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Dedicated to Bernhard Banaschewski on the occasion of his 90th birthday

Abstract. The tangled closure of a collection of subsets of a topological
space is the largest subset in which each member of the collection is dense.
This operation models a logical ‘tangle modality’ connective, of significance
in finite model theory. Here we study an abstract equational algebraic for-
mulation of the operation which generalises the McKinsey-Tarski theory of
closure algebras. We show that any dissectable tangled closure algebra, such
as the algebra of subsets of any metric space without isolated points, contains
copies of every finite tangled closure algebra. We then exhibit an example
of a tangled closure algebra that cannot be embedded into any complete
tangled closure algebra, so it has no MacNeille completion and no spatial
representation.

1 Introduction

McKinsey and Tarski [17, 18] defined a closure algebra as a Boolean algebra
equipped with a unary function C that satisfies axioms of Kuratowski [15]
for the operation of forming the topological closure of a set. They graph-
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ically revealed the intricacy of the structure of many familiar topological
spaces by defining a notion of ‘dissectable’ closure algebra, showing that
any such algebra contains copies of every finite closure algebra, and prov-
ing that any metric space without isolated points has a dissectable algebra
of subsets. This work has been described [13] as the first attempt to do
pointless topology, a subject that has been a significant theme in the work
of Bernhard Banaschewski.

Our aim here is to generalise this theory to a study of tangled closure.
In a topological space this operation assigns to each finite collection Γ of
subsets a set CtΓ which is the largest subset in which each member of Γ is
dense. When Γ has one member, Ct{γ} is just the usual topological closure
Cγ of γ. In an order topology, determined by some quasi-ordering relation
R, a point x belongs to the tangled closure CtΓ if and only if there exists an
‘endless R-path’ xRx1 · · ·xnRxn+1 · · · starting from x such that the path
enters each set belonging to Γ infinitely often.

This order-theoretic interpretation has been used to model a proposi-
tional connective known as the tangle modality, which was introduced by
Dawar and Otto [4] in an analysis of logical formulas whose satisfaction is in-
variant under certain ‘bisimulation’ relations between models. A well-known
result of van Benthem [26, 27] states that a first-order formula is invariant
under bisimulations between arbitrary models if and only if that formula is
equivalent to a formula of the basic language of propositional modal logic.
This result continues to hold for bisimulation-invariance over any elementary
class of models, such as the quasi-orderings, as well as over the class of all fi-
nite models. But on restriction to the class of all finite quasi-orderings (and
some of its subclasses), the picture changes. Propositional formulas involv-
ing the tangle modality, which are bisimulation-invariant, become first-order
definable in this setting, and van Benthem’s result no longer holds. Instead,
a first-order formula is bisimulation-invariant over the finite quasi-orderings
if and only if it is equivalent to a formula of the language that enriches
basic modal logic by the addition of the tangle modality. Moreover, [4]
showed that the bisimulation-invariant fragment of monadic second order
logic, which is equivalent over arbitrary models to the much more powerful
modal mu-calculus, collapses over finite quasi-orderings to the first-order
fragment, so is also equivalent to the language with the tangle modality.
The name ‘tangle’ was introduced by Fernández-Duque [6, 7] who axioma-
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tised the tangle modal logic of finite quasi-orderings. Subsequently we have
made an extensive study [9–12] of a range of logics with this connective.

That accounts for the motivating origin of CtΓ , but here we subject
it to an abstract algebraic analysis, defining a tangled closure algebra as
a pair (A,Ct) with Ct an operation on finite subsets of a Boolean algebra
A, with the restriction of Ct to one-element sets being a closure operator
C. We require Ct to satisfy equational conditions ensuring that CtΓ is
the greatest fixed point of the function a 7→ ∧

γ∈ΓC(γ ∧ a). We study
homomorphisms and subalgebras of tangled closure algebras, and use the
logical Lindenbaum-Tarski algebra construction to produce freely generated
tangled closure algebras. Our main results extend those of McKinsey and
Tarski by showing that if a tangled closure algebra (A,Ct) is dissectable,
then any finite tangled closure algebra can be isomorphically embedded into
the relativised algebra of all elements below some open element of (A,Ct).
Furthermore, if (A,Ct) is totally disconnected (for example, the algebra of
subsets of any zero-dimensional metric space without isolated points), then
the embedding can be mapped into the relativisation to any non-zero open
element.

As is well known, every Boolean algebra A has order-complete exten-
sions, including the extension given by the Stone representation theory, and
the MacNeille completion, which is a complete Boolean algebra B extending
A with each element of B being the join of a subset of A. A closure algebra
also has complete extensions of both these kinds. But in our final section
we construct a tangled closure algebra that has no embedding into any com-
plete tangled closure algebra at all. In particular, it cannot be represented
as an algebra of subsets of a topological space.

2 Tangled Closure

Let A be a Boolean algebra with signature ∧, ∨, −, 0, 1. Define the Boolean
implication operation in A by a ⇒ b = −a ∨ b, and put a ⇔ b = (a ⇒
b) ∧ (b ⇒ a). Let

∨
E and

∧
E denote the join and meet of a subset E of

A when these exist. We sometimes write them as
∨
AE and

∧
AE to clarify

which algebra they are being defined in.

A closure operator on A is a function C : A→ A that is additive, normal,
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inflationary and idempotent, that is, satisfies the equational conditions

C(a ∨ b) = Ca ∨Cb, C0 = 0, a ≤ Ca = CCa.

C is then monotonic, that is, a ≤ b implies Ca ≤ Cb, and finitely additive in
the sense that C

∨
Γ =

∨{Cγ : γ ∈ Γ} for all finite Γ ⊆ A. The pair (A,C)
is called a closure algebra. An element a ∈ A is called closed if a = Ca,
which is equivalent to having a = Cb for some b.

In a closure algebra, C has a dual interior operation I : A→ A defined
by Ia = −C− a. This is also mononotonic; multiplicative in the sense that
I
∧
Γ =

∧{Iγ : γ ∈ Γ} for all finite Γ ; and has I1 = 1 and IIa = Ia ≤ a.
An element a is called open if a = Ia, which is equivalent to having a = Ib
for some b.

