical example.

We have already outlined the phenomenon of steering: when Alice and Bob share a cor-

related state then Bob’s local measurement can steer Alice’s local state as ρA 7→ ρ′A, as in (1.1).1

1We will not generally be interested in which POVM a measurement outcome is associated with, and so we drop
the label i|j and refer to a measurement outcome simply as M and the steered state as ρ′A.
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Figure 1.4: When Alice and Bob share a two-qubit state ρ, Bob’s local measurement remotely steers
Alice’s Bloch vector from a to a′. This phenomenon is the basis for the steering ellipsoid representation.

For a two-qubit state, Bob’s measurement will alter Alice’s local Bloch vector as

a = tr(ρA σ) 7→ a′ = tr(ρ′A σ). (1.7)

Alice’s steered Bloch vector a′ depends on the measurement outcome M that Bob obtains. The

two-qubit steering scenario is illustrated in Figure 1.4).

Alice’s steering ellipsoid EA may then be defined as follows:

Definition of the steering ellipsoid

EA is the set of Bloch vectors to which Alice can be steered with non-zero probability

given all possible local measurement outcomes for Bob:

EA =

{
a′ = tr(ρ′A σ)

∣∣∣ ρ′A =
trB [ρ (1⊗M)]

tr [ρ (1⊗M)]
,M ∈ POVM

}
.

The steering ellipsoid was initially presented in work by Verstraete [20] and Shi et al. [21, 22],

before a more thorough study by Jevtic et al. uncovered many more features of the representa-

tion [11]. Some of these key features will be highlighted after we outline some of the steering

ellipsoid’s most fundamental properties.

1.5.2 PURE AND MIXED STATES

Let us firstly consider the simplest case of a pure two-qubit state ρ = |ψ〉 〈ψ|. This is called a

product state if it can be written as |ψ〉 = |φ〉 ⊗ |ν〉, where |φ〉 and |ν〉 are pure states for Alice

and Bob. Any state that cannot be written in this way is entangled.

When ρ is a product state then no steering is possible, and Alice’s steering ellipsoid is just

a point: EA = a. However, when Alice and Bob share a pure entangled two-qubit state, one

finds that Alice’s qubit can be steered to any state (pure or mixed) inside the Bloch ball, so that

21



1. BACKGROUND

Figure 1.5: For a pure two-qubit state, the steering ellipsoid is either the Bloch ball (left) or a point
(right), corresponding to an entangled state and a product state respectively. The entangled state shown
here is the Bell state |ψ−〉 = (|01〉 − |10〉)/

√
2; in terms of the Pauli basis representation (1.5), we have

a = b = 0 and T = diag(−1,−1,−1). The product state shown here is |10〉, for which we have a =
(0, 0,−1), b = (0, 0, 1) and T = diag(0, 0, 0).

EA = B. This expresses in geometric terms the surprising result of Theorem 1.1 applied to two-

qubit states. It should be emphasised that EA = B for all pure entangled two-qubit states and

not for just, say, maximally entangled states. Steering ellipsoids for pure states are illustrated

in Figure 1.5.

The case of a mixed state is much more interesting (see Figure 1.6). A bipartite state ρ is

described as separable if it admits a convex decomposition {pi, φi⊗νi}, where φi and νi are local

states for Alice and Bob. Any state that does not admit such a decomposition is entangled. The

steering ellipsoid for a mixed two-qubit state cannot be the whole Bloch sphere: EA ( B.

Ref. [11] found the relationship dim EA = rank Θ − 1 that relates the dimension of the

steering ellipsoid to the two-qubit Pauli basis matrix Θ. Hence a steering ellipsoid can be

degenerate, i.e. an ellipse, line or a point (as it was for a pure product state). Any entangled

state ρ must have full rank Θ and hence a fully three-dimensional steering ellipsoid [11]; a

degenerate EA will describe a separable state.

1.5.3 GEOMETRIC DESCRIPTION

Note that Bob’s steering ellipsoid EB can be defined analogously using the set of states to

which he can be steered by Alice’s measurement, and it would be equally valid to consider

instead the geometric data (a, b, EB). Although EA and EB can be quite different, we always

have dim EA = dim EB . Unless stated otherwise, we will consider Alice’s steering ellipsoid and

drop the label A so that E ≡ EA. Note that Alice’s Bloch vector must be contained within her
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Figure 1.6: For a mixed two-qubit state, the steering ellipsoid cannot be the whole Bloch ball. We
picture here an example of an entangled state (left) and a separable state (right). The entangled state
has a = (0, 0, 1/3), b = 0, T = diag(

√
2/3,

√
2/3,−2/3) and is an example of a maximally obese state

that will be discussed in Section 4.4. The separable state shown is ρ = (|00〉 〈00|+ |++〉 〈++|)/2, where
|+〉 = (|0〉+ |1〉)/

√
2. This has a = b = (1/2, 0, 1/2), T = diag(1/2, 0, 1/2), and the steering ellipsoid is a

line.

steering ellipsoid so that we always have a ∈ EA (Bob steers Alice to this state when he obtains

the trivial measurement outcome 1).

Recall that a two-qubit state is given by 15 real parameters: 3 for each of the Bloch vectors

a and b, and 9 for the correlation matrix T . It is instructive to consider how the geometric data

(a, b, E) matches up with this parameter count. The Bloch vectors are directly given, whilst

the remaining 9 parameters are encoded in the steering ellipsoid as follows: 3 parameters

give the vector c describing the centre of E , 3 parameters give the lengths of the axes of E ,

and 3 parameters give the orientation of these axes (the Euler angles of E). The lengths and

orientation of the axes can be encoded using the eigenvalues and eigenvectors of a symmetric

matrix Q ∈ R3×3.

Full expressions for c and Q will be found in Section 2.1.4; for now, we simply note

that the geometric description of E can be conveniently expressed using (c, Q). Indeed, since

the interesting features of two-qubit states concern the correlations encoded in E , much of

our work will focus on the geometry of E only, and we will often characterise a state using

only (c, Q); it is taken that a and b could be represented as points inside B without explicitly

showing them.
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1.5.4 FAITHFULNESS

The faithfulness of the steering ellipsoid representation is proven in Ref. [11]. We note here a

slight technicality associated with reconstructing ρ from the geometric data (a, b, E). Consider,

for example, the case that ρ is some maximally entangled pure state; any such state has a =

b = 0 and E = B. It would therefore seem that we cannot distinguish between these states

using the geometric data alone.

The ambiguity arises from the fact that a local unitary operation by Bob does not alter the

set of states contained in E , and we can provide a resolution by also specifying Bob’s choice of

basis. One way to do this within the steering ellipsoid formalism is to give the directions of the

axes of E explicitly rather than showing the surface ∂E alone. Alternatively, one could colour

in red, green and blue the points where these axes meet ∂E [23]. These methods indicate which

measurement outcome for Bob is associated with which steered state for Alice and resolve the

ambiguity of Bob’s basis choice. Hence, if E is considered to be described by its axes rather

than as the set of enclosed Bloch vectors then the geometric data (a, b, E) does indeed give a

faithful description of ρ.

It should be noted that, although every two-qubit state ρ can be described by the geomet-

ric data (a, b, E), not every set of geometric data will necessarily describe a two-qubit state.

This is intimately related to the task of finding constraints for the positivity of ρ. In fact, in

Chapter 7, we will find that the steering ellipsoid formalism goes beyond representing two-

qubit states alone, and that the geometric data corresponding to an operator ρ for which ρ � 0

describes an entanglement witness.

1.5.5 IMPORTANT PROPERTIES

Let us briefly review some of the geometric features of the steering ellipsoid formalism found

in Ref. [11]. Perhaps the most remarkable result is the nested tetrahedron condition, which will

form the basis of the work in Chapter 8.

Nested tetrahedron condition

E corresponds to a separable state if and only if there exists a (possibly degenerate)

tetrahedron circumscribed about E and inscribed in B.

In other words, a separable state is described by a steering ellipsoid that fits inside a tetra-
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Figure 1.7: An example of the nested tetrahedron condition: the steering ellipsoid must describe a sepa-
rable two-qubit state, since it fits inside a tetrahedron whose vertices lie inside the Bloch ball. (Adapted
from Ref. [11].)

hedron whose vertices are inside the Bloch ball, as shown in Figure 1.7.1 We will outline a

derivation of the nested tetrahedron condition in Chapter 8. For now, we note that the con-

vex decomposition of two-qubit separable state can be decomposed into a sum of four terms,

ρ =
∑4

i=1 piφi ⊗ νi [24]; the states φi will have Bloch vectors corresponding to the vertices of

the nested tetrahedron.

This nested tetrahedron condition provides a beautiful connection between steering ellip-

soid geometry and the most important property of a two-qubit state. It is also possible to find

an algebraic condition for the entanglement of a state in terms of rotational invariants of the

ellipsoid parameters (c, Q). This identifies three geometric contributions to the entanglement

of ρ: the distance of the steering ellipsoid centre from the origin (c), the size of the ellipsoid

(given by terms such as detQ and trQ) and the skew cᵀQc.

Ref. [11] also gives geometric conditions for a two-qubit state to have quantum discord,

a measure which goes beyond entanglement and aims to capture the total extent of quantum

correlations [25, 26]. Specifically, ρ is zero discord for Alice if and only if her steering ellipsoid

is a segment of a diameter.2

We thus see that the steering ellipsoid picture is endowed with considerable physical

significance, as important properties of a two-qubit state are manifest in the geometry of the

representation. Some of the work in this thesis seeks to build on this perspective by devel-

1As we shall see when we investigate this condition, this tetrahedron is far from unique. In fact, owing to Poncelet’s
porism, the existence of such a nested tetrahedron implies the existence of an entire continuous family of such
tetrahedra.

2Note that, unlike entanglement, discord is an asymmetric notion: there exist states which are zero discord for Alice
but non-zero discord for Bob, i.e. states for which EA is a segment of a diameter and EB is not (although EB must
still be some 1-dimensional line segment).
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oping further interpretations of the geometric properties of steering ellipsoids. In particular,

in Chapter 5 we will see the significance of ellipsoid volume, and then in Chapter 6 we will

investigate other functions that describe the size of the steering ellipsoid.

1.6 ALTERNATIVE REPRESENTATIONS OF TWO-QUBIT STATES

It should be noted that other systems for geometrically representing two-qubit states have been

developed. However, to the best of our knowledge, there is no method that is comparable

to the steering ellipsoid in providing a faithful, intuitive and physically relevant picture. In

particular, a key feature of the steering ellipsoid representation is that it is based on the familiar

Bloch vector picture for a single-qubit, and all the relevant data can be visualised on a single

Bloch sphere. This is certainly not to say that alternative schemes are without value; rather,

the most appropriate representation should be chosen according to the context. We give here

a brief summary of these alternatives.

• For visualising pure two-qubit states various methods have been proposed. The formal

mathematical extension of the Bloch sphere gives a 7-dimensional sphere [27], which

clearly does not provide an accessible visual representation. Alternatively, pure states

can be visualised by considering a simplex whose vertices are the computational basis

states, but this cannot be easily extended to mixed states [19].

• For mixed states, Avron et al. have developed a scheme which partitions two-qubit

states into SLOCC (stochastic local operations and classical communication) equivalence

classes [28, 29]. This provides a geometric perspective on a number of results, in partic-

ular entanglement and Bell nonlocality. However, partitioning into equivalence classes

represents a significant coarse-graining and hence the scheme is far from faithful.

• There is a well-known scheme for visualising T states [30], the set of two-qubit states for

which the marginals are maximally mixed (a = b = 0). A T state may be represented by

a 3D correlation vector. However, in addition to not being faithful, this scheme does not

use the Bloch sphere and it is difficult to develop any intuition for what this correlation

vector means.

• Perhaps most notable as a scheme offering similar features to the steering ellipsoid pic-

ture is the work of Gamel [31]. This scheme represents any two-qubit state using a set

of vectors on two entangled Bloch spheres. This is very recent work, and it remains to

be seen exactly how far the formalism can be exploited to study physical properties of

two-qubit states.
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1.7 EXTENSIONS TO HIGHER DIMENSIONS

Although the steering ellipsoid was originally conceived as a tool for visualising two-qubit

states, it is very natural to consider whether it can be extended to higher dimensional quantum

systems. Consider an n-partite quantum system, where the dimension of each local Hilbert

space is given by di, with i = 1, . . . , n. The composite Hilbert space is H =
⊗

iC
di and has

dimension d =
∏
i di. For a two-qubit system, we have n = 2 and d1 = d2 = 2, so that

d = 4. Recall that the number of real parameters required to specify a d-dimensional quantum

state is d2 − 1. It should therefore be possible to use the same steering ellipsoid construction

to faithfully represent the quantum state of any system for which d ≤ 4. Furthermore, we

may also be able to extend the formalism to provide a (possibly unfaithful) representation for

systems with d > 4.

Most simply, we might use steering ellipsoids to visualise single-party states for a qutrit

(d = 3) and a ququart (d = 4). The Hilbert space associated with a ququart, H = C4, is

isomorphic to that of two qubits, and one could directly map the computational basis states

of a ququart onto the two qubit system (e.g. |0〉 → |00〉 , |1〉 → |01〉 , |2〉 → |10〉 , |3〉 → |11〉).

For a qutrit, there is ‘room to spare’ in the two-qubit Hilbert space, and one might map to

the symmetric subspace as |0〉 → |00〉 , |1〉 → |11〉 , |2〉 → |01〉 + |10〉. Hence, by embedding a

single-party state in a two qubit system, we could in principle provide a faithful representation

of qutrits and ququarts. However, the scheme appears rather contrived: we lose the physical

interpretation of one party remotely steering another, and it is not immediately clear what the

value of such a representation might be.

A higher dimensional single-party system can of course be represented by generalising

the notion of the Bloch vector. For example, analogous to the expression for the state of a qubit

ρ = 1
2(1+r ·σ), we can write the state of a qutrit as ρ = 1

3(1+r ·λ) ∈ L(C3), where r ∈ R8 is the

generalised Bloch vector and λ denotes the set of Gell-Mann matrices. However, whilst the Pauli

matrices yield the 3D Bloch ball B, the structure of the Gell-Mann matrices is more complex

and the corresponding 8-dimensional generalised Bloch vector space does not benefit from

such simple underlying symmetries. The structure of this space is in fact highly non-trivial

and has been investigated in detail by a number of authors (see, e.g., [32–34]). In particular,

the space of operators for which ρ ≥ 0 is very complicated and is generally characterised by

taking different cross-sections through the space. Moreover, unitary operations on the qutrit

do not correspond to straightforward rotations of r [31]. The utility of the generalised Bloch

vector is thus rather limited as an intuitive tool for visualising higher dimensional single-party
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states.

For a bipartite state (n = 2) where Alice holds a qudit (d1 > 2) and Bob holds a qubit

(d2 = 2), a generalised steering ellipsoid EA can still be found in the generalised Bloch sphere.

Ref. [11] discusses how results for the two-qubit steering ellipsoid partially carry over into

this generalised scenario (for example, the nested tetrahedron condition will still be sufficient

but no longer necessary for separability). However, owing to the difficulty of visualising the

generalised Bloch vector, such qudit-qubit scenarios have not been investigated in detail.

Finally, we might consider multipartite states (n > 2) in which every party holds a qubit

(di = 2). For such a state ρ, we can consider the set of steering ellipsoids that describe the

reduced two-qubit density matrices ρij = tr\ij ρ, where tr\ij denotes the partial trace over

all systems except qubits i and j. The simplest case, n = 3, will be explored in Chapter 5.

We shall see that when Alice, Bob and Charlie each hold a qubit, the steering ellipsoids that

describe ρAB , ρBC and ρCA obey certain monogamy properties; these relations have recently

been extended to scenarios with n > 3 [6].
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SUMMARY AND DISCUSSION OF CHAPTER 1

We have seen how the notion of steering, originally conceived by Schrödinger in 1935, can be

used as the basis of a graphical representation for two-qubit states. The steering ellipsoid E

describes the set of states to which Alice can be steered given all possible measurements by

Bob; together with the local Bloch vectors, this information provides a faithful representation.

All the geometric data can be depicted inside a single Bloch sphere, giving us an intuitive

picture that naturally extends the Bloch vector scheme for a single-qubit state.

The steering ellipsoid can represent both pure and mixed states. E for a pure entangled

state is the whole Bloch ball B, whilst a mixed state is entangled if and only if E does not fit

inside a tetrahedron inside B. In addition to entanglement, quantum discord is also manifest

through the geometric properties of E . In this thesis we will find that further quantum cor-

relation measures such as fully entangled fraction and CHSH nonlocality also have natural

interpretations in the steering ellipsoid picture. Before investigating the formalism in detail,

however, we first provide a full derivation of the steering ellipsoid.
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CHAPTER 2

4D BICONES AND 3D ELLIPSOIDS

In this chapter we derive expressions for the parameters (c, Q) that give the centre and semi-

axes of the steering ellipsoid E for a two-qubit state ρwith Bloch vectors a and b and correlation

matrix T . There are two possible routes for the derivation:

(1) Perform a canonical filter to transform a two-qubit state ρ into a canonical state ρ̃ for which

b̃ = 0. The steering ellipsoid is invariant under this transformation, and finding E for a

canonical state is algebraically much more straightforward than for a general state with

non-vanishing b. One can then convert the canonical expressions for (c, Q) back into

terms of the original non-canonical a, b and T .

(2) Work directly with a general two-qubit state ρ and use geometric considerations. The set

of steering outcomes for ρ is a skewed bicone in 4D Euclidean space. When projected onto

the Bloch ball B, this skewed bicone yields E . Projective geometry then gives expressions

for (c, Q) in terms of a, b and T .

Method (1) is the ‘traditional’ method initially suggested in work by Verstraete [20] and Shi et

al. [21, 22]. Jevtic et al. provided the clearest and most complete derivation using this approach,

giving for the first time general expressions for (c, Q) [11]. Method (2) was recently developed

by Nguyen and Vu [35], but the derivation given there does not proceed all the way to an

explicit parametrisation of E . Here we present a derivation using the novel geometric picture

of Nguyen and Vu and extend their work to produce expressions for (c, Q).1

Although the steering ellipsoid can be derived without use of the canonical filter, we will

find the concept of canonical states to be essential anyway. Following our derivation of the

steering ellipsoid, we describe the significance of the canonical transformation and show how

it can be used to derive a standard form of two-qubit state. This family of canonical states will

be the basis of much of the subsequent work in this thesis.

1The author is very grateful to Chau Nguyen for his assistance with the derivation presented in this chapter.
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2. 4D BICONES AND 3D ELLIPSOIDS

2.1 DERIVATION OF THE STEERING ELLIPSOID

2.1.1 4D BICONE OF MEASUREMENT OUTCOMES

We begin by recalling the 4D notation used in Section 1.4 for single-qubit states. Any Hermitian

operator A ∈ L(C2) may be written in the Pauli basis (1,σ) as

A =
1

2

3∑
µ=0

aµσµ, (2.1)

where aµ = tr(Aσµ). We can then identify A with a (column) vector in 4D Euclidean space:

A = (a0,a) ∈ R4. Note that the zero operatorO corresponds to the originO = (0,0), whilst the

identity operator 1 corresponds to I = (2,0). For convenience, we will slightly abuse notation

and often treat an operatorA and its four-vector representationA as equivalent objects without

further remark; thus a set A := {A}may be directly described as A := {A}.

Consider now the set of positive operatorsM+ := {M |M ≥ 0}. In the Euclidean picture,

M ≥ 0 if and only if the corresponding M = (m0,m) satisfies m0 ≥ 0 and m2 ≤ m2
0, where

m := |m|. Thus we have

M+ :=
{
M | m0 ≥ 0,m2 ≤ m2

0

}
. (2.2)

This is a convex cone with vertex O [19].1 We callM+ the forward light cone at O.2 Consider

also the set of operatorsM− := {M |M ≤ 1}, which corresponds to the backward light cone

at 1. The setM :=M+ ∩ M− is a bicone.3

We now show that this 4D bicone has an immediate interpretation as the set of measure-

ment outcomes. Recall that a general measurement in quantum mechanics is a POVM, given

by a set of n measurement outcomes
{
Mi|j

}n
i=1

that satisfy Mi|j ≥ 0 and
∑

iMi|j = 1 [7].

Dropping the subscript i|j, which labels the choice of POVM j and the outcome obtained i, we

can thus identify any measurement outcome M as an operator satisfying 0 ≤ M ≤ 1, which

by definition belongs toM. Conversely, any M ∈ M can be associated with a measurement

outcome for some POVM (take, for example, the POVM {M,1−M}). Thus the biconeM is

precisely the set of all single-qubit measurement outcomes.

One can similarly identify the equator of M as the set of single-qubit states. Note that

1M+ is a cone since ∀M ∈ M+, λ ≥ 0 we have λM ∈ M+; and it is convex since ∀M1,M2 ∈ M+, 0 ≤ λ ≤ 1 we
have λM1 + (1− λ)M2 ∈M+.

2This terminology follows by analogy with special relativity after making the identification of the timelike compo-
nent m0 ≡ ct and spacelike component m ≡ x in Minkowski space. Later in Section 2.2.2, we shall see that this
analogy extends further by giving a correspondence between local filtering operations and Lorentz transforma-
tions.