A basic property of all closure algebras that we make use of is that

Ia ∧Cb ≤ C(a ∧ b). (2.1)

In addition to the original paper [17], there is extensive information about
closure algebras in Chapter III of [21], where they are called topological
Boolean algebras.

Let PfinA be the set of all finite subsets of A. A function Ct : PfinA→
A induces a unary function C : A→ A by putting Ca = Ct{a}, and hence
a dual operation I that has Ia = −Ct{−a}. We will write these operations
as Ct

A, CA, IA, when needing to distinguish which algebra we are in.

We say that Ct is a tangled closure operator, and (A,Ct) is a tangled
closure algebra, if its induced C is a closure operator on A, and the following
hold for all Γ ∈ PfinA and a ∈ A:

Fix CtΓ ≤ ∧
γ∈ΓC(γ ∧CtΓ ),

Ind I(a⇒ ∧
γ∈ΓC(γ ∧ a)) ∧ a ≤ CtΓ .

These conditions are evidently equational, for example, Fix is equivalent to
CtΓ ∧∧

γ∈ΓC(γ ∧CtΓ ) = CtΓ. The pair (A,C) will be called the closure

algebra reduct of (A,Ct).

In the papers [9]-[12] we assumed for simplicity that CtΓ was only de-
fined for non-empty Γ , but we do not make that restriction here. Note that
by putting a = 1 and Γ = ∅ in axiom Ind we infer Ct∅ = 1.
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Lemma 2.1. In any tangled closure algebra, it holds in general that

CtΓ =
∨
{a ∈ A : a ≤ ∧

γ∈ΓC(γ ∧ a)}. (2.2)

Proof. Let fΓ (a) =
∧
γ∈ΓC(γ ∧ a). This defines a function fΓ : A → A

which is monotonic. Say that a is a post-fixed point for Γ if a ≤ fΓ (a). Let
SΓ = {a ∈ A : a ≤ fΓ (a)} be the set of all post-fixed points for Γ . (2.2)
asserts that CtΓ is the join of SΓ .

Now Fix states that CtΓ ≤ fΓ (CtΓ ), hence CtΓ ∈ SΓ . But Ind implies
that CtΓ is an upper bound of SΓ , for if a ∈ SΓ , then I(a⇒ fΓ (a)) = I1 =
1, so Ind reduces in this case to the assertion that a ≤ CtΓ .

Thus CtΓ is both a member of SΓ and an upper bound of it, hence is
its least upper bound.

Corollary 2.2. CtΓ =
∧
γ∈ΓC(γ ∧ CtΓ ). Moreover CtΓ is the greatest

(post-)fixed point of fΓ .

Proof. As above CtΓ ≤ fΓ(CtΓ), so monotonicity of fΓ yields fΓCtΓ ≤
fΓ (fΓCtΓ ), showing fΓCtΓ is also a post-fixed point of fΓ . Thus fΓCtΓ ≤
CtΓ , altogether then CtΓ = fΓCtΓ , and so CtΓ is a fixed point of fΓ . Since
all such fixed points belong to SΓ , CtΓ is the greatest of them, as well as
of the post-fixed points.

Lemma 2.1 implies that Ct is uniquely determined by the unary C it
induces. Furthermore:

Theorem 2.3. Any complete closure algebra (A,C) expands uniquely to a
tangled closure algebra (A,Ct) inducing C, by taking (2.2) as the definition
of CtΓ .

Proof. For each Γ ∈ PfinA, define CtΓ =
∨
SΓ , where SΓ = {a : a ≤

fΓ (a)} as above. Then we need to derive Fix and Ind for Ct thus defined.
First, if a ∈ SΓ , then a ≤ CtΓ , so fΓ (a) ≤ fΓ (CtΓ ). But a ≤ fΓ (a), so
this shows that a ≤ fΓ (CtΓ ), for all a ∈ SΓ . Hence

∨
SΓ ≤ fΓ (CtΓ ), that

is, CtΓ ≤ fΓ (CtΓ ), which is Fix.

The derivation of Ind is more lengthy, and uses some basic properties of
closure algebras. Given Γ and a, let b = (a ⇒ ∧

γ∈ΓC(γ ∧ a)). Ind asserts

Ib ∧ a ≤ CtΓ , so to prove this it is enough to show that Ib ∧ a belongs to
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SΓ , that is, Ib ∧ a is a post-fixed point of fΓ . Taking an arbitrary γ′ ∈ Γ
we have

Ib ∧ a
= Ib ∧ (a⇒ ∧

γ∈ΓC(γ ∧ a)) ∧ a as Ib = Ib ∧ b
≤ Ib ∧∧

γ∈ΓC(γ ∧ a) by Boolean algebra

≤ IIb ∧C(γ′ ∧ a) Ib = IIb and Boolean algebra
≤ C(Ib ∧ γ′ ∧ a) by (2.1).

This shows that Ib ∧ a ≤ C(γ′ ∧ Ib ∧ a) for all γ′ ∈ Γ , hence

Ib ∧ a ≤ ∧
γ∈ΓC(γ ∧ Ib ∧ a).

But that says Ib∧a ≤ fΓ (Ib∧a), that is, Ib∧a ∈ SΓ , hence Ib∧a ≤ ∨
SΓ =

CtΓ , which is Ind.
It remains to show that C is the closure operator induced by Ct. Let Γ

be any singleton {γ}. Then if a ∈ S{γ}, a ≤ C(γ ∧ a) ≤ Cγ. So Cγ is an
upper bound of S{γ}. But Cγ ≤ C(γ ∧ Cγ), since γ ≤ Cγ, showing that
Cγ also belongs to S{γ}. Hence Cγ =

∨
S{γ} = Ct{γ} as required.

Example 2.4 (Spatial Tangled Closure). The paradigm of a closure algebra
is (AS ,CS) where S is any topological space. Here AS is the Boolean
powerset algebra of all subsets of S, and CS(a) is the topological closure of
the set a ⊆ S, the intersection of all closed supersets of a. This is a complete
closure algebra in which

∨
E =

∪
E and

∧
E =

∩
E for all E ⊆ AS . By

Theorem 2.3, CS has a unique expansion to a tangled closure operator Ct
S .

A point belongs to Ct
SΓ if and only if it belongs to some set a such that

for all γ ∈ Γ , a ⊆ CS(γ ∩ a), so γ is dense in a in the sense that any open
neighbourhood of any point of a contains a point in γ and a. Since CtΓ
is the greatest post-fixed point for Γ , it is the largest set in which every
member of Γ is dense.

Example 2.5 (Quasi-orders and Alexandroff Spaces). A quasi-order is a
reflexive transitive binary relation R on a set S. The pair (S,R) is a quasi-
ordered set. Each x ∈ S has the set R(x) = {y : xRy} of R-successors. Then
y ∈ R(x)∩R(z) implies y ∈ R(y) ⊆ R(x)∩R(z), so the collection {R(x) : x ∈
S} of successor sets is a basis for a topology on S, the Alexandroff topology.
Its open sets are the up-sets, those subsets a of S such that are closed
upwards in the quasi-ordering in the sense that x ∈ a implies R(x) ⊆ a. Its
closed sets are the down-sets, the sets a for which xRy ∈ a implies x ∈ a.
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Its closure operator CR has CR(a) = R−1(a) = {x : ∃y(xRy ∈ a)}, giving
the closure algebra (AS ,CR). Hence by the preceding example, the tangled
closure operator Ct

R of this space has

Ct
RΓ =

∪
{a ⊆ S : a ⊆

∩
γ∈Γ

R−1(γ ∩ a)}.

To give an alternative characterisation of Ct
R, define an endless R-path to

be a sequence {xn : n < ω} in S such that xnRxn+1 for all n. (The terms
xn of the sequence need not be distinct. Indeed S may be finite.) Then it
can be shown that

x ∈ Ct
RΓ if and only if there exists an endless R-path {xn : n <

ω} in S with x = x0, such that for each γ ∈ Γ there are infinitely
many n < ω such that xn ∈ γ (see [7, §4.1]).

The next theorem records properties that will be used in Section 5 in
constructing a tangled closure algebra with no complete extension.

Theorem 2.6. In any tangled closure algebra (A,Ct), the following hold
for all Γ ∈ PfinA.

(1) CtΓ is closed, that is, CCtΓ = CtΓ .

(2) If Γ ′ = {γ′ : γ ∈ Γ} ⊆ A, then

∧
γ∈Γ I(γ ⇔ γ′) ≤ I

(
CtΓ ⇔ CtΓ ′

)
.

Proof. (1) We have CtΓ ≤ CCtΓ as C is a closure operator, so we need to
show the reverse inequality CCtΓ ≤ CtΓ . To see this, by Lemma 2.1, it
suffices to show that CCtΓ is a post-fixed point for Γ . Now for any γ ∈ Γ ,
by Fix and C-monotonicity CCtΓ ≤ CC(γ ∧ CtΓ ) = C(γ ∧ CtΓ ). But
by closure algebra properties C(γ ∧CtΓ ) ≤ C(γ ∧CCtΓ ). Altogether this
implies that CCtΓ ≤ C(γ ∧ CCtΓ ) for all γ ∈ Γ . Hence CCtΓ ∈ SΓ as
required.

(2) Let a =
∧
γ∈Γ I(γ ⇔ γ′). As I is multiplicative, a = I

∧
γ∈Γ (γ ⇔ γ′),

so a is open and therefore a = Ia. Now for each γ ∈ Γ , using Fix we have

a ∧CtΓ ≤ I(γ ⇔ γ′) ∧C(γ ∧CtΓ ) ≤ C((γ ⇔ γ′) ∧ γ ∧CtΓ )



16 R. Goldblatt and I. Hodkinson

by (2.1). Since (γ ⇔ γ′) ∧ γ ≤ γ′ and C is monotonic, this implies a ∧
CtΓ ≤ C(γ′ ∧ CtΓ ). Thus a ∧ CtΓ ≤ ∧

γ∈ΓC(γ′ ∧ CtΓ ), so a ≤ CtΓ ⇒∧
γ∈ΓC(γ′ ∧CtΓ ). Hence

a = Ia ≤ I(CtΓ ⇒ ∧
γ∈ΓC(γ′ ∧CtΓ )).

Then a ∧ CtΓ ≤ I(CtΓ ⇒ ∧
γ∈ΓC(γ′ ∧ CtΓ )) ∧ CtΓ ≤ CtΓ ′ by Ind for

Γ ′. It follows that a ≤ CtΓ ⇒ CtΓ ′. Interchanging Γ and Γ ′ here, and
using γ ⇔ γ′ = γ′ ⇔ γ, we likewise show a ≤ CtΓ ′ ⇒ CtΓ . Hence
a ≤ CtΓ ⇔ CtΓ ′. Therefore a = Ia ≤ I(CtΓ ⇔ CtΓ ′), which is the desired
result.

3 Homomorphisms, Subalgebras, Free Algebras

A homomorphism f : (A,Ct
A) → (B,Ct

B) between algebras of the type of
tangled closure algebras is a Boolean algebra homomorphism f : A → B
that preserves the Ct-operations in the sense that

f(Ct
AΓ ) = Ct

B{fγ : γ ∈ Γ}.

If f is injective we call it an embedding. If it is surjective, then it preserves
validity of equations, hence if (A,Ct

A) is a tangled closure algebra, then so
is (B,Ct

B). If f is bijective then it is an isomorphism.

A homomorphism of tangled closure algebras preserves the associated
closure operators, meaning that f(CA(a)) = CBf(a). In general, a Boolean
homomorphism f : A→ B that is a closure algebra homomorphism in this
sense need not preserve tangled closure, as we will see later in Section 5.
However, if f is a closure algebra isomorphism from (A,CA) onto (B,CB),
then it will preserve tangled closure and be a tangled closure algebra iso-
morphism from (A,Ct

A) onto (B,Ct
B). This follows by (2.2), since Boolean

isomorphisms preserve all existing joins.

Theorem 3.1. Any finite tangled closure algebra (A,Ct
A) is isomorphic to

the powerset algebra (AS ,C
t
R) of some finite quasi-ordered set (S,R) (see

Example 2.5).
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Proof. Being finite, A is isomorphic to the powerset algebra AS where S is
the set of atoms of A. The closure operator CA induced by Ct

A is transferred
by the isomorphism to a closure operator C′ on AS . Here C′ is equal to
the operator CR = R−1 of a quasi-order on S defined by xRy if and only
if x ∈ C′{y}. This follows from work in [14, Section 3] on complete and
atomic algebras, and is set out explicitly in [5, Lemma 1].