3Here we modify terminology compared to Ref. [35], which referred toM as a double cone. A double cone typically
refers to two cones joined at the apex, whilst a bicone is formed by cones joined at the base.
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2. 4D BICONES AND 3D ELLIPSOIDS

Figure 2.1: An illustration of the 4D Euclidean geometry. The timelike component runs vertically and
the spacelike components are orthogonal to this. The bicone of measurement outcomes M is the in-
tersection of the forward light cone at O = (0,0) and the backward light cone at 1 = (2,0), i.e.
M := M+ ∩ M−. The yellow hyperplane P is the Bloch hyperplane consisting of unit trace opera-
tors; this intersects the bicone at its equator to give the Bloch ball B = P ∩M.

the trace of any operator M corresponds to its timelike component: trM = m0. The 3D Bloch

hyperplane is defined by P := {M | m0 = 1}. Denote by R the four-vector corresponding to a

Hermitian operator ρ; this operator is a state if and only if ρ ≥ 0 and tr ρ = 1. A single-qubit

density operator with Bloch vector r is thus given by R = (1, r) ∈ M+. The Bloch ball B,

which describes the set of all single-qubit states, thus corresponds to the intersection of P and

M+. Owing to the symmetry of M, this is precisely the equatorial ball of the measurement

bicone: B = P ∩M. The relevant geometry is illustrated in Figure 2.1.

A hyperplane parallel toP describes the set of Hermitian operators with some fixed trace;

any operator in M+ thus corresponds to an unnormalised state ρ̂ with corresponding four-

vector R̂. A subnormalised state will have r̂0 < 1 and can be normalised by the operation

ρ̂ 7→ ρ =
ρ̂

tr ρ̂
. (2.3)

Geometrically, this is a perspective projection onto the Bloch hyperplane with centre of projec-

tion O [36], i.e. a projection of R̂ from O onto P . We write this as R = P(R̂) and illustrate the

transformation in Figure 2.2. Recall that a pure state is an extremal point of the Bloch ball and

lies on ∂B; similarly, an unnormalised pure state will lie on ∂M+. The normalised maximally

mixed state ρ = 1
21 is at the centre of B.

We have seen that a Hermitian operator on the single-qubit spaceH = C2 corresponds to

a vector in 4D Euclidean space R4. In figures, however, we draw geometric representations of
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2. 4D BICONES AND 3D ELLIPSOIDS

Figure 2.2: The projection of a point R̂ ∈ M+ from O onto the Bloch ball B. The yellow hyperplane
describes the set of subnormalised operators with some given trace; projection of a subnormalised state
onto B gives a normalised state with four-vector R = P(R̂). The maximally mixed state lies at the
centre of B.

objects inR3. This geometry in fact corresponds exactly to that of a rebit, i.e. a qubit with purely

real entries, the basis of such operators being simply (1, σx, σz) [19]. We can thus develop an

intuition for our complete 4D picture by considering the 3D space that we draw and simply

‘adding’ an extra spacelike component for σy. For example, in Figure 2.1, the Bloch hyperplane

P is depicted as a 2D surface, and its intersection with the 3D bicone M gives a 2D circular

‘Bloch disc’ B. Adding a dimension, we see that in the full 4D Euclidean space in which we are

actually operating, the intersection P ∩Mwill give a 3D ball B.

2.1.2 4D SKEWED BICONE OF STEERING OUTCOMES

Using this 4D Euclidean picture, we now consider the steering scenario discussed in Section 1.3

and depicted in Figure 1.4. Say that Alice and Bob share a two-qubit state ρ ∈ L(HA ⊗ HB),

whereHA = HB = C2. We write this as

ρ =
1

4

3∑
µ,ν=0

Θµν σµ ⊗ σν , (2.4)

where Θµν = tr(ρ σµ ⊗ σν) and the block matrix Θ =
(
1 bᵀ

a T

)
∈ R4×4.

Alice’s reduced state is given by ρA = trB ρ ∈ L(HA), and her Bloch vector is a =

tr(ρA σ). When Bob performs some POVM and obtains outcome M ∈ L(HB), Alice’s state

is steered to ρ′A. To be precise, Alice’s subnormalised state will be ρ̂′A = trB [ρ (1⊗M)], where

the normalisation pM = tr ρ̂′A = tr [ρ (1⊗M)] gives the probability of Bob obtaining measure-

ment outcome M . Indeed, we define the EPR map when Bob steers Alice as [35]

S : L(HB) 7→ L(HA) : M 7→ trB [ρ (1⊗M)] . (2.5)

In the four-vector picture, the EPR map can be realised as a straightforward matrix multi-
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2. 4D BICONES AND 3D ELLIPSOIDS

Figure 2.3: The skewed bicone of steering outcomes is the image of the EPR map S applied toM. Here
S(M) is shown in pink insideM (in fact, S(M) lies wholly withinM+). The equator of S(M) is given
by the image of the Bloch ball, S(B), and is not in general parallel to the Bloch hyperplane. The vertices
of the skewed bicone are at S(O) = O and S(1) = ρA ∈ B.

plication. As usual, we treat the four-vector representation as equivalent to the operator itself,

M ≡ M , and write S(M) to emphasise the geometric interpretation of the expression. Say

that Bob obtains the measurement outcome M = 1
2

∑3
ν=0mνσν . Then

S(M) =
1

4

3∑
µ,ν=0

Θµν σµ ⊗ tr(M σν)

=
1

2

3∑
µ=0

(
1

2

3∑
ν=0

Θµνmν

)
σµ

=
1

2
ΘM . (2.6)

Explicitly performing the matrix multiplication, we have S(M) = 1
2(m0 + b ·m,m0a+ Tm).

We denote the image under the EPR map of a set B ⊆ L(HB) similarly as S(B). The set

of steering outcomes is the set of subnormalised states to which Alice can be steered given all

possible measurement outcomes for Bob, and may thus be written as

S(M) := {S(M) |M ∈M}

= {trB [ρ (1⊗M)] |M ∈M}

=
{
1
2ΘM |M ∈M

}
. (2.7)
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2. 4D BICONES AND 3D ELLIPSOIDS

Figure 2.4: Alice’s steering ellipsoid E is found by the projection of the steering outcomes skewed bicone
onto B, i.e. one applies the operation depicted in Figure 2.2 to every point inside S(M). The result of
this projection is shown in blue. By convexity of S(M), we clearly need only project the equator of
S(M), so that E = P(S(B)). This projection is equivalent to normalising the (necessarily positive)
operators contained within S(M), yielding the set of normalised states E ⊆ B.

The EPR map is a linear transformation, so that the set of steering outcomes also forms a

bicone. However, this bicone may now be skewed, i.e. the equator of S(M), which corresponds

to the image of the Bloch ball S(B), is not in general parallel to B. The two vertices of the

biconeM transform as S(O) = O and S(1) = ρA. Hence the steering outcomes bicone S(M)

has vertices at O and ρA ∈ B, as shown in Figure 2.3.

2.1.3 3D STEERING ELLIPSOID

We now proceed to find Alice’s steering ellipsoid E ⊆ B. We will show how E can be obtained

by projecting the skewed bicone of steering outcomes onto the Bloch hyperplane, and then we

will find explicit expressions for the parameters (c, Q) describing the centre and semiaxes of E .

Recall that E is the set of Bloch vectors to which Alice can be steered given all possible

local measurement outcomes for Bob. The set of steering outcomes gives precisely these states

but unnormalised. We normalise a single-qubit state by performing the transformation given

in (2.3), which geometrically corresponds to the perspective projection map P. We thus have

E = P(S(M)). By the convexity of S(M), we in fact need project only the image ofM+, or

indeed only the image of the Bloch ball (see Figure 2.4): E = P(S(B)).

Recall that M ∈ B if and only if m0 = 1 and m ≤ 1; then S(M) = 1
2(1 + b ·m,a + Tm)

gives Alice’s subnormalised state ρ̂′A. Normalising this gives Alice’s steered state as ρ′A =

P(S(M)) = (1,a′), where

a′ =
a+ Tm

1 + b ·m
(2.8)

is Alice’s steered Bloch vector. We thus have:
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2. 4D BICONES AND 3D ELLIPSOIDS

The steering ellipsoid as a projection from 4D

Alice’s steering ellipsoid is given by the projection of Bob’s steering outcomes onto the

Bloch hyperplane: E = P(S(M)). In terms of Bloch vectors, this gives

E =

{
a′ =

a+ Tm

1 + b ·m

∣∣∣ m ≤ 1

}
.

This clearly corresponds to the definition of E given in Section 1.5.1, where we have now ex-

plicitly evaluated the expression for a′.

That E is indeed an ellipsoid is not immediately obvious from this expression (except

when b = 0). However, we can gain some further understanding by considering the 3D ge-

ometry of the rebit scenario drawn in the figures. S(M+) is then a 3D cone whose base is not

in general parallel to the Bloch disc B. The intersection S(M+) ∩ B will therefore produce an

elliptic conic section. In our 4D geometry, E will be the corresponding conic section but with

an extra dimension, i.e. an ellipsoid. More formally, the equator of the steering outcomes bi-

cone is S(B); this is the image of a linear map on B and so must be an ellipsoid. By projective

geometry, E = P(S(B)) must then also be an ellipsoid.

The dimension of the steering ellipsoid, dim E , may easily be found using this 4D picture.

From (2.7), we know that dim S(M) = rank Θ. Since dim P(S(M)) = dim S(M)− 1, we have

dim E = rank Θ− 1. (2.9)

This result has already been established algebraically in Ref. [11]; here we see that it follows

immediately from a consideration of projective geometry.

We also note that for a non-degenerate steering ellipsoid, the surface ∂E corresponds

to points for which m = 1, i.e. projective measurements, whilst the interior corresponds to

points for which m < 1. When the steering ellipsoid has dim E < 3, the boundary ∂E again

corresponds to points for which m = 1, but now the interior corresponds to points for which

m ≤ 1. In other words, the states on the boundary of Alice’s steering ellipsoid can be obtained

only when Bob performs a projective measurement; and only when this steering ellipsoid is

degenerate can a projective measurement by Bob steer Alice to a point on the interior of E .

2.1.4 PARAMETRISATION OF THE STEERING ELLIPSOID

Following the convention set in Ref. [11], we write the equation describing E (or, more pre-

cisely, ∂E) as

(r − c)ᵀQ−1(r − c) = 1. (2.10)
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2. 4D BICONES AND 3D ELLIPSOIDS

Here c gives the centre of the steering ellipsoid and Q is a real symmetric matrix whose eigen-

vectors and eigenvalues give the orientation and squared lengths of the ellipsoid semiaxes. We

aim to use our projective method to find the same expressions for c and Q that were originally

given in Ref. [11], namely

c = γ2(a− Tb),

Q = γ2(T − abᵀ)(1+ γ2bbᵀ)(T ᵀ − baᵀ), (2.11)

where the Lorentz factor γ = 1/
√

1− b2 and 1 is the 3 × 3 identity matrix. Before making the

connection between the object E = P(S(M)) and its parametrisation (c, Q) we first establish a

useful result on the matrix representation of a 3D conic section (i.e. paraboloids, hyperboloids

and ellipsoids).

In homogeneous coordinates, we may write such a conic section as(
1 rᵀ

)z uᵀ

u W

1

r

 = 0, (2.12)

where W is the matrix of the associated quadratic form [37]. An ellipsoid corresponds to

detW > 0. For brevity we write X :=
(
z uᵀ

u W

)
.

Lemma 2.1: Conversion from homogeneous coordinates to ellipsoid parameters

Given an ellipsoid (2.12), the parameters (c, Q) are encoded in X−1 as

X−1 = k

1 cᵀ

c ccᵀ −Q

 ,

where k := detW/detX .

Proof. Define the quadratic function x(r) := (1, r)ᵀX(1, r) so that (2.12) gives the

3D surface x(r) = 0. The centre of an ellipsoid described by this quadratic form is

given by the turning point of x(r) [37]. Since x(r) = z +uᵀr+ rᵀu+ rᵀWr we have
∂x
∂r = 2u+ 2Wr and hence the centre is c = −W−1u.

Note that x(r) = (r − c)ᵀW (r − c) + z − cᵀWc, and hence x(r) = 0 becomes

(r − c)ᵀW (r − c) = cᵀWc− z.

Comparing this to (2.10) we see that Q−1 = W/(cᵀWc− z). The denominator can be

tided up by finding the determinant of the block matrix X :

detX = z det(W − z−1uuᵀ)
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2. 4D BICONES AND 3D ELLIPSOIDS

= z(1− z−1uᵀW−1u) detW

= (z − cᵀWc) detW,

where we have used the matrix determinant lemma [38] and the observation that

uᵀW−1u = cᵀWc. Hence we find that Q−1 = −kW , where k := detW/detX .

Now that we have found (c, Q) in terms of the components of X , we shall

demonstrate that precisely these expressions can conveniently be found in X−1. In-

verting the block matrix gives

X−1 = k

 1 −uᵀW−1

−W−1u k−1(W − z−1uuᵀ)−1

 .

The first column and row can immediately be identified with c and cᵀ respectively.

The matrix inverse in the 3× 3 block may be evaluated using the Sherman-Morrison

formula [38] to give

(W − z−1uuᵀ)−1 = W−1 +
W−1uuᵀW−1

z − uᵀW−1u

= W−1 + kW−1uuᵀW−1

= k(−Q+ ccᵀ),

giving the form of X−1 required. �

We will now find the equation for E in the form (2.12) so that we can use this lemma to

find (c, Q). Recall that E can be found by the projection of S(M) onto the Bloch hyperplane P ;

equivalently, owing to the convexity of S(M), we may find the intersection P ∩ S(M+).

The cone of positive operatorsM+ (or, more precisely, the boundary ∂M+) is described

by (
r0 rᵀ

)1 0ᵀ

0 −1

r0
r

 = 0. (2.13)

Recall that the EPR map acts on an operator R = (r0, r) as S(R) = 1
2ΘR. Hence the equation

of the steered positive cone S(M+) is(
r0 rᵀ

)
(Θ−1)ᵀ

1 0ᵀ

0 −1

Θ−1

r0
r

 = 0. (2.14)

At the Bloch hyperplane, we have r0 = 1 and hence the equation of E is (1, r)ᵀX(1, r) = 0,

where X := (Θ−1)ᵀ
(
1 0ᵀ

0 −1
)
Θ−1. Comparing to (2.12), we see that we can employ Lemma 2.1

without explicitly evaluating X but instead, more straightforwardly, finding X−1. Indeed, we
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find that

X−1 = Θ

1 0ᵀ

0 −1

Θᵀ

=

1 bᵀ

a T

1 0ᵀ

0 −1

1 aᵀ

b T ᵀ


=

 1− b2 aᵀ − bᵀT ᵀ

a− Tb aaᵀ − TT ᵀ

 . (2.15)

Lemma 2.1 then gives k = 1 − b2 =: γ−2. Identifying the other components of X−1, we find

that kc = a− Tb and k(ccᵀ −Q) = aaᵀ − TT ᵀ, so that

c = γ2(a− Tb),

Q = γ2(TT ᵀ − aaᵀ) + ccᵀ. (2.16)

Finally, using the identity γ2 ≡ 1 + γ2b2, the expression for Q can be rearranged to reproduce

precisely the form presented in Ref. [11].

Parametrisation of the steering ellipsoid

Alice’s steering ellipsoid E is parametrised by (c, Q), where

c = γ2(a− Tb),

Q = γ2(T − abᵀ)(1+ γ2bbᵀ)(T ᵀ − baᵀ).

The vector c gives the centre of E ; the eigenvectors and eigenvalues of the symmetric

matrix Q give the orientation and squared lengths of the semiaxes.

As noted in Section 1.5.3, we focus on Alice’s steering ellipsoid, but it would of course

be equally valid to study the same scenario with the roles of Alice and Bob swapped. This

amounts to the transformation Θ 7→ Θᵀ, and so Bob’s steering ellipsoid will be described by

the above expressions but with a↔ b and T ↔ T ᵀ.

2.2 THE CANONICAL STEERING ELLIPSOID

In the above derivation, we have seen how to find the steering ellipsoid for any two-qubit

state. However, much of the work in this thesis will use a particular sort of canonical two-qubit

state for which Bob’s marginal is maximally mixed. The significance of such states is that the

steering ellipsoid is invariant under the canonical transformation, and so often, without loss of

generality, we need study only the set of canonical two-qubit states. We now derive the form
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of these canonical states by examining the effect of a SLOCC (stochastic local operations and

classical communication) transformation in the four-vector picture.

2.2.1 LOCAL FILTERING OPERATIONS

When Alice and Bob perform a SLOCC operation (also known as a local filter), their two-qubit

state ρ transforms according to the invertible map

ρ 7→ ρ̃ =
(SA ⊗ SB) ρ (SA ⊗ SB)†

tr [(SA ⊗ SB) ρ (SA ⊗ SB)†]
, (2.17)

where SA, SB ∈ GL(2,C) [11].1 Verstraete et al. showed that the effect of such a transforma-

tion on the Pauli basis representation Θ may be described by a Lorentz transformation [40].

Precisely, the above transformation corresponds, up to normalisation, to

Θ 7→ Θ̃ = ΛAΘΛᵀB, (2.18)

where Λi are proper, orthochronous Lorentz transformations (i.e. det Λi = 1 and Λ00
i ≥ 1)

given by Λi = Υ(Si ⊗ S∗i )Υ†/| detSi| and

Υ =
1√
2



1 0 0 1

0 1 1 0

0 i −i 0

1 0 0 −1


. (2.19)

Consider in particular the case that only Bob performs a local filter, so that Θ̃ = ΘΛᵀB . The

cone of positive operators is given byM+ := {M |M ≥ 0} and, following (2.7), its image un-

der the EPR map is S(M+) =
{
1
2ΘM |M ∈M+

}
. It is almost immediate to see that S(M+)

is invariant under Θ 7→ Θ̃ = ΘΛᵀB . Since ΛB , and hence ΛᵀB , is orthochronous, it preserves the

forward light cone: M ∈ M+ if and only if ΛᵀBM ∈ M+. It follows that S(M+) and there-

fore Alice’s steering ellipsoid E – which is given by the projection of S(M+) onto the Bloch

hyperplane – is invariant under Bob’s local filtering operation.2

2.2.2 CANONICAL TRANSFORMATION

Although E is invariant under any local filtering operation performed by Bob, a particular

transformation will prove to be especially useful. This corresponds to ρ 7→ ρ̃ with SA = 1 and

1Physically, SLOCC describes the set of operations that allow for a probabilistic, reversible transformation under
LOCC [39] Note that projective measurements, which belong to LOCC but are irreversible, are excluded.

2It should be stressed, however, that S(M−), and hence Alice’s skewed bicone of steering outcomes S(M), is not
invariant under Bob’s local filtering operation. It should also be noted that although Bob’s local filtering operation
alters his steering ellipsoid, it leaves EPR-steerability of Bob by Alice invariant [41, 42].
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Figure 2.5: The steering outcomes for a two-qubit state before (left) and after (right) the canonical trans-
formation. Note that S(M−) and hence S(M) is not invariant under the transformation. Crucially,
however, S(M+) is, and so the steering ellipsoid E = P(S(M+)) is also invariant. The canonical trans-
formation aligns the equator S(B) parallel to the Bloch ball B. It also transforms Alice’s Bloch vector as
a 7→ ã = c, so that the vertex of S(M−) moves to the centre of E .

SB = 1/
√
ρB . We term this the canonical transformation, and it yields a canonical state ρ̃:

ρ 7→ ρ̃ =

(
1⊗ 1√

2ρB

)
ρ

(
1⊗ 1√

2ρB

)
. (2.20)

The normalisation factor of 1
2 can be determined by noting that tr

[
ρ (1⊗ ρ−1B )

]
= 2. This

transformation can be performed for any non-singular ρB . When ρ−1B does not exist then ρB

must be a pure state, and hence ρ is a product state; then no steering is possible and E is simply

a point. Such cases will usually not be of interest to us. We will therefore generally assume

b 6= 1 and apply the canonical transformation without further discussion of the matter, instead

noting any exceptions when product states do in fact need to be considered separately.

As the calculation in Ref. [11] shows, the canonical transformation Θ 7→ Θ̃ = ΘΛᵀB cor-

responds to performing a Lorentz boost with ‘velocity’ b. On transforming to the canonical

‘rest frame’, Bob’s Bloch vector vanishes: b 7→ b̃ = 0. In addition to the simplification of Bob’s

marginal becoming maximally mixed, the canonical state has a particular significance in the

steering ellipsoid formalism. In the canonical frame, Alice’s Bloch vector is the centre of E :

a 7→ ã = c. Hence, in the form of (1.5), we have

ρ̃ =
1

4
(1⊗ 1+ c · σ ⊗ 1+

3∑
i,j=1

T̃ij σi ⊗ σj). (2.21)

Furthermore, the steering ellipsoid matrix for a two-qubit state ρ may be expressed in terms

of its canonical correlation matrix as Q = T̃ T̃ ᵀ [11]. Indeed, as previously noted, a traditional

derivation of the steering ellipsoid formalism is intimately connected with the canonical trans-

formation: one notes that E is invariant under the transformation and may find the parameters

(c, Q) in terms of ã, b̃ and T̃ ; converting these expressions back to the non-canonical variables

gives the expressions for (c, Q) that we derived above using projective geometry.
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2. 4D BICONES AND 3D ELLIPSOIDS

Figure 2.6: An example of a canonical, aligned E . The centre c and the semiaxes s1, s2, s3 are marked in
red. Note that the semiaxes are aligned with the coordinate axes shown in black.

The significance of the canonical transformation is perhaps best seen in this geometric pic-

ture, as shown in Figure 2.5. Recall from Section 2.1.2 that the equator of the steering outcomes

bicone S(M) corresponds to the image of the Bloch ball, S(B), and that the steering ellipsoid

E is given by the projection of this back onto the Bloch ball. When we have a canonical state,

Bob’s Bloch vector vanishes and then, following (2.6), S(B) will be composed of four-vectors

of the form 1
2(1,a+Tm) with m ≤ 1. Crucially, the timelike component of these operators (i.e.

the trace) is constant, and so S(M) is not skewed, i.e. S(B) is parallel to the Bloch hyperplane.

Hence projecting S(B) back onto B to find E is greatly simplified in this canonical frame.

2.2.3 THE CANONICAL, ALIGNED STATE

Since a steering ellipsoid is invariant under the canonical transformation, the set of all possible

E may be studied simply by examining canonical states ρ̃ of the form (2.21). We perform one

further manipulation to transform such a state into an aligned form.

Applying state-dependent local unitary operations to ρ̃ (a special case of local filtering),

we can achieve the transformations ã 7→ OAã, b̃ 7→ OB b̃ and T̃ 7→ OAT̃O
ᵀ
B with OA, OB ∈

SO(3) [30]. We can always findOA andOB that perform a signed singular value decomposition

on T̃ , i.e. ones that realise OAT̃O
ᵀ
B = diag(t) with t ∈ R3.1 Bob’s rotation OB has no effect

on Alice’s steering ellipsoid E , but OA rotates E about the origin (treating c as a rigid rod) to

align the semiaxes of E parallel to the coordinate axes. Note that there is some freedom in

performing this rotation: the elements of t can be permuted and two signs can be flipped, but

1This is a slight variant on the usual singular value decomposition, which uses OA, OB ∈ O(3). By restricting the
transformation to proper rotations, the elements of t can be positive or negative.
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2. 4D BICONES AND 3D ELLIPSOIDS

the product t1t2t3 is fixed.

Since important physical properties such as entanglement are invariant under local uni-

tary transformation, we can often restrict our analysis to states which have a diagonal correla-

tion matrix. Such a canonical, aligned state has T̃ = diag(t1, t2, t3) and hence steering ellipsoid

matrix Q = diag(t21, t
2
2, t

2
3). The semiaxes of E are of length si = |ti|. We thus arrive at our

standard form of a canonical, aligned state, illustrated in Figure 2.6.

Steering ellipsoid for a canonical, aligned state

Any two-qubit state ρ may be transformed by local filtering operations into the form

ρ̃ =
1

4
(1⊗ 1+ c · σ ⊗ 1+

3∑
i=1

ti σi ⊗ σi).

For such a state, Alice’s steering ellipsoid E is the same as that of ρ up to a rigid rotation.

The centre of E is c, and the correlation matrix is Q = diag(t21, t
2
2, t

2
3). E has semiaxes of

length si = |ti|.

This form of two-qubit state will be used throughout the thesis. Note that we now have

only 6 parameters as opposed to the original 15 for describing a generic two-qubit state. These

6 parameters describe precisely the steering ellipsoid E by giving its centre and semiaxes. The

other 3 parameters that give the Euler angles for a general ellipsoid are no longer required,

since E is aligned with the coordinate axes. As noted in Section 1.5.3, most of the interesting

behaviour of a two-qubit state is associated with its steering ellipsoid rather than the local

Bloch vectors. Transforming to a canonical, aligned state distils out precisely this information.

The canonical transformation does not alter E , whilst the alignment corresponds to a rigid

rotation, which can alternatively be understood as a rotation of the Pauli basis. We can thus

effectively study the set of all E by focusing purely on canonical, aligned E . Of course, before

making any statements about a general two-qubit state ρ based on its canonical, aligned state ρ̃,

one must ensure that the property of interest is also invariant under local filtering operations.

We have already mentioned that entanglement is invariant under the alignment transforma-

tion (which corresponds to local unitaries). In fact, we shall see that several other important

properties are invariant, or can at least be straightforwardly converted, under the whole trans-

formation. It is this invariance of E together with the invariance of physical properties that

makes the much simpler set of canonical, aligned states so powerful for studying two-qubit

states in general.
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2. 4D BICONES AND 3D ELLIPSOIDS

SUMMARY AND DISCUSSION OF CHAPTER 2

We have shown how projective geometry can be used to find the steering ellipsoid for a two-

qubit state. The procedure may be summarised as follows:

(1) Define the 4D bicone of measurement outcomesM.

(2) Find the 4D skewed bicone of steering outcomes S(M).

(3) Project this onto the Bloch ball to find the 3D steering ellipsoid E = P(S(M)).

(4) Find explicit expressions for the parameters (c, Q) that describe the geometry of E .

A full consideration of the 4D geometry is essential to a study of EPR-steerability [35, 43].

For our purposes, however, we refer to the 4D picture only for the purpose of presenting this

derivation. In the work that follows, we shall focus purely on the properties of the 3D steering

ellipsoid E . It is worth bearing in mind that the underlying geometry is in fact 4D, but a

complete understanding of this is certainly not essential to understand what follows.

On the other hand, the canonical transformation will be essential to what follows. We

have seen that the study of steering ellipsoids can be boiled down to a consideration of a

standard family of canonical, aligned states. Up to an arbitrary rotation of basis, these states

describe every possible steering ellipsoid. We will therefore study any given E by examining

the canonical state ρ̃ that describes it and, if desired, transform expressions back to a general

two-qubit state ρ.
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CHAPTER 3

PHYSICAL AND ENTANGLED STATES

We are now ready to develop further the characterisation of the steering ellipsoid given by

Jevtic et al. [11]. We begin by answering the crucial question of when E represents a valid or

physical quantum state, i.e. an operator that is Hermitian, unit trace and positive semidefinite.

Although any two-qubit state can be represented by some ellipsoid, not every ellipsoid cor-

responds to a two-qubit state. Clearly any E that punctures the Bloch sphere cannot be valid,

but the criterion E ⊆ B is not sufficient for physicality. In this chapter we derive necessary

and sufficient conditions for E to be physical. The derivation makes heavy use of the standard

form of the canonical, aligned state presented in the preceding chapter.

We also find conditions to determine whether E describes an entangled or a separable

state. This is based on an interpretation of the Peres-Horodecki criterion in the steering ellip-

soid picture. We introduce the notion of ellipsoid chirality, which plays a role in the conditions

for physicality and for separability. In fact, owing to the relationship between chirality and

the partial transposition operation, we find that entangled and separable states may be distin-

guished according to the chirality of E alone.
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3. PHYSICAL AND ENTANGLED STATES

3.1 PHYSICALITY OF A TWO-QUBIT STATE

We begin by finding conditions for when a two-qubit operator ρ ∈ L(C2 ⊗ C2) represents a

valid quantum state. Let us restate the general form of such an operator (Equation (1.5)):

ρ =
1

4
(1⊗ 1+ a · σ ⊗ 1+ 1⊗ b · σ +

3∑
i,j=1

Tij σi ⊗ σj). (3.1)

In order to be a density matrix, ρ must be Hermitian (ρ = ρ†), unit trace (tr ρ = 1) and positive

semidefinite (ρ ≥ 0). The first two of these requirements are satisfied by construction owing to

the properties of the Pauli matrices. Positivity, however, is a far less trivial condition.

In principle, one could form the characteristic polynomial p(λ) = det(ρ − λ1) and solve

the resulting quartic equation p(λ) = 0 to find the eigenvalues λ. Finding conditions such

that λ ≥ 0 would then give necessary and sufficient conditions for ρ ≥ 0. Indeed, previous

analyses have studied precisely this question of finding the eigenvalues of a unit trace, 4 × 4

Hermitian matrix [44]. However, the solutions are extremely complicated. Moreover, they

are effectively impossible to interpret in the steering ellipsoid picture, and we wish to find

conditions for physicality that can be identified with geometric features of E . We achieve this

by transforming the problem into one involving the canonical state ρ̃, finding conditions for

ρ̃ ≥ 0, and then translating these conditions into the parameters (c, Q) that describe E .

3.1.1 TRANSFORMATION TO THE CANONICAL STATE

We first note that constraints on the local Bloch vectors are essentially trivial, allowing us to

focus on the more interesting part of the steering ellipsoid itself. Define E ′ as the ellipsoid

with same centre as Alice’s steering ellipsoid E but with axes scaled down by a factor b, i.e.

compared to E parametrised by (c, Q), the parameters describing E ′ are (c, b2Q). Alice’s Bloch

vector a must lie within E ′. This was established as part of the discussion of complete and

incomplete steering in Ref. [11].1

Aside from these straightforward, necessary restrictions on a and b, we must find some

more complicated constraints involving the correlation matrix T . Before doing this, however,

we transform to the canonical, aligned state, which we repeat here for convenience:

ρ̃ =
1

4
(1⊗ 1+ c · σ ⊗ 1+

3∑
i=1

ti σi ⊗ σi). (3.2)

The transformation ρ 7→ ρ̃ leaves E invariant. As we now establish, it also leaves positivity

1Bob’s steering of Alice is said to be complete when, for any convex decomposition of a into states in E , there exists
a POVM for Bob that steers to it [11]. All nondegenerate E correspond to states that are completely steerable by
Bob. When Bob’s steering is complete, a lies on ∂E ′; for incomplete steering, a lies strictly inside E ′.
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3. PHYSICAL AND ENTANGLED STATES

invariant, allowing us to restrict our analysis to canonical, aligned states alone.1

Lemma 3.1: Local filtering preserves positivity

For any ρ ∈ L(C2 ⊗C2), the local filtering operation (2.17),

ρ 7→ ρ̃ =
(SA ⊗ SB) ρ (SA ⊗ SB)†

tr [(SA ⊗ SB) ρ (SA ⊗ SB)†]
,

with SA, SB ∈ GL(2,C), preserves positivity: ρ ≥ 0 if and only if ρ̃ ≥ 0.

Proof. Clearly positivity of the numerator of ρ̃ is sufficient for positivity of ρ̃. Define

S := SA⊗SB , so that this numerator is SρS†. Say that ρ ≥ 0; a well-known equivalent

condition for this states that we can write ρ = XX† for some X ∈ L(C2 ⊗C2). Then

SρS† = SX(SX)† ≥ 0, and so ρ̃ ≥ 0. The converse follows using precisely the same

logic and considering instead the map S−1. �

The canonical, aligning transformation was exactly such a local filtering operation, and

hence to find conditions for physicality we need consider only the canonical, aligned state ρ̃.

3.1.2 DESCARTES’ RULE OF SIGNS

To find simple conditions for ρ̃ ≥ 0 we will use Descartes’ rule of signs. This method is em-

ployed to find conditions for positivity in, for example, Refs. [31, 32, 45]. The treatment here

follows these presentations (in particular, that of Gamel [31]) with some modifications.

For our purposes, Descartes’ rule states that the roots of a polynomial are all non-negative

if and only if its coefficients alternate signs [46]. The characteristic polynomial may be ex-

panded as

p(λ) =
4∏
i=1

(λ− λi) =
4∑
j=0

(−1)jajλ
4−j . (3.3)

Descartes’ rule then tells us that λi ≥ 0 ∀i if and only if aj ≥ 0∀j. Expanding p(λ), one finds

that aj are given by the elementary symmetric functions of the roots:

a0 = 1,

a1 = λ1 + λ2 + λ3 + λ4,

a2 = λ1λ2 + λ1λ3 + λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4,

a3 = λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4,

a4 = λ1λ2λ3λ4. (3.4)

1Clearly this Lemma applies for transformations inCd1 ⊗Cd2 but we are interested only in the case d1 = d2 = 2.
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Transforming these functions of eigenvalues into functions of ρ̃ then allows one to find condi-

tions for physicality.

Lemma 3.2: Physicality of a canonical, aligned state

ρ̃ is physical if and only if

det ρ̃ ≥ 0 and c2 ≤ 1−
3∑
i=1

t2i − 2t1t2t3 and c2 +
3∑
i=1

t2i ≤ 3.

Up to a positive multiplicative factor, det ρ̃ = c4 − 2uc2 + q, with

u := 1−
∑
i

t2i + 2
∑
i

t2i ĉ
2
i ,

q := (1 + t1 + t2 − t3)(1 + t1 − t2 + t3)(1− t1 + t2 + t3)(1− t1 − t2 − t3),

where we have defined the unit vector ĉ := c/c.

Proof. According to Descartes’ rule of signs, ρ̃ ≥ 0 if and only if aj ≥ 0 ∀j. This is

satisfied trivially for j = 0 and j = 1 (since tr ρ̃ = 1). Note that a4 =
∏4
i=1 λi = det ρ̃.

The coefficients a1 and a2 may be also be expressed in terms of matrix invari-

ants. Recall that tr(ρ̃ n) =
∑4

i=1 λ
n
i . Using Newton’s identities [47] to relate the ele-

mentary symmetric polynomials aj to these power sums we find that

a2 = 1
2

[
a1(tr ρ̃ )2 − tr(ρ̃ 2)

]
= 1

2

[
1− tr(ρ̃ 2)

]
,

a3 = 1
3

[
a2 tr ρ̃− a1 tr(ρ̃ 2) + tr(ρ̃ 3)

]
= 1

6

[
1− 3 tr(ρ̃ 2) + 2 tr(ρ̃ 3)

]
.

All that remains to find the conditions aj ≥ 0 is the evaluation of det ρ̃, tr(ρ̃ 2) and

tr(ρ̃ 3) in terms of c and t. The expressions given result from this tedious, but straight-

forward, calculation. �

3.1.3 CONDITIONS FOR PHYSICALITY

Thus far we have found algebraic conditions for the physicality of ρ̃. We now seek to find some

geometric interpretation for these conditions using the steering ellipsoid E . We achieve this by

translating our conditions into rotational invariants of the parameters (c, Q) that describe E .

Since E is invariant under the canonical transformation, this in fact gives us a set of necessary

and sufficient condition for the physicality of any steering ellipsoid.

Recall that Q = diag(t21, t
2
2, t

2
3) and that si = |ti| give the lengths of the ellipsoid semiaxes.

Rotational invariants will be terms such as trQ =
∑3

i=1 t
2
i . Some care is needed with the term

t1t2t3, which could be positive or negative. Since
√

detQ = |t1t2t3| = s1s2s3 is positive by
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definition, we have that t1t2t3 = χ
√

detQ, where χ gives the chirality of E . In terms of the

canonical correlation matrix, we have

χ = sign(t1t2t3) = sign(det T̃ ). (3.5)

Say that Bob performs Pauli measurements on ρ̃ and obtains the +1 eigenstates as out-

comes, corresponding to Bloch vectors x̂, ŷ and ẑ. These vectors form a right-handed set,

and the measurement outcomes steer Alice to the Bloch vectors c + t1x̂, c + t2ŷ and c + t3ẑ

respectively. When Bob’s outcomes and Alice’s steered vectors are related by an affine trans-

formation involving a proper (improper) rotation, Alice’s steered vectors form a right-handed

(left-handed) set and χ = +1 (χ = −1). We therefore refer to χ = +1 ellipsoids as right-handed

and χ = −1 ellipsoids as left-handed. Note that a degenerate ellipsoid corresponds to χ = 0,

since at least one ti = 0 (equivalently si = 0).

This notion of chirality will prove to be very important when we shortly consider the con-

ditions for entanglement, and later in Chapter 7 for our study of entanglement witnesses. More

immediately, however, we are now in the position to complete our goal of finding conditions

for the physicality of a steering ellipsoid.

Theorem 3.3: Physicality of the steering ellipsoid

A steering ellipsoid E described by parameters (c, Q) and with chirality χ corre-

sponds to a physical two-qubit state if and only if

c4 − 2uc2 + q ≥ 0 and c2 ≤ 1− trQ− 2χ
√

detQ and c2 + trQ ≤ 3,

where

u := 1− trQ+ 2ĉᵀQĉ,

q := 1 + 2 tr(Q2)− 2 trQ− (trQ)2 − 8χ
√

detQ.

Proof. Rewrite the conditions of Lemma 3.2 using the ellipsoid parameters c, Q and

χ. In particular, we use the correspondences
∑

i t
2n
i = tr(Qn),

∑
i t

2
i ĉ

2
i = ĉᵀQĉ and

t1t2t3 = χ
√

detQ. �

It should be noted that any E inside the Bloch ball B must obey
√

detQ ≤ 1. For such E the

second condition given in Theorem 3.3 immediately implies that c2 + trQ ≤ 3, rendering the

third condition redundant.

We can identify three geometric contributions influencing whether a given steering ellip-

soid describes a physical state:
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(1) The distance of the ellipsoid centre from the origin (through terms such as c4 and c2).

(2) The size of E . ‘Size’ can be measured in a number of different ways, e.g. the volume of E

(proportional to
√

detQ), the sum of the semiaxes squared (trQ), etc. Later in this thesis

we will see the relevance of some of these measures, especially steering ellipsoid volume.

(3) The skew ĉᵀQĉ. This gives a measure of how the axes of E are oriented relative to the

centre vector c.

In addition, the physicality conditions also depend on the chirality of the ellipsoid. We shall

now see that this relates fundamentally to the separability of the two-qubit state.

3.2 CONDITIONS FOR ENTANGLEMENT

We now consider how the key property of entanglement is encoded in the geometric properties

of E . In fact, as outlined in Section 1.5.5, this matter has already been resolved in Ref. [11].

Jevtic et al. provided both the nested tetrahedron condition and an inequality for identifying

whether a given E describes an entangled state. This inequality is in fact rather similar to our

Theorem 3.3 for physicality, and identifies a similar set of geometric contributions influencing

the entanglement of a state. What is missing, however, is an observation of the crucial role

played by chirality. Here we will use chirality to offer another perspective on the entanglement

of a steering ellipsoid, thereby clarifying and consolidating the work of Ref. [11].

3.2.1 PERES-HORODECKI CRITERION

The Peres-Horodecki or positive partial transpose (PPT) criterion [48, 49] gives a necessary con-

dition for separability of a mixed bipartite state ρ ∈ L(Cd1 ⊗ Cd2). Crucially, for our case of

a two-qubit system, d1 = d2 = 2, the criterion is also sufficient.1 The criterion relies on the

spectral properties of the partial transposed state, which we write ρ BT .

For a two-qubit state, the original Peres-Horodecki criterion states that ρ is separable if

and only if ρ BT ≥ 0. Refs. [11] and [50] independently showed that this statement can in fact

be simplified to the evaluation of a single determinant:

Lemma 3.4: Determinant criterion for separability

A two-qubit state ρ is separable if and only if det ρ BT ≥ 0.

1The Peres-Horodecki criterion is in fact also sufficient in a qubit-qutrit system.
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Note that the equivalence det ρ BT ≥ 0⇔ ρ BT ≥ 0 is not true for a general 4× 4 Hermitian

operator ρ (take, for example, an operator with two positive and two negative eigenvalues).

The equivalence emerges only when we additionally impose the constraints tr ρ = 1 and ρ ≥ 0.

3.2.2 CHIRALITY AND SEPARABILITY

As with the conditions for physicality, we transform to the canonical, aligned state ρ̃, which

preserves separability:

Lemma 3.5: Local filtering preserves separability

A two-qubit state ρ is separable if and only if its corresponding canonical, aligned

state ρ̃ is.

Proof. This follows immediately from an application of Lemma 3.1 to the transfor-

mation ρ BT 7→ ρ̃ BT , together with the fact that the Peres-Horodecki criterion is neces-

sary and sufficient for the separability of a two-qubit state. �

Hence, given Lemma 3.4, we see that the separability of any two-qubit state ρ is given

simply by the sign of det ρ̃ BT . The following theorem allows us to characterise the separabil-

ity any two-qubit using the chirality of the canonical state steering ellipsoid E . The result is

illustrated in Figure 3.1.

Theorem 3.6: Separability of the steering ellipsoid

E for any entangled state is left-handed. E for a separable state may be right-handed,

left-handed or degenerate; for a separable left-handed E , the corresponding right-

handed E is also a separable state and vice-versa.

Proof. The effect of the partial transposition operation is most easily seen in the Pauli

basis, since we have σᵀµ = σµ for µ ∈ {0, 1, 3} and σᵀµ = −σµ for µ = 2 (i.e. the Pauli

σy matrix). The partial transposition operation on a canonical state, ρ̃ 7→ ρ̃ BT , is thus

equivalent to t2 7→ −t2. This in turn is equivalent to simply flipping the chirality,

χ 7→ −χ.

An entangled state ρ̃must have det ρ̃ BT < 0 and a non-degenerate ellipsoid, and

so χ = ±1 a priori. All quantum states achieve det ρ̃ ≥ 0, so for an entangled state
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Figure 3.1: The separability of a state depends on the physicality of the different chirality steering
ellipsoids. For a separable state (top), both the left-handed (χ = −1) and right-handed (χ = +1)
ellipsoids are physical. For an entangled state (bottom), only the left-handed ellipsoid is physical. We
may switch between left- and right-handed chirality using the partial transposition operation.

we have det ρ̃ > det ρ̃ BT . Using the form for det ρ̃ given in Theorem 3.3, an entangled

state must have −8χ
√

detQ > 8χ
√

detQ and hence its chirality is restricted to χ =

−1.

E for a separable state may be degenerate or non-degenerate and so χ = 0 or

χ = ±1 a priori. For a two-qubit separable state, the operator ρ̃ BT is also a separable

state. Since partial transposition is equivalent to χ → −χ, this means that both the

χ and the −χ ellipsoids are separable states. For the degenerate case, χ = 0. For a

non-degenerate ellipsoid, both the χ = +1 and χ = −1 ellipsoids are separable. �
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SUMMARY AND DISCUSSION OF CHAPTER 3

We have found a set of necessary and sufficient conditions that establish when a given steering

ellipsoid E represents a valid quantum state (Theorem 3.3), i.e. for when some ρ ∈ L(C2 ⊗C2)

satisfies tr ρ = 1, ρ = ρ† and ρ ≥ 0. The constraint of positivity is in fact the only nontrivial

one. Finding the eigenvalues of ρ is a difficult task, and so we instead characterise positivity

by employing Descartes’ rule of signs.