Since the closure algebras (A,CA) and (AS ,CR) are isomorphic, it then
follows that (A,Ct

A) and (AS ,C
t
R) are isomorphic, as noted above.

Another case in which a closure algebra homomorphism between tangled
closure algebras must preserve tangled closure occurs when the domain of
the homomorphism is finite, as we now show.

Theorem 3.2. Let (A,Ct
A) and (B,Ct

B) be tangled closure algebras and f :
A → B be a closure algebra homomorphism between the associated closure
algebra reducts (A,CA) and (B,CB). Suppose A is finite. Then f preserves
the tangled closure operations Ct

A and Ct
B.

Proof. We need to show that if Γ ∈ PfinA, then fCt
AΓ = Ct

BfΓ , where
fΓ = {fγ : γ ∈ Γ}. We use the fact that f is monotonic and preserves
finite meets and closure operators. Applying this to Fix for Ct

AΓ gives that
in B,

fCt
AΓ ≤

∧
γ∈ΓCB(fγ ∧ fCt

AΓ ).

This means that fCt
AΓ is a post-fixed point for fΓ in B, so by Lemma 2.1,

fCt
AΓ ≤ Ct

BfΓ .
For the reverse inequality Ct

BfΓ ≤ fCt
AΓ , let D = {a ∈ A : Ct

BfΓ ≤
fa}. Put d =

∧
D, which exists in A as A is finite. Then in B we have

Ct
BfΓ ≤

∧{fa : a ∈ D} = fd (3.1)

as f preserves finite meets. Now by Fix for Ct
BfΓ , (3.1) and preservation

properties of f we get

Ct
BfΓ ≤

∧
γ∈ΓCB(fγ ∧Ct

BfΓ )

≤ ∧
γ∈ΓCB(fγ ∧ fd) = f

(∧
γ∈ΓCA(γ ∧ d)

)
.

This shows that
∧
γ∈ΓCA(γ ∧ d) ∈ D. Hence d =

∧
D ≤ ∧

γ∈ΓCA(γ ∧ d),
proving that d is a post-fixed point for Γ . Thus d ≤ Ct

AΓ by Lemma 2.1.
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Then by (3.1) and monotonicity of f ,

Ct
BfΓ ≤ fd ≤ fCt

AΓ,

completing the proof that Ct
BfΓ ≤ fCt

AΓ and hence Ct
BfΓ = fCt

AΓ .1

We will say that (A,Ct
A) is a subalgebra of (B,Ct

B) if A is a Boolean
subalgebra of B that is closed under Ct

B, that is, Ct
BΓ ∈ A for all Γ ∈

PfinA, and Ct
A is the restriction of Ct

B to A. Equivalently this means that
A ⊆ B and the inclusion A ↪→ B is a homomorphism (A,Ct

A) → (B,Ct
B)

as above. This implies that the reduct (A,CA) is a subalgebra of (B,CB).
But we will see in Section 5 that it is possible to have (A,CA) a subalgebra
of (B,CB) while (A,Ct

A) is not a subalgebra of (B,Ct
B).

We also need the notion of the relativisation of an algebra to one of its
elements. This abstracts from the notion of a topological subspace, that is,
the relativisation of a topology to a subset. To describe it, let (A,Ct

A) be
an abstract tangled closure algebra with closure algebra reduct (A,CA). If
α ∈ A, let Aα = {b ∈ A : b ≤ α} be the Boolean algebra of elements below
α, in which joins and meets are the same as in A, and the complement of b
in Aα is α− b = α ∧ −b. The implication operation ⇒α of Aα has

b⇒α c = (α− b) ∨ c ≤ −b ∨ c = b⇒ c.

A closure operator Cα is defined on Aα by putting Cαb := α ∧CAb. The
dual operator Iα to Cα has the property that if α is an open element of A,
that is, IAα = α, then Iαb = IAb for all b ∈ Aα [21, p. 96], that is, Iα is
the restriction of IA to Aα. Define an operation Ct

α on PfinAα by putting
Ct
αΓ := α ∧Ct

AΓ . Then (Aα,C
t
α) is the relativisation of (A,Ct

A) to α.

Theorem 3.3. If α is open, then (Aα,C
t
α) is a tangled closure algebra with

closure algebra reduct (Aα,Cα).

Proof. Ct
α induces the unary operation b 7→ α ∧Ct

A{b} = α ∧CAb, which
is the closure operator Cα above. Then Ct

α satisfies Fix, since for all finite

1This proof can be adapted to yield the following result. If α : A→ A and β : B → B
are monotonic functions on complete lattices A and B, and f : A → B is a complete
lattice homomorphism such that f ◦ α = β ◦ f , then f preserves the greatest and least
fixed points of α and β.
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Γ ⊆ Aα and all γ ∈ Γ , using Fix for Ct
A shows that

Ct
αΓ = α ∧Ct

AΓ ≤ α ∧CA(γ ∧Ct
AΓ ) = α ∧CA(γ ∧ α ∧Ct

AΓ )

= α ∧CA(γ ∧Ct
αΓ ) = Cα(γ ∧Ct

αΓ ).

To show Ct
α satisfies Ind, we need the assumption that α is open, implying

that Iα is the restriction of IA to Aα. Let x = Iα(b⇒α
∧
γ∈ΓCα(γ ∧ b))∧ b

where b ≤ α. Then

x = IA(b⇒α
∧
γ∈ΓCα(γ ∧ b)) ∧ b

≤ IA(b⇒ ∧
γ∈ΓCA(γ ∧ b)) ∧ b

≤ Ct
AΓ

by Ind for Ct
A. Hence x ≤ α ∧Ct

AΓ = Ct
αΓ , which gives Ind for Ct

α.

A free tangled closure algebra over any set V can be constructed using
a propositional modal logic and the standard Lindenbaum-Tarski algebra
construction. To outline this, take an arbitrary V and regard its members
as (propositional) variables that can range over the elements of an algebra.
From these variables we construct formulas φ,ψ, . . . using

• the Boolean connectives ∧, ∨, ¬, →, ↔, and a constant ⊥, inter-
preted as the corresponding operations in a Boolean algebra;

• unary modalities 3 and 2 interpreted as C and I;

• a new connective ⟨t⟩, interpreted as Ct, which provides formation of
a formula ⟨t⟩Γ for each finite set Γ of formulas.

We denote by S4t be the propositional logic obtained by adding to a suitable
axiomatisation of the (non-modal) two-valued propositional calculus the
axiom schemes

K 2(φ→ ψ)→ (2φ→ 2ψ),

T φ→ 3φ,

4 33φ→ 3φ,

Fix ⟨t⟩Γ → 3(γ ∧ ⟨t⟩Γ ), all γ ∈ Γ ,
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Ind 2(φ→ ∧
γ∈Γ 3(γ ∧ φ))→ (φ→ ⟨t⟩Γ ),

and the inference rule of 2-generalisation (from φ infer 2φ). We write
S4t ⊢ φ to mean that formula φ is derivable as a theorem of this logic,
which is studied in detail in [9–11].

An equivalence relation ≡ on formulas is defined by putting φ ≡ ψ if
and only if S4t ⊢ φ↔ ψ. If |φ| = {ψ : φ ≡ ψ} is the equivalence class of φ,
then the Lindenbaum-Tarski algebra of S4t is the set

At = {|φ| : φ is a formula}

of all equivalence classes, with the operations

|φ| ∧ |ψ| = |φ ∧ ψ|
|φ| ∨ |ψ| = |φ ∨ ψ|
−|φ| = |¬φ|

0 = |⊥|
1 = |¬⊥|

Ct
At
{|φ| : φ ∈ Γ} = |⟨t⟩Γ |.

(At,C
t
At

) is a well-defined tangled closure algebra having an injective func-
tion η : V → At given by η(v) = |v|. This is for the most part stan-
dard theory [21, §§VI.10, XI.7]. That Ct

At
is well-defined follows because if

Γ ′ = {φ′ : φ ∈ Γ} and S4t ⊢ φ↔ φ′ for all φ ∈ Γ , then S4t ⊢ ⟨t⟩Γ ↔ ⟨t⟩Γ ′.
The axioms Fix and Ind for S4t ensure that Ct

At
is a tangled closure oper-

ator.

The image {|v| : v ∈ V } of η generates the algebra (At,C
t
At

), which is
free over V in the sense that for any tangled closure algebra (A,Ct

A) and
any function f : V → A, there is a unique tangled closure algebra homomor-
phism f ′ : (At,C

t
At

) → (A,Ct
A) such that f ′ ◦ η = f . The function f itself

is extended to map all formulas into A by interpreting the connectives by
the corresponding operations of (A,Ct

A), and then f ′ is defined by putting
f ′|φ| = f(φ). Identifying v with η(v) allows us to view V as a subset of At
that freely generates (At,C

t
At

).

Remark 3.4. A tangled closure algebra differs from the type of algebra
conventionally studied in universal algebra, since the operation Ct is not
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finitary, that is, not n-ary for any n < ω. But it gives rise to the sequence of
finitary operations {Ct

n : n < ω}, where Ct
n is the n-ary operation defined by

Ct
n(a1, . . . , an) = Ct{a1, . . . , an} for n > 0, and Ct

0 is the nullary operation
with Ct

0(∅) = 1. We could define a tangled closure algebra as a conventional
algebra with infinite signature, having the form (A, {Ct

n : n < ω}), satisfying
axioms Fixn and Indn stated in terms of Ct

n for each n, and satisfying
axioms Ct

n(a1, . . . , an) = Ct
n(aσ1, . . . , aσn) expressing the invariance of Ct

n

under any permutation of its arguments. It is evident that this alternative
approach is equivalent to the presentation we have given here. But it helps
clarify that the class of tangled closure algebras is an equational class, or
variety, in the traditional sense.

The logic S4t has the finite model property: any non-theorem of the logic
is falsifiable in the powerset algebra (AS ,C

t
R) of some finite quasi-ordered

set (S,R) (see [6, 9, 10] for a proof). From this, it can be concluded that
the variety of tangled closure algebras is generated by its finite members.

4 Dissectable Algebras

A closure algebra (B,CB) is dissectable if for any non-zero open element
α of B, and any natural numbers r and s, there exist non-zero elements
α1, . . . , αr, β0, . . . , βs of B such that

• these elements form a partition of α, that is, they are pairwise disjoint
(any two have meet 0) and the join of all of them is α;2

• α1, . . . , αr are all open; and

• CBαi − αi = CBβj = CBα− (α1 ∨ · · · ∨ αr) for all i ≤ r and j ≤ s.

Originally Tarski formulated the dissectability property with s = 0, and
proved that this holds for the powerset algebra of the real line and of its
dense-in-themselves subspaces. Density-in-itself means that there are no
isolated points, that is, no open singletons. Samuel Eilenberg then proved
that the property holds for any separable dense-in-itself metric space, and
this was presented in [23]. The more general formulation with arbitrary

2When r = 0, the sequence α1, . . . , αr is empty.



22 R. Goldblatt and I. Hodkinson

finite s was given in [17], where it was shown to hold for separable dense-in-
themselves metric spaces. Another proof was given in [21] that eliminated
the separability restriction. New kinds of dissectability theorems along these
lines are presented in [10–12].

It was shown in [17] that if (B,CB) is dissectable then every finite closure
algebra is isomorphic to a subalgebra of the relativised algebra (Bα,Cα) for
some non-zero open element α of B, and that any such (Bα,Cα) is itself
dissectable. Moreover, a well-connected finite closure algebra is embeddable
into (Bα,Cα) for every non-zero open α. Well-connectedness means that
Ca ∧ Cb = 0 implies a = 0 or b = 0. Equivalently, it means that the
meet of any two non-zero closed elements is non-zero. In a finite closure
algebra, this means that there is a least non-zero closed element, a property
called strong compactness in [21, p. 110]. For the powerset closure algebra
(AS ,CR) of a quasi-order set (S,R), as in Example 2.5, this means that
the quasi-order is point-generated in the sense that there is a point x ∈ S
such that R(x) = S, so that every y ∈ S has xRy. To see why, let a be a
least non-empty closed subset of S in the Alexandroff topology. Take any
x ∈ a. Then for any y ∈ S, the set {z : zRy} is closed and non-empty, so
includes a, showing that xRy. Hence R(x) = S. Conversely, if R(x) = S,
then the set {z : zRx} is a non-empty closed set included in all others. In
summary: if S is finite, then (AS ,CR) is well-connected if and only if (S,R)
is point-generated.