Similarly, we have found geometric conditions to determine whether E represents an en-

tangled or separable state (Theorem 3.6). This showed that the notion of ellipsoid chirality

is fundamental to separability: any entangled E must be left-handed in order to be physical,

whilst any separable E is physical for both left- and right-handed chirality.

Note that we have classified any E that does not describe a two-qubit state as unphysical.

In fact, in Chapter 7, we shall see an operator with ρ � 0 also has a physical interpretation –

not as a quantum state, but as an entanglement witness. This will lead to a different formulation

for when E describes a valid quantum state, and we will find that the determinant criterion

can in fact be extended to any E ⊆ B.
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CHAPTER 4

EXTREMAL STATES

Given that E is a steering ellipsoid centred at c, what is the largest volume spherical E that

represents a separable state? What is the largest volume sphere that is physical? Are spheres

the largest volume ellipsoids with a given centre and, if not, what are the largest volume ellip-

soids? What is the significance of the states corresponding to such maximal ellipsoids?

The previous chapter established conditions for characterising the separability and phys-

icality of E . In this chapter, we will use these conditions to answer all the above and sev-

eral related questions by finding E lying on the entangled-separable and physical-unphysical

boundaries. We consider this question first in 2D by maximising areas of circles and ellipses;

we then move to 3D and investigate maximal volume spheres and ellipsoids. In each case, we

pose the question as a maximisation over the set of E with a given centre c. This is a natural pa-

rameter to use in the steering ellipsoid representation, and the physical and geometric results

will retrospectively confirm the relevance of such a maximisation.

Steering ellipsoid volume was first suggested as an indicator of two-qubit entanglement

in Ref. [11], where it was demonstrated that any E with volume greater than 4π
81 must be entan-

gled. We will generalise and extend this result to place more sensitive, c-dependent, bounds

on how large an ellipsoid may be before it becomes at first entangled and then unphysical.

Although it is not evident a priori, we shall find that the two-qubit states corresponding

to maximal volume physical E have particularly special properties. In Section 4.4 we introduce

these so-called maximally obese states, which will feature heavily in Chapters 5 and 6. Investi-

gation of these states will demonstrate more clearly the meaning of steering ellipsoid volume

as a measure of quantum correlation.
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4. EXTREMAL STATES

4.1 METHOD FOR FINDING EXTREMAL ELLIPSOIDS

To find an extremal ellipsoid, one must solve a maximisation problem. As an example, con-

sider the case of finding the maximal volume physical E . As discussed in Section 2.2.3, the

question of searching over all E is precisely equivalent to searching over canonical, aligned

states. Recall that the corresponding E have centre c and ellipsoid matrix Q = diag(s21, s
2
2, s

2
3),

where si give the lengths of the semiaxes. The volume of E is simply given by V = 4π
3 s1s2s3.

The question of finding a maximal volume physical steering ellipsoid is then equivalent to the

following optimisation problem: over all E centred at c, find the one that maximises V subject

to the physical state conditions given in Theorem 3.3.

This is much like a problem with Lagrange multipliers but with inequality constraints,

which adds to the complexity. The Karush-Kuhn-Tucker (KKT) conditions provide a method

to deal with such an optimisation problem [36]. Before outlining how the maximal ellipsoid

optimisation problems can be solved, we demonstrate how chirality plays a crucial role in

developing the results.

4.1.1 CHIRALITY AS A FLAG

Let us first consider non-degenerate E . Recall from Theorem 3.6 that an entangled state must

be left-handed (χ = −1) to be physical, whilst a separable state is physical in both its right- and

left-handed forms (χ = ±1). In other words, the separable-entangled boundary corresponds

to extremal right-handed physical E , whilst the physical-unphysical boundary corresponds to

extremal left-handed physical E . We can therefore switch between these two boundaries by

solving the same set of KKT conditions and altering only the chirality. We thus use chirality

as a ‘flag’ to specify which boundary we wish to probe: for the separable-entangled boundary

we use χ = +1, and for the physical-unphysical boundary we use χ = −1.

For the case of degenerate E with χ = 0, any physical ellipsoid must be separable and so

there is only the physical-unphysical boundary to find.

4.1.2 KARUSH-KUHN-TUCKER CONDITIONS

We consider a canonical, aligned state ρ̃. Let us rephrase the conditions for physicality given in

Theorem 3.3, recalling that for E inside the Bloch ball the condition c2 + trQ ≤ 3 is redundant.

We have that ρ̃ ≥ 0 if and only if g1 ≥ 0 and g2 ≥ 0, where

g1 = c4 − 2uc2 + q,
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4. EXTREMAL STATES

g2 = 1− trQ− 2χ
√

detQ− c2, (4.1)

with the variables u and q given by

u := 1− trQ+ 2ĉᵀQĉ,

q := 1 + 2 tr(Q2)− 2 trQ− (trQ)2 − 8χ
√

detQ. (4.2)

We wish to maximise V = 4π
3 s1s2s3 subject to the inequality constraints g1 ≥ 0 and g2 ≥ 0.

According to the KKT conditions we form the Lagrangian

L = V + λ1g1 + λ2g2, (4.3)

where λ1 and λ2 are KKT multipliers [36]. Setting Q = diag(s21, s
2
2, s

2
3), we then solve in terms

of c the system of equations and inequalities given by

∂L
∂s

= 0,

λ1g1 = λ2g2 = 0,

λ1, λ2, g1, g2 ≥ 0. (4.4)

This system can in fact be simplified before solving. In particular, the skew term ĉᵀQĉ is

awkward to deal with in full generality. However, by symmetry, any maximal ellipsoid must

have one of its axes aligned radially and the other two non-radial axes equal. Since we are

looking at ellipsoids aligned with the coordinate axes, we may therefore take c = (0, 0, c) and

s1 = s2. Maximal solutions could then have s1 = s2 > s3 (an oblate spheroid), s1 = s2 < s3 (a

prolate spheroid) or s1 = s2 = s3 (a sphere).

Even after this simplification, solving the system (4.4) is quite a laborious process, and the

exact algebra involved is not of any particular interest. As an example, we will work through

the conditions fully for our first non-trivial example of maximal area steering ellipsoids; the

other cases are solved similarly.

4.2 MAXIMAL AREA STEERING ELLIPSOIDS

We begin by finding the physical-unphysical boundary for a degenerate E lying in the equa-

torial plane of B.1 This serves as a useful warm-up to the more important case of finding

extremal 3D ellipsoids, but also provides some interesting results in its own right.

1In theory, we could find the maximal area ellipses lying in any plane of B. However, clearly the overall largest
ellipse will lie within the largest such plane, which without loss of generality we may orient to be equatorial, i.e.
the disc {(x, y, z) | x2 + y2 ≤ 1, z = 0}. The maximal E in other planes may then be found by scaling down the
solutions to this overall maximum.
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4.2.1 CIRCLES

For a circle of radius r, we take Q = diag(r2, r2, 0) and find that E represents a physical (and

necessarily separable) state if and only if r ≤ 1
2

(
1− c2

)
, where c is the centre vector in the

equatorial plane. The physical ellipse with the largest area is not however a circle for c > 0.

4.2.2 ELLIPSES

To find maximal ellipses, we use the KKT conditions. We describe an ellipse in the equatorial

plane using Q = diag(s21, s
2
2, 0) and c = (c, 0, 0); the area of this ellipse is πs1s2. We form

the Lagrangian (4.3). In fact, the algebra is simplified somewhat by including some positive

constant factors and equivalently using

L = 8πs1s2 + λ1g1 + 2λ2g2. (4.5)

Substituting Q and c into the expressions (4.1) for g1 and g2 gives

g1 = c4 − 2c2(1 + s21 − s22) + 1− 2s21 − 2s22 − 2s21s
2
2 + s41 + s42,

g2 = 1− s21 − s22 − c2. (4.6)

We now solve the system (4.4). The requirement ∂L∂s = 0 corresponds to the two equations
∂L
∂s1

= 0 and ∂L
∂s2

= 0. Noting that the maximal solution must have s1 6= 0 and s2 6= 0, these

equations can be solved simultaneously to give

λ1 =
s22 − s21

s1s2(s22 − s21 + c2)
,

λ2 =
1

s1s2

(
s21 + s22 −

s22 − s21
s22 − s21 + c2

)
. (4.7)

We now impose the constraints that λ1g1 = λ2g2 = 0 and λ1, λ2, g1, g2 ≥ 0. The only so-

lution to this system of equations and inequalities requires g1 = λ2 = 0. Using the expressions

given in (4.6) and (4.7), these are solved simultaneously to find s1 and s2 in terms of c. Ruling

out solutions that do not satisfy 0 < si ≤ 1 gives the unique solution

s1 = 1
4

(
3−

√
1 + 8c2

)
,

s2 = 1√
8

√
1− 4c2 +

√
1 + 8c2, (4.8)

giving the minor semiaxis s1 and major semiaxis s2 of the maximal area ellipse centred at c.

Noting that both s1 and s2 are monotonically decreasing functions of c with s1 ≤ s2 ≤ 1
2 ,

we see that the overall largest ellipse is the radius 1
2 circle centred on the origin. Our results

then describe how a physical ellipse must shrink from this maximum as its centre is displaced

towards the boundary ∂B (see Figure 4.1).

Note that the unit disk itself, described by Q = diag(1, 1, 0), does not represent a physical
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Figure 4.1: Two example steering ellipses inside the equatorial disc. These are the maximal area physical
ellipses for their centre. Note, however, that these are not simply the largest ellipses that fit inside B,
owing to the stronger constraints imposed on physicality (Theorem 3.3).

state; this corresponds to the well-known result that its Choi-isomorphic single qubit map [51]

is not completely positive (the so-called ‘No Pancake Theorem’). In fact, Ref. [45] gives a gen-

eralisation of the No Pancake Theorem that immediately rules out such a steering ellipsoid: a

physical E can touch the Bloch sphere at a maximum of two points unless it is the whole Bloch

sphere (as will be the case for a pure entangled two-qubit state). Here we have extended the

No Pancake Theorem further to find the largest possible E when c is displaced from the origin

(corresponding in the Choi-isomorphic setting to non-unitality of the corresponding map).

4.3 MAXIMAL VOLUME STEERING ELLIPSOIDS

For non-degenerate E we find distinct separable-entangled and physical-unphysical bound-

aries. As discussed above, these boundaries may be found by studying the maximal volume

physical E with χ = +1 and χ = −1 respectively. Similarly to our study of maximal area 2D

steering ellipsoids, we begin with the simplest symmetric case of a spherical E before moving

to general ellipsoids.

4.3.1 SPHERES

Inept states, originally introduced in Ref. [52], are a family of states of the form

ρ = r |φε〉 〈φε|+ (1− r)ρ′ ⊗ ρ′, (4.9)
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Figure 4.2: Any spherical E ⊆ B corresponds to a physical state, given that it has appropriate chirality.
Here we show an example of an inept state (left) and a Werner state (right).

where |φε〉 :=
√
ε |00〉+

√
1− ε |11〉 and ρ′ := trA |φε〉 〈φε| = trB |φε〉 〈φε|.1 The two parameters

r and ε that describe an inept state can easily be translated into a description of the steering

ellipsoid: E has c = (0, 0, (2ε − 1)(1 − r)) and Q = diag(r2, r2, r2). Thus an inept state cor-

responds to a spherical E of radius r, as illustrated in Figure 4.2. Note that inept states with

ε = 1
2 have vanishing Bloch vectors for Alice and Bob and are equivalent to Werner states. The

corresponding E are centred on the origin.

From the KKT conditions, we find that the separable-entangled boundary for a spherical

E with centre c is given by

r = 1
3

(√
4− 3c2 − 1

)
. (4.10)

As described in Theorem 3.6, any left- or right-handed sphere smaller than this bound de-

scribes a separable state.

The physical-unphysical boundary is found to be r = 1 − c. In fact, a spherical E on

this boundary touches the surface of the Bloch ball B, and so this simply gives the constraint

that E should lie inside B. Any left-handed spherical E ⊆ B therefore represents an inept

state. A right-handed sphere whose r exceeds the separable-entangled bound cannot describe

a physical state since any entangled E must be left-handed. Note how simple the physical

state criteria are for spherical E : subject to these conditions on chirality, all spherical E ⊆ B are

physical. The same is not true for ellipsoids in general: there are some ellipsoids inside the

Bloch ball for which both the left- and right-handed forms are unphysical.

1The name ‘inept’ derives from the scenario of an inept entanglement delivery service. The service aims to deliver
entangled qubits in the state |φε〉 to pairs of customers but is inept: although a qubit is always delivered to each
customer, any given pair of customers receives the correct pair of qubits only with probability r. The resulting
state will be the inept state ρ given.
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4.3.2 ELLIPSOIDS

Again, using the KKT conditions, one can find the maximal volume ellipsoids that lie on the

separable-entangled and physical-unphysical boundaries. We find that such ellipsoids are

oblate spheroids (s1 = s2 ≥ s3) with the minor axis aligned radially. The largest volume

separable E centred at c = (0, 0, c) has semiaxes

s1 = s2 = 1√
18

√
1− 3c2 +

√
1 + 3c2,

s3 = 1
3

(
2−

√
1 + 3c2

)
. (4.11)

The largest volume physical E centred at c = (0, 0, c) has

s1 = s2 =
√

1− c,

s3 = 1− c. (4.12)

These extremal ellipsoids are in fact the largest volume ellipsoids with centre c that fit inside

the Bloch ball.

The volume V of these maximal ellipsoids can be used as an indicator for entanglement

and unphysicality. Our calculations have been carried out for canonical ρ̃, but since steering

ellipsoids are invariant under the canonical transformation, the results are directly applicable

to two-qubit states in general. The maximal ellipsoids for a general c are of course simply

rotations of those found above for c = (0, 0, c), and so the below theorem depends only on the

distance of the centre of E from the origin, c = |c|.

Theorem 4.1: Steering ellipsoid volume as an indicator

Any two-qubit state ρ, described by steering ellipsoid E with volume V and centre c,

is subject to the following boundaries:

(i) If V > V max
c then ρ must be unphysical;

(ii) If ρ is physical and V > V sep
c then ρ must be entangled.

The critical volumes of E on the physical-unphysical and separable-entangled bound-

aries are given by

V max
c := 4π

3 (1− c)2,

V sep
c := 2π

81

(
1− 9c2 + (1 + 3c2)3/2

)
.

Proof. Find V max
c and V sep

c using V = 4π
3 s1s2s3 and the expressions for semiaxes
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given in (4.11) and (4.12). �

This result extends the notion of using volume as an indicator for entanglement, as was

introduced in Ref. [11]. There it was demonstrated that the largest volume separable ellipsoid

is the Werner state on the separable-entangled boundary, which has a spherical E of radius 1
3

and c = 0. We have tightened this bound by introducing the dependence on c as well as de-

veloping the analogous notion of a physicality indicator. In fact, Theorem 4.1 gives the tightest

possible such bounds, since we have identified the extremal E that lie on the boundaries. Note

that for all c we have V sep
c ≤ V max

c , with equality achieved only for c = 1 when E is a point

with V = 0 and ρ is a product state. This confirms that, as expected, the two boundaries are

indeed distinct and that the set of separable E is a strict subset of physical E .

4.4 MAXIMALLY OBESE STATES

The largest volume ellipsoid with c = (0, 0, c) has major semiaxes s1 = s2 =
√

1− c and minor

semiaxis s3 = 1 − c. We will call this Emax
c . With the exception of c = 1, which describes a

product state, such ellipsoids correspond to entangled states. Using (3.2), the canonical state

for Emax
c can be then be found explicitly. We refer to such states as maximally obese.1 This

family of states will be central to our work in the following two chapters, and some illustrative

examples are shown in Figure 4.3.

Maximally obese states

The canonical state for the largest volume physical ellipsoid with a given centre c is the

maximally obese state

ρ̃max
c =

(
1− c

2

)
|ψc〉 〈ψc|+

c

2
|00〉 〈00| , (4.13)

where |ψc〉 := 1√
2−c

(
|01〉+

√
1− c |10〉

)
. Such states form a single parameter family

with 0 ≤ c ≤ 1.

A maximally obese state is a rank-2 X state.2 X states were introduced in Ref. [53] as a large

class of two-qubit states for which certain correlation properties can be found analytically. In

fact, steering ellipsoids have already been used to study the quantum discord of X states [21].

1We have not yet made precise the distinction between ellipsoid obesity and volume. Full details will be given in
Section 5.1, where we explain why a state ρ̃max

c is maximally obese rather than simply maximal volume.
2The density matrix of an X state in the computational basis has non-zero elements only on the diagonal and anti-
diagonal, giving it a characteristic ‘X’ shape.
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Figure 4.3: The geometric data for three maximal obese states ρ̃max
c with c = 0 (left), c = 0.5 (middle)

and c = 0.8 (right). Since these are canonical states we have b = 0 and c = a. Note that E = Emax
c

touches the pole of the Bloch sphere at |0〉 for any c.

In the steering ellipsoid formalism, E for an X state will be radially aligned, having a semiaxis

collinear with c.

The state ρ̃max
c should be compared to the Horodecki state [54]

ρH = p |ψ+〉 〈ψ+|+ (1− p) |00〉 〈00| , (4.14)

where |ψ+〉 = 1√
2

(|01〉+ |10〉). This is the same as ρ̃max
c when we reparametrise c = 2(1−p) and

also make the change |ψ+〉 7→ |ψc〉. The Horodecki state is a rank-2 maximally entangled mixed

state [55]. ρH may be extended (see, for example, Refs. [56–58]) to the generalised Horodecki

state

ρGH = p |ψα〉 〈ψα|+ (1− p) |00〉 〈00| , (4.15)

where |ψα〉 :=
√
α |01〉 +

√
1− α |10〉. Note that this has two free parameters, α and p. Setting

α = 1
2p and reparametrising c = 2(1−p), we see that our maximally obese states form a special

class of the generalised Horodecki states described by the single parameter c.

The maximally obese states have a clear physical interpretation when we consider the

Choi-isomorphic channel: ρ̃max
c is isomorphic to the single qubit amplitude-damping (AD)

channel with decay probability c [56]. For a single qubit state η, this channel is [7]

ΦAD(η) = E0ηE
†
0 + E1ηE

†
1, (4.16)

whereE0 := |0〉 〈0|+
√

1− c |1〉 〈1| andE1 :=
√
c |0〉 〈1|. If Alice and Bob share the Bell state |ψ+〉

and Alice passes her qubit through this channel, we obtain a maximally obese state centred at

c = (0, 0, c), i.e. ρ̃max
c = (ΦAD ⊗ 1) |ψ+〉 〈ψ+|.
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SUMMARY AND DISCUSSION OF CHAPTER 4

We have found families of extremal steering ellipsoids, i.e. those lying on the separable-

entangled and physical-unphysical boundaries, for a variety of scenarios: circles, ellipses,

spheres and ellipsoids. For 2D E , this allowed us to extend the No Pancake Theorem of

Ref. [45]; for 3D E , we extended the use of steering volume as an indicator of entanglement, as

proposed in Ref. [11].

Our study of the 3D scenario concerning the largest volume physical ellipsoids will prove

to be particularly important. Such ellipsoids describe a new family of maximally obese two-

qubit states. In the following chapters, we will see that these states are very significant for the

study of quantum correlations and monogamy.

In fact, perhaps the most remarkable application of the work in this chapter lies outside

quantum information altogether: by exploiting the nested tetrahedron condition we can use

the extremal states on the entangled-separable boundary to derive results in classical Euclidean

geometry. The method relies critically on the steering ellipsoid formalism, but the results are

of interest in pure geometry. In the following chapters we focus on the physical interpretation

of the maximal ellipsoids, and so we defer our discussion of this purely geometric work to

Chapter 8.
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CHAPTER 5

MONOGAMY OF STEERING ELLIPSOID VOLUME

We have seen that the steering ellipsoid offers a powerful geometric approach to exploring the

two-qubit state space. We will now demonstrate that the formalism can be applied to scenarios

beyond this bipartite setting. In particular, we consider a tripartite scenario by investigating

the volumes of the steering ellipsoids for the two-qubit marginals when Alice, Bob and Charlie

share a three-qubit state.

Originally termed obesity, steering ellipsoid volume was first proposed as a measure of

two-qubit correlation in Ref. [11]. Volume was shown to be distinct from both entanglement

and discord, but the precise meaning of obesity was not made clear. In this chapter we propose

a formal definition for obesity, which is closely related to but subtly different from steering

ellipsoid volume.

The volume of a set of Bloch vectors in Euclidean space may a priori seem like a rather

arbitrary measure of correlation strength. Our study of a monogamy scenario will demon-

strate the physical relevance of this measure. We will see that steering ellipsoid volume obeys

a remarkable monogamy of steering relationship,1 and that from this relationship we may derive

the well-known Coffman-Kundu-Wootters (CKW) inequality for the monogamy of concur-

rence [60]. Thus steering ellipsoid volume provides a novel derivation of this classic result, as

well as a more geometrically intuitive form of monogamy.

The monogamy of steering is perhaps the most significant result of this thesis. In order

to develop the result, we first derive a bound for concurrence in terms of steering ellipsoid

volume. We will see that the maximally obese states presented in the previous chapter saturate

this bound by maximising concurrence for a given ellipsoid centre. Given this observation, the

derivation of steering monogamy will then follow quite straightforwardly.