Using our result from the previous section on homomorphisms with finite
domains, we can readily lift the McKinsey-Tarski analysis to tangled closure
algebras.

Theorem 4.1. Let (B,Ct
B) be a tangled closure algebra whose closure al-

gebra reduct (B,CB) is dissectable. Then any finite tangled closure algebra
with a well-connected closure algebra reduct is isomorphically embeddable
into the relativised algebra (Bα,C

t
α) of any non-zero open element α of

(B,CB).

Proof. Let α be any non-zero open element of (B,CB). By Theorem 3.3
(Bα,C

t
α), is a tangled closure algebra, with closure algebra reduct (Bα,Cα).

Now let (A,Ct
A) be a finite tangled closure algebra whose closure algebra

reduct (A,CA) is well-connected. Then by [17, Theorem 3.7] there is a
closure algebra embedding f : (A,CA) → (Bα,Cα). By our Theorem 3.2
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this f preserves the tangled closure operations Ct
A and Ct

α, so provides the
result.

Note that by putting α = 1 in this theorem, so that Bα = B, we conclude
that any well-connected finite tangled closure algebra is isomorphic to a
subalgebra of (B,Ct

B) itself. We can now apply this result to show that any
finite tangled closure algebra has some embedding into a relativised algebra
of any dissectable tangled closure algebra.

Theorem 4.2. Let (B,Ct
B) be a dissectable tangled closure algebra. Then

any finite tangled closure algebra is isomorphically embeddable into the rel-
ativised algebra (Bα,C

t
α) of some open element α of (B,CB).

Proof. By Theorem 3.1, it suffices to give the proof for finite algebras of
the form (AS ,C

t
R). If (S,R) is point-generated, the result follows from

Theorem 4.1. Otherwise, we add a generating point. Let x be any ob-
ject not in S, put S∗ = S ∪ {x}, and let R∗ = R ∪ ({x} × S∗). Then
(S∗, R∗) is a quasi-ordered set point-generated by x, with no member of
S being R∗-related to x. The finite tangled closure algebra (AS∗ ,Ct

R∗) is
well-connected, so by Theorem 4.1 with α = 1, there is a tangled closure
embedding h : (AS∗ ,Ct

R∗) → (B,Ct
B). The image (B′,Ct

B′) of h is a tan-
gled closure subalgebra of (B,Ct

B) isomorphic to (AS∗ ,Ct
R∗), where Ct

B′ is
the restriction of Ct

B to B′ = h(B).
Now S is a subset of S∗ which is closed upwards under R∗, so S is an open

element of (AS∗ ,CR∗), that is, IR∗(S) = S. But h preserves the interior
operations IR∗ and IB, so then h(S) is an open element of (B,CB), that is,
IBh(S) = h(S). Let α = h(S) ∈ B′. Then as (AS∗ ,Ct

R∗) is isomorphic to
(B′,Ct

B′) under h, the relativisation of (AS∗ ,Ct
R∗) to S is isomorphic to the

relativisation of (B′,Ct
B′) to α, which is a subalgebra of the relativisation

(Bα,C
t
α) of (B,Ct

B) to the open element α.
But the relativisation of (AS∗ ,Ct

R∗) to S is exactly (AS ,C
t
R). For, the

relativisation (AS∗)S of the powerset algebra AS∗ of S∗ to S is just the
powerset algebra AS of S. Also, the relativisation of Ct

R∗ to S is the map
Γ 7→ S ∩ Ct

R∗Γ for Γ ⊆ AS . But S ∩ Ct
R∗Γ = Ct

RΓ because S is closed
upwards under R∗ and an endless R∗-path that starts in S must remain in
S and be an endless R-path.

Altogether then, this shows that (AS ,C
t
R) is isomorphic to a subalgebra

of (Bα,C
t
α).
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The proof of Theorem 4.1 can be extended to all finite tangled closure
algebras if the dissectable algebra (B,CB) is assumed to be totally discon-
nected, which means that every non-zero open element is the join of two
disjoint non-zero open elements. The totally disconnected dissectable al-
gebras include the closure algebras of all dense-in-themselves metric spaces
that are totally disconnected in the spatial sense that distinct points can
be separated by a clopen set. Examples of such spaces include the rational
line, the Cantor space and the Baire space ωω.

Theorem 4.3. Let α be any non-zero open element of a tangled closure
algebra (B,Ct

B) whose closure algebra reduct is totally disconnected and
dissectable. Then any finite tangled closure algebra is isomorphically em-
beddable into the relativised algebra (Bα,C

t
α).

Proof. The reduct (Bα,Cα) is totally disconnected and dissectable, so by
[17, Theorem 3.8], if (A,Ct

A) is any finite tangled closure algebra, there is
a closure algebra embedding f : (A,CA) → (Bα,Cα). By Theorem 3.2,
this f preserves the tangled closure operations Ct

A and Ct
α, so provides the

result.

5 No Completion

A completion of a Boolean algebra A is any complete Boolean algebra B
extending A, that is, having A as a subalgebra, such that each member of
B is the join of a set of members of A. This last condition is equivalent to
A being dense in B in the sense that each non-zero member of B is above
some non-zero member of A. It implies that B is a regular extension of
A, that is, the inclusion A ↪→ B preserves any joins (hence meets) that
exist in A, so that if a =

∨
AE in A, then a =

∨
BE in B. Any Boolean

algebra A has a completion, and any two completions of A are isomorphic
by a function that is the identity on A (see for example, [3, 8, 22]). This
unique-up-to-isomorphism algebra is often called the MacNeille completion
of A, after its construction in [16]. It has various abstract characterisations,
some due to Banaschewski [1, 2].