1In Ref. [59], Reid studies the monogamy of EPR-steering inequalities; this may also be described as the monogamy
of steering. Here we discuss only monogamy associated with the steering ellipsoids.
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5.1 STEERING ELLIPSOID VOLUME AND CONCURRENCE

We begin by establishing an inequality that bounds the concurrence of a two-qubit state using

the steering ellipsoid volume V . Physically motivated by its connection to the entanglement

of formation, concurrence is an entanglement monotone that may be easily calculated for any

two-qubit state ρ [24]. Define the spin-flipped state as

ρ̄ := (σy ⊗ σy)ρ∗(σy ⊗ σy), (5.1)

and let λ1, ..., λ4 be the eigenvalues of the Hermitian matrix
√√

ρ ρ̄
√
ρ in non-increasing order.

The concurrence is then given by

C(ρ) = max(0, λ1 − λ2 − λ3 − λ4). (5.2)

Concurrence ranges from 0 for a separable state to 1 for a maximally entangled state.

5.1.1 BOUNDING CONCURRENCE

In principle one may find C(ρ) in terms of the parameters describing the corresponding steer-

ing ellipsoid by explicitly computing λi. However, the resulting expressions are very compli-

cated and difficult to interpret. When we found conditions for ρ ≥ 0 in Chapter 3, we saw that

it was possible to present a much more comprehensible solution without finding the eigenval-

ues of a 4×4 matrix. Similarly, here we will derive a simple bound forC(ρ) in terms of steering

ellipsoid volume without actually computing λi for a general two-qubit state. We achieve this

by first establishing a bound that applies to the special family of Bell-diagonal states.

A Bell-diagonal state is equivalent under local unitary operations to a T state, i.e. a two-

qubit state which has both marginals maximally mixed (a = b = 0) [30]. Such states are par-

ticularly straightforward to manipulate algebraically and enable us to establish the following

bound for concurrence.

Lemma 5.1: Concurrence of Bell-diagonal states

Let τ be a Bell-diagonal state given by

τ =
1

4
(1⊗ 1+

3∑
i=1

ti σi ⊗ σi).

The concurrence is bounded as C(τ) ≤
√
|t1t2t3|. This bound is tight: there exists a

state τ achieving equality for every value 0 ≤ C(τ) ≤ 1.
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Proof. Without loss of generality, order |t1| ≥ |t2| ≥ t3. Ref. [40] then gives

C(τ) = max{0, 12(t1 + t2 − t3 − 1)}.

For a separable state τ , we have C(τ) = 0 and so the bound holds.

An entangled state τ must have C(τ) > 0. Recalling that the ellipsoid semiaxes

are si = |ti| and that an entangled state must have χ = −1 (Theorem 3.6), we take

t1 = s1, t2 = s2 and t3 = −s3 to obtain

C(τ) = 1
2(s1 + s2 + s3 − 1).

Ref. [30] gives necessary and sufficient conditions for the physicality and sep-

arability of τ . For τ to be an entangled state, the vector s = (s1, s2, s3) must lie

inside the tetrahedron with vertices r0 = (1, 1, 1), r1 = (1, 0, 0), r2 = (0, 1, 0) and

r3 = (0, 0, 1). Treating the tetrahedron (r0, r1, r2, r3) as a probability simplex, we

may uniquely decompose any point inside it as s = p0r0 + p1r1 + p2r2 + p3r3, where∑
i pi = 1 and pi ≥ 0. This gives s = (p0 +p1, p0 +p2, p0 +p3). Evaluating s1 +s2 +s3,

we obtain C(τ) = p0, as
∑

i pi = 1.

We now evaluate the right hand side of the inequality. We have

|t1t2t3| = s1s2s3

= (p0 + p1)(p0 + p2)(p0 + p3)

= p20 + p0(p1p2 + p2p3 + p3p1) + p1p2p3,

where we have again used
∑

i pi = 1. Since all the terms are positive, we see that√
|t1t2t3| ≥ p0 = C(τ), as required. The bound is saturated by states whose s vectors

lie on the edges of the tetrahedron (r0, r1, r2, r3). For example, by choosing p1 =

p2 = 0, we obtain the set of states s = (p0, p0, 1). These saturate the bound for every

value of the parameter 0 ≤ p0 ≤ 1. �

Using the transformations given by Verstraete et al. in Ref. [40], we may use the above

lemma to give a bound on the concurrence of a general two-qubit state. This will be of cen-

tral importance when we later demonstrate that the monogamy of steering implies the CKW

inequality.
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Theorem 5.2: Bound for concurrence using ellipsoid volume

The concurrence of any two-qubit state is bounded as

C(ρ) ≤ γ−1
(

3V

4π

)1/4

,

where γ := 1/
√

1− b2 and V is the volume of Alice’s steering ellipsoid.

Proof. Any state ρ can be transformed into a Bell-diagonal state τ by local filtering

operations [40]. Recall equation (2.18), which states that such transformations may

be written as

ρ 7→ τ =
1

N
(SA ⊗ SB) ρ (SA ⊗ SB)†,

where SA, SB ∈ GL(2,C). The normalisation factorN = tr
[
(SA ⊗ SB) ρ (SA ⊗ SB) †

]
.

Under such a local filtering operation, concurrence transforms as [40]

C(ρ) 7→ C(τ) =
| detSA||detSB|

N
C(ρ).

Express the state ρ in the Pauli basis using the matrix Θ(ρ) whose elements are

given by [Θ(ρ)]µν = tr(ρ σµ ⊗ σν). Similarly, τ is represented by Θ(τ). For a Bell-

diagonal state, we have Θ = diag(1, t1, t2, t3). As outlined in Section 2.2.1, the above

local filtering operation achieves

Θ(ρ) 7→ Θ(τ) =
|detSA||detSB|

N
ΛAΘ(ρ)ΛᵀB,

where Λi are proper, orthochronous Lorentz transformations given by

Λi =
Υ(Si ⊗ S∗i )Υ†

| detSi|
,

Υ =
1√
2



1 0 0 1

0 1 1 0

0 i −i 0

1 0 0 −1


.

For a general state ρ, the volume V = 4π
3 γ

4|det Θ(ρ)| [11]. From the local filter-

ing transformation, and using det ΛA = det ΛB = 1, we have

| det Θ(τ)| = |det Θ(ρ)|
(
|detSA||detSB|

N

)4

= |det Θ(ρ)|
(
C(τ)

C(ρ)

)4

.
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For a Bell-diagonal state | det Θ(τ)| = |t1t2t3|, and so we obtain

V =
4π

3
γ4|t1t2t3|

(
C(ρ)

C(τ)

)4

.

Hence C(τ) =
(
4π
3V

)1/4
γ|t1t2t3|1/4C(ρ). Since |t1t2t3| ≤ 1, Lemma 5.1 implies that

C(τ) ≤ |t1t2t3|1/4, from which the result then follows. �

5.1.2 OBESITY

The above work suggests precisely how ellipsoid volume might be interpreted as a quantum

correlation feature. We define the obesity Ω of a two-qubit state as

Ω(ρ) = |det Θ(ρ)|1/4, (5.3)

so that Theorem 5.2 gives the bound C(ρ) ≤ Ω(ρ).

Obesity is related to the volume of Alice’s steering ellipsoid as V = 4π
3 γ

4Ω4. Hence

obesity is a rescaled measure of steering ellipsoid volume. In addition to a constant scaling

factor, which ensures that 0 ≤ Ω(ρ) ≤ 1, the Lorentz factor γ also plays a role. Crucially,

this ensures that obesity is a measure that is invariant under swapping Alice and Bob. Whilst

Alice’s and Bob’s steering ellipsoids do not in general have the same volume, the obesity is a

direct function of the two-qubit correlation data itself. Additionally, whilst steering ellipsoid

volume is constant for all pure entangled states,1 the measure of obesity distinguishes between

pure states. These properties suggest that obesity might be a more physically meaningful

measure of quantum correlation than the raw steering ellipsoid volume itself.

Recently the notion of obesity was proposed entirely independently of the steering ellip-

soid formalism. Ref. [61] suggests a quantity denotedR12 as a measure of quantum correlation

based on the realignment criterion for entanglement. In fact, it may be seen thatR12 is precisely

the same as Ω for a two-qubit state. The authors of Ref. [61] were not aware of our previous

work on this quantity or its connection to the steering ellipsoid, again suggesting that the mea-

sure may be of general interest. Moreover, Ref. [61] suggests an extension of the definition of

obesity to the higher-dimensional Hilbert spaceH = Cd ⊗Cd as Ω(ρ) = d| det Θ(ρ)|1/d2 .2

1Recall that E for any pure entangled state is the whole Bloch ball, so that V = 4π
3

.
2The generalisation Ω(ρ) = | det Θ(ρ)|1/d

2

was also originally proposed in the context of steering ellipsoids in
Ref. [1]. Later, Ref. [61] independently suggested the same generalisation but with a factor of d that ensures
0 ≤ Ω(ρ) ≤ 1.
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5.1.3 MAXIMALLY OBESE STATES MAXIMISE CONCURRENCE

We now demonstrate an important property of the maximally obese state ρ̃max
c given in (4.13).

Recall that this is the canonical state corresponding to Emax
c , the maximal volume steering

ellipsoid with centre c. In the following theorem we show that ρ̃max
c maximises concurrence

for a given ellipsoid centre. This will also serve to demonstrate the tightness of the bound

given in Theorem 5.2.

Consider inverting the local filtering transformation described in Section 2.2.2 to convert

the canonical ρ̃max
c , which has b̃ = 0, to some state with b 6= 0:

ρ̃max
c 7→ ρmax

c =
(
1⊗

√
2ρB

)
ρ̃max
c

(
1⊗

√
2ρB

)
. (5.4)

This transformation alters Bob’s Bloch vector to b, where ρB = 1
2(1+ b · σ) = trA ρ

max
c is Bob’s

new reduced state. Recall that Bob’s local filtering operation leaves Alice’s steering ellipsoid E

invariant, and so E for ρmax
c is still the maximal volume ellipsoid Emax

c .

Theorem 5.3: Maximally obese states maximise concurrence

From the set of all two-qubit states that have E centred at c, the one with the highest

concurrence is the maximally obese state ρ̃max
c . The bound of Theorem 5.2 is sat-

urated for any 0 ≤ b ≤ 1 by a state ρmax
c corresponding to the maximal volume

ellipsoid Emax
c .

Proof. Recall that under the local filtering operation

ρ 7→ 1

N
(SA ⊗ SB) ρ (SA ⊗ SB)†,

concurrence transforms as [40]

C(ρ) 7→ |detSA||detSB|
N

C(ρ),

where N := tr
[
(SA ⊗ SB) ρ (SA ⊗ SB) †

]
. For the canonical transformation (2.20), we

have SA = 1 and SB = 1/
√

2ρB . This gives detSA = 1, detSB = 1/
√

1− b2 =: γ and

N = 1 so that C(ρ̃) = γC(ρ). Computing the concurrence of the maximally obese

state given in (4.13) yields C(ρ̃max
c ) =

√
1− c. Hence for a state of the form (5.4) we

have C(ρmax
c ) = γ−1

√
1− c.

Since E is invariant under Bob’s local filtering operation, the same Emax
c de-

scribes a state ρmax
c with any b. From Theorem 4.1 we know that the maximal el-

lipsoid Emax
c has volume V max

c = 4π
3 (1 − c)2. Substituting C(ρmax

c ) and V max
c into
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the result of Theorem 5.2 shows that the bound is saturated by states ρmax
c for any

0 ≤ b ≤ 1.

Any physical ρ with E centred at c must obey the bounds V ≤ 4π
3 (1− c)2 (The-

orem 4.1) and C(ρ) ≤ γ−1
(
3V
4π

)1/4 (Theorem 5.2), and hence C(ρ) ≤ γ−1
√

1− c. For

a given c, the state that maximises concurrence has b = 0. The state ρ̃max
c achieves

this maximum possible concurrence, C(ρ̃max
c ) =

√
1− c. Hence, from the set of all

two-qubit states that have E centred at c, the state with the highest concurrence is the

maximally obese state ρ̃max
c . �

It should be emphasised that ρ̃max
c maximises obesity from the set of all two-qubit states

that have E centred at c, achieving Ω(ρ̃max
c ) =

√
1− c. Although the maximal volume Emax

c

describes states ρmax
c with any b, the maximally obese state is uniquely the canonical ρ̃max

c .

This explains why we refer to such states as maximally obese rather than simply maximal

volume.

5.2 MONOGAMY OF STEERING

We now turn to our derivation of the monogamy of steering ellipsoid volume, the key result of

this chapter. We consider a three-qubit state shared between Alice, Bob and Charlie, and so we

reintroduce subscripts labelling the qubitsA, B and C. Thus Alice’s ellipsoid E is now labelled

EA, the maximal volume state ρmax
c is ρmax

cA
, the Lorentz factor γ = 1/

√
1− b2 is γb, and so on.

5.2.1 MUTUALLY MAXIMAL VOLUME STEERING

We begin by considering a maximal volume two-qubit state shared between Alice and Bob.

Lemma 5.4: Bipartite mutually maximal volume steering

When Alice and Bob share a state ρmax
cA

given by (5.4), both EA and EB are maximal

volume for their respective centres cA and cB , and the centres obey γ2b (1 − cB) =

γ2a(1− cA).

Proof. EA = Emax
cA

by construction, so VA = V max
cA

= 4π
3 (1 − cA)2. From Theorem

5.2 we know that C(ρmax
cA

) = γ−1b
√

1− cA. Since concurrence is a symmetric function

with respect to swapping Alice and Bob we must also have C(ρmax
cA

) = γ−1a
√

1− cB ,
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Figure 5.1: Monogamy scenario where Bob is the steering party. Bob performs a measurement to steer
Alice and Charlie, with corresponding steering ellipsoids EA|B and EC|B .

which gives γ2b (1− cB) = γ2a(1− cA). For any two-qubit state, the volumes of EA and

EB are related by γ4bVB = γ4aVA [11], so VB = 4π
3 (1− cB)2. This means that VB = V max

cB

and so EB is also maximal volume for the centre cB , i.e. EB = Emax
cB

. �

Now consider the scenario shown in Figure 5.1. Alice, Bob and Charlie share a pure

three-qubit state, and Bob can perform a measurement to steer Alice and Charlie. Let EA|B ,

with volume VA|B and centre cA|B , be the ellipsoid for Bob steering Alice, and similarly for the

ellipsoid EC|B with Bob steering Charlie. We show that Bob can simultaneously steer Alice and

Charlie to maximal volume ellipsoids.

Lemma 5.5: Tripartite mutually maximal volume steering

When Alice, Bob and Charlie share a pure three-qubit state and EA|B is maximal

volume for its centre cA|B , the ellipsoid EC|B is also maximal volume for its centre

cC|B , and the centres obey cA|B + cC|B = 1.

Proof. Consider first the case that Alice and Bob’s state is the canonical ρAB = ρ̃max
cA|B

given by (4.13), which means that EA|B = Emax
cA|B

by construction. Call the pure three-

qubit state |φ̃ABC〉, so that ρAB = trC |φ̃ABC〉 〈φ̃ABC |, with Bob’s local state being

maximally mixed. Performing a purification over Charlie’s qubit, we obtain the rank-
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2 state

|φ̃ABC〉 =
1√
2

(√
cA|B |001〉+ |010〉+

√
1− cA|B |100〉

)
.

Computing ρBC = trA |φ̃ABC〉 〈φ̃ABC |, we see that the state ρBC corresponds to a

maximal volume EC|B = Emax
cC|B

with centre cC|B = 1− cA|B .

Transforming out of the canonical frame, as in (5.4), we perform the local filter-

ing operation

|φ̃ABC〉 7→ |φABC〉 = (1⊗
√

2ρB ⊗ 1) |φ̃ABC〉 .

This ‘boosts’ Bob’s Bloch vector to an arbitrary b, with ρB = 1
2(1 + b · σ). The local

filtering operation leaves both EA|B and EC|B invariant. Therefore the relationship

cA|B + cC|B = 1 must also hold for the general case that ρAB = ρmax
cA|B

with any b. �

5.2.2 MONOGAMY RELATIONS

Everything is now in place to derive a monogamy relation for steering ellipsoid volume. Refer-

ring to Figure 5.1, we are interested in the trade-off relationship between VA|B and VC|B : does

Bob’s steering of Alice limit the extent to which he can steer Charlie? The following theorem

quantifies precisely this trade-off.1

Theorem 5.6: Monogamy of steering

When Alice, Bob and Charlie share a pure three-qubit state, the ellipsoids steered by

Bob obey the monogamy of steering relation√
VA|B +

√
VC|B ≤

√
4π

3
.

The bound is saturated when EA|B and EC|B are maximal volume.

Proof. Alice, Bob and Charlie hold the pure three-qubit state |φABC〉. The canonical

transformation |φABC〉 7→ |φ̃ABC〉 leaves EA|B and EC|B invariant. We therefore need

consider only canonical states for which b̃ = 0. (When ρB is singular and the canoni-

cal transformation cannot be performed, no steering by Bob is possible; we then have

VA|B = VC|B = 0 so that the bound holds trivially.)

1Note that the original proof of this theorem, published in Ref. [1], is incorrect; the corrected version presented here
appears in Ref. [62]. The author is very grateful to Michael Hall for pointing out the error and assisting with the
correction.
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We begin by showing that VA|B = 4π
3 c

2
C|B . Denote the eigenvalues of ρ̃AB =

trC |φ̃ABC〉 〈φ̃ABC | as {λi}. For a canonical state Charlie’s Bloch vector coincides with

cC|B , and so

ρ̃C = trAB |φ̃ABC〉 〈φ̃ABC | = 1
2(1+ cC|B · σ).

By Schmidt decomposition of |φ̃ABC〉we therefore have

{λi} =
{
1
2(1 + cC|B), 12(1− cC|B), 0, 0

}
.

From the expression for VA|B given in Ref. [11] we obtain VA|B = 64π
3 |det ρ̃ AT

AB|.

Define the reduction map [63, 64] as Λ(X) := 1trX −X . Following Ref. [50] we

note that

det ρ̃ AT
AB = det

[
(σy ⊗ 1) ρ̃ AT

AB (σy ⊗ 1)
]

= det
[
(Λ⊗ 1) ρ̃AB

]
= det

[
1
21⊗ 1− ρ̃AB

]
,

where we have used the fact that Bob’s local state is maximally mixed, trA ρ̃AB = 1
21.

Since the eigenvalues of 1
21⊗ 1− ρ̃AB are

{
1
2 − λi

}
, we obtain

det ρ̃ AT
AB =

4∏
i=1

(
1
2 − λi

)
=
(
−1

2cC|B
) (

1
2cC|B

) (
1
2

) (
1
2

)
= − 1

16c
2
C|B.

Hence VA|B = 64π
3 |det ρ̃ AT

AB| =
4π
3 c

2
C|B .

From Theorem 4.1 we have VC|B ≤ V max
cC|B

= 4π
3

(
1− cC|B

)2. This allows us to

complete the proof of the bound:√
VA|B +

√
VC|B ≤

√
4π

3
cC|B +

√
4π

3

(
1− cC|B

)
=

√
4π

3
.

�

The significance of
√

4π
3 in this bound is of course directly inherited from the fact that the

volume of the entire Bloch ball is 4π
3 .

We can also formulate a monogamy relation for the ‘inverse’ scenario depicted in Figure

5.2, in which Alice and Charlie can perform local measurements to steer Bob. Labelling the

corresponding steering ellipsoids EB|A and EB|C respectively, it is straightforward to derive a

bound for the volumes VB|A and VB|C .
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Figure 5.2: Monogamy scenario where Bob is the steered party. Alice and Charlie perform measure-
ments to steer Bob, with corresponding steering ellipsoids EB|A and EB|C .

Corollary 5.7: Monogamy of steering (inverse scenario)

When Alice, Bob and Charlie share a pure three-qubit state, the ellipsoids steered by

Alice and Charlie obey the monogamy of steering relation

γ−2a

√
VB|A + γ−2c

√
VB|C ≤ γ−2b

√
4π

3
,

where γi gives the Lorentz factor for each party. The bound is saturated when EA|B
and EC|B are maximal volume.

Proof. The bound follows immediately from Theorem 5.6 and the relationships

γ4bVB|A = γ4aVA|B,

γ4bVB|C = γ4cVC|B,

which apply to any two-qubit state [11]. The bound is saturated for maximal volume

EB|A and EB|C owing to Lemma 5.4, since the bound for the scenario in which Bob is

the steering party is saturated by maximal volume EA|B and EC|B . �

The monogamy relations given in Theorem 5.6 and Corollary 5.7 are remarkably elegant;

it was not at all obvious that there should be such simple bounds for ellipsoid volume. The

simplicity of the result is a consequence of the mutuality of maximal volume steering. If we

have EA|B = Emax
cA|B

then we must also have EB|A = Emax
cB|A

, EC|B = Emax
cC|B

and EB|C = Emax
cB|C

, i.e. all
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of EA|B , EB|A, EC|B and EB|C are simultaneously maximal volume for their respective centres.

The monogamy of steering can easily be rephrased in terms of obesity. Although Alice’s

and Bob’s steering ellipsoid volumes are in general different, obesity is a party-independent

measure. When expressed using obesity, the two steering scenarios therefore give the same

bound:

Ω2(ρAB) + Ω2(ρBC) ≤ γ−2b . (5.5)

We now show that the CKW inequality for monogamy of concurrence [60] follows as an

immediate corollary of the monogamy of steering. The steering ellipsoid thus provides a very

novel and more geometrically intuitive derivation of this classic result in quantum information

theory.