If (A,CA) is a closure algebra and B is any complete extension of A,
then CA can be extended to a closure operator on B by putting

CBb =
∧
B{CAa : b ≤ a ∈ A} (5.1)
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for all b ∈ B. This definition was given in [17] where it was applied to
the Stone representation of A to lift CA to the powerset algebra of the
representing set, ultimately showing that any closure algebra is embeddable
into the complete algebra of subsets of some topological space. It was later
used in [20] to extend CA to the MacNeille completion of A, applying this
to construct a regular complete extension of any Heyting algebra, and then
using the regularity to obtain completeness theorems in algebraic semantics
for versions of intuitionistic logic and the modal logic S4 with first-order
quantifiers. In more recent literature on MacNeille completions [25], CB as
given by (5.1) is called the upper MacNeille extension of CA.

There is no unique definition of MacNeille extension for operations on
Boolean algebras. Monk [19] showed that for algebras, such as cylindric
algebras, in which the operations are completely additive (preserve all joins),
it is fruitful to use the lower MacNeille extension which lifts an operation
OA to the operation OBb =

∨
B{Oa : b ≥ a ∈ A}.

We now define a completion of a closure algebra (A,CA) to be a closure
algebra (B,CB) such that B is a Boolean completion of A, (A,CA) is a
subalgebra of (B,CB), and (5.1) holds for each b ∈ B.

Theorem 5.1. Any closure algebra (A,CA) has a completion, and any two
such completions are isomorphic by a function that is the identity on A.

Proof. Let B be a Boolean completion of A, and define a closure operator
CB on B by (5.1). Then CBa = CAa for a ∈ A, so (A,CA) is a subalgebra
of (B,CB) and (B,CB) is a completion of (A,CA). If (B′,CB′) is another
one, then there is a Boolean isomorphism f : B → B′ that is the identity
on A. Hence f preserves joins and meets, and for any b ∈ B and a ∈ A,
we have b ≤ a if and only if f(b) ≤ a. Then we can shown that f preserves
closure operators as follows.

f(CBb)
= f

∧
B{CAa : b ≤ a ∈ A} by (5.1),

=
∧
B′{f(CAa) : b ≤ a ∈ A} as f preserves meets,

=
∧
B′{CAa : f(b) ≤ a ∈ A} as f fixes A

= CB′f(b) by (5.1) for B′.

Thus f is a closure algebra isomorphism.
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It would thus seem natural to define a completion of a tangled closure
algebra (A,Ct

A) to be a tangled closure algebra (B,Ct
B) such that

(i) (A,Ct
A) is a subalgebra of (B,Ct

B),

(ii) the closure algebra (B,CB) induced by Ct
B is a completion of the

closure algebra (A,CA) induced by Ct
A,

and perhaps some other conditions as well. However, we will now construct
a tangled closure algebra (A,Ct

A) for which there is no complete tangled
closure algebra (B,Ct

B) satisfying (i), let alone (i) and (ii).

Lemma 5.2. There exists a tangled closure algebra (A0,C
t) having a subset

{pn : n < ω} ∪ {q} and an ultrafilter x0 such that Ct{q,−q} /∈ x0 while
Σ ⊆ x0, where

Σ = {p0} ∪ {I(p2n ⇒ C(p2n+1 ∧ q)), I(p2n+1 ⇒ C(p2n+2 ∧ −q)) : n < ω}.

Proof. Let (A0,C
t) be the free tangled closure algebra generated by a set

{pn : n < ω} ∪ {q} of distinct elements. This exists as explained in Section
3. Let an be I(pn ⇒ C(pn+1 ∧ q)) if n is even, and I(pn ⇒ C(pn+1 ∧−q)) if
n is odd, where C is the closure operator induced by Ct and I is the interior
operation dual to C. Then Σ = {p0} ∪ {an : n < ω} ⊆ A0.

It suffices to show that the set Σ∪{−Ct{q,−q}} has the finite meet prop-
erty in A0: every finite subset has non-zero meet. For then Σ∪{−Ct{q,−q}}
is included in an ultrafilter x0 of A0 which includes Σ but does not contain
Ct{q,−q} as it contains −Ct{q,−q}.

For each positive integer m, let Σm = {p0} ∪ {an : n < m}. Any finite
subset of Σ ∪ {−Ct{q,−q}} is a subset of Σm ∪ {−Ct{q,−q}} for some m,
so it suffices now to show that

∧
(Σm ∪ {−Ct{q,−q}}) ̸= 0 for any m.

Define a quasi-ordered set (Sm, Rm) by Sm = {0, . . . ,m} and xRmy
if and only if x ≤ y. Put p′n = {n} for all n ≤ m and let q′ = {n ≤
m : n is odd}. Then by the freeness property there exists a tangled closure
algebra homomorphism f from (A0,C

t) to the powerset algebra (ASm ,C
t
Rm

)
of (Sm, Rm) such that f(pn) = p′n for all n ≤ m and f(q) = q′.

For n < m, let a′n = f(an). Since f preserves the closure algebra
operations, a′n is the subset of Sm specified by replacing pk by p′k and q
by q′ in an. Let Σ′m = {p′0} ∪ {a′n : n < m}. It is evident that 0 ∈∩

(Σ′m ∪ {−Ct
Rm
{q′,−q′}}), since 0 belongs to p′0 and to each a′n, and any
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endless Rm-path is ultimately constant, so cannot move in and out of q′

endlessly, hence 0 /∈ Ct
Rm
{q′,−q′}.

But if we had
∧

(Σm ∪{−Ct{q,−q}}) = 0 in A0, then as f preserves all
the operations involved, we would have

∩
(Σ′m ∪ {−Ct

Rm
{q′,−q′}}) = ∅, a

contradiction.

Now taking the algebra (A0,C
t) given by this lemma, let U0 be the set

of ultrafilters of A0. Define a relation R on U0 by putting xRy if and only
if {a : Ia ∈ x} ⊆ y, or equivalently if and only if {Ca : a ∈ y} ⊆ x. Then
it is standard theory that R is a quasi-order on U0, and has, for all a ∈ A0

and x ∈ U0,

Ia ∈ x if and only if for all y ∈ U0, xRy implies a ∈ y. (5.2)

Ca ∈ x if and only if for some y ∈ U0, xRy and a ∈ y. (5.3)

Let U = {y ∈ U0 : x0Ry}, where x0 is the ultrafilter given by Lemma 5.2.
For a ∈ A0, put

|a| = {x ∈ U : a ∈ x}.
Then A = {|a| : a ∈ A0} is a Boolean subalgebra of the powerset algebra of
U , since U \ |a| = |−a| and |a| ∩ |b| = |a∧ b|. The map a 7→ |a| is a Boolean
algebra homomorphism from A0 onto A.