Corollary 5.8: Monogamy of concurrence

When Alice, Bob and Charlie share a pure three-qubit state, the squared concurrences

obey the CKW inequality

C2(ρAB) + C2(ρBC) ≤ 4 det ρB.

Proof. Note that γ−2b = 4 det ρB . The result then follows immediately from (5.5) and

Theorem 5.2, which gave C(ρ) ≤ Ω(ρ) for any two-qubit state ρ. �

Finally, we note that the tangle of a three-qubit state may be written as [60]

τABC = γ−2b − C
2(ρAB)− C2(ρBC). (5.6)

When there is maximal steering, so that the bounds in Theorems 5.6 and 5.8 are saturated,

we have τABC = 0. The corresponding three-qubit state belongs to the class of W states [39]

(assuming that we have genuine tripartite entanglement). The W state itself,

|W 〉 =
1√
3

(|001〉+ |010〉+ |001〉), (5.7)

corresponds to the case that cA|B = cB|A = cC|B = cB|C = (0, 0, 12).
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SUMMARY AND DISCUSSION OF CHAPTER 5

In this chapter we have provided a definition of obesity as a measure of two-qubit correlation.

Crucially, we found that the maximally obese states ρ̃max
c maximise concurrence for a fixed

ellipsoid centre (Theorem 5.3). In the following chapter we shall see that these states also

maximise several other measures of quantum correlation.

Our most important result quantifies the extent to which Bob’s steering of Alice and Char-

lie must be monogamous. This is one of the key results of the thesis, which we highlight again

below.

Monogamy of steering ellipsoid volume

When Alice, Bob and Charlie share a pure three-qubit state, the volume of the ellipsoids

steered by Bob obey the inequality√
VA|B +

√
VC|B ≤

√
4π

3
.

As well as providing a novel route to the CKW inequality for concurrence monogamy,

this result is of considerable interest in its own right. Recent work in Ref. [6] has extended the

investigation of monogamy of steering ellipsoid volume. In particular, monogamy results are

established for the case of mixed three-qubit states and further multi-qubit scenarios.1 Fur-

thermore, Ref. [6] demonstrates the robustness of the monogamy of steering under local noise

and explores further the connection to the classification of three-qubit states that we alluded

to above in our discussion of the W state.

Lastly, we note that the monogamy of steering may have an application in the quantum

marginals problem [65]. By using steering ellipsoid volume monogamy to place bounds on the

consistency of overlapping quantum marginals, we can find conditions that are stronger than

the well-known ones obtained from the CKW inequality.

1In fact, it is shown that the relationship in terms of
√
V that we found for pure three-qubit does not hold in general

for a mixed state; instead, one can establish a weaker bound involving terms of the form V 2/3.
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CHAPTER 6

CORRELATIONS OF MAXIMALLY OBESE STATES

In this chapter we uncover some remarkable properties of the maximally obese states intro-

duced in Section 4.4. Such states were originally presented as the canonical ones correspond-

ing to the maximum volume ellipsoids Emax
c . We have already seen that, in addition to this

geometric significance, ρ̃max
c is the one that maximises concurrence for a given ellipsoid centre

c. Here we find that ρ̃max
c maximises three more measures of quantum correlation – CHSH vi-

olation, fully entangled fraction, and negativity – over the set of all canonical two-qubit states

with some fixed c.

Chapter 5 emphasised the importance of steering ellipsoid volume, V = 4π
3 s1s2s3, which

was found to relate intimately to the concurrence of a two-qubit state. However, volume is

one of many measures for the ‘size’ of an ellipsoid. Here we will find that other measures of

ellipsoid size, such as the sum of the semiaxes s1+s2+s3, can also be interpreted as expressions

of quantum correlation. Furthermore, we find that the maximally obese state has geometric

properties that give it maximal values for these different correlation measures. In turn, this

makes maximally obese states optimal for certain quantum information tasks.

In addition to showing that maximally obese states maximise several measures of quan-

tum correlation, we prove that any maximally obese state must be either CHSH nonlocal or

symmetrically extendible. Finally, we place necessary bounds on c for a general two-qubit

state (i.e. one without any restriction on Bob’s marginal) to be CHSH violating or useful for

quantum teleportation.
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Figure 6.1: An example Emax
c with c = 1

3 . Emax
c has centre c = (0, 0, c) and semiaxes s1 = s2 =

√
1− c,

s3 = 1− c.

6.1 CANONICAL AND MAXIMALLY OBESE STATES: A REMINDER

For convenience, we begin by recalling some properties of canonical states ρ̃ and maximally

obese states ρ̃max
c . A canonical state is one for which Bob’s marginal is maximally mixed:

ρ̃ =
1

4
(1⊗ 1+ c · σ ⊗ 1+

3∑
i,j=1

T̃ij σi ⊗ σj). (6.1)

For such a state, Alice’s Bloch vector coincides with the ellipsoid centre c. The ellipsoid matrix

of a general two-qubit state ρ is defined using its canonical state by Q = T̃ T̃ ᵀ. The ellipsoid

semiaxes are therefore given by the singular values of T̃ , which we denote si.1 Without loss of

generality we will say that the semiaxes are ordered such that s1 ≥ s2 ≥ s3.

A maximally obese state is given by

ρ̃max
c =

(
1− c

2

)
|ψc〉 〈ψc|+

c

2
|00〉 〈00| , (6.2)

where |ψc〉 := 1√
2−c

(
|01〉+

√
1− c |10〉

)
. The corresponding steering ellipsoid Emax

c has major

semiaxes s1 = s2 =
√

1− c and minor semiaxis s3 = 1− c (see Figure 6.1). With the exception

of c = 1, the maximally obese states are entangled and hence have chirality χ = −1.

6.2 CORRELATIONS OF CANONICAL AND MAXIMALLY OBESE STATES

We now consider a number of quantum correlation measures and properties: CHSH nonlocal-

ity, symmetric extendibility, fully entangled fraction, concurrence and negativity. We consider

how the measures can be bounded by Alice’s Bloch vector c for canonical states and demon-

1Recall that the signed singular values are given by ti; the singular values are si = |ti|.
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strate the special role played by maximally obese states in saturating these bounds.

6.2.1 CHSH NONLOCALITY AND SYMMETRIC EXTENDIBILITY

Consider the Clauser-Horne-Shimony-Holt (CHSH) scenario [66] with Alice and Bob sharing

a canonical two-qubit state ρ̃. Alice can measure her qubit in one of the two directions α or α′,

and Bob can measure his qubit in β or β′. We define the operator

B := α · σ ⊗ (β + β′) · σ +α′ · σ ⊗ (β − β′) · σ. (6.3)

The maximal CHSH violation is a measure of Bell nonlocality given by

β(ρ̃) = max
B
|tr(ρ̃ B)| , (6.4)

where the maximisation is performed over all directions α,α′,β,β′. This gives [67]

β(ρ̃) = 2
√
s21 + s22, (6.5)

where s1 and s2 are the two largest singular values of T̃ .

In the steering ellipsoid picture, the entanglement of a state depends on the centre vector

c, the size of E and its skew cᵀQc [11]. In contrast to this, the CHSH nonlocality of a canonical

state has a remarkably simple geometric interpretation: it depends on only the two longest

semiaxes of E and not on the position or orientation of E inside the Bloch ball. We now see

that for canonical states with some fixed ellipsoid centre, it is the maximally obese state that

maximises CHSH nonlocality.

Theorem 6.1: Maximally obese states maximise CHSH nonlocality

From the set of all canonical states with a given c, the most CHSH nonlocal state is

the maximally obese state ρ̃max
c .

Proof. According to (6.5), we need to bound s21 + s22. The most CHSH nonlocal state

will be entangled and so has χ = −1. From the conditions for physicality given in

Theorem 3.3 we have

s21 + s22 ≤ 1− c2 + 2s1s2s3 − s23.

As described in Section 4.1.2 we can use the Karush-Kuhn-Tucker conditions to show

that the maximal volume Emax
c also maximises 2s1s2s3 − s23 for a given c = (0, 0, c).

This Emax
c has s1 = s2 =

√
1− c and s3 = 1 − c. We therefore see that 2s1s2s3 − s23 ≤
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(1− c)2, so

s21 + s22 ≤ 1− c2 + (1− c)2 = 2(1− c).

This gives the bound β(ρ̃) ≤ 2
√

2(1− c), which is met by ρ̃max
c . �

Let us also consider the symmetric extendibility of a maximally obese state. A bipartite

quantum state ρAB is symmetrically extendible with respect to Alice if there exists a tripartite

state ρAA′B for which trA ρAA′B = trA′ ρAA′B [68]. Originally introduced as a test for entan-

glement [69] (symmetrically extendibility is a necessary condition for separability), symmetric

extendibility has a number of operational interpretations. For example, a symmetrically ex-

tendible state cannot be used for one-way entanglement distillation [70] or one-way secret key

distillation [71].

Some previous work has studied the relationship between symmetric extendibility and

Bell nonlocality; in particular, Ref. [72] shows that a two-qubit state cannot be both symmetri-

cally extendible and CHSH nonlocal. In general there exist (necessarily entangled) two-qubit

states that are neither symmetrically extendible nor CHSH nonlocal. However, we observe

that a maximally obese state must possess one of these properties.

Corollary 6.2: Maximally obese states are either symmetrically extendible or CHSH

nonlocal

The family of maximally obese states is partitioned into states that are symmetrically

extendible and states that are CHSH nonlocal. ρ̃max
c is symmetrically extendible for

1
2 ≤ c ≤ 1 and CHSH nonlocal for 0 ≤ c < 1

2 .

Proof. The necessary and sufficient condition for a two-qubit state ρAB to be sym-

metrically extendible with respect to Alice is tr ρ 2
A ≥ tr ρ 2

AB − 4
√

det ρAB [68]. For

ρAB = ρ̃max
c , as given in Eq. (4.13), we find that

tr(ρ 2
A) = 1

2(1 + c2),

tr ρ 2
AB = 1

2(2− 2c+ c2),

det ρAB = 0.

ρ̃max
c is therefore symmetrically extendible if and only if 1

2(1 + c2) ≥ 1
2(2 − 2c + c2),

which gives c ≥ 1
2 .
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The necessary and sufficient condition for a state ρAB to be CHSH nonlocal is

β(ρAB) > 2. From Theorem 6.1, we have that β(ρ̃max
c ) = 2

√
2(1− c), and hence

β(ρ̃max
c ) > 2 if and only if c < 1/2. �

6.2.2 FULLY ENTANGLED FRACTION

The fully entangled fraction of a bipartite state ρ is a measure of correlation given by [73]

f(ρ) = max
|φ〉
〈φ| ρ |φ〉 , (6.6)

where the maximum is taken over all maximally entangled states |φ〉. For a canonical state ρ̃,

the fully entangled fraction can be computed as [74]

f(ρ̃) = 1
4(1 + s1 + s2 − χs3), (6.7)

where we recall the ordering s1 ≥ s2 ≥ s3. An entangled state must have χ = −1; in this

case f(ρ̃) depends only on the sum of the steering ellipsoid semiaxes,
∑

i si = tr
√
Q. As with

CHSH nonlocality, the fully entangled fraction of a canonical state depends only on the size of

E and not on its position or orientation. Like CHSH nonlocality, the fully entangled fraction is

maximised by ρ̃max
c .

Theorem 6.3: Maximally obese states maximise fully entangled fraction

From the set of all canonical states with a given c, the state with the highest fully

entangled fraction is the maximally obese ρ̃max
c .

Proof. According to (6.7), we need to bound s1 + s2 − χs3. Since χ takes a value −1,

1 or 0, we have s1 + s2 − χs3 ≤ s1 + s2 + s3. As s3 is the minor axis of a physical E ,

we must have s3 ≤ 1− c in order for E to lie inside the Bloch ball, and so

s1 + s2 + s3 ≤ s1 + s2 + 1− c.

The Cauchy-Schwarz inequality allows us to place a bound on the 1-norm of

any n-dimensional vector v using the 2-norm: ‖v‖1 ≤
√
n‖v‖2 [75]. Applying this to

v = (s1, s2), we have s1 + s2 ≤
√

2(s21 + s22). From Theorem 6.1, s21 + s22 ≤ 2(1 − c).

We therefore see that

s1 + s2 + s3 ≤ 2
√

1− c+ 1− c.

This gives the bound f(ρ̃) ≤ 1
4(1 +

√
1− c)2, which is met by ρ̃max

c . �
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Fully entangled fraction relates directly to the fidelity of quantum teleportation [76]:

when Alice and Bob share a two-qubit state ρ to use as a resource for quantum teleportation,

the average fidelity achieved is F (ρ) = 1
3(2f(ρ) + 1). Since F (ρ) increases monotonically with

f(ρ), Theorem 6.3 shows that ρ̃max
c is the optimal state to use for teleportation over all states

that have Bob’s marginal maximally mixed and Alice’s Bloch vector equal to c.

We can also consider this result in the Choi-isomorphic setting, using the property pre-

sented in Section 4.4 that ρ̃max
c is isomorphic to the amplitude-damping channel ΦAD, i.e.

ρ̃max
c = (ΦAD ⊗ 1) |ψ+〉 〈ψ+|. Let us say that Alice prepares a Bell state and sends one qubit to

Bob through a trace-preserving quantum channel Φ, intending the resulting shared state to act

as a resource for teleportation. From the set of all non-unital maps Φ for which Φ(121) = 1
2(1+c·

σ) and c = (0, 0, c), the one that will maximise teleportation fidelity is the amplitude-damping

channel ΦAD.

These results complement previous studies of teleportation, which have shown that pass-

ing a resource state through a dissipative channel can enhance the average teleportation fi-

delity [74] as well as identifying the filtering operations that achieve optimal fidelity for a

given resource state [77, 78].

6.2.3 CONCURRENCE AND NEGATIVITY

We now consider two entanglement monotones, both of which range from 0 for a separable

state to 1 for a maximally entangled state. A method for computing the concurrence C(ρ) of a

two-qubit state ρwas explained in Section 5.1. Negativity provides another measure for entan-

glement, based on the Peres-Horodecki criterion [48, 49]. Let µmin be the smallest eigenvalue

of the partially transposed state ρ BT ; the negativity is then given by [79]

N(ρ) = max(0,−2µmin). (6.8)

In Theorem 5.2 we bounded the concurrence of any two-qubit state in terms of the volume

of its steering ellipsoid. This gave us the bound C(ρ̃) ≤
√

1− c for a canonical state ρ̃. The

bound is saturated by maximally obese states ρ̃max
c . The above results on CHSH violation

allow us to derive another result that is neither stronger nor weaker than this bound. Ref. [80]

gives the inequality 2
√

2C(ρ̃) ≤ β(ρ̃). From (6.5) and the ordering s1 ≥ s2 ≥ s3 we then

obtain C(ρ̃) ≤ s1. Although this bound is distinct from C(ρ̃) ≤
√

1− c, it is also saturated by

maximally obese states.

Numerical results show that the negativity of a canonical state is bounded as N(ρ̃) ≤ s3.

As discussed in Theorem 6.3 we have s3 ≤ 1− c, and so N(ρ̃) ≤ 1− c. Explicit computation of
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N(ρ̃max
c ) shows that this bound is again saturated by maximally obese states.

We therefore see that in the steering ellipsoid picture, the concurrence of a canonical state

is upper bounded by the length of the major semiaxis while the negativity is upper bounded by

the length of the minor semiaxis.1 For maximally obese states, these entanglement measures

are in fact equal to the lengths of these semiaxes and can thus be directly obtained from a geo-

metric visualisation of Emax
c . This again demonstrates the particular significance of maximally

obese states in the steering ellipsoid representation.

As discussed in Section 4.4, maximally obese states form a special single-parameter class

of the generalised Horodecki state (see, for example, Refs. [56–58]). Other classes of the gener-

alised Horodecki state have been studied before and were seen to have certain extremal prop-

erties. For example, the Verstraete-Verschelde states [81] minimise the fully entangled fraction

for a given concurrence and negativity, obeying the relationship C = 1
2(N +

√
N(4 + 5N)).

Our maximally obese states ρ̃max
c maximise concurrence for a given CHSH nonlocality and

obey C =
√
N .

6.3 NONLOCALITY AND TELEPORTATION FOR GENERAL STATES

We now consider briefly how we might bound quantum correlation measures for a general

two-qubit state ρ using the steering ellipsoid centre c. Unlike concurrence, CHSH nonlocality

and fully entangled fraction are measures that do not transform straightforwardly under lo-

cal filtering operations. The bounds given in Theorems 6.1 and 6.3 for canonical states cannot

therefore be used to analytically derive bounds for β(ρ) and f(ρ) for a general (i.e. not nec-

essarily canonical) two-qubit state ρ. However, numerical investigations lead us to conjecture

remarkably simple expressions for these bounds (see Figure 6.2).

Conjecture 6.4: CHSH nonlocality for a general two-qubit state

For any two-qubit state ρwith steering ellipsoid E centred at c, the CHSH nonlocality

is tightly bounded as β(ρ) ≤ max[2
√

2(1− c), 2].

This allows us to place a necessary bound on the steering ellipsoid for a general two-qubit

state ρ to be CHSH violating: to violate the CHSH inequality we need β(ρ) > 2 and so c < 1/2.

We therefore see that a two-qubit state whose E is centred too close to the surface of the Bloch

1As proven in Theorem 5.3, for any given steering ellipsoid E , the state with highest concurrence is the canonical
state. The concurrence of any two-qubit state is therefore upper bounded by the length of the major semiaxis.
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Figure 6.2: The numerical evidence for Conjecture 6.4 (left) and Conjecture 6.5 (right). Using 105 ran-
dom two-qubit states ρ, we plot the CHSH nonlocality β(ρ) and fully entangled fraction f(ρ) against
the magnitude of the steering ellipsoid centre. The conjectured bounds are shown as black lines.

ball cannot exhibit CHSH nonlocality.

Conjecture 6.5: Fully entangled fraction for a general two-qubit state

For any two-qubit state ρ with steering ellipsoid E centred at c, the fully entangled

fraction is tightly bounded as f(ρ) ≤ 1− c
2 .

Recall that teleportation teleportation is directly related to the fully entangled fraction of

the resource state as F (ρ) = 1
3(2f(ρ) + 1). Using only state estimation and classical commu-

nication, it is possible to achieve a teleportation fidelity of 2
3 [76]. To beat this classical limit

we require f(ρ) > 1
2 , and so we see that for all c < 1 there exists E describing a state that

achieves truly quantum teleportation. An optimal universal cloning machine achieves a fi-

delity of 5
6 [82, 83]. To beat this limit we require f(ρ) > 3

4 and hence c < 1
2 , which is the same

bound that we obtained as a necessary condition for E to be CHSH violating.
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SUMMARY AND DISCUSSION OF CHAPTER 6

The results of this chapter place bounds on the quantum correlation of canonical states, i.e.

states that have a single marginal maximally mixed. Canonical states are intermediate between

the set of T states encountered in Lemma 5.1, which have both marginals maximally mixed,

and general two-qubit states, which have unconstrained marginals. Algebraically, a T state

is much simpler to work with than a general two-qubit state.1 It is thus often possible to

derive analytic results for T states that are inaccessible for general states – see, for example,

Refs. [30, 43, 84, 85].

The set of canonical states, however, has not been investigated in such detail. Our work

here gives important expressions for correlation measures in terms of the canonical state’s non-

vanishing marginal:

Bounds on quantum correlations for canonical states

A canonical state ρ̃ is subject to the following bounds in terms of the non-vanishing

Bloch vector c:

C(ρ̃) ≤
√

1− c, (Theorem 5.2)

β(ρ̃) ≤ 2
√

2(1− c), (Theorem 6.1)

f(ρ̃) ≤ 1
4(1 +

√
1− c)2, (Theorem 6.3)

where C is concurrence, β is CHSH nonlocality and f is fully entangled fraction. In each

case the bound is saturated by the maximally obese state ρ̃max
c .

These results are significant both in the context of steering ellipsoids, where correlation mea-

sures for canonical states have particularly simple geometric interpretations, and for the gen-

eral study of two-qubit states with a single mixed marginal.

Whether these results can be easily extended to higher dimensional quantum systems

remains to be seen. In particular, what would be the analogous family of maximally obese

states in higher dimensions, and what properties would these states have? It seems likely that

the set of states Choi-isomorphic to higher dimensional amplitude-damping channels [86] will

also have interesting features in terms of maximising quantum correlation.

1As a simple example, consider the task of finding the eigenvalues of ρ. We saw in Section 3.1 that this is in general
a very non-trivial problem, but for the case of a T state, analytic expressions may easily be obtained. Thus one
may derive a particularly simple set of necessary and sufficient conditions for ρ ≥ 0 [30] (equivalently, consider
the great simplification to the conditions for physicality given in Theorem 3.3 when one sets c = 0).
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CHAPTER 7

ENTANGLEMENT WITNESSES

So far we have investigated steering ellipsoids for two-qubit states. We now explore a point

that was mentioned but not fully developed in Chapter 3: any two-qubit state can be repre-

sented by some E , but not every E represents a valid state satisfying ρ ≥ 0. What then is the

meaning of an ellipsoid E that does not represent a quantum state? Previously we referred to

these ellipsoids as ‘unphysical’; in this chapter we will see that such an ellipsoid does in fact

have a physical interpretation – not as a quantum state, but as an entanglement witness.

We will prove that an ellipsoid inside the Bloch ball B must represent a block positive op-

erator B, i.e. one which achieves a positive expectation value over all separable states.1 Using

this, we take inspiration from the determinant criterion for separability given in Lemma 3.4

to derive a classification scheme based on the positivity of detB and detB BT . This gives a

remarkably elegant physical interpretation to all ellipsoids E ⊆ B.