We now transfer the tangled closure operation Ct on A0 to one on A,
by defining

Ct
A{|γ| : γ ∈ Γ} = |CtΓ | (5.4)

for all Γ ∈ Pfin(A0). We need to check that this is well-defined, that is,
that if |γ| = |γ′| for all γ ∈ Γ , and Γ ′ = {γ′ : γ ∈ Γ}, then |Ct

AΓ | = |Ct
AΓ
′|.

But we have |γ| = |γ′| if and only if γ and γ′ belong to the same members
of U , which is equivalent to requiring that γ ⇔ γ′ belongs to every member
of U . By (5.2) with x = x0, this is equivalent to having I(γ ⇔ γ′) ∈ x0.
Hence the well-definedness follows because (A0,C

t) satisfies

∧
γ∈Γ I(γ ⇔ γ′) ≤ I

(
CtΓ ⇔ CtΓ ′

)

by Theorem 2.6 (2), so if I(γ ⇔ γ′) ∈ x0 for all γ ∈ Γ , then I(CtΓ ⇔
CtΓ ′) ∈ x0.

The unary operation CA induced by Ct
A is given by

CA|a| = Ct
A{|a|} = |Ct{a}| = |Ca|,



28 R. Goldblatt and I. Hodkinson

and its dual has IA|a| = |Ia|. Equation (5.4) ensures that a 7→ |a| is a
homomorphism from (A0,C

t,C) onto (A,Ct
A,CA). Hence (A,Ct

A,CA) is
a closure algebra satisfying Fix and Ind, so is a tangled closure algebra.

Theorem 5.3. If (B,Ct
B) is any tangled closure algebra for which B is com-

plete, then there is no tangled closure embedding of (A,Ct
A) into (B,Ct

B).

Proof. Assume for the sake of contradiction that there exists a f : (A,Ct
A)→

(B,Ct
B) that is a tangled closure embedding. Then we show that

fCt
A{|q|, |−q|} ̸= Ct

B{f |q|, f |−q|},

which contradicts the assumption that f preserves tangled closure.

By Theorem 2.6(1), CCt{q,−q} = Ct{q,−q} /∈ x0, so by (5.3), for all
y ∈ U , we have Ct{q,−q} /∈ y. Thus |Ct{q,−q}| = ∅. Therefore

fCt
A{|q|, |−q|} = f |Ct{q,−q}| = f∅ = 0

in B. Hence to prove that f is not a tangled closure homomorphism it
suffices to show that Ct

B{f |q|, f |−q|} ̸= 0.

To show this, put bn = f |pn| for each n < ω, and let b =
∨{bn : n < ω}.

Then b exists in B as B is complete. We prove that b is a post-fixed point
for {f |q|, f |−q|}, that is,

b ≤ CB(b ∧ f |q|) ∧CB(b ∧ f |−q|). (5.5)

Now if n is even, then since an ∈ x0 it follows by (5.2) that pn ⇒
C(pn+1∧ q) ∈ y for all y ∈ U , hence |pn| ⊆ |C(pn+1∧ q)| = CA(|pn+1| ∩ |q|).
Similarly, if n is odd, then |pn| ⊆ CA(|pn+1| ∩ |−q|). Since f is a closure
algebra homomorphism, this implies that for all n < ω,

bn ≤ CB(bn+1 ∧ f |q|), if n is even; (5.6)

bn ≤ CB(bn+1 ∧ f |−q|), if n is odd. (5.7)

Thus if n is even, then by (5.6) bn ≤ CB(bn+1 ∧ f |q|) ≤ CB(b ∧ f |q|). Also
then as n+ 1 is odd we use (5.7) with n+ 1 in place of n to infer that

CB(bn+1) ≤ CBCB(bn+2 ∧ f |−q|) ≤ CB(b ∧ f |−q|).
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Since bn ≤ CB(bn+1) follows from (5.6), altogether these facts imply that

bn ≤ CB(b ∧ f |q|) ∧CB(b ∧ f |−q|) (5.8)

when n is even. But a similar proof shows that (5.8) also holds when n is
odd. Hence it holds for all n < ω, from which (5.5) follows.

Thus b is indeed a post-fixed point for {f |q|, f |−q|}, and therefore b ≤
Ct
B{f |q|, f |−q|} by Lemma 2.1. But as p0 ∈ x0 we have x0 ∈ |p0|, hence
|p0| ̸= ∅. So as f is injective,

0 = f∅ ̸= f |p0| = b0 ≤ b ≤ Ct
B{f |q|, f |−q|}.

This proves Ct
B{f |q|, f |−q|} ̸= 0, which completes the proof as explained.

Thus (A,Ct
A) has no homomorphic embedding into any complete tangled

closure algebra. In particular it is not embeddable into the algebra (AS ,C
t
S)

of subsets of any topological space S, including not being embeddable into
the algebra (AS ,C

t
R) of subsets of any quasi-ordered set (S,R).

LetB be any complete extension of the Boolean algebra A; take CB to be
the closure operator on B extending CA defined by (5.1); and let Ct

B be the
expansion of CB given by (2.2). Then (B,Ct

B) is a tangled closure algebra
by Theorem 2.3. The inclusion A ↪→ B provides the promised example of a
map (A,Ct

A)→ (B,Ct
B) that is a homomorphism of the associated closure

algebra reducts but is not a tangled closure homomorphism (by Theorem
3.2, such an example must have infinite A). It also provides the promised
example in which (A,CA) is a subalgebra of (B,CB) while (A,Ct

A) is not
a subalgebra of (B,Ct

B).

Finally we note that this absence of complete extensions is not at-
tributable to the fact that tangled closure algebras can be seen as having
infinite signature (Remark 3.4). The construction needs just the element
Ct
A{|q|, |−q|} which requires only the binary operation (a, b) 7→ Ct

A{a, b} of
this signature for its formation.
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