The previous chapters examined two-qubit states of particular significance in the steering

ellipsoid picture; this chapter will examine two-qubit entanglement witnesses from a similar

geometric perspective. We find that properties such as witness optimality are naturally man-

ifest in this geometric representation and look at several important examples of two-qubit

entanglement witnesses. Finally, we give a conjecture that relates the ellipsoid representation

to the notion of optimality within a set of entanglement witnesses.

1A positive operator, on the other hand, must achieve a positive expectation value over all states, separable or
entangled.
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7.1 PRELIMINARIES

7.1.1 INTRODUCTION TO ENTANGLEMENT WITNESSES

Entanglement witnesses are an important approach to the characterisation, classification and

detection of entanglement in a mixed quantum system [87]. An entanglement witness [88]

is an operator that detects the presence of entanglement through the expectation value of an

observable; any entangled state can be detected using an appropriate witness. Experimentally,

entanglement witnesses provide a method for characterising a quantum state without needing

full tomographic knowledge of the system [89]. Mathematically, the theory of entanglement

witnesses gives a very nontrivial generalisation of positive semidefinite operators (for a recent

review, see Ref. [90]).

As discussed in Chapter 3, for a system of two qubits the Peres-Horodecki criterion gives

a simple necessary and sufficient condition for detecting entanglement. However, two-qubit

entanglement witnesses are still of interest in a variety of scenarios such as secure quantum

key distribution [91, 92], the investigation of Bell nonlocality [93], and the experimental char-

acterisation of entanglement [94].

7.1.2 POSITIVITY AND BLOCK POSITIVITY

We review some basic definitions and set out the notation. LetR be a Hermitian operator acting

on the finite-dimensional Hilbert spaceH, i.e. R ∈ L(H). R is positive semidefinite (R ≥ 0) when

〈ψ|R |ψ〉 ≥ 0 for all |ψ〉 ∈ H. To be a quantum state we also require that R has unit trace. R is

block positive when 〈ψ|R |ψ〉 ≥ 0 for all product |ψ〉 = |φ〉 ⊗ |ν〉 ∈ H. An entanglement witness

is block positive but not positive semidefinite [88] and can without loss of generality be taken

to have unit trace [95].1

As usual, we denote a state ρ. Similarly, we denote a Hermitian operator R, a block

positive operator B, and an entanglement witness W . All of these will be unit trace operators

acting on the two-qubit Hilbert spaceH = C2 ⊗ C2.

The most general unit trace Hermitian operator may be written in the Pauli basis as

R =
1

4
(1⊗ 1+ a · σ ⊗ 1+ 1⊗ b · σ +

3∑
i,j=1

Tij σi ⊗ σj), (7.1)

where a = tr(Rσ⊗1), b = tr(R1⊗σ) and Tij = tr(Rσi⊗σj). When R is a state, a and b give

the local Bloch vectors and T encodes correlations between the qubits held by Alice and Bob.

1Clearly there do not exist operators that are positive semidefinite but not block positive: block positivity is neces-
sary but not sufficient for positivity.
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The steering ellipsoid E then describes the set of Bloch vectors to which Alice can be steered

given all local measurements by Bob.

When R is not a state, we can still define E using the same parameters (c, Q) given in

Section 2.1.4. These give the centre and semiaxes of E . However, for a general R � 0, this E

no longer represents the set of steered states. Indeed, we are no longer even guaranteed that E

will lie inside the Bloch ball.

7.1.3 CANONICAL TRANSFORMATION

When considering states, we found it useful to perform a local filtering operation to transform

to a canonical frame. We will use the same transformation for our consideration of more gen-

eral two-qubit operators. Recall the local filtering transformation given in (2.17), which we

now apply to a general Hermitian operator R:

R 7→ R̃ =
(SA ⊗ SB)R (SA ⊗ SB)†

tr [(SA ⊗ SB)R (SA ⊗ SB)†]
, (7.2)

with SA, SB ∈ GL(2,C).

We have seen that this local filtering operation preserves positivity (Lemma 3.1); we now

prove that is also preserves block positivity.

Lemma 7.1: Local filtering preserves block positivity

For any R ∈ L(C2 ⊗C2), the local filtering operation (7.2) preserves block positivity:

R is block positive if and only if R̃ is.

Proof. R is block positive when 〈ψ|R |ψ〉 ≥ 0 for all |ψ〉 = |φ〉 ⊗ |ν〉 ∈ C2 ⊗C2. Any

separable state can be decomposed as σ =
∑

i pi |φi〉 〈φi|⊗ |νi〉 〈νi|with
∑

i pi = 1 and

pi ≥ 0; it follows from this that block positivity of R is equivalent to tr(Rσ) ≥ 0 for

all separable σ.

Block positivity of the numerator of R̃ is sufficient for block positivity of R̃ since

the denominator

tr
[
(SA ⊗ SB)R (SA ⊗ SB)†

]
= tr

[
R (S†ASA ⊗ S

†
BSB)

]
is positive for any block positiveR (consider tr(Rσ) with the unnormalised separable

state σ = S†ASA ⊗ S
†
BSB). Define S := SA ⊗ SB , so that the numerator is SRS†. Then

tr(SRS†σ) = tr(RS†σS) = tr(Rσ̄), (7.3)

where σ̄ := S†σS. By Lemma 3.5, local filtering preserves separability, so that σ̄ is
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separable if and only if σ is. Hence tr(R̃ σ) ≥ 0 for all separable σ if and only if

tr(R σ̄) ≥ 0 for all separable σ̄, i.e. R̃ is block positive if and only if R is. �

Thus positivity, block positivity and separability are all invariant under local filtering

operations, and hence any categorisation of a Hermitian operator as a state, block positive

operator or entanglement witness will be preserved. As with our study of two-qubit states, we

can restrict much of our analysis to the set of canonical operators R̃ which have b̃ = 0. Such an

operator is obtained through the local filtering operation (7.2) with SA = 1 and SB = 1/
√

trAR

and may be written

R̃ =
1

4
(1⊗ 1+ c · σ ⊗ 1+

3∑
i,j=1

T̃ij σi ⊗ σj). (7.4)

As E is invariant under transformation to the canonical frame, in order to characterise

any ellipsoid E describing a general two-qubit operatorR, we need consider only the canonical

operator R̃. The ellipsoid E of such an operator has centre c, ellipsoid matrix Q = T̃ T̃ ᵀ and

chirality χ = sign(det T̃ ). Recall that we may have χ = +1 (right-handed), χ = −1 (left-

handed) or χ = 0 (degenerate).

7.2 GEOMETRIC CHARACTERISATION OF TWO-QUBIT OPERATORS

7.2.1 BLOCK POSITIVITY

Although the ellipsoid E is defined for any Hermitian, unit trace two-qubit operator R, block

positive operators have a particular geometric significance.

Theorem 7.2: Geometric interpretation of block positivity

R is block positive if and only if its corresponding ellipsoid E lies inside the Bloch

ball B, i.e. E ⊆ B.

Proof. Since E and block positivity ofR are both invariant under the canonical trans-

formation, it suffices to consider a canonical operator R̃. R̃ is block positive when

〈ψ| R̃ |ψ〉 ≥ 0 for all product |ψ〉 = |φ〉 ⊗ |ν〉. Let φ = 〈φ|σ |φ〉 and ν = 〈ν|σ |ν〉 be the

Bloch vectors, where we must have |φ| = |ν| = 1. We compute

〈ψ| R̃ |ψ〉 = 1
4(1 + φ · r(ν)),
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where r(ν) has components r(ν)i = ci +
∑

j T̃ijνj . Since |ν| = 1, this describes the

linear transformation of the unit ball B; in fact, referring to Section 2.1.3, we see that

our expression gives precisely E . The vector r(ν) is therefore a point on the surface of

E , parametrised by ν.

So 〈ψ| R̃ |ψ〉 ≥ 0 for all |ψ〉 = |φ〉 ⊗ |ν〉 if and only if φ · r(ν) ≥ −1 for all

|φ| = |ν| = 1. This inequality is satisfied if and only if |r(ν)| ≤ 1 for all ν, i.e. if and

only if every point on E lies within B. �

It should be noted that determining whether a general E is contained within B is a dif-

ficult problem in Euclidean geometry [96]. In fact, given Theorem 7.2, the problem is clearly

equivalent in difficulty to determining whether R is block positive. This is known to be a hard

problem, and there is no straightforward test that gives necessary and sufficient conditions for

block positivity even in this simplest case of a 4 × 4 matrix [97]. In the Choi-isomorphic set-

ting, the question is equivalent to determining whether a single-qubit map is positive, which

is again known to be a hard problem (see, for example, Refs. [98, 99]). However, often it will

be plainly apparent whether E lies inside the Bloch ball from a visualisation, and hence it will

be immediately possible to determine block positivity of R from the ellipsoid representation.

7.2.2 DETERMINANT CRITERIA FOR BLOCK POSITIVE OPERATORS

We now present a novel way of characterising a unit trace block positive operator B. This

allows two-qubit states and entanglement witnesses to be distinguished based on the positivity

of the determinant alone.

Lemma 7.3: Determinant criterion for states and entanglement witnesses

Let B be a two-qubit block positive operator. B is a state if and only if detB ≥ 0;

otherwise B is an entanglement witness.

Proof. By definition B is a state when B ≥ 0. Since B is block positive, it is an

entanglement witness when B 6≥ 0. Clearly an operator B ≥ 0 achieves detB ≥ 0. A

two-qubit entanglement witnessB must have exactly one negative and three positive

eigenvalues [100] and hence detB < 0. The condition detB ≥ 0 is therefore necessary

and sufficient for B ≥ 0. �
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Having classified block positive operators using the sign of detB, we can now provide a

further classification of states and entanglement witnesses by considering the sign of detB BT .

The partially transposed operator B BT is block positive if and only if B is block positive.1 In

Lemma 3.4 we noted that a two-qubit state B is entangled if and only if detB BT < 0. Using

Lemma 7.3, the positivity of detB and detB BT can then be used to classify all block positive

two-qubit operators. For convenience we label these Classes A, B, C and D.

Determinant classification of block positive operators

Any two-qubit block positive operatorB can be placed into one of four classes according

to the signs of detB and detB BT :

B and B BT are separable states⇐⇒ detB ≥ 0 and detB BT ≥ 0, (Class A)

B is an entangled state

B BT is an entanglement witness

⇐⇒ detB ≥ 0 and detB BT < 0, (Class B)

B is an entanglement witness

B BT is an entangled state

⇐⇒ detB < 0 and detB BT ≥ 0, (Class C)

B and B BT are entanglement witnesses⇐⇒ detB < 0 and detB BT < 0. (Class D)

Note that an operator B belonging to Class B is equivalent to the operator B BT belonging

to Class C, and so the above classification essentially consists of three classes: operators that

are separable states and remain so under partial transposition (Class A); operators that are en-

tanglement witnesses and remain so under partial transposition (Class D); and operators that

flip between entangled states and entanglement witnesses under partial transposition (Class

B/C).

7.2.3 CLASSIFICATION OF BLOCK POSITIVE ELLIPSOIDS

Due to Theorem 7.2, any E ⊆ B describes a block positive two-qubit operator B and can there-

fore be classified using the scheme presented above. Recall that the canonical transforma-

tion maintains positivity and block positivity. This means that for block positive B we have

detB ≥ 0 ⇔ det B̃ ≥ 0 and detB BT ≥ 0 ⇔ det B̃ BT ≥ 0. Since expressions involving B̃ can be

written in terms of the ellipsoid centre c, matrixQ and chirality χ, this allows us to characterise

any block positive two-qubit operator using geometric features of E .

1This follows from the identity tr(B BT σ) = tr(B σ BT ) and the fact that the partial transpose of a separable state is
also a separable state.
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Expressions for det B̃ and det B̃ BT in terms of the ellipsoids parameters were given in

Theorems 3.3 and 3.6. Recall that partial transposition is equivalent to flipping the ellipsoid

chirality (χ 7→ −χ), and so these two expressions are in fact identical apart from the sign of one

term:

det B̃ ≥ 0⇐⇒ c4 − 2uc2 + v − χw ≥ 0,

det B̃ BT ≥ 0⇐⇒ c4 − 2uc2 + v + χw ≥ 0, (7.5)

where

u := 1− trQ+ 2ĉᵀQĉ,

v := 1 + 2 tr(Q2)− 2 trQ− (trQ)2,

w := 8
√

detQ, (7.6)

with the unit vector ĉ = c/c.1

With this we can now classify any E ⊆ B using simple expressions in terms of the ellipsoid

parameters.

Theorem 7.4: Ellipsoid classification of block positive operators

A two-qubit block positive operator B can be classified according to the parameters

of its corresponding E (the centre c, matrix Q and chirality χ):

B and B BT are separable states⇐⇒ c4 − 2uc2 + v − w ≥ 0, (Class A)

B is an entangled state

B BT is an entanglement witness

⇐⇒

c4 − 2uc2 + v − χw ≥ 0

c4 − 2uc2 + v + χw < 0,

(Class B)

B is an entanglement witness

B BT is an entangled state

⇐⇒

c4 − 2uc2 + v − χw < 0

c4 − 2uc2 + v + χw ≥ 0,

(Class C)

B and B BT are entanglement witnesses⇐⇒ c4 − 2uc2 + v + w < 0. (Class D)

Proof. Since detB ≥ 0⇔ det B̃ ≥ 0 and detB BT ≥ 0⇔ det B̃ BT ≥ 0, we can directly

convert the determinant-based classification scheme given above to canonical opera-

tors and use (7.5). The necessary and sufficient conditions for E to belong to Class A

are therefore

c4 − 2uc2 + v − χw ≥ 0,

1Compared to Theorem 3.3, we have separated out the term q as q = v − χw to isolate the chirality dependence.
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Figure 7.1: Visualisation of example E belonging to the different Classes given in Theorem 7.4. Left: E
belongs to Class A if and only if it fits inside a tetrahedron inside B. Both the left- and right-handed E are
separable states. Centre: The same surface describes E belonging to Class B and E belonging to Class
C. The left-handed E represents an entangled state; the right-handed E represents an entanglement
witness. Right: E belonging to Class D represents an entanglement witness in both its left- and right-
handed forms.

c4 − 2uc2 + v + χw ≥ 0.

These two inequalities are equivalent to c4 − 2uc2 + v − |χw| ≥ 0. However, w ≥ 0

and χ = ±1, 0, and so |χw| = w, where the case of a degenerate E holds as χ and w

vanish simultaneously. Hence the single inequality c4−2uc2 +v−w ≥ 0 is necessary

and sufficient for Class A. The two inequalities for Class D simplify similarly. �

Any E lying inside B can thus be straightforwardly classified according to its geometric

features. As in Section 3.1.3, where we examined conditions for positivity, we can identify three

geometric contributions: the distance of the centre of E from the origin, the size of E (through

terms such as trQ and detQ) and the skew ĉᵀQĉ (which gives a measure of the orientation of

E relative to c).

Figure 7.1 shows example ellipsoids for each class. We now make a few remarks to high-

light how Theorem 7.4 and the notion of ellipsoid chirality can be used to classify any ellipsoid

inside the Bloch ball.

• As discussed in Theorem 3.6, E for an entangled state (Class B) must be left-handed, as

it obeys χw < −χw. We see similarly that E belonging to Class C must obey χw > −χw

and therefore be right-handed.

• Any degenerate E inside the Bloch ball must belong to Class A or Class D. The nested

tetrahedron condition states that E fits inside a tetrahedron inside the Bloch ball if and

only if it corresponds to a separable state (Class A) [11]. For the case of degenerate E , the
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nested tetrahedron may be taken to be a triangle. Degenerate E belonging to Class D are

therefore those which do not fit inside a triangle inside the Bloch ball.

• Non-degenerate E belonging to Class A are those for which both the left- and right-

handed ellipsoids represent separable states. Non-degenerate E belonging to Class D

are those for which both the left- and right-handed ellipsoids represent entanglement

witnesses.

• Any E that meets the surface of the Bloch ball at a circle cannot represent a state regard-

less of its chirality (recall the No Pancake Theorem of Section 4.2). Such ellipsoids must

therefore belong to Class D.

In Chapter 3 we gave necessary and sufficient conditions for a two-qubit operator to represent

a state (separable or entangled). Theorem 7.4 gives an alternative formulation of this: given

that E lies inside B, it represents a state if and only if E belongs to Class A or Class B. Any E ⊆ B

that does not represent a state must instead represent an entanglement witness (Class C or

Class D). This gives a new physical interpretation to ellipsoids that were previously considered

unphysical. For the remainder of this chapter we will investigate these ellipsoids and the

corresponding entanglement witnesses in more detail.

7.3 ENTANGLEMENT WITNESS ELLIPSOIDS

7.3.1 OPTIMALITY AND WEAK OPTIMALITY

We useW to denote a unit trace two-qubit entanglement witness, which could belong to either

Class C or Class D. A state ρ is detected by W when tr(ρW ) < 0, and a witness W1 is said to

be finer than another witness W2 if all the states detected by W2 are also detected by W1. W

is called optimal when there does not exist a finer witness [95]. This notion can be extended to

optimality within a set as follows [91]: let S be a set of entanglement witnesses; then W ∈ S

is optimal in S if there does not exist a finer entanglement witness in S. Finally, W is weakly

optimal when there exists a product state |ψ〉 = |φ〉 ⊗ |ν〉 ∈ H such that 〈ψ|W |ψ〉 = 0 [101].

For two-qubit entanglement witnesses, the properties of optimality and weak optimality

can be immediately visualised using the ellipsoid representation.
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Theorem 7.5: Optimality of entanglement witness ellipsoids

The optimality of any two-qubit entanglement witness is manifest through the ge-

ometry of its corresponding E :

(i) W is optimal if and only if E is the whole Bloch ball B and right-handed;

(ii) W is weakly optimal if and only if E touches the Bloch sphere ∂B.

Proof.

(i) An optimal two-qubit entanglement witness is of the form W = |ψe〉 〈ψe| BT ,

with |ψe〉 an entangled state [90]. Since the steering ellipsoid for a state ρ is B

if and only if ρ is a pure entangled state, such a steering ellipsoid must be left-

handed (Theorem 3.6). An optimal entanglement witness is the partial trans-

position of such a state (ρ = |ψe〉 〈ψe|). Since partial transposition leaves the

ellipsoid surface invariant but flips the chirality, this corresponds to the case

that E = B but right-handed.

(ii) That the property of weak optimality is preserved under the canonical transfor-

mation is clear from (7.2): there exists |ψ〉 = |φ′〉 ⊗ |ν〉 such that 〈ψ| W̃ |ψ〉 = 0

if and only if there exists |ψ′〉 = |φ〉 ⊗ |ν ′〉 such that 〈ψ′|W |ψ′〉 = 0. Since E is

invariant under the canonical transformation, it therefore suffices to consider a

canonical entanglement witness W̃ .

The proof then proceeds similarly to Theorem 7.2. There exists |ψ〉 = |φ〉⊗

|ν〉 such that 〈ψ| W̃ |ψ〉 = 0 if and only if there exists φ with |φ| = 1 such that

φ · r(ν) = −1 for some point r(ν) on the surface of E parametrised by ν. Clearly

φ · r(ν) = −1 implies that there exists some ν for which |r(ν)| = 1. Conversely,

since the only constraint on φ is |φ| = 1, if |r(ν)| = 1 then the direction of φ can

always be chosen so that φ · r(ν) = −1. So W̃ is weakly optimal if and only if

|r(ν)| = 1, i.e. a point on E is coincident with ∂B.

�

We thus see from a geometric perspective that an optimal witness is a special case of a

weakly optimal witness, since any E = B touches ∂B. In terms of the classification scheme

given in Theorem 7.4, any optimal W must belong to Class C, since W BT = |ψe〉 〈ψe| is an

entangled state. A weakly optimal W can belong to Class C or Class D (see Figure 7.2).
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Figure 7.2: Any two-qubit entanglement witness W belongs to either Class C or Class D; these are
distinguished by whetherW BT is an entangled state or an entanglement witness. Witnesses represented
by degenerate E must belong to Class D, while all witnesses in Class C must be right-handed. There are
weakly optimal witnesses in Class C and Class D, but an optimal witness must belong to Class C. The
optimality or weak optimality of a witness is immediately evident from a visualisation of E inside the
Bloch sphere. Example witnesses discussed in the main text are shown.

7.3.2 EXAMPLES OF ENTANGLEMENT WITNESSES

We now present some typical examples of two-qubit entanglement witnesses to show how the

geometric features of E relate to witness properties. This will also serve to illustrate the dis-

tinction between operators belonging to Class C and Class D (recall that W belongs to Class

C when W BT is an entangled state; W belongs to Class D when W BT is an entanglement wit-

ness). The examples are shown on Figure 7.2, with the corresponding ellipsoids illustrated in

Figure 7.3.

Example 1: Flip operator

The flip or swap operator F is defined by F |φ〉 ⊗ |ν〉 = |ν〉 ⊗ |φ〉 [90]. After normalisation to

unit trace we have

W =
1

2
F = |φ+〉 〈φ+| BT , (7.7)

where |φ+〉 = 1√
2
(|00〉 + |11〉). In terms of the Pauli basis (7.1), we have a = b = 0 and

T = diag(1, 1, 1). Computing the ellipsoid parameters c and Q we see that E representing

W is the whole Bloch ball with χ = +1, as it must be for an optimal entanglement witness

(Theorem 7.5). As with any optimal entanglement witness, W belongs to Class C.

Example 2: Weakly optimal witnesses

Ref. [102] presents a family of two-qubit entanglement witnesses that, after normalisation, may

be decomposed as

Wp = pQ1 + (1− p)Q BT
2 , (7.8)
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Figure 7.3: Visualisation of the example E . Top left: Example 1 – E representing the optimal witness
W = |φ+〉 〈φ+| BT is the whole Bloch ball with χ = +1. Top right: Example 2 – E representing a weakly
optimal witness touches the surface of the Bloch sphere. Here we show E for Wp with p = 1

5 ; this meets
the surface of B at the circle on the equatorial plane. Bottom left: Example 4 – E representing W ∈ EW4

is an ellipse in the xz plane. Due to the nested tetrahedron condition, there is no triangle inside the
Bloch sphere that circumscribes E . Bottom right: Example 4 – E representing optimal W ∈ EW4 is the
xz unit disc.

where Q1 := |ψ+〉 〈ψ+| and Q2 := |φ+〉 〈φ+|. The family Wp is studied further in Refs. [103,

104]. Explicitly, we have

Wp =
1

2


p 0 0 0

0 1− p 1 0

0 1 1− p 0

0 0 0 p

 .

In terms of the Pauli basis, a = b = 0 and T = diag(1, 1, 2p − 1). Ep representing Wp

therefore has centre c = 0 and chirality χ = sign(2p − 1). The semiaxes of Ep have length 1, 1

and |2p− 1| aligned with the x, y and z coordinate axes respectively.

E lies inside B if and only if |2p − 1| ≤ 1, and so, following Theorem 7.2, Wp is block

positive if and only if 0 ≤ p ≤ 1. Wp is positive semidefinite and hence a state for p = 0; for

all other values of p, Wp is therefore an entanglement witness. Since all such E touch ∂B, Wp
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forms a family of weakly optimal entanglement witnesses.1

Furthermore, when p = 1,Wp reduces to the optimal witness presented in Example 1. For

all other 0 < p < 1, the ellipsoid E meets ∂B at the circle on the equatorial plane. As discussed

in Section 7.2.3, such ellipsoids belong to Class D.

Example 3: EW4 family

Refs. [91, 92] introduce EW4, a set of two-qubit entanglement witnesses of interest in quantum

key distribution. An entanglement witness W ∈ EW4 if and only if W = W ᵀ = W BT .

From (7.1) we see that for W ∈ EW4 all terms involving σy must vanish2 so that

a =


a1

0

a3

 , b =


b1

0

b3

 and T =


T11 0 T13

0 0 0

T31 0 T33

 .

We then convert this data into the ellipsoid parameters (c, Q) to find the corresponding ellip-

soid E .

We find that c lies in the xz plane and that the ellipsoid matrix Q is rank deficient, and

hence E is degenerate (χ = 0). The support of Q spans the xz plane and so E itself must lie

within the xz plane. E cannot be a line or point, as these always describe a separable state

(since they correspond to degenerate tetrahedra inside the Bloch sphere and hence satisfy the

nested tetrahedron condition [11]). Therefore E for W ∈ EW4 is an ellipse in the xz plane. As

a degenerate ellipsoid, all E for W ∈ EW4 belong to Class D.

Example 4: Optimality within EW4

Entanglement witnesses that are optimal within the set EW4 are given by W = 1
2(ρ + ρ BT ),

where ρ = |ψe〉 〈ψe| and |ψe〉 is a real entangled state [91]. Ref. [105] shows that E for such an

operator is a circular disc with centre c = 0 and radius 1. Any W ∈ EW4 must lie in the xz

plane, and so optimal witnesses within EW4 are represented by the xz unit disc itself. Note

that these witnesses are also weakly optimal for two qubits in general, since E touches the

surface of the Bloch sphere.

7.3.3 OPTIMALITY WITHIN A SET

The examples given above suggest an interesting new geometric perspective on optimality

within a set of two-qubit entanglement witnesses. Consider the set S of all two-qubit entan-

glement witnesses. The ellipsoids describing W ∈ S always lie within the Bloch ball, and the

1It is straightforward to verify that 〈ψ|Wp |ψ〉 = 0 for |ψ〉 = |+〉 ⊗ |−〉 with |±〉 = 1√
2
(|0〉 ± |1〉), fulfilling the

defining criterion of a weakly optimal witness.
2This follows since σᵀ

i = σi for i ∈ {1, 3}whilst σᵀ
i = −σi for i = 2.
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Figure 7.4: Visualisation of Conjecture 7.6. The blue ellipsoid is E?; the red ellipsoids are example
witnesses W ∈ S. We conjecture that the optimal W ∈ S are described by EW = E?.

optimal W ∈ S are simply the optimal two-qubit entanglement witnesses. According to Theo-

rem 7.5, the ellipsoid representing these optimalW is the whole Bloch ball. This E is the largest

possible one that represents any W ∈ S.

Members of the set EW4 are described by E that are ellipses within the xz plane (Exam-

ple 3). The optimal W ∈ EW4 are described by the whole xz unit disc (Example 4). Again,

this E is the largest possible ellipsoid for any W ∈ EW4. This leads us to conjecture that the

optimal W within a set will always be described by the largest possible ellipsoid.

Conjecture 7.6: Geometric condition for optimality within a set

Define the set S of two-qubit entanglement witnesses: W ∈ S if and only if EW ⊆ E?,

where EW is the ellipsoid representing W and E? ⊆ B is some ellipsoid inside the

Bloch ball. The optimal W ∈ S are then represented by EW = E?.

In the case that S is the set of all two-qubit entanglement witnesses, E? is the whole Bloch

sphere; and for our example S = EW4, E? is the xz plane. Note that this conjecture applies to

any E? belonging to Class C or Class D.

Although this conjecture is easy to visualise geometrically (Figure 7.4), it is nontrivial to

approach analytically. In addition to finding the optimal witnesses within a set, the conjec-

ture involves determining whether a given W belongs to S. This means finding whether one

ellipsoid E lies inside another E?, which, as noted in Section 7.2.1, is a difficult problem.
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SUMMARY AND DISCUSSION OF CHAPTER 7

In this chapter we have extended the steering ellipsoid formalism for representing two-qubit

states to represent any two-qubit block positive operator B. We derived a novel classification

ofB using the positivity of detB and detB BT , and we can now classify any ellipsoid inside the

Bloch ball as a separable state, entangled state or entanglement witness (Theorem 7.4). This

gives a beautiful physical meaning to ellipsoids which were previously regarded as unphysi-

cal.

We have studied several examples of two-qubit entanglement witnesses and found that

features such as optimality and weak optimality are clearly manifest in the ellipsoid represen-

tation (Theorem 7.5). This promotes ellipsoids as a natural and intuitive scheme for represent-

ing two-qubit entanglement witnesses.

It is also worth noting some features of the formalism that we have investigated without

finding any significant results. Is there any relationship between the ellipsoid representing an

entanglement witness W and the set of ellipsoids describing two-qubit states that W detects?

Or, conversely, is there a relationship between the ellipsoid of an entangled two-qubit state

and the set of ellipsoids describing entanglement witnesses which can detect that state? It also

remains to be seen whether an analogous representation of entanglement witnesses is useful

for studying higher-dimensional scenarios.

Finally, we note that Wang et al. [103, 104] have recently characterised weakly optimal

entanglement witnesses and given a general procedure for their construction. The ellipsoid

representation might be used to give a novel geometric interpretation of this procedure for

two qubits.
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CHAPTER 8

INEQUALITIES FOR A NESTED TETRAHEDRON

In the final chapter of this thesis we demonstrate how the steering ellipsoid formalism can be

used to establish results in pure geometry. Recall the nested tetrahedron condition, mentioned

in Section 1.5.5: a two-qubit state is separable if and only if E fits inside a tetrahedron that fits

inside the Bloch ball. In Chapter 4 we used the physical state conditions and ellipsoid chirality

to algebraically find the separable-entangled boundary. We now use the equivalence between

this algebraic formulation and the nested tetrahedron condition to derive several results in

classical Euclidean elementary geometry, some of which are entirely new.

We consider a ball of radius r contained inside another ball of radius R, with the centres

separated by a distance d. When does there exist a ‘nested’ tetrahedron circumscribed about

the smaller ball and inscribed in the larger ball? We derive the Grace-Danielsson inequality

d2 ≤ (R+ r)(R− 3r) as the sole necessary and sufficient condition for the existence of a nested

tetrahedron. Our method also gives the Euler-Chapple inequality d2 ≤ R(R − 2r) for the

existence of a nested triangle in the analogous 2D scenario.

We thus find a remarkable, physically motivated derivation of some very nontrivial geo-

metric results. In fact, our work extends these results to give conditions for the existence of a

nested tetrahedron for the more general, and significantly more difficult, case of an ellipsoid

inside a ball.
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Figure 8.1: Left: 2D scenario; right: 3D scenario. A disc (ball) E of radius r is contained inside another
disc (ball) BR of radius R. The distance between the centres of E and B is d. In the examples shown here
there exists a nested triangle (tetrahedron) circumscribed about E and inscribed in BR.

8.1 CLASSICAL EUCLIDEAN ELEMENTARY GEOMETRY

We begin by introducing some important results of classical Euclidean elementary geometry

(CEEG). Let d be the distance between the incentre and circumcentre of a triangle with inradius

r and circumradius R. Independently, Chapple (in 1746) and Euler (in 1765) found a classic re-

sult of 2D Euclidean geometry relating these quantities: d2 = R(R−2r) [106]. This relationship

holds for any triangle.

The analogous scenario in 3D space involves a tetrahedron, insphere (radius r) and cir-

cumsphere (radius R), with the sphere centres separated by a distance d. In 1816, Gergonne

asked whether in 3 dimensions d could be similarly expressed as a function of only R and r.

Eight years later, Durrande gave the solution d2 = (R + r)(R − 3r). This was widely accepted

for many years but is in fact incorrect, and there cannot exist such an equality that holds for all

tetrahedra (see Ref. [107] for a full discussion).

We consider a closely related question. A disc (ball) E of radius r is contained inside

another disc (ball) BR of radiusR.1 Let the distance between the centres of E and BR be d. What

are the necessary and sufficient conditions for the existence of a triangle (tetrahedron) nested

between E and BR? Examples of the 2- and 3-dimensional scenarios are shown in Figure 8.1.

In 2 dimensions, the sole condition for the existence of a nested triangle is given by the

Euler-Chapple inequality [108]

d2 ≤ R(R− 2r). (8.1)

1Following our usual notation, the Bloch ball, which has R = 1, will be written B.
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In 3 dimensions, Grace (in 1917, see Ref. [109]) and Danielsson (in 1949, see Ref. [110]) proved

that the sole condition for the existence of a nested tetrahedron is

d2 ≤ (R+ r)(R− 3r). (8.2)

We shall call (8.2) the Grace-Danielsson inequality.

Ref. [107] notes that the statement of this problem is formulated in terms of classical Eu-

clidean elementary geometry (CEEG) but Danielsson’s proof is based on some intricate projec-

tive geometry. This poses a challenge to prove inequality (8.2) using only methods belonging

to CEEG. We will prove the Grace-Danielsson inequality using the steering ellipsoid formal-

ism. There already exist some physically motivated derivations of geometric results; for ex-

ample, the generalised parallel axes theorem can be used to prove the Euler-Chapple result

d2 = R(R − 2r) [111]. Our derivation is particularly remarkable since it gives a new, and

highly nontrivial, generalisation of these results from CEEG.

8.2 CONDITION FOR THE EXISTENCE OF A NESTED TETRAHEDRON

We recall the nested tetrahedron condition:1

Lemma 8.1: Geometric condition for separability

An ellipse (ellipsoid) E corresponds to a separable state if and only if there exists a

triangle (tetrahedron) nested between E and B.

Here we outline the main ideas behind the proof; for full details, see Ref. [11].2

By definition, a separable state can be decomposed as ρ =
∑n

i=1 piφi ⊗ νi with
∑

i pi = 1

and pi ≥ 0. For two qubits, we can always take n ≤ 4 [24, 112]. Define Bloch vectors for Alice’s

states φi as φi := tr(φi σ). The set {φi} defines a (possibly degenerate) tetrahedron.

When Bob performs a measurement and obtains outcome M , Alice is steered as

ρA 7→ ρ′A =
trB [ρ (1⊗M)]

tr [ρ (1⊗M)]

=

∑
i pi tr(νiM)φi∑
i pi tr(νiM)

. (8.3)

Alice’s steered Bloch vector a′ = tr(ρ′A σ) is thus a convex combination of {φi}. Hence her

steering ellipsoid E , which gives the set of all Bloch vectors to which she can be steered, lies

1Note that any physical degenerate ellipsoid must represent a separable state (Theorem 3.6). Hence the existence
of a nested triangle for an ellipse E is equivalent to the physicality of E .

2Alternatively, a derivation for the nested tetrahedron condition using the 4D bicone picture has recently been
given in Ref. [35].
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inside the tetrahedron with vertices {φi}.

The converse direction of the proof is more difficult and involves showing that for any E

inside a tetrahedron one can construct a separable state ρ. The proof of the 2D nested triangle

result derives from the fact that if an ellipse fits inside a tetrahedron inside B then it must fit

inside a triangle inside B [113].

Independently of the nested tetrahedron condition we can also formulate an algebraic

condition for separability. As usual, in order to describe any E inside B we only need consider

canonical states of the form

ρ̃ =
1

4
(1⊗ 1+ d · σ ⊗ 1+

3∑
i,j=1

T̃ij σi ⊗ σj), (8.4)

which has ellipsoid matrix Q = T̃ T̃ ᵀ. The centre of E is d (relabelled from our normal c to

match the notation conventionally used in CEEG). Since B is centred on the origin, the distance

between the centres of E and B is d = |d|.

Lemma 8.2: Algebraic condition for separability

A (possibly degenerate) ellipsoid E ⊆ B with parameters (d, Q) corresponds to a

separable state if and only if d4 − 2ud2 + q ≥ 0, where

u := 1− trQ+ 2d̂
ᵀ
Qd̂,

q := 1 + 2 tr(Q2)− 2 trQ− (trQ)2 − 8
√

detQ,

with the unit vector d̂ = d/d.

Proof. E ⊆ B represents a block positive operator, and so we apply Theorem 7.4 to

classify ρ̃ as a separable state (Class A). �

We thus have two equivalent necessary and sufficient conditions for the separability of ρ:

the geometric condition of the existence of a nested tetrahedron and this algebraic condition.

It is not at all obvious how either one of these conditions could be found directly from the

other. Crucially, however, we now have an algebraic formulation for the existence of a nested

tetrahedron. Converting the unit ball B to a ball BR of radiusR, we arrive at the key inequality

that will be used to derive all our CEEG results.
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Theorem 8.3: Algebraic condition for a nested tetrahedron

Let E be an ellipsoid, described by matrix Q, contained inside a ball BR of radius R.

The centre of E relative to the centre of BR is d. There exists a tetrahedron circum-

scribed about E and inscribed in B if and only if d4 − 2uRd
2 + qR ≥ 0, where

uR := R2 − trQ+ 2d̂
ᵀ
Qd̂,

qR := R4 + 2 tr(Q2)− 2R2 trQ− (trQ)2 − 8R
√

detQ.

When E is an ellipse, the tetrahedron can always be taken to be a triangle.

Proof. Lemma 8.1 and Lemma 8.2 are both necessary and sufficient for separability

of E . The result follows immediately from this, after rescaling the quantities u and q

to uR and qR. �

8.3 CEEG RESULTS

Theorem 8.3 is all that will be needed to derive the Euler-Chapple inequality (8.1) for the 2D

scenario and the corresponding Grace-Danielsson inequality (8.2) for the 3D scenario. We also

present an example that demonstrates how Theorem 8.3 can be used to establish new results

for ellipses and ellipsoids.

Corollary 8.4: Euler-Chapple inequality

Let E be a disc of radius r contained inside a disc BR of radius R. The distance

between the centres of E and BR is d. The sole necessary and sufficient condition for

the existence of a nested triangle is

d2 ≤ R(R− 2r),

as given by the Euler-Chapple inequality (8.1).

Proof. E may be described by Q = diag(r2, r2, 0). The degenerate case of Theo-

rem 8.3 gives a condition for the existence of a triangle circumscribed about E and

inscribed in a ball of radius R. Setting d = (d1, d2, 0) ensures that E and d are copla-

nar, so that Theorem 8.3 equivalently gives a condition for the existence of a triangle

circumscribed about E and inscribed in a disc of radius R. The skew term d̂
ᵀ
Qd̂ = r2
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does not depend on the orientation of dwithin its plane. Evaluating uR and qR gives

uR = R2,

qR = R4 − 4R2r2.

Theorem 8.3 then tells us that a nested triangle exists if and only if

d4 − 2uRd
2 + qR = (d2 −R2)2 − 4R2r2 ≥ 0,

from which the result follows. �

The physical significance of this result in terms of steering ellipsoids inside the Bloch ball

was considered in Section 4.2 as an extension to the No Pancake Theorem. Briefly, this states

that the equatorial disc of the Bloch ball is not a valid steering ellipsoid; by setting R = 1,

Corollary 8.4 extends this result to identify the largest circular E that is a valid steering ellipsoid

for a given d.

Corollary 8.5: Grace-Danielsson inequality

Let E be a ball of radius r contained inside a ball BR of radius R. The distance be-

tween the centres of E and BR is d. The sole necessary and sufficient condition for the

existence of a nested tetrahedron is

d2 ≤ (R+ r)(R− 3r),

as given by the Grace-Danielsson inequality (8.2).

Proof. E may be described by Q = diag(r2, r2, r2). The skew term d̂
ᵀ
Qd̂ = r2 does

not depend on the orientation of d. Evaluating uR and qR gives

uR = R2 − r2,

qR = R4 − 6R2r2 − 8Rr3 − 3r4.

Theorem 8.3 then tells us that a nested tetrahedron exists if and only if

d4 − 2uRd
2 + qR = (d−R− r)(d+R+ r)(d2 − (R+ r)(R− 3r)) ≥ 0,

from which the result follows. �

Again, we provided a physical interpretation of this result in Section 4.3.1, where we iden-

tified the associated two-qubit states as inept states lying on the separable-entangled bound-

ary [52].
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8. INEQUALITIES FOR A NESTED TETRAHEDRON

Finally, we consider results for an ellipsoid E . Note that Theorem 8.3 concerns any el-

lipse or ellipsoid inside a ball – in particular, this includes ellipsoids that are oriented with no

semiaxis collinear with d. Such ellipsoids have an awkward skew term d̂
ᵀ
Qd̂, which causes

significant difficulties when attempting to formulate algebraic conditions for when E is con-

tained inside a ball [96]. Remarkably, Theorem 8.3 works in full generality to give conditions

for the existence of a nested tetrahedron for an ellipsoid with any skew. The degenerate case

can be used to give conditions for the existence of a nested triangle for any ellipse inside a disc

or ball. We believe this to be the first formulation of necessary and sufficient conditions for

these general scenarios.

As an example of how Theorem 8.3 can be used for ellipsoids, we give a result for a

specially oriented class of ellipsoid.

Corollary 8.6: Oriented ellipsoid inequality

Let E be an ellipsoid with semiaxes s1, s2, s3 contained inside a ball BR of radius R.

The distance between the centres of E and BR is d, and E has its s1 axis collinear with

d. The sole necessary and sufficient condition for the existence of a nested tetrahe-

dron is

d2 ≤ (R− s1)2 − (s2 + s3)
2.

Proof. E may be described by Q = diag(s21, s
2
2, s

2
3) and d = (d, 0, 0). Evaluating uR

and qR gives

uR = R2 + s21 − s22 − s23,

qR = R4 − 2R2(s21 + s22 + s23)− 8Rs1s2s3 + s41 + s42 + s43 − 2s21s
2
2 − 2s22s

2
3 − 2s23s

2
1.

Theorem 8.3 then tells us that a nested tetrahedron exists if and only if

d4 − 2uRd
2 + qR = (d2 −R2 − s21 + s22 + s23)

2 − (2Rs1 + 2s2s3)
2 ≥ 0,

from which the result follows. �

Note that by setting s1 = s2 = s3 = r Corollary 8.6 reproduces the result for a spherical E

given in Corollary 8.5.
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8. INEQUALITIES FOR A NESTED TETRAHEDRON

SUMMARY AND DISCUSSION OF CHAPTER 8

In this Chapter we have used the nested tetrahedron condition to derive two classic results in

CEEG:

Nested triangles and tetrahedra

A disc (ball) of radius r is contained inside a disc (ball) of radiusR. The distance between

the centres is d. There exists a nested triangle (tetrahedron) if and only if

Triangle: d2 ≤ R(R− 2r), (Euler-Chapple inequality)

Tetrahedron: d2 ≤ (R+ r)(R− 3r). (Grace-Danielsson inequality)

It is particularly noteworthy that we have derived the Grace-Danielsson inequality, which

remains unproven using methods from CEEG. Remarkably, both these results follow immedi-

ately from a single key inequality (Theorem 8.3). Moreover, the same inequality can be used to

give a necessary and sufficient condition for the existence of a nested triangle (tetrahedron) in

the general case that E is an ellipse (ellipsoid). This is the first time that such a condition has

been formulated. As well as providing these new results in CEEG, our results are of interest

purely for the novelty of the derivation.

Finally, we note that this work has led to renewed interest in the n-dimensional scenario

concerning a hyperball (radius r) inside a hyperball (radius R). Egan has conjectured

d2 ≤ (R+ (n− 2)r)(R− nr) (8.5)

to be necessary and sufficient for the existence of a nested simplex [114]. Although sufficiency

of this condition has been proven, there is not yet a proof of its necessity.
